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SUMMARY 
 

Prostate cancer (PCa) is the second most common cancer in men with one in every 
seven men developing the disease. The current diagnostic tools: PSA blood test, 
digital rectal examination (DRE), and transrectal ultrasound guided biopsies suffer 
from limitations of various degrees; elevated PSA level may indicate the presence of 
PCa, however, elevated PSA can also be caused by benign conditions. The DRE can 
only detect palpable lesions of certain size in the posterior aspect of the gland, but 
small lesions and those located in other parts of the prostate are missed. Due to the 
random nature of the biopsies, there is a risk of missing significant cancers, detecting 
insignificant cancers, and underestimate the aggressiveness of significant cancers. 

Multiparametric magnetic resonance imaging (mpMRI) is being increasingly used to 
improve the diagnosis of PCa by reducing detection of clinically insignificant cancers 
and finding more clinically significant cancers that require treatment. mpMRI has 
shown useful for different applications within PCa diagnosis, including detection, 
characterisation, staging, treatment planning, and detection of recurrence. 

The clinical analysis of mpMRI is however time-consuming, subjective, and requires 
high level of expertise that is not widely available. To overcome these limitations, 
research in development of automatic algorithms is conducted worldwide to aid the 
clinicians in their daily work. Automatic methods can simplify the reading task and 
reduce the reading time and variability. 

The aim of this PhD thesis was to investigate automatic algorithms for PCa diagnosis 
using mpMRI. The thesis comprises three studies. The first study focuses on 
automatic detection of PCa using imaging features extracted from MRI. In the second 
study, PCa lesions are classified into level of aggression based on MRI imaging 
features to help the clinician in the risk stratification of the patient. The third study 
investigates an automatic algorithm for zonal segmentation of the prostate gland from 
the anatomical T2W imaging sequence. 

This PhD thesis presents state-of-the-art arguing for the motivation and research 
objectives for the studies.  
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DANSK RESUMÉ 
 

Prostatakræft er den anden mest almindelige kræftform ved mænd, hvor en ud af syv 
mænd udvikler sygdommen. De nuværende diagnostiske metoder: PSA blodprøve, 
digital rektal-undersøgelse (DRE) og ultralydsvejledte biopsier har begrænsninger af 
forskellige grader: et forhøjet niveau af PSA i blodet kan indikere prostatakræft, men 
det forhøjede niveau kan også være forårsaget af benigne tilstande. Da DRE kun kan 
detektere palpable cancere af en vis størrelse i den bageste del af kirtlen, vil små 
cancere og dem beliggende i andre dele af kirtlen blive overset. Tilfældigheden, 
hvormed biopsierne udtages, giver risiko for at overse klinisk betydelige cancere, 
detektere ubetydelige cancere og underestimere aggressiviteten af de betydelige 
cancere.  

Multiparametrisk magnetisk resonance (mpMRI) billeder bliver i stigende grad 
anvendt til at forbedre diagnosen af prostatakræft ved at undgå at finde klinisk 
ubetydelige cancere og finde flere af de klinisk betydelige cancere, der kræver 
behandling. Inden for prostatakræftdiagnostik har mpMRI vist sig anvendelig til 
detektion, karakterisering, stageinddeling, planlægning af behandling og til at 
detektere tilbagefald af sygdommen. 

Analysen af mpMRI er imidlertid både tidskrævende, subjektiv og kræver høj grad 
af eksperterfaring, som ikke er udbredt. For at løse disse udfordringer bliver der i 
stigende grad udviklet automatiske algoritmer, som kan hjælpe klinikeren i sit daglige 
arbejde. Automatiske algoritmer kan simplificere opgaven, reducere den tid, det 
kræver at analysere skanningerne, og begrænse variabiliteten mellem forskellige 
klinikere. 

Formålet med denne ph.d.-afhandling var at undersøge automatiske algoritmer til 
brug ved diagnostik af prostatakræft ud fra mpMRI. Afhandlingen består af tre 
studier. Det første studie fokuserer på automatisk detektion af prostatakræft ud fra 
billedinformation fra MR-skanningerne. I andet studie bliver prostata cancere 
graderet automatisk ved hjælp af MRI billedinformation for en mere præcis 
risikovurdering af patienten. Det tredje studie undersøger en algoritme til automatisk 
zoneindtegning af prostata ud fra den anatomiske T2W MR-skanning. 

Denne ph.d. præsenterer state-of-the-art argumenter for motivationen og 
forskningsformålene bag de tre studier. 
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CHAPTER 1. INTRODUCTION 

One in every seven men will develop prostate cancer (PCa) making it the second most 
common cancer in men [3]. While most PCa lesions are slow-growing and non-fatal, 
some grow and spread quickly and with fatal outcome if left untreated [4]. A major 
challenge in PCa diagnosis is identifying patients with intermediate and high-risk 
cancers who need treatment while avoiding treatment of patients with low-risk cancers 
[5]. The current diagnostic tools; prostate-specific antigen (PSA) blood level, digital 
rectal examination (DRE) and ultrasound guided biopsies (TRUS+B), suffer from 
different limitations that lead to over- and undertreatment of the patients [6,7]. 
Multiparametric magnetic resonance imaging (mpMRI) has evolved as a promising 
diagnostic tool with superior performance compared to the aforementioned diagnostic 
methods in terms of information about size, location, and extent of the disease [8,9]. 

mpMRI enhances the detection of clinically significant PCa lesions, while reducing 
the detection of insignificant ones, and improves the risk stratification [10]. Because 
the analysis of prostate mpMRI requires high level of expertise, is time-consuming 
and affected by observer variation, automatic methods have been a rapidly growing 
area of research [11].  

Over the past 10 years, automatic methods within prostate mpMRI analysis have 
evolved to simplify the task of the radiologist, reduce reading time and reader 
variability [12]. Automatic analysis of prostate mpMRI has many applications 
including detection of cancerous lesions for guiding the biopsy procedure, assessment 
of lesion aggressiveness, treatment planning of radiotherapy or surgical margin 
estimation before surgery and as imaging biomarker for treatment response [11]. 

The aim of this PhD work was to investigate automatic methods for the analysis of 
prostate mpMRI to aid clinicians in their daily work. 
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CHAPTER 2. BACKGROUND 

This chapter gives an overview of prostate cancer (PCa), the diagnosis and treatment. 
Afterwards, the use and challenges of magnetic resonance imaging for prostate cancer 
diagnosis are described. Lastly, automatic methods for assessment of the magnetic 
resonance images are presented. 

 

2.1. PROSTATE CANCER  

PCa is the most common non-cutaneous cancer among men and one of the most 
common causes of cancer-related deaths [13]. The strongest risk factors for PCa are 
age, genetics and ethnicity [14]. The mean age of diagnosis is around 66 years and 
PCa rarely affects men under the age of 40 [15]. Most PCa are confined to the prostate 
gland and local tissue, referred to as localised or locally advanced PCa [14]. 

 

2.1.1. PROSTATE ANATOMY 

The prostate is a gland of walnut-size, part of the male reproductive system that 
produces most of the fluid that makes up the semen. It is located anterior to the rectum 
and inferior to the urinary bladder [16]. 

The prostate gland is divided into four anatomical zones as shown in Figure 1. The 
peripheral zone (PZ) covers 70% of the gland and extends from the base (most cranial 
aspect of the gland) to the apex (most caudal aspect of the gland) of the prostate. The 
central zone (CZ) represents 25% of the gland and the transition zone (TZ) makes up 
the remaining 5%. On the anterior surface of the gland, a non-glandular region, the 
anterior fibromuscular stroma (AFS), is located, which represents the fourth 
anatomical zone. The urethra runs through the prostate where it conducts semen and 
urine from the ejaculatory ducts and bladder, respectively. The seminal vesicles are 
glands found on each side of the prostate which make most of the fluid in semen 
[7,16]. The PZ is the most common site of origin for PCa, where around 70% arises. 
The remaining cancers are located in the TZ (10-20%) and CZ (5-10%) [7]. TZ and 
CZ are commonly grouped together as the central gland (CG) [17]. 
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Figure 1. Anatomy of the prostate gland from a sagittal view. Retrieved from [7]. 

 

2.1.2. PROSTATE CANCER DIAGNOSIS 

For patients with clinical suspicion of prostate cancer (PCa), with elevated prostate-
specific antigen (PSA) and/or abnormal digital rectal examination (DRE), a set of 
transrectal ultrasound-guided biopsies (TRUS+B) are performed to confirm or reject 
the suspicion [18,19]. 

