

Aalborg Universitet

Multi-view Latent Factor Models for Recommender Systems

Da Costa, Felipe Soares

DOI (link to publication from Publisher):
10.54337/aau306504743

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Da Costa, F. S. (2019). Multi-view Latent Factor Models for Recommender Systems. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau306504743

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 19, 2024

https://doi.org/10.54337/aau306504743
https://vbn.aau.dk/en/publications/c8a67100-5faa-4487-b8f4-12feb9cc1c08
https://doi.org/10.54337/aau306504743

Felipe So
a

r
eS d

a C
o

Sta
M

u
lti-view

 laten
t Fa

C
to

r
 M

o
d

elS Fo
r

 r
eC

o
M

M
en

d
er

 SySteM
S

Multi-view latent FaCtor
ModelS For reCoMMender

SySteMS

by
Felipe SoareS da CoSta

Dissertation submitteD 2019

Multi-view Latent Factor
Models for Recommender

Systems

Ph.D. Dissertation
Felipe Soares da Costa

Dissertation submitted in February, 2019

Dissertation submitted: January, 2019

PhD supervisor: Associate Professor Peter Dolog
 Aalborg University

PhD committee: Associate Professor Hua Lu (chairman)
 Aalborg University

 Professor Dietmar Jannach
 University of Klagenfurt

	 	 	 Professor	Judith	Masthoff
 Utrecht University

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-391-4

Published by:
Aalborg University Press
Langagervej 2
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Felipe Soares da Costa. The author has obtained the right to include the
published and accepted articles in the thesis, with a condition that they are cited, DOI
pointers and/or cpyright/credits are placed prominentely in the references.

Printed in Denmark by Rosendahls, 2019

Abstract

The goal of recommender systems is to predict the most preferred items for
a user according to her/his preferences. The most popular technique of rec-
ommender systems is collaborative filtering, which is commonly classified
as memory- or model-based. The model-based technique aims to identify
hidden features through machine learning methods. Among model-based
approaches, latent factor models became popular due to its high accuracy in
predicting user’s preferences. However, the latent factor models suffer from
sparsity, lack of explainability, and misinterpretation of null values. The spar-
sity is the phenomenon that users, in general, interact with only a few num-
bers of items. Lack of explainability in recommender systems is the inability
of justifying the predicted list of items to a user. Finally, the misinterpreta-
tion of null values can produce inaccurate predictions since the null values
can represent an unseen or a disliked item for the user.

To address the research problems described above, we exploit explicit and
implicit data from online systems in order to predict a list of items to a user
to suggest items according to the user’s personal preferences. We propose
several methods and algorithms to learn the user’s preferences and predict
the most relevant items for the user via multi-view latent factor models. Ad-
ditionally, we propose the explainable method to interpret the recommended
list of items.

To evaluate the proposed methods, we performed an experimental eval-
uation of nine benchmark datasets: LDOS-CoMoDa, InCarMusic, Frappe,
Movielens, Foursquare, Wee, Amazon, Yelp, and Pinterest. The results of the
detailed data analysis and empirical experiments present the high accuracy
and effectiveness in online systems of the proposed methods.

Resumé

Formålet med anbefalelsessystemer er, at forudsige de foretrukne varer for
en bruger i henhold til hans/hendes præferencer. Den mest populære teknik
er kollaborativ filtrering, der er klassificeret som hukommelses- eller model-
baseret. Den modelbaserede teknik sigter mod, at identificere skjulte funk-
tioner gennem maskinindlæringsmetoder. Blandt de modelbaserede tilgange
er latente faktor modeller populære på grund af deres høje nøjagtighed i, at
forudsige brugerens præferencer. Imidlertid har de problemer med spar-
somme data, forklaringsvanskeligheder og fejlfortolkede nulværdier. År-
sagen til sparsomme data er, at brugerne kun har interageret med få varer.
Forklaringsvanskeligheder skyldes, at den forudsagte liste af varer ikke kan
retfærdiggøres overfor brugeren. Endelig kan fejlfortolkningen af nulværdier
frembringe unøjagtige forudsigelser, da nulværdierne kan repræsentere en
ukendt eller disliked genstand for brugeren.

For at løse de ovenfor beskrevne forskningsproblemer anvender vi de ek-
splicitte og implicitte data fra online-systemer til, at forudsige en liste med
varer til brugeren, i henhold til brugerens personlige præferencer. Vi foreslår
flere algoritmer og metoder til at lære brugerens præferencer at kende og
forudsige de mest relevante varer for brugeren gennem multi-view latente
faktormodeller. Desuden foreslår vi en forklaringsmetode til at fortolke den
anbefalede liste af varer.

Til at evaluere de foreslåede metoder, udførte vi en eksperimentel evaluer-
ing af ni benchmark datasæt: LDOS-CoMoDa, InCarMusic, Frappe, Movie-
lens, Foursquare, Wee, Amazon, Yelp og Pinterest. Resultatet af de detal-
jerede dataanalyser og empiriske eksperimenter viser en større nøjagtighed i
online anbefalinger og dermed effektiviteten af de foreslåede metoder.

Acknowledgments

This thesis is dedicated to the memory of my father, Francisco da Costa. I
miss him, but I am glad to know he is happy in a better place.

Thanks for the help and support of my friends and colleagues. Most of all,
I would like to express my sincere gratitude to my Ph.D. supervisor, Profes-
sor Peter Dolog. He has always been supportive and committed throughout
my Ph.D. journey. Thank you for your advice, concrete and constructive con-
tributions.

I would like to thank all my colleagues at the Computer Science depart-
ment at Aalborg University for all discussions, insights, and support during
this journey. Special thanks to all colleagues who played table football with
me. The games helped me to get new energy whenever needed. Thanks to
secretaries and technicians of the Department for the incredible and prompt
support.

I wish to extend my thanks to all the colleagues at the Insight Centre for
Data Analytics in Dublin. Special thanks to Professor Aonghus Lawlor and
Ph.D. student Sixun Ouyang for the discussions and insights during my stay
as a visiting student.

To my family and friends, I thank you all for making the experience of
being abroad memorable. Special thanks to my former flatmates for your
friendship. I thank in particular Nanna for the patience, support, and energy
to raise my mood when I most needed it. Thanks to Nanna’s family for the
constant help. My mother, Maristela, for the unconditional love. Further-
more, Marianne, Aquiles, Aluey, and Laercio for bringing joy.

Felipe Soares da Costa,
Aalborg, Denmark, 2019

Contents

Abstract iii

Resumé v

Acknowledgments vii

Thesis Details xv

I Thesis Summary 1

1 Introduction 3
1 Background and Motivation . 3
2 Research Problems . 4

2.1 Sparsity in Recommender Systems 4
2.2 Explainability in Recommender Systems 5
2.3 Null Values in Recommender Systems 6

3 Evaluation Methods . 6
4 Organization . 9

2 Collective Matrix Factorization for Top-N Recommendation 11
1 Motivation and Problem Statement 11
2 Collective Hybrid Non-negative Matrix Factorization Model . . 12
3 Hybrid Learning Model . 13
4 Discussion . 14

3 Prediction of Visitors 17
1 Motivation and Problem Statement 17
2 Collective Matrix Factorization-based Visitor Prediction Model 18
3 Discussion . 20

ix

Contents

4 Review-based Explanations
for Recommender Systems 21
1 Motivation and Problem Statement 21
2 Explainable Model . 22
3 Discussion . 23

5 Neural Explainable Latent Factor Model for Recommender Systems 25
1 Motivation and Problem Statement 25
2 Neural Explainable Collective Non-negative Matrix Factoriza-

tion Model . 26
3 Hybrid Learning Model . 27
4 Natural Language Explainable Model 27
5 Discussion . 28

6 Neural Latent Factor Model for Context-aware Recommender
Systems 31
1 Motivation and Problem Statement 31
2 Collective Embedding for Neural Context-Aware Recommender

Systems . 32
3 Discussion . 35

7 Convolutional Adversarial Latent Factor Model for Recommender
System 37
1 Motivation and Problem Statement 37
2 Convolutional Adversarial Latent Factor Model 38
3 Discussion . 40

8 Summary of Contributions 43

9 Future Directions 47
References . 48

II Papers 51

A Hybrid Learning Model with Barzilai-Borwein Optimization for
Context-aware Recommendations 53
1 Introduction . 55
2 Related Works . 56
3 Problem Formulation . 57
4 Collective Non-negative Matrix Factorization 58

4.1 Optimization . 58
5 Hybrid Learning Model . 59

5.1 Barzilai-Borwein . 59

x

Contents

5.2 Multiplicative Update Rules 60
5.3 Complexity Analysis of CHNMF 62

6 Recommendation Process . 63
6.1 Parameter Analysis . 63

7 Experiments . 63
8 Conclusions . 66
9 Acknowledgments . 67
References . 67

B Predicting Visitors Using Location-Based Social Networks 69
1 Introduction . 71
2 Related Works . 73
3 Problem Formulation . 73

3.1 Preliminaries . 73
3.2 CMViP . 74
3.3 Problem Statement . 77

4 Solution Framework . 78
4.1 Non-Negative Collective Matrix Factorization 78
4.2 Prediction of Visitors . 79

5 Experiments . 80
5.1 Data-sets . 80
5.2 Evaluation Measures . 80
5.3 Parameter Analysis . 80
5.4 Competitors . 81
5.5 Results . 82

6 Conclusions . 83
7 Acknowledgments . 83
References . 83

C Automatic Generation of Natural Language Explanations 87
1 Introduction . 89
2 Interpretation model . 89
3 Results . 90
4 Conclusion . 92
5 Acknowledgments . 92
References . 92

D Neural Explainable Collective Non-negative Matrix Factorization for
Recommender Systems 95
1 Introduction . 97
2 Related Works . 99
3 Problem Formulation . 100
4 Methodology . 101

xi

Contents

4.1 Collective Matrix Factorization 101
4.2 Multiplicative Update Rule 103
4.3 Barzilai-Borwein . 104
4.4 Top-N Recommendation Process 105
4.5 Natural Language Explanation 105

5 Experiments . 107
5.1 Datasets . 107
5.2 Evaluation Metrics . 108
5.3 Comparison Baselines . 109

6 Results and Discussions . 109
6.1 Overall Performance . 110
6.2 Explainability . 111

7 Conclusions . 112
8 Acknowledgments . 113
References . 113

E Collective Embedding for Neural Context-Aware Recommender Sys-
tems 117
1 Introduction . 119
2 Related Works . 120
3 Problem Formulation . 122
4 Proposed Model . 123

4.1 Input Layer . 123
4.2 Collective Embedding Layer 124
4.3 Pairwise Interaction Layer 125
4.4 Hidden Layer . 125
4.5 Fusion Layer . 125
4.6 Prediction Layer . 126
4.7 Convolutional Layer . 126
4.8 Learning Algorithm . 127
4.9 Model Training . 129

5 Empirical Evaluation . 129
5.1 Experimental Settings . 129
5.2 Evaluation Protocol . 130
5.3 Baseline Methods . 130
5.4 Parameters Settings . 131
5.5 Performance Comparison (RQ1) 131
5.6 Hyper-parameters Analysis (RQ2) 133

6 Conclusion . 134
7 Acknowledgments . 134
References . 135

xii

Contents

F Convolutional Adversarial Latent Factor Model for Recommender
System 139
1 Introduction . 141
2 Related Works . 142
3 Problem Formulation . 143
4 Proposed Model . 144

4.1 CALF Architecture . 145
4.2 Sampling Strategy . 145

5 Empirical Evaluation . 146
5.1 Experimental Settings . 147
5.2 Performance Comparison (RQ1) 149
5.3 Sampling Strategy Effectiveness(RQ2) 150
5.4 Time Complexity Analysis (RQ3) 150

6 Conclusion . 151
7 Acknowledgments . 151
References . 152

xiii

Contents

xiv

Thesis Details

Thesis Title: Multi-view Latent Factor Models for Recommender Sys-
tems

Ph.D. Student: Felipe Soares da Costa
Supervisor: Assoc. Prof. Peter Dolog, Aalborg University

The main body of this thesis consists of the following accepted and submitted
papers.

[A] F. Costa and P. Dolog, "Hybrid learning model with barzilai-borwein
optimization for context-aware recommendations". In Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society Con-
ference, FLAIRS 2018, Melbourne, Florida USA, pages 456–461, 2018.

[B] Muhammad Aamir Saleem, Felipe Soares da Costa, Peter Dolog, Pana-
giotis Karras, Toon Calders and Torben Bach Pedersen. "Predicting Visi-
tors Using Location-Based Social Networks". In Proceedings of 19th IEEE
International Conference on Mobile Data Management, MDM’18, Aalborg,
Denmark, pages 245–250, 2018.

[C] F. Costa, S. Ouyang, P. Dolog, and A. Lawlor, "Automatic generation of
natural language explanations". In Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion, IUI 2018, Tokyo, Japan,
pages 57:1–57:2, 2018.

[D] Felipe Costa and Peter Dolog, "Neural Explainable Collective Non-
negative Matrix Factorization for Recommender Systems". In Proceed-
ings of the 14th International Conference on Web Information Systems and
Technologies, WEBIST 2018, Seville, Spain, pages 35–45, 2018.

[E] Felipe Costa and Peter Dolog, "Collective Embedding for Neural Context-
Aware Recommender Systems". Under revision for a Conference publica-
tion, submitted in January, 2019.

Thesis Details

[F] Felipe Costa and Peter Dolog, "Convolutional Adversarial Latent Fac-
tor Model for Recommender System". To be published in Proceedings of
the Thirty-Second International Florida Artificial Intelligence Research Society
Conference, FLAIRS 2019, Sarasota, Florida USA, 2019.

This thesis has been submitted for assessment in partial fulfillment of the
Ph.D. degree. The thesis is based on the submitted and pusblished scien-
tific papers which are listed above. Parts of the papers are used directly or
indirectly in the extend summary of the thesis. As part of the assessment,
co-author statements have been made available to the assessment committee
and are also available at the Faculty. The permission for using the published
and accepted articles in the thesis has been obtained from the corresponding
publishers with the conditions that they are cited and the DOI pointers and
/or copyright/credits are placed prominently in the references.

xvi

Part I

Thesis Summary

1

Introduction

1 Background and Motivation

Information overload is a phenomenon experienced by online users nowa-
days. To overcome this problem, Recommender Systems (RS) aim to provide
a list of preferred items to a user based on her/his preferences. A broad
range of online services such as e-commerce, e-learning, music and movie
streamings, and tourism among others use RS in their systems. Figure 1.1
illustrates the general framework of RS.

5 2

4 2

1 5

4

User-based Collaborative Filtering

Item-based Collaborative Filtering

Content-based Filtering

Hybrid

Context-aware Recommender Systems

Input Recommender Algorithms Outputs

1

2

3

4

3 421

Fig. 1.1: General Framework of Recommender Systems

The left side in Figure 1.1 has the input elements: users, items and ratings.
The middle contains RS algorithms, which generates different predictions
depending on the chosen method. The right side presents the outputs of each
algorithm with a list of the recommended items. As an example, the first user
1 prefers action TV series. Considering the user-based collaborative filtering
algorithm, the only user who prefers action series is the user 4. Based on the
similarity of both users, the algorithm recommends the TV series watched by
the user 1 to user 2.

3

Chapter 1. Introduction

The most well-known technique from RS is Collaborative Filtering (CF),
which recommend items based on users or items similarities. Researchers
mainly classify the CF technique as memory- and model-based. The memory-
based approach relies on similarity measures such as cosine similarity, Pear-
son correlation, or Jaccard coefficient to identify similar users or items. On
the other hand, the model-based approach relies on identifying hidden fea-
tures through machine learning methods, such as Matrix Factorization (MF).

MF is a Latent Factor Model (LFM) which provides high accuracy in the
RS research area. Primarily, MF considers the rating prediction task based on
explicit data, where the reasoning relies on previous user-item interactions,
such as ratings. However, explicit data is hard to retrieve, due to low user
engagement in the online system. Recently, MF focus on implicit data aiming
to recommend a sorted list of N items rather than rating predictions due to
the facility in retrieving the data from online systems.

A research problem faced by RS is data sparsity, which denotes a matrix
with most of the values equal to zero. The sparsity problem in RS happens
due to the user-item interactions for observed items in comparison with un-
observed items is exponentially low for explicit and implicit data. To solve
the data sparsity problem, researchers have proposed to incorporate contex-
tual information in some applications during the recommendation process to
increase the accuracy of the recommendation models [1]. Examples of context
in different fields are sights to be visited (tourism), time and place (movies),
and so on. The quality of recommendations increases when online systems
utilize additional information, such as time and location [1].

Furthermore, other research problems have emerged recently such as ex-
plainability of recommendation models and misinterpretation of null values
on implicit data. The explainability of recommendations has become an im-
portant task due to a lack of interpretability for the recommended top-N list
of items, which may decrease the users’ fidelity to a system. The null values
mislead the RS to misinterpret the recommendations as they can mean that
user dislikes or have not previously seen the item. The misinterpretation may
cause lower accuracy and effectiveness of the recommender system.

2 Research Problems

The research problems covered by this thesis are described as follows:

2.1 Sparsity in Recommender Systems

The user-item interactions are modeled considering the observed interac-
tions, such as ratings or purchasing as described in Section 1. For example,
in an online movie streaming service with a million movies in their catalog,

4

2. Research Problems

each user is represented by a feature vector of a million entries. The value
for each entry is defined by whether the user has watched the target movie
previously. For explicit data, we observe ratings from 1 to 5 indicating user
interactions or 0 when there are no interactions. Similarly, for implicit data,
it is denoted 1 when a user interacts with an item and 0 for unknown inter-
actions. A user-item interaction matrix is built based on those interactions
from multiple users and items as illustrated in Figure 1.2.

3 0 0 4
0 0 0 5
0 0 0 3
0 1 0 2

us
er
s

items

(a) Explicit data

1 0 0 1
0 0 0 1
0 0 0 1
0 1 0 1

us
er
s

items

(b) Implicit data

Fig. 1.2: User-item interaction matrix

The amount of unobserved items is usually higher than the observed
items due to the online platforms present a vast amount of content in their
catalog. The task of the user interacting with all the items in the online catalog
is complicated, resulting in a large amount of non-interacted items compu-
tationally represented by 0. This problem is known as the sparsity problem
and presents a negative impact on the accuracy of the collaborative filtering
method, due to the lower probability of identifying similarities among users
or items. Moreover, it causes slow time convergence during the learning step
to predict users’ preferences.

2.2 Explainability in Recommender Systems

The current RS methods sufficiently disclose nor explain the reason for the
predicted list of items given to a target user, generating problems such as
lack of trust and transparency in the online services. Recently, Zhang et
al. [37] formally introduced the term explainable recommendations. The goal of
explainable recommendations is to generate interpretable models capable of
explaining the recommendation results humanly. The literature presents dif-
ferent strategies to solve the explainability research problem such as visual-
or graph-based explanations, however, in this thesis, we focus on the text-
based strategy.

The explanations for recommendations may have a substantial contribu-
tion to the acceptance and success of the RS from the user’s perspective. The
goal is to improve six different aspects:

1. Effectiveness: explanations may support user decisions by helping them
to understand why they like or dislike a particular recommended item.

5

Chapter 1. Introduction

2. Efficiency: explanations may support a quick user decision, due to an
objective and structured way of interpreting the recommendations.

3. Persuasiveness: explanations may help the online system to persuade a
user to interact with a target item.

4. Satisfaction: explanations may increase the user’s satisfaction with a
given list of items.

5. Transparency: explanations clarify how a recommendation was chosen,
making the online system transparent to the user.

6. Trust: explanations may increase the trust and fidelity of a user.

The online platforms contain users’ reviews as a detailed source of infor-
mation about the users’ preferences. The research problem focuses on using
review-based text to explain recommendations considering the six aspects
mentioned above.

2.3 Null Values in Recommender Systems

Considering the implicit data scenario and the statement that users tend to
interact with a few of the items available in the online system’s catalog, the
interpretation of unobserved items becomes hard. Unseen items denote that:
(1) the user does not know the item exists, or (2) dislike the item.

The results provided by the RS based on the user’s previous behavior
may decrease its accuracy and efficiency if it models the null values as dis-
liked items. Researchers have made efforts to improve the recommendations
considering the null values. However, it is yet a challenge, especially in the
implicit data scenario.

3 Evaluation Methods

The goal of the proposed methods in this thesis is to improve the prediction
for top-N recommendations. To measure the quality of the recommendations,
we use different metrics: precision, recall, f-measure, Hit Ratio (HR) and Nor-
malized Discounted Cumulative Gain (NDCG) [3]. We calculate the precision
according to Equation 1.1 to measure how relevant the recommended list of
items are for the user [21].

precision =
TP

TP + FP
, (1.1)

where TP represents all recommended interacted items and FP denotes
all recommended non-interacted items.

6

3. Evaluation Methods

We compute recall to measure the probability of recommending the ap-
propriate item as shown in Equation 1.2 [21] .

recall =
TP

TP + FN
, (1.2)

where TP has the same semantics as in Equation 1.1 and FN denotes all
non-interacted items that were not recommended.

We measure the harmonic mean between precision and recall via f-measure
as defined in Equation 1.3 [3].

f-measure = 2× precision× recall
precision + recall

(1.3)

To compute the robustness of our models considering the ranked list of
items, we applied HR as shown in Equation 1.4 [20].

Hit@N =
Numbero f Hits@N

|GT| , (1.4)

where GT denotes the ground-truth test set. We denote a hit when an
item from the test set appears in the recommended list of items.

To measure the quality of the ranked list by considering the position of
the item in the list via NDCG as defined in Equation 1.5 [20].

NDCG@N = ZN

N

∑
p=1

2rp − 1
log2(p + 1)

, (1.5)

where ZN denotes the normalized values between 0 and 1; and rp denotes
relevance of item at position p. We define rp = 1 if the item is in the test set,
and 0 otherwise.

The empirical evaluation follows different strategies for each method de-
scribed in Paper A, Paper B, Paper C, Paper D, Paper E, and Paper F. A brief
explanation of each paper is given in Section 4.

We evaluated the quality of recommendations in Paper A, and Paper D
using the k-fold cross-validation method with k equals to 5.

To evaluate the quality of the predictions given by the method proposed
in Paper B, we split the dataset per month, where the first eight months
correspond to the training set, and the remaining are the test set.

We applied an adapted version of the leave-one-out method proposed by
Koren et al. [26] to evaluate the methods described in Paper E and Paper F.
We held-out the latest user-item interaction as the test set and sample the
remaining randomly 100 items which were not interacted by the users as the
training set.

To evaluate the quality of the explanations in Paper C, we applied the
readability metrics presented by Maharjan et al. [28]: Automated Readability

7

Chapter 1. Introduction

Index (ARI) [34], Flesch-Kincaid Grade Level (FGL) [25], Gunning Fog Index
(GFI) [16], Simple Measure of Gobbledygook (SMO) [29], Coleman-Liau In-
dex (CLI) [7], Lesbarhets Index (LIX) [2], and Rate Index (RIX) [2]. Table 1.1
summarizes the definition and computation of each metric.

Readability Metric Description and Equation

ARI

Measures the understandability of a text. The output
represents the U.S grade level necessary to comprehend
a text.

ARI = 4.71× (characters
words) + 0.5× (words

sentence)− 21.43

FGL

Measures how difficult a sentence is to understand.
The output number corresponds with a U.S grade
level.

FGL = 0.39× (total words
total sentences) + 11.8× (

total syllables
total words)

GFI

Measures the readability of a of English writing
sample. The output indicates the number of years
of formal education (U.S grade) that a person
requires to understand the text on the first reading.

GFI = 0.4× (words
sentence) + 100× (complex words

words)

SMO

Measures the understandability of a text. The output
represents the number of years of U.S. grade
level to comprehend the text.

SMO =
√

total complex words× (30
total sentences) + 3

CLI

Computes the understandability of a text. The output
represents the U.S grade level necessary to comprehend
a text.

CLI = (5.89× (characters
words))− (30× (sentences

words))− 15.8

LIX

Computes the readability of a text. The output
represents a grade level, where index below 0.1
denotes grade 1 and above 7.2 denotes college.

LIX = (total words
total sentences) + (

long words
total words × 100)

where long words are words with more than six
characters.

RIX

Computes the readability of a text. The output
represents how difficult the text is, where score is
between 0 (very easy) and 55 (very
difficult).

RIX = (
long words
sentences)

where long words are words with more than six
characters.

Table 1.1: Readability Metrics

Additionally, Paper C and Paper D presents examples of the explanations

8

4. Organization

generated by the proposed method as part of the evaluation.

4 Organization

The thesis is organized according to the structure given by Figure 1.3. Chap-
ter 2 summarizes Paper A and describes a new model named CHNMF to
obtain top-N recommendations based on users-items interactions, items, and
contextual features. Chapter 3 summarizes Paper B and describes a new
model named CMViP to predict visitors with a higher probability for visit-
ing a target place. Chapter 4 summarizes Paper C and describes a review-
oriented text generation to explain recommendations. Chapter 5 summarizes
Paper D and introduces a new model named NECoNMF, which explores
explanation-based recommendations through LFM by extending Paper A,
and Paper C. Chapter 6 summarizes Paper E and describes a new model
named CoNCARS, exploring the hybridization of the neural network and
MF using time as important information for recommendations. Chapter 7
summarizes Paper F and describes a new model named CALF, exploiting the
adversarial training to improve top-N recommendations. Chapter 8 gives a
summary of the contributions of the papers in this thesis. Finally, Chapter 9
concludes and proposes future directions for the Ph.D. thesis.

