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Preface
Life can only be understood backwards; but it must be lived
forwards.
–Søren Kirkegaard

We cannot always predict how our lives turn out. Some call it fate. My life
shifted in a somewhat different direction ten years ago. I was completing
my second year in computer science and was looking for a summer time job
to earn some money. I had contacted IBM and other big companies and it
seemed like I would spend most of my vacation in one of these companies.
After lunch we were walking back to our group room when my good friend
and student collegue Dennis Kristensen said: "Why don’t you just apply for
this job?". He was referring to a small job poster from HP which had a small
research-unit within our university. In fact, they were located in the same
building as our group room. I got a job interview with Claus Skaaning who
was leading the unit and they hired me even though the job poster was old
and they had already found a person for that position. Half a year later,
the research unit became a new independent company, Dezide, and Claus
Skaaning took all us student programmers with him as partners in Dezide.
Before that date I had no idea that I would be writing a Ph.D. in artificial
intelligence. Here we are ten years later. Kierkegaard’s words make more
sense than ever.

This thesis is the main result of my three and a half years of Ph.D. study
on decision theoretic troubleshooting at the Machine Intelligence Group
here in Aalborg. The work began in August 2007 and ended in January
2011. It can also be seen as the culmination of no less than nine and a half
years of study in computer science here at our Department of Computer
Science in Aalborg, of which about four years have been mainly devoted
to decision theoretic troubleshooting. When I started university in 1999, it
was hard to imagine that it would end with this dissertation.

In this work I try to present decision theoretic troubleshooting as de-
tailed as possible, incorporating elements of previous, current and future
research. The new results stem from a series of articles that I have written
together with my supervisor Professor Finn V. Jensen:

1. Better Safe than Sorry—Optimal Troubleshooting through A* Search
with Efficiency-based Pruning (Ottosen and Jensen, 2008b)



2. A* Wars: The Fight for Improving A* Search for Troubleshooting with
Dependent Actions (Ottosen and Jensen, 2008a)

3. The Cost of Troubleshooting Cost Clusters with Inside Information
(Ottosen and Jensen, 2010)

4. When to Test? Troubleshooting with Postponed System Test (Ottosen
and Jensen, 2011)

These papers contain a mix of emperical and theoretical results: (1) is purely
experimental, (3) is purely theoretical, whereas (2) and (4) falls in both cat-
egories. With reference to Pasteur’s Quadrant, I believe we have found a
good balance between theoretical results and algorithms of practical value.
Articles (1) and (2) form the basis of Chapter 5, whereas articles (3) and (4)
correponds to Chapter 6 and 7, respectively.

In this thesis you will also find a few results and discussions not pub-
lished before because they were either not too relevant to the above papers
or because they constitute work in progress. However, I believe these re-
sults and discussions still carry some insights that are of theoretical and
practical value to other people in research as well as in industry.
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Chapter 1

Introduction

Detection is, or ought to be, an exact science, and should be
treated in the same cold and unemotional manner.
–Sherlock Holmes

1.1 What is Troubleshooting?

This thesis is about decision theoretic troubleshooting (or simply trouble-
shooting) which in many ways can be seen as an exact science for "detec-
tion". However, at the core of decision theoretic troubleshooting is not only
the goal of arriving at the true diagnosis or conclusion of a given problem,
but also a desire to do so as efficiently as possible. In layman’s terms, the
faster (or cheaper) we arrive at the proper conclusion, the better. But deci-
sion theoretic troubleshooting goes further than that because it establishes
a principled way to solve the problem while concurrently narrowing down
the potential causes of the problem. As such, its detection and problem
solving mixed together in the (ideally) most optimal manner. In modern
terms this is called decision theory.

When we build a computer system based on decision theory, it often
takes the form of an expert system which gives advice to humans in cer-
tain contexts (e.g. to advice a doctor that it would be most beneficial to
make a CT-scan of the patient) or which semi-automates some task that is
normally carried out manually by humans (e.g. to provide a customer with
technical support about his printer over the phone). We typically create the
system as a synthesis between human expert knowledge and the enormous
computational power of a modern computer. This fusion is enabled by an
underlying mathematical model, and if this model is sound, the resulting
system can potentially reason far better than any human.

An example of a very successful expert system is given in Figure 1.1
which shows an intelligent guide for printer troubleshooting. The aim was
to reduce service costs as well as improve customer satisfaction. The printer

1



2 Chapter 1. Introduction

Figure 1.1: Screenshot of HP’s self-service printer troubleshooter which
helps users to fix the problem on their own (Dezide, 2010).

is capable of signaling certain error codes to the computer which then starts
up the troubleshooter. The troubleshooter may first automatically collect
information about the system to improve the accuracy of the pending repair
process, and in certain circumstances (if the problem is software related) it
may even fix the problem automatically. The troubleshooter automatically
sends information about successful troubleshooting sessions to a central
server which then uses these sessions to update the accuracy of the model.
In turn, the new models on the server are automatically downloaded to the
user’s computer. In this manner, the system learns over time and users
implicitly help each other to improve the performance of the system.
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Let us briefly discuss the elements of a troubleshooting model (we shall
return to this more formally in Chapter 3). Basically we describe a prob-
lem and its solution via three components: (a) causes of the problem, (b)
observations which may narrow down the potential causes, and (c) repair
actions which we may perform to fix the problem. For each observation
or action we also associate a cost which describes the resources required
to make the observation or perform the action. As a final component, the
model describes the probabilistic relationship of the domain via some form
of probabilistic model over causes, observations and actions.

1.2 Why Troubleshooting?

We can identify at least three reasons for conducting a formal study of trou-
bleshooting:

1. Problem solving tasks take up huge amounts of work hours world-
wide. For some people, it is their job, for other people it is a constant
annoyance hindering their real job. Either way, there is an enormous
potential for saving time, money and frustration.

2. It enables a structured approach to problem solving, in which we build
and maintain knowledge bases on a computer. We capture our cur-
rent knowledge in a computer model, which we refine over time. In
turn, these knowledge bases put expert knowledge in the hands of
non-experts, greatly enhancing their potential for problem solving.

3. Problem solving tasks are difficult and computers are far better than
humans for optimizing these tasks. Computers can do billions of cal-
culations per second, and with an appropriate mathematical model,
the computer can potentially perform far better reasoning than any
human.

To clarify case (1) above, we consider the following situations. If we think
about it for a moment, we realize that most of us do problem solving on
a daily basis. Programmers debug their programs and fiddle with instal-
lation of dependencies, utilities and servers. Secretaries try to make the
word processor do as they like—for some reason the margin is printed in-
correctly. Factory workers try to repair or calibrate a complicated machine
that malfunctions. And Ph.D.-students try to figure out why their supervi-
sor’s Latex installation does not allow him to use certain symbols. The list
is practically endless.

To elaborate on case (2) above, we give these considerations. When we
try to solve all these daily problems, it is characteristic that we are not ex-
perts in solving the particular problem. We just need to make the device or
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system work again, so we can get on with our job. As we gain experience,
we can solve the problems faster, but because we tend to use ad hoc ap-
proaches like "trial and error", learning is a slow process. We tend to forget
solutions over time and as a result, we end up starting from scratch each
time. What is really needed is a structured approach where previous efforts
are saved, reused and improved upon.

In general we can say that the simpler the problem is, the easier it is
to make an expert system that guides inexperienced people to a solution,
and the more complicated the problem is, the larger is the potential benefits
of making an expert system. However, regardless of how complicated the
domain is, there is a great potential for optimizing problem solving tasks
by structuring, reusing and improving existing knowledge. That is why we
need to study troubleshooting.

1.3 Troubleshooting and Simplicity

Expert systems come in many flavours and for a variety of domains. How-
ever, we may define the common design goals of expert systems as follows:

The aim of any expert system is to establish a balance between
user knowledge and data on one side, and model accuracy and
computational efficiency on the other side.

This definition implies that there is no perfect expert system for all possible
scenarios. We must always find a compromise, striking a balance between
how difficult is to build and maintain the system compared to how accu-
rately the underlying (mathematical) model describes the domain and how
tractable the model is.

In decision theoretic troubleshooting we deliberately choose to use fairly
simple models such that it is technically possible and economically afford-
able for domain experts to build and maintain these models. If expert sys-
tems should ever reach a wider audience, we see this simplicity as a pre-
requisite. In general we might summarize the benefits of this approach as
follows:

1. Small parameter space: Any model depends on parameters, and
when these parameters must be specified by a domain expert, a sim-
pler model usually yields better estimates of these parameters. We
often formulate this as easier knowledge acquisition.

2. Computational efficiency: In many cases, the expert system must de-
liver real-time answers. (For example, this is the case with the printer
troubleshooter in Figure 1.1.) A complicated model may not admit
good approximations in real-time.
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3. Model encapsulation: A simple model may be completely shielded
by a tool, which maximizes the number of potential domain experts
that can use the system. For troubleshooting models, such tools have
existed for a decade (Skaanning et al., 2000). For other domains in
artificial intelligence, such tools are slowly emerging (see for example
(ExpertMaker, 2010)).

4. Model validation and tuning: Domain experts often desire to vali-
date that the model perform in accordance with their expectations (to
programmers this would be similar to unit testing a piece of code).
A complicated model makes it harder to derive answers to questions
like "why is this step suggested at this point?". Furthermore, the do-
main expert might want to tell the system "the order of these two
steps should be reversed, please adjust the parameters of the model
for me".

Knowledge acquisition is a very real problem for complicated models. For
troubleshooting models, the problem is quite manageable (Skaanning et al.,
1999). For probabilistic models, people have suggested a number of ways
to reduce the number parameters while introducing as few new assump-
tions as possible. Examples include the noisy OR gates (Pearl, 1986; Srini-
vas, 1993), and more recently the so-called nonimpeding noisy-AND tree
(Xiang, 2010).

Of course, a simple model can also be a disadvantage in certain situa-
tions. We can think of at least two potential disadvantages:

1. The assumptions of the model are unreasonable. The effect of this
is that the simple model leads to incorrect conclusions. On a case by
case basis one might determine that certain assumptions are impor-
tant to remove while others can be argued not to affect the perfor-
mance of the system significantly.

2. Plenty of data is available to learn a detailed model. If this is the
case, the model may be learned without human intervention, and ad-
vantage (1) and (3) above disappears somewhat for the simple model.

As such, we have two main forces that pull in opposite directions. The
more complicated the model is, the better it can handle difficult scenarios,
but the harder it is to specify correct parameters. On the other hand, the
simpler the model, the easier it is to specify the parameters correctly, but
the model will be appropriate for fewer scenarios. What is better: a correct
model with inaccurate parameters, or an incorrect model with accurate pa-
rameters? There is no universal principle we can apply for all situations.
However, Einstein’s maxim:
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"Make everything as simple as possible, but not simpler."

makes a good guideline. For a given domain, we should always seek to
have a model that carries all the assumptions that are reasonable for the
domain, but no other assumptions. If the model does have assumptions
that are not inherent in the domain, we must justify that either (a) these
assumptions cannot affect the accuracy of the model significantly, or (b)
any model without these assumptions has other significant drawbacks with
consequences that are worse (or equally bad).

Even though we have called troubleshooting models for simple, they are,
however, among the most sophisticated models for a variety of applica-
tions. This is partly due to the fact that they utilize a sound probabilis-
tic basis, and partly because many real-world situations fit the various as-
sumptions quite well. Furthermore, real-time scenarios often preclude the
use of even more advanced models. And despite their simplicity, most do-
mains require use of troubleshooting models where optimal solutions are
intractable to compute.

Already today, some of the techniques you will find in this thesis are
being used in applications as diverse as troubleshooting of printers, cus-
tomer self-service for internet service providers, cost-sensitive diagnosis in
distributed systems (Rish et al., 2005) and repair of complicated equipment
like windmills. With this thesis we hope to widen the range of applications
of troubleshooting even further.

1.4 Thesis Overview

• In Chapter 2 on page 9, we shall deal mainly with probability theory
and Bayesian networks. These two concepts provide a sound basis
on which to describe troubleshooting models that can cope with un-
certainties in a domain.

• In Chapter 3 on page 25 we review modern decision theory, includ-
ing decision trees. We discuss several aspects including decision the-
oretic troubleshooting and various forms of influence diagrams. This
comparison motivates the design choices made in decision theoretic
troubleshooting.

• In Chapter 4 on page 59 we take an in-depth look at classical solution
methods like depth-first search, A∗ and AO∗ . We discuss the com-
plexity that these algorithms have for general troubleshooting prob-
lems.

• In Chapter 5 on page 83 the topic is troubleshooting with dependent
actions. The key problem is that more than one action may repair
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the same fault, and we must try to schedule actions under this as-
sumption. We review heuristics for this problem and discuss several
theoretical properties of solution methods. The chapter also describes
empirical evaluations of these solution methods.

• In Chapter 6 on page 113 we take a somewhat theoretical look at trou-
bleshooting with cost clusters. The idea is to group actions together
if they share the same enabling work that must be carried out be-
fore any of the actions in the cluster can be performed. The major-
ity of the chapter is devoted to prove optimality of existing and new
polynomial-time algorithms.

• Finally, in Chapter 7 on page 135 we investigate new heuristics for
scheduling actions when the system test cost is non-trivial. The heuris-
tics are all motivated by theoretical considerations. We describe naive,
but easy-to-implement, solution methods and use them to make an
empirical evaluation of the heuristics.





Chapter 2

Probability Theory and Bayesian Networks

Probability is not really about numbers, it is about the structure
of reasoning.
–Glenn Shafer

In solving a problem of this sort, the grand thing is to be able to
reason backwards. That is a very useful accomplishment, and a
very easy one, but people do not practise it much.
–Sherlock Holmes

In decision theoretical troubleshooting we are faced with a problem that
needs to be solved by applying solution actions and by posing questions
that gather information about the problem. The premise is that after each
action we can observe whether the problem was solved. The domain is
assumed to be uncertain, that is, solution actions may be imperfect (fail to
repair a component) and information might be non-conclusive.

In this chapter we shall therefore review the basics of probability theory
and Bayesian networks. Together, these two concepts provide a sound and
efficient framework for reasoning and hypothetizing about an uncertain
world before and after observations have been made.

2.1 Uncertain Worlds

As researchers we seek mathematically sound theories that can describe
entities and their relationship in our surrounding world. The surrounding
world is often highly uncertain, that is, we can not be certain of the true
past, current, or future state of the world. This uncertainty can stem from
many sources, for example:

1. An action has non-deterministic consequences, e.g., only 8 out of 10
cancer patients respond positively to a certain chemotherapy.

9



10 Chapter 2. Probability Theory and Bayesian Networks

2. The world is only partially observable, e.g., it might be economically
infeasible or simply impossible with current technology to observe
the number of cod in the North Sea.

These two examples illustrate that a common source of uncertainty is
abstraction. In principle, we expect that it will be possible to determine
exactly if a cancer treatment works for a given patient, we just do not have
the technological and medical insights currently. We are therefore forced
to describe the world to our best ability. The second example is similar:
in principle—given enough resources—we could count all the cod in the
North Sea. But there are also cases where the uncertainty can never be re-
moved by a deeper understanding of the problem. A typical example is
card games in which we can never observe the cards on the opponents’
hands. Therefore uncertainty is a fundamental concept that we cannot
avoid dealing with. And therefore we must demand from any mathemati-
cal theory (in this context) that it handles uncertainty rigorously if it is to be
useful for anything except the most trivial problems.

2.2 Basic Probability Theory

The most successful theory in artificial intelligence for describing an uncer-
tain world is probability theory. The first part in our description of an un-
certain world is to describe the entities that we wish to reason about. These
entities may be described via propositions like "it will rain tomorrow at 12
a.m." or "replacing the battery will enable the car to start". The second part
is then to assign a probability (or degree of belief) to these propositions
stating one’s subjective opinion or statistical knowledge. The first part can
be seen as the qualitative aspect telling us what we wish to reason about, and
the second part can be seen as a quantitative aspect describing our current
belief about the first part.

Formally, we describe a particular entity X by means of a (discrete)
sample space ΩX which is an exhaustive and mutually exclusive set of
states {ω1 , ω2 , . . . , ωn} that X can be in. When the states of the sample space
are exhaustive and mutually exclusive, we are sure that X is in exactly one
state ω ∈ ΩX. Formulated slightly differently, if we were to inspect X to de-
termine its true state, that state would be described by exactly one ω ∈ ΩX,
thus leaving no ambiguity about the true state of X. We can then describe
the uncertainty about X by a function

PX : P(ΩX) 7→ [0, 1]

mapping from subsets of ΩX to real numbers on the unit-interval where
each subset E ∈ P(ΩX) is referred to as an event. Specifically, we are in-
terested in a certain class of such functions called probability functions (or
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probability distributions) which are characterized by the following axioms
(Kolmogorov, 1950):

Axiom 1 (Non-negativity).
For all E ∈ P(ΩX),

PX(E) ≥ 0 . (2.1)

Axiom 2 (Normalization).

PX(ΩX) = 1 . (2.2)

Axiom 3 (Finite additivity).
For any sequence of disjoint events E1 ,E2 , . . . ,En ∈ P(ΩX),

PX

(
n⋃
i=1

Ei

)
=

n∑
i=1

PX (Ei) . (2.3)

The triple 〈ΩX,P(ΩX),PX〉 is then called a probability space for X. From
these axioms it readily follows for events E and E c = ΩX \ E (the comple-
ment event) that

0 ≤ PX(E) ≤ 1, PX(∅) = 0, PX(E) = 1− PX(E c) . (2.4)

Furthermore, if E1 ⊂ E2, then

PX(E1) ≤ PX(E2) and PX(E2 \ E1) = PX(E2)− PX(E1) . (2.5)

Since the elementary events {ω} (with ω ∈ ΩX) partition the sample space
into mutually exclusive events, then∑

ω∈ΩX

PX({ω}) = PX(ΩX) = 1 . (2.6)

If we give a probability 1 to an event, we say the event is certain, and if we
give a probability of 0 to an event, we say the event is impossible.

Before we continue, let us discuss the appropriateness of probability the-
ory. The set of axioms above may appear somewhat arbitrary. However, it
turns out that they follow from a more intuitive set of rules. Imagine that
we are trying to state the rules that we want a reasoning computer to abide
to. Then assume we come up with the following rules (Cox, 1979):

1. The degree of belief of a proposition can be represented by a real num-
ber.

2. The extremes of this scale must be compatible with logic.
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3. An infinitesimal increase in the degree of belief of proposition Y given
new evidence implies an infinitesimal decrease in the degree of belief
for the proposition "not Y".

4. If conclusions can be reached in more than one way, then every pos-
sible way must lead to the same degree of belief.

5. Where possible, all the available evidence should be used in evalu-
ating the degree of belief in a proposition. We may not selectively
ignore any prior knowledge.

6. Equivalent propositions should have the same degree of belief. That
is, if we have the same state of knowledge about two propositions,
except perhaps for the labelling of the propositions, then we must
have the same degree of belief in both.

It is quite astonishing to learn that the only mathematical theory, which is
consistent with the above rules, is probability theory. A good description
of this approach can be found in (Cheeseman, 1985), and in particular in
(Jaynes, 2003).

To make notation a bit easier we shall reconciliate the entity X and its
associated sample space ΩX into a variable (or chance node) X with state
space sp(X ) = ΩX. When X is a variable, we allow the notation x ∈ X
for x ∈ sp(X ). We also drop the subscript X from PX and write P(X )
for the table that determines a probability distribution over variable X . In
what follows we let X , Y , and Z be (non-empty) sets of variables where
a probability distribution is defined over the cartesian product space of
the set of variables. E.g., if X = {X1, X2, . . . , Xn}, then P(X ) is a multi-
dimensional table defined over the space sp(X ) = sp(X1 ) × sp(X2 ) × · · · ×
sp(Xn) that determines a joint probability distribution over X . (We often
call a probability distribution simply for a distribution.) Again, we allow
the notation x ∈ X for x ∈ sp(X ). We call the elementary event x ∈ X for a
configuration of the variables in X , and P(x) for the (point) probability of
x, corresponding to the entry in table P(X ) indexed by x.

If we have a joint distribution P(X ) we may find the joint distribution
of any (non-empty) subset of variables Y ⊂ X by means of maginalization

P(Y) =
∑

x∈X\Y

P(Y, x) (2.7)

where we sum out all irrelevant variables. If X \ Y = {X1 , . . . ,Xm}, the
above notation is shorthand for

P(Y) =
∑

x1∈X1

· · ·
∑

xm∈Xm

P(Y, x1 , . . . , xm) . (2.8)
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Formulas involving probability tables will be meaningless until we define
what it means to apply operations like sum, multiplication and equality on
them. The general convention is to interpret all such formulas on the level
of particular configurations, that is, Equation 2.8 is defined to mean

for all y ∈ Y, P(y) =
∑

x∈X\Y

P(y, x) (2.9)

and as such the operations we can apply in this "calculus of tables" are
exactly the operations of real numbers (with associativity and commutativ-
ity). We therefore also allow expressions such as P(X ) > 0 which simply
means that for all x ∈ X ,P(x) > 0.

To describe the world after certain events have occurred, we define the
conditional probability of X given Y , X ∩ Y = ∅, as

P(X |Y) =
P(X ,Y)

P(Y)
whenever P(y) > 0 . (2.10)

It can then be shown that for any y ∈ Y such that P(y) > 0,P(X |y)
also satisfies the three axioms of a probability distribution. We also de-
fine P(X |∅) ≡ P(X ). To distinguish between the world before and after
certain events have occurred, it is customary to call P(x) for a prior proba-
bility (or unconditional probability) and P(x |y) for a posterior probabil-
ity. Similar terminology applies to probability distributions (or probability
tables). Conditional probabilities are (rightfully) seen as a more fundamen-
tal concept than unconditional probabilities. This becomes clear when we
try to decide what P(Rain) should be, that is, the probability that it will
rain tomorrow at 12 a.m. If we are in Denmark, it might be reasonable
to take P(Rain) = 0.2 whereas in Sahara it would be reasonable to take
P(Rain) = 0.000001. The example illustrates that we often implicitly spec-
ify an unconditional probability which is only valid in a certain context.
Therefore, we can often view the unconditional probability as an abstrac-
tion, summarizing what we think about a proposition given everything else
that we know and which we do not want to model explicitly.

From the definition of conditional probability, we immediately get that
the joint distribution P(X ,Y) can be found via the fundamental rule

P(X ,Y) = P(X |Y) · P(Y) = P(Y |X ) · P(X ) . (2.11)

This generalizes to the so-called chain rule; e.g. for X = {X1 , . . . ,Xn} we
get

P(X ) = P(Xn |X1 , . . . ,Xn−1 ) · · ·P(X2 |X1 ) · P(X1 ) (2.12)

as one of the n! different expansions of P(X ). From Equation 2.11 it is then
trivial to derive the celebrated Bayes’ rule
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P(X |Y) =
P(Y |X ) · P(X )

P(Y)
whenever P(y) > 0 (2.13)

which states how one should update one’s belief inX given that one has re-
ceived evidence y. The factor P(Y |X ) is also called the likelihood L(X |Y)
of X given Y because it tells us something about how likely we are to ob-
serve P(X |Y). Thus, in a somewhat informal manner we may write Bayes’
rule as

Posterior = α · Likelihood · Prior (2.14)

where α = P(y)−1 is a normalization constant. We can also provide more
general versions of the above formulas as they can always be understood
to apply in some larger contextZ , effectively defining the assumptions that
are taken as common knowledge (cf. the P(Rain) example). For example,
the law of total probability

P(X ) =
∑
y∈Y

P(X |y) · P(y) (2.15)

states that the belief over X is the weighted sum over the beliefs in all the
distinct ways that X may be realized. Adding a context Z , the formula
reads

P(X |Z) =
∑
y∈Y

P(X |y,Z) · P(y |Z) (2.16)

which in the case of Bayes’ rule yields the general version

P(X |Y,Z) =
P(Y |X ,Z) · P(X |Z)∑

x∈X
P(Y |x,Z) · P(x |Z)

whenever P(y |z) > 0 . (2.17)

To illustrate the power and often unintuitive results (to the layman, at
least) of Bayes’ rule, we give a small example.

Example 1 (Jensen and Nielsen (2007)). Imagine that the police is stopping
drivers under the suspicion of being influenced by alcohol. To test drivers they
perform a blood test. This scenario can be modelled by a world with two variables:
Test? describing the test with states "positive" and "negative", and a variable
Drunk? describing the whether the driver is too drunk with states "yes" and "no".
The interesting questions for the police is actually the probability

P(Drunk? = yes |Test? = positive)

because they want to make sure they do not raise charges against an innocent driver
(or at least minimize the likelihood of it).
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Experience tells the police that 20% of the drivers whom they stop are in fact
too drunk. This means P(Drunk? = yes) = 0.2. The test is like most tests not
perfect, and the laboratory tells the police that it has the following properties:

Drunk?=yes Drunk?=no
Test?=yes 0.99 0.001
Test?=no 0.01 0.999

which corresponds to P(Test? |Drunk?). The number 0.01 is called the false
negatives rate of the test, and the number 0.001 is called the false positives rate
of the test. To apply Bayes’ rule we either need P(Test?) or to apply normalization.
We use Equation 2.15 and find P(Test? = positive) ≈ 0.1988. Then Bayes’ rule
yields

P(Drunk? = yes |Test? = positive) ≈ 0.99 · 0.2
0.1988

≈ 0.996 .

Now imagine that the police changes their strategy such that all drivers are stopped,
that is, not just those under suspicion. The police estimates that in this context
P(Drunk? = yes) = 0.001. This implies a new value P(Test? = positive) ≈
0.00199, and Bayes’ rule gives

P(Drunk? = yes |Test? = positive) ≈ 0.99 · 0.001

0.00199
≈ 0.497 .

So in this scenario, more than half of all people charged with the crime are actually
innocent (!). This also illustrates the importance of considering prior probabilities
when designing screening for cancer and other rare diseases.

Finally, we shall mention the following measure of distance between
probability distributions. Given two probability distributions P1(X ) and
P2(X ), we may measure the distance between them by employing theKull-
back-Leibler divergence (or simply KL-divergence):

DKL(P1 | |P2) =
∑
x∈X

P1(x) · lg P1(x)

P2(x)
(2.18)

where we require that P1(x) > 0 implies P2(x) > 0 (0/0 is thus interpreted
as 0). (lg x denotes the binary logarithm of x.) Notice that KL-divergence
is not a symmetric distance function. The KL-divergence is widely used
in sensitivity analysis of Bayesian network parameters (see e.g., (Renooij,
2010)).
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2.3 Conditional Independence

As we have seen, the joint probability distribution P(X ) can tell us any
probabilistic relationship between any two subsets of variables Y,Z ⊂ X
(with Y ∩ Z = ∅) from which we can make powerful predictions about the
world described by P(X ). However, representing or specifying P(X ) is
quite often impossible as the size of P(X ) grows exponentially in the number
of variables in X . Formulas like the chain rule (Equation 2.12) does not
remedy this problem as the first factor has the same size as P(X ).

In probability theory we use the notion of independence and condi-
tional independence to capture how probabilistic relationships between
variables in X should change in response to new facts. The following ex-
ample illustrates one aspect.

Example 2 (The wet grass conundrum). Seeing clouds in the sky (Clouds?)
will influence our belief in whether it rains (Rain?) which in turn will influence
our belief in whether the grass is wet (Wet?). Illustrated as a causal chain (in
which the direction goes from cause to effect) the scenario looks like

Clouds?→ Rain?→Wet? . (2.19)

However, if we first observe that it actually rains, the additional observation that
the sky is cloudy does not change our belief in the grass being wet. Conversely,
knowing that it rains, then observing that the grass is wet does not change our
belief in the sky being cloudy. Therefore we say variables Clouds? and Wet? are
conditionally independent given Rain?.

The following definition captures independencies in terms of probabil-
ity distributions and shall be our main mathematical device for simplifying
joint distributions.

Definition 1 (Pearl (1988)). Let U be a finite set of variables, let P(U) be a
probability distribution over U , and let X ,Y and Z stand for any three subsets of
variables in U . X and Y are said to be conditionally independent given Z if

P(X |Y,Z) = P(X |Z) whenever P(y, z) > 0 . (2.20)

If the set Z is empty we talk merely about independence (or marginal
independence or absolute independence). For example, the chain rule in
Equation 2.12 simply becomes P(X ) =

∏n
i P(Xi) when all variables Xi are

pairwise independent. We write these properties succinctly as

(X⊥⊥Y |Z) ∼ conditional independence
(X⊥⊥Y) ∼ marginal independence

noting that they should always be understood in the context of a particular
distribution P(U).
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From the definition of conditional independence we can derive a use-
ful, characterizing (axiomatic) set of rules without reference to any concrete
numerical representation of P(U). These rules were originally derived in
(Dawid, 1979), but given here in the form of (Pearl, 1988).

Theorem 1. Let X ,Y,Z, and W be four disjoint subsets of variables from U .
Then the conditional independence relation (X⊥⊥Y |Z) with reference to a proba-
bilistic model P(U) satisfies

Symmetry: (X⊥⊥Y |Z) =⇒ (Y⊥⊥X |Z) .
Decomposition: (X⊥⊥Y,W |Z) =⇒ (X⊥⊥Y |Z) .
Weak union: (X⊥⊥Y,W |Z) =⇒ (X⊥⊥Y |Z,W) .
Contraction: (X⊥⊥Y |Z) and (X⊥⊥W |Z,Y) =⇒ (X⊥⊥Y,W |Z) .
Intersection: If P(U) is strictly positive

(X⊥⊥Y |Z,W) and (X⊥⊥W |Z,Y) =⇒ (X⊥⊥Y,W |Z) .

These rules are also known as the graphoid axioms because they have
been shown to capture the notion of informational relevance in a wide va-
riety of interpretations (Pearl, 2009). The intuition behind these axioms are
as follows:

• Symmetry: given that Z is known, if Y is irrelevant to X , then X is
irrelevant Y (cf. Example 2).

• Decomposition: if two combined pieces of information are consid-
ered irrelevant to X , then each separate item is irrelevant as well.

• Weak union: by learning the irrelevant information W we cannot
make Y relevant to X .

• Contraction: if (a) we learn about irrelevant information Y to X , and
(b) W is irrelevant to X in this new context, then W was also irrele-
vant to X before we observed Y .

• Intersection: if (a) Y is irrelevant to X when we knowW , and (b)W
is irrelevant to X when we know Y , then neither Y norW (nor their
combination) is relevant to X .

In the next section we shall describe a graphical criterion that mirrors these
rules for directed acyclic graphs. Since the rest of this thesis contains many
references to graphs, we shall briefly review some terminology.

A graph G is a pair (V,E) where V is the set of vertices (or nodes) and E
is a set ofedges (or links). Unless explicitly mentioned, we deal exclusively
with directed graphs where an edge (or link) (v, u) ∈ E starts at the vertex
v and ends at the vertex u. Similarly, we always assume that the graphs
are connected. A path in a graph is a sequence of nodes 〈v1 , v2 , . . . , vk 〉
where each adjacent pair of vertices corresponds to an edge in the graph. A
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node v is reachable from a node u if there is a path from u to v. For a node
v ∈ V, pa(v) is the set of parents (or the set of predecessors pred(v)), ch(v)
is the set of children (or successors succ(v)), anc(v) is the set of ancestors
consisting of all nodes from which v is reachable, and desc(v) is the set
of descendants consisting of all nodes reachable from v. A graph has a
cycle if there is a path starting and ending in the same node, and a graph
without cycles is called acyclic If one node v has no parents, and all other
nodes have exactly one parent, the graph is called a (directed) tree with
root v, and a path between two nodes v and u (u reachable from v), denoted
path(v, u), is unique. The set of nodes with no children in a graph G is
called the leaves of G, denoted L(G). We may also talk about the leaves
reachable from a node v, denoted L(v). An edge or node may have a label
(or other information) associated with it; for example, the label of a node
v is denoted label(v). For trees, we shall also denote the labels of all edges
between ancestors of a node v by past(v) or sometimes simply as εv because
the set of labels are interpreted as a set of evidence. We may identify a
particular successor node by the label on the edge leading to that node, e.g.,
succ(Q = q) identifies the successor found by following the edge labelled
with "variable Q being in state q". Often, we do not distinguish between a
node v and the entity we have attached to the node; for example, we may
describe a graph over variables inX thereby letting X ∈ X correspond both
to the variable and to the node X in the graph (depending on the context).

2.4 Bayesian Networks

Even though conditional independence allows us to simplify joint distri-
butions P(X ) over a domain X , tables of numbers are inherently unsuited
for humans as well as computers. To counter this problem, Bayesian net-
works (Pearl, 1985) combine a directed acyclic graph (or DAG), stating the
conditional independencies between variables, with local probability dis-
tributions attached to the nodes of the graph. In total there are three main
reasons why Bayesian networks are useful:

1. They provide a human-friendly way of expressing assumptions about
conditional independencies and cause-effect relationships between
variables in the domain X .

2. They provide an efficient representation of joint probability distribu-
tions by representing P(X ) in a factorized manner that avoids storing
P(X ) explicitly.

3. They provide a basis from which we can efficiently calculate any mar-
ginal or conditional distribution attainable from P(X ).
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Winter

Sprinkler Rain

WetGrass

Cloudy

SlipperyRoad

Climate

Figure 2.1: Bayesian network structure for Example 3. The structure shows
the cause-effect relationship between the six variables.

Before we discuss how these properties are realized, we shall first give a
formal definition of the networks. Although Bayesian networks predates
(Pearl, 1988), we choose a mathematically simpler definition inspired by
the one given in Darwiche (2009).

Definition 2. Let X be a set of variables describing some domain. Then a
Bayesian network BN is a pair (G,Θ) where

• G is a directed acyclic graph over the variables in X such that each variable
corresponds to a node in G, called the network structure.

• Θ is a set of conditional probability tables of the form P(X |pa(X )), one for
each variable X in X , called the network parametrization.

The following example extends Example 2.

Example 3 (More on wet grass). Consider the Bayesian network structure in
Figure 2.1 (which is a slight extension of a network from Darwiche (2009)). The
variables should be self-explanatory. For example, the variable Winter would be
binary with states "yes" and "no", whereas Climate might have states "tropical,
desert, temperate" etc. To complete the specification of the Bayesian network, we
need to specify the following seven (conditional) probability tables:

P(Winter) P(Cloudy)
P(Climate) P(Sprinkler |Winter)
P(Rain |Winter ,Cloudy ,Climate) P(WetGrass |Sprinkler ,Rain)
P(SlipperyRoad |Rain)

We can see it is quite straightforward to identify the structure of the required tables
when inspecting the graph.
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The above example does not specify the particular numbers for the seven
tables. These numbers can be provided by experts in the domain or com-
puted from statistical data (or a combination thereof). If we have no infor-
mation about a particular variable, we may assign a uniform probability
table to it. As long as we are dealing with discrete variables, this is a sound
procedure for stating ignorance.

From the network structure in Figure 2.1 we can directly see how the
parents of a variable X are always relevant for X. In other words, X is usu-
ally not independent from pa(X ), that is, P(X ) 6= P(X |pa(X )). However,
we are also interested in knowing which variables that are irrelevant to X,
because this can simplify inference in the network as well as facilitate a
discussion about the correctness or appropriateness of the structure of the
network. To this end we introduce the following (now famous) graphical
criterion.

Definition 3 (Pearl (1988)). If X 6= ∅,Y 6= ∅, and Z are three disjoint subsets of
nodes in a DAG G, then Z is said to d-separate X from Y , denoted X⊥Y |Z , if
along every path between a node in X and a node in Y there is a node w satisfying
one of the following two conditions:

(a) w has a converging connection and none of w or its descendants are in Z , or

(b) w does not have a converging connection and w is in Z .

Note that we also say that X and Y are d-separated given Z which makes
the notation X⊥Y |Z more intuitive. If X and Y are not d-separated given
Z , we say that they are d-connected and write this X 6⊥Y |Z . Note that a
node w is always d-connected to all nodes in pa(w) ∪ ch(w).

Example 4 (D-separation). If we consider the DAG in Figure 2.1, we can infer
the following d-separation properties (among others). These illustrate the three
types of connections that we may encounter:

Serial connection Winter 6⊥WetGrass|∅ (case (b))
Diverging connection WetGrass 6⊥SlipperyRoad|∅ (case (b))
Converging connection Winter⊥Climate|∅ (case (a))

For non-empty Z we get

Serial connection Winter⊥WetGrass|Sprinkler ,Rain (case (b))
Diverging connection WetGrass⊥SlipperyRoad|Rain (case (b))
Converging connection Winter 6⊥Climate|Rain (case (a))

We can see that serial and diverging connections implies d-connection until there
is a set of variables Z that blocks the path whereas, conversely, the converging con-
nections d-separate until we condition on a set of variables Z . This latter property
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is closely connected to the so-calledexplaining away effect: if we know nothing of
Rain, then learning about Winter cannot change our belief in Climate (and vice
versa)—however, if we know Rain = ”no”, then learning that Winter = ”no”
will make us more confident that Climate = ”dessert” (and vice versa). The ex-
plaining away effect is discussed in detail in (Wellman and Henrion, 1994).

We are now ready to discuss how a Bayesian network simplifies the joint
distribution P(X ).

Definition 4. Let BN be a Bayesian network over a set of variables X . Then the
joint distribution

P(X ) =
∏
X∈X

P(X |pa(X )) (2.21)

is called the distribution induced by BN.

One can prove that Equation 2.21 defines a unique probability destribution,
and so the definition is sound. Equation 2.21 is also called the chain rule for
Bayesian networks as it is similar to the general chain rule (Equation 2.12)
taking into account conditional independencies implied by the Bayesian
network structure.

We have now discussed Bayesian networks, their induced distributions
and the d-separation properties induced by their network structure. In an-
other context we have discussed conditional independencies and how they
relate to joint probability distributions. The following theorem provides a
remarkable relationship between these two contexts.

Theorem 2 (Jensen and Nielsen (2007)). Let BN = (G,Θ) be a Bayesian net-
work over a set of variables U , and let P(U) be the distribution induced by BN.
Then any d-separation property X⊥Y |Z in G implies (X⊥⊥Y |Z) in P(U).

The reverse statement is not true in general and so P(U) may contain con-
ditional independencies that cannot be derived from the DAG structure.
For example, take any network structure (with at least 3 variables) and as-
sign a uniform conditional probability table to all nodes; then every pair
of variables will be conditionally independent given a third. Nevertheless,
the theorem implies that we safely can use d-separation to derive indepen-
dence statements about the induced distribution P(U). We can also see
how Definition 4 was formed: apply the normal chain rule while choosing
the variables on the left of | in reverse topological ordering; then the par-
ents of a variable X d-separates X from all other variables on the right of
|.

We have at times said that an edge in the network structure implied a
cause-effect relationship between parent and child. If this is true for all
edges, it is common to call the Bayesian network for a causal network.
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Spam

Sex Bank Account Free Spam

SexBankAccountFree

Figure 2.2: Two Bayesian network structures for spam filtering (Example
5). All variables are binary.

However, it is not a requirement that edges imply causality for the Bayesian
network to be a valid representation of some domain: as long as the d-
separation properties of the network are satisfied in the modelled world,
we have a sound model.

Principle 1 (D-separation). Use d-separation to verify that a Bayesian network
is a correct model of a domain.

Remark 1. On the other hand, if one does have reasonable causal assumptions,
this enables a whole new paradigm for causal reasoning (Pearl, 2009); for example,
one may answer counterfactual queries like "what is the probability that Joe would
have died had he not been treated?" (Shpitser and Pearl, 2007).