 

Prostate Specific Antigen 

PSA is an antigen produced by normal, as well as malignant cells, of the prostate 
gland. An elevated PSA blood level is associated with PCa, however, benign 
conditions such as benign prostatic hypertrophy (BPH), prostatitis and other urinary 
symptoms can also cause an elevated level of PSA. The lack of specificity leads to 
over-diagnosis and overtreatment of PCa resulting in significant and unnecessary side 
effects. Studies have shown that approx. 20% of men with normal PSA levels have 
PCa, and many men with elevated levels do not [20,21]. PSA is, however, valuable in 
risk stratification of patients with confirmed PCa [22]. Calculation of e.g. PSA density 
(PSA divided by the transrectal ultrasound (TRUS) determined prostate volume) and 
PSA velocity (absolute annual increase in PSA) can be used as prognostic markers of 
the disease [21,23]. 
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Digital Rectal Examination 

Because the majority of PCa lesions are located in the PZ, DRE can be used to detect 
lesions of a certain size in that region. Lesions in other zones, however, cannot be 
reached by DRE [24]. As a suspicious DRE finding is predictor of more aggressive 
cancer it is a strong indicator for performing prostate biopsies and allows for 
identifying around 18% of men with PCa and PSA level below “normal”. The DRE 
findings are, like PSA, also used for risk stratification [23].  

 

Transrectal Ultrasound Guided Biopsies 

The diagnosis of PCa is confirmed by needle biopsies of the prostate, see Figure 2. 
Gold standard is histological examination of 10-12 transrectal ultrasound guided 
biopsies (TRUS+B). The biopsies are obtained systematically, but randomly, from 
standard zones in the prostate [23]. Because most PCa lesions are not visible on 
TRUS, there is a high risk of missing clinically significant lesions, or the most 
aggressive part of it, leading to under-diagnosis, and thus possible under-treatment 
[25]. To overcome this high false-negative rate, patients often undergo one or more 
repeated biopsy procedure(s). This increases the cost of the procedure, risk of side 
effects and possibly increases anxiety and morbidity for the patient [26]. PCa 
detection rates for second, third, and fourth sets of biopsies are found to be 16.7%, 
16.9% and 12.5%, respectively [27]. Conversely, there is a risk of over-detection, by 
coincidently hitting a clinically insignificant lesion during the random sampling. 
Thus, TRUS+B lack both sensitivity and specificity for the detection and staging of 
PCa patients [18,28]. 
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Figure 2. Transrectal ultrasound guided biopsy of the prostate. Retrieved from [29]. 

 

Grading of Prostate Cancer 

The histopathological aggressiveness of PCa is graded by the Gleason Score (GS), 
which is a powerful predictor of progression, mortality, and outcome of the disease. 
The Gleason system describes the architectural pattern of the tumour and the degree 
of differentiation of cells in the tumour. The architectural patterns of a lesion are 
graded on a scale from one to five and the sum of the primary (e.g. Gleason pattern 3) 
and secondary pattern (e.g. Gleason pattern 4) gives the total GS, e.g. GS 3+4 = 7. A 
simplified drawing of the five different Gleason patterns can be seen in Figure 3 with 
pattern one showing small, uniform glands and gradually being more irregular and 
less differentiated for increasing pattern scores. Higher GS indicates higher level of 
aggression with worse prognosis [30]. The GS from prostate biopsies is used for 
clinical decision making, treatment selection, and prediction of outcome for patients. 
However, due to the random nature of TRUS+B, the GS from the biopsies often differ 
from that determined after surgical removal of the prostate (Radical prostatectomy 
(RP)) [31].  
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Figure 3. The five prostate histological Gleason patterns. Modified from [32] 

 

The Gleason grading system was developed by Donald Gleason and has evolved 
significantly from its original in 1960s-1970s [33,34]. Table 1 shows the Gleason 
score and patterns together with the recently internationally accepted concept of Grade 
Groups [23,32]. 

 

Table 1. The relationship between the recently accepted Grade Group system, Gleason score 
system and Gleason patterns. 

Grade Group Gleason Score Gleason Pattern 

1 ≤6 ≤3+3 

2 7 3+4 

3 7 4+3 

4 8 4+4, 3+5, 5+3 

5 9 or 10 4+5, 5+4, 5+5 

 

The concept of Grade Groups offers greater prognostic value and more accurate 
reflection of the PCa biology compared to the previous system [16]. A GS 7 is 
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considered intermediate risk for many clinicians; however, studies show that GS 3+4 
= 7 demonstrates better outcome than GS 4+3 = 7. Furthermore, the previous Gleason 
systems can be misleading for the patients e.g. a GS 6 could be falsely assumed to be 
in the mid-range of aggressiveness, even though it is the lowest Gleason score used 
for defining aggressiveness (Grade Group 1) [30,35]. 

 

2.1.3. PROSTATE CANCER TREATMENT  

Based on the clinical parameters, such as PSA, DRE, GS/Grade group from TRUS+B 
and the overall health, age, family history and ethnicity of the patient the clinician 
recommends a plan of treatment [23]. Each treatment choice has benefits and risks 
which must be considered and there is seldom just one right choice of treatment [36]. 

As PCa ranges from a nonsignificant indolent to an aggressive form of cancer with 
fatal outcome, the treatment options include both radical and conservative approaches. 
Patients with a low risk PCa may never need radical treatment and is instead offered 
a conservative treatment approach, such as active surveillance (AS), which includes 
regular follow-up PSA tests, DRE and TRUS+B to monitor potential progression. If 
the disease progresses the patient can be referred to radical treatment. The purpose of 
AS is to achieve the correct onset of curative treatment, however, radical treatment 
can also be triggered upon the request of the patient [23]. 

Radical treatment of PCa should be based on probability of progression, side effects 
and potential benefit to survival [23]. Two main radical treatment options exist; 
external beam radiation therapy (RT) (often in combination with hormone therapy) 
and radical prostatectomy (RP) [37,38].  

RT uses high energy X-ray beams to destroy the cancerous cells while sparing as much 
of the normal surrounding tissue as possible [39]. RP is surgical removal of the 
prostate gland, including seminal vesicles and nearby lymph nodes [7]. RT and RP 
have significant side effects, such as impotence, incontinence and damage to the 
bladder and rectum [40]. 

Many patients diagnosed with PCa undergo radical treatment even though their 
disease unlikely will cause decrease in life expectancy leading to unnecessary side 
effects from the treatment [41]. On the other hand, patients that undergo conservative 
treatment, like active surveillance, endure the psychological burden of living with 
untreated cancer and 20-50% initially selected for AS convert to radical treatment due 
to incorrect initial risk stratification [42,43]. Thus, better risk stratification is a key 
challenge in PCa research [44]. 
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2.2. MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING OF 
THE PROSTATE 

Multiparametric magnetic resonance imaging (mpMRI) is a combination of 
morphologic and functional MRI sequences. The diagnostic value of mpMRI for PCa 
diagnosis is well established by recent scientific work and ranges from initial 
detection of clinically significant cancers, to evaluation of biological aggressiveness, 
accurate staging and detection of recurrence [7,45].  

In patients with previous negative TRUS+B and continued suspicion of PCa, mpMRI 
has shown particular useful for guiding biopsies towards cancer suspicious areas, why 
it is now included in clinical guidelines e.g. European Association of Urology (EAU) 
guideline on PCa [46]. mpMRI guided biopsies increases the detection of clinically 
significant cancers by 12%, can significantly reduce the number of performed biopsies 
(up to 28%) and decrease the detection of low-risk PCa in men with elevated PSA 
compared to standard TRUS+B [10,47,48]. Thus, reducing overdiagnosis and thereby 
avoid side effects associated with treatment.  

A correct assessment of the PCa stage is crucial for correct management of the disease 
[49]. Between 24% and 46% of patients staged with clinical nomograms are routinely 
under staged [50]. mpMRI has been found to improve the detection of extra capsular 
extension (ECE) and seminal vesicle invasion (SVI) compared to these nomograms 
[49,51,52]. Presence of ECE affects the long-time prognosis negatively and is 
therefore essential pre-therapeutic information. Patients with SVI are often not 
candidates for RP and for patients referred for RT the radiation field should include 
the seminal vesicles. The sensitivity of mpMRI for ECE detection is poor, especially 
for less experienced readers, since it cannot detect microscopic ECE [23]. The 
specificity on the other hand is high, why it can be used in the treatment planning of 
patients without signs of ECE [7,49].  

The GS from TRUS+B is used for treatment planning and risk assessment of the 
patient. This GS can, however, be incorrect due to biopsy sampling error, why mpMRI 
has been investigated to improve the pre-therapeutic assessment of GS. For 
identifying GS ≥7 mpMRI is particular accurate [23,53,54]. Several studies have 
shown correlation between mpMRI parameters, such as the apparent diffusion 
coefficient (ADC), and the GS. Due to considerable overlap in the values, it cannot 
yet be used alone for clinical decision making but can be used as an additional 
parameter in management of PCa patients [55–57].  