Research Questions

Multi-view Latent Factor Models for
Recommender Systems

How to improve top-N recommendation task
through Latent Factor Models?

How to predict visitors of a target location
within given time interval?

How to improve text-oriented explanations for
review-based recommendations?

How to explain top-N recommendations
based on Latent Factor Models?

How neural networks and matrix factorization
may improve top-N recommendations?

How adversarial training and sampling
strategy benefit top-N recommendations

Paper A

Paper B

Paper C

Paper D

Paper E

Paper F

Context-aware Collective
Matrix Factorization

Explainable
Recommender Systems

Neural Latent Factor Models
for Recommender Systems

Fig. 1.3: Thesis structure.

9

Chapter 1. Introduction

10

Collective Matrix Factorization
for Top-N Recommendation

This Chapter gives an overview of Paper A [8].

1 Motivation and Problem Statement

LFM has improved modern RS through accurate methods. Non-negative
Matrix Factorization (NMF) is an LFM extensively applied in RS, which
utilize non-negative values during the matrix decomposition. Nonetheless,
NMF does not consider multi-view recommendations, becoming inefficient
for Context-aware Recommender Systems (CARS). To solve this issue, re-
searchers have been investigating Collective Matrix Factorization (CMF) meth-
ods. CMF aims to collective factorize multiple user-item feature interactions
to improve the top-N recommendations and minimize the sparsity problem.
However, CMF has neglected two issues: contextual features and slow learn-
ing convergence. We propose the Collective Hybrid Non-negative Matrix Fac-
torization model (CHNMF) [8] to optimize the recommendation algorithm.
The model collectively factorizes explicit user-item interactions, contextual
information, and content features into three non-negative low-rank matrices
and common latent space. Jointly factorizing multi-view features maximize
the accuracy for top-N recommendation and solve the sparsity problem.

Moreover, CHNMF extends the CMF utilizing the Barzilai-Borwein op-
timization method and Multiplicative Update Rules (MUR), improving the
embedding learning convergence time. The hybrid model performs better in
dense matrices. Hence Barzilai-Borwein optimization computes two projec-
tions and two gradients at even steps and determines the step length without
using any line search [8]. The Paper A addresses the challenges above apply-
ing: 1) an efficient hybrid embedding learning method, combining Barzilai-
Borwein optimization and MUR; 2) a collective learning feature method con-
sidering contextual features, content features, and user-item explicit interac-

11

Chapter 2. Collective Matrix Factorization for Top-N Recommendation

tions. We formally define the problem statement as [8] : Given a user u, an
item i, a content a, and a context c predict a list of items with size N for user u.

2 Collective Hybrid Non-negative Matrix Factor-
ization Model

To provide the CHNMF model, we exploit the entities of general online sys-
tems: users-items interactions, content features, and contextual information.
Based on these features, we segregate the data into three matrices, the user-
item interaction matrix (Xu), the content features (Xa), and the contextual
information (Xc). These matrices are defined below reproduced from [8].

Definition 2.1. Interaction matrix (Xu) represents the item’s ratings given by a user
u. The user-item matrix is modelled as Xu = {xu ∈ Ru×i|1 ≤ xu ≤ 5}, where u is
the number of users, i is the number of items.

Definition 2.2. Content feature matrix (Xa) represents whether a user u interacted
with an item’s content feature a. The user-content feature matrix is formally defined
as Xa = {xa ∈ Zu×a|0 ≤ xa ≤ 1}, where u is the number of users and a is the
content size.

Definition 2.3. Contextual information matrix (Xc) represents how often a user u
interacted with an item’s content feature c. The user-contextual information matrix
is is formally defined as Xc = {xc ∈ Zu×c|0 ≤ xc ≤ 1}, where u is the number of
users and c is the context a user rated an item.

The context frequency measures how often the users rated the items in
specific circumstances. Some users may have higher absolute frequency than
others due to rate a larger set of items. Therefore, we need to normalize the
context frequency. Given a set of items I and a set of contextual informa-
tion C, where ic is an item rated in a specific context, we can formalize the
frequency as [8]:

CFi =

n
∑

i=1
ic

n
∑

i=1
i

, (2.1)

Next, CHNMF decomposes the input matrices into two low-rank approxi-
mation matrices. The user-item interaction matrix is decomposed as W×Hu;
categories as W × Ha; and context W × Hc. Where, Hu denotes the latent
features for user u. Similarly, Ha represents the category’s latent features
a, and Hc represents the context’s latent features c. Finally, W represents

12

3. Hybrid Learning Model

the common latent space. The goal is to solve the following optimization
problem [8]:

min : f (W) =
1
2
[α‖Xu−WHu‖2

2+β‖Xa−WHa‖2
2

+γ‖Xc−WHc‖2
2

+λ(‖W‖2+‖Hu‖2+‖Ha‖2+‖Hc‖2)]

s.t.W≥ 0, Hu≥ 0, Ha≥ 0, Hc≥ 0

(2.2)

where {α, β, γ} ∈ [0, 1] are hyper-parameters controlling the importance
of each factorization and the hyper-parameter λ ≥ 0 is used to enforce a
smooth solution and avoid overfitting.

3 Hybrid Learning Model

CHNMF is classified as a non-convex problem when considering all the
decomposed matrices together (W, Hu, Ha, Hc) [8]. Solutions have been
proposed in the literature to solve this problem, such as MUR proposed
by Saveski et al. [33]. However, Huang et al. [22] demonstrates that MUR
converges relatively slowly to find the optimal solution. As an alternative,
CHNMF utilizes a hybrid embedding learning model using Barzilai-Borwein
optimization and MUR method to solve the time convergence challenge.
Barzilai-Borwein optimizes the matrices Hu, Ha, and Hc through the algo-
rithm, while MUR updates the matrix W as described in Paper A.

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

UISplitting 0.0006 0.0030 0.0010 0.0035 0.0175 0.0058 0.0094 0.1560 0.0177 NA1 NA1 NA1

DSPF 0.0138 0.0690 0.0230 0.1008 0.0504 0.0672 0.00261 0.0984 0.0412 NA1 NA1 NA1

CAMF-C 0.0008 0.0043 0.0013 0.0045 0.0229 0.0075 0.1384 0.5582 0.2218 0.0003 0.0008 0.0004
CSLIM-ICS 0.0026 0.0131 0.0043 0.0031 0.0159 0.0051 NA1 NA1 NA1 0.0943 0.0257 0.0403
CSLIM-LCS 0.0031 0.0157 0.0051 0.0049 0.0247 0.0081 NA1 NA1 NA1 0.0018 0.0005 0.0009
CLSIM-MCS 0.0023 0.0117 0.0038 0.0028 0.0143 0.0046 NA1 NA1 NA1 0.0017 0.0004 0.0006
LCE 0.1268 0.1368 0.1316 0.2111 0.1874 0.1985 0.5952 0.5749 0.5848 0.2000 0.1900 0.1948
CoNMF 0.1254 0.1467 0.1352 0.1943 0.1563 0.1732 0.5888 0.5735 0.5810 0.1988 0.1805 0.1892
MultiNMF 0.1305 0.1775 0.1504 0.1867 0.1743 0.1803 0.5830 0.5731 0.5780 0.1901 0.1800 0.1849
CHNMF 0.1373 0.2033 0.1639 0.2222 0.1996 0.2103 0.5986 0.5763 0.5872 0.2032 0.1989 0.2010

Table 2.1: Top-5 Recommendations [8]

The Barzilai-Borwein optimization method aims to solve the following
problem as [8]:

min
W≥0

: f (W, H) =
1
2
‖X−WH‖2

F (2.3)

The function P(.) maps the negative values into zero. Knowing that H
is a stationary point of Equation 2.3 for any α > 0 as described by Costa et
al. [8], then,

13

Chapter 2. Collective Matrix Factorization for Top-N Recommendation

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

UISplitting 0.0011 0.0111 0.0020 0.0062 0.0628 0.0112 0.0004 0.0032 0.0007 NA1 NA1 NA1

DSPF 0.0005 0.0055 0.0009 0.0070 0.0707 0.0127 0.0003 0.0023 0.0005 NA1 NA1 NA1

CAMF-C 0.0009 0.0094 0.0016 0.0073 0.0735 0.0132 0.0006 0.0046 0.0010 0.0017 0.0008 0.0010
CSLIM-ICS 0.0024 0.0094 0.0038 0.0038 0.0380 0.0069 NA1 NA1 NA1 0.0471 0.0257 0.0332
CSLIM-LCS 0.0025 0.0255 0.0045 0.0037 0.0373 0.0067 NA1 NA1 NA1 0.0017 0.0009 0.0017
CLSIM-MCS 0.0024 0.0240 0.0043 0.0028 0.0287 0.0051 NA1 NA1 NA1 0.0017 0.0009 0.0011
LCE 0.1389 0.1189 0.1281 0.1999 0.1190 0.1491 0.2997 0.1599 0.2085 0.2100 0.1974 0.2035
CoNMF 0.1188 0.1366 0.1270 0.1983 0.1189 0.1486 0.2992 0.1444 0.1947 0.2005 0.1901 0.1951
MultiNMF 0.1364 0.1183 0.1267 0.1970 0.1183 0.1478 0.2981 0.1451 0.1951 0.2009 0.1807 0.1902
CHNMF 0.1399 0.1191 0.1286 0.2091 0.1194 0.1520 0.3020 0.1639 0.2124 0.2181 0.2000 0.2086

Table 2.2: Top-10 Recommendations [8]

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
UISplitting 0.0032 0.0295 0.0004 NA1

DSPF 0.0050 0.0428 0.0012 NA1

CAMF-C 0.0034 0.0232 0.5716 0.0008
CSLIM-ICS 0.0122 0.0181 NA1 0.0034
CSLIM-LCS 0.0122 0.0254 NA1 0.0107
CSLIM-MCS 0.0116 0.0134 NA1 0.0011
LCE 0.3232 0.1013 0.8019 0.1119
CoNMF 0.3201 0.0947 0.6179 0.1001
MultiNMF 0.3227 0.0962 0.6111 0.1099
CHNMF 0.3366 0.1080 0.8048 0.1221

Table 2.3: NDCG Performance [8]

‖P[H− α∇ f (H)]−H‖F = 0. (2.4)

The gradient ∇ f (W), of f (H), is Lipschitz continuous [14] with constant
L = ‖WTW‖2. Since WTW is a k × k and k � min{m, n}, the Lipschitz
constant L is not expensive to obtain [8]. The Barzilai-Borwein algorithm
calculates the best scores for the latent features until reaching the stationary
point.

4 Discussion

The experimental evaluation measures the quality of recommendations in
four publicly available benchmarks datasets: LDOS-CoMoDa, InCarMusic,
Frappe, and Movielens. The results are observed in Tables 2.1, 2.2 and 2.3
considering four different metrics: precision, recall, f-measure and NDCG.
First, we evaluate the effectiveness of CHNMF in recommending top-N items
by retrieving the top 5 and 10 items. The Tables 2.1, 2.2 and 2.3 present
CHNMF has an overall better performance when compared to other CMF
methods, demonstrating that combining user-item interactions, content fea-
tures, and contextual information play an important role in the quality of

14

4. Discussion

0 5 10 15 20 25 30 35 40 45 50

k

10-1

100

101

102

103

T
im

e(
s)

Movielens(ALS)
Movielens(CHNMF)
Comoda(ALS)
Comoda(CHNMF)
Car(ALS)
Car(CHNMF)
Frappe(ALS)
Frappe(CHNMFs)

Fig. 2.1: Convergence Time [8]

recommendations. The CMF methods outperformed pre-filtering and con-
textual modeling techniques for CARS.

Moreover, CHNMF proved faster convergence time during the learning
step in denser datasets such as Frappe and Movielens, when compared to
Alternating Least Square (ALS) method as illustrated in Figure 2.1. The con-
vergence time increases linearly according to the number of factors k.

15

Chapter 2. Collective Matrix Factorization for Top-N Recommendation

16

Prediction of Visitors

This Chapter gives an overview of Paper B [32].

1 Motivation and Problem Statement

CHNMF improves the algorithm for RS, but it neglects the revenue expected
by the system’s owner. Considering that Location-Based Social Networks
(LBSNs) provide data regarding user’s preferences, such as check-ins and
social relations, we aim to predict the users with higher probability to visit
a target place, facilitating the management of applications, such as event
planning. For example, a restaurant owner would like to forecast how many
will attend the next planned event at her/his restaurant to organize better the
event based on the expected amount of customers as illustrated in Fig 3.1. Pa-
per B exploits the assumption of identifying potential visitors given a target
location. We formally define the problem statement as [32]: Given an LBSN,
a location l, and a time interval t, predict the users who have a higher probability of
visiting l within t.

User Location Time Location Category Coordinates

u1 l1
13:25
11/12/2017 l1 Japanese 42.99,-71.46

u1 l1
14:30
12/12/2017 l2 French 42.98,-71.45

u1 l3
13:05
14/12/2017 l3 Japanese 42.97,-71.44

u2 l1
13:10
11/12/2017

u4 u3

u2u1

u2 l1
15:10
14/12/2017

u3 l1
14:20
11/12/2017

u3 l2
13:16
12/11/2017

u3 l3
16:20
14/12/2017

u4 l2
15:15
11/12/2017

Fig. 3.1: Toy example adapted from [32] : Checkins (left), Location categories (top right) and
social graph (bottom right)

17

Chapter 3. Prediction of Visitors

2 Collective Matrix Factorization-based Visitor Pre-
diction Model

The prediction of visitors requires to analyze LBSNs data by identifying
which relevant features affect the mobility of users. Then, compute the proba-
bility of the users becoming potential visitors based on the CMViP prediction
model. CMViP is a CMF which utilizes five relevant information that signifi-
cantly contributes towards the prediction of user u visiting a location l. The
features are: 1) visit frequency of u at l representing the number of check-ins
a user u made in a location l; 2) the frequencies of visits of user u at locations
with a similar category of l; 3) visit’s frequencies of user u at locations at a
given time interval t; 4) distance of l from the current location of u; and 5)
influence of u on her/his followers.

The CMViP model follow three steps: applies CMF method to collectively
factorizes the matrices based on four input features; then calculates the visit
score (YS) based on the linear model; and finally finds the potential visitors
influenced by user u. The CMViP model computes the scores based on 1)
visitor-location frequency matrix YU ∈ RU×L denoting the entries as the
number of visits of users U at locations L; 2) visitor-category matrix YC ∈
RU×C denoting the entries as the number of visits of users for categories
C; 3) visitor-time matrix YT ∈ RU×T denoting the entries as the number
of visits of users for each hour of the day; and 4) visitor-distance matrix
YD ∈ RU×D denoting the entries as the average distance users U travel for
visiting locations L from their las locations. The matrices are decomposed
into a common latent space matrix W and corresponding feature latent space
matrix H. The formal definition of the optimization problem is defined by
Equation 3.1 describe by Saleem et al. [32].

min : f (W) =
1
2
[α‖YU −WHU‖2

2 + β‖YC −WHC‖2
2

+γ‖YT −WHT‖2
2 + η‖YD −WHD‖2

2

+λ(‖W‖2 + ‖HU‖2 + ‖HC‖2 + ‖HT‖2 + ‖HD‖2)]

s.t.W ≥ 0, HU ≥ 0, HC ≥ 0, HT ≥ 0, HD ≥ 0

(3.1)

where {α, β, γ, η} ∈ [0, 1] are hyper-parameters controlling the impor-
tance degree of each matrix during the factorization. HU , HC, HT , and
HD are the latent feature matrices given by our input matrices. The hyper-
parameter λ ≥ 0 is applied to enforce the smoothness of the solution and
avoid overfitting.

The CMViP model aims to find the users’ visit scores given a location
and a time interval. The linear equation combining the common latent space
and the corresponding latent feature space matrices calculates the probability

18

2. Collective Matrix Factorization-based Visitor Prediction Model

score for each user u visits location l considering all features. The visit score
(YS) is denoted by Equation 3.2 [32].

YS(u, l, c, t, d) = α× YU(u, l) + β× YC(u, c) + γ× YT(u, t) + η × YD(u, l)
(3.2)

where α, β, γ, and η coefficients have the same meaning as in Equation
3.1 [32].

We provide a minimum visit score threshold θ. The users whose visit
score is greater than θ are named as Potential Visitors UP formally described
by Equation 3.3 [32].

UP(l, c, t) = {u|YS(u, l, c, t, d) ≥ θ} (3.3)

Based on the aforementioned model, we describe the following example:

Example 2.1
Consider the example given in Figure 3.1. Here, assume t1 = 13 : 00,
{α, β, γ, η} = 0.25 giving equal importance degree to all features, and
θ = 0.8. Then, YS(u1, l1, c1, t1, d1) = 0.84. Similarly, YS(u2, l1, c1, t1, d1) =
0.875, YS(u3, l1, c1, t1, d1) = 0.66 and YS(u4, l1, c1, t1, d1) = −∞. Thus,
UP(l1, c1, t1, d1) = u1, u2.

Finally, CMViP incorporates another feature considering that users tend
to follow their friends. Based on this statement, we assume that if a user visits
a location, her/his friends may also join her/him. To figure out which friends
have a higher probability to follow her/him, CMViP computes the influence
of potential visitors on friends. The influenced potential visitors is named
as Influenced Potential Visitors (I(UP)) and calculated by using the Bernoulli
distribution and a partial credit distribution based discrete time constrained
model as formulated in Equation 3.4 [32].

I(UP) = {u| ∑
u∈UP

Y(u, v) ≥ ξ ∧ (u, v) ∈ F} (3.4)

where p(u, v) is the influence probability of u on v, ξ is a threshold de-
noting the minimum probability of user influencing his/her followers, and F
is the set of friends pairs in the LBSN. Hence, the set of predicted potential
visitors is given by UP ∪ I(UP), where UP denotes the set of users having
a significant visit score and I(UP) the potential visitors as illustrated by the
following example:

19

Chapter 3. Prediction of Visitors

0.2 0.4 0.6 0.8

Recall

0

0.1

0.2

0.3
P

re
c
is

io
n

CMViP

POI2Vec-U

POI2Vec-A

POI2Vec-UA

POI2Vec-MUA

(a) Wee

0.2 0.4 0.6 0.8

Recall

0

0.1

0.2

P
re

c
is

io
n

CMViP

POI2Vec-U

POI2Vec-A

POI2Vec-UA

POI2Vec-MUA

(b) Foursquare

Fig. 3.2: Precision-Recall Curve [32]

Example 2.2
Considering Potential Visitors given by the example 2.1 where UP =
{u1, u2}. Morever, assume ω = 1h and η = 0.2. We observe for the location
l1, u1 and u2 are followed by u3 and for the location l3, u1 is followed by u3
within the given time window ω. Hence, the influence probability score of
UP on user u3 is p(Up, u3) = 0.3 ≥ η [32]. Finally, the set of the predicted
visitors is u1, u2, u3.

3 Discussion

The experimental setup to measure the performance of CMViP considers two
real-world datasets: Foursquare and Wee. Foursquare is a smaller and denser
dataset, while Wee is a larger and sparser dataset. The accuracy is computed
based on the precision-recall curve to predict the potential visitors. To do so,
we sort the dataset in ascending order of visiting time and divide it into two
parts, the training set, and the test set. The training set is processed utilizing
the CMViP model and further compared its results with the test dataset.
The results compare CMViP with four variants of a state-of-art approach
POI2Vec [15]. Analyzing the results shown in Figure 3.2 we observe CMViP
outperforms POI2Vec up to 6 times.

20

Review-based Explanations
for Recommender Systems

This Chapter gives an overview of Paper C [9].

1 Motivation and Problem Statement

The quality of predictions by RS has improved in the past years. However,
other research problems have emerged such as explainability in recommen-
dations. The explainable models aim to justify the reason behind the rec-
ommended list of items, making the online system more trustful. There are
different alternatives to interpret a RS, for example, images or text. Images
provide visual information regarding the prediction, while the text has more
detailed information due to capturing the contextual information. The on-
line systems provide item’s reviews as a source of information regarding the
quality of an item according to the user’s point of view. Besides presenting
the user’s satisfaction regarding an item, the reviews may influence other
users’ decision of whether to interact or not with an item. Based on this
assumption, we propose a review-oriented explanation model for RS in [9].
The proposed model described in Paper C utilizes a character-level attention-
enhanced Long Short-Term Memory (LSTM) method to generate personal-
ized natural language explanations based on user-generated reviews. The
explanations are encoded considering the contextual information from the
user-item interactions, for example, the explicit ratings. We formally define
the problem statement as [9]: Given a review s to a given item i from a user u,
and the corresponding rating r, generate text to explain the recommended item.

21

Chapter 4. Review-based Explanations
for Recommender Systems

2 Explainable Model

The explainable model utilizes neural networks to process actual reviews
and generate text according to the user’s preferences. The character-level
explanation model has three components named: LSTM network, attention
layer, and generator module. The general interpretation model architecture
is illustrated in Figure 4.1. Initially, the doc2vec method learns the users and
items embeddings. Then, we concatenate the ratings to the vectors.

Further, we encode the characters from the items’ reviews using one-hot
encoding. Later, the embeddings are concatenated with the outputs from
the LSTM network, becoming the input for the attention layer. Finally, the
generator module decodes sentences to explain the recommendations.

Concatenated
embedding

Attention

doc2vec

Generator

g 0.3 o 0.3 o 0.3 d 0.3 <EOF> 0.3

<STR> 0.3 g 0.3 o 0.3 o 0.3 d 0.3

Fig. 4.1: Personalized Explanation Generation Model Architecture [9]

The LSTM network is one solution for sequence-based challenges, such
as time and text generation. LSTM is an improvement to solve the vanishing
gradient problem in Recurrent Neural Networks (RNN), which is a challenge
for long-short term dependencies. The attention mechanism was adopted to
adaptively learn soft alignments ct between the character dependencies Ht
and attention inputs a. ct denotes the current cell state vector from the LSTM
network. Equation 4.1 formally describes the new character dependencies
given the attention layer Hattention

t as described by Costa et al. [9].

ct =
a

∑
i

exp(tanh(Ws � [Ht, ai]))

∑ exp(tanh(Ws � [Ht, ai]))
ai

Hattention
t = tanh(W1 � ct + W2 � Ht)

(4.1)

The generator module produces the explanation in character-level by max-
imizing the softmax probability p based on the new character dependencies
as denoted by Equation 4.2 [9].

22

3. Discussion

p = softmax(Hattention
t �W + b), char = arg max p (4.2)

where W denotes the weight matrix and b the bias.

3 Discussion

The experiments to measure the quality of explanations given by our model
considers two real-world datasets: Beer-Advocate and Amazon book reviews.
The first experiment measures the quality of generated explanations consid-
ering different ratings as attention mechanism as illustrated in Figure 4.2.
Ratings close to 1 generate text with a negative sentiment regarding the item
quality, while ratings close to 5 creates a text with positive sentiment.

Rating Text

1 i was not a little to read the first book, i did not like the story. i would not recommend it.

2 i was not interested with the story line and the story was a little slow.

3 the characters are always good. it was a good story.

4 i love the story, i would recommend this book to anyone

5 i love the story and the story line. i would recommend it to anyone who want to read the next book.

Fig. 4.2: Rating Text Samples, from poorly rated (1) to highly rated (5) [9].

The second experiment measures the personalization task, where the ex-
planation is generated given a user-item pair as presented in Figure 4.3. It
is important to notice the generated text simulates a review which would be
written by a target user about a given item.

Dataset (User, Item) Explanation

Amazon Books (9163, 11021)
i love this series. i can't wait for the next book. i love the characters and
the story line. i was so glad that the story was a little longer. i would
recommend this book to anyone who enjoy a good mystery.

BeerAdvocate (shivtim, 2023)

poured from a bottle into a pint glass. a: pours a dark brown with a
small head. s - smells of caramel and chocolate. t - a bit of a caramel
malt and a little bit of coffee. m- medium body with a solid carbonation.
d - medium bodied with a smooth mouthfeel. i can taste the sweetness
and a bit of caramel and a little bit of a bit of alcohol.

Fig. 4.3: Generated Text Samples [9]

Finally, the third experiment measures the quality of the generated text
based on readability metrics described in Section 3. The goal is to measure
how readable the generated text is. According to the metrics’ description
low score corresponds to easy and understandable text, while a high score

23

Chapter 4. Review-based Explanations
for Recommender Systems

ARI FGL GFI SMO GLI LIX RIX0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

S
co

re
s

Beer
Book

Fig. 4.4: Readability Score of Explainations [9]

denotes a more sophisticated writing style. Figure 4.4 illustrates the results
considering the quality of the explanations generated by our model. Ana-
lyzing the Figure 4.4, we observe that, for the majority of the metrics, our
method has stated the generated explanations are straightforward to read by
students from early grades. The metric LIX, however, presents a high score,
denoting the generated text is readable by college students. The result given
by LIX is due to noise caused by the total amount of words considered in its
equation.

24

Neural Explainable Latent Fac-
tor Model for Recommender
Systems

This Chapter gives an overview of Paper D [10].

