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1. INTRODUCTION

The subject of this thesis is to investigate system identification methods for de-
termination of the dynamic characteristics of offshore platforms. This includes
estimation of eigenfrequencies, damping ratios, mode shapes and, furthermore, a
general assessment of the structural performance.

The thesis has been made in relation to an offshore test program, ”Integrated Exper-
imental/Numerical Analysis of Dynamic Properties of Offshore Structures”, which
has been performed at the Department of Building Technology and Structural En-
gineering of the University of Aalborg since 1987. The main purpose of this thesis
has been to provide a basic knowledge of system identification of structures which
has been needed in the offshore test program mentioned. This has been accom-
plished by a survey of literature and by developing and testing different approaches
on simulated as well as experimental data.

1.1 Background and Motives

System identification is a discipline with a very wide range of application. The
tradition of applying of system identification is not very common in civil engineer-
ing, whereas in areas such as electrical engineering, geophysics and aircraft and
spacecraft industry there is a long tradition in the field. The concept of system
identification in civil engineering is especially related to experiences from the air-
craft and spacecraft industry where the development of system identification of
vibrating structures was initiated after the Second World War, see e.g. the classical
paper by Kennedy and Pancu [1]. During the sixties and seventies there was an
increasing interest of measuring the dynamic performance of tall buildings. After
the price shock of the oil prices in 1973 the industrial countries began to exploit
their own oil resources which led to offshore structures at increasing water depths.
At an early stage it became clear that the dynamic performance of offshore struc-
tures could not be ignored in the design phase. This led to an interest of system
identification of offshore structures which accelerated in the middle of the seventies
and lasted up to the date of this thesis.

The interest of system identification of offshore structures can be divided into two
subjects:

e An interest for improving the knowledge of the dynamic performance with the
purpose of reducing the prizes on offshore platforms.
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e An interest of monitoring the structural integrity by evaluation of the dynamic
performance and thus reducing the inspection costs.

Besides those motives, which are related to cost-benefit analysis within the private
sphere there are also some authority requirements with respect to a minimum in-
strumentation of offshore structures. This is e.g. the case in Norway where the
Norwegian Petroleum Directorate in 1978 issued at set of regulations with regard
to minimum instrumentation, see Holand et al. [2]. The purpose was twofold:

e Platform data and environmental data in the vicinity of the platforms must be
collected in order to assess the safety of the load-carrying structure of the plat-
forms and their foundation. This is done by checking the design assumptions
and by a semi-continuous registration of the behaviour of the platforms.

e Environmental data must be collected for a systematic statistical mapping of
the physical environment.

Thus, in the case of Norway, the public authority gives some minimum requirements
with respect to collecting knowledge of the structural performance and structural
integrity monitoring. While there are specific requirements for instrumentation in
Norway there are only general regulations with respect to structural inspection in
the United Kingdom, USA and Denmark (accordingly to the author’s knowledge).

1.2 Reader’s Guide

In the subsequent part of the present chapter it is argued that system identifica-
tion of offshore platforms is an important subject within structural engineering of
offshore platforms.

A thesis on system identification involves theoretical as well as practical considera-
tions. Since it has not been possible to obtain real records of the response of offshore
platforms, the practical experience referred to in this thesis is related to references
and an experiment which in this thesis is referred to as the experimental case.
The experimental set-up of this experiment is described at the end of this chapter.

With respect to the practical offshore experience a review of the practical experience
obtained from references is given in chapter 2. The review concerns the performed
measurings and identification results of offshore platforms during the seventies and
the eighties.

After the introduction given in chapter 1 and 2, in chapter 3 a theoretical intro-
duction to the principles of system identification is given in general, emphasizing
the importance of structural modelling and experimental considerations. The latter
subjects are concretized in chapter 4 and 5, respectively.

After giving the base of system identification in chapters 3 to 5, three groups of
methods for system identification are considered in chapters 6,7 and 8, respectively.
The methods have been divided into the groups with respect to the formulation of
the structural model applied. Finally, chapter 9 rounds off with a discussion and a
conclusion.
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1.3 Are Offshore Structures Dynamically Excited ?

The dynamic behaviour of structures can be characterized by a set of eigenfrequen-
cies, damping ratios and a mode shape matrix. However, whether the structure
responds dynamically towards the excitation, i.e. the waves is a question about the
proximity of the eigenfrequencies and the frequencies at which the energy in the
waves is concentrated. The excitation frequency where most energy is located is
called the peak frequency of the excitation. The peak frequency of the excitation
will depend on the significant wave height, H,, the water depth and in general the
geographic location, while the eigenfrequency will depend upon the type of struc-
ture and be strongly correlated with the water depth. The latter point will be
clearly demonstrated in the next chapter.

In the Danish part of the North Sea the wave energy will be concentrated in a narrow
band of frequencies with a typical peak frequency, f, in the range 0.05—0.3 Hz, while
the lowest eigen frequency will be somewhat higher. The peak frequency will be
strongly correlated with the significant wave height. The fundamental correlation is
given in figure 1.1 corresponding to the recommendation of the Danish offshore code,
(3]. It is seen that the most severe sea states give relatively small peak frequencies,
while the weak sea states may give relatively high peak frequencies. Thus, the risk
of dynamic excitation of an offshore platform will typically be largest for the weak
sea states.

fp [Hz]

0.35,

-—-- Danish Sector
UJ[— — Pierson Mosckowitz

0.25} ¢

02t

y MDH, »

0 2 4 6 8 10 12 14 16 18 2

Figure 1.1. The peak frequency of the wave elevation spectrum as a function of the significant wave
height, H, according to the Danish Code of Practice for the Design and Construction of Pile Supported
Offshore Steel Structures, [3].

The typical lowest eigenfrequency of existing jacket platforms lies in the range of
0.6 —1. Hz for the water depths in the Danish sector. In the Norwegian part and the
British part of the North Sea, the lowest eigenfrequency can be as low as 0.40 Hz.
In Norway certain measurings have shown that the effect of structural resonance is
less than 5 % in the root mean square (r.m.s.) sense for a jacket platform at 70 m
water depth, (f; = 0.55 Hz) and a gravity platform at 150 m depth, (f1 = 0.42 Hz),
Spidsge and Langen [4]. On the other hand, it seems that some excitation of the
two lowest bending modes and the lowest torsional mode always exists ,Robberstad
and Agnello [5], Nataraja [6]. Thus, even though offshore platforms at existing
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water depths may behave quasi statically the dynamic characteristics seems to be
present in the structural response. Two situations will lead to increased dynamic
behaviour of offshore structures:

e New design concepts.

e Structures at increasing water depths.

1.3.1 New Design Concepts

Figure 1.2 show some of the existing and some new design concepts of offshore
platforms. The conventional design concepts are jacket and Condeep platforms
which, at moderate water depths, will behave quasi statically. However, due to
the exploitation of marginal oil fields cheaper concepts have been considered and
developed. E.g. in the Danish North Sea the monopile (mono-tower) concept has
been considered for unmanned production platforms during the last 5 years. This
has now resulted in a new concept called a tripod platform which is expected to be
realized before 1991. This platform is expected to have a first eigenfrequency about
0.40 Hz. In general the monopile concept gives first eigenfrequencies about 0.3 —0.5
Hz, see e.g. Kirkegaard [7], Cook [8] who have considered platforms at water depths
about 30 — 40m. Thus, this new concept at moderate water depths obviously leads
to less stiff structures, and thus to increased importance of the dynamic structural
properties. At larger water depths alternative concepts such as guided towers and
semi-submersible platforms have also been developed with the same consequences.
Thus, new design concepts are in general likely to increase the need for assessing
the dynamic behaviour of offshore platforms.

:

Figure 1.2. a) Jacket platform, b) Condeep platform, ¢) Hybrid platform d) Monopile platform, e)
Tripod platform.
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1.3.2 The Effect of Increasing Water Depth

As it has been pointed out the lowest eigenfrequencies will decrease with increasing
water depth. In Vugts [9] sensitivity studies indicate that design of structures at
increasing water depths is more controlled by stiffness than strength requirements.
This can be illustrated by the characteristics of a clamped beam which can be con-
sidered to be a simple model of an offshore platform. In figure 1.3 the principle
correlation is shown for the static maximum moment, the static maximum displace-
ment and the first eigenfrequency with respect to the beam length. It is seen that,
while the moment varies linearly with the beam length, the displacement increases
with the beam length raised to the 3rd power. Thus, for a given beam length it
will be the stiffness and not the strength which will prescribe the beam dimension.
The effect of the beam length will accelerate because the eigenfrequency will be
inversely proportional to the square of the beam length which will increase the
resonance behaviour and thus give a dynamic amplification of the static maximum
moment and displacement.

Vugts [9] concludes through his sensitivity study that for water depths of jacket
structures over 150 m in the North Sea the dynamic behaviour will be of significance
while for depths under 150 m the structure will behave quasi statically with respect
to the wave excitation.

Static Moment

0.5 /
) , : . , | Length [m]

0
10 20 30 40 50 60 70 8 90 100

Static Displacement

0.57

0 s _ Length [m]
10 20 30 40 50 60 70 80 90 100

i Eigen Frequency

0.5F

0 B : Length [m]
10 20 30 40 50 60 70 8 90 100

Figure 1.3 The maximum moment, the maximum static displacement and the eigenfrequency as a func-
tion of the beam length of a clamped beam with a single force at the beam end (all ordinates have been

normalized to one).
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1.4 Consequences of Dynamical Performance

The dynamic performance will depend upon the sea state and it will have several
consequences:

e Vibrations can be a problem for occupants on the platforms.

e Dynamical amplification of the response can significant increase the ultimative
loads the structure has to resist.

e The fatigue damage will increase due to dynamical performance.

e Dynamical amplification will mean that structural information can be evalu-
ated from the response. This means that structural integrity monitoring can
be performed.

1.4.1 Human Tolerances with Regard to Vibrations

In the code ISO 6897 [10] maximum limits of the r.m.s.-value of the acceleration
response is given for the frequency interval [0.063 — 1] Hz corresponding to the
occupants not being bothered by structural vibrations. If e.g. the code is applied
to a platform described by a single degree-of-freedom (SDOF') system vibrating in
resonance with an eigenfrequency of 0.4 Hz, the code prescribes that the platform
must have a dynamic horizontal acceleration with a magnitude less than 0.68 m/s?
for events of more than of 10 min. At resonance this means that the damping
becomes of vital importance to the magnitude of the dynamic response, which will
be inversely proportional with respect to the damping ratio:

mstat:c

dyn __
z = 1.1
20, (1.1)

see Thomson [21]. Thus, with a damping ratio of 0.01 it is found that the static
displacement (without dynamic amplification) should be less than 0.002 m. This
clearly illustrates an important aspect of knowing the damping and the eigenfre-
quencies.

1.4.2 Dynamic Amplification of Ultimate Loads

Figure 1.4 shows the dynamic amplification factor of an SDOF system for different
damping ratios. It is seen that the dynamic amplification becomes very large in the
region of resonance depending on the magnitude of the damping. This means that
if any structure is dynamically excited due to ultimate loads such as waves with a
return period of 50 years then the necessary strength of the structure is increased
manyfold. However, in general the peak frequency of the wave excitation spectrum
of such sea state will lie far apart from the lowest eigenfrequency compared with
the peak frequencies of weaker sea states. Consequently, the dynamic amplification
will in general be smaller for the severe sea states and thus less important.
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\D
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i=0
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Figure 1.4. Dynamic amplification factor for an SDOF system, D=£ = +
' sttette a-(110))2+(2¢0 1/ 10)?
see e.g. Thomson [21].

1.4.3 Fatigue

The effect upon the fatigue life of tubular joints of jacket structures has been in-
vestigated by Vandiver [11] for a wave excitation causing both a quasi-static and
a dynamic response contribution. He found that the fatigue life T' was extremely
sensitive to variation in the eigenfrequency fy and the damping ratio (:

true 18

® Ttrue OC(O—d) Tpred.’ (12)

pre
0

true 2

- Ttrue o (C{;red) Tpred (13)

0

The work was based upon the approach to fatigue damage given by Wirshing [12].
A similar approach has been applied by Kirkegaard et al. [7] in evaluation of
sensitivity of the reliability index § with respect to the eigenfrequency and the
damping ratio. The reliability index £ is a measure of the probability of failure,
Madsen [14]. In figure 1.5a. is shown how the reliability index varies with the
damping and the natural period. The calculated fatigue life variation with the
damping ratio is shown in figure 1.5b for a very similar monopile platform.

It is seen from Vandiver’s results as well as from figure 1.5 that the damping ratio
and the eigenperiod are of vital importance when fatigue is a design criterion. When
the stiffness of the structure becomes sufficiently small it is the fatigue due to the
overall dynamic performance of the structure that is vital. For jacket structures
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T [Years]
40 ;

35
30 /

25 <
20 #
15
10 A
/

/
Fdl H
5 7 l

7

. P |G [7)]
1. eigen period [sec] 0.5 1.0 1.5 2.0 2.5 3.0

',
[ S —

Figure 1.5. a) The variation of the reliability index 8 with respect to the eigenperiod and the damping
ratio for an analysis of a monopile structure at 33.7 m in the Danish part of the North Sea, Kirkegaard
et al. [7]. b) The variation of fatigue life T with respect to damping ratio for an analysis of a monopile

structure at 32 m water depth and fp=0.38 Hz in the Netherlands, Peters and Boonstra [13].

without any global dynamic performance it is typically local fatigue due to wave
slamming at the splash zone which is important. Thus, when there is no overall
dynamic performance of the structure, the magnitude of the damping becomes
unimportant as expected, see e.g. Sunder and Connor [15].

1.4.4 Integrity Monitoring

A positive effect of the latent dynamic problem is that it makes it possible to take
advantage of the information hidden in the response of the structure. The response
will contain information about the eigenfrequencies, the damping ratios and the
mode shapes of the excited eigenmodes. Since a change in those parameters reveals
some kind of change in the structure it will in principle be possible continuously
to check the structural integrity by vibration monitoring. This is also sometimes
called damage detection since a change in the structure is often associated with a
damage. The eigenfrequencies will decrease if the stiffness is reduced due to a crack
or an accident and the mode shapes will change. Similarly it can be expected that
the damping will increase due to friction in cracks or other nonlinear mechanisms.
Changes in the foundations or modifications of the structure will also affect the
parameters. Besides the continuous check of the integrity of the structure the
design basis can also be continuously checked with e.g. reestimation of the fatigue
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damage as a consequence. A survey of the aspect of integrity monitoring has been
given in Ting and Sunder [16] and Richardson [17].

The investigations during the late seventies and the eighties of the concept of as-
sessing the structural integrity by vibration monitoring seems uniquely to lead to
the conclusion:

1. In general the success of the approach has been limited in practice. Primar-
ily because the eigen modes associated with damage has not been sufficiently
excited. E.g. in practice Kenley and Dodds [18] found that only complete
failure of braces of an jacket structures could be identified through changes in
eigenfrequencies.

2. Most investigations indicates that the best indication of structural changes
is obtained from changes in the mode shapes and the eigenfrequencies , see
Robberstad and Agnello [5], Coppolino and Rubin [19].

In spite of limited success in practice the interest of integrity monitoring from the
global structural response has not decreased. This is probably due to the large
economic perspectives of the principle. If platform inspection to some degree can
be performed by vibration monitoring, a large amount of money can be saved, see
Brown and Huckvale [20].

1.5 The Experimental Case

Since no full-scale measurements of offshore structures have been available in this
study simple experimental investigations have been performed to get a proper in-
sight into the practical problems of system identification.

The experimental model throughout the study has been a 4 m high monopile model
excited by displacement of the base, see figure 1.6. Due to the excitation and
the box profile of the monopile only two modes have in general been considered
corresponding to 2 DOF system with a first eigenfrequency about 1.1 Hz and a
second eigenfrequency about 7.2 Hz. The dynamic performance of 2 DOF system is
relatively simple to understand and yet it is sufficiently complicated to contain the
aspects of multi-degrees-of-freedom (MDOF') systems to which offshore structures
in general should be expected to be related.

The experimental monopile is in fact quite similar to a simple offshore structure in
spite of its simplicity. The excitation of an offshore structure will often be highly
spatially correlated with respect to the elevation, and the force spectrum will in
certain sea states be proportional to wave elevation which can be measured. Thus,
in certain cases, it will be possible to describe the wave force as a random force
process where the intensity is dependent on the elevation.
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Monopile

8m,

4m

Hydraulic
cylinder

Leat spring ——=

Figure 1.6. Monopile model (the experimental case).

Due to the base excitation of the monopile the force distribution will be quite
analog. Due to Langranges equations, see e.g. Thomson [21], it can be shown that
the force distribution will correspond to the mass distribution and will be described
by the acceleration process going on at the base &;:

pty=—| " | & (1.4)

which in the frequency domain is equivalent to a force p; at the ith mass with a
spectral density function:

Spp(f) = (21rf)4mf,')5x”,,(f) (1.5)
m; is the lumped mass at the sth degree of freedom with : = 1,2,...n and S;,z, (f)
is the spectral density function of z(t).

Thus, obviously, the excitation is in fact quite analog so the experimental cases
with the monopile throughout this thesis will be quite relevant in the study of
system identification methods of offshore structures. A detailed description of the
performance of the monopile is given in Jensen [22].
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2. STATE-OF-THE-ART

During the seventies and the eighties the number of performed measurings and sub-
sequent system identifications increased with the explosive increase in the number
of offshore platforms. A survey has been performed to obtain information about
how system identification is performed in practice and what practical results have
been obtained. The survey which has been based on international journals and
conference proceedings includes offshore structures which have been experimentally
investigated during the seventies and the eighties.

An extensive survey of the available literatures on the topic has been performed on
the basis of more than 40 references corresponding to the experimental investigation
of 34 offshore platforms. The number of investigated platforms are no doubt much
larger, but a lot of the obtained information is not publicly available. E.g. the major
part of all Norwegian platforms are instrumented due to authority regulations, but
the number of references on those has been limited.

The performed survey is believed to reveal the typical results which can be expected
from a system identification. It has not been possible to give an extensive final
conclusive comment on the survey because the purpose of each instrumentation
and analysis has been varying. The quality and quantity of the available references
has also been very different, and furthermore, the presentation of the practical
experiences varies considerably in form.

The survey has resulted in two sets of tables, the first set, tables 2.1 to 2.3, concerns
the instrumentation and general information while the second set, tables 2.4 to 2.6,
deals with the performed system identification methods and the obtained results.
The two sets of tables are closely related but it has been necessary to divide the
results of the survey into two sets of tables due to practical considerations. Anyway
in the following, section 2.1 contains comments on mainly the first set of tables
while the second set of tables is considered in section 2.2. A general discussion on
the estimates of eigenfrequencies and damping ratios is given in sections 2.3 and
2.4, respectively.

2.1 The Performed Measurings: Tables 2.1-2.3

In tables 2.1a and 2.1b the performed instrumentations of jacket structures are
given, and in table 2.2 and 2.3 the reported instrumentations of gravity and other
platforms types are shown. The latter includes monopiles (monotower, tripod etc.)
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Structure / Instr. Ref. Hi I Sensors Data Comment
Water Depth Period Excitation Rec.
Weat Sole WE,4 legs 1978 1 0.67m 16 acc. A removal of struct.
25m, N.Sea (UK) Aug ambient subj:damage detect.
Ekofisk, 8 legs 1979 2 1-2m 4 points A authority
70m, N.Sea (N) Jun ambient/ acc,str.gau. requirements
exciters /research
Ekofisk 2/4H,4 legs 1980~ 3 11.3m 10 acc. D+A authority
70m, N.Sea (N) 83 ambient 84 str.gau. requirements
wave radar etc
Valhall QP,4 legs 1980- 3 10.8m 7 ?
70m, N.Sea (N) B3 ambient
Frigg DP2, B legs 1978~ 4,5 1-18m 8 acc A+D authority
88m, N.Sea (N) ambient str.gau. requirements
permanent wave-radar [research
SP65A, B legs 2-3m acc., A research for
108m, Me.Gulf (US) 1975- 6 ambient / vel. ambient as well
76 Snap-Back wave staff as forced
SFP62C, 8 legs /Impulse water particle excitation
103m, Me.Gulf (US) velocities were
measured
WD152A, 8 legs
124m, Me.Gulf (US)
Eugene Island 331B,
8 legs, 82m,
Me.Gulf (US)
MP296A , B legs 1978 7,8,9 ambient acc. at D Joint Industry
71m, Me.Gulf (US) + 1979 7 variating Resarch Project
points
SP62B, 8 legs
126m, Me.Gulf{ US)
58274, 8legs case of damage
71m, Me.Gulf (US) detection
Forties Alpha,4 legs 1980- 13 ambient 8 acc. D integrity monitoring
133m,N.Sea(UK) 82
Amorco Montrore 1980- 13 ambient 10 ace, A integrity monitoring
Alpha,8 legs 82 curr.m.

100m,N.Sea (UK)

wave staff

Table 2.1A. Performed measurings of jacket platforms with respect to the dynamic characteristic behaviour.
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Structure / Instr. Ref. s Sensors Data Comment
Water Depth Period Excitation rec.
Occ.Claymero,8 legs 1982 13 ambient 55 acc. D integrity -
127m,N.Sea (UK) May-Aug 10 str.gau. monotoring
8 wave-
pres.tr.
4 legs 1974 14 ambient 3 acc. A damage detection
23m, (US) visites due to impact
Light Station,d legs 1873 15 ambient acc A astructural integrity
25m, NY Harb. (US) temporary
Bullwinkle, 16 ambient 10 mov.acc. D
16 legs, 450m permanent 11 str.gau.
(Us) wave staffs )
SP62C, 8 legs temporary 10 4.5-5.5m 17 acc. A damage detection
100m, Me.Gulf (US) /0.5-1m
ambient
temporary 11 ambient 2 acc. A research
on damping
Ocean Test Struct. 1976- 12 3m 92 sensors D research platform
22m, Me.Gulf (US) permanent ambient str.gau.,wave subject:
staff,curr.m. hydrodynamic loading
4 legs 1980 29 Exciter mov.acc. D detection of
28m Abr.Gulf April of progressive
damage(research)
Platform Hope 1969- 30 ambient 6 acc A earthquake
210m Cal.coast(US) permanent instrumentation
Platfrom Grace,Blegs 1981~ 81 ambient 23 acc. D earthquake
106m Cal.coast (US) permanent (T) instrumentation
Midle Ground Shoal, 1971 47 ambient 9 vel. A research
Platform A,Alaska(US) (visites) (moveable)

ditto,Platform B
West Delta,124m,

Me.Gulf (US)

Table 2.1B. Performed measurings of jacket platforms with respect to the dynamic characteristic behaviour.
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N.Sea (N)

Structure / Instr. Ref. Hy Sensors Data Comment
Water Depth Period Excitation
Gullfaks A,Condeep 1986- 32,83 -9.5m 16 acc. D authority requir.
134m,N.Sea (N) permanent ambient design verification,
monitor. during.
installation
TCP2,Frigg field 1979- 84,35, 13.8m 56 sensors: D design verification,
103m,N.Sea (N) permanent 36,39 ambient acc. integrity,
str.gau. waves
wave-radar
> 32 shock tr.
Brent B,Condeep 1975- 37 10.3m 10 acc., D+A integrity,
140m,N.Sea (N) ks ambient 24 str.gau. design verification
3D-wave staff
Statfjord A,Condeep 1979- 38,39 ambient 8 acc. (7) D+A authority req.,
145m,N.Sea (N) permanent 16 shock tr. design verification,
2 wave staffs
+ more
Statfjord Alp 39 ambient acc,memb . forces

Table 2.2. Performed measurings of concrete gravity platforms with respect to the dynamic characteristic behaviour.

8m, S.Coast (UK)

(hybrid)

Structure [/ Instr. Ref. Hy if Sensors Data Comment
Water Depth Period Excitation rec.
Amoco, Monopile 1980 17-22 0.3 2 mov.acc. A research
30m, Me.Gulf (US) Mar -2.7m 1 wave staff
(single well) 1 week ambient 1 anom.

visite 1 eurr.m. authority requir. 7

Europlatf.,Monopile 1983 23 ambient 4 acc. D vibration
32m, N.Sea (NL) 41985 Wave staffs problems
(meterological st.) (2months) anom.,Curr.m. (T)
Monopile 1982 24 <2m 3 acc. D verification
18m,Cameroon Jun-Jul ambient 4 str.gau. of design
Africa,(conduct) wave staff,curr.m,
Lena Guyed Tower 1984- 25 ambient 41 load cells,13 acc. D+A installation,
193m Me.Gulf (US) permanent 3 displ.,16 anom. (T) integrity monotor.,
(guided tower) 2 wave staffs research
Nordsee 1975 26,27 Shaker, > 6 acc. A structure
30m,N.Sea (D) Nov. Snap-Back 18 str.gau. for
(hybrid) + 7 with H=1.4m research
Christchurch Bay Tow. visites 28 Exciter acc. - research struct.,

tested offshore and

onshore

Table 2.3. Performed measurings of other platform types with respect to the dynamic characteristic behaviour.
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and different sort of hybrid platforms. The typical instrumentation consists of
10 — 20 sensors which measure the ambient excitation and the response due to
ambient excitation.

The first column of the tables refers to the instrumented structure, the name of the
structure, the number of legs in the case of jacket structures, the water depth and
the location of the structure are given. The locations considered are mostly the
North Sea and the Mexican Gulf.

The second column refers to the period in which the structure has been instru-
mented. From the references attempts have been made to determine whether the
structure is permanently instrumented or whether it just includes a short period.
Permanent platform instrumentation is typically due to authority regulations while
short periods often are directed in relation to research projects organized in joint
industrial and research programmes. A short period may mean just a couple of
days.

The third column gives the reference from which the information has been obtained.

The fourth column gives the reported ambient excitation H, for which measure-
ments have been analyzed and also tells whether an external excitation has been
applied (forced vibration or initial displacement etc.). The ambient excitation is
the most frequently applied excitation source for the measured response since it is
cheaper than applying an external excitation . Furthermore there will always be
an extra risk with respect to the structural integrity when external excitation is
applied.

The fifth column gives information about the sensors applied, the numbers and the
principal types. This information is quite uncertain due to unprecise references.
The following abbreviations have been applied:

e acc: accelerometers.

e mov.acc.: movable accelerometers.

e vel: velocity transducers/geophones (relative).

e displ: displacement transducers (relative).

e str.gau.: strain gauges.

e memb.forces.: strain gauges set-up to measure member forces.

o shock.tr.: shock transducers (typical for the response due to wave slamming).

e pres.trans.: pressure transducers (wave load).

e curr.m.: current meter.

e anom.: anometers (wind).

The sixth column refers to the recording of the data: D for digital records, A for
analog records and (T) for transmission of data from the platform to the main
centre, typical onshore. Transmission of data has only been applied in the case
of instrumentation over a long period. Transportable equipment has usually been
applied when the measurings were performed during short visits. In the case of long
periods of instrumentation, minicomputers are applied to control the sampling, i.e.
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when and for how long to sample. A current check of the sea state is applied in
the case of automatic sampling. In the case of permanent instrumentation a typical
sampling rule in the Norwegian sector of the North Sea seems according to Holand
et al. [39] to be something like:

e Storm: Complete set of records of 20 minutes every 3 hours plus a reduced set
of records of 20 minutes every hour.

o Normal sea: Complete set of records of 20 minutes every 24 hours plus a
reduced set of records of 20 minutes every 3 hours.

A reduced set of records means here enough data to obtain a set of key numbers such
as mean values, variance, maxima, minima, check of trends in data, etc. obtained
from measured signals of the response and environmental data.

The minicomputer usually also includes an A /D-conversion and subsequent storage.
However, it is not unusual also to let the minicomputer control a synchronous analog
sampling since information is lost forever by the digitalization, and as backup copy
which can be sampled and filtered in alternative ways.

The seventh column includes the main purpose of the instrumentation according
to the given references. The purpose of the instrumentation has typically been the
motives given in the previous chapter, namely an interest to improve the general
knowledge about the dynamic performance and/or to monitor the integrity of the
structure by observing any changes in its response. In USA permanent vibration
monitoring has especially been used due to risk of earthquakes. Besides monitoring
the structural behaviour it has also been a general purpose to improve the knowledge
of the wave and wind loading.

