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Abstract

According to the World Health Organisation (WHO), around 5% of the world’s
population suffers from hearing loss. The understanding of speech for a
hearing impaired person is severely degraded especially in the presence of
interfering speakers such as the cocktail party scenario. A very commonly
used approach to overcome hearing loss is to use hearing aid (HA) which
performs tasks such as dynamic range compression, feedback cancellation,
noise reduction etc. However, the performance of current HA technology in
improving the speech understanding in the so called cocktail party scenario
has been observed to be limited.

In this thesis, we focus on speech enhancement algorithms capable of im-
proving the speech intelligibility of HA user in such scenarios. In this thesis,
we have proposed speech enhancement algorithms that take into account the
speech production model. The critical component in this speech enhance-
ment framework is the estimation of the model parameters. In this thesis,
this is done using a supervised approach which takes into account a priori
information regarding the speech and noise autoregressive (AR) coefficients.
The performance of the speech enhancement system is heavily dependent
on the estimation of these parameters. Currently, most of the HA users are
equipped with HAs at both the ears that can communicate with each other.
We have proposed methods to estimate the filter parameters jointly using
the information at the two ears and also show the benefit of estimating the
filter parameters jointly in comparison to doing it independently for each
hear. The proposed algorithms were evaluated using both subjective listen-
ing tests and objective measures. Apart from speech enhancement, we have
also looked into the problem of noise power spectral density (PSD) estimation
which is a critical component in many of the speech enhancement systems.
The proposed method was shown to perform better than many of state of the
art noise PSD estimators in terms of estimation accuracy and enhancement
performance. As the application of these algorithms are only required in the
HAs when the speech intelligibility degrades beyond a certain value, it is
desirable to measure the intelligibility of the received signal at the HA. To
perform this, we have also proposed a non-intrusive method for intelligibil-
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Abstract

ity prediction which was shown to have high correlation with the subjective
scores.

Lastly, we also investigated on the usage of an external device, e.g. a
microphone array along with a HA with the possibility of communicating
with each other. We proposed a model based approach to control the beam
pattern of the external microphone array based on the look direction of the
HA user. The usage of an external device in addition to the HA was found
to improve the intelligibility of the received signal.
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Resumé

Ifølge Verdenssundhedsorganisationen (WHO) lider omkring 5 % af verdens
befolkning af en eller anden form for høretab. Taleforståeligheden for en per-
son med sådan et høretab svækkes i særdeles i situationer, hvor mange per-
soner snakker på én gang som f.eks. til et cocktail-party. Den typiske måde at
kompensere for et høretab er ved a give den hørehæmmede et høreapparat,
der udfører opgaver som dynamisk kompression og støjundertrykkelse samt
modvirker tilbagekoblingsproblemer. Den nuværende teknologi i høreappa-
rater er dog ikke god nok til at kunne forbedre taleforståeligheden i udfor-
drende situationer som et cocktail-party.

I denne afhandling fokuseres der på taleforbedringsalgoritmer, der er i
stand til at forbedre taleforståeligheden for den hørehæmmede i udfordrende
situationer som et cocktail-party. I den forbindelse har vi foreslået algorit-
mer, der tager en model for den menneskelige taleproduktion. Det vigtigste
element i udarbejdelsen af disse algoritmer har været estimeringen af mod-
elparametre. Som model for talen har vi brugt autoregressive modeller, hvis
parametre er estimeret v.h.a. af en overvåget tilgang baseret på trænede mod-
eller af tale og støj. Kvaliteten af en taleforbedringsalgoritmer afhænger i høj
grad af, hvor præcist disse parametre kan estimeres. De fleste høreappa-
ratsbrugere anvender et høreapparat i begge ører, og disse høreapparater
kan ofte trådløst kommunikere med hinanden. Vi har udnyttet dette til at
foreslå en algoritme, der anvender samtidig information fra begge høreap-
parater, og vi viser i den forbindelse også hvorfor dette er bedre en at lave
dataforarbejdningen uafhængigt af hinanden i de to høreapparater. De fores-
låede algoritmer er evalueret med både lyttetest og objektive mål. Udover
taleforbedring har vi også undersøgt problemet med at estimere støjspektret,
eftersom løsningen til dette problem er meget vigtigt for kvaliteten af en tale-
forbedringsalgoritme. Den forslåede metode til at estimere støjspektret er
demonstreret til at være bedre end mange af de bedste og kendte metoder,
når der måles på nøjagtigheden af det estimerede støjspektrum og kvaliteten
af taleforbedringsalgoritmer. En forbedring af taleforståeligheden er kun
nødvendig i situationer, hvor taleforståeligheden er forringet væsentligt. Der-
for er det vigtigt at kunne måle taleforståeligheden med høreapparatet di-
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Resumé

rekte fra et støjfyldt talesignal. I den forbindelse har vi foreslået en metode
til netop at gøre dette, og vi har demonstreret, at metodens estimat i høj grad
stemmer overens med lytteforsøg.

Et sidste bidrag har været at undersøge om taleforståeligheden for en
høreapparatsbruger kunne forbedres, hvis høreapparaterne er forbundet trådløst
til et eksternt mikrofonarray. I den forbindelse har vi foreslået en model-
baseret metode, der kan styre det eksterne arrays fokussretning v.h.a. at
høreapparatbrugerens synsretning. Vi har også vist, at dette kan forbedre
taleforståeligheden i sammenligning med kun at bruge et høreapparat.
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Introduction

1 Speech Communication

Humans have various ways of communicating with each other that is not
possessed by animals [1], and one of the dominant forms of communications
used by humans is through speech. In speech communication, information
is being conveyed between a set of speakers and listeners. Speech produced
by humans generally consists of a structured combination of words taken
from a lexicon that is uttered by the speaker [2]. To achieve this, our brain
first produces a sequence of motor commands that results in the movement
of the muscles in the vocal system in a particular manner to produce the
desired sound wave. This sound wave travels through a particular channel
before it is received by the listener’s auditory system (AS). This channel often
degrades the speech signal before it is received by the listener’s AS. Once it
is received by the AS, it is then converted into a set of neurological pulses
which is further processed by the brain to interpret what was uttered by the
speaker [3].

In an ideal case, there will not be any degradation to the speech that is
produced before it reaches the listener’s AS. However, in realistic scenarios,
there is often some sort of degradation such as additive noise, reverberation
etc. that reduces the quality and intelligibility [4] of the received signal. The
objective of this thesis is to design algorithms that can alleviate some of these
degradations.

The remainder of this chapter will be organised as follows. We will de-
scribe the mechanism of the speech production process along with certain
important characteristics of these signals in Section 1.1. Following that, we
will explain how this signal is perceived by a human ear and also about hear-
ing loss. The degradations experienced by the speech signal which results
in significant intelligibility reduction for the hearing impaired (HI) will be
explained in Section 1.3. Chapters 2 and 3, respectively, will explain some
of the signal models and state of the art methods for performing speech en-
hancement to mitigate these degradations. An overview of the contributions
of this thesis is given in Chapter 4 followed by the conclusion and directions
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for future research in Chapter 5.

1.1 Speech Production

The human speech production system helps in the conversion of thoughts
into speech. A cross section of the human speech production system is shown
in Fig. 1. The main components of this system include 1) trachea or the
windpipe 2) the vocal chords, 3) the mouth or the vocal tract, and 4) the
nasal cavity [3]. A very convenient way to interpret the mechanism of the
speech production system is as an acoustic filtering operation that acts on an
input signal [3]. The acoustic filter here comprises of a combination of the
vocal and nasal tracts whereas the input signal, also termed as the excitation
signal is the signal coming out of the vocal chords.

Fig. 1: Human speech production system (source: National Cancer Institute).

The properties of this system can be changed by the excitation signal as
well as the shape of the vocal and nasal tracts. Based on the characterestics
of the excitation signal, the speech produced by the humans can be broadly
categorised into 2 categories namely 1) voiced speech that includes vowels
and 2) unvoiced speech which are weaker in amplitude and includes the
consonants. In the case of the voiced speech, the air forced out of the lungs
travels through periodically vibrating vocal folds to form the excitation signal
that is periodic in nature [5], whereas the excitation signal in the case of
unvoiced speech is more noise like. The vocal tract in the case of unvoiced
speech is constricted in certain areas whereas there is no such constriction
for voiced speech [6]. The shape of the vocal tract is associated with a set of
resonant frequencies, also referred to as formants which are typically 3 to 5
in humans [3].
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1. Speech Communication

As the spectral characterestics of a speech signal vary over time, they are
generally analysed using a spectrogram which is a two dimensional repre-
sentation of the speech signal. A spectrogram plots the power spectra [7]
over time and the power of different frequencies is color coded [8]. Fig. 2
shows the spectrogram of a speech signal. The unvoiced speech is charac-
terised by rectangular patches over a wide range of frequencies whereas the
voiced speech is characterised by horizontal stripes with dominant energies
at the lower frequencies. Moreover, the formants which are represented by
peaks in the frequency domain can be seen, e.g, at around 0.4, 1.9 and 2.7
kilohertz at 1.5 seconds.
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Fig. 2: Spectrogram of the clean signal.

1.2 Speech Perception

The acoustic signal emitted by the speaker is perceived by the listener using
the human ear. Fig. 3 shows the structure of the human ear. The acoustic
signal arriving at the outer ear travels through the external auditory canal
towards the eardrum (tympanic membrane) and vibrates it. As the eardrum
vibrates, the ossicular chain consisting of malleus, incus and stapes transfers
these vibrations into the inner ear which contains the cochlea [9]. The cochlea
consists of the basilar membrane that are planted with hair cells which con-
verts the mechanical vibrations into electric signals that are then sent to the
brain. These hair cells have varying degrees of sensitivity to different fre-
quencies, thus acting like spatially distributed band pass filters. The audible
range of frequencies in humans is in between 16 Hz and 20 KHz [10].

The amplitude of sound pressure is generally measured in decibels (dB).
This is due the large range of amplitude that can be perceived by a healthy
human AS (0- 140 dB). These properties vary in the case of a HI person based
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Fig. 3: Structure of the human ear [11].

on the degree of hearing loss. Hearing impairement can occur due to faults
in different parts of the ear. Damages to outer or middle ear is termed as the
conducting hearing loss whereas damages to the inner ear is termed as the
sensorineural hearing loss [12]. Conducting hearing losses, in most cases can
be rectified by surgeries but sensorineural hearing losses which are caused
due to damage in hair cells are more permanent in nature.

Having two ears enables humans to identify the direction of arrival of the
sound source with the help of binaural cues such as the inter-aural time dif-
ference (ITD) and the inter-aural level difference (ILD) [10]. As these cues aid
the listener to locate the speaker of interest, it is desirable of any processing
algorithms, e.g. present in a HA to preserve these cues.

1.3 Speech Degradation

Before the acoustic signal is received by the listener’s AS, the speech signal
produced by a human often undergoes degradation. Some of the common
degradations experienced are reverberation and additive noise. We will not
consider here the degradations caused due to clipping, coding etc. For a HI
person, such degradations can reduce the speech intelligibility and lead to an
increased listening effort. In such scenarios, it is desirable to remove these
degradations to some extent before it is perceived by the HI person. We will
now explain these degradations in more detail:

Additive noise

The most common type of degradation occurring to a speech signal is due to
the presence of additive background noise. The background noise can be due
to the presence of interfering speakers as in a cocktail party scenario, traffic,
noise from machines etc. Out of these, the most challenging situation for a
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1. Speech Communication

person with hearing loss is to concentrate on a single speaker in the presence
of other competing speakers. This is termed as the cocktail party problem
[13]. The AS of a normal hearing person is capable of focusing on one person
in such a scenario. However, people with hearing loss lack the ability to do
so in an effective manner. This results in a HI person being isolated in such
a situation. Fig. 4 shows an example of a cocktail party scenario where the
listener (indicated by the blue digits) is having a conversation the speaker
(indicated by red(1)) in the presence of multiple interferers (indicated by red
(2-9)). The spectrogram of the degraded signal in such a scenario is shown in
Fig. 5. It can be seen that the noise by the interferers masks certain portions
of the target speech that may be important for speech understanding.
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Fig. 4: Simulation setup of a cocktail party scenario.

Reverberation

Reverberation occurs when the speech signal is emittted in an acoustically
enclosed space, e.g., a room which has boundaries that reflect sound signals.
This leads to sound signals being reflected with certain amount of attenuation
due to the absorption charachterestics of the room surface. In such scenarios,
apart from the sound signal that travels directly from the speaker to the lis-
tener’s AS, AS may receive multiple delayed and attenuated versions of the
sound signal. This phenomenon is termed as reverberation. The strength of
reverberation is generally characterised using reverberation time(T60). T60
is the amount of time required for the reflected sound signal to undergo a
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Fig. 5: Spectrogram of the signal corrupted by additive noise.

decay of 60 dB [14, 15]. It is directly proportional to the room size and in-
versely proportional to the absorption coefficients. An alternative to T60 is
the direct to reverberation ratio [16]. Fig. 6 shows the spectrogram of signal
seen in Fig. 2 with reverberation. It can be seen from the figure that many of
the phonemes that are lower in magnitude are masked by preceding louder
phonemes. Some of the state of the art methods for performing dereverbera-
tion are [16, 17].
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Fig. 6: Spectrogram of the reverberated signal.
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2 Speech Modelling

The main motive of this thesis is to remove the degradation present in the
speech signal due to additive noise. In such cases, the estimation of clean
speech from the noisy signal is non-trivial particularly in case of highly non-
stationary background noise. There exists a variety of methods for filtering
the noisy speech to obtain the clean speech, and these require the knowledge
of speech and noise statistics. Since there is no access to either the clean
speech or the noise signal in many of the applications, the statistics have to
be estimated directly from the noisy speech which can be modelled in the
case of additive noise as,

z(n) = s(n) + w(n) ∀n = 0, 1, . . . (1)

where z(n) is the noisy speech, s(n) is the clean speech, and w(n) is the
additive background noise. Estimation of the statistics with just access to the
noisy signal can prove to be complex. In such scenarios, it is quite useful and
convenient to assume a model for the speech and noise. This chapter will
provide a few of the signal models that are relevant to this thesis. A model
in essence can be represented using a set of parameters which generally has
a much smaller dimension than the data to be modelled. In the section that
follows this paragraph, we will give a brief introduction into the source-filter
model of the speech production process followed by the harmonic model
in Section 2.2 which provides a good approximation of the voiced speech.
As the processing is generally carried out frame-wise, we will denote the
windowed signal containing the f th frame as

s f (m) = s( f M + m)ε(m) ∀ m = 0, . . . M− 1 (2)

where ε(m) is a window of length M defined in the interval [0, M − 1] ap-
plied to the data. It is assumed that s f (m) = 0 for m < 0 and m > M− 1. A
frame of clean speech is denoted as s f which is defined as

s f = [s f (0), s f (1), . . . s f (M− 1)]T .

Corresponding counterparts for the noisy and noise signal will be denoted as
z f and w f , respectively. The frequency domain counterpart of the speech sig-
nal is defined as S(ω) = fH(ω)s f where f(ω) = [exp(ıω0), . . . exp(ıω(M −
1))]T , and the corresponding counterparts for the noisy and noise signals are
denoted as Z(ω) and W(ω), respectively.

2.1 Source-filter model for speech production

This model tries to explain speech signals as a combination of the excitation
signal and the vocal tract [18]. As explained previously in Section 1.1, a
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source-filter model explains the speech signal as the output of a filter (which
models the vocal tract) to the excitation signal which is white Gaussian noise
(WGN) in case of unvoiced speech and a periodic signal in the case of voiced
speech, as shown in Fig. 7. The vocal tract can be represented using an all
pole filter which leads to the speech signal being expressed as

s(n) = −
P

∑
i=1

ais(n− i) + e(n), (3)

where s(n) is the speech signal, e(n) is the excitation signal and A(z) =
1

1+∑P
i=1 aiz−i is the all pole filter representing the vocal tract. In the case of

speech, the characteristics of the vocal tract and the excitation signal pro-
duced by the vocal chords are time varying. However, due to the limitations
of the human speech production process, the properties associated with them
can be assumed to be stationary for frames of approximately 20-25 millisec-
onds [3]. Given a frame of clean speech , {s f (m)}M−1

m=0 , the autoregressive
(AR) coefficients, {ai}P

i=1, are obtained by the Yule-Walker method [19, 20] or
by minimising the mean squared prediction error [21, 22] given as

{âi}P
i=1 = arg min

{ai}P
i=1

M−1+P

∑
m=0

∣∣∣∣∣s f (m) +
P

∑
i=1

ais f (m− i)

∣∣∣∣∣
2

(4)

which leads to the Yule-Walker equations as⎡
⎢⎢⎢⎣

R(0) R(1) . . . R(P− 1)
R(1) R(0) . . . R(P− 2)

...
...

. . .
...

R(P− 1) R(P− 2) . . . R(0)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

â1
â2
...

âP

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

R(1)
R(2)

...
R(P)

⎤
⎥⎥⎥⎦ (5)

where the autocorrelation coefficients are then estimated using the equation

R(p) =
1
M

M−1

∑
m=p

s f (m)s f (m− p) 0 ≤ p ≤ P. (6)

Methods have been proposed to solve (5) efficiently using the Levinson-
Durbin algorithm [23, 24] or the Delsarte-Genin algorithm [25]. This way
of estimating the model parameters is very well suited for unvoiced speech
as the excitation signal for unvoiced speech can be very well approximated
as WGN. However for voiced speech, this model may have its limitations
as the voiced speech is characterised by a periodic excitation signal and the
periodicity in the excitation signal is perceived as the pitch. Some methods
which takes into account the properties of the excitation signal for voiced
speech have been proposed in [26, 27]. While having access to clean speech,

10



2. Speech Modelling

Fig. 7: Schematic for the source-filter model for speech production.

the predictor coefficients as well as the excitation variance can be estimated
using the Yule-Walker equations. However, in the presence of noise, the es-
timation of these parameters is not very trivial and this will be addressed in
this thesis.

Apart from the above model, purely voiced speech can be represented by
a harmonic model which will be explained in the following section.

2.2 Harmonic model

Another model that is well suited for the representation of the voiced speech
is the harmonic model [28]. These models are useful for the estimation of pa-
rameters such as the pitch. Apart from speech, many real life signals such as
the electrocardiogram (ECG) [29], sound from musical instruments [30] etc.
are quasi periodic and can be represented well using the harmonic model.
Using this model, the clean speech can be represented as a sum of harmoni-
cally related sinusoids as

s f (m) = ∑L
l=1 Alcos(lω0m + φl) (7)

= ∑L
l=1 alejlω0m + a∗l e−jlω0m (8)

where ω0 is the fundamental frequency, al =
Al
2 ejφl , Al > 0 is the complex

amplitude of the lth harmonic, L is the harmonic model order and φl is the
phase of the lth harmonic. Often, it is more convenient to estimate funda-
mental frequency from analytic signals due to simpler notation. Equivalent
analytic or complex signal corresponding to the real signal in (7) can be writ-
ten as [31, 32]

s f (m) =
L

∑
l=1

αl ejlω0m (9)
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where αl = Alejφl . Given a frame of voiced speech, the important parameters
to be estimated are the complex amplitudes αl , the fundamental frequency
and the harmonic model order [28]. A erroneous estimate of the model order
can lead to errors in the estimates of fundamental frequency (such as fre-
quency halvings and doublings). The model order can be estimated jointly
with the fundamental frequency as in [33, 34] or separately as in [35]. Fig. 8
shows the approximation of a frame of voiced speech using the estimated pa-
rameters representing a harmonic model. It can be seen that all the properties
of the signal are well captured using the harmonic model.
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Fig. 8: Reconstruction of voiced speech using the harmonic model.

2.3 Model for noise

It is a common practise to assume a white noise spectrum in many of the sig-
nal processing algorithms due to the mathematical tractability and simplicity
of the algorithms. In such cases, we need to estimate only a single value cor-
responding to the intensity of PSD for all frequencies. However, in practical
scenarios, the spectral content of noise can have any shape. In such cases, we
can model the noise also as an AR process as

w(n) = −
Q

∑
i=1

ciw(n− i) + v(n) (10)

where {ci}Q
i=1 are the AR coefficients corresponding to the noise signal and

v(n) is a WGN with variance σ2
v . Similar to the speech signal, it is a common

practise to assume quasi-stationarity for the AR coefficients and the excitation
variance. Fig. 9 shows the modelling of noise periodogram of babble noise
using a 14 order AR process. The estimation of noise AR coefficients and the
excitation variance from the noisy signal will also be addressed in this the-
sis. As mentioned earlier, certain algorithms assume that the noise is white.
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3. Enhancement of Speech

In such cases, pre-whitening [36] of the noisy signal must be performed to
obtain satisfactory results.
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Fig. 9: Approximation of the noise periodogram using a 14 order AR process.

3 Enhancement of Speech

As alluded to in the introduction, degradation caused due to additive noise
and reverberation leads to the reduction in the quality and intelligibility of
the perceived speech. This degradation is more pronounced among HI peo-
ple than the normal hearing people. In such scenarios, it is very much de-
sirable to perform enhancement of the noisy speech e.g. in a HA before
presenting the speech to the HI people. The field of speech enhancement has
been investigated extensively from the early 1960s when Schroeder filed the
first patent [37, 38] in this field. A plethora of methods have been proposed
since then to perform speech enhancement [39–42]. These methods can be
broadly categorised into single and multi channel methods. Multi channel
methods which requires access to observation from multiple channels can be
effective in exploiting the spatial information to focus on the sound source
of interest [43]. Some of the major classes of multi channel enhancement al-
gorithms are 1) fixed beamforming techniques such as delay and sum beam-
forming and superdirective beamforming [44, 45] 2) adaptive beamforming
techniques such as the minimum variance distortionless response (MVDR)
beamformer [46] which combines the properties of the fixed beamformers
along with adaptive noise reduction and 3) multi channel Wiener filtering
techniques [47, 48] that obtains the minimum mean square error (MMSE) es-
timate of the clean speech component at the reference microphone. In the
remainder of this chapter, we will mainly focus on single channel speech en-
hancement methods. A majority of these methods are based on the Fig. 10.
As seen from the figure, the task of speech enhancement can be divided into
two blocks. The first step consists of estimating the relevant signal param-
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eters and statistics, and the second step performs the filtering of the noisy
signal, z(n), based on the estimated parameters/statistics to obtain the en-
hanced signal ŝ(n). The rest of this chapter elaborates separately on these
two steps. In Section 3.3 we will describe how these speech enhancement
algorithms can be adapted for HAs.

During the design of speech enhancement algorithms, it is necessary to
evaluate the performance of these algorithms. Section 3.4 will elaborate on a
few subjective and objective measures we have used in this thesis.

Fig. 10: Basic block diagram of a speech enhancement system.

3.1 Filtering of noisy speech

In this section we will explain a few of the well known methods for per-
forming filtering of the noisy signal to obtain the enhanced signal. These
methods require an estimate of the speech/noise statistics or an estimate of
the speech/noise model parameters. The performance of the filtering meth-
ods depend heavily on these estimates. We will now explain a few of the well
known methods for filtering the noisy signal followed by the estimation of
the filter parameters in the next section.

Spectral Subtraction- Proposed by Boll in 1979 [49], this was one of the
first single channel speech enhancement methods. These methods were mo-
tivated by the observation that majority of the background noise is additive
in nature and thus estimates the magnitude spectrum of the clean speech by
subtracting the estimated noise magnitude spectrum from the noisy magni-
tude spectrum as

|Ŝ(ω)| = |Z(ω)| − |Ŵ(ω)| (11)

where |Z(ω)| is the noisy magnitude spectrum, |Ŵ(ω)| is the estimated
noise magnitude spectrum and |Ŝ(ω)| is the magnitude spectrum of the en-
hanced signal. There can be cases where the estimated magnitude spectrum
of speech becomes negative due to the overestimation of the noise magnitude
spectrum. This issue is resolved by setting those values to zero or a very small
positive value, which results in a non-linear operation. Another possibility
to resolve this is by using a frequency dependent threshold. The estimated
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3. Enhancement of Speech

clean magnitude spectrum , |Ŝ(ω)|, along with the phase of the noisy signal
is used to generate the estimated speech in the time domain. Eventhough the
principle behind spectral subtraction is fairly simple, this method has been
observed to have certain shortcomings. The most dominant of these short-
comings is that it introduces an artefact termed as the musical noise [50],
which is caused due to presence of small isolated randomly located peaks in
the spectrum. There have been methods proposed to tackle this issue such as
in [50], which subtracts an over estimate of the noise spectrum. Extensions
to spectral subtraction have been proposed over the years such as the para-
metric spectral subtraction in [51], multi band spectral subtraction in [52] and
non linear spectral subtraction in [53].

Wiener filtering- In comparison to the spectral subtraction methods that
were based on intutive and heuristic principles, Wiener filter is an optimum
filter in the sense that it minimises the mean squared error between the de-
sired signal and the estimated signal [54] when both the speech and noise dis-
crete Fourier transform (DFT) coefficients are assumed to be independently
distributed complex Gaussian random variables. Wiener filtering of speech
can be performed either in the time or frequency domain. The Wiener filter
in the frequency domain can be expressed as

H(ω) =
E[|S(ω)|2]

E[|S(ω)|2] + E[|W(ω)|2] ≈
φ̂ss(ω)

φ̂zz(ω)
(12)

where φ̂ss(ω) is the estimate of speech power spectral density (PSD) [7] and
φ̂zz(ω) is the estimate of noisy PSD. Different extensions to the Wiener filter
such as the parametric Wiener filter [55] which allows the mechanism to
introduce additional noise attenuation have been proposed. Even though the
Wiener filter is optimal in the mean square error sense under the assumptions
stated above, it might not be optimal from a perceptual perspective point of
view. To incorporate the perception into account, constraints which allows
us to control the speech distortion and noise attenuation can be imposed
during the derivation of the Wiener filter [56]. An extensive study on the
trade off between signal distortion and noise reduction while using Wiener
filter can be found in [57]. The Wiener filter assumes that the signals being
analysed are stationary. To deal with nonstationary speech and noise signals,
Kalman filtering based methods can be used. In these methods, the speech
as well as the noise signals are characterised by a state space model and the
enhanced signal is then computed by estimating the state vector. Kalman
filtering for speech enhancement in the presence of white background noise
was proposed in [58] and was later extended to deal with colored noise in
[59, 60].
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Statistical model based methods- This class of methods assumes a cer-
tain probability density function model for the speech and noise discrete
Fourier transform (DFT) coefficients/magnitudes and use these probability
density functions as a basis for deriving estimators for the magnitude or
complex spectrum of the speech signal. These estimators can be non lin-
ear in nature compared to the Wiener filter (discussed in the previous sec-
tion) which yielded a linear estimator of the complex spectrum of the signal
when the speech and noise DFT coefficients were assumed to be complex
Gaussian random variables. One of the first methods belonging to this class
was proposed in 1980 where a maximum likelihood estimator of the speech
magnitude spectrum was derived by assuming a complex Gaussian model
for the noise DFT coefficients while assuming a deterministic model for the
speech [61]. This was then combined with a two state model (describing the
speech presence or absence) to obtain higher noise reduction in the noise
only regions. Another well known approach to perform statistical model
based speech enhancement was proposed by Ephraim and Malah in [62],
where an MMSE estimator for the magnitude spectrum was derived by mod-
elling the real and imaginary parts of the speech and noise DFT coefficients
as Gaussian random variables. The same authors, motivated by the human
perception of speech, later proposed the MMSE estimator of the logarithm of
the magnitude spectrum [63]. This was found to further improve the noise re-
duction capabilities. Some of the more recent statistical model based methods
are [64, 65]. In [64], a maximum a posteriori (MAP) estimator of the spectral
magnitudes was proposed by modelling the magnitude of the speech DFT
coefficients using super Gaussian distributions whereas the method in [65]
proposed MMSE estimators of speech DFT coefficient magnitudes, where a
generalised Gamma prior distribution is used to model the distribution of
magnitude of the speech DFT coefficients.

Subspace based methods- These methods are based on the principle
that the desired signal lies in a subspace of the full space which contains the
signal subspace and noise subspace [66, 67]. The desired signal is then ob-
tained by projecting the observed signal onto the signal subspace. The signal
and noise subspace can be identified using orthogonal matrix factorisation
techniques from linear algebra as done in [68] using singular value decom-
position (SVD). These approaches were first designed for white noise and
then later extended for colored noise case in [69–71]. In [72], the basis vec-
tors representing the signal and noise space are computed by performing the
joint diagonalisation of the speech and noise correlation matrices. The filter
coefficients for performing enhancement was then designed by choosing a
weighted linear combination of the basis vectors. The resulting filters had
the ability to trade off between speech distortion and noise reduction.
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3.2 Statistics and Parameter estimation

In the previous section, we gave a brief overview on the different classes of
filtering methods. Most of these algorithms require an estimate of the speech
or noise statistics/parameters. In this section we give a brief overview of
different methods for estimating the statistics/parameters. These methods
can be broadly categorised into supervised and unsupervised methods [73].
Supervised methods use prior training data consisting of speech and noise
from a certain database to build models. On the other hand, unsupervised
methods generally do not need any prior training data. A majority of these
methods assume a statistical model for speech and noise and derive estima-
tors based on these models.