1 Motivation and Problem Statement

The LFMs described in Chapter 2 and 3 presented accurate results for RS.
However, it is a challenge to explain why the online system predicts a partic-
ular list of items to a given user. One straight forward explanation follows the
assumption: The item i is recommended for user u, due to its similarity with item
j. However, items are defined by different aspects, for example, a movie has
horror as its category, but due to its age classification, it is not recommended
to watch with kids. The explanation has to be clear and cover the aspects
the user like or dislike accordingly. The model proposed by Zhang et al. [37]
named Explicit Factor Model (EFM) aims to use phrase-level sentiment anal-
ysis to explain the recommendation. The authors succeed in identifying the
item’s features which are more relevant to a target user, explaining the recom-
mendation and disrecommendations. EFM uses a sentiment lexicon construc-
tion technique to extract the most relevant features from the reviews. Then,
factorize the input information to identify the hidden features. However,
EFM does not consider how to present the textual explanations while keep-
ing their accuracy for top-N recommendation. Moreover, the EFM model
does not add contextual information to the recommendation model. Con-
sidering this research challenge, we propose a Neural Explainable Collective
Non-negative Matrix Factorization model (NECoNMF) to predict the user’s
preferences and explain the recommendation based on natural language gen-
eration [10]. The preferred features are identified applying: 1) CMF to jointly

25

Chapter 5. Neural Explainable Latent Factor Model for Recommender Systems

factorize four features: ratings, items’ content features, contextual informa-
tion and sentiments; and 2) an explainable module which explain the recom-
mendation using LSTM to generate text based on the user’s preferences [10].
We formally define the problem statement as [10]: Given a user u, an item i, a
content a, a context c, and a sentiment s predict a list of items with size N for user
u and explain the recommendation.

2 Neural Explainable Collective Non-negative Ma-
trix Factorization Model

To predict the most relevant items given the user’s preferences, we identify
the features which affect the user’s choices to recommend the top-N items.
We propose the NeCoNMF model, which collectively factorize four differ-
ent features: 1) ratings given to an item i from a user u; 2) interactions of
user u with items having the same content features with i; 3) interactions of
user u at a given contextual information c; and 4) the sentiment of a user u
when she/he interacted with item i. The goal is to identify the probability
of a user u liking or disliking an item j based on her/his previous feature
interactions. Then, NECoNMF uses a neural generator model to explain the
recommendations based on the features retrieved from the user’s previous
reviews aligned with the factorized features previously described.

Xu Xa Xs Xc

[3, 4, food, 3, service, 2, ambiance, 3,
location, positive, weekend]

Explicit
Features

Hu Ha V Hs Hc

Hidden
Features

r" Predicted
rating

Fig. 5.1: Collective Non-Negative Matrix Factorization [10]

Consider the restaurant scenario as illustrated in Figure 5.1, where a user
express her/his preference according to different aspects of a restaurant us-
ing numerical ratings and later writes a review with a detailed explanation.
NECoNMF factorizes four different input matrices based on these user-item
interactions: 1) content-feature frequency matrix Xa = {xa ∈ Ru×a|0 ≤ xa ≤
1} denoting the entries as the number of interactions of users for content
a; 2) user-item interaction matrix Xu = {xu ∈ Ru×i|1 ≤ xu ≤ 5} denoting

26

3. Hybrid Learning Model

the entries as the ratings the user u gave to item i; 3) user-context matrix
Xc = {xc ∈ Zu×c|0 ≤ xc ≤ 1} denoting the entries as the number of interac-
tions of users for contextual information c; and 4) and user-sentiment matrix
Xs = {xs ∈ Zu×s||xs| = 1} denoting the positive and negative sentiments
from a user u to an item i. u is the number of users, i is the number of items,
a is the content size, c is the context, and s is the sentiment regarding item
features. The matrices are decomposed into a common latent space matrix
W and corresponding feature latent space matrix H. The objective function
to optimize is defined by Equation 5.1 [10].

min : f (W) =
1
2
[α‖Xu −WHu‖2

2 + β‖Xa −WHa‖2
2

+γ‖Xc −WHc‖2
2 + ω‖Xs −WHs‖2

2

+λ(‖W‖2 + ‖Hu‖2 + ‖Ha‖2 + ‖Hc‖2) + ‖Hs‖2)]

s.t.W ≥ 0, Hu ≥ 0, Ha ≥ 0, Hc ≥ 0, Hs ≥ 0,

(5.1)

where the hyper-parameters are defined by {α, β, γ, ω} ∈ [0, 1] to control
the importance degree of each matrix during the factorization. Defining the
hyper-parameters as 0.25 gives equal importance to the matrices decomposi-
tion. The hyper-parameter λ ≥ 0 is applied to control the smoothness of the
solution and avoid overfitting.

3 Hybrid Learning Model

NeCoNMF extends the hybrid learning model described in Chapter 3 by up-
dating the learning step for the sentiment matrix Hs using Barzilai-Borwein
method.

4 Natural Language Explainable Model

The natural language explainable model aims to identify the most relevant
features given by the user’s reviews and further explain the predicted top-N
recommended items. The model relies on the LSTM network to process and
generate text. Further, to generate the explanation, the model has an attention
layer to identify which features the user like or dislike. The detailed modules
composing the explanation model are: 1) context encoder; 2) LSTM network;
3) attention layer; and 4) generator model [10].

The context encoder aims to translate the input character into one-hot
encoding, and further concatenate the user’s ratings given different item’s
content features. The formal definition is given in Equation 5.2 [10].

X′t = [onehot(xchar); xaux] (5.2)

27

Chapter 5. Neural Explainable Latent Factor Model for Recommender Systems

The output from the context encoder feeds the LSTM network that calcu-
lates the probability of which character comes after another. The goal is to
build sentences on a character level, based on the encoded information. The
attention layer is responsible for learning soft alignments ht between charac-
ter dependencies ct and attention inputs, such as the ratings given by a user
u. Equation 5.3 formally defines the character dependencies using attention
layer hattention

t [10].

ct =
attention

∑
i

exp(tanh(Ws � [ht, attentioni]))

∑ exp(tanh(Ws � [ht, attentioni]))
attentioni

hattention
t = tanh(W1 � ct + W2 � ht)

(5.3)

Finally, the explanation is generated by the generator model, which con-
catenates an initial prime symbol to initiate the sentence according to Equa-
tion 5.4 [10].

p = softmax(Hattention
t �W + b), char = arg max p (5.4)

To formulate the sentence, we give the prime string str, then the Equa-
tion 5.4 calculates the probability of the next character until finding the pre-
defined string end as proposed by Costa et al. [10]. The final string end
controls the length of the generated text.

Dataset Yelp Amazon
Metric NDCG@5 HIT@5 NDCG@10 HIT@10 NDCG@5 HIT@5 NDCG@10 HIT@10
Top-N Algorithms
ItemPop 0.0110 0.0136 0.0185 0.0306 0.0077 0.0082 0.0136 0.0238
PageRank 0.0235 0.0278 0.0313 0.0452 0.0978 0.1070 0.1029 0.1200
Explainable Recommendation
TriRank 0.0258 0.0313 0.0353 0.0527 0.1033 0.1127 0.1086 0.1266
EFM 0.2840 0.0448 0.2955 0.0678 0.3615 0.1284 0.3670 0.1429
NECoNMF 0.3366 0.0503 0.3461 0.0763 0.3892 0.1301 0.3962 0.1486

Table 5.1: NDCG and Hit Ratio results for NECoNMF and compared methods at rank 5 and
10 [10]

5 Discussion

First, to measure the performance of NECoNMF we used two real-world
datasets: Yelp and Amazon. The accuracy is computed based on the NDCG
and HR metrics to predict the top-N items considering N equal to 5 and 10.
The results were compared with four state-of-art approaches: ItemPop [13],
PageRank [30], TriRank [17], and EFM [37]. Table 5.1 presents the results of
the models, where we observe NECoNMF outperforms the state-of-art mod-
els in both datasets. NECoNMF improves the recommendations algorithms

28

5. Discussion

due to apply personalized historical information showing a better perfor-
mance compared to the ItemPop method.

5 10 15 20 25 30 35 40 45 50

N

0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

@
N

ItemPop
PageRank
TriRank
EFM
ECoNMF

5 10 15 20 25 30 35 40 45 50

N

0

0.05

0.1

0.15

0.2

0.25

0.3

H
it@

N

ItemPop
PageRank
TriRank
EFM
ECoNMF

Fig. 5.2: Empirical evaluation on Yelp dataset for N from 5 to 50 [10]

Moreover, NECoNMF identifies hidden features based on the item’s con-
tent features, context, sentiment, and rating improving the recommendation
effectiveness when compared to PageRank and TriRank.

5 10 15 20 25 30 35 40 45 50

N

0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

@
N

ItemPop
PageRank
TriRank
EFM
ECoNMF

5 10 15 20 25 30 35 40 45 50

N

0

0.05

0.1

0.15

0.2

0.25

0.3

H
it@

N

ItemPop
PageRank
TriRank
EFM
ECoNMF

Fig. 5.3: Empirical evaluation on Amazon dataset for N from 5 to 50 [10]

Finally, NECoNMF factorizes two additional features: item’s content fea-
tures and contextual information when compared to EMF, allowing NECoNMF
to better model the user’s preferences in the vectorial space and improving

29

Chapter 5. Neural Explainable Latent Factor Model for Recommender Systems

User Item Rating Generated Explanation
A X 1 i was disappointed . it was too small

and noisy . food was good , but i just

can’t come back with my family .

A Y 3 this was a nice restaurant . i liked the
service and the location . i’m not sure

i’d recommend the food there.
B X 5 i loved this restaurant . i could not leave

it. i loved the service and the food . i
will be back again next weekend .

Table 5.2: Example explanations produced by NECoNMF on the Yelp dataset [10].

the personalized recommendation task. Furthermore, NECoNMF collectively
factorizes the input matrices into one common latent space among the ma-
trices, allowing to identify hidden latent features not selected by the EFM
model during the recommendation task.

Figure 5.2 and 5.3 illustrates an additional experiment to measure the
NECoNMF’s performance for top-N recommendation task when N varies
from 5 to 50 in comparison with the baseline models. NECoNMF outper-
forms the baselines in both datasets for NDCG and HR metrics. The per-
formance increases linearly in all models, for example, a larger list of top-N
items improves the recommendation’s accuracy.

An experiment was performed to analyze the quality of the generated ex-
planations considering the natural language task as presented in Table 5.2.
We conducted the experiment considering two users and two items with
different predicted ratings. The generated texts are review-based explana-
tions and present an overall proper interpretation of the recommended items.
However, some improvements are necessary to offer better readability of the
sentences.

30

Neural Latent Factor Model for
Context-aware Recommender
Systems

This Chapter gives an overview of Paper E [12].

1 Motivation and Problem Statement

The LFMs presented in Chapter 2, 3, and 5 describes the models which use
context to overcome the sparsity problem, however the proposed models do
not deeply exploit the time as feature. time is characterized as an important
feature since users tend to either keep their preferences or change over time.
Tensor Factorization (TF) has been presented as an important model to iden-
tify user preferences and provide accurate recommendations [23]. However,
TF is not able to capture specific temporal patterns. Consider the example
illustrated by Figure 6.1 where the user watches movies in different times-
tamps.

Recommendation

Time

Recommender

Ordered
list of
items

…

Fig. 6.1: Example for user behaviour over time. [12]

31

Chapter 6. Neural Latent Factor Model for Context-aware Recommender
Systems

Initially, the user watches a sequence of movies in different timestamps.
Then, the sequence of movies is given as input to the RS, which generates
a list of recommended items. However, the RS model does not consider the
changes in the user’s preferences along the time. We propose the Collective
Embedding for Neural Context-aware Recommender Systems (CoNCARS)
model to solve the research problem defined by the previous example. CoN-
CARS presents the following layers: Input, Embedding, Pairwise Interaction,
Hidden, Fusion, and Prediction. Section 2 describes each layer of the CoN-
CARS model. Paper E exploits the assumption of identifying whether user-
item pair (u, i) should have a higher score than (u, j) for specific time t. We
formally define the problem statement as [12]: Given a user u, an item i, and
a timestamp t, predict a list of items with size N for user u and verify whether the
user u prefers item j over k.

2 Collective Embedding for Neural Context-Aware
Recommender Systems

Considering the implicit data where the users prefer observed items over
the unobserved items and time as a cyclic feature, we define CoNCARS as
illustrated in Figure 6.2.

Input Layer

Embedding
Layer

Pairwise
Interaction Layer

Hidden Layer

Fusion Layer

User ID (u) Item ID(i) Item
Timestamps (Tit)

0 1 0 0 …1 0 0 0 … 0 1 1 0 … 1 0 1 0 …

User
Timestamps (Tut)

User Embeddings P Item EmbeddingsQ User-time Factors X Item-time Factors Y

User Embedding p Item Embedding q Item Embedding x User Embedding y

Fusion

�̂�#$
Training
Log loss

𝑟#$ Target
Prediction Layer

Fig. 6.2: Collective Embedding for Neural Context-aware Recommender Systems. [12]

Input Layer. The input layer encodes the user u and item i into one-hot
representation vectors P and Q, respectively [12]. Additionally, CoNCARS
combines the binary interaction vector X for the observed interaction of user
u in time t and the binary interaction vector Y for the observed interaction of

32

2. Collective Embedding for Neural Context-Aware Recommender Systems

item i in time t. The output of the interaction layer is four feature vectors for
both u and i.

Collective Embedding Layer. The embedding layer collectively embeds the
data from the input layer: user u, item i, and their observed interactions
in specific time t. Equations 6.1 and 6.2 formally defines the user and item
feature vector as an embedding vector [12].

Ipu = PTu (6.1)

Iqi = QTi (6.2)

Moreover, the interaction vectors X and Y are denoted as latent factors
associated with temporal dynamics xu and yj, respectively. The formal def-
inition denotes that the user u interacted with item i in different times t is
described in Equation 6.3 and 6.4 [12].

Iyu =
∑i∈T(u) fi√
|T(u)|

(6.3)

Ixi =
∑u∈T(i) gu√
|T(i)|

(6.4)

where Iyu and Ixi are the item-based user embedding and the user-based
item embedding, respectively. fi is latent factors of Iyu and gu is the latent fac-
tors of xi. Moreover, T(u) denotes all positive entries in X and T(i) denotes
the collection of all positive entries in Y. Considering the distinct items may
interfer in different user’s preferences, we rewrite the time-based user-item
interaction as shown in Equation 6.5 and 6.6 [12].

Iyu = ∑
i∈T(u)

αifi (6.5)

Ixi = ∑
u∈T(i)

αugu (6.6)

where αi is the importance degree for item i rated by the user u at time t
and αu is the importance degree for user u interaction with item i at time t.
Equation 6.7 and 6.8 define the importance degree for item i [12].

hi = tanh(Wcfi + ba) (6.7)

αi =
exp(hT

i ha)

∑i∈T(u) exp(hT
i ha)

(6.8)

33

Chapter 6. Neural Latent Factor Model for Context-aware Recommender
Systems

where Wc, ba, and ha denote the weight matrix, bias vector, and time
contextual factor, respectively. The input fi for the convolutional layer pro-
duces the latent representation hi. Later, we compute the similarity between
hi and ha [12]. We adopt a similar approach shown in Equation 6.7 and 6.8
to compute the time-based user representation Ixi as explained at [12].

Pairwise Interaction Layer. The pairwise interaction layer captures the in-
teractions between user u and item i in time t, which is defined in Equation
6.11 [12].

en = φn
L(...(φ

n
2 (z0[n]))...) (6.9)

φn
l = σn

l (W
n
l zn

l−1 + bn
l), l ∈ [1, L] (6.10)

z0 = [pu ⊗ xi, pu ⊗ qi, yu ⊗ xi, yu ⊗ qi] (6.11)

where n ∈ {1, 2, 3, 4}; en is the deep representation of embedding inter-
action learned by the n-th layer in the CNN, and z0 includes pairwise con-
catenations of user and item collective embedding as explained by Costa et
al. [12].

Hidden Layer. The hidden layer is responsible for learning non-linear inter-
actions from the interaction layer. The CNN is modeled as c = FΘ(I), where
FΘ is the model of hidden layers with parameters Θ, and c is the feature map
vector used to predict the final score [12].

Fusion Layer. The hidden layer combines four latent factors vectors into a
single one as formally in Equation 6.12 [12].

c f = δ f (W f z f + b f),

z f = c1 ⊕ c2 ⊕ c3 ⊕ c4 (6.12)

where W f is the weight matrix, b f is the bias vector, δ f is the activation
function, and z f is the concatenation of four latent interaction representa-
tions.

Prediction Layer. The prediction layer calculates the predicted score based
on the assuption that user u prefers item j over item k. First we consider
r̂vit = wTz f , where vector w denotes the weights for the user-item-time in-
teractions in z f . Then, CoNCARS calculates the final score for user v and
item j in time t, resulting in a tuple (v, j, t). A positive result of the tuple
(v, k, t) denotes that r̂vjt should be larger than r̂vkt to have the correct label of

34

3. Discussion

Movielens Yelp Pinterest
HR@N NDCG@N HR@N NDCG@N HR@N NDCG@N

N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20
CAMF 0.4816 0.4929 0.1999 0.2517 0.0535 0.1006 0.0514 0.0591 0.5738 0.5911 0.3337 0.3619
TF 0.5395 0.5548 0.3076 0.4189 0.0991 0.2061 0.0953 0.0982 0.6914 0.7028 0.4574 0.4777
CHNMF 0.5500 0.5711 0.3244 0.4365 0.1121 0.2150 0.1001 0.1013 0.7164 0.7502 0.4918 0.5009
BPR 0.5841 0.6573 0.3664 0.4395 0.1558 0.2607 0.1042 0.1379 0.7464 0.8025 0.5119 0.5371
NeuMF 0.6774 0.7300 0.4133 0.4470 0.1841 0.2967 0.1095 0.1538 0.7593 0.8770 0.5324 0.5520
ConvMF 0.6801 0.7558 0.4171 0.4494 0.1937 0.3005 0.1102 0.1547 0.7921 0.8995 0.5383 0.5636
CoNCARS 0.6974 0.8422 0.4235 0.4596 0.2442 0.3751 0.1220 0.1588 0.8801 0.9691 0.5588 0.5749

Table 6.1: Top-N recommendation performance at N = 10 and N = 20. The bold font indicates
the best results [12].

0.001 0.01 0.1 1 10 100 1000

λ

0.73

0.74

0.75

0.76

H
R
@
1
0

HR

NDCG

0.49

0.50

0.51

0.52

0.53

N
D
C
G
@
1
0

0.001 0.01 0.1 1 10 100 1000

λ

0.305

0.310

0.315

0.320

0.325

0.330

H
R
@
1
0

HR

NDCG
0.16

0.17

0.18

0.19

0.20

N
D
C
G
@
1
0

0.001 0.01 0.1 1 10 100 1000

λ

0.894

0.896

0.898

0.900

0.902

0.904

0.906

H
R
@
1
0

HR

NDCG 0.585

0.590

0.595

0.600

0.605

N
D
C
G
@
1
0

Fig. 6.3: Performance of CoNCARS regarding to hyper-parameter λ on Movielens (left), Yelp
(center), and Pinterest (right) [12].

+1. On the other hand, a negative result of the tuple (v, k, t) has a label of
0 [12].

3 Discussion

We measured the performance of CoNCARS on three benchmark datasets:
Movielens, Yelp, and Pinterest. The accuracy is computed based on NDCG
and HR scores to measure the quality of top-N recommendations. To do
so, we performed an adapted version of the leave-one-out evaluation proto-
col [6, 20, 36]. The results were compared with six state-of-art approaches:
CAMF [4], TF [23], CHNMF [8], BPR [31], NeuMF [20], and ConvMF [24].
Table 6.1 presents the results from the methods, where we observe CoN-
CARS outperforms the state-of-art methods in all datasets for N equal to 10
and 20. CoNCARS presents the best performance due to it considers the
temporal features to its prediction model. Additionally, CoNCARS applies
pairwise learning to capture correlations among user-item-time interactions.
Moreover, CoNCARS learns non-linearities through the Convolutional Neu-
ral Network (CNN).

Additional experiments consider the variance in the results for different
hyper-parameter values as illustrated in Figure 6.3 and 6.4. λ defines the
regularization term, and c denotes the number of embedding factors per
convolutional layer. The results present values of λ larger than 1 keeps the
performance stable until a value of 1, 000. Considering the number of factors,

35

Chapter 6. Neural Latent Factor Model for Context-aware Recommender
Systems

8 16 32 64

#Factors

0.735

0.740

0.745

0.750

0.755

0.760

H
R
@
1
0

HR

NDCG
0.500

0.505

0.510

0.515

0.520

0.525

0.530

0.535

N
D
C
G
@
1
0

8 16 32 64

#Factors

0.30

0.31

0.32

0.33

H
R
@
1
0

HR

NDCG
0.16

0.17

0.18

0.19

0.20

N
D
C
G
@
1
0

8 16 32 64

#Factors

0.875

0.880

0.885

0.890

0.895

0.900

0.905

H
R
@
1
0

HR

NDCG
0.585

0.590

0.595

0.600

0.605

N
D
C
G
@
1
0

Fig. 6.4: Performance of CoNCARS regarding the number of factors on Movielens (left), Yelp
(center), and Pinterest (right) [12].

CoNCARS achieves better performance when we set c equals to 32 and 64 in
all datasets. Therefore, setting a high number of embedding factors gives a
better performance as described by Costa et al. [12].

36

Convolutional Adversarial La-
tent Factor Model for Recom-
mender System

This Chapter gives an overview of Paper F [11].

1 Motivation and Problem Statement

The RS models described in the previous Chapters may be susceptible to ad-
versarial perturbations. Adversarial training has shown significant improve-
ment in various domains, for example, image processing and Natural Lan-
guage Processing (NLP). Wang et al. [35] and He et al. [19] have claimed the
importance of adversarial training on recommendations to provide a more
robust prediction model. Nonetheless, adversarial training applied to the
implicit data face two challenges: 1) misinterpretation of null values from
implicit data; and 2) unstable learning convergence. These challenges are
caused by the high sparsity from implicit data and discrete values from item
recommendation. To tackle these research problems, Paper F proposed by
Costa et al. [11] describes a Convolutional Adversarial Latent Factor Model
(CALF). CALF is a generative and discriminative model, where the gener-
ative is responsible for minimizing the estimated distance by capturing the
true distribution, and the discriminative is responsible for estimating the dis-
tance between the generative model and the actual user preferences. We
first assume the users prefer observed items over unobserved items. Then
CALF utilizes the pairwise product to identify the user-item interactions.
Subsequently, the output from the pairwise product becomes the input for
the CNN, which is responsible for learning the non-linear user-item corre-
lations. Lastly, the sampling method Rao-Blackwell is applied to tackle the
discrete value challenge from item recommendation. CALF considers the

37

Chapter 7. Convolutional Adversarial Latent Factor Model for Recommender
System

recommendation process as a battle, where the generative model aims to im-
prove its prediction by fighting against the discriminative model aiming to
maximize the accuracy and the stability in the training step. We formally
define the problem statement as [11]: Given the generator distributions sθ and
the true users’s preferences sreal , predict a list of items with size N for user v by
minimizing the distance between sθ and sreal . Furthermore, discriminate whether
the user v prefers item j over k using the discriminator.

2 Convolutional Adversarial Latent Factor Model

Figure 7.1 illustrates the CALF architecture, where we observe the generative
and discriminative model. The generator is formally defined by gθ , where θ
is the parameter determining the generative model. On the other hand, the
discriminator is formally defined by dφ, where φ is the parameter defining
the discriminative model.

−
ln	𝜎(𝑦()*+ −

𝑦(*,)

𝑄/×12

pv

𝑦(*

(v,j)
v j

𝑃4×1
2

⨂ 𝑔

⨂ ∆

Rao-Blackwellized
Sampling

𝑃4×1
H

𝑄/×1
H

𝑄/×1
H

𝑞(∆

⨂

𝑞+

pv

⨀ 𝑦(*,

𝑦(*+⨂

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

Generative Model Sampling Discriminative Model

Fig. 7.1: Convolutional Adversarial Latent Factor Model [8]

The generator and discriminator are composed by a CNN responsible to
learn non-linear user-item interactions. The CNN has an embedding size for
the input layer of 64× 64. Moreover, the channel is defined by 6 hidden layers
with 32 feature maps in each layer. The feature map y in the hidden layer l
is denoted by a 2D matrix in the interaction layer Sly. We set the stride set as
[1, 2, 2, 1] of the internal architecture of CNN as suggested by He et al. [18].
The stride denotes the example, height, width, and channel of CNN. Assuming
the aforementioned definitions, the size of Slc is half of its previous layer
l− 1 [11]. The model functions of generator and discriminator are defined as
y = F(gθ |dφ), where F(gθ |dφ) is the model function with the parameters θ and
φ [11]. Note that y is used to predict the final score.