Experience also suggests that cause-effect relationships are much sim-
pler to comprehend for humans, and this is especially true when trying to
specify the parameters of the network. Most people can probably come up
with a reasonable estimate of P(WetGrass |Rain,Sprinkler) whereas speci-
fying P(Rain |WetGrass) and P(Sprinkler |WetGrass) is conceptually very
challenging; its also misleading because we cannot specify any combined
effect of two common causes. We summarize this observation as follows.

Principle 2 (Causality). Whenever possible, specify Bayesian networks such that
they correspond to causal assumptions.

The following example illustrates some aspects of the two principles above.

Example 5 (Spam filtering). Consider the two structures in Figure 2.2. Here
the idea is that we want to build a spam filter. The variables Sex , Bank , Account
and Free are binary and describe whether the word appears in a particular mail.
We then classify a mail by calculating the probability P(Spam|ε) where ε is all
the evidence on the four other variables in the network. The key question is: which
of the two models is the most correct one? If we apply the causality principle, then
we are in an ambivalent situation: it is difficult to say if e.g. the word "sex" is an
effect of a mail being "spam" or if the word "sex" causes a mail to be spam. And
viewed in isolation, we have no problems specifying either of P(Spam|Sex ) and
P(Sex |Spam).
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On the other hand, if we apply the d-separation principle, things become more
clear. In the model on the right, if we know Spam = ”yes” then we expect learn-
ing Free = ”yes”should increase the likelihood of the three other attributes being
present. So, e.g., in this model Free 6⊥Sex|Spam whereas Free⊥Sex|Spam in the
model on the left. Hence we deem the model on the right more correct as it is
consistent with our d-separation assumptions.

We shall conclude this section by giving a small overview of inference
(or propagation) in Bayesian networks. The three most common inference
tasks in a Bayesian network over U = {X1 , . . . ,Xn} are the following:

1. Belief updating: calculate P(X |y) for some (or all) X ∈ U and some
evidence y ∈ Y ⊂ U (Y possibly empty) where Y ∩ X = ∅. This task
has been shown to be NP-hard (Cooper, 1990), even for approximat-
ing algorithms (Dagum and Luby, 1993). However, the complexity
remains polynomial in the number of nodes when the network struc-
ture is a polytree (where each node has at most one parent, but may
have an arbitrary number of children) (Kim and Pearl, 1983).

2. The maximum a posteriori assignment: calculate

x* = arg max
x∈X

∑
z∈Z

P(x, z,y) (2.22)

where X ∪Y ∪Z = U are three disjoint sets, and y ∈ Y is the received
evidence. We also call this the MAP assignment for X given y. Not
surprisingly, this is also an NP-hard task for both exact (Shimony,
1994) and approximate solutions (Abdelbar and Hedetniemi, 1998).

3. The most-probable explanation: a special case of the MAP assign-
ment problem where Z = ∅.

A recent alternative to MAP assignments is called most relevant explana-
tion and appears to have several advantages, most notably that the best
explanation can be a partial instantiation of the target variables X (Yuan
et al., 2009). Specialized algorithms exist for all of the above scenarios, and
a good overview can be found in (Cowell et al., 1999), (Kjærulff and Mad-
sen, 2008) and (Darwiche, 2009).

For general belief updating, a typical approach is to compile the Bayesian
network BN = (G,Θ) into a special optimized data structure called a junc-
tion-tree (Jensen and Nielsen, 2007). The procedure consists of three main
steps:

(a) Moralization: the network structure is moralized by connection all
nodes that share one or more children. Then all directions on the
edges are removed. The resulting undirected graph GM = (V,E) is
called the moral graph.
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(b) Triangulation: the moral graph is triangulated, that is, we add a set
of edges T such that the graph GT = (V,E ∪ T ) has a chord on all
cycles of length four or more (thereby connecting two non-adjacent
nodes on the cycle).

(c) Tree construction: GT is known to contain at most |V| cliques (maxi-
mal subsets of completely connected nodes) which are then arranged
into a tree fulfilling the junction-tree property: for any pair of cliques
(C,K) the set C∩K appear in every clique on the path between them.

The junction-tree can now be used as a quite efficient basis for a variety of
inference tasks. Finding the best possible triangulation in step (b) is actu-
ally also intractable (Yannakakis, 1981; Wen, 1990), but we note that once a
sufficiently good triangulation has been found, we can save it and be cer-
tain that belief updating is tractable hereafter. In this aspect, belief updating
is quite special compared to other NP-hard problems: before we perform
inference, we already know if that is possible.

2.5 Summary

In this chapter we have reviewed basic discrete probability theory to be able
to reason consistently about uncertain worlds. We described how proba-
bilistic relationships naturally emerges either as an abstraction mechanism
or as inherent properties of the domain which we are trying to model for-
mally. Most prominently, Bayes’ rule allowed us to reason backwards and
update probability distributions in light of new evidence. Via marginal-
ization on a joint distribution we could compute conditional or marginal
distributions of interest, and Bayesian networks provided a general, com-
pact and efficient basis for such calculations by exploiting conditional inde-
pendencies. We discussed causality as a simplifying principle and briefly
reviewed a number of common inference tasks for Bayesian networks. In
summary, probability theory and Bayesian networks provide a flexible and
sound theoretical foundation for troubleshooting models.



Chapter 3

Decision Theory and Troubleshooting

It is a mistake to look too far ahead. Only one link of the chain
of destiny can be handled at a time.
–Winston Churchill

Given a troubleshooting model that describes the uncertainty and cost of
actions and questions, the goal is to compute a strategy that continuously
tells us what to do next given the previous steps. To formalize this task we
apply modern decision theory which can be seen as the fusion of probabilis-
tic reasoning with utilities. Therefore we briefly investigate utility theory
and the principle of maximum expected utility. Then we introduce decision
trees as a general graphical representation of any decision scenario. This
enables us to give a formal definition of decision theoretic troubleshooting,
which we compare to alternative modelling methods.

3.1 Utility Theory

In decision theory we want to create models that are helpful in making
decisions. In principle, there are two types of decisions:

(a) test decisions (or observations) which provide evidence on a variable
of interest, and

(b) action decisions (or actions) which affect the current state of the
world when performed.

In the framework of Bayesian networks we can already model observations
and measure the effect of new evidence in terms of posterior distributions
over variables of interest. We may also model the actions as variables in
a Bayesian network where choosing an action amounts to fixing the state
of the variable unambiguously (instantiation). This will in general lead to
a new posterior distribution over the remaining uninstantiated variables.

25
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However, we are still not able to describe the usefulness of the consequences
of making the decision. To this aim we introduce utilities which can be
seen as real-valued functions of the decision as well as the state of the
world. We assume that our notion of usefulness can be measured on a
numerical scale called a utility scale, and if several types of utility appear
in a decision problem, we assume that the scales have a common unit.

Assume we have a utility function U : sp(X ) × sp(D) 7→ R describing
the joint desirability of the variables inX which are judged to be influenced
by a decision variable D with mutually exclusive states {d1 , . . . , dk} each
describing a particular decision (e.g., to repair a component or perform a
test). X is often called the consequence set of D. Then the expected utility
of decision d ∈ D given evidence y ∈ Y (where Y ∩ X = ∅) is found by

EU (d |y) =
∑
x∈X

U (x, d) · P(x |d,y) (3.1)

which is simply the average utility value of the consequences, that is, the
utility of the consequences weighted by the probability of the consequence
occurring. The principle of maximum expected utility then states that the
best (most rational) decision is given by

d∗ = arg max
d∈D

EU (d |y) . (3.2)

The principle can be carefully justified by axioms about preferences of de-
cision outcomes (Morgenstern and Von-Neumann, 1947; Pearl, 1988).

Principle 3 (Instrumental Rationality). If a decision maker is to act rationally,
that is, consistently with his preferences, then his only option is to choose decisions
that maximize the expected utility.

In general, there is no unique utility function U (X ,D) for (X ,D). Specifi-
cally, if U (X ,D) is a utility function, then

V (X ,D) = α ·U (X ,D) + β with α, β ∈ R (3.3)

also a valid utility function.

Example 6 (Humans and rationality). Under the second world war, Churchill
was worried that the French Mediterranean fleet would fall into German hands.
He ordered an attack on the French fleet off the coast of French Algeria on the 3rd
of July 1940, sinking the fleet and killing 1,297 frenchmen. This can be seen as a
rational decision if he believed that the expected casualties would have been higher
if the French fleet fell into German hands.

But humans often fail to act in accordance with the principle of maximum ex-
pected utility, and still we should be careful not to label their actions as irrational.
In game shows like "Who want’s to be a millionaire?", the contestant often chooses
not to continue in the game even though that decision would have a higher expected
utility. However, since the contestant cannot be part in the show many times, he
wisely chooses to stop when the loss implied by a wrong answer becomes too high.
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3.2 Decision Trees

In the following we shall politely ignore Churchill’s advice about never
looking more than one step ahead. In particular, we are concerned with
sequential decision problems where we must make a (finite) sequence of
decisions, and where the utility of decisions that we are about to make is
potentially influenced by all future decisions and observations.

To visualize and reason about such sequential decision scenarios, we
may use a decision tree in which square nodes represent decision vari-
ables, round nodes represents chance variables and diamond nodes rep-
resent utilities. A path from the root node to a leaf node represents one
possible realization of the decision problem; for example, in a decision tree
for a car start problem we may have a path

Clean the sparc plugs −→ Is the problem gone?
no−→ Put gas on the car

−→ Is the problem gone?
yes−→ −100$

where the last information is the utility of preceeding observations and ac-
tions. In general, a decision tree describes all possible sequences of obser-
vations and actions valid under a certain set of assumptions.

Definition 5 (Decision Tree). A decision tree is a labelled directed tree T over
a set of decision nodes D, a set of chance nodes X , and a set of utility nodes V with
the following structural constraints:

(i) Every leaf node is a utility node and every non-leaf node is a decision or
chance node.

(ii) Every outgoing edge of a decision node D is labelled with a unique state
d ∈ D.

(iii) Every outgoing edge of a chance node X is labelled with a unique state x ∈ X,
and there is a successor node for each possible (currently meaningful) x ∈ X.

To each utility node V ∈ V we attach a utility U (past(V )), describing the util-
ity of ending the decision making after past(V ) has been observed. Further-
more, to every outgoing edge of a chance node X ∈ X we attach the probabil-
ity P(x|past(X )) describing the probability of observing X = x after observing
past(X ). Finally, for all decision nodes D ∈ D we define P(d|past(D)) ≡ 1 for
an outgoing edge labelled with decision d ∈ D

To get the conditional probabilities P(X |past(X )) we may use a Bayesian
network. A decision tree also incorporates the no-forgetting assumption
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Figure 3.1: A decision tree for a simple repair scenario with two actions
α1 and α2 (which may fix the problem) and two observations Q (provid-
ing background information) and W ?(describing if the system is working).
Utilities and probabilities have been left unspecified. The subtree induced
by the bold edges is an example of a strategy.



3.2. Decision Trees 29

which states that when decision D is taken, the whole past past(D) is known
to the decision maker. Note that the root ρ of the decision tree may be a util-
ity node, in which case the tree contains only the root node. The following
example illustrates some aspects of decision trees.

Example 7 (Asymmetrical decision tree). Consider the decision tree in Figure
3.1 which describes a simple troubleshooting scenario with two actions and two
observations. At the root D1 we have three decisions at our disposal: we can
perform an action α1 (e.g., clean the spark plugs) or an action α2 (e.g., put gas on
the car), or we may make an observation Q (e.g., what is the fuel meter standing?
(empty,non-empty)). Every decision tree is build on some assumptions, and in this
case we see that the variable W ? (e.g., is the car working?) is always a successor
of the two actions α1 and α2 . Another assumption is that we have no further
decisions after both of α1 and α2 have been performed. A third assumption is
that we can only make a decision once which lead to a somewhat asymmetrical
decision tree.

Given a decision problem and some associated decision tree, we de-
scribe one possible way to solve the decision problem via a strategy:

Definition 6 (Strategy). Let T be a decision tree for some decision problem. Then
a strategy in T is a subtree of T with the constraint that each decision node has
exactly one successor node. If the strategy starts with the root node of T, we call it
a full strategy; otherwise it is a partial strategy.

In Figure 3.1 one strategy is highlighted with bold edges. A particular (full)
strategy therefore prescribes how to act at any given time in the decision
process. Since a decision tree contains many strategies, we want to measure
how good they are, so we can pick the best one. The following definitions
provide such a measure.

Definition 7 (Expected Utility of Strategies). Let n be a node in a strategy s .
The expected utility of n is given recursively by

EU (n) =



∑
m∈succ(n)

P(m |past(m)) · EU (m) if n is a chance node

EU (m) if n is a decision node
with successor m

U (past(n)) if n is a utility node

The expected utility of s , EU (s ), is given by the expected utility of its root node.

Definition 8 (Optimal Strategy). Let S(T ) be the set of all strategies for a deci-
sion tree T. Then an optimal strategy in T is given by

s∗ = arg max
s∈S(T )

EU (s ) (3.4)
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Algorithm 1 Computing the optimal strategy recursively. The function re-
turns the expected utility of the optimal strategy while (a) computing the
expected utility for all internal nodes in the decision tree, and (b) marking
the best decision for each decision node in the decision tree. In general we
use ’&’ to denote that arguments are passed as references.

1: function MARKOPTIMALSTRATEGY(&T )
2: Input: A decision tree T with root ρ
3: if ρ is a chance node then
4: Set EU (ρ) =

∑
m∈succ(ρ)

P(m |past(m)) ·MARKOPTIMALSTRATEGY(m)

5: return EU (ρ)
6: else if ρ is a decision node then
7: Let m∗= arg max

m∈succ(ρ)
MARKOPTIMALSTRATEGY(m)

8: Set EU (ρ) = EU (m∗)
9: Mark the edge from ρ to m∗as optimal

10: return EU (ρ)
11: else if ρ is a utility node then
12: return U (past(ρ))
13: end if
14: end function

These definitions lead directly to a simple recursive procedure for cal-
culating the optimal strategy of a decision tree by choosing the decision
option with highest expected utility (see Algorithm 1). If the procedure
works in a bottom-up fashion, that is, starting at the leaves and working
its way towards the root, it is known as the average-out and fold-back
algorithm (Jensen and Nielsen, 2007). The algorithm assumes a complete
decision tree is given and this has several computational drawbacks—we
shall return to search procedures over decision trees in Chapter 4.

Decision trees very quickly become intractably large as they grow (po-
tentially) super-exponentially in the number of decision nodes. To reduce
the size of the tree such that it is only of size exponential in the number of
decision nodes, we may employ coalescing of decision nodes. The key ob-
servation is that when two decision nodes n and m have past(n) = past(m)
the future (remaining) decision problem is the same for n and m and hence
EU (n) = EU (m). In Figure 3.2 is depicted the coalesced decision tree
for the decision problem in Figure 3.1 on page 28. We can see how decision
nodes have been merged to avoid duplicating identical remaining subtrees.
Strictly speaking, the graph is no longer a tree, but as it represents a deci-
sion tree (compactly), the name seems justified.
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Figure 3.2: Coalesced decision tree for the decision tree in Figure 3.1. All
pairs of decision nodes (n,m) with past(m) = past(n) in Figure 3.1 have
the same future and hence EU (m) = EU (n).
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Albeit decision trees quickly become too large to be useable as a general
specification language, they serve as a useful framework for (a) defining
the precise semantics of more compact representations of decision prob-
lems, and (b) solving such decision problems by search procedures work-
ing on the full or partial decision tree. In particular, decision trees provide
the most general framework for decision problems where we can model all
possible asymmetries explicitly. We shall end our discussion by consider-
ing these forms of asymmetry. We first characterize a symmetric decision
problem as follows.

Definition 9 (Jensen and Nielsen (2007)). A decision problem is said to be
symmetric if

(a) in all of its decision tree representations, the number of strategies is the same
as the cardinality of the cartesian product space over all chance and decision
variables, and

(b) in at least one decision tree representation, the sequence of chance and deci-
sion variables is the same in all strategies.

At the other end of the spectrum we might have an asymmetrical decision
problem. This asymmetry may be of three types:

1. Functional asymmetry: when the possible outcomes of a variable
depends on the past. For example, we may only have the decision
of building one type of oil rig if a preliminary test drill has actually
found a specific kind of oil in the oil well.

2. Structural asymmetry: when the actual occurrence of a variable de-
pends on the past. This can be seen as a extreme case of functional
asymmetry where all options are invalid. As an example, we might
only have the decision of building an oil rig if a preliminary test dis-
covered oil in the oil well.

3. Order asymmetry: when the ordering of observations and decision
are not specified by the decision model. For example, when repairing
a car, it is unknown what the best order of repair actions should be.

Returning to Figure 3.1 on page 28, we can see that this decision problem
is highly asymmetrical; in fact, the tree embodies all three asymmetrical as-
pects above: (i) it has functional asymmetry because the number of decision
options decrease as we move down the tree, (ii) it has structural asymmetry
because there is no further decision options when decision α1 and α2 have
been made, and (iii) it is order asymmetrical as there is no order constraint
on the three decisions α1 , α2 and Q (other than Q cannot come after the
other two).
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3.3 Decision Theoretic Troubleshooting

Decision theoretic troubleshooting is motivated by the need to model the
repair of a complicated human-made device so we can minimize the ex-
pected cost of repairing the device. There are other areas which overlap
considerably with troubleshooting, e.g., adaptive testing (Vomlel, 2004),
real-time cost-efficient probing (Rish et al., 2005), or value of information
analysis with misclassification costs (Bilgic and Getoor, 2007), but we shall
stick with the "repair" metaphor and base our notation and terminology on
it. We therefore use the following terminology and assumptions. However,
we shall first summarize the required ingredients for any decision theoretic
troubleshooting model.

Definition 10 (Required Elements of A Troubleshooting Model). Any deci-
sion theoretic troubleshooting model is a decision model based on the principle
of maximum expected utility with the following elements:

1. A set of faults F 6= ∅ describing the potential causes of the problem of the
device.

2. A set of actions A 6= ∅ which may be performed to fix the device.

3. A set of questions Q (potentially empty) which may provide background
information on the potential faults in F .

4. Some form of probabilistic model P(F ,A,Q) over faults, actions and
questions where elements in F (however modelled) need not be directly ob-
served. In this probabilistic model we can observe evidence ε ∈ E where E
is the set of all possible evidence over previously performed (and failed)
actions and questions allowed by the probabilistic model in question.

5. A system test W (also called Working?) with sp(W ) = {yes, no} which
may be performed after any action to verify whether the problem has been
removed by the previous action(s). Furthermore, we demand that the proba-
bility that troubleshooting must continue (because the device is still broken)
can be derived in some fashion. We write this probability as Pw(ε) for ε ∈ E .

6. Acost function C : (A ∪Q ∪ {W })×E 7→ [1,∞) describing the required
resources of performing an action or question given all possible evidence.

Remark 2. Having 1 as a lower bound on the costs is merely numerical conve-
nience to diminish floating point inaccuracies; as we saw earlier, we can safely
scale our utilities linearly to achieve this.

It should be noted that the notation Pw(ε) is somewhat confusing. The
probability that troubleshooting must continue after seeing evidence ε is
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not a conditional probability. Specifically, it is not the same as the condi-
tional probability that we attach to the outgoing link labeled "no" from a
Working? chance node in a decision tree (cf. Figure 3.1). Rather, it should
be equal to the joint probability that we may associate with the node n that
is the endpoint of the link. The reason that we do not simply call the prob-
ability for P(ε) is that we want to use it as a sanity check (or constraint) on
the actual P(ε) induced by the probabilistic model(s) to ensure this model
is sound (under certain reasonable assumptions). For example, we may
always compute P(ε) from the decision tree, but that does not imply that
this value agrees with other ways to compute Pw(ε) from the probabilistic
model(s). This distinction will become clear when we discuss multi-fault
troubleshooting models later in this chapter.

3.3.1 Basic Troubleshooting Assumptions

First of all, we are dealing with a malfunctioning device which is known to
be broken when troubleshooting begins. We need to model this explicitly
as it has profound impact on how we may construct a sound model for our
decision problem. As such, this is not necessarily a simplifying assumption.

Basic Assumption 1 (The Faulty Device Assumption). The device is faulty
when troubleshooting begins.

To describe the potential causes of the faulty device, we have an exhaus-
tive set of faults F which may be either present or absent. For example,
with f ∈ F , we may talk about the probability of the fault begin present
P(f = ”present”) and absent P(f = ”not present”) which we write concisely
as P(f) and P(¬f). Assumption 1 leads directly to the following constraint:

Constraint 1 (Fault Probabilities). The fault probabilities of a troubleshooting
model must obey ∑

f∈F
P(f) ≥ 1 (3.5)

when troubleshooting begins. Furthermore, for all ε ∈ E∑
f∈F

P(f |ε) ≥ 1 (3.6)

must also be true when the system test has just confirmed that the device is still
malfunctioning.

Now, to repair the device we need to apply a number of repair operations
which shall come from a set of actions A. Each action α ∈ A may address
any non-empty subset of the faults in F , and by performing an action we
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change the distribution P(F) into some conditional distribution (specifi-
cally, conditioned on the fact that the action was performed and that the
subsequent system test returned that the device was malfunctioning). We
describe this compound event of performing an action α and observing its
outcome by the evidence α = ¬a and α = a thereby stating that the ac-
tion failed or succeeded, repectively (so sp(α) = {a,¬a}, and we use the
concise notation P(a) and P(¬a)). Since the particular way that we model
actions will affect our notation, we shall defer further notation to a later
section.

To improve the repair process we may perform questions Q ∈ Q which
are simply modelled via a normal chance node for each question. The ques-
tions can help narrow down the potential causes and provide evidence that
affects the optimal ordering of actions. We then use the term step to denote
either a question or an action. This leads us to our next assumption.

Basic Assumption 2 (The Carefulness Assumption). Each action and ques-
tion have no unintended side-effects, that is, by performing an action or question
no new faults can be introduced.

We consider the above assumption as reasonable in device-repair scenar-
ios. For example, when dealing with complicated equipment, the actions
are usually carried out by trained professionals who know what they are
doing. The assumption is simplifying in the sense that we do not have to
model how performed actions or question may have altered the state of
the equipment. Arguably, a model without this assumption is potentially
more accurate, but the knowledge elicitation task is also somewhat more
complex. In a medical treatment situation the assumption may be deemed
unrealistic; for example, giving a certain drug to a patient may cure one dis-
ease while inflicting or worsening others. The assumption leads directly to
the following constraint.

Constraint 2 (Monotone Faulty Device Probability). For all pairs of evidence
η, ε ∈ E such that η ⊂ ε, we must have

Pw(η) ≥ Pw(ε) , (3.7)

that is, the more steps we perform, the more likely it is that the device is repaired.

We allow for equality to model, e.g., that an action has no effect whatsoever.
This can easily happen in a model if two actions address the same fault:
after performing the first action, the second action may be of no use.

The next assumption simplifies models with imperfect actions, that is,
actions that are not guaranteed to repair the set of faults that they can ad-
dress.

Basic Assumption 3 (The Idempotent Action Assumption). Repeating a failed
action will not fix the problem.
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This assumption can be seen as reasonable if the person carrying out the re-
pair process does not improve his skills during the troubleshooting session.
In reality, one needs to provide detailed and easy-to-follow descriptions of
how to carry out the particular action to avoid breaking this assumption.
In any case, the assumption puts some bound on the time horizon that we
need to consider for the troubleshooting process.

Constraint 3 (End of Troubleshooting). The troubleshooting process continues
until the system is working or until all actions have been performed in which case
the system may still be malfunctioning.

To get an definite bound on the time horizon, we furthermore limit ques-
tions in the following manner.

Basic Assumption 4 (The Idempotent Question Assumption). Repeating a
question will provide the same answer as the first time that the question was asked.

Remark 3. Notice that the system test W is inherently different from questions:
repeating the system test will often provide a different answer.

One may ask, what if (a) the question identified a certain fault as a cause
of the problem with absolute certainty, and (b) there are multiple faults
present in the domain? Would this not mean that the question could now
give a different answer after we have repaired the fault that the question
identified? We have to acknowledge that this could happen because actions
can change the world observed by questions. In the case where there is
only one fault present, and when the question has identified this fault with
certainty, all that is left is to perform an action that can repair this fault—
the result is a functioning device and therefore there is no reason to model
further troubleshooting.

When there are several faults present, the situation becomes somewhat
more complicated. However, if we want to remove the two idempotence
assumptions above, we should probably do more than merely allow ac-
tions and questions to be repeated; in (Breese and Heckerman, 1996) and
(Pernestål, 2009) one may find interesting modelling techniques that de-
scribe the concept ofpersistence in detail, explicitly modelling when previ-
ously performed steps and faults are persistent or invalidated by an action.

Basic Assumption 5 (The Faults Are Partially Observable). We can never
guarantee that the true state of all the faults can be observed directly, and so we
may only get indirect evidence provided by questions.

This assumption is made because we deem it too costly or simply im-
possible to inspect the device and arrive at the true cause(s) of the problem.
In principle, at least when we talk about man-made devices, we should be
able to discover the true causes of the problem. However, such evidence
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is often costly to observe and we might get almost as good evidence in a
much cheaper way. For example, if the battery is broken in a car, we could
apply some testing procedure to the battery directly, but it would be much
easier just to turn on the lights and see what happens—of course, if the
lights do not turn on, this could also be a problem with the electric wiring
of the car.

Basic Assumption 6 (Imperfect Actions and Questions). The outcome of an
action may be uncertain, that is, it may fail to fix the faults that it can address.
Furthermore, questions may provide non-conclusive evidence on the possible faults
in the system.

These last two assumptions implies that a troubleshooting model have
to cope with a great deal of uncertainty, and this uncertainty is most nat-
urally modelled via a Bayesian network. The uncertainty associated with
actions serve two primary goals: (a) abstraction over the differences in com-
petences of the repair men, for example, skilled repair men always succeed
whereas less skilled sometimes fail to carry out the repair correctly, and
(b) abstraction over unobservable variables or inaccuracies in the model,
for example, a drug might cure cancer with a certain probability. The un-
certainty of actions may also be used to model somewhat unlikely events;
for example, if one replaces the spark plugs of a car, then there is a small
chance that the new spark plugs are also broken.

Basic Assumption 7 (Perfect System Test). The system test W (which is usu-
ally carried out immediately after each action) is assumed to be perfect, that is, if
the test says that the device is malfunctioning, then it is really malfunctioning,
and if the test says that the device is working, then it is really working.

This is not as strict an assumption as it may sound like. After all, if one
cannot determine if the problem has been solved, then one cannot deter-
mine if the problem exists. But this basic fact is implied by our very first
assumption. Finally, we have the following assumption:

Basic Assumption 8 (The Asymmetrical Assumption). There is a partial or-
der (but never a total order) imposed on actions and questions, that is, we are
allowed to carry out a sequence of actions and observation as long as the sequence
obey the constraints implied by the partial order. In particular, the partial order
may be "empty" which implies that there are no order constraints whatsoever im-
posed on actions and questions.

Remark 4. In the remainder of this thesis we mostly ignore such order constraints
and develop our theory and results under the assumption of complete asymmetry.

This ends our discussion of assumptions that all troubleshooting models
should adhere to. In the following we shall investigate more assumptions,
but these are specific to the particular type of troubleshooting model.
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3.3.2 Expected Cost of Repair

We are now ready to give a formal definition of the troubleshooting deci-
sion problem. One may view the following definitions as a concise sum-
mary of the discussion above.

Definition 11 (Troubleshooting Tree). A troubleshooting tree is a decision
tree encoding all possible sequences of actions (from A) and observations (fromQ)
with the following constraints:

1. each decision node D has sp(D) ⊆ A ∪Q,

2. whenever each outgoing edge of a decision node is labelled with an action
from A, it leads to a chance node describing the application of the system
test W,

3. the outgoing edge labelled "yes" from W is always followed by a utility node
because this indicates that the problem was fixed,

4. the parent node of a utility node is always a system test node W,

5. on any path from the root node to a leaf node, an action or question appears
at most once, and

6. on any path from the root node to a leaf node, no question appears after all
actions have appeared.

An example of this type of decision tree is depicted in Figure 3.1 on page 28,
describing the process of performing repair actions and observations until
the problem is fixed or all actions have been performed. In this case, the
tree is completely asymmetrical, having no order constraints on actions and
questions. As usual, a decision tree encodes all possible strategies:

Definition 12 (Troubleshooting Strategy). A troubleshooting strategy is a
strategy in a troubleshooting tree.

Note that this is often called a strategy tree (Vomlelová, 2003). In Figure
3.3 we can see an example of a troubleshooting strategy. Since the sys-
tem test appears after each action, it is customary to leave out the system
test; furthermore, instead of having decision nodes with outgoing edges
labelled with actions and questions, these can be replaced with a node rep-
resenting the action or question directly. Of course, this concise notation is
only possible for strategies where each decision node is followed by exactly
one outgoing edge.

We can now give a definition of the measure used to compare different
troubleshooting strategies, but first we need a little terminology. The set
of all terminal nodes (or leaf nodes) of a troubleshooting strategy s is de-
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Figure 3.3: Troubleshooting strategy that is equivalent to the strategy high-
lighted in the decision tree in Figure 3.1 on page 28.

noted L(s ) whereas the set of all non-terminal nodes is denoted nodes(s ).
The label of an edge e or node n is given by label(e) and label(n), respec-
tively. The evidence along a path path(n) from the root node to n is given
by εn =

⋃
e∈path(n){label(e)}. Even though a set of evidence ε is really a set

of instantiations of variables, we shall misuse notation a little and allow ε to
be interpreted as a set of actions and questions. We use that interpretation
in the definition below.

Definition 13 ((Vomlelová and Vomlel, 2003)). Let s be a troubleshooting
strategy, and let L(s ) be the set of all leaves of s . The expected cost of repair
of s is defined as

ECR (s ) =
∑
`∈L(s )

P
(
ε`
)
·

 ∑
α∈ε`∩A

Cα +
∑

Q∈ε`∩Q

CQ

 (3.8)

where P
(
ε`
)

is the probability of getting to the leaf ` where we have accumulated
evidence ε`, and Cα and CQ are the cost associated with performing an action and
a question, respectively.

It is worth noticing that this definition does not allow the cost of actions
and questions to depend on the decisions taken before they are carried out.
We shall deal with special scenarios where steps have dependent costs in
later chapters. Similarly, if the cost of the system test CW is greater than
zero, it should be included in the cost of actions in the formula above; this
topic we shall also revisit in a later chapter.

Remark 5. Equation 3.8 is often defined to include a penalty term C` > 0 in
the sum of costs associated with a leaf node `. The interpretation given to this
penalty is usually that it is the cost of call service, that is, expert help from the
outside. As we shall see later, (a) if this cost is the same for all leaf nodes where
the problem has not been solved, and (b) the model includes no questions, then we
need not model the penalty at all. In the general situation, on the other hand, it is
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very difficult to predict how it will affect the choice of an optimal strategy. Under
the assumption that the penalty is the same for all leaves, there is, however, a more
natural and consistent way to include this aspect into the decision model: simply
add a special action that is guaranteed to solve the problem (thereby modelling the
expert help). This has the benefit that we are not forced to use call service only after
every normal action has been carried out, but we leave it up to the usual algorithms
to compute when it is beneficial to use call service. When the call service cost is not
constant, we have the problem of specifying an exponential number of such cost,
making elicitation impractical. As such, it is much simpler (and reasonable) just
to assume that this penalty is (a) not modelled, (b) modelled with a constant cost,
or (c) modelled with a special action.

Unfortunately, modelling call service with a special action is not trivial either
because troubleshooting is ended after performing this action. This is dicussed
briefly in (Heckerman et al., 1995). In general, we can say that the smaller this
cost is, the more important it is to model it with a normal action. This is because
if the cost is sufficiently high, it will never be beneficial to apply this action before
any of the other actions (cf. also Lemma 4.1 in (Vomlelová, 2001)). If we do not
model the cost of call service, it correponds to a situation were a service center seeks
to minimize contact with the customers, that is, the customers should try to help
themselves as much as possible; on the other hand, if the service center wishes to
maximize the customers’ satisfaction, it would be wise to allow call service earlier.
And in this latter case, it makes more sense to model call service as an action.
The former case is also common: we might be in the situation that there is no call
service option; for example, the repair men on a factory floor are already the experts
in repairing the machinery, in which case we need not model call service. As an
example of where such penalties are very important to model, we refer to models
with misclassification costs (Bilgic and Getoor, 2007).

Just as in the case for general decision trees, we define our optimization
problem as the task of finding an optimal strategy:

Definition 14 (Optimal Troubleshooting Strategy). Let T be a troubleshooting
tree, and let S(T ) be the set of all troubleshooting strategies in T. Then an optimal
troubleshooting strategy s∗ is given by

s∗ = arg min
s∈S(T )

ECR (s ) . (3.9)

Let us first see how the definition of ECR may be calculated in various con-
texts. In many contexts we are interested in ignoring the questions of the
model, leaving only actions as decisions in the model. In this case, a trou-
bleshooting strategy degenerates into a sequence of actions as illustrated
in Figure 3.4, and we call such a sequence for a troubleshooting sequence.
The evidence that appears in such a strategy consists solely of evidence on
actions, and we shall call such evidence for sequence evidence and denote
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it by εi = {¬a1 , . . . ,¬ai} thereby stating that the first i actions have failed
to fix the problem. Note that ε0 = ∅ and P

(
ε0
)
≡ 1 by convention because

the device is faulty when troubleshooting starts. For y ≥ x we also allow
the notation εx:y = {¬ax , . . . ,¬ay} for evidence of a subsequence (and note
that ε0:y ≡ ε1:y ≡ εy). The ECR may then be computed by the following
formula.

Proposition 1 (Vomlelová (2001)). Let s = 〈α1 , . . . , αn〉 be a troubleshooting
sequence. Then the expected cost of repair can be computed as

ECR (s ) =
n∑
i=1

P
(
εi−1

)
· Cαi . (3.10)

Proof. Any troubleshooting strategy corresponding to a troubleshooting se-
quence s has |s |+ 1 = n+ 1, and by Definition 13 we then get n+ 1 terms
(cf. Figure 3.4):

ECR (s ) = P(a1 ) · Cα1 + P(¬a1 , a2 ) · (Cα1 + Cα2 ) + · · ·+

P(¬a1 , . . . ,¬an−1 , an) ·

(
n∑
i=1

Cαi

)
+ P(¬a1 , . . . ,¬an) ·

(
n∑
i=1

Cαi

)

Then we exploit the identity

P
(
ε1 :k−1 , ak

)
=
[
1− P

(
¬ak |ε1 :k−1

)]
·P
(
ε1 :k−1

)
= P

(
ε1 :k−1

)
−P

(
ε1 :k

)
for all k ∈ {2, . . . , n} and get:

ECR (s ) =
[
1− P

(
ε1
)]
· Cα1 +

[
P
(
ε1
)
− P

(
ε1 :2

)]
· (Cα1 + Cα2 ) + · · ·+[

P
(
ε1 :n−1 )− P

(
ε1 :n

)]
·

(
n∑
i=1

Cαi

)
+ P

(
ε1 :n

)
·

(
n∑
i=1

Cαi

)

= Cα1 +
n∑
i=2

P
(
ε1 :i−1 ) · Cαi

and with the assumption P
(
ε0
)
≡ 1 and since P

(
ε1 :i
)
≡ P

(
εi
)
, the result

follows.

Remark 6. Had we included a constant penalty term Cpen in the utility for the
branch where the problem is not solved, it is easy to see that it would have resulted
in an additional term P

(
ε1 :n

)
· Cpen which is the same for all troubleshooting

sequences and hence pointless to model.
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Figure 3.4: Troubleshooting strategy for a model that has only actions. In
this case the tree degenerates into a sequence of actions.

Proposition 2. Let s be a troubleshooting strategy, and let nodes(s ) be the set of
all non-leaf nodes of s . If no leaf node contains a penalty term, then the ECR of s
may be calculated as

ECR (s ) =
∑

n∈nodes(s )

P(εn) · Clabel(n) (3.11)

that is, the sum over all troubleshooting steps of the probability of performing the
step multiplied with the cost of the step.

Proof. We look at any node n, and let L(n) be all the leaves reachable from
n. It is then clear that P(εn) =

∑
`∈L(n) P

(
ε`
)

and from Equation 3.8 on
page 39 and because n was chosen arbitrarily, the results follows. On the
other hand, had Equation 3.8 included a penalty term, the result would no
longer hold.

The above theorem is important since it allows for more efficient top-
down solution procedures where partially expanded strategies can be used
to estimate the ECR of the full strategy. We shall see more about this in sub-
sequent chapters. Finally, the following proposition completes the picture,
and we are back to where we started.

Proposition 3. Definition 7 of expected utility is equivalent to Definition 13 of
expected cost of repair (also in the case when penalty terms are included).

Proof. First we note that the utility U (past(V )) assigned to leaf nodes is ex-
actly the cost terms of Equation 3.8 (penalty terms can be included without
any problems). Secondly, the probability for a leaf node P

(
ε`
)

equals the
product along a path from the root to the leaf `:

P
(
ε`
)

=
∏

n∈past(`)∪{`}

P(n |past(n))

remembering P(n |past(n)) ≡ 1 when n is a decision node.

This leads us to a slightly more tangible formulation:
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Proposition 4. Let s be a troubleshooting strategy without penalty terms and
with root ρ. Then the ECR of s may be computed as

ECR (s ) =


CQ +

∑
q∈Q

P
(
Q = q |εQ

)
· ECR (succ(Q = q)) if ρ is a question Q

Cα + P(α = ¬a |εα) · ECR (succ(α = ¬a)) if ρ is an action α
0 if ρ is a utility node.

Proof. Follows immediately from Proposition 3.

3.4 The Single-Fault Troubleshooting Model

We shall now review the troubleshooting model that underlies all the work
in this thesis. The model forms the backbone of the seminal work found in
(Heckerman et al., 1995), (Breese and Heckerman, 1996) and (Jensen et al.,
2001). In particular, it distinguishes itself from other models by adding the
following assumption:

Basic Assumption 9 (The Single-fault Assumption). The device is malfunc-
tioning due to a single fault.

In turn, this assumption leads to an elegant, simple and very efficient model
for the troubleshooting tasks. Below is given the formal definition.

Definition 15 (Single-fault Troubleshooting Model). A single fault trou-
bleshooting model M is a 6-tuple (F ,A,Q,W, BN, C) where

• F is the set of faults,

• A is the set of actions,

• Q is the set of questions,

• W is the system test,

• BN is a naive Bayesian network with one top node representing F , and
this top node has one child node for each action and question. Moreover,
P(α |F = f) represents how likely an action is to resolve a particular fault
and P(Q |F = f) represents the distribution over Q if f is present, and

• C : (A ∪ Q ∪ {W}) × E 7→ [1,∞) is a cost function describing the cost of
performing a step.

Furthermore, the probability that troubleshooting must continue after performing
action α is defined as

Pw(ε) =

{
1 if ε = ∅
P(¬a |η) · P(η) = P(ε) otherwise (3.12)

where {¬a} ∪ η = ε, ε 6= η and η may contain evidence from questions.
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F

α1 α2 α3 α4 Q1 Q2 Q3

Figure 3.5: An example of a naive Bayesian network structure used in
single-fault troubleshooting models.