Unsupervised methods

Noise Statistics estimation The estimation of noise statistics forms a
very a critical component for the functioning of many speech enhancement
methods discussed in the previous section. The noise statistics that are rel-
evant for the speech enhancement is the power spectral density, φww(ω),
which is defined as [7]

φww(ω) = lim
M→∞

E

⎧⎨
⎩
∣∣∣∣∣ 1

M

M−1

∑
m=0

w f (m)e−ıωm

∣∣∣∣∣
2
⎫⎬
⎭ , (13)

where E{·} is the expectation operator. A plethora of methods have been
proposed to solve this problem in the past few decades. One of the most
basic approaches to solve this problem is by using a voice activity detector
which tries to estimate the noise statistics in the absence of speech. How-
ever these methods are very difficult to tune and they have been observed to
be inefficient in the presence of non-stationary noise [74]. Another popular
method for noise PSD estimation is the minimum statistics (MS) proposed by
Rainer Martin in [75, 76]. This method is based on the observation that the
power of the noisy speech signal goes down to the power of the noise signal
often. The noise PSD is then computed by taking the minimum of the recur-
sively smoothed noisy periodogram over a window of variable size. In [77],
Doblinger proposed a noise PSD estimator with similar principles. How-
ever, the methods based on the MS principle are very sensitive to the size
of the window which limits the effectiveness of the method to track highly
non-stationary noise. Another class of algorithms is based on the recursive
averaging. In [74, 78] the noise PSD was obtained by recursive averaging of
the noisy spectral power where the recursive averaging coefficient was a time
varying frequency dependent value. This coefficient was adjusted according
to the estimated speech presence probability. However, some tracking delay
still existed in the presence of rapidly changing noise power. These issues
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were addressed to some extent in the methods proposed in [79, 80] that were
based on the MMSE criterion which modelled the speech and noise DFT co-
efficients as independently distributed complex Gaussian random variables.
The final noise PSD estimate is obtained by recursive averaging of the MMSE
estimate of the noise periodogram. Another class of noise PSD estimation
algorithms are the histogram based noise estimation algorithms. These algo-
rithms are based on the observation that the maximum number of values in
the individual frequency indices correspond to the noise power at that fre-
quency index [81–83]. There have also been approaches to estimate a para-
metric form of the noise PSD using the expectation maximisation algorithm
as done in [59, 60].

The performance of a noise PSD estimation algorithm can be evaluated
by measuring its spectral estimation accuracy and the enhancement perfor-
mance. Such an evaluation of the noise PSD estimators can be found in [84].
In this thesis, we have also carried out an evaluation of some of the state of
the art noise PSD estimators along with a method we proposed in paper D.

Fundamental frequency estimation Fundamental frequency is an im-
portant characteristic of the voiced speech and it is very critical for the per-
ception of speech [28]. Apart from speech enhancement [85, 86], fundamen-
tal frequency is a critical parameter of interest signal coding [87–89], music
transcription [90, 91], signal modification [92, 93]. Some of the popular fun-
damental frequency estimation methods include that of [94, 95]. The basic
principle of these methods is to compare the signal under analysis with a
delayed version of itself using a certain similarity measure. The fundamental
frequency can then be obtained by taking the reciprocal of delay for which
the similarity measure is maximised. The methods do not assume any model
for the speech signal and are hence referred to as non-parametric methods.
While these methods are computationally efficient, they often rely on heuris-
tics and are prone to errors in the presence of noise. Another class of methods
are the parametric methods [28] which is derived on the basis of the har-
monic model introduced in Section 2.2. These methods are attractive due to
their mathematical tractability and robustness to noise for very low signal to
noise ratio (SNR), and efficient implementations of these have been proposed
in [96].

Supervised methods

The unsupervised methods for the estimation of the noise PSD have their
limitations in the presence of non-stationary background noise. In compar-
isons to unsupervised methods, supervised methods are able to deal better
with such scenarios. In this section, we will give a brief overview on the
supervised methods for estimating the speech and noise statistics. Contrary
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to unsupervised methods, supervised methods make use of a priori informa-
tion about the noise type or speech in the form of training data. In the case
of prior knowledge about the noise environment or about the speaker of in-
terest, supervised algorithms can be trained to that particular scenario using
the training data corresponding to that scenario. However, in absence of such
information, the training data can consist of speech and noise from databases
containing different speakers and common background noises. The training
data is then used to build models of speech and noise [97]. Subsequently,
a certain interaction model is defined between the speech and noise models
that generates the noisy data. The estimation of the statistics is then carried
out by the means of optimisation algorithms on the basis of the above men-
tioned models and the observed data. Some of the popular supervised meth-
ods are the non-negative matrix factorisation (NMF) based methods [97–99],
hidden markov model (HMM) based methods [100–102] and codebook based
methods [103–105]. We will now briefly explain the NMF and codebook
based methods as we have used these in our thesis. NMF techniques allow
us to approximate non-negative data using a set of basis vectors and activa-
tion coefficients. The basic objective in NMF is to approximate a non-negative
matrix V with dimensions F× N using two non-negative matrices as

V ≈ WH (14)

where W and H are of dimensions F× K and K× N, respectively, and FK +
KN � FN. The matrix V contains the K F-dimensional observation vectors
arranged as the columns. Using (14), each column of V can be represented
as a linear combination of the columns of W weighted by the elements in the
corresponding column in H. Therefore, W can be regarded as the basis ma-
trix containing the basis vectors along its columns which is used to linearly
approximate the data in V. As the elements in H are used to activate the basis
vectors present in W, H is referred to as the activation matrix. Fig. 11 shows
an example of performing NMF on the spectrogram of twelve seconds piano
snippet into 2 basis vectors and the corresponding activation coefficients. As
can be seen in the figure, the note C5 is played in the first segment followed
by the note F4 in the second segment and both the notes are played together
in the third segment. This can also be seen from the right side of the figure
where the activation coefficient corresponding to first spectral basis vector
(representing C5) and the second spectral basis vector (representing F4) is
active in the first and second segments, respectively, whereas both the spec-
tral basis vectors are active in the third segment as both the notes are played
together.

To use NMF from a speech enhancement perspective, the observation ma-
trix V contains the magnitude/power spectrogram of the noisy signal where
each column corresponds to the magnitude/power spectrum of the noisy sig-
nal at a certain frame index. For the supervised NMF based speech enhance-
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Fig. 11: This figure shows NMF being performed on the spectrogram a piano segment into two
basis vectors and the corresponding activation coefficients.

ment, the basis matrix W consists of separate spectral basis vectors trained
for speech and noise arranged as shown in (15) and (16) as,

V ≈

⎡
⎢⎣

d1(1) . . . dK(1)
...

. . .
...

d1(F) . . . dK(F)

⎤
⎥⎦

︸ ︷︷ ︸
W

⎡
⎢⎣

σ2
1 (1) . . . σ2

1 (N)
...

. . .
...

σ2
K(1) . . . σ2

K(N)

⎤
⎥⎦

︸ ︷︷ ︸
H

. (15)

V ≈ [Ws Ww]

[
Hs
Hw

]
= WH, (16)

and a particular column of the activation matrix contains the activation coef-
ficients corresponding to the different basis vectors for a particular frame of
the signal being analysed. In supervised NMF approaches, the objective is to
estimate the activation coefficients such that the observation matrix V is well
approximated by WH in terms of certain divergence criterion. The type of
divergence criterion is often chosen based on the type of data to be approxi-
mated. In the case of speech, some of the typically used divergence criterions
are the Itakura-Saito (IS) divergence [106] and the Kullback-Leibler (KL) di-
vergence [107]. It has been shown in [99], that NMF with IS divergence is
equivalent to maximum likelihood (ML) estimation of activation coefficients
when the observation is modeled as a sum of Gaussian components. Simi-
lary, NMF with KL divergence is shown to be optimal when the observation is
modelled as sum of Poisson components [108]. The optimisation problem is
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3. Enhancement of Speech

then solved using iterative algorithms such as expectation-maximisation [109]
or multiplicative update rules [98]. The estimated activation coefficients for
the speech along with the spectral basis vectors for speech can be used to
obtain the speech PSD estimate and similarly for the noise. Several meth-
ods have been proposed to enhance the performance of conventional NMF
by enforcing sparsity [99, 110, 111] and temporal continuity [112–114] of the
activation coefficients.

Another class of supervised methods proposed for the estimation of speech
and noise statistics are the codebook-based approaches [103–105]. These
approaches model the a priori information regarding the speech and noise
spectral envelopes in the form AR coefficients and a parametric represen-
tation of the speech and noise statistics is estimated. During the training
phase, AR coefficients extracted from frames of speech and noise training
data, which are converted into line spectral frequency (LSF) coefficients [115]
are passed as input to a vector quantiser to obtain speech and noise code-
books of size NS and NW , respectively. During the estimation stage, parame-
ters describing the speech and noise statistics consisting of the AR coefficients
and the excitation variances are estimated. In comparison to NMF based ap-
proaches which model the noisy observation using a single model containing
the weighted linear combination of spectral basis vectors, codebook based
approaches model the noisy signal using NSNW models. These models are
later averaged based on how well they describe the noisy observation. The
estimated model averaged parameters can then be used to parametrically
represent the PSD of the speech and noise as

φss(ω) =
σ2

u
|As(ω)|2 φww(ω) =

σ2
v

|Aw(ω)|2

where σ2
u and σ2

v represents the speech and noise excitation variance, respec-
tively, and As(ω) = 1 + ∑P

p=1 ape−ıpω, Aw(ω) = 1 + ∑Q
q=1 cqe−ıqω where

{ap}p=1...P and {cq}q=1...Q are the AR coefficients corresponding to speech
and noise, respectively. The number of parameters to be trained in the code-
book based approach is smaller in comparison to the NMF based approaches
as the AR coefficients are typically in the order of 14. In paper F, we have
proposed to parametrically represent the basis vectors used within the NMF
framework using AR coefficients. We show in this paper that if we represent
a frame of noisy signal in the time domain as a sum of autoregressive pro-
cesses, maximising the likelihood corresponds to performing NMF of the ob-
served data using the IS divergence as the optimisation criterion. The spectral
basis matrix in this case would contain the spectral envelopes corresponding
to the AR coefficients and the activation coefficients can be interpreted as the
variance of the excitation noise that excites the AR filter.

Another class of supervised methods for the enhancement of speech which
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has gained attention recently are the deep neural network (DNN) based
methods [116, 117]. This class of methods formulates speech enhancement as
a learning problem where the system uses the training data to learn discrimi-
native patterns of speech and noise [116]. A majority of these algorithms can
be divided into three components: 1) learning machines which includes the
different DNNs (such as multi-layer perceptrons [118], convolutional neu-
ral networks [119], recurrent neural networks [120], generative adversarial
networks [121] etc.) 2) training targets that specifies the target that is to be
achieved and 3) acoustic features which are fed as an input in to the neural
network. Apart form DNN based methods for speech enhancement in noise,
they have also been successfully used in source separation in single chan-
nel [122] and multi channel [123] scenarios, and dereverberation [124, 125].

3.3 Application to hearing aids

The main motive of this thesis is to develop speech enhancement algorithms
for HA applications. Often, a hearing impaired person is equipped with two
HAs, at the left and right ear [126, 127]. The two HAs can work indepen-
dently or together. Recent developments in HA technology makes it possible
for the HAs to communicate with each other and exchange information. This
enables the use of binaural processing algorithms. Binaural processing is ad-
vantageous due to the usage of spatial information [128]. Fig. 13 shows a
possible schematic of the signal processing system in such cases. The noisy
signals received at the left and right ears are denoted by zl(n) and zr(n), re-
spectively, as shown in Fig. 12. The noisy signals at both the ears are used
jointly to estimate the parameters/statistics of the speech/noise signal. The
estimated parameters/statistics are consequently used at left/right ears to
filter the noisy signals zl(n) and zr(n) to obtain ŝl(n) and ŝr(n) respectively.
There are cases where the HA at each ear have multiple microphones. Some
of the the algorithms proposed for this case includes [43, 129, 130]. In [43] a
multi-channel Wiener filter is adapted for usage in binaural hearing aids, and
this method was shown to preserve the binaural cues from the desired source
while distorting the binaural cues of the interfering sources. However, in this
thesis we will restrict ourselves to the case where we have a single obervation
per HA. This situation can be observed in in-the-ear HAs as the the limited
space restricts the number of microphones that can be used. One of the first
algorithms to propose such a two-input two-output system was in 1996 by
Ernst and Dorbecker [131]. The enhancement system here consisted of two
stages, the first stage performed a two channel spectral subtraction and a
post filter based on the Wiener filtering techniques is applied in the second
stage. The spectral subtraction performed here was performed using a com-
mon noise PSD estimate that was obtained using the observation at both the
left and right channels. The binaural cues, ITD and ILD, were not preserved
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3. Enhancement of Speech

in this case as a result of different gains being applied on different channels.
The estimation of noise PSD in this case was based on the uncorrelatedness
assumption. This was later extended to deal with arbitary coherence in [132].
Some of the more recent approaches to perform dual channel speech en-
hancement includes the work done in [133–135]. In [134], the noisy signals at
the left and right channels are fed into a superdirective beamformer to obtain
an enhanced signal. This signal is then used as the clean reference signal to
estimate the gain applied onto the noisy signal. The two stage enhancement
system in [135] uses equalisation cancellation theory to estimate the interfer-
ence signals in the first stage and applies a Wiener filter in the second stage.
The methods in [134, 135] used a common gain on both the channels to pre-
serve the inter-aural cues. In this thesis, papers A and B are based on the
schematic shown in Fig. 13. In paper A, the noisy signals at the left and right
ears were filtered using a Kalman filter and filter parameters required for the
functioning of the Kalman filter were estimated jointly using the information
on the left and right channels. The filter parameters here consisted of the
AR coefficients and the excitation variance corresponding to the speech and
noise as well as the pitch parameters corresponding to the clean speech. Us-
ing the pitch information was found to improve the performance as it could
better explain the voiced portions of speech. In paper A, we have proposed
an optimal way to estimate these parameters under the assumption that the
speaker of interest is located in the nose direction of the listener and have also
demonstrated the benefit of using the left and right channels jointly to esti-
mate the filter parameters. In paper B, we extended this to take into account
the cases where the speaker of interest is not constrained to be located in the
nose direction of the listener. Taking into account this information, leads to
better modelling and enhancement of the noisy signal when the speaker of
interest is not located in the nose direction of the listener.

Fig. 12: Binaural noisy signals.

Fig. 13: Basic block diagram of dual channnel
enhancement framework.

23



3.4 Evaluation of processed and degraded speech

During the design of speech enhancement algorithms, it is desirable to test
the quality/intelligibilty of the processed and degraded signal using certain
measures. These measures can be broadly categorised into subjective [136]
and objective measures [137]. In this section we will introduce few of the
subjective and objective measures that are commonly used in the field of
speech enhancement, and also in this thesis. Finally, we will give a brief
introduction on non-intrusive speech intelligibility prediction.

Subjective measures

The end product of most of the speech enhancement algorithms is to be heard
by a human e.g. in HAs. In these scenarios, it is preferred for the algorithm
to be tested by a set of humans. The processed audio files are tested on
basis of different aspects. Two main aspects used commonly for the speech
enhancement algorithms are quality [138] and intelligibility [139]. One way
to measure the quality is using the MUSHRA (MUltiple Stimuli with Hid-
den Reference and Anchor) tests [140] which has been used in the field of
speech coding. For speech enhancement, MUSHRA tests can be conducted
by presenting the test subjects with different processed signals along with
the reference signal which is the clean signal. Fig. A.6 shows an example of
the graphical user interface (GUI) [141] that is presented to the test subjects.
The listeners are then asked to give the score to different signals after hearing
the reference signal. Another quantity that is of particular interest to the HA
industry is to measure the intelligibilty of the processed signal. Obtaining
an improvement in intelligibility has been found to be more challenging in
comparison to improving the quality [142]. While measuring the intelligibil-
ity, the test subjects are asked to listen to sentences with a certain syntax that
contain information [143, 144] and asked to identify the information. The
sentences generally consists of the noisy signals and the processed signals
played pack in random order. One example of such a sentence would be: Bin
Blue by S 5 please. The listeners are then asked to identify the color, alphabet
and the number in the sentence using a GUI as shown in Fig. 15. Based on
the answers given by the subject, one can create a mean intelligibility curve
giving an indication whether the processing algorithm increases/decreases
intelligibility relative to the unprocessed signal. Even though, the subjective
tests give us a very good indication of the processing capabilities of the en-
hancement algorithm, a disadvantage of the subjective tests is the need of
resources such as time and enough participants. Therefore, for practical pur-
poses, it is handy to have objective measures that can be run on a computer.

24



3. Enhancement of Speech

Fig. 14: Graphical user interface for conducting MUSHRA tests [141].

Fig. 15: Graphical user interface for conducting the intelligibility tests.
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Objective measures

A commonly used objective measure for measuring the speech enhancement
performance is the segmental signal to noise ratio which is defined as [80]

segSNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 s2(lM + m)

∑M
m=1(s(lM + m)− ŝ(lM + m))2

(17)

where L denotes the number of frames. This measure indicates how close
the enhanced signal is to the clean signal in a MSE sense. Along with the
segmental signal to noise ratio, some of the other commonly used objective
measures are the Segmental speech SNR (spSNR) and Segmental noise re-
duction (segNR) which are defined as [80]

spSNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 s2(lM + m)

∑M
m=1(s(lM + m)− s̃(lM + m))2

(18)

segNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 e(lM + m)2

∑M
m=1 ẽ(lM + m)2

(19)

where s̃(n) is the filtered clean speech and ẽ(n) is the filtered noise signal.
Eventhough these measures are useful, they might not really correlate with
our hearing mechanism. A widely used measure that correlates with our
hearing is the Itakura-Saito divergence [106] which is defined as

dIS =
1

2π

∫ π

−π

(
φss(ω)

φŝŝ(ω)
− log

φss(ω)

φŝŝ(ω)
− 1

)
dω. (20)

Other objective measures that have been designed to correlate with the hu-
man hearing are short time objective intelligibilty (STOI) and perceptual eval-
uation of subjective quality (PESQ) [145]. STOI gives an indication regarding
the intelligibility of the processed signal and is computed by decomposing
the reference and the processed signals into one-third octave bands and tak-
ing the correlation between short time temporal envelope segments of the
corresponding signals. PESQ, which has been used in speech coding appli-
cations, gives a measure of the quality. As the objective measures are useful
in giving us an indication regarding the quality or intelligibility of the re-
ceived signal, they can be used as an indicator in the speech enhancement
system within the HA when the intelligibility goes below a particular thresh-
old. Both these measures, PESQ and STOI, are intrusive, meaning that they
need access to the clean signal. However, in situations e.g. in HAs, we have
at our disposal only the noisy signals. In such cases, it is desirable to predict
the intelligibility just using the noisy signal.
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4. Contributions

Non intrusive Speech Intelligibility Prediction

The objective measures that we have explained in the previous section re-
quires the access to the clean speech or noise signal. However, in practical
scenarios, e.g., in a HA this is seldom true. In such cases, it might be required
to measure the quality/intelligibility of the degraded signal with access only
to the degraded signal and the methods capable of doing so are termed as
non-intrusive. Non-intrusive methods have been proposed for measuring
quality [146] and intelligibilty [147, 148]. In [148] the intelligibility predic-
tion is done using modulation spectral representation of the degraded signal.
These methods were mainly designed for signals degraded by reverberation
but were also found to work in the presence of noise. Non-intrusive speech
intelligibility prediction algorithms dedicated for signals degraded by noise
have been proposed in [149, 150]. In this thesis, we have proposed a non-
intrusive method for intelligibility prediction in paper G which is based on
estimating the spectral features of speech and noise which is later given as
an input to the intrusive STOI measure.

4 Contributions

This thesis mainly deals with the enhancement of speech in presence of noise
with applications to hearing aids. In this thesis, we have proposed both
single channel and dual channel enhancement algorithms, whose schemat-
ics are given by Fig. 10 and 13, respectively. The main body of this thesis
is constituted by papers A-G. The papers D and F deal with single channel
speech enhancement algorithms whereas papers A and B deal with binaural
enhancement of speech using the schematic shown in Fig. 13. In addition
to these, we have carried out an evaluation of state of the art noise PSD es-
timators for single channel speech enhancement in paper E. In paper G, we
propose a method for non-intrusive speech intelligibility prediction which
gives us an indication of when to apply the speech enhancement algorithms.
Finally, in paper C, we investigate on how an external device, e.g , a micro-
phone array can be used along with a HA to better enhance the speech signal.
We now give a more detailed description regarding the contributions of the
individual papers.

Paper A The first paper in this thesis deals with binaural enhancement of
speech in the presence of babble noise. In this paper, we proposed a dual
channel speech enhancement framework which takes into account the un-
voiced speech as well as voiced speech. The method proposed in this paper
was based on Kalman filtering of speech where the filter parameters (con-
sisting of the AR coefficients and excitation variances of speech and noise)
were estimated jointly from the noisy signals at the left and right ears. The
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proposed method was found to considerably improve the objective measures
such as STOI and PESQ. Moreover, we conducted subjective listening tests to
measure the performance of the proposed enhancement framework in terms
of intelligibility and quality. Subjective tests indicated an improvement of
upto 15% in intelligibility.

Paper B The dual channel enhancement method in Paper A was proposed
based on the assumption that the speaker of interest is located in front of
the listener. This assumption may not always hold true and it was shown
in [151, 152], that the hearing impaired users in some cases tend to orient
their head away from the listener. Thus, in this paper we have proposed a
model based method for estimating the filter parameters in such a scenario.
In this paper, we model the speech signals at the left and right ears using
an AR process having identical AR coefficients but different excitation vari-
ances. A codebook based method is proposed to estimate these parameters,
and the excitation variances are estimated using the the multiplicative up-
date method. Taking into account the position of the target speech using the
proposed method led to improvements in modelling and enhancement of the
noisy signal.

Paper C As the number of microphones present in a HA are limited due to
the space and power constraints present in the HA, the beamforming capa-
bilities to select a particular source of interest may be limited. In this paper,
we investigated on how using an external device, e.g., a microphone array
can benefit the HA user. This situation can be encountered when the HA
user is participating in a meeting with colleagues or sitting at a dinner table
with family. In this paper, we proposed a model-based approach using the
model proposed in paper F to control the beam pattern of this external device
based on the look direction of the HA user. It was shown by simulations, the
robustness of the proposed method at very low SNRs in a reverberant sce-
nario. Moreover, experiments were conducted to show the benefits of using
this framework for binaural/monaural enhancement of speech.

Paper D In this paper, we looked into the problem of noise PSD estimation
which is an important block in many speech enhancement algorithms. A
model based noise PSD estimator that allows us to include prior information
regarding the spectral envelope of speech and noise is proposed. A varia-
tional Bayesian framework was used to estimate the posterior density of the
noise component whose second order moment was calculated to estimate the
noise PSD. This method of estimating the noise PSD was shown to obtain
better spectral estimation accuracy than state of the art methods for noise
PSD estimation while also having zero tracking delay.
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5. Conclusion and directions for future research

Paper E As we have mentioned earlier, noise PSD estimation forms a critical
component in many of the speech enhancement systems. In this paper, we
evaluated state of the art noise PSD estimation algorithms along with the
model based approach we proposed in paper D, in terms of enhancement
performance and spectral estimation accuracy. The model based approach
proposed in paper D was shown to outperform the state of the art noise
PSD estimators in terms of the spectral estimation accuracy and enhancement
performance.

Paper F In this paper, we have investigated on a parametric representation
of the spectral basis vectors for NMF based speech enhancement. The spectral
basis vectors are here parametrically represented using AR coefficients. This
parametrisation was motivated by the source-filter model for speech produc-
tion. In this work we show that if we model a frame of the noisy signal in the
time domain as a sum of AR processes, the maximum likelihood estimation
of the activation coefficients corresponds to performing NMF of the observed
noisy periodogram into a basis matrix and activation coefficient vector us-
ing IS divergence as the optimisation criterion. Using objective measures, we
show the benefit of parametric representation of basis vectors.

Paper G In this paper, we looked into the problem of non intrusive speech
intelligibility prediction. The method proposed in this paper was based on
STOI which measures the similarity between short time temporal envelope
segments of the clean and degraded speech which are decomposed into DFT
- based one third octave bands. In this paper, we propose to estimate the
spectral components of the clean and noise signal using a codebook based
approach. The estimated components are then used to construct the refer-
ence and degraded spectrum used in the traditional STOI measure. It was
demonstrated through experiments that the proposed method was able to
predict well the scores obtained by STOI using oracle information. Listen-
ing tests were also conducted to validate the performance of the method for
measuring the intelligibility over a wide range of SNRs.

5 Conclusion and directions for future research

The main outcome of this thesis was the proposal of speech enhancement
methods that takes into account the speech production model, and the es-
timation of the parameters explaining this model. The a priori information
used to build the models here consisted of the AR coefficients explaining
the signal. The methods proposed in this thesis can be categorised into dual
channel and single channel methods. We have shown by means of objective
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experiments, the benefit of taking into account more channels for the estima-
tion of the filter parameters and how they can be used for binaural speech
enhancement in HAs. Apart from these, we have also proposed a method
for noise PSD estimation and non-intrusive speech intelligibility prediction
based on the above model. The proposed system when trained to the noise
type or speaker of interest was, found to give better results in comparison to
the case when the testing data consisted of speech and noise type that was
not included for training. One area of further research would be to investi-
gate the possibilities of training these models online when we have speech
only or noise only scenarios. In paper C, we had investigated on how an
external device could be used to benefit the HA user by controlling it based
on the look direction of the HA user. We believe that this framework helps us
in exploring many future possibilities such as providing an enhanced signal
for estimating the clean speech statistics and providing us data for training
the models for clean speech and noise. Moreover, we would also like to men-
tion about the possibility of taking into account the human perception while
performing training of the speech and noise codebooks. We believe that this
needs to be further investigated as the current method of training the speech
and noise AR coefficients does not exploit the difference in how the speech
and noise is perceived by humans. Finally, we would like to remark that
the computational complexity of these algorithms have to be analysed and
further optimised.
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1. Introduction

Abstract

Speech intelligibility is often severely degraded among hearing impaired individuals
in situations such as the cocktail party scenario. The performance of the current hear-
ing aid technology has been observed to be limited in these scenarios. In this paper,
we propose a binaural speech enhancement framework that takes into consideration
the speech production model. The enhancement framework proposed here is based on
the Kalman filter that allows us to take the speech production dynamics into account
during the enhancement process. The usage of a Kalman filter requires the estima-
tion of clean speech and noise short term predictor (STP) parameters, and the clean
speech pitch parameters. In this work, a binaural codebook-based method is proposed
for estimating the STP parameters, and a directional pitch estimator based on the
harmonic model and maximum likelihood principle is used to estimate the pitch pa-
rameters. The proposed method for estimating the STP and pitch parameters jointly
uses the information from left and right ears, leading to a more robust estimation of
the filter parameters. Objective measures such as PESQ and STOI have been used to
evaluate the enhancement framework in different acoustic scenarios representative of
the cocktail party scenario. We have also conducted subjective listening tests on a set
of nine normal hearing subjects, to evaluate the performance in terms of intelligibil-
ity and quality improvement. The listening tests show that the proposed algorithm,
even with access to only a single channel noisy observation, significantly improves
the overall speech quality, and the speech intelligibility by up to 15%.

1 Introduction

Normal hearing (NH) individuals have the ability to concentrate on a sin-
gle speaker even in the presence of multiple interfering speakers. This phe-
nomenon is termed as the cocktail party effect. However, hearing impaired
individuals lack this ability to separate out a single speaker in the presence
of multiple competing speakers. This leads to listener fatigue and isolation
of the hearing aid (HA) user. Mimicking the cocktail party effect in a digital
HA is very much desired in such scenarios [1]. Thus, to help the HA user to
focus on a particular speaker, speech enhancement has to be performed to re-
duce the effect of the interfering speakers. The primary objectives of a speech
enhancement system in HA are to improve the intelligibility and quality of
the degraded speech. Often, a hearing impaired person is fitted with HAs at
both ears. Modern HAs have the technology to wirelessly communicate with
each other making it possible to share information between the HAs. Such a
property in HAs enables the use of binaural speech enhancement algorithms.
The binaural processing of noisy signals has shown to be more effective than
processing the noisy signal independently at each ear due to the utilization
of spatial information [2]. Apart from a better noise reduction performance,
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binaural algorithms make it possible to preserve the binaural cues which
contribute to spatial release from masking [3]. Often, HAs are fitted with
multiple microphones at both ears. Some binaural speech enhancement al-
gorithms developed for such cases are [4, 5]. In [4], a multichannel Wiener
filter for HA applications is proposed which results in a minimum mean
squared error (MMSE) estimation of the target speech. These methods were
shown to distort the binaural cues of the interfering noise while maintaining
the binaural cues of the target. Consequently, a method was proposed in [6]
that introduced a parameter to trade off between the noise reduction and cue
preservation. The above mentioned algorithms have reported improvements
in speech intelligibility.