Assuming the training step, the discriminatior is denoted by a tuple (u, j, k,
where user u ∈ U, item j ∈ I+u and item k are sampled from sθ(k|u), we de-
fine the discriminator objective function as propsed by Costa et al. [11]:

38

2. Convolutional Adversarial Latent Factor Model

J(gθ , sφ) = max
θ

min
φ

m

∑
u=1

Ej∼sreal(j|u)&&k∼sθ(k|u)

ln σ(ŷvj − ŷvk),

(7.1)

where ln σ(·) is the pairwise loss function.
CALF adopts a sampling strategy named Rao-Blackwellization [27] to

minimize the issues generated by the discrete values. The sampling strat-
egy is proposed as an alternative to policy gradient due to the instability to
train and slow convergence of policy gradient. Once Rao-Blackwell sampling
is applied, CALF is optimized via the gradient descent [11]. We define a vec-
tor v̂u ∈ Rn to denote the item ranking scores for each user. Furthermore,
a vector g∆ denotes the elements randomly resulted from the Rao-Blackwell
sampling strategy (0, 1). The definition is described in Equation 7.2 [11].

∆ =
1
n

n

∑
i=1

2v̂u + g∆

gi + 1
, (7.2)

where ∆ is named fake item and is generated analogously to one-hot item
vector. A differentiable method to define the feature vector for each fake item
is necessary, because the generator may generate an infinite number of fake
items. The differentiable method is formulated as in Equation 7.3 as defined
by Costa et al. [11].

q̂ = ∆Q (7.3)

Q ∈ Rn×h denotes the fake items embedding matrix, q̂ ∈ Rh denotes the
feature vector of item ∆, and h represents the number of latent features [11].

CALF solves research problem of the discrete values and facilitates the
gradient updates in the generator by applying the strategy mentioned above.

Subsequently, CALF updates the parameters φ from the discriminator uti-
lizing the gradient descent to minimize the objective function as formulated
in Equation 7.4 [11].

φ← φ− lr×∇φ ln σ(ŷφ(vj)− ŷφ(vk)) (7.4)

On the other hand, the parameters θ from the generator is updated uti-
lizing the gradient ascent to maximize the objective function as defined in
Equation 7.5 [11].

θ ← θ + lr×∇θ ln σ(ŷθ(vj)− ŷθ(vk)), (7.5)

where lr denotes the learning rate.

39

Chapter 7. Convolutional Adversarial Latent Factor Model for Recommender
System

Movielens Yelp Pinterest
HR@N NDCG@N HR@N NDCG@N HR@N NDCG@N RI

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10
AMF 0.5331 0.7255 0.3517 0.4444 0.1176 0.2385 0.0950 0.1065 0.7098 0.8972 0.4946 0.5658 +31%
IRGAN 0.5400 0.7301 0.3744 0.4665 0.1321 0.2550 0.1035 0.1113 0.7200 0.9002 0.5111 0.5832 +25%
CNCF 0.6103 0.8041 0.4316 0.5011 0.1578 0.2686 0.1073 0.1200 0.7489 0.9026 0.5367 0.5881 +20%
CFGAN 0.6805 0.8352 0.4991 0.5640 0.1829 0.2889 0.1184 0.1459 0.7668 0.9053 0.5513 0.5928 +15%
CALF 0.7124 0.8596 0.5121 0.6153 0.2037 0.3148 0.1364 0.1681 0.7811 0.9155 0.5742 0.6159 -

Table 7.1: Top-N recommendation performance at N = 5 and N = 10. The bold font indicates
the best results. RI indicates the relative improvement of CALF over the corresponding baseline
on average. [11]

0 25 50 75 100 125 150 175 200

#Epoch

0.50

0.52

0.54

0.56

0.58

0.60

N
D
C
G
@
1
0

Log-loss

Log-PG

(a) Movielens

0 25 50 75 100 125 150 175 200

#Epoch

0.12

0.13

0.14

0.15

0.16

0.17

N
D
C
G
@
1
0

Log-loss

Log-PG

(b) Yelp

0 25 50 75 100 125 150 175 200

#Epoch

0.602

0.604

0.606

0.608

0.610

0.612

0.614

0.616

N
D
C
G
@
1
0

Log-loss

Log-PG

(c) Pinterest

Fig. 7.2: Performance of CALF regarding differentiable sampling and policy gradient. [11]

3 Discussion

The performance of CALF is measured on three benchmark datasets: Movie-
lens, Yelp, and Pinterest. The accuracy is computed based on NDCG and HIT
scores to measure the quality of top-N recommendations. We performed an
adapted version of the leave-one-out evaluation protocol [18, 20]. The results
were compared with four state-of-art approaches: AMF [19], CNCF [18], IR-
GAN [35], and CFGAN [5]. Table 7.1 presents the results of the experiments,
where we observe CALF outperforms the state-of-art methods in all datasets
for N equal to 5 and 10. CALF presents the best performance in compari-
son with the state-of-art methods due to 1) learning non-linearities through
the CNN; 2) applying pairwise product to capture the user-item correlations
better; 3) applying adversarial training to refine the relevance between users
and items; and 4) utilize the Rao-Blackwell sampling strategy to deal with
null values and discrete values from the data.

Moreover, we analyze the benefits of applying the sampling strategy as
illustrated in Figure 7.2. Figure 7.2 presents the gradient descent has a sta-
ble performance and faster convergence in comparison with policy gradient.
Therefore, the sampling strategy adopted by CALF brings benefits to the
model.

Finally, we measure the time convergence, and the results are shown in
Table 7.2. According to the table, the runtime of spent by CALF in the gener-
ator and discriminator for each epoch is longer when compared to the other

40

3. Discussion

Movielens Yelp Pinterest
CALF AMF CNCF IRGAN CFGAN CALF AMF CNCF IRGAN CFGAN CALF AMF CNCF IRGAN CFGAN

D 1 m - - 45 s 50 s 1.7 m - - 55 s 1.3 m 1.9 m - - 1.9 m 1.9 m
G 1.7 m - - 1.5 m 1.2 m 3.9 m - - 1.7 m 2.5 m 3.7 m - - 4.9 m 3.9
EC 50 60 50 60 60 50 100 90 120 100 70 90 80 70 70
TC 3 h 4 h 3.5 h 5 h 4.6 h 4.6 h 5.3 h 5 h 7 h 6.5 h 6.5 h 6.9 6.8 h 8 h 7 h

Table 7.2: Convergence time. - denotes the methods without generative and discriminative mod-
els; D is the discriminative model; G is the generative model; EC denotes the epoch convergence;
and TC denotes the time convergence [11]

models. Nevertheless, the overall training time is lower than the other models
and thereby improving the computational time.

41

Chapter 7. Convolutional Adversarial Latent Factor Model for Recommender
System

42

Summary of Contributions

The thesis provides a multi-view LFM to improve predictions in RS using
explicit and implicit user’s feedback. The thesis is composed of 6 papers.,
which has the contributions summarized below.

• Paper A [8] introduces CHNMF as a hybrid recommendation model to
provide better predictions. First, the paper describes which features af-
fect the prediction model. CHNMF utilizes collective non-negative ma-
trix factorization by combining two learning methods, Barzilai-Borwein
optimization, and multiplicative update rules. The empirical evaluation
presents CHNMF outperform the state-of-art methods in precision, re-
call, f-measure, and NDCG. Moreover, CHNMF presents a faster learn-
ing convergence in denser datasets.

• Paper B [32] exploits different features given by LBSN to provide the
CMViP model for predicting visitors at a given location and a particular
time. The paper introduces the features which may affect the mobility
of users and the algorithm to compute the probability of a user visiting
a target location based on those features. Initially, CMViP applies a
CMF model to identify the user’s preferences, then combine the outputs
with the influence maximization method. The experimental evaluation
presents CMViP outperforms the state-of-art methods in both precision
and recall.

• Paper C [9] proposes a review-based text generation model to explain
recommendations based on the user’s preferences. The paper describes
the LSTM network applied in the model, as well as, the attention layer
which generates text based on the user’s previous review style. The
experiment shows the model’s ability to provide a review based on the
predicted ratings. Moreover, the generated text provides good readabil-
ity based on the performed experimental results.

• Paper D [10] extends paper A in two directions: by adding sentiment as
additional information to the model’s prediction and proposing an ex-

43

Chapter 8. Summary of Contributions

plainable method to LFM. The paper introduces the NECoNMF model,
which collectively factorizes ratings, content features, sentiment, and
contextual information in a common latent space. Then, the paper de-
scribes the explainable neural model utilized to interpret the predicted
top-N recommendation based on the LFM. The results provided by the
experiments show that NECoNMF outperforms the state-of-art meth-
ods in both HR and NDCG.

• Paper E [12] describes CoNCARS, a model to provide item recommen-
dations using implicit data. The paper introduces the importance of
time as a feature in predicting users preferences. Due to the assump-
tion that users may repeat their actions in the future. CoNCARS com-
bines the users, items, and time embedding features using LFM. Subse-
quently, CoNCARS applies CNN to learn non-linear correlations among
the features to predict the user’s preferences. The empirical evaluation
presents CoNCARS improves the top-N recommendation in both HR
and NDCG in comparison with the state-of-art methods. Furthermore,
an experimental evaluation was performed to present CoNCARS per-
formance for different hyper-parameter values.

• Paper F [11] proposes an adversarial training for the CALF LFM model,
to providing predictions in RS. The paper introduces the generative
and discriminative models to refine the relevance between the user and
items correlations. Furthermore, CALF utilizes the Rao-Blackwell sam-
pling strategy to deal with the discrete values problem, providing a
faster and more stable learning convergence. The empirical evalua-
tion presents CALF outperforms the state-of-art methods in both HR
and NDCG for top-N items’ recommendation in comparison with the
state-of-art techniques. Moreover, CALF presents a more stable training
curve and spends less computational time during the training step.

The thesis addresses the following research problems: sparsity, explain-
ability, and null values in RS. Paper A, Paper B, and Paper E focus on utilizing
contextual information to infer top-N recommendations based on the users’
preferences and improve the recommendations in the sparse domains. Pa-
per A and Paper B apply CMF to identify linear correlations of user-item
interactions. Paper B extends Paper A by defining a new research problem
and incorporate information into the contextual features. Paper E propose
a neural model to improve the models introduced in Paper A and Paper B.
The model utilizes a CNN layer to learn non-linearities from users and items
correlations considering time.

Paper C and Paper D addresses the lack of explainability as a research
problem in RS. Paper C explores a new interpretable model based on the
neural network, which primarily trains an LSTM network based on previ-

44

ous users’ reviews and ratings. The personalized text is generated based
on the output of the LSTM network and an attention layer. The model pro-
posed in Paper D extends Paper A by adding the sentiment to its factoriza-
tion. Based on the factorized features and the explainable model proposed
in Paper C, NECoNMF can explain the recommendations with unambiguous
interpretability.

The models described above may be susceptible to adversarial perturba-
tions. To improve the recommendation given the null values and discrete
values, Paper F introduces the CALF model, which applies adversarial train-
ing utilizing the Rao-Blackwell sampling strategy. The proposed solution im-
proves the results in comparison with Paper E by dealing with discrete items,
improving the stability and computational time convergence to the model.

Detailed information about all the contributions can be found in Part II of
this thesis or directly in the cited research papers.

45

Chapter 8. Summary of Contributions

46

Future Directions

The contributions of the thesis can be applied to increase the users’ satisfac-
tion given by the RS. Future generations of recommendation models may uti-
lize the proposed methods to evaluate different hypothesis regarding context,
explainability, and other research challenges given by explicit and implicit
data. For instance, a recommended list of item’s suggested to a user during a
weekday might not be similar to the list suggested on the weekend. Another
example would be that the RS needs to explain why the recommended list of
items is similar to the user’s previous preferences. Our proposed methods
to recommend top-N items will provide an understanding of such user-item
interactions.

The models proposed in this thesis enable extensions in different direc-
tions. Paper A could exploit the cold-start research problem in RS to im-
prove the efficiency of the proposed method. Paper B might, for example,
add features for optimizing predictions, such as weekdays or weekend and
popularity of locations. Paper C can explore advanced techniques in the
NLP research field to improve the readability of the text and consider the re-
view’s usefulness score, which may influence the quality of the explanation.
Paper D may exploit the user’s social relations to improve the accuracy of
the proposed model. Paper E could consider sequential-based information
to the models since users may change their preferences in the near future.
Therefore, the sequence becomes an essential feature for the online systems
scenario. The method proposed in Paper F can investigate the influence of
richer contexts, such as the reviews given by a user.

The proposed solutions present how the research can be applied in the
RS field, and the future directions present how practitioners improve the
proposed methods. Moreover, future directions relate to modeling users and
items to identify the demands of real-world online systems. The suggestions
raised by this Ph.D. thesis opens up a wide range of possibilities for the
satisfaction of users on the Web.

47

References

References

[1] G. Adomavicius and A. Tuzhilin, “Context-aware recommender systems,” in Recc
Sys. handbook. Springer, 2011, pp. 217–253.

[2] J. Anderson, “Lix and rix: Variations on a little-known readability index,” Journal
of Reading, vol. 26, no. 6, pp. 490–496, 1983.

[3] I. Avazpour, T. Pitakrat, L. Grunske, and J. Grundy, Dimensions and Metrics for
Evaluating Recommendation Systems. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2014, pp. 245–273.

[4] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin, K.-H.
Lüke, and R. Schwaiger, “Incarmusic: Context-aware music recommendations in
a car,” in E-Commerce and Web Technologies. Springer, 2011, pp. 89–100.

[5] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J.-T. Lee, “Cfgan: A generic collaborative
filtering framework based on generative adversarial networks,” in CIKM, 2018,
pp. 137–146.

[6] W. Cheng, Y. Shen, Y. Zhu, and L. Huang, “Delf: A dual-embedding based deep
latent factor model for recommendation,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, 7 2018, pp. 3329–3335.
[Online]. Available: https://doi.org/10.24963/ijcai.2018/462

[7] M. Coleman and T. L. Liau, “A computer readability formula designed for ma-
chine scoring.” Journal of Applied Psychology, vol. 60, no. 2, p. 283, 1975.

[8] F. Costa and P. Dolog, “Hybrid learning model with barzilai-borwein optimiza-
tion for context-aware recommendations,” in Proceedings of the Thirty-First In-
ternational Florida Artificial Intelligence Research Society Conference, FLAIRS 2018,
Melbourne, Florida USA., May 21-23 2018., 2018, pp. 456–461.

[9] F. Costa, S. Ouyang, P. Dolog, and A. Lawlor, “Automatic generation of natu-
ral language explanations,” in Proceedings of the 23rd International Conference on
Intelligent User Interfaces Companion, ser. IUI’18. ACM, 2018, pp. 57:1–57:2.

[10] F. Costa and P. Dolog, “Neural explainable collective non-negative matrix factor-
ization for recommender systems,” in Proceedings of the 14th International Confer-
ence on Web Information Systems and Technologies - Volume 1: WEBIST,, INSTICC.
SciTePress, 2018, pp. 35–45.

[11] F. Costa and P. Dolog, “Convolutional adversarial latent factor model for recom-
mender system,” in Proceedings of the Thirty-Second International Florida Artificial
Intelligence Research Society Conference (Submitted), 2019.

[12] F. Costa and P. Dolog, “Collective embedding for neural context-aware recom-
mender systems,” in Proceedings of the 25th Conference on User Modeling, Adaptation
and Personalization (Submitted), 2019.

[13] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms
on top-n recommendation tasks,” in Proceedings of the Fourth ACM Conference on
Recommender Systems, ser. RecSys ’10. New York, NY, USA: ACM, 2010, pp.
39–46.

48

https://doi.org/10.24963/ijcai.2018/462

References

[14] K. Eriksson, D. Estep, and C. Johnson, Lipschitz Continuity. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 149–164.

[15] S. Feng, G. Cong, B. An, and Y. M. Chee, “Poi2vec: Geographical latent repre-
sentation for predicting future visitors.” in AAAI, 2017.

[16] R. Gunning, “The technique of clear writing,” 1952.

[17] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware explainable rec-
ommendation by modeling aspects,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, ser. CIKM ’15. New
York, NY, USA: ACM, 2015, pp. 1661–1670.

[18] X. He, X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua, “Outer product-based
neural collaborative filtering,” in IJCAI, 2018, pp. 2227–2233.

[19] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking for rec-
ommendation,” in SIGIR, 2018, pp. 355–364.

[20] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative
filtering,” in Proceedings of the 26th International Conference on World Wide Web,
ser. WWW ’17. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2017, pp. 173–182. [Online].
Available: https://doi.org/10.1145/3038912.3052569

[21] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collab-
orative filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp.
5–53, Jan. 2004.

[22] Y. Huang, H. Liu, and S. Zhou, “An efficient monotone projected barzilai–
borwein method for nonnegative matrix factorization,” Applied Mathematics Let-
ters, vol. 45, pp. 12–17, 2015.

[23] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: N-dimensional tensor factorization for context-aware
collaborative filtering,” in Proceedings of the Fourth ACM Conference on
Recommender Systems, ser. RecSys ’10. New York, NY, USA: ACM, 2010, pp.
79–86. [Online]. Available: http://doi.acm.org/10.1145/1864708.1864727

[24] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization
for document context-aware recommendation,” in Proceedings of the 10th ACM
Conference on Recommender Systems, ser. RecSys ’16. New York, NY, USA: ACM,
2016, pp. 233–240.

[25] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom, “Derivation
of new readability formulas (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel,” 1975.

[26] Y. Koren, “Factorization meets the neighborhood: A multifaceted collaborative
filtering model,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08. New
York, NY, USA: ACM, 2008, pp. 426–434. [Online]. Available: http:
//doi.acm.org/10.1145/1401890.1401944

[27] R. Liu, J. Regier, N. Tripuraneni, M. I. Jordan, and J. McAuliffe, “Rao-
blackwellized stochastic gradients for discrete distributions,” CoRR, 2018.

49

https://doi.org/10.1145/3038912.3052569
http://doi.acm.org/10.1145/1864708.1864727
http://doi.acm.org/10.1145/1401890.1401944
http://doi.acm.org/10.1145/1401890.1401944

References

[28] S. Maharjan, J. Arevalo, M. Montes, F. A. González, and T. Solorio, “A multi-task
approach to predict likability of books,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, ser. EACL’17,
vol. 1, 2017, pp. 1217–1227.

[29] G. H. Mc Laughlin, “Smog grading-a new readability formula,” Journal of reading,
vol. 12, no. 8, pp. 639–646, 1969.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web,” in Proceedings of the 7th International World Wide Web
Conference, Brisbane, Australia, 1998, pp. 161–172.

[31] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian
personalized ranking from implicit feedback,” in Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, ser. UAI ’09. Arlington,
Virginia, United States: AUAI Press, 2009, pp. 452–461. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1795114.1795167

[32] M. A. Saleem, F. S. da Costa, P. Dolog, P. Karras, T. Calders, and T. B. Pedersen,
“Predicting visitors using location-based social networks,” in MDM, 2018, pp.
245–250.

[33] M. Saveski and A. Mantrach, “Item cold-start recommendations: Learning local
collective embeddings,” in Proceedings of the 8th ACM Conference on Recommender
Systems, ser. RecSys ’14. New York, NY, USA: ACM, 2014, pp. 89–96. [Online].
Available: http://doi.acm.org/10.1145/2645710.2645751

[34] R. Senter and E. A. Smith, “Automated readability index,” CINCINNATI UNIV
OH, Tech. Rep., 1967.

[35] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang,
“Irgan: A minimax game for unifying generative and discriminative information
retrieval models,” in SIGIR, 2017, pp. 515–524.

[36] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix factorization
models for recommender systems,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 3203–3209. [Online].
Available: https://doi.org/10.24963/ijcai.2017/447

[37] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit factor models
for explainable recommendation based on phrase-level sentiment analysis,” in
Proceedings of the 37th International ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, ser. SIGIR ’14. New York, NY, USA: ACM,
2014, pp. 83–92.

50

http://dl.acm.org/citation.cfm?id=1795114.1795167
http://doi.acm.org/10.1145/2645710.2645751
https://doi.org/10.24963/ijcai.2017/447

Part II

Papers

51

Paper A

Hybrid Learning Model with Barzilai-Borwein
Optimization for

Context-aware Recommendations

Felipe Costa and Peter Dolog

The paper has been published in the
Proceedings of the Thirty-First International Florida Artificial Intelligence Research

Society Conference (FLAIRS’18), pp. 456–461, 2018.

Abstract

We propose an improved learning model for non-negative matrix factorization in
the context-aware recommendation. We extend the collective non-negative matrix
factorization through hybrid regularization method by combining multiplicative up-
date rules with Barzilai-Borwein optimization. This provides new improved way of
learning factorized matrices. We combine ratings, content features, and contextual
information in three different 2-dimensional matrices. We study the performance of
the proposed method on recommending top-N items. The method was empirically
tested on 4 datasets, including movies, music, and mobile apps, showing an improve-
ment in comparison with other state-of-the-art for top-N recommendations, and time
convergence to the stationary point for larger datasets.

c© 2018 AAAI. Reprinted, with permission, from Felipe Costa and Peter
Dolog, Hybrid Learning Model with Barzilai-Borwein Optimization for
Context-aware Recommendations, Thirty-First International Florida Artificial
Intelligence Research Society Conference (FLAIRS’18), May/2018.
The layout has been revised.

1. Introduction

1 Introduction

Recommender systems are traditionally focused on users, items, and their
interactions to build a model to recommend a sorted list of N items, cor-
responding to the user’s interests. However, it is important to incorporate
context in some applications during the recommendation process, such as
tourism (sights to be visited), movies (time and place), and so on. Researchers
have identified the quality of recommendations increases when they use ad-
ditional information, such as time and location [1].

There are two main challenges in recommendation process: 1) generating
list of top-N recommendations and 2) time of convergence in learning the
factorized matrices. Context-aware recommender models has shown signifi-
cant improvement to cover the first challenge as presented by [2–4], however,
their models do not consider content features, which may influence the users’
decision and improve recommendation accuracy. For the second challenge
ALS has been applied in different matrix factorization models as presented
by [5, 6]. Nonetheless, the convergence results for gradient descent methods
assume the subproblems have unique solutions [7].

As a solution for top-N recommendations and convergence of learning
curve, we propose to extend the collective non-negative matrix factorization
(CNMF) using the Barzilai-Borwein (BB) optimization method and multi-
plicative update rules, called the collective hybrid non-negative matrix fac-
torization (CHNMF1). CHNMF factorizes ratings, content features and con-
text in three non-negative low-rank matrices, represented in a common latent
space. Our hypothesis is that using the same factor space to jointly decom-
pose different matrices (e.g. attributes, context, and users’ tastes) improves
the prediction of top-N items. Further, BB improves convergence time for the
learning model, by running the factorization tasks in parallel. Factorizing the
rating, content features and contextual information collectively allows BB to
perform better in larger dataset than ALS, due to higher density. Hence, BB
only computes two projections and two gradients at even steps. Moreover, it
determines the step length without using any line search.

We performed an experimental evaluation of the models on 4 datasets:
LDOS-CoMoDa, InCarMusic, Frappe, and Movielens. The proposed model
outperforms the state-of-art regarding convergence time in learning, as well
as, in accuracy measured by metrics commonly used for evaluation of top-N
recommendations quality.

This paper has the following contributions:

• An efficient hybrid learning model, based on multiplicative update
rules and Barzilai-Borwein optimization;

1Available at: https://github.com/felipeecosta

55

https://github.com/felipeecosta

Paper A.

• A collective model combining ratings, content features, and contextual
information into a collective hybrid non-negative matrix factorization
framework;

• Empirical experiments comparing the results between CHNMF and
state-of-the-art methods for top-N recommendation.

2 Related Works

Related work can be divided in two areas: context-aware recommender sys-
tems, and collective matrix factorization (CMF).

Context-aware Recommender Systems. [1] categorized context-aware rec-
ommender systems (CARS) into: pre-filtering, post-filtering, and contextual
modeling. In this paper we have not considered post-filtering approach as
baseline, because it has shown less efficiency in comparison with the oth-
ers [3].

Pre-filtering. [2] introduces the UI-Splitting approach, which splits a given
rating vector into two virtual vectors using a specific contextual factor. [3]
presents the distributional-semantics pre-filtering (DSPF), which proposes to
build a matrix factorization using classified ratings with the most similar
contextual situations.

Contextual modeling. [4] proposes the context-aware matrix factorization
(CAMF), which extends matrix factorization using context as baseline predic-
tor to represent interaction of contextual information with items or users. [8]
discuss contextual SLIM (CSLIM) technique, which incorporates contextual
factor to SLIM algorithm, through estimating the ranking score Ŝi, j, c for user
ui in item tj in context c.

Collective Matrix Factorization. Multi-view clustering is a technique to
split objects into clusters based on multiple representations of the object. [5, 6]
propose different methods using CMF. [5] proposed the MultiNMF, using
a connection between NMF and PLSA. Comparing different views of fac-
tors in multi-view setting for clustering. [6] proposed a co-regularized NMF
(CoNMF), where comment-based clustering is formalized as a multi-view
problem using pair-wise and cluster-wise CoNMF.

Decoupled Target Specific Features Multi-Target Factorization (DMF), pro-
posed by [9], follows the same principle of CMF. DMF learns a set of single
target models optimized for one relation, while downweighting the others.
However, a number of parameters are used only for auxiliary relations and
never for predicting the targets, what diverges from the proposed work in
this paper.