Studies have investigated the use of mpMRI for determining the PCa volume as it is 
a well-known prognostic factor and mandatory for successful focal therapy that aims 
to treat only the index lesion while sparing the remaining gland and surrounding 
tissues [58,59]. The studies have shown that mpMRI can give a fairly accurate 
estimation of the PCa volume, however, larger PCa (>10mm and >0.5cc in volume) 
show more accurate estimation than small ones [60,61]. 
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Transrectal ultrasound (TRUS) has been found to underestimate the prostate volume, 
and since the volume is used to calculate PSA density, this results in an inaccurate 
calculation. MRI gives a more accurate estimation of prostate volume compared to 
TRUS and can therefore give a better estimation of PSA density [62]. 

For RT and RP planning, multiple studies have shown potential of mpMRI. mpMRI 
can help define surgical margins, select patients eligible for nerve-sparing operation, 
and create more accurate delineation of target volume for RT [23]. Focal therapies are 
emerging as it offers less morbidity with attaining disease control. mpMRI enables 
the clinician to identify the exact extent and location of the PCa, and the focal therapy 
can thereby be delivered with precision [63,64]. 

Also, mpMRI is increasingly being used for selecting patient eligible for AS as it 
provides high risk-assurance to the clinician [43,65]. Furthermore, mpMRI may also 
help identify disease progression in patients enrolled in AS, however, a key challenge 
is to define radiological progression that should prompt a change from AS to active 
treatment [65].  

For patients who develop biochemical recurrence salvage treatment can be an option. 
Early detection of recurrence is crucial for patient survival [66]. mpMRI has shown 
promising results for detection of disease residual or recurrence following RT, RP and 
focal therapy [7,66]. Especially the diffusion-weighted imaging (DWI) and dynamic 
contrast-enhanced (DCE) sequences are useful for detection of recurrence. The DWI 
sequence shows evident restriction and the DCE sequence shows presence of contrast 
uptake [67]. 

Currently, the use of mpMRI as a triage test is increasingly being investigated. 
Patients with negative mpMRI are likely to have no clinically significant PCa and 
could potentially avoid biopsy. If mpMRI is used as a triage test, 27% of patients 
could avoid biopsy, and fewer (5%) clinically insignificant PCa would be diagnosed 
[68–70]. However, young patients with high or increasing PSA should still undergo 
standard TRUS+B until a definitive conclusion about the negative predictive value of 
mpMRI has been drawn [71]. 

 

2.2.1. MRI ACQUISITION 

Typically, an mpMRI examination consists of an anatomical sequence (T2-weighted 
(T2W)) and different functional sequences, usually DWI and DCE sequences. The 
choice of sequences is based on the clinical indication and cost and time constraints 
[72].  
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Figure 4. Multiparametric MRI of the prostate gland with a cancer lesion (white arrow) in the 
anterior fibromuscular stroma. a) axial T2W, b) ADC, c) DWI, d) DCE and e) surgical 

specimen showing a Gleason score 4+3 (black arrow). Modified from [7]. 

  

Usually, prostate mpMRI is performed in high-field magnets (1.5T or above). Using 
a 3T magnet benefits from higher signal to noise ratio (SNR) compared to 1.5T 
scanners. Endorectal coil (ERC) is recommended for 1.5T scanners to increase SNR, 
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however, it causes deformities of the prostate gland and is uncomfortable for the 
patient [7,73].  

 

T2W 

The T2W images provide high spatial resolution and permit the evaluation of prostate 
zonal anatomy and can clearly differentiate the PZ from the CZ and TZ in young male 
subjects. In aging men benign prostatic hyperplasia can cause the signal intensity to 
vary, making the zones more difficult to discern [9]. PCa appear as “erased charcoal” 
on T2W imaging (see Figure 4a), however, benign abnormalities such as post-biopsy 
haemorrhage, fibrosis and prostatitis can mimic the appearance of PCa, especially in 
the PZ [7]. T2W imaging is the dominant sequence for detecting PCa in the TZ 
according to the newest version of the PI-RADS guidelines (Prostate Imaging 
Reporting and Data System v2) which is a structured reporting scheme for the 
evaluation of PCa on mpMRI [74]. Some studies have shown correlation between the 
intensity decrease in T2W and the Gleason score of the lesion, thus showing potential 
for risk stratification [75]. Also, T2W images are used for local staging of PCa, as 
they allow detection of extracapsular extension (ECE), invasion of seminal vesicle 
and nodal involvement [7]. 

 

DWI  

DWI is the dominant imaging sequence for PCa appearing in the PZ based on the PI-
RADS v2 guidelines [74]. DWI measures random Brownian movement of water 
molecules in the tissue thereby indirectly reflecting tissue cellularity. PCa tissue has 
increased cellularity compared to normal tissue leading to a high signal intensity 
(hyperintense) on DWI (see Figure 4c).  DWI is usually performed with at least two 
different b-values (lowest b-value at 50-100 sec/mm2 and highest ≥ 1400sec/mm2), 
where b is the strength of the diffusion gradient. The highest b-value is usually 
preferred for detection of PCa, since noise and signal decay increase with the b-value 
[7].  

 

ADC 

The DWI sequence enables calculation of the apparent diffusion coefficient (ADC), 
which measures the degree of water diffusion in the tissue. Two or more b-values are 
needed for ADC calculation. PCa shows low signal intensity (hypointense) on ADC 
(see Figure 4b) and the lower the ADC value, the higher the likelihood of a more 
aggressive lesion [76]. 
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DCE 

The DCE sequence is performed after administration of a gadolinium contrast agent 
to evaluate differences in enhancement between normal and cancer tissue [77]. 
Contrast is taken up and released more quickly in PCa cells due to angiogenesis, which 
is the formation of new capillaries from the existing blood vessels [78]. For tumours 
to develop, grow, and progress into metastasis, the process of angiogenesis is 
important, hence DCE has been used as a marker hereof [7,79]. The DCE-MRI 
sequence has shown particularly useful for the detection of recurrences which show 
enhancement within the scar tissue [80]. 

 

Biparametric MRI 

Although the latest version of the PI-RADS guidelines has ascribed the DCE sequence 
a minor role in determining the PI-RADS score, it is still recommended as part of the 
MRI examination [74,81]. The disadvantages of DCE imaging includes 
administration of expensive contrast agent, long scan time, the possibility of an 
allergic reaction to the contrast agent, lack of reproducibility of the quantitative 
parameters and the extra burden of radiologist to analyse the images. Due to the fast 
increase in the use of mpMRI for PCa, a biparametric MRI (bpMRI) protocol, 
including only T2W and DWI is actively being evaluated for PCa diagnosis. The 
bpMRI protocol can be performed in approx. 15 minutes, avoids the intravenous 
injection of expensive contrast medium while maintaining adequate diagnostic 
accuracy, all of which could encourage a greater use [81–83].  

 

2.3. CHALLENGES IN PROSTATE CANCER DIAGNOSIS USING 
MRI  

Despite the increased diagnostic accuracy for PCa using mpMRI, different challenges 
have hindered widespread adoption of mpMRI for PCa diagnosis. 

 

2.3.1. STANDARDISATION 

The quality of PCa mpMRI is largely dependent on the scanner used (vendor, magnet 
field strength, protocol, software etc.), patient factors (movement, preparation strategy 
etc.), and, most importantly, the interpretation by the radiologist [45]. The Prostate 
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Imaging-Reporting and Data System version 2 (PI-RADS v2) aims to simplify and 
standardise the image acquisition and interpretation of PCa mpMRI [74].  

 

2.3.2. PERSONNEL, INTER- AND INTRA-READER VARIABILITY 

Even with a standardisation of the acquisition and interpretation, certain pitfalls in the 
interpretation exist; such as benign conditions, artefacts due to the ERC, or changes 
in appearance after treatment. High level experience in prostate mpMRI is crucial for 
accurate management, which is not available in many centres [7,67]. Furthermore, 
inter-reader variability is a challenge, even for expert readers [23,84]. 

 

2.3.3. COSTS 

mpMRI is a rather expensive examination and upfront the costs are high. The ability 
of mpMRI to prevent biopsies, reduce overtreatment thus reduce unnecessary side 
effects and lead to higher quality of life, may result in overall cost-effectiveness, 
however, further studies are necessary to confirm this [10,85].  

Reducing the mpMRI protocol to bpMRI could reduce scan time from 40 to 15 mins, 
avoid the use of contrast medium, and thereby lower the costs [81]. 