An example of a naive Bayesian network structure used in a single-fault
troubleshooting model is given in Figure 3.5. This model has several ad-
vantages:

1. it is a simple model with a low number of parameters (probabilities
and costs) which leads to a simpler elicitation task (see (Skaanning
et al., 1999) for a discussion),

2. it covers many troubleshooting cases without introducing assump-
tions that are not true or far from the reality of the domains, and

3. it is very efficient.

The most restrictive assumption is probably the d-separation properties im-
plied by the naive Bayes network structure:

Basic Assumption 10 (d-separation in single-fault troubleshooting). The
single-fault troubleshooting model assumes the following d-separation properties:

S1⊥S2 |F whenever S1 ,S2 ∈ A ∪Q and S1 6= S2 . (3.13)

For many repair scenarios, the above assumption and the single-fault as-
sumption are probably acceptable.

As for efficiency, a full propagation in the Bayesian network takes only
O(|F|·|A∪Q|) time and storing the model merely takesO(|F|·|A∪Q|) mem-
ory. Furthermore, the probability Pw(ε) can be easily computed from the
nodes representing actions using the chain rule. Of course, this efficiency
during propagation does not imply that troubleshooting tasks themselves
are efficient—as we shall see, the majority of troubleshooting tasks are in
fact NP-hard. However, as both heuristics and solution methods need to
make thousands or even millions of propagations, a model which allows
fast propagations has its merits.

Finally, let us review how the constraints from Section 3.3.1 are satisfied
by the single-fault model. Due to the single-fault assumption,∑

f∈F
P(f |ε) ≥ 1
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Figure 3.6: An initial attempt of a Bayesian network structure for multi-
fault troubleshooting. Both action and fault nodes have a different inter-
pretation than in the single-fault model that we discussed earlier.

is trivially satisfied for all ε ∈ E by having a single chance node with all
faults as states. Similarly, from Equation 3.12 it is clear that Constraint 2
(Pw(η) ≥ Pw(ε)) is satisfied since P(¬a |η) ≤ 1.

3.5 Models for Troubleshooting Multiple Faults

The importance of the single-fault assumption should not be underesti-
mated. In this section we shall discuss possible multi-fault troubleshooting
models and the advantages and disadvantages of such models. This will
also increase our understanding of the single-fault troubleshooting model.

To this date, we believe that no completely general and sound multi-
fault model has been devised. We refer the reader to the interesting work of
(Pernestål, 2009) (Section III.3) and (Langseth and Jensen, 2003) for earlier
research in this area. In particular, the method of (Langseth and Jensen,
2003) groups multiple components into (potentially overlapping) cut sets;
the equipment is then faulty if all components of a cut set are broken, and
only one cut set is assumed to be in this state when troubleshooting starts
(thereby we have a single-fault assumption on the cut set level, but a multi-
fault assumption on the component level).

Below we discuss a multi-fault model that have not been described or
published elsewhere. As we shall see, we will fail to come up with a theo-
retically and practically satisfying multi-fault model. The intention of this
section is therefore to highlight the issues relating to this type of trouble-
hooting model. We hope that by making these problems explicit, we have
taken the first step towards a coherent multi-fault model.
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The cost parameters and the underlying troubleshooting trees remain
essentially the same, and so this discussion focuses on the computation
of probabilities. To make the discussion more tangible, let us consider the
Bayesian network structure in Figure 3.6. There are two significant changes.

First, instead of a single fault node with a state for each fault in F , we
have a node for each fault f with sp(f) = {”working”, ”not working”}which
we write {w ,¬w} in short-hand. Of course, this means that we can cor-
rectly model that several faults are present at the same time. Even though
the graph does not show any direct dependencies between fault nodes (or
between question nodes), we can of course also do that now.

Secondly, the semantics of action nodes are forced to change somewhat.
In the single-fault model we get Pw(ε) from P(η) and P(¬α |η). However,
this is no longer possible, as there may be multiple faults present. This
implies that the interpretation of P(α = y |ε) as "the probability that this
action will solve the problem when carried out (given evidence ε)" is no
longer valid. Instead we model the effect that actions have on the distri-
bution over P(F ∪Q) by making them parents of the fault nodes. Further-
more, action nodes α now have sp(α) = {”performed”, ”not performed”}
and an action node is always instantiated to one of these states depending
on whether we have performed the action or not. We can then define

Pw(ε) =

{
1 if ε = ∅
1− P(f1 = w , . . . , fk = w |ε) otherwise

(3.14)

because the device is working if and only if all faults are repaired. Instead
of viewing the Bayesian network as one big network, we can view it as 2|A|

networks induced by the configurations of the action variables.
At this point we can give the following comparison with the single-fault

model:

1. It is worth noticing that d-separation properties remain the same for
the nodes representing questions (knowing the state of all fault node,
the question nodes are d-separated).

2. The elicitation task is slightly harder for actions, but the fact we may
have several parents of a fault node increases the expressive power of
the model; for example, we may now specify that the combined effect
of two actions is the same as any of the two actions in isolation—such
an effect was not possible in the single-fault model (except for the
special case where the actions fix the fault with certainty).

3. The elicitation task is similarly somewhat harder for questions be-
cause the conditional probability tables grow exponentially with the
number of parents. Several approaches have been suggested to deal
with this problem, notably Noisy-Or models (Pearl, 1986), (Srinivas,
1993) and NIN-AND Tree models (Xiang, 2010).
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4. We constantly need to compute P(f1 = w , . . . , fk = w |ε) which should
not be difficult because the computation is greatly simplified by (a)
the presence of evidence on the fault nodes, and (b) the many barren
question variables (that is, variables where neither themselves nor
their descendants have received evidence).

5. Updating the Bayesian network when changing the instantation of an
action or when instantiating a questions is likely to be a computation-
ally expensive operation. Unfortunately, this step can not be avoided
as we need to get the marginal distribution on the question nodes
(either when building a strategy or for heuristic procedures).

Given the above, it seems like the multi-fault model should be an attrac-
tive troubleshooting model yielding more precision at the expense of extra
complexity of elicitation and inference. However, the two constraints of
Section 3.3.1 leads to major problems for the multi-fault model.

The first constraint
∑

f∈F P(f = ¬w |ε) ≥ 1 is by no means satisfied
automatically by the network structure that we have suggested for the
multi-fault model. And, unfortunately, the same can be said for the sec-
ond constraint given our definition of Pw(ε) as any question will influence
P(f1 = w , . . . , fk = w |ε) to become smaller. Let us elaborate a little on this
second point. We may compute P(f1 = w , . . . , fk = w) using the chain rule
as

P(f1 = w , . . . , fk = w) =
∑
Q1

. . .
∑
Q`

k∏
i=1

P(fi = w) ·
∏̀
i=1

P(Qi |pa(Qi) = w)

=

k∏
i=1

P(fi = w) ·
∑
Q1

. . .
∑
Q`

∏̀
i=1

P(Qi |pa(Qi) = w)

=
k∏
i=1

P(fi = w) · 1

Should we get evidence on any question, it will lead to the multiplication
with a number less or equal to one, hence increasing Pw(ε). One way to re-
solve this problem could be to relax the constraint such that it only applies
to when an action is performed; for example, upon making some medical
test, it might be apparent that the patient suffers from many diseases.

Anyway, our biggest hurdle is still Constraint 1. The problem is that we
have not explicitly said what should take the place of the single-fault as-
sumption in the multi-fault model. We went from saying "there is exactly
one fault" to "we do not know how many faults there are; maybe there are
none". Constraint 1 says that we should add the sentence "but there is at
least one fault when the device is not working". Thus, we need a way to
say, e.g., "there is exactly two faults" or "there is either one fault, two faults
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Figure 3.7: A modified Bayesian network structure for multi-fault trou-
bleshooting. A constraint node C is now instantiated and so enforces the
modelled constraint; for example, the constraint might be that there is ei-
ther one or two faults presents.

or three faults" etc. To remedy this problem is actually quite easy, but the
ramifications are unpleasant. Consider the network structure in Figure 3.7
where the node C has been introduced as a constraint node that enforces
our explicit assumptions (see, e.g., Chapter 3 of (Jensen and Nielsen, 2007)).
The node has all the fault nodes as its parents, and this is similar to the con-
straint node described in (Langseth and Jensen, 2003) albeit their constraint
node enforces a single-fault assumption. Furthermore, the node needs only
have two states: "true" and "false" describing whether the constraint is en-
forced. For example, to add the explicit assumption that the device has
either one or two faults when troubleshooting begins, we specify

P(C = true |pa(C) = x ) =

{
1 if x contains either one or two faults
0 otherwise

and instantiate C to state "true".
The problem has now been reduced to finding a reasonable assumption

for the constraint. Unless we have special domain knowledge, the most
neutral assumption would be to state that there is either one or two or
three or ... (up to some maximum) faults. Another issue is that the con-
straint node could have unwanted side-effects on other ancestral parts of
the network; this is not a problem for the network in Figure 3.7 as all an-
cestors are instantiated. However, it is not hard to imagine more elaborate
models where this could happen. In such a case the methods described in
(Crowley et al., 2007) may help.
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Remark 7. The fact that instantiating the constraint node d-connects all the fault
nodes should not be seen as a problem because this is exactly what we want.

While the introduction of the constraint variable C now leads to a rea-
sonable model, the fact that C has every fault node as its parent leads to
a model that is very likely to be intractable to do inference in. This can be
seen as a fundamental problem, not only for troubleshooting, but also for
domains like medical diagnosis models: when a patient enters the hospi-
tal, we are quite certain that he has at least one disease. Any model that
ignores such information is likely to be imprecise. Contrast this with the
single-fault model that quite elegantly avoids all these serious modelling
problems. (It should be noted that it might be possible to apply divorcing
to the constraint node; if we are lucky, this could lead to a more tractable
model.)

To make matters worse, multi-fault troubleshooting contains additional
problems that needs to be addressed. (Heckerman et al., 1995) has the fol-
lowing remark:

Furthermore, in the single-fault case it is optimal to repair a
component immediately after it has been observed to be faulty.
In the multi-fault case, this policy is not necessarily optimal,
although it typically makes sense to repair a component imme-
diately.

We shall not try to address these problems further, but simply recognize
that multi-fault troubleshooting (and diagnosis) is indeed a very difficult
problem to formalize.

3.6 Alternative Approaches

We shall now give a brief overview of alternative models that may be used
for troubleshooting and decision making in general. They all have in com-
mon a form of decision tree formalism as their underlying description of
the problem.

3.6.1 Influence Diagrams and Unconstrained Influence Diagrams

The first type of models we shall consider is Influence Diagrams (Howard
and Matheson, 1981). Decision trees are very flexible and general, but they
quickly become too large to be manageable for humans. As a result, In-
fluence Diagrams were created as a compact representation of symmetric
decision trees (cf. Definition 9). Instead of going into technical details, we
shall give a small example, see Figure 3.8.
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Figure 3.8: An Influence Diagram structure for emulating a troubleshoot-
ing model with three actions. We have sp(D1 ) = sp(D2 ) = sp(D3 ) =
{α1 , α2 , α3} and each of the Faults nodes corresponds (roughly) to the fault
node in the single-fault troubleshooting model.

Influence Diagrams extends Bayesian networks with utility nodes (di-
amond shaped nodes) and decision nodes (rectangular nodes). In this ex-
ample, all decision nodes have the same states {α1 , α2 , α3} since the model
must take into account any sequence of actions. It is required that the deci-
sions are temporarily linearly ordered, and in this case we have that deci-
sion Di is always taken before decision Di+1 . P(Faults) corresponds to the
initial distribution given in the single-fault troubleshooting model (with the
addition of a state "fixed" describing that the problem is resolved) whereas
P(Faults_1|Faults,D1 = α1 ) may look as follows:

D1 = α1

Faults f1 f2 f3 "fixed"
Faults_1

f1 0 0 0 0
f2 0 1 0 0
f3 0 0 1 0
"fixed" 1 0 0 1

For example, this table describes that if Faults is in state f1 , then Faults_1
will be in state "fixed" with probability 1, and that this action has no influ-
ence on any of the other faults. We also need to specify a table of utilities
for all the utility nodes. If all the actions have cost 1, then we may specify
U (Faults = f1 ,D1 )

Faults = f1
D1 α1 α2 α3

-1 -1 -1
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Figure 3.9: An example of a Partially Observable Markov Decision Process
modelled via an Influence Diagram. The state of the world is only partially
observable via the Observation nodes.

and similarly for f2 and f3 as the cost of actions is constant. For Faults =
"fixed" we should specify 0 as there is no need to perform an action if the
problem is solved. The fourth utility node is used to force the influence
diagram to prefer the state of Faults_3 to be "fixed" by giving a negative
utility to all other states and zero to state "fixed".

Given the influence diagram description, we may now solve it, that is,
compute an optimal strategy. This may be done by unfolding the influ-
ence diagram into a decision tree and using Algorithm 1 on page 30. De-
tails of such approaches may be found in (Jensen and Nielsen, 2007) and
(Kjærulff and Madsen, 2008). The method described in (Changhe Yuan,
2010) involves a top-down branch-and-bound (depth-first) search and it is
the current state-of-the art of solving Influence Diagrams. For Influence Di-
agrams with many decisions, computing an exact solution is hard, and this
has lead to approximate techniques like Limited Memory Influence Dia-
grams (Lauritzen and Nilsson, 2001) where the no-forgetting assumption is
relaxed.

The Influence Diagram in Figure 3.8 can be seen as a special case of a
larger class of models known as Partially Observable Markov Decision
Processes (or POMDPs). In the general case, the models take the form il-
lustrated in Figure 3.9 where each decision is preceeded by a partial obser-
vation of the current state of the world. The predicate Markov is used with
any model where the future state of the (modelled) world (Worldi+1) is d-
separated from the past (e.g., Worldi−1) given the current state of the world
(Worldi). In general, we may think of Figure 3.9 as a template where each
chance node may be stored efficiently (factored) as a Bayesian network.
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The single-fault troubleshooting model may be seen as a very simple and
efficient POMDP. Interestingly, a seminal paper in the POMDP commu-
nity uses machine maintenance as a motivating example (Smallwood and
Sondik, 1973).

From the preceeding example from Figure 3.8 it was clear that it was
rather difficult to emulate troubleshooting models with Influence Diagrams.
This is mainly due to two assumptions of the troubleshooting models:

1. Constraint 3 on page 36 stating that troubleshooting ends when no
more actions can be performed, and

2. Assumption 8 on page 37 stating that a troubleshooting tree is com-
pletely asymmetrical.

One often seen suggestion for Influence Diagrams is to add a "do nothing"
action with a zero cost, albeit it increases the dimensionality of the prob-
lem. To deal more directly with these limitations, various extensions have
been made to Influence Diagrams. For example, (Jensen and Vomlelová,
2002) describesUnconstrained Influence Diagrams and (Jensen et al., 2006)
investigates Sequential Influence Diagrams. Such frameworks enable a
quite accurate (and complex) description of decision problems with asym-
metries. We suspect that some of the problems encountered with the multi-
fault model carries over to these frameworks if we wish to employ them for
troubleshooting. A major obstacle is the difficulty of solving such models
(see (Luque et al., 2008) and (Ahlmann-Ohlsen et al., 2009) for details). An
interesting discussion of Influence Diagrams and troubleshooting may be
found in (Gökcay and Bilgic, 2002).

3.6.2 Models Without Actions

In this section we shall briefly discuss two approaches that enable trou-
bleshooting without any explicit representation of actions. The first ap-
proach is the one provided by the GeNIe Bayesian network shell devel-
oped at the University of Pittsburgh (Druzdzel, 1999), and this discussion
is based on the documentation that comes with the tool (version 2.0, 2010).

Basically, the approach requires the creation of a normal Bayesian net-
work over faults and questions. Furthermore, with each question variable
one can associate the cost of performing that test. As (repair) actions are
not explicitly modelled, the user can decide when to carry them out based
on the diagnosis (over faults) offered by the network. If the user feels that
the diagnosis is not certain enough, he can then ask the system to rank the
questions based on some criterion that seeks to measure the informative-
ness of the question compared to the cost of the question. In simple terms,
a question is worthwhile to answer if it makes us more certain in the cor-
rect diagnosis. However, to understand precisely how the system ranks
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the questions, we need a few well-known definitions relating to value-of-
information (VOI) analysis (Kjærulff and Madsen, 2008).

Given a probability distribution P(X ) over a set of variables X , the
entropy of X is given by

H (X ) = −
∑
x∈X

P(x) · lg P(x) (3.15)

where 0 · lg 0 ≡ 0 (this interpretation we uphold in all formulas involving
x · lg x). The entropy achieves its minimum 0 when all probability mass
is located in a single state, and it achieves its maximum lg |sp(X )| when
the distribution is uniform. Entropy therefore measures how "focused" the
probability distributions is. We may also define the conditional entropy
over variables X given variables Y

H (X |Y) = −
∑
y∈Y

P(y) ·
∑
x∈X

P(x |y) · lg P(x |y) (3.16)

to measure the uncertainty on X given an observation on Y . Finally, we
define the mutual information (or cross entropy) as a measure of the value
of observing Y for the target variables X as

I (X ,Y) = H (X )−H (X |Y)

=
∑
y∈Y

P(y) ·
∑
x∈X

P(x |y) · lg P(x,y)

P(x) · P(y)
. (3.17)

The cross entropy is a non-negative quantity with a value of zero if and
only if X and Y are independent sets.

In GeNIe we may call the target variables for the set F . Then, to rank
the questions, GeNIe computes the following for each question Q:

VOI (Q) = I (F ,Q)− α · CQ (3.18)

where α is a non-negative constant that converts the cost to a number with
the same unit as the cross entropy I (·). The constant is chosen by the user
when diagnosing. Since (cross) entropy is measured in millibits, α may be
converting from time or money to millibits. Compared to methods that
rank questions based on mutual information exclusively (e.g., (Rish et al.,
2005)), the GiNIe approach can be seen as an improvement as it allows us
to take the cost of the question into account.

However, there are several problems with this approach to troubleshoot-
ing, especially relating to Equation 3.18. First, there are many choices of α
and we may ask which is the best one as different values will lead to dif-
ferent rankings. Secondly—and this is by far the biggest issue—the unit
"millibits" is somewhat difficult to understand for humans. Of course, we
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can easily say that "more information" is better than "less information", but
it is exceedingly hard for humans to determine how one should convert,
e.g., minutes to millibits. Conceptually, they have nothing in common. Con-
verting between minutes and money is much more straightforward, as we
know (or can obtain) the price of salaries, equipment and lost production
time.

To avoid converting between utility units, special Multi-currency Influ-
ence Diagrams have been proposed (Nielsen et al., 2007). We agree that
such considerations cannot be ignored by sound decision models. This
leads us to the following principle.

Principle 4 (Utility Conversion). Any conversion between utilities of two dif-
ferent units can only be considered sound when the relationship between the two
units is well-understood and meaningful.

In the case of GeNIe, it is probably simpler and less error-prone just to
avoid the problem altogether by defining

VOI (Q) =
I (F ,Q)

CQ
(3.19)

which also removes the need for the user to select α. This would rank a
question highest if it yields the highest information gain per unit cost. As
we shall see in the next chapter, fractions of this type appear naturally as a
consequence of the decision tree formalism.

Instead of using a full Bayesian network model, let us now consider an-
other class of simpler troubleshooting models which may be characterized
by (a) that only a few probability parameters are used, and (b) that no ac-
tions are explicitly modelled.

This type of model has been extensively studied in a series of articles
(Raghavan et al., 1999a,b,c), and (Tu and Pattipati, 2003) devoted to the
problem of test sequencing. Furthermore, among the articles are also sub-
jects like multi-fault diagnosis (Shakeri et al., 2000; Tu et al., 2003) and
conditional costs parameters (Raghavan et al., 2004). The simplest test se-
quence problem takes the following form:

1. We have a set of m + 1 system states S = {s0, . . . , sm} with s0 being
the fault-free state and the other states denote them potentially faulty
states of the system.

2. For each system state s ∈ S we have the prior probability P(s).

3. We have a set of n tests T = {t1, . . . , tn} with respective costs C =
{c1, . . . , cn}.
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4. Finally, a binary matrix D = [dij ] identifies which system states (i)
that can be detected by a test (j). So dij is 1 if tj can detect if state
si is faulty and 0 otherwise. The test are assumed correct, and so no
uncertainty is involved here.

We can readily translate this specification to our troubleshooting model:
(a) F corresponds (roughly) to S (and P(F) to P(S)), but the inclusion of
s0 means that the problem is not assumed to exist when troubleshooting
begins, (b) T corresponds to Q with the assumption that all questions are
binary, and (c) D corresponds to the conditional probability tables P(Q |F)
with the assumption that these relations are deterministic. The determin-
istic relations are relaxed in (Raghavan et al., 1999b) leading to a POMDP
problem (cf. also (Heckerman et al., 1995) for troubleshooting under full
observability). In the simplest form, the goal is to find a strategy s over the
tests that can identify any faulty state (unambiguously) while minimizing
the expected testing cost

ETC (s ) =
m∑
i=0

n∑
j=1

aij · P(si) · cj (3.20)

where aij is 1 if test tj is used in the path leading to the identification of
system state si (in s ) and 0 otherwise. In this manner, the problem may be
understood as finding a strategy in a special, simple type of decision tree.
Although it is not always stated explicitly, we believe there is an underlying
single-fault assumption in Equation 3.20. We speculate that any of these
special strategies has exactly m leaf nodes (cf. Equation 3.8 on page 39)
where a system state is uniquely identified, and furthermore (non-trivially)
that such a leaf is reached with probability P(si).

3.6.3 The Importance of Detailed Models

Both types of models presented above have the assumption that once a fault
is identified (sufficiently accurately), we shall of course repair the compo-
nent that is involved. On the other hand, in troubleshooting (and Influ-
ence Diagrams) we explicitly model actions. The first advantage of this
approach is that it allow us to model uncertainties relating to the action
itself. The assumption is that such uncertainties are important for a cor-
rect model of the world. Secondly, we can model that an action may repair
several components. To give a formal argument of why models that mix
actions and questions are (theoretically) superior, we define the following
special troubleshooting strategies:

sA The optimal troubleshooting strategy consisting only of actions. The
strategy is found by minimizing over strategies in the troubleshoot-
ing tree T A.
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sQ The optimal troubleshooting strategy under the constraint that either
(a) all questions have been performed before any action appears, or
(b) only questions appear before a set of applicable actions (P(a |ε) >
0) such that if any further questions would appear before the actions,
the set of applicable actions would be empty. The strategy is found
by minimizing over strategies in the troubleshooting tree T Q.

sA∪Q The optimal troubleshooting strategy. The strategy is found by min-
imizing over strategies in the troubleshooting tree T A∪Q which is
a completely general troubleshooting tree mixing actions and ques-
tions.

Since (by definition) T A ⊆ T A∪Q and T Q ⊆ T A∪Q, we immediately have
the following result (cf. Lemma 1.5 in (Vomlelová, 2001)):

Proposition 5. It always holds that

ECR
(
sA∪Q

)
≤ ECR

(
sA
)

and ECR
(
sA∪Q

)
≤ ECR

(
sQ
)

(3.21)

This may be used to justify mixed models from a theoretical perspective;
the practical applications are a different matter. Real world use of decision
models require us to strike a balance between how fine-grained and close to
reality a model should be compared to how hard it is to specify, maintain,
and find optimal or approximate solutions in. We believe that the trou-
bleshooting model introduced in this chapter provides a simple, accurate
and practical abstraction for technical repair scenarios.

Remark 8. The above considerations also allow us to answer a general question
about model details from a theoretical perspective. For example, it will always be
beneficial to split large actions into smaller actions until the resulting actions are
as small as logically possible. An example could be that we are asked to repair the
battery of a car, but this actually consists of two independent tasks: (a) check the
connections to the battery, and (b) try to recharge the battery and replace it if that
fails.

3.7 Summary

This chapter described modern probabilistic decision theory and, in par-
ticular, decision theoretical troubleshooting. We started with a review of
utility theory and, in particular, the principle of maximum expected utility
as a theoretical basis of modern probabilistic decision theory. We then in-
troduced decision trees as formal description of decision problems that en-
codes all possible contingencies a decision maker can face when solving the
decision problem. Our optimization task is then to find an optimal (with
respect to expected utility) sub-tree of the decision tree (that is, a strategy)
encoding which action or observation to perform next given the history of
previously performed steps.
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Decision theoretical troubleshooting was introduced as a special deci-
sion problem that stands out by being highly asymmetrical. A range of
simplifying assumptions was discussed in depth, and we argued how any
troubleshooting model must meet certain constraints to be a valid model
of reality. The simplifications induced by the troubleshooting assumptions
lead to a definition of troubleshooting trees as simplified decision trees,
and it was discussed how we may define the expected cost of repair of a
troubleshooting strategy in various equivalent ways.

We then discussed the predominant single-fault troubleshooting model
and compared it with a particular multi-fault model. This revealed sev-
eral problems with multi-fault troubleshooting and enforced our belief in
the appropriateness of the single-fault model. A brief description of al-
ternative approaches to troubleshooting was given, ranging from very ac-
curate Influence Diagram-based approaches to quite simple fault isolation
approaches. In this process we saw that decision theoretic troubleshoot-
ing problems fall in the category of partially observable Markov decision
processes. In the end, the single-fault troubleshooting model stands out as
an appropriate compromise between complicated and somewhat simpler
models for technical repair scenarios.





Chapter 4

Classical Solution Methods for
Troubleshooting

A thousand roads lead men forever to Rome.
–Alain de Lille

We all know the common form of the above proverb as "all roads lead to
Rome". While this might be true, we may add that some roads are bound
to be shorter than others and hence more interesting if we want to visit
Rome. In this chapter we shall start with a short overview of various trou-
bleshooting domains and their complexity. We then investigate in detail
how to solve decision scenarios by performing systematic searches in the
underlying decision tree representation. The sheer complexity of finding
and storing an optimal strategy often forces us to give up that goal and set-
tle for an approximate solution. Therefore we also discuss ways to tweak
the solution methods such that they may be used as any-time heurstics with
bounded optimality.

4.1 Overview of Troubleshooting Domains

In this section we shall briefly discuss the wide range of assumptions lead-
ing to slightly different troubleshooting domains. These different assump-
tions have a profound impact on tractability and often lead to quite special-
ized heuristics and solution methods. Let us first introduce these domains.
They all have in common the three sets F , A, andQ that make up the basis
of any troubleshooting model.

It would be possible to define many of the domains below irrespective
of a single- or multi-fault assumption. However, since no theoretically sat-
isfying, general multi-fault model has been invented, we shall ignore such
multi-fault models except when explicitly mentioned. Our first domain re-
quires the following notation. For any action α ∈ A, fa (α) ⊆ F is the fault
set of the action denoting the set of faults for which P(a |f) > 0, that is, all
the faults f that α may repair.

59
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Definition 16 (Independent/Dependent Actions). Let M = (F ,A,Q,W,
BN, C) be a troubleshooting model. If for all pairs α, β ∈ A we have that

fa (α) ∩ fa (β) = ∅ (4.1)

then the model is said to have independent actions—otherwise the model is said
to have dependent actions.

Models with dependent actions is the topic of Chapter 5.

Definition 17 (Multiple Independent/Dependent Faults). Assume we asso-
ciate a binary sample space with each fault f ∈ F in some multi-fault troubleshoot-
ing model. If

P(F |ε) =
∏
f∈F

P(f) (4.2)

for all ε ∈ E then the model is said to have multiple independent faults—
otherwise the model has multiple dependent faults.

In general, the costs of actions and questions may depend on evidence ε ∈
E . If this is the case, we write Cα(ε) and CQ(ε) for the associated costs
and these are said to be conditional costs (or dependent costs); otherwise
we simply write Cα and CQ and say that the costs are constant costs (or
unconditional costs).

Definition 18 (Constant/Conditional Costs). Let M = (F ,A,Q,W, BN, C)
be a troubleshooting model. If all costs are constant costs, the model is said to have
constant costs—otherwise the model is said to have conditional costs.

A special type of models with conditional costs deserves its own category.

Definition 19 (Cost Clusters). LetM = (F ,A,Q,W, BN, C) be a troubleshoot-
ing model. If

1. the set A ∪ Q can be partitioned into a set of (non-overlapping) clusters
{K1 , . . . ,K`},

2. the clusters can be arranged in a DAG prescribing the order in which the
clusters must be opened to be able to perform the actions and questions in a
cluster, and

3. for each cluster we have a cost CKi associated with opening and closing the
cluster given that a parent cluster is open,

then the model is said to be acost cluster model. If the DAG equals a tree, we call
the model for a tree cost cluster model.
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In Chapter 6 we take a closer look at cost cluster models. We shall distin-
guish between two types of cost cluster models: those with inside informa-
tion and those without. If the clusters have inside information, it means
that we do not have to close the clusters again until the problem has been
fixed because it is possible to perform the system test when the equipment
is in this (partially or fully) open state. On the other hand, if the clusters do
not admit inside information, then we are forced to close the open clusters
before we can perform the system test. This latter scenario is also closely
related to the following:

Definition 20 (Non-trivial System Test). Let M = (F ,A,Q,W, BN, C) be a
troubleshooting model. If the system test W has a cost CW > 0, then we say that
the model has a non-trivial system test.

We also call this domain for troubleshooting with postponed system test
because it may not be optimal to perform the system test immediately after
an action has been performed. This is the topic of Chapter 7.

In the table below we summarize the scenarios that have been proven to
be intractable (see (Vomlelová, 2003) and (Lín, 2011)).

Assumption Complexity
Questions (General) NP-hard
Dependent actions NP-hard
Dependent multiple faults NP-hard
Conditional costs (general) NP-hard
Cost clusters with no inside information NP-hard
Non-trivial system test NP-hard

The fact that troubleshooting with multiple faults is NP-hard may not seem
so surprising as belief propagation in Bayesian networks is NP-hard.

Remark 9. (Lín, 2011) also discusses the notion of precedence constraints on
the order of actions which again may lead to an NP-hard problem. We shall not
discuss such models further, but just remark that search methods have been devel-
oped to cope with such constraints while solving a decision problem (Dechter and
Mateescu, 2004).

There are, however, also some more encouraging results. The table below
summarizes the types of troubleshooting models that are known to have
polynomial complexity. Except for (Heckerman et al., 1995), all these mod-
els have in common that they only contain actions (that is, Q = ∅) (see
(Kadane and Simon, 1977), (Srinivas, 1995), (Ottosen and Jensen, 2010) and
(Ottosen and Jensen, 2011)).
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Assumption Complexity
Independent actions O(|A| · lg |A|)
Independent multiple faults O(|F| · lg |F|)
Independently and fully observable faults O(|A| · lg |A|)
Tree cost clusters with inside information O(|A| · lg |A|)
Non-trivial system test in non-reordable models O(|A|3)

We may add that the last three domains of course also requires indepen-
dent actions (see Chapter 6 and Chapter 7). One of the few interesting,
remaining problems that have not been investigated is to extend the tree
cost cluster model to a DAG of clusters1.

Remark 10. The algorithm derived from the assumption "Independently and fully
observable faults" above is the one described in (Heckerman et al., 1995). A ques-
tion in this model can only detect if one particular fault is present, and the tests
have no false positives or false negatives. However, the authors appear to have
overlooked that their algorithm may not be optimal if the cost of a question is high
compared to the cost of the associated repair action. In such cases, it may be better
to skip the question and simply perform the repair action.

Let us end this section with discussion of the actual worst-case complex-
ity of a standard troubleshooting problem. The worst case happens when
we have to investigate the entire decision tree induced by the model.

Proposition 6. Let M = (F ,A,Q,W, BN, C) be a troubleshooting model with
no special assumptions other than dependent actions and general questions. Let
γ(M) be a function describing the time it takes time to generate a successor node
in the troubleshooting tree induced byM , and let δ be the average number of states
for the questions in Q. Then an optimal troubleshooting strategy can be found in
O
(
γ(M) · 2|A|+δ·|Q|

)
time.

Proof. By Proposition 2 on page 42 we can restrict our analysis of the trou-
bleshooting tree to the internal nodes. Furthermore, the number of chance
nodes is proportional to the number of decision nodes as every decision
node is followed by a chance node. The complexity is therefore bounded
by the number of decision nodes in the coalesced troubleshooting tree.

This number is most easily estimated by looking at the size of the ev-
idence set E induced by M . Every time we take a decision, we get to a
chance node, and following an outgoing edge of this chance node leave us
with new evidence. This can happen at most |A|+ |Q| times. At each level
(depth) i in the troubleshooting tree we have at most(

|A|+ δ · |Q|
i

)
1Václav Lín informs me that this is in fact also NP-hard (private communications).
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sets of evidence (somewhat less in reality as we may never pick more than
one state from the same question). And by summing over all levels we get

|A|+|Q|∑
i

(
|A|+ δ · |Q|

i

)
<

|A|+δ·|Q|∑
i

(
|A|+ δ · |Q|

i

)
= 2|A|+δ·|Q| .

We still need to argue how the coalesced troubleshooting tree can be ex-
ploited to get a solution in O(γ(M) · 2|A|+δ·|Q|) time. This is done by first
building the complete troubleshooting tree top-down by performing a
breadth-first search—this type of search ensures that coalescing completes
before a decision node is expanded. We can then run the bottom-up average-
out and fold-back algorithm to ensure no subtree is processed more than
once, basically visiting the decision nodes in reverse order (a map of deci-
sion nodes may be generated for each level in the troubleshooting tree).

We have now established an upper bound on the complexity of solving a
standard troubleshooting model. In the next sections we shall see how we
may avoid exploring the whole troubleshooting tree. The algorithms we
shall review are A∗ , AO∗ and depth-first search with heuristic information
(sometimes referred to as a branch-and-bound algorithm). Even though
the algorithms are almost fifty years of age, they remain among the most
important algorithms in AI and graphical models in particular (when op-
timal solutions must be found). Their significance is supported by the fact
that many state-of-the art methods are instantiations of these algorithmic
templates.

4.2 Solution Methods for Models with Actions

In this section we shall review the basic exhaustive search methods that are
guaranteed to find an optimal solution provided that sufficient memory is
available (such algorithms are also called admissible). We shall focus the
discussion on troubleshooting models without questions as this leads to
a simpler theoretic exposition. Similar arguments can be made for more
complicated models that include questions.

There are several reasons why it makes sense to investigate such algo-
rithms even though the problem may be NP-hard and we have to fall back
on heuristics in most practical applications:

1. The algorithms provide us with a systematic tool for evaluating the
qualitative performance of heuristics such that we can benchmark
different heuristics not merely against each other but also against an
optimal solution.

2. The algorithms may be easily transformed into powerful anytime
heuristics.
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3. The algorithms may be modified such that they can be guaranteed
to find a solution within a certain bound of an optimal solution (also
called semi-optimization).

As we have seen, (probabilistic) decision trees provide us with the formal
graphical representation of our troubleshooting decision problems. A key
aspect of this graphical representation is that it allows us to formulate the
task of finding an optimal strategy as a search procedure in the decision
tree. The search procedures we shall review in this section can often per-
form considerably better than buttom-up algorithms like the average-out
and fold back algorithm (Algorithm 1 on page 30). Overall there are two
general reasons for this:

1. The algorithms work "top-down", starting at the root and working
their way towards the leaves of the decision tree, growing the de-
cision tree incrementally as needed. This enables the algorithms to
prune partial solutions that are already too poor to be optimal. In this
manner the algorithms can try to avoid doing unneccessary work.

2. The algorithms may use additional heuristic information to estimate
the remaining cost of a partial solution. If this information obeys cer-
tain properties, it enables the algorithms to prune partial solutions
earlier which may further reduce the running time.

There are several reasons why a top-down solution method is potentially
more efficient and appropriate than bottom-up approaches.

1. Propagation in Bayesian networks is most easily done by adding to
the set of evidence rather than starting with a large set of evidence
and subtracting from it (although methods do exist for fast retrac-
tions (Jensen, 1995)).

2. Asymmetries in the decision tree make it more difficult to determine
where exactly the leaves are located. Again, this can be investigated
by propagating in the Bayesian network (is the evidence set in con-
flict?), but this may lead to several propagations that would not have
been necessary in a top-down approach.

3. In practice we are most interested in estimating the initial sub-tree
of a troubleshooting strategy (perhaps only the very first step). This
may be accomplished by turning top-down approaches into anytime
heuristics whereas a bottom-up approach is inherently unsuitable as
a basis for anytime heuristics.
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Before we proceed, we need a little terminology. We use Proposition 2 on
page 42 (and its variants) as a convenient, formal basis for solving trou-
bleshooting models as shortest path problems. In general we call the trou-
bleshooting tree for the search graph and a node in this graph will repre-
sent either a decision or chance node. The start node is denoted s and t is
any goal node. Nodes found between s and t will be denoted n and m. If
m is a successor node of n, then c(n,m) is the cost associated with the edge
between n and m. The total cost from the start node to a node n is given
by the function g(n) also denoted c(s, n). We let h(n) denote a heuristic
function that guides (or misguides) the search by estimating the remaining
cost of the problem. The cost of an optimal path from s to n is denoted
g∗(n), and from n to t it is denoted h∗(s). The smallest cost between two
nodes c∗(n,m) is denoted k(n,m). We also write C∗ for k(s, t). Finally, for
any node n we call

f(n) = g(n) + h(n) (4.3)

for the evaluation function of n (and we may call the actual values for
f-values and g-values). The evaluation function can used to determine
which node that should be expanded next in the search algorithms or it
can be used for pruning purposes. If h(n) ≡ 0 for all nodes n, we say that
the search is uninformed—otherwise we call the search informed. Since
we grow the search graph dynamically, a node can be (a) unexplored in
which case we have not generated it yet, (b)explored if has been generated,
and (b) expanded if it has been generated and all its successors have been
explored as well.

Remark 11. Although it may seem confusing, it is customary to call h(·) for
a "heuristic function", and it should not be confused with a "heuristic" which
simply means some general algorithm that is not guaranteed to find an optimal
solution.

We are now interested in a special class of heuristic functions that may
be used in the various search algorithms:

Definition 21 (Admissible Heuristic Function). Let h(·) be a heuristic func-
tion for some search problem. If

h(n) ≤ h∗(n) ∀n (4.4)

then h(·) is admissible.

Remark 12. Even though it is a little confusing, the notation h∗(n) for mint k(n, t)
should not be confused with the heuristic function h(n). This notation has been
customary for decades (Pearl, 1984).
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Figure 4.1: Visualization of the search graph for a shortest path problem.
The root is located in the bottom, and the thin path going from the root to
the edge of the top of the graph illustrates an optimal path. Nodes above
the top-most line have a higher cost than the optimal path, and nodes n
above the stippled line have g(n) + h(n) larger than the cost of an optimal
path. Uninformed search procedures need to explore the whole region be-
tween these to lines whereas informed search procedures need only explore
the first successor node in this region.

In Figure 4.1 is depicted a search graph. Note that if this was the search
graph for a troubleshooting problem, it should have a more diamond-like
shape due to coalescing. The thin line represents an optimal path and all
nodes n that lie above the thick top-most line have g(n) > C∗ (call this
region 1). Furthermore, say the stippled line meets the optimal path in node
n, then all the nodes m above the stippled line have g(m) + h(m) > g(n) =
C∗ (call this region 2). These two regions of the search space illustrate the
benefit an informed search may have over an uninformed one. Let us call
the region below region 2 for region 3. Region 3 illustrates the minimal part
of the search graph that search algorithms are forced to explore to be able
to prove optimality. Furthermore, to achieve this goal, they also need to
explore all the immediate successors of nodes in region 3 that lies in region
2, thereby establishing that such nodes cannot be part of a shortest path.