56

3. Problem Formulation

Local collective embeddings (LCE) is a matrix factorization method pro-
posed by [10], which exploits user-document and document-terms matrices,
identifying a common latent space to both item features and rating matrix.
LCE has shown effectiveness in cold-start problem for news recommenda-
tion, however, it has some limitations. The method does not perform well
in our domain which covers movies, music and mobile apps, because it uses
only two matrices as input and multiplicative update rules as learning model.
In this paper, we extend the LCE approach proposing CHNMF to address
these limitations. CHNMF decomposes a matrix as a product of three matri-
ces: content features, rating, and context. Content features are data from each
item’s metadata, ratings represents user’s preferences, while contextual infor-
mation is the situation where the user rates an item. Furthermore, the hybrid
technique is applied using multiplicative update rules and Barzilai-Borwein
optimization to provide a faster convergence to stationary point during the
learning model.

3 Problem Formulation

The research problem investigated in this paper is defined as follows: Rec-
ommend a ranked list of items to each user, given by ratings, content features, and
contextual information on user-item interactions. Modeling the rating data from
U users to I items under Xa types of content and Xc types of context as three
2-dimensional matrices, i.e., user-item matrix as Xu ∈ Ru×i; user-content fea-
ture matrix is formally defined as Xa ∈ Ru×a; and user-context matrix as
Xc ∈ Ru×c. Where, u is the number of users, i is the number of items, a is the
content size, and c is the context a user rated an item. The matrix Xa ∈ {0, 1}
represents whether a target preferable item belongs to a specific attribute or
not. The rating matrix presents the user’s preferences in a numerical scale as
Xu ∈ {1, 2, 3, 4, 5}. Finally, Xc ∈ [0, 1] presents how often a user rated an item
in a specific context.

Factor models aims to decompose the original user-item interaction ma-
trix into two low-rank approximation matrices. CHNMF is a generalization
of the classical matrix factorization methods for content features and contex-
tual information. The latent features are stored in three low-rank matrices:
ratings as W×Hu; categories as W×Ha; and context W×Hc. Where, Hu de-
notes a row vector, which represents the latent features for user u. Similarly,
Ha represents the category’s latent features a, and Hc represents the context’s
latent features c.

57

Paper A.

4 Collective Non-negative Matrix Factorization

Considering the notation used in the problem formulation, it is factorized Xa
into two lower dimensional matrices, obtaining the f actor× attributes scores
belonging to an item. Factorizing Xu leads to find f actor × items scores,
presenting the users’ preferences. Likewise, the factorization of matrix Xc
allow us to identify the hidden contextual factors related to the item. CHNMF
represents ratings, content features, and contexts in a common latent space,
collectively factorizing Xu, Xa, and Xc into a low-dimensional representation.
The formal definition, is given as the following optimization problem:

min : f (W) =
1
2
[α‖Xu−WHu‖2

2+β‖Xa−WHa‖2
2

+γ‖Xc−WHc‖2
2

+λ(‖W‖2+‖Hu‖2+‖Ha‖2+‖Hc‖2)]

s.t.W≥ 0, Hu≥ 0, Ha≥ 0, Hc≥ 0

(A.1)

where W represents the common latent space during the decomposition
of Xu, Xa, and Xc. {α, β, γ} ∈ [0, 1] are hyper-parameters controlling the
importance of each factorization. The remaining terms are Tikhonov regular-
ization of W, Hu, Ha, and Hc controlled by the hyper-parameter λ ≥ 0, used
to enforce a smooth solution and avoid overfitting.

4.1 Optimization

The optimization performs as follows: (1) fix the value of W while minimiz-
ing f (W) over Hu, Ha, Hc; then (2) fix the value of Hu, Ha, Hc while minimiz-
ing f (W) over W. Considering a matrix with xi rows and yj columns, with a
relation defined by rij, we can define the correlation among n neighbors’ data
points. This results in a matrix A, used to measure the local closeness of two
data points xi and yj.

Collective factorization reduces data points xi from a matrix X, into a
common-latent space W as wi. The distance between two low dimensional
data points is calculated using the Euclidean distance: ‖wi−wj‖2, and mapped
into a matrix A. Based on the matrix A we can iterative run these two steps
until the stationary point, or until the established number of max iterations
as follow:

58

5. Hybrid Learning Model

M =
1
2

n

∑
i,j=1
‖wi−wj‖2 Ai j

=
n

∑
i=1

(wT
i −wi)Dii−

n

∑
i,j=1

(wT
i −wi)Dii

= Tr(WT DW)−Tr(WT AW) = Tr(WT LW),

(A.2)

where Tr(•) denotes the trace function, and D is a diagonal matrix whose
entries are row sums of A (or column, as A is symmetric), in other words,
Dii = ∑i Ai j; L = D− A is called the Laplacian matrix, we need to incorpo-
rate it to enforce the non-negative constraints.

The optimization problem of function f (W) is written as:

min : f (W) =
1
2
[α‖Xu−WHu‖2

2+β‖Xa−WHa‖2
2

+γ‖Xc−WHc‖2
2+ ϕTr(WT LW)

+λ(‖W‖2+‖Hu‖2+‖Ha‖2+‖Hc‖2)]

s.t.W≥ 0, Hu≥ 0, Ha≥ 0, Hc≥ 0

(A.3)

where L is the Laplacian matrix, and ϕ is a hyper-parameter which con-
trols the objective function.

5 Hybrid Learning Model

CHNMF is a non-convex method, considering all parameters (W, Hu, Ha,
Hc) together, it is unrealistic to expect the algorithm to find the global min-
imum. [10] propose an iterative algorithm based on multiplicative update
rules (MUR) to achieve the stationary point. However, it has been observed
that MUR converges relatively slowly [7]. In this paper, we present a hybrid
learning model using MUR and Barzilai-Borwein (BB) method to solve the
convergence problem.

5.1 Barzilai-Borwein

Since Hu, Ha, and Hc have the same behaviour, we represent them in this
paper as H. We have to solve:

min
W≥0

: f (W, H) =
1
2
‖X−WH‖2

F (A.4)

We map all the negative values into zero through P(.). As H is a stationary
point of Equation A.4 for any α > 0, then,

59

Paper A.

‖P[H − α∇ f (H)]− H‖F = 0. (A.5)

The gradient ∇ f (W), of f (H), is Lipschitz continuous with constant L =
‖WTW‖2. Since WTW is a k× k and k� min{m, n}, the Lipschitz constant L
is not expensive to obtain.

We use ‖P[H − α∇ f (H)]− H‖F ≤ εH , where εH = max(10−3, ε)‖P[H −
α∇ f (H)]− H‖F. If Algorithm 1 solves Equation A.4 without any iterations,
we decrease the stopping tolerance by ε = 0.1εH . For a given H0 ≥ 0:

L(H0) = {H| f (H) ≤ f (H0), H ≥ 0}. (A.6)

By the definition of Equation A.4 we have the stationary point of the
Barzilai-Borwein method.

5.2 Multiplicative Update Rules

We combine multiple regularization methods, where Hu, Ha, Hc converge us-
ing the Barzilai-Borwein method, while W uses multiplicative update rules
to achieve the stationary point. The partial derivatives of f (W) is:

∇ f (W) = αWHu HT
u − αXuHT

u + βWHaHT
a

−βXa HT
a + γWHcHT

c − γXcHT
c + λIk

(A.7)

where Ik is the identity matrix with k × k dimensions. Applying the
Karush-Kuhn-Tucker(KKT) first-order optimal conditions to f (W), we de-
rive:

W ≥ 0,∇ f (W) ≥ 0, W �∇ f (W) = 0, (A.8)

where � corresponds to the element-wise matrix multiplication operator.
Substituting the derivatives of f (W) from Equation A.7 in Equation A.8

leads to following update rules:

W =
[αXuHT

u + βXa HT
a + γXcHT

c]

[αHuHT
u + βHa HT

a + γHc HT
c + λIk]

, (A.9)

where •• corresponds to the element-wise matrix division.

60

5. Hybrid Learning Model

Algorithm 1 Barzilai-Borwein
Input : feature matrix H, common latent space W, and convergence criteria.
Output: H

1 σ ∈ (0, 1)
αmax > αmin > 0
L← ‖WTW‖2
H0 ← Hk

α0 ← 1
t← 0
if Ht is a stationary point of A.1 then

2 return Ht

3 else
4 while not converged do
5 if t/2 6= 0 then
6 return Zt ← Ht

7 else
8 Zt ← P

[
Ht − 1

L∇ f (H)
]

9 end
10 Dt ← P [Zt − αt∇ f (Zt)]− Zt

δ← 〈Dt, WWT Dt〉
if δt ← 0 then

11 return λt ← 1

12 else
13 λt ← min{λ̃t, 1}

where λ̃t ← − (1−σ)〈∇ f (Zt),Dt〉
δt

Ht+1 ← Zt + λtDt

14 end
15 St ← Ht+1 − Ht

Yt ← ∇ f (Ht+1)−∇ f (Ht)
if 〈St, Yt〉 ≤ 0 then

16 αt+1 ← αmax

17 else
18 if t/2 6= 0 then
19 αBB

t+1 ←
〈St ,St〉
〈St ,Yt〉

20 else
21 αBB

t+1 ←
〈St ,Yt〉
〈Yt ,Yt〉

22 end
23 αt+1 ← min{αmax, max{αmin, αBB

t+1}}
24 end
25 t← t + 1
26 end
27 end
28 return H

61

Paper A.

Each iteration of CHNMF algorithm gives us a solution for the pair-wise
division. As we map any negative values to zero, the W matrix becomes a
non-negative after each update. Furthermore, the objective function and the
delta decrease on each iteration of the above update rules, guaranteeing the
convergence into a stationary point.

5.3 Complexity Analysis of CHNMF

[10] applied MUR using ALS as learning model due to its efficiency and
simplicity. LCE updates matrix factors by multiplying each entry with a
positive factor in every iteration round. However, MUR converges relatively
slowly [7].

CHNMF is non-convex and NP-hard problem, in relation to the variables
W and H. However, ALS optimizes the subproblems W and H into convex
problems. Despite the optimization, they might have more than one opti-
mal solution because they are not strictly convex. The convergence gradient
descent method assumes the subproblems have unique solutions [7]. Fur-
thermore, most of the methods applying ALS are inefficient in finding a step
length by using the line search, resulting in a slow convergence.

Regarding the computational complexity given by multiplicative update
rules, Xu(Hk

u)
T , Xa(Hk

a)
T , Xc(Hk

c)
T , (W(k + 1))TXu are O(nmr) operations,

where n and m are the matrix dimensions, and r is the stationary point. The
former operations are O(nmr), but the latter costs O(max(m, n)r2). When
r < min(m, n) the latter is better. In summary, the overall cost of MUR is:
#iterations×O(nmr).

Monotone projected BB optimization model is used to solve CHNMF sub-
problems because it uses four stepsizes to improve the performance of the
gradient methods [11]. Finally, it determines the step length without using
any line search.

CHNMF presents its highest complexity in conditional terms described
between line 12 and 16 in Algorithm 1, besides the gradient computation
itself. The complexity is shown as O(nmr) + #sub − iterations × O(tmr2),
where k is the number of features. Consider Hu, Ha, and Hc are constant
matrices. The overall cost is: #iterations×O(nmr)
+ #sub− iterations×O(kmr2 + knr2).

There are two O(nmr) operations for each iteration: Xu(Hk
u)

T , Xa(Hk
a)

T ,
Xc(Hk

c)
T , (W(k + 1))TXu, as multiplicative update method. However, when

k and #sub− iterations are small, this method is more efficient.
Big O notation aforementioned shows an improvement on the conver-

gence when the factorization task is paralleled into two different learning
processes, as small sub-threads. In this case W uses MUR method, and Hu,
Ha, Hc uses Barzilai-Borwein optimization.

62

6. Recommendation Process

6 Recommendation Process

Barzilai-Borwein and multiplicative rules return the trained matrices W, Hu,
Ha, and Hc containing the scores for prediction. Given the vector of unseen
items vi, we can predict the most preferable items according to the user’s
taste, represented as vu. CHNMF projects the items vector vi to the common
latent space by solving the overdetermined system vi = wHu. The vector
w, captures the factors to explain the preferable items vi. Then, it uses low
dimensional vector w to infer the missing part of the query: vu ← wHt.
Ht is the concatenation of attribute and contextual matrices Ht = Ha||Hc.
CHNMF ranks the items according to the predictions of the user’s preference
to unseen items stored in vu.

6.1 Parameter Analysis

CHNMF has 5 essential parameters: k, the number of latent factors; α, β, and
γ balance the factorization among ratings, content features, and contextual
information; and λ, controlling the smoothness of the solution. The parame-
ter k controls the quantity of factors considered by the system, consequently
the complexity of the model. The small values of k underfit, while large
values of k overfit the data and lead to poor performance.

Setting α, β, and γ with the same values give equal importance to all
matrices, while parameters with different values give different levels of im-
portance to each matrix. Setting the importance degree of ratings, content
features and contextual information, for example, α β, and γ, ≈ 0.33 tends to
achieve the best performance. Low values of α β, and γ tends to show lower
performance in ranking quality.

The smoothness hyper-parameter λ ≥ 0 is used to avoid overfitting.
Lower values of λ oversimplify the model and decrease performance.

7 Experiments

Datasets. Four datasets are used to compare the methods: LDOS-CoMoDa
[12], InCarMusic [4], Frappe [13], and Movielens [14]. We performed a t-
test to analyze the datasets’ statistical significance of null hypothesis H0:
“if movie A and B share the same content-features and they are frequently
viewed together, there should be some hidden relationships between them
that raise the user’s curiosity”. In the case, the datasets do not reject the null
hypothesis at the significance level α = 0.05, presenting p-value as 0.0262
(LDOS-CoMoDa), 0.0393 (inCarMusic), 0.0365 (Frappe), and 0.0348 (Movie-

63

Paper A.

lens).

Baselines for Comparison. Pre-filtering. UISplitting and DSPF techniques
are trained on the ratings tagged with contextual similar situations to com-
pute rating predictions for a specific target context.

Contextual-modeling. CAMF-C, CSLIM-ICS, CSLIM-LCS, and CSLIM-MCS,
had their setup defined as recommended by [4, 8].

LCE. It was defined α = 0.5 and λ ∈ [0, 1] as recommended by [10], which
had a better performance in their experiments.

CoNMF. It follows the authors’ suggested settings [6], where they pro-
pose the regularization parameters set to 1 for all ratings and datasets. This
model was applied before the recommender process to compare the technical
performance.

MultiNMF. The authors suggested to set the regularization parameters
uniformly to 0.01 [5]. Initially, MultiNMF normalizes the data matrix using
L1-norm, however, to become consistent with the technique presented in this
paper it was decided to test it using L2-norm.

Evaluation Metrics. NDCG, precision, recall and f-measure are used to test
the ranking quality based on user’s preferences scores generated by CHNMF.
We set N = 5 and N = 10 because this value retrieves a smaller list of items,
considering the user’s taste. Large values of N would result in the extra work
for the user to filter among a long list of relevant items.

To avoid overfitting we perform the experiments using 5-fold cross vali-
dation.

Results. The experiments were performed on Unix server with 32GB of
RAM and 8 core CPU Intel Xeon with 2.80GHz, under the same parame-
ters settings: learning rate = 0.001; k = 50; iterations = 50; and λ = 0.5. For this
experiment, Movielens dataset had its contextual information (timestamp),
decoded into hours, representing all hours from a day. The input matrices
Xu, Xc, and Xa are rating matrix, contextual matrix, and content-feature ma-
trix, respectively. Tables A.1, A.2, e A.3 show the performance of CHNMF
and state-of-art for top-5 and top-10 recommendations.

1Due to memory limitation, it was not possible to reproduce the results on the larger datasets
with the required setup

64

7. Experiments

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

UISplitting 0.0006 0.0030 0.0010 0.0035 0.0175 0.0058 0.0094 0.1560 0.0177 NA2 NA2 NA2

DSPF 0.0138 0.0690 0.0230 0.1008 0.0504 0.0672 0.00261 0.0984 0.0412 NA2 NA2 NA2

CAMF-C 0.0008 0.0043 0.0013 0.0045 0.0229 0.0075 0.1384 0.5582 0.2218 0.0003 0.0008 0.0004
CSLIM-ICS 0.0026 0.0131 0.0043 0.0031 0.0159 0.0051 NA2 NA2 NA2 0.0943 0.0257 0.0403
CSLIM-LCS 0.0031 0.0157 0.0051 0.0049 0.0247 0.0081 NA2 NA2 NA2 0.0018 0.0005 0.0009
CLSIM-MCS 0.0023 0.0117 0.0038 0.0028 0.0143 0.0046 NA2 NA2 NA2 0.0017 0.0004 0.0006
LCE 0.1268 0.1368 0.1316 0.2111 0.1874 0.1985 0.5952 0.5749 0.5848 0.2000 0.1900 0.1948
CoNMF 0.1254 0.1467 0.1352 0.1943 0.1563 0.1732 0.5888 0.5735 0.5810 0.1988 0.1805 0.1892
MultiNMF 0.1305 0.1775 0.1504 0.1867 0.1743 0.1803 0.5830 0.5731 0.5780 0.1901 0.1800 0.1849
CHNMF 0.1373 0.2033 0.1639 0.2222 0.1996 0.2103 0.5986 0.5763 0.5872 0.2032 0.1989 0.2010

Table A.1: Top-5 Recommendations

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

UISplitting 0.0011 0.0111 0.0020 0.0062 0.0628 0.0112 0.0004 0.0032 0.0007 NA2 NA2 NA2

DSPF 0.0005 0.0055 0.0009 0.0070 0.0707 0.0127 0.0003 0.0023 0.0005 NA2 NA2 NA2

CAMF-C 0.0009 0.0094 0.0016 0.0073 0.0735 0.0132 0.0006 0.0046 0.0010 0.0017 0.0008 0.0010
CSLIM-ICS 0.0024 0.0094 0.0038 0.0038 0.0380 0.0069 NA2 NA2 NA2 0.0471 0.0257 0.0332
CSLIM-LCS 0.0025 0.0255 0.0045 0.0037 0.0373 0.0067 NA2 NA2 NA2 0.0017 0.0009 0.0017
CLSIM-MCS 0.0024 0.0240 0.0043 0.0028 0.0287 0.0051 NA2 NA2 NA2 0.0017 0.0009 0.0011
LCE 0.1389 0.1189 0.1281 0.1999 0.1190 0.1491 0.2997 0.1599 0.2085 0.2100 0.1974 0.2035
CoNMF 0.1188 0.1366 0.1270 0.1983 0.1189 0.1486 0.2992 0.1444 0.1947 0.2005 0.1901 0.1951
MultiNMF 0.1364 0.1183 0.1267 0.1970 0.1183 0.1478 0.2981 0.1451 0.1951 0.2009 0.1807 0.1902
CHNMF 0.1399 0.1191 0.1286 0.2091 0.1194 0.1520 0.3020 0.1639 0.2124 0.2181 0.2000 0.2086

Table A.2: Top-10 Recommendations

Algorithms LDOS-CoMoDa InCarMusic Frappe Movielens
UISplitting 0.0032 0.0295 0.0004 NA2

DSPF 0.0050 0.0428 0.0012 NA2

CAMF-C 0.0034 0.0232 0.5716 0.0008
CSLIM-ICS 0.0122 0.0181 NA2 0.0034
CSLIM-LCS 0.0122 0.0254 NA2 0.0107
CSLIM-MCS 0.0116 0.0134 NA2 0.0011
LCE 0.3232 0.1013 0.8019 0.1119
CoNMF 0.3201 0.0947 0.6179 0.1001
MultiNMF 0.3227 0.0962 0.6111 0.1099
CHNMF 0.3366 0.1080 0.8048 0.1221

Table A.3: NDCG Performance

CHNMF has achieved a comparable performance as LCE, with a slight
improvement, due to the combination of three matrices: rating, content fea-
tures and contextual information. The context plays an important role in
achieving better precision score, hence it shows in which conditions a target
user u prefers to play a specific media. Furthermore, CoNMF and MultiNMF
has shown approximate values of ranking quality and effectiveness, however
under-performed CHNMF.

Pre-filtering and contextual modeling techniques presented poor perfor-
mance, hence it does not incorporate content feature information. CSLIM
method did not present significant results for Frappe dataset during the ex-
periments, due to the broad range ratings. While, CAMF-C showed a good

65

Paper A.

NDCG value due the number of items combined with high contextual infor-
mation. However, it did not overcome the result produced by the collective
approaches.

Furthermore, Fig. A.1 presents the computational complexity analysis
between ALS and CHNMF, comparing the convergence time (in logarithmic
scale) against number of factors k. CHNMF had a better performance of 33%
for Frappe and 34% for Movielens datasets compared to ALS. However, ALS
had a better performance of 25% for LDOS-CoMoDa and 66% for InCarMu-
sic datasets in comparison with CHNMF. Moreover, in both methods it was
observed time increases linearly when compared with the number of factors.
CHNMF performs better than ALS in larger datasets because Frappe and
Movielens have denser matrices than LDOS-CoMoDa and InCarMusic.

0 5 10 15 20 25 30 35 40 45 50

k

10-1

100

101

102

103

T
im

e(
s)

Movielens(ALS)
Movielens(CHNMF)
Comoda(ALS)
Comoda(CHNMF)
Car(ALS)
Car(CHNMF)
Frappe(ALS)
Frappe(CHNMFs)

Fig. A.1: Convergence Time

8 Conclusions

We proposed CHNMF for a context-aware recommender system aggregat-
ing ratings, content features and contextual information in a common latent
space. Furthermore, we introduced Barzilai-Borwein optimization into rec-
ommender systems combined with multiplicative update rules. Finally, we
have experimentally shown the proposed methods, and generally outperform
the state-of-the-art approaches considering the 4 datasets, LDOS-CoMoDa,
InCarMusic, Frappe, and Movielens.

The top-N were addressed using three different matrices as input for
CHNMF. We observed the content features, contexts, and ratings, when com-
bined, play an important role for the user engagement: users who rated an item

66

9. Acknowledgments

i from an attribute a, and context c, tend to preferentially engage with each other
about the same item in a specific context.

We would like to extend CHNMF to offer explainable recommendations
in natural language, presenting why the user receives a certain recommen-
dation. Furthermore, optimizing the learning model may benefit CHNMF to
perform better in scalable systems.

9 Acknowledgments

The authors wish to acknowledge the financial support and the fellow schol-
arship given to this research from the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico - CNPq (grant# 206065/2014-0)

References

[1] G. Adomavicius and A. Tuzhilin, “Context-aware recommender sys-
tems,” in Recc Sys. handbook. Springer, 2011, pp. 217–253.

[2] Y. Zheng, R. Burke, and B. Mobasher, “Splitting approaches for
context-aware recommendation: An empirical study,” in Proc. of
the 29th Annual ACM Symp.on Applied Computing, ser. SAC ’14.
New York, NY, USA: ACM, 2014, pp. 274–279. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2554989

[3] V. Codina, F. Ricci, and L. Ceccaroni, “Distributional semantic
pre-filtering in context-aware recommender systems,” User Modeling
and User-Adapted Interaction, vol. 26, no. 1, pp. 1–32, Mar. 2016. [Online].
Available: http://dx.doi.org/10.1007/s11257-015-9158-2

[4] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin,
K.-H. Lüke, and R. Schwaiger, “Incarmusic: Context-aware music rec-
ommendations in a car,” in E-Commerce and Web Technologies. Springer,
2011, pp. 89–100.

[5] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint
nonnegative matrix factorization,” in Proc. of Intl. Conf. on Data Mining.
SIAM, 2013, pp. 252–260.

[6] X. He, M.-Y. Kan, P. Xie, and X. Chen, “Comment-based multi-
view clustering of web 2.0 items,” in Proceedings of the 23th
International Conference on World Wide Web, ser. WWW ’14. New
York, NY, USA: ACM, 2014, pp. 771–782. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2567975

67

http://doi.acm.org/10.1145/2554850.2554989
http://dx.doi.org/10.1007/s11257-015-9158-2
http://doi.acm.org/10.1145/2566486.2567975

References

[7] Y. Huang, H. Liu, and S. Zhou, “An efficient monotone projected
barzilai–borwein method for nonnegative matrix factorization,” Applied
Mathematics Letters, vol. 45, pp. 12–17, 2015.

[8] Y. Zheng, B. Mobasher, and R. Burke, “Similarity-based context-aware
recommendation,” in Intl. Conf. on Web Inf. Systems Eng. Springer, 2015,
pp. 431–447.

[9] L. R. Drumond, E. Diaz-Aviles, L. Schmidt-Thieme, and W. Nejdl,
“Optimizing multi-relational factorization models for multiple target
relations,” in Proceedings of the 23th ACM International on Conference
on Information and Knowledge Management, ser. CIKM ’14. New
York, NY, USA: ACM, 2014, pp. 191–200. [Online]. Available:
http://doi.acm.org/10.1145/2661829.2662052

[10] M. Saveski and A. Mantrach, “Item cold-start recommendations:
Learning local collective embeddings,” in Proceedings of the 8th
ACM Conference on Recommender Systems, ser. RecSys ’14. New
York, NY, USA: ACM, 2014, pp. 89–96. [Online]. Available:
http://doi.acm.org/10.1145/2645710.2645751

[11] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA journal of numerical analysis, vol. 8, no. 1, pp. 141–148, 1988.