We are here mainly concerned with the binaural enhancement of speech
with access to only one microphone per HA [7–9]. More specifically, this
paper is concerned with a two-input two-output system. This situation is
encountered in in-the-ear (ITE) HAs, where the space constraints limit the
number of microphones per HA. Moreover, in the case where we have multi-
ple microphones per HA, beamforming can be applied individually on each
HA to form the two inputs, which can then be processed further by the pro-
posed dual channel enhancement framework. One of the first approaches to
perform dual channel speech enhancement was that of [7] where a two chan-
nel spectral subtraction was combined with an adaptive Wiener post-filter.
This led to a distortion of the binaural cues, as different gains were applied
to the left and right channels. Another approach to performing dual chan-
nel speech enhancement was proposed in [8] and this solution consisted of
two stages. The first stage dealt with the estimation of interference signals
using an equalisation-cancellation theory, and the second stage was an adap-
tive Wiener filter. The intelligibility improvements corresponding to the algo-
rithms stated above have not been studied well. These algorithms perform the
enhancement in the frequency domain by assuming that the speech and noise
components are uncorrelated, and do not take into account the nature of the
speech production process. In this paper, we propose a binaural speech en-
hancement framework that takes the speech production model into account.
The model used here is based on the source-filter model, where the filter cor-
responds to the vocal tract and the source corresponds to the excitation signal
produced by the vocal chords. Using a physically meaningful model gives
us a sufficiently accurate way for explaining how the signals were generated,
but also helps in reducing the number of parameters to be estimated. One
way to exploit this speech production model for the enhancement process is
to use a Kalman filter, as the speech production dynamics can be modelled
within the Kalman filter using the state space equations while also account-
ing for the background noise. Kalman filtering for single channel speech
enhancement in the presence of white background noise was first proposed
in [10]. This work was later extended to deal with coloured noise in [11, 12].
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One of the main limitations of Kalman filtering based enhancement is that
the state space parameters required for the formulation of the state space
equations need to be known or estimated. The estimation of the state space
parameters is a difficult problem due to the non-stationary nature of speech
and the presence of noise. The state space parameters are the autoregressive
(AR) coefficients and the excitation variances for the speech and noise respec-
tively. Henceforth, AR coefficients along with the excitation variances will be
denoted as the short term predictor (STP) parameters. In [11, 12] these STP
parameters were estimated using an approximated expectation-maximisation
algorithm. However, the performance of these algorithms were noted to be
unsatisfactory in non-stationary noise environments. Moreover, these algo-
rithms assumed the excitation signal in the source-filter model to be white
Gaussian noise. Even though this assumption is appropriate for modelling
unvoiced speech, it is not very suitable for modelling voiced speech. This
issue was handled in [13] by using a modified model for the excitation sig-
nal capable of modelling both voiced and unvoiced speech. The usage of
this model for the enhancement process required the estimation of the pitch
parameters in addition to the STP parameters. This modification of the exci-
tation signal was found to improve the performance in voiced speech regions,
but the performance of the algorithm in the presence of non-stationary back-
ground noise was still observed to be unsatisfactory. This was primarily due
to the poor estimation of the model parameters in non-stationary background
noise. The noise STP parameters were estimated in [13] by assuming that the
first 100 milli seconds of the speech segment contained only noise and the
parameters were then assumed to be constant.

In this work, we introduce a binaural model-based speech enhancement
framework which addresses the poor estimation of the parameters explained
above. We here propose a binaural codebook-based method for estimating
the STP parameters, and a directional pitch estimator based on the harmonic
model for estimating the pitch parameters. The estimated parameters are
subsequently used in a binaural speech enhancement framework that is based
on the signal model used in [13]. Codebook-based approaches for estimating
STP parameters in the single channel case have been previously proposed
in [14], and has been used to estimate the filter parameters required for the
Kalman filter for single channel speech enhancement in [15]. In this work we
extend this to the dual channel case, where we assume that there is a wireless
link between the HAs. The estimation of STP and pitch parameters using the
information on both the left and right channels leads to a more robust esti-
mation of these parameters. Thus, in this work, we propose a binaural speech
enhancement method that is model-based in several ways as 1) the state space
equations involved in the Kalman filter takes into account the dynamics of
the speech production model; 2) the estimation of STP parameters utilised in
the Kalman filter is based on trained spectral models of speech and noise; and
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3) the pitch parameters used within the Kalman filter are estimated based on
the harmonic model which is a good model for voiced speech. We remark
that this paper is an extension of previous conference papers [16, 17]. In
comparison to [16, 17], we have used an improved method for estimating the
excitation variances. Moreover, the proposed enhancement framework has
been evaluated in more realistic scenarios and subjective listening tests have
been conducted to validate the results obtained using objective measures.

2 Problem formulation

In this section, we formulate the problem and state the assumptions that have
been used in this work. The noisy signals at the left/right ears at time index
n are denoted by

zl/r(n) = sl/r(n) + wl/r(n) ∀n = 0, 1, 2 . . . , (A.1)

where zl/r, sl/r and wl/r denote the noisy, clean and noise components at the
left/right ears, respectively. It is assumed that the clean speech component
is statistically independent with the noise component. Our objective here is
to obtain estimates of the clean speech signals denoted as ŝl/r(n), from the
noisy signals. The processing of the noisy speech using a speech enhance-
ment system to estimate the clean speech signal requires the knowledge of
the speech and noise statistics. To obtain this, it is convenient to assume a
statsitical model for the speech and noise components, making it easier to
estimate the statistics from the noisy signal. In this work, we model the clean
speech as an AR process, which is a common model used to represent the
speech production process [18].

We also assume that the speech source is in the nose direction of the
listener, so that the clean speech component at the left and right ears can be
represented by AR processes having the same parameters,

sl/r(n) =
P

∑
i=1

aisl/r(n− i) + u(n), (A.2)

where a = [−a1, . . . ,−aP]
T is the set of speech AR coefficients, P is the order

of the speech AR process and u(n) is the excitation signal corresponding to
the speech signal. Often, u(n) is modelled as white Gaussian noise with
variance σ2

u and this will be referred to as the unvoiced (UV) model [11]. It
should be noted that we do not model the reverberation here. Similar to the
speech, the noise components are represented by AR processes as,

wl/r(n) =
Q

∑
i=1

ciwl/r(n− i) + v(n), (A.3)

50



3. Proposed Enhancement framework

Kalman
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Parameter
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zl(n)

zr(n)

ŝl(n)

ŝr(n)

Fig. A.1: Basic block diagram of the binaural enhancement framework.

where c = [−c1, . . . ,−cQ]
T is the set of noise AR coefficients, Q is the order

of the noise AR process and v(n) is white Gaussian noise with variance σ2
v .

As we have seen previously, the excitation signal, u(n), in (A.2) was mod-
elled as a white Gaussian noise. Although this assumption is suitable for rep-
resenting unvoiced speech, it is not appropriate for modelling voiced speech.
Thus, inspired by [13], the enhancement framework here models u(n) as

u(n) = b(p)u(n− p) + d(n), (A.4)

where d(n) is white Gaussian noise with variance σ2
d , p is the pitch period

and b(p) ∈ (0, 1) is the degree of voicing. In portions containing predom-
inantly voiced speech, b(p) is assumed to be close to 1 and the variance of
d(n) is assumed to be small, whereas in portions of unvoiced speech, b(p)
is assumed to be close to zero so that (A.2) simplifies into the conventional
unvoiced AR model. The excitation model in (A.4) when used together with
(A.2) is referred to as the voiced-unvoiced (V-UV) model. This model can be
easily incorporated into the speech enhancement framework by modifying
the state space equations. The incorporation of the V-UV model into the en-
hancement framework requires the pitch parameters, p and b(p), in addition
to the STP parameters to be estimated from the noisy signal. We would like
to remark here that these parameters are usually time varying in the case of
speech and noise signals. Herein, these parameters are assumed to be quasi-
stationary, and are estimated for every frame index fn = 
 n

M �+ 1, where M
is the frame length. The estimation of these parameters will be explained in
the subsequent section.

3 Proposed Enhancement framework
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3.1 Overview

The enhancement framework proposed here assumes that there is a commu-
nication link between the two HAs that makes it possible to exchange infor-
mation. Fig. A.1 shows the basic block diagram of the proposed enhancement
framework. The noisy signals at the left and right ears are enhanced using a
fixed lag Kalman smoother (FLKS), which requires the estimation of STP and
pitch parameters. These parameters are estimated jointly using the informa-
tion in the left and right channels. The usage of identical filter parameters
at both the ears leads to the preservation of binaural cues. In this paper, the
details regarding the proposed binaural framework will be explained and the
performance of the binaural framework will be compared with that of the bi-
lateral framework, where it is assumed that there is no communication link
between the two HAs which leads to the filter parameters being estimated
independently at each ear. We will now explain the different components of
the proposed enhancement framework in detail.

3.2 FLKS for speech enhancement

As alluded to in the introduction, a Kalman filter allows us to take into ac-
count the speech production dynamics in the form of state space equations
while also accounting for the observation noise. In this work, we use FLKS
which is a variant of the Kalman filter. A FLKS gives a better performance
than a Kalman filter, but has a higher delay. In this section, we will explain
the functioning of FLKS for both the UV and V-UV models that we have in-
troduced in Section 2. We assume here that the model parameters are known.
For the UV model, the usage of a FLKS (with a smoother delay of ds ≥ P)
from a speech enhancement perspective requires the AR signal model in (A.2)
to be written as a state space form as shown below

s̄l/r(n) = A( fn)s̄l/r(n− 1) + Γ1u(n), (A.5)

where s̄l/r(n) = [sl/r(n), sl/r(n− 1), . . . , sl/r(n− ds)]T is the state vector con-
taining the ds + 1 recent speech samples, Γ1 = [1, 0, . . . , 0]T is a (ds + 1)× 1
vector, u(n) = d(n) and A( fn) is the (ds + 1)× (ds + 1) speech state transition
matrix written as

A( fn) =

⎡
⎣−a( fn)T 0T 0

IP 0 0

0 Ids−P 0

⎤
⎦ . (A.6)

The state space equation for the noise signal in (B.3) is similarly written as

w̄l/r(n) = C( fn)w̄l/r(n− 1) + Γ2v(n), (A.7)
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where w̄l/r(n) = [wl/r(n), wl/r(n− 1), . . . , wl/r(n−Q+ 1)]T , Γ2 = [1, 0, . . . , 0]T

is a Q× 1 vector and

C( fn) =

[[
c1( fn), . . . , cQ−1( fn)

]
cQ( fn)

IQ−1 0

]
(A.8)

is a Q×Q matrix. The state space equations in (A.5) and (A.7) are combined
to form a concatenated state space equation for the UV model as[

s̄l/r(n)
w̄l/r(n)

]
=

[
A( fn) 0

0 C( fn)

] [
s̄l/r(n− 1)
w̄l/r(n− 1)

]
+

[
Γ1 0

0 Γ2

] [
d(n)
v(n)

]
which can be rewritten as

x̄UV
l/r(n) � FUV( fn)x(n− 1) + Γ3y(n), (A.9)

where x̄UV
l/r(n) =

[
s̄l/r(n)T w̄l/r(n)T]T is the concatenated state space vector

and FUV( fn) is the concatenated state transition matrix for the UV model. The
observation equation to obtain the noisy signal is then written as

zl/r(n) = ΓUVT
x̄UV

l/r(n), (A.10)

where ΓUV =
[
ΓT

1 ΓT
2
]T . The state space equation (A.9) and the observation

equation (A.10) can then be used to formulate the prediction and correction
stages of the FLKS for the UV model. We will now explain the formulation
of the state space equations for the V-UV model. The state space equation for
the V-UV model of speech is written as

s̄l/r(n) = A( fn)s̄l/r(n− 1) + Γ1u(n), (A.11)

where the excitation signal in (A.4) is also modelled as a state space equation
as

ū(n) = B( fn)ū(n− 1) + Γ4d(n), (A.12)

where ū(n) = [u(n), u(n− 1), . . . , u(n− pmax + 1)]T , pmax is the maximum
pitch period in integer samples, Γ4 = [1, 0 . . . 0]T is a (pmax)× 1 vector and

B( fn) =

[
[b(1), . . . , b(pmax − 1)] b(pmax)

Ipmax−1 0

]
(A.13)

is a pmax × pmax matrix where b(i) = 0 ∀i = p( fn). The concatenated state
space equation for the V-UV model is⎡

⎣ s̄l/r(n)
u(n + 1)
w̄l/r(n)

⎤
⎦ =

⎡
⎣A( fn) Γ1ΓT

2 0

0 B( fn) 0

0 0 C( fn)

⎤
⎦
⎡
⎣ s̄l/r(n− 1)

ū(n)
w̄l/r(n− 1)

⎤
⎦

+

⎡
⎣ 0 0

Γ4 0

0 Γ2

⎤
⎦ [

d(n + 1)
v(n)

]
,
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which can also be written as

x̄V-UV
l/r (n + 1) � FV-UV( fn)x̄

V-UV
l/r (n) + Γ5g(n + 1), (A.14)

where x̄V-UV
l/r (n + 1) = [s̄l/r(n)T ū(n + 1)T w̄l/r(n)T ]T is the concatenated state

space vector, g(n + 1) = [d(n + 1) v(n)]T and FV-UV( fn) is the concatenated
state transition matrix for the V-UV model. The observation equation to
obtain the noisy signal is written as

zl/r(n) = ΓV-UVT
x̄V-UV

l/r (n + 1), (A.15)

where ΓV-UV =
[
ΓT

1 0T ΓT
2
]T . The state space equation (A.14) and the observa-

tion equation (A.15) can then be used to formulate the prediction and cor-
rection stages of the FLKS for the V-UV model (see Appendix 7.1). It can
be seen that the formulation of the prediction and correction stages of the
FLKS requires the knowledge of the speech and noise STP parameters, and
the clean speech pitch parameters. The estimation of these model parameters
are explained in the subsequent sections.

3.3 Codebook-based binaural estimation of STP parameters

As mentioned in the introduction, the estimation of the speech and noise STP
parameters forms a very critical part of the proposed enhancement frame-
work. These parameters are here estimated using a codebook-based ap-
proach. The estimation of STP parameters using a codebook-based approach,
when having access to a single channel noisy signal has been previously pro-
posed in [14, 19]. Here, we extend this to the case when we have access to
binaural noisy signals. Codebook-based estimation of STP parameters uses
the a priori information about speech and noise spectral shapes stored in
trained speech and noise codebooks in the form of speech and noise AR co-
efficients, respectively. The codebooks offer us an elegant way of including
prior information about the speech and noise spectral models e.g. if the en-
hancement system present in the HA has to operate in a particular noisy
environment, or mainly process speech from a particular set of speakers, the
codebooks can be trained accordingly. Contrarily, if we do not have any spe-
cific information regarding the speaker or the noisy environment, we can still
train general codebooks from a large database consisting of different speak-
ers and noise types. We would like to remark here that we assume the UV
model of speech for the estimation of STP parameters.

A Bayesian framework is utilised to estimate the parameters for every
frame index. Thus, the random variables (r.v.) corresponding to the param-
eters to be estimated for the f th

n frame are concatenated to form a single
vector θ( fn) = [θs( fn)T θw( fn)T ]T = [a( fn)T σ2

d ( fn) c( fn)T σ2
v ( fn)]T , where

a( fn) and c( fn) are r.v. representing the speech and noise AR coefficients,
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and σ2
d ( fn) and σ2

v ( fn) are r.v. representing the speech and noise excitation
variances. The MMSE estimate of the parameter vector is

θ̂( fn) = E(θ( fn)|zl( fn M), zr( fn M)), (A.16)

where E(·) is the expectation operator and zl/r( fn M) = [zl/r( fn M), . . . ,
zl/r( fn M+m), . . . , zl/r( fn M+ M− 1)]T denotes the f th

n frame of noisy speech
at the left/right ears. The frame index, fn, will be left out for the remainder
of the section for notational convenience. Equation (A.16) is then rewritten
as

θ̂ =
∫

Θ
θ

p(zl , zr|θ) p(θ)
p(zl , zr)

dθ, (A.17)

where Θ denotes the combined support space of the parameters to be esti-
mated. Since we assumed that the speech and noise are independent (see
Section 2), it follows that p(θ) = p(θs)p(θw) where θs and θw speech and
noise STP parameters respectively. Furthermore, the speech and noise AR
coefficients are assumed to be independent with the excitation variances lead-
ing to p(θs) = p(a)p(σ2

d ) and p(θw) = p(c)p(σ2
v ). Using the aforementioned

assumptions, (A.17) is rewritten as

θ̂ =
∫

Θ
θ

p(zl , zr|θ) p(a)p(σ2
d )p(c)p(σ2

v )

p(zl , zr)
dθ. (A.18)

The probability density of the AR coefficients is here modelled as a sum
of Dirac delta functions centered around each codebook entry as p(a) =
1

Ns
∑Ns

i=1 δ(a− ai) and p(c) = 1
Nw

∑Nw
j=1 δ(c− cj), where ai is the ith entry of the

speech codebook (of size Ns), cj is the jth entry of the noise codebook (of size
Nw) . Defining θij � [aT

i σ2
d cT

j σ2
v ]

T , (A.18) can be rewritten as

θ̂=
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

∫
σ2

d

∫
σ2

v

θij
p(zl , zr|θij) p(σ2

d )p(σ2
v )

p(zl , zr)
dσ2

d dσ2
v . (A.19)

For a particular set of speech and noise AR coefficients, ai and cj, it can
be shown that the likelihood, p(zl , zr|θij), decays rapidly from its maximum
value when there is a small deviation in the excitation variances from its
true value [14] (see Appendix 7.2). If we then approximate the true val-
ues of the excitation variances with the corresponding maximum likelihood
(ML) estimates denoted as σ2

d,ij and σ2
v,ij, the likelihood term p(zl , zr|θij) can

be approximated as p(zl , zr|θij)δ(σ
2
d − σ2

d,ij)δ(σ
2
v − σ2

v,ij). Defining θML
ij �

[aT
i σ2

d,ij cT
j σ2

v,ij]
T , and using the above approximation and the property,

∫
x f (x)δ(x−

x0)dx = f (x0), we can rewrite (A.19) as

θ̂ =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

θML
ij

p(zl , zr|θML
ij )p(σ2

d,ij)p(σ2
v,ij)

p(zl , zr)
, (A.20)
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where

p(zl , zr) =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

p(zl , zr|θML
ij )p(σ2

d,ij)p(σ2
v,ij).

Details regarding the prior distributions used for the excitation variances is
given in Appendix 7.3. It can be seen from (A.20) that the final estimate of
the parameter vector is a weighted linear combination of θML

ij with weights

proportional to p(zl , zr|θML
ij )p(σ2

d,ij)p(σ2
v,ij). To compute this, we need to first

obtain the ML estimates of the excitation variances for a given set of speech
and noise AR coefficients, ai and cj, as

{σ2
d,ij, σ2

v,ij} = arg max
σ2

d ,σ2
v≥0

p(zl , zr|θij). (A.21)

For the models we have assumed previously in Section 2, we can show that
zl and zr are statistically independent given θij [20, Sec 8.2.2], which results
in

p(zl , zr|θij) = p(zl |θij)p(zr|θij).

We first derive the likelihood for the left channel, p(zl |θij), using the assump-
tions we have introduced previously in Section 2. Using these assumptions,
frame of speech and noise component associated with the noisy frame zl
denoted by sl and wl respectively can be expressed as

p(sl |σ2
d , ai) ∼ N (0, σ2

d Rs(ai))

p(wl |σ2
v , cj) ∼ N (0, σ2

v Rw(cj)),

where Rs(ai) is the normalised speech covariance matrix and Rw(cj) is the
normalised noise covariance matrix. These matrices can be asymptotically ap-
proximated as circulant matrices which can be diagonalised using the Fourier
transform as [14, 21],

Rs(ai) = FDsi F
H and Rw(cj) = FDwj F

H ,

where F is the discrete Fourier transform (DFT) matrix defined as [F]m,k =
1√
M

exp( ı2πmk
M ), ∀m, k = 0, . . . M− 1 where k represents the frequency index

and

Dsi = (ΛH
si

Λsi )
−1, Λsi = diag

⎛
⎝√MFH

⎡
⎣ 1

ai
0

⎤
⎦
⎞
⎠ ,

Dwj = (ΛH
wj

Λwj)
−1, Λwj = diag

⎛
⎝√MFH

⎡
⎣ 1

cj
0

⎤
⎦
⎞
⎠ .
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Thus we obtain the likelihood for the left channel as,

p(zl |θij) ∼ N (0, σ2
d FDsi F

H + σ2
v FDwj F

H).

The log-likelihood lnp(zl |θij) is then given by

lnp(zl |θij)
c
= ln

∣∣∣σ2
d FDsi F

H + σ2
v FDwj F

H
∣∣∣− 1

2

−1
2

zT
l

[
σ2

d FDsi F
H + σ2

v FDwj F
H
]−1

zl ,
(A.22)

where c
= denotes equality up to a constant and | · | denotes the matrix deter-

minant operator. Denoting 1
Ai

s(k)
as the kth diagonal element of Dsi and 1

Ai
w(k)

as the kth diagonal element of Dwj , (A.22) can be rewritten as

lnp(zl |θij)
c
= ln

K−1

∏
k=0

(
σ2

d
Ai

s(k)
+

σ2
v

Aj
w(k)

)− 1
2

− 1
2

zT
l F

⎡
⎢⎢⎢⎢⎣

σ2
d

Ai
s(0)

+ σ2
v

Aj
w(0)

0 0

0
. . . 0

0 0
σ2

d
Ai

s(K−1)
+ σ2

v

Aj
w(K−1)

⎤
⎥⎥⎥⎥⎦
−1

FHzl .

(A.23)

Defining the modelled spectrum as P̂zij(k) � σ2
d

Ai
s(k)

+ σ2
v

Aj
w(k)

, (A.23) can be

written as

lnp(zl |θij)
c
= ln

K−1

∏
k=0

(
P̂zij(k)

)− 1
2 − 1

2

K−1

∑
k=0

Pzl (k)
P̂zij(k)

, (A.24)

where Pzl (k) is the squared magnitude of the kth element of the vector FHzl .
Thus,

lnp(zl |θij)
c
= −1

2

K−1

∑
k=0

(
Pzl (k)
P̂zij(k)

+ lnP̂zij(k)

)
. (A.25)

We can then see that the log-likelihood is equal, up to a constant, to the
Itakura-Saito (IS) divergence between Pzl and P̂zij which is defined as [22]

dIS(Pzl , P̂zij) =
1
K

K−1

∑
k=0

(
Pzl (k)
P̂zij(k)

− ln
Pzl (k)
P̂zij(k)

− 1

)
,

where Pzl =
[
Pzl (0), . . . , Pzl (K− 1)

]T and P̂zij =
[

P̂zij(0), . . . , P̂zij(K− 1)
]T

.
Using the same result for the right ear, the optimisation problem in (A.21),
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under the aforementioned conditions can be equivalently written as

{σ2
d,ij, σ2

v,ij}=arg min
σ2

d ,σ2
v≥0

[
dIS(Pzl , P̂zij)+dIS(Pzr ,P̂zij)

]
. (A.26)

Unfortunately, it is not possible to get a closed form expression for the exci-
tation variances by minimising (A.26). Instead, this is solved iteratively using
the multiplicative update (MU) method [23]. For notational convenience, P̂zij

can be written as P̂zij = Ps,iσ
2
d + Pw,jσ

2
v , where

Ps,i =
[

1
Ai

s(0)
, . . . , 1

Ai
s(K−1)

]T
, Pw,j =

[
1

Aj
w(0)

, . . . , 1
Aj

w(K−1)

]T
.

Defining Pij =
[
Ps,i Pw,j

]
, and Σ

(l)
ij = [σ

2(l)
d,ij σ

2(l)
v,ij ]

T where σ
2(l)
d,ij and σ

2(l)
v,ij rep-

resents the ML estimates of the excitation variances at the lth MU iteration,
the values for the excitation variances using the MU method are computed
iteratively as [24],

σ
2(l+1)
d,ij ← σ

2(l)
d,ij

PT
s,i

[
(PijΣ

(l)
ij )−2 · (Pzl + Pzr )

]
2PT

s,i(PijΣ
(l)
ij )−1

, (A.27)

σ
2(l+1)
v,ij ← σ

2(l)
v,ij

PT
w,j

[
(PijΣ

(l)
ij )−2 · (Pzl + Pzr )

]
2PT

w,j(PijΣ
(l)
ij )−1

, (A.28)

where (·) denotes the element wise multiplication operator and (·)−2 denotes
element-wise inverse squared operator. The excitation variances estimated
using (A.27) and (A.28) lead to the minimisation of the cost function in (A.26).
Using these results, p(zl , zr|θML

ij ) can be written as

p(zl , zr|θML
ij ) = Ce

(
−M

2

[
dIS(Pzl ,P̂ML

zij
)+dIS(Pzr ,P̂ML

zij
)

])
, (A.29)

where C is a normalisation constant, and P̂ML
zij

= [P̂ML
zij

(0), . . . , P̂ML
zij

(K − 1)]T

and

P̂ML
zij

(k) =
σ2

d,ij

Ai
s(k)

+
σ2

v,ij

Aj
w(k)

. (A.30)

Once the likelihoods are calculated using (A.29), they are substituted into
(A.20) to get the final estimate of the speech and noise STP parameters. Some
other practicalities involved in the estimation procedure of the STP parame-
ters are explained next.
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Adaptive noise codebook

The noise codebook used for the estimation of the STP parameters is usually
generated by using a training sample consisting of the noise type of interest.
However, there might be scenarios where the noise type is not known a priori.
In such scenarios, to make the enhancement system more robust, the noise
codebook can be appended with an entry corresponding to the noise power
spectral density (PSD) estimated using another dual channel method. Here,
we utilise such a dual channel method for estimating the noise PSD [7], which
requires the transmission of noisy signals between the HAs. The estimated
dual channel noise PSD, P̂DC

w (k), is then used to find the AR coefficients and
the variance representing the noise spectral envelope. At first, the autocor-
relation coefficients corresponding to the noise PSD estimate are computed
using the Wiener-Khinchin theorem as

rww(q) =
K−1

∑
k=0

P̂DC
w (k) exp

(
ı2π

qk
K

)
, 0 ≤ q ≤ Q.

Subsequently, the AR coefficients denoted by ĉDC = [1, ĉDC
1 , . . . , ĉDC

Q ]T , and
the excitation variance corresponding to the dual channel noise PSD estimate
are estimated by Levinson-Durbin recursive algorithm [25, p. 100]. The es-
timated AR coefficient vector, ĉDC, is then appended to the noise codebook.
The final estimate of the noise excitation variance can be taken as a mean
of the variance obtained from the dual channel noise PSD estimate and the
variance obtained from (A.20). It should be noted that, in the case a noise
codebook is not available a priori, the speech codebook can be used in con-
junction with dual channel noise PSD estimate alone. This leads to a reduc-
tion in the computational complexity [16]. Some other dual channel noise
PSD estimation algorithms present in the literature are [26, 27], and these can
in principle also be included in the noise codebook.

3.4 Directional pitch estimator

As we have seen previously, the formulation of the state transition matrix in
(A.12) requires the estimation of pitch parameters. In this paper, we propose
a parametric method to estimate the pitch parameters of clean speech present
in noise. The babble noise generally encountered in a cocktail party scenario
is spectrally coloured. As the pitch estimator proposed here is optimal only
for white Gaussian noise signals, pre-whitening is first performed on the
noisy signal to whiten the noise component. Pre-whitening is performed
using the estimated noise AR coefficients as

z̃l/r(n) = zl/r(n) +
Q

∑
i=1

ĉi( fn)zl/r(n− i). (A.31)
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The method proposed here operates on signal vectors z̃l/rc( fn M) ∈ CM de-
fined as z̃l/rc( fn M) = [z̃l/rc( fn M), . . . , z̃l/rc( fn M + M − 1)]T where z̃l/rc(n)
is the complex signal corresponding to z̃l/r(n), which is obtained using the
Hilbert transform. This method uses the harmonic model to represent the
clean speech as a sum of L harmonically related complex sinusoids. Using
the harmonic model, the noisy signal at the left ear in vector of Gaussian
noise w̃lc( fn M), with covariance matrix, Ql( fn), is represented as

z̃lc( fn M) = V( fn)Dlq( fn) + w̃lc( fn M) (A.32)

where q( fn) is a vector of complex amplitudes, V( fn) is the Vandermonde
matrix defined as V( fn) = [v1( fn) . . . vL( fn)], where [vp( fn)]m = eıω0 p( fn M+m−1)

with ω0 being the fundamental frequency and Dl being the directivity matrix
from the source to the left ear. The directivity matrix contains a frequency
and angle dependent delay and magnitude term along the diagonal, designed
using the method in [28, eq. 3]. Similarly, the noisy signal at the right ear is
written as

z̃rc( fn M) = V( fn)Drq( fn) + w̃rc( fn M). (A.33)

The frame index fn will be omitted for the remainder of the section for nota-
tional convenience. Assuming independence between the channels, the like-
lihood, due to Gaussianity can be expressed as

p(z̃lc , z̃rc |ε) = CN (z̃lc ; VDlq, Ql) CN (z̃rc ; VDrq, Qr) (A.34)

where ε is the parameter set containing ω0, the complex amplitudes, the
directivity matrices and the noise covariance matrices. Assuming that the
noise is white in both the channels, the likelihood is rewritten as

p(z̃lc , z̃rc |ε) =
e
−
( ||z̃lc−VDl q||2

σ2
l

+
||z̃rc−VDrq||2

σ2
r

)

(πσlσr)2M (A.35)

and the log-likelihood is then

ln p(z̃lc ,z̃rc |ε) = −M(ln πσ2
l + ln πσ2

r )

−
(
||z̃lc −VDlq||2

σ2
l

+
||z̃rc −VDrq||2

σ2
r

)
.

(A.36)

Assuming the fundamental frequency to be known, the ML estimate of the
amplitudes is obtained as

q̂ = (HHH)−1HHy, (A.37)

where H =
[
(VDl)

T (VDr)
T
]T

and y = [z̃T
lc z̃T

rc ]
T . These amplitude estimates

are further used to estimate the noise variances as

σ̂2
l/r =

1
M
|| ˆ̃wl/rc ||2 =

1
M
||z̃l/rc −VDl/rq̂||2. (A.38)
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Fig. A.2: Fundamental frequency estimates using the proposed method (SNR = 3 dB). The red
line indicates the true fundamental frequency and the blue aterisk denotes the estimated funda-
mental frequency.

Substituting these into (A.36), we obtain the log-likelihood as

ln p(z̃lc , z̃rc |ε) c
= −M(ln σ̂2

l + ln σ̂2
r ). (A.39)

The ML estimate of the fundamental frequency is then

ω̂0 = arg min
ω0∈Ω0

(ln σ̂2
l + ln σ̂2

r ), (A.40)

where Ω0 is the set of candidate fundamental frequencies. This leads to
(A.40) being evaluated on grid of candidate fundamental frequencies. The
pitch is then obtained by rounding the reciprocal of the estimated fundamen-
tal frequency in Hz. We remark that the model order L is estimated here
using the maximum a posteriori (MAP) rule [29, p. 38]. The degree of voic-
ing is calculated by taking the ratio between the energy (calculated as the
square of the l2-norm) present at integer multiples of the fundamental fre-
quency and the total energy present in the signal. This is motivated by the
observation that, in case of highly voiced regions, the energy of the signal
will be concentrated at the harmonics. Figures A.2 and A.3 show the pitch
estimation plot from the binaural noisy signal (SNR = 3 dB) for the proposed
method (which uses information from the two channels), and a single chan-
nel pitch estimation method which uses only the left channel, respectively.
The red line denotes the true fundamental frequency and the blue asterisk
denotes the estimated fundamental frequency. It can be seen that the use of
the two channels leads to a more robust pitch estimation.