2.2 The Performed Identifications: Tables 2.4-2.6

The results of the identification and interpretation of the measured data are shown
in tables 2.4 to 2.6. The tables provide important structural knowledge of offshore
platforms and they give a review of the possibilities of system identification.

The first column gives the information of the given structure, the water depth, d
and the applied excitation either being ambient excitation or a kind of external
excitation. The reference of the performed measurement and identification is given
by the number in the brackets. From the platform name it is possible to compare the
instrumentation of the platform described in tables 2.1 to 2.3 with the identification
results.

The second column gives the two lowest estimated eigenfrequencies plus the highest
eigenfrequency which has been identified corresponding to three rows per performed
identification session. The number of the mode is given in brackets. This presenta-
tion shows how close the two lowest eigenfrequencies were located, and further, the
highest identifiable eigenfrequency. At a fourth row the magnitude of the coefficient
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Struct./d/ref. Ie Ci 6.‘ T/f, Analysis Comment
excitation Hz no. min./Hz, type
West Sole WE,25m (1) 1.365 (1) - none 20-45 FFT peak
ambient, H;=0.7m 1.44 (2) - /7 frequencies
1978 8.95 (86) -

+1%
West Sole WE,25m ( ) 1.875 (1) -
ambient 1.875 (2) -
1975 4.00 (6) e
Ekofisk,70m (2) 0.66 (1) 0.035(1) none v.r FFT peak freq.
shakers 0.70 (2) 0.028(2) fmaz =158 damping by
1979 5.41(13) 0.026(3) peak value
+43%

ditte - 0.018(1) damping by

“ 0.011(2) bw.

" 0.028(3)

- +9% damping by
ambient H,=1—2m - 0.014(1) bw.
Ekofisk 2/4H,70m (3) 0.51(1) - none - FFT peak freq.
ambient Hy=11m 0.55(2) - no influence

0.67(3) - of sea state
Frigg DP2,98m (4) 0.625(1) - none 20 FFT response
ambient H,=1—13m 0.68 (2) - /6.28 vs. waves, peak

0.90 (3) - frequencies

- 0.01 40/ FFT damping vs.
ditto (5) - -0.03 16.67 wave height
SP65A,103m(6) 0.56(1) 0.027(1) none 20/ FFT ZEro cross.
snapback/impulse 0.59(2) 0.022- 50 av. freq. +log.

0.83(3) 0.027(2) 0.00387Hz dec.
SP62C,103m (6) 0.66(1) 0.026-0.029(1) none ditto ditto ditto
snapback/impulse 0.66(2) 0.034-0.042(2)

0.96(3)
ambient 0.010(1) damp. by bw.
ambient 0.021-0.051 damp. by sp.mom.
WDI152A,124m (6) 0.61(1) 0.022(1) none ditto ditto Zero cross.
snapback/impulse 0.62(2) - freq. +log.

1.03(3) - dec.
ambient 0.031(1) damp. by bw.
ambient 0.024-0.049(1) damp. by sp.mom.
Eugene Isl.,82m (6) none ditto ditto

0.52(1)

0.54(2)

Table 2.4A. Performed analysis of jacket platforms with respect to the dynamic characteristic behaviour.
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Struct.,d,ref _f,' C,‘ 3; T/f, Analysis Comment
excitation Hz no min./Hz type
§5274,71m (7) 0.65-0.66(1) = (1)- 240/ FFT peak freq.
ambient 0.68-0.70(2) (10) ¥ 60 av.
4.57-4.60(10)
ditto (8,9) (1) shape vect.
-(12)
Amorco Meont.Alpha 0.516(1) - none 15-50 FFT peak freq.
100m (13) 0.535(2) /7.66- (1024) MEM equals
ambient 0.666(5) 61.3 /MEM FFT results
+1%
Forties Alpha 133m 0.486(1) - none 60/ FFT peak freq.
(13) 0.569(2) 10.24 (1024) MEM equals
ambient 2.562(8) /MEM FFT results
+1-2%
?2(US),23m (14) 0.985(1) 0.01 none FFT
ambient +0.5%
Light St.,25m,(15) 1.12(1) - none FFT
ambient 1.46(3) -
SP62C,100m,(10) 0.646(1) - none FFT peak freq.
ambient 0.658(2) Fi:
H,=0.5—5.5m 2.62(11) +1-2%
7 (24) due to sea
+0.8% state
ditto,(11) 0.0114(1) 82 / FFT damp. by bw.
0.0045(2) 6.4
0.0027(3)
0.020(1) MEM damp. by bw.
0.021(2)
0.013(3)
+15%
ditto,(42) 0.642(1) 0.0322(1) none 16.7/ Ran. zZero cross.,
+62% 6.4 dec log.dec.
(41) 0.0165(1) Time damp. by
0.0172(2) log.dec.
0.0120(3)

Table 2.4B. Performed analysis of jacket platforms with respect to the dynamic characteristic behaviour.
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of variation of the eigenfrequencies is given. The uncertainty includes in general the
statistical uncertainty on the data, uncertainty of the identification method, and
uncertainty due to time-varying characteristics of the structure, e.g. correlation
with the sea state.

In analogy with the second column the third column gives the estimated damping
ratios corresponding to the two lowest eigenmodes plus the ratio for the highest
identified mode. At the fourth row the coefficient of variation is given if it has been
estimated.

The fourth column gives the number of mode shapes which has been estimated. In
general it is seen from the tables that eigenfrequencies are almost always identified
while mode shapes rarely seem to be estimated. However, the interest in estimating
the damping ratios and the mode shapes seems to be increasing. The typical case
is that the three lowest eigenmodes have been identified since only those modes are
sufficiently excited. In a single case up to 40 modes have been claimed to have been
identified but, this is an exception where external excitation due to a shaker was
applied.

Struct./d/fref. Ti (4] E.‘ T/f, Analysis Comment
excitation Hz no. min./Hz. type
Midle Grou.Sh.Pl. A 0.90(1) 0.037(1) none t/ FFT peak freq.
(47), ambient 1.00(2) 0.037(2) 31.25 15 av. damping by
1.20(3) 0.036(3) bw.
+2-3% 5%
Midle Grou.Sh.Pl. B 0.98(1) 0.037(1) none */ FFT peak freq.
(47), ice 1.09(2) 0.083(2) 31.25 15 av. damping by
1.41(5) 0.035(5) bw.
+1% + 5%
West Delta ,124m 0.24(1) 0.038(1) ¥ ] FFT peak freq.
(47), ambient 0.25(2) 0.038(2) 31.25 15 av. damping by
0.40(83) 0.035(3) bw.
+2-3% +-5%
Ocean Test Struct. - - - - - estimation of
22m, (12) Cp and Cyy,
ambient member forces etc.
Abr.Gulf,28m,(29) 0.85- (1)- FFT
shaker 5.0 (40)
Platf. Hope,210m, 0.59(1) 0.020-0.037(1) none FFT peak freq.
(80),earthquake 0.61(2) 0.026-0.028(2) damp. by.
+1% +10-25% sp.mom.

Table 2.4C. Performed analysis of jacket platforms with respect to the dynamic characteristic behaviour.




22 Jakob Laigaard Jensen

If possible the fifth column gives the basic length of the applied time series plus
the sampling frequency or alternatively the maximum frequency kept in digitally
converted signals.

The most typical record length seems to be 20 minutes. This record length is
thought to be due to the need for limiting the amount of data when measurings
are performed over a longer period. Furthermore, the record length is also limited
by the fact that system identification in general assumes data due to stationary
random processes. The wave excitation process will only be quasi stationary within
shorter periods of time. The sampling frequency has to be sufficiently high to ensure
an accurate representation of the continuous signals on digital form. On the other
hand, the amount of data must be limited. The result is that filtering and synchro-

Struct.,d,ref. f; C.? :5.' T/_f, Analysis Comment
Excitation Hz no. sec./Hz type
Gullfaks A,134m,(33) 0.438(1) 0.015(1) (1)- 20/ ARMA identific.
ambient 0.533(2) 0.014(2) (4) 2.3-11.4 from

0.753(4) 0.021(4) ARMA-

+2% +8-30% model
TCP2,103m,(34) 0.647(1) - none 20/ FFT peak freq.
ambient, H <13.8m 0.760(2) +
1979 1.07(3) response
+2-3% vs.
waves
extra deck mass(31%) 0.593(1)

0.675(2)
ditto, (35) 0.605(1) - 20/ MEM peak freq.
1980,storm 0.645(2)

0.765(83) identific. of
ditto, (35) 0.605(1) 20/ MEM stiffness
1981,storm 0.600(2) and
extra deck mass(31%) 0.670(3) mass
(36) 20/ FFT member force
H,<12m 4 vs., waves
Brent B,140m,(87) 0.56(1) . (1)- 20/ FFT peak freq.
ambient, H,<10.3m 0.58(2) (3) +identfic. of

0.84(3) stiffness
Statfjord A,145m,(38) 0.43(1) 0.015(1) (1)- 20/ ARMA identific. by
ambient, H,<10.Tm 0.43(2) 0.02(2) (3) 8 ARMA, estimates

1.568(8) va., waves

+50% stifn. identific.

Table 2.5. Performed analysis of concrete gravity platforms with respect to the dynamic characteristic behaviour.
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Struct,,d,ref. Fi ok 3.‘ T/_f, Analysis Comment
Excitation Hz no. sec./Hz type
Monopile,30m,(19) 0.3234(1) 0.0104(1) none 32/ MEM curvefit
ambient 0.3287(1) 0.0111(1) 6.4 peak freq.+
damp.by bw.
ditto 0.3228(1) 0.0227(1) a2/ FFT curvefit
0.3234(1) 0.0244(1) 6.4 peak freq.4
damp.by bw.
ditto, (18,21) 0.32(1) (1)- 80/ MEM peak freq.
1.20(2) (2) 6.4
3.06(8)
ditto, (17,20) 0.325(1) 0.011(1) none MEM peak freq.,
H,=0.3—1m 0.327(2) 0.013(2) damp. by
+<14% bw.
ditto, (17,20) 0.323(1) 0.010(1) none MEM ditto
H,=1.7-2.Tm 0.328(2) 0.014(2)
+<20%
ditto, (17,20) 0.323(1) 0.009(1) none MEM ditto
H,=0.7—1.3m 0.327(2) 0.011(2)
+<27%
ditto, (22) identific. of
mass+stiffness
ditto, (43) 0.326(1) 0.0095(1) none Ran.- Ibrahim time
+<9% dec. domain method
Meonopile(NL),32m 0.382(1) 0.015(1) none FFT peak freq.,
(28),ambient damp. by bw.
Monopile( Africa) 0.41(1) - (1)- 40/ FFT shape vect.
18m,Cameroon 2.58(2) (5) 20
ambient, [ ;=2m 5.00(5) Cp and Cpy
estimated
Nordsee,hybrid ,30m 2.22(1) 0.028(1) none 75 FFT curvefit,
(26,27) 8.84(2) - (0.02Hz) also mass
shakers and 4.03(3) 0.023(3) estimation
H=1.4m +<8.5% +<30%
Christch.Bay,hybrid 2.3-2.4(1) 0.02-0.04(1) none FFT peak freq.,
8m,(28) 3.8-4.9(2) 0.01-0.03(2) damp. by bw.
shakers off- fonshore

Table 2.6. Performed analysis of other platform types with respect to the dynamic characteristic behaviour.
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nous sampling with different sampling frequencies are widely applied for the purpose
of getting information about a given frequency region in the measured response and
excitation processes.

The sixth column shows the kind of signal analysis which has been reported in each
reference:

e FFT (Fast Fourier Transformation) which is further described in chapter 5 and
partly also in chapter 7.

¢ MEM (Maximum Entrophy Method) which is described in chapter 8.

¢ Random dec. (random decrement technique) which is described in chapter 5
and partly in chapters 6 and 7.

e ARMA (Auto-Regresssive Moving Average) which is described in chapter 8.

The first two kinds of analysis are usually applied in the frequency domain while
two latter are methods in the time domain. The first and the third method are
methods which in system identification are combined with some kind of curvefitting
algorithm, while the second and the fourth method are methods which provide
parametric expressions for e.g. the eigenfrequencies and the damping ratios.

In the case of a performed FFT analysis any available information of the number
of averages, the resolution or the number of frequency points is also given in the
sixth column.

In the seventh column comments have been made on the system identification and
any applied curvefitting algorithm. The applied curvefitting algorithms include:

e Peak freq. (frequency) which is identification of the eigenfrequencies from the
peak frequencies of the measured response spectra.

e Damping by bw. (bandwidth) which is identification of the damping ratio from
the width of the resonance peak in the measured response spectra, see chapter
T

e Zero cross. freq. (zero crossing frequency) which is identification of the eigen-
frequency from the zero crossing period of the measured response process, see
chapter 7.

e Log. dec. (logarithmic decrement) which is identification of the damping from
a free decay, see chapter 7.

¢ Damp. by sp.mom. (damping by spectral moments) which is identification
of the damping ratio from the three lowest spectral moments of the response
spectrum, see chapter 7.

e Shape vect. (shape vectors) which is identification of the eigenfrequencies and
the mode shapes from a curvefit on a measured response spectrum, see chapter
il

e Ibrahim time domain method which is a method for identification of the modal
parameters from a free decay, see chapter 7.
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The more general curvefitting algorithms which have been applied in some references
are discussed in chapter 7.

2.3 The Eigenfrequency Estimates

From the estimated eigenfrequencies of jacket platforms it is seen that the first
eigenfrequency is clearly correlated with the water depth, see figure 2.1. The first
eigenfrequency decreases with increasing water depth just as it was the case with
the clamp beam in figure 1.3. A similar observation can be made for tall buildings.
Ellis [44] observed from a review of experimental and numerical analysis of 163
buildings that the most reliable calculated estimate of the first eigenfrequency was
obtained from the expression f; = 47? Hz obtained from a fit of the experimental
estimated eigenfrequencies with h as the height of the building. It was reported
that the uncertainty of estimates obtained by numerical analysis by finite element
methods were about 50%. The uncertainty of the identified eigenfrequency from
measurements typical lie in the range of 1 —2%. This case for tall buildings clearly
illustrates the importance of the concept of system identification in structural de-
sign.

One reason for the uncertain prediction of eigenfrequency is probably that the mass
distribution of structures is more uncertain than commonly expected. Snedden [45]
has reported that already at the construction site of offshore structures there is
an uncertainty of the masses of construction elements about 10 — 15% in spite
of a performed weight control. This source of uncertainty will tend to give an
underestimation the total mass since modification of the design during construction
will in general tend to give an increase of the steel consumption because steel is
relatively inexpensive. This source plus the uncertainty of structural modification
during the structural lifetime may mean an uncertain of the mass distribution of
about 20% leading to an uncertainty prediction of the eigenfrequencies.

0 f [Hz] Jacket Platforms
1 1
05t Coe T " *

%O . L L L N L L L . d [m]

40 60 80 100 120 140 160 180 200 220

Figure 2.1. Identified first eigenfrequency of jacket platforms versus the water depth.
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Only a small number of identified eigenfrequencies has been found on gravity plat-
forms. However, the same correlation w.r.t. the water depth is expected to exist.
The first eigenfrequency seems to lie in the range 0.30 — 0.65 Hz for water depths
100 — 150 m.

Offshore structures such as monopiles (monotowers, single standing conductors,
tripods etc.) are becoming increasingly popular structural concepts for unmanned
platforms, however, the number of such platforms are still small and thus also the
number of performed measurings. However, some cases of system identification
of such platforms have been found. At a water depth about 30 — 40 m, the first
eigenfrequency will typically lie in the range 0.30 — 0.40 Hz.

Structural changes will also affect the eigenfrequencies. A practical example was
given by the TCP2 condeep platform in the Norwegian part of the North Sea, see
tables 2.5 and 2.3. Here, a 31% increase in the deck mass led to a 13% decrease
in some of the lowest eigenfrequencies. Furthermore, during a period of 5 years
some eigenfrequencies dropped about 10%. Thus an offshore structure cannot be
considered to be a time independent system over several years.

For an SDOF system the first eigenfrequency is given by fo = 274/ % which leads

to the sensitivity relations of the eigenfrequency with respect to the mass and the
stiffness:

d dm

',{:0 - i
d 1dk

% “2% 22)

The observed decrease in the eigenfrequency in the Norwegian case is seen to have
the same magnitude which was to be expected for an SDOF system. Thus, since
it is the lowest eigenmodes which are excited in practice, significant stiffness and
mass changes associated with the lowest eigenmodes will be observed as significant
changes in the lowest eigenfrequencies, while structural changes affecting the per-
formance of the higher modes will in general not be possible to detect, since those
modes are not dynamically excited.

2.4 The Damping Estimates

The estimated damping ratios in the tables 2.4 to 2.6 do not seem to be correlated
with the water depth. Instead they seem to depend upon the type of structure.
Neither does the damping ratio seem to depend upon the eigenmode considered.
This means that in general offshore structures will not be proportionally damped.
This latter aspect is further discussed in chapter 4.

An analysis of all identified damping ratios of jacket platforms for all modes shows
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Figure 2.2. Histogram of identified damping ratios for jacket platforms including all identified modes.
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Figure 2.3. Histogram of the identified damping ratios of all modes for investigated monopile structures.

that the damping typically lies between 1—3% with a mean of 2.1% and a coefficient
of variation of 46%, see figure 2.2.

For monopile structures the damping may be a little smaller with a mean of 1.3%
and a coefficient of variation of 37%, see figure 2.3. For gravity platforms the
damping seems to lie in the range 1.4 — 2.1%. However, only a few structures of
the two structural types have been included in the survey.

The estimated magnitude of the damping ratios can be compared with the recom-
mendation of Det Norske Veritas [48] as shown in table 2.7. The damping values
from the Det Norske Veritas include only structural damping. A contribution of the
magnitude 0.005 — 0.02 may be added due to the surrounding water. The damp-
ing in the foundation is not explicit evaluated in the reference. It is seen that the
obtained damping from the review is in general larger than the given values for
the structural damping. The damping contribution from the foundation and wa-
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ter seems to be rather uncertain according to the rules of Det Norske Veritas and
it is clear that the damping is in general underestimated if the design basis only
includes the structural damping given by e.g. Det Norske Veritas. This will be a
conservative element in the design basis and thus lead to less optimal structures.

Estimates Jacket Monopile Gravity
due to platforms platforms platforms
Review 2.1% 1.3% 1.4-2.1%
D.N.V. 1% 1% 1-2 %

Table 2.7. Damping ratios from the review and from the rules of Det Norske Veritas (D.N.V.) [48].

The review has shown that a priori knowledge of the damping ratios based upon
the tables is coupled with a coefficient of variation of the damping ratio in the
range of 50% while a performed identification on a given structure may reduce the
uncertainty of the damping ratio down to a magnitude of about 10%. E.g. the
case with a monopile platform shows that if a single analysis is disregarded the
coefficient of variation due to different analysis is as low as 7% for the first damping
ratio and 12% for the second damping ratio. Thus, a substantial reduction in the
uncertainty of damping can be obtained by identification of a given structure.

2.5 Conclusion

The performed survey has revealed the existing practice and stage of system iden-
tification of offshore platforms.

The results of the survey of performed system identifications show that the eigen-
frequencies and the damping ratios can be estimated of a certain accuracy for a
given offshore platform which will provide a much better basis than the general
a priori knowledge that e.g. Det Norske Veritas’ rules represent. The latter will
typically be the knowledge which can be extracted from a survey of the performed
kind which clearly illustrates how uncertain the a priori knowledge of especially
damping is, and it is thus also pointed out how conservative the design basis must
be to ensure the reliability of the structures.

The aspect has been illustrated by Jeary and Ellis [46] who have investigated the
effect of reducing the uncertainty of predicted response by employing results of
system identification. Considering an SDOF system harmonically excited with an
excitation frequency equal to its eigenfrequency fo and the force amplitude F(fp),
the displacement amplitude is given by:
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X(f) = g (2.3)

which leads to a simple relation between the uncertainty of the predicted response
and sources of uncertainty:

dX(fo) _ dF(fo) dm _dG _ 2dfo (2.4)

X(fo) B F(fﬂ) m Co fo

Assuming the following uncertainties at the design stage:

fo:£50% m:£20% C(o:£100% F(fo):£20%

the uncertainty of displacement amplitude at resonance becomes: +240%, while a
performed system identification, if it has led to the following reduced uncertainties:

fo:401% m:+20% (o :+10% F(fo): £20%

leads to an uncertainty of £50% of the predicted response.

This example illustrates together with the discussion in the this and the previous
chapter, what can be gained by system identification of offshore structures.
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3. PRINCIPLES OF SYSTEM IDENTIFICATION

The purpose of this chapter is to give an introduction to the general principles
of system identification. System identification is a general discipline which has
application to all sorts of problems where a model is needed for the description of
phenomena in such fields such as chemical processes, biological systems, electrical
engineering, astronautics and mechanical and civil engineering.

The principles of system identification have especially been studied and developed
in the field of electrical engineering while the research has only been modest in
the field of civil engineering. However, since the models in electrical and civil
engineering are often quite analogous (the same differential equations) it is possible
to benefit from the long tradition for system identification in electrical engineering

and other fields.

The system identification process for a structural dynamic system can be divided
into four different steps:
¢ Proper modelling of the structural dynamic system.
e Obtaining informative data about the system.
Estimation of the model: Parameter estimation.
Evaluation and validation of the estimated model.

Proper Model
1
Informative Data
|

Parameter
Estimation

[
Validation
&
Evaluation

Figure 3.1 The system identification process.

In the strict sense the word system identification must not be confused with pa-
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rameter estimation since this is only one step of the system identification process.
However, in other chapters a less strict attitude will be applied since the meaning
of the word will be clear.

3.1 Proper Modelling of the Structural Dynamic Systems

The word dynamic system refers to systems having a response which depends upon
the past. The system is defined as the mechanism which due, to one or several input
processes has one or several output processes. This means that when the input and
the output is defined, then the system is defined but yet unknown. Hence, the first
step is to define what is the input process and the output process. Furthermore, it
must be expected that there will exist other unknown inputs to the system which
will be defined as noise since they will distort the relation between the assumed
input and output.

Noise

l

System

Input |, Output

Figure 3.2 System model.

After the system has been defined it is possible to seek for a proper model. The
proper model is usually assumed to belong to one of the following mathematical
formulations:

A. A set of linear time invariant (lumped parameter) ordinary 2nd order linear
differential equations.

B. A set of linear time invariant (distributed parameter) partial differential equa-
tions.

C. A set of time variant and/or nonlinear differential equations (lumped or dis-
tributed parameters).

In this thesis the models are mostly type A models with a few examples of type C
models. Type B and C can only be applied in practice to very simple structures.
The models can be divided into several general types of formulations:

1. Non-parametric measured input output relation: Transfer function model, e.g.
obtained by sinus excitation where the excitation frequency is varied.

2. Model with physical parameters (parametric).

3. Model with modal parameters (parametric).

4. Model of the black box type (parametric), e.g. a model of a measured time
series.
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The word parametric refers to whether the model is described by a general class of
models with a set of parameters or by a case dependent array of measured numbers
presented graphically e.g. as a transfer function. The transfer function model will
usually not be used as a final model but as a preliminary rough model followed by
some sort of parametric model fit due to some curvefitting algorithm. The transfer
function model will give valuable information about the performance of the system
and thus indicate which parametric model should be applied, e.g. the number of
degrees of freedom which should be applied in a parametric model. A curvefitting
algorithm can afterwards be applied to the transfer function data, which means
that a parametric model is obtained. Transfer function estimates are considered
further in chapter 5.3 to 5.5.

The idea with the parametric model with physical parameters is that the physical
insight into the system will make it possible to choose a sensible model and take
advantage of the a priori knowledge of the system. For instance it may be possible to
assume the masses of the model to be known. Furthermore, it should be relatively
easy to interpret the parameter estimates. The relation between the model and a
structural system is described in chapter 4 and examples of identification methods
are in given in chapter 6.

The parametric model with modal parameters is a compromise where the physical
insight has been maintained to some extent, but the model has been transformed
into modal coordinates to simplify the model as a linear combination of eigenmodes.
This leads to a reduction of the model parameters as shown in chapter 4 where the
modal formulation is presented. Thus this model type is a trade off between physical
insight and a compact mathematical model formulation. Examples of identification
algorithms are given in chapter 7.

The idea of the black box model is that the model should be as flexible and compact
as possible disregarding the physical insight into the model. The only physical
aspect of this kind of model is typically whether the model is stable or not. However,
since the purpose is to get physical insight, the black box model is usually related
to a modal model. Identification with this kind of model is shown in chapter 8.

The model formulation can again be divided with respect to the independent vari-
able which in this context will be either time or frequency.

3.2 Obtaining Informative Data About the System

The measured data containing the input and the output must be uniquely related
to the chosen model which means that information about the model parameters
must be contained in the data. This means that there is an upper bound for the
complexity of a proper model for a given data set. If the model is made more
complex the resulting estimates will become ambiguous. A lower bound also exists
since a too simple model will be a too rough approximation to the system all
depending on the application of the model.
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If for example the response of an offshore structure is given as the superposition of
two eigen modes due to wave excitation it may be a too rough approximation to
apply a model containing only one degree of freedom while it will be absurd to apply
a model containing, say ten degrees of freedom. Thus the model and the given input
must be adjusted to each other in such a way that the model is uniquely related to
the measured data with a minimum error between the model and the data.

The information in the data will also depend upon the number of independent
input/output processes contained in the measured input and the output. The most
simple case is the single input and single output case which is usually abbreviated
as SISO. The most complicated is the MIMO case signifying multiple input multiple
output case. With respect to the title of this thesis the number of input and output
processes is related to the number of locations on the offshore structure where the
excitation and the reponse have been measured. In this thesis it is almost only the
SISO case which is considered corresponding to a wave excitation given as a single
random input process and a measured output at some location.

3.3 Estimation of the Model: Parameter Estimation

The estimation of the model is performed by fulfilling some criteria of the fit between
the model and the system. This can be done either by fitting a theoretical model to
the transfer function or by fitting the simulated response of a model to the measured
reponse of the system. The last procedure can be considered as identification by
simulation which has been illustrated in chapter 6 and 8.

The parameter estimation is typically performed either by maximum likelihood
estimation, MLE or by least squares estimation, LSE. In this thesis the methods
are all based on the LSE procedure. MLE is briefly explained at the end of this

section.

Parameter estimation can be considered as an optimization problem since it is a
question about reducing an error measure of the fit between a model and some data
set, that is finding a minimum of the error. The data is obtained by measurement
in the time domain and perhaps afterwards followed by a transformation into the
frequency domain.

It is assumed that the data can be described by some model, M and a set of
parameters, O :

M = M(t|©) (3.1)

t is here the independent variable belonging to either the time or the frequency
domain. It must be noticed that the model concept here includes models of the
measured response as well as models of transfer functions, e.g. M can be a frequency
reponse function, an impulse response function or something else. It is assumed that
the chosen model given by (3.1) is assumed to be a true model. This means that
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by a proper choice of the model parameters the model will be able to describe the
data set without any systematic error with respect to the independent variable.
Furthermore it is assumed that the model is uniquely determined by its parameters
©. This a fundamental demand which has to be satisfied to obtain a unique model.

The problem is to determine the parameters in the model M so that the fit to
the data M(t) becomes as good as possible. This is done by formulating an error
criterion function :

N
V©) =% 5elt,0)° (32)

where N is the number of measured data points, the factor, % is just a convenient
choice related to section 3.5 and €(t, ©) is the error given by

€(t,0) = M(t[6) — M(t) (3.3)

where M(t) is the given set of measured data. The error €(t, ©) is also sometimes
called the prediction error which refers to the time domain where it will be possible
to predict the error at any time when the model has been estimated.

In the present case it is seen that the norm of the error criterion function, (3.2)
is the least squares norm. The least squares norm can be argued to be a proper
choice, because it can be shown that if e(#, ©) is normally independently distributed
with respect to the independent variable, i.e. time, then this approach is equivalent
to the maximum likelihood approach as shown at the end of this section, see also
Ljung [1]. This means that parameter estimates, © converge asymptotically to their
true values, ©" as the number of data points go towards infinity:

0 -0 for N > oo (3.4)

see Ljung [1].