[12] A. Košir, A. Odic, M. Kunaver, M. Tkalcic, and J. F. Tasic, “Database
for contextual personalization,” Elektrotehniški vestnik, vol. 78, no. 5, pp.
270–274, 2011.

[13] L. Baltrunas, K. Church, A. Karatzoglou, and N. Oliver, “Frappe: Un-
derstanding the usage and perception of mobile app recommendations
in-the-wild,” CoRR, vol. abs/1505.03014, 2015.

[14] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19,
Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/2827872

68

http://doi.acm.org/10.1145/2661829.2662052
http://doi.acm.org/10.1145/2645710.2645751
http://doi.acm.org/10.1145/2827872

Paper B

Predicting Visitors Using Location-Based Social
Networks

Muhammad Aamir Saleem, Felipe Soares Da Costa, Peter
Dolog, Panagiotis Karras, Torben Bach Pedersen, Toon Calders

The paper has been published in the
Proceedings of 19th IEEE International Conference on Mobile Data Management

(MDM’18), pp. 245–250, 2018.

Abstract

Location-based social networks (LBSN) are social networks complemented with users’
location data, such as geo-tagged activity data. Predicting such activities finds ap-
plication in marketing, recommendation systems, and logistics management. In this
paper, we exploit LBSN data to predict future visitors at given locations. We fetch
the travel history of visitors by their check-ins in LBSNs and identify five features
that significantly drive the mobility of a visitor towards a location: (i) historic visits,
(ii) location category, (iii) time, (iv) distance, and (v) friends’ activities. We provide a
visitor prediction model, CMViP, based on collective matrix factorization and influ-
ence propagation. CMViP first utilizes collective matrix factorization to map the first
four features to a common latent space to find visitors having a significant potential
to visit a given location. Then, it utilizes an influence-mining approach to further
incorporate friends of those visitors, who are influenced by the visitors’ activities and
likely to follow them. Our experiments on two real-world data-sets show that our
methods outperform the state of art in terms of precision and accuracy.

c© 2018 IEEE. Reprinted, with permission, from Muhammad Aamir Saleem,
Felipe Soares Da Costa, Peter Dolog, Panagiotis Karras, Torben Bach Peder-
sen and Toon Calders, Predicting Visitors Using Location-Based Social Net-
works, 19th IEEE International Conference on Mobile Data Management
(MDM’18), June/2018.
The layout has been revised.

1. Introduction

User Location Time Location Category Coordinates

u1 l1
13:25
11/12/2017 l1 Sports 42.99,-71.46

u1 l1
14:30
12/12/2017 l2 Arts 42.98,-71.45

u1 l3
13:05
14/12/2017 l3 Sports 42.97,-71.44

u2 l1
13:10
11/12/2017

u4 u3

u2u1

u2 l1
15:10
14/12/2017

u3 l1
14:20
11/12/2017

u3 l2
13:16
12/11/2017

u3 l3
16:20
14/12/2017

u4 l2
15:15
11/12/2017

Fig. B.1: Toy example: Checkins (left), Location categories (top right) and social graph (bottom
right)

1 Introduction

Social network analysis allows the provision of diverse recommendations to
users, e.g., friends and activities. At the same time, the pervasiveness of
location-aware devices allows users of online social networks to share geo-
tagged contents such as their current location. Such online social networks
that exploit location information are called location-based social networks
(LBSNs). The geo-tagging of activities in LBSNs provides an opportunity
to capture and utilize the mobility behaviour of users such as to provide
location-based recommendations [1]. For instance, one can analyze the historical
activities of users and recommend locations to them for their potential visit;
in such cases, the focus is on providing recommendations to the users. An
overlooked perspective to the recommendation is the prediction of users that
will visit a given location; such a perspective finds application in event plan-
ning, traffic management, and mobile phone capacity planning. For instance,
consider the following example:

Example 1.1
A cinema owner wants to know the persons who would choose to watch
the movie Pirates of Caribbean at a cinema at a certain time.

To answer such queries, we need to predict that whether a user will visit
a location of a particular category, e.g., cinema, in a particular region and at
a particular time. An illustration of this example is shown in Fig. B.1. Here,
we show the users’ check-ins in the form of triplets: user Id, location Id, and
check-in time. We also show the characteristics of locations, i.e., location id,
category, and GPS coordinates and a social graph depicting friends of users
in LBSNs. Here, in order to predict the visitors at l1 at t1 (hour of the day):

71

Paper B.

13:00, we compute the potential of users based on their check-ins at l1, at
locations of category Sports (l′1s category) and at time t1. Based on these
values, u1 and u2 are considered as potential visitors of l1 at t1 as they have
the highest number of check-ins under these conditions. In this paper, we
address such a problem: Given a location, its category, and a time period, predict
the visitors to this location within the given time period using LBSN data on past
mobility.

To address this problem, we need to identify which features in past mo-
bility data affects users’ mobility. To that end, we analyze the available LBSN
data and identify the following mobility-affecting features: (i) historic visits,
(ii) location category, (iii) time, (iv) distance, and (v) friends’ activities.

We provide a novel model CMViP for predicting visitors that combines
collective non-negative matrix factorization approach with an influence dif-
fusion model. Initially, we compute a set of frequency matrices, capturing the
frequency of users’ visits at the given location(s), at locations of similar cat-
egories, as well as visiting times and distances among users’ current locations
and the location(s) for which visits are to be predicted. Then, we decompose
these matrices into four non-negative low-rank matrices, i.e, HU , HC, HT ,
and HD, respectively, and a common latent space matrix W, so that W × HU ,
W × HC, W × HT , and W × HD give approximated scores according to user’s
preferences. We use a linear combination of these matrices to form a score
matrix WHX that represents the potential of each user to visit the given loca-
tion (“visit score”). We consider all users having significant visit scores and
find their friends that are presumably influenced by their activities and likely
to follow them in the given time period. To do so, we compute the influence
probabilities of these users on their friends in the LBSN by a Bernoulli-distribu-
tion based partial credit distribution and time constraint model. Users having
a significant visit score, along with their significantly influenced friends, are
considered as potential visitors to the location. It is worth noting that a user
u may not influence another user v alone, yet, taken together with another
user x, they may influence v; that is the reason why we first find all the users
having a significant visit score and then fetch their influenced visitors.

In summary, we make the following contributions.

• We propose a visitor prediction model based on collective non-negative
matrix factorization and influence propagation (CMViP).

• We provide an extensive experimental evaluation of our proposed meth-
ods on real-world data-sets to showcase their precision and accuracy.

The rest of the paper is organized as follows. Section 2 covers related
work in the domain. Section 3 provides preliminaries and give details on
CMViP. We provide details on our solution framework in Section 4, present
evaluation results in Section 5, and conclude in Section 6.

72

2. Related Works

2 Related Works

In this section, we survey the existing studies on prediction of visitors.
Lasek et al. [2] focus on predicting visitors to locations with applications

such as estimating restaurant sales and demands. Sellers and Shmueli [3]
propose Poisson regression models [4, 5] to predict the number of customers
at a restaurant during a certain time period. Similarly, Morgan and Chinta-
gunta [6] apply a regression model to predict the number of visitors through-
out a calendar year. Koshiba et al. [7] use a Bayesian network to predict users
at a location. For prediction, they exploit features such as categories of lo-
cations, historic visits, and demographic information of visitors. Authors
in [8–10] further incorporates sequential transitions of users from one loca-
tion to another for prediction of visitors. To do so they exploit factorized
personalized Markov chain models (FPMC) and metric embedding to model
users’ preferences and POI transitions.

Most recently, Feng et al. [11] proposed an embedding model, POI2Vec,
that predicts visitors to a Point of Interest (POI). POI2Vec modifies the Word2vec
technique for word embeddings to learn POI representations by considering
their geographical influence, user preferences, and sequential transitions, us-
ing the GPS coordinates of locations and visiting timestamps. POI2Vec is the
most relevant previous work to ours, as it also aims to predict visitors at a
location using LBSNs. However, our approach is technically different. While
POI2Vec is based on a vector embedding of locations, we employ a collec-
tive matrix factorization [12, 13] to find joint embeddings of users’ historic
visits, categories, time, and distance features. Furthermore, we combine the
prediction outcome of the factorized model with an influence propagation
method to fetch friends of users that are likely to visit a certain location as
well. Our comparison in Section 5.5 shows that our proposed model CMViP
outperforms all variants of POI2Vec in both accuracy and precision.

3 Problem Formulation

Here, we define preliminaries, the CMViP model, and formulate our problem.

3.1 Preliminaries

Definition 3.1. A point of interest is a geographical location (e.g., an amenity)
represented by a quadruple (l, lat, long, C), where l is the identifier, lat and
long are the latitude and longitude of the GPS coordinates of the center of
the POI, and C is a set of categories that this location belongs to (e.g., “Food",
“Restaurant", and “French cuisine". Such categories are usually assigned by

73

Paper B.

the visitors, and may thus change dynamically. However, we consider each
location to have a fixed set of categories. A set of POIs is denoted as L.

Definition 3.2. A user is a person that visits POIs. A set of users is denoted
by U.

Definition 3.3. An activity refers to a visit or check-in of a user u ∈ U at a
location l at a discretized time interval t, represented as a triplet (u, l, t). The
set of all activities over U and L is denoted A(U, L).

Definition 3.4. An Location-Based Social Network (LBSN) over U and L
consists of a graph GS(U, F), called the social graph, where F ⊆ {{u, v}|u, v ∈
U} represents friendships between users, and set of activities A(U, L). It is
denoted as LBSN(GS, A).

3.2 CMViP

We utilize five features to predict a visit of a user u to a location l: (i) historic
visit frequency of u at l, (ii) historic visit frequency of u at locations having
similar categories as l, (iii) visit frequency of u at time of day T (iv) distance
of l from current location of u, and (v) influence of u on friends. Next, we
provide the scores for each of these features.

Visit frequency score

People tend to visit locations of their interests [14]. We evaluate the interest
of a user u in a location l based on a visit frequency score, given by:

YU(u, l) =
|A(u, l)|
|A(u)| (B.1)

where A(u, l) is the set of activities of u at l and A(u) is all activities of u.

Example 3.1
Consider the toy example, given in Fig. B.1. Here, YU(u1, l1) =
2/3, YU(u2, l1) = 2/2, YU(u3, l1) = 1/3 and YU(u4, l1) = 0

Location category score

People like to visit locations of their general interest, identified by a location’s
category, such as “museum” and “Chinese restaurant”. To incorporate this
effect we compute the location category score, given by the following equation.

74

3. Problem Formulation

YC(u, c) =
∑l|c∈l.C |A(u, l)|
|A(u)| (B.2)

where l.C is the set of categories of l.

Example 3.2
Consider the running example, given in Fig. B.1. Let c1 = Sports. Here,
YC(u1, c1) = 3/3, YC(u2, c1) = 2/2, YC(u3, c1) = 2/3, and YC(u4, c1) = 0.

Visit time score

Another feature that drives the visits of users is time. Usually, users visit a
location at similar times of the day [14]. We compute the potential of a user
to visit a location at a given time (considering time in a granularity of hours)
by a visit time score, as follows.

YT(u, T) =
|{(u, l, t′) ∈ A|t′.hour = T}|

|A(u)| (B.3)

where t′.hour and T represent check-in time and given time in hours, respec-
tively.

Example 3.3
Consider the running example, given in Fig. B.1. We take hours of visit
time for computing Yt. Let’s T1 = 1300, then YT(u1, T1) = 2/3, YT(u2, T1) =
1/2, YT(u3, T1) = 1/3 and YT(u4, T1) = 0.

Distance score

People tend to visit nearby places [14]. To capture this effect, we measure
the distance between the current location of the user and the location which
we aim to evaluate. We utilize the GPS coordinates of locations to measure
distances and compute a distance score by the following equation.

YD(u, D) = 1− D(lc, l)
Dmax

(B.4)

where lc represents the current location of user u, l shows the location for
which the visit is to be predicted, D(lc, l) shows the distance between lc and
l, and Dmax is the maximum distance u traveled to visit any location.

75

Paper B.

Example 3.4
Consider the running example, given in Fig. B.1. Let the location for which
we aim to predict visitors is l1, then YD(u1, l1) = 1 − 1

1 = 0. Similarly,
YD(u2, l1) = 0, YD(u3, l1) = 0.5 and YD(u4, l1) = −∞.

Next, we combine the aforementioned scores using a linear combination
to compute the overall potential of users. We call this potential a visit score
denoted by YS. It is given by:

YS(u1, l1, c1, T1) = α.YU(u1, l1) + β.YC(u1, c1)+

γ.YT(u1, T1) + η.YD(u1, l1)
(B.5)

Here, α, β, γ, and η are the coefficients for visit frequency, location cate-
gory, visit time, and distance respectively, showing their corresponding im-
portance in predicting visitors. {α, β, γ, η} ∈ [0, 1], however, we provide op-
timal values for these parameters in Section 5. We utilize Equation B.5 to
compute the visit score for all the users in LBSN. Then, we prune the users
with less potential of visiting the location based on their visit score. To do
that we use a threshold θ. All the users having visit score greater than θ are
considered potential visitors UP and given by:

UP(l, c, T) = {u|YS(u, l, c, T) ≥ θ} (B.6)

where θ is a threshold for visit score.

Example 3.5
Consider the toy example, given in Fig. B.1. Let α = 0.25, β = 0.25, γ =
0.25, η = 0.8, and θ = 0.8. Then, YS(u1, l1, c1, t1) = 0.84, YS(u2, l1, c1, t1) =
0.875, YS(u3, l1, c1, t1) = 0.66 and YS(u4, l1, c1, t1) = −∞.

Friends Influence

Users tend to follow the activities of their friends [1]. To capture this effect,
we compute the influence of users on their friends, i.e., assess their potential
to persuade friends to follow their activities.

We consider a user v to be influenced by his friend u if u visits a location
l and v visits the same location after u within a particular time. To find such
influence, we compute influence probabilities using Bernoulli distribution
based on partial credit distribution and discrete time constraint models [15].
According to this model, the influence probability is measured as the ra-
tio of the number of successful attempts to persuade the influenced user to

76

3. Problem Formulation

follow the influencer user’s activities over the total number of trials. Con-
sidering that a user can be influenced by multiple sources for an activity, the
influence credit for each followed activity is distributed among all influencer
users. Further, as the influence probability depends on time, we incorporate a
discrete time constraint model which ensures that a user can influence other
users only within a given time window. We consider the time window ω = 1,
as we capture the visit times in hours. The influenced friends of a user u are:

I(u) = {v|p(u, v) ≥ ξ ∧ (u, v) ∈ F} (B.7)

where p(u, v) is the influence probability of u on v, ξ is a threshold repre-
senting minimum influence to persuade a user to follow an activity, and F
is the set of friends pairs in an LBSN. A user v may not be influenced by a
single user u, but by many other users taken together. Thus, we compute
the influence of all potential visitors on all of their friends together, using the
following equation.

I(UP) = {v| ∑
u∈UP

Y(u, v) ≥ ξ ∧ (u, v) ∈ F} (B.8)

where UP is the set of users having a significant visit score. Thus, I(UP) are
also considered as potential visitors. So, the total potential visitors are given
by the union of UP and I(UP) It is given by: UP ∪ I(UP).

Example 3.6
Consider the toy example, given in Fig. B.1. Let UP = {u1, u2}, ω = 1h and
ξ = 0.2. Then, I(UP) = {u3} as p(UP, u3) = 0.3 ≥ ξ Because, u3 follows
u1 and u2 for visiting l1 and follows u1 for visiting l3 within ω. So, the
predicted visitors are {u1, u2, u3}.

3.3 Problem Statement

Next, we formally define our problem statement as follows:

Problem 3.1. Given a LBSN(GS, A), a location l, the categories C of l, a time
interval T, and the distance between the current location of the user and the next
location D, predict the users that will visit l within T.

Once we obtain potential visitors, we can utilize it for several other use-
cases such as finding the number of visitors at a location or finding the types
of visitors etc.

77

Paper B.

4 Solution Framework

In this section, we provide details on CMViP and cover the techniques and
steps it uses for prediction of visitors.

4.1 Non-Negative Collective Matrix Factorization

The LBSN data is often sparse (shown in Table B.1). This badly affects the
prediction accuracy because of limited check-in data availability. To avoid
this, we use matrix factorization which helps to find hidden latent represen-
tations in a common space and thus, overcomes the sparsity issue. Since we
consider multiple features: visit frequency, categories, time and distance to
consider for prediction thus, we need to collectively factorize them. To do
that, we use collective matrix factorization. Furthermore, because we do not
anticipate any negative values in our data, so, we use non-negative collec-
tive matrix factorization. To do so, we decompose each of the four frequency
matrices mentioned above into a common latent space matrix: W and cor-
responding feature latent space matrix H. Each row of W represents the
relation between a visitor and the number of latent factors. Similarly, each
column of H represents the relation between the number of latent factors and
the features.

Next, we formally define the non-negative collective matrix factorization
for the four frequency matrices:

min : f (W) =
1
2
[α‖YU −WHU‖2

2 + β‖YC −WHC‖2
2

+γ‖YT −WHT‖2
2 + η‖YD −WHD‖2

2

+λ(‖W‖2 + ‖HU‖2 + ‖HC‖2 + ‖HT‖2 + ‖HD‖2)]

s.t.W ≥ 0, HU ≥ 0, HC ≥ 0, HT ≥ 0, HD ≥ 0

(B.9)

where W represents the common latent space during the decomposition
of YU , YC, YT , and YD , while {α, β, γ, η} ∈ [0, 1] are hyper-parameters that
control the importance of each matrix during the factorization. Setting them
as 0.25 gives equal importance to decomposition matrices, while different val-
ues give more importance to the factors having more values. The remaining
terms are Tikhonov regularization [16] of W,HU , HC, HT , and HD controlled
by the hyper-parameter λ ≥ 0. It is used to enforce the smoothness of the
solution and avoid over-fitting. Note, the matrices HU , HC, HT , and HD
when multiplied by W give us an approximated score of the input frequency
matrices.

78

4. Solution Framework

Multiplicative Update Rules

The proposed model applies multiplicative update rules as regularization
term of HU , HC, HT , HD, and W. This technique updates the scores in each
iteration until reaches the stationary point. Formalizing the update rules, we
have:

W =
[αYU HT

U + βYC HT
C + γYT HT

T + ηYD HT
D]

[αHU HT
U + βHC HT

C + γHT HT
T + ηHD HT

D + λIk]

HU = (αWTWHU + λIk)
−1 � αWTYU

HC = (βWTWHC + λIk)
−1 � βWTYC

HT = (γWTWHT + λIk)
−1 � γWTYT

HD = (ηWTWHD + λIk)
−1 � ηWTYD

(B.10)

where •• and � corresponds to the left division and element-wise matrix
product, respectively, and Ik is the identity matrix with k× k dimensions.

Each iteration of the proposed model gives us a solution for the pair-wise
division. As we map any negative values to zero, the W matrix becomes
non-negative after each update. Furthermore, the objective function and the
delta decrease on each iteration of the above update rules, guaranteeing the
convergence into a stationary point.

4.2 Prediction of Visitors

The preferences scores for a user u is given by si = WHx, where W are
the factors in the common latent space that explain the preferable places of
ui ∈ U, and Hx represents the relation among the output matrices: HU , HC,
HT , and HD. It is given by the following equation. t is worth noting that
the following equation (Equation B.11) provides an approximate version of
Equation B.5.

WHX = α.WHU(u, l) + β.WHC(u, l)

+γ.WHT(u, l) + η.WHD(u, l),
(B.11)

where, + corresponds to the element-wise sum, while {α, β, γ, η} ∈ [0, 1]
are hyper-parameters controlling the importance of each factorized matrix.
The sum of hyper-parameters are set to be 1.

Next, we prune all the users having visit score less than the threshold
θ. Users having visit score more than θ are considered potential visitors UP
given in equation B.6. We further utilize them to find their influenced visitors
using the algorithm given in Section 3.2. We combine the potential visitors
with their influenced visitors and predict them as visitors of the location.

79

Paper B.

5 Experiments

In this section, we provide a detailed experimental evaluation of the solutions
using two real-life data-sets. We first describe the data-sets, then we present
the data prepossessing and preparation. Finally, we provide results for our
experimental evaluation.

5.1 Data-sets

We utilize two real-world data-sets: 1) Foursquare data-set which is smaller
and denser and 2) Weeplaces data-set [17] which is larger and sparser. Ta-
ble B.1 shows the statistics of the data. Each of these data-sets contains social
friendship graph and an ordered list of check-ins of users at locations. We
further cluster locations to find POIs [18].

Users Locations Checkins POIs Friend pairs Duration

FourSquare 4K 0.2M 0.47M 0.12M 32K 1322 days
Wee 16K 0.9M 8M 0.76M 0.1M 2796 days

Table B.1: Data-set Statistics

5.2 Evaluation Measures

We utilized the cross-validation approach to evaluate CMViP using four mea-
sures: precision, recall, MAE and RMSE. We divided the data-sets based
on time stamp of check-ins such that each part consists of check-ins of one
month. We trained CMViP on one month and test its performance on the
data-set of the next month in sequence. The process was repeated for all the
parts and average results are reported. To compute precision and recall, we
compute confusion matrix based on following possible outcomes for users
for the input parameters: correctly predicted visitors as true positives (TP),
correctly predicted non-visitors as true negatives (TN), wrongly predicted
visitors as false positives (FP), and wrongly predicted non-visitors as false
negatives (FN). Likewise, to calculate the error applying MAE and RMSE, we
use the number of visitors against queries in the test data-set in comparison
to the training data-set.

5.3 Parameter Analysis

CMViP uses several hyper-parameters while computing the visit score and
incorporating the influence of potential visitors as shown in Equations B.5,
B.6, and B.7. In this section, we provide optimal values of these parameters
as shown in Section 4.

80

5. Experiments

0.2 0.4 0.6 0.8

0.1

0.15

0.2

0.25 HuHcHdHtI(

=0.9,

=0.09,

=0.009,

=0.001)

(a) Precision

0.2 0.4 0.6 0.8

0.2

0.4

0.6 HuHcHdHtI(

=0.9,

=0.09,

=0.009,

=0.001)

(b) Recall

0.2 0.4 0.6 0.8
1

2

3 HuHcHdHtI(

=0.9,

=0.09,

=0.009,

=0.001)

(c) MAE

0.2 0.4 0.6 0.8
0

5

HuHcHdHtI(

=0.9,

=0.09,

=0.009,

=0.001)

(d) RMSE

Fig. B.2: Threshold Analysis for Wee data-set

We performed iterative empirical experiments to set the optimal hyper-
parameters values, where we define: k = 50, α = 0.9, β = 0.09, γ = 0.009,
η = 0.001, and λ = 0.5. Small values of k under-fit, on the other hand, large
values of k over-fit the data and lead to poor performance. The visit score has
higher hyper-parameter because it has shown to increase the accuracy for
predicting the visitors. Furthermore, λ with lower value keeps the accuracy
stable.

Predicting the number of potential visitors lead us to define θ = 0.4,
which presents better accuracy score as shown in Figure B.2 for Wee data-set.
Similar results are exhibited for Foursquare data-set, hence we omit them
due to space constraints. The accuracy decreases by increasing or decreasing
the value of θ beyond the optimal value. The reason behind this is that the
model ignores actual visitors when θ is higher and consider users with low
potential of visiting the location when θ is lower. Furthermore, we find the
optimal value of influence probability threshold. We assume that users influ-
enced with probability greater than this threshold will follow their influential
friends’ activities. We consider the value of this threshold 0.04 as we assume
that the top 10% the most influenced visitors follow the activities. We use
these values of the parameters for evaluating CMViP.

5.4 Competitors

We compare the performance of CMViP against following four different vari-
ants of POI2Vec using corresponding optimal values for each variant.

• PI2Vec-U: utilizes user’s preferences.

• PI2Vec-A: considers only users with recent locations.

• PI2Vec-UA: incorporates both preference and recent locations.

• PI2Vec-MUA: applies aggregation to incorporate preferences and tran-
sition among locations.

81

Paper B.

0.2 0.4 0.6 0.8

Recall

0

0.1

0.2

0.3
P

re
c
is

io
n

CMViP

POI2Vec-U

POI2Vec-A

POI2Vec-UA

POI2Vec-MUA

(a) Wee

0.2 0.4 0.6 0.8

Recall

0

0.1

0.2

P
re

c
is

io
n

CMViP

POI2Vec-U

POI2Vec-A

POI2Vec-UA

POI2Vec-MUA

(b) Foursquare

Fig. B.3: Precision-Recall Curve

5.5 Results

Figure B.3 presents the experimental results considering precision-recall curve,
where we observed, CMViP outperforms all variants of POI2Vec: (1) U, (2)
A, (3) UA, and (4) MUA. CMViP outperforms U to predict the potential vis-
itors. Even though U uses user’s preferences to predict visitors, it does not
consider other features as categories, time, and distance. This means CMViP
has better user modeling in the vectorial space. U first learns the location
representation, and the user representation is learned when the location rep-
resentation is fixed. However, as CMViP presented better performance than
U, it shows the collective factorization and linear model is more reasonable
for this task. A considers only recent check-ins presenting a poor perfor-
mance in comparison with other techniques since old check-ins present an
important role to determine the future visitors. The results show it is impor-
tant to consider both users with recent and old check-ins. MUA outperforms
UA, indicating that combining user preference and sequential transition plays
an important role to predict potential visitors. However, it under-performs
CMViP, because CMViP uses categories, time, and distance to jointly predict
the visitors. Furthermore, CMViP incorporates visitors’ influenced friends as
potential visitors which further improves the accuracy.