 

2.4. COMPUTERISED METHODS 

The use of MRI for PCa diagnosis requires the radiologists to read enormous amounts 
of images and requires expertise knowledge which is not widely available. Automatic 
methods could simplify the task of the radiologist, reduce reading time and reader 
variability [12]. Automatic methods have been found to help less experienced mpMRI 
readers obtain same level of performance as experienced readers for PCa analysis 
[86]. 

Development of automatic methods for PCa analysis on mpMRI has been an active 
field of research with two reviews in 2015 presenting the current literature 
on computer-aided diagnosis (CAD) systems for PCa analysis including more than 
270 references [2,87]. In 2016 another review on the subject was published including 
200 references [11]. Common components in automatic systems for PCa diagnosis 
include preprocessing, image registration, segmentation, detection and classification. 
A typical workflow for automatic PCa analysis on mpMRI is shown in Figure 5. 
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Figure 5. Flowchart showing a typical workflow for automatic systems for prostate cancer 
diagnosis using multiparametric MRI. 

 

2.4.1. PREPROCESSING 

Preprocessing of the images includes normalisation of image intensities, where 
especially the T2W image sequence suffers from inter and intra patient variation, even 
for images obtained using the same scanner and protocol. Other common 
preprocessing methods include noise filtering and bias field correction [11]. The 
choice of preprocessing steps depends on the dataset and application. 

 

2.4.2. REGISTRATION 

Registration, which is the process of aligning two or more images, can be useful to 
account for patient movement and changes in bladder/rectum filling during the 
examination. MRI examination protocols with a long time frame (e.g. DCE imaging) 
increase the likelihood of significant patient movement and thus image registration 
[87]. 

 

Multiparametric 
MRI Preprocessing Registration

SegmentationLesion DetectionLesion 
Classification

Prediction
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2.4.3. SEGMENTATION 

Segmentation of the prostate from MRI plays an important role in PCa diagnosis [88–
92]. The lack of clear boundary and significant variation in prostate shapes and 
appearances make manual delineation a challenging task. It is well established that 
the T2W imaging sequence offers the best assessment of prostate anatomy and ability 
to delineate the margins and differentiate between the zones of the prostate gland [93]. 
The manual delineation is highly time-consuming and requires experience in prostate 
MRI. Automatic methods in the literature includes atlas based, model based (e.g. 
active shape model), edge based and combinations hereof [94].  

In recent years, approaches based on deep convolutional neural networks (CNN) have 
made significant progress in medical image analysis, including prostate segmentation 
[95–97]. Current first place in MICCAI grand prostate MRI segmentation challenge 
(PROSTATE12) is a CNN approach (achieving a Dice score coefficient of 0.8721) 
[89].  

Lately, automatic zonal segmentation of the prostate has gained more focus. The 
majority of PCa is located within the PZ, and because the biological behaviour of the 
PCa differs between zones, this information is extremely important for clinical 
decision making [98–101]. Current studies on zonal segmentation have used different 
approaches such as voxel (3D analogue of a pixel) classification and active shape 
models [102–110]. One of the major challenges in zonal segmentation is the lack of 
features and gradients in the apex and base of the gland [97,111]. 

 

2.4.4. DETECTION 

The initial work on automatic methods in prostate mpMRI , starting in 2003 by Chan 
et al., focused on highlighting suspicious areas for targeted MRI guided biopsies 
[112]. The most common approach in the literature is classification of voxels as either 
being PCa or normal tissue based on different imaging features such as texture, signal 
intensity and gradient information. The T2W sequence is the most commonly used 
for PCa detection algorithms since it is available for most patients [2]. A study by 
Rampun et al. investigated 215 texture features from T2W MRI for classifying voxels 
in the PZ as malignant and benign using 11 different classifiers (e.g. support vector 
machine (SVM), random forest, naïve Bayes and k-nearest neighbour) [113]. 
Combining the T2W sequence with one or more functional sequences offers improved 
detection over a single image modality. Image features extracted from T2W, DCE and 
DWI resulted in AUC of 0.95 in a study by Peng et al. using a linear discriminant 
analysis for classifying regions of interest as either cancer or normal [114]. Most 
studies use T2W MRI in combination with DWI, including ADC, and/or DCE 
imaging, however, magnetic resonance spectroscopy imaging (MRS) has also been 
investigated. The MRS has not gained wide acceptance probably due to the 
complexity and length of data acquisition [11]. Several studies agree that a zone-aware 
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classifier significantly improves the detection of PCa [115,116]. The majority of 
published PCa detection algorithms report an area under the receiver operating 
characteristic curve (AUC) between 0.80 and 0.89 [87]. The study by Peng et al. 
presented above is among the studies representing the highest performance in the 
literature. 

 

2.4.5. CLASSIFICATION 

For PCa patients the choice of treatment is based on clinical factors, such as PSA 
level, GS, age and comorbidities. As mentioned earlier, the GS is the most powerful 
predictor of progression, mortality, and outcomes of the disease. Because the GS from 
prostate biopsies often differ from the true GS from RP, there is a clinical need to 
better differentiate slow-growing, indolent PCa from those of clinical significance 
with fatal outcome [11]. mpMRI can potentially be used for non-invasive, pre-
treatment assessment of PCa aggressiveness. There is a significant correlation 
between GS and ADC values, with lower ADC values indicating higher GS. Other 
studies have also found correlation between DCE parameters, T2W signal intensity 
and PCa aggressiveness. These single parameters, however, are not sufficient alone to 
predict the GS [117–122]. Several studies have investigated algorithms with multiple 
imaging features, such as texture, intensity from T2W, DWI and ADC to differentiate 
malignant from benign lesions, or classify lesions into clinically insignificant (GS≤6) 
or clinically significant (GS≥7) with promising results [123–129]. A study by Holtz 
et al. investigated a three-class classifier (low, intermediate and high grade) and 
compared it to a two-class system and reported low performance for the three-class 
system. One study achieved accuracies up to 0.93 for two-class classification of GS≤6 
versus GS≥7, and 7 (3+4) versus 7 (4+3) by using features extracted from ADC and 
T2W imaging [126]. Sensitivity of 100% and specificity of 76.92% was achieved in 
a more recent study based on multimodal convolutional neural network for separating 
GS≤6 from GS≥7 [127]. Because the prognosis and therapeutic options differ for each 
GS grading, more accurate differentiation of lesions into more than 2 or 3 classes 
would be of clinical interest.  
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CHAPTER 3. BACKGROUND 
SUMMARY AND THESIS OBJECTIVES 

Prostate cancer (PCa) is the most commonly diagnosed cancer among men except for 
skin cancer. Because the current gold standard in PC diagnosis has high risk of both 
under- and over-diagnosing the patients, mpMRI is increasingly used to improve the 
diagnosis. The number of prostate MRIs in Europe is increasing very fast which sets 
high demands to the radiologists. Furthermore, the interpretation of mpMRI requires 
a high level of expertise that is not readily available, is time consuming and affected 
by significant interobserver variation. Thus, there is a demand for accurate automatic 
methods that decrease reading time, reduce required expertise in radiology reading, 
and offer a consistent risk assessment in prostate mpMRI.  

Therefore, the motivation for this PhD study was to investigate the use of machine 
learning based methods for diagnosing prostate cancer in mpMRI that can bring 
objectivity and potentially ease the daily work flow for physicians. 

 

The objectives of this thesis are: 

 

• Automatic detection of prostate cancer lesion in MRI (disseminated in Paper 
A) 
 

• Classification of prostate cancer lesion into Gleason grade group based on 
imaging features extracted from MRI (disseminated in Paper B) 
 

• Automatic zonal segmentation of the prostate gland from T2W MRI 
(disseminated in Paper C)
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CHAPTER 4. RESEARCH 
METHODOLOGY - MACHINE 
LEARNING 

This chapter gives an introduction to general machine learning concepts within 
medical imaging together with an overview of the methods used for the three studies 
in the PhD work. 

Machine learning algorithms are computer algorithms that have the ability to learn a 
specific pattern from the data (in this case, prostate mpMRI) in order to do 
classification. Machine learning approaches are increasingly being used in medical 
image analysis for clinical applications [130,131]. Within medical imaging, the input 
data are multiple radiomic features (i.e. information in the image, interesting for the 
task at hand) which are related to an outcome (e.g. cancer versus normal tissue) [132]. 
The processes in many machine learning algorithms include feature extraction and 
selection, classification, and model validation, as shown in Figure 6. 

 

 

Figure 6. A typical machine learning process. 