If several sets of data are available corresponding to several models with common
parameters the least squares problem can be formulated by the prediction error:

e(t,0) = %_TKE (3.5)

where € is a vector containing the elements of the ordinary prediction error, (3.3)
found for each data set. Several sets of data will e.g. be the case when the response
of a structure is measured at more than one location. This means that several
sets of data provide information about the structure, which should consequently be
included in the model estimation.
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The data sets are equally weighted if A is chosen as the identity matrix. Instead of
weighting the data sets with respect to each other the data can also be weighted
with respect to to the independent variable, ¢ with a weighting function included
in (3.3). In both cases this means that the approach becomes a weighted least
squares approach, where the measured data are weighted according to the engineer’s
knowledge about uncertainties of the measurements. Any a priori knowledge about
the parameters, © and their mutual covariance matrix can also be included in the
identification problem by adding an error measure of the deviation between the
a priori knowledge and the final parameter estimates. This approach is called a
Bayesian identification, see Ljung [1]. The argument for this approach is that the
a priori knowledge is introduced, although in practice in a very subjective manner,
see e.g. Ibanez [2] and Hart & Yao [3] for practical structural cases.

The proper estimate of © is found by minimizing V. V is usually nonlinear with
respect to the set of parameters, © meaning that some kind of iterative optimization
algorithm has to be applied to find the minimum of V. Many different kinds of
algorithms are available see Vanderplaats [4] and Gill et al. [5]. The most popular
algorithms in this kind of application are the Steepest Descent, the Gauss-Newtons
method, the Levenberg-Marquardt method and the Newton method among many
others. In the present paper especially the algorithm NLPQL has been applied,
see Schittkowski [6]. NLPQL is a sequential quadratic algorithm. This means
that it is based on successive solution of a quadratic subproblem and a subsequent
one-dimensional line search.

V(0)

T : 9
80

Figure 3.3. Minimum of the error function, V.

As shown for the single parameter case in figure 3.3 a minimum of V' is characterized
by:

—_— = (3.6a)
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2V
. >0 3.6b
00,00 i ( )
Strictly the last-mentioned condition is insufficient and should state that the matrix
containing the second order deriatives of V, given by the left of (3.6b) is positive
semi-definite.

In practice some user defined stop criterion determines when the characterization
for a minimum is assumed to be satisfied. Alternatively a maximum number of
iterations is given.

The estimated © will only be a proper estimate if the minimum is a global minimum.
This cannot be ensured in general. One has to check the convergence with different
start estimates of the parameters to check whether this leads to the same minimum.

A lot of practical problems exist with respect to the estimation of the minimum
of an error criteria function. If different start estimates lead to different minima
it may be advisable to scale the error criteria function (in optimization language
it is called an object function) and/or the parameters included in it. Very small
values or very big values of the error criteria function can lead to convergence at
a local minimum due to numerical inaccuracies. Similarly, the parameters can be
badly scaled such that numerical inaccuracies arise due to large differences in the
parameter values or gradient values. In general the error criteria function and the
parameters should be scaled to have a magnitude of about one, see Gill et al. [5].

In the optimization algorithm NLPQL it is possible to include constraints to the
minimization problem. ILe. simple lower and upper bounds are given on the pa-
rameters as input to NLPQL. Further, more constraints, C’(@_) can be formulated
as an expression in the parameters defined to be greater than or equal to zero.

C(®)=0 (3.7a)
Cc©)>0 (3.7b)

3.3.1 Maximum Likelihood Estimation (MLE)

The parameters © can also be estimated by the maximum likelihood estimation,
MLE, see Johnson and Leone [7], Ljung [1]. In this case a given likelihood function

is maximized with respect to O:
max{L[©, M(%)]} (3.8)

The conventional choice is to use a maximum likelihood_function which 1s related
to the maximum probability of the prediction error €(t,®) given by the likelihood
function:
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L[@, M(t)] = PrOb(e(tl)a E(tQ)} whiey E(tN) | 61 M(t)) (39)

(3.9) should be interpreted as the probability of obtaining the given prediction error
at N time instants given the estimated parameters and the measured data, M(z).
Thus the principle of the MLE is that the most likely prediction error is found by
maximizing the L[©, M(t)] with respect to the unknown parameters, ©. Normally
estimates of © are found from the maximum of:

log (L) (3.10)

If the measured and the predicted data is given by respectively M(t) = 3(t) = 7
and M(t|®) = ¥(t) = ¥, and if €(t,©) is assumed to be normally independently
distributed with respect to ¢, IN(0,0(¢)) then the following likelihood function is
obtained:

exp _((yi2;§i) ) (3.11)

o1
L= e
,-l;! \2mo;
which can be rewritten as :

N N o 52
N 1 1 i — Ui
log (L) = -5 log (27) — 3 log (o) — 3 E _(y_a?y_) (3.12)
1 i=1- :

=

The position of the minimum of this function is seen to be equal to that of the
least squares approach, if o; is constant with respect to :. It must be noticed
that the maximum likelihood estimation requires knowledge about the probability
distribution of the prediction error.

3.4 Evaluation of the Results

The model and the estimated parameters should be evaluated in some way to ensure
the quality of the estimation. As mentioned it is necessary to check whether a global
minimum has been reached in the optimization process. This ensures that the best
fit has been found for the given model.

Furthermore, an attempt to evaluate the chosen model should be made. The most
simple and perhaps the best is to check the fit by a graph of the data versus the
model. This gives a view of the global fit. Beside this check, it is advisable to check
the statistics of the prediction error. Ideally the prediction error will behave like
white noise with a characteristic autocorrelation function and spectrum, which can
both be checked. This is sometimes called a whiteness test. If the parameters have
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a physical meaning it will also be natural to try to decide whether the parameters
are physically reasonable.

Another indication of low quality of the estimates is large parameter uncertainties.
This may mean that the model or data is inaccurate in some way. The model
might be too simple or too complex compared with the applied data. This could
be checked by repeating the parameter estimation with another model order. The
estimation of the covariance matrix will be discussed in the next section.

Finally it should be noticed that the decision whether a satisfactory model has been
obtained depends upon the given problem. Some models may be inaccurate with
respect to some unimportant parameters while the parameters of importance may
be estimated successfully. Thus, the model evaluation should be closely related to
the purpose of the model.

3.5 Estimation of the Covariance Matrix

To validate a given model it is important to know the uncertainties of the estimated
parameters. In this section the independent variable is time. In the next section
the estimation of the covariance matrix is expanded to the frequency domain.

To get an understanding of the derivation of the covariance matrix the starting
point here is a set of parameters © which is estimated from some time series y(%).
The time series, y(t) could e.g. be the measured free decay of a structure from
which the eigenfrequency and the damping were to be estimated.

The prediction error is given by:

(t,8) = y(t) - §(¢[O) (3.13)

where §j(¢|@) is the predicted response due to the model. The error criteria function
with a least square norm is given by:

é(t,0) (3.14)

N[ =

(.
v@e)=%>_
t=1

where N is the number of measured data points in the time series. Now it is

assumed that an estimate of the minimum © has been found for V(©) i.e. :

V'(©)=0 (3.15)

is satisfied. The prime refers to the derivative with respect to © which means that
Vr(_é) will be a vector with a dimension corresponding to the dimension of ©. This
first derivative is now linearized by a Taylor expansion about the true minimum

——

© , see figure 3.4 :
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Figure 3.4. Linearization of the first derivative of the error criteria function, V.

V@)=V @) +V (@)@ -0Y (3.16)
It is assumed that for large values of N:

=

00" for N = oo (3.17)

with probability 1 and it follows from (3.16) that :

©-8)=-v (@) V@) (3.18)

where from (3.14):

N T

V(@)= 7\’_2 0" ¢(t,0") (3.19)
where the ith element of the gradient vector, %(t,®") is given by:

$i(t,8") = —ﬁe(t,@n@_—

= - i(tO)s5 (3.20)

By the definition of the minimum (3.15) it follows that:
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V(@) = Jim -V'(6)= lim % B(t,0")(t,8") =0 (3.21)

iV

This means that —V'(@)'*) is a sum of random variables {1(t,0 )e(t,0")} with
zero mean. Since the data y(t) are assumed to be the response of a stable system
it is assumed that {3(t, é_*) e(t,é-*)} is independent with respect to time. This is
not true but holds approximately for distant terms of time, according to Ljung [1].
The independence means that V'(@*) converge to the normal distribution due to
the central limit theory,!.

—VNV'(@") - N(0,Q) (3.22)
where?: . i
Q= lim N E[V @)V (©") ] (3.23)
— 00
Hence it follows from (3.18) that:
VN (6 —8")is N(0, Po) (3.24)
with: 7 :
== =} e —— P
Po=V (®) QV (@) (3.25)
and the covariance matrix of © is thus given by®:
— 1=
COVg = F P(.) (326)

In Ljung [1] it is shown that for a least square norm model fit to a stable system it
follows that:

@ =\ B{7( )5 6) | (3.27)
V' = B, 8)7(,) | (3.28)

which leads to : -
Po = Ay [ E[p(t,0)9(t,0) 1] (3.29)

where, Ay is the variance of €(t, 9):

N A
Z t,0) (3.30)

If a random variable, Y is given by a sum of uniformly distributed random variables with zero mean,
Xi, Y=4% Y X; then E[Y]=0 and o} =0%.
If the relation between two random variables is given by Y= X it means that a},—azo’}

If the relation between two random variables is given by Y—%X it leads to i =40o%.
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V  is called the Hermitian matrix. Some important observations can be made
about the covariance matrix of the parameter estimates. It is seen from (3.29) that
a large variance of the error leads to large uncertainty (large covariance matrix ele-
ments) and similarly if the gradient is small with respect to a given parameter then
this parameter becomes uncertain. Thus, a model with large gradients (parameter
sensitivity) should be chosen to try to keep the variance of the prediction error low.
Furthermore an increase in the number of data points will also reduce the variance.

3.5.1 The Simple Case: The Polynomial Model

As a simple case of parameter estimation consider a data set of a set of z-values, z1,2z3...z 5 representing
an input process and a data set of y-values yi,ys2,...yn representing the output process of a system.
The output process is considered as consisting of the sum of the undistorted output f(:L‘) and the

measurement noise ’n(ﬂ’:)'

y=f(z)+n(z) (3.31)

n(z) is assumed to be some Gaussian white noise process with zero mean, and f(z) is a output of the

system assumed to be given by a polynomial of the third order (the true model):

f(2)=Az3*+Bz?4+Cz+D (3.32)

It is seen that f(z) is linear with respect to the parameters which means that multivariate linear
regression can be applied. Normally the model will be non- linear with respect to the parameters. The

relation between the z-values and the y-values can be written:

=7 (3.33)
zf xf z1 1
. zg zg zs 1
a = (3.34)
a:f’v va zny 1
7=(A B ¢ D) (3.35)
V= (!h Y2 ... UN ) (3.36)
After premultiplying (3.33) by 2" an explicit expression for the parameters p can be obtained:
M (ol W 13
p=(@ @) (a3 (3.37)

This approach can be shown to be equal to the LSE-method, see Johnson and Leone [7]. The curve
fitting in figure 3.5 was obtained for the given data set which was obtained by simulation of a polynomial

of the third order with added Gaussian noise.



System Identification of Offshore Platforms 45

b
30

20

T

10
ot

-10

-20 1

-30 ¢ ——iiact 7
40 b --=--:Estimate

eoeee  Megsured

o . e - : : : : ; X
) 4 0 1 2

Figure 3.5. LSE Curve fitting of polynomial of third order. The exact model (function) is shown together

with the measured values and the estimated function.

The covariance matrix can be obtained by inserting the prediction error, ¢;=y;— f(z;) in the expression
for the error criteria function, V (3.14) and then evaluating V' and V' and finally inserting in (3.24),
(3.26) and (3.27):

Gov=4An@@a") (3.38)
where:
AN=4 2:‘;“ €2 (3.39)
and:
&=fi—(2? z? z; 1)f i=1,2.N (3.40)

This leads to an estimate of the covariance matrix:

0.0345 0.0000 —0.1319 -—0.0000
—— 0.0000 0.0565 —=0.0000 -—0.1200
cov=

—0.1319 -—0.0000 0.6004 0.0000

—0.0000 -0.1200 0.0000 0.4590

The estimated parameters and their coefficient of variations can now be given:
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Parameter Exact Estimated Coefficient
Value Value of Variation %
A 3.0000 2.8632 6
B -2.0000 -2.1908 11
C -5.0000 -4.3109 18
D 2.0000 2.1948 31

The estimated values are seen to lie well within the uncertainty information due to the estimated
covariance matrix. This indicates that the assumed model is sensible. It can be noticed that the
coeflicient of variation is largest for the parameter of the term with the lowest order. This can be
explained by the fact that the information about this parameter lies in the range where the noise

distortion is relatively large. Thus, all parameters cannot be estimated with the same accuracy.

The figure 3.5 shows that no systematic deviation between the measured values and the estimated
function seems to appear. As an extra check the estimated noise, ¢; and its correlation function are
shown in figure 3.6. From the plot of the noise it is seen that there seems to be no trend in the error.
Similarly the correlation function shows that the estimated noise is almost white noise since there is no
correlation between noise values far apart with respect to the z-axis. Thus, the estimated model is a

proper model.

15 T T T T T T T T T

Ti

Lag(1)
-100 _60 20 0 20 60 100

Figure 3.6. Top: The estimated prediction error (noise). Bottom: The estimated correlation function

of the prediction error which is seen to be similar to a correlation function of white noise.
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3.6 The Frequency Domain

The expression for the covariance matrix can be transformed into the the frequency
domain for the least squares norm. This leads to an important expression for the
covariance matrix of the parameters which can be applied when the parameter esti-
mation is based upon a measured reponse spectrum. The derivation of a covariance
expression in this section will be rather heuristic, a more mathematical presentation
is given in Ljung [1].

The present model is a linear model given by an impulse response function h(7)
with a known input u(t) and a known output y(¢) plus some filtered white noise
v(t) = j:g(t — 7)e(7)dr, see figure 3.7. ¢(7) is the impulse response function of
the linear filter and the integration relation is called the convolution integral and
applies for linear systems, see also chapter 4. Alternatively, the system and noise
filter can in the frequency domain be given by their frequency response functions,
H(w) and G(w). The transformation from the time domain to the frequency domain
is described in chapter 5.

u(t)—-{  H(w)/h(t) y(t)

Figure 3.7. Noise model.

The predicted response (¢|®) in the time domain with known excitation and noise
disturbance is given by :

§(t[0) = / (h(t — 7[B)u(r) + gt — r)e(r))dr (3.41)
v(t)

e(t) is a white noise process with a variance, A\g. The error criteria function is in
the limit for N — oo given by:

V(®) = E[%é(t,@)} (3.42)
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where the error €(t) in the time domain is defined by:

(t,8) = f g7t =) ] ™ ((hre =) = B(rz — a[B) Julra )+
g(72 —:l)e(ﬁ))drldrg

v(r2)

(3.43)

g~ 1(t — 7) is here defined by the inverse relation e(t) = fnt g~ (t = 7)v(r)dr. From

this point it is assumed that the true model has been found, © = ©" which means
that the prediction error becomes equal to, €(t,0) = e(t).

In the frequency domain the prediction error given by (3.43) is given by the au-
tospectrum :

|H(w) = H(w,0)|" Sualw) + 1G(w)[* o

e B = 1G(w)[?

(3.44)

Here, the upper-case letters refer to the Fourier transformed, e.g. H(w) is the
transfer function of the linear system with the impulse response function k(7). The
area of the autospectrum equals the variance of, €(t, ©).

The gradient of the (¢, ®) is now given by:

1 T2 o .
160)= [ - [ Fn-n@umndn (349
0 0
and the variance of the gradient:

E[§(t,8)%(,8)"] = - f(,1r|G(W)I'2 H'(©,0) Suu(@)F (,0) do  (3.46)

s

The autospectrum of the filtered white noise is given by:

Suu(w) = Xo|G(w)| (3.47)

where )g is the variance of the white noise, e(t). The latter expression can be
inserted into (3.46) which means that the covariance matrix due to (3.30) becomes:

-1

P L.X 5 1 == == -, =T
Fove = [+ f 5oy B @8 S5u@H (©,8) d (3.48)
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3.6.1 Parameter Estimation From the Transfer Function

It is now assumed that a model is sought for the transfer function and not for the
measured reponse. The measured transfer function data is thought to be the result
of a spectral analysis. This means that the response spectrum becomes equal to
the square of the transfer function if S,,(w) = 1 is assumed:

Syy(@) = [Hw)[* Suu(w)

3.49
= |H(w)[” Wy

Hence a covariance estimate of the parameters obtained for parameters estimation
of measured squared magnitude of the transfer function, |H (w)|* is:

=]

i | o 1 —_t S =t e
wvo =5 lr | s B @O T8 di (3.50)

If, furthermore, the filtered noise is replaced by a pure white noise input the covari-
ance matrix becomes:

e = [ / "l B8 T w,8) ] (3.51)
c = —[— — w ”
2 N ™ Jo SGE(UJ) * 4

This white noise assumption will only be approximately true due to numerical
errors in an FFT-analysis. Furthermore the signal/noise ratio will vary throughout
the frequency range and thus be filtered white noise. However, an evaluation of
a covariance matrix in the prescribed way will give an applicable measure of the
uncertainties of the parameters and will also be applicable in a comparison between
different fits. Examples of estimation of the parameter uncertainty are given in
chapter 7.
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4. STRUCTURAL MODELLING
OF OFFSHORE STRUCTURES

The purpose of this chapter is to give a review of structural modelling of offshore
structures. The structural model forms the frame within which the structural iden-
tification can be performed.

Since the structural model is applied to fit to obtained measurements of real struc-
tures the scope is here to provide a model of the given structure for a given load
over a period of time. In other words, the purpose is not to create models which
can describe the structure for any load at any time. Such models will be absurd,
since they will contain characteristics which are not represented in the structural
response and consequently not possible to identify. Furthermore, those so-called
complete models will also require enormous expenses due to the complexity of the
model and the number of parameters which will have to be identified. On the other
hand, the model has to contain all the important characteristics, otherwise the
parameter estimates become erroneous or limited to some specific excitation range.

4.1 The General Model

As mentioned in chapters 1 and 2, offshore structures must be modelled with respect
to some specific marine factors :

e The mass distribution will change continuously due to the industrial process
(continuously) going on at the platform.

e The apparent mass of the structure beyond the sea surface will be increased
due to added mass of the fluid surrounding the structure. This will depend on
the sea state.

e The marine growth which will be created during the first years after installation
at location. This will give rise to increased added mass and loading.

e The foundation is assumed to contain important nonlinear stiffness properties
and damping mechanisms. The characteristics also seems to be time dependent.

e Energy will dissipate due to several sorts of interaction between the fluid and
structure. The damping mechanism will partly be nonlinear and will depend
on the sea state.

e Determination of the excitation due to waves will be very uncertain, see Jensen
[1]. Furthermore, it will be a non-stationary non-Gaussian load in many sea
states.
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These marine factors mean that the structural model of an offshore structure should
be a nonlinear time dependent model with a response dependent non-stationary
non-Gaussian excitation. Assuming that the offshore structure can be described by
a discrete model of n degrees of freedom, the response given e.g. by an acceleration
can be measured at one or several of the assumed degrees of freedom. The measured
acceleration at the jth degree of freedom will be dependent on the time history of
the global structure and the excitation at the present time instant:

5i(t) =Li(@, ) +fu(Z,t) j=1,2,...n k=1,2,...m (4.1)

where L;j is some nonlinear time-dependent differential operator and fi(Z,t) is an
external excitation at m locations depending on time and the reponse of the struc-
ture.

Clearly a model like (4.1) would be very complicated and require a fully physical
understanding and a mathematical model of all the psysical phenomena mentioned
above. Unfortunately, this knowledge does not exist which means that the conven-
tional description is limited to classical linear time invariant models.

The general assumption will be to ignore the nonlinearities and the time dependence
of the differential operator in (4.1) assuming a linear differential operator with
constant coefficients. Furthermore it is assumed that the excitation of the structure
is independent of the response of the structure.

In section 4.2 the link between the discrete model and the continuous structure
will be discussed. Afterwards in section 4.3 the discrete model of a lightly damped
system is presented. The lightly damped model is the classical model of structures
in civil engineering. However in section 4.4 the state space model is presented
because the lightly damped model is insufficient in the cases with higher damping or
closed spaced eigenfrequencies. Furthermore the state space model is also a classical
model within the field of system identification. Since the structure is modelled by a
discrete model the effect of a limited number of eigenmodes is discussed in section
4.5.

Since the assumptions mentioned above will generally be a violation of reality, some
nonlinear models will be briefly discussed in principle in section 4.6. The discussion
of nonlinearities will be further discussed in chapter 9, where the subject will be
detection of nonlinear mechanisms.

4.2 Discrete Modelling

The structural model is in general assumed to belong to the special class of linear
models which can be described by an n-dimensional linear set of second order
differential equations with time invariant constants:

Mz +Cx +

=1 (4.2)

by
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Here it has been assumed that the distributed inertia force of the structure can
be discretisized into n degrees of freedom and be given as Mz. This set of inertia

forces is balanced by a set of linear-elastic restoring forces, Kz, viscous damping

forces C7 and the external loads f.

It is assumed that the continuous structure of an offshore platform can be equivalent
to a structure consisting of beams. It will be the subject of this passage to relate the
continuous beam structure to the discrete model given by (4.2). The application of
continuous beam and plate models for system identification purposes has e.g. been
described in Juang and Sun [2] and will not be further described in this thesis.

4.2.1 Mass Matrix

The mass distribution is assumed to be given as concentrated masses at the chosen
degrees of freedom. To predict the response, the mass can be lumped or determined
as consistent mass defined by:

nb {
1 o inZ 4 I;T:_'-
r=%" /0 Sk de’ = 237 3 (4.3)
=1

where on the left-hand side of (4.3), x(k!) is the velocity and m(x*) is the mass,
both continuous with respect to x* with i referring to the ith beam element, while
the right-hand side contains the velocity and lumped masses at a finite number
of structural locations. nb is the number of beam elements. From (4.3) it can be
seen that the mass matrix of the discrete model must be chosen in such a way that
the kinetic energy of the discrete model is equal to that of a continuous structure.
This means that the consistent mass matrix, M will generally be a full matrix.
The lumped mass procedure is more simple since it just assumes a mass element
corresponding to each degree of freedom. This means that the big advantage of
the lumped mass procedure is that the mass matrix, M is bound to be diagonal.
This leads to a smaller number of parameters and makes matrix manipulations
easier. Furthermore, it is believed that the lumped mass procedure is almost just
as accurate as the consistent mass procedure taking other modelling errors into
account. Thus considering identification of dynamic properties it is concluded that
the lumped mass procedure is the best.

The rotational inertia is assumed to be without any importance since the mass is
distributed along the beam axes and the rotational inertia can always be resolved
into translation inertia by increasing the number of degrees of translation freedom.
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4.2.2 Stiffness Matrix

The stiffness model is based upon the Bernoulli beam theory. Contribution to
deformation from shear is assumed negligible:

12ET1

= GAD <1 (4.4)

o

where EI is the bending stiffness, G the shear modulus, A, the effective shear area
and [ the length of the beam element.

TQI:‘BI TQzafrz
M],Gl C' EI X M2, 02
|74 I -

Figure 4.1 Beam model.

Deformations in the direction of the beam axis are disregarded. This means that
the stiffness relation of a beam element is reduced to four local degrees of freedom:

12EI —6EI =—12EI =—6EI
Qs oy B o e\ [T
M | f S T If E 61 i &
Q, | = | =282 emr 12B1  em 4 (4.5)
2 B N 13 12 2

—6EI  2EI 6EI AEI
M, 12 I 2 1 b2

The rotational degree of freedom can be ignored in the experimental model if static

condensation is assumed to be valid. This is seen for the undamped problem, C=0
in (4.2), if the degrees of freedom of the structure is divided into translation and
rotational degrees of freedom:

CENONCS ORI

0
where the rotational inertia mass is assumed to be equal to zero, I\=J=R = 0 which
leads to:

<o

—— — —— R —— o - — —
Mrzr+ [Kr— KrrKgr Kprr)zT =0 (4.7)
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4.2.3 Damping Matrix

Above in (4.6) and (4.7) the influence of the viscous damping contribution due to
the rotational degrees of freedom has been ignored. This will only be permissible

if:
) (48)

If this is not the case the rotational degrees of freedom must be included if they
contain a significant damping mechanism. This means that measuring one of the
rotational response of the structure should be attempted which is difficult. Normally
the static condensed model given by (4.7) is assumed to be valid with the damping
included according to (4.8).

T s ET
6~ (2

ol

The linear damping mechanism has been assumed to be viscous, but it could also
have been modelled by structural damping (complex stiffness), fp = iHz with
i = /=1 and H being the structural damping matrix, see e.g. Ewins [3].

The damping in civil engineering structures are often modelled by viscous damping
while aircraft and space structures for a period have also been modelled by struc-
tural damping. Langen and Sigbjgrnsson [4] generally assume a viscous damping
model but admit that structural damping can be applied to describe internal fric-
tion in materials such as steel. Cook [5] has found by a study of literature, Angelides
[6], Blaney [7], Nowak [8] that the structural damping model is often applied as a
model of the internal damping in soil. Nelson and Greif [9] state that the problem
with structural damping is the application with non-sinusoidal excitation in which
numerical problems arise. This is probably the real reason why viscous damping
is more popular than structural damping in civil engineering. This thesis will not
go into detail with structural damping. A description of modelling with structural
damping is given in Ewins [3].

4.3 The Lightly Damped Model

Civil engineering structures including offshore structures are often considered as
lightly damped structures since, as a rule, their largest damping ratio is less than
10%. If a modal model is needed it means that the undamped eigenvalue problem
can be solved instead of the damped eigenvalue problem. This procedure is also
called the normal mode method since the eigenmodes per definition are real. The
undamped eigenvalue problem is given by:

(—~w?M +EK)®; =0 (4.9)

where the eigenvalues as well as the eigenvectors become real, since the mass and
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stiffness matrix is assumed to be positive definite. In this case the orthogonality
conditions become:

—-T.:.... = P
Q; M®; =0 for i #j (4.10)
®; K®; =0 for i # (4.11)

The eigenvectors can be normalized such that:

T M3 =(1) (4.12)
T RS =(w?) (4.13)

where @ is an n x n matrix with ith column containing the ith eigenvector. The
notation ( a; ) means a diagonal matrix with the elements, a; and (1) means the
identity matrix.

While the eigenvectors are orthogonal with respect to the mass and stiffness matrix
this is not in general the case with the damping matrix:

T 08 # (2witi) (4.14)

However, if the damping matrix can be written as a linear combination of the mass
and stiffness matrix:

= oM + BT (4.15)

Qll

then the damping matrix is diagonalized:

(2wiGi) = a(1)+ B(w}) (4.16)

This is called proportional or Rayleigh damping. Caughey [10] has shown that the
diagonalization of the damping matrix is also the case for a linear combination of
the form:

R
T=Y M ') (4.17)
k=1

The point here is that the attempt to relate the damping matrix to the mass
and stiffness matrix is completely without physical rationale and is justified by
computational considerations. The assumption means that the response for any
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arbitrary excitation can be found by decoupling of the equation of motion (4.2) by
= =T

replacing 7 by ®Zz and premultiplying by ¢ :

Zi + 2w;(iz + w?z,- = ‘I)J','fj ¥ = 1.2, s (4‘18)

which gives the response:

T= i@,-z,- (4.19)

The decoupled system given by (4.18) can be considered as n independent systems
of a single degree of freedom corresponding to a mode of vibration. Hence, each
mode can be assigned to an impulse response function and a complex frequency
response function.

The impulse response function is defined by the reponse for an unit impulse at time
zero with initial conditions equal to zero. This can be shown to equivalent to the
transient response due to the initial conditions:

2{(0) =1 and #(0)=0 (4.20)

which for an underdamped eigen mode gives the impulse response function:

h,(t) = w:\/+_€2 €Xp (—w,-C,-t) Sil’l(u)ﬂ/ 1-— 4-12 t) (421)

Due to linearity the reponse caused by an arbitrary modal excitation can be con-
sidered as a superposition of the sum of the reponse due to impulses:

il = / C 8y f()hlt — 1) (4.22)

which is known as Duhamel’s integral or the convolution integral.