Observing the Figure B.3, we can conclude that CMViP significantly im-
proves the prediction accuracy by collectively learning the location and vis-
itor’s latent factors and incorporating visitor’s influenced friends using the
linear model. Considering that LBSN data is often sparse, as shown in Ta-
ble B.1, it is crucial for a model to perform better on sparse data. CMViP
consistently improves the visitors’ prediction for locations with very few vis-
itors as observed on sparse data-set: Wee. This happens, because CMViP
explicitly makes use of jointly process latent factors to learn better latent rep-

82

6. Conclusions

resentations, especially when visitor-location history data is sparse.

6 Conclusions

We proposed a model, CMViP, that predicts visitors given a location, its cat-
egory, and visit time. CMViP employs non-negative collective matrix factor-
ization to find the potential of visitors and further leverages these potential
visitors to find their influence on their friends in social networks and thereby
incorporate highly influenced visitors as potential visitors.

We have empirically shown that the CMViP outperforms the state-of-the-
art approaches using two real-world data-sets. First, we evaluate the perfor-
mance of CMViP for predicting visitors using precision and recall measures
and then evaluate the accuracy of predicting the number of visitors using
RMSE and MAE. Our results show that CMViP outperforms state-of-the-art
methods in precision and recall up to 10 times. We further show the signifi-
cance of considered features for visitor prediction.

In the future, we plan to extend the proposed model considering more
contextual features, such as week-days and weekends. Further, we plan to
improve performance by pruning users with less potential visitors.

7 Acknowledgments

This research has been funded in part by the European Commission through
the Erasmus Mundus Joint Doctorate “Information Technologies for Business
Intelligence - Doctoral College”(IT4BI-DC). Felipe Soares da Costa is sup-
ported by Conselho Nacional de Desenvolvimento Científico e Tecnológico -
CNPq (grant# 206065/2014-0).

References

[1] M. A. Saleem, R. Kumar, T. Calders, X. Xie, and T. B. Pedersen, “Location
influence in location-based social networks,” in WSDM, 2017, pp. 621–
630.

[2] A. Lasek, N. Cercone, and J. Saunders, “Restaurant sales and customer
demand forecasting: Literature survey and categorization of methods,”
in Smart City 360◦, 2016.

[3] K. F. Sellers and G. Shmueli, “Predicting censored count data with com-
poisson regression,” Robert H. Smith School Research Paper N◦. RHS-06-
129, 2010.

83

References

[4] S. Coxe, S. G. West, and L. S. Aiken, “The analysis of count data: A
gentle introduction to poisson regression and its alternatives,” Journal of
personality assessment, 2009.

[5] J. Wulu, K. Singh, F. Famoye, T. Thomas, and G. McGwin, “Regression
analysis of count data,” Indian Society of Agricultural Statistics, 2002.

[6] M. S. Morgan and P. K. Chintagunta, “Forecasting restaurant sales using
self-selectivity models,” Journal of Retailing and Consumer Services, 1997.

[7] H. Koshiba, T. Takenaka, and Y. Motomura, “A service demand fore-
casting method using a customer classification model,” The Philosopher’s
Stone for Sustainability, 2013.

[8] J.-D. Zhang, C.-Y. Chow, and Y. Li, “Lore: Exploiting sequential influence
for location recommendations,” in SIGSPATIAL, 2014.

[9] C. Cheng, H. Yang, M. R. Lyu, and I. King, “Where you like to go next:
Successive point-of-interest recommendation.” in IJCAI, 2013.

[10] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, “Personalized
ranking metric embedding for next new poi recommendation,” in IJCAI,
2015.

[11] S. Feng, G. Cong, B. An, and Y. M. Chee, “Poi2vec: Geographical latent
representation for predicting future visitors.” in AAAI, 2017.

[12] M. Saveski and A. Mantrach, “Item cold-start recommendations:
Learning local collective embeddings,” in Proceedings of the 8th
ACM Conference on Recommender Systems, ser. RecSys ’14. New
York, NY, USA: ACM, 2014, pp. 89–96. [Online]. Available:
http://doi.acm.org/10.1145/2645710.2645751

[13] F. Costa and P. Dolog, “Hybrid learning model with barzilai-borwein
optimization for context-aware recommendations,” in Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society Con-
ference, FLAIRS 2018, Melbourne, Florida USA., May 21-23 2018., 2018, pp.
456–461.

[14] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User
movement in location-based social networks,” in KDD, 2011.

[15] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence proba-
bilities in social networks,” in WSDM, 2010.

[16] A. N. Tikhonov, “Solution of incorrectly formulated problems and the
regularization method,” Soviet Math. Dokl., vol. 4, pp. 1035–1038, 1963.

84

http://doi.acm.org/10.1145/2645710.2645751

References

[17] Y. Liu, W. Wei, A. Sun, and C. Miao, “Exploiting geographical neighbor-
hood characteristics for location recommendation,” in CIKM, 2014, pp.
739–748.

[18] M. A. Saleem, R. Kumar, T. Calders, X. Xie, and T. B. Pedersen, “Imaxer:
A unified system for evaluating influence maximization in location-
based social networks,” in CIKM, 2017, pp. 2523–2526.

85

References

86

Paper C

Automatic Generation of Natural Language
Explanations

Felipe Costa, Sixun Ouyang, Peter Dolog, Aonghus Lawlor

The poster has been published in the
Proceedings of the 23rd International Conference on Intelligent User Interfaces

Companion (IUI’18), pp. 57:1–57:2, 2018.

Abstract

An interesting challenge for explainable recommender systems is to provide success-
ful interpretation of recommendations using structured sentences. It is well known
that user-generated reviews, have strong influence on the users’ decision. Recent
techniques exploit user reviews to generate natural language explanations. In this pa-
per, we propose a character-level attention-enhanced long short-term memory model
to generate natural language explanations. We empirically evaluated this network
using two real-world review datasets. The generated text present readable and simi-
lar to a real user’s writing, due to the ability of reproducing negation, misspellings,
and domain-specific vocabulary.

c© 2018 ACM. Reprinted, with permission, from elipe Costa, Sixun Ouyang,
Peter Dolog and Aonghus Lawlor, Automatic Generation of Natural Lan-
guage Explanations, 23rd International Conference on Intelligent User Inter-
faces Companion (IUI’18), March/2018.
The layout has been revised.

1. Introduction

1 Introduction

A recommender system should provide accurate and relevant recommenda-
tions, but a good recommendation must be supported by interpretation. The
explanation is the key factor to gain the trust of the user. An interpretable
system has significant influence on a user’s decision [1], and users tend to
trust the opinion of others, especially when they describe personal experi-
ences [2].

Current explainable recommendations propose to mine user’s reviews to
generate explanations. Nonetheless, they lack generating natural language
expressions, hence the sentences are produced in a modular way. We aim
to generate natural language explanations from reviews, aligning explana-
tions and textual features such as aspects and sentiments, which influence
the recommendation of different items. We exploit deep neural networks
at character-level to generate explanations. These networks have recently
shown good performance to generate sentences as presented by Karpathy et.
al., who use a variant of LSTM cells to generate text [3]. Karpathy et. al. pre-
sented encoding rating vectors of reviews in the training phase, allowing the
system to calculate the probability of the next character based on the given
rating. Later, Dong et. al. presented an efficient method to generate the next
word in a sequence when it is added an attention mechanism, improving the
performance for long textual sequences [4].

In this paper, we propose a character-level attention-enhanced long short-
term memory (LSTM) model to generate personalized natural language ex-
planations based on user-generated reviews. The model is trained using two
real-world datasets: BeerAdvocate [5] and Amazon book reviews [4]. The
datasets present user reviews describing their opinion about items in natu-
ral language. The explanations are adaptively composed by an encoder-side
context vector, because our model learns soft alignments between generated
characters and user-item relations, for example, ratings from a user to an
item.

2 Interpretation model

The character-level explanation model presents (1) three modules: LSTM net-
work, attention layer, and generator module; and (2) two input sources: re-
view text and concatenated word embeddings of user, item, and rating, as
presented in Fig. C.1. First, users and items embeddings are learned from
doc2vec model, where characters of reviews are encoded as one-hot vectors,
corresponding to the input time-steps of LSTM network. Second, the embed-
dings are concatenated with the outputs of LSTM, which are inputs for the
following attention layer. Finally, the generator module produce sentences as

89

Paper C.

explanations using outputs from the attention layer.

Concatenated
embedding

Attention

doc2vec

Generator

g 0.3 o 0.3 o 0.3 d 0.3 <EOF> 0.3

<STR> 0.3 g 0.3 o 0.3 o 0.3 d 0.3

Fig. C.1: Personalized Explanation Generation Model Architecture

• LSTM network LSTM is an enhanced recurrent neural network (RNN)
where information is transmitted from a neuron to the next neuron, and
the corresponding neuron in the next layer simultaneously, as presented
in Fig. C.1. LSTM was introduced to solve the long-term dependency
problem, which causes vanishing gradient in conventional RNN [3].

• Attention mechanism The attention mechanism, adaptively learns soft
alignments ct between character dependencies Ht and attention inputs
a. Equation C.1 formally defines the new character dependencies using
attention layer Hattention

t [4].

ct =
a

∑
i

exp(tanh(Ws � [Ht, ai]))

∑ exp(tanh(Ws � [Ht, ai]))
ai

Hattention
t = tanh(W1 � ct + W2 � Ht)

(C.1)

• Generating Text The explanation is generated character by character.
The characters are given by maximizing the softmax conditional prob-
ability p, based on the new character dependencies Hattention

t [4], as
presented in Equation C.2

p = softmax(Hattention
t �W + b), char = arg max p (C.2)

3 Results

The model was evaluated using two real-world datasets: BeerAdvocate and
Amazon book reviews. The first experiment presents generated explanations

90

3. Results

Rating Text

1 i was not a little to read the first book, i did not like the story. i would not recommend it.

2 i was not interested with the story line and the story was a little slow.

3 the characters are always good. it was a good story.

4 i love the story, i would recommend this book to anyone

5 i love the story and the story line. i would recommend it to anyone who want to read the next book.

Fig. C.2: Rating Text Samples, from poorly rated (1) to highly rated (5).

given by the rating as attention mechanism to generate explanations with
different sentiments, as presented in Fig. C.2.

The second experiment generates explanations for particular user-item
pairs presented in Fig. C.3, where the user opinion about an item is generated
in natural language. Finally, evaluating the generated explanations based
on readability metrics in Fig. C.4. The readability metrics [6] measure how
understandable the generated text is, where lower values correspond to an
easy and understandable text.

Dataset (User, Item) Explanation

Amazon Books (9163, 11021)
i love this series. i can't wait for the next book. i love the characters and
the story line. i was so glad that the story was a little longer. i would
recommend this book to anyone who enjoy a good mystery.

BeerAdvocate (shivtim, 2023)

poured from a bottle into a pint glass. a: pours a dark brown with a
small head. s - smells of caramel and chocolate. t - a bit of a caramel
malt and a little bit of coffee. m- medium body with a solid carbonation.
d - medium bodied with a smooth mouthfeel. i can taste the sweetness
and a bit of caramel and a little bit of a bit of alcohol.

Fig. C.3: Generated Text Samples

ARI FGL GFI SMO GLI LIX RIX0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

S
co

re
s

Beer
Book

Fig. C.4: Readability Score of Explainations

91

References

4 Conclusion

The work provides preliminary results in automatically generating natural
language explanations. The model differs from recent works [1, 4], due to
the use of attention layer combined with character-level LSTM. The proposed
model improves the performance and allow to generate more accurate and
trustworthy explanations aligned to the user’s taste.

We would like to improve the model considering: (1) personalizing expla-
nations to benefit the users’ preferences based on their expressed sentiments;
and (2) testing the model in larger and more varied review domains such as
hotels and restaurants.

5 Acknowledgments

This work is supported by Science Foundation Ireland through the Insight
Centre for Data Analytics under grant number SFI/12/RC/2289, and Con-
selho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (grant#
206065/2014-0).

References

[1] S. Seo, J. Huang, H. Yang, and Y. Liu, “Interpretable convolutional neural
networks with dual local and global attention for review rating predic-
tion,” in Proceedings of the 11th ACM Conference on Recommender Systems,
ser. RecSys’17, 2017, pp. 297–305.

[2] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell,
“Explaining the user experience of recommender systems,” User Modeling
and User-Adapted Interaction, vol. 22, no. 4-5, pp. 441–504, 2012.

[3] A. Karpathy, J. Johnson, and F. Li, “Visualizing and understanding re-
current networks,” CoRR, vol. abs/1506.02078, 2015, international Con-
ference on Learning Representaions.

[4] L. Dong, S. Huang, F. Wei, M. Lapata, M. Zhou, and K. XuT, “Learning to
generate product reviews from attributes,” in Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguis-
tics, ser. CECACL’17. Association for Computational Linguistics, 2017,
pp. 623–632.

[5] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs: Modeling
the evolution of user expertise through online reviews,” in Proceedings of

92

References

the 22nd International Conference on World Wide Web, ser. WWW ’13. ACM,
2013, pp. 897–908.

[6] S. Maharjan, J. Arevalo, M. Montes, F. A. González, and T. Solorio, “A
multi-task approach to predict likability of books,” in Proceedings of the
15th Conference of the European Chapter of the Association for Computational
Linguistics, ser. EACL’17, vol. 1, 2017, pp. 1217–1227.

93

References

94

Paper D

Neural Explainable Collective Non-negative Matrix
Factorization for Recommender Systems

Felipe Costa and Peter Dolog

The paper has been published in the
Proceedings of the 14th International Conference on Web Information Systems and

Technologies (WEBIST’18), pp. 35–45, 2018.

Abstract

Explainable recommender systems aim to generate explanations for users according to
their predicted scores, the user’s history and their similarity to other users. Recently,
researchers have proposed explainable recommender models using topic models and
sentiment analysis methods providing explanations based on user’s reviews. How-
ever, such methods have neglected improvements in natural language processing,
even if these methods are known to improve user satisfaction. In this paper, we pro-
pose a neural explainable collective non-negative matrix factorization (NECoNMF)
to predict ratings based on users’ feedback, for example, ratings and reviews. To
do so, we use collective non-negative matrix factorization to predict user preferences
according to different features and a natural language model to explain the predic-
tion. Empirical experiments were conducted in two datasets, showing the model’s
efficiency for predicting ratings and generating explanations. The results present
that NECoNMF improves the accuracy for explainable recommendations in compar-
ison with the state-of-art method in 18.3% for NDCG@5, 12.2% for HitRatio@5,
17.1% for NDCG@10, and 12.2% for HitRatio@10 in the Yelp dataset. A similar
performance has been observed in the Amazon dataset 7.6% for NDCG@5, 1.3% for
HitRatio@5, 7.9% for NDCG@10, and 3.9% for HitRatio@10.

c© 2018 SciTePress. Reprinted, with permission, from Felipe Costa and Peter
Dolog, Neural Explainable Collective Non-negative Matrix Factorization for
Recommender Systems, 14th International Conference on Web Information
Systems and Technologies (WEBIST’18), September/2018.
The layout has been revised.

1. Introduction

1 Introduction

Recommender systems have become an important method in online services,
aiming to help users to filter items of their preferences, such as movies,
places, or products. The most well-known model to recommend top-N items
is collaborative filtering (CF), which recommend items according to the user’s
similarities with other users and/or items. However, traditionally CF meth-
ods focus on users, items, and their interactions to recommend a sorted list
of N items.

Food

Service

Location

Ambiance

Family
Friendly

Music

Recommendation

Fig. D.1: Example of Review-aware Recommendation

Among CF techniques, matrix factorization (MF) has been widely applied
in recommender systems because of its accuracy in providing personalized
recommendation based on user-item interactions, for example, overall rat-
ings. However, users may have different preferences about specific features
of the same item as seen in Figure D.1. Hence it is a challenge to infer whether
a user would prefer a specific feature from an item based on overall rating.
For example, in the restaurant domain, one user may rate a restaurant 3-stars
due to service, while another user may give the same rating due to food. This
example, shows the importance to model different features when developing
a recommendation method, since those features may help to explain why a
CF model recommends a specific list of items to a user.

Online services provide other explicit feedback besides the overall ratings,
such as item’s content features, contextual information, sentiments, and re-
views. Items’ content features describe attributes of an item, for example,
which food is served in the restaurant. Contextual information defines the
situation experienced by a user, for example, if a user has been in a restau-
rant for business or leisure. Sentiments describes the positive or negative
experience of a user regarding an item. Reviews are user’s personal assess-
ment about an item, which may describe items’ content features according to
her/his preferences. Those explicit feedback have been applied separately as
feature to predict user preferences, however as aforementioned, a user may
like or dislike an item’s content feature in different contexts.

We propose to align those features using non-negative collective matrix
factorization model, called NECoNMF. NECoNMF factorizes ratings, item’s

97

Paper D.

content features, contextual information, and sentiment in four non-negative
low-rank matrices, represented in a common latent space. The hypothesis is
that jointly decomposition of different matrices into the same factor space (for
example, users’ preferences, items’ content features, contextual information,
and sentiment) improves the prediction of top-N recommendation.

Moreover, the reviews represent an additional information for collabora-
tive filtering. Recent research has modeled reviews to generate explanations
for recommender systems, which are known as explainable recommenda-
tions. Explicit factor model (EFM) developed by [1] extracts features and user
opinions by phrase-level sentiment analysis on user generated reviews, and
explain the recommendation based on the extracted information. TriRank
proposed by [2] uses a tripartite graph to enrich the user-item binary rela-
tion to a user-item-aspect ternary relation. Both projects propose to extract
aspects from reviews to generate explainable recommendations, but they do
not consider influence maximization in social relation as a source of expla-
nation. Recently, [3] propose the social collaborative viewpoint regression
model (sCVR), which detects viewpoints and uses social relations as a latent
variable model. sCVR is represented as a tuple of concept-topic-sentiment
from both user reviews and trusted social relations.

The aforementioned techniques have shown improvements in explaining
recommendations, however they neglected how to present the textual expla-
nations while keeping their accuracy in top-N recommendation. Recently,
natural language processing techniques have applied deep learning meth-
ods, such as recurrent neural network (RNN), which has demonstrated sig-
nificant improvement in character-level language generation, due to the abil-
ity to learn latent information. However, RNN does not capture dependen-
cies among characters, since it suffers from gradient vanishing problem [4].
To solve this issue, long short-term memory (LSTM) have been introduced
by [5, 6] revealing good results in generating text upon different datasets [7]
and machine translation [8].

In this paper, we propose a neural explainable collective non-negative ma-
trix factorization based on two steps: (1) prediction of user’s preferences by
collectively factorizing ratings, items’ content features, contextual informa-
tion and sentiments; and (2) generative text reviews given a vector of ratings,
which shows specific opinions about different items’ features.

The experiments were performed using two real-world datasets: Yelp and
Amazon, where our method outperforms the state-of-art in terms of Hit Ra-
tion and NDCG.

This paper presents the following contributions:

• Neural Explainable Collective Non-negative Matrix Factorization;

• Collective factorization of four matrices: ratings, item’s content fea-
tures, contextual information, and sentiments;

98

2. Related Works

• Text generation model using neural networks;

• Results according to empirical experiments in two real-world datasets.

2 Related Works

Related work can be divided in two tasks: top-N recommendations and ex-
plainable recommendations.

Top-N Recommendations. The most well-known methods are Popular Items
(PopItem) [9] and PageRank [10], since they present reasonable results and
simple implementation. Another widely applied method is matrix factoriza-
tion (MF), for example SVD [11] and NMF [12]. SVD was first applied on the
Netflix dataset, presenting good results in terms of prediction accuracy. Like-
wise, NMF has received attention, due to its easy interpretability for matrices
decomposition.

Matrix factorization has been extended over the years to improve its ef-
fectiveness, where collective matrix factorization has shown good perfor-
mance. This technique was applied in multi-view clustering, where it splits
objects into clusters based on multiple representations of the object, as shown
by [13, 14]. [13] proposed MultiNMF, using a connection between NMF and
PLSA, and [14] proposed a co-regularized NMF (CoNMF), where comment-
based clustering is formalized as a multi-view problem using pair-wise and
cluster-wise CoNMF.

Local collective embeddings (LCE) is a collective matrix factorization method
proposed by [15], which exploits user-document and document-terms matri-
ces, identifying a common latent space to both item features and rating ma-
trix. LCE has shown effectiveness in cold-start problem for news recommen-
dation, however, it has some limitations. The method does not perform well
in our domain which covers online services as restaurants and e-commerce,
because it uses only two matrices as input and multiplicative update rules as
learning model. An extension of LCE is proposed by [16], named CHNMF,
where collective factorization is applied in three different matrices using hy-
brid regularization term. In this paper, we extend the CHNMF approach
decomposing a matrix as a product of four matrices: ratings, item’s content
features, contextual information, and sentiments. Content features are data
from each item’s metadata, ratings represents user’s preferences, contextual
information is the situation where the user rates an item, and sentiment is the
positive (1) or negative (−1) preference given by a user to an item’s feature.

Explainable Recommendations. Explainable recommendation aims to im-
prove transparency, effectiveness, scrutability, and user trust [1]. These crite-
ria can be achieved by different methods to explain the recommendation to

99

Paper D.

a user, such as graph or table, however for this project we selected two base-
lines which uses textual information to justify their predictions. [1] proposes
the explicit factor model based on sentiment lexicon construction and [2] pro-
posed TriRank algorithm to improve the ranking of items for review-aware
recommendation.

Our proposal differs from these models in two aspects: we collectively
factorize ratings, item’s content features, contextual information, and senti-
ments; and apply a character-level explanation model for recommendation
using LSTM for text generation [17].

3 Problem Formulation

The research problem investigated in this paper is defined as followed: Ex-
plain the recommended list of items to each user based on ratings, item’s content
features, contextual information, and sentiments from user-item interactions. Mod-
eling the rating data Xu from a set of users U to a set of items I under Xa
types of content, Xc types of context, and Xs explicit sentiments as four two-
dimensional matrices. We can formally define them as: user-item matrix
Xu = {xu ∈ Ru×i|1 ≤ xu ≤ 5}; user-content feature matrix Xa = {xa ∈
Zu×a|0 ≤ xa ≤ 1}; user-context matrix Xc = {xc ∈ Zu×c|0 ≤ xc ≤ 1}; and
user-sentiment matrix Xs = {xs ∈ Zu×s||xs| = 1}. Where, u is the number of
users, i is the number of items, a is the content size, c is the context, and s is
the sentiment regarding item features.

Factor models aim to decompose the original user-item interaction matrix
into two low-rank approximation matrices. Collective non-negative matrix
factorization is a generalization of the classic matrix factorization, where the
latent features are stored in four low-rank matrices: ratings as W × Hu; con-
tent features as W×Ha; context as W×Hc; and sentiment as W×Hs. Where,
Hu denotes a row vector representing the latent features for user u. Similarly,
Ha represents the content’s latent features a, Hc represents the context’s la-
tent features c, and Hs defines the sentiment’s latent features. Finally, W
represents the common latent space.

The matrix factorization method does not provide human-oriented expla-
nations. To address this particular issue, our model is defined to target the
problem of generating natural language review-oriented explanations.

We formulate the explanation for rating prediction as: given input rat-
ings vector rui = (r1, . . . , r|rui |) we aim to generate item explanation ei =
(w1, . . . , w|ti |) by maximizing the conditional probability p(e|r). Note, rating
rui is a vector of the user’s overall and specific rating of different features
from a target item i. While the review ti is considered a sequence of char-
acters of variable length. For Yelp dataset, we set |r| as 5, representing 5
different features: f ood, service, ambiance, location, and f amily f riendly. The

100

4. Methodology

model learns to compute the likelihood of generated reviews given a set of
input ratings. This conditional probability p(e|r) is represented in Equation
D.1.

p(e|r) =
|e|

∏
s=1

p(ws|w < s, r) (D.1)

where w < s = (w1, . . . , wt−1).

4 Methodology

In this section, we describe NECoNMF for rating prediction and natural lan-
guage generation model.

4.1 Collective Matrix Factorization

We propose collective non-negative matrix factorization applied to domains
with specific available information, such as, ratings, content features, context,
and sentiment. This information is decomposed into four matrices in a com-
mon latent space, i.e., each user-item can be related to item’s content features,
contextual situation, sentiment, and ratings.