 

4.1. FEATURE EXTRACTION 

The process of finding discriminative information for classification is called feature 
extraction. Image features can be extracted voxel-wise or region-wise, where the 
region can be the full image or a region of interest (ROI) within the image (e.g. a 
cancer lesion). For PCa analysis on mpMRI the majority of studies have extracted 
intensity as a feature often in combination with histogram, edge- or texture-based 
features [2]. For the first study (Paper A) a combination of intensity and gradient 
(edge-based) features was extracted from T2W, ADC and DWI image sequences. The 
signal intensity in all three image sequences is interesting as PCa often shows lower 
signal intensity in T2W and ADC, and higher signal on DWI, compared to non-
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cancerous tissues. Several studies have found edge-based features, like Prewitt, Sobel, 
Kirsch and Gabor, to be discriminative of PCa [2]. Sobel gradient features were 
included in study one (Paper A) as PCa often shows as focal low (T2W and ADC) or 
high intensity (DWI) lesions [7]. Furthermore, the distance from each voxel within 
the prostate to the prostate boundary was used as feature, since the probability and 
appearance of PCa is based on the location in the gland [11]. 

For the second study (Paper B) a combination of histogram and texture features was 
used for the classification of PCa lesions into grades of aggressiveness. Texture 
features have been extensively studied in medical image analysis, despite the 
pathophysiology behind not being fully understood [117]. Fourteen Haralick texture 
features and eleven grey level run length texture features derived by Galloway were 
extracted from each ROI in the T2W and DWI image [133,134]. 

Several histogram features from mpMRI have shown to correlate with the Gleason 
score; the features alone, however, cannot be used for accurate prediction of the 
Gleason score [128]. Because the appearance of PCa differ between the zones, the 
extracted features differed based on the zonal location of the lesion for study two 
(Paper B). 

 

4.2. FEATURE SELECTION 

Feature selection is the process of selecting the most discriminative features and 
remove redundant or noisy features that add no relevant information for a specific 
classification task. Feature selection is important, especially for high dimensional 
datasets, to avoid overfitting (see section 4.7) and improve model performance. A 
review of feature selection methods has been published by Saeys et al. presenting 
advantages and disadvantages of the different methods [135]. Methods of feature 
selection includes filter, wrapper and embedded methods [135].  

Filter methods apply a statistical measure to each feature, such as correlation or p-
value, to rank the feature to be kept or removed. The advantages of filter methods are 
the simple and fast computations together with the classifier independence. Wrapper 
and embedded methods interact with the classifier and model the dependencies 
between features. These methods have a risk of overfitting and are dependent on the 
selected classifier. Examples of wrapper and embedded methods are sequential 
forward selection and decision trees [135]. 

An exhaustive search through the feature space will reveal the optimal feature set. 
This is, however, not computationally feasible for a large number of features, as the 
number of feature combinations is 2n, n being the number of features in the whole set 
[136]. In addition to the disadvantages mentioned for the above-mentioned feature 
selection methods, they also have the risk of getting stuck in local optimum during the 
feature search, which prevents convergence toward a global optimal solution [135]. A 
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semi-exhaustive feature search was used in study two (Paper B) in order to find a 
semi-optimal feature set for the classification task. One to six features were used in 
each combination to reduce risk of overfitting and to limit the computational 
requirement. The approach resulted in 584,934 feature combinations to be evaluate in 
the model.  

 

4.3. CLASSIFIERS 

The aim of the classifier is to assign a class or label to a sample, e.g. an image voxel, 
based on the input data. Two main types of classifiers exist: supervised and 
unsupervised, based on how they analyse the data. Supervised classifiers are the most 
commonly applied to medical images, where a label is known for each training 
sample, as opposed to unsupervised classifiers that find hidden patterns without any 
labels for the training data [132]. Several classification algorithms are available, and 
the choice depends on the application and nature of the dataset. Different classifiers 
have been used for prostate MRI including sparse kernel methods (e.g. support vector 
machines), linear models (e.g. linear discriminant analysis), probabilistic (naïve 
Bayes) and ensemble learning (e.g. random forest) [2]. S.E. Viswanath compared 12 
different classifiers for PCa detection on MRI and found a quadratic discriminant 
analysis (QDA) to give the best overall performance [137]. Therefore, the QDA 
classifier was used for the first study (Paper A). The k-nearest neighbour 
classification algorithm (KNN) is a simple classifier which uses the distance between 
the training samples and the new data point as similarity measure to assign a class 
[138]. For study two (Paper B) KNN was chosen due to speed and the fact that it 
works well on small datasets. 

 

4.4. DEEP LEARNING 

A special subcategory of machine learning is deep neural networks. These networks 
are inspired by the structure and function of the brain and the term “deep” refers to 
the number of hidden layers in the network. Neural networks have shown promise in 
a variety of applications within e.g. computer vision, speech recognition and medical 
image analysis. For imaging tasks convolutional neural networks (CNNs) are the most 
commonly applied type of networks as they capture the information among 
neighbouring pixels (spatial relationship) which is valuable information. The CNNs 
have the benefit of eliminating the need for user extracted features, as this is part of 
the search process of the network (see Figure 7) [139].  
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Figure 7. The difference in workflow between traditional machine learning and deep 
learning. Retrieved from [140]. 

 

The common architecture of a CNN can be seen in Figure 8 and consists of an input 
and output layer with multiple hidden layers in between. The hidden layers are 
typically convolutional layers followed by pooling layers, and fully-connected 
layer(s) at the end. During the convolution and pooling operations, the network 
captures the image features (e.g. edges, colour and texture) of the input image. A filter 
(or kernel), often a 3x3 matrix, is sliding over the image for every position and 
calculating the dot product. This results in an activation map (or feature map) and is 
repeated for each filter and called the convolution operation. The number and size of 
the filters are user determined together with the network architecture. The fully-
connected layer(s) at the end, which performs non-linear transformations of the 
extracted features, is used to assign probability of each class to make a prediction 
[131,139,141]. 
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Figure 8. A typical convolutional neural network architecture. An image is fed to the 
convolutional neural network to assign a probability of the image being a cat. The Conv 

layers (convolution layers) together with the pooling layers extract the image specific features 
which are used for classification by the fully-connected layer. Retrieved from [142]. 

 

The advances in computational performance and substantial increase in available data 
has led to remarkable success in CNN [96]. Within medical imaging the number of 
available annotated training images is still limited compared to the sample size used 
for CNN for successful training. A CNN architecture, called the U-net Ronneberger 
et al, has shown promise within medical image segmentation of relatively small 
datasets and for different applications [143]. The U-net architecture was used for the 
third study (Paper C) for the zonal segmentation of the prostate with some 
modifications to the original architecture which are described in the article (Paper C). 
Different hyperparameters can be optimised for a CNN (e.g. learning rate, number of 
epochs and batch size), and improved model performance can be achieved by finding 
the optimal values. However, the tuning of the hyperparameters is considered less 
important than the choice of network architecture and the preprocessing techniques 
used for the images [96]. 

 

4.5. EVALUATION MEASURE 

To evaluate the performance of a model, several metrics can be used. For 
classification of voxels or lesions, it is possible to compute the components in the 
confusion matrix. From this, the accuracy, sensitivity, and specificity can be 
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calculated. The sensitivity and specificity can be used to calculate the AUC which is 
often reported and used to compare models. The AUC is the area under the receiver 
operating characteristics curve which shows the sensitivity as a function of (1-
specificity) for varying thresholds of the classifier [2,144]. AUC was used as 
evaluation metric in study one (Paper A) and study two (Paper B) for comparison 
with models in the literature. Other supportive metrics such as the accuracy, 
sensitivity, and specificity were also reported in study two (Paper B). In study one 
(Paper A), the number of falsely detected lesions and percentage false positive voxels 
were also reported.  

In segmentation tasks the most common metric is the dice score coefficient (DSC) 
which is a measure of overlap ranging from 0, indicating no overlap, to 1, indicating 
a complete overlap. The DSC is calculated as two times the overlay between the 
segmentation and ground truth, divided by the sum of the number of elements in the 
segmentation and ground truth. In study three (Paper C), the DSC was used to 
evaluate the segmentation results. Other measures include the Jaccard coefficient and 
distance measures e.g. Hausdorff distance measuring the closeness of two sets of 
points [89]. 

 

4.6. MODEL VALIDATION 

A simple approach for validating a model is to randomly divide the dataset into a 
training set and a validation set. This approach has the drawback of being highly 
dependent in on which samples (in this case, patients or lesions) are included in each 
set. Furthermore, only part of the data (the training set) is used to fit the model which 
can result in inferior performance compared to training on the full dataset. A common 
strategy for evaluation of model performance that addresses the latter issues is cross-
validation [144]. Leave-one-out cross validation (LOOCV) is one type of cross-
validation often used for small datasets. From the full dataset one patient is held out 
for validation while the remaining patients are used for training. This process is 
repeated until all patients have been used for validations. This validation technique 
was used for the first study (Paper A) due to the small sample size. For larger datasets 
LOOCV is computationally expensive. Another popular validation method is k-fold 
cross-validation where the dataset is split into k folds, and each fold is retained as the 
validation data for the model while the remaining data is used for training. This is 
repeated k times, and the performance of the model is reported as the average of all 
folds [2,144]. k-fold cross validation was used to validate the models in study two 
(Paper B) with k=3. In study three (Paper C) 5-fold cross-validation was used.  