The complex frequency response function H;(w) for the i’th eigenmode given by
(4.18) is defined as the amplitude of the steady state modal response, z; due to the
modal excitation:

I‘,‘(t) = (I’j,'fj(t) = exp (iwt) (4.23)

which gives H;(w) :
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1
w? + 2ww;(l

Hi(w) = —

w

i=1,2,...n (4.24)

: —

If the modal excitation, I';(t) is a stationary random process with zero mean it can
be shown, see e.g. Meirovitch [17] that autocovariance function identical with the
autocorrelation function of the response is given by:

+ oo + o0
Camlri= By lr)= / Rp.r.(1 — 1 — 1)hi(m1)hi(T2)dTidry  (4.25)

-0 —00

Due to the Wiener-Khintchine formulas (4.25) can be transformed to give the rela-
tion between the autospectra of the modal excitation and of the modal coordinate,
Zis

Szizi(w) = |Hi(w)|* Sy (w) (4.26)

which is an important relation with respect to system identification. The relation
between the spectral densities in the original uncoupled coordinates, the generalized
coordinates, can be shown, see e.g. Meirovitch [17] to be given by:

Srs(w) = B(Hiw))® S1(w)®(H; ()T (4.27)

where ( H;(w)) is a diagonal matrix containing the complex frequency response
functions of the n eigen modes.

The transfer function of the :th degree of freedom due to the excitation of the jth
degree of freedom is defined by:

Hpyoiw) = G220

= 545 w) (4.28)

Hj, »;(w) will be proportional with the complex frequency response function, H;(w)
if only the ith eigen mode is excited. Thus, the two functions representing the
structure should not be confused.
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4.3.1 Proportional Damping

The application problem when assuming proportional damping, which has been the
case in the previous section, has three aspects:

e Computation of the response of a system with a given damping matrix.
e Reconstruction of a damping matrix from estimates of the damping ratios and
the eigenfrequencies for a given structure.

o Identification of the damping ratios if a general non-proportional damped struc-
ture is assumed.

With respect to system identification the response calculation is a less interesting
problem. It can be mentioned that proportional damping can be obtained by:

- ignoring the off-diagonal elements in the generalized damping matrix, % C3.

- least square reduction of the deviation of the damping force in modal coordi-
nates expressed by a diagonalized and a complete damping matrix, see Malho-
tra and Penzien [11] and Thomson et al. [12].

The reconstruction of a damping matrix can be achieved if a set of damping ratios,
eigenfrequencies and eigenmodes has been determined:

3 0B = (2witi) (4.29q)
Y
= —==T =1
C = (2&),‘({ ) P (4.291))

=T =7 ~1
(@ =(® ) ). Due to the orthogonality condition (4.12), (4.29b) can be rewrit-
ten as :

ﬁ = ﬁ ( 2w,—§,~ ) ETE (4.30)

The advantage of the last formulation is that inversion of the eigenmode matrix is
avoided and furthermore, a square matrix is not a must. Usually the number of
elements in each eigenvector is larger than the number of eigen modes present in
the analysis. Another procedure is to estimate the constants in the proportional
damping model (4.16) and extract the damping matrix from those with known mass
and stiffness matrices.

In principle when a MDOF system has to be identified, all eigenmodes will not be
real but to a certain extent complex. Only in the case of C = 0 or proportional
damping the eigenmodes will be real. The problem is therefore to determine whether
or not proportional damping is an acceptable assumption.

There has been a general discussion in the last twenty years about proportional
versus non-proportional damping. There is some disagreement on the application
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of proportional damping. However, everybody does agree that heavily damped sys-
tems must be modelled by the damped eigenmodes. There is disagreement with
respect to lightly damped systems. Some people claim that in general also lightly
damped systems must be modelled with non-proportional damping. Others state
that this is only necessary in the case of concentrated damping sources such as
structural interaction with the foundation in lightly damped systems. However,
this discussion i1s somewhat absurd since each author can construct numerical re-
sults giving the proper arguments. The interesting subject must be justification
of proportional or non-proportional damping from the measured response of real
structures.

Assuming proportional damping for a non-proportionally damped structure means
that modal superposition and identified modal parameters may be erroneous since
higher modes can contribute to the response of lower modes, see Duncan and Taylor
[13]. And vice versa, higher modes can be excited due to an excitation of lower
modes. Consequently, it is important to try to evaluate the damping relations
before modelling and identification.

Warburton and Soni [14] have tried to quantify when proportional damping will be
an acceptable approximation. They have suggested the following expression:

2

Cc-r-r ws
(== =1}| (4.31)

r

2CCT'3 w minwrt.s

Cr<f]

Index r is here the considered mode while index s is a neighbour mode. cc,. = 2w,.(,
is the diagonal element and cc,y = 2,/w,ws(,s is the off-diagonal element in the
generalized damping matrix. € is here a parameter which determines how large
errors will be allowed in the model. It is seen that closely spaced eigenfrequencies
as well as large off-diagonal elements give a narrow limit for the level of the damping
ratio if proportional damping has to be applied as an approximation. Warburton
and Soni suggest € = 0.05 which, in a study of simulated response, gave an error of
the magnitude about 10% for the maximum response.

With respect to system identification the expression suggested by Warburton and
Soni cannot be applied directly since the structure to be identified is unknown.
However from a priori knowledge the expression can maybe give an indication of
whether the identified quantities could be sensitive to an assumption about propor-
tional damping.

Whether or not proportional damping is a proper assumption can always be checked
by applying a general model which allows complex modes. If the identified modes
are complex then non-proportional damping has been confirmed.

Another check can be made by estimation of the constants in the proportional
damping model by applying (4.16). This is done with a set of eigen frequencies and
damping ratios which have been estimated independently of each other for instance
from spectral peaks. The constants of (4.16) can be determined by a least square
fit and the fit can be evaluated by a covariance matrix for the estimated constants
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according to the principles of chapter 3. The proportional damping assumption can
now be checked from either the covariance matrix or a plot of the proportionally
damped model and the identified set of eigenfrequencies and damping ratios. As
an example, see figure 4.2.
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Figure 4.2. Least square approximation of a proportional damping matrix to identified eigenfrequencies
and damping ratios. (Analysis of peaks of response spectra of Jacket platform at the Ekofisk Field,
Gundy et al [15].

From figure 4.2 it is seen that there is a considerable scattering about the estimated
proportional damping model which could indicate non-proportional damping. From
(4.16) and figure 4.2 it is seen that the damping ratio is forced to increase with the
frequency which is not realistic. As a footnote it can be mentioned that this is
another reason why some people prefer a structural rather than a viscous damping
model, Ewins [3]. The structural damping model allows the damping ratio to be
frequency independent. However, Lang [16] claims that the viscous damping model
is becoming increasingly popular since computer progress has led to a replacement
of the proportionally damped model with the non-proportional model. The latter
will be the subject in the next section.

4.4 The State Space Model

The state space model, see e.g. Meirovitch [17], referring to the reponse vector
T is replaced by a state vector (ET éT). The formulation is also called the com-
plex mode method since this formulation allows complex eigenvectors due to high
damping or closed space eigen frequencies. It is seen that the equation of motion
(4.2) can be rewritten as a set of first order differential equations by the state space
formulation:

PN,
8: 8|

'.')='(_ﬁﬁ"f _ﬁ?“ﬁ) (-)Jf(ﬁo)? B
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or in compressed form:

f

y=Ay+B7J (4.33)

where 4 is a 2n x 2n matrix called the system matrix, B is a 2n x n matrix and n
is the number of degrees of freedom.

From the homogenous equation:

7=A4y (4.34)
the complex eigenvalue problem is obtained:
p¥ = AT (4.35)

where it has been assumed that 7 is given by: § = Uexppt for the nonexcited
model: f = 0. 2n complex eigenvalues will exist since the system matrix 4 is not
positive definite. For an underdamped system the 2n eigenvalues p; will be given
by n conjugated pairs:

pi,p; = —a; +ib;
=—wi(;tiy/1-Cw; 1=12...n (4.36)

where w; and (; is the eigenfrequency and damping ratio of the i’th eigenmode.
There will also be 2n complex eigenvectors, ¥; which will also in general consist of
conjugated pairs:

(B B o kB E LB
»® p2®2 ... pa®. pi®, pi®, ... PO,
=(¥, ¥ ... ¥, ¥ T ...T) (4.37)

where ®; is the 7’th eigenvector of the damped eigenvalue problem:

(p?M +p:iC + K)®; =0 (4.38)

In the state space formulation it can be shown, see e.g. Meirovitch [17], that the
following orthogonality conditions are fulfilled:

wij =T, VE; =0 for i #j (4.39)

e = E'-;FB_‘I!, =0 for 1343 (4.40)
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where w;; and e;; are elements in the diagonal matrices, (w;; ) and (e;; ) and:

(4.41)
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(4.42)

D=l
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These orthogonality properties mean that the equation of motion can be solved for

any excitation by decoupling of (4.33) and (4.34) which by pre-multiplication by V
can be rewritten as:

(4.43a)

+ 6_
y+Dy= (%) 7 (4.430)

—1=

where V and D are related to the system matrix by A=~V D If 7 is replaced by

¥ = U7 and if the (4.43a) and (4.43b) are pre-multiplied by ‘I‘ then the following
is obtained:

piwii +e; =0 1=1,2...2n (4.44a)
Wii2i + €512 = g,-jfj L =12 208 (4441))

~lloll

=T
where g;; is the element of ¥ ( ) Inserting (4.44a) into (4.44b) gives the final

set of 2n decoupled equations:

si—pm =20 19 o (4.45)
Wi
From the decoupled equations z; will be found as conjugated pairs s smce the eigen-
vector will in general be given as complex conjugated pairs, ¥; and lIJ . This means
that the response of a given excitation, see e.g. Langen and S1gb3¢rnsson [4], can
be found as:

= Z@izi + @:z:‘ (4.46)
=1

Instead of calculating the reponse by the complex mode method given by (4.46), the
response can be calculated directly by the system matrix as described in Meirovitch
[17].
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The equations (4.22) and (4.25) to (4.28) do also apply to the state space formu-
lation but with other expressions for the impulse response function and complex
frequency response function of the modal coordinate, see e.g. Langen and Sigh-
jornsson [4]:

hi(t) = exp (pilt — 7)) (4.47)

Hi(w) = m (4.48)

For the underdamped system there are n conjugated pairs of impulse response
functions and frequency response functions due to n conjugated pairs of roots p;, p}.

4.5 The Effect of a Limited Number of Modes

It has been shown that a discrete model of n degrees of freedom can be decoupled
into n modes. The problem in system identification is that no knowledge exists
of the number of degrees of freedom which a model of a given structure should
contain. However, it is often possible to determine the number of significantly
excited modes by an analysis of the spectral peaks in the frequency domain. Those
modes are called dynamically excited modes while the modes for which the dynamic
amplification is negligible are called statically excited. The statically excited modes
will typically be higher modes with only local importance of the modelling of the
structure. This means that they will only be of importance for the prediction of
local stresses and member forces. A method taking these local effects into account
is the mode acceleration method, see Vugts et al. [18] and Anagnostopoulos [19].

By ignoring the terms in modal coordinates containing time derivatives it can be
shown that a quasi static approximation of the statically excited modes is given by:

T

Zi + 2C,;w,-wé,- + UJ?Z,' = _—f.l:'-f-—
. M3,
U (4.49)
,_ 1 &7
2 RS Z" = —2_
Wi @, M‘i’

Index s here refers to static contribution and the eigenmodes applied are the un-
weighted mode shapes. The calculated response by modal superposition then be-
comes:

“‘hf

(4.50)

- B, 1 &
;(” Zw_?a

t=nn+1 (I)
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Index d refers to dynamic contribution up to mode no. nn. The modes, which
have been approximated by a static solution, should correspond to eigenfrequencies
much larger than the excitation frequencies. In offshore structures this will often
be the case since the excitation frequency will be small compared to the magnitude
of eigenfrequencies.

The effect of a limited number of modes can also be considered in the frequency
domain by approximating the influence of higher modes with a quasi-static con-
tribution. If for instance the model is assumed to be excited by a harmonic force
vector the response of the j'th degree of freedom can be shown to be given by:

N
z;(t) = X;(w)exp (iwt) = Z (4.51)

i=1

®;;T; exp (iwt)
2
]

w? — w? + 2ww;i(ii

If the eigenfrequencies of the higher modes are well above the excitation frequency
the amplitude spectrum can be approximated by:

nn ‘I’j,l"-
X;(w) ~ Zw — o ot (4.52)

=1 i=nn

for w; > w. nn is the number of modes which is assumed to be dynamically excited.
The concept is illustrated in figure 4.3. In Ewins [3] the concept is considered in
a graphical way and is further described in Salter [20]. If the excitation vector
contains more than one harmonic or is random, then the approximated quasi-static
terms of the I'th mode will contain a coupling to the :th mode and thus also be
more complicated.
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Figure 4.3. Quasi-static approximation of the influence of higher modes.
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4.6 Nonlinear Damping and Stiffness Mechanisms

In this thesis as in many others the main assumption is that a linear system is
assumed even though everybody knows it is not the case for real structures. How-
ever, the linear case forms a unique and well defined class of models, while the
class of nonlinear models is very wide. Furthermore, the nonlinear case can often
be linearized for the operating range in which the structure is found to act. Since
modelling in practice is restricted to linear models the purpose here is to present
some of the main principles of nonlinearities.

With respect to the description of damping mechanism of structures, it is based
more on computational comfort and empirical knowledge than on physical facts
while the linear stiffness assumption can often be justified. From an engineering
point of view the aim must be to develop and apply damping models which give a
sensible ratio between the description of reality and the costs of this description.

An SDOF system is considered for the general qualitative presentation of nonlin-
earities. The following sorts of nonlinearities are considered:

1. Coulomb damping.

2. Drag damping (nonlinear viscous damping).
3. Radiation damping.

4. Cubic stiffness.

4.6.1 Coulomb Damping
The damping force is given by:

=y C‘ou_j"_
fop=C Ic‘rlF (4.53)

where F' is the applied friction force. The magnitude of the damping force is seen
to be constant, while the damping force in the viscous case is velocity dependent.
The equations of motion can only be solved in the case of SDOF systems with
or without sinusoidal excitation. Consequently, in general the equation of motion
must be solved numerically. In figure 4.4a the simulated free response of a system
with two degrees of freedom is shown. The free vibration of a Coulomb damped
system is characterized by a linear envelope curve of the decay curve. For an SDOF
system the logarithmic decrement can be shown, see e.g. Langen and Sigbjornsson
[4] to be given by:

- 4.54
Ay A, +4N/k L)
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where A, and A,4+; are two subsequent amplitudes of the free vibration and £ is
the spring constant.

For a sinusoidal excitation a numerical simulation study shows that Coulomb damp-
ing causes a transportation of energy into a higher frequency range corresponding
to peaks at a multiple of the excitation frequency and possibly also of excited
eigenfrequencies, as seen in figure 4.4b.

.’L‘l(t) Szz(f)

| Sinusoidal excitation of 1.05 Hz |
Coulomb damped 2DOF system

1 el | W -

0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25

a) b)

Figure 4.4. a) Free vibration for 2DOF system with Coulomb damping. b) Response spectrum for 2DOF
system with sinusoidal excitation. Simulation by PROGSIM [21].

Parts of the damping mechanism in the foundation of structures and in the joints
can be adequately described by the Coulomb damping model. This is therefore a
very important model even though it creates numerical difficulties.

4.6.2 Drag Damping

The drag damping (/nonlinear viscous damping) model is described by a damping
force:

fpo =CPred|i|¢ (4.55)

The name drag damping arises due to the damping contribution from the drag term
in Morison’s equation, see Morison et al. [22]. As far as known the equation of mo-
tions cannot be solved analytically for drag damped systems. However, numerically
the response can be simulated as shown in the figure 4.5 for a free vibration and
a sinusoidal excitation. For a harmonic excitation the presence of the nonlinear-
ity due to the drag damping is indicated by peaks at a multiple of the excitation
frequency and possibly also the low eigenfrequencies, see figure 4.5b.
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Figure 4.5. a) Simulated free vibration b) Simulated response spectrum for a harmonic excitation. 2DOF
system with drag damping. Simulated by PROGSIM [21].

The source of drag damping is due to the fluid structure interaction. Morison’s
equation for a vertical flexible cylinder with a diameter D in a horizontal current
in a fluid with density p is given by:

1
¢=5CpDp(u —&)lu - 4| + CMEsz:l = p-Z—D2(CM —1)i (4.56)

where Cp and Cj are coefficients depending on the fluid-structure problem given
by e.g. a sea state and structural characteristics, such as the diameter D and the
relative roughness, see Sarpkaya and Isaacson [23], Jensen [1]. ¢ is the force per
unit length of the cylinder.

From the terms in (4.56) including z it follows directly that there will be a damping
contribution given by:

u

i .
4p = 5CpDp— z l(:b2 — 2uz) (4.57)

lu
If u > 7 it is seen that this damping force can be approximated by:

1 u—2= ’

which means that this part of the hydrodynamic damping will be a viscous term
coupled with the severeness of the sea state through the velocity u. However, if
z ~ u this part of the hydrodynamic damping will contain a drag term as well as a
viscous term which will both depend on the sea state through the fluid velocity. If
necessary the nonlinear drag terms can be approximated by linear terms due to an
equivalent linearization, see e.g. Jensen [1].



System ldentification of Offshore Platforms 69

4.6.3 Radiation Damping

Radiation damping includes damping due to energy dissipation by waves into sur-
rounding media of the structure. In the case of offshore structures radiation damp-
ing will be due to fluid structure and soil structure interaction and it can be shown
to be viscous, Petrauskas [24].

It seems that radiation damping due to the soil is less well investigated and the
importance of this contribution is rather uncertain. The radiation damping is less
important than the internal damping of offshore structures at the Mexican Gulf
according to Cook [5].

While radiation damping from the structure into the soil is less known, an expression
can be developed for the fluid structure interaction. According to Cook [5], Cook
and Vandiver [25] and Vandiver [26], the damping ratio of the ith mode for a vertical
cylinder can be shown to be given by:

= (4.59)

where:

cci; = exp(2:£;u+ 4kh[/:h D(z)pl(%‘i)%(z)exp(k(z + h))d=

/;h #(z)exp(k(z + h))dz] (4.60)

Frequency of radiated waves.
Water depth.

Wave number (27 over the wave length).

> a &

z: Vertical coordinate,positive upwards.
D(z): Variable cylinder diameter.
#i(z): The i’th mode shape as a function of 2.

2
pi(5) = 5(%) for ¥ « 1.

This expression is valid when the radiating waves are considered to be deep water
waves for an inviscoid fluid without any interaction with the incoming waves.

Since the expression is evaluated for an inviscoid fluid it will only be valid for sea
states where the ratio between the wave length and the cylinder diameter is less than
about 5. For increasing wave length corresponding to a more severe sea state the
expression will not be valid, and the importance of radiation damping will decrease
while the damping due to the drag term in Morison’s equation will increase, Jensen

[1].
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4.6.4 Cubic Stiffness
The cubic stiffness model can be written as a restoring force given by:

fR = ]{,‘137 + k2$3 (461)

The undamped lightly nonlinear system can be considered with the equation of
motion given by:

%+ wiz +ex® = C cos (wt) (4.62)

This is called Duffing’s equation. By the perbutation method it can be shown that
the response will be given by:

2= i A, cos (nwt) (4.63)

n=1,3,6

where A,, will depend upon €, w, and w. It is seen that the excitation energy will be
extended to a higher frequency range. The cubic stiffness model can in the general
case only be handled numerically.

Since the structure/soil interaction is generally characterized by nonlinear stiffness
the cubic stiffness model will be a better approximation than the linear stiffness
model (disregarding the numerical problems).
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5. EXCITATION,
MEASUREMENT AND SIGNAL PROCESSING

The three topics in the title are not directly integrated in system identification
but they are nevertheless vital for the results of the system identification. It is
necessary to have an understanding of those topics to choose a proper structural
model and a proper system identification method. Finally it will often be possible
to explain inexplainable results or errors in the system identification process by
the performed excitation, measuring or signal processing. Another aspect is that
experimental considerations are also important because it is expensive to repeat
an instrumentation and perform excitation and measurings. Thus, the three topics
will be dealt with here, although only in principle, since they will be large topics
in themselves.

The chapter is divided into six parts. In section 5.1 the choice and the importance
of proper excitation are discussed. Hence a short review is given about the instru-
mentation in section 5.2. The signal processing is discussed in section 5.3 after
the basic principles of obtaining measurements have been established. Afterwards
in section 5.4 the statistics of the obtained data are presented. In section 5.5 the
random decrement technique is explained and finally, in section 5.6, some relevant
noise models are presented and discussed.

5.1 Choice of Excitation

An excitation is necessary to obtain a structural response. The excitation should
ideally be chosen under the following considerations:

o All eigenmodes of interest should be excited and, if possible no other.

e If the structure is thought to be nonlinear the level of excitation should cor-
respond to the operating range of the structure. If possible several levels of
excitation should be investigated.

o The excitation should be well defined and possible to measure.

The excitation of all relevant modes is ensured by the frequency content in the
excitation signal. The frequency content should be concentrated at such frequencies
where the structural response has maximum gradient with respect to the structural
parameters to be estimated. This will lead to the most precise estimates as shown
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in chapter 3. For an SDOF system this means that the frequency content should
be chosen such that :

Maximum gradient w.r.t. the eigenfrequency : __6|E;C}(f)|
‘ 0

Maximum gradient w.r.t. the damping : ——al};z(f )l
0

are obtained. In figure 5.1 the gradients is shown for an SDOF system with either
fo = 0.4 Hz or (, = 0.01 for different frequencies. Not surprisingly it is seen that
maximum information about the eigenfrequency is obtained at resonance where the
response also is largest. The damping ratio is seen to be best determined in a range
about the eigenfrequency. The range becomes narrower for decreasing damping
ratio which makes this range even more important.

0.95 Hz 0.

Figure 5.1 Gradient of magnitude of frequency response function with respect to eigenfrequency and

damping ratio versus excitation frequencies.

Two fundamental principles of excitation are now discussed with respect to this and
the former requirements. The first principle will be ambient excitation due to waves
while the second will be external excitation which can be created by commercially
available vibrators.

5.1.1 Ambient Excitation: Waves

An excitation such as waves has the obvious advantage that the excitation level
will represent an operating range which the structure will experience many times in
its lifetime. The wave load will furthermore always be present and cause response.
However, the fundamental disadvantage is that the wave load is very difficult to
measure, the observation of the excitation is in practice restricted to either mea-
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surement of the time series of the surface elevation and the wave direction or the
sea state characteristics which are given by a significant wave height H, and period
T,. The latter is less expensive to obtain but also less informative.

However, during the last thirty years attempts have been made to obtain:

e A wave theory which can describe the waves from the sea state characteristics.
The waves can be represented as a time series or as a wave spectrum. The
theory for deep water waves consists of a part which deals with harmonic
waves, Airy’s wave theory and the 5th order Stokes’ waves, and a second semi-
empirical part which deals with random waves in the frequency domain, most
well known as the model spectra: The Pierson-Moskowitz spectra and the
Jonswap spectra.

e A wave load model which can establish the link between measured or regener-
ated waves and a wave load. This is well known as the Morison equation which
for a vertical flexible cylinder excited by a horizontal harmonic oscillating wave
is given as the force per unit length:

Added mass

1 ”~ N
= ECDDp(u—:i:)|u—:&|+C’M%D2ptl—p%D2[CM— 1] & (5.1)

v

R p— =

Drag term Inertia term

[ Measurements of Waves ],__.

Seq State
H T )
/ s s
v v
Harmonic | | Rondom | [Freq. Andlys.
Wave Theories | | Emperical
‘IJ =
Morlsons Eq. Lineartzed Morlsons Eq. Moarisons Eq.
Time Domaln| |Morisons Eq| | FregDomaln Time domaln
Freq.Domaln Minus Drag Linearized)

Figure 5.2 Survey of wave load modelling.

Cp and C)s depend, among other factors of the flow problem, on the sea state given
by Reynolds’ number, Re = ¥2 and the Keulegan Carpenter number, K = %
where U and T are a characteristic velocity and period representing the sea state, for
further reference see Sarpkaya and Isaacson [1], Jensen [2]. The Morison equation is
said to be valid if K > 5, otherwise another theory, such as stream function theory,
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has to be applied taking diffraction effects into account.

The Morison equation was originally developed for a vertical cylinder in a harmonic
oscillating uniform horizontal flow, see Morison et al. [3]. Since then, during the
years, its application has been generalized to include three-dimensional random
waves acting on inclined structural members in spite of:

1. The Morison equation cannot fully describe the force signal for a simple har-
monic oscillating uniform flow.

2. Knowledge about the coefficients Cp and Cjy is difficult to obtain for even
simple problems. This means that the prediction of a wave force becomes
unreliable.

3. The Morison equation becomes really uncertain in random waves. Even when
Cp and Cy; are estimated from full-scale measurements a variation coefficient
of about 17-35 % is found, Heidemann et al. [4] and Jensen [2].

Another drawback is that the relation between the wave load and the fluid velocity
given by the drag term is seen to be nonlinear. The wave load will furthermore
interact with the structural response. This means that a uniquely determined
transfer function cannot be established between the wave load and the surface
elevation and hence neither between the structural response and the wave elevation
process.

However, this problem can be ignored if the drag term can be linearized with good
approximation. In such cases Morison’s equation is replaced by the force per unit

length:

Added mass
1 8 . 3 s
q= —pD\/jCDGu_¢u+CMID2pu—pEDZ[C'M —-1]z (5.2)
\._2 L h 4 4 vl
Linea.rizegrdrag term Inertia term

The linearization is valid when the drag term is of minor importance. The wave
load model simplifies substantially if the drag term can be neglected and if deep
water waves can be assumed (water depth more than four times larger than wave
length). The drag contribution can be neglected if K < 10, Jensen [2]. In such
cases the spectrum of the total wave load () on a vertical cylinder can be shown to

be:

T 2
Sqo(f) = (ZP9D2CM) Syn(f) (5.3)
see e.g. Sarpkaya and Isaacson [1]. In the case of a stationary sea state, the wave

spectrum can be given by the spectrum of the Pierson-Moskowitz form, see Sarpkaya
and Isaacson [1]:

Sua(f) = Af P exp (—Bf™*) (5.4)
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where A and B are constant coefficients related to the sea state. When the sea state
is only quasi-stationary the spectrum should be modified to the Jonswap form. This
will typically be the case in the North Sea when a storm is being built up. In this
case the quasi-stationary time interval will be about 3-5 hours, see Burcharth and
Larsen [5).

In the above case the wave load process can be considered to be Gaussian distributed
since the wave elevation is known to be Gaussian distributed. This is important
with respect to signal processing and system identification. In cases where the drag
term cannot be neglected the wave load will be non-Gaussian. However, in Krenk
and Gluver [6], it is indicated that the response of the linear system due to such
an excitation will be approximately Gaussian for lightly damped systems. Thus in
general it will be acceptable to assume Gaussian distributed response of offshore
structures since they can be considered to be lightly damped.

As shown in figure 5.3 the wave spectrum will have a distinct peak but will generally
not be either narrow-banded or broad-banded. The peak frequency will typically
be in the range 0.05 (severe sea state) to 0.15 Hz (mild sea state) in the Danish
sector of the North Sea. In the case of a non-negligible drag term there will not
be affinity between the wave spectrum and the wave load spectrum. Instead there
will be secondary peaks as discussed in chapter 4.6. This may lead to excitation of
higher structural modes.

San(f) [m’sec]

A
80 ]
o? = 2.641 m?
H,~65m
A 5 }
® \ Measured spectral density
| \ — . — Jonswap
40 W ———— Pierson-Moskowitz __
20
e T [HE
0,00 0,30 0,40 f [ ]

Figure 5.3 Typical wave spectrum during storm in the North Sea, DS449 [7].

With the exception of very simple cases the conclusion is that the wave load has a
very complicated form. However in a simple case such as a monopile with ignorable
drag loading it seems possible to apply a qualitative model. This means that wave
excitation can be transformed to a wave load and applied to a classical system
identification process with a known input and output. The coefficient in the wave
load spectrum will be more or less unknown but may be estimated together with
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the structural parameters.