The main steps involved in the proposed enhancement framework for the
V-UV model are shown in Algorithm 1. The enhancement framework for the
UV model differs from the V-UV model in that it does not require estimation
of the pitch parameters, and that the FLKS equations would be derived based
on (A.9) and (A.10) instead of (A.14) and (A.15).
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Fig. A.3: Fundamental frequency estimates using the corresponding single channel method [29]
(SNR = 3 dB).

4 Simulation Results

In this section, we will present the experiments that have been carried out to
evaluate the proposed enhancement framework.

4.1 Implementation details

The test audio files used for the experiments consisted of speech from the
GRID database [30] re-sampled to 8 kHz. The noisy signals were generated
using the simulation set-up explained in Section 4.2. The speech and noise
STP parameters required for the enhancement process were estimated every
25 milliseconds using the codebook-based approach, as explained in Section
3.3. The speech codebook and noise codebook used for the estimation of the
STP parameters are obtained by the generalised Lloyd algorithm [31]. During
the training process, AR coefficients (converted into line spectral frequency
coefficients) are extracted from windowed frames, obtained from the train-
ing signal and passed as an input to the vector quantiser. Working in the line
spectral frequency domain is guaranteed to result in stable inverse filters [32].
Codebook vectors are then obtained as an output from the vector quantiser
depending on the size of the codebook. For our experiments, we have used
both a speaker-specific codebook and a general speech codebook. A speaker-
specific codebook of 64 entries was generated using head related impulse
response (HRIR) convolved speech from the specific speaker of interest. A
general speech codebook of 256 entries was generated from a training sample
of 30 minutes of HRIR convolved speech from 30 different speakers. Using
a speaker-specific codebook instead of a general speech codebook leads to
an improvement in the performance, and a comparison between the two was
made in [15]. It should be noted that the sentences used for training the code-
book were not included in the test sequence. The noise codebook consisting
of only 8 entries, was generated using thirty seconds of noise signal [33]. The
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Algorithm 1 Main steps involved in the binaural enhancement framework

1: while new time-frames are available do

2: Estimate the dual channel noise PSD and append the noise codebook
with the AR coefficients corresponding to the estimated noise PSD P̂DC

w
(see Section 3.3).

3: for ∀i ∈ Ns do

4: for ∀j ∈ Nw do

5: compute the ML estimates of excitation noise variances
(σ2

d,ij and σ2
v,ij) using (A.27) and (A.28).

6: compute the modelled spectrum P̂ML
zij

using (A.30).

7: compute the likelihood values p(zl , zr|θML
ij ) using (A.29).

8: end for

9: end for

10: Get the final estimates of STP parameters using (A.20).
11: Estimate the pitch parameters using the algorithm explained in Section

3.4.
12: Use the estimated STP parameters and the pitch parameters in the

FLKS equations (see Appendix 7.1) to get the enhanced signal.
13: end while

AR model order for both the speech and noise signal was empirically chosen
to be 14. The pitch period and degree of voicing was estimated as explained
in Section 3.4 where the cost function in (A.40) was evaluated on a 0.5 Hz
grid for fundamental frequencies in the range 80− 400 Hz.

4.2 Simulation set-up

In this paper we have considered two simulation set-ups representative of
the cocktail party scenario. The details regarding the two set-ups are given
below:

Set-up 1

The clean signals were at first convolved with an anechoic binaural HRIR
corresponding to the nose direction, taken from a database [34]. Noisy signals
are then generated by adding binaurally recorded babble noise taken from
the ETSI database [33].

Set-up 2

The noisy signals were generated using the McRoomSim acoustic simula-
tion software [35]. Fig. A.4 shows the geometry of the room along with the
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Fig. A.4: Set-up 2 showing the cocktail scenario where 1 (red) indicates the speaker of interest
and 2-10 (red) are the interferers and 1,2 (blue) are the microphones on the left ear and right ear
respectively.

speaker, listener and the interferers. This denotes a typical cocktail party sce-
nario, where 1 (red) indicates the speaker of interest, 2-10 (red) are the inter-
ferers, and 1, 2 (blue) are the microphones on the left, right ears respectively.
The dimensions of the room in this case is 10× 6× 4 m. The reverberation
time of the room was chosen to be 0.4 s.

4.3 Evaluated enhancement frameworks

In this section we will give an overview about the binaural and bilateral
enhancement frameworks that have been evaluated in this paper using the
objective and subjective scores.

Binaural enhancement framework

In the binaural enhancement framework, we assume that there is a wireless
link between the HAs. Thus, the filter parameters are estimated jointly using
the information at the left and right channels.

Proposed methods : The binaural enhancement framework utilising the
V-UV model, when used in conjunction with a general speech code-
book is denoted as Bin-S(V-UV), whereas Bin-Spkr(V-UV) denotes the
case where we use a speaker-specific codebook. The binaural enhance-
ment framework utilising the UV model, when used in conjunction
with a general speech codebook is denoted as Bin-S(UV), whereas Bin-
Spkr(UV) denotes the case where we use a speaker-specific codebook.
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Reference methods : For comparison, we have used the methods proposed
in [7] and [8] which we denote as TwoChSS and TS-WF respectively. We
chose these methods for comparison, as TwoChSS was one of the first
methods designed for a two-input two-output configuration and TS-WF
is one of the state of the art methods belonging to this class.

Bilateral enhancement framework

In the bilateral enhancement framework, single channel speech enhancement
techniques are performed independently on each ear.

Proposed methods : The bilateral enhancement framework utilising the
V-UV model, when used in conjunction with a general speech code-
book is denoted as Bil-S(V-UV), whereas Bil-Spkr(V-UV) denotes the
case where we use a speaker-specific codebook. The bilateral enhance-
ment framework utilising the UV model, when used in conjunction
with a general speech codebook is denoted as Bil-S(UV), whereas Bil-
Spkr(UV) denotes the case where we use a speaker-specific codebook.
The difference of the bilateral case in comparison to the binaural case
is in the estimation of the filter parameters. In the bilateral case, the
filter parameters are estimated independently for each ear which leads
to different filter parameters for each ear, e.g., the STP parameters are
estimated using the method in [19] independently for each ear.

Reference methods : For comparison, we have used the methods proposed
in [36] and [37] which we denote as MMSE-GGP and PMBE respec-
tively.

4.4 Objective measures

The objective measures, STOI [38] and PESQ [39] have been used to evaluate
the intelligibility and quality of different enhancement frameworks. We have
evaluated the performance of the algorithms, separately for the 2 different
simulation set-ups explained in Section 4.2. Table A.1 and A.2 show the ob-
jective measures obtained for the binaural and bilateral enhancement frame-
works, respectively, when evaluated in the set-up 1. The test signals that have
been used for the binaural and bilateral enhancement frameworks are iden-
tical. The scores shown in the tables are the averaged scores across the left
and right channels. In comparison to the reference methods which reduce
the STOI scores, it can be seen that all of the proposed methods improve the
STOI scores. It can be seen from Tables A.1 and A.2 that the Bin-Spkr(V-UV)
performs the best in terms of STOI scores. In addition to preserving the bin-
aural cues, it is evident from the scores that the binaural frameworks perform
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in general better than the bilateral frameworks, and the improvement of bin-
aural framework over bilateral framework is more pronounced at low SNRs.
It can also be seen that the V-UV model which takes into account the pitch
information performs better than the UV model. Tables A.3 and A.4 show the
objective measures obtained for the different binaural and bilateral enhance-
ment frameworks, respectively, when evaluated in the simulation set-up 2.
The results obtained for set-up 2 shows similar trends to the results obtained
for set-up 1. We would also like to remark here that in the range of 0.6-0.8,
an increase in 0.05 in STOI score corresponds to approximately 16 percentage
points increase in subjective intelligibility [40].

4.5 Inter-aural errors

We now evaluate the proposed algorithm in terms of binaural cue preserva-
tion. This was evaluated objectively using inter-aural time difference (ITD)
and inter-aural level difference (ILD) also used in [8]. ITD is calculated as

ITD =
|∠Cenh −∠Cclean|

π
, (A.41)

where ∠Cenh and ∠Cclean denotes the phases of the cross PSD of the en-
hanced and clean signal respectively, given by Cenh = E{Ŝl Ŝr} and Cclean =
E{SlSr}, where Ŝl/r denotes the spectrum of enhanced signal at the left/right
ear and Sl/r denotes the spectrum of the clean signal at the left/right ear. The
expectation is calculated by taking the average value over all frames and fre-
quency indices (which has been omitted here for notational convenience).
ILD is calculated as

ILD =

∣∣∣∣10log10
Ienh
Iclean

∣∣∣∣ , (A.42)

where Ienh = E{|Ŝl |2}
E{|Ŝr |2} and Iclean = E{|Sl |2}

E{|Sr |2} . Fig. A.5 shows the ILD and ITD
cues for the proposed method, Bin-Spkr(V-UV), TwoChSS and TS-WF for
different angles of arrivals. It can be seen that the proposed method has a
lower ITD and ILD in comparison to TwoChSS and TS-WF. It should be noted
that the proposed method and TwoChSS do not use the angle of arrival and
assume that the speaker of interest is in the nose direction of the listener. TS-
WF, on the other hand requires the a priori knowledge of the angle of arrival.
Thus, to make a fair comparison we have included here the inter-aural cues
for TS-WF when the speaker of interest is assumed to be in the nose direction.

4.6 Listening tests

We have conducted listening tests to measure the performance of the pro-
posed algorithm in terms of quality and intelligibility improvements. The
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Fig. A.5: Inter-aural cues for different speaker positions.

Table A.1: This table shows the comparison of objective measures (PESQ & STOI) for the dif-
ferent BINAURAL enhancement frameworks for 4 different signal to noise ratios. Noisy signals
used for the evaluation here is generated using the simulation set-up 1.

Bin-Spkr(UV) Bin-Spkr(V-UV) Bin-S(UV) Bin-S(V-UV) TS-WF TwoChSS Noisy

STOI 0 dB 0.71 0.75 0.68 0.72 0.62 0.64 0.67
3 dB 0.80 0.82 0.77 0.79 0.69 0.72 0.73
5 dB 0.84 0.85 0.81 0.83 0.74 0.77 0.78

10 dB 0.91 0.91 0.90 0.90 0.85 0.86 0.87

PESQ 0 dB 1.43 1.53 1.37 1.45 1.40 1.49 1.33
3 dB 1.67 1.72 1.58 1.68 1.55 1.66 1.43
5 dB 1.80 1.85 1.73 1.78 1.68 1.79 1.50
10dB 2.24 2.22 2.13 2.14 2.13 2.20 1.70

tests were conducted on a set of nine NH subjects. These tests were per-
formed in a silent room using a set of Beyerdynamic DT 990 pro headphones.
The speech enhancement method that we have evaluated in the listening tests
is Bil-Spkr(V-UV) for a single channel. We chose this case for the tests as we
wanted to test the simpler, but more challenging case of intelligibility and
quality improvement when we have access to only a single channel. More-
over, as the tests were conducted with NH subjects, we also wanted to elimi-
nate any bias in the results that can be caused due to the binaural cues [41],
as the benefit of using binaural cues is higher for a NH person than for a
hearing impaired person.

Quality tests

Quality performance of the proposed algorithms were evaluated using MUSHRA
experiments [42]. The test subjects were asked to evaluate the quality of the
processed audio-files using a MUSHRA set-up. The subjects were presented
with the clean, processed and the noisy signals. The processing algorithms
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Table A.2: This table shows the comparison of objective measures (PESQ & STOI) for the differ-
ent BILATERAL enhancement frameworks for 4 different signal to noise ratios. Noisy signals
used for the evaluation here is generated using the simulation set-up 1.

Bil-Spkr(UV) Bil-Spkr(V-UV) Bil-S(UV) Bil-S(V-UV) MMSE-GGP PMBE Noisy

STOI 0 dB 0.68 0.72 0.66 0.70 0.66 0.66 0.67
3 dB 0.77 0.79 0.75 0.78 0.73 0.73 0.73
5 dB 0.81 0.83 0.80 0.82 0.78 0.78 0.78

10 dB 0.90 0.90 0.89 0.90 0.87 0.87 0.87

PESQ 0 dB 1.37 1.45 1.34 1.40 1.26 1.30 1.33
3 dB 1.58 1.65 1.53 1.60 1.43 1.43 1.43
5 dB 1.72 1.76 1.66 1.72 1.50 1.56 1.50

10 dB 2.12 2.10 2.04 2.05 1.73 1.79 1.70

Table A.3: This table shows the comparison of STOI scores for the different BINAURAL en-
hancement frameworks for 4 different signal to noise ratios. Noisy signals used for the evalua-
tion here is generated using the simulation set-up 2.

Bin-Spkr(UV) Bin-Spkr(V-UV) Bin-S(UV) Bin-S(V-UV) TS-WF TwoChSS Noisy

STOI 0 dB 0.63 0.68 0.61 0.66 0.62 0.58 0.60
3 dB 0.73 0.75 0.71 0.74 0.69 0.67 0.68
5 dB 0.78 0.80 0.76 0.79 0.73 0.72 0.73
10 dB 0.88 0.89 0.87 0.88 0.81 0.83 0.84

Table A.4: This table shows the comparison of STOI scores for the different BILATERAL en-
hancement frameworks for 4 different signal to noise ratios. Noisy signals used for the evalua-
tion here is generated using the simulation set-up 2.

Bil-Spkr(UV) Bil-Spkr(V-UV) Bil-S(UV) Bil-S(V-UV) MMSE-GGP PMBE Noisy

STOI 0 dB 0.61 0.65 0.60 0.64 0.58 0.60 0.60
3 dB 0.71 0.74 0.69 0.73 0.66 0.68 0.68
5 dB 0.76 0.79 0.75 0.78 0.72 0.73 0.73

10 dB 0.87 0.88 0.86 0.88 0.83 0.84 0.84

considered here are Bil-Spkr(V-UV) and MMSE-GGP. The SNR of the noisy
signal considered here was 10 dB. The subjects were then asked to rate the
presented signals in a score range of 0 − 100. Fig. A.6 shows the mean
scores along with 95% confidence intervals that were obtained for the dif-
ferent methods. It can be seen from the figure that the proposed method
performs significantly better than the reference method.

Intelligibility tests

Intelligibility tests were conducted using sentences from the GRID database
[30]. The GRID database contains sentences spoken by 34 different speak-
ers (18 males and 16 females). The sentences are of the following syntax:
Bin Blue (Color) by S (Letter) 5 (Digit) please. Table G.1 shows the syntax
of all the possible sentences. subjects are asked to identify the color, letter
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Fig. A.6: Figure showing the mean scores and the 95% confidence intervals obtained in the
MUSHRA test for the different methods.

and number after listening to the sentence. The sentences are played back
in the SNR range −8 to 0 dB for different algorithms. This SNR range is
chosen as all the subjects were NH which led to the intelligibility of the un-
processed signal above 2 dB to be close to 100%. A total of nine test subjects
were used for the experiments and the average time taken for carrying out
the listening test for a particular person was approximately two hours. The
noise signal that we have used for the tests is the babble signal from the
AURORA database [43]. The test subjects evaluated the noisy signals (unp)
and two versions of the processed signal, nr100 and nr85. The first version,
nr100, refers to the completely enhanced signal and the second version, nr85,
refers to a mixture of the enhanced signal and the noisy signal with 85% of
the enhanced signal and 15% of the noisy signal. This mixing combination
was empirically chosen [44]. Figures A.7, A.8 and A.9 show the intelligibility
percentage along with 90% probability intervals obtained for digit, color and
the letter field respectively as a function of SNR, for the different methods. It
can be seen that nr85 performs the best consistently followed by nr100 and the
unp. Fig. A.10 shows the mean accuracy over all the 3 fields. It can be seen
from the figure that nr85 gives up to 15% improvement in intelligibility at −8
dB SNR. We have also computed the probabilities that a particular method
is better than the unprocessed signal in terms of intelligibility. For the com-
putation of these probabilities, the posterior probability of success for each
method is modelled using a beta distribution. Table A.6 shows these proba-
bilities at different SNRs for the 3 different fields. P(nr85 > unp) denotes the
probability that nr85 is better than unp. It can be seen from the table that nr85
consistently has a very high probability of being better than unp for all the
SNRs, whereas nr100 has a high probability of decreasing the intelligibility
for the color field at −2 dB and the letter field at 0 dB. This can also be seen
from Figures A.8 and A.9. In terms of the mean intelligibility across all fields,
it can be seen that the probability that nr85 performs better than unp is 1 for
all the SNRs. Similarly, the probability that nr100 also performs better than
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Table A.5: Sentence syntax of the GRID database.

Sentence structure
command color preposition letter digit adverb
bin blue at A-Z 0-9 again
lay green by (no

W)
now

place red in please
set white with soon

−8 −6 −4 −2 0
0.4

0.6

0.8

SNR (dB)

In
te

lli
gi

bi
lit

y
Pe

rc
en

ta
ge

Digit

nr100

nr85

unp

Fig. A.7: Mean percentage of correct answers given by participants for the digit field as function
of SNR for different methods. (unp) refers to the noisy signal, (nr100) refers to the completely
enhanced signal and (nr85) refers to a mixture of the enhanced signal and the noisy signal with
85% of the enhanced signal and 15% of the noisy signal.

unp is very high across all SNRs.

5 Discussion

The noise reduction capabilities of a HA are limited especially in situations
such as the cocktail party scenario. Single channel speech enhancement al-
gorithms which do not use any prior information regarding the speech and
noise type have not been able to show much improvements in speech intel-
ligibility [45]. A class of algorithms that has received significant attention
recently have been the deep neural network (DNN) based speech enhance-
ment systems. These algorithms use a priori information about speech and
noise types to learn the structure of the mapping function between noisy and
clean speech features. These methods were able to show improvements in
speech intelligibility when trained to very specific scenarios. Recently, the
performance of a general DNN based enhancement system was investigated
in terms of objective measures and intelligibility tests [46]. Even though the
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Fig. A.8: Mean percentage of correct answers given by participants for color field as function of
SNR for different methods.
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Fig. A.9: Mean percentage of correct answers given by participants for letter field as function of
SNR for different methods.
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Fig. A.10: Mean percentage of correct answers given by participants for all the fields as function
of SNR for different methods.
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Table A.6: This table shows the probabilities that a particular method is better than the unpro-
cessed signal.

SNR (dB)
-8 -6 -4 -2 0

Digit
P(nr85 > unp) 1 1 1 1 1
P(nr100 > unp) 1 1 1 0.91 0.99

Color
P(nr85 > unp) 1 0.99 0.99 0.99 0.99
P(nr100 > unp) 0.98 0.91 0.89 0.24 0.27

Letter
P(nr85 > unp) 1 1 1 0.96 0.99
P(nr100 > unp) 1 0.44 0.99 0.22 0.19

Mean
P(nr85 > unp) 1 1 1 1 1
P(nr100 > unp) 1 0.99 1 0.50 0.87

general system showed improvements in the objective measures, the intelli-
gibility tests failed to show consistent improvements across the SNR range.
In this paper we have proposed a model-based speech enhancement frame-
work that takes into account the speech production model, characterised by
the vocal tract and the excitation signal. The proposed framework uses a pri-
ori information regarding the speech spectral envelopes (which is used for
modelling the characteristics of the vocal tract) and noise spectral envelopes.
In comparison to DNN based algorithms the training data required by the
proposed algorithm, and the parameters to be trained for the proposed al-
gorithm is significantly less. The parameters to be trained in the proposed
algorithm includes the AR coefficients corresponding to the speech and noise
spectral shapes which is considerably less compared to the weights present
in a DNN. As the amount of parameters to be trained is much smaller, it
should also be possible to train these parameters on-line in case of noise only
scenarios or speech only scenarios. The proposed framework was able to
show consistent improvements in the intelligibility tests even for the single
channel case as shown in section 4.6. Moreover, we have shown the benefit of
using multiple channels for enhancement by the means of objective experi-
ments. We would like to remark that the enhancement algorithm proposed in
this paper is computationally more complex when compared to conventional
speech enhancement algorithms such as [36]. However, there exists some
methods in the literature which can reduce the computational complexity
of the proposed algorithm. The pitch estimation algorithm can be sped up
using the principles proposed in [47]. There also exists efficient ways of per-
forming Kalman filtering due to the structured and sparse matrices involved
in the operation of a Kalman filter [13].
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6 Conclusion

In this paper, we have proposed a model-based method for performing bin-
aural/bilateral speech enhancement in HAs. The proposed enhancement
framework takes into account the speech production dynamics by using a
FLKS for the enhancement process. The filter parameters required for the
functioning of the FLKS are estimated jointly using the information at the
left and right microphones. The filter parameters considered here are the
speech and noise STP parameters and the speech pitch parameters. The es-
timation of these parameters in not trivial due to the highly non-stationary
nature of speech and the noise in a cocktail party scenario. In this work,
we have proposed a binaural codebook-based method, trained on spectral
models of speech and noise, for estimating the speech and noise STP pa-
rameters, and a pitch estimator based on the harmonic model is proposed to
estimate the pitch parameters. We then evaluated the proposed enhancement
framework in two experimental set-ups representative of the cocktail party
scenario. The objective measures, STOI and PESQ, were used for evaluating
the proposed enhancement framework. The proposed method showed con-
siderable improvement in STOI and PESQ scores, in comparison to a number
of reference methods. Subjective listening tests when having access to single
channel noisy observation also showed improvement in terms of intelligibil-
ity and quality. In the case of intelligibility tests, a mean improvement of
about 15 % was observed at -8 dB SNR.

7 Appendix

7.1 Prediction and Correction stages of the FLKS

This section gives the prediction and correction stages involved in the FLKS
for the V-UV model. The same equations apply for the UV model, except
that the state vector and the state transition matrices will be different. The
prediction stage of the FLKS, which computes the a priori estimates of the
state vector ( ˆ̄xV-UV

l/r (n|n− 1)) and error covariance matrix (M(n|n− 1)) is given
by

ˆ̄xV-UV
l/r (n|n− 1) = FV-UV( fn) ˆ̄xV-UV

l/r (n− 1|n− 1)

M(n|n− 1) = FV-UV( fn)M(n− 1|n− 1)FV-UV( fn)
T+

Γ5

[
σ2

d ( fn) 0
0 σ2

v ( fn)

]
ΓT

5 .

The Kalman gain is computed as

K(n) =
M(n|n− 1)ΓV-UV

[ΓV-UVT
M(n|n− 1)ΓV-UV]

. (A.43)
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The correction stage of the FLKS, which computes the a posteriori estimates
of the state vector and error covariance matrix is given by

ˆ̄xV-UV
l/r (n|n) = ˆ̄xV-UV

l/r (n|n− 1) + K(n)[zl/r(n)− ΓV-UVT ˆ̄xV-UV
l/r (n|n− 1)]

M(n|n) = (I−K(n)ΓV-UVT
)M(n|n− 1).

Finally, the enhanced signal at time index n− (ds + 1) is obtained by taking
the (ds + 1)th entry of the a posteriori estimate of the state vector as

ŝl/r(n− (ds + 1)) =
[

ˆ̄xV-UV
l/r (n|n)

]
ds+1 . (A.44)

7.2 Behaviour of the likelihood function

For a given set of speech and noise AR coefficients, we show the behaviour
of the likelihood p(zl , zr|θ) as a function of the speech and noise excitation
variance. For the experiments, we have set the excitation variances to be 10−3.
Fig. A.11 plots the likelihood as a function of the speech and noise excitation
variance. It can be seen from the figure that likelihood is the maximum at
the true values and decays rapidly as it deviates form its true value. This
behaviour motivates the approximation in Section 3.3.
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Fig. A.11: Likelihood shown as a function of the speech and noise excitation variance.

7.3 A priori information on the distribution of the excitation
variances

It can be seen from (A.20) that the prior distributions of the excitation vari-
ances are used in the estimation of STP parameters. In the case of no a priori
knowledge regarding the excitation variances, a uniform distribution can be
used as done in [14], but a priori knowledge regarding the distribution of the
noise excitation variance can be beneficial. Fig. A.12 shows the histogram
of the noise excitation variance plotted for a minute of babble noise [43]. It
can be observed from the figure that the histogram approximately follows a
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Gamma distribution. Thus, we here use a Gamma distribution to model the
a priori information about the noise excitation variance, which is modelled
using two parameters (shape parameter κ and the scale parameter ζ) as

p(σ2
v ) =

1
Γ(κ)ζk σ2κ−1

v e−
σ2

v
ζ , (A.45)

where Γ(·) is the Gamma function. The parameters ζ and κ can be learned
from the training data.

Fig. A.12: Plot showing the histogram fitting for noise excitation variance. Curve (red) is ob-
tained by fitting the histogram with a Gamma distribution with two parameters.
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1. Introduction

Abstract

This paper deals with the estimation of the short-term predictor (STP) parameters
of speech and noise in a binaural framework. A binaural model based approach is
proposed for estimating the power spectral density (PSD) of speech and noise at the
individual ears for an arbitrary position of the speech source. The estimated PSDs can
be subsequently used for enhancement in a binaural framework. The experimental
results show that taking into account the position of the speech source using the
proposed method leads to improved modelling and enhancement of the noisy speech.

1 Introduction

Understanding of speech in difficult listening situations like cocktail party
scenarios is a major issue for the hearing impaired. Speech enhancement ca-
pabilities of a hearing aid (HA) in such scenarios have been observed to be
limited. Generally, a hearing impaired person is fitted with HAs at both ears.
With the recent developments in HA technology, HAs are able to commu-
nicate with each other through a wireless link and share information. This
enables binaural processing of signals. Binaural processing of noisy signals
has shown to be more effective than processing the noisy signal indepen-
dently at each ear [1]. Some binaural speech enhancement algorithms with
multiple microphones present in each hearing aid have been previously pro-
posed in [2, 3].

However, in this work we are concerned with binaural speech enhance-
ment algorithms with access to only one microphone per HA. This is obseved
in in-the-ear (ITE) HAs, where the space constraints limit the number of mi-
crophones per HA. Some of the existing algorithms with a single microphone
present in each hearing aid are [4–6]. These algorithms perform the enhance-
ment in the frequency domain by assuming that the speech and noise com-
ponents are uncorrelated, and do not take into consideration the dynamics of
speech production process. It was recently proposed in [7, 8] to perform bin-
aural enhancement of speech while taking into account the speech production
model. The filter parameters here consists of the STP parameters of speech
and noise. STP parameters constitute of the autoregressive (AR) parameters
representing the spectral envelope and the excitation variance corresponding
to the gain of the envelope. These parameters can be used to parametrically
model the speech and noise PSDs at the individual ears. The estimation of
these filter parameters in [7, 8] assumed that the speaker source is in the
nose direction of the listener. Due to this assumption, the speech PSDs at
the two ears were modelled in [7, 8] using the same set of STP parameters.
This type of modelling might not be appropriate if the speaker is not in the
nose direction. This scenario is of interest, as it has been observed in [9, 10],
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that the Speech Reception Threshold (SRT) is not always the minimum when
the speaker is in the nose direction. It was noticed that the listeners often
tend to orient their head away from the speech source for an improvement
in the SRT. Thus, in this paper, we propose a method to take the position
of the speaker into account while estimating the speech and noise PSDs at
the two ears. This leads to the estimation of individual speech PSDs for the
two ears. A codebook based approach, which takes into account the a priori
information regarding the speech and noise AR spectral envelopes is pro-
posed to estimate the STP parameters. The method proposed in this paper
uses a multiplicative update method [11] commonly used in non-negative
matrix factorisation (NMF) applications [12] to estimate the gain parameters
corresponding to the speech and noise AR processes.

The remainder of the paper is structured as follows. Section 2 motivates
the problem and also introduces the signal model used in the paper. Section 3
explains the proposed method of estimating the speech and noise STP param-
eters in detail. Experiments and results are presented in Section 4 followed
by conclusion in Section 5.