Optimally, an independent test set is available after model validation to evaluate the 
true performance of the model [145]. This is, however, often not possible due to the 
limited number of patients normally available in medical image analysis. The choice 
of validation procedure should be based on the problem at hand [146].  
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4.7. OVERFITTING 

Overfitting is the phenomenon of a classifier fitting the training data too tightly and 
thereby losing the ability to generalise to new samples. The risk of overfitting 
increases with the number of features, especially for smaller datasets. Controlling 
overfitting is a challenging task in machine learning. Techniques to reduce the risk of 
overfitting include: larger sample size, smaller number of features, using a simpler 
model, and cross-validation techniques. The sample size can often not be affected in 
medical imaging tasks as large datasets are either unavailable or expensive to acquire. 
The number of features is decided during the feature selection process, and using a 
small number of features will reduce the risk of overfitting. Choosing a simple model, 
i.e. low number of learnable parameters for the classification task can also be 
considered, however, using too simple a model can result in poor performance. 
Methods such as k-fold cross validation and LOOCV described in section 4.6 are 
widely accepted for model evaluation to prevent overfitting. [144,147,148] 
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CHAPTER 5. PAPER CONTRIBUTIONS 

 

This chapter presents a summary of the three studies conducted as part of this PhD 
thesis.  

The thesis is based on three original studies all focusing on automatic diagnosis of 
PCa from mpMRI. Each study is introduced and described briefly in the following 
chapter and in more detail in the individual manuscripts in the appendix. 
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5.1. STUDY 1: PAPER A 

Title: Computer Aided Detection of Prostate Cancer on Biparametric MRI 
Using a Quadratic Discriminant Model 

 

5.1.1. INTRODUCTION 

Transrectal ultrasound guided biopsies (TRUS+B) is the current standard technique 
for prostate cancer (PCa) diagnosis. TRUS+B, however, lacks in both sensitivity and 
specificity for PCa detection and staging. Because most PCa lesions are not visible on 
ultrasound, 10-12 biopsies are obtained systematically, but randomly, from the 
peripheral zone of the gland. This approach has a risk of missing significant lesions, 
or not hitting the most aggressive part of the lesion with the biopsy needle. 
Conversely, insignificant lesions may be hit, thereby leading to over detection and 
risk of overtreatment. 

Multiparametric MRI (mpMRI) guided biopsies have been found to improve the 
detection of clinically significant tumours and decrease detection of insignificant 
tumours compared to TRUS+B. Furthermore, it helps reduce the number of 
unnecessary biopsies and gives a better assessment of the cancer aggressiveness. 
Because PCa screening of MRI is labour-intensive, requires high level of expertise 
and is affected by inter-observer variation, semi-or fully automatic methods are 
increasingly being investigated for the purpose. Computerised methods have the 
potential of reducing reading time and variation between observers, and at the same 
time improve the detection of clinically significant PCa lesions.  

This study presents an algorithm for detection of PCa in the whole prostate gland 
using MRI based on T2W and DWI (and ADC) imaging sequences and comparison 
to expert annotations. 

 

5.1.2. METHODS 

A dataset consisting of 18 patients (with 22 lesions) diagnosed with local or locally 
advanced PCa was used for this study, together with expert delineation of the prostate 
gland and PCa lesion on T2W. Image features were extracted from each voxel in T2W, 
DWI and ADC image sequence and used for classifying voxels as either cancerous or 
non-cancerous. Extracted features were: Intensity, 3d image gradient magnitude and 
direction. Also, a distance feature (Euclidean) measuring distance from the prostate 
boundary to each voxel was used. 
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Classification was done using a quadratic discriminant model (QDA) in a leave-one-
out cross-validation setup. 

 

5.1.3. MAIN RESULTS 

The algorithm detected 21 out of 22 tumours with median of 1 false positive per 
patient. Figure 9 shows some examples of the classifier output prediction map from 4 
different patients.  

 

Figure 9. Example probability maps (0 probability is transparent) overlaid T2W  for 4 
patients from Paper A. Modified from [149]. 

An AUC of 0.83 was obtained which is comparable to performances reported by 
others (AUC range 0.8-0.89). 

 

The study is described in detail in Paper A. 
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5.2. STUDY 2: PAPER B 

Title: Assessment of Prostate Cancer Prognostic Gleason Grade Group using 
Zonal Specific Features Extracted from Biparametric MRI – a Machine 
Learning Approach 

 

5.2.1. INTRODUCTION 

Prostate cancer (PCa) ranges from a nonsignificant indolent to an aggressive cancer 
with fatal outcome. The aggressiveness is graded by the Gleason Score (GS), which 
is a powerful predictor of progression, mortality, and the outcome of the disease. A 
higher GS indicates a higher level of aggression with a worse prognosis. The GS is 
found from prostate biopsies and used for clinical decision making, selection of 
treatment and prediction of the outcome.  

The GS from the biopsies often differs from that determined after radical 
prostatectomy (surgical removal of the prostate) due to the random sampling when 
obtaining the biopsies.  

The ability to distinguish indolent, intermediate, and aggressive PCa is limited at the 
time of diagnosis, leading to incorrect risk stratification and possible over- and under 
treatment. 

Several studies suggest that MRI has the ability to non-invasively assess the GS and 
could be used in the treatment planning. As the analysis of prostate MRI is time-
consuming, complex and affected by interobserver variability, automatic methods are 
increasingly being designed to assist radiologists and could overcome the before-
mentioned limitations. 

Current studies predominantly classified PCa lesions into two classes (malignant from 
non-malignant lesions, or indolent/low grade (GS=3+3) from clinically 
significant/high grade (GS≥3+4)). Additionally, the majority of the current studies are 
limited to only one zone of the prostate, often the peripheral zone (PZ), which is not 
optimal as the disease also occurs in other prostatic zones. 

This study presents an algorithm for accurate determination of the GS (into four 
classes) of PCa lesions from the whole prostate gland using zonal specific image 
features from either T2W or DWI MRI images. 
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5.2.2. METHODS 

Image and patient data used for this study were obtained from The Cancer Imaging 
Archive (TCIA). MRI examinations included axial T2W and DWI sequences from 99 
patients, with a total of 112 lesions, scanned on two different 3T Siemens scanners. 
For each lesion the zonal location and centre coordinate were provided together with 
the pathological-defined Prognostic Gleason Grade Group (GG), split into GG 1 (GS 
= 6), GG 2 (GS 3+4=7), GG 3 (GS 4+3=7), GG 4 (GS = 8) and GG 5 (GS = 9-10). As 
preprocessing, the images were resampled to 0.5mm x 0.5mm, and the T2W images 
were z-score normalised to account for variation in intensity between patients. A 
region of interest (ROI) was defined as a 61x61 voxel around the lesion centre 
coordinate, large enough to cover the largest lesions, but as tightly around the lesion 
as possible. 

Texture and histogram features were extracted from the ROI in  

• T2W for lesions located in the transitional zone and anterior fibromuscular 
stroma (TZ+AFS) 

• DWI for lesions in the peripheral zone (PZ). 

For selection of discriminative features, a semi-exhaustive feature search was 
performed using all combinations of 1-6 features from the total of 38 features 
extracted from each lesion. A K-Nearest Neighbour classifier with feature 
normalisation and correlation as distance measure was used to evaluate each feature 
combination in a stratified 3-fold cross validation setup using AUC (Receiver 
Operator Characteristic area under curve) as measure. 

The following binary models were analysed: 

• GG1 versus GG2-5 
• GG2 versus GG1+3+4+5  
• GG1+2 versus GG3-5 
• GG3 versus GG1+2+4+5 
• GG4+5 versus GG1-3 

 

5.2.3. MAIN RESULTS 

The main results from this study is presented in Table 2 for all the binary models. 
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Table 2. Main results from Paper B. PZ = Peripheral Zone. TZ+AFS = Transition Zone and 
Anterior Fibromuscular Stroma 

Models 
AUC 
PZ 

AUC 
TZ+AFS 

GG1 versus GG2-5 0.8722 0.8473 
GG2 versus G1+3+4+5 0.8839 0.8929 
GG1+2 versus GG3-5 0.9571 0.8254 
GG3 versus GG1+2+4+5 0.9762 0.9387 
GG4+5 versus GG1-3 0.9056 0.8711 

 

A combination of histogram and texture features was found to give the best 
performing classifier. Five to six features were used from the DWI imaging sequence 
for the PZ and four to six features from T2W imaging for TZ+AFS. 