The first algorithm that we shall discuss is a depth-first search (or
branch-and-bound search) with coalescing and pruning. The algorithm
is given in Algorithm 2, and an explanation follows. Note that we use ’&’
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to denote that arguments to functions are passed as references. In line 5
we utilize some heuristic to get a good initial upper bound which will help
the algorithm to prune unpromising paths earlier (cf. Line 21-22). In line
15 the function IsGoalNode(·) simply test whether any more actions can
be performed; if not, then we have reached a goal node. In Line 20 we call
the heuristic function h(·) to get an f-value for the new node m. At Line 24
we check if we have already seen the node before in which case the node is
stored in the coalescing map variable map. If the new instance of the node
has a worse g-value than previously, we prune it; otherwise we update the
map with this new better node (Line 27). Finally, in Line 28 we make a
recursive call.

Once the algorithm terminates (Line 8), we can recreate the optimal se-
quence by looking at the node best. Here we assume that each node stores
the sequence that lead to the node. Alternatively, if we want to save mem-
ory, we may keep a single (global) sequence that is updated every time
a new better goal node is found. The admissibility of depth-first search
follows from the simple fact that it scans all relevant nodes in the search
graph, and that all other nodes are pruned by a bound that is never lower
than the optimal cost.

As the algorithm is written, it takes O(γ(M) · 2|A|) memory (for the co-
alescing map) and O(γ(M) · |A|!) time (γ(M) being the per-node overhead
for the model). It can therefore not be guaranteed to terminate within the
O(γ(M) · 2|A|) time bound suggested by Proposition 6 on page 62. (How-
ever, we shall later see how coalescing can indeed be improved to achieve
this.) Alternatively we could discard the coalescing map to get an algo-
rithm that takes up O(γ(M) · |A|) memory and runs in Θ(γ(M) · |A|!) time.
This is usually not a good idea as the memory needed for the coalescing
map is relatively low compared to storing the full search graph as done
by other algorithms. Despite its apparent high complexity, node expansion
can usually be made rather efficient for depth-first search which together
with pruning can lead to a quite competitive algorithm ((Ottosen and Vom-
lel, 2010a) investigates this issue, albeit in another context). In later chapters
we shall discuss further pruning techniques.

Whereas depth-first search scans more nodes than strictly necessary, the
A∗ algorithm uses a best-first strategy to minimize the number of node ex-
pansions. As we shall see, A∗ is under certain conditions the best algorithm
in terms of node expansions. The A∗ algorithm for troubleshooting with
actions is given in Algorithm 3. The algorithm works by continuously ex-
panding the node with the lowest f-value (Line 9). This may be done ef-
ficiently by means a priority queue which in this context is traditionally
called the open set, denoted O. The nodes resident in the open set collec-
tively make up the frontier (or fringe) of the search where nodes have been
explored but not yet expanded.



68 Chapter 4. Classical Solution Methods for Troubleshooting

Algorithm 2 Depth-first search with coalescing, upper-bound pruning and
initial upper-bound. With each node n we associate the attributes n.ε (the
current evidence), n.g (the current cost from the start node to n), and n.f
(the evaluation function for n). The algorithm assumes that the heuristic
function h(·) is admissible.

1: function DFSFORTROUBLESHOOTINGWITHACTIONS(M )
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q = ∅,CW = 0
4: Let s = (g = 0, f = 0, ε = ∅) . The start node
5: Let best = HEURISTIC(s) . Initial upper bound
6: Let map = ∅ . Coalescing map
7: EXPANDNODE(s, best,map)
8: return best
9: end function

10: procedure EXPANDNODE(n,&best,&map)
11: for all α ∈ A(n.ε) do . For all remaining actions
12: Let m = COPY(n)
13: Set m.ε = m.ε ∪ {{α = ¬a}} . Update evidence
14: Set m.g = m.g + P(n.ε) · Cα . Compute new cost
15: if ISGOALNODE(m) then
16: if m.g < best.g then
17: Set best = m
18: end if
19: else
20: Set m.f = m.g + h(m) . Call heuristic function
21: if m.f ≥ best.g then
22: continue . Upper-bound pruning
23: end if
24: if map[m.ε].g ≤ m.g then . Coalescing-based pruning
25: continue
26: end if
27: Set map[m.ε] = m
28: EXPANDNODE(m, best,map)
29: end if
30: end for
31: end procedure

Traditionally, the algorithm keeps all relevant explored nodes in mem-
ory by adding expanded nodes (Line 13) to the so-called closed set which
we have not shown in the algorithm. This allows for the following trade-
off: when the algorithm terminates (returning a goal node, Line 10-11) we
may recreate an optimal sequence as we did for depth-first search. How-
ever, since we have all the expanded nodes in memory in the closed set, we
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Algorithm 3 A∗ search with coalescing and upper-bound pruning. With
each node n we associate the attributes n.ε (the current evidence), n.g (the
current cost from the start node to n), and n.f (the evaluation function for
n). The algorithm assumes that the heuristic function h(·) is admissible.

1: function ASTARFORTROUBLESHOOTINGWITHACTIONS(M)
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q = ∅,CW = 0
4: Let s = (g = 0, f = 0, ε = ∅) . The start node
5: Let map = ∅ . Coalescing map
6: Let O = {s} . The open set
7: Let best =HEURISTIC(s) . Initial upper bound
8: while O 6= ∅ do
9: Let n = arg min

m∈O
m.f . Find node with lowest f-value

10: if ISGOALNODE(n) then
11: return n
12: end if
13: Set O = O \ {n}
14: for all α ∈ A(n.ε) do . For all remaining actions
15: Let m = COPY(n)
16: Set m.ε = m.ε ∪ {{α = ¬a}}
17: Set m.g = m.g + P(n.ε) · Cα

18: if map[m.ε].g ≤ m.g then . Coalescing-based pruning
19: continue
20: end if
21: if ISGOALNODE(m) then
22: if m.g < best.g then
23: Set best = m
24: end if
25: continue
26: end if
27: Set m.f = m.g + h(m) . Call heuristic function
28: if m.f ≥ best.g then . Upper-bound pruning
29: continue
30: end if
31: Set map[m.ε] = m
32: Set O = O ∪ {m}
33: end for
34: end while
35: end function
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can simply track pointers back to the start node—this alleviates the mem-
ory requirement a little as we do not have to store the past in each node.
Having a closed set also allow us to trace descendents of m that have al-
ready been expanded even though we have now found a shorter path to m
(Line 18-20). In this manner we may avoid re-expanding nodes and simply
update the g- and f-values. On the other hand, having a closed set leads to
slightly higher memory requirements.

Lines 21-26 and 28-29 applies pruning to nodes that are not worth putting
into the priority queue because a better goal node has already been found.
This pruning requires an admissible heuristic function. Finally, it is in order
to mention this classical result:

Theorem 3 (Hart et al. (1968)). A∗ terminates with an optimal solution when
the heuristic function h(·) is admissible.

Compared to depth-first search, it is somewhat more difficult to estab-
lish that A∗ returns an optimal solution. A thorough theoretical exposition
may be found in (Pearl, 1984). Algorithm 3 has complexity O(γ(M) · |A|!)
which is still not optimal according to Proposition 6 on page 62. We can-
not claim that the algorithm has O(γ(M) · 2|A|) complexity because we risk
that nodes are expanded several times (or at least updated several times if
we use a closed set). To get closer to this bound, we need some additional
definitions and results.

Definition 22 (Consistent Heuristic Function). Let h(·) be a heuristic function
for some search problem. If

h(n) ≤ k(n,m) + h(m) ∀n,m (4.5)

where m is reachable from n, then h(·) is consistent.

Definition 23 (Monotone Heuristic Function). Let h(·) be a heuristic function
for some search problem. If

h(n) ≤ c(n,m) + h(m) ∀n,m |m ∈ succ(n) (4.6)

then h(·) is monotone.

The importance of consistency and monotonicity can be seen by the follow-
ing (incomplete) list of theorems (Hart et al., 1968), (Pearl, 1984):

Property 1. Monotonicity and consistency are equivalent properties.

Property 2. Every consistent heuristic is also admissible.

Property 3. A∗ guided by a monotone heuristic finds optimal paths
to all expanded nodes, that is, g(n) = g∗(n) for all n in the closed set.
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Property 4. If h(·) is monotone, then a necessary condition for ex-
panding node n is given by

g∗(n) + h(n) ≤ C∗ (4.7)

and the sufficient condition is given by

g∗(n) + h(n) < C∗ (4.8)

Property 5. If h(·) is monotone, then the f-values of the sequence of
nodes expanded by A∗ is non-decreasing.

Let us discuss a few of these properties. Property 1 and 2 implies that
we can focus on proving motonicity and get all the analytical power of
consistency for free. Property 4 implies that the choice of tie-breaking rules
employed in the priority queue (Line 9) is largely insignificant because we
need to investigate all ties anyway. The most significant property, however,
is perhaps Property 3 because it means that whenever we expand a node,
then we have already found an optimal path to that node. This completely
removes the need to re-expand any node (or re-update the g- and f-values
of any node). Therefore, if A∗ is guided by a monotone heuristic function,
we immediately get the O(γ(M) · 2|A|) complexity bound. The importance
of monotonicity is furthermore captured by the following result.

Theorem 4 (Dechter and Pearl (1985)). Let a search problem be given and let
h(·) be a monotone heuristic function that can guide any search algorithm for this
problem. Then, among all possible admissible algorithms, A∗ is the algorithm that
leads to the fewest number of node expansions.

It also turns out we can make any non-monotone, admissible heuristic
function h(·) into a monotone one (Mero, 1984; Mahanti and Ray, 1987). If
h1(n) ≤ h2(n) for all non-goal nodes n, then the heuristic function h2(·) is
said to beat least as informed as h1(·). Korf then gives (approximately) the
following formulation:

Theorem 5 (Korf (1985)). For any admissible heuristic function h(·), we can
construct a monotone heuristic function h′(·) which is at least as informed as h(·)
by defining

h′(m) = max (h(m), h(n)− c(n,m)) (4.9)

for all successor nodes m of n.

Thus, if at some point the f-value is about to drop due to inconsistency, we
simply keep the same f-value in m as we had in the parent node n. To our
knowledge this is not a widely adopted idea (at least not experimentally),
even though it is briefly mentioned in (Nilsson, 1998). Finally, we may add
the following result which (Pearl, 1984) cites Nilsson for:
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Theorem 6. Let A∗1 and A∗2 be two instances of the A∗ algorithm with heuris-
tic functions h1(·) and h2(·), respectively. Futhermore, let h1(·) be at least as
informed as h2(·), and let A∗1 and A∗2 apply the same tie-breaking rules when
selecting a node to expand. Then every node expanded by A∗1 is also expanded by
A∗2.

Recently, inconsistent heuristic functions have been shown to be desirable
(Zahavi et al., 2007) for use with iterative deepening A∗ (Korf, 1985, 1993).

It is well-known that we may obtain a solution faster if we give up on
admissibility and instead use a non-admissible heuristic function. How-
ever, we then face the problem that we have no guarantee about how good
the acquired solution actually is compared to an optimal one. An interest-
ing class of algorithms derived from A∗ is called ε-admissible algorithms
because they guarantee that the found solution has a cost within (1 + ε) of
the cost of an optimal solution. (1 + ε) is also called the inflation factor. We
have the following encouraging result.

Theorem 7 (Pearl (1984)). Let h(·) be an admissible heuristic function for some
search problem. Then for all ε ≥ 0, A∗ guided by

h′(n) = (1 + ε) · h(n) ∀n (4.10)

finds a solution with cost C ≤ (1 + ε) · C∗.

Corollary 1. Depth-first search using an non-admissible heuristic function like
h′(·) above finds a solution with cost C ≤ (1 + ε) · C∗.

Interestingly, Pearl (1984) also gives detailed information about applying
a second non-admissible heuristic function during the search without sac-
rificing ε-admissibility. Yet another ε-admissible scheme may be found in
(Pohl, 1973). The above theorem may then be used to perform a series of
searches where ε is gradually lowered based on how much computational
time we have available (Likhachev et al., 2004).

We shall end this section with a brief overview of some of the most in-
teresting extensions for A∗ that have been proposed. For an overview of
heuristic search we refer to (Stewart et al., 1994) and (Rios and Chaimow-
icz, 2010). Since the biggest problem with A∗ is the memory requirements,
much effort has been put into lowering the size of the open and closed
set. In general these schemes trade less memory for more time such that
the algorithm can solve larger problem instances. Sometimes, however, the
algorithms may also improve the running time.

(Stern et al., 2010) describes a method where we perform a depth-first
look-ahead search in each node n. This look-ahead search is used to es-
tablish an additional lower-bound (f-value) for n by taking the smallest
such found during the depth-first search. The open set is then ordered in
terms of this new lower-bound. If the termination conditions are changed
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slightly, admissibility is preserved, and space requirements are reduced ex-
ponentially in the look-ahead depth. In this case the authors also report
significant faster completion times for certain problems.

The second idea is called frontier search (Korf et al., 2005). The ba-
sic idea is to avoid storing the closed set by exploiting consistency of the
heuristic function. Their method includes novel approaches for recovering
the solution path without storing the past in each node. They report large
speedups for some problems.

A third idea is reduce the size of the open set by not storing all succes-
sors of a newly expanded node n (Yoshizumi et al., 2000). Instead we label
all successors of n as either "promising" or "unpromising". The promis-
ing nodes are put into the open set immediately whereas n is given the
minimal f-value among the unpromising nodes and put into the open set
again. The unpromising nodes may then be generated again at a later time
if we need to expand n again. For this reason the scheme is called partial
expansion, and it works particularly well in problems with large branch-
ing factors where the open set is quite large compared to the closed set.
Troubleshooting problems can reasonably be categorized as problems with
large branching factors. However, in troubleshooting we may easily run a
heuristic to find an initial upper-bound like we did in our presentation of
depth-first search (Algorithm 2) and A∗ (Algorithm 3). Using this upper-
bound for pruning can probably bring much of the savings of partial ex-
pansions.

Another approach is to limit the number of priority queue operations
done on the open set (Sun et al., 2009). This is achieved by determin-
ing (during expansion) whether a newly generated node will be expanded
next—if so, then the node is not put into the open set (and immediately
removed) but expanded after all other newly generated nodes have been
put into open.

Let us briefly discuss an idea which we have not had time to investigate
empirically. It is usually assumed that a heuristic function is fast to com-
pute. We have used the neutral factor γ(M) to hide the real complexity of
node expansion, including the cost of computing the heuristic function and
updating the open/closed set. The open set usually takes O(lg |O|) time to
update per node, but the priority queue grows exponentially large and may
overall lead to a significant run-time cost. At least for troubleshooting, it is
virtually guaranteed than any good heuristic function takes at least O(|A|)
time to compute. Therefore computing this function is at least as expen-
sive as updating the priority queue. A simple way to reduce this overhead
is to postpone the recomputation of the heuristic value until it is actually
needed or until it can be deemed beneficial to do so. In particular, we are
only forced to recompute the heuristic function for a node n if g(n) is larger
than the lower bound originally established by a predecessor of n. How
much this speeds up the search (if at all) remains to be seen.
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Finally we shall discuss the idea of bidirectional search (Kaindl and
Kainz, 1997). The main limitation stems from the fact that a bidirectional
search requires a single goal node. (In principle, however, it seems that
a bidirectional search should be feasible whenever bottom-up approaches
work, even though this complicates the matter somewhat.) This limitation
narrows the class of troubleshooting problems where a bidirectional search
is possible:

Definition 24 (Soft Troubleshooting Model). LetM be a troubleshooting model
containing only actions. Then a bidirectional search is feasible if for all α ∈ A

P(a |f) < 1 ∀ f ∈ fa (α) (4.11)

and we call M for a soft troubleshooting model—otherwise it is called a non-
soft troubleshooting model.

Such soft models have an associated goal state where the Bayesian network
does not admit any evidence conflict. Traditionally, a bidirectional search
uses a separate heuristic function for each direction. In case we do not have
a heuristic function for the reverse direction, we may simply take h(·) ≡ 0
as a very optimistic, but monotone heuristic function. It is an open ques-
tion whether bidirectional search yields any improvement over a normal
unidirectional search for troubleshooting.

4.3 Solution Methods for Models with Questions

In this section we shall briefly review algorithms that return optimal solu-
tions for models that include questions. The main difference lies in the fact
that a solution is now a tree and not just a sequence. Troubleshooting trees
are a special case of AND-OR search graphs where (a) the chance nodes
represent AND nodes where all successors must be part of any solution
involving the node and (b) the decision nodes represents OR nodes where
only a single successor node must be part of a solution that includes the
node.

This implies that the termination criterion cannot be based on solely on a
single node (cf. the IsGoalNode(·) function which determined if a node
was solved), but must take into account if a set of explored nodes collec-
tively make up a solution tree (troubleshooting strategy). To achieve this
goal, the impact of newly generated successor nodes must be propagated
to parent nodes in the (partial) solution tree. Conceptually, we have found
a solution tree if the root node can be labelled "solved" by the following
labelling procedure.
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Algorithm 4 The helper function for depth-first search (Algorithm 5).
1: procedure EXPANDQUESTIONS(&n,&map)
2: for all Q ∈ Q(n.ε) do . For all remaining questions
3: Let nq = MAKECHANCENODE(n,Q)
4: for all q ∈ Q do
5: Let m = COPY(n)
6: Set m.ε = m.ε ∪ {{Q = q}} . Update evidence
7: if map[m.ε].cost <∞ then . Problem already solved?
8: Set m.cost = map[m.ε].cost
9: else if n.cost ≤ h(m) then . Upper-bound pruning

10: continue
11: else if P(m.ε |n.ε) > 0 then . Is sub-problem valid?
12: EXPANDNODE(m,map)
13: end if
14: Set nq.cost = nq.cost+ P(m.ε |n.ε) ·m.cost
15: end for
16: if n.cost > nq.cost then . Update best successor node
17: Set n.cost = nq.cost
18: Set n.best = nq
19: end if
20: end for
21: end procedure

Definition 25 (AND/OR graph "solved" labelling rules (Pearl, 1984)). A
node in an AND-OR graph is solved if either

i. it is a terminal node (representing a primitive problem),

ii. it is non-terminal OR node, and at least one of its OR links point to a solved
node, or

iii. it is a non-terminal AND node, and all of its AND links point to solved nodes.

The following exposition is mainly based on (Pearl, 1984), (Vomlelová
and Vomlel, 2003) and (Nilsson, 1980). We start our presentation with a
depth-first search for troubleshooting with questions. As was the case for
depth-first search for models with actions, the biggest practical problem lie
in the fact that a newly found improved solution must be copied from the
stack (alternatively, node expansion can take place on the heap, in which
case swapping the root of the tree is sufficient). In Algorithm 2 on page 68
we employed coalescing to speed up the search, but when we are dealing
with AND-OR graphs, the coalescing map is also essential for recovering
a solution tree in a cheap way. To each decision node n we now add the
additional attribute n.best describing the best successor node.
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Algorithm 5 Depth-first search with coalescing and upper-bound pruning
for models that include questions. With each node n we associate the at-
tributes n.ε (the current evidence), n.cost (the cost of the partial solution
rooted at n), and b.best (the best successor node). The algorithm assumes
that the heuristic function h(·) is admissible.

1: function DFSFORTROUBLESHOOTINGWITHQUESTIONS(M )
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q 6= ∅,CW = 0
4: Let s = (cost =∞, ε = ∅, best = null) . The start node
5: Let map = ∅ . Coalescing map
6: EXPANDNODE(s,map)
7: return CREATESOLUTIONTREE(s,map)
8: end function
9: procedure EXPANDNODE(&n,&map)

10: if map[n.ε].cost <∞ then
11: Set n.cost = map[n.ε].cost
12: Set n.best = map[n.ε].best
13: return
14: end if
15: EXPANDACTIONS(n,map)
16: EXPANDQUESTIONS(n,map) . See Algorithm 4
17: Set map[n.ε] = n . Make sure sub-problem is solved only once
18: end procedure
19: procedure EXPANDACTIONS(&n,&map)
20: for all α ∈ A(n.ε) do . For all remaining actions
21: Let m = COPY(n)
22: Set m.ε = m.ε ∪ {{α = ¬a}} . Update evidence
23: if ISTERMINALNODE(m) then
24: Set m.cost = C(m.ε) . Cost of path
25: else if map[m.ε].cost <∞ then . Problem already solved?
26: Set m.cost = map[m.ε].cost
27: else if n.cost ≤ h(m) then . Upper-bound pruning
28: continue
29: else
30: EXPANDNODE(m,map)
31: end if
32: if n.cost > m.cost then . Update best successor node
33: Set n.cost = m.cost
34: Set n.best = m
35: end if
36: end for
37: end procedure
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Algorithm 6 AO∗ search with coalescing for models that include questions.
With each node n we associate the attributes n.ε (the current evidence),
n.cost (the cost of the partial solution rooted at n), n.parents (the parents
that have explored n), n.children (the children found by expanding n),
n.step (the action or question associated with a decision node), and n.best
(the best successor node). Note the we assume that n.parents, n.children
and n.step are implicitly updated as the search graph is explored. The al-
gorithm assumes that the heuristic function h(·) is admissible.

1: function AOSTARFORTROUBLESHOOTINGWITHQUESTIONS(M)
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q 6= ∅,CW = 0
4: Let s = (cost = 0, ε = ∅, best = null) . The start node
5: Let map = ∅ . Coalescing map
6: Let O = {s} . The open set
7: while O 6= ∅ do
8: Let n = arg min

m∈O
m.cost . Find node with lowest remaining cost

9: Remark: n is a decision node
10: EXPANDNODE(n,map)
11: UPDATEANSCESTORS(n,map)
12: Set O = FINDUNEXPANDEDNODES(s.best,map)
13: end while
14: return CREATESOLUTIONTREE(s,map)
15: end function
16: procedure EXPANDNODE(&n,&map)
17: for all α ∈ A(n.ε) do . For all remaining actions
18: Let m = COPY(n)
19: Set m.ε = m.ε ∪ {{α = ¬a}} . Update evidence
20: if ISTERMINALNODE(m) then
21: Set m.cost = Cα

22: else if map[m.ε].cost > 0 then
23: Set m.cost = map[m.ε].cost . re-use existing value
24: else . This is the first time we explore m
25: Set m.cost = Cα + P(m.ε |n.ε) · h(m)
26: Set map[m.ε] = m
27: end if
28: end for
29: EXPANDQUESTIONS(n,map)
30: end procedure
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Algorithm 7 The helper functions for AO∗ search (Algorithm 6).
1: procedure EXPANDQUESTIONS(&n,&map)
2: for all Q ∈ Q(n.ε) do . For all remaining questions
3: Let nq = MAKECHANCENODE(n,Q)
4: Set nq.cost = CQ

5: for all q ∈ Q do
6: Let m = COPY(n)
7: Set m.ε = m.ε ∪ {{Q = q}} . Update evidence
8: if map[m.ε].cost > 0 then
9: Set m.cost = map[m.ε].cost

10: else if P(m.ε |n.ε) = 0 then . Is sub-problem invalid?
11: continue
12: else . This is the first time we explore m
13: Set m.cost = h(m)
14: Set map[m.ε] = m
15: end if
16: Set nq.cost = nq.cost+ P(m.ε |n.ε) ·m.cost
17: end for
18: end for
19: end procedure
20: procedure UPDATEANCESTORS(&n,&map)
21: Let queue = ∅ . FIFO queue
22: PUSH(queue, n)
23: repeat
24: Let m =POP(queue)
25: Let newCost = 0 . New node estimate for m
26: if ISDECISIONNODE(m) then
27: Set m.best = arg min

m′∈m.children
m′.cost

28: Set newCost = m.best.cost
29: else
30: Set newCost = Cm.step +

∑
m′∈m.children

P
(
m ′.ε |m.ε

)
·m′.cost

31: end if
32: if newCost > m.cost then . Is further updating necessary?
33: Set m.cost = newCost
34: Set map[m.ε].cost = m.cost
35: for all m′ ∈ m.parents do . Schedule all parent nodes
36: if m′ 6∈ queue then . Avoid duplicates due to coalescing
37: PUSH(queue,m′)
38: end if
39: end for
40: end if
41: until queue = ∅
42: end procedure
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This attribute allows us to reconstruct a solution tree once the root node
has been solved as we can recursively figure out what evidence sets that
we need to index the coalescing map with. The depth-first algorithm is de-
scribed in Algorithm 5. As with Algorithm 2 we may improve the pruning
process by finding a good initial solution tree.

The type of coalescing we perform in Algorithm 5 can actually also be
performed for Algorithm 2 on page 68. In fact, it is the best form of the
two as it implies that we completely avoid processing any sub-problem
twice. Therefore we easily get that the complexity of the algorithm must be
O(γ(M) · 2|A|+δ·|Q|). On the other hand, the type of coalescing performed
in Algorithm 2 on page 68 may only be performed for action sequences. In
the following, the actions of a particular sequence s shall be denoted A(s ).
We then summarize these considerations in the following result (cf. (Lín,
2011)).

Proposition 7. Let s∗ be an optimal troubleshooting strategy, and let
s = 〈αx , . . . , αx+k 〉 be any troubleshooting sequence embedded in s∗ starting
after evidence ε is given. Then

1. s must be an optimal sequence of the actions A(s ) given evidence ε, and

2. for each 0 < i < k, s≤i = 〈αx , . . . , αx+i〉 and s>i = 〈αx+i+1 , . . . , αx+k 〉
must be optimal troubleshooting sequences of A(s≤i) and A(s>i) given ev-
idence ε and ε ∪ εx:x+i, respectively.

Proof. For all cases, assume the opposite. Then we immediately get a con-
tradiction to s∗ be an optimal troubleshooting strategy.

Next we shall discuss the seminal AO∗ algorithm (Nilsson, 1980). The
algorithm is described in Algorithm 6. Before we explain the details of the
algorithm, we shall give an overview of how it works. The algorithm can
be viewed as consisting of the following steps:

1. At all times, the algorithm keeps track of the currently best partial
strategy (the attribute n.best is used for this purpose).

2. Based on the best partial strategy s , the algorithm re-computes the
open set as the explored, but yet unexpanded nodes of s . The nodes
in the open set are all decision nodes.

3. Then the node with the smallest f-value in open is selected for expan-
sion (other approaches may be considered, see e.g. (Vomlelová and
Vomlel, 2003) or (Pearl, 1984)).

4. After expanding a node n, the ancestors of n need to have their f-
values updated, and as a result we may need to also update m.best
for all ancestors.
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5. This process continues until the best partial strategy becomes a full
strategy and the resulting open set therefore will be empty. At this
point we have found an optimal strategy if we employ an admissible
heuristic function.

Let us now walk through the algorithm. Like depth-first search, it uses the
attribute n.best and the coalescing map to recreate a solution tree (Line 14).
The same procedure is also used to find unexpanded nodes of the currently
best strategy (Line 12).

The procedure ExpandNode(·) is slightly different from depth-first
search (see also Algorithm 7). The purpose is now only to (a) expand the
successor nodes and compute their lower bound using the heuristic func-
tion, and (b) update the coalescing map with parent pointers (not shown)
and lower bound estimates (Line 20-27). These pointers are needed for the
procedure UpdateAncestors(·) (see Algorithm 7) which takes care of
propagating the effect of the new heuristic estimates up the search graph.

UpdateAncestors(·) uses a queue to ensure that parent nodes are not
updated before all child nodes have been updated (Line 21). In Line 25-31
we compute the new lower bound, and in this connection it might be easiest
to think of the search graph as a decision tree and not a troubleshooting
tree (where the action nodes have been merged with the system test). This
means that the sum in Line 30 is just a single term if m.step ∈ A. Then
in Line 32 we stop the upwards propagation if the new lower bound is
not larger. This may seem slightly unintuitive, but it is valid because the
heuristic function is admissible, and so a large lower-bound is better (that
is, closer to the true cost of the remaining problem) than a smaller lower-
bound. If we do have a better lower-bound, we update the node and the
map (Line 33-34). Finally, we schedule all parents for updating, unless they
have already been put into the queue (Line 35-37) (coalescing may cause
this to happen). It is important that we do not add duplicate nodes to the
queue as it would be inefficient to process the same node multiple times.

From one point of view AO∗ is attractive because it seeks to minimize
the number of node expansions. Even so, we cannot state that it runs
O(γ(M) · 2|A|+δ·|Q|) time. The Achilles’ heel of AO∗ is the procedure
UpdateAncestors(·)which propagates node estimates towards the start
node. The problem is that we may process a large portion of the expanded
search graph each time. Due to coalescing, then the number of ancestors
that needs updating may be far more than a number proportional to the
depth of the expanded node. Since the worst case is to update the whole
graph, we easily get a O(γ(M) · 22·(|A|+δ·|Q|)) complexity bound, although
this is probably not a tight bound. In this context it is worth noticing that a
non-consistent heuristic function is actually an advantage as it implies that
the updating process may be stopped early. Furthermore, the complica-
tion of the implementation that a non-consistent heuristic function gives
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for A∗ does not apply to AO∗. We summarize the exhaustive search meth-
ods in the following table:

Algorithm Complexity Memory
Bottom-up O(γ(M) · 2|A|+δ·|Q|) O(2|A|+δ·|Q|)

Depth-first search O(γ(M) · 2|A|+δ·|Q|) O(2|A|+δ·|Q|)

AO∗ O(γ(M) · 4|A|+δ·|Q|) O(2|A|+δ·|Q|)

We can add that node expansion may be faster and that memory require-
ments are (considerably) lower for depth-first search. Ultimately, only ex-
periments can answer which admissible search method that performs bet-
ter, and this question remains open for troubleshooting.

4.4 Summary

In this chapter we saw how the majority of troubleshooting assumptions
render the problem NP-hard. In fact, many real-world models will have
to deal with three-four NP-hard problems simultaneously. Other the other
hand, a few isolated problems are tractable, and even though the assump-
tions underlying these results are quite restrictive, we shall view them as
important building blocks for heuristics when the assumptions do not ap-
ply. We then moved on to extend our toolbox with algorithms that are
guaranteed to find an optimal solution such that we can easily benchmark
efficient heuristics or derive new any-time heuristics.

When we are faced with a model that consists exclusively of actions, we
described how depth-first search and the celebrated A∗ search may be used
to find optimal troubleshooting sequences. For both algorithms it was im-
portant to apply coalescing to preserve an exponential time and memory
complexity. We gave an in-depth account of the theoretical properties of
A∗ and reviewed numerous extensions that seek to reduce the memory re-
quirement or speed up the algorithm (or both). We explained how A∗ is
in fact the optimal algorithm when it comes to minimizing the number of
node expansions. However, in practice we may find that the cost of node
expansion is higher in A∗ than in depth-first search thereby leveling the
field. If we were willing to give up on admissibility, we could modify the
algorithms such that they find a solution which is guaranteed to be within
a predetermined bound from the optimal solution.

As soon as we introduce questions into the model, we have to use more
advanced algorithms. Depth-first search could relatively easily be extended
to handle troubleshooting trees with chance nodes (AND-OR graphs), al-
beit we had to apply coalescing a little differently. Of course, this sec-
ond type of coalescing applies equally well to models containing only ac-
tions. The most complicated algorithm was AO∗which appears to be the
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algorithm of choice if one seeks to minimize the number of node expan-
sions. However, we were unable to get a worst-case complexity bound
that matches the bound for depth-first search or dynamic programming
(bottom-up) approaches. The problem was that AO∗must continuously
track the currently best strategy, and this may require numerous updates
to already expanded nodes as new cost estimates are propagated towards
the root of the troubleshooting tree. Ultimately, only implementation expe-
rience and testing can determine which algorithm that performs better.



Chapter 5

Troubleshooting with Dependent Actions

The study of heuristics draws its inspiration from the ever-amaz-
ing observation of how much people can accomplish with that
simplistic, unreliable information source known as intuition.
–Judea Pearl

In this chapter the main topic is troubleshooting with dependent actions.
Actions become dependent as soon as two actions may repair overlapping
sets of faults. For example, rebooting the computer may fix mutiple prob-
lems or giving a drug to a patient may cure several diseases. In general,
we can safely say that many real world troubleshooting models will con-
tain dependent actions. We shall start with a discussion about why this
topic is important, followed by a review of the classical heuristics for this
problem. Then we provide theoretical insights and experimental results on
using an A∗ search for this problem. The chapter also includes some results
on dependency sets that have not been published before.

5.1 Preliminaries

When actions in a model can remedy sets of faults that overlap, we say that
the model has dependent actions. Finding an optimal solution in models
with dependent actions is of great practical importance since dependent
actions can be expected to occur in many non-trivial domains.

We use the following notation. The model provides for all α ∈ A and
f ∈ F probabilities P(f |ε),P(α |ε) and P(α |f), where ε is evidence. In
Figure 5.1 is shown a simple model with dependent actions. We have some
initial evidence ε0, and in the course of executing actions we collect further
evidence. Recall that we write εi to denote that the first i actions have failed
(ε0 ⊆ εi), and we have by assumption P

(
ε0
)

= 1 because the device is
faulty. The presence of the fault f is written F = f, but we often abbreviate
the event simply as f. The set of faults that can be repaired by an action
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F

f1 f2 f3 f4

α1 α2 α3

f1 f2 f3 f4
P(a1 |F) 1 1 0 0
P(a2 |F) 0 1 1 0
P(a3 |F) 0 0 1 1
P(F) 0.20 0.25 0.40 0.15
Cα1 = Cα2 = Cα3 = 1

Figure 5.1: Left: a simple model for a troubleshooting scenario with depen-
dent actions. The dotted lines indicate that the faults f1 to f4 are states in
a single fault node F . α1 , α2 and α3 represent actions, and parents of an
action node α are faults which may be fixed by α. Right: the quantitative
part of the model.

α is denoted fa (α). For example, in Figure 5.1 we have fa (α2 ) = {f2 , f3}.
In models where actions can have P(a |ε) = 1 (non-soft models), fa (·) is a
dynamic entity which we indicate by writing fa(· |ε). The set of remaining
actions is denoted A(ε), and A (f |ε) ⊆ A(ε) is the set of remaining actions
that can fix f.

5.2 Motivation For Action Heuristics

The remainder of this thesis is almost entirely devoted to heuristics and
solutions for troubleshooting with actions only. There are at least three
reasons why action heuristics and solutions are important. (we shall refer
to action heuristics and solutions collectively as action algorithms):

1. While mixed models (containing both actions and questions) are most
common in practice, we may find our selves in situations where purely
action-based models are appropriate. For example, special circum-
stances may have rendered our ability to perform (remaining) ques-
tions impossible or irrelevant.

2. If the action algorithms are efficient and provide optimal or close-
to-optimal approximations, we may use them as a solid foundation
on which to build heuristics for models with questions (so-called
question heuristics).

3. We may integrate the action algorithm into exhaustive search meth-
ods to greatly reduce the size of their search space (cf. Proposition 7
on page 79).
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In most practical troubleshooting applications, however, it it often nec-
essary to provide real-time answers to the user. Therefore the exhaustive
search methods discusssed earlier quickly become unfit for such applica-
tions. Even though we have discussed how the exhaustive search methods
may be converted into various heuristics, the approaches may still not be
fast enough for real-time, interactive systems. Any algorithm taking more
thanO(n2) orO(n3) time is likely to be unsuitable for real-time applications
even though troubleshooting models rarely contain more than, say, 60 ac-
tions or questions. (A seminal idea on how to "glue" several troubleshoot-
ing models together without affecting performance is given in (Skaanning
and Vomlel, 2001).) To gain an understanding of how such real-time ques-
tion heuristics operate, we shall briefly review the three best known algo-
rithms (an in-depth discussion about question heuristics can also be found
in (Langseth and Jensen, 2003)). They all have in common that good action
sequences must be found, and in this respect we may view the algorithms
more as generic templates operating independently of the particular action
algorithm one chooses. Therefore we may also measure their complexity in
terms of the number of times they need to call an action algorithm, and we
shall assume that each such call takes O(α(|A|)) time. The question heuris-
tics discussed in this section are far more focused in their search than more
general search procedures because they try merely to find the best immedi-
ate decision. They have in common that they do not look very far into the
future, that is, the algorithms are myopic.

The first approach is found in (Heckerman et al., 1995). We let ECR (A|ε)
be the expected cost or repair for the remaining action sequence (consist-
ing of actions in A(ε)) found by our particular action algorithm. For each
question Q ∈ Q we then define the expected cost of repair with observa-
tion (or ECO):

ECO (A; Q |ε) = CQ +
∑
q∈Q

P(Q = q |ε) · ECR (A|ε ∪ {Q = q}) (5.1)

If the ECO is smaller than ECR (A|ε) for all questions Q ∈ Q, then we
perform the question with the smallest ECO—otherwise we perform the
best action as defined by the action algorithm. This process is continued by
updating the evidence ε and redoing the analysis on the remaining actions
and questions. A variation would of course be to perform the best question
even though not all questions have an ECO smaller than the action-based
ECR. We can see that the next step can be found in O(|Q| · [|A| · |F|+α(A)])
time as we need to perform a partial propagation and establish an action
sequence for each state of each question.
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The second approach is the so-called SACSO algorithm (Jensen et al.,
2001). The outline given here ignores some details. First, we define the
value of information (VOI) for a question Q as

VOI (Q |ε) = ECR (A|ε)− ECO (A; Q |ε) . (5.2)

Secondly, questions are inserted into the remaining sequence by defining a
virtual repair probability PQ for each question Q:

PQ(ε) =

(
max
q∈Q

P(Q = q |ε)

)
·max
f∈F

max
q∈Q

P(f |ε,Q = q)− P(f |ε)

1− P(f |ε)
. (5.3)

The aim is to treat questions almost identical to actions by finding ques-
tions that are very likely to identify a particular fault (only such questions
are treated like actions). However, after we have performed an action α
we usually propagate the evidence {α = ¬a} and this is not possible for
questions. Instead, it is argued that the reason we perform more actions af-
ter a question must be that it failed to identify a particular fault. Therefore
we should (as an approximation) insert evidence that rules out the state of
the question that identified a fault. This can be done via the insertion of
likelihood evidence (or soft-evidence), that rules out a certain state. These
approximations allow us to find an ECR of a sequence consisting of both
actions and questions (having positive and sufficiently high PQ according
to some user-defined threshold), denoted ECR (A;Q|ε) . Similarly, we de-
note this new ECO as ECO (A;Q; Q |ε) . The next step is then determined
by the following procedure:

(a) Determine the set QV OI consisting of questions with a strictly positive
VOI (A;Q; Q |ε).

(b) Let α ∈ A be the best action determined by our action heuristic. Then
determine the set of questions Qα ⊆ QV OI for which

ECO (A;Q; Q |ε) > Cα + P(¬a|ε) · ECO (A;Q; Q |ε ∪ {¬a}) (5.4)

that is, find the set of questions where it appears to be beneficial to
postpone the question till after the best action has been performed.

(c) IfQV OI ∩Qα = ∅, then we perform α—otherwise we take the question
with the highest VOI in QV OI \ Qα .

The SACSO algorithm runs in O(|Q| · [(|A|+ |Q|) · |F|+ α(A)]) time as we
assume that the time to find the virtual repair probabilities is included in
α(A).