2 Motivation

In this section we introduce the signal model and motivate this work. The
binaural noisy signals at the left/right ear, denoted by zl/r(n) is written as

zl/r(n) = sl/r(n) + wl/r(n) ∀n = 0, 1, 2 . . . , (B.1)

where sl/r(n) is the clean speech component and wl/r(n) is the noise com-
ponent. A very popular way to represent the clean speech component is in
the form of an AR process. In [7, 8], it was assumed that the target speaker
is located in the nose direction of the listener. Due to this assumption, the
clean speech component at both ears were represented using AR processes
having the same set of STP parameters. This modelling is reasonable as long
as the speaker is in the nose direction of the listener. However, it might not
be an appropriate model for the case when speaker is not present in the nose
direction. Here, we have conducted a few simulations to show the properties
of the parameters corresponding to the speech component present at the left
and right microphones. The speaker position is set to be 40 degree right of
the listener at a distance of 80 cm. Fig. B.1 shows a snapshot of the gain nor-
malised spectral envelopes for the left and right channel. It can be seen that
the gain normalised spectral envelopes at the left and right channels have ap-
proximately the same content. In comparison to the AR spectral envelopes, it
can be seen from Fig. B.2, that there is considerable difference in the excita-
tion variances between the left and right channels. This can be explained due
to the head shadowing effect, which leads to an attenuation of the intensity at
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Fig. B.2: Plot of the excitation variances for the left and right channel

the ear on the far side (left ear in this case). Motivated by these observations
in figures B.1 and B.2, we model the speech component at the left and right
ears using the same spectral envelope but different excitation variances as

sl/r(n) =
( P

∑
i=1

aisl/r(n− i)
)
+ ul/r(n), (B.2)

where {ai}P
i=1 is the set of speech AR parameters and ul/r(n) is white Gaus-

sian noise (WGN) with zero mean and excitation variance σ2
ul/r

(n). It is also
assumed that the noise component at both ears have similar spectral shape.
This is due to the diffuse noise field assumption. The noise components can
be similarly expressed as an AR process of order Q as follows,

wl/r(n) =
( Q

∑
i=1

biwl/r(n− i)
)
+ v(n). (B.3)

where {bi}Q
i=1 is the set of noise AR parameters and v(n) is white Gaussian

noise (WGN) with zero mean and excitation variance σ2
v (n). STP parame-

ters corresponding to speech and noise are considered to be constant over a
duration of 25ms.
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3 Model based estimation of STP parameters

The speech and noise STP parameters required for the enhancement are esti-
mated frame-wise using a codebook based approach [7, 13]. The estimation
of these parameters uses a priori information about the speech and noise
spectral envelopes present in trained codebooks in the form of Linear Pre-
diction Coefficients (LPC). These trained parameters offers us an elegant way
to take into account prior information regarding the noise type and speaker
of interest. Here, we use a Bayesian framework for estimating the STP pa-
rameters. The random variables (r.v) corresponding to the parameters to be
estimated are represented as θ = [θs θw] = [a; σ2

u ; b; σ2
v ; c], where a, b corre-

sponds to r.v representing the speech and noise AR parameters, σ2
u , σ2

v rep-
resenting the speech and noise excitation variances and c corresponds to the
scale parameter that relates to the excitation variance between the left and
right ear i.e. σ2

ul
= σ2

u and σ2
ur = c × σ2

u . In this work, scale parameter is
considered time varying, to take into account the changes in speaker posi-
tion. Fig. B.3 shows a basic block diagram of the enhancement framework,
where it can be seen that the STP parameters are estimated jointly using the
information at the left and right channels. Thus, the MMSE estimate of the
parameter vector

θ̂ = E(θ|zl , zr) =
∫

Θ
θ

p(zl , zr|θ)p(θ)
p(zl , zr)

dθ, (B.4)

where zl and zr is a frame of length N of noisy speech at the left and right
ears respectively. Let us define θML

ij = [ai; σ2,ML
u,ij ; bj; σ2,ML

v,ij ; cML
ij ] where ai is the

ith entry of speech codebook (of size Ns), bj is the jth entry of the noise code-
book (of size Nw) and σ2,ML

u,ij , σ2,ML
v,ij and cML

ij represents the maximum likeli-
hood (ML) estimates of the excitation variances and the scale parameter re-

Speech
Enhancer

Parameter
Estimation

Speech
Enhancer

zl(n)

zr(n)

ŝl(n)

ŝr(n)

Fig. B.3: Basic block diagram of the binaural enhancement framework
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spectively for the ij th combination of the codebook entries. Using the above
definition, (B.4) is approximated as [13]

θ̂ =
Ns

∑
i=1

Nw

∑
j=1

θML
ij

p(zl , zr|θML
ij )p(θML

ij )

p(zl , zr)
, (B.5)

where the MMSE estimate is expressed as a weighted linear combination of
θML

ij with weights proportional to p(zl , zr|θML
ij ). It is assumed that the left

and right noisy signal are conditionally independent given θML
ij , which leads

to p(zl , zr|θML
ij ) being written as,

p(zl , zr|θML
ij ) = p(zl |θML

ij )p(zr|θML
ij ). (B.6)

As the scale term is not used for modelling the spectrum at the left ear the
likelihood p(zl |θML

ij ) is expressed as

p(zl |θML
ij ) = p(zl |[ai; σ2,ML

u,ij ; bj; σ2,ML
v,ij ]). (B.7)

Similarly p(zr|θML
ij ) is expressed as

p(zr|θML
ij ) = p(zr|[ai; cML

ij × σ2,ML
u,ij ; bj; σ2,ML

v,ij ]) (B.8)

Logarithm of the likelihood p(zl |θML
ij ) can be written as being proportional to

the negative of Itakura-Saito (IS) divergence between the noisy periodogram
at the left ear Pzl (k) and the modelled noisy spectral envelope P̂ML

zl,ij
(k), where

k corresponds to the frequency index [13]. Using the same result for the right
ear, p(zl , zr|θML

ij ) can be written as

p(zl , zr|θML
ij ) = K exp

(
− N

2

(
dIS

[
Pzl (k), P̂ML

zl,ij
(k)

]
+ dIS

[
Pzr (k), P̂ML

zr,ij
(k)

] ))
(B.9)

where P̂ML
zl,ij

(k) and P̂ML
zr,ij

(k) are denoted as

P̂ML
zl,ij

(k) =
σ2,ML

u,ij

|Ai
s(k)|2

+
σ2,ML

v,ij

|Aj
w(k)|2

, (B.10)

P̂ML
zr,ij

(k) =
cML

ij σ2,ML
u,ij

|Ai
s(k)|2

+
σ2,ML

v,ij

|Aj
w(k)|2

(B.11)

and 1/|Ai
s(k)|2 is the spectral envelope corresponding to the ith entry of the

speech codebook, 1/|Aj
w(k)|2 is the spectral envelope corresponding to the

jth entry of the noise codebook. For a particular combination of the speech
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and noise codebook entries, the ML estimates of the excitation variances are
estimated by maximising p(zl , zr|θij). This is equivalent to minimising the
total IS distortion as seen in (B.9) given by

TIS = dIS[Pzl (k), P̂zl,ij(k)] + dIS[Pzr (k), P̂zr,ij(k)], (B.12)

where P̂zl,ij and P̂zr,ij has the same form as in (B.10) and (B.11). Here, we use a
multiplicative method to estimate the excitation variances and scale term that
leads to a minimisation of the cost function in (B.12). In the multiplicative
update method, the value of the variable at (l + 1)th iteration is computed by
multiplying the value of the variable at lth iteration with the ratio between
the negative component of the the gradient and the positive component of the

gradient, which is mathematically written as [12], φl+1 ← φl � f (φl)−
� f (φl)+

, where
φ is the variable of interest. Taking the derivative of (B.12) with respect to
speech and noise excitation variances, and the scaling term c, we get

∂TIS

∂σ2
u,ij

=
1
N

N

∑
k=1

1
|Ai

s(k)|2
P̂zl,ij(k)

−
Pzl (k)
|Ai

s(k)|2
P̂zl,ij(k)2

+

cij

|Ai
s(k)|2

P̂zr,ij(k)
−

cijPzr (k)
|Ai

s(k)|2
P̂zr,ij(k)2

(B.13)

∂TIS

∂σ2
v,ij

=
1
N

N

∑
k=1

1
|Aj

w(k)|2
P̂zl,ij(k)

−
Pzl (k)

|Aj
w(k)|2

P̂zl,ij(k)2
+

1
|Aj

w(k)|2
P̂zr,ij(k)

−
Pzr (k)

|Aj
w(k)|2

P̂zr,ij(k)2
(B.14)

∂TIS

∂cij
=

1
N

N

∑
k=1

σ2
u,ij

|Ai
s(k)|2

P̂zr,ij(k)
−

σ2
u,ijPzr (k)

|Ai
s(k)|2

P̂zr,ij(k)2
(B.15)

Using the multiplicative update rule, the values for the excitation noise vari-
ances are computed iteratively as shown below

σ
2(l+1)
u,ij ← σ

2(l)
u,ij

N
∑

k=1

Pzl (k)
|Ai

s(k)|2 P̂zl,ij (k)
2 +

c(l)ij Pzr (k)

|Ai
s(k)|2 P̂zr,ij (k)

2

N
∑

k=1

1
|Ai

s(k)|2 P̂zl,ij (k)
+

c(l)ij

|Ai
s(k)|2 P̂zr,ij (k)

(B.16)

σ
2(l+1)
v,ij ← σ

2(l)
v,ij

N
∑

k=1

Pzl (k)

|Aj
w(k)|2 P̂zl,ij (k)

2
+ Pzr (k)

|Aj
w(k)|2 P̂zr,ij (k)

2

N
∑

k=1

1
|Aj

w(k)|2 P̂zl,ij (k)
+ 1
|Aj

w(k)|2 P̂zr,ij (k)

(B.17)

c(l+1)
ij ← c(l)ij

N
∑

k=1

σ
2(l)
u,ij Pzr (k)

|Ai
s(k)|2 P̂zr,ij (k)

2

N
∑

k=1

σ
2(l)
u,ij

|Ai
s(k)|2 P̂zr,ij (k)

. (B.18)
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It should be noted that P̂zl,ij(k) and P̂zr,ij(k) used in (B.16), (B.17) and (B.18) in
the lth iteration is computed using excitation variances and the scale parame-
ter from the (l− 1)th iteration. We have summarised the proposed algorithm
for estimating the speech and noise STP parameters in Algorithm 2.

4 Experiments

This section will elaborate on the experiments used to evaluate the proposed
algorithm. The test audio files used for the experiments consisted of speech
from GRID database [14] resampled to 8 k Hz. The noise signal used is a
binaural babble recording from the ETSI database [15], which was recorded
with two microphones placed on a dummy head. Binaural noisy signals
were generated by convolving the clean speech signal with binaural anechoic
head related impulse responses (HRIR) corresponding to ITE HAs obtained
from [16] and adding the binaural noise signals . The experiments were per-
formed for different positions of the speakers (the position of the speaker is
defined as in Fig. B.4). The speech and noise STP parameters required for
the enhancement are estimated every 25 milliseconds, as explained in Sec-
tion 4. For our experiments, we have used a speech codebook of 64 entries,
which was generated using the generalised Lloyd algorithm [17] on a train-
ing sample of around 30 minutes of HRIR convolved speech from the specific
speaker of interest. Using a speaker specific codebook instead of a general
speech codebook leads to improvement in performance, and a comparison
between the two has been made in [18]. The HRIR used for convolving the
training signal corresponded to zero degrees, whereas the test signals con-
sisted of speech coming form different directions. The noise codebook which
consists of only 8 entries, is generated using thirty seconds of noise signal.
The audio samples used for training the noise signal was different from au-
dio samples used for testing. The AR order for the speech and noise signal is
chosen to be 14. The codebooks as well as MATLAB code for generating the
codebooks will be available at �����������	
������������������. We have
evaluated the proposed method in terms of the accuracy in the estimation of
STP parameters as well as the enhancement performance.

4.1 Accuracy in the estimation of STP parameters

This section evaluates the proposed algorithm in terms of the accuracy in
the estimation of STP parameters. Fig. B.5 shows the plots of the true and
estimated speech excitation variances (for the left and right channels) for
speaker position at 30 degree to the left of the listener at a distance of 80 cm,
for a particular test signal. It can be seen that the proposed method captures
the difference in speech excitation variances between the two channels. We
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Fig. B.4: Figure showing the top view of the listener. Position of the speaker has been varied for
the experiments
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Fig. B.5: Plot of the true and estimated speech excitation variances

now evaluate the ability of the proposed algorithm to deal with changes in
the speaker position. For the experiments, the position of the speaker has
been varied from −15 degree to 0 degree at frame index 149 and from 0
degree to 10 degree at frame index 285 at a distance of 80 cm. Fig. B.6 shows
the estimated value of the scale parameter along the frame index for different
speaker positions. It can be seen from Fig. B.6 that the ĉ has a value of
approximately 0.2 until frame index 141 and then changes to approximately
1 from frame index 149 until 282, and finally changes to 2 from then onwards.
The ĉ for the first one third portion has a value less than 1 as the speaker is
located to the left of the listener. In this case, the level of the signal at the right
ear is attenuated in comparison to the level at the left ear, due to the head
shadowing effect. For the second portion ĉ is approximately 1 as the speaker
is located in front of the listener. As the speaker position is changed to 10
degree right of listener, ĉ has a value of around 2, as the speaker is closer
to the right ear. The position of the speaker can be easily tracked without
any delay using the proposed method, as the scale parameter is estimated
for every frame index. Moreover, the proposed method does not require the
knowledge of the speaker position at any stage to initialise the value of the
scale parameter. It should be noted that the scale parameter is relevant only
in the speech active regions. Thus, the aberrations present in Fig. B.6 can be
explained by the speech being absent in certain time frames.

Next, we compute the total IS divergence between the observed noisy pe-
riodograms and the modelled spectrums for test signals taken form the GRID
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Fig. B.6: Plot of the estimated scale parameter (ĉ)

database. This measure shows the ability of the estimated parameters to fit
the observed noisy spectrum. For this experiment, the position of the speaker
is varied around the listener for two different distances at SNR = 5 dB. Table
B.1 shows the computed IS divergences for different speaker positions for the
proposed method and the method in [7] which we denote as BSTP. It should
be noted that the excitation gains in [7] were calculated by minimising an ap-
proximate cost function as opposed to here. Thus, to make a fair comparison,
we have used the multiplicative update method [11] for computing the exci-
tation variances as used here for [7]. It can be seen that the estimation of the
STP parameters using the proposed method leads to a reduced IS divergence
between the modelled and the observed spectrums.

Table B.1: Table showing total IS divergence between the modelled noisy spectrum and the
observed noisy periodograms (left + right channels) for different speaker positions

Angle of the speaker
Distance (cm) −85 −75 −65 −55

Proposed
80 3.61 3.75 3.73 3.65

300 3.62 3.73 3.72 3.62

BSTP [7]
80 3.98 4.30 4.35 4.20

300 3.85 4.16 4.25 4.08

4.2 Enhancement performance

We now evaluate the benefit of incorporating the speaker position for en-
hancement. The frame work that we have used for the experiments is similar
to [7] where a fixed lag Kalman smoother is used for enhancement on each
channel. Fig. B.7 shows the short-term objective intelligibility (STOI) [19]
scores obtained for the two methods when the speaker is at a position of −50
degree at 300 cm. The STOI score shown in the Fig. B.7 corresponds to the
score obtained for the better ear. We have compared the propsed method to
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BSTP and dual channel speech enhancement method proposed in [4] which
we denote here as TwoChSS. It can be seen that taking into account the po-
sition of the speaker using the proposed method leads to improvement in
the STOI scores especially in low SNR region. It can be seen that TwoChSS
degrades the performance of the signal in terms of STOI. This is mainly due
to the assumption in TwoChSS that the speaker is in the nose direction of the
listener. It should also be noted that the performance of the proposed method
and BSTP is similar when the speaker is in the nose direction as ĉ ≈ 1.
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Fig. B.7: Comparison of the STOI scores when the speaker is 50 degrees to the left of the speaker

5 Conclusion

This paper proposed a model based approach for estimating the STP param-
eters of speech and noise in a binaural framework. The proposed method is
able to take into account the position of the speaker while estimating the pa-
rameters which leads to an improved modelling of the observed spectrum in
comparison to a previous method proposed in [7]. The estimated parameters
are subsequently used for enhancement of speech in a binaural framework.
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Algorithm 2 Summary of the estimation framework

1: while new time-frames are available do

2: for ∀i ∈ Ns do

3: for ∀j ∈ Nw do

4: compute the ML estimates of excitation noise variances and the scale term
(σ2,ML

u,ij , σ2,ML
v,ij , cML

ij ) using (B.16), (B.17) and (B.18)

5: compute the modelled spectrum for left channel P̂ML
zl,ij

and right channel

P̂ML
zr,ij

using (B.10) and (B.11) respectively

6: compute the likelihood values p(zl , zr|θML
ij ) using (B.9)

7: end for

8: end for

9: Get the estimates of STP parameters (σ̂2
u , {âi}P

i=1, σ̂2
v , {b̂i}Q

i=1, ĉ) using (B.5)
10: end while
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1. Introduction

Abstract

The understanding of speech from a particular speaker in the presence of other inter-
fering speakers can be severely degraded for a hearing impaired person. Beamforming
techniques have been proven to be effective to improve the speech understanding in
such scenarios. However, the number of microphones in a hearing aid (HA) is limited
due to the space and power constraints present in the HA. In this paper, we propose
to use an external device e.g., a microphone array, that can communicate with the
HA to overcome this limitation. We propose a method to control this external de-
vice based on the look direction of the HA user. We show, by means of simulations,
the robustness of the proposed method at very low SNRs in a reverberant scenario.
Moreover, we have also conducted experiments that show the benefit of using this
framework for binaural and monaural enhancement.

1 Introduction

The ability of a hearing impaired person to understand speech is severely
degraded in situations such as the cocktail party scenario, and this can sub-
sequently lead to social isolation of the hearing impaired person. Therefore,
it is crucial in such scenarios to perform speech enhancement. The speech
enhancement algorithms can be broadly categorised into single and multi-
channel methods [1]. In comparison to single channel algorithms which can
exploit the temporal and spectral information, multi-channel algorithms are
more effective as they can also exploit the spatial information. This property
is useful in the cases where the speech and noise sources are spatially sepa-
rated [2]. Beamforming, which forms a class of multi-channel enhancement
algorithms, has been proven to be useful as it can exploit the spatial infor-
mation to selectively attenuate the interferers in comparison to the speaker
of interest [2]. The state of the art HAs are equipped with multiple micro-
phones present at each ear which enables the use of beamforming algorithms.
However, the space and power constraints on the HAs limit the number of
microphones that can be used within a HA which consequently limits the
performance of the beamformer within the HA to focus on the speaker of
interest and attenuate the competing speakers. These limitations can be over-
come by using an external device which can communicate wirelessly with
the HA. In [3], it was investigated on how the speech intelligibility can be
improved when the target speaker wears a microphone which picks up the
speech signal uttered by the target speaker and transmits it wirelessly to the
HA. The transmitted signal can then be binaurally saptialised according to
the target speaker’s location [4–6]. However, this solution has the constraint
that the speaker of interest wears the microphone and that the listener is in-
terested only in that speaker. In this paper, we try to relax this constraint by
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using a microphone array as the external device. Fig. C.1 shows the scenario
that we are interested in where the HA user is perhaps interested in listening
to any of the speakers located at the table. As the external device is equipped
with more microphones, it may be used to better exploit the spatial infor-
mation for focusing on the speaker the HA user is listening to. However, a
problem that can be encountered in this setup is that the external microphone
array needs to know the direction of arrival of the source that the HA user
is interested in. In this work, we propose a model-based method to estimate
the direction of arrival via a collaboration between the HA and the external
device. We use a model that we proposed in a previous paper [7] to represent
the signal received at the HA as well as the external device. The estimated
model parameters are subsequently used to estimate the direction of arrival
by measuring the similarity between the model parameters. Using a model to
represent the signal facilitates a low dimensional representation of the signal,
which leads to less information being transmitted from the HA to the exter-
nal device which is critical as power is a limiting factor in the HAs. To the
best of author’s knowledge, such an approach to control an external device
based on the look direction of the HA user has not been done before.

The remainder of the paper is organised as follows. Section 2 introduces
the setup, the signal model and the problem mathematically. The solution
to the defined problem is then explained in Section 3 followed by the results
and conclusion in Sections 4 and 5, respectively.

2 Problem Formulation

2.1 Scenario of interest

Fig. C.1 shows an example of the scenario of interest. This situation can be
encountered when the HA user is participating in a meeting with colleagues
or sitting at a dinner table with family or friends. From the figure, it can be
seen that the HA user is listening to speaker A. It will be assumed in this
work that the HA user is looking at the source of interest. From the per-
spective of the HA user, speaker A is the target whereas speakers B and C
are interferers. The objective is to focus the beamformer present in the ex-
ternal device (uniform circular array (UCA) in this case) towards speaker A
as the HA user is looking towards speaker A. This requires a communication
link between the HA and the external device. To compute the data to be
transmitted from the HA to the external device, a conventional beamformer
focusing on the nose direction is used on the HA to form a preliminary en-
hanced signal which we denote as xHA(n). To estimate the source of interest,
the UCA focuses its beam towards I different candidate directions (I = 8 in
the figure) which are uniformly spaced along the azimuthal plane as shown
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Fig. C.1: Scenario of interest. HA user is listening to speaker A while speakers B and C are
interferers.

in the figure. The set of beamformed signals from the different candidate
directions are denoted as {xCA(θi)

(n)}I
i=1. Our objective here is to estimate θs

(see Fig. C.1) such that the UCA focuses on the source of interest, using the
beamformed signal at the HA, xHA(n), and the set of beamformed signals
from the candidate directions, {xCA(θi)

(n)}I
i=1.

2.2 Signal Model

We now introduce the signal model [7] that is used to represent the signals
xHA(n) and {xCA(θi)

(n)}I
i=1. A frame of the signal of interest in the time

domain denoted as x = [x(0) . . . x(N − 1)]T is modelled as a sum of U au-
toregressive (AR) processes as

x =
U

∑
u=1

cu . (C.1)

Each of the AR process can be expressed as a multivariate Gaussian [8, 9], i.e.
,

cu ∼ N (0, σ2
uQu), (C.2)

where σ2
u is the excitation variance and Qu is the gain normalised covariance

matrix. Qu can be asymptotically approximated as a circulant matrix which
can be further diagonalised using by the Fourier transform as [10]

Qu = FDuFH (C.3)
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where F is the DFT matrix defined as [F]k,n = 1√
N

exp(j2πnk/N) n, k =

0 . . . N − 1 and

Du = (ΛH
u Λu)

−1, Λu = diag(
√

NFH
[

au
0

]
) (C.4)

where au = [1, au(1), . . . au(P)]T represents the vector of AR coefficients cor-
responding to the uth AR process and P is the AR order. The diagonal entries
of the matrix Du contains the eigenvalues of the matrix Qu and these cor-
respond to the power spectral density (PSD) of the uth gain normalised AR
process. The set of U PSDs can be arranged as the columns of a spectral basis
matrix D as

D = [d1 . . . du . . . dU ] (C.5)

where du = [du(1) . . . du(k) . . . du(K)]T and du(k) is the kth diagonal element
of Du. Using the above model explained by (C.1) and (C.2), a frame of the
beamformed signal at the HA denoted as xHA = [xHA(0) . . . xHA(N − 1)]T is
expressed as

xHA =
U

∑
u=1

cHAu (C.6)

where cHAu ∼ N (0, σ2
HAu

Qu). Denoting σHA = [σ2
HA1

. . . σ2
HAU

]T , the PSD
of the modelled signal at the HA can be represented as DσHA. Similarly a
frame of the beamformed signal at the UCA for the ith candidate direction
denoted as xCA(θi)

= [xCA(θi)
(0), . . . xCA(θi)

(N − 1)]T can be modelled as

xCA(θi)
=

U

∑
u=1

cCA(θi)u (C.7)

where cCA(θi)u ∼ N (0, σ2
CA(θi)u

Qu). Denoting σCA(θi)
= [σ2

CA(θi)1
. . . σ2

CA(θi)U
]T ,

the PSD of the modelled signal at the UCA for the ith candidate direc-
tion is obtained as DσCA(θi)

. In the case of observing V > 1 frames, the
PSD of the modelled signal for each frame can be arranged as columns to
form a matrix DΣHA or DΣCA(θi)

where ΣHA = [σHA(1) . . . σHA(V)] and
ΣCA(θi)

= [σCA(θi)
(1) . . . σCA(θi)

(V)]. ΣHA and ΣCA(θi)
will be henceforth de-

noted as activation coefficients.

2.3 Mathematical problem

Our objective here is to estimate the direction of arrival of the speaker talk-
ing to the HA user relative to the UCA. In this paper, we propose to solve
this problem by measuring the similarity between the beamformed signal
received at the HA and the beamformed signal at the UCA for different can-
didate directions. This can be done in different ways. The first method,
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denoted as IS based method, is by using the spectral similarity to estimate θs
as

θ̂s = arg min
θi∈{θi}I

i=1

dIS(DΣHA|DΣCA(θi)
), (C.8)

where dIS(·, ·) is the Itakura-Saito divergence [11]. The second approach pro-
posed here is to use the correlation between the estimated activation coeffi-
cients at the HA and UCA to estimate θs as

θ̂s = arg max
θi∈{θi}I

i=1

corr(ΣHA|ΣCA(θi)
) (C.9)

where

corr(ΣHA|ΣCA(θi)
) =

1
UV

V

∑
v=1

U

∑
u=1

(
ΣHA(u, v)− μHA

εHA

)

×
(

ΣCA(θi)
(u, v)− μCA(θi)

εCA(θi)

)
(C.10)

where μHA/CA(θi)
and εHA/CA(θi)

are the sample mean and standard devia-
tion, respectively.

3 Estimation of the model parameters

As explained previously in Section 2.2, a frame of the signal is modelled as
a sum of U AR processes with AR coefficients au. In this work, the set of
U AR coefficients are trained a priori using a standard vector quantisation
technique used in speech coding applications. During the training stage, a
speech codebook is first computed using the generalised Lloyd algorithm
(GLA) [8, 12]. The speech codebook contains AR coefficients corresponding
to the spectral envelopes of speech. In the training process, linear prediction
coefficients which are transformed into line spectral frequency coefficients are
extracted from windowed frames, from the training signal and subsequently
passed as the input data to the vector quantiser. Once the speech codebook is
created, the spectral envelopes corresponding to the AR coefficients ({au}U

u=1)
are computed and arranged as columns of the spectral basis matrix D as
explained by (C.4) and (C.5). Given the observed data and the spectral basis
matrix D, it has been shown in [7] that the maximum likelihood estimation
of the activation coefficients corresponds to minimising the IS divergence
between the periodogram of the observed signal and the modelled PSD. Since
there is no closed form solution for this, it is generally estimated iteratively
using the multiplicative update (MU) rule [13] as

Σ̂HA/CA(θi)
← Σ̂HA/CA(θi)

� DT((DΣ̂HA/CA(θi)
)[−2]�ΦHA/CA(θi)

)

DT(DΣ̂HA/CA(θi)
)[−1]

, (C.11)
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Algorithm 3 Main steps involved in the proposed framework

1: while new time-frames are available do

2: Apply beamforming in the HA as well as the UCA for different candi-
date directions to obtain xHA and xCA(θi)

3: Assuming the spectral basis matrix D is trained a priori, estimate ΣHA
and ΣCA(θi)

using (C.11)
4: Transmit the estimated activation coefficients Σ̂HA from the HA to ex-

ternal device
5: Estimate θs using (C.8) or (C.9)
6: Use the beamformed signal from the UCA as a reference signal for

performing binaural enhancement
7: end while

where ΦHA/CA(θi)
contains the periodogram of frames of the signals arranged

as columns, � is the element-wise product and the division is an element-
wise division. The spectral basis matrix along with the estimated activation
coefficients can be utilised as shown in (C.8) and (C.9) to estimate the direc-
tion of arrival to control the beam pattern of the UCA. It should be noted
that the method proposed here to estimate θs requires only the transmission
of Σ̂HA from the HA to the external device. This is generally much less than
the amount of signal samples. The proposed algorithm is summarised in
Algorithm 3.

4 Experiments

4.1 Experimental setup

This section describes the experimental results obtained for the proposed
method. The setup used for carrying out the experiments will be explained
in this section followed by the results. Fig. C.2 shows a portion of the experi-
mental setup in a room of dimensions 12× 6× 6 m with a reverberation time
of 0.4 seconds. The room impulse responses were generated using [14]. In
this figure, the HA user is trying to listen to the target speaker denoted by a
green dot. Along with the speaker of interest, there are 3 other interferers lo-
cated around the table as shown in the figure. The HA user is simulated with
a ULA of 5 microphones with a span of 0.24 m which is a typical ear to ear
distance of a human head. The external device that we have considered here
is a UCA of radius of 0.13 m with 10 microphones. The signals used for test-
ing consisted of speech signals spoken by two males and two females taken
from the CHIME database [15]. A codebook of size 64 entries was generated
using the GLA using speech from the EUROM database [16]. We have used
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Fig. C.2: Figure shows the experimental setup where the green dot indicates the source of interest
and the red dot indicates the interferers.

different databases for testing and training to test the robustness of the pro-
posed method against the mismatches that maybe encountered in a practical
scenario. The parameters used for the experiments have been summarised
in Table C.1. The beamformed signals at the HA and the external device
can be obtained using any of the conventional beamforming algorithms. For
the experiments conducted in this section, we have used the robust Capon
beamforming (RCB) [17, 18], as this method has been shown to be robust
to reverberation and uncertainty in the steering vector [18]. The number of
candidate directions I has been chosen to be 8 in the experiments. It should
be noted that speakers are not constrained to be at the candidate positions
as the RCB takes into account uncertainties in the steering vector using the
parameter ε [17, eq. (14)] which was chosen to be 3.5 in our experiments. The
experiments we have conducted to validate the robustness of the proposed
method is shown in the following section.

4.2 Experimental Results

In this section we evaluate the accuracy of the proposed method in the ex-
perimental setup explained above. In addition to the case shown in Fig. C.2,
we have varied the source of interest, so the results shown in this section are
averaged over all the speakers (4 in this case). In addition to the interferers,
we also add spherically isotropic babble ambient noise generated using the
implementation in [19]. Figures C.3 and C.4 show the average accuracy ob-
tained over all the speakers for 10 iterations per speaker as a function of SNR
and the memory for correlation based and IS based methods, respectively.
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Fig. C.3: Percentage of correctly detected direction for the correlation based method as a function
of the SNR and memory.

Memory here is related to the number of frames V (used for the computation
of the model parameters) that is needed to estimate θs. It can be seen from
the figure that the correlation based method converges to 100 % accuracy for
SNRs 0 dB and above when a memory greater than 1700 ms is used for com-
putation of the model parameters, whereas the IS based method converges to
100 % accuracy for SNRs 5 dB and above when a memory of 2200 ms is used.
It should be noted that the experiments conducted in this section, assumed
the positions of the HA user, the target speaker and the interferers to be sta-
tionary. However, in practical scenarios it may be useful to update the result
at much finer time scale, as the HA user may continously change the look
direction. The influence of memory has also been investigated in figures C.3
and C.4 and it can be seen that as the SNR increases the memory required
for the proposed method to obtain certain accuracy decreases, e.g., to reach
80 % accuracy, it requires a memory of approximately 100, 240 and 600 ms
for SNRs 10, 0 and -5 dB, respectively for the correlation based method.