 

The study is thoroughly described in Paper B  
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5.3. STUDY 3: PAPER C 

Title: Prostate Zonal Segmentation in 1.5T and 3T T2W MRI using a 
Convolutional Neural Network 

 

5.3.1. INTRODUCTION 

A segmentation of the prostate gland from its surrounding tissues is essential for 
several clinical tasks such as; determination of volume, systems for MRI/ultrasound 
fusion for guided biopsies, PI-RADS lesion detection and scoring, target delineation 
for radiotherapy treatment, or to obtain the region of interest for computer-aided 
diagnosis systems. A manual delineation of the prostate from MR images is a labour-
intensive task with high risk of inter- and intra-observer variability. Automatic 
algorithms for prostate segmentation have been an active research field for several 
years as they greatly enhance the clinical workflow and reduce the subjectivity.  

Recently, a greater part of research has focused on zonal segmentation of the prostate 
into central gland (CG) and peripheral zone (PZ). Because the majority of prostate 
cancers (PCas) are located in the PZ, a precise zonal location of the lesion is extremely 
important and favours the treatment outcome. Also, PCa lesions located in the PZ tend 
to have higher Gleason score and have significantly different biological behaviour and 
could therefore be candidates for a more aggressive treatment. 

Literature on automatic methods for zonal segmentation of the prostate is relatively 
sparse. Previously published studies on the subject only included images obtained 
from one scanner or obtained dice score coefficient (DSC) values inadequate for 
clinical purposes, especially in the proximal and distal ends of the gland. Automatic 
algorithms must be robust to differences in MRI acquisition protocol and magnetic 
field strength of the MRI scanner and perform equally well over the entire organ. 

Convolutional neural networks (CNNs) have shown great success in automatic 
medical image segmentation achieving state-of-the-art performances. This study 
proposes an algorithm for zonal segmentation of the prostate using T2W MRI on 
prostate examinations from two different scanners (GE 1.5T (scanned with endorectal 
coil (ERC)) and Siemens 3T) using a CNN. 

 

5.3.2. METHODS 

A publicly available dataset was used for this study, consisting of 40 patients with 
elevated PSA level, six PCa negative and 34 PCa positive with varying lesion size and 
location. The patients were MRI scanned on two different scanners; 21 patients on a 
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General Electric (GE) 1.5T scanner with ERC, and 19 patients on a Siemens 3T 
scanner. The MRI examination consisted of a T2W imaging sequence together with 
one or more functional sequences. An experienced radiologist delineated the CG and 
PZ, which served as the ground truth (GT).  

Images were resampled to 0.5x0.5x0.5 mm voxels, using bicubic interpolation, to 
account for differences in voxel spacing and slice thickness, and z-score normalised 
to account for inter-patient intensity variation. As the GT was missing on some slices 
for the CG, these were linearly interpolated. Furthermore, the images were cropped to 
exclude some of the surrounding tissues, and slices not containing either CG or PZ 
were removed. 

After preprocessing, the images were propagated through a CNN based on the U-net 
architecture [143]. The modifications made to the implementation of the U-net 
architecture for this study were: the use of zero padding to keep the output size the 
same as the input size and batch normalisation layers before max pooling layers in the 
contracting part of the network. Pixel-wise cross entropy was used as loss function 
with class weighting to account for class imbalance, and evaluation metric was DSC. 
Lastly, horizontal flip, small rotations, width and height shift, zoom and shearing were 
used as data augmentation during training. 

Stratified (according to scanner) 5-fold cross-validation was used for evaluation of the 
model, resulting in 32 patients for each training set, 8 patients for each test set. Two 
patients (one from each scanner) were used during the training phase for validation. 

 

5.3.3. MAIN RESULTS 

Overall results from the algorithm showed: 

• DSC of 0.803 for CG and 0.684 for PZ.  
• The mid-gland showed significantly higher DSC compared to apex and base 

for both zones. 
• No significant difference in DSC between the two scanners. 

An example of zonal segmentation from one patient is shown in Figure 10. This 
patient achieved DSC of 0.968 and 0.905 for CG and PZ, respectively. 
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Figure 10. Zonal segmentation result from patient 32 scanned on 3T Siemens scanner, slice 
no. 32. Red solid line = segmentation CG, yellow dashed line = ground truth CG, blue solid 

line = segmentation PZ and white dashed line = ground truth PZ. 

The results of this study are promising and have clinical potential. The DSC are 
comparable to the current literature on zonal segmentation. 

 

A full description of the study is presented in Paper C. 
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CHAPTER 6. DISCUSSION AND 
CONCLUSIONS 

The following chapter presents an overall discussion of the PhD work. At the end of 
the chapter, suggestions for future work will be presented together with a conclusion 
of the work. A specific discussion and conclusion for each of the three studies can be 
found in the papers (Paper A, B and C). 

 

6.1. DISCUSSION 

The aim of this PhD work was to investigate automatic methods for prostate cancer 
(PCa) diagnosis on mpMRI. Three studies were carried out during the course of this 
PhD work with the first focusing on automatic detection of PCa from mpMRI. The 
second study aiming at assessing PCa aggressiveness from imaging features from 
mpMRI and lastly, study three, investigating automatic zonal segmentation of the 
prostate gland. 

In the first study (Paper A) it was shown that automatic detection of PCa from 
mpMRI is can be attained, with reasonable performance, detecting 21 out of 22 PCa 
lesions in the 18 patients. At the time of the first study, the focus in the literature was 
to demonstrate the feasibility of automatic detection of PCa on mpMRI and identify 
sequences and features of interest. Since then, the published papers have focused more 
on classification of predefined lesions as either malignant or benign [150]. This might 
be due to the great improvement of human readers in finding clinically significant PCa 
lesions after the introduction of the PI-RADS scoring system compared to the 
traditional diagnostic technique (TRUS+B). The remaining problem then is, that even 
though the sensitivity for radiologists is very high (near perfect), the specificity is low 
(around 30%). This means that the radiologists find nearly all cancers, however, a 
large part of the lesions that the radiologist suspects to be significant cancer, turns out 
to be non-cancerous tissue on pathology. This sets a demand for automatic algorithms 
for removing false positive lesions (i.e. not-clinically significant or benign lesions). 
Combining radiologist with an automatic classification algorithm can result in much 
higher specificity, while preserving the high sensitivity [151].  

To resolve this challenge, the SPIE-AAPM-NCI Prostate MR Classification 
Challenge was announced in 2016. The aim of the challenge was to differentiate 
between clinically significant and clinically insignificant lesions from a data set 
consisting of 346 patients. The challenge is still ongoing, but the winning group in 
2017 obtaining AUC of 0.87 with two running up at AUC of 0.84 [123]. 
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Later came a new challenge (ProstateX-2, running from May 2017 to June 2017) 
within classification of prostate lesions from mpMRI, now all clinically significant, 
with the goal of classifying them into their respective Gleason grade group. The full 
dataset consists of 162 mpMRI cases with location and pathology-defined Gleason 
grade group of each lesion. The training data from this challenge were used for study 
two (Paper B) for classification of lesions into their respective Gleason grade groups. 
The results were promising, however, as the test set has not yet been released, 
validation of the algorithm on an independent dataset is still warranted.  

For both study one and two (Paper A and B), it was chosen to use bpMRI (T2W and 
DWI (including ADC)) imaging for the analysis since DCE has several disadvantages 
like long scan-time and use of expensive contrast agent (as described in section 2.2.1). 
Studies have shown non-inferior performance of bpMRI to mpMRI of human readers 
[82,152]. Furthermore, the use of expensive contrast agent, with risk of allergic 
reaction, could be avoided. The DCE sequence only plays a minor role in the newest 
version of PI-RADS (v2), and it has been suggested to remove the sequence in later 
versions of the guidelines [153]. Therefore, using only bpMRI for automatic 
algorithms could be of future interest to limit costs and time required for the image 
acquisition and might encourage greater use of MRI [83]. 

One of the major limitations for most of the current studies on automatic PCa 
diagnosis is the datasets used for the studies; data comes from one scanner with one 
scanning protocol, field strength, and protocol for patient preparation. This makes it 
difficult to compare the performance of different algorithms to each other, and, as a 
result, algorithms perform sub-optimally or needs adaption to new data [150,154]. As 
mentioned above, datasets have been made publicly available over the last few years 
as part of online challenges in medical image analysis, or to facilitate future 
discoveries from researchers within automatic algorithms [2,155]. The majority of 
these datasets include mpMRI examinations from different scanners (vendor, field 
strength etc.) which can help overcome this significant limitation in future work. 