The last question heuristic we shall discuss is the one proposed in (Koca,
2003) and (Koca and Bilgic, 2004b). Its analysis is similar to the SACSO ap-
proach in the sense that it compares a large set of approximate sequences
and greedily selects the best among them to identify the next step. How-
ever, it differs in several aspects:
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(i) It computes a virtual repair probability for all questions taking into
account the actions that a question indirectly affect via the associated
faults. This is done via the following definition of the virtual repair
probability for questions:

PQ(ε) =
∑
q∈Q

P(Q = q |ε) ·

[ ∑
α∈A(ε)

P(a |ε,Q = q) · P(a |ε,Q = q)


−

 ∑
α∈A(ε)

P(a |ε) · P(a |ε)

] (5.5)

where P(a |ε,Q = q) is the normalized repair probability. Therefore
the formula computes the difference in average repair probability af-
ter and before a question has been asked.

(ii) They only perform a question if it improves the ECR of the remaining
action sequence as well as the remaining sequence including ques-
tions.

When it comes to complexity, this more elaborate approach does not com-
pare more sequences than the SACSO algorithm. Even so, it is clear that
the action algorithm must be quite efficient if we are to get an algorithm
that runs in roughly O(n3) time (n depending on |A|, |Q|, and |F|). There-
fore a major challenge is to find good approximations of (partial) strategies
very efficiently. This is the main motivation for studying action heuristics
or solutions in great detail.

5.3 Classical Results

The study of heuristics for dependent actions builds on the experience of
troubleshooting with independent actions. We begin with the following
Lemma which is valid both under the conditional costs and dependent ac-
tions assumptions:

Lemma 1 (Jensen et al. (2001)). Let s be a troubleshooting sequence, and let αx

and αx+1 be two adjacent actions in s . If s is optimal then

Cαx (εx−1) +
(
1− P

(
ax |εx−1

))
· Cαx+1 (εx) ≤

Cαx+1 (εx−1) +
(
1− P

(
ax+1 |εx−1

))
· Cαx (εx−1,¬aa+1) . (5.6)

Proof. Consider two action sequences s = 〈α1 , . . . , αn〉 and s ′ where s ′ is
equal to s execpt that actions αx and αx+1 have been swapped (with 0 <
x < n). If s is optimal then we have

ECR (s )− ECR
(
s ′
)
≤ 0 .
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Now observe that all terms except those involving αx and αx+1 cancels out
and we are left with

P
(
εx−1

)
· Cαx (εx−1) + P(εx ) · Cαx+1 (εx)

− P
(
εx−1

)
· Cαx+1 (εx−1) + P

(
εx−1 ,¬ax+1

)
· Cαx (εx,¬ax+1) ≤ 0

We then exploit that for all x, P(εx ) = P
(
¬ax |εx−1

)
· P
(
εx−1

)
to get

P
(
εx−1

)
·
[
Cαx (εx−1) + P

(
¬ax |εx−1

)
· Cαx+1 (εx)

− Cαx+1 (εx−1) + P
(
¬ax+1 |εx−1

)
· Cαx (εx,¬ax+1)

]
≤ 0

Since P
(
εx−1

)
> 0 and actions have a binary state space, we get

Cαx (εx−1) +
(
1− P

(
ax |εx−1

))
· Cαx+1 (εx) ≤

Cαx+1 (εx−1) +
(
1− P

(
ax+1 |εx−1

))
· Cαx (εx−1,¬aa+1)

as required.

Remark 13. Note that if we model a service call as a normal action that always
fixes the problem, the above Lemma is not valid because there can be no actions that
follows the the "call service" action. A discussion may be found in (Heckerman
et al., 1995). In general we ignore such concerns.

Remark 14. We generally state results in terms of models that only contain ac-
tions. However, the results are equally valid when the sequence is embedded in a
troubleshooting strategy.

The above Lemma leads directly to the following result.

Theorem 8 (Jensen et al. (2001)). Let s be a troubleshooting sequence with con-
stant costs, and let αx and αx+1 be two adjacent actions in s . If s is optimal
then

P
(
ax |εx−1

)
Cαx

≥
P
(
ax+1 |εx−1

)
Cαx+1

. (5.7)

This formula is the very reason that we were interested in computing vir-
tual repair probabilities for questions. This result immediately motivates
the following definitions:

Definition 26 (Efficiency of Action). Let α be an action. Then the efficiency of
α given evidence ε is define as

ef (α |ε) =
P(a |ε)

Cα
. (5.8)
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Definition 27 (Efficiency-Triggered Action). Assume action αx has just been
performed such that the current evidence is ε = {εx−1,¬ax}. Then an action
α ∈ A(ε) for which

P
(
ax |εx−1

)
Cαx

≥
P
(
a |εx−1

)
Cα

(5.9)

holds true is called efficiency-triggered by αx given εx−1.

Corollary 2. Let s = 〈α1 , . . . , αn〉 be an optimal troubleshooting sequence and
assume we have just performed action αx , with 0 < x < n. Then the action that
follows αx in s must be efficiency-triggered.

In general, there can be many efficiency-triggered actions which we may
choose from without ruling out optimality. Also, the set of efficiency-trig-
gered actions must be recomputed after each action has been performed.
In turn, this implies that the above Theorem cannot in general reduce the
set of potentially optimal sequences to a singleton. However, a special case
appears when we consider a model containing only independent actions.

Lemma 2. Let α, β ∈ A be two independent actions in a model containing only
actions. Then

P(α)

P(β)
=

P(α |ε)

P(β |ε)
(5.10)

for all evidence ε not involving α, β.

Proof. Consider a single-fault model with independent actions where we
are updating the distribution on the fault node after receiving evidence not
involving α or β. The operation correponds to lowering the probability of
some states of the fault node, and then normalizing the probabilities. Since
we have independent actions, the states of the fault node that have their
probabilities lowered cannot intersect with fa (α) or fa (β).

The importance of the above definitions is illustrated by the following
classical result, which was first brought into a troubleshooting context in
(Kalagnanam and Henrion, 1990):

Theorem 9 (Kadane and Simon (1977)). Let s = 〈α1 , . . . , αn〉 be a troubleshoot-
ing sequence with independent actions. Then s is optimal if and only if

P(ai)

Cαi

≥ P(ai+1 )

Cαi+1

for i ∈ {1, . . . , n− 1} . (5.11)

Proof. Let s be optimal. Then assume the above inequalities do not hold for
s . Let x be the first index where the inequality does not hold. So we must
have

P(ax )

Cαx

<
P(ax+1 )

Cαx+1

.
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Algorithm 8 The classical P-over-C algorithm for troubleshooting with in-
dependent actions and constant cost.

1: function POVERC(M )
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q = ∅,CW = 0
4: Propagate in the Bayesian network and compute all
5: repair probabilities.
6: Sort actions by descending Pα

Cα
and return the sorted sequence

7: end function

By Lemma 2 this is equivalent to

P
(
ax |εx−1

)
Cαx

<
P
(
ax+1 |εx−1

)
Cαx+1

.

But then by Theorem 8 s cannot be optimal, which is a contradiction. So
the inequalities must hold.

Because of the above results, we shall henceforth abbreviate the initial
repair probability P(a) as Pα . The theorem leads directly for the so-called
P-over-C algorithm described in Algorithm 8 for troubleshooting with in-
dependent actions and constant costs. The algorithm runs in O(|A| · lg |A|)
time due to the comparison-based sorting. Normally, a full propagation
would take O(|A| · |F|) time, but the independence of actions implies that
this can be done in O(|A|) time.

The following results enable an easy way to compute the ECR for mod-
els with independent actions (cf. also (Heckerman et al., 1995)).

Proposition 8. Let s = 〈α1 , . . . , αn〉 be a troubleshooting sequence with inde-
pendent actions and constant costs. Then the ECR of s may be computed as

ECR (s ) =
n∑
i=1

Cαi ·

1−
i−1∑
j=1

Pαj

 , (5.12)

where 1−
∑i−1

j=1 Pαj = P
(
εi−1

)
.

Proof. This is basically Proposition 1, so all that is left is the evidence com-
putation. We use induction in the evidence set ε. Clearly P(¬a) = 1−P(a).
Then consider the case where we are given evidence ε and enlarge this set
with an unperformed action α. We have

P(¬a |ε) = 1− P(a |ε) = 1− P(ε)−1 · Pα = P(ε)−1 · (P(ε)− Pα)
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Algorithm 9 The updating P-over-C algorithm for models with dependent
actions

1: function UPDATINGPOVERC(M )
2: Input: A troubleshooting model M = (F ,A,Q,W, BN, C)
3: with A 6= ∅,Q = ∅,CW = 0
4: Set s = 〈〉
5: for i = 1 to |A| do
6: Propagate in the Bayesian network and compute all
7: repair probabilities.
8: Let α = arg max

α∈A(ε)
ef (α |ε)

9: Set s = s + α
10: Set ε = ε ∪ {¬a}
11: end for
12: return s
13: end function

where the second step follows from the single-fault assumption and be-
cause actions are independent (if there are more faults associated to a sin-
gle action we can always combine them into one fault.) We then apply the
induction hypothesis and get

P(¬a |ε) · P(ε) = P(ε)− Pα = 1−
∑
β∈ε

Pβ − Pα

and the result follows.

Remark 15. Even though the actions must be independent in the above Proposi-
tion, they may well be non-perfect, that is, we may have P(a |f) < 1 for the faults
f that an action α can address.

For models with dependent actions we do not have such a simple formula.
However, we may use the following recursive formulation to simplify com-
putations

P(¬a, ε) = P(¬a|ε) · P(ε) = (1− P(a |ε)) · P(ε) (5.13)

thereby taking advantage of the fact that we have already computed P(ε).
We illustrate this by an example.

Example 8 (A greedy algorithm for dependent actions). A commonly used
heuristic for dependent actions is the updating P-over-C algorithm described in
Algorithm 9. The algorithm greedily picks the next action based on the current
efficiency of actions. Now consider the model with dependent actions from Figure
5.1:
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f1 f2 f3 f4
P(a1 |F) 1 1 0 0
P(a2 |F) 0 1 1 0
P(a3 |F) 0 0 1 1
P(F) 0.20 0.25 0.40 0.15
Cα1 = Cα2 = Cα3 = 1

We have ef (α1 ) = 0.45, ef (α3 ) = 0.65, and ef (α3 ) = 0.55, and so the updating
P-over-C algorithm chooses to perform α2 first. Then we have ef (α1 |¬a2) = 4

7
and ef (α3 |¬a2) = 3

7 , so the next action chosen will be α1 and we end up with the
sequence 〈α2 , α1 , α3 〉 which has ECR

ECR (〈α2 , α1 , α3 〉) = 1 + (1− 0.65) · 1 + (1− 0.65) · (1− 4

7
) · 1

= 1 + 0.35 + 0.35 · 3

7
= 1.5 .

Now consider the sequence 〈α3 , α1 〉 :

ECR (〈α3 , α1 〉) = 1 + (1− 0.55) · 1 = 1.45

which shows that the greedy strategy is not optimal when dealing with dependent
actions. A final remark: notice how easy it is to compute the updated repair prob-
abilities when the model have perfect actions (like the one in this example). We
simple normalize the remaining fault probabilities and take the sum of those that
belong to a particular action.

More advanced heuristics for dependent actions are described in (Langseth
and Jensen, 2001). The key idea is to take the value of information of per-
forming an action into account. To approximate this VOI one may use for-
mulas involving the entropy of normalized efficiencies or the updating P-
over-C algorithm.

5.4 Heuristic Functions for Troubleshooting

In the previous chapter we gave a detailed description of various admissi-
ble search methods. They all had in common that they could take advan-
tage of an admissible heuristic function h(·) which optimistically estimates
the cost of solving the remaining problem for any node n in the search
graph. The notion of heuristic functions was kept abstract without men-
tioning any concrete functions. In this section we shall therefore discuss
the heuristic functions that have been suggested in the troubleshooting lit-
erature.

First we need a little notation. We aim at defining a lower bound on the
ECR for every node n in a troubleshoting tree. The evidence gathered at
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this node is denoted εn. A partial strategy rooted at n is denoted sn and has
expected cost ECR (sn) . The optimal strategy rooted at n is denoted sn∗

and we write ECR∗(n) for its expected cost when we do not want to make
explicit how this strategy looks like. ECR (εn) is defined as the cost of the
path from the root s to n. We then generalize the definition of expected cost
of repair:

Definition 28 (Conditional Expected Cost of Strategy). Let n be a non-leaf
node defining the root of a (possibly partial) troubleshooting strategy sn . Assume
furthermore we have received additional evidence η where η ∩ εn = ∅. Then the
conditional expected cost of repair of sn given η is defined as

ECR (sn |η) =
∑

`∈L(sn )

P
(
ε` |εn ∪ η

)
· C(ε`) (5.14)

where

C(ε`) =
∑

α∈ε`∩A

Cα +
∑

Q∈ε`∩Q

CQ . (5.15)

We also write ECR∗(n |η) for the optimal cost when the optimal strategy
is implicit. This makes it possible to express the conditional expected cost
of repair of an otherwise optimal strategy sn∗ under additional evidence.
For example, we may calculate the ECR of sn∗ given evidence η and find
that it is not an optimal strategy any more, that is, it may happen that
ECR (sn∗ |η) > ECR∗(n |η). (Vomlelová and Vomlel, 2003) have then sug-
gested the following heuristic function for use in troubleshooting:

Definition 29. Let n be a non-leaf node in a troubleshooting strategy. The func-
tion ECR(sn) is defined as

ECR(sn) = P(εn) · ECRh(sn) (5.16)

where

ECRh(sn) =
∑
f∈F

P(f |εn) · ECR∗(n |f) . (5.17)

Remark 16. In (Vomlelová and Vomlel, 2003) the factor P(εn) is left out. How-
ever, the factor ensures that the decomposition of the evaluation function takes the
simple form

f(n) = ECR (εn)︸ ︷︷ ︸
g(n)

+ ECR(sn)︸ ︷︷ ︸
h(n)

.

Alternatively, we could have excluded the conditioning of P(f) on εn in Equation
5.17 to avoid the P(εn) factor. However, from an implementation perspective it is
easier to work with the conditional probabiity P(f |εn) than the joint probability
P(f, εn). We can say the above formulation is most ideal for A∗whereas ECRh(·)
is most suited for AO∗ (cf. the use of UpdateAncestors(·)).
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The optimal cost ECR∗(n |f) is easy to calculate in a single-fault model: the
optimal sequence is found by ordering the actions in A (f |εn) with respect
to descending efficiency (because instantiating the fault node renders the
actions independent and questions irrelevant). The next example illustrates
such a computation.

Example 9 (Computing ECR∗). Let n be a non-leaf node in a troubleshooting
strategy. Assume the fault f can be repaired by two actions α1 and α2 and that
P(a1 |f) = 0.9 and P(a2 |f) = 0.8. Furthermore, let both actions have cost 1.
Since instantiating the fault node renders the actions conditionally independent,
P(a |εn ∪ f) = P(a |f) (for all εn ∈ E) and the efficiencies of the two actions are
0.9 and 0.8, respectively. We get

ECR∗(n |f) = ECR (〈α1 , α2 〉)
= Cα1 + P(¬a1 |f) · Cα2

= 1 + 0.1 · 1 = 1.1 .

Not only is ECR(·) easy to compute, it also has the following property:

Theorem 10 (Vomlelová and Vomlel (2003)). The heuristic function ECR(·)
is admissible, that is,

ECR(sn) ≤ ECR (sn∗) (5.18)

for all non-leaf nodes n.

Proof. We have by definition

ECR (sn∗) =
∑

`∈L(sn∗)

P
(
ε` |εn

)
· C(ε`)

=
∑

`∈L(sn∗)

∑
f∈F

P
(
ε` |εn ∪ f

)
· P(f |εn) · C(ε`)

=
∑
f∈F

P(f |εn) ·
∑

`∈L(sn∗)

P
(
ε` |εn ∪ f

)
· C(ε`)

=
∑
f∈F

P(f |εn) · ECR (sn∗ |f)

and since ECR∗(n |f) ≤ ECR (sn∗ |f) for all f ∈ F , the result follows.

The heuristic function ECR(·) is valid in models that contains both ques-
tions and actions. We shall now investigate stronger property of mono-
tonicity, but only for models without questions. As we learned in Chapter
4, this is mostly of theoretical interest. First we need to make the mono-
tonicity condition explicit in our troubleshooting notation.
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Remark 17. For the remainder of this section, we let αn denote the performed
action on the edge from a node n to a successor node m in the search graph.

Proposition 9. Assume we have a troubleshooting model without questions. Let
m be a successor node of a n in a troubleshooting strategy. Then monotonicity

h(n) ≤ c(n,m) + h(m)

of the heuristic function ECR(·) is equivalent to

ECRh(sn) ≤ Cαn + P(¬an |εn) · ECRh(sm) .

Proof. The A∗ algorithm works by continuously expanding a frontier node
n for which the value of the evaluation function

f(n) = g(n) + h(n),

is minimal until finally a goal node t is expanded. We can rewrite this as

f(n) = ECR (εn)︸ ︷︷ ︸
g(n)

+ P(εn) · ECRh(sn)︸ ︷︷ ︸
h(n)

Now consider the estimate of a node m following n:

f(m) = ECR (εm) + P(εm) · ECRh(sm)

= ECR (εn)︸ ︷︷ ︸
g(n)

+ P(εn) · Cαn︸ ︷︷ ︸
c(n,m)︸ ︷︷ ︸

g(m)

+ P(εm) · ECRh(sm)︸ ︷︷ ︸
h(m)

,

where we have performed αn to get from n to m. Therefore c(n,m) =
P(εn) · Cαn and we have P(εm) = P(¬an |εn) · P(εn), and so the common
factor P(εn) cancels out.

This leads us to the following result.

Theorem 11. Assume we have a troubleshooting model without questions. Then
the heuristic function ECR(·) is monotone.

Proof. The idea is to express ECRh(sm) in terms of ECRh(sn). To do that
we consider the complement of the set fa (αn) which is the set of all faults
that αn cannot fix. For each f ∈ F \ fa (αn) Bayes’ rule (conditioned) yields

P(f |εm) =
1 · P(f |εn)

P(¬an |εn)
,

because P(¬an |εn ∪ f) ≡ 1. If we restrict ECRh(·) to a subset of faults
X ⊆ F , we shall abuse notation and write it

ECRh(sn |X) =
∑
f∈X

P(f |ε) · ECR∗(sn |f) .
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In particular, we must have

ECRh(sn) = ECRh(sn |F \ fa (αn)) + ECRh(sn |fa (αn)) . (5.19)

We can furthermore define

∆F = ECRh(sm |F \ fa (αn))− ECRh(sn |F \ fa (αn)) ,

which is an extra cost because all faults in F \ fa (αn) are more likely. Simi-
larly

∆fa (αn) = ECRh(sm |fa (αn))− ECRh(sn |fa (αn)) ,

is the cost lost or gained because αn has been performed and can no longer
repair the faults fa (αn). We can then express ECRh(sm) by

ECRh(sm) = ECRh(sn) + ∆fa (αn) + ∆F , (5.20)

The constant ECR∗(·) factors implies

∆F =
∑

f∈F\fa(αn )

[P(f |εm)− P(f |εn)] · ECR∗(sn |f).

Exploiting Bayes’ rule (as explained above) and Equation 5.19 we get

∆F =

[
1

P(¬an |εn)
− 1

]
· ECRh(sn |F \ fa (αn))

=
[ 1

P(¬an |εn)
−1
]
·
[
ECRh(sn)−ECRh(sn |fa (αn))

]
.

Inserting into Equation 5.20 yields

ECRh(sm) = ECRh(sn) + ECRh(sm |fa (αn))− ECRh(sn |fa (αn))

+
[ 1

P(¬an |εn)
−1
]
·
[
ECRh(sn)−ECRh(sn |fa (αn))

]
=

ECRh(sn)

P(¬an |εn)
+ ECRh(sm |fa (αn))− 1

P(¬an |εn)
· ECRh(sn |fa (αn)) ,

and we rearrange the equation into

ECRh(sn) = P(¬an |εn) · ECR(sm)

+ ECRh(sn |fa (αn))− P(¬an |εn) · ECRh(sm |fa (αn))︸ ︷︷ ︸
∆

.

By Proposition 9, we have to prove ∆ ≤ Cαn . Because of Bayes’ rule and
the conditional independence in the single-fault model we have

P(¬an |εn) · P(f |εm) = P(¬an |εn) · P(¬an |f) · P(f |εn)

P(¬an |εn)

= P(¬an |f) · P(f |εn) .
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So we get

∆ =
∑

f∈fa(αn )

P(f |εn) · [ECR∗(n |f)− P(¬an |f) · ECR∗(m | ∪ f)]︸ ︷︷ ︸
δ

.

Because of the single-fault assumption, we only need to prove that δ ≤ Cαn .
We now index the actions in A (f |εn) as follows:

P(βi |f)
Cβi

≥ P(βi+1 |f)
Cβi+1

∀i.

In this ordering, we have αn = βx . The inequalities generalizes to

Cβi ≤
P(βi |f)
P(βj |f)

· Cβj ∀j > i . (5.21)

In particular, this is true for j = x which we shall exploit later. Assume we
have N dependent actions in A (f |εn). The first term of δ is then

ECR∗(n |f) = ECR∗(〈β1 , . . . , βN 〉) = Cβ1 +
N∑
i=2

Cβi ·
i−1∏
j=1

P(¬bj |f) . (5.22)

Assume that x > 1 (we shall deal with x = 1 later), then the second term of
δ is

P(¬an |f) · ECR∗(m |f) = P(¬an |f) · ECR∗(〈. . . , βx−1 , βx+1 , . . .〉)

= P(¬an |f) ·

[
Cβ1 +

x−1∑
i=2

Cβi ·
i−1∏
j=1

P(¬bj |f) +

N∑
i=x+1

Cβi ·
i−1∏
j=1

P(¬bj |f)

P(¬an |f)

]
.

We see that the last term is also represented in Equation 5.22 and therefore
cancels out. We get

δ = Cβ1 · [1− P(¬an |f)] + [1− P(¬an |f)] ·
x−1∑
i=2

Cβi ·
i−1∏
j=1

P(¬bj |f)

+ Cαn ·
x−1∏
j=1

P(¬bj |f),

where the last term is a leftover from Equation 5.22. Using P(¬a |ε) =
1− P(a |ε) and Equation 5.21 we get
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δ = Cβ1 · P(an |f) + P(an |f) ·
x−1∑
i=2

Cβi ·
i−1∏
j=1

P(¬bj |f) + Cαn ·
x−1∏
j=1

P(¬bj |f)

≤ P(b1 |f)
P(an |f)

· Cαn · P(an |f) + P(an |f) ·
x−1∑
i=2

P(bi |f)
P(an |f)

· Cαn ·
i−1∏
j=1

P(¬bj |f)

+ Cαn ·
x−1∏
j=1

P(¬bj |f)

= Cαn ·

P(b1 |f) +
x−1∑
i=2

P(bi |f) ·
i−1∏
j=1

P(¬bj |f) +
x−1∏
j=1

P(¬bj |f)

 (5.23)

= Cαn ·

1− P(¬b1 |f) + (1− P(¬b2 |f)) · P(¬b1 |f) + · · ·+
x−1∏
j=1

P(¬bj |f)


= Cαn ·

1− P(¬b2 |f) · P(¬b1 |f) + · · ·+
x−1∏
j=1

P(¬bj |f)


= Cαn · 1 ,

as required. This is not surprising if we look at the expression inside the
parenthesis of Equation 5.23: the corresponding events are "β1 fixes f,
β2 fixes f if β1 did not fix f" etc. up to "none of the actions fixed f". These
events form a sample space.

When x = 1, then δ = Cαn − P(¬an |f) · Cαn , so in all cases δ ≤ Cαn

which completes the proof.

The following example shows that ECR(·) is not monotone when the
model includes questions.

Example 10 (Questions do not imply monotonicity). Now consider a model
with one question Q, two actions α1 and α2 and two faults f1 and f2 that can only
be repaired by α1 and α2 , respectively. Let CQ = 1,Cα1 = 1, and Cα2 = 10. Let
P(a1 |f1 ) = P(a2 |f2 ) = 1. Initially we have P(f1 ) = P(f2 ) = 0.5, and finally
let P(Q = q |f1 ) = 1, P(Q = q |f2 ) = 0 and so P(Q = q) = 0.5 When ε = ∅
we have for the root node s

ECR(ss) = P(f1 ) · Cα1 + P(f2 ) · Cα2 = 0.5 · 1 + 0.5 · 10 = 5.5

After observing Q = q we get to node nq with estimate

ECR(sn
q
) = P(Q = q) · (P(f1 |Q = q) · Cα1 + P(f2 |Q = q) · Cα2 )

= 0.5 · (1 · 1 + 0 · 10) = 0.5

and since 5.5 > 1 + 0.5, the function cannot be monotone. Notice that the full
strategy starting with observing Q has an ECR equal to 6.5.
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ε

α1 α2 α3

α3 α1

α1

α2 α3

α3 α2

Figure 5.2: An overview of the pruning process for any subset of three ac-
tions. At the root of the subtree we have evidence ε and the actions are
sorted with respect to efficiency, and we have ef (α1 |ε) > ef (α2 |ε) >
ef (α3 |ε). Theorem 8 implies that we can prune the nodes ending in a
square, and so we are left with only three possible sequences (〈α1 , α2 , α3 〉,
〈α1 , α3 , α2 〉, and 〈α2 , α3 , α1 〉). After A∗ has discovered the last node in
these three sequences, the three paths are subject to coalescing.

If we are not interested in admissibility, we may speed up the search by
transforming ECR(·) into a non-admissible, but more accurate heuristic
function. This is discussed in (Warnquist and Nyberg, 2008). For models
with questions only, (Raghavan et al., 1999a) and (Raghavan et al., 1999c)
provides several heuristic functions.

5.5 A∗with Efficiency-based Pruning

We now turn our attention to some empirical results concerning the effec-
tiveness of a pruning method based on triggered actions (cf. Theorem 8 and
Definition 27). Specifically, we have implemented the A∗ algorithm (Algo-
rithm 3 on page 69) using the heuristic function described above, and we
additionally prune decision nodes for actions that are not triggered. We call
this efficiency-based pruning.
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In Figure 5.2 it is illustrated how the theorem can be used for pruning.
If we have the order ef (α1 ) > ef (α2 ) > ef (α3 ) at the root, we know that
α3 should never be the first action. Furthermore, after performing α2 , we
know that α1 should never be the second action. In summary, the theorem
is very easy to exploit during the expansion of a node by keeping the ac-
tions sorted with respect to efficiency and by passing that information from
the parent node.

Remark 18. It might be slitghly inaccurate to re-use the term "pruning" here.
Normally we may think of pruning as the process of determining that a newly gen-
erated node is not needed based on some properties of the generated node. However,
for "efficiency-based pruning" we do not actually need to generate a node to figure
out that it is superfluous.

Apart from efficiency-based pruning our implementation also perform
upper-bound pruning on newly generated nodes. For depth-first search it
is customary to perform an initial search using some greedy heuristic such
that paths that are far from being optimal can be pruned early. For A∗ this
is usually not used because A∗ does not expand any unnecessary nodes.
However, A∗may very well explore (and store) many nodes that are not
optimal. Therefore, if we have a good initial upper bound ECR of ECR∗,
we can immediately throw such nodes away (Like in depth-first search we
prune any node n if f(n) ≥ ECR) . This can be important because the fron-
tier is usually quite large compared to the set of expanded nodes. Of course,
whenever we find a goal node with lower ECR than ECR we update ECR
to this new value.

Whether such a close bound ECR is easy to obtain depends somewhat
on the model in question, but by choosing a close bound, we can ensure a
conservative comparison of the effect of efficiency-based pruning (because
using an upper-bound will speed up the search). In our case we are able
to calculate this upper bound by using the updating P-over-C algorithm
(Algorithm 9 on page 91). In practice this gave us bounds that came within
one percent from ECR∗.

Remark 19. The fact that the naive greedy algorithm comes quite close to the
optimal value is an important observation in its own right. It strongly suggests
that it is possible to prove that a polynomial algorithm can return a solution with
strong guarantees on the distance to the optimal ECR. This observation is the first
benefit we gain from solution methods.

For the experiments we have generated a number of random models
with an increasing number of actions. For a certain size of |A| we take
|F| = |A| and pick the associated faults fa (α) for an action at random with
some dispersion on the number of associated faults. We then measure the
degree of dependency between the actions as the average size of fa(α) over
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Table 5.1: Experimental results for A∗with efficiency-based pruning. Time
is measures in seconds, the "Pruned" column indicates the number of
pruned nodes, and the "Tree" column is the size of the search tree. A bar
("-") indicates that the models could not be solved due to memory require-
ments. "Relative Time" is the time relative to the fastest method (see Table
5.3).

Method A∗ + EP
Model / Average Dep. Time Pruned Tree Relative Time
15 / 2.2 0.58 69k 17k 1.41
16 / 2.5 1.89 189k 45k 1.24
17 / 2.88 3.77 267k 76k 3.04
18 / 2.22 19.19 2735k 467k 2.64
19 / 2.32 17.97 1614k 361k 1.88
20 / 2.8 17.94 1219k 294k 2.26
21 / 2.76 47.23 4768k 969k 2.06
22 / 2.82 - - - -
23 / 3.22 - - - -
24 / 3.42 - - - -

all actions. Probabilities and costs are also generated randomly. In this
manner we generated 10 models which we have used for comparing three
versions of A∗ :

(a) A∗with efficiency-based pruning (A∗ + EP)

(b) A∗with coalescing and bounding (A∗ + C + B)

(c) A∗with coalescing, bounding, and efficiency-based pruning
(A∗ + EP + C + B).

The results are shown in Table 5.1 to 5.3. We can see that the models have
between 15 and 24 actions and that the average dependency lies between
2.2 and 3.42.

Remark 20. All the experiments reported in this thesis were carried out on an
32-bit 2.13 GHz Intel Pentium Centrino with 2 GB of memory. Furthermore, the
35,000 lines of code needed to do the experiments of this thesis were written in
C++.

In the first test (Table 5.1) we see that A∗with efficiency-based prun-
ing can solve models with up to 21 actions. Larger models remain un-
solvable due to memory requirements. The running time compared to the
best method (method (c)) seems to be somewhere between 2 and 3 times
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Table 5.2: Experimental results for A∗with coalescing and upper-bound.
Time is measures in seconds, the "Pruned" column indicates the number of
pruned nodes, and the "Tree" column is the size of the search tree. "Relative
Time" is the time relative to the fastest method (see Table 5.3).

Method A∗ + C + B
Model / Average Dep. Time Pruned Tree Relative Time
15 / 2.2 1.44 89k 19k 3.51
16 / 2.5 3.41 188k 44k 2.23
17 / 2.88 4.16 246k 52K 3.35
18 / 2.22 31.66 1616k 438k 4.35
19 / 2.32 30.27 1437k 295k 3.17
20 / 2.8 28.94 1291k 261k 3.64
21 / 2.76 77.17 3474k 650k 3.37
22 / 2.82 246.2 9931k 1824k 3.56
23 / 3.22 367.78 13485k 2387k 3.51
24 / 3.42 646.28 20533k 4025k 6.73

as high on average. The number of nodes that are pruned is large com-
pared to the size of the search graph when an optimal solution have been
found, but this is not so surprising when coalescing is not done. When we
ran A∗without pruning, it was about 30-40 times slower, and so viewed in
isolation, efficiency-based pruning is a big win.

However, when we compare with method (b) (Table 5.2), we see that
these two enhancements can handle larger models. The expense is that the
running time is increased. It may seem surprising that the running time in-
creases so much, since it should be relatively cheap to lookup a node in a co-
alescing map. The reason is that before we can utilize a lookup in the map,
we have to generate the node (and compute its f-value) which is somewhat
expensive. In general, method (b) tells us that efficiency-based pruning
cannot stand alone and that coalescing is a more fundamental property.

Table 5.3 describes the results of method (c) which combines the en-
hancements of the two first methods. In general it is about 3 to 4 times
as fast as method (b), and at the same time method 3 uses the least mem-
ory. Since the search graph is somewhat smaller than for method (b), then
we could have expected that the number of pruned nodes should increase.
However, the reason is simply that efficiency-based pruning is quite effec-
tive in pruning nodes early, which in turn leaves fewer pruning opportuni-
ties later in the search.

A natural question to ask is if Theorem 8 can be extended to make ef-
ficiency-based pruning even better? We could consider three adjacent ac-
tions instead of two, which would then lead to 5 inequalities instead of 1.
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Table 5.3: Experimental results for A∗with coalescing, upper-bound and
efficiency-based pruning. Time is measures in seconds, the "Pruned" col-
umn indicates the number of pruned nodes, and the "Tree" column is the
size of the search tree.

Method A∗ + EP + C + B
Model / Average Dep. Time Pruned Tree
15 / 2.2 0.41 63k 8k
16 / 2.5 1.53 131k 17k
17 / 2.88 1.24 168k 19k
18 / 2.22 7.28 1077k 128k
19 / 2.32 9.55 989k 109k
20 / 2.8 7.95 897k 87k
21 / 2.76 22.88 2490k 248k
22 / 2.82 69.17 7759k 708k
23 / 3.22 104.72 10343k 969k
24 / 3.42 96.02 12437k 977k

To get an overview of these inequalities, we have collected them in Figure
5.3. If we consider an arbitrary subset of three actions α1 , α2 , and α3 , we
would normally need to compare six different sequences. However, if we
have calculated the efficiencies of the three actions at the local root node
with evidence ε, Theorem 8 leaves us with only three possible candidates.
After the three sequences are expanded, the paths are coalesced into a sin-
gle node in the search graph (See Figure 5.4).

Now imagine that A∗ is about to expand α3 in the sequence 〈α1 , α2 , α3 〉.
We determine if the current node expansion is optimal by comparing it
with the ECR of the sequence 〈α2 , α3 , α1 〉. (There is no need for comparing
〈α1 , α2 , α3 〉with 〈α1 , α3 , α2 〉 since Theorem 8 has pruned the latter.) If we
expand the sequence 〈α2 , α3 , α1 〉 first, the analysis is similar and we com-
pare with the best of the two other sequences (again, the best sequence is
found by applying Theorem 8). There is no way to avoid calculating the full
ECR of both sequences, and we have to traverse the search graph down to
the local root and up to the first node of the second path. Furthermore, this
traversal means that we have to store child pointers in all nodes, and we
also need to keep all expanded nodes in memory. This more than doubles
the memory requirement.
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1. ECRxyz ≤ ECRxzy :
P(az |¬ax )

Cz
≤ P(ay |¬ax )

Cy

2. ECRxyz ≤ ECRyxz :
P(ay)

Cy
≤ P(ax )

Cx

3. ECRxyz ≤ ECRyzx :
Cx · (1− Py|x · Px)− Cz · P(ax |¬ay) · Py ≤ Cy · P(ax )

4. ECRxyz ≤ ECRzyx :
Cx·(1−P(az |¬ay)Py)+Cy ·(Px−Pz) ≤ Cz ·(1−Py|x·Px)

5. ECRxyz ≤ ECRzxy :
Cx · P(az ) + Cy · P(az |¬ax ) · Px ≤ Cz · (1− Px|y · Py)

Figure 5.3: The five inequalities arising from the six permutations of three
actions αx , αy , and αz . Px|y is shorthand for P(¬ax |¬ay).

α1 α2 α3

α3 α1

α1 α3

α2 α3

α3 α2

α1 α2

α2 α1

εn
α1α2α3

α3 α1 α2α3α1α2

α3α1 α2

εn

α1 α2 α3

α3 α1α2 α3

α1α2α3

εn

Figure 5.4: The effect of coalescing and efficiency-based pruning in A∗ on
a subset of three actions {α1 , α2 , α3}. Left: the search graph without coa-
lescing. Middle: the search graph with coalescing. Right: the search graph
when applying both pruning and coalescing.
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In conclusion the method turns out to slow down A∗ . In a model with
19 action and 19 faults, Theorem 8 pruned 989k nodes whereas the prun-
ing over three sebsequent actions prevented a mere 3556 expansions out of
about 41k possible. Theorem 11 also explains why the effect of the pruning
is so small: if A∗ is guided by a monotone heuristic function and expands a
node, then the optimal path to that node has been found. This means that
the sub-trees outlined with dotted edges in Figure 5.2 are never explored
unless we really need to explore them. Should we discover a non-optimal
sequence first, that path is not explored further until coalescing happens.

5.6 A∗with Dependency Sets

In this section we shall abandon admissibility and discuss heuristics based
on the notion of dependency sets. Informally, a dependency set is a subset
of Awhere we can alter the efficiency ordering among actions by perform-
ing an action in this set. On the other hand, the relative ordering of efficien-
cies of actions outside the dependency set is not alterred by performing an
action in the dependency set. This leads us to the following definitions:

Definition 30. A dependency graph for a troubleshooting model given evidence
ε is the undirected graph with a vertex for each action α ∈ A(ε) and an edge
between two vertices α1 and α2 if fa (α1 |ε) ∩ fa (α2 |ε) 6= ∅.

Definition 31. A dependency set for a troubleshooting model given evidence ε
is a connectivity component in the dependency graph given ε.

When we look at each dependency set in isolation, such a set induces
a troubleshooting model by considering the actions and associated faults
of the dependency set. Therefore we may talk about optimal sequences of
such induced models.

Definition 32. A dependency set leader for a troubleshooting model given evi-
dence ε is the first action of an optimal sequence in the model induced by a depen-
dency set given ε.

Dependency sets are important because it is believed that the order of
actions in the same dependency set does not change when actions outside
the set are performed (Koca, 2003). This intuitive property has been used
to conjecture that the following divide-and-conquer algorithm preserves
admissibility:
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Conjecture 1 (Koca and Bilgic (2004a)). Suppose we are able to calculate the de-
pendency set leaders. Then the globally optimal sequence is given by the following
algorithm:

1. Construct the dependency sets and retrieve the set leaders.

2. Calculate ef (· |ε) for all set leaders.

3. Select the set leader with the highest ef (· |ε) and perform it.

4. If it fails, update the probabilities, and continue in step (2).

Since it takes exponential time to find the set leaders in each dependency
set, a model that can be partioned into just a few dependency sets may be
much easier to solve than the initial model. Unfortunately, the following
example illustrates that the conjecture is not true.

Example 11 (Dependency sets break admissibility). We consider the following
model with four actions and five faults:

f1 f2 f3 f4 f5
P(a1 |F) 1 1 0 0 0
P(a2 |F) 0 1 1 0 0
P(a3 |F) 0 0 1 1 0
P(b |F) 0 0 0 0 1
P(F) 0.10 0.15 0.15 0.1 0.5
Cα1 = Cα2 = Cα3 = 1, Cβ = 2

This model has two dependency sets, one with three actions {α1 , α2 , α3} and one
with one action {β}. We can see that all actions are perfect. Initially we have
Pα1 = 0.25,Pα2 = 0.30,Pα3 = 0.25, and Pβ = 0.5, and the efficiencies are
ef (α1 ) = ef (α3 ) = ef (β) = 0.25 and ef (α2 ) = 0.30.