Table C.1: Parameters used for the experiments

Parameters
sampling frequency 8000 Hz
Frame size (N) 200
Frame overlap 50%
AR order (P) 14
U 64
MU iterations 50
I 8
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Fig. C.4: Percentage of correctly detected direction for the IS based method as a function of the
SNR and memory.

Enhancement performance

In this section, we show an example of how this setup can be used for monau-
ral/binaural enhancement in HAs. One option is to wirelessly transmit the
beamformed signal at the external device to the HA and play back that signal
at both the ears. Playing back the monaural signal, however, may lead to dis-
tortion of binaural cues. Thus in this paper, we also perform binaural speech
enhancement, where we consider the signals received at the left and right-
most microphones as the binaural noisy signal. To perform the enhancement
we consider the binaural enhancement framework proposed in [20], which is
based on the MMSE criterion. This method applies a common gain on the left
and right channels which leads to the preservation of the binaural cues. The
common gain applied in this case requires the estimation of the speech/noise
statistics [20, eq. (17)]. In this work, we propose to use the beamformed sig-
nal at the UCA from the estimated direction to be used as the reference signal
to estimate the clean speech statistics. Fig. C.5 shows the averaged short time
objective intelligibilty (STOI) [21] scores for the left and right channels ob-
tained for the different configurations. The beamformed signals at the HA
and UCA are denoted as mono-HA and mono-CA, respectively. The binaural
enhancement method where we use the beamformed signals at the HA and
UCA to estimate the clean speech statistics is denoted as Bin-HA and Bin-
CA, respectively. It can be seen that using the beamformed signal at the UCA
shows an improvement in both the binaural and monaural configurations.
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5 Conclusion

In this paper we have proposed a framework for improving the speech under-
standing for HA users in the presence of multiple interferers. The proposed
system consisted of using an external microphone array whose beam-pattern
is controlled by the look direction of the HA user using a model-based ap-
proach. The robustness of the proposed method at very low SNRs in a re-
verberant scenario has been shown by the means of simulations. Moreover,
the benefits of using the external device in addition to the HA for perform-
ing binaural enhancement has been shown using an objective measure for
intelligibility.
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1. Introduction

Abstract

Most speech enhancement algorithms need an estimate of the noise power spectral
density (PSD) to work. In this paper, we introduce a model-based framework for
doing noise PSD estimation. The proposed framework allows us to include prior
spectral information about the speech and noise sources, can be configured to have
zero tracking delay, and does not depend on estimated speech presence probabilities.
This is in contrast to other noise PSD estimators which often have a too large tracking
delay to give good results in non-stationary situations and offer no consistent way
of including prior information about the speech or the noise type. The results show
that the proposed method outperforms state-of-the-art noise PSD estimators in terms
of tracking speed and estimation accuracy.

1 Introduction

The healthy human auditory system has a remarkable ability to extract the
desirable information from a noisy speech signal. Even in situations such as
a cocktail party where the background noise is non-stationary and the signal-
to-noise ratio (SNR) is very low, normal hearing people are not only able to
cope with the situation, but able to enjoy it. For people with a hearing defect,
however, noisy situations such as a cocktail party are often mentally fatigu-
ing and very challenging to deal with. These hearing impaired people often
rely on a hearing aid for the speech enhancement, but the performance of
the current hearing aid technology is far from enabling its users to thrive in
difficult situations such as a cocktail party. Speech enhancement is not only
important to the hearing impaired person in a cocktail party situation, but in
any situation where the desired speech is observed in noise. Moreover, not
only humans benefit from speech enhancement since, e.g., speaker identifica-
tion and speech recognition algorithms are often designed for a clean speech
signal [1].

Any speech enhancement algorithm must incorporate some prior knowl-
edge in order to successfully separate the desired speech from the unwanted
background noise. For example, the popular Wiener filter and many other
speech enhancement algorithms such as maximum SNR, MVDR, and LCMV
[1] (see also [2] for a comparison) assume that the second-order statistics of
the speech and/or noise are known somehow. In practice, however, the statis-
tics is often unknown and time-varying. Therefore, the prior knowledge must
be represented in an alternative way so that the statistics can be estimated di-
rectly from the noisy speech. In this paper, we make contributions to the
solution of exactly this problem.

Many people have been analysing the problem of estimating the noise
power spectral density (PSD) or, equivalently, the second-order noise statis-
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tics, from a noisy speech signal. The most basic approach to estimating the
noise PSD has been to use a voice activity detector (VAD) to inform the esti-
mation algorithm about when speech is absent so that the noise PSD can be
estimated. Unfortunately, such VADs are often difficult to tune in low SNRs,
and they do not work well when the noise is non-stationary [3, 4]. Moreover,
they are inefficient since they typically disable the noise PSD estimator across
the entire frequency range, even if speech is only present in a few frequency
bands. This has motivated the use of a soft VAD in each frequency band. A
prominent example of this is the minimum statistics (MS) method [3, 5]. The
algorithm is built on the assumption that the noise PSD is slowly varying
with time and that the power of the noisy signal frequently goes down to the
noise power level. Although the MS principle is simple, a lot of heuristics
go into estimating a very important smoothing parameter and to correct the
negative bias of the estimator. In fact, a full journal paper has been published
on the latter issue [6]. Other problems with the principle are that the vari-
ance of the estimated noise PSD is bigger than for other methods [3, 4] and
that very long tracking delays can occur, in particular when the noise power
is increasing. Precisely these two issues were addresses in the MCRA [7–9]
and later in the improved MCRA (IMCRA) [4] methods. Unfortunately, how-
ever, there might still be a considerable tracking delay in IMCRA if the noise
power is increasing [10] and a lot of hand-crafting is still involved in tun-
ing the algorithm and in doing bias correction. In [10, 11], the MS principle
was abandoned in favour of MMSE estimators. These MMSE estimators were
demonstrated to have a much better tracking speed than the MS and IMCRA
methods and can be considered to be the best noise tracker currently [12].
One of the disadvantages of the MMSE estimators is that the first five time
frames are assumed to be noise only to initialise the tracker. Another dis-
advantage is that it is not clear what prior information is actually built into
the MMSE estimators about the speech and the noise, besides that the speech
and noise spectral coefficients are modelled as independent and normally
distributed random variables. This model assumption is very common in
noise PSD estimation, but does not by itself enable us to separate a mixture
into its components. Additional prior information is, therefore, necessary to
find a unique solution to the problem, but the current noise trackers often
rely on heuristic tricks for making the problem solvable rather than explic-
itly stating the model assumptions. Approaches based on, e.g., vector Taylor
series [13] or nonnegative matrix factorisations (NMF) [14] give such model
based estimates of the noise statistics via a separate training step. The clear
advantage of these approaches is that it is much easier to understand the
applicability and limitations of the model and, consequently, the noise PSD
estimator. Moreover, we do not have to compensate for artefacts such as
an unwanted bias, and we can change the built-in prior information via the
model. For example, a hearing aid user often communicate with the same
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people, but such information cannot be built into current noise PSD trackers.
In this paper, we propose a new noise PSD estimator which has some

resemblance to both the NMF approach and the MMSE estimators. However,
we derive our estimator directly in a flexible statistical framework which
can be used in situations where we have specific prior information, but also
in situations where we do not. By virtue of being model-based, we can in
principle also use the proposed framework for noise PSD estimation with no
tracking delay, even if speech is continuously present.

2 The Estimation Problem and the Model

We assume that we observe N samples from the noisy speech signal

y = s + e (D.1)

where y ∈ RN×1, s ∈ RN×1, and e ∈ RN×1 are the noisy speech, the clean
speech, and the noise, respectively. Given y, we seek to estimate the noise
PSD which is typically defined as [15, p. 7]

φe(ω) = lim
N→∞

1
N

E
[
|E(ω)|2|y

]
(D.2)

where E is the expectation operator and E(ω) = f H(ω)e is the DFT of
the noise with f (ω) = {exp(jωn)}n=0,...,N−1. The conditional expectation
in (D.2) is the second moment of the density p(E(ω)|y). However, it can also
be written in terms of the density p(e|y) as

E
[
|E(ω)|2|y

]
= f H(ω)

[∫
RN×1

eeT p(e|y)de
]

f (ω) . (D.3)

The problem of estimating the noise PSD is, therefore, essentially that of
computing the second moment of the posterior p(e|y). This might seem
counter-intuitive since noise PSD estimation is usually pitched in the context
of speech enhancement, but the above form of the PSD reveals that we ac-
tually have to decompose the noisy speech into its components before the
noise PSD can be estimated. Nevertheless, speech enhancement is not only a
mathematical problem of minimising some objective function, but often the
art of improving highly subjective measures such as speech intelligibility and
speech quality, so noise PSD estimation is still useful in many applications.

To compute the posterior p(e|y), we elicit several statistical models {Mk}K
k=1

for how the data vector y was generated. Such models can easily be included
in (D.3) as

E
[
|E(ω)|2∣∣y] =

K

∑
k=1

p(Mk|y)E
[
|E(ω)|2∣∣y,Mk

]
. (D.4)
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Thus, we obtain a model averaged noise PSD estimator if we insert (D.4) in
(D.2). The model probabilities {p(Mk|y)}K

k=1 ensure that those models which
explain the data well will contribute with a larger weight than those models
which do not explain the data well. In principle, there are no limits on which
models can be used. From a practical perspective, however, it is advantageous
to use models that lead to tractable algorithms while still being a sufficiently
accurate representation of how the speech and the noise were generated. In
this paper, we will use autoregressive processes to model the speech and the
noise, i.e.,

p(s|σ2
s,k,Mk) = N (0, σ2

s,kRs(ak)) (D.5)

p(e|σ2
e,k,Mk) = N (0, σ2

e,kRe(bk)) (D.6)

where σ2
s,k, σ2

e,k, Rs(ak), Re(bk), ak, and bk are the excitation noise variances,
the normalised covariance matrices, and the AR-parameters of the speech
and the noise, respectively. We assume that the AR-processes are periodic in
N since the normalised covariance matrices then are diagonalised by the DFT
matrix F. That is,

Rs(ak) = N−1FDs(ak)FH (D.7)

[F]nl = exp(j2π(n− 1)(l − 1)/N) , n, l = 1, . . . , N (D.8)

Ds(ak) =
(

ΛH
s (ak)Λs(ak)

)−1
(D.9)

Λs(ak) = diag(FH [
aT

k 0
]T
) (D.10)

with similar definitions for Re(bk). Although it might seem unfounded to
assume periodicity in N, this assumption is actually implicitly made when
using the asymptotic covariance matrix of an AR-process for finite length
signals as in [16] or when interpreting the Itakura-Saito (IS) distortion mea-
sure [17, 18] as the maximum likelihood estimator of short-time speech spec-
tra. Precisely the IS distortion measure has been very popular in the speech
community for decades, partly due to it also being a perceptually meaningful
distortion measure [19], and has lately also been used successfully as a dis-
tortion measure for nonnegative matrix factorisation (NMF) [20]. Moreover,
the above model actually has the signal model used in [10, 11] as a special
case. Specifically, if we select K = 1 and set the AR-orders to N − 1, then
the speech and noise spectral coefficients are modelled as independent and
normally distributed random variables and the noise PSD estimator in (D.2)
is the foundation of the MMSE-estimators in [10, 11]. As discussed in the in-
troduction, however, this frequency domain model does not by itself allow us
to separate the noisy mixture into its components. , so we have to introduce
additional prior information into the model to separate the two components.
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2.1 Prior Information

Inspired by the work in [16, 21], the AR-parameters are here assumed known
for a given model. Thus, a model in our framework corresponds to one com-
bination of so-called codebook entries in the framework of [16, 21]. That is, if
we have a speech and a noise codebook consisting of Ks and Ke trained AR-
vectors, respectively, we have a total of K = KsKe models1. At first glance, it
might seem a disadvantage that these codebooks have to be trained, but they
actually offer an excellent way of including prior spectral information. For
example, if the noise PSD estimator has to operate in a particular noise envi-
ronment such as a car cabin or mainly process speech from a single person
such as in mobile telephony, we can use codebooks with typical normalised
AR-spectra for these sources. Conversely, in the absence of any specific in-
formation about the speaker(s) and the noise environment(s), we can use
classified codebooks [16] where we first classify the speaker/noise type and
then use the corresponding codebooks which have been trained on different
speakers and noise types. Moreover, the noise PSD estimate from any noise
tracker can also be included as a noise codebook vector. This also means that
the proposed framework can be used to combine existing noise trackers in a
consistent fashion. A potential problem of the model-based approach is that
the number of models grows with the product of the codebook sizes, and this
might lead to an intractable computational complexity. This is also one of the
reasons why we use models whose covariance matrices can be diagonalised
by the DFT matrix.

The excitation noise variances are not pre-trained, but are treated as un-
known random variables with the prior

p(σ2
s,k|Mk) = Inv-G(αs,k, βs,k) (D.11)

p(σ2
e,k|Mk) = Inv-G(αe,k, βe,k) (D.12)

where Inv-G(·, ·) denotes the inverse Gamma density. Similarly, we also have
a prior mass function p(Mk) for the models. Speech is normally processed
frame-by-frame, often with some overlap. Consequently, values for the exci-
tation noise variances and models that work well in one frame, should also
work reasonably well in the next frame, and the priors are an excellent tool
for using previous information in the current frame. In a completely sta-
tionary environment, for example, the posterior distribution of one frame
should be the prior distribution in the next frame. The more non-stationary
the signals are, the broader the prior of the current frame should be com-

1Note that a codebook is not restricted to only include AR-spectra, but can in principle include
any type of spectrum as in NMF. We here focus on a parametric representation of the spectra
in terms of AR-parameters since this leads to codebooks with a small memory footprint, can
be used for short segment sizes, and allows us to train the codebooks using standard vector
quantisation techniques developed for speech coding [22].
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pared to the posterior of the previous frame. In the limit, no information is
carried over from one frame to the next, and we use uninformative priors
with α·,k = β·,k → 0 and p(Mk) = K−1. In this paper, we focus on exactly
this limiting case in the simulations. Besides not having enough space here to
give a complete description of a general frame transition model, this choice is
motivated by that 1) babble noise is typically very non-stationary, and 2) we
wish to demonstrate that the proposed model-based approach works well,
even without any smoothing between frames. This is in contrast to current
state-of-the-art noise trackers which at best have a tracking delay of a few
hundred milliseconds [10]. Before going to the simulations, however, we first
describe how the noise PSD is estimated from the model and the data.

3 Inference

To estimate the noise PSD, we have to compute the posterior model proba-
bilities p(Mk|y) as well as the second moment of the posterior p(e|y,Mk)
(see (D.4)) by combining the information in the data with the prior infor-
mation. Unfortunately, neither of these posteriors exist in closed-form, and
we, therefore, have to content ourselves with either analytical or stochastic
approximations. For our inference problem, the variational Bayesian (BS)
framework [23, 24] produces a simple analytical approximation if we assume
that the full joint posterior factorises as

p(e, σ2
s,k, σ2

e,k|y,Mk)p(Mk|y) ≈
q(e|y,Mk)q(σ2

s,k, σ2
e,k|y,Mk)q(Mk|y) . (D.13)

Unfortunately, the derivation of the three factors in the approximation is
lengthy so we only state the results here and refer the interested reader
to a supplementary document for a detailed derivation (available at �����

������	
�����������). From the derivation, we obtain that the posterior
factor q(e|y,Mk) is given by

q(e|y,Mk) = N (êk, Σ̂k) (D.14)

where

Σ̂k =

[
as,k

bs,k
R−1

s (ak) +
ae,k

be,k
R−1

e (bk)

]−1
(D.15)

êk =
as,k

bs,k
Σ̂kR−1

s (ak)y . (D.16)

The scalars as,k, bs,k, ae,k, and be,k are obtained from the factor q(σ2
s,k, σ2

e,k|y,Mk)
which is given by

q(σ2
s,k, σ2

e,k|y,Mk) = Inv-G(as,k, bs,k)Inv-G(ae,k, be,k) (D.17)
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where

as,k = αs,k + N/2 (D.18)

bs,k = βs,k +
[
ŝT

k R−1
s (ak)ŝk + tr

(
R−1

s (ak)Σ̂k

)]
/2 (D.19)

ae,k = αe,k + N/2 (D.20)

be,k = βe,k +
[
êT

k R−1
e (bk)êk + tr

(
R−1

e (bk)Σ̂k

)]
/2 (D.21)

ŝk = y− êk . (D.22)

The above solution is not a closed-form solution for the parameters of the pos-
terior factors. Instead, these are computed iteratively, and the VB framework
guarantees that the algorithm converges to a mode. Since the normalised co-
variance matrices are diagonalised with the DFT matrix, we can easily eval-
uate the matrix inverses and the traces above. An interesting observation is
that the VB algorithm essentially performs Wiener filtering in (D.16). Conver-
gence of the VB algorithm can be monitored via the variational lower bound
Lk which is related to the posterior model factor as

q(Mk|y) ∝ exp(Lk)p(Mk) . (D.23)

Unfortunately, the variational lower bound consists of many terms so we refer
the interested reader to the supplementary document for the full expression.

Since the posterior factor q(e|y,Mk) is a normal distribution, its second
moment is

E[eeT |y,Mk] = êk êT
k + Σ̂k . (D.24)

Inserting this and the posterior model factor in (D.4) and (D.2) gives

φe(ω) ≈ 1
N

K

∑
k=1

q(Mk|y)
[
| f H(ω)êk|2 + f H(ω)Σ̂k f (ω)

]
where we have ignored the limit operator. This PSD estimator is essentially
a model-averaged version of the MMSE estimators in [10, 11]. However, the
proposed estimator does not depend on threshold parameters to avoid stag-
nation, on bias compensation, or on unknown parameters which have to be
estimated by computing speech presence probabilities. Moreover, the pro-
posed estimator has a consistent way of including prior spectral information
in the form of codebooks, and it works for a single data frame, even for
uninformative prior distributions on all the excitation noise variances.

4 Evalutation

This paper has focused on motivating and deriving the proposed noise PSD
estimator. Therefore, there is only a limited space left to provide evidence
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Fig. D.1: Estimates of the noise variance for modulated white Gaussian noise. The displayed
results are averaged over frequency.

for that the fundamental principle works, but we have a more thorough
evaluation in [25]. Here, we consider two different experiments. First, we
demonstrate that the proposed noise PSD estimator works with zero tracking
delay. Second, we apply the proposed noise PSD estimator to the difficult
problem of estimating the PSD of babble noise from a noisy mixture. In
both experiments, the speech codebook consisted of 64 AR vectors of or-
der 14. It was trained using a variation of the LBG-algorithm method [26]
on both male and female speech from the EUROM English database [27].
A noise codebook consisting of 12 AR vector of order 14 was trained on
different noise types from the NOIZEUS database [28]. These noise types
included restaurant, exhibition, street, and station noise. Thus, we did not
train the codebook on babble noise which we are using for testing in the
second experiment. As alluded to in Sec. 2.1, we used non-informative pri-
ors corresponding to no smoothing between frames. The codebooks as well
as the MATLAB code for generating the presented results are available at
�����������	
�����������.

4.1 Tracking speed

The first experiment assessed the tracking speed of the estimator and is very
similar to the first experiment in [10]. Thus, we estimated the noise power of
modulated white Gaussian noise where the noise variance was time-varying
with a frequency of 2 Hz. We compared the proposed method for three dif-
ferent noise codebooks to the MMSE method [10] and the MS method [3]. For
the proposed method, the three different noise codebooks were a) a codebook
consisting of only one entry modelling a flat spectrum; b) the noise codebook
described above; and c) a combination of a) and b). Fig. D.1 shows the results
for the various noise PSD estimates averaged over frequency. As in [10], it
is observed that MS tracked the noise variance poorly and that the MMSE
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Fig. D.2: The spectrogram of the babble noise PSD (top) compared to the noise PSD estimates of
the proposed (middle) and MMSE methods (bottom).

method tracked much better, but with a delay of a few hundred millisec-
onds. On the other hand, the proposed method with noise codebook a) and
c) had no tracking delay and produced visually identical results. The latter
observation suggests that the algorithm assigned all weight to the true model
and used that for estimating the noise PSD. Finally, the proposed method
with noise codebook b) underestimated the noise variance and had a much
larger variance. This illustrates that we get a degraded performance if we use
incorrect prior information in the codebook.

4.2 Babble noise PSD estimation

In the second experiment, we estimated the babble noise PSD from a mixture
of speech and babble noise at different SNRs in steps of 2 dB from -10 dB to
10 dB. The babble noise was taken from the NOIZEUS database [28] and the
speech signal was taken from the CHiME database [29]. Thus, neither of these
signals were used for training the codebooks. For every SNR, we measured
the average Itakura-Saito (IS) distance and the average log-spectral distortion
(LSD) between the babble noise spectrogram and the estimated noise PSD
for four different methods using the default MMSE method settings of 32
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ms windows with a 50 % overlap. Aside from the proposed, the MMSE,
and the MS methods, we also used the spectrogram of the observed mixture
as a reference method. The results are shown in Fig. D.2 and Fig. D.3. In
Fig. D.2, we have plotted the babble noise spectrogram (top), the proposed
noise PSD estimate (middle), and the MMSE PSD estimate (bottom) for an
SNR of 0 dB. Clearly, the proposed PSD estimate contains many more details
than the MMSE PSD estimate. For example, there is a short burst in the
babble noise at around 2.3 s which was captured by the proposed method,
but smoothed out by the MMSE method. In Fig. D.3, the performance of the
different estimators are quantified in terms of the IS distance and the LSD.
The proposed method outperformed the other methods, except for the IS
distance for an SNR above 3 dB where the proposed method and the MMSE
method have similar performance.

5 Conclusion

In this paper, we have developed a framework for doing noise PSD estima-
tion using parametric models. These models offer a way of including prior
information into the estimator to obtain a better estimation accuracy. More
concretely, we proposed a class of models based on pre-training codebooks.
These codebooks contained typical spectra for the speech and the noise, but
could in principle also include the PSD estimates from other estimators. The
developed framework also contained model comparison to ensure that mod-
els which explain the data well have a larger weight in the model averaged
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noise PSD estimate. Via two experiments, we demonstrated the potential ap-
plicability and improvements in the tracking speed and estimation accuracy
over two state-of-the-art methods.
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1. Introduction

Abstract

The estimation of the noise power spectral density (PSD) forms a critical component
of several existing single channel speech enhancement systems. In this paper, we
evaluate one new and some of the existing and commonly used noise PSD estimation
algorithms in terms of the spectral estimation accuracy and the enhancement per-
formance for different commonly encountered background noises, which are station-
ary and non-stationary in nature. The evaluated algorithms include the Minimum
Statistics, MMSE, IMCRA methods and a new model-based method.

1 Introduction

Speech enhancement algorithms have a wide range of applications such as
in digital hearing aids, speech recognition systems, mobile communications,
etc [1], where the desired speech is degraded by acoustic background noise.
These algorithms can be broadly categorised into single and multi channel
algorithms. In this paper, we are only concerned with the former class of
algorithms. The single channel speech enhancement algorithms must gen-
erally incorporate some assumptions to remove the background noise from
the desired signal. For example, the Wiener filter assumes the second-order
statistics of the speech/noise signal to be known. In practical scenarios, these
statistics must be estimated from noisy observations. Thus, a very critical
part present in most of the single channel speech enhancement methods is
the estimation of the noise PSD [2, 3]. A significant amount of work has been
done in the past decades to solve this problem.

In this paper, we evaluate some of the well known noise PSD estimation
algorithms along with a new model-based approach [4]. Previously, an eval-
uation of noise PSD estimators was carried out in [5]. This study compared
some of the existing noise PSD estimators in terms of the spectral estimation
accuracy. In this study, we also evaluate the noise PSD estimators in terms of
its enhancement capabilities in some of the typically encountered background
noises. The estimation of noise PSD is not a trivial task especially in the case
of non-stationary noises. In such scenarios, the noise PSD estimate has to be
updated as rapidly as possible. An under-estimation or over-estimation of
the noise PSD can lead to residual noise or speech distortion. In the current
study, we evaluate different noise PSD estimation algorithms for different
types of commonly encountered background noise, which are stationary and
non-stationary in nature. The well-known algorithms that we have evalu-
ated in this paper are Minimum Statistics (MS) method [6], Improved min-
ima controlled recursive averaging (IMCRA) [7] method and minimum mean
squared error (MMSE) based estimation [8]. In addition to these algorithms,
we also evaluate a new model-based approach for estimating the noise PSD.
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A detailed description regarding this method can be found in [4]. Here we
focus on evaluating its performance. This method uses a priori information
regarding the speech and noise spectral shapes in the form of autoregressive
(AR) parameters stored in trained speech and noise codebooks.

The remainder of this paper will be organised as follows. Section 2 gives
a brief introduction to the noise PSD estimation problem and an overview of
the model-based method for estimating the noise PSD. A brief overview of
the compared algorithms is given in Section 3. The experiments used in the
evaluation of the algorithms will be explained in section 4 followed by the
results and conclusion in Sections 5 and 6 respectively.

2 Model based approach for estimating the noise

PSD

This section formulates the noise PSD estimation problem and gives a brief
overview of the model-based approach for estimating the noise PSD. We refer
the interested readers to a companion paper [4] (for further details). It is
assumed here that N samples of noisy signal are observed as

y = s + e, (E.1)

where y ∈ RN , s ∈ RN , and e ∈ RN are the noisy speech, the clean speech,
and the noise, respectively. The basic task here is to estimate the noise PSD
which is typically defined as [9]

φe(ω) = lim
N→∞

1
N

E[|E(ω)|2|y] (E.2)

where E is the expectation operator and E(ω) = f H(ω)e is the DFT of the
noise with f (ω) =

[
1 exp(jω) · · · exp(jω(N − 1))

]T . The conditional expectation
in (E.2) is the second moment of the density p(E(ω)|y) which leads to (E.2)
be rewritten in terms of p(e|y) as

φe(ω) = lim
N→∞

1
N

f H(ω)

[∫
RN×1

eeT p(e|y)de
]

f (ω) . (E.3)

To compute the posterior p(e|y), statistical models denoted as {Mk}K
k=1, are

used for explaining the generation of data. These models can be incorporated
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into (E.3) as,

φe(ω) ≈ 1
N

K

∑
k=1

p(Mk|y)

× f H(ω)

[∫
RN×1

eeT p(e|y,Mk)de
]

f (ω) (E.4)

=
K

∑
k=1

p(Mk|y)φe(ω|Mk). (E.5)

where {p(Mk|y)}K
k=1 denote the model probabilities, which ensure that mod-

els explaining the data well are given more weight in comparison to other
model. The models that have been used are autoregressive (AR) models for
speech and noise denoted by [10, 11]

p(s|σ2
s,k,Mk) = N (0, σ2

s,kRs(ak)) (E.6)

p(e|σ2
e,k,Mk) = N (0, σ2

e,kRe(bk)) (E.7)

where σ2
s,k, σ2

e,k, Rs(ak), Re(bk), ak, and bk are the excitation noise variance,
the normalised covariance matrices, and the AR-parameters of the speech
and the noise, respectively. It can be shown under certain assumptions that
the normalised covariance matrix corresponding to speech and noise can be
diagonalised by the DFT matrix [11, 12]. The excitation variances are treated
as unknown random variables with the priors,

p(σ2
s,k|Mk) = Inv-G(αs,k, βs,k) (E.8)

p(σ2
e,k|Mk) = Inv-G(αe,k, βe,k). (E.9)

As seen from (E.4) and (E.5), the posteriori model probabilities and the sec-
ond moment of the posterior needs to be computed to get the final noise
PSD estimate. As there is no closed form solution to obtain this, a variational
Bayesian framework [13, 14] is used to produce an analytical approximation
of the full joint posterior used in (E.4) as

p(e, σ2
s,k, σ2

e,k|y,Mk)p(Mk|y) ≈
q(e|y,Mk)q(σ2

s,k, σ2
e,k|y,Mk)q(Mk|y) . (E.10)

Since the posterior factor q(e|y,Mk) is a normal distribution, its second mo-
ment and the posterior model probabilities q(Mk|y) is substituted in (E.4) to
get the final noise PSD estimate. More details regarding the derivation of this
method can be found in �����������	
�����������.
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3 Overview of the existing algorithms

In this section, we will give a brief overview of the existing noise PSD esti-
mation algorithms that have been evaluated in this paper.

3.1 Minimum Statistics

This method [6] tracks the minima of the smoothed noisy spectrum for each
frequency component. The method is based on the observation that the
speech and noise component are statistically independent and that the power
of the noisy signal often goes down to the power of the noise signal. The
smoothed noisy spectrum is calculated using a recursive smoothing equa-
tion. Since this method is based on computing the minimum of the smoothed
noisy spectrum over a moving window, the noise PSD estimate is necessarily
biased. This is overcome in [6] to some extent by using a bias compensation
factor in time and frequency.

3.2 IMCRA

In this method [7], the noise PSD estimate is obtained by a recursive aver-
aging of the noisy spectral values using a time varying frequency dependent
smoothing parameter, that is adjusted according to the speech presence prob-
ability (SPP) for each frequency component. The a priori SPP are calculated
in this method after two iterations of smoothing and minima tracking. The
final SPP (used for the recursive averaging) is then computed using the a
priori SPP and the estimated a priori SNR.

3.3 MMSE

This method [8] derives an MMSE estimator of the noise PSD coefficients.
Here, the speech and noise spectral coefficients are modelled as normally
distributed random variables that are independent with each other. The first
step involves the computation of the conditional expectation of the noise
periodogram given the noisy signal which involves a weighted combination
of noise PSD estimate from the previous frame and the noisy periodogram
from the current frame. The final noise PSD estimate is then obtained by a
recursive averaging of the estimated noise periodogram.