In the complicated cases with drag loading and complex geometric extension of the
structure it seems more adequate to apply the simple white noise approximation,
which holds for lightly damped systems. The white noise approximation will be
described further in the subsequent chapters.

5.1.2 External Excitation

The external excitations can be divided into three categories:

1. Transient tests.
2. Sinusoidal excitation.

3. Random excitation.

Re 1: Transient tests. The transient tests could be made by some sort of impact
or alternatively by a given initial displacement of the structure (snap back testing).
A third way to obtain a free decay is to apply a forced excitation and then remove
it to obtain the transient decay. The disadvantage of transient tests is that the
response will also be due to the simultaneous wave excitation and the influence of
this will increase during the transient decay. Another disadvantage is that it will
often only be possible to excite the lowest eigenmodes.

Re 2: Sinusoidal excitation. The sinusoidal excitation could be performed
with a slow change of the input frequency or as a stepwise change in frequency.
The step change test aims at a determination of the dynamic amplification at
discrete frequencies while the sine sweep leads to excitation of a wide range of
eigenfrequencies.

The exciter for a sine sweep will typically be an eccentric mass vibrator where the
excitation force will be given by:

f(t) = mrw? sin (wt) (5.5)

where m is the rotating mass and r is the radius of the circle described by the mass
rotation. It is seen that the force amplitude will be proportional to the square of the
frequency. According to Ibanez [8] the input frequency can be controlled by 0.1%
of the desired value. The excitation will be distorted if the structural vibrations
become large compared with the orbit of the eccentric mass. A disadvantage of the
eccentric mass vibrator is that the force amplitude varies with the frequency. This
means the nonlinearities will have systematic effect on an estimate of the transfer
function. The eccentric mass vibrators are often limited to frequencies above, say

2 Hz.

One disadvantage of stepwise sinusoidal excitation is that it must be performed very
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slowly to eliminate transients from the past excitation frequencies. This means that
the test becomes very time-consuming for lightly damped systems. The transient
responses from the former harmonics have to be small compared to the steady state
response of the present harmonic response. A low eigenfrequency and damping ratio
is seen to give a high time interval as shown in figure 5.4. The time interval will
be further increased if a resonance peak has been passed in the test. Figure 5.4 is
based on an approximated expression developed in appendix 5.1.

Another disadvantage of this method is that it must be used with care since a
sinusoidal excitation at resonance could cause significant damage of the structure.

t [sec]

1000

800
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200 0. 02

— 0. 05 f_t
. r I : 3 fo

Figure 5.4. Approximate minimum time duration for slow sine sweep for different damping ratios.
Condition: Transient response of former frequency input less that 1% of the response of the present

frequency input. Excitation frequency f=f; for <0 and f=f* for >0.

Re 3: Random excitation. The random excitation could be performed by re-
peated pulses or by a random signal input to some linear hydraulic vibrator. The
disadvantage of hydraulic vibrators are that they are more expensive than the for-
mer eccentric mass vibrator. The advantage is that a wide range of eigenfrequencies
are excited at one time.

So far single point excitation has been discussed. Instead of the single point exci-
tation several vibrators can be applied at the same time to isolate one single mode.
This is called the phase-resonance technique, Kennedy and Pancu [9] and Lewis
and Wrisley [10]. If a single mode is excited then it is possible to measure the mode
shape directly and apply an SDOF assumption to estimate the eigenfrequency and
the damping ratio. It can be shown, see e.g. Kozin and Natke [11] that a single
mode is excited if the excitation is given by:

F(t) = —w0iC®; sin(wit) (5.7)

This method is popular in the aerospace and car industry, where it is typical that
several exciters are applied. The fundamental drawback is that the proper exci-
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tation is unknown since the mode shapes and the damping matrix are unknown.
The traditional way to cope with this problem is to use the fact that the reponse
will be 90° out of phase with the force. Another disadvantage is that the excita-
tion points may have to be placed under the water surface to excite a given mode.
Thus, with respect to offshore structures the conclusion is that a single point exci-
tation technique should be applied due to the disadvantages of the phase-resonance
technique.

5.1.3 Conclusion

When structural measurements are made most owners of platforms prefer ambient
excitation since the platform is assumed to be resistant to such loading, Ting and
Sunder [12]. This is a strong argument for concentrating on identification methods
based on ambient excitation. Another strong argument for the ambient excitation
is that, per definition, it excites the structure in its operating range. Furthermore,
all the interaction effect between waves, structure and foundation are included in
the measured response. The argument for applying an external excitation is that
the ambient excitation cannot be measured or estimated very well. If both sorts of
excitation are applied it may perhaps be possible to estimate the importance of the
different interaction effects. Consequently, in this thesis both sort of excitation are
regarded as a realistic tool to provide time series to a system identification process.

With respect to the external excitation types, the sine sweep excitation seems un-
appropriate especially for lightly damped structures such as offshore structures.
Impulse excitation or random excitation seems more appropiate since they can be
performed quickly and at the same time they do only require limited structural
modifications as long as the force input is moderate. Both excitation types are
typically broad-banded which means that a wide range of modes can be excited. If
the signal from the external excitation is measured it will be possible to eliminate
the response due the simultaneous wave excitation as will be shown in section 5.6.

5.2 Instrumentation

In chapter 2 a review was given of performed instrumentations and full-scale mea-
surements on offshore platforms during the last twenty years. The typical instru-
mentation consists of a set of transducers, amplifiers, recording equipment and a
control system if external excitation is applied as shown in figure 5.5.

The control system is an on-line system which typically is able to give continuous
information about the excitation level, the excited frequency range etc. The control
system is necessary to control the excitation level if an external excitation source
is applied. The control system will be based on the information obtained from the
transducers measuring the response and the force transducers. However, it is also
advisable to use a control system in general, since it can reveal whether or not the
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. Computer or
On Line Filter | Spectrum Analyzer

Accelerometer
Strain Gauge Amplifier Recorder
analogue or
digital
Force Transducer
Wave Recorder External Excitation
Pressure Transducer

Figure 5.5. Principal instrumentation of offshore structure.
excitation and the response are what they are expected to be.

The transducers should be transducers which are able to measure low frequency
signals, say frequencies down to 0.1 Hz. Furthermore, it is necessary that they are
not too sensitive towards transverse vibrations which is typically a problem with
the accelerometers. Equivalent response information can in principle be obtained
from accelerometers as well as strain gauges even though each type of transducer
should be placed at such locations where the signal to noise ratio is largest. This
will in general not be the same locations. Accelerometers will be more expensive
than strain gauges but have a better signal to noise ratio. Accelerometers may
be mounted in connection with the test while strain gauges with benefit can be
mounted during the construction of the offshore structure. This means that infor-
mation about the vibrations of the structure can be obtained relatively cheap by
mounting strain gauge on the the structure.

The instrumentation has to be increased if the structure has a significant spatial
extension. This will be necessary to reveal all the modes of the ambient excitation
and the structural response.

The recording of the signals can be done by the analog or digital method. It is
advisable to apply both methods since the analog recorder retains the continuous
data while the digital recorder loses some information, but on the other hand, it
will often be more accurate with respect to the sampling values.
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5.3 Signal Processing

After measurement and prior system identification the measured data are signal
processed. This will typically be a matter of discretisation of the data with respect
to time, filtering the time series and transformation into the frequency domain.
The purpose of signal processing is to remove noise from the data and facilitate the
interpretation of the measured data.

The general assumption will be that the time series which are processed will be
realisations of ergodic random processes with respect to the first and second order
statistical properties:

1
Ble(t)] = e = Jim 7 [ a0y (5.7)

1 T—1
Blo(®)s(t +7)] = Rea(r) = Jim == fo st+r)e)dt  (5.8)

The ergodic condition also implies stationarity with respect to the first and second
order properties. Thus weak ergodicity implying weak stationarity is assumed. In
practice the response due to waves will often only be quasi-stationary with the
statistical properties fluctuating within some limits. A stationarity test should
therefore be performed.

Bendat and Piersol [13] suggest that a stationarity test may take the following form:

1. The sample record is divided into N equal time intervals where the data in
each interval may be considered to independent.
2. A mean square value is computed for each interval aligned in a time sequence.
3. The sequence it tested for systematic trends or variations.
In general the assumption will be that the random processes have a zero mean which

also implies that the correlation function becomes identical with the covariance
function:

pe = Elz(t)] = 0 (5.9)
Rua(7) = Cio() = Ela(t)a(t + 7)) (5.10)

This means that if z(¢) is Gaussian distributed it will be completely statistically
described by the autocorrelation function R;.(7) since all statistical moments of
higher order of a Gaussian process can be decomposed into moments of first and
second order, see e.g. Lin [14].
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5.3.1 Discretisation in Time

The analysis of the recorded analog time signal is mainly limited to the time dur-
ing the measuring where the structure is observed to control the quality of the
measurements. Afterwards the analysis is mainly performed in the discrete time
domain:

z(tA) = (5.11)

where the analog records have been sampled with time intervals of A assuming
the signal to be constant within each sampling interval. The sampling interval is
primarily determined by Shannon’s sampling theorem:

1

A
S 2 fmas

or Ju 2 (5.12)

where f, is the sampling frequency. It is necessary to satisfy (5.12) to ensure
a unique interpretation of the frequency content in the signal. If this sampling
condition is not satisfactory the sampled data will be aliased which means that
the higher frequency content will be interpreted as a content at lower frequencies.
fe = 2fmaz 1s called the folding or the Nyquist frequency. Aliasing is handled by
lowpass filtering the data prior to sampling to exclude high frequency content. In
practice it is advisable to choose the sampling frequency to be at least twice the
Nyquist frequency, f; = 4 fmaz-

5.3.2 Frequency Analysis

The cross-spectral density function between two random variables is defined by:

+oco

1 .
I cy R, (7)exp (—i2n fr)dr (5.13)
and the inverse relation :
+oo
Raglr)= Szy(f) exp (27 fr)df (5.14)

The two equations are together called the Wiener-Khintchine relations. The au-
tospectral density, Sz.( f) is obtained if z(¢) = y(¢). From (5.14) it is seen that the
mean square value is given by:
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. y(t)
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Figure 5.6. Linear stable system.

+oco
E[z(t)’] = R..(0) = Sea(£)df (5.15)

—0o0

The transfer function of a linear stable system with the response y(t) and the
excitation z(t) is defined as:

H(f) = Hy(f) = g—gg (5.160)
H(f) = Hy(f) = E—Eff; (5.168)

H(f) will be a complex function if the system is damped. (5.16) means that the
magnitude of H(f), the gain function can be found as:

H() = () Ha(f)" = gLEff; (5.17)

(5.16) and (5.17) indicate that the magnitude of the transfer function can be ob-
tained in three different ways. In Bendat and Piersol [15] it is shown that if the
measurements are distorted by noise then (5.17) should not be used to get the best
estimates of the transfer function. Instead the estimate of the transfer function H,
should be used when noise is supposed to dominate the response while Hy should be
used when the excitation is thought to be distorted by noise. If the noise problem
is highly frequency dependent the two estimates can be combined into one better
estimate.

The two procedures given by (5.16a) and (5.16b) should theoretically give the same
transfer function but in practice this is not the case. The coherence function is in-
troduced as a measure of a perfect uniqueness between the excitation and response:

Hy(f) _ 1Sy (f) (5.18)

YD =50 = 5 NS0 D)

If the uniqueness is perfect then 4%(f) = 1 otherwise the coherence will lie between
zero and one. The coherence will be less than one in the following cases:
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1. Noise in the measurements.
2. Unknown excitation.
3. Nonlinearities in the system giving the response.

4. Numerical errors in the frequency analysis.

Points 1 and 2 will be further discussed in section 5.6 while point 4 will be discussed
in this section. Point 3 is briefly discussed in chapter 4 and 9.

The frequency analysis, see Ljung [17], Bendat and Piersol [13],[15] is usually per-
formed by Fast Fourier Transformation technique (FFT), see Newland [16] and
Rabiner and Gold [18].

The frequency domain analysis is in practice based on discrete spectra since the
measured data have been sampled at discrete time instants. The discrete spectral
estimate is obtained from the discrete Fourier transformed of the time series:

+co
Xth) = Z z(rA)exp (127 frrA)A
N1
Ry Z z,exp (—i27 frrA)A (5.19)
r=0

z, = 2{rA}for r =0,1,2,...N—=1
ey =0 forr <0andr > N =1

which leads to the spectral estimate:

a2

0 k
S.‘cm(fk)':Xka k—0!1,2"N_11 fk"“T NA (520)

where NN is the number of sampled points. The approximations in (5.19) are neces-
sary since the signal has only been sampled within a finite time interval, T = NA.
From (5.20) it is seen that the spectrum is only known at discrete frequencies corre-
sponding to a frequency resolution, 1/T. The approximation in (5.19) is unfortunate
since it can be shown that it leaks energy at a given discrete frequency into a wider
frequency range. This phenomenon is called leakage. It is important since it means
that spectral peaks in general will be underestimated and thus biased.

The leakage phenomenon can be reduced by smoothing the transition between the
known fraction of the time signal and the infinitely long unmeasured part of the
random process. The smoothing can be performed by weighting the sampled data
by a weight function called a window, w. This is the same as applying a weighting
function, W in the frequency domain upon the rough spectral estimate:
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t

£y = Z T W(t—m) (5.21a)
m=t—N+1
i N-1 ,
See(fi) = ) W(fo — fr)Szz(fo) (5.21b)

The window function is restricted to be an even function with fjs W(f)df = 1.
One main characteristic is given by the effective bandwidth defined by:

1
R wer(n)df

(5.22)

€

Different sorts of windows are shown in figure 5.7. The boxcar window corresponds
to the application of (5.19) without modification. The effective bandwidth is pa-
rameter dependent and can be adjusted for each type of window. The choice of
window type and window parameters is a trade off between variance and bias of
the spectral estimate. A broader weighting leads to a reduction of variance while
the bias is increased. Ljung [17] suggests that for a given type window one should
vary the determining parameter of the window until one 1is sure that the bias has
been minimised. The windows deviate from each other due to the magnitude of
the sidelobes. The ideal window would be a window with no sidelobes since this
would mean no leakage. In practice the choice of a window will depend upon the
frequency resolution, whether the signal is deterministic or random, whether the
signal is narrow or broad banded and whether it is possible to adjust a given window

type.

w(t)

L[ [ 0]

1k Boxcar i i
I B P
Ha.nnmg/' \\
\ Vi . Hamming
B 4 1 \‘\_ t 10'6 1 i 1 “ 1 f
0

Figure 5.7. Different window types shown in the time and frequency domain.

The frequency resolution was shown to be equal to df = f,/N which means that the
discrete spectrum becomes continuous when N goes against infinity. However this
is not a practical way to obtain the true spectrum since the duration of the signals
is limited due to non-stationary excitation conditions and the measurement costs.
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Instead the zoom algorithm can be applied, see Randall [19]. This is in principle
performed by a frequency shift of the Fourier transformed:

+oco _
X() = [ alt)exp i2nfet)exp (-2 font)
ool (5.23)
- /_ 508 exp G2r(f ~ Fua )

After the frequency shift the time series is lowpass filtered to obtain a small band
about the frequency range of interest. This is followed by a resampling at a lower
sampling frequency. The concept is shown in principle in figure 5.8. For instance if
the bandwidth after filtering is less than 10% of the original bandwidth (f,/2) then
it is possible to resample at a 10 times lower rate, which means that the frequency
resolution has been increased 10 times.

S(f) S(f)
Original Frequency
spectrum shift fon
a) , b) ;
fol2 —fn 0 fol?
S(f) S(f)
Passband Zoomed
filtering spectrum
) d) \ ‘ (after resampling)
0 o T2 0 fo )

Figure 5.8. Principle of the zoom technique.

5.4 Random and Bias Errors

Since the data records can considered to be realisations of random processes the
results due to signal processing will also be sample values of random variables or
processes. The errors in the analysis of random analysis can be divided into random
errors and bias errors. The former can be eliminated by averaging while the latter
will be a systematic error due to the nature of the performed analysis. They are
defined as:

Bias error ¢ = (E[0] - ©0*) (
5.24)

Random error e, = \/ E[((:) - E[é])2]



88 Jakob Laigaard Jensen

©* is here the unknown true value of the random variable while © is an estimate. In
general it is assumed that randomness can be modelled by the Gaussian distribution
since the random error is assumed to be small, say less than 20% in the coefficient
of variation.

5.4.1 Autospectral Estimates

If a random process is Gaussian then the autospectral estimate can be considered
as a sum of the squares of two independent equal Gaussian distributed variables:

Saa(fr) = Xi Xk = (Re(Xx))" + (Im(Xy))* (5.25)

This means that the autospectrum can be considered to be x? distributed with 2
degrees of freedom:

Sf:cx(fk) 4 2 T ‘
Salfe) is x*(2) — distributed (5.26)

with the coefficient of variation:

£ = vV ElSz(f2)?] _ \/g o (5.27)

er(fk)

It is seen that the estimate is inconsistent since it does not minimises when the
length of the record is extended to infinity, T — oco. The time length will only
affect the frequency resolution. Furthermore, the coefficient of variation will be
unacceptably large for n = 2. However, the random variation can be reduced by
averaging. This can be done either by averaging spectral estimates or by averaging
over a frequency range for a given spectral estimate analog to the window principle.
If the former procedure is followed :

A L
Sﬁ.’t(fk) = ;('X;:l Xkl + X£2Xk2 + e + in‘an) (5'28)

the degree of freedom is increased to 2n for the y? distributed variable . This means
that final expression for n averages becomes:

AV E[Sza(f)?] 1 (5.29)

s Sxx(fk) vB.T

where T is the total time length and B. = 7% is the effective bandwidth of each
spectral estimate. This means that confidence intervals of the autospectrum can be
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estimated. The random error is seen only to be minimised by increasing the number
of averages which will be the total time length of the record since the effective
bandwidth also has to be minimised to keep the bias errors low. In appendix 5.2
the bias error is shown to be approximately given by:

_ B2 S.u(fe)

The expression which is due to a second order Taylor expansion, will overestimate
the error for sharp peaks, Bendat and Piersol [15]. The total variation coefficient
can now be found for the autospectrum:

1 BYSI(f)°
e e Mzrx
e B.T 576 Sesl ) i)

It is seen that the effective bandwidth has to be small to reduce the bias error, while
it has to be large to reduce the random error. The error given by the variation
coefficient can be minimised with respect to T and B, (or the number of averages
n = TB,) for a given autospectrum:

d62 e 1 B3 S.’E:E(-fk) =0
dB. T32 576 % Begl Fr)
4
n 57652, (fr).>?
B, = T = (e 4TS _(fr) ) (5.32)
dé? 4nt
ﬁ__T5576_+0 for T — oo (5.33)

Thus, from this point of view sampling should be performed as long as possible. In
practice, however, the measuring time is often limited due to stationarity require-
ments or purely practical considerations. The total time length will therefore be
considered as given in the following.

If an SDOF system excited by white noise is considered the optimal signal processing
parameters can be directly related to the half-power band of the system, B, = 2f,(p
at resonance as shown in appendix 5.2. The optimum number of averages for
different half-power bandwidths has been found for three different sampling times
in figure 5.9a. It is seen that a small half-power bandwidth requires a small number
of averages because it is more important to reduce the bias error by applying long
time series for each spectral estimate. For larger bandwidths the number of averages
is allowed to increase because the bias error becomes less vital. In figure 5.9b the
coeflicient of variation of the spectral peak is shown for optimal choices of the
number of averages given a bandwidth and a total sampling time. It is seen that it
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is difficult to obtain small errors for small bandwidths. The effect of the sampling
time decreases as it is increased.

In figures 5.10a and 5.10b it is seen how the random error and the bias error
are related to the effective bandwidth. It is seen that the random error can be
eliminated by averaging while the bias error must be eliminated by reducing the
effective bandwidth, B, which means that the necessary length of the measured
time series becomes substantially longer, increasing with the number of averages.

§
200 L 0.7 1
0.6 |2 <4
150 |- 0.5k 4
5 e
0.4 xo -1
100 |- *o
0.3 H:c uuo 1
K...
- ‘e, o
B 1F M' o
L | | B, [Hz] | | B, [Hz]
0 0. 02 0.04 0. 06 0 0.02 N. 04 n. 06
oooo* 1 Hour sone’ 2 HOUI‘S KAXK 3 HOLH'S
a). b)

Figure 5.9. a) Optimum number of averages for minimum of the coefficient of variation of the total
measuring error. b) The coefficient of variation of the total error for optimum number of averages. The

half-power bandwidth is given by B,.=2 f¢{o.

8 b
Do , ; ; 1.4
n=2_8 y
0. 35 :
0.3 .
0.
0.25 - K
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0.2k .
0.
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Figure 5.10. a) Random error as a function the half-power bandwidth. b) Bias error as a function of
the relative bandwidth, B=B./B,.

It should be noted that the relationships shown are not the exact relations but they
give an understanding of the influence and the problems of obtaining high quality
estimates of the spectral peaks which is so important because the information about
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damping and eigenfrequencies are hidden in the peaks. The conclusion is that the
records should be long for lightly damped systems, to keep the bias errors low while
it is just a question of averaging to reduce the random error independently of the
excited system.

Finally, consider a realistic example: Consider a monopile platform with f; = 0.4
Hz, ¢(; = 0.01 and a stationary 3 hour excitation. This gives a minimum variance of
the spectral peak of 17.4% corre5ponding to 42 averages and a relative bandwidth
= 0.49. The main part of the error is due to the random part but it should be
noted that this might be caused by the fact that the error model for the bias error
exaggerates this to some extent for lightly damped systems. However, it has been
clearly illustrated that an important source to uncertain identiﬁcation results are
due to the randomness of the measurements and the signal processing performed.

5.4.2 Estimates of Covariance Functions

The estimate of the cross-covariance function of z(t) and y(t) is given by:
3 1 /T
Lglr)= T / c(t)y(t+7)dt, 0<7 T (5.34)
0

This estimate can be shown to have no bias error, see Bendat and Piersol [13] but
the estimate requires that the length of the measured time series is at least T plus
the magnitude of the maximum lag 7p45.

According to Bendat and Piersol [13] the square of the coefficient of variation of
the cross-covariance function can be shown to be:

_E[CL(T)] 1 Cae{0)C4(0)
FTUAl) T 2BeninT

) (5.35)

where Byhite is the total bandwidth of a bandlimited white noise process x(t)
and T is the total sampling length. For the autocorrelation function at 7 = 0,
that is the mean square value , the coefficient of variation will be about Bw;.l.-uT'
As 7 increases, the coefficient of variation increases rather fast and will tend to
be proportional to exp (2(o27 fo|r|) for an SDOF system which follows from the
autocovariance function derived for bandlimited white noise excitation, see e.g. Lin

[14].
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5.4.3 Transfer Functions

The transfer function can be written as a product of the gain and phase factor:

H(f) = |H(f)| exp (—i®(f)) (5.36)

The bias error and the random error of the gain factor can be shown to be given
by the following coefficient of variations, Bendat and Piersol [13],[15]:

_1=%%(f)
= (Ven o

_ 3 1= f)
Hoi= P (5.38)

And the standard deviation of the phase factor can be shown to be given by Bendat
and Piersol [13],[15]:

o R ——-——-—~1 —7*(f) adians
bB(f) sl (Radiany) (5.39)

o:0(f) ~ Y=Y Radians) (5.40)

Y2(f)V2n

It is recognised that the error of the phase will be independent of the phase value
itself, which means that the relative error will be large for small phase values. This
explains why identification based upon phase estimates are used relatively seldom
in practice. It is seen that the error in transfer estimate will be zero if the coherence
function equals one. Whether the coherence equals one depends highly upon the
present noise and the linearity of the system, however, the coherence will also be a
random variable itself and will not be equal to 1 per definition. The effect of the
present noise will be discussed in the section 5.6.

5.5 Random Decrement Technique

The idea of the random decrement technique is to relate the response of a white noise
excited linear system by the impulse response of the same system, see e.g. Vandiver
et al. [20]. The technique was developed by Cole [21]. The general feature of the
random decrement technique is that it is a tool in signal processing to extract the
deterministic properties of a measured time series analog to e.g. FFT-analysis. The
random decrement signature can be defined as:
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on [t1,t2] = E[zi(t2)|zi(t1) = Xo] (5.41a)
Dfoz.[tlstZ] [wj(tz)lw (t1) = Xo] (5.41b)
8. =1.2..

DXo [t1,15] is here the random decrement signature for the time series z;(t) for
which a trigger condition, the trigger level Xy, has been given, while Di‘;"z'. [t1,22]
is the random decrement signature of the DOF no j given the trigger condition on
z;(t), see figure 5.11. The time axis of each realization has here been defined such
that the trigger condition is fulfilled at the time t;.

zi(t) z;(t)

XoL ] i | !
Zﬂc‘p%/_'\yw@vat B TANPYSIaN 4 W
#lr)" | ! z;(t) |

Do [tit) DX, [t1t2]

AWAWAWAW N WAW AW AN
VAR

Figure 5.11. Realisations of the random processes, z;(t) and z;(t) with a trigger condition, z;(t1)=Xo

on z;(t).

In practice, the ensemble averaging is replaced by averaging samples due to an
assumption of ergodicity:

N
1
DI [ti,ts] = Dt [7] = N ; zj(r+Ti | z:(Ti) = Xo) (5.42)

where 7 = t3 —t; and 7} is the time distance from ¢ = 0 to the start of the segment
no. [ and N is the number of segments. The principle is shown in figure 5.12. for
j = 1. When a trigger level has been chosen for a given time series no i, segments of
each measured time series are identified and averaged for which the trigger condition
of time series no 1 is fulfilled. This leads to information about autocorrelation and
cross-correlation and thus to the deterministic characteristics of the measured time
series. In this context the trigger condition has been given as a trigger level, X
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which is a practical condition to operate with. However, the trigger condition can
in principle be chosen quite arbitrarily as conditions on z;(t), £;(t) and Z;(2).

It can be shown, see Vandiver et al. [20] that the random decrement signature is
generally related to the cross-correlation function of the reponse by:

R:c,':c.'(tlut2) = /f$j(t1)$i(t2)pzjz;(mjsmi;t15t2)d$jd$i

(5.43)
= fx.?(tl)px, (mja t )Dxxﬁn. [tl, tg]d.’BJ

where pg; ., (2, i, t1,12) and p;;(x;,11) is respectively the joint probability density
function of z;(t) and z;(t) and the marginal probability density function of z;(t).
If the excitation is assumed to be a stationary Gaussian (but not necessarily white)
random zero mean process it follows that (5.43) is simplified to:

BisuilT)

DZXo [r] = =22 X, (5.44)

z,:s.[ ] szx;(o)

If the system is nonlinear this equation will be an approximation for which the error

will depend upon the approximation of the response process to a Gaussian process.

It can be noticed that if Dii",_,:'.[r] is Fourier transformed, a spectrum proportional
to the cross-spectrum of z; and z; is obtained.

- —_—a T —T p—T

zi(t) Segment no. { |

Xl —[— — 1 1 - _ _ -
\Mﬁ A An,nmv i M\Wﬁﬂﬂ nuﬂnﬂmwnf\m N\MW\M “.(\MJ\ (\A/\} t
\‘W vy ﬂUUUW AR LT VUUWUU VUWUU UW UU TV

U U[\\/mv

Figure 5.12. The principle of the random decrement signature, Dfi.o,‘.[-r] obtained by averaging samples.
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If stationary Gaussian white noise excitation is assumed and applied on a linear
SDOF system then it can be shown that the impulse response function, ho(7|z1(0) =
Xo) will be proportional to the autocorrelation function, R;, 5, (7), see e.g. Meirovitch
[22]. This means that the impulse response function will be proportional to the ran-
dom decrement signature:

ho(7|21(0) = Xp) o DX, [r] (5.45)
For an MDOF system with excitation of only the jth mode, the equivalent relation
is obtained:

hi(r|zi(0) = Xo) o« D7, [r] (5.46)

If several modes are present due to the white noise excitation the arguments will
still hold since the correlation function of the response in modal coordinate will still
be proportional to the impulse response function of each mode, R, .[7] x hi(7T).
The correlation function matrix in the generalized coordinates will be related to
the correlation function vector in modal coordinates by:

— < =T
R,.[7] = ®R,.[7|R,.[7]® (5.47a)
where;

Rolrl = (Runlr] Ruwll ... Realr]) (5.47)

Due to the proportionality between a given correlation function in modal coordi-
nates and an impulse response function this means that for an MDOF system the
correlation function will correspond to a weighted sum of the impulse response func-
tions of each mode present in the response equivalent to a given free decay. Thus,
in general:

n

Dgjoi[r] = ajihi(r) (5.48)

1=1

where the weight factors,a;; will depend upon the mode shapes, the imposed con-
dition condition, X, and the distribution of the white noise excitation. An inter-
pretation of the MDOF case has also been given in Ibrahim [23].