The conjecture then states that we must find the best sequence in each depen-
dency set. For the set consisting of β, this is trivial, and for the dependency set
with the α’s we have six possibilities. The only serious contenders is the greedy
s1 = 〈α2 , α1 , α3 〉 and the non-greedy s2 = 〈α1 , α3 〉. In both cases, the order
of α1 and α3 is immaterial as they have the same efficiency. We get (by using
Equation 5.13)

ECR (〈α2 , α1 , α3 〉) = 1 + 0.70 · 1 + 0.6 · 1 = 2.3

ECR (〈α1 , α3 〉) = 1 + 0.75 · 1 = 1.75

The greedy algorithm is thereby not optimal when considering this dependency set
in isolation. But we shall see that it becomes the best way to perform the actions in
when combined with the action β. The conjecture states that we have to compare
the two most efficient set leaders. We look at the merging with s2 : α1 ,α3 and β
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are all equally efficient and hence all possible (final) sequences will have the same
ECR. For example,

ECR (〈α1 , β, α3 〉) = 1 + 0.75 · 2 + 0.25 · 1 = 2.75

Now, if we merge with s1 instead, then α2 is most efficient and hereafter β is the
most efficient; finally α1 and α3 have the same efficiency. Thereby we get

ECR (〈α2 , β, α1 , α3 〉) = 1 + 0.70 · 2 + 0.20 · 1 + 0.10 · 1 = 2.7

Hence the conjecture is false. One may also ask if the conjecture holds if the costs
are all the same. It turns out that the conjecture is still false in this case. If we split
the action β into β1 and β2 where ef (β1 ) = ef (β2 ) = ef (β) = 0.25, then all
actions have the same cost (for this to work, we should also split the fault f5 into
two faults). We then have three dependency sets, and we get

ECR (〈α1 , β1 , β2 , α3 〉) = 1 + 0.75 · 1 + 0.50 · 1 + 0.25 · 1 = 2.50

ECR (〈α2 , β1 , β2 , α1 , α3 〉) = 1 + 0.70 · 1 + 0.45 · 1 + 0.2 · 1 + 0.1 · 1 = 2.45

and so there is little hope that the conjecture holds for any special case of depen-
dency sets.

Now, since the conjecture is false, then we cannot apply the algorithm
and keep admissibility; however, as we shall see, it appears that it can often
be a good heuristic to use. We still believe it might be possible to find
a sufficiently narrow definition of dependency sets where admissibility is
preserved. A starting point could be to investigatenested dependency sets
where for any pair of actions α, β in a dependency set, we have either

fa (α) ⊂ fa (β) or fa (β) ⊂ fa (α) (5.24)

but not both. We shall, however, not follow this line of thought further.
Instead we shall use the notion of dependency sets to simplify the search

space of A∗ . We call this resulting algorithm for the hybrid approach. Fig-
ure 5.5 shows an example of the search tree explored by A∗ in our hybrid
approach. Near the root node, A∗ is often forced to create a branch for each
successor node. However, as we get closer to the goal nodes, branching
is more likely to be avoided. The branching can be avoided because we
assume the depedency set conjecture is true.

The hybrid approach then simply works by finding an optimal sequence
in dependency sets of a fairly small size. For this work we have restricted
us to sets of a size smaller than four (later we shall discuss an extension).
At any point before expanding a node, if the most efficient action belongs
to a dependency set of such a small size, we find the first action in that
dependency set. If the dependency set consists of one or two actions, this
calculation is trivial. If the dependency set has three actions, we find the
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Figure 5.5: An example of what the search tree looks like in the hybrid
approach. For some nodes, the normal A∗ branching is avoided, and near
goal nodes this branching is almost avoided for all nodes. We can see that it
might happen that the algorithm has to investigate all successors of a node
even though the path down to that node was explored without branching.

first by comparing the three candidate sequences as we discussed in Sec-
tion 5.5. Otherwise we simply expand the node as usual by generating all
successors.

The results are shown in Figure 5.6. We can see that the hybrid approach
is somewhat slower for models with an average dependency between 2
and 3. This is because the hybrid approach spends time investigating the
size of the dependency set of the most efficient action, but it rarely gets to
exploit the benefits of a small dependency set. For an average dependency
between 2.1 and 1.6 the hybrid approach becomes superior, and below 1.6 it
becomes very fast. It should be noted that the hybrid approach only failed
to find an optimal solution one or two times out of the 21 models, and that
it is very close to the optimal value even in those cases.

The plot also shows a clear trend: A∗ seems to perform better on models
with larger dependency among actions. We belive there can be two expla-
nations for this:

(i) The heuristic function becomes increasingly more accurate as the de-
pendency increases.

(ii) The entropy of action efficiencies decreases (perhaps by accident) as
the dependency increases, making the distribution over all possible
ECR-values wider. In turn, a model with a wider distribution over
ECR-values is easier to solve for A∗ as it becomes easier to reject un-
promising paths.
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Figure 5.6: Results for the hybrid approach in models with 20 actions and
20 faults. The average dependency ranges between 3 and 1, and each
action is usually associated with 1 to 3 faults. The time is measured in
seconds. "A∗ " is A∗with coalescing, "pruning-A∗ " is "A∗ " plus efficiency-
based pruning and "hybrid-A∗ " is the hybrid approach based on "pruning-
A∗ ". For an average dependency below 2.2 we see that the hybrid method
wins.

Remark 21. At the time this work was carried out, we were unaware that the
dependency set conjecture was false. The few discrepancies that were experienced
during the tests were attributed to floating point inaccuracies. For example, float-
ing point comparisons are inherently error prone on the Intel architecture due to
the fact that floating point registers use 80 bits precision whereas a double is usu-
ally 64 bits (Monniaux, 2008). However, we now know that these discrepancies
constituted counter examples.

Even though the hybrid A∗ approach seems very promising, the results
are limiting in the sense that it only solves small dependency sets. We still
need to determine how large a dependency set that it pays off to solve. One
may expect that it will be most beneficial to solve small dependency sets by
brute-force whereas dependency sets of medium size can be solved by a re-
cursive call to hybrid-A∗ . To shed some more light on this issue, we report
the results obtained by a DAT3-group which was under our supervision
(Cohen et al., 2008). Their results may be viewed in Figure 5.7.
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Figure 5.7: Results for the recursive hybrid approach in models with 20 ac-
tions and 20 faults (Cohen et al., 2008). The average dependency ranges
between 3 and 1, and each action is usually associated with 1 to 3 faults.
Time is measured in seconds. "pruning-A∗ " is "A∗ " plus efficiency-based
pruning, "hybrid-A∗ " is the hybrid approach based on "pruning-A∗ ", and
"recursive-hybrid-A∗ " recursively solves all dependency sets. For an aver-
age dependency below 2.2 we see that the hybrid method wins.

The figure compares A∗with efficiency-based pruning with hybrid A∗

and a fully recursive hybrid-A∗ . First notice that the results may differ
because the implementation and hardware platform is different. Neverthe-
less, the results clearly show that dependency sets can be solved very effi-
ciently by the recursive approach for models with an average dependency
below 2. As always, its not completely easy to extrapolate this benchmark
to models of larger sizes, that is, it may be that for models with (say) 40
actions, only a smaller average dependency can be handled efficiently.

The results also show that recursive calculations become very slow at
some point. This is arguably because many sub-problems can end up be-
ing solved multiple times. By carefully sharing the coalescing map between
recursive invocations, this can probably be avoided. Their experiments also
indicated that it was beneficial to solve as large dependency sets as possi-
ble. In any case, it seems that giving up on admissibility helps, but that
models with a high degree of dependency are still difficult to approximate
via the notion of dependency sets.
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5.7 Summary

In this chapter we studied solutions and heuristics for models with actions
only under the assumption of independent and dependent actions. We ar-
gued that the main motivation for looking at actions in isolation is that
virtually all real-time question heuristics build on such action-based algo-
rithms. At the same time we reviewed the question heuristics proposed in
the literature.

We then gave theoretical reasons for defining the efficiency of actions
and described common heuristics like the P-over-C algorithm and variants
of it. In doing so, we also explained the classical result that the P-over-C
algorithm is optimal for models with independent actions.

A central topic was the heuristic function proposed by (Vomlelová and
Vomlel, 2003) which fulfill interesting theoretical properties. This heuristic
function was then used in empirical evaluations of the A∗ algorithm. The
first results were concerned with the benefit of efficiency-based pruning
which appears to work well in isolation for asymmetrical decision prob-
lems like troubleshooting, albeit the same asymmetry allows us to apply
coalescing. Together with coalescing, the pruning is less impressive, and
we analysed the reasons for this.

The final topic was troubleshooting with dependency sets. On the theo-
retical side we unfortunately found that the conjecture by (Koca and Bilgic,
2004a) was not true. However, the experiments revealed that it is neverthe-
less a very good approximation, often preserving admissibility. Thus, by
exploiting this approximation we were able to solve many models with a
low-to-medium degree of dependency among the actions almost instantly.
In general the experiments left the impression that models with dependent
actions are easy to approximate well and therefore we believe it should be
possible to prove good worst-case quality bounds on a polynomial algo-
rithm. Of course, this is only speculation and it remains an important open
problem to verify this conjecture.





Chapter 6

Troubleshooting With Cost Clusters

To iterate is human, to recurse divine.
–L. Peter Deutsch

In this chapter we shall start our investigation of troubleshooting with con-
ditional costs. Even though the introduction of conditional costs in general
leads to an intractable problem, our aim is to investigate a simplified, but
highly relevant, special scenario. The scenario is characterized by the fol-
lowing assumptions: (a) there are no questions, (b) all actions are indepen-
dent, (c) the set of actions A can be partitioned into a set of clusters where
where each cluster must first be opened to perform actions in the cluster,
and (d) the system test may be performed for free at any time, regardless of
what clusters might be open. This scenario is interesting because it models
real-life situations where we need to take apart and assemble the equip-
ment during the troubleshooting process. For example, if we are repairing
a car that cannot start, we may open the hood of the car to exchange the
spark plugs and test if the car is working without closing the hood; if ex-
changing the spark plugs did not fix the car, we can then look at the battery
without paying the cost of opening the hood once again. Similar examples
can be for troubleshooting a jet-engine or some other complicated piece of
industrial equipment. We start with a short overview of previous research
on this topic, and then we give a full formal treatment of the subject.

6.1 Related Work

Let us briefly summarize other approaches to conditional costs that resem-
ble the idea of cost-clusters. We review the literature in chronological order.

The cost cluster framework originates from (Langseth and Jensen, 2001).
They consider simple cost-cluster models where a nested cluster is allowed
on the top-level cluster, but no deeper layered clusters are allowed. We call
this a flat cost-cluster model, and an example is given in Figure 6.1. The

113
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Cluster 0

Cluster 1 Cluster 2 Cluster 3

C o
1 C c

1 C o
2 C c

2 C o
3 C c

3

α1 α2

α3 α4 α5 α6 α7 α8

Figure 6.1: Example of the flat cost cluster model. To open a cluster Ki we
pay the cost C o

i , and to close a cluster we pay the cost C c
i .

idea is that in order to access an action in a bottom level cluster Ki , you
need to pay an additional cost C o

i and to close the cluster, you have to pay
an additional cost C c

i . Thereby it is possible to model the repair of complex
man-made devices where you need to take apart some of the equipment to
perform certain actions.

They are the first to introduce the following ideas: (a) that multiple ac-
tions might need to be performed before leaving a cluster, (b) that the cost
to enter and leave a cluster should be modelled separately (we shall later
see that this level of model detail is not needed), and (c) that a model can
be with inside information or without inside information meaning that
the system can be tested when a a cluster is open or that it has to be closed
before testing the system, respectively. Of course, we can have models that
mix clusters with and without inside information, but we shall not con-
sider this situation. They furthermore describe heuristics for both types of
problems. Later in this chapter we present a proof of correctness of their
algorithm for the problem with inside information. We furthermore extend
the model to a tree of clusters and give anO(|A| · lg |A|) time algorithm that
is proved optimal. A model without inside information is closely related to
troubleshooting with post-poned system test (the topic of Chapter 7) and
this domain has recently been proven NP-hard (Lín, 2011).

Almost simultaneously, (Skaanning and Vomlel, 2001) discusses the use
of troubleshooting with simultaneous models. The idea is to introduce
special virtual "submodel" actions that effectively encapsulates a complete
troubleshooting model. The virtual actions then get a cost equal to the ECR
of the attached model, and conditional probabilities are assigned to it as
with normal actions. Furthermore, one can associate a cost for entering and
leaving the submodel. Thus, if we model each cluster as a troubleshooting
model and create virtual submodel actions for each nested cluster, we es-
sentially have a cost cluster model.

The model hierarchy has as its main motivation to isolate computational
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requirements to a single model whereby real-time results can be achieved
for very large models. However, it seems to come at the expense of a some-
what rough approximation in dealing with (a) the efficiency of the virtual
actions, and (b) the determination of the number of actions to solve before
leaving a cluster. It seems that inside information is assumed such that the
system can be tested at all times. Since the models may contain dependent
actions and questions, this approach is more general than the pure cost-
cluster frameworks.

In (Koca and Bilgic, 2004b) two cost matrices encode the cost of steps
conditional on the previous steps. The first matrix encodes the reduction
in cost of an action α induced by the previous step whereas the second ma-
trix encodes the reduction in cost induced by performing an action anytime
before α. Since costs can be negative, this approach can emulate a cost-
cluster framework. Like the method of (Skaanning and Vomlel, 2001), their
approach is slightly more general in the sense that DAG structures can be
modelled. Their method does handle the possibility of performing several
actions before leaving a cluster, though this happens somewhat implicitly.

(Warnquist et al., 2008) also describe a slightly more general cost cluster
framework than (Langseth and Jensen, 2001), but they do not address the
issue of finding an efficient algorithm. They allow for a general DAG-based
description of cost clusters and then define a heuristic based on a limited-
breadth depth-first search.

Finally, in version 2 of GeNIe (GeNIe, 2010), the tool has added support
for "observation costs" in their diagnosis system. The tool allows for sim-
ple cost for observations and conditional costs of questions based on the
configuration of the parent nodes. Furthermore, questions can be grouped
such that we can model general cost clusters (but with questions only).

We find it reassuring that all literature in the domain of conditional costs
accepts the concept of clusters as a very practical modelling technique.

6.2 Preliminaries

Let us now discuss troubleshooting notation and definitions for the domain
of cost clusters. As stated earlier, we exclusively deal with cost clusters
under the inside information assumption.

We assume that the actions A can be partitioned into ` + 1 clusters
K,K1 , . . . ,K` where cluster K is the top-level cluster and the remaining
are bottom-level clusters. The cost of opening a cluster Ki is C o

i and the
cost of closing it again is C c

i . An example of such a model was given in
Figure 6.1. We define CKi = C o

i + C c
i , and an action α belongs to cluster

K(α).
During the course of troubleshooting we gather evidence εi meaning

that the first i actions failed to solve the problem, and we have by assump-
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tion P
(
ε0
)

= 1 because the device is faulty. We also write εx:y as shorthand
for

⋃y
i=x{¬ai}. FA(ε) is the set of free actions consisting of all actions

(excluding those already performed) from open clusters given evidence ε.
CA(ε) is the set of confined actions consisting of all actions from closed
clusters given evidence ε. Note that we have FA(ε) ∪ CA(ε) = A(ε) and
FA(ε) ∩ CA(ε) = ∅ for all evidence ε. By performing an action α from
CA(ε) we pay the cost CK(α) because at this point we are certain that we
must both open and close the cluster. In that case α is called an opening ac-
tion (forK(α)), and all remaining actions ofK(α) are released by removing
them from CA(ε) and adding them to FA(ε). The conditional cost Cα(ε)
of an action α given evidence ε is given by Cα + CK(α) if α ∈ CA(ε) and by
Cα if α ∈ FA(ε).

A troubleshooting sequence is a sequence of actions s = 〈α1 , . . . , αn〉
prescribing the process of repeatedly performing the next action until the
problem is fixed or the last action has been performed. We shall write
s [k,m] for the subsequence 〈αk , . . . , αm〉 and s (k,m) for the subsequence
〈αk+1 , . . . , αm−1 〉. The index of an opening action in a troubleshooting se-
quence s is called an opening index, and the set of all opening indices for
s is denoted Z with Z ⊆ {1, . . . , n}, |Z| = `. To measure the quality of a
given sequence we use the following definition which takes into account
the conditional costs.

Definition 33. Let s = 〈α1 , . . . , αn〉 be a troubleshooting sequence. Then the
expected cost of repair (ECR) of s is given by

ECR (s ) =

n∑
i=1

P
(
εi−1

)
· Cαi (ε

i−1) . (6.1)

As always, our optimization problem is to find a troubleshooting sequence
with minimal ECR. Since we have independent actions, we may simplify
computations and notation somewhat because of the following result (cf.
Proposition 8 on page 90).

Proposition 10. Let s = 〈α1 , . . . , αn〉 be a troubleshooting sequence. Then the
ECR of s may be computed as

ECR (s ) =
n∑
i=1

Cαi (ε
i−1) ·

1−
i−1∑
j=1

Pαj

 , (6.2)

where 1−
∑i−1

j=1 Pαj = P
(
εi−1

)
.

Thus, due to our assumptions, we may completely ignore F , P(f), and
P(α|f) once the repair probabilities have been computed. Therefore, we
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mainly use Pα in the rest of this chapter. Using the set of opening indices
Z , we can rewrite the definition of ECR of a sequence s to

ECR (s ) =
∑
i=1

Cαi ·

1−
i−1∑
j=1

Pαj

+
∑
z∈Z

CK(αz ) ·

1−
z−1∑
j=1

Pαj

 (6.3)

where we have decomposed the terms into those that rely on the cost of
performing actions and those that rely on the cost of opening and clos-
ing a cluster. We define the efficiency of an action α given evidence ε as
ef (α |ε) = Pα/Cα(ε), and we write ef (α) for the unconditional efficiency
Pα/Cα . Finally, the cluster efficiency of an opening action is cef (α) =

Pα
Cα+CK(α)

.

Lemma 3. Let s = 〈α1 , . . . , αn〉 be an optimal troubleshooting sequence with
opening indices zi ∈ Z . Then the `+1 subsequences s [α1 , αz1 ), s [αzi , αzi+1 ) ∀i ∈
{1, . . . , `− 1}, and s [αz` , αn ] are ordered with respect to descending efficiency.

Proof. Between opening indices the costs are not conditional, and so we
must sort by descending ef (·) to be optimal.

We have now established that given the opening index for each cluster,
it is a simple task of merging ordered sequences to establish an optimal
sequence. The difficult part is to determine the opening indices which we
may choose in at most

(|A|
`

)
ways.

Given that without cost clusters we simply need to sort the action with
respect to descending Pα

Cα
-values, we might wonder if that could still guar-

antee an optimal sequence. The follwing example shows that it does not.

Example 12 (Sorting by ef (·)). Consider the following model

Pα Cα ef (α) cef (α)

α1 0.5 1 0.5 0.5
α2 0.2 2 0.1 0.1
β 0.3 1 0.3 0.097

where αi ∈ K (the top-level cluster) and β ∈ K2 with CK2 = 2.1. Then compare

ECR (〈α1 , α2 , β〉) = 1 + 0.5 · 2 + 0.3 · 3.1 = 2.93

ECR (〈α1 , β, α2 〉) = 1 + 0.5 · 3.1 + 0.2 · 2 = 2.95

which shows that following an P-over-C ordering is not optimal.

The above example does suggest that we should instead sort by clus-
ter efficiency which take into account the conditional costs. The following
example shows that this is not viable either.
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Example 13 (Sorting by cef (·)). We consider the following model

Pα Cα ef (α) cef (α)

α1 0.4 1 0.4 0.4
α2 0.1 1 0.1 0.1
β1 0.3 1 0.3 0.097
β2 0.2 1 0.2 0.065

and so CK2 = 2.1. We then compare

ECR (〈α1 , α2 , β1 , β2 〉) = 1 + 0.6 · 1 + 0.5 · 3.1 + 0.2 · 1 = 3.35

ECR (〈α1 , β1 , β2 , α2 〉) = 1 + 0.6 · 3.1 + 0.3 · 1 + 0.1 · 1 = 3.26

which shows that it is not optimal to perform α2 before opening cluster K2 .

It appears then that there is no trivial algorithm that can efficiently find an
optimal sequence. However, in the next sections we shall see that a minor
extension to the P-over-C algorithm suggested by (Langseth and Jensen,
2001) is in fact optimal for the flat cost-cluster model.

6.3 The Extended P-over-C Algorithm

The standard "P-over-C" algorithm works by sorting the actions based on
descending efficiency (cf. Algorithm 8 on page 90). The extended algorithm
works in a similar manner, but it also considers the efficiency of a cluster: if
a cluster is more efficient than all remaining actions and clusters, we should
perform some actions from that cluster first. This leads to the following
definition.

Definition 34 (Efficiency of Cluster). The efficiency of a cluster K is defined
as

ef (K) = max
M⊆K

∑
α∈M Pα

CK +
∑

α∈M Cα
(6.4)

and the largest setM ⊆ K that maximizes the efficiency is called the maximizing
set of K. The sequence of actions found by sorting the actions of the maximizing
set by descending efficiency is called the maximizing sequence of K.

It turns out that it is quite easy to calculate the efficiency of a cluster even
though we maximize over an exponential number of subsets. The follow-
ing result is a slightly more informative version of the one from (Langseth
and Jensen, 2001):

Lemma 4. Let K be a cluster. Then the maximizing set M can be found by
including the most efficient actions of K until ef (K) starts decreasing. Further-
more, all actions α in the maximizing setM have ef (α) ≥ ef (K) and all actions
β ∈ K \M have ef (β) < ef (K).
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Algorithm 10 The extended P-over-C algorithm (Langseth and Jensen,
2001)

1: function EXTENDEDPOVERC(K,K1 , . . . ,K`)
2: Sort actions of K and all Ki by descending ef (·)
3: Calculate ef (Ki) and maximizing setsMi for all i ∈ {1, . . . , `}
4: Let Kclosed = {Ki | i ∈ {1, . . . , `}}
5: Let A = {α | α ∈ K or α ∈ Ki \Mi for some i}
6: Let s = 〈〉
7: repeat
8: Let β be the most efficient action in A or cluster in Kclosed
9: if β is an action then

10: Add action β to s
11: Set A = A \ {β}
12: else
13: Add all actions of the maximizing set
14: of cluster β to s in order of descending efficiency
15: Set Kclosed = Kclosed \ {β}
16: end if
17: until Kclosed = ∅ and A = ∅
18: return s
19: end function

The algorithm is described in Algorithm 10. It greedily computes the
most efficient cluster (or action) and performs the actions in the maximizing
set (or action). We can see that line 2 takes at most O(|A| · lg |A|) time. Once
the actions have been sorted, line 3-6 takes at most O(|A|) time. The loop
in line 7-20 can be implemented to run in at most O(|A| · lg(` + 1)) time
by using a priority queue for the most efficient element of A and the most
efficient element of each cluster. Thus the algorithm hasO(|A|·lg |A|) worst
case running time. In the next section we prove that the algorithm returns
an optimal sequence.

Example 14 (The extended P-over-C algorithm). We consider a model with
three clusters, where K is the root cluster and Kβ and Kγ are the bottom-level
clusters. We have CKβ = 2 and CKγ = 1, and the following model parameters:

Pα Cα ef (α) cluster ef (K)

α1 0.14 1 0.14 K
α2 0.11 1 0.11 K
β1 0.20 1 0.067 Kβ 0.075
β2 0.10 1 0.033 Kβ
γ1 0.25 1 0.125 Kγ 0.15
γ2 0.20 1 0.10 Kγ
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The maximizing set for Kβ is {β1 , β2} and for Kγ it is {γ1 , γ2}, and from this
the cluster efficiencies have been calculated. Algorithm 10 returns the sequence
s = 〈γ1 , γ2 , α1 , α2 , , β1 , β2 〉 which has ECR

ECR (s ) = 2 + 0.75 + 0.55 + 0.41 + 0.30 · 3 + 0.10 = 4.71 .

If we followed the simple P-over-C algorithm we would get the sequence s2 =
〈α1 , γ1 , α2 , γ2 , β1 , β2 〉 with ECR

ECR
(
s2
)

= 1 + 0.86 · 2 + 0.61 + 0.50 + 0.30 · 3 + 0.10 = 4.83 .

6.4 Correctness of The Extended P-Over-C Algorithm

We have earlier seen how easy it was to prove the P-over-C algorithm cor-
rect. As we shall see in this section, it turns out to be somewhat harder to
give a similar proof for the extended P-over-C algorithm. We start with the
following lemma.

Lemma 5. Let a, b, c, and d be strictly positive numbers. Then

a+ b

c+ d
⊗ a

c
if and only if

b

d
⊗ a

c
(6.5)

for any weak order ⊗ (e.g. ≥ and ≤).

Proof.

a+ b

c+ d
⊗ a

c
⇔ a · c+ b · c⊗ a · c+ a · d⇔ b

d
⊗ a

c

The proof of Lemma 4 is then given below.

Proof. LetM consist of actions in K such that ef (M) is maximized. Then
ef (M) equals ∑

α∈M Pα

CK +
∑

α∈M Cα
=

∑
α∈M\{β} Pα + Pβ

CK +
∑

α∈M\{β}Cα + Cβ

=
SP + Pβ
SC + Cβ

=
P

C

where β is chosen arbitrarily. Let furthermore γ ∈ K \M. We shall prove

Pβ
Cβ
≥ P

C
>

Pγ
Cγ
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which implies the lemma. We first prove the left-most inequality. Because
ef (M) is maximal we have

SP + Pβ
SC + Cβ

≥ SP
SC

which is equivalent to
Pβ
Cβ
≥ SP

SC

which again is equivalent to

Pβ
Cβ
≥

SP + Pβ
SC + Cβ

.

The second inequality is proved similarly.

We have already established that actions between opening indices are
sorted with respect to efficiency in an optimal sequence. When we look at
actions around opening indices we get the following result.

Lemma 6. Let s = 〈. . . , αx , αx+1 , . . .〉 be an optimal troubleshooting sequence,
and let Z be the opening indices of s . Then

cef (αx ) ≥ ef (αx+1 ) if x ∈ Z, αx+1 ∈ FA(εx−1)
ef (αx ) ≥ cef (αx+1 ) if αx ∈ FA(εx−1), x+ 1 ∈ Z
cef (αx ) ≥ cef (αx+1 ) if x ∈ Z, x+ 1 ∈ Z

(6.6)

Proof. Apply Lemma 1 on page 87 and do some pencil pushing. For exam-
ple, case 1: x ∈ Z and αx+1 ∈ FA(εx−1). In this case we have

Cαx + CK(αx ) +
(
1− P

(
αx |εx−1

))
· Cαx+1 ≤

Cαx+1 +
(
1− P

(
αx+1 |εx−1

))
·
(
Cαx + CK(αx )

)
m

P
(
αx+1 |εx−1

) [
Cαx + CK(αx )

]
≤ P

(
αx |εx−1

)
Cαx+1

m
ef (αx+1 ) ≤ cef (αx )

because P(αx ) ≥ P(αx+1 ) ⇔ P(αx |ε) ≥ P(αx+1 |ε) for independent ac-
tions.

If we, for example, compare with Example 12, we see that the second se-
quence could immediately have been discarded by use of the above Lemma.
The following definitions allow us to raise the abstraction level somewhat.

Definition 35 (Efficiency of Subsequence). Let s [x, y] be a subsequence of a
troubleshooting sequence s . Then the efficiency of s [x, y] is given by

ef (s [x, y]) =

∑y
i=x Pαi∑y

i=x Cαi (ε
i−1)

(6.7)
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Definition 36 (Regular Subsequence). Let s = 〈. . . , αx , . . . , αy , . . .〉 be a trou-
bleshooting sequence. If all actions of the subsequence s [x, y] belong to the same
cluster, we say that the subsequence is regular. If furthermore s [x, y] is as long as
possible while not breaking regularity, we say that the subsequence is a maximal
regular subsequence.

Remark 22. Any troubleshooting sequence can be partitioned into a sequence of
regular subsequences, and if all the subsequences are maximal, this partition is
unique.

We then have the following quite intuitive result.

Lemma 7. Let s be an optimal troubleshooting sequence, and let s [x, x + k] and
s [y, y + `] (with y = x + k + 1) be two adjacent regular subsequences such that
K(αx ) 6= K(αy) or such that neither x nor y is an opening index. Then

ef (s [x, x+ k]) ≥ ef (s [y, y + `]) (6.8)

Proof. We consider the sequence

s2 = 〈. . . , αx−1 , αy , . . . , αy+`, αx , . . . , αx+k , . . .〉

which is equal to s except that the two regular sequences have been swap-
ped. Since s is optimal we have ECR (s ) − ECR

(
s2
)
≤ 0. Because the

subsequences are regular and belong to different clusters or do not contain
opening indices, the costs are the same in the two sequences in both s and
s2 . Therefore, we get that the terms of ECR (s )− ECR

(
s2
)

equal

Cαx (εx−1) ·
[
P
(
εx−1

)
− P

(
εx−1 , εy:y+`

)]
...

Cαx+k
(εx+k−1) ·

[
P
(
εx+k−1 )− P

(
εx+k−1 , εy:y+`

)]
Cαy (εy−1) ·

[
P
(
εy−1

)
− P

(
εx−1

)]
...

Cαy+`
(εy+`−1) ·

[
P
(
εy+`−1 )− P

(
εx−1 , εy:y+`−1 )]

since the remaining terms cancel out. Now observe that

P
(
εx+i−1 )− P

(
εx+i−1 , εy:y+`

)
= 1−

x+i−1∑
j=1

Pαj −

1−
x+i−1∑
j=1

Pαj −
y+∑̀
j=y

Pαj


=

y+∑̀
j=y

Pαj

and, similarly,
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P
(
εy+i−1 )− P

(
εx−1 , εy:y+i−1 ) = 1−

y+i−1∑
j=1

Pαj −

1−
x−1∑
j=1

Pαj −
y+i−1∑
j=y

Pαj


= −

x+k∑
j=x

Pαj .

So ECR (s )− ECR
(
s2
)
≤ 0 is equivalent to[

x+k∑
i=x

Cαi (ε
i−1)

]
·
y+∑̀
j=y

Pαj ≤

y+∑̀
i=y

Cαi (ε
i−1)

 · x+k∑
j=x

Pαj

which yields the result.

Lemma 8. There exists an optimal troubleshooting sequence s where for each
opening index x ∈ Z , there is a maximal regular subsequence s [x, x + j] (j ≥ 0)
that contains the maximizing sequence for cluster K(αx ).

Proof. Let s be an optimal troubleshooting sequence, and let x be an open-
ing index. Let s [x, x + j] be a maximal regular subsequence and assume
that it does not contain the maximizing set. Then there exists αy ∈ K(αx )
with y > x+ j + 1 such that

ef (αy) > ef (s [x, x+ j])

Observe that the subsequence s [x, y− 1] can be partitioned into m > 1, say,
maximal regular subsequences s 1, . . . , sm with s 1 = s [x, x+ j]. By Lemma
7 we have

ef (αy) > ef (s 1) ≥ ef (s 2) ≥ · · · ≥ ef (sm) ≥ ef (αy)

where the last inequality follows by the fact that αy is not an opening action
(so we avoid ≥ cef (αy)). This situation is clearly impossible. Therefore
s [x, x + j] must contain the maximizing set. By Lemma 3, it must also
contain a maximizing sequence.

Remark 23. In the above proof there is a technicality that we did not consider:
there might be equality between the efficiency of an action in the maximizing se-
quence, the efficiency of the maximizing sequence, and one or more free actions.
This problem can always be solved by rearranging the actions, and so for all proofs
we shall ignore such details for the sake of clarity.

Finally, we have the following theorem:

Theorem 12. Algorithm 10 returns an optimal troubleshooting sequence.
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Proof. By Lemma 7 we know that an optimal sequence can be partitioned
into a sequence of maximal regular subsequences which is sorted by de-
scending efficiency. If we consider Lemma 8 too, then we know that we
should open the clusters in order of highest efficiency and perform at least
all actions in their maximizing sequences as computed by Lemma 4. By
Lemma 3 we know that the order of actions in the maximizing sequences
is the optimal one. By Lemma 7 we also know that all free actions α with
ef (α) > ef (K) must be performed before opening the cluster, and all free
actions with ef (α) < ef (K) must be performed after opening the cluster
and performing all the actions in its maximizing sequence.

6.5 The Tree Cost Cluster Model

In this section we shall investigate an extension of the flat cluster model
where the clusters can be arranged as a tree. We call such a model for a
tree cost cluster model, and an example is given in Figure 6.2. In the tree
cost cluster model, the ECR does not admit the simple decomposition of
Equation 6.3. The complication is that several clusters might need to be
opened before performing an action in a deeply nested cluster. We there-
fore call troubleshooting sequences in the tree cost cluster model for tree
troubleshooting sequences. Unfortunately, it is easy to construct examples
that show that Algorithm 10 will not yield optimal tree troubleshooting se-
quences.

The so-called "updating P-over-C" algorithm is like the P-over-C algo-
rithm, but the efficiencies are recalculated whenever an action has been
performed (see Algorithm 9 on page 91). This leads, for example, to a bet-
ter heuristic in troubleshooting models with dependent actions. In a similar
manner, we may define an "updating extended P-over-C" algorithm based
on Algorithm 10 where efficiencies of actions and clusters are recalculated
(this is an O(|A|2) time algorithm). Unfortunately, the following example
shows that neither Algorithm 10 nor its derived updating algorithm guar-
antees optimality for tree cost cluster models.

Example 15 (The extended P-over-C algorithm is not optimal). Consider a
model with three clusters K = {α},Kβ = {β1 , β2}, and Kγ = {γ1 , γ2} with
CKβ (ε0) = 1 and CKγ (ε0) = 2, and so pa(Kγ) = Kβ and pa(Kβ) = K. The
remaining model parameters are as follows:

Pα Cα ef (α) ef (K) cef (α)

α 0.2 4 0.05 0.05 0.05
β1 0.2 1 0.2 0.1 0.1
β2 0.1 1 0.1 0.05
γ1 0.3 1 0.3 0.14 0.1
γ2 0.2 1 0.2 0.066
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Cluster 0

Cluster 1 Cluster 2

Cluster 3

Cluster 4 Cluster 5

C o
1 C c

1 C o
2 C c

2

C o
3 C c

3

C o
4 C c

4 C o
5 C c

5

α1 α2

α3 α4 α5 α6

α7 α8

α9α10 α11α12

Figure 6.2: Example of a tree cost cluster model. To open a cluster Ki when
the parent cluster is open we pay the cost C o

i and to close a cluster given
that all children clusters are closed we pay the cost C c

i .

where we have computed the efficiency of a cluster by computing a maximizing
set by considering all released actions. Lemma 4 makes it easy to calculate the set,
E.g., for Kγ the maximizing set equals {γ1 , γ2}.

If the strategy is to open a cluster with highest efficiency, then we should open
Kγ first. After opening we should simply take the actions by descending efficiency
(Lemma 3) which leads to the sequence s1 = 〈γ1 , γ2 , β1 , β2 , α〉. However, the
optimal sequence is s2 = 〈β1 , γ1 , γ2 , β2 , α〉:

ECR
(
s1
)

= 3 + 0.7 + 0.5 + 0.3 + 0.2 · 4 = 5.3

ECR
(
s2
)

= 2 + 0.8 · 2 + 0.5 + 0.3 + 0.2 · 4 = 5.2

Remark 24. The updating (non-extended) P-over-C algorithm leads to the se-
quence s2 above, but this strategy is not optimal in general either since that is not
even true for flat cluster models.

Let us discuss the complexity for troubleshooting with the tree cost clus-
ter model if we use brute-force. First observe that we have at most

(|A|
`

)
ways of assigning the ` closed clusters to the |A| possible opening indices.
Given the opening indices of the clusters, we can then construct a tree trou-
bleshooting sequence by iterating in the following manner:
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(a) pick the free actions in order of descending efficiency until an opening
action occurs,

(b) then pick the opening action which is the most efficient action of all
actions in newly opened clusters.

The correctness of this procedure relies on the fact that Lemma 3 general-
izes to tree troubleshooting sequences. This is seen to be the case as all the
subsequences consist of free actions and so there are no conditional costs
involved. By sorting the free actions and the actions of each cluster by
descending efficiency initially, and by using a priority queue for the free
actions, then the sequence can be constructed in O(|A| · lg |A|) time. By us-
ing a matrix to compute the conditional cost, we can compute the ECR of
this sequence inO(|A|) time. Therefore the problem of troubleshooting tree
cost clusters can take at most O(|A|`+1 · lg |A|). However, we shall in the
following present a new algorithm that solves the tree cost cluster model in
O(|A| · lg |A|) time.

First we need some additional definitions. The conditional cost Cα(ε)
of α ∈ Ki will now depend on how many clusters that have been opened
on the path from the root K to Ki . We therefore let AK(Ki |ε) denote the
set of ancestor clusters that needs to be opened on the path from the root
K to Ki given evidence ε. We then define

CKi (ε) =
∑

K∈AK(Ki |ε)

CK , Cα(ε) = Cα + CK(α)(ε) (6.9)

Given this, Definition 33 is still valid for tree troubleshooting sequences.
A single action is called an atomic action. A compound action consists of
opening a cluster K and a sequence of actions in which each action may be
either atomic or compound. We use A and B as notation for compound ac-
tions. Note that we shall not distinguish syntactically between atomic and
compound actions inside a compound action. Also note that a compound
action corresponds to a subsequence where the first action is an opening
action, and the efficiency of a compound action is simply defined as the ef-
ficiency of the corresponding subsequence. If T is a tree cost cluster model
and K is an arbitrary cluster in T , then the subtree model induced by K,
denoted TK , is a new tree cost cluster model containing exactly the clusters
in the subtree rooted at K, and with K as the open root cluster. If the in-
duced subtree model is a flat cluster model, we call it a flat subtree model.
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Algorithm 11 The bottom-up P-over-C algorithm
1: function BOTTOMUPPOVERC(T )
2: Input: a tree cost cluster model T with root K
3: Compute the model K↑ induced by absorbtion
4: into K (see Definition 38)
5: Let s = 〈〉
6: while K↑ 6= ∅ do
7: Let A be the most efficient action in K↑
8: if A is an atomic action then
9: Add action A to s

10: else
11: Add all actions of A to s in the order prescribed by β
12: end if
13: Set K↑ = K↑ \ {A}
14: end while
15: Return s
16: end function

Definition 37 (Absorbtion). Let TK = {K,K1 , . . . ,K`} be a flat subtree model.
Then the absorbtion of K1 , . . . ,K` into K is a new cluster K↑ containing

1. for each child cluster Ki , a compound action Ai induced by the maximizing
sequence for Ki , and

2. all remaining actions from K,K1 ,. . . ,K`.

An example is given in Figure 6.3. Note that in K↑ all the actions in a
child cluster Ki that are not contained in the newly generated compound
action will have a lower efficiency than the compound action for Ki (but it
may be higher than the efficiencies of other compound actions).

Definition 38 (Model Induced by Absorbtion). Let T be a tree cost cluster
model, and let K be any cluster in T . Then TK may be transformed into a single
cluster K↑ by repeated absorbtion into the root cluster of flat subtree models. The
resulting cluster K↑ is called the model induced by absorbtion into K.

Remark 25. By construction, the compound actions in a model induced by ab-
sorbtion into the root cluster K will only contain actions from the subtrees rooted
at a child of K.

With these definitions we can now present Algorithm 11. The algorithm
works in a bottom-up fashion, basically merging leaf clusters into their
parents (absorbtion) until the tree is reduced to a single cluster. Then an
optimal sequence is constructed by unfolding compound actions (and per-
forming the contained actions) when they are most efficient. The following
example illustrates how the algorithm works.
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K0

K1 K2

K3

CK1 = 1 CK2 = 5

CK3 = 10

〈α1 , α2 〉

〈
α3 , α4

〉
〈α5 , α6 〉

〈
α7 , α8

〉

K0

K↑1 K2
CK1 = 1 CK2 = 5

〈α1 , α2 〉

〈
α3 , α4 ,

〈
α7 , α8

〉〉
〈α5 , α6 〉

Figure 6.3: Left: the initial tree cost cluster model of Example 16. Right: the
tree cost cluster model resulting after absorbtion into K1 .