4 Experiments

We will now describe the experiments that have been carried out to evaluate
the four noise PSD estimation algorithms. Section 4.1 describes the parame-
ters that have been used for implementing the different noise PSD estimation
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algorithms. Sections 4.2 and 4.3 explains the experiments done to evaluate
the estimation accuracy and the enhancement capabilities of the noise PSD
estimation algorithms, respectively.

4.1 Implementation Details

We have evaluated a total of four algorithms: MS, IMCRA, MMSE and the
new model based approach. The test signals used for evaluation were taken
from the EUROM database [15]. The clean speech signals were then degraded
by 5 types of typically encountered background noise: babble, street, station,
exhibition and restaurant from the NOIZEUS database [16]. The model based
approach for estimating the noise PSD explained in Section 2 requires the
speech and noise codebooks to be trained offline. For the experiments we
have trained a speech codebook of 64 entries and a noise codebook of 12 en-
tries. The codebooks were trained using a variation of the LBG algorithm [17].
The training data used for creating the speech codebook consisted of audio
samples from the EUROM database. It should be noted that we have trained
a codebook that is independent of the speaker. The data used for generating
the noise codebook consisted of noise files from the NOIZEUS database. Dif-
ferent codebooks were trained for different types of noise, which were then
appended together to form a larger codebook. The noise codebook had a
size of 16 entries, which consisted of 4 entries each for babble, restaurant and
exhibition and 2 entries each for street and station. It should be noted that,
while testing for a particular noise scenario, the noise codebook entries corre-
sponding to that scenario is NOT used for the estimation of noise PSD. The
codebooks as well as MATLAB code for generating the codebooks will be
available at �����������	
�����������. The AR order for the speech and
noise models were chosen to be 14. All the noise PSD estimation algorithms
evaluated here work on a frame size of 32 ms with 50% overlap.

4.2 Estimation Accuracy

We have used the log spectral distortion between the estimated noise PSD
and the reference noise PSD to measure the spectral estimation accuracy of
the algorithms. The reference PSD in this case is computed by taking the
periodogram of the noise only signal. The mean log spectral distortion across
the whole signal is given by

LogErr =
10
NL

L−1

∑
l=0

N−1

∑
k=0

∣∣∣log10
φe(k, l)
φ̂e(k, l)

∣∣∣ (E.11)

where φe(k, l) is the true noise PSD and φ̂e(k, l) is the estimated noise PSD at
the kth frequency index of the lth frame. This term can be separated into
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distortion due to over-estimation and under-estimation of the noise PSD,
which can be written as LogErr = LogErrov + LogErrun, where LogErrov
and LogErrun are defined as [8]

LogErrov =
10
NL

L−1

∑
l=0

N−1

∑
k=0

∣∣∣min
(

0, log10
φe(k, l)
φ̂e(k, l)

)∣∣∣ (E.12)

LogErrun =
10
NL

L−1

∑
l=0

N−1

∑
k=0

max
(

0, log10
φe(k, l)
φ̂e(k, l)

)
. (E.13)

Overestimation of the noise PSD measured by LogErrov is likely to cause
speech distortion during the enhancement stage, whereas LogErrun gives a
measure of the residual noise present in the enhanced signal. A plot of these
measures for different acoustic background noises is shown in Section 5.

4.3 Enhancement performance

The estimated noise PSD is then incorporated in a speech enhancement frame-
work. For this, we first estimate the a priori SNR using the decision directed
approach [2]. The estimated a priori SNR is then incorporated in a Wiener
filter for speech enhancement. In this work, we have used the Segmental
SNR (segSNR), Segmental speech SNR (spSNR) and segmental noise reduc-
tion (segNR) which has also been used in [8, 18] to evaluate the enhancement
performance. segSNR, spSNR and segNR are denoted as

segSNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 s2(lM + m)

∑M
m=1(s(lM + m)− ŝ(lM + m))2

(E.14)

spSNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 s2(lM + m)

∑M
m=1(s(lM + m)− s̃(lM + m))2

(E.15)

segNR =
10
L

L−1

∑
l=0

log10
∑M

m=1 e(lM + m)2

∑M
m=1 ẽ(lM + m)2

(E.16)

where s(n) denotes the clean signal, e(n) denotes the noise signal, ŝ(n) de-
notes the enhanced signal and M denotes the number of samples in a seg-
ment. The term s̃(n) and ẽ(n) are obtained by the applying the estimated
Wiener filter onto s(n) and e(n) respectively. The spSNR measures the speech
distortion, where an increase in speech distortion is indicated by a decrease
in spSNR. segNR gives a measure of the residual noise present in the signal
after enhancement. segSNR improvement takes into account both the speech
distortion and noise reduction. A plot of these measures for different acoustic
background noise is shown in Section 5.
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5 Results

In this section we plot the performance metrics introduced in Sections 4.2 and
4.3 for different background noises. Figure E.1 shows the results obtained for
babble noise. Figure E.1a corresponds the log error distortion for different
methods as a function of the input SNR. The lower shaded area of the bar
plot corresponds to LogErrov caused due to over estimation of the noise PSD
and upper part corresponds to LogErrun caused due to under estimation of
the noise PSD. It can be seen that the model based approach performs the
best in terms of log distortion measure followed by MMSE, MS and IMCRA.
Figure E.1b shows the segmental SNR for the different methods as a func-
tion of the input SNR. Figures E.1c and E.1d show the segmental speech
SNR and noise reduction, respectively. It can be seen that even though the
model based approach performs the best in terms of segSNR and segNR, it
also has the lowest spSNR. This indicates a high noise reduction at the cost
of speech distortion. IMCRA which performs the worst in terms of noise
reduction performs the best in terms of speech distortion. This is a com-
mon trade-off observed in speech enhancement [19]. Figures E.2, E.3, E.4
and E.5 show the obtained results for restaurant, exhibition, street and sta-
tion noise respectively. These figures also show a similar trend as observed
for the babble noise. It should be noted that the benefit of using the model
based approach over the other methods is more pronounced in relatively
non-stationary noises such as babble and the restaurant noise. This can be
explained by the zero tracking delay of the model based approach in com-
parison to other nethods which atleast have a few hundred milliseconds of
tracking delay [4, 8].

6 Discussion and Conclusion

The estimation of noise PSD is a very critical component of a speech en-
hancement system. Thus, in this paper, we have evaluated four noise PSD
estimators for single channel speech enhancement in some of the typically
encountered background noises. The evaluated algorithms consisted of MS,
MMSE, IMCRA and a new model based method. It was observed that the
model-based method outperformed other algorithms in terms of the spectral
estimation accuracy for all the noise types. In terms of the enhancement per-
formance, the model-based approach outperformed the other algorithms for
relatively non-stationary noises such as babble and restaurant noise irrespec-
tive of the SNR. In the case of more stationary noise types such as station and
street noise, the benefit of using the model-based approach is observed only
in lower SNRs.
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Fig. E.1: Performace measures of the algorithms for babble noise. The lower part of the subfigure
E.1a represents the LogErrov and the upper part in white represents LogErrun error due to the
underestimation of noise PSD. Subfigures E.1b, E.1c and E.1d represent the segmental SNR,
segmental speech SNR and segmental NR respectively
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1. Introduction

Abstract

In this paper, we propose a speech enhancement method based on non-negative matrix
factorization (NMF) techniques. NMF techniques allow us to approximate the power
spectral density (PSD) of the noisy signal as a weighted linear combination of trained
speech and noise basis vectors arranged as the columns of a matrix. In this work, we
propose to use basis vectors that are parameterised by autoregressive (AR) coefficients.
Parametric representation of the spectral basis is beneficial as it can encompass the
signal characteristics like, e.g. the speech production model. It is observed that the
parametric representation of basis vectors is beneficial while performing online speech
enhancement in low delay scenarios.

1 Introduction

A healthy human auditory system is capable of focusing on desired signal
from a target source while ignoring background noise in a complex noisy
environment. In comparison to a healthy auditory system, the auditory sys-
tem of a hearing impaired person lacks this ability, leading to degradation
in speech intelligibility. In such scenarios, a hearing impaired person often
relies on speech enhancement algorithms present in a hearing aid. However,
the performance of the current hearing aid technology in this aspect is lim-
ited [1]. Speech enhancement algorithms that have been developed can be
mainly categorised into supervised and unsupervised methods. Some of the
existing unsupervised methods are spectral subtraction methods [2], statisti-
cal model based methods [3] and subspace based methods [4]. Supervised
methods generally use some amount of training data to estimate the model
parameters corresponding to speech and noise. The model parameters are
subsequently used for enhancement. Examples of supervised enhancement
methods include codebook based methods [5, 6], NMF methods [7–9], hidden
Markov model based methods [10, 11].

In this paper, we propose a speech enhancement method based on non-
negative matrix factorization (NMF) techniques. NMF for source separation
and speech enhancement has been previously proposed [7, 8]. NMF tech-
niques allow us to approximate the power spectrum or the magnitude spec-
trum of the noisy signal as a weighted linear combination of trained speech
and noise basis vectors arranged as the columns of a matrix. Generally the
basis vectors used in NMF based speech enhancement are not constrained
by any parameters. Parameterisation of the basis vectors in the field of mu-
sic processing has been previously done in [12]. In [12], harmonic combs
parametrised by the fundamental frequency was used as the basis vectors.
This parametrisation was found to efficiently represent the music signal in
comparison to the non parametric counterpart.
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In this work, we propose to use basis vectors that are parametrised by
autoregressive (AR) coefficients. This parametrisation allows representation
of power spectral density (PSD) using a small set of parameters. Parametri-
sation by AR coefficients is motivated by the source filter model of speech
production. This model describes speech components as a combination of a
sound source (excitation signal produced by the vocal chords) and an AR fil-
ter which models the vocal tract. In this work, we show that if we model the
observed data in the time domain as a sum of AR processes, the maximisation
of the likelihood corresponds to performing NMF of the observed data into
a basis matrix and activation coefficients, using Itakura-Saito (IS) divergence
as the optimisation criterion. The IS divergence has been extensively used in
speech and music processing due to its similarity to perceptual distance. The
basis matrix here consists of AR spectral envelopes parameterised by AR co-
efficients, and the activation coefficients can be physically interpreted as the
excitation variance of the noise that excites the AR filter parametrised by the
AR coefficients. A benefit of parametrically representing the spectral basis,
is that, it can be represented by a small set of parameters, which means that
fewer parameters have to be trained a priori for performing on-line speech
enhancement.

The remainder of this paper is organised as follows. Section 2 explains
the signal model and formulates the problem mathematically. Training of
the speech and noise spectral bases is explained in Section 3. Section 4 ex-
plains the on-line estimation of the activation coefficients corresponding to
the spectral bases followed by the enhancement procedure using the Wiener
filter. Sections 5 and 6 give the experimental results and the conclusion re-
spectively.

2 Mathematical formulation

This section explains the signal model and mathematically formulates the
problem. The noisy signal is expressed as

x(n) = s(n) + w(n) (F.1)

where s(n) is the clean speech and w(n) is the noise signal. The objective of a
speech enhancement system is to obtain an estimate of the clean speech signal
from the noisy signal. A very popular method for estimating the clean speech
signal is by applying a Wiener filter onto the noisy signal. Wiener filtering
requires the knowledge of the speech and noise statistics. Since there is no
direct access to either speech or noise in practical scenarios, these statistics
have to be estimated from the noisy observation. As the speech and noise
properties change over time, these statistics are generally time varying. The
majority of the speech processing algorithms consider these statistics to be
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quasi-stationary. Thus, these statistics are assumed to be constant for short
segments of time (≈ 25 ms).

We now, explain the signal model used in the estimation of the statistics
from a frame of noisy signal. It is assumed that a frame of noisy signal
x = [x(0), . . . x(N − 1)]T can be represented as a sum of U = Us + Uw AR
processes cu. This is mathematically written as

x =
U

∑
u=1

cu =
Us

∑
u=1

cu +
U

∑
u=Us+1

cu, (F.2)

where the first Us AR processes correspond to the speech signal and the
remaining Uw AR processes correspond to the noise signal. Each of the AR
process is expressed as a multivariate Gaussian [6] as shown below

cu ∼ N (0, σ2
uQu). (F.3)

The gain normalised covariance matrix, Qu can be asymptotically approx-
imated as a circulant matrix which can be diagonalised using the Fourier
transform as [13]

Qu = FDuFH (F.4)

where F is the DFT matrix defined as [F]k,n = 1√
N

exp(j2πnk/N), n, k =

0 . . . N − 1 and

Du = (ΛH
u Λu)

−1, Λu = diag(
√

NFH
[

au
0

]
) (F.5)

where au = [1, au(1) . . . au(P)]T represents the vector of AR coefficients cor-
responding to uth basis vector and P is the AR order. The likelihood as a
function of U excitation variances and AR spectral envelopes are expressed
as

p(x|σ, D) ∼ N (0,
U

∑
u=1

σ2
uQu) (F.6)

where σ represents the excitation variances corresponding to the U AR pro-
cesses and D represents AR spectral envelopes corresponding to the U AR
processes. In this paper, we are interested in the maximum likelihood (ML)
estimation of activation coefficients σ given the noisy signal x. Since, we are
performing supervised enhancement here, we assume that the spectral ba-
sis are trained a priori, which is explained in Section 3. Thus, in this work
we only estimate the activation coefficients online while the basis vectors are
assumed known. This is expressed mathematically as, To solve this, the log-
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arithm of likelihood in (F.6) is written as

lnp(x|σ, D) = −N
2

ln2π + ln
∣∣∣ U

∑
u=1

σ2
uFDuFH

∣∣∣− 1
2

−1
2

xT [
U

∑
u=1

σ2
uFDuFH ]−1x.

(F.7)

This is further simplified as

lnp(x|σ, D) = −K
2

ln2π + ln
K

∏
k=1

( U

∑
u=1

σ2
udu(k)

)− 1
2

−1
2

xTF[
U

∑
u=1

σ2
uDu]

−1FHx

(F.8)

where du(k) represents the kth diagonal element of Du and number of fre-
quency indices K = N. Further simplifying,

lnp(x|σ, D) = −K
2

ln2π + ln
K

∏
k=1

( U

∑
u=1

Φ̂u(k)
)− 1

2

−1
2

K

∑
k=1

Φ(k)

∑U
u=1 Φ̂u(k)

(F.9)

where Φ̂u(k) = σ2
udu(k), Φ(k) = |X(k)|2 and X(k) = 1√

N ∑N−1
n=0 x(n)exp(−j2πnk/N).

Log-likelihood is then written as

lnp(x|σ, D) = −K
2

ln2π − 1
2

K

∑
k=1

(
Φ(k)

∑U
u=1 Φ̂u(k)

+ ln
U

∑
u=1

Φ̂u(k)

)
(F.10)

where
U

∑
u=1

Φ̂u(k) =
U

∑
u=1

σ2
udu(k) = dkσ (F.11)

where dk = [d1(k) . . . dU(k)] and σ = [σ2
1 . . . σ2

U ]
T . Thus maximising the likeli-

hood is equivalent to minimising the IS divergence between φ = [Φ(1) . . . Φ(K)]T

and Dσ subject to Φ(k) > 0 ∀k where D = [dT
1 . . . dT

K]
T . In case we observe

V > 1 frames, this corresponds to performing NMF of Φ = [φ1 . . . φv . . . φV ]
(where φv = [Φv(1) . . . Φv(K)]T contains the periodogram of the vth frame)
as

Φ ≈

⎡
⎢⎣

d1(1) . . . dU(1)
...

. . .
...

d1(K) . . . dU(K)

⎤
⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎣

σ2
1 (1) . . . σ2

1 (V)
...

. . .
...

σ2
U(1) . . . σ2

U(V)

⎤
⎥⎦

︸ ︷︷ ︸
Σ

. (F.12)
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The first Us columns of D corresponds to the spectral basis corresponding to
the speech and the remaining Uw columns of D correspond to noise signal.
The first Us rows of Σ correspond to the activation coefficients for speech
and the remaining Uw rows of Σ correspond to the activation coefficients
corresponding to the noise signal, which leads to (F.12) being rewritten as,

Φ ≈ [Ds Dw]

[
Σs
Σw

]
= DΣ. (F.13)

3 Training the Spectral Bases

This section explains the training of the basis vectors used for the construc-
tion of the basis matrix D. In this work we use a parametric representation
of the PSD [14] where the uth spectral basis du = [du(1)...du(k)...du(K)]T is
represented as

du(k) =
1∣∣∣∣∣1 + P

∑
p=1

au(p)exp(−j2πpk
N )

∣∣∣∣∣
2 , (F.14)

where {au(p)}P
p=1 is the set of AR coefficients corresponding to the uth ba-

sis vector. During the training stage, a speech and noise codebook is first
computed using the generalised Lloyd algorithm [15] [16] [6]. The speech
codebook and noise codebooks contain AR coefficients corresponding to the
spectral envelopes of speech and noise. During the training process linear
prediction coefficients (converted into line spectral frequency coefficients)
are extracted from windowed frames, obtained from the training signal and
passed as input to the vector quantiser. Once the speech codebook and noise
codebooks are created, the spectral envelopes corresponding to the speech
AR coefficients ({au}Us

u=1) and noise AR coefficients ({au}U
u=Us+1) are com-

puted using (F.14), and arranged as columns of D. The spectral envelopes
generated here are gain normalised, so they do not include the excitation
variance. Fig. F.1 shows a few examples of the trained speech and noise
spectral envelopes.

4 Enhancement - Multiplicative Update

This section describes the estimation of speech and noise PSDs using the
signal model explained in Section 2. Since we are interested in on-line pro-
cessing of the noisy signal, we here assume that only a frame of noisy signal
is available at particular time for enhancement. The method considered here
assumes that

φ ≈ Dσ (F.15)
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where φ is a K× 1 vector containing the noisy PSD, D is K×U basis matrix
and σ is U × 1 vector containing the activation coefficients. The objective
here, is to estimate σ given the noisy periodogram φ and D. As explained in
Section 2, this is done by minimising the IS divergence as

σest = [σT
sest σT

west ]
T = arg min

σ≥0
dIS(φ|Dσ). (F.16)

In this work, a multiplicative update (MU) method is used to estimate the
activation coefficients which are calculated as [8, 17]

σest ← σest
DT((Dσest)[−2].φ)

DT(Dσest)[−1]
. (F.17)

Once the gains are estimated, a Wiener filter can be constructed to extract
the speech/noise components. The estimated clean speech PSD is obtained
as Dsσsest and the estimated noise PSD is obtained as Dwσwest . The Wiener
filter vector constructed to extract the speech component is denoted as

gest =
Dsσsest

Dsσsest + Dwσwest

, (F.18)

where the division is an element wise division.

5 Experiments

5.1 Implementation Details

This section explains the experiments that have been carried out to evaluate
the proposed enhancement framework. The test signals used here consist of
sentences taken from the GRID database [18]. The speech and noise PSD
parameters are estimated (as explained in Section 4) for a segment of 25
ms with 50 percent overlap. The parameters used for the experiments are
summarised in table F.1. For our experiments, we have used both a speaker-
specific codebook and a general speech codebook. A speaker-specific code-
book of 64 entries was trained using a training sample of 5 minutes of speech
from the specific speaker of interest. A general speech codebook of 64 entries
was trained from a training sample of approximately 150 minutes of speech
from 30 different speakers. It should be noted that the sentences used for
training the codebook were not included for testing. The proposed enhance-
ment framework was tested on three different types of commonly encoun-
tered background noise: babble, restaurant and exhibition noise taken from
the NOIZEUS database [19]. We have performed experiments for a noise spe-
cific codebook as well as general noise codebook. A noise-specific codebook
of 8 entries was trained on the specific noise type of interest. For creating a
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general noise codebook, a noise codebook of 4 entries was trained for each
noise type. While testing for a particular noise scenario, the noise codebook
entries corresponding to that scenario are not used for the estimation of noise
PSD. For example, while testing in the babble noise scenario, the noise code-
book consists a total of 8 entries formed by concatenating the entries trained
for restaurant and exhibition scenarios. After obtaining the speech and noise
codebooks, the spectral basis matrix is constructed as explained in Section
3. The estimated PSD parameters are then used to create a Wiener filter for
speech enhancement. Wiener filter is applied in the frequency domain and
time-domain enhanced signal is synthesised using overlap-add.

5.2 Results

We have used the objective measures such as STOI and Segmental SNR
to evaluate the proposed algorithm. We will denote the proposed para-
metric NMF as ParNMF. We have compared the performance of the pro-
posed method to non parametric NMF where there is no parametrisation
involved in the creation of the basis vectors. We will denote this method
as NonParNMF. It should be noted that we have used the same training
set for ParNMF and NonParNMF. We have also used the speech enhance-
ment method proposed in [20] for comparison purposes, which we denote as
MMSE-GGP. Traditionally, NMF methods for speech enhancement generally
try to approximate the magnitude spectrum than the power spectrum. Even
though, this is not theoretically well formulated, this has been observed to
give better performance [21]. Thus, here we evaluated the performance of
the proposed algorithm for both the cases, which we denote as ParNMF-abs
while approximating the magnitude spectrum and ParNMF-pow while ap-
proximating the power spectrum. We do the same evaluation in the case of
NonParNMF. Figures F.2-F.4 show these measures for different methods in
different commonly encountered background noises while using a speaker

Table F.1: Parameters used for the experiments

Parameters
sampling frequency 8000 Hz
Frame Size 200
Frame Overlap 50%
Speech AR order 14
Noise AR order 14
Us 64
Uw 8
MU iterations 50
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specific codebook and a noise specific codebook. It can be seen that NMF
based methods perform better than MMSE-GGP in terms of STOI. When
comparing the ParNMF and NonParNMF, it is demonstrated that the former
performs better in terms of STOI and Segmental SNR measures. We have also
performed experiments when having an access to a general speech codebook
and a general noise codebook. Figures F.5-F.7 shows the objective measures
obtained for this case. It can be seen that performance in this case degrades
in comparison to figures F.2-F.4 due to the mismatch in training and test-
ing conditions. Even though there is a degradation in the performance, the
proposed method is able to increase the STOI measure significantly over the
conventional method.

6 Conclusion

In this paper, we have proposed an NMF based speech enhancement method
where the basis vectors are parametrised using AR coefficients. Parametrisa-
tion of the spectral basis vectors helps in encompassing the signal character-
estics. We have demonstrated, through objective measures, that the proposed
parametric NMF based speech enhancement out performs its non-parametric
counterpart in some of the typically encountered background noises.
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(a) (b)

Fig. F.1: Figure showing a set of (a) trained speech spectral envelopes and (b) noise spectral
envelopes.
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Fig. F.2: Objective measures for babble noise when using speaker-specific codebook and a noise-
specific codebook.
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Fig. F.3: Objective measures for restaurant noise when using speaker-specific codebook and a
noise-specific codebook.
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Fig. F.4: Objective measures for exhibition noise when using speaker-specific codebook and a
noise-specific codebook.
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Fig. F.5: Objective measures for babble noise when using general speech codebook and a general
noise codebook.
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Fig. F.6: Objective measures for restaurant noise when using general speech codebook and a
general noise codebook.
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Fig. F.7: Objective measures for exhibition noise when using general speech codebook and a
general noise codebook.

155



References

156



Paper G

Non-intrusive codebook-based intelligibility
prediction

Charlotte Sørensen, Mathew Shaji Kavalekalam, Angeliki
Xenaki, Jesper B. Boldt and Mads Græsbøll Christensen

The paper has been published in the
Speech Communication, 2018



c© 2018 ELSEVIER
The layout has been revised.



1. Introduction

Abstract

In recent years, there has been an increasing interest in objective measures of speech
intelligibility in the speech processing community. Important progress has been made
in intrusive measures of intelligibility, where the Short-Time Objective Intelligibility
(STOI) method has become the de facto standard. Online adaptation of signal process-
ing in, for example, hearing aids, in accordance with the listening conditions, requires
a non-intrusive measure of intelligibility. Presently, however, no good non-intrusive
measures exist for noisy, nonstationary conditions. In this paper, we propose a novel,
non-intrusive method for intelligiblity prediction in noisy conditions. The proposed
method is based on STOI, which measures long-term correlations in the clean and
degraded speech. Here, we propose to estimate the clean speech using a codebook-
based approach that jointly models the speech and noisy spectra, parametrized by
auto-regressive parameters, using pre-trained codebooks of both speech and noise. In
experiments, the proposed method is demonstrated to be capable of accurately predict-
ing the intelligibility scores obtained with STOI from oracle information. Moreover,
the results are validated in listening tests that confirm that the proposed method can
estimate intelligibility from noisy speech over a range of signal-to-noise ratios.

1 Introduction

Human interaction depends on communication where speech has a central
role. Inability to understand speech, e.g., due to hearing impairment, noisy
background, or distortion in communication systems, can lead to ineffective
communication and social isolation, and the development of speech enhance-
ment methods [1, 2] is, therefore, a key concern in many applications. These
include challenging applications such as hearing aids [3], telecommunication
systems [4, 5], and architectural acoustics [6]. To assess the listening condi-
tions in which speech processing would be beneficial, but also to evaluate
the speech processing algorithms as such, a speech intelligibility measure is
required [3, 5, 7].

A natural way of assessing the intelligibility of a degraded, i.e., processed,
distorted or noisy speech signal is by performing subjective listening tests.
Subjective speech intelligibility scores gives the percentage of correctly iden-
tified information from a degraded speech signal. However, subjective speech
intelligibility experiments are time-consuming, expensive and cannot be used
for real-time applications. Hence, there is a great interest in developing ob-
jective measures for speech intelligibility prediction. As opposed to subjec-
tive listening tests, objective intelligibility prediction algorithms are faster,
cheaper and can be used for real-time processing.

The Articulation Index (AI) [8, 9] and the Speech Intelligibility Index
(SII) [10] are some of the earliest metrics for prediction of speech intelligi-
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bility scores. The AI and SII use the signal-to-noise ratio (SNR) of speech
excerpts in several frequency bands to estimate the intelligibility, hence they
require that both the clean speech signal and the noise are available and un-
correlated as well as the noise to be stationary. The Extended SII (ESII) [11]
and the Coherence SII (CSII) [12], are variants of SII which account for fluctu-
ating noise and nonlinear distortions from clipping, respectively. The Speech
Transmission Index (STI) [4] was introduced to predict the intelligibility of an
amplitude modulated signal at the output of a transmission channel based
on changes in the modulation depth across frequency of a probe signal. The
STI, which requires a probe signal as reference, offers good prediction of
speech intelligibility in reverberant and noisy conditions [4], but not for
more adverse nonlinear distortions, such as those caused by spectral sub-
traction [13]. The Short-Time Objective Intelligibility (STOI) metric [14] pre-
dicts the intelligibility of a signal by its short-time correlation with its clean
counterpart which is required as input. STOI estimates are accurate for time-
frequency processed speech [15, 16]. The speech-based Envelope Power Spec-
trum Model (sEPSM) [17] estimates the SNR in the envelope-frequency do-
main and uses the noise signal alone as reference. The sEPSM accounts for
the effects of additive noise and reverberation and some types of nonlinear
processing such as spectral subtraction [17], but fails with other types of
nonlinear processing such as ideal binary masks and phase jitter [16]. More
recent work includes that of [18], which takes an information theoretical ap-
proach to the problem.

All the aforementioned methods are intrusive, i.e., they require either the
clean speech signal or the noise interference as reference to estimate the intel-
ligibility of the degraded signal. Access to the clean speech signal is imprac-
tical for many real-life applications or real-time processing systems. To over-
come this limitation, a number of non-intrusive objective intelligibility mea-
sures have been proposed. The Speech to Reverberation Modulation energy
Ratio (SRMR) [19] and the average Modulation-spectrum Area (ModA) [20]
both provide intelligibility predictions based on the modulation spectrum of
the degraded speech signal, i.e., in a non-intrusive manner. Other notable
work includes the reduced dynamic range (rDR) based intelligibility mea-
sure [21], wherein the intelligibility is predicted directly from the dynamic
range of the noisy speech, and the across-band envelope correlation (ABEC)
metric [22], which is based on temporal envelope waveforms. Another ap-
proach to predict speech intelligibility non-intrusively is to first obtain an
estimate of the clean speech signal which is thereafter used as reference to
an intrusive method. Machine learning [23, 24], principal component analy-
sis [7] or noise reduction [25, 26] methods have been proposed to reconstruct
the clean signal from its degraded version and use it as input to the intrusive
STOI metric for objective intelligibility prediction.

The present paper, which is an extension of our prior work [27], pro-
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poses a non-intrusive intelligibility metric, which uses the STOI measure
non-intrusively by estimating the features of the clean reference signal from
its degraded version. The proposed method, however, estimates the reference
signal by identifying the entries of pre-trained codebooks of speech and noise
spectra which best fit the data, i.e., the noisy speech signal. The resulting
new metric is dubbed Non-Intrusive Codebook-based STOI (NIC-STOI). The
method is inspired by the work [28, 29] which demonstrates that codebook-
based approaches offer effective speech enhancement, even under nonstation-
ary noise such as babble noise. Moreover, the approaches of [28, 29] are based
on low-dimensional parametrizations of both the noise and speech spectra,
more specifically, via auto-regressive (AR) models, something that engenders
both effective training leading to small codebooks and computationally fast
implementations. Furthermore, an AR process models the envelope of the
signal’s spectrum rather than its fine structure. Such models are suitable
in this context since it is shown that the spectral envelope of speech is an
important cue for intelligibility [30]. Compared to our previous work [26],
which can be interpreted as sampling the speech spectrum at high-SNR fre-
quencies based on the pitch, something that is consistent with the glimpsing
model of speech perecetion [31], the new method is based on the complete
speech spectrum. It should also be noted that we here address the problem of
single-channel non-intrusive intelligibility prediction, which is a much more
difficult task than the multichannel problem [25, 26], as the latter can use
spatial information.

The rest of the paper is organized as follows. First, the principles of in-
telligibility prediction in the STOI method are described in Section 2. Then,
the signal model that the proposed method is based on is detailed in Section
3, and the proposed non-intrusive method is described in in Section 4. The
experimental details and results, which include both experiments with objec-
tive measures and a listening test, are first described in Section 5 and then
discussed in Section 6. Finally, Section 7 concludes on the work.