The expressions will also hold approximately for filtered white noise as input if the
system is lightly damped. Thus the random decrement technique can be applied
for lightly damped linear systems with a broad-banded excitation to find an im-
pulse response function of the excited modes even though the characteristics of the
excitation process also will be present in the signature. An experimental example
of a random decrement signature is shown in figure 5.13.
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T2T1

DXo [T] [m/ sec|2]
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Figure 5.13, Experimental case: Random decrement signature of the response no. 2 with a choosen

trigger condition on response no. 1. 100 means have been applied with A=0.0213 sec. Total length of

signature, 22 sec.

In principle the random decrement technique is able to extract the deterministic
characteristics of the stationary response of a randomly excited lightly damped
structure provided that the excitation is sufficiently broad-banded and Gaussian
distributed. However, there are some practical problems of the random decrement
technique with respect to random and bias errors. Several factors can cause errors:

e The number of averages.

e Correlation between the averaged segments.

The trigger level.

The way in which the theoretical trigger condition z; = X is realized on the
discretised time series.

e The algorithm for choosing one trig point in each segment.

Nasir and Sunder [24] claim that the number of averages should be at least 500
to ensure that the random decrement signature becomes reliable. However, the
number of averages depends upon the correlation between the segments. Correlation
between segments will increase the variance. While Nasir and Sunder claim that it
is better to enlarge the number of averages accepting correlation between segments,
Vandiver et al. [20] doubt that it pays off to accept correlation between segments.
The presence of correlation between segments is seen from the random decrement
signature. If the random decrement signature has faded out to zero at the end of
the signature it means that the segments are independent, since the signature is
equivalent to the correlation function. Vandiver et al. have obtained good results
for 80 averages. It is noticed that the response of lightly damped systems will
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require long segments to avoid correlation between segments. Thus, in this sense
there is the same problem of obtaining sufficiently long records as in the case of
FFT-analysis. However, Vandiver et al. have shown that the random decrement
signature obtained by sample averaging will in theory be unbiased which is an
important property compared to FFT-analysis.

In practice bias errors on the random dec. signature will exist due to the imple-
mentation of the trigger condition into an algorithm and the choice of fulfilment
of the trigger condition for each segments. It seems that those problems have not
been investigated sufficiently. A sufficiently high trigger level should in any case
be specially chosen if additional noise is present in the response. This will prevent
false triggering points due to the noise. Nasir and Sunder suggest a trigger level
corresponding the rms-value (root mean square) of the response.

Nasir and Sunder [24] have found that the whiteness of the excitation versus the
level of the damping of the structure is determing for whether or not the random
decrement signature corresponds to a free decay. For white noise the most reliable
signature is obtained for an increasing damping level while for non-white excitation
the reliability increases with decreasing damping. For non-white excitation the
success depends upon the concentration of the energy in the response spectrum at
the peak frequency of the excitation versus the resonance peak.

Several other studies have been performed on the random decrement technique.
Caldwell [25] has examined the technique with respect to obtaining damping esti-
mates by the method of logarithm decrement (presented in 7.1) and also the effect
of obtaining random decrement signatures of filtered response was studied. Ibrahim
[23] has applied the technique in connection with a identification method developed
by him which gives a complete set of modal estimates (presented in 7.2). Longo
[26] has, with limited success, applied the technique together with the identification
method of Ibrahim to the response of an offshore platform. The success seems to
depend on whether resonance peak frequency or excitation peak frequency domi-
nates the response as observed by Nasir and Sunder. Many others have also applied
the method to obtain damping estimates of experimental models, see Yang et al.
[27], Yang et al. [28] and Jensen et al. [29]. The application of the random decre-
ment technique in Jensen et al. [29] is based upon a C-programme developed by the
supervisor of this Ph.D. study, R. Brincker. The technique has also been applied
to damage detection of fatigue cracks. Kummer et al. [30] have used the technique
to observe changes in eigenfrequencies due to damages. Yang et al. [31] have ob-
served changes in the random decrement signature with respect to the development
of fatigue cracks.
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5.6 Noise Models

The effect of the randomness of the measured data has been considered in the
previous section. In this section the effect of additional noise sources will be con-
sidered with respect to bias of the frequency response estimate and reduction of the
coherence function. The three most relevant noise models will be:

1. Noise on the measured response uncorrelated with the real response.

2. Noise on the measured excitation uncorrelated with the real excitation.

3. Noise on the measured excitation correlated with the real excitation.

The first noise source will typically be measuring noise. The second noise source
will either be measuring noise upon the excitation or noise due to an unmeasured
excitation uncorrelated with the assumed excitation. The third noise source will
typical be due to an imperfect modelling/measurement of the excitation. For in-
stance modelling of the wave excitation will always be modelled rather poor. The
measuring noise will in general be due to the instrumentation, the recording and
numerical errors in the analysis of the data.

Note that in this section the transfer function and the coherence function are marked
with indices to avoid ambiguity.

Noise Model No. 1

n(t)

) t t
20 Linear gl

Figure 5.14. Noise model no. 1: Noise in the measured response uncorrelated with the actual response.

Noise model no. 1 is the typical noise model where the measured response, y(t) is
assumed to be distorted by the uncorrelated noise, n(t). Since the noise is uncor-
related with the response it must also be uncorrelated with the excitation which
has caused the response. Thus: Sy,(f) = Szn(f) = Sun(f) = 0 which leads to the

estimate of the transfer function:

Syx(f) _ sz(.f) (5_49)

Bel) = 52200 = 5ulh)

which is seen to be unbiased with respect to to the noise. The coherence estimate
becomes:
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___ Sulf)
") = 5 + Sl a

which is seen always to be less than one.

Noise Model No. 2

uff) Linear —

Figure 5.15. Noise model no. 2 ; Noise in the measured excitation uncorrelated with the actual excita-

tion.

Noise model no. 2 is a more general noise model than model no. 1 leading to
bias of the transfer function estimates. The system of the noise model is excited
by the assumed excitation u(¢) and the unknown uncorrelated excitation I(t). The
assumed excitation is measured with the measurements being distorted by the noise
m(t). Thus the noise model contains in principle two noise sources, m(t) which is
noise in the measured excitation and I(t) which passes through the system and thus
causes an unexpected response which is considered as noise. Hence the latter noise
contribution is in reality covered by the noise model no. 1. Thus in the present
noise model this noise source is disregarded, I(t) = 0. This means that due to
Szm(f) = Sum(f) = Sym(f) = 0 which leads to the bias of the same magnitude as
the transfer function estimate:

- _ 8f) 1
Hzy(f) = Sul)] o (5.51)
Suu(f))
and the estimate of the coherence:
_ Suu(f)
7oy(f) = 50 + 5o (5.52)

which in general becomes less than one.
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Noise Model No. 3

. t
Linear kil

Figure 5.16. Noise model no. 3 : Noise in the measured excitation correlated with the actual excitation.

Noise model no. 3 is an important noise model where noise correlated with the
measured excitation is passing through the linear system causing a response con-
tribution. This means for instance that the correlated noise could be due to the
model error of the wave loading caused by the application of Morison’s equation.
Since the input noise m(t) is here correlated with the measured excitation z(t) the
measured transfer function becomes:

Tl = S+ Sy .

which will be a biased estimate of the transfer function since the true transfer

function will be given by H.y(f) = g—:ﬁ% The bias will apply to magnitude and

phase. The measured coherence function will be given by:

2 _ |Szy(f)|2 . |Suy(f) - Smy(f)|2
1es() = 5 DS ) ~ Gasll) = SmlF) = Semlf) = Sz ()S0a ) Y

This expression is not quite easy to interpret.

The noise models presented show that noise may very well affect the measured
data, especially at those frequencies where there is little energy in the excitation
or the response signal. From noise model 1 it has been seen that measuring noise
at the response does not lead to bias of the transfer function estimate. While
noise model 2, noise in the measured excitation leads to a bias in the magnitude
of the transfer function estimate. Correlated noise on the excitation, noise model
3 has been shown to lead to bias error of the magnitude as well as the phase of
the transfer function. The last noise model is thus the most severe and will be of
importance if identification of a structural transfer function from measured response
and wave excitation is chosen. The noise models causing bias of the transfer function
estimates, models no. 2 and no. 3 should be considered when significant models
errors are detected in the analysis stage of system identification.
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6. IDENTIFICATION OF PHYSICAL PARAMETERS

The most straightforward approach for identification of structural properties is
to identify the physical parameters of the structure. The physical parameters,
which are also called the structural parameters by some authors, are included in
the lumped parameter model which was presented in chapter 4. The advantage
of identification of those parameters rather than the modal quantities is that the
engineer may have some a priori knowledge about the physical parameters. This
could be:

e The mass distribution.
e The stiffness distribution due to a finite element analysis.

e Damping sources.

This a priori knowledge means that it is possible to assume a sensible model with
initial assumption of the parameters due to the a priori knowledge. The estimated
parameters will deviate more or less from the initial parameters but due to common
physical sense it will be possible to determine whether a deviation of an estimated
parameter is due to lack of knowledge about a parameter or if it is due to a model
error of some sort.

However, as it will be shown, the disadvantage of identification based on physical
parameters is the number of parameters and less flexible models. In practice this
means that a physical model often becomes a reduced model of a structure and
thus to some extent loses its physical meaning.

6.1 The Time Direct Derivative Method (TDDM)

If the state space formulation is considered as given in chapter 4 a very simple
formulation of the identification problem can be obtained:

|
Sl

y=A7+Bf (4.33)

This equation will hold for any time instant, ¢;:

§(t:) = Agt:) +Bf(t;) i=1,2...N (6.1)
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where N is the number of observed time instants. (6.1) can be reassembled in the
form:

Y=AY+BF (6.2)
where:
Y=(§t) Ut) Uts) . ¥ltw)) (6.30)
F=(f(t1) f(ta) f(ts) ... fltn)) (6.3b)
If (6.2) is post-multiplied by ?T the system matrix A can be isolated:
= =—T ——==T —=T 1
A=(¥Y —BFY }YY ) (6.4)

This means that the system matrix A can be obtained directly without any iter-

ations if (?771) is positive definite. This is ensured if the number of data points
becomes large which means that (6.4) converges to:

—=T
Jim ~(FY) = Blyy")

<= =

(6.5)
4= (Egy"] - BEFy NEFT))

The covariance matrix E[ny] will be positive definite and the inverse will thus
exist. Thus, the number of sampled data must be large enough to ensure this
convergence of (6.4) to (6.5). The speed of the convergence will among other things
depend on the choice of the degrees of freedom of the model and the noise level.

The method assumes that the mass distribution and force process are known which
is an acceptable assumption. If the system matrix A is known it is on the other hand

possible to estimate the excitation matrix B. By a similar approach the following
is obtained:

-1

B=(EGf |-AEEF 1)EFF D (6.6)

If the excitation matrix B as well as the system matrix 4 is unknown the dimension
of the least square problem must be increased to twice the size of the former two
problems:
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Y A B\(Y
- = = e — -7
(?) (5 3)(¥) Y
which can be postmultiplied by:
=T =T
(¥" F) (6:8)

and thus for large N lead to the following expression for A and B:

= = | by ol S -
(é g) _ (E[ny] E{y;T]) (E[gyT] E[gf ]) (69)
B By EFf 1) \EFy EFF
For the general case there will be 3n? unknown parameters correspondlng the num-

ber of elements in A and B. Usually this number is reduced to n? + 2n since the
mass matrix is assumed to be a diagonal matrix and the stiffness and damping
matrix are assumed to be symmetric matrices. However, in spite of the reduction
in the number of unknown parameters it is seen that it will be a large number even
for a small number of degrees of freedom. Thus, for a large number of degrees of

freedom it might be more attractive to apply an estimate of B and compute A

from (6.4) and then improve the estimate of B due to (6.9). Finally this approach
should be repeated until an acceptable convergence has been obtained. Whether
this method works has not been tested.

A very serious argument against the application of the method in practice is that
a complete knowledge about the response state vector is assumed:

(T T %) (6.10)

Usually, only the acceleration is obtained by measuring and thus the displacement
and the velocity must be obtained by numerical integration.

Z(t) = 7(0) + /0 z(7)dr (6.11a)
z(t) = z(0) + z(0)t + [ t f i z(72)dmadmy (6.11d)

In practice this integration leads to problems:

e Numerical errors due to the finite sampling interval.

e Noisy information about the low frequency content of the signals.
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The numerical error of the integration of a single time step can be illustrated for
the case of a sinusoidal signal:

Velocity :  v(t) = Vsin (27 ft) (6.12)

which by numerical integration by the trapezoidal rule gives the relative displace-
ment:

. A
W)= E(v(t) +o(t — A)) (6.13)
where A is the sampling interval. The corresponding exact expression is:

14
(27 f)

Due to Kreyzig [1] it can be shown that the maximum error of this integration will
be:

u(t) = —U cos (27 ft) = — cos (27 ft) 7 (6.14)

o< Z(sa) (615)

This expression is shown in figure 6.1. It is seen that it is necessary to keep a small
sampling interval compared to the frequency of the sinusoidal signal. The numerical
error depends on the second derivative of the measured quantity, see Kreyzig [1].

0.4 5‘
0.3F /
0.2+ yan
0.1+ .
0 ; . L (f4)

0 005 01 015 02 025

Figure 6.1. Maximum error due to numerical integration of a sinusoidal signal as a function of sampling

interval multiplied by the period time.

The recording of acceleration signals means that the frequency content at the lower
frequencies will be uncertain because the accelerations will be small at those fre-
quencies and thus vulnerable with respect to noise. This means that the signal
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integration may not lead to an accurate integrated signal at the low frequencies. In
practice the signal integration is often performed by analog filtering built into the
accelerometers, see e.g. Schmidt [2] and [3]. Information about the signal distortion
due to this technique has not been obtained.

The serious consequences of potential noise in the response state vector have been
shown by Fritzen [4]. He points out that the TDDM is indeed very sensitive to
noise because a bias error is unavoidable. If the applied response is given by 7(t) =
Yo(t) + 7(t), where Fy(t) is the true response and 7(t) is uncorrelated noise, then

the estimate of the system matrix A is obtained as:

4 = (E[g,(t)yi, (t)] + E[R(tyR (8)] - BE[F(t), (t)))

o . N (6.16)
(Elo(t)70 (1)) + ER@R” (£))

This estimate of i is seen to be a biased estimate of the true matrix with a bias
error depending upon the noise level.

Hart et Yao [5] has illustrated the influence of the mentioned problems by a simu-
lation study of the model:

M + k12 + kot + 18 + c23° = f (6.17)

where m was a known mass and f was a measured time series of the 1934 El-
Centro earthquake and noise was added to the simulated measured response. Three
cases were considered: Case A, the complete state vector was known, case B, the
acceleration and the displacement were known and finally, case C the realistic case
where only the acceleration was known. The parameters, ki, kq,¢; and ¢, were
estimated by the explained method with the modification that ¥(¢;) in the state
space formulation, (6.1) also contained terms of z* and #3. The results are shown
in table 6.1. The table illustrates that the realistic case where only the acceleration
was observed, leads to a deviation of 33 % for the estimate of k; while the other more
pleasant cases lead to acceptable estimates. The fact that the system is nonlinear
is unimportant in this discussion since the error criterion function is linear to all
the parameters.
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Parameter True Case A Case B Case C
values {z,2.7) {ZF {7}

k1 25.0000 24.9897 25.0577 24.8168

k2 2.5000 2.4157 2.5616 3.2679

c1 1.0000 0.9957 1.0012 1.0094

c2 0.1000 0.0998 0.0991 0.0981

Table 6.1. Estimated parameters of (6.17) with a noise added to the observed response of a time
length, T=10 sec., Hart and Yao [5].

6.2 Identification by Response Simulation (IRS)

The time direct derivative method (TDDM) aimed at an identification algorithm
which gave a simple and compact formulation of the problem by considering the
state space formulation. Instead of this approach a more straightforward approach
can be applied for the purpose of obtaining estimates of the physical parameters.
The response can be simulated by a numerical model and adjusted until the simu-
lated response corresponds to the measured response as shown in figure 6.2.

Parameter

Adjustment

[

Measured Simulated
Response Response

Error

0k?

Estimate

Figure 6.2. Principle of identification by response simulation.

The error between the measured response and the simulated response of a free decay
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is minimized with respect to the unknown parameters:

;&
V(®) = 5 €T (t;]0)e(t:|0) (6.18)

where:
&(t:[0) = z(ti) — 2(t:|0) (6.19)

and Z(t;|0) is the predicted response due to @ which is a vector containing the
unknown parameters. The minimum of the error function, V(©) with respect to the
unknown parameters, © can be found by an iterative optimization, in the present
paper by the algorithm NLPQL, Schittkowski [6].

In principle the IRS can be applied to any type of measured response, but it is
assumed that the best results are obtained with measured time series with a mini-
mum of noise such as a measured free decay. The number of iterations will increase
if the time series is distorted by noise. Thus, in this context, the measured time
series has in any case been a free decay. This can either be obtained directly from
a free decay or from an application of the random decrement technique. The latter
has been presented in chapter 5. Another reason for the choice of a simulation of
the free decay is that it also requires extra computer time to simulate a response
due to a forced excitation.

The response simulation of Z(¢;|©) has been performed by the Runge Kutta method
of a general lumped mass system. A Runge Kutta algorithm was formulated in a
FORTRAN routine, PROGSIM developed by my colleague Anders Rytter. This
has been built into an optimization program, OPT which includes computation of
the error criteria function V(©), numerical calculation of gradients and call of the
optimization routine, NLPQL, see Schittkowski [6]. The program is able to simulate
a model containing nonlinear damping mechanisms such as Coulomb and nonlinear
viscous damping (drag damping) mechanisms given by :

m;E; + cij&; + cg‘”‘—i— - c?j"’|x]-|:cj + kyjzy =0 dor 6§ =1,2,...n [620)

||

The algorithm applies a set of initial conditions which may be known or included
as unknown parameters. Thus the parameter vector © will in the general case be
given as:

=T ou _nlv .
0 = (mj,cij, ¢, cf®, kij, 2:(0), £:(0))

i,j=1,2...n (6.21)
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The method has been tested by a series of simulated examples with nonlinear viscous
damping and Coulomb damping present at the same time.

The features of the IRS method have been investigated by application of the method
of simulated as well as experimental data for a system of two degrees of freedom.

6.2.1 Simulated Case

The measured response has been simulated for different models by the same algo-
rithm as applied in the IRS method, PROGSIM. Noise has been added to obtain
realistic simulated measured free decays.

pr(ryt)
2

18+
16+
14+

1.2F T
i

e

|
0.8~

0.6~
04-

0.2-

0 _

-2 -1.5 -1 -0.5 0 0.5 1 15

I (t)
2

Figure 6.3 Probability density function of unit noise, r(t).

The noise process was due to the random function in Vax FORTRAN [7]. The
density function of the unit noise, r(t) is shown in figure 6.3. The noise process,
n(t) was given as:

n(t) = A r(t) (6.22)
where A was a chosen amplification factor. The noise to signal ratio was defined

as:

(n/s); = (6.23)

for the record measured for the ith degree of freedom. It is seen that the noise ratio
will depend upon the chosen amplification factor A and the length of the applied
time series T, because the time series will be due to a free decay. The equivalent
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noise-to-signal ratio for all the applied records in the identification session was
defined as:

(6.24)

Fify =

where R is the number of applied records which will usually correspond to the
number of degrees of freedom, n of the model.

Several simulation studies have been performed but only the results from a single
model case will be presented in this context. The model was a 2DOF system with
nonlinear viscous and Coulomb damping included. The model was given by (6.20)
with the parameters inserted:

2556 0 \ [# 15 —08) [ 0.2 0\ [ EY
( 0 35.65) (mz) " (—0.8 2.0 ) (:cz) \ ( 0 0.2) (ﬁ +
0 1.0) \ |2alds —22468 60851 ) \z, ) =\ 0

with the initial conditions:
(0)- (%) (:8)-(

Identification of this model was simulated for two different lengths of the time series
with three different noise levels, A = 0.0, 0.02 and 0.04:

e T=40 sec. with n/s = 0.0, 0.16 and 0.32 sampled at 50 Hz.
e T=60 sec. with n/s = 0.0, 0.21 and 0.42 sampled at 50 Hz.

Two examples of the simulated and estimated response are shown in figures 6.4 and
6.5 also showing the influence of the noise level.

In table 6.2, the exact parameter values and the estimated parameters are shown for
the two lengths of the time series. The estimates of the linear mechanisms are quite
satisfactory. However, it is seen that that the estimates depend upon the length
of the applied time series. An increase of the time length reduces the deviation
from the exact values significantly. It is seen that the estimates of the nonlinear
damping parameters are improved and, especially, better estimates are obtained for
the Coulomb damping.
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Figure 6.4 Simulated measured response of z; with n/s=0 (points) and the estimated response (line).
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Figure 6.5 Simulated measured response of z2 with n/s=0.32 (points) and the estimated response (line).
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mi mz 2?1(0) 22(0) 3'31(0) 532(0)
Kg Kg m m m/sec m/sec
Exact 25.56 35.65 0.200 0.150 0 0
T'=40 sec.
n/s=0.0 25.99 35.43 0.199 0.150 0.003 0.001
T=60 sec.
n/s=0.0 25.51 35.70 0.192 0.177 0.006 -0.010
k11 k12 k2o c11 €12 €22
N/m N/m N/m Kg/sec Kg/sec Kg/sec
Exact 9783 -22468 60851 1.500 -0.800 2.000
T=40 sec.
n/s=0.0 9836 -22471 60631 1.458 -0.829 1.972
T=60 sec.
n/s=0.0 9787 -22470 60821 1.503 -0.795 1.998
ey ey " e5y cii” cr2” c32"
N N N Kg/m Kg/m Kg/m
Exact 0.200 0 0.200 1.000 0 1.000
T=40 sec.
n/s=0.0 0.066 -0.072 0.122 0.829 -0.067 0.541
T=60 sec.
n/s=0.0 0.196 -0.007 0.183 1.079 0.027 0.944

Table 6.2. The estimated parameters compared with exact values for time series of length T'=40

sec. and T=60 sec.
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Figure 6.6 Parameter estimates for different noise level and length of time series (estimate © over true

value ©*). The fully drawn line: T'=40 sec. and the dotted line: T=60 sec.
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In figure 6.6 it is shown how the parameter estimates depend upon the noise-signal
ratio for the two different time lengths. In general it is seen that the application
of a longer time series has improved the estimates with respect to the noise level
even though the noise-signal ratio has been increased. The time length of 60 sec.
should be compared with the fact that for a time length of 70 sec. the oscillations
disappear due to the Coulomb damping. Thus, in any case the presence of the
Coulomb damping limits the length of the applied time series. The figure also
shows that estimation of especially the Coulomb damping seems to be difficult,
while the nonlinear viscous damping estimates perform better even though they
are quite sensitive to noise.

h f2 <1 ¢z
Hz Hz
Exact 1.1102 7.1902 0.00276 0.000845
n/s=0.0 1.1102 7.1902 0.00259 0.00086
n/s=0.16 1,.1102 7.1904 0.00258 0.000843
n/s=0.32 1.1104 7.3262 0.00252 0.000861

Table 6.3. Estimated modal parameters for simulated nonlinear damped system without any
equivalent contribution from the estimated nonlinear mechanisms, 7'=40 sec..

bil f2 ¢1 C2
Hz Hz
Exact 1.1102 7.1902 0.00276 0.000845
n/s=0.0 1.1102 7.1864 0.00277 0.000844
n/s=0.21 1.1102 7.1863 0.00283 0.000832
n/s=0.42 1.1102 7.1865 0.00282 0.000832

Table 6.4. Estimated modal parameters for simulated nonlinear damped system without any
equivalent contribution from the estimated nonlinear mechanisms, T=60 sec.

The modal parameters corresponding to the estimated physical parameters are
shown in table 6.4. The modal parameters have been estimated from the parameters
included in M,K and C corresponding to a conventional linear model. It is seen
that the increase of the time length from 40 to 60 sec. also in general leads to more
accurate modal estimates, which was to be expected. However, it is seen that the
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second eigenfrequency is better determined by the short time series. This might be
related to the influence of the Coulomb damping. The modal estimates are seen to
be relatively insensitive with respect to the noise level compared with the estimates
of the physical parameters. The modal parameters may thus be a more robust
representation of the structural model.

6.2.2 The Experimental Case

The IRS method has also been applied to the experimental data obtained for the
monopile structure shown in figure 6.7 which was presented in chapter 1, see also
Jensen [8].

Forced excitation as well as a free vibration were considered. The applied excita-
tion was filtered white noise which meant that only two eigenmodes were excited,
primarily the second. In the case of the performed free vibrations the most ac-
tive eigenmode was the first. Thus, the two kinds of response contained different
weighting of the eigenmodes and consequently also of the reliability of the modal
estimates.

.m'|

Monopile =

§m,

4&m

Hydraulic
cylinder

Leaf spring ——=T

Figure 6.7. Monopile structure.

The two experimental cases which were considered were the monopile structure
with two different damping configurations:

e The naturally damped monopile which was assumed to be proper modelled by
a linear viscous damping model.

o The extra damped monopile due to a mounted nonlinear viscous damper on
the concentrated mass in the middle of the monopile m,.

The first configuration is called linear viscous damping while the second is called
nonlinear viscous (nlv) damping. The mathematical model of the mounted damper
was confirmed by a calibration which showed that the damping force could be
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described by fp'* = (73.8% + 0.4)z [N] where & is given in [m/s].

The response was measured at two locations. The response of the mass at the
top was labelled response no. 1 while the reponse of the mass at the middle of
the monopile structure was labelled reponse no. 2. The response was acceleration
measured by accelerometers.

In the case of linear viscous damping the identification by response simulation
(IRS) of a measured free decay was performed using a linear damping model. The
following parameters were estimated:

298 0 T n 1.38 —1.49 T

0 345 T2 —-149 1.75 Ty
L 9819.8  —22406.3 21 _ [0
—22406.3 61665.6 a3 ) \O

The parameters agree fairly well with the physical a priori knowledge. The stiffness
matrix was theoretically found from the given model data, see Jensen [8]:

Free Decay:

— [ 89550 223875
b= (—22387.5 71640.0 ) /]

and the mass matrix was theoretically found as the sum of the concentrated masses
and the respective elements in the consistent mass matrix (two beam elements), see
Thomson [10]:

<]

_ [24.60+4.53 1.57 (291 157 K4
o 1.57 24.564+9.06 /] ~ \ 1.57 33.6 g

A good agreement is shown with respect to the mass matrix. The disagreement
of the estimated and the calculated stiffness matrix might be explained by the
contribution from the rotational degrees of freedom which was not measured, see
chapter 4.1.

In figure 6.8 an example of a fit of the free decay response is shown. A fairly good
agreement is seen. The deviation probably reflects the difficulties of identifying the
second eigenmode which was only weakly excited in the free decay response.
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Figure 6.8. Identification by response simulation (IRS). Fit of the response no. 1 for linear viscous
damped case. Measured response (points), estimated response (line). The figure shows a segment of a

120 sec. time series sampled with A=0.02 sec.

In the case of nonlinear viscous damping two procedures were followed. Firstly
the IRS method was applied to a measured free decay with a model including the
expected nonlinear damping mechanism: A nonlinear viscous damping source at
mass 2. Secondly a random decrement signature was obtained for the response due
to the random excitation. The principles behind the random decrement signature
have been given in chapter 5, in this context the signature can be considered as
a measured free decay of the structure. The linear assumptions included in the
random dec. signature lead to models which are least square approximations of a
linear model to a nonlinear system. The two model estimates were found to be:

Free Decay:
306 O I 4+ 1.86 -—3.67 T
0 319 I —-3.67 12.38 Z
n 0 0 |£1 |21
0 493 |z2|Z2

4 9812.1 —22182.7 1\ _ (0
—22182.7 60508.8 z2 /) \O
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Figure 6.9. Top: IRS applied to the measured free decay, A=0.02 sec. and time length 120 sec. Measured

101t
0

response (points), estimated response (line). Bottom: Autospectrum of the error between measured and

simulated response.