Example 16 (The bottom-up P-over-C algorithm). We consider the following
model where the initial cluster structure is given in Figure 6.3 on the left:

Pα Cα ef (α)

α1 0.1 1 0.1
α2 0.05 1 0.05
α3 0.2 1 0.2
α4 0.15 2 0.075
α5 0.1 1 0.1
α6 0.05 2 0.025
α7 0.25 1 0.25
α8 0.1 1 0.1

We start with the cluster K3 which has the maximizing sequence 〈α7 , α8 〉 since
0.25
11 < 0.35

12 ≈ 0.029. This leads to the model in Figure 6.3 on the right where
the formed compound action is the least efficient in cluster K↑1 . Similarly, the we
have 0.1

6 < 0.15
8 ≈ 0.019 so the compound action 〈α5 , α6 〉 is merged into cluster

K0 (see Figure 6.4 on the left). Finally, the maximizing sequence of K↑1 is simply
α3 and the resulting tree troubleshooting sequence is found by simple merging by
efficiency. In this case the order of α1 and α3 is immaterial.

Before we prove the correctness of the algorithm, we shall discuss its
complexity.

Lemma 9. Algorithm 11 can be made to run in O(|A| · lg |A|) time.

Proof. First we sort the actions of all clusters in the tree T—this takes at
most O(|A| · lg |A|) time. During absorbtion, it is important to avoid merg-
ing all actions of the child clusters into the parent cluster. Instead, we merge
only the compound actions into the parent cluster (this takes O(` · lg |A|)
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K↑0

K↑1
CK1 = 1

〈α1 , α2 , 〈α5 , α6 〉〉

〈
α3 , α4 ,

〈
α7 , α8

〉〉
K↑0〈

α1 , α3 , α4 , α2 ,
〈
α7 , α8

〉
, 〈α5 , α6 〉

〉

Figure 6.4: Left: the tree cost cluster model of Example 16 after further ab-
sorbtion of K2 into K0 . Right: the final model after no more absorbtion
is possible. The resulting sequence is an optimal tree troubleshooting se-
quence.

time overall) and create a priority queue holding the most efficient remain-
ing action of each child cluster. When creating a compound action for a
parent cluster, we then use actions from the priority queue as needed, and
update the priority queue whenever an action is taken out (this requires
moving the most efficient action (if any) from the list of sorted actions of
the cluster of the action taken out of the queue). Since an action taken out of
this priority queue never enters the queue again, creating all the compound
actions can never take more than O(|A| · lg `) time. As the absorbtion pro-
cess moves towards the root, we are forced to merge priority queues from
different subtrees. We ignore that Fibonacci heaps can be merged in O(1)
time such that an implementation is not forced to use these, and instead we
assume an O(lg `) merging procedure. Since we need to merge at most `
times, the result follows.

In the following we shall prove that Algorithm 11 computes an optimal
tree troubleshooting sequence. The first two lemmas are minor generaliza-
tions of previous lemmas, and the proofs are almost identical. The first one
we have already discussed.

Lemma 10. Lemma 3 generalizes to tree troubleshooting sequences, that is, ac-
tions between opening indices must be sorted by effiency in an optimal tree trou-
bleshooting sequence.

Lemma 11. Lemma 7 generalizes to subsequences of actions that consists of (i)
only free actions, or (ii) actions from the same subtree. That is, case (ii) means
that the result holds for adjacent subsequences containing actions from different
subtrees.

Proof. Again the two adjacent subsequences will have identical costs even
though we swap them. On the other hand, this is not the case if the subse-
quence contains actions from overlapping subtrees.
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Next we shall investigate the special properties of the compound actions
generated by the absorbtion process.

Definition 39 (Maximizing Compound Action). Let T be a tree cost cluster
model, and let K be any non-leaf cluster in T . A maximizing compound action
Â forK in T is defined as any most efficient compound action in the model induced
by absorbtion into K.

Lemma 12. Let T be a tree cost cluster model, and let K be any non-leaf cluster
in T . Let TK be the subtree model induced by K, and let Â be a maximizing
compound action for K in T . Then

ef (Â) ≥ ef (B) (6.10)

where B is any possible compound action in TK not including atomic actions from
K.

Proof. We proceed by induction over all tree structures. Basis is a flat clus-
ter model T = {K,K1 , . . . ,K`}with compound actions B̂1 , . . . , B̂` ofK and
Â = maxi B̂i . Let B be any compound action including actions from clus-
ters in T \ {K}, and assume that ef (B) > ef (Â). We shall use the fact

n
min
i

Pi
Ci
≤
∑n

i Pi∑n
i Ci

≤ n
max
i

Pi
Ci

(6.11)

(which is also known as Cauchy’s third inequality (Steele, 2004)). Then by
Equation 6.11, B cannot be formed by any combination of the B̂i ’s as this
would not increase the efficiency. Therefore B must be formed by either a
strict subset or a strict superset of one of the B̂i ’s. If B is a subset of any
B̂i , then the maximality of B̂i leads to a contradiction. If B is a superset
of any B̂i , then it will include subsets of actions from a set of clusters with
subscripts I ⊆ {1, . . . , `}. Let us denote the subsets from each Ki as Bi. We
then have

ef (B) =

∑
i∈I PBi∑
i∈I CBi

≤ max
i∈I

PBi

CBi

≤ max
i∈{1,...,`}

PB̂i

CB̂i

= ef (Â)

where the first inequality follows by Equation 6.11, the second follows
by the definition of compound actions formed during absorbtion, and the
last equality is by definition of a maximizing compound action. Since the
sets Bi were chosen arbitrarily, we get a contradiction. Hence in all cases
ef (Â) ≥ ef (B).

Induction step: we assume the Lemma is true for all children Ki , . . . ,K`
of an arbitrary cluster K where the children have maximizing compound
actions B̂1 , . . . , B̂`. A similar argument as above then shows that the lemma
is true for K as well.
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Lemma 13. Let T be a tree cost cluster model with root cluster K. Then there
exists an optimal tree troubleshooting sequence s that contains (as subsequences)
all the compound actions of the model induced by absorbtion into K. Furthermore,
the compound actions in s are ordered by descending efficiency (in each cluster).

Proof. Let s = 〈α1 , . . . , αx , . . . , αx+k , . . .〉 be an optimal tree troubleshoot-
ing sequence and let αx be an opening action, and let s [x, x + k], k ≥ 0 be
the sequence of maximal length of actions from the same subtree. Let fur-
thermore s [x, x + k] be the first subsequence that contradicts the lemma,
that is, s [x, x + k] does not contain the compound action Â for the cluster
K(αx ). Then there exists an atomic action αy ∈ Â (with y > x+ k+ 1) such
that αy 6∈ s [x, x+ k]. We then have

ef (αy) > ef (Â) > ef (s [x, x+ k])

because all atomic actions in a compound action are more efficient than the
compound action itself, and because Â is the most efficient compound ac-
tion in the subtree rooted at K(αx ) (Lemma 12). We can then partition the
actions between αx+k and αy into m > 1, say, subsequences (of maximal
length) s 1, . . . , sm. If one (or more) of these subsequence is more efficient
than αy , we immediately get a contradiction to optimality of s because such
a subsequence can be moved before s [x, x + k] (Lemma 11). So we can as-
sume that all the m subsequences are less efficient than αy . Then by suc-
cessive application of Lemma 11 we can decrease the ECR by moving αy

to position x + k + 1. However, this again contradicts that s was optimal.
Hence s [x, x+ k] must contain Â.

By Lemma 11 it follows that the order of the compound actions must be
by descending efficiency.

Theorem 13. The bottom-up P-over-C algorithm (Algorithm 11) can return an
optimal troubleshooting sequence in O(|A| · lg |A|) time.

Proof. By Lemma 13 we only need to establish the order of the free actions
between compound actions. By Lemma 11 it follows that any compound
action is preceeded by more efficient free actions and followed by less effi-
cient free actions. Then by Lemma 9 the result follows.

6.6 Remarks on Open Problems

First we shall consider how we might extend the tree cost cluster model.
It is natural to ask if the efficient algorithm of the tree cost cluster model
can be generalised to handle a DAG structure over the clusters. We do not
have an answer to that problem, but let us discuss how we may exploit the
bottom-up P-over-C algorithm for sufficiently simple DAG structures. For
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Figure 6.5: Left: an example of a DAG cost cluster model. Middle and
Right: the two tree cost cluster models induced by the DAG model.

example, imagine a model structure as the one depicted in Figure 6.5 on
the left. In an optimal troubleshooting sequence we know that exactly one
path to the bottom cluster must be taken. So we can convert the DAG into a
set of trees among which the optimal sequence of opening indices must be
present, and then we can apply the bottom-up P-over-C algorithm to solve
each induced tree model in isolation. The tree cost cluster models induced
by the DAG are also shown in the figure.

This scheme should work well if the number of clusters with more than
one parent cluster is low, and we believe many real-world domains are
sufficiently simple in their decomposition structure to make the technique
applicable. However, it appears that the number of trees induced by a DAG
grows exponentially in the number of clusters with more than one parent.
As discussed in Chapter 4, the problem is in fact NP-hard. On the other
hand, it seems intuitive that the tree on the left in Figure 6.5 cannot hold
the optimal solution as the cost of opening and closing cluster K3 is larger
than the cost of accessing both cluster K2 and K3 in the tree on the right.
Therefore, it would be interesting (and of practical importance) to have the-
oretical results that reduce the number of induced tree cost cluster models
that need to be considered.

Let us now look at a different topic. As we have discussed earlier, trou-
bleshooting with independent faults can be accomplished in O(|F| · lg |F|)
in models with clusters (Srinivas, 1995). It is assumed that there is an as-
sociated action with each fault which can inspect and repair the fault. (As
noted by (Koca, 2003) we need not necessarily have a one-to-one correspon-
dence between faults and actions as we may simply form a newcompound
fault consisting of all the faults that can be repaired by an action to re-gain
a one-to-one correpondence). Instead of sorting actions by efficiency, we
simply sort the desceding efficiency of the faults, that is,

P(fi)

Cαi · (1− P(fi))
≥ P(fi+1 )

Cαi+1 · (1− P(fi+1 ))
(6.12)
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is true for all adjacent faults in an optimal sequence of faults to inspect. As
soon as we introduce cost clusters we may try to find something similar to
Lemma 4 to compute a maximizing compound fault. If we take the same
approach as Lemma 4, then we have to compute

arg max
M⊆K

1−
∏
f∈M

P(¬f)CK +
∑

α∈A(M)

Cα

 · ∏
f∈M

P(¬f)

(6.13)

since the probability of a compound fault is taken as 1 minus the probability
that no atomic faults are present. We regard it as non-trivial to compute this
set. In any case, we leave the whole problem of defining algorithms for cost
clusters of independent faults as an interesting open problem.

6.7 Summary

In this chapter we continued our discussion on action-based algorithms.
This time we investigated the domain of conditional costs in the form of
various cost cluster models. The actions are grouped into clusters where
actions in a particular cluster share the same enabling cost.

This appears to be a very narrow domain, but when we investigated
earlier ideas for conditional cost models, they all supported cost clusters in
some form or another. Under the assumption of independent actions and
inside information, we could define the expected cost of repair almost iden-
tical to previous definitions for action sequences, the important difference
being that the cost of opening and closing a cluster must now be taken into
account. We then gave a full theoretical account of the extended P-over-C
algorithm (Langseth and Jensen, 2001) for troubleshooting with the flat cost
model. It turns out that the extended P-over-C algorithm is indeed optimal
in this domain.

Finally, we generalized the flat cost cluster model to the tree cost clus-
ter model. This lead to a new recursive merging procedure, the bottom-up
P-over-C algorithm, which to our great satisfaction also turned out to be
optimal and to be optimally efficient (that is, it runs in O(|A| · lg |A|) time).
We explained how models where the clusters form a DAG may be solved
by generating a set of tree cost cluster models. This approach seems to scale
poorly, and it remains an open problem if efficient, optimal algorithms ex-
ist for special cases of this domain. Another interesting open problem is
whether there exists an efficient solution method for cost clusters of inde-
pendent faults.





Chapter 7

Troubleshooting with Postponed System Test

I tell you Egon, it [work] is the most useless waste of time that I
have ever experienced.
–Yvonne (Olsen Banden)

Just like Yvonne, most people have experienced that there is a limit to how
much work that one wants to do compared to how much personal benefit
one gains. When facing an NP-hard problem, computer scientists face the
same dilemma. We may spend inordinate amounts of computing power
only to improve the solution marginally. In this section we shall there-
fore discuss a variety of heuristics and solutions for troubleshooting with
postponed system test. When this work was done, we conjectured that the
problem was NP-hard, and this was recently proven to be the case (Lín,
2011). It also turns out that this problem is closely related to troubleshoot-
ing with cost clusters without inside information which we briefly discuss.

7.1 Preliminaries

In traditional troubleshooting it has been assumed that each action is fol-
lowed by a test that determines if the entire system is working. In tradi-
tional single-fault troubleshooting it has generally been assumed that the
cost of this test CW is so low that it should not even be modelled (a no-
ticeable exception is (Heckerman et al., 1995)). The reason that this is prob-
lematic is simply that the system test cost can be so high that it should be
postponed until we have performed more actions. For this chapter we con-
tinue to make the strict assumptions that (a) there are no questions, and (b)
action are independent, but relax the assumption that the cost of the system
test CW is zero.

Before we can define our new optimization problem formally, we need
some notation and terminology. Since we have independent actions, we
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stick with the notation Pα for the repair probability established in the pre-
vious chapters. For each V ⊆ A we can form a compound action A with
the following properties

PA =
∑
α∈V

Pα , CA =
∑
α∈V

Cα , |A| = |V | . (7.1)

To make the distinction clear, we call actions α ∈ A for atomic actions.
To make it clear that the cost of an action includes the cost of testing the
system CW , we write CA+W for CA + CW and so CA never includes the
cost of testing the system. We can see that a partition of A into k subsets
{V1, . . . , Vk} induces a new model with independent actions {A1, . . . ,Ak}.
We shall also say that {A1, . . . ,Ak} is a partition of A whenever the corre-
sponding sets of atomic actions form a partition of A. If we furthermore
arrange the compound actions into a sequence 〈A1 , . . . ,Ak 〉, we call it for
an ordered partition of A.

From now on we shall not distinguish between the set of actions and
the compound action; that is, we use A to mean a set of atomic actions and
write A = {α1 , . . . , α|A|}—in essence this corresponds to the fact that the
order of actions inside a compound action is irrelevant because we do not
perform the system test until all actions have been carried out. (Note that
this is different from the compound actions of the previous chapter where
the order was important.)

A compound troubleshooting sequence is a sequence of compound ac-
tions s = 〈A1 , . . . ,A`〉 prescribing the process of repeatedly performing the
next action until the problem is fixed or the last action has been performed
and such that {A1 , . . . ,A`} is a partition of A. When each compound ac-
tion contains only one action, we say that the sequence is atomic. A sub-
sequence of s , s [k,m] = 〈Ak , . . . ,Am〉 with k ≤ m + 1, is called a partial
troubleshooting sequence if k > 1 or m < `. If k > m, the subsequence is
an empty subsequence and if k = 1, we may simply write s [m].

Definition 40 (Expected Cost of Compound Troubleshooting Sequence).
Let s = 〈A1 , . . . ,A`〉 be a compound troubleshooting sequence. Then the expect-
ed cost of repair (ECR) of s is the mean of the cost until an action succeeds or all
actions have been performed:

ECR (s ) =
∑̀
i=1

CAi+W · P
(
εi−1

)
. (7.2)

As usual the problem is then to find a troubleshooting sequence with
minimal ECR (·) over all possible sequences. We now define efficiency
slightly differently.
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Definition 41 (Efficiency of Compound Action). The efficiency of a compound
action A is

ef (A) =
PA

CA+W
. (7.3)

We can extend Theorem 8 on page 88 without any problem to cover
compound action sequences.

Corollary 3. Let s = 〈A1 , . . . ,A`〉 be a compound troubleshooting sequence.
Then a necessary condition for s to be optimal, even when CW > 0, is that

ef (Ai) ≥ ef (Ai+1) for i ∈ {1, . . . , `− 1} . (7.4)

Proof. Because a troubleshooting sequence partitions A, the compound ac-
tions can be seen as virtual actions which are also independent. Then apply
Lemma 1 on page 87 and simplify due to unconditional costs and indepen-
dent actions.

We may also compute the ECR of any compound troubleshooting sequence
very easily:

Corollary 4. Let s = 〈A1 , . . . ,A`〉 be a compound troubleshooting sequence.
Then the ECR of s may be computed as

ECR (s ) =
∑̀
i=1

CAi+W ·

1−
i−1∑
j=1

PAj

 , (7.5)

where 1−
∑i−1

j=1 PAj = P
(
εi−1

)
.

The following example shows that Theorem 9 on page 89 does not ex-
tend to arbitrary troubleshooting sequences when CW > 0.

Example 17 (The P-over-C algorithm is not optimal). Consider a model with
four atomic actions α1 , α2 , α3 and α4 . The other properties of the model are as
follows:

Pα Cα Cα+W ef (α)

α1 0.24 1 2 0.12
α2 0.42 3 4 0.105
α3 0.2 1 2 0.1
α4 0.14 19 20 0.007

So CW = 1. We have

ECR (〈α1 , α2 , α3 , α4 〉) = 2 + 0.76 · 4 + 0.34 · 2 + 0.14 · 20 = 8.52

ECR (〈{α1 , α2}, α3 , α4 〉) = 5 + 0.34 · 2 + 0.14 · 20 = 8.48

thus proving that it is more efficient to form the compound action A = {α1 , α2}.
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Algorithm 12 Exhaustive Search With Compound Actions
1: function GENERATEALLSEQUENCES(A,&S)
2: Let all = ∅
3: for i = 1 to |A| do
4: for all

(|A|
i

)
ways to construct the first compound action A do

5: if A 6∈ S then
6: Compute A from scratch
7: Set S = S ∪ {A}
8: end if
9: Let after = GENERATEALLSEQUENCES(A \A,S)

10: for s = 〈A1 , . . . ,A`〉 ∈ after do
11: if ef (A1) ≤ ef (A) then
12: Let s ′ = 〈A,A1 , . . . ,A`〉
13: Set all = all ∪ {s ′}
14: end if
15: end for
16: end for
17: end for
18: return all
19: end function
20: function OPTIMALCOMPOUNDACTIONSEQUENCE(A)
21: Let S = ∅
22: Let all = GENERATEALLSEQUENCES(A,S)
23: return arg min

s∈all
ECR (s )

24: end function

To be able to test heuristic algorithms it is necessary with an algorithm
that is guaranteed to find an optimal sequence. Exhaustive searches are
always able to do this, albeit the algorithm might take exponential or super-
exponential time. Algorithm 12 shows an exhaustive search with pruning
(line 12, applying Theorem 3) and memoization (line 6-9).

Let us discuss the complexity of this algorithm. The algorithm recur-
sively generates all possible sequences of compound actions. The number
of such sequences is n! · 2n−1 because for each of the n! permutations of the
n atomic actions we can form 2n−1 different partitions. Thus the running
time and memory requirement of the algorithm is O(n! · 2n). Note, how-
ever, that this is not a tight upper bound since a troubleshooting sequence
s = 〈A1 , . . . ,A`〉 can be constructed by

∏`
i=1 |Ai|! different orderings. Later

we show that the complexity of a simple exhaustive search can be reduced
to O(n3 · n!).
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In case someone else should be interested in deriving a tighter bound
on the complexity, we now give a more formal analysis which may be used
for inspiration. The time is dominated by GenerateAllSequences(·)
which again executes in time proportional to the total number of sequences.
This number may be described implicitly by the recurrence

T (n) = 1 +

(
n

1

)
· T (n− 1) +

(
n

2

)
· T (n− 2) + · · ·+

(
n

n− 1

)
· T (1)

= 1 +
n−1∑
i=1

(
n

i

)
· T (n− i) = 1 +

n−1∑
i=1

(
n

i

)
· T (i) (7.6)

By the substitution method we can prove the solution is T (n) = O(n! · 2n).
If we define

f(i) =

(
n

i

)
· i! · 2i

then we can first determine which term in the sum in Equation 7.6 that
dominates the others. This is done by solving for i in f(i) < f(i + 1), and
the solution is i < n− 1

2 so the last term dominates the others. Secondly we
determine how much the (n− 1)-th term dominates the others by comput-
ing f(n− 1)− f(i). We get

f(n− 1)− f(i) = n! · 2i ·

2n−1−i −

(
n−1∏
x=2

x

)−1
 (7.7)

We can now write Equation 7.6 as

T (n) = 1 +
n−1∑
i=1

(
n

n− 1

)
· (n− 1)! · 2n−1 −

n−2∑
i=1

f(n− 1)− f(i) (7.8)

and by some pencil pushing we get the desired result T (n) = O(n! · 2n).

7.2 Two Simple Greedy Heuristics

In this section we shall develop two simple greedy algorithms. Further-
more, we also give examples showing that none of the algorithms are guar-
anteed to find an optimal troubleshooting sequence.

For the first algorithm we consider how the ECR of a troubleshooting
sequence can be improved by merging two neighbouring actions into one
compound action. We have the following result.
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Theorem 14. Let the two troubleshooting sequences s and s ′ be given as

s = 〈. . . , αx , αx+1 , . . .〉
s ′ = 〈. . . ,A, . . .〉

with A = {αx , αx+1} and everything else being the same. Then s ′ has a strictly
lower ECR than s if and only if

CW >
Cαx+1 · Pαx

1−
∑x

j=1 Pαj

. (7.9)

Proof. When the sequence with the new compound action is better, we
must have

ECR
(
s ′
)
− ECR (s ) ≤ 0 .

We observe that most of the terms cancel each other out and we are left
with

CA+W · P
(
εx−1

)
−
[
Cαx+W · P

(
εx−1

)
+ Cαx+1+W · P(εx )

]
< 0

m

CA+W < Cαx + CW + (Cαx+1 + CW) · P(εx )

P(εx−1 )

m

Cαx+1 ·
(

1− P(εx )

P(εx−1 )

)
< CW ·

P(εx )

P(εx−1 )

m

CW > Cαx+1 ·

(
P
(
εx−1

)
P(εx )

− 1

)
m

CW > Cαx+1 ·

(
Pαx

1−
∑x

j=1 Pαj

)

Theorem 14 immediately suggests a procedure where we greedily merge
adjacent actions until the ECR is no longer improved. We start with an
atomic troubleshooting sequence and form compound actions by repeated
application of Theorem 14. Justified by Theorem 9, there are two obvious
choices of the initial sorting: with respect to descending efficiency or de-
scending Pα

Cα
-value. We have summarized this procedure in Algorithm 13.

(The special function 1st arg(·) returns the first index for which the boolean
argument returns true.) As specified, the algorithm runs in O(|A|2) time.
However, if the sum in line 5 in CompoundAction(·) are precomputed, the
total cost of all calls to CompoundAction(·) can be made linear. The run-
ning time of the algorithm is then dominated by the initial sorting of the
actions leading to an O(|A| · lg |A|) worst case running time.
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Algorithm 13 Computing Compound Actions Greedily
1: function COMPOUNDACTION(〈α1 , . . . , αn〉, x)
2: if x = n then
3: return {αn}
4: end if

5: Let m =
n

1st arg
i=x

(
CW ≤

Cαi+1 · Pαi

1−
∑i

j=1 Pαj

)
6: return {αx , . . . , αm}
7: end function
8: function GREEDYCOMPOUNDACTIONSEQUENCE(A)
9: Let s ′ = 〈α1 , . . . , αn〉 such that ef (αi) ≥ ef (αi+1 ) or Pαi

Cαi
≥ Pαi+1

Cαi+1
.

10: Let s = 〈〉
11: Let i = 1
12: while i ≤ n do
13: Let A = COMPOUNDACTION(s ′, i)
14: Set s = s + A . Concatenate seqences
15: Set i = i+ |A|
16: end while
17: return s
18: end function

Is Algorithm 13 guaranteed to find an optimal troubleshooting sequen-
ce? The example below shows that this is not the case (of course).

Example 18 (Algorithm 13). We consider the following model:

Pα Cα Cα+W ef (α) Pα
Cα

α1 0.61 1 11 0.055 0.61
α2 0.21 5 15 0.014 0.042
α3 0.18 3 13 0.013 0.06

So CW = 10. Using the ef (·) order Algorithm 13, then first computes

10 <
5 · 0.61

1− 0.61
≈ 7.8 .

Since this is false, it continues with the second test

10 <
3 · 0.21

1− 0.61− 0.21
= 3.5

which means that the algorithm suggest the sequence consisting of a single com-
pound action {α1 , α2 , α3}. If we repeat the calculations using the Pα

Cα
-order, we

get the same result. The ECR is easily seen to be 19, but

ECR (〈α1 , {α2 , α3}〉) = 11 + 0.39 · 18 = 18.02 .
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Algorithm 14 Greedy Algorithm with Max-Efficient Actions
1: function GREEDYCOMPOUNDACTIONSEQUENCE2(A)
2: Let s ′ = 〈α1 , . . . , αn〉 such that Pαi

Cαi
≥ Pαi+1

Cαi+1

3: Let s = 〈〉
4: Repeatedly add the most efficient compound action to s
5: return s
6: end function

Remark 26. We shall give many examples in this chapter showing that the algo-
rithms are not optimal. Even though this is obvious when the problem is NP-hard,
we do so to give some insights about the cases where admissibility is lost.

Let us now consider another greedy heuristic. The algorithm is based
on the idea that we should repeatedly form the most efficient compound
action until all atomic actions have been assigned a compound action. To
do this, we need a simple way of computing the most efficient compound
action from a set of atomic actions. To this aim we shall reuse a minor
variation of Lemma 4 on page 118.

Lemma 14. Let V ⊆ A be given. Let A be a compound action consisting of actions
in V with ef (A) maximal and with |A| minimal over those actions with maximal
efficiency. Then A can be found by the following procedure: define ef (A) = 0

when A = ∅; then repeatedly add an action α ∈ V to A with the highest Pα
Cα

-value
until ef (A) does not increase.

Proof. The proof is virtually identical to the proof of Lemma 4 on page 118.

Remark 27. One might wonder why we do not simply reuse Lemma 4 on page 118.
In case several actions have the same efficiency, the setM that maximizes the effi-
ciency of the compound action need not be unique. In such case we shall prefer any
smallest of such maximizing setsM because it might be non-optimal to choose a
larger set. To see this, then consider an action α which could have been part of the
maximizing set: if α is included inM, then the cost of α will be paid with a lower
probability than if α is performed immediately after testing the system. Thus,
splitting such an atomic action out of the compound action could be beneficial. On
the other hand, the next CW cost will be multiplied with a larger probability. In
certain case we may use Theorem 14 on page 139, for example, if the maximiz-
ing compound action could consume all remaining atomic actions. In the end, the
chance that this situation arises is probably low for real-world models.

Algorithm 14 shows a greedy algorithm based on Lemma 14. Like Al-
gorithm 13 we can precompute the sums used in the efficiency and get a
worst-case running time ofO(|A|·lg |A|). The following example illustrates
how Algorithm 14 works.
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Example 19 (Algorithm 14). Consider the following model

Pα Cα Cα+W
Pα
Cα

α1 0.15 1 2 0.150
α2 0.35 2 3 0.175
α3 0.50 3 4 0.167

where the ordering considered is 〈α2 , α3 , α1 〉. Algorithm 14 computes the follow-
ing values to determine the first compound action:

ef ({α2}) =
0.35

3
= 0.117

ef ({α2 , α3}) =
0.35 + 0.5

6
= 0.1416

ef ({α2 , α3 , α1}) =
1

7
= 0.1429

Thus the suggested sequence is one single compound action with ECR 7. However,

ECR (〈{α2 , α3}, α1 〉) = 6 + 0.15 · 2 = 6.3

which shows the algorithm is not optimal.

Having established the heuristic nature of both greedy algorithms, we
would like to know if they at least find a local optimum. We use the fol-
lowing definition of a local optimum.

Definition 42 (Consistent Compound Action Sequence). Let s = 〈α1 , ..., αn〉
be a sequence of atomic actions, and let sc = 〈B1 , . . . ,Bm〉 be a compound action
sequence over the same set of atomic actions as s . Then sc is said to be consistent
with s if ∀ k < l

αi ∈ Bk and αj ∈ Bl =⇒ i < j. (7.10)

In other words, sc can be seen as an ordered partition of s .

If an atomic action sequence s is given, we call the set of all compound
action sequences consistent with s for CS(s ). A local optimum is then a
compound action sequence sc ∈ CS(s ) with minimal ECR. We then say the
(ordered) partition induced by sc is optimal.

From Example 18 and 19 it follows that neither Algorithm 13 nor Algo-
rithm 14 guarantees an optimal partition.
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7.3 An Algorithm For Optimal Partitioning

We have now seen how the greedy algorithms fail to provide optimal se-
quences even under the restriction that the solution must be consistent with
a single seed-sequence s of atomic actions. However, since there are 2|A|−1

ways to partition the actions of s , a brute force approach is quite impracti-
cal even for models of moderate size. By exploiting Theorem 15 below we
can construct an O(|A|3) time dynamic programming algorithm.

Lemma 15. Let k ≥ 0 and let sc = 〈A1 , . . . ,A`〉 be a partial troubleshooting
sequence that is performed after the first k actions have been performed. Then the
contribution of sc to the total ECR is given by

ECR(k)(s
c) =

∑̀
i=1

P
(
εk+i−1

)
· CAi+W (7.11)

where

P
(
εk+i−1

)
= 1−

k∑
j=1

Pαj −
i−1∑
j=1

PAj . (7.12)

Proof. Follows directly from Corollary 4.

The lemma ensures that the following definition is sound. We shall call
ECR(k)(·) for the ECR of a partial troubleshooting sequence.

Definition 43 (ECR of Optimal Action Sequence). Let s = 〈α1 , . . . , αn〉 be an
atomic troubleshooting sequence. For any partial sequence s [k,m] with 1 ≤ k ≤
m + 1 the ECR of an optimal compound action sequence consistent with s [k,m]
is defined by

ECR∗(s [k,m]) =

{
min

sc∈CS(s [k ,m])
ECR(k−1 )(s

c) if k ≤ m

0 if k = m+ 1
. (7.13)

Theorem 15. Let s = 〈α1 , . . . , αn〉 be an atomic troubleshooting sequence. Then
for 1 ≤ k ≤ m, ECR∗(s [k,m]) can be calculate either as

m
min
i=k

(
ECR(k−1 )(〈{αk , . . . , αi}〉) + ECR∗(s [i+ 1,m])

)
(7.14)

or as

m
min
i=k

(
ECR∗(s [k, i− 1]) + ECR(i−1 )(〈{αi , . . . , αm}〉)

)
. (7.15)
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Proof. Since the two cases are symmetric (that is, one reuses the ECR for
the remaining subsequence and the other reuses the ECR for the already
performed subsequence), then we need only consider Equation 7.14. We
use induction in m − k. Basis step: m − k = 0. Since there is only one
compound sequence consistent with 〈αk 〉, we get

ECR∗(s [k,m]) = min
(
ECR(k−1 )(〈{αk}〉) + 0

)
= ECR(k−1 )(〈{αk}〉)

so the theorem holds in this case. Induction step: assume the theorem holds
for m− k ≤ x and let m− k = x+ 1. Then let

s∗ = arg min
sc∈ CS(s [k ,m])

ECR(k−1 )(s
c)

for which we must prove

ECR∗(s∗) =
m

min
i=k

(
ECR(k−1 )(〈{αk , . . . , αi}〉) + ECR∗(s [i+ 1,m])

)
.

By Lemma 15 it is correct to split the ECR into two terms corresponding
to an ordered partition of s∗. Furthermore, by the induction hypothesis we
can compute ECR∗(s [i+1,m]) for any i sincem−(i+1) ≤ x. Then consider
that s∗ must start with a compound action consisting of y ∈ {1, 2, . . . , x+1}
actions. These choices of the first action correspond exactly to the expres-
sions that we minimize over, and the result follows.

Theorem 15 shows that the problem of finding an optimal partition of
a seed sequence s requires optimal partitions of smaller partial sequences
(the optimal substructure property) and that these smaller partial sequen-
ces are needed by the computation of several bigger sequences (the over-
lapping subproblems property). These two properties enables an efficient
dynamic programming algorithm, that is, an algorithm that only computes
solutions to subproblems once by storing the results in a table. Algorithm
15 uses this approach to find the optimal partition of a seed-sequence s .
The algorithm runs in Θ(|A|3) time and uses Θ(|A|2) space. The correct-
ness of the algorithm follows from the above theorem. The example below
describes the steps of the algorithm in detail.

Example 20 (Algorithm 15). We consider the model from Example 17 on page 137
where we shall find the best partitioning of the subsequence 〈α1 , α2 , α3 〉. The
main work is done by the procedure FillCell(·) which updates two matrices
storing the ECR and the index that induces the optimal partitioning, respectively.
Assume the seed-sequence is s = 〈α1 , α2 , α3 , α4 〉, then we may visualize the
matrices as one by the following:
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Algorithm 15 Optimal Partition into Compound Actions
1: procedure FILLCELL(row, col, s ,CW ,&ecrMatrix,&prevMatrix)

Require: row > col
2: Let N = row − col
3: Let A = 〈αcol , . . . , αcol+N 〉 from s
4: Let ecr = P

(
εcol−1

)
· CA

5: Set ecrMatrix[row, col] = ecr
6: Set prevMatrix[row, col] = col
7: for prev = col + 1 to row − 1 do
8: Let ecr′ = ecrMatrix[prev, col] + ecrMatrix[row, prev]
9: if ecr′ < ecr then

10: Set ecrMatrix[row, col] = ecr′

11: Set prevMatrix[row, col] = prevMatrix[row, prev]
12: end if
13: end for
14: end procedure
15: function OPTIMALPARTITION(s = 〈α1 , . . . , αn〉, CW)
16: Let N = |s |
17: Let ecrMatrix = {0}
18: Let prevMatrix = {0}
19: for row = 1 to N do
20: for col = row − 1 down to 1 do
21: FILLCELL(row, col, s ,CW , ecrMatrix, prevMatrix)
22: end for
23: end for
24: Let s∗ = 〈〉
25: Let prev = N
26: repeat
27: Let i = prevMatrix[prev, 1]
28: Let A = 〈αi+1 , . . . , αprev 〉
29: Set s∗ = 〈A, s∗〉
30: until prev < 1
31: ASSERT(ECR (s∗) = ecrMatrix[N, 1] )
32: return s∗

33: end function


(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(2, 1) (0, 0) (0, 0) (0, 0) (0, 0)
(5, 1) (3.04, 2) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)


Here the procedure is paused after the third row has been calculated. Entries in
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the diagonal and above are all zero, and so are entries that have not been calculated
yet. In the first column is stored the optimal solution when going from having
performed zero actions to 1, 2, 3, 4 actions. In the second column is stored the
optimal solution when going from having performed 1 action to 2, 3, 4 actions, etc.
At index (3, 1) is currently stored the optimal solution over the two first actions.
This solution has an ECR of 5 and the sequence of compound actions that has this
ECR is simply 〈A1 〉 = 〈α1 , α2 〉 because the index 1 tells us that we must jump to
the first row.

The matrices are update one row at a time stating from the right. We shall now
describe how the fourth row is updated. This happens in line 20-22 in Algorithm
15.
Row = 4, col = 3: in FillCell we first form the compound action A =

〈α3 〉 and calculate its contribution the ECR (line 2-4). The for-loop in line is then
not entered, and the matrices now looks as follows:

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(2, 1) (0, 0) (0, 0) (0, 0) (0, 0)
(5, 1) (3.04,2) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0.68,3) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)


Row = 4, col = 2: as usual FillCell first computes the contribution to

the ECR when going directly from index 2 to 4 (which corresponds to performing
the compound action 〈α2 , α3 〉). The for-loop in line 7-13 is then entered one time.
The loop body investigates alternative ways to perform 〈α2 , α3 〉; in this case there
is only one alternative: to perform α2 and α3 independently. In line 8 the ECR
contribution of this path is calculated by looking up already calculated values; in
this case the values highlighted in italics above are added. This turns out to be
the better than performing both actions before the system test and therefore we also
propagate the index in line 11. The matrices now looks this way:

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(2,1) (0, 0) (0, 0) (0, 0) (0, 0)
(5,1) (3.04, 2) (0, 0) (0, 0) (0, 0)
(0, 0) (3.80,3) (0.68,3) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)


Notice that the for-loop in line 7-13 only investigates a linear number of alternative
paths even though an exponential number of such paths exists. However, this
is enough to find the optimal path since we have already computed all relevant
optimal sub-paths and can exploit them in the loop.
Row = 4, col = 1: this time FillCell computes the cost of the direct path

(as usual), and then compare this cost with sum of the non-bold-font italics cells
and the sum of the bold-font italics cells (see matrices above). The non-bold-font
cells correspond to the sequence 〈α1 , α2 , α3 〉 and the bold-font cells correspond to
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Algorithm 16 Optimized Exhaustive Search
1: function OPTIMALCOMPOUNDACTIONSEQUENCE2(A)
2: Let bestEcr =∞
3: Let bestSeq = 〈〉
4: for all n! permutations of A s do
5: Let s ′ = OPTIMALPARTITIONING(s )
6: if ECR (s ′) < bestEcr then
7: Set bestEcr = ECR (s ′)
8: Set bestSeq = s ′

9: end if
10: end for
11: return bestSeq
12: end function

the sequence 〈A, α3 〉. The latter sequence has the lowest ECR, so we update the
matrices as follows:


(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(2, 1) (0, 0) (0, 0) (0, 0) (0, 0)
(5, 1) (3.04, 2) (0, 0) (0, 0) (0, 0)

(5.68, 3) (3.80, 3) (0.68, 3) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)


From this we conclude that the optimal way to perform the first three actions is
〈A, α3 〉.

Algorithm 15 now also means that we can make a more efficient ex-
haustive search for the best troubleshooting sequence. The algorithm runs
in Θ(n3 · n!) time and is shown in Algorithm 16.

It should not be too difficult to extend Theorem 15 such it can be used
for computing the optimal partitioning even if the model has dependent
actions. In fact, we may see the theorem as a consequence of Proposition 7
on page 79 and the additivity of the ECR of action sequences.

Corollary 5. Algorithm 15 also computes an optimal partitioning of a sequence
of dependent actions if we compute the probability of the evidence via the updating
P-over-C algorithm (Algorithm 9 on page 91).