2 Background

The STOI [14] metric predicts the speech intelligibility based on the correla-
tion between the temporal envelopes of the clean and the degraded speech
signal (see Fig. G.1). First, the clean and degraded speech signals are de-
composed in time-frequency representations using a discrete Fourier trans-
form. Then, these time-frequency representations are grouped in one-third
octave frequency bins and short-time segments (384 ms). The short-time seg-
ments are normalized in order to account for global level differences of the
input signals. Furthermore, the short-time segments are clipped to prevent
time-frequency units that are already completely degraded from excessively
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Fig. G.1: Block diagram of the STOI measure [14] that forms the basis for the proposed non-
intrusive method. The STOI metric is based on the correlation between temporal envelopes of
the clean and degraded speech in short time segments.

influencing the intelligibility score. Finally, the correlation of the signals is
calculated over the short-time segments per frequency band. The STOI out-
put is the average of the correlation coefficients across frequency bands and
time-segments, i.e., a scalar value in the range 0-1 which relates monotoni-
cally to the average speech intelligibility scores.

3 Signal model

Assuming that a speech signal and a noise signal are generated by uncor-
related random processes, the corresponding noisy speech signal, y(n), at
time instance n is y(n) = s(n) + w(n). In the proposed method, both the
speech and the noise are modeled as stochastic processes, namely AR pro-
cesses [28, 29]. Using such a stochastic AR model, a segment of the speech
signal is expressed as

s(n) = −
P

∑
i=1

as(i)s(n− i) + u(n), (G.1)

which can also be expressed in vector notation as

u(n) = aT
s s(n) (G.2)

where P is the order of the AR process, s(n) = [s(n), s(n− 1), . . . , s(n− P)]T is
a vector collecting the P past speech samples, as = [1, as(1), as(2), . . . , as(P)]T

is a vector containing the speech auto-regressive parameters with as(0) = 1,
and u(n), which here models the excitation, is zero mean white Gaussian
noise with excitation variance σ2

u . Transforming the AR model into the fre-
quency domain, As(ω)S(ω) = U(ω) ⇔ S(ω) = U(ω)/As(ω), results in the
following power spectrum:

Ps(ω) = |S(ω)|2 =
σ2

u
|As(ω)|2 , (G.3)
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Fig. G.2: Block diagram depicting the processing scheme of the proposed non-intrusive
codebook-based short-time objective intelligibility (NIC-STOI) metric. The relevant features of
the clean and degraded speech signals are estimated using a codebook-based approach as time-
frequency power spectra, which replace the estimates in the front-end of the STOI method.

where As(ω) = ∑P
k=0 as(k)e−jωk. Similarly to the speech sginal, the noise

signal can be modeled as

w(n) = −
Q

∑
i=1

aw(i)w(n− i) + v(n), (G.4)

which can also be expressed as

v(n) = aT
ww(n), (G.5)

where Q is the order of the AR process, w(n) = [w(n), w(n− 1), . . . , w(N −
Q)]T is a vector collecting the Q past noise samples, aw = [1, aw(1), aw(2) . . . , aw(Q)]T

where aw(0) = 1, and v(n) is zero mean white Gaussian noise with excitation
variance σ2

v . The noisy power spectrum is likewise given by

Pw(ω) = |W(ω)|2 =
σ2

v
|Aw(ω)|2 . (G.6)

where Aw(ω) = ∑Q
k=0 aw(k)e−jωk.

The models of the the speech and noise in (G.2) and (G.5), respectively,
can be motivated as follows. The AR model has a long history in speech
processing, where one of its uses is in modeling the speech production system
(see, e.g., [32]), where it corresponds to a cylinder model of the vocal tract
which is excited by a noise signal generated by the lungs. The model is,
though, well-known not to be perfect. For example, it does not account for
the nasal cavity and the Gaussian model is only a good model for unvoiced
speech and less so for voiced speech [33]. Nevertheless, it remains useful for
many purposes and here it is used as a low-dimensional representation of the
speech spectrum. Regarding the noise, the model is good for many natural
noise sources, but, in any case, it can be used for modeling arbitrary, smooth
spectra of Gaussian signals [34].
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4 The NIC-STOI measure

The proposed method provides an objective measure for speech intelligibility
prediction given solely the degraded speech signal, i.e., non-intrusively.

The method is based on the speech and noise being additive and the AR
models of the speech (G.2) and noise (G.5) signals. The speech and noise
spectra are simultaneously estimated from the degraded speech signal using
a Bayesian approach which uses the AR parameters as prior information for
inference. The prior information is obtained from trained codebooks (dictio-
naries) of speech and noise AR parameters. The estimation is performed on
short-time frames in order to account for non-stationary noise.

Figure G.2 depicts a block diagram of the NIC-STOI algorithm. The
methodology comprises three main steps: 1) estimation of the parameters
for the speech and noise AR models, 2) computation of the time-frequency
representations for the clean, s, and noisy speech, y, signals from the esti-
mated parameters, 3) prediction of speech intelligibility of the noisy speech
signal with the STOI framework from the estimated spectra.

4.1 Step 1: Parameter Estimation

Let the column vector θ = [as; aw; σ2
u ; σ2

v ] comprise all parameters to be
estimated, i.e., the AR coefficients and the excitation variances of the models
of both speech and noise.

Bayes’ theorem facilitates the computation of the posterior distribution
p(θ|y) of the model parameters θ conditioned on the observation of N noise
samples, i.e., y = [ y(0) y(1) . . . y(N − 1) ], from the likelihood p(y|θ), the
prior distribution of the model parameters p(θ), and the marginal distribu-
tion of the data p(y) [28, 29, 35]:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (G.7)

Based on the signal model introduced previously, the data likelihood, p(y|θ),
is a multi-variate zero-mean Gaussian distribution with covariance matrix,
RY = Rs + Rw, where Rs = σ2

u(G
T
s Gs)−1 and Gs is a N × N lower triangular

Toeplitz matrix defined by the AR parameters as. More specifically, it is given
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by

Gs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
as(1) 1

... as(1)

as(P)
...

. . .
...

0 as(P)
. . .

...
... 1

0 0 . . . as(1) 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(G.8)

while the noise covariance matrix can be expressed as Rw = σ2
v (G

T
wGw)−1

with Gw being defined in a similar manner as Gs but from aw. Then, the
minimum mean square error (MMSE) estimate is given by [36]

θ̂MMSE = arg min
θ̂

E
[
(θ̂(y)− θ)2

]
= E(θ|y)

=
∫

Θ
θp(θ|y)dθ =

∫
Θ

θ
p(y|θ)p(θ)

p(y)
dθ, (G.9)

where Θ is the support space of the parameters to be estimated. Based on
the independence of speech and noise signals, and further assuming that the
AR process and excitation variances are independent, the prior distribution
of the model parameters can be simplified as

p(θ) = p(as, σ2
u)p(aw, σ2

v ) ≈ p(as)p(σ2
u)p(aw)p(σ2

v ).

Limiting the support of the AR parameter vectors as and aw to predefined
codebooks of size Ns and Nw, respectively, the corresponding excitation vari-
ances are estimated through a maximum likelihood (ML) approach

{σ2,ML
u,ij , σ2,ML

v,ij } = arg max
σ2

u ,σ2
v

log p(y|aCB
si

; aCB
wj

; σ2
u ; σ2

v ),

where aCB
si

is the ith entry of the speech codebook and aCB
wj

is the jth entry of
the noise codebook. The Gaussian likelihood p(y|θ) can be expressed in the
frequency domain in terms of the Itakura-Saito distortion measure between
the observed, Py(ω), and modeled, P̂ij

y (ω), noisy data power spectrum, i.e.,

p(y|aCB
si

; aCB
wj

; σ2
u,ij; σ2

v,ij) ∝ e−dIS(Py(ω),P̂ij
y (ω)), (G.10)

where dIS(·, ·) is the Itakura-Saito divergence, which is given by [29, 37]

dIS(Py(ω), P̂ij
y (ω)) =

1
2π

∫ 2π

0

(
Py(ω)

P̂ij
y (ω)

− ln

(
Py(ω)

P̂ij
y (ω)

)
− 1

)
dω. (G.11)
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Fig. G.3: The top panel depicts from left to right, respectively, the spectra of the original clean
speech signal, the degraded noisy speech signal at 0 dB SNR and noise only. In the bottom panel
their corresponding estimated spectra using the codebook-based approach are depicted.

Equation (G.11) makes use of the modeled noisy power spectrum, which is
here given by

P̂ij
y (ω) =

σ2
u

|Ai
s(ω)|2 +

σ2
v

|Aj
w(ω)|2

, (G.12)

where Ai
s(ω) = ∑P

k=0 ai,CB
s (k)e−jωk and Aj

w(ω) = ∑Q
k=0 aj,CB

w (k)e−jωk being
the spectra of the ith and jth vector from the speech codebook and noise
codebook, respectively.

Assuming that the modeling error between Py(ω) and P̂ij
y (ω) is small and

by using a second-order Taylor series approximation of ln(·), the Itakura-
Saito divergence can be approximated as [29]

dIS(Py(ω), P̂ij
y (ω)) ≈ 1

2
dLS

(
Py(ω), P̂ij

y (ω)
)

, (G.13)

where the log-spectral distortion between the observed and modeled noisy
spectrum, dLS

(
Py(ω), P̂ij

y (ω)
)

, which is given by

dLS

(
Py(ω), P̂ij

y (ω)
)
= (G.14)

1
2π

∫ 2π

0

∣∣∣∣∣ln
(

σ2
u

|Ai
s(ω)|2 +

σ2
v

|Aj
w(ω)|2

)
− ln

(
Py(ω)

)∣∣∣∣∣
2

dω

Finally, the ML estimates of the speech and noise excitation variances, σ2,ML
u,ij

and σ2,ML
v,ij can be obtained by

{σ2,ML
u,ij , σ2,ML

v,ij } = arg min
σ2

u ,σ2
v

dLS

(
Py(ω), P̂ij

y (ω)
)

, (G.15)
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which is solved by differentiating (G.14) with respect to σ2
u and σ2

v and setting
the result equal to zero [28, 35]. This results in the following estimate of the
excitation variance for the speech:

σ2,ML
u,ij =

1
Ψij

(
∑
ω

1

P2
y (ω)|Aj

w(ω)|4 ∑
ω

1
Py(ω)|Ai

s(ω)|2

−∑
ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2 ∑

ω

1

Py(ω)|Aj
w(ω)|2

)
.

Similarly, the estimate of for excitation variance of the noise is given by

σ2,ML
v,ij =

1
Ψij

(
∑
ω

1
P2

y (ω)|Ai
s(ω)|4 ∑

ω

1

Py(ω)|Aj
w(ω)|2

−∑
ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2 ∑

ω

1
Py(ω)|Ai

s(ω)|2
)

.

The quantity Ψij is given by

Ψij = ∑
ω

1
P2

y (ω)|Ai
s(ω)|4 ∑

ω

1

P2
y (ω)|Aj

w(ω)|4

−
⎛
⎝∑

ω

1

P2
y (ω)|Ai

s(ω)|2|Aj
w(ω)|2

⎞
⎠2

. (G.16)

Finally, based on these estimates, the quantities in (G.9) are estimated from
their discrete counterparts, which are given by

θ̂ =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

θij
p(y|θij)

p(y)
(G.17)

and

p(y) =
1

NsNw

Ns

∑
i=1

Nw

∑
j=1

p(y|θij), (G.18)

where θij = [aCB
si

; aCB
wj

; σ2,ML
u,ij ; σ2,ML

v,ij ] is the resulting parameter vector for the

ith entry of the speech codebook and the jth entry of the noise codebook and
the final estimates are denoted as θ̂ = [âs; âw; σ̂2

u ; σ̂2
v ]. These estimates can

be thought of as being obtained from an average over all possible models
with each model being weighted by its posterior. We remark that codebook
combinations that result in infeasible, negative values for either the speech
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or noise excitation variances should be neglected. Since all ML estimates
of the excitation variances and the predefined codebook entries contribute
with equal probability, the prior is non-informative and is omitted in (G.9).
It should also be noted that the weighted summation of the AR parameters
can be performed in the line spectral frequency (LSF) domain whereby a
stable inverse filters is ensured, something that is not always the case when
operating directly on the AR parameters [28, 29].

4.2 Step 2: TF composition

The estimated parameters in θ̂, obtained using (G.17), are then used to com-
pute the time-frequency (TF) power spectra of the estimated speech and noise
spectra as

P̂s(ω) =
σ̂2

u

|Âs(ω)|2 , (G.19)

where Âs(ω) = ∑P
k=0 âs(k)e−jωk, and

P̂w(ω) =
σ̂2

v

|Âw(ω)|2 , (G.20)

where Âw(ω) = ∑Q
k=0 âw(k)e−jωk. The AR parameters, i.e., âs and âw, deter-

mine the shape of the envelope of the corresponding signals Ŝ(ω) and Ŵ(ω),
respectively. The excitation variances, σ̂2

u and σ̂2
v , determine the overall signal

power. Finally, the noisy spectrum is composed as the combined sum of the
clean and the noise power spectra:

P̂y(ω) = P̂s(ω) + P̂w(ω) =
σ̂2

u

|Âs(ω)|2 +
σ̂2

v

|Âw(ω)|2 . (G.21)

These time-frequency spectra replace the discrete Fourier transform of the
clean reference signal and the noisy signal in the original STOI measure,
respectively.

4.3 Step 3: Intelligibility Prediction

The STOI measure is used for intelligibility prediction with the estimated
spectra P̂s(ω) (G.19) and P̂y(ω) (G.21) as inputs. First, the frequency bins
of P̂s(ω) and P̂y(ω) are grouped into 15 one-third octave bands denoted by
Ps( f , t) and Py( f , t), respectively, with the lowest center frequency set to 150
Hz and the highest set to 4.3 kHz. The short-time region of the temporal en-
velopes of the clean speech is defined as ps( f , t) = [Ps( f , t− N + 1), Ps( f , t−
N + 2), . . . , Ps( f , t)]T , where N is the length of the short-time regions and is
set to 30, resulting in a short-time region of 384 ms as in the original STOI
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implementation [14]. In the same manner, the short-time region of the de-
graded speech is given by py( f , t). The short-time regions of the degraded
speech, py( f , t), are further clipped by a normalization procedure in order to
de-emphasize the impact of region in which noise dominates the spectrum:

p′y( f , t) = min

(
‖ps( f , t)‖2

‖py( f , t)‖2
py( f , t), (1 + 10−β/20)ps( f , t)

)

where ‖·‖2 denotes the l2 norm and β = −15 dB is the lower signal-to-
distortion ratio. The local correlation coefficient, r( f , t), between p′y( f , t) and
ps( f , t) at frequency f and time t, is defined as

r( f , t) =
(ps( f , t)− μps( f ,t))

T(p′y( f , t)− μp′y( f ,t))√
(ps( f , t)− μps( f ,t))

2
√
(p′y( f , t)− μp′y( f ,t))

2
,

where μ(·) denotes the sample average of the corresponding vector. Given the
local correlation coefficient, the NIC-STOI prediction is given by averaging
across all bands and frames as

dNS =
1

TF

F

∑
f=1

T

∑
t=1

r( f , t). (G.22)

Table G.1: Sentence syntax of the GRID database [38] which is used in the subjective listening
test. Each sentence is constructed from (in order) a combination of a command, color, preposi-
tion, letter digit, and adverb.

Command Color Preposition Letter Digit Adverb

bin blue at A-Z 0-9 again
lay green by (no W) now
place red in please
set white with soon

5 Experimental Details and Results

5.1 Performance Measures

The non-intrusive intelligibility prediction is given by dNS, for the different
conditions to be evaluated. Whereas the ground truth, denoted by dS, for
these conditions are given by the intrusive STOI scores. Similarly to the ap-
proach in [24], the original true STOI score is expected to be well-correlated
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with the subjective intelligibility. Thus, the purpose is to predict the intrusive
STOI score of a given condition using a non-intrusive method. The perfor-
mance of the objective intelligibility predictions are evaluated using three
performance metrics often used for assessing objective intelligibility predic-
tions [3, 14, 39]:

• The Pearson correlation coefficient (ρ) quantifies the linear relationship
between the predicted non-intrusive intelligibility scores and true STOI
scores or subjective intelligibility scores, where a higher ρ indicates
higher correlation.

• Kendall’s Tau (τ) characterizes the ranking capability by describing the
monotonic relationship between the predicted intelligibility scores and
true STOI scores or subjective intelligibility scores, where a higher τ
represents better performance [40]. It is defined as τ = 2(nc − nd)/N(N − 1),
where nc is the number of concordant pairs, i.e. ordered in the same
way, and nd is the number of discordant pairs, i.e. ordered differently.

• The standard deviation of the prediction error (σ) is given as a measure
of the estimation accuracy of the predicted non-intrusive intelligibility
scores, where a lower σ implies better results.

5.2 Experimental Details

The results reported in this paper are based on both objective measurements
and subjective listening tests. For the results based on the objective measures,
the proposed metric, NIC-STOI, is evaluated on a test set of 100 speech ut-
terances (full sentences), 50 male and 50 female, randomly selected from the
EUROM_1 database of the English corpus [41]. The interfering additive noise
signal is babble noise from the AURORA database. The babble noise contains
many speakers in a reverberant acoustical environment. The sentences and
interfering additive noise signal are both resampled to 10 kHz. Segments
randomly selected from the additive noise signal are added to the EUROM_1
sentences at different SNR levels in the range of -30 to 30 dB SNR in steps of
10 dB SNR.

For further evaluation of the proposed metric, a subjective listening test
has also been carried out to provide a data set for comparing NIC-STOI
and SRMR. Stimuli were the fixed-syntax sentences from the GRID corpus
database [38] mixed with the babble signal from the AURORA database with
an SNR range -8 to 0 dB. The grid corpus consists of sentences spoken by 34
talkers (16 female and 18 male). The sentences are simple, syntactically iden-
tical phrases, e.g. “place blue in A 4 again”, and the listeners are asked to
identify the color, letter, and digit after listening to the stimuli using a user-
controlled MATLAB interface. The syntax and words of the GRID corpus are
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shown in Table G.1. A total of nine subjects were used for the experiment
which took around 30 minutes per subject. Intelligibility was defined as the
number of keywords correctly identified per stimulus resulting in a fraction
of either 0, 1/3, 2/3, or 1 being correct. A total of 220 stimuli were used,
approximately 2 s in duration each, with the same stimuli being used for
both NIC-STOI and SRMR: 5 SNR levels times 44 different sentences. We re-
mark that to reduce intra- and intersubject variability the condition-averaged
results are used for comparison and mapping of the objective results to sub-
jective performance [3, 42]. Measuring intelligibility on a short time-scale (i.e.,
from short stimuli less than 2 s in duration each) with non-stationary noise
types implies a high variance for both subjective and objective evaluations,
i.e., precise estimation of intelligibility requires multiple sentences and not
only a few words. However, it is difficult to execute subjective listening tests
using long sentences or phrases as stimulus for which reason the average of
many shorter sentences is here used instead.

The AR parameters and excitation variances of both the speech and noise
signal are estimated on frames with a length of 256 samples. The speech
and, thus, the estimated parameters are assumed to be stationary over these
very short 25.6 ms frames. The frames are windowed using a Hann window
with 50 % overlap between adjacent frames. The AR model orders P and
Q of the speech and noise, respectively, are set to 14 in accordance with the
literature [28, 29, 35]. The speech codebook is trained using the generalized
Lloyd algorithm (GLA) on 10 minutes of speech from multiple speakers in the
EUROM_1 database in order to ensure a sufficiently general speech model
[28, 43]. We stress that the speakers included in the test set are not used
for the training of the speech codebook. The noise codebook is trained on
2 minutes of babble talk. The sizes of the speech and noise codebooks are
Ns = 64 and Nw = 8, respectively.

5.3 Experimental Results

An example of the spectrum of a speech signal from the test set is shown
in Fig. G.3 . The spectra of the original clean speech signal, the degraded
noisy signal at 0 dB SNR and the noisy only are depicted in the top panel
from left to right, respectively. The corresponding estimated spectra of the
relevant signal features are shown in the bottom panel. The spectra are gen-
erated using trained codebooks of speech and noise spectral shapes. The
estimated clean spectrum (bottom left panel) and estimated noisy spectrum
(bottom middle panel) are used as input to the intrusive STOI framework.

The performance of the NIC-STOI metric is evaluated against the in-
trusively computed scores of the original STOI metric as ground truth. In
Fig. G.4, the estimated NIC-STOI scores have been plotted against the in-
trusive STOI scores. The plot shows good performance by means of a strong
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Fig. G.4: Scatter plot of the predicted STOI scores using the non-intrusive codebook-based STOI,
NIC-STOI, metric.

monotonic relationship between NIC-STOI and STOI, such that a higher NIC-
STOI score also corresponds to a higher STOI score. Furthermore, a strong
linear correlation can be observed between the two measures. This observa-
tion is also supported by the performance criteria, where NIC-STOI achieves
a Pearson’s correlation of ρ = 0.94, Kendall’s Tau of τ = 0.70 and a standard
deviation of the prediction error σ = 0.14 for STOI, implying a high correla-
tion. This indicates that the proposed non-intrusive version of STOI can offer
a comparable performance to the original intrusive STOI.

Fig. G.5 depicts the averaged predictions (± standard deviation) of the
NIC-STOI scores in the scatter plot in Fig. G.4 for male (blue line), female
(red line) and both genders (yellow line), where the performance measures
are given in Tab. G.2. As it can be observed, the measure performs equally
well whether the method is tested using either a gender specific clean speech
codebook or a generic clean speech codebook. This suggests that the method
generalizes well and does not capture gender specific effects due to the very
generic and smooth structure of the spectra of the auto-regressive processes.

In Fig. G.6 the STOI measure (purple line) and the NIC-STOI measure
(male: blue line; female: red line; both genders: yellow line) are depicted as
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Fig. G.5: Averaged NIC-STOI scores (± standard deviation) against the intrusively computed
STOI score.

function of SNR. There is a clear monotonic correspondence between NIC-
STOI and STOI, such that a higher STOI measure results in a higher NIC-STOI
score. Furthermore, the NIC-STOI scores also increase with increasing SNR.

Subjective results, in terms of intelligibility as a function of SNR, are
shown in Fig. G.7 together with objective results obtained using the pro-
posed NIC-STOI and SRMR. The error bars in the Figure are 95 % confidence
intervals computed using a normal distribution for the SRMR and NIC-STOI
methods and the normal approximation for the binomial confidence interval
of the subjective results from the listening test. Note that to map the objec-
tive results to subjective intelligibility, a sigmoid function has been fitted to
the average data as described in Section 5.2. As can be seen, the proposed
method performs well and is capable of predicting the speech intelligibility
with similar variance over a range of SNRs. The results do not, however, en-
able the conclusion that NIC-STOI is superior to SRMR although NIC-STOI
has a better alignment with the subjective data, as both metrics have a good
performance, even at low SNRs, and the confidence intervals overlap. Con-
cerning the probability intervals, the intervals for both NIC-STOI and SRMR
are large, as is to be expected, due to the short sentences in the GRID cor-
pus and the limited number of stimuli for each SNR level. One thing to
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Fig. G.6: Averaged NIC-STOI and STOI scores (± standard deviation) per SNR condition.

note is that the variance for SRMR increases as the SNR decreases, whereas
NIC-STOI exhibits a similar variance across SNRs.

6 Discussion

Since the framework of NIC-STOI is based on an AR model, it only captures
the overall envelope structure and not the fine structure of the speech sig-
nal as illustrated in Fig. G.3 [29, 37]. The envelope of the speech has been
shown to be a good predictor for speech intelligibility in previous intrusive
intelligibility frameworks, i.e. STI and EPSM [4, 17, 30]. Extensive vocoder
simulations also support these findings, where a high speech intelligibility
can be obtained in quiet solely from the envelope content in only four spec-
tral bands [30]. As such, only modeling the envelope structure of the clean
speech as the essential features in NIC-STOI is assumed to be an appropriate
predictor for speech intelligibility. Moreover, the promising results in [28],
which show improvements of STOI scores for single channel enhancement
over the noise signal, also support that the proposed model captures the es-
sential features of the speech, as the estimated AR parameters and excitation
variances are used in a speech production model in [28] to enhance the noisy
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Table G.2: Performance of the proposed metric in terms of Pearson’s correlation (ρ), and
Kendall’s tau (τ) and the standard deviation of the prediction error (σ) between NIC-STOI and
STOI.

Condition ρ τ σ

Male 0.93 0.70 0.14
Female 0.94 0.71 0.13
Both genders 0.94 0.70 0.14

speech with a Kalman filter.
Both the reported objective and subjective results show that the proposed

method works well. The subjective results show that the proposed method
can predict the intelligibility of a listening experiment over a range of 10 dB.
Although the predicted values exhibit a high variance, as is to be expected
of this type of experiment, this variance is similar to the one obtained with
SRMR. The objective results indicate that NIC-STOI performs very well for a
broad range of SNRs, even down to -30 dB SNR where the noisy speech is
expected to be unintelligible. It should be noted that while NIC-STOI appears
to deviate from STOI for very low SNRs, this is less important as, according
to [3], a STOI score of 0.6 approximately corresponds to zero intelligibility.
Even though the absolute value of STOI depends highly on the specific speech
material and listening environment, the broad working range of NIC-STOI
should cover the range of intelligibility. Hence, any score below this threshold
can be simply assumed unintelligible. Here, it is also important to stress
that the overall aim of NIC-STOI is to have a monotonic relation with the
intrusively computed STOI scores, and not necessarily to predict the absolute
STOI scores. However, the offset observed between the predicted NIC-STOI
scores and STOI scores in Fig. G.6 can easily be accounted for by the observed
linear trend between the two measures depicted in Fig. G.4, such that the
absolute STOI score can be predicted by means of the estimated NIC-STOI
score.

It should be noted that STOI was among the first intrusive intelligibility
metrics with very good performance, but since it was first introduced other
intrusive metrics have also been proposed that show good performance. The
front-end of NIC-STOI, that forms the basis of the present work, could also
quite possibly be used for other intrusive frameworks, provided that they
are also based on spectral features of the noisy and clean speech. Regarding
this, it is interesting to note that the estimation of the parameters in short-
time segments based on the current observation makes the front-end suitable
for non-stationary noise conditions. However, STOI does not work well for
highly non-stationary interferers due to the analysis window length. There-
fore, it could be interesting to investigate using the Extended STOI (ESTOI)
as a back-end to NIC-STOI instead, since this method has been developed to
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Fig. G.7: Intelligibility as a function of SNR for subjective listening experiments and as predicted
by the proposed NIC-STOI and SRMR. Shown are the means and their 95 % confidence intervals.

work well for highly modulated noise sources [44].
Correlation-based metrics including STOI are generally not suitable for

predicting the intelligibility of reverberant speech and, thus, it is likely that
NIC-STOI will fail in such conditions [14, 45]. Furthermore, the short time
frames used in STOI might also have a negative impact on the application of
NIC-STOI to reverberant speech, as short time frames cannot capture all the
effects of reverberation, such as temporal smearing [14]. Currently, SRMR
and ModA are the most well-studied non-intrusive intelligibility metrics.
They have both been proposed for predicting the intelligibility of reverberant
speech, where they both show good performance [3, 19, 20]. Even though
these metrics are aimed for reverberant speech, they have also been tested for
noisy and processed speech [3], where they perform reasonably well. How-
ever, it would seem that SRMR and ModA are a more suitable choice for
reverberant speech, while our proposed method, NIC-STOI, which takes into
account the presence of noise, is a more suitable choice for additive degra-
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dations, such as background noise and interferences. In this connection, it
should also be mentioned that the proposed method is computationally much
more demanding than SRMR and ModA, mainly due to the codebook search,
although approximate methods for implementation of this exist [46].

In closing, we remark that the proposed method is not expected to account
well for non-linear signal processing, since it is based on an additive noise
model as well as the codebooks being trained on clean speech signals and
noise signals. However, testing the method on the Ideal Time-Frequency Seg-
regation (IFTS) data set from [47], which was used for evaluating the original
STOI measure [14], results in a Pearson correlation of 0.70, which is surpris-
ingly good. For comparison, NIC-STOI outperforms the non-intrusive intelli-
gibility metric, SRMR [3, 19], which achieves a Pearson correlation of 0.24 [7],
although it should be noted that SRMR, as already mentioned, was designed
for reverberant speech. However, the newly proposed Non-Intrusive STOI
(NI-STOI) measure [7] achieves a Pearson correlation of 0.71 for the data
set [47], which is on par with the results obtained for NIC-STOI. We remark
that NI-STOI is not completely non-intrusive, as it is based on the ideal voice
activity detector used in the intrusive STOI metric [7].

7 Conclusion

In this paper, a non-intrusive codebook-based short-time objective intelligi-
bility metric, called NIC-STOI, has been proposed. It is based on an intrusive
intelligibility metric, STOI, but, unlike STOI, it does not require access to
the clean speech signal. Instead, the proposed method estimates the spec-
trum of the reference signal by identifying the entries of pre-trained spectral
codebooks of speech and noise spectra, parametrized by auto-regressive pa-
rameters, which best fit the observed signal, i.e., the noisy speech signal. This
is done in a statistical framework wherein parameters are estimated by min-
imizing the Itakura-Saito divergence for combinations of speech and noise
models. This is equivalent to maximum likelihood estimation for Gaussian
distributed signals. The proposed NIC-STOI metric is shown, in experiments,
to be highly correlated with STOI (with a Pearson correlation of 0.94 and a
standard deviation of the prediction error of 0.14) and is also validated in a
listening experiment assessing speech intelligibility. Hence, it can be used for
the assessment of speech intelligibility when a clean reference signal is not
available. This could be used, for example, for online optimization of hearing
aids.
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