Several studies have investigated methods for automatic prostate segmentation on 
MRI, using a wide variety of methods, like atlas-based, active shape models, and level 
sets [89]. To an increasing extent, zonal segmentation of the prostate is being 
investigated as it is clinically meaningful for e.g. lesion detection and risk 
stratification. Recently, deep learning algorithms, in particular convolutional neural 
networks (CNN) have shown to outperform traditional machine learning approaches 
in a several medical imaging tasks, such as detection, classification and segmentation. 
The need for large amounts of labelled data limits this use in many applications 
[95,96,156]. The U-net architecture used in study 3 (Paper C) has previously been 
found to perform well on limited amounts of data. The CNN approach for zonal 
segmentation in Paper C showed performance comparable to the current literature, 
robustness to datasets from different scanners and with a relatively small dataset of 
40 patients.  
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The exact ground truth for PCa is only available from pathological assessment of the 
excised prostate specimen. For patients not undergoing radical prostatectomy, this is 
not possible, and one must rely on the results from the biopsies and expert delineation 
of the area of interest. In the first study (Paper A), the lesions and glands were 
delineated by an expert. Manual delineation of the prostate is subjected to inter- and 
intra-observer variation, so optimally, multiple manual delineations should be used 
[89]. The expert had to rely on results from the biopsy report when delineating lesions, 
which only state part (apex, mid or base) and location (mid or lateral). That, and the 
fact that many of the patients only had MRI suspicious areas biopsied, could have 
resulted in significant lesions being missed if not clearly visible on mpMRI. 

Acquiring the lesion locations directly from MRI scanner will provide a more precise 
ground truth compared to the one in the first study. The provided lesion locations for 
study two (Paper B) were obtained from the MRI scanner coordinates as the biopsies 
were obtained in the MRI scanner (in-bore MRI-guided prostate biopsy). Skipping the 
registration step, required for ultrasound-MRI fusion systems for guided biopsies, 
allows for more precise spatial locations of the obtained biopsy in MRI. There is, 
however, still risk of needle placement error which can result in missed cancers and 
incorrect Gleason score [157]. Furthermore, lesions not visible on MRI are also 
missed using this approach. The biopsy was obtained from the centroid of the lesion 
on MRI. Since PCa lesions are heterogeneous, even within same lesion, the highest 
Gleason score is often not located near the centre of the lesion [158]. Furthermore, 
there is a significant variability between pathologists when assessing the Gleason 
score [159]. Some studies have investigated the registration of prostate MRI and 
digital pathology to facilitate the use of pathology as ground truth for MRI analysis 
for determining extent and aggressiveness of the PCa. This, however, also has several 
limitations, especially the deformation of the excised prostate specimen, errors 
introduced during slicing, quarter mount step-sectioning and later pseudo whole 
mount assembly [160–163].  

The general framework for automatic PCa diagnosis system includes image 
registration. No registration was done in study one (Paper A), except for using 
coordinates from scanner. Using bpMRI compared to mpMRI decreases the risk of 
patient movement and thereby the need for registration. However, spatial mismatch 
between the imaging sequences could affect the performance. To account for this, 
study one (Paper A) focused solely on detection and not segmentation of the lesions, 
so that there is a good possibility that the lesion will overlap to some degree on T2W 
and DWI. The study did show tendency to underestimate the tumour area, which could 
be explained by spatial mismatch.  

 

Paradigm Shift in Prostate Cancer Diagnosis 

Concurrently to the PhD studies, a lot have changed in the diagnostic pathway of PCa 
patients. The use of mpMRI for the diagnosis has shifted from being a promising 
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method for improving the diagnosis, especially for targeted repeat biopsy in patients 
with persistent clinical suspicion, to a pivotal tool in the clinical guidelines for staging, 
treatment planning (patients suited for active surveillance, nerve sparing surgery and 
for predicting positive surgical margins), risk assessment and in detecting local 
recurrences [164]. Currently, the use of mpMRI as triage test for patients with 
suspicion of PCa is under investigation due to mpMRI high reliability in excluding 
clinically significant PCa [71]. 

Increasing use of mpMRI for PCa diagnosis increases the requirement for radiologists 
to meet additional clinical demands of the second most common cancer in males. 
Major limitation of using mpMRI for PCa diagnosis is the interobserver variability, 
time consumption, complexity and heterogeneity in the scoring criteria [46,165]. In 
these cases, automatic methods can be of great value, but it is still a young field of 
research with different challenges to be solved [2]. A complete system should include 
all aspects (preprocessing (possibly including registration), segmentation, detection 
and classification) and all zones of the gland to become applicable in a clinical 
environment. Overall goal of such a system is not to replace the clinician but rather to 
ease the workflow and aid in the diagnosis and risk stratification. 

Recently, an automatic tool for mpMRI PCa analysis was commercialised (Watson 
Elementary, Watson Medical, Den Ham, The Netherlands). The software performs 
registration between MRI sequences, extracts features from all imaging sequences and 
assigns a malignancy score to every voxel thereby highlighting suspect lesions. 
Studies validating Watson Elementary have, however, shown contradictory results. 
One study found the performance of Watson Elementary comparable to two board-
certified radiologists (based on first version of the PI-RADS scoring system) [166]. 
Another study found an insufficient performance of the system based data from their 
hospital database and suggested that the performance of the system might be dataset 
dependent (e.g. different imaging acquisition configurations). They concluded that the 
system does not qualify for PCa detection and prediction of aggressiveness [8].  

So far, no commercialised full system has shown sufficient performance for clinical 
application which suggest that more work on the subject is warranted, preferably on 
a broader pool of multicentre datasets to improve the general applicability of 
automatic algorithms for PCa diagnosis [87]. 

 

6.2. FUTURE PERSPECTIVES 

Over the course of this PhD work there has been a notable shift from using traditional 
machine learning to deep learning based approaches. A clear advantage of deep 
learning approaches is that the imaging features are automatically extracted by the 
network which is often a difficult and tedious task for the scientist. In future work it 
could be interesting to compare the results of the classifiers in Paper A and Paper B 
with deep learning approaches. 
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Many applications within PCa diagnosis from MRI are still not fully explored in the 
literature. Automatic lesion detection and segmentation from MRI for e.g. image 
guided interventions could be explored for radiotherapy planning. The use of MRI as 
the sole modality for radiotherapy planning is an area of growing scientific interest, 
and is especially interesting in soft tissue organs where MRI has superior contrast 
compared to computed tomography (CT) [167]. 

Active surveillance (AS) is increasingly being used for low-risk PCa management 
with patients being closely followed to detect patients who convert to higher cancer 
grade. mpMRI has already showed excellent performance in risk stratification of PCa 
patients compared to current standard TRUS+B. Therefore, mpMRI is an excellent 
choice for identifying patients for AS. Using mpMRI to monitor progression in these 
patients instead of repeat biopsies could be an attractive future application of mpMRI. 
However, at present, there is not enough evidence supporting this. Finding imaging 
biomarkers that can safely predict which patients are suitable for AS will be of great 
value for low-risk patients resulting in reducing unnecessary radical treatment [43]. 

MRI has proven useful as biomarker for detection of biochemical recurrence [168]. 
Using pre-treatment MRI as predictor of who will have disease recurrence could serve 
as a valuable tool for selecting patients for more aggressive treatment and closer 
follow-up. Such a study requires a large number of patients with MRI examination 
followed over a long period of time, to be able to include a sufficient number of 
patients who have recurrence. 

 

6.3. CONCLUSION 

This PhD thesis begins by introducing the challenges related to the diagnosis in 
prostate cancer, and particularly in relation to the use of mpMRI for the diagnosis. 
These challenges gave rise to the research motivation of this work.  

The first objective of the thesis was to automatically detect PCa lesions from MRI. 
This was achieved in Paper A with performance comparable to the literature with a 
low number of false positives using imaging features from T2W and DWI (+ADC) 
imaging sequences.  

Second objective was to classify PCa lesions into levels of aggression based on MRI 
features which was answered in Paper B with results showing clinical potential that 
warrant further investigation.  

Last study (Paper C) investigated the use of a deep learning-based approach for zonal 
segmentation of the prostate. This study showed promising results with some patients 
showing segmentations very close to the expert delineation. As other studies in the 
literature, the performance was better in the mid-gland compared to the apex and base. 
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Overall the work has shown that it is possible to develop automatic algorithms for 
PCa analysis on mpMRI with reasonable results, more precisely detection of PCa 
lesions, classification of PCa lesions and zonal segmentation of the gland. 
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