Random Decrement:
206 O 4 + 0.38 —0.05 z
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The corresponding fit between the simulated and the measured free decay response
is shown in figure 6.9. The autospectrum of the error is also shown in figure 6.9. It
is seen that the noise spectrum is quite flat indicating that the noise is close to be
white noise although it is seen that there seems to be noise peaks at the locations
of the two eigenfrequencies at 1.11 Hz and 7.20 Hz. Thus even though the model
is able to describe the measured response quite well there seems to be some model
€error.
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It is seen that the IRS method applied to the free decay data gave in fact a fairly
good estimate of the mounted damper characteristics. The damper calibration
gave chl? = 73.8 [kg/m] while the estimate was c5¥ = 49.3 [kg/m]. It should be
noticed that the calibration was performed with at velocity in one direction while
the mounted damper was excited backwards and forwards. Thus, this result shows
that it is possible to identify a concentrated damping source.

From the estimated parameters of the two models it is seen that there are large
deviations between the estimated parameters of the two models. The estimated
lumped masses deviate as much as 50% while the stiffness elements deviate about
5%. For a further comparison the estimates of the two models were transformed into
modal parameters. For the nonlinear model due to the IRS method the equivalent
damping ratios were determined by a least square approach. The equivalent modal
estimates are shown in table 6.5 and in the brackets are shown the ratio obtained
by the logarithmic decrement, see chapter 7. It is seen that the equivalent damping
ratios correspond well to the damping ratios obtained by the logarithmic decrement.
For the nonlinear damped case it is seen that the eigenfrequencies obtained from
the free decay and the random decrement signature do not agree at all. This can
be explained by the fact the first eigenmode was only weakly represented in the
random decrement signature while the second was only weakly represented in the
measured free decay. The mounted damper is seen to have increased the damping
ratios considerably and has also caused a change in the eigenfrequencies due to the
added mass of the damper.

Linear damped Nonlinear damped  Nonlinear damped
free decay free decay random dec.
fi Hz 1.1104 1.1022 0.0464/0.0271 *)
Gi 0.0009 0.0029 1.0/-1.0 *)
(0.0007) (0.0033)
f2 Hz 7.2417 7.4094 6.8782
¢2 0.0010 0.0058 0.0039
(0.0041)

Table 6.5. Estimated modal parameters for linear and nonlinear viscous damping. For the non-
linear case equivalent modal ratios have been obtained by a least square approach. The numbers
in the brackets are estimated damping ratio obtained from the logarithmic decrement. *) Two

overdamped eigenmodes were estimated instead of the underdamped first eigenmode.
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6.2.3 Experiences

The application of the IRS method has been illustrated by simulated and exper-
imental examples. The method has proven to be able to identify the physical
parameters and is furthermore able to quantify nonlinearities. The latter feature is
perhaps the most important one of the method. The method has not yet been fully
tested with respect to the number of degrees of freedom, the noise level, the length
of the time series, the sampling frequency, different model assumptions etc. Thus,
if the method is supposed to have a general application in practice those aspects
should be investigated.

With respect to the length of the time series two aspects should be noticed:

e The noise signal ratio will increase as the signal decays. Thus, there is a conflict
between the need for data and the minimization of the influence of noise.

e The influence of the different damping mechanisms will depend on the vibra-
tion level. The significance of the nonlinear viscous damping in the free decay
response will decrease faster than the linear viscous damping while the signifi-
cance of the Coulomb damping will increase as the vibration level decreases.

The optimum length of the time series can for instance be found as the length of
the time series which gives the minimum sum of the variance of the parameters, see
also chapter 14 in Ljung [11].

Comments on the problem with the model assumption should also be given. The
fundamental problem seems to be whether or not a model is over or underdeter-
mined with respect to the number of parameters. For instance simulation studies
have shown that a proportionally damped system described by a non-proportional
damped model makes it difficult to obtain convergence, because the model contains
too many parameters. The obtained parameter estimates may be quite accurate
anyway. If the model contains too few parameters the model estimate will be a
rough approximation. The proper model can be found by comparing the error of
the fit for different models. As long as the model is underdetermined, a further
refinement will give a decrease in the error while, when the model becomes overde-
termined, the error will decrease insignificantly, or it may start to increase.

Attentions should also be given to the fact that the quality of the estimates and
the number of iterations in IRS highly depend on whether or not all eigenmodes
are sufficiently excited. To ensure good estimates all eigenmodes must be excited
and the response of all degrees of freedom must be applied to the analysis.

The computer time is probably the largest limitation of the IRS method. A session
of the cases presented in this chapter may last between 6 and 13 hours on a Microvax
or 30 minutes and 90 minutes on a Vax 8700. This limits the number of degrees
of freedom of the model since the number of parameters has significant influence
on the computation time. The reason is that the response has to be simulated
twice the number of parameters to find a search direction in the iterative least
square approach (numerical gradients) and furthermore, response simulations must
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be performed until convergence along the search direction has been reached, and
then a new search direction is found and a new search is started. For a linear
system the number of parameters will be (n? + 2n) plus the number of initial
conditions (2n). Thus, the method is extremely sensitive with respect to computer
time used to simulate the response. This will also depend upon the length of the
time series to be simulated and the time step in the Runge Kutta routine. The
latter is determined by the highest frequency component of the structure, i.e. the
highest eigenfrequency. Thus, the computer time will depend upon three factors:

e The number of parameters.
e The length of the time series.

e The highest frequency component of the structure.

To improve the method one should concentrate on optimization of the simulation
algorithm and a more effective computation of the search direction. Perhaps the
numerical gradient calculation could be replaced by analytical expressions.

Due to the considerable computer time used the parameter uncertainties have not
been evaluated according to the principles presented in chapter 3. The calculation
of the covariance matrix of the parameters requires a very large number of numerical
gradient calculations. Thus, the method must be optimized before the evaluation
of the parameter uncertainties can be made.

Another problem is that the final parameter estimates seem to depend weakly upon
the initial estimates. In principle the only way to handle this problem is to repeat
the estimation with different initial estimates until a minimum of the error criteria
function has been obtained. In practice, the search should be started by applying a
relatively large time step in the response simulation to get a rough estimate of the
best initial estimate which leads to the global minimum. Afterwards the time step
can be decreased to get a final estimate.

The identification by response simulation of a structural model has also been in-
vestigated by Juang and Sun [12]. To keep the number of parameters small they
applied a response surface technique which related a simple continuum model to
a finite element model. The proposed method led to identification of structural
parameters such as bending stiffness and shear modulus.

6.3 Conclusion

In this chapter two methods have been presented which are able to identify the
physical parameters of vibrating structures. Both methods are formulated in the
time domain. No methods in the frequency domain have been discovered but some
references are given in Hart and Yao [5], which is a review of identification meth-
ods 1n the seventies. In the frequency domain the general approach seems to be
identification of modal parameters. However, if the modal parameters have been
identified, information about physical parameters can be obtained.
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It is seen that if the n eigenfrequencies the n damping ratios and the n mode
shapes have been estimated for a structure assumed to be proportionally damped
the physical parameters will be obtainable from:

T 3 = (mis)
T Ko =((2rf:))
T 3 = ((4n¢ifi)) (6.25)

However, it is seen that (n? + 2n) physical parameters will be unknown and only
(n? + n) modal parameters known. Thus, either n extra parameters should be
known or else the mode shapes should be replaced with the weighted mode shapes.

Link [13] has dealt with the problem of determining the physical parameters from
modal parameter estimates. He notices that the stiffness matrix will typically be
more uncertain than the mass matrix because it will be dominated by higher modes
and thus be sensitive to small error in those modal estimates. Link also discusses
the choice of the number of degrees of freedom in the lumped parameter model
versus the number of measured response points. A further discussion with respect
to the estimates of the damping matrix is given in chapter 4.

Udwadia [14] has investigated the uniqueness of the estimates of the physical param-
eters with respect to the excitation and the number of measured response points.
For a simple structural model of a tall building with band limited damping and
stiffness matrices with known mass distribution it is shown that the estimates of
the stiffness and the damping can be uniquely determined from the measured re-
sponse and excitation at the topmost mass level. Juang and Sun [12] also deal with
the problem of uniqueness of the estimated parameters.

Instead of the direct relations between the modal and the physical parameters
Leonard and Khouri [15] have applied a finite element procedure to obtain physical
knowledge from given modal estimates. A similar approach has been made by
Vandeurzen et al. [16] to obtain integrity information for a simulated offshore
structure. Sunder and Sanni [17] have applied a more refined response surface
technique to obtain information of the foundation stiffness from simulated as well
as measured response of an offshore platform. The response surface technique is
applied to relate a finite element model to a simple structural model compatible
with the performed response measurements. A practical example of a combined
estimation of stiffness elements and modal parameters of a tall building are given
in Beéliveau and Favillier [18]. Another practical application is given by Natke and
Schulze [19] who from identified eigenfrequencies have identified the deck mass of
an offshore platform. In general all investigators claim to have success.

With respect to the presented methods formulated in the time domain some com-
ments must be made.
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In theory the time direct derivative method (TDDM) is a very quick way of ob-
taining information about the physical parameters because the parameters are ob-
tained directly without any iterations. In practice, however, the method seems to
be quite unrealistic outside the laboratory since there are two significant disadvan-
tages. First of all the measured response must contain the complete state vector
to obtain good parameter estimates. If the complete state vector is obtained by
numerical integration errors are likely to distort the results. Secondly the response
has to be measured at all degrees of freedom which are included in the model. This
means that in practice very simple models have to be accepted.

The last disadvantage is also present for the identification by response simulation
(IRS) in two aspects. Firstly the response has to be measured at all the assumed
degrees of freedom. Secondly, the computation time increases quickly with the
number of parameters. The major advantage of this method is that it is able to
include nonlinear mechanisms in the model.
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7. IDENTIFICATION OF MODAL PARAMETERS

Identification of modal parameters is the most frequently applied way of identifica-
tion of the properties of vibrating structures. This is probably due to the fact that
the modal formulation is a compact formulation which describes the structure with
a minimum of parameters and at the same time the parameters have a physical
meaning which makes them easy to interpret.

The modal parameters can be identified in the time domain as well as in the fre-
quency domain. Examples of both formulations will be presented in this chapter.
The formulation in the time domain is based on measured free decays while the for-
mulation in the frequency domain is more flexible. However, a measured response
due to white noise can for a linear system be transformed to a free decay signature
by the mean of the random decrement technique which was described in chapter 5.

7.1 The Method of the Logarithmic Decrement

A free vibration gives direct information about the eigenfrequency and the damping
ratio of a mode if only this mode is excited corresponding to an approximation of
the vibrating system to a single degree of freedom. The logarithmic decrement for
this mode can be given by:

dln) = ln(i—? (7.1)

where the logarithmic decrement, 6(n) is a function of the amplitude of the cycle
number n, A, given an amplitude for the oscillation number 1, A;. From the
relations developed in chapter 4 as well in any standard textbook on the subject,
the following is obtained:

27

6(n) = Co(2r fol(in—1
(n) = Co(2m fo)( )(271'f0) e
~ 27!'(01‘3 . 27I'C0 (72)

If §(n) is plotted as a function of n a straight line is obtained with the slope 27 (y
and the intersection —27(p with the ordinate axis. The approximation in (7.2)
holds if (p is small, say (o < 0.05.
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Since §(n) and n are known from the measured record the problem of estimating
the damping ratio is a linear regression problem which can be easily solved either
geometrically or by calcultaion. According to standard textbooks on statistics, see
e.g. Johnson and Leone [1], the variance of the slope and thus also of the damping
ratio can be found from:

2 _ Znma ((F) =~ @n6on — 2r))’ 1
. Sl Zf=1 = (Er!:[=1 n)z/N

where N is the number of applied points. The slope is assumed to be normally
distributed. It can be noticed that the estimated mean value of the damping ratio
and the eigenfrequency is independent. The eigenfrequency is usually estimated
from the zero crossing period of the signal.

(7.3)

An example of the application of the logarithmic decrement is shown in figure 7.1.
The points are seen to lie closely on a straight line which is indicated by a correlation
coefficient of 0.9989. The corresponding damping ratio was found very accurately
to be:

¢o = 0.108 £ 0.002[%] (95% confidence)
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Figure 7.1. The logarithmic decrement for the experimental case. The monopile structure vibrating in

first mode, Jensen [2].

A problem with the method is to ensure that only one mode is excited and fur-
thermore, it can be difficult to excite higher modes. Another problem with respect
to offshore structures is that it is not common practice to let an offshore structure
perform a free vibration since it requires an impulse excitation or a snapback testing
which is expensive and often considered to be too risky by the platform owners. In
spite of those objections such procedures have been widely applied on other types
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of civil engineering structures during the sixties and seventies, see Langen and Sig-
bjornsson [3], in which a review of damping estimates is given. A free vibration can
also be obtained by removing a steady state force due to some external excitation.

An alternative to this kind of excitation method is the application of the random
decrement technique which was presented in chapter 5. Nasir and Sunder [4] have
investigated the application of the random decrement technique upon the response
due to ambient excitation of a jacket platform, a simulation study has also been
performed. The simulation studies showed that the eigenfrequencies can be esti-
mated quite accurately from the zero crossing period while the reliability of the
damping ratio depends upon the frequency content in the excitation signal and the
level of damping. In general the results depend upon whether the resonance peak
or the peak due to the wave excitation dominate the response spectrum. The appli-
cation of the approach in practice gave reliable eigenfrequency estimates and fairly
good damping estimates even though the latter showed a scatter corresponding to
a coefficient of variation of about 60 %.

7.2 The Ibrahim Time Domain Method (ITD)

This method has been given a lot of attention in the seventies and the first part of
the eighties because it has shown to be an effective method for obtaining information
about all the modal parameters at one time, see Ibrahim [5] to [9]. The method was
developed by S.R.Ibrahim. The requirement of the method is that the measured
data represent a free decay and this is also the main limitation of the method.

The solution of the complex eigenvalue problem:
Mzi+Ci+Kz=0 (7.4)

can be assumed to be of the form T = ®eP* with 2n complex eigenvalues, p; = a;+ib;
and 2n complex eigenvectors, ®; =¢; +id;. The eigenvalues and the eigenvectors
are found as conjugated pairs for underdamped systems, each pair corresponding to
a single degree of freedom. The measured response at discrete times can be given

by:

2n
B(t) =%i=) piserit (7.5)
=1

The response can for 2n times be given as:
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(z1 =y Ton ) =(P1 @ 3,)
2.p1t1 2 .p1ta 2 .P1tan
Py Pie »ee Pr€
(7.6)
p%ne;’Zntl p%ne-Pzntz e p%nel;Znth
which can be rewritten as:
X(0) = Q(0)A (7.7a)
where:
QO)=(®; @ ... B3,) (7.7b)
and:
_ p%emh p%epltz . p%emtzn
P 3 : : ; (7.7¢)
pgnepzntl pgnepzntz . pgnepzntzn
A time interval later, A, the expression still holds and can be written as:
Y(A) = (%1+A {:E—.2+A “ae %2n+A ) = a(A)Z (78&)

E(A) is equal to 5(0) multiplied by the factor p? ePi®t on the jth column vector
®;. Another time interval later, A the expression is given by:

X(2A) = (F142a B242a -.. Tanp2a ) = Q(2A)A (7.8b)

where the 5(2A) equals 5(0) multiplied by the factor p?e?i 24t
From the equations, (7.7a), (7.8a) and (7.8b) the following two equivalent relations

are obtained:
(0) ) v (§(A) ) _ (E(A) )i (7.9a)
(A) X(2A) Q(24)

Q|

(??((3) ) (

Those can be rewritten as:

Qll

T(0)=TV(0)A T(A)=T(AA (7.9b)

After some matrix manipulation it can be shown to lead to one single expression,
Ibrahim [5]:



System ldentification of Offshore Platforms 131

= = ==1 —|
U(A)=T(A)T (0)¥(0) (7.10)
which can be rewritten as the classical eigenvalue problem:

?(/_\) _T__l(o) {EJ. - pgep,-m :‘Zj (T.11}

where i}nj is the jth column vector of ¥(0) corresponding to a the complex eigenvec-
tor including the eigenvector @ of the original eigenvalue problem and with p? ePift
as the eigenvalue. Remembering pJ = a; + ib;, a; and b; can be determined from
the computed eigen values, p; 2ePiAt and the known samphng interval, A. Finally,

since p; = —(;2n f; £ 27 f; /1 —(? #, the eigenfrequency, f; and damping ratio, (;

can be estimated from:

1
Ji= 27\/“@ + b (7.12a)
& (7.12b)

G =—F~—
BRCEL

The sampling interval, A will enter into the calculation and Parseval’s sampling
theorem must not be violated: A < 5 fmz. This demand can be modified by an
approach equivalent to the zoom approach in an FFT-analysis presented in chapter
5, see Ibrahim [6].

The method assumes that the number of degrees of freedom in the model is equal
to the number of excited modes in the measured response. As an estimation of the
proper model order, Ibrahim [6] suggests that the number of excited modes present

in the response is determined by the rank of T(U) In practice this is done by

considering the relative decrease in the det[T(O)] expanding the dimension of T(O)
until the determinant is defined to be equal to zero. (Noise in the measurement will
prevent the determinant from becoming exactly equal to zero). If the determinant
never gets small enough the cause is that the number of excited modes is too large

compared with the number of measuring points equivalent to the dimension of T(_O)

Thus, the number of measuring locations must be increased or, alternatively, T()
can be blown up by applying more time shifts in the derivation of the eigen value

problem, i.e. taking X(mA) into the analysis for m > 3. In principle the latter
approach means that it is possible just to measure at two locations to identify a
large number of modes. The estimation of the model order by considering the
determinant leads in practice to too large model orders compared with the number
of excited modes. This means that the noise will be incorporated in the estimated
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model which also often in practice has shown to lead to better modal estimates.
Ibrahim has developed concepts which gives a distinction between structural modes
and noise modes, Ibrahim [7].

P(t)
J Station 2 Station 1 0,63cm
D [ I | " e
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Figure 7.2 Randomly excited cantilever beam in Ibrahim [6], [10].

The method has been widely tested. In table 7.1 the results of an application to a
cantilever beam which was randomly excited with a point load are given, see figure
7.2. The ITD method was applied together with the random decrement technique.
The theoretical values are also shown in table 7.1 for an undamped beam and the
results of a modified method of the time derivative method (TDDM) explained in
chapter 6.1, see Ibrahim [10]. The eigenfrequencies and the mode shapes are seen
to be very accurate estimates while some deviation exists for the damping ratios.
It can be noticed that even though only two measuring points were applied the
method succeeded in estimating three modes very accurately.

Method Mode 1 Mode 2 Mode 3
Theory fi 23.82 149.06 417.61
Undamped $y; 1.0000 1.0000 1.0000
Beam L 0.6066 -2.4363 2.6064

b7 22.86 145.63 404.85
ITD ¢ 0.0018 0.00055 0.00141

®y; 1.0000 1.0000 1.0000

®y; 0.5862-10.0084 - 2.1354+10.1809 2.3725410.0924
Modified £ 22.87 145.58 404.41
TDDM ¢ 0.00162 0.00055 0.00129
see [10] ®y; 1.0000 1.0000 1.0000

&,; 0.5873-10.0081 - 2.1364+10.1853 2.3711+1 0.0920

Table 7.1. Estimated parameters of cantilever beam. The mode shapes refer to points 1 and 2 in
the figure. T=0.33 sec. and A=0.0004 sec. The eigenfrequencies are given in Hz., Ibrahim [6]

The method has also been applied to the measured and simulated response of an
offshore monopile by Longo [11]. The random decrement technique, see chapter
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5, was applied for transforming the measured ambient response into free decay
signatures. For a single degree of freedom assumption the damping ratio was found
to have a mean value, (p = 0.0095 from estimates in the interval 0.0089 — 0.0107.
The eigenfrequency was found to be 0.3226 Hz. Both estimates corresponded to
estimates obtained by other methods. Thus the method may be applicable together
with the random decrement technique applied to the measured response of offshore
structures.

7.3 The Bandwidth Method

A classic and simple method is damping estimation from the half power bandwidth
which is a method formulated in the frequency domain. Since it is in principle a
curvefit of two points of a resonance peak it can be applied to frequency response
function data as well as data for a response spectrum if a white noise approximation
is acceptable. The method assumes that the damping is small which means that
the peak frequency is approximately equal to the eigenfrequency.

()

Sk

Figure 7.3. The halfpower bandwidth for a frequency response function and a response spectrum of an
SDOF system.

The method requires that the estimated frequency response function is approxi-
mated to a single degree of freedom system. This means that the magnitude is
given by:

1 11
Uz = 127 + @Gofofy? o)

|H(f)| = (7.13)

where m is the mass of the SDOF system which cancels out in the estimation of the
damping ratio. The peak value of the eigenfrequency is seen be L ﬁfz_cz_ff If the
0
frequency points for which |H(f)| is equal to 1/« of the peak value are determined,
a relation to the damping ratio {p can be found. This gives the following relation,
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see Hansen [12]:

_ f2=h
CB - 2m . (7‘14)

Normally a is chosen to be v/2. If it is the autospectrum of the response and not
the frequency response function which is known, a similar expression is obtained

due to the relation S..(f) = |H(f)|*Spp(f):

__h—h
v —r (7.15)

For @ = 2 in (7.15), the distance, B, = fo — fi = 2fy(p is called the half-power
bandwidth, see figure 7.3. The frequency points f; and f, will be equal to a = /2
and @ = 2 in (7.14) and (7.15), respectively. The method is highly unreliable
because only two points are used to obtain the estimate. An expression for the
coefficient of variation has been evaluated in appendix 7.1 for the application of the
method to a response spectrum:

5 o l_l_lOBe
© =\ %" 368,

(7.16)

where B, = 2f,(, is the half-power bandwidth, B, is the effective bandwidth and n
is the number of averages in an FFT-analysis. The two latter quantities are related
by B, = 7 where T is the total length of the time series.

The estimate of the uncertainty of the damping given by (7.16) has been compared
with the errors of different estimates obtained for the FFT-analysis of a simulated
white noise response of an SDOF system, see figure 7.4.

The fully drawn lines are the estimated 95%-confidence interval of the damping
ratio as a function of applied means for different B, to B, ratios while the points
are estimates from the damping ratio obtained by the bandwidth method. It is seen
from figure 7.4 that most of the observed errors lie within their respective estimated
95%-confidence limits. This indicates that the expression for the uncertainty works
quite well. The figure also shows the error of the estimates obtained for B, /B, = 1.0
which gives significantly large errors due to the bias contribution. It can be noticed
that the improvement in the bias error is relative small when B,/B, is increased
from 5 to 20. This is in agreement with the fact that a relative bandwidth of 5 is
recommended, Bendat and Piersol [13]. However, in the author’s opinion a stronger
criterion should be chosen if a reliable estimate is needed. It is also seen that the
number of means must be very large to reduce the uncertainty significantly. Thus,
even though the bandwidth method is very easy to apply it can not be recommended
as a method for obtaining final damping estimates. The method has been applied
in several cases, see the review in chapter 2.
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1.96 6, Expected and Observed Errors of Damping Estimate

2.5
+ Br/Be=1
2 x Br/Be=5 .
o Br/Be=10
* Br/Be=20
1.5 il
Br/Be=1
" =
S Br/Be=5]
0.5 e e BHBE
""""""" . T Br/Be=20)
X
0l " X i L . L L n L i i3
0 10 20 30 40 50 60 70 80 90 100

Figure 7.4. One-sided 95%-confidence interval and errors of damping estimate obtained by halfpower
bandwidth of the response spectrum of a white noise excited single-degree-of-freedom system, fo=1.0
Hz and ¢o=0.01.

7.4 The Method of Spectral Moments

Instead of applying two points for obtaining a damping estimate another approach
can be made. The idea is that the spectral ordinate estimate of autospectra are
more uncertain than spectral moment estimates, see Bendat and Piersol [13]. The
method of spectral moments is based on the information of the damping which is
contained in the zeroth, the first and second moment of the response spectrum of
a white noise excited single-degree-of-freedom system.

If the one-sided response spectrum for a structure described by a single-degree-of-
freedom system is considered:

So
(f2 = 12" + (26 fof)”

then the three parameters fy, (o and Sy can be found from the three lowest spectral
moments:

(7.17)

Szo(f) =

fa
/\z' = f'sz(f)df i = 0) 152 (718)

f

where f; and f, are the chosen lower and upper frequency limits. The unknown
parameters can be estimated from the three spectral moments obtained from the
measured spectral quantities and from a theoretical expression. If the structure is
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excited by white noise, a set of compact equations can be derived, see Vanmarcke
and lascone [14] and Vanmarcke [15], who developed the original identification
algorithm. In Pulgrano et al. [16] it has been shown that the spectral moments can
be expressed by:

Sol;

Ap = —m— t=0,1,2 (7.19)
4o f3> "
with:
Iy = (D1 + DQ) :3 0< Io <7 (720(1)
2 .
II = E(D;;)l,.'f 0< Il <T (7201))
I, = (D, - D2)|2 0<L<m (7.20¢)
where:
2(0?"
D, = arctan (1 =) 0< D, <m (7.20d)
-7
. C_g 1+rd+r?
D, = dln(__-—_ml-—rd-f—rz) 00 < Dy < 400 (7.20€)
D3 = arctan (_chlf_) 0< D3 <= (7.20f)

1—2¢% —r2

where the notation g(z)|;? = g(r;) — g(r1) has been applied and d = 24/1 — (§. It
is seen that I; only depends on the damping ratio and the normalised integration

interval, r = f/ fo.

According to Vanmarcke [15] the response spectrum can be described by the zero
upcrossing frequency, w, and the spectral bandwidth parameter | :

_ A2 L
w; = ‘/Ao =2rfo\[ 7 (7.21)

2 2
WL 8 (7.22)

- -_— —
ikl ™ L.5L

w, and k are seen only to be functions of {; and the integration interval. This
means that if the integration interval is given, then the damping ratio, (p can be
found from the zero value of the error function:

V(¢ _.512_ _’\112____0 (7.23)
WT KB dds '
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where the first term on the right-hand side is theoretically given by (7.20) and where
the second term can be numerically estimated from the spectrum of the measured
response. Furthermore, the eigenfrequency, fo and the constant, Sy in (7.17) can
be found from:

Wy Io
fo= o\ I, (7.24)

and

_ 2040(@7fo)’ _ MidGo(2mfo)* _ ApdCo(27 o)

S
¢ Io I] IZ

(7.25)

The search for the zero point of (7.23) will be iterative with V' as a monotonic
decreasing function with respect to (p, see figure 7.5. The integration limits r; and
ro 1s initially estimated to be:

g fi z f2
r = —— Ty = — 7.26
! fpeak ; fpeak ( )

and afterwards adjusted during the iteration by the current estimate of the eigen-
frequency, fo replacing fpeqx. This correction has importance if the damping is
relatively large.

The zero point of V({p) can be found by a simple optimization routine such as the
Newton-Raphson method or a more general routine.

V(o)
+0.001 \
0.0 \\W :
Co = 0 2 =5 %
Go=5%
—0.001 Co
0.0 0.10

Figure 7,.5. The error function as a function of the damping ratio.

The method has been tested in different ways. The method and its principle was
developed by Vanmarcke [14] and a more extended version of the method was
presented and investigated by Sunder et al. [17], Grewatz [18]. The latter two
authors investigated the effect of non-white excitation and additive noise by sim-
ulation of spectra. It was found that the integration intervals, r; and r, should
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not be too wide for the estimation of light damping. It was suggested that the
half-power points were applied. It was also found that while estimates obtained
by the bandwidth method tend to overestimate the damping, the estimates of the
present method could not be claimed to be either inflated or deflated. The method
has been applied in practice in several relations, see e.g. Vanmarcke and Iascone
[15] and Sigbjornsson [19]. To the knowledge of the author the method has not
been systematically investigated for spectra obtained by FFT-analysis.