Furthermore, we can immediately construct a new heuristic based on
Algorithm 15. The most obvious is to take a seed-sequence where the ac-
tions are sorted by efficiency or P-over-C—this is exactly what Algorithm
17 does. The following example shows a case where Algorithm 17 does not
find an optimal troubleshooting sequence.
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Algorithm 17 Action Sequence with Optimal Partition
1: function COMPOUNDACTIONSEQUENCE(A)
2: Let s = 〈α1 , . . . , αn〉 such that ef (αi) ≥ ef (αi+1 ) or Pαi

Cαi
≥ Pαi+1

Cαi+1

3: Let s = OPTIMALPARTITION(s )
4: return s
5: end function

Example 21 (Algorithm 17 is not optimal). Consider the model from Example
19, but take CW = 2:

Pα Cα Cα+W ef (α) Pα
Cα

α1 0.15 1 3 0.05 0.150
α2 0.35 2 4 0.0875 0.175
α3 0.50 3 5 0.1 0.167

For the ef (·) ordering, the algorithm constructs the following tables—here visual-
ized as one table with a pair of values (ECR∗(s [k,m]), i) where i − 1 is the split
that minimized the (partial) ECR:

(0, 0) (0, 0) (0, 0) (0, 0)
(5, 1) (0, 0) (0, 0) (0, 0)
(7, 1) (2, 2) (0, 0) (0, 0)

(7.45, 3) (2.45, 3) (0.45, 3) (0, 0)


Looking at the bottom left entry, we get that the last action is {α1} and then looking
at the entry above it, that the first action is {α3 , α2} and 〈{α3 , α2}, α1 〉 has ECR
7.45. Even though the initial Pα

Cα
ordering is different, the algorithm returns the

same troubleshooting sequence (because it forms the same initial compound action).
However,

ECR (〈{α1 , α3}, α2 〉) = 6 + 0.35 · 4 = 7.4

which shows that the algorithm does not lead to an optimal sequence.

7.4 A Heuristic for The General Problem

We have seen that by changing the order of the atomic actions, we could
improve the ECR compared to keeping the ordering fixed. We shall there-
fore consider the orthogonal task of optimizing the ordering given that the
partitioning is fixed.

Definition 44 (Partition Equivalent Sequences). Let sc = 〈A1 , . . . ,A`〉 and
sd = 〈B1 , . . . ,B`〉 be two compound action sequences of the same size. Then sc

and sd are partition equivalent if

|Ai| = |Bi| ∀i ∈ {1, 2, . . . , `}. (7.16)



150 Chapter 7. Troubleshooting with Postponed System Test

Lemma 16. Let sc = 〈. . . ,Ax , . . . ,Ay , . . .〉 be partition equivalent with sd =
〈. . . ,Bx , . . . ,By , . . .〉 where both are compound action sequences. Furthermore,
let the only difference between sc and sd be that two actions α ∈ Ax and β ∈ Ay

have been swapped such that β ∈ Bx and α ∈ By. Then

ECR (sc)− ECR(sd ) = (Cα − Cβ) ·

[
P(β)− P(α) +

y−1∑
i=x

P(Ai)

]

+ [P(β)− P(α)] ·
y∑

i=x+1

CAi+W . (7.17)

Proof. Let sc and sd be given as above. We then have

ECR(sc) =
∑̀
i=1

CAi+W ·

1−
i−1∑
j=1

P(Aj )

 =
∑̀
i=1

CAi+W · ai

ECR(sd ) =
∑̀
i=1

CBi+W ·

1−
i−1∑
j=1

P(Bj )

 =
∑̀
i=1

CBi+W · bi .

The difference between these two numbers can be expressed as

ECR(sc)− ECR(sd ) = ∆X + ∆I + ∆Y (7.18)

where

• ∆X is the difference caused by changes to CAx ,

• ∆I is the difference caused by ai changing into bi for all compound
actions between Ax and Ay, and

• ∆Y is the difference causes by changes to CAy and ay.

For i ∈ {1, . . . , x− 1, y + 1, . . . , `} the terms cancel out. We have

∆X = ax · (CAx+W − CBx+W) = ax · (Cα − Cβ) .

Furthermore, since bi = ai + P(α)− P(β)∀ i ∈ {x+ 1, . . . , y}:

∆I =

y−1∑
i=x+1

(ai − bi) · CAi+W = [P(β)− P(α)] ·
y−1∑
i=x+1

CAi+W

Finally, we have

∆Y = ay · CAy+W − by · CBy+W

= ay · CAy+W − by · (CAy+W − Cβ + Cα)

= (ay − by) · CAy+W − by · (Cα − Cβ)

= [P(β)− P(α)] · CAy+W − by · (Cα − Cβ) .



7.4. A Heuristic for The General Problem 151

Now observe that

by = ay − [P(β)− P(α)] =

(
ax −

y−1∑
i=x

P(Ai)

)
− [P(β)− P(α)]

which implies that

∆Y = [P(β)− P(α)] · CAy+W

−

[
ax − P(β) + P(α)−

y−1∑
i=x

P(Ai)

]
· (Cα − Cβ) .

Inserting these three results into Equation 7.18 yields

ECR(sc)− ECR(sd ) = (Cα − Cβ) ·

[
P(β)− P(α) +

y−1∑
i=x

P(Ai)

]

+ [P(β)− P(α)] ·
y∑

i=x+1

CAi+W

as required.

Theorem 16. Let sc , α and β be given as in Lemma 16. Then the ECR of sc can
be improved by swapping α and β if and only if

(Cα − Cβ) ·

[
P(β)− P(α) +

y−1∑
i=x

P(Ai)

]

> [P(α)− P(β)] ·
y∑

i=x+1

CAi+W . (7.19)

Proof. We should swap the two actions if

ECR(sc)− ECR(sd ) > 0

m

(Cα − Cβ) ·

[
P(β)− P(α) +

y−1∑
i=x

P(Ai)

]
> [P(α)− P(β)] ·

y∑
i=x+1

CAi+W

by Lemma 16.

Proposition 11. Theorem 16 is a generalization of the

ef (αi) ≥ ef (αi+1 ) ∀i ∈ {1, . . . ,n − 1} (7.20)

optimality condition for atomic action sequences (with independent actions).
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Proof. When sc and sd are atomic action sequences, α = Ax, β = Ay, and
so |Ax| = |Ay| = 1. If α and β are neighbours we have x+ 1 = y. Theorem
16 then yields

(Cα − Cβ) · [P(β)− P(α) + P(α)] > [P(α)− P(β)] · (Cβ + CW)

m
P(β) · (Cα + CW) > P(α) · (Cβ + CW)

m
ef (β) > ef (α)

as required.

It turns out that in certain cases we can avoid the full analysis of Theo-
rem 16.

Proposition 12. Let sc , α and β be given as in Lemma 16. If

P(β) > P(α) and Cα ≥ Cβ , or (7.21)
P(β) = P(α) and Cα > Cβ (7.22)

then ECR(sc) can be improved by swapping α and β.

Proof. If P(β) > P(α) and Cα ≥ Cβ , then P(β) − P(α) < 0, but Cα −
Cβ ≥ 0. In Theorem 16 the two other factors are strictly positive, so the
left hand side becomes non-negative while the right hand side becomes
negative making the inequality true. If P(β) = P(α) and Cα > Cβ , then
the left hand side is strictly positive while the right hand side is zero which
also makes the inequality true.

Based on the above results, we can easily search for a better partition
equivalent troubleshooting sequence. The procedure is given in Algorithm
18. Arguably, after the algorithm has terminated, it could be that more
actions could be swapped to improve the ECR. However, we have been
unsuccessful in proving the number of possible swaps. Therefore we prefer
an algorithm that terminates deterministically. Furthermore, we tried to
run the procedure until no more swaps could be made on our test models,
and we found that it did not improve the ECR compared to Algorithm 18.

It should be clear that the algorithm runs in O(|A|3) time. The reason
it cannot run in O(|A|2) time is that checking Theorem 16 takes linear time
on average, albeit when Proposition 12 applies it only takes constant time.
Because any swapping invalidates the involved sums, it is not possible to
precompute these as with the greedy approaches we saw earlier. We can
also formulate the improved heuristic described in Algorithm 19.
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Algorithm 18 Optimizing The Partition by Swapping
1: procedure OPTIMIZEPARTITION(&sc=〈A1 , . . . ,An〉)
2: for x = 1 to n do
3: for α ∈ Ax do
4: for y = x+ 1 to n do
5: for β ∈ Ay do
6: if (Cα − Cβ) ·

[
P(β)− P(α) +

∑y−1
i=x P(Ai)

]
>

7: [P(α)− P(β)] ·
∑y

i=x+1 CAi+W

8: then
9: SWAP(α, β)

10: end if
11: end for
12: end for
13: end for
14: end for
15: end procedure

Algorithm 19 Action Sequence with Optimized Partition
1: function COMPOUNDACTIONSEQUENCE2(A)
2: Let s = 〈α1 , . . . , αn〉 such that ef (αi) ≥ ef (αi+1 ) or Pαi

Cαi
≥ Pαi+1

Cαi+1

3: Let s = OPTIMALPARTITION(s )
4: OPTIMIZEPARTITION(s )
5: return s
6: end function

7.5 Non-reordable Models

Finding a small example that shows a case where Algorithm 19 is not ad-
missible is not completely trivial. By means of a computer we did construct
such examples where the algorithm is not guaranteed to find optimal trou-
bleshooting sequences. However, for certain models we can prove that op-
timality is ensured.

Definition 45 (Non-reordable Model). Consider a troublehooting model with
independent actions and non-trivial system test cost. If the actions of this model
can be ordered into the sequence s = 〈α1 , . . . , αn〉 such that

Pαi ≥ Pαi+1 and Cαi ≤ Cαi+1 for i ∈ {1, 2, . . . ,n − 1} , (7.23)

then we call this model for a non-reordable model.

Theorem 17. Let s = 〈α1 , . . . , αn〉 be an atomic troubleshooting sequence in a
non-reordable model such that ef (αi) ≥ ef (αi+1 ). Then there exists an optimal
troubleshooting sequence sc consistent with s .
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Proof. Let sd = 〈B1 , . . . ,B`〉 and sc = 〈A1 , . . . ,A`〉 be partition equivalent
compound troubleshooting sequences where sd is optimal and sc is con-
sistent with s . Now assume sd is not consistent with s . Since sc 6= sd , we
can find the index of the first pair of compound actions Ax and Bx where
the two sequences differ. Then at least one action β ∈ Ax, but β 6∈ Bx and
at least one action α ∈ Bx, but α 6∈ Ax. Furthermore, α must be found in
Ay with y > x. Since sc is consistent with s and since the model is non-
reordable

Pβ ≥ Pα and Cβ ≤ Cα (7.24)

We now consider two cases.
Case 1: at least one of the inequalities in Equation 7.24 is strict. Then if

we apply Theorem 16 on sd we find that we can improve the ECR of sd by
swapping α and β. However, this is a contradiction to sd being optimal.
Hence in this case any optimal sequence must be consistent with s .

Case 2: we have equality in Equation 7.24. In that case we can safely
swap α and β in sd without altering the ECR. If we now have sd = sc , then
we are done. If not, we can repeat the procedure until sd = sc . Since each
swap puts at least one atomic action into its rightful compound action, the
procedure terminates in a finite number of steps, thus proving that there
exists an optimal sequence consistent with s .

Corollary 6. Algorithm 17 and 19 find an optimal troubleshooting sequence in
non-reorderable models.

Proof. Both algorithms calls OptimalPartition(·) after having sorted
the actions with respect to descending efficiency.

At this point we shall stop our search for improving the heuristics. A
natural extension is to derive a result that states when it is beneficial to
move a single atomic action from one compound action to another. Experi-
mental knowledge shows that this can indeed be beneficial, but as we shall
see in the next section, the heuristics above already perform quite well.

7.6 Empirical Evaluation

In this section we shall investigate the performance of the heuristic algo-
rithms. In particular, we investigate how the following two model param-
eters affect the precision:

1. The closeness of the initial efficiency of actions.

2. The closeness of the cost of the actions.
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Table 7.1: Model 1. Close efficiencies + close costs.

α1 α2 α3 α4 α5 α6 α7 α8

Pα 0.21 0.17 0.19 0.155 0.185 0.139 0.17 0.135
Cα 1.8 1.4 1.7 1.3 1.6 1.2 1.5 1.1
ef (α) 0.086 0.090 0.083 0.088 0.085 0.085 0.084 0.091

Table 7.2: Model 2. Close efficiencies + non-close costs.

α1 α2 α3 α4 α5 α6 α7 α8

Pα 0.36 0.205 0.32 0.155 0.28 0.11 0.25 0.05
Cα 8 4 7 3 6 2 5 1
ef (α) 0.026 0.030 0.026 0.030 0.027 0.031 0.029 0.029

Table 7.3: Model 3. Non-close efficiencies + close costs.

α1 α2 α3 α4 α5 α6 α7 α8

Pα 0.4 0.105 0.52 0.055 0.78 0.13 0.6 0.02
Cα 1.8 1.4 1.7 1.3 1.6 1.2 1.5 1.1
ef (α) 0.085 0.029 0.117 0.016 0.187 0.042 0.153 0.007

Table 7.4: Model 4. non-close efficiencies + non-close costs.

α1 α2 α3 α4 α5 α6 α7 α8

Pα 0.16 0.15 0.05 0.165 0.165 0.159 0.07 0.165
Cα 8 4 7 3 6 2 5 1
ef (α) 0.018 0.035 0.007 0.051 0.025 0.073 0.013 0.152
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Table 7.5: Percent-wise deviations for model 1. The model has close effi-
ciencies + close costs (5828 runs.)

ef (αi) Alg. 14 Alg. 13 Alg. 17 Alg. 19
min 0 0 0/0 0/0 0/0
max 128.3 45.6 4.3/2.8 1.5/0.7 1.1/0.6
mean 73.1 10.1 1.7/0.7 0.8/0.1 0.2/0.02
median 79.4 6.0 1.5/0.4 0.8/0 0.1/0
% optimal 1.5 0.1 1.5/26.6 1.5/62.1 39.9/84.8

Table 7.6: Percent-wise deviations for model 2. The model has close effi-
ciencies + non-close costs (4201 runs).

ef (αi) Alg. 14 Alg. 13 Alg. 17 Alg. 19
min 0 0 0/0 0 /0 0/0
max 97.2 38.9 6.2/2.3 5.1/0.5 4.2/0.5
mean 54.7 9.0 2.8/0.3 1.9/0.1 1.1/0.0
median 58.9 5.7 3.2/0.1 1.8/0.0 1.2/0
% optimal 0.33 0.1 8.4/32.9 9.5/46.0 18.6/63.9

Due to the difficulty of finding an optimal solution, we could not inves-
tigate models with more than 8 actions. In the models below the repair
probabilities have not been normalized to make the specification accurate
(but they are of course normalized at runtime) and the efficiency stated is
the efficiency rounded to three decimals when CW = 0.

For each of the four initial models in Table 7.1 to Table 7.4 we ran all the
algorithms for increasing values of CW . The following observation shows
when it does not make sense to increase CW anymore.

Proposition 13. Once CW is made so high that the optimal sequence consists of
one compound action, then increasing CW can never change the optimal sequence.

The increment in CW was determined as one permille of the largest cost
of any action in the model. Starting from CW = 0 we kept sampling un-
til the optimal sequence consists of only one compound action. Table 7.5
to Table 7.8 summarize the result for the four models where each column
describes the results of a given algorithm. The first four rows summarize
the percent-wise deviation from the optimal ECR, and the last row shows
the percent of cases where the algorithm was optimal. The number of in-
crements to CW is given in the parenthesis after the model name. The first
algorithm column is the simple ef (αi) ≥ ef (αi+1 ) sorting. A 0.0 indicates
a number close to zero whereas 0 really means zero. For Algorithm 13,
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Table 7.7: Percent-wise deviations for model 3. The model has non-close
efficiencies + close costs (79145 runs).

ef (αi) Alg. 14 Alg. 13 Alg. 17 Alg. 19
min 0 0 0/0 0/0 0/0
max 149.5 3.9 2.8/2.8 0/0 0/0
mean 124.3 0.1 0.2/0.2 0/0 0/0
median 137.1 0 0/0 0/0 0/0
% optimal 0.45 76.3 73.9/73.9 100/100 100/100

Table 7.8: Percent-wise deviations for model 4. The model has non-close
efficiencies + non-close costs (18085 runs).

ef (αi) Alg. 14 Alg. 13 Alg. 17 Alg. 19
min 0 0 0/0 0/0 0/0
max 219.1 4.9 2.6/2.6 0/0 0/0
mean 162.8 0.4 0.2/0.2 0/0 0/0
median 181.0 0 0/0 0/0 0/0
% optimal 0.3 53.1 76.1/76.1 100/100 100/100

17, and 19 we give two numbers. The first corresponds to an initial ef (·)
ordering and the second corresponds to an initial Pα

Cα
ordering. We can

summarize the results as follows:

1. Algorithm 19 is by far the best heuristic. Algorithm 14 is the worst of
the new heuristics. Algorithm 13 performs surprisingly well, almost
as good as Algorithm 17 and would thus be considered the preferred
choice for a system under real-time constraints.

2. Models with non-close efficiencies are much easier to solve than mod-
els with close efficiencies. Models with non-close costs seem to induce
larger deviations from the optimal ECR than models with close costs.
We consider none of these findings surprising.

We have also tested the algorithms on a real-world model with 32 ac-
tions. The results are summarized in Table 7.9 where the statistics are com-
puted as the percent-wise deviation from the overall best algorithm (Algo-
rithm 19 with Pα

Cα
ordering). The−0 indicates that a small percentage of the

cases where better than Algorithm 19. Also notice that the apparent con-
flict between "median" and "% best" in column two is due to rounding of
the median.
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Table 7.9: Percent-wise deviation for model 5 (relative to best heuristic).
The model is a real-world model with 32 actions (33145 runs).

ef (αi) Alg. 14 Alg. 13 Alg. 17 Alg. 19
min 0 0 0/0 −0/0 −0
max 667.3 3.8 25.3/19.1 10.7/0.1 6.1
mean 555.3 0.1 5.9/3.1 3.3/0 1.5
median 598.7 0 3.7/1.3 3.6/0 1.3
% best 0.0 48.2 0.0/0 0.0/99.4 0.0

The conclusion here is the same with one noticeable difference: Algo-
rithm 14 is now the third best algorithm, only beaten by Algorithm 17 and
19 with Pα

Cα
ordering and far better than any other heuristic. The fact that

Algorithm 17 and 19 are very close to each other also suggests that we are
quite close to the optimal value.

7.7 Miscelaneous Remarks

In this section we shall discuss a few theoretical properties of troubleshoot-
ing with postponed system test. We first investigate if the optimal expected
cost ECR∗(·) is monotone when viewed as a function of CW .

If we keep all other parameters constant, we can regard the optimal ECR
as a function of the system test cost, which we shall write ECR∗(CW). For
a particular compound troubleshooting sequence s we write ECR (s ; CW)
instead, and so ECR∗(CW) = ECR (s∗; CW) . The function takes the gen-
eral form

ECR (s ; CW) =
∑̀
i=1

(CAi + CW) · (1−
i−1∑
j=1

PAj ) (7.25)

where s = 〈A1 , . . . ,A`〉 is a compound troubleshooting sequence.

Remark 28. The optimal sequence s∗ is itself a function of CW .

Proposition 14. Let s be a compound troubleshooting sequence. Then the expect-
ed cost ECR (s ; CW) is a strictly increasing function of CW .

Proof. This is clear immediately from Equation 7.25.

Proposition 15. ECR∗(CW) is a strictly increasing function of CW .
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Proof. Let CW = x, and let s∗ be the optimal sequence for this value. Then
set CW = y > x such that a new sequence s∗∗ 6= s∗ is now optimal. The
question is now: can

ECR (s∗; x ) ≥ ECR (s∗∗; y)

? If so, then ECR∗(CW) could not be strictly monotone. But since

ECR (s∗∗; y) > ECR (s∗∗; x ) ≥ ECR (s∗; x )

this is impossible.

This leads immediately to the following result.

Theorem 18. The P-over-C algorithm on a model with CW = 0 computes a lower
bound on ECR∗(·) for the same model with CW > 0. Furhermore, for any evidence
ε, we can add P(ε) · CW to this this lower bound and still have a lower bound.

Proof. The first part follows from Proposition 15. The second part follows
from the fact that at any point after we have performed the system test,
we have to perform it at least once more if there are any more actions to
perform. (More formally, one may rewrite the ECR as the sum of (a) the
ECR of the same sequence, but with a lower CW and (b) P(ε) · CW ).

As a consequence we may now use this lower bound in an A∗ like algo-
rithm or in depth-first search. (Lín, 2011) describes a bottom-up dynamic
programming algorithm that uses in Θ(2|A|) time and memory. It appears
to us that it should possible to make a classical top-down search that runs in
O(2|A|) by applying coalescing. However, since the evidence set can now
also contain actions that are performed, but not tested, it is not obvious
that the decision tree is of O(2|A|) size. Since we perform the system test at
O(2|A|) nodes in the search graph (corresponding to the different ways that
we can form a compound action in) and since these nodes corresponds to
the same nodes that we normally apply coalesing at, then the memory re-
quirement might stay atO(2|A|), but this is not obvious. (It might be enough
to generate one extra successor node for each decision node; this successor
node would be the system test.) Furthermore, it must be possible to per-
form a classical search that exploits the following:

(a) Coalescing is applied whenever possible.

(b) A tight upper bound is computed initially in Θ(|A|3) time and updated
whenever we explore a better solution.

(c) Nodes are pruned whenever path cost plus the lower bound exceeds
the upper bound.

(d) Nodes are subject to efficiency-based pruning.
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We believe such an approach will be quite efficient as a large number of se-
quences are very far from the optimal one. Furthermore, we belive efficien-
cy-based pruning works better in this context than with depedent actions.

Next, let us discuss the connection between troubleshooting with post-
poned system test and troubleshooting cost clusters with inside informa-
tion (where the cluster must be closed before the system can be tested). It
should be very clear that the latter is at least as difficult as the former; for
example, imagine a cost cluster model with one empty parent cluster and
a non-empty child cluster. Now we face the exact same problem as with a
postponed system test.

Now imagine again a cost cluster model with two clusters, but let the
parent cluster be non-empty too. We might have hoped that if one could
solve the bottom level cluster in isolation, then the order among actions
would be unaltered when we merge with the actions from the root cluster.
Unfortunately, we have constructed a counter example that shows this is
not the case.

7.8 Summary

In this chapter we have extended a the classical polynomial troubleshoot-
ing scenario of independent actions with postponed system test. Albeit this
is a somewhat simple extension requiring only minor modifications to the
definition of the expected cost of repair, it leads to an NP-hard problem.

First, we presented to two greedy O(|A| · lg |A|) time heuristics which
were both motivated by theoretical considerations. Then we described a
dynamic programming algorithm, which given a seed sequence finds the
optimal partitioning of the actions. As an extra benefit, this optimization
can also be adopted to models with dependent actions. This algorithm then
lead to a powerful Θ(|A|3) time heuristic. To further improve this heuristic
we proposed an O(|A|3) time post-processing step that swaps actions in
partitions to improve the sequence. We furthermore identified a class of
non-reordable models where both Θ(|A|3) time algorithms are admissible.

Using a naive (but simple) exhaustive search procedure we benchmar-
ked all heuristics against optimal solutions. For reordable models, we found
that the suggested heuristics provide quite close approximations to an op-
timal solution, especially the most powerful of them. Finally, we ran tests
on a medium sized real world model and the algorithms appear to perform
very well—even heuristics with an O(|A| · lg |A|) complexity, albeit we are
unable to verify optimality for such a large model. However, we described
(but did not implement) a search scheme which might make it possible to
verify optimality for such medium sized models. Furthermore, for this type
of search we developed an admissible heuristic function.



7.8. Summary 161

Similar to troubleshooting with dependent actions, it seems that good
approximations are relatively easy to find. Therefore we believe future re-
search should be directed towards finding guarantees on the quality of the
solutions returned by the heuristics as well as guarantees about local opti-
mality when optimizing a given partition.





Chapter 8

Conclusion

At any rate it seems that I am wiser than he is to this small
extent, that I do not think that I know what I do not know.
–Socrates

Ever since high school I have been fascinated by Socrates’ sentence above.
It explains the essence of true scientific thinking, albeit it may not be taken
very seriously in the non-exact sciences anymore (climate-, medical- and
social-sciences spring to mind). Years later my admiration only increased
when I learned that probability theory is based on the axiom that we must
always take exactly what we know into account, nothing less and nothing
more. And now time has finally come to summarize what we know (and
do not know) as a result of the work presented in this thesis.

8.1 Contributions

We believe that the contributions of this thesis are the following:

1. In Chapter 3 we have given a detailed account of decision theoretic
troubleshooting, and in particular the underlying assumptions and
the constraints induced by semantic requirements that we must up-
hold in a realistic model. This enabled us to give a comparison of the
single-fault troubleshooting model with a multi-fault troubleshooting
model (with dependent faults). This comparison highlighted several
open problems for the multi-fault model and enforced our view of
the appropriateness of the single-fault troubleshooting model.

2. Secondly, we have given detailed account of various solution meth-
ods in Chapter 4. This can hardly be considered research, but we have
put an effort into describing many practical (and several theoretical)
details that are often ignored by existing literature. A bit surprising
perhaps, we found that AO∗ does not stand out as a clear winner from
a theoretical perspective.
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3. Our discussion of troubleshooting with dependent actions (Chapter
5) contains theoretical as well as empirical results. On the theoreti-
cal side we determined that the well-known heuristic function by
(Vomlelová and Vomlel, 2003) was monotone for models containing
only actions. As explained in Chapter 4, we can always construct an
equally informed monotone heuristic function from an non-monotone
one, and therefore the practical implications are minor.

4. Chapter 5 also contains an empirical evaluation of the A∗ algorithm
and the effect of efficiency-based pruning. Seen in isolation this leads
to an exponential drop in complexity, but taken together with coalesc-
ing, the effect of efficiency-based pruning only increased the perfor-
mance by a factor between 2 and 7. Most importantly, perhaps, was
the positive effect it had on the memory requirement which for some
models was reduced by a factor of 4. Attempts to extend efficiency-
based pruning to subsequences of size 3 proved futile, and we were
able to explain that this is due to coalescing.

5. But the implementation of A∗ carried other unforseen benefits. An
important lesson was that simple greedy heuristics (e.g., the updat-
ing P-over-C algorithm) seem to perform surprisingly well and re-
turn a sequence within one percent from an optimal one. Of course,
the models in question may be seen as very special because of the
high degree of dependency among actions, and so we should gather
and generate more models to be more certain about this hypothesis.
In particular, we belive models with close efficiencies, but non-close
costs are challenging for greedy heuristics. Nevertheless, we dare to
conjecture that there exists a polynomial algorithm which is guaran-
teed to return a close-to-optimal solution.

6. We then continued with a discussion of the intuitive notion of depen-
dency sets. Unfortunately, we came to the conclusion that the conjec-
ture set forth by (Koca and Bilgic, 2004a) was false. This is somewhat
tragic because the conjecture, if true, would have lead to a major re-
duction in the complexity associated with dependent actions. We be-
lieve, however, that there might be a more restrictive definition of
dependency sets that preserves admissibility, but this is of course an
open problem.

7. On the bright side, we had already implemented an A∗ hybrid ap-
proach that took advantage of the conjecture. These experiments
showed that only one or two optimal solutions were missed out of
21 models. And we may add that the distance to the optimal solu-
tion was very small. Therefore the idea of dependency sets deserves
a prominent place in the history of troubleshooting with dependent
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actions. The experiments also revealed that the use of dependency
sets allow us to solve (albeit, without admissibility) models with an
average dependency below 1.6 almost instantly. Our students later
pushed this limit to models with an average dependency of 1.9.

8. Another interesting trend revealed by the experiments was that an in-
creased average dependency among actions lead to an easier problem
for A∗ . We speculated that it could be (a) the heuristic function that
became more accurate, or (b) perhaps by accident, the entropy of the
normalized efficiencies decreased. Explaining this behavior remains
an open problem.

9. In Chapter 6 we started the investigation of troubleshooting with con-
ditional costs by looking into the cost cluster framework under the
assumption of inside information and independent actions. The first
theoretical result was that we could prove that the extended P-Over-
C algorithm (Langseth and Jensen, 2001) for solving flat cost cluster
models is in fact admissible. The practical importance of this type of
model is emphasized by the entire existing literature on troubleshoot-
ing with conditional costs.

10. We then generalized the flat cost cluster model with the tree cost clus-
ter model. To our great delight, we were able to derive an optimally
efficient (O(|A| · lg |A|) time) algorithm (the bottom-up P-over-C al-
gorithm) and prove that it too returns an optimal troubleshooting se-
quence.

11. We furthermore sketched how to extend the tree structure to a DAG
which could be solved by deriving a set of tree structures. The in-
duced tree cost cluster models can then be solved by applying the
bottom-up P-over-C algorithm. This method will work well if the
number of clusters with more than one parent is low, and this is prob-
ably true for some real-world models. We furthermore described the
open problem of troubleshooting with multiple independent faults
(Srinivas, 1995) in a cost cluster framework.

12. Finally, in Chapter 7 we investigated heuristics for troubleshooting
models with a non-trivial system test cost. Even under the assump-
tion of independent actions and no questions, this is an NP-hard prob-
lem. We describe two very efficient heuristics running inO(|A|·lg |A|)
time and motivate their greedy choice by theoretical considerations.
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13. Then we gave a dynamic programming algorithm that exploited the
structure of the troubleshooting sequences to compute the optimal
partitioning of a seed-sequence in Θ(|A|3) time. As a bonus, this algo-
rithm can be modified to work also when the actions are dependent.
We then suggested two powerful Θ(|A|3) time heuristics based on the
dynamic programming algorithm.

14. Theoretical considerations allowed us to identify a new class of trou-
bleshooting models, so-called non-reordable models, where both
Θ(|A|3) time algorithms are shown to be admissible.

15. The chapter ends with an empirical evaluation of the proposed heuris-
tics. A naive, but very simple exhaustive search method is used to
find the optimal expected cost of repair. The experiments reveal that
models with close efficiencies are most challenging, and this is espe-
cially true if the costs are non-close at the same time.

16. Overall the heuristics perform quite well, with the best greedy heuris-
tic never being more than 2.8 percent away from the optimal ex-
pected cost of repair on the artificial test models. The best Θ(|A|3)
time heuristic is never more than 0.6 percent from the optimal value.
We also ran experiments with a real-world model, and here the best
greedy heuristic was never more than 3.8 percent from the best
Θ(|A|3) time heuristic. In such medium sized models we cannot find
the optimal value with naive search methods, but we outlined a top-
down search procedure based on an admissible heuristic function
which might be able to do so.

17. Again, the empirical results indicate that it might be possible to prove
that a polynomial time algorithm can find approximations that are
guaranteed to be close-to-optimal. With a little luck, it might even
turn out to be one of the heuristics we presented in Chapter 7.

18. Finally, because troubleshooting with postponed system test is closely
connected to troubleshooting a cost cluster model without inside in-
formation, then all the algorithms of Chapter 7 are immediately ap-
plicable in the cost cluster domain. Furthermore, since we know that
we cannot lift an optimal solution from a child cluster into a parent
cluster and preserve admissibility, then we are better off by optimiz-
ing over the whole sequence. The heuristics from Chapter 7 may be
adopted (extended) for this purpose.

We believe that this is an appropriate mixture of theoretical results and
empirical evaluations of troubleshooting with dependent actions and con-
ditional costs.
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8.2 Discussion

In more general terms, this thesis has been devoted to two issues: solution
methods and heuristics. The sheer complexity of finding an optimal so-
lution often means that we have to give up and settle for an approximate
solution. One may argue that we can just solve a troubleshooting model on
a big super-computer. However, as soon as the model includes questions,
the space requirements of a strategy often means that we cannot even store
a solution (optimal or not). Even though there is probably some interesting
work to be done on how to compress a strategy most efficiently, we cannot
escape the exponential complexity. Furthermore, a decision support system
needs to be flexible, and so it should support re-calculations of the next step
to perform given alternative information (skipping a step may be handled
without problems by picking the best sub-strategy). This means that we
are forced to fall back on heuristic methods in almost all real-world situa-
tions. The primary purpose of off-line solution methods is then to serve as
evaluation tools for our heuristic methods. And as such, solution methods
are certainly indispensable.

When it comes to heuristics, then a primary goal is to be really fast.
A quadratic or cubic complexity may very well be the limit for what is
acceptable. This is because real-world models with a fifty to eighty steps are
not uncommon for troubleshooting. Therefore a central theme of this thesis
has been to devise heuristics that operate quite efficiently while making as
theoretically informed choices as possible.

We have exclusively studied very narrow troubleshooting scenarios
which viewed in isolation carry many assumptions that are not present
in real-world situations. When we have done so, it is of course to make a
theoretical analysis easier. We may ask, what is the advantage of knowing
that you can solve a tree cost cluster model in near-linear time when almost
any real-world model contains dependent actions and questions. Or what
benefit do we have from knowing that heuristics for troubleshooting with
postponed system test work well in isolation when a normal model may
have cost cluster and questions as well. Well, there are at least two reasons
why such isolated results have great practical value.

First, if you do have a real-world model where the strict assumptions ap-
ply, you gain an immediate benefit in terms of the computational efficiency.
For example, a model with dependent actions may after a few steps have
been performed end up being a model with independent actions. Similarly,
a solution method may stumble into a sub-problem where several assump-
tions no longer apply, and it can then reduce the search space tremendously
when solving that sub-problem. It was an illustrative lesson when we were
able to re-use the P-over-C algorithm to compute a lower-bound for a to-
tally different problem. Results tend to find uses that we did not imagine
when we first derived them.
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Secondly, it is not hard to imagine real-world problems where we must
battle everything from dependent actions, questions, and postponed sys-
tem test to cost clusters without inside information. This implies that we
may face four NP-hard problems mixed together, and this can be seen as a
tremendous challenge. The key observation, however, is that solutions and
heuristics for very isolated problems provide a solid theoretical foundation
on which to build more advanced heuristics that are likely to perform well.

For example, if we were to extend the tree cost cluster model with de-
pendent actions, we can immediate synthesize a powerful algorithm in the
following manner: run the updating P-over-C algorithm in each cluster
and compute the absorbtion into the root cluster. If we are not satisfied
with that result, then again we have other heuristics in our tool box that
allows us to improve the result: run a swapping procedure similar to the
one used for troubleshooting with postponed system test and let it further
optimize the sequence (in this case there would be restrictions on which
actions that may be swapped).

To further illustrate the versatility of this approach, we consider another
example. Imagine a tree cost cluster model without inside information and
with dependent actions. We can immediate suggest that it would be good
to do the following in a bottom up fashion: (a) first use the updating P-over-
C algorithm in a cluster, (b) then compute a partitioning of the cluster by
applying a heuristic for troubleshooting with postponed system test, and
(c) then merge the cluster into its parent cluster; then continue until we are
left with the root cluster.

The important lesson here is that isolated solution methods and heuris-
tics are often orthogonal to each other. We firmly believe that orthogonality
is one of the most powerful features when it comes to battling complexity.
Of course, at the time of writing, this is really just a conjecture, and whether
it holds true for troubleshooting models must be seen as an open problem.
We are better off by following Socrates’ maxim and admit that there are
many things we do not yet know about troubleshooting.



Appendix

Dansk Resumé (Summary in Danish)

Denne Ph.D.-afhandling har følgende danske titel:
Løsninger og Heuristikker for Fejlsøgning med Afhængige
Handlinger og Betingede Omkostninger.

Afhandlingen omhandler således en beslutningsteoretisk tilgang til fejl-
søgning af komplekse systemer; for eksempel er man interesseret i at re-
parere en vindmølle hurtigst (og/eller billigst) muligt, når den er gået i stå
af ukendte årsager. Den beslutningsteoretiske tilgang består i, at vi beskri-
ver reparationsprocessen ved hjælp af en matematisk model. Forskellige
delområder kræver specielt tilpassede matematiske modeller, men fælles
for dem alle er, at de kan håndtere usikkerhed omkring reparationshand-
linger og baggrundsobservationer. For eksempel, så kan en handling i gen-
nemsnit måske udføres forkert i 10% af tilfældene, og observationer kan
give et ikke-entydigt bevis for bestemte fejl. Derfor bliver den datalogiske
opgave at finde algoritmer, som nedbringer den gennemsnitlige omkost-
ning ved at reparere systemet. Således omhandler afhandlingen en vifte af
løsninger og heuristikker for forskellige delområder af fejlsøgning.

Det første tema i afhandlingen er modeller, hvor handlingerne er af-
hængige, det vil sige, at flere handlinger kan fjerne de samme fejl. Vores
bidrag her består dels i teoretiske resultater vedrørende løsningsmetoderne
til dette område og dels i empiriske resultater, hvor nye optimeringsteknik-
ker kombineres med løsningsmetoderne for at forbedre disses svartider.

Det andet tema er modeller med betingede omkostninger. Det første
område, vi analyserer, er klynge-modeller, hvor handlinger grupperes i
klynger, alt efter om de deler den samme mængde forarbejde. Udfordring-
en består her i at finde det optimale tidspunkt for at åbne en klynge. Vi
giver effektive algoritmer for flade klyngemodeller og modeller, hvor klyng-
ernes indbyrdes forhold beskrives ved hjælp af en træstruktur. For disse
modeller beviser vi tilmed, at de foreslåede algoritmer giver et optimalt
resultat. Endelig så beskriver vi en række teoretisk velbegrundede heuri-
stikker til at optimere systemer, hvor omkostningen ved at teste systemet
ikke er så lille, at den kan ignoreres. Præcisionen af disse heuristikker
afdækkes ved en grundig empirisk undersøgelse, og vi finder, at heuri-
stikkerne giver næsten-optimale resultater.
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overlapping subproblems property,

145

P-over-C algorithm, 90
parents, 18
partial expansion, 73
partial strategy, 29
partial troubleshooting sequence, 136
partially observable, 10
Partially Observable Markov Decision

Processes, 51
partition, 136
partition equivalent, 149
path, 17
penalty term, 39
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persistence, 36
polytree, 23
posterior probability, 13
postponed system test, 61
precedence constraints, 61
predecessors, 18
presence of the fault, 83
prior probability, 13
probabilistic model, 33
probability, 10, 12
probability distributions, 11
probability functions, 10
probability space, 11
probability theory, 10
propagation, 23
propositions, 10

question heuristics, 84
questions, 33

reachable, 18
realization, 27
regular, 122
released, 116
root, 18

SACSO algorithm, 86
sample space, 10
search graph, 65
semi-optimization, 64
sequence evidence, 40
sequential decision problems, 27
Sequential Influence Diagrams, 52
Serial connection, 20
set of all opening indices, 116
set of all possible evidence, 33
set of ancestor clusters, 126
set of faults that can be repaired by

an action, 83
set of remaining actions, 84
single fault troubleshooting model,

43
smallest cost between two nodes, 65
soft troubleshooting model, 74
soft-evidence, 86

start node, 65
step, 35
strategy, 29
strategy tree, 38
Structural asymmetry, 32
subtree model induced by K, 126
successors, 18
symmetric, 32
system test, 33

terminal nodes, 38
test decisions, 25
test sequencing, 54
The maximum a posteriori assignment,

23
The most-probable explanation, 23
top-level cluster, 115
total cost, 65
tree, 18
Tree construction, 24
tree cost cluster model, 60, 124
tree troubleshooting sequences, 124
triangulated, 24
Triangulation, 24
troubleshooting, 1
troubleshooting model, 3
troubleshooting sequence, 40, 116
troubleshooting strategy, 38
troubleshooting tree, 38

uncertain, 9
unconditional costs, 60
unconditional probability, 13
Unconstrained Influence Diagrams,

52
unexplored, 65
uninformed, 65
updating P-over-C algorithm, 91
utilities, 26
utility scale, 26

value of information, 86
value-of-information, 53
variable, 12
vertices, 17
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virtual repair probability, 86
VOI, 86

with inside information, 114
without inside information, 114
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Endnu skal siges: Min Søn, va’r dig! Der er ingen ende på, som
der skrives bøger, og megen gransken trætter legemet.
–Præd. 12,12.
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