The method has also been implemented and tested in relation to this thesis and
some experiences have been made. It was found that the number of frequency points
around the spectral peak had a significant influence upon the damping estimate. It
was also found that the spectral moments were best obtained by numerical integra-
tion by Simpson’s rule. Several integration methods of higher order were tried but
gave no significant improvement. The main error of the estimates of very lightly
damped systems, (p < 0.01 seems to be due to this numerical integration provided
that no error of the spectral points is present.

It was attempted to use the integration limits r; and ry as variables but this did not
work out. Nor was it a good idea to apply a direct determination of the theoretical
moments by numerical integration even though one could hope that the integration
errors in this way would cancel out. The method is clearly a better method than
the spectral bandwidth method.

As mentioned in the start of the section the spectral estimates are more uncertain
than the spectral moments. This means that if FF'T analysis is applied the reduc-
tion of bias errors should be weighted more than the reduction of random errors
compared with for example the bandwidth method.

The uncertainty of the damping estimate can be found approximately. From the
approximate expression valid for an SDOF system excited by white noise and with
ry =0 and r; = oco:

52:%2_1 A%

=[1- m (7.27)
one obtains: \2
m
=—[1- 2
Co 4[ :\o/\z] (7.28)
This means that the expression for the variance becomes:
2 _ (T2 '\%
0y = (4) VAR[)\O)\g] (7.29)
where:
AZ a2 2 2 A2 2)
A 1 = 1 2 1 1
V. R[/\DAZ] (A%)\g) T +(A0/\2) O'Al ‘l"(/\ ,\2) 0',\2 +2(}\2A2)(1\ A )0’,\0)\1
)\% /\1 2/\1 /\1 2
+ 2( V3N )(ADP) Nk +2( )(/\_W\E)JA"\’

(7.30)
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The three last terms in (7.30) contain the cross-variances between the three spec-
tral moments. The covariance of the spectral moments can be computed from a
straightforward calculation introducing the variance of the spectral density in the
expression of the variance of the spectral moments. The approach becomes equiv-
alent to the approach for the bandwidth method given in appendix 7.1.

7.5 The Circle Fit Method

If the excitation as well as the response can be measured then the structural infor-
mation should be extracted from the measured transfer function data. The circle
fit method can be applied to the case where such a controlled external excitation
has been applied to a structure. It is assumed that a forced excitation has been
applied at one point and the response has been measured at another point. Then
the structural information can be extracted applying both the gain and the phase
information in the identification. This is accomplished if the real and the imaginary
part of the transfer function are evaluated from the data:

Spkii(f)

. SPki.‘(f)
5, (f)] +ilm[ 222 {r81)

Hui(f) = Re| Spene ()

where 1 is the index of the degree of freedom at which the response has been
measured and index k is the degree of freedom, where the force p; has been applied.
It can be shown that if the measured response is a velocity process and if an SDOF
system is assumed then a circle fit can be obtained as shown in figure 7.6 by plotting
the real and the imaginary part of transfer function against each other for the given
frequency range. The transfer function of velocity response versus force excitation
is called a mobility transfer function. The circle plot is also called a Nyquist plot
or a Kennedy-Pancu plot, Kennedy and Pancu [20].

Smi:.'(f)
“Im[spkm(f)]
fa
GG/Z Oq S ki‘.'(f)
»Re[-L
& (S (7)
fv

Figure 7.6. Circle plot of mobility function of viscous damped system.
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It is assumed that in the frequency domain the transfer function in the neighbour-
hood of the jth mode can be described by an SDOF system. Then according to
Ewins [21] the real and the imaginary part of the mobility transfer function will be
given by:

Spys:(f) 2K},(27 £;)¢;(2n £)?
Re[2P — (7.32a)
Speps (f) (2 f;)? - (27rf)2)2 +4(2r £;)*¢;%(2n )’
Im[SP,‘i,-(f) _ Ki,@2rf)((2n )" — (2x£)") (7.32b)

Sprpe (f) B ((271‘fj)2 — (27l'f)2)2 i 4(27Tfj)2c_i2(27rf)2

which will be approximately valid in some frequency region around the jth eigenfre-
quency, f;i—=Af < f; < f;+Af corresponding to an approximation of the vibration
system to an SDOF system.

The real and imaginary part of the mobility transfer function given by (7.32) can be
plotted against each other for discrete frequencies and will appear as points lying
on a circle as shown in figure 7.6.

K ;L- is a constant containing information of the mode shapes. Remembering the
assumption of an excitation at only a single point, k¥ , the modal constant K7, will
be given as:

Kl = ®;;®;; (7:38)

with ®;; being the ith element of the jth weighted mode shape. This information
may be extracted if a set of circle fits of different eigenmodes has been estimated
as shown in Ewins [21]. The radius of the circle can be shown to be:

. Ki.
) = ki .34
and the centre of the circle by:
— K. .
Ci; = (——%—,0)=(R.,,0 7.35

The angular spacing between discrete points in the circle plot will vary if the fre-
quency resolution is constant. The angular spacing will contain information of
the eigenfrequency and the damping ratio of mode no. j. Considering two points
corresponding to f, and f3 in figure 7.6, it follows, see e.g. Ewins [21], that:
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tan(04/2) = (1= (41) )/(26 2 (7.36a)

2

tan(04/2) = ((%) . 1)/(2@-;—; (7.36b)

The eigenfrequency and the damping ratio can thus be estimated from a pair of
points in the circle plot. Assuming constant frequency resolution the eigenfrequency,
f; will be located between the discrete points where the angular spacing is largest
and can be found from linear interpolation. The damping ratio can be estimated
directly from (7.36) when the eigenfrequency has been estimated:

C_ - ((27rfﬂ-)2 - (27be)2) (737)
1= 2@n,)((2n fa) tan(©a/2) + (27 f5) tan(04/2))

where O,, Oy, fa, fi, f; are given by figure 7.6. From each pair of data points, an
estimate of the damping ratio can be computed. If the damping ratio obtained
from this method is assumed to be normally distributed, a confidence interval can
be determined for the different damping estimates obtainable from each pair of
frequencies located around the eigenfrequency.

The circle fit algorithm has been implemented in a C-program on a personal com-
puter and works quite well. The circle is estimated by non-linear least square
estimation which converges very quickly (3 to 5 iterations). The single-degree-of-
freedom assumption has been applied but it is possible to modify the method to
several degrees of freedom. This can be done as an iterative procedure where the
influence of the neighbouring modes is ”subtracted” from the mode of interest.
This iteration process gives a quick convergence with respect to the damping ratio
(maximum 4 adjustments). The program has been tested for simulated data and
works well. It has also been tested for experimental data but the data obtained
by FFT were so biased that the circle fit method failed just as other methods, see
Jensen [2].

The disadvantage of the method is that the exact relation between the response
and excitation must be known. On the other hand, if it is known this method
uses all the available information in the obtained measurements since both the
amplification and the phase information are applied. This means that the method
in such cases gives the best possible modal estimates. Another disadvantage is that
the circle fit method, as it has been presented, requires that the response has been
measured as velocities. Usually it is only the acceleration which has been measured
and integration is in general not advisable. However, the principle of the method
taking the phase information into account can be extended to the cases where the
response has been measured as accelerations even though a less elegant algorithm
is to be expected.
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To the author’s knowledge the method has not been used on offshore structures
or civil engineering structures but in any case if the exact relation between the
response and the excitation is known both the gain and the phase information
should be applied to obtain more reliable estimates. It should be noticed that the
phase information should be given by the real and the imaginary part of the transfer
function since the phase evaluated as a phase angle leads to larger uncertainty, see
chapter 5.

The circle fit method is in general applied to a single point excitation but can
be applied to multiple point excitation. However, this complicates the algorithm,
especially if the forces are not completely correlated.

7.6 Global Curve Fit in the Frequency Domain

The identification concept in the frequency domain is typically formulated as some
sort of curvefitting approach. This can be a local curve fit of the resonance peak
such as the bandwidth method or it can be a global curve fit taking a wide frequency
region into account containing several resonance peaks.

The local curve fit leads to information about the eigenfrequency and the damp-
ing ratio of a given eigenmode. The fit is based on the single-degree-of-freedom
assumption where each resonance peak in the response spectrum or in the transfer
function is considered as the resonance peak in an SDOF system. The review in
chapter 2 showed that this approach is widely applied in practice but there may be
several reasons to consider a global curvefit in some cases.

e If some modes are closely spaced it may be impossible to apply a local curvefit
on each resonance peak.

e If prior estimates of e.g. eigenfrequencies have been obtained from local fits, a
global fit may give additional information about mode shapes, mass distribu-
tion etc.

e A global curve fit will provide estimate which are proper correlated with re-
spect to each other. Ignoring the correlation between certain parameters by a
separate parameter estimation gives errors in the estimates.

e If a weighting function is included in the global fit of the data a smooth relation
will exist between a local and a global fit corresponding to the judgement of
which frequency region should be considered most reliable.

Due to the above reasons a global curvefitting algorithm has been considered for
measured data represented by a transfer function. A global fit can also be performed
for a measured response spectrum due to the relation:

Suel F) = B Spal(F) (7.38)

where the shape of the force spectrum can be parameterized and included as un-
known in the estimation procedure, or the force spectrum can be considered to
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approximate white noise within some given frequency region. A few cases of iden-
tification by including parameters of the force spectrum as unknown parameters
have been studied by A. Rytter and the author. It seems to be a possible approach
in some cases although in other cases problems with an ambiguous estimation of
the unknown parameters may arise.

A global fit including the phase information has not been considered even though it
is possible. It has been considered that often no phase information will be available
since the excitation due to waves will only be indirectly known from the wave
elevation, see chapter 5. On the other hand, if phase information is available it will
often be possible to separate different modes by choice of the force input. Thus, in
those cases a method such as the circle fit method with an SDOF assumption will
be applicable taking the phase information between the excitation and the response
into account.

Thus, in the present section a global curvefit of a set of measured transfer functions
is considered. It is formulated as an optimization problem of an error criterion
function given by:

v(©) = NZ% GO = £ T 3dE)  (9)

i=1 =1

where €(f;|©) is an m & 1 vector where each element is the error of a measured
transfer function no. j for a given frequency:

&(fil0) = Hy(f:) - Hi(fi6) i=12...m (7.40)

where © is a vector containing the unknown parameters to be estimated by finding
the minimum of V(®). The unknown parameters could for instance be the eigen-
frequencies, the damping ratios and the mode shapes. N is the number of data
points and is assumed to be the same for all the transfer function data, H;(fi),
g =1 00

According to the principle in chapter 3 the given error criterion function V(©)
corresponds to a least square formulation. The minimum can be found by an
optimization algorithm such as the NLPQL algorithm which has been widely used
in this thesis, Schittkowski [22]. Also as shown in chapter 3 it is possible to find
the covariance matrix of the estimated parameters when a least square approach
is applied. However, this requires that the assumed model is also the true model.
E.g. the model must not contain too many parameters since no convergence in
those cases can be achieved. The model must either not be too simple since this
will lead to a rough model approximation. However, in the latter case it will be
possible to obtain convergence in general. Finally, the true model may belong to
another class of models which means that the estimated model will only be a least
square approximation to the true model.
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Even though the least square norm is an approach consistent with the maximum
likelihood estimation as shown in chapter 3 there is really no objective reasons for
not choosing another norm e.g. to formulate the error as a sum of errors raised
to the fourth power or another higher norm, p. In Xinsen and Vandiver [23] the
norm p is considered as an optimization variable of values 2,4,...,10 in the esti-
mation algorithm called the least pth optimization technique. The optimized norm
will depend upon the estimated errors and will influence the iterative search for a
minimum of the error criterion function. The method has been successfully applied
in practice for an offshore structure in Xinsen and Vandiver [23]. Ljung [30] has
discussed the choice of an optimal norm intensively in mathematical terms.

7.6.1 Simulated Case

A curvefit algorithm OPT has been implemented into a FORTRAN program based
upon the NLPQL optimization algorithm. The program is able to find a set of
modal parameters from a curvefit of measured transfer functions. The estimates
are given as a set of mean values and standard deviations according to the principles
of chapter 3. The complete covariance matrix of the parameters is also available.
The numerically estimated standard deviation has been checked for numerical er-
rors. The estimated standard estimation has been found to be numerically stable
for relative numerical steps of order 10™® to 10~ in the gradient calculations. Fur-
thermore, the magnitude of the estimated standard deviations were in general found
to be sensible.

Another important result of the estimation algorithm is the error of the fit. It is
important because a comparison of the errors of runs using different initial estimates
makes it possible to justify that the best fit has been obtained. The error can
furthermore be applied for comparing the fit of different models and thus justifying
a given model.

The curvefit algorithm has been applied to simulated noise distorted data of the
transfer functions of the acceleration response towards the base displacement of a
two degrees of freedom structure with a base excitation as shown in the figure 7.7
quite analogous to the experimental case presented in chapter 1.

—\/\/\/\/\/\/\/—1111 m.,

Figure 7.7. 2DOF system with fi=1.1054 Hz , f,=7.1921 Hz, &, =(1.0 0.3805), &2 =(1.0 —1.8864)
with different damping ratios in the range 0.001 to 0.13. The lumped masses were m;=25.56 kg. and
my=35.65 kg.
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The model for the transfer function between the displacement response and the
base displacement excitation of the two-degrees-of-freedom, proportionally damped
system was formulated as shown in Jensen [2]:

- _ - -—(27rf)2Kj,‘ - .
B = 2 P i) + 2@ e

The transfer function could without problems have been replaced by the acceleration

response versus the base acceleration or another transfer relation. The constant Kj;
was given by:

1 «@

K =32 m;y + &,821m; = ERo + o (7.42a)
) L. 1 3

= §? = 42b

Kiz = ®7ymy 4+ 20P21m 1T n + PR (7.420)

Ko =85 81my + 84ymy = ——— + i (7.42¢)

21 = P21 P1ymy 21 2_1"{‘“2# it a2 !

I

Koy = P19Pyomy + @227‘7’12 = + (742d)

T+ 8% i+

‘i’ij is the 7th element of the weighted jth mode shape Ti):,- and p = T* is the mass
distribution given by the ratio between the two lumped masses, and a and f§ are
related to the unweighted mode shapes by:

B =01 &) (7.43q)

T
3, =(1 B) (7.43b)

As a constraint to the curvefitting the mode shapes were forced to be orthogonal
which can be shown to be equal to:

1+ aBu=0 (7.44)

The presented model contains seven unknown parameters. It was found that for a
2DOF system, this was the number of parameters which could be identified uniquely
from the two measured transfer functions of the two degrees of freedom. The
seven parameters corresponded to 6 modal parameters plus the mass distribution
ratio, u. The 6 modal parameters consisted of two eigenfrequencies, two damping
ratios and two unweighted mode shape coordinates. If also a transfer function
between the response of the two degrees of freedom had been included it would
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probably also have been possible to estimate the absolute values of the lumped
masses corresponding to eight unknown parameters.

The seven parameters of the two transfer functions were estimated for a simul-
taneous curvefitting of the two estimated transfer functions of the two degrees of
freedom. The algorithm was able to estimate all the parameters within a deviation
less than 0.1 % with a standard deviation of the same magnitude (maximum). This
applied to a lightly damped system with {; = 0.00127 and a resolution of 0.001 Hz.
Those results were very acceptable. As a further test of the algorithm the following
subjects were investigated:

e The effect of frequency resolution (number of points).
e The effect of the damping level.

e The effect of closely spaced eigenmodes.

The simulation study was made realistic by adding noise to the simulated measured
transfer function data. The noise-to-signal ratio was defined as:

nfs= Ei - (IHF(If %)l) (7.45)
Z*_"l (IH(f |@)I)

where the simulated measured transfer function was given by:

|H(fi)| = IH(ﬂI@)I n(fi) € [0,nmaz] (7.46)

(fa)

corresponding to a noise model no. 2 with noise on the measured input, see chapter
5, figure 5.15. The noise contribution, n(f;) at the frequency f; was computed
from a random generator function in FORTRAN with a rectangular probability
density function. This particular noise model will lead to bias of the measured
transfer function and is therefore quite serious. In figure 7.8 an example of a
curvefit with simulated noise corrupted data is shown. Considering the scatter 1t
should be remembered that scales are logarithmic. Besides illustrating the noise-
to-signal level, figure 7.8 also shows that the method succeds in obtaining a fit of
the measured transfer function.
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Figure 7.8. Curvefit of simulated transfer function with n/s=0.32.

7.6.2 The Effect of the Number of Data Points

The effect of the frequency resolution, that is the number of data points in the
frequency domain, has been investigated. Since the data has been simulated directly
in the frequency domain there is no bias error present due to a performed signal
processing such as an FFT-analysis.

It is generally known that especially the estimation of the damping ratio is sensitive
to the resolution since all the information of the damping is given by the points
located at the resonance peaks. This was confirmed by the estimation based on
different resolutions as shown in figure 7.9. Here the deviation and the coefficient
of variation of the first damping ratio are shown. The resolution is seen to have
a tremendous effect upon the deviation as well as the coefficient of variation when
noise is present. Thus it is not only due to the bias error in the FFT analysis that
it is necessary to ensure a high resolution. It is equally important when biasing
noise is suspected to be present. With respect to the other modal quantities it was
found for n/s = 0.32 that the mode shapes only deviated from 4 to 8% while the
eigenfrequencies were estimated very accurately within 0.1%. The deviation of the
mass ratio corresponded to the mode shape estimates.

It can be noticed that the curves in figure 7.9 and the following similar figures are
not smooth but fluctuate. This is explained by the fact that the curves consist of
estimates of random variables. Smooth curves (in mean) would have been expected
if many realizations of measured data had been investigated.
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Figure 7.9. Deviation and variation coefficient of the first damping ratio for different resolution, df with

variation in the noise level, (}=0.00127 (true value).

b¢y (%)
30

T T T T T

| ~¢1=0.00127
25 / —
20t 5 J

15 - L -

(1=0.127 |y /g
.35 0.4

1.08F ¢1=0.0127
1.06 - ¢1=0.00127 -

|
1 L 1 1 1 1 1 n/s
o 0.0S 0.1 0.15 0.2 0. 25 0.3 0.35 0.4
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7.6.3 The Effect of the Damping Level

The influence of the damping level upon the parameter estimates has also been
investigated. It is obvious that it is easier to identify the eigenfrequency of a
lightly damped system since the eigenfrequency in that case becomes equal to the
peak frequency. Thus this influence should also be investigated applying a general
curvefit.

To get a unified measure of the damping level a relative bandwidth has been defined
as the half-power bandwidth of the resonance peak over the frequency resolution:

_ 2nfiG
B="2 (7.47)

where f; and (; are the ith eigenfrequency and damping ratio, respectively. The
effect of the damping level has been investigated for given values of B corresponding
to keeping the number of measured data points constant within the half-power
bandwidth.

The effect of different damping levels has been investigated with a constant relative
bandwidth of By = 2.8 and B; = 9.3 for the 1st and 2nd eigenmodes, respectively
with three levels of damping (; = (; = 0.127, 0.0127 and 0.00127 for the system in
figure 7.7.

From figure 7.10 it is seen that the coefficient of deviation of the first damping
ratio is only moderate sensitive to the damping level for different noise level while
the coefficient of variation is significantly sensitive to the damping level. It seems
that a small damping level causes a slight overestimation of the damping estimate.
Figure 7.10 also shows that a larger damping level gives an estimate which is less
sensitive to the noise level even though the relative bandwidth is the same. Thus
it is in fact more difficult to estimate the damping in lightly damped systems.

The eigenfrequencies showed a coefficient of variation less than 1% and were esti-
mated very accurately indeed although it seemed that the estimates became slightly
more uncertain for larger damping ratios which is also a generally accepted expe-
rience. The behaviour of the estimated mode shapes and the mass ratio is shown
in figure 7.11. It is seen that while the deviations of the estimates seem to be in-
dependent of the damping level the coefficient of variation seems to increase with
increasing damping which is probably the same effect as for the eigenfrequency es-
timates. Larger damping leads to a more uncertain interpretation of the resonance
peak and thus also the eigenfrequencies, the mode shapes and the mass ratio.

7.6.4 The Effect of Closely Spaced Eigenmodes

The effect of eigenmode proximity has been investigated for the system in figure
7.7 with the first eigenfrequency f; = 1.1054 Hz and the second eigenfrequency
f2 = 1.1554 Hz with different damping ratios (; = (» = 0.005, 0.01 and 0.05. This

has been made for different noise levels.
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Figure 7.11. Deviation and coefficient of variation of the mode shapes and the mass ratio for different

damping level (true values a*, 8*, u*).

As a measure of the proximity of the eigenmodes the following measure has been
introduced:

_2f1612(f2 — f1)a
=df 7

B (7.48)
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The dimensionless measure ensures that for a given system a unified measure for
the relative frequency resolution is obtained. The transfer function Hy(f) is shown
for B = 0.009, 0.22 and 0.88 in figure 7.12. It is seen that an increasing B for a
given damping level reveals the correct picture of the two resonance peaks. Note
that the theoretical separation of the resonance peaks will only be a fact if the

damping level is not too large compared with the density of the eigenfrequencies.
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Figure 7.12. Examples of closely spaced eigenmodes for different frequency resolutions of the transfer
function Ha(f). B=0.009, 0.22 and 0.88 for the damping ratio (=0.01.

The estimates were investigated for the case where no noise was present. It is
seen from figure 7.13 that the damping ratios cannot be estimated uniquely for
the largest damping ratio independent of B. The deviation and the coefficients
of variation are fluctuating with respect to the B with no trend. For the lower
damping ratio the estimates are seen to converge in some sense with respect to a
large B. The conclusion is that the transfer function data do not contain enough
information to separate closely spaced eigenmodes when they are closely spaced
with relatively large damping. In those cases it would have helped significantly if
the phase information of the transfer function had been applied, e.g. by a circle fit.

The level of variation and deviation were highest for the estimates of the eigenmodes
and the mass distribution as shown in figure 7.14. This may be explained by the
fact that the error function is most sensitive to these parameters in the frequency
range between the two resonance peaks where an antiresonance is hidden. Since the
number of points in this range were relatively few, this effect could be expected.
With respect to the estimates of the eigenfrequencies the largest deviation was
found to be about 0.1% for the highest level of damping with the poorest resolution.
Generally the magnitude of the estimated standard deviations corresponded to the
deviations.
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7.6.5 Conclusion on the Simulation Study

The performed simulation study has revealed some of the features and problems of a
global curvefit of a transfer function (or a response spectrum). The algorithm gives
perfect estimates when neither noise nor closely spaced modes exist provided that
the resolution has been chosen sufficiently high. However, when noise is present
the damping ratios become distorted with the distortion depending upon the ratio
between the damping level (the width of the peaks) and the frequency resolution
applied.

A small damping level will in general cause damping estimates which are more
sensitive to noise than estimates obtained for more damped systems. The effect
upon the eigenfrequencies and the other parameter estimates is reverse but less
significant which means that the most reliable estimates of eigenfrequencies and
mode shapes are obtained for lightly damped systems.

In the case of closely spaced eigenmodes the level of damping is of vital importance
with respect to the reliability of the estimates. As long as the damping is small
enough to keep the existence of two peaks visible it is mainly a matter of choosing
a sufficiently small frequency resolution but for increasing damping level the peaks
grow together and the effect of the resolution decreases. In those cases the estimates
cannot be estimated uniquely unless the phase information is also applied in the
curvefitting.

Beyond the above limitations the simulation study has shown how reliable the
different parameters can be estimated. The eigenfrequencies can be estimated very
accurately within much less that 1% while the damping ratios may be distorted
up to 50 — 100% and the mode shapes and mass ratios lie within 10%. Those
uncertainties correspond very well to those found in a wide range of references, see
e.g. the review in chapter 2.

7.7 Interpretation of Response Spectra

In the case where the transfer function cannot be evaluated a global fit or at least
some general interpretation of the response spectra is needed. This subject has not
been investigated in detail in this thesis but some aspects and existing knowhow
should be outlined.

In Bendat and Piersol [13] a very simple procedure of interpretation of the measured
response is suggested. The eigenfrequencies can be identified by considering the
phase spectra between the response at different locations. Assuming the mode
shapes to be real, an eigenfrequency will be characterized by a response being
in phase (0°) or out of phase (180°). Thus, the phase spectra of the reponse at
different points will reveal the eigenfrequencies. The estimated coherence functions
should confirm the phase spectra with high coherence at the eigenfrequencies. And
at a given eigenfrequency the relative mode shape of the ith eigenmode will be
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obtainable from the autospectrum:

(ij = ijz; (fs) (7.49)

Index j refers to the measuring location. To identify a mode shape the number of
measuring locations should at least have the same order as the mode to be estimated
Jj = 1. This means in practice that only modes of lower order can be identified.

A more sophisticated procedure of obtaining information of the mode shapes and
the eigenfrequencies from measured response spectra was proposed by Burke et al.
[24], [25]. The purpose of the procedure was to apply the hole analyzed frequency
range to obtain information about the mode shapes and furthermore be able to
separate closely spaced eigenmodes.

The measured response cross-spectrum of the response at two points can be written
as:

St (B = ) ¥, Bepm{ FYBon®sn i,j=1,2...m (7.50)
k=1 l=1
where the modal cross-spectrum is given by:
Suna(F) = H{OH(S) Y D 511, (HBuk®u (7.51)
u=1v=1

where n is the number of degrees of freedom and m is the number of measured
response locations. The shape vectors proportional to the mode shapes are now
introduced for the kth eigenmode as a function of frequency:

rice)(f) = VSzn(f) Pik (7.52)

It is defined as being permanently proportional to the mode shapes where the
proportional factor is frequency dependent and hence where also the magnitude of
the shape vector is frequency dependent. If this expression is introduced into (7.50)
the following expression is obtained:

Saiz; (£) = Y Y ma(Friey (Frin(f) (7.53)

k=1 I=1
where vxi(f) is the complex coherence function:
SZ z
pulf) = —zzld) (7.54

VS22 (£) S22 (f)
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This complex coherence will be equal to one in magnitude for k¥ = [ where k and
| refer to two measuring points. From (7.53) it is possible to estimate a num-
ber of shape vectors and coherence values from the measured response spectra for
1,7 = 1,2...m for the spectral density at each frequency in the frequency region
considered. In (7.53) n is replaced by rn since only a smaller number of modes are
assumed to give a contribution to the vibration at a given frequency:

rmm rn

Seiz; (F) =D > w(Hricey(Frriay(F) + ei(f) (7.55)

k=11=1

where €;;(f) is the error due to the truncated number of modes and noise in the
response spectrum, e.g. noise due to the wave excitation. The unknown shape
vectors and the complex coherencies can now for each frequency be estimated by
minimizing the error by a least square approach applying a general optimization
program.

log(Rxy(f))

f [He]
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Figure 7.15. The logarithm of the length of the estimated shape vectors R(;(f) for different modes (k)

versus frequency, obtained from measurement of a jacket platform, Burke [25].

The length of each estimated shape vector, R(x)(f) = >im; r?( k)( f) will be propor-
tional to the autospectrum of the modal response of the given mode. This means
that the eigenfrequency of each mode can be estimated by plotting the length of
the response shape vector over a certain frequency region. This feature of the shape
vector method makes it possible in principle to estimate the eigenfrequencies and
the mode shapes. An example of a plot of the length of the estimated shape vec-
tors obtained from response measurements of a jacket platform is shown in figure
7.15. In practice however the method has been reported to show some difficulties
in separating closely spaced eigenfrequencies, Burke et al. [25].
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7.8 Conclusion

The chapter has shown that a wide range of identification methods is available
making it possible to identify modal parameters from measured time series. Many
other methods exist especially if the response as well as the excitation is considered
to be known, see e.g. Allemang [26], Chen [27] and Blakely et al. [28]. A hole group
of methods based upon a formulation of the model in the Laplace domain have not
been considered even though they are also applied in practice, see e.g. Natke and

Schulze [29].

In this chapter the presented methods can be said to belong to of the following
three groups:

e Methods based upon the assumption that an eigenmode can be separated and
approximated with a single-degree-of-freedom system.

o Methods based upon a global fit taking several eigenmodes in a given frequency
region into account.

e The Ibrahim time domain method which provides a complete modal model of
a system.

Some of the methods could be bas