Xu Xa Xs Xc

[3, 4, food, 3, service, 2, ambiance, 3,
location, positive, weekend]

Explicit
Features

Hu Ha V Hs Hc

Hidden
Features

r" Predicted
rating

Fig. D.2: Collective Non-Negative Matrix Factorization

Considering an online restaurant service as seen in Figure D.2, where a
user may rate a specific restaurant (here defined as an item) according to dif-
ferent criteria, such as, f ood, service, ambiance, and location. Furthermore,
the user may write a review and give an overall rating about the item. Based
on this example, we may retrieve content-feature matrix Xa, user-item matrix
Xu, user-context matrix Xc, and user-sentiment matrix Xs. If we factorize
Xa in two low-dimensional matrices, we will observe the content features is
belonging to an item. Factorizing Xu leads to find the items according to the

101

Paper D.

users’ preferences. While factorizing matrix Xc allow us to identify the hid-
den contextual factors related to the item. Likewise, factorizing Xs highlight
the positive and negative sentiments from a user given to an item’s feature.
If each matrix is factorized independently it will represent a different latent
space and there will be no correlation between content feature, context, senti-
ment, and rating matrix. The idea of collective non-negative matrix factoriza-
tion is that each entity: users, items, content features, contexts, and sentiment
should be represented in a common latent space, meaning that each item can
be described by a set of sentiments (for example, positive), and by a set of ex-
plicit feedback (for example, ratings). The proposal is to collectively factorize
Xu, Xa, Xc, and Xs into a low-dimensional representation in a common latent
space. The formal definition, is given as the following optimization problem:

min : f (W) =
1
2
[α‖Xu −WHu‖2

2 + β‖Xa −WHa‖2
2

+γ‖Xc −WHc‖2
2 + ω‖Xs −WHs‖2

2

+λ(‖W‖2 + ‖Hu‖2 + ‖Ha‖2 + ‖Hc‖2) + ‖Hs‖2)]

s.t.W ≥ 0, Hu ≥ 0, Ha ≥ 0, Hc ≥ 0, Hs ≥ 0,

(D.2)

where the first four terms correspond to the factorization of the matrices
Xu, Xa, Xc, and Xs. The matrix W represents the common latent space, and
Hu, Ha, Hc, and Hs are matrices representing the hidden factors for each item-
user interaction feature. The hyper-parameters are defined by α, β, γ, and ω
to control the importance of each factorization with values between 0 and 1.
Setting the hyper-parameters as 0.25 gives equal importance to the matrices
decomposition, while values of α, β, γ, and ω set as > 0.25 (or < 0.25) give
more importance to the factorization of Xu (or Xa, or Xc, or Xs), respectively.
The Tikhonov regularization of W is controlled by the hyper-parameter λ ≥ 0
to enforce the smoothness of the solution and avoid overfitting.

Optimization

Alternating optimization is required in NECoNMF to minimize the objective
function, since performing collective factorization leads us to find a common
low-dimensional space that is optimal for the linear approximation of the
user and item data points. Assume the data from user and item has a com-
mon distribution where it can exploit a better low-dimensional space, i.e., two
data points, ui and vj, are close to each other in the low-dimensional space,
if they are geometrically close in the distribution. This assumption is known
as the manifold assumption and is applied in algorithms for dimensionality
reduction and semi-supervised learning [15].

We model the local geometric structure through a nearest neighbour graph
on a scatter of data points as seen in [15]. Considering a nearest neighbour

102

4. Methodology

graph, we represent each data point as node n. Then, we find the k nearest
neighbours for each node, and we connect these nodes in the graph. The
edges may have: (1) binary representation, where 1 defines one of the nearest
neighbours and otherwise 0; (2) or weights representation, for example, pear-
son correlation. The result of this process is an adjacency matrix A, which
may be used to find the local closeness of two data points ui and vj.

Based on this assumption, we assume the collective factorization reduces
the data point ui from a matrix X, into a common latent space W as wi.
Then, applying Euclidean distance ‖wi − wj‖2, we can calculate the distance
between two low-dimensional data points and map them into the matrix A.
We repeat the process until the stationary point or the established number of
maximum iterations, as follows:

M =
1
2

n

∑
i,j=1
‖wi − wj‖2 Aij

=
n

∑
i=1

(wT
i − wi)Dii −

n

∑
i,j=1

(wT
i − wi)Dii

= Tr(WT DW)− Tr(WT AW) = Tr(WT LW),

(D.3)

where Tr(•) is the trace function, and D is the diagonal matrix whose
entries are row sums of A (or column, as A is symmetric). To enforce the non-
negative constraints, we need to define the Laplacian matrix as Dii = ∑i Ai j;
L = D− A.

We can re-write the optimization problem of function f (W) as:

min : f (W) =
1
2
[α‖Xu −WHu‖2

2 + β‖Xa −WHa‖2
2

+γ‖Xc −WHc‖2
2 + ω‖Xs −WHs‖2

2

+ϕTr(WT LW)

+λ(‖W‖2 + ‖Hu‖2 + ‖Ha‖2 + ‖Hc‖2 + ‖Hs‖2)]

s.t.W ≥ 0, Hu ≥ 0, Ha ≥ 0, Hc ≥ 0, Hs ≥ 0

(D.4)

where ϕ is a hyper-parameter controlling the objective function, and the
hyper-parameters α, β, γ, ω, and λ have the same semantics as in Equation
D.2.

4.2 Multiplicative Update Rule

Multiplicative update rule (MUR) is applied in the model as regularization
term of W. MUR updates the scores in each iteration to reach the stationary
point, where we fix the value of W while minimizing f (W) over Hu, Ha, Hc,
and Hs. We formalize the partial derivative function in Equation D.5 before

103

Paper D.

calculating the update rules.

∇ f (W) = αWHu HT
u − αYu HT

u + βWHa HT
C − βYa HT

a

+γWHcHT
c − γYc HT

c + ωWHsHT
s −ωYsHT

s + λIk
(D.5)

where k is the number of factors and Ik is the identity matrix with k× k
dimensions.

The update rules are formalized as in Equation D.6, after calculating the
derivatives of f (W), f (Hu), f (Ha), f (Hc), and f (Hs) from Equation D.5.

W =
[αYuHT

u + βYa HT
a + γYcHT

c + ωYsHT
s]

[αHU HT
U + βHaHT

a + γHcHT
c + ωHsHT

s + λIk]
(D.6)

where •• corresponds to left division.
The results of each iteration give us the solution for pair-wise division,

where the objective function and the delta decrease on each iteration of the
above update rule, guaranteeing the convergence into a stationary point.
Note, we map any negative values from W matrix to zero, becoming non-
negative after each update.

4.3 Barzilai-Borwein

The Brasilai-Borwein regularization term is used to optimize the hidden fac-
tor matrices Hu, Ha, Hc, and Hs. We represent the hidden factor matrices as
H for the input matrices Xu, Xa, Xc, and Xs, since they present equal problem
as shown in Equation D.7:

min
W≥0

: f (H) =
1
2
‖X−WH‖2

F (D.7)

We map all the negative values into zero through P(•) for any α > 0, as
we defined for W in the previous section. Equation D.8 formally describes
the statement as:

‖P[H − α∇ f (H)]− H‖F = 0. (D.8)

Applying εH in Equation D.8 lead us to the following regularization term
‖P[H − α∇ f (H)]− H‖F ≤ εH , where εH = max(10−3, ε)‖P[H − α∇ f (H)]−
H‖F. We decrease the stopping tolerance by ε = 0.1εH , if the Borzilai-
Borwein algorithm defined in [16] solves Equation D.7 without any iterations.

The gradient∇ f (W) of f (H) is Lipschitz term with constant L = ‖WTW‖2.
L is not expensive to obtain, since Equation D.4 defines WTW with dimen-
sions k× k and k� min{m, n}. For a given H0 ≥ 0:

L(H0) = {H| f (H) ≤ f (H0), H ≥ 0}. (D.9)

104

4. Methodology

Following the definition of Equation D.9 we have the stationary point of
the Barzilai-Borwein method.

4.4 Top-N Recommendation Process

Factorizing the input matrices return the trained matrices W, Hu, Ha, Hc, and
Hs allows us to use the hidden factor elements for prediction. Given the new
items’ vector vi, we can predict the most preferable items according to the
user’s interest vu. To solve this issue we project the items vector vi to the
common latent space by solving the overdetermined system vi = wHu using
the least squares method. The vector w, captures the factors, in the common
latent space, that explain the preferable items vi. Then, by using the low-
dimensional vector w we infer the missing part of the query: vu ← wHt where
Ht is the concatenation of content feature, context, and sentiment matrices
Ht = Ha||Hc||Hs. Each element of vu represents a score of how likely the
user will like a new item. Then, given these scores, we may sort the list of
items.

Moreover, given the sorted list of items and their rating scores, we explain
the predicted ratings using the natural language generation model. The ex-
planation model uses the ratings as attention model to generate personalized
sentences according to user’s writing style. The training model identifies
positive and negative sentences according to the user’s previous reviews.

4.5 Natural Language Explanation

The natural language generation model is divided in (1) four sub-models:
context encoder, LSTM network, attention layer, and generator model; and
(2) two input sources: review text and concatenated character embeddings of
user, item, and rating vector, as presented in Figure D.3. First, users and items
embeddings are learned from doc2vec model [18], where characters of reviews
are converted to one-hot vectors, corresponding to the input time-steps of
LSTM network. Second, the embeddings are concatenated with the outputs
of LSTM, which are inputs for the following attention layer. Finally, the gen-
erator model produce sentences using outputs from the attention layer.

Context encoder. It aims to encode the input character into one-hot encod-
ing, then concatenate the ratings given by a user according to different item’s
content features. This data will later become the input for our LSTM network
as seen in Fig. D.3. To do so, we created a dictionary for the characters in
the corpus to define their positions. The dictionary is used to encode the
characters during the training step and to decode during the generating step.
One-hot encoding vector is generated for each character in the reviews based

105

Paper D.

r"

doc2vec

LSTM

g [3,4] r [3,4] e [3,4] a [3,4] t [3,4] <EOF> [3,4]

Attention

Generator Explanation

<STR> [3,4] g [3,4] r [3,4] e [3,4] a [3,4] t [3,4]

LSTM LSTM LSTM LSTM LSTM

Fig. D.3: Natural Language Explainability model

on its position in the dictionary. Furthermore, the vector is concatenated with
a set of ratings varying from 0 to 1, as shown in Equation D.10.

X′t = [onehot(xchar); xaux] (D.10)

LSTM network. LSTM is an extended version of recurrent neural network
(RNN), where neurons transmit information among other neurons and layers
simultaneously, as presented in Figure D.3. Therefore, LSTM is built upon a
sequential connection of forget, input and output gates. The forget gate aims
to decide which old information should be forgotten; the input gate updates
the current cell state; and the output gate selects the information to go to the
next layer and cell. First, the LSTM network receives the input data xt at time
t and the cell state Ct−1 from previous time step t− 1. Second, the input data
feed the forget gate, where it chooses which information will be discarded.
In Equation D.11, ft defines the forget gate in time t, where W f and b f refers
to the weight matrix and bias, respectively. The third step is to define which
information should be stored in cell state by the input gate it. During the
fourth step, the cell creates a candidate state C′t by a tanh layer. We update
the current state Ct according to the candidate state, the previous cell state,
the forget gate, and the input gate. During the final step, the data goes to
the output gate, where it uses sigmoid function layer to define the output and
multiply the tanh with the current cell state Ct to return the next character
with the highest probability.

ft = σ([xt, Ct−1]�W f + b f)

it = σ([xt, Ct−1]�Wi + bi)

C′t = tanh([xt, Ct−1]�Wc + bc)

Ct = ft � Ct−1 + it � C′t
ot = σ([xt, Ct−1]�Wo + bo)

ht = ot � tanh(Ct)

(D.11)

106

5. Experiments

Attention layer. The attention layer adaptively learns soft alignments ht be-
tween character dependencies ct and attention inputs. Equation D.12 for-
mally describes the character dependencies using attention layer hattention

t as
explained by [19].

ct =
attention

∑
i

exp(tanh(Ws � [ht, attentioni]))

∑ exp(tanh(Ws � [ht, attentioni]))
attentioni

hattention
t = tanh(W1 � ct + W2 � ht)

(D.12)

Generator model. The generator model is built on character-level. To do
so, we have to maximize a non-linear softmax function to compute the con-
ditional probability p among the characters, as presented in Equation D.13.
The text generation task concatenates an initial prime text as the start sym-
bol in each generated review-based explanation according to different item’s
content features. Finally, the network feeds the softmax layer with its output
data, as shown in Equation D.13.

p = softmax(Hattention
t �W + b), char = arg max p (D.13)

where Hattention
t is the output of a LSTM cell, W and b are the weight and

bias of the softmax layer, respectively.
This procedure produces a character char recursively for each time step,

until it finds the pre-defined end symbol.

5 Experiments

In this section, we describe our experiment setup. We start by detailing the
datasets, the evaluation metrics and the baselines.

5.1 Datasets

We use two datasets to conduct our experiments: Yelp and Amazon.
The original Yelp dataset was published in April 2013 and has been used

by the recommender systems community, due to the user reviews. The
dataset has 45,981 users, 11,537 items, and 22,907 reviews, however it is
sparse, since 49% of the users have only one review, making it difficult to
evaluate in top-N recommendation. We filtered the users with more than
10 reviews as [1, 2]. The Amazon dataset contains more than 800k users,
80k items and 11.3M reviews, however it is more sparse than Yelp, making
us adopt the same strategy as applied in the previous dataset. Table D.1
summarizes the dataset information.

107

Paper D.

Yelp Amazon
#users 3,835 2,933
#items 4,043 14,370

#reviews 114,316 55,677
#density 0.74% 0.13%

Table D.1: Dataset Summarization

The experiments were performed in a Unix server with the following set-
tings: 32GB of RAM and 8 core CPU Intel Xeon with 2.80GHz. The parame-
ters for collective matrix factorization were set as: learning rate = 0.001; k = 45;
iterations = 50 (to ensure the convergence point); and λ = 0.5. The LSTM net-
work has two hidden layers with 1024 LSTM cells per layer, where the input
data was split in 100 batches with size equal to 128 and each batch has a se-
quence length equal to 280. For this experiment, we applied cross-validation
to avoid overfitting, where each dataset were divided into 5− f olds.

5.2 Evaluation Metrics

The output of the algorithms is a ranked list of items considering the user’s
feedback. For this list, the effectiveness of the top-N recommendation is
measured according to information retrieval ranking metrics: NDCG and Hit
Ratio (HR). We apply NDCG to measure the ranking quality as defined by
Equation D.14, where the metric gives higher score to the items at the top
rank, and lower scores to the items at the low rank.

NDCG@N = ZN

N

∑
i=1

2ri − 1
log2(i + 1)

(D.14)

where ZN normalizes the values, which guarantees the perfect ranking
has a value of 1; and ri is the graded relevance of item at position i. We
define ri = 1 if the item is in the test dataset, and otherwise 0.

Hit Ratio has been commonly applied in top-N evaluation for recom-
mender systems to asses the ranked list with the ground-truth test dataset
(GT). A hit is denoted when an item from the test dataset appears in the
recommended list. We calculate it as:

Hit@N =
Numbero f Hits@N

|GT| (D.15)

The number of listed item in the trained dataset is defined by N. There-
fore, we set N = 5 and N = 10, due to large values of N would result in extra
work for the user to filter among a long list of relevant items. High values of
NDCG or HR indicate better performance.

108

6. Results and Discussions

5.3 Comparison Baselines

We list the related works in Section 2, where we highlighted the techniques
based on their recommendation tasks: top-N and explainable recommenda-
tions. In this section we describe four baselines, where two are popular tech-
niques for top-N recommendations and the two other are recent techniques
applying review-based explanations.

Top-N Recommendation

• ItemPop. The method ranks items by their popularity given by the num-
ber of ratings. It usually presents good performance, because users tend
to consume popular items.

• PageRank. Personalized Pagerank is a widely used method for top-N
recommendation. We applied the configuration proposed by [2], con-
sidering the user-item graph and the damping parameter is respectively
optimized to 0.9 and 0.3 for Yelp and Amazon datasets.

Explainable Recommendation

• EFM. The model applies a phrase-level sentiment analysis of user re-
views for personalized recommendation. It extracts explicit product
features and user opinions from reviews, then incorporates user-feature
and item-feature relations as well as user-item ratings into a hybrid ma-
trix factorization framework. The method has k as hyper-parameter to
define the number of most cared features, which we define k = 45 as
reported in [1] to have the best performance in the Yelp dataset.

• TriRank. The model ranks the vertices of user—item—aspect tripartite
graph by regularizing the smoothness and fitting constraints. TriRank is
used for review-aware recommendation, where the ranking constraints
directly model the collaborative and aspect filtering. The authors de-
scribe in [2] an experiment regarding the parameters used by TriRank
algorithm, where setting item− aspect, user− aspect, and aspect− query
as 0 results in poor performance. For the experiments in this paper we
use the default settings α = 9, β = 6, and γ = 1.

6 Results and Discussions

In this section we present the results regarding the rating prediction for top-N
recommendation, and discuss the explanations for rating prediction.

109

Paper D.

Dataset Yelp Amazon
Metric NDCG@5 HIT@5 NDCG@10 HIT@10 NDCG@5 HIT@5 NDCG@10 HIT@10
Top-N Algorithms
ItemPop 0.0110 0.0136 0.0185 0.0306 0.0077 0.0082 0.0136 0.0238
PageRank 0.0235 0.0278 0.0313 0.0452 0.0978 0.1070 0.1029 0.1200
Explainable Recommendation
TriRank 0.0258 0.0313 0.0353 0.0527 0.1033 0.1127 0.1086 0.1266
EFM 0.2840 0.0448 0.2955 0.0678 0.3615 0.1284 0.3670 0.1429
NECoNMF 0.3366 0.0503 0.3461 0.0763 0.3892 0.1301 0.3962 0.1486

Table D.2: NDCG and Hit Ratio results for NECoNMF and compared methods at rank 5 and 10

6.1 Overall Performance

This section describes the overall performance of NECoNMF regarding the
rating prediction for top-N recommendation in comparison with other meth-
ods.

Analyzing the NDCG@5 score of NECoNMF in comparison with ItemPop
in Table D.2 we observe an improvement of 30× for the Yelp dataset and
50× for the Amazon dataset, while HIT@5 is 4× better for the Yelp dataset
and 16× for the Amazon dataset. ItemPop has shown the poorest overall
performance because it does not apply personalization during its prediction
task.

On the other hand, personalized PageRank had a good performance due
to apply the user’s historical information to predict the user’s preferences.
Despite the good performance, PageRank does not use latent information
to infer the recommendation, for example item’s content features, context,
sentiment, and ratings, what may explain the lower performance when com-
pared to NECoNMF. Comparing the results for the Yelp dataset the accuracy
of NECoNMF compared to PageRank was improved in 14.4× for NDCG@5
and 2× for HIT@5. Applying the recommendation model for the Amazon
dataset leads us to a similar result where NECoNMF performs better in 3.9×
for NDCG@5 and 21% for HIT@5.

TriRank performed poorer in comparison to NECoNMF, because it ap-
plies tripartite graph approach to predict users’ preferences making it unable
to identify hidden features. During the experiments for the Yelp dataset the
accuracy was improved in 13× for NDCG@5 and 60% for HIT@5. Likewise,
for the Amazon dataset we observed an improvement of 3.7× for NDCG@5
and 15.4× for HIT@5. Observing Hit Ratio scores in Table D.2 we noticed
PageRank and TriRank have close scores, however TriRank performed bet-
ter because it applies tripartite graph user–item–aspect, allowing TriRank to
incorporate one more feature during the recommendation process.

Comparing NECoNMF and EFM, we observe a close performance be-
tween them, however NECoNMF presented an improvement for top-N rec-
ommendation. Considering the results in Table D.2 we observe an improve-
ment of 18.3% in NDCG@5, 12.2% in HIT@5, 17.1% in NDCG@10, and 12.2%

110

6. Results and Discussions

in HIT@10 for the Yelp dataset. Similar improvement was observed in the
Amazon dataset, 7.6% in NDCG@5, 1.3% in HIT@5, 7.9% in NDCG@10, and
3.9% in HIT@10. NECoNMF factorizes item’s content features and contextual
information as additional features allowing a better user modeling in the vec-
torial space and improving the personalized recommendation task. On the
other hand, EFM models the user’s behaviour based only on ratings and as-
pects. Those features play an important role in achieving better NDCG score,
hence it defines users’ interests in specifics scenarios, for example, brunch
in a restaurant on a Sunday. Furthermore, EFM factorizes its input matrices
into four different latent spaces, while NECoNMF collectively factorizes into
one common latent space among the matrices. Therefore, jointly factorizing
the matrices may identify hidden latent features not selected by EFM model
during the recommendation process.

Moreover, the models presented better performance for top@10 than top@5
recommendation, due to the error is minimized when the system has a higher
number of items. Analyzing Figures D.4 and D.5 we observe NECoNMF
presents higher accuracy performance for top-N recommendation when N
varies from 5 to 50.

5 10 15 20 25 30 35 40 45 50

N

0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

@
N

ItemPop
PageRank
TriRank
EFM
ECoNMF

5 10 15 20 25 30 35 40 45 50

N

0

0.05

0.1

0.15

0.2

0.25

0.3

H
it@

N

ItemPop
PageRank
TriRank
EFM
ECoNMF

Fig. D.4: Empirical evaluation on Yelp dataset for N from 5 to 50

6.2 Explainability

NECoNMF presents the ability to provide explainable recommendation, how-
ever explainability for recommendation is not easy to evaluate. We apply the
evaluation method described by [1], where they assess the quality of expla-
nations throughout examples generated by the explainable model.

Table D.3 shows three explanations outcomes according to different pre-
dicted user’s ratings. NECoNMF presents an explanation according to user’s
writing style for each tuple user-item-rating, where the dark grey represents
negative sentiment, and the light grey describes positive sentiment regard-

111

Paper D.

5 10 15 20 25 30 35 40 45 50

N

0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

@
N

ItemPop
PageRank
TriRank
EFM
ECoNMF

5 10 15 20 25 30 35 40 45 50

N

0

0.05

0.1

0.15

0.2

0.25

0.3

H
it@

N

ItemPop
PageRank
TriRank
EFM
ECoNMF

Fig. D.5: Empirical evaluation on Amazon dataset for N from 5 to 50

User Item Rating Generated Explanation
A X 1 i was disappointed . it was too small and noisy . food was good , but i just can’t come back with my family .

A Y 3 this was a nice restaurant . i liked the service and the location . i’m not sure i’d recommend the food there.
B X 5 i loved this restaurant . i could not leave it. i loved the service and the food . i will be back again next weekend .

Table D.3: Example explanations produced by NECoNMF on the Yelp dataset.

ing different item’s features. Furthermore, the mid-grey scale represents the
contextual feature such as family, location and weekend. Note, the generated
explanation is presented in a personalized item’s review style, because re-
views have a high influence in user’s decision. Comparing to [1] explana-
tions, we observe a better readability in Table D.3 when using review-based
explanation, due to natural language text generation.

7 Conclusions

We proposed a neural explainable collective non-negative matrix factoriza-
tion (NECoNMF) for recommender systems combining ratings, content fea-
tures, sentiment, and contextual information in a common latent space. Fur-
thermore, we introduced a neural explainable model to interpret the pre-
dicted top-N recommendation. Finally, we presented the results regarding
the experiments in two datasets, where we observed that NECoNMF outper-
forms the state-of-the-art methods.

The top-N recommendation task was addressed using four different ma-
trices as input for collective non-negative matrix factorization. The combina-
tion of content features, contexts, ratings, and sentiment play an important
role in explaining the recommended list of items to a user.

The explainable model proved to be effective for the review-oriented ex-
planation task. The generated explanations may help users during their de-
cision regarding specific item’s features, as users tend to trust in the review-

112

8. Acknowledgments

based explanation. Moreover, the character-level text generation has the ben-
efit of generating readable personalized text.

We would like to improve the readability presented by the explainable
model and further extend the project into a general explainable recommender
system, which is able to explain any recommendation method. Furthermore,
investigate technical improvements related to the cold-start problem.

8 Acknowledgments

The authors wish to acknowledge the financial support and the fellow schol-
arship given to this research from the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico - CNPq (grant# 206065/2014-0).

References

[1] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit fac-
tor models for explainable recommendation based on phrase-level sen-
timent analysis,” in Proceedings of the 37th International ACM SIGIR Con-
ference on Research & Development in Information Retrieval, ser. SIGIR
’14. New York, NY, USA: ACM, 2014, pp. 83–92.

[2] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware ex-
plainable recommendation by modeling aspects,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge Man-
agement, ser. CIKM ’15. New York, NY, USA: ACM, 2015, pp. 1661–1670.

[3] Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke, “Social collaborative
viewpoint regression with explainable recommendations,” in Proceedings
of the Tenth ACM International Conference on Web Search and Data Mining,
ser. WSDM ’17. New York, NY, USA: ACM, 2017, pp. 485–494.

[4] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] S. El Hihi and Y. Bengio, “Hierarchical recurrent neural networks for
long-term dependencies,” in Proceedings of the 8th International Conference
on Neural Information Processing Systems, ser. NIPS’95. Cambridge, MA,
USA: MIT Press, 1995, pp. 493–499.

113

References

[7] A. Karpathy, J. Johnson, and F. Li, “Visualizing and understanding re-
current networks,” CoRR, vol. abs/1506.02078, 2015, international Con-
ference on Learning Representaions.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing sys-
tems, 2014, pp. 3104–3112.

[9] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proceedings of the Fourth
ACM Conference on Recommender Systems, ser. RecSys ’10. New York,
NY, USA: ACM, 2010, pp. 39–46.

[10] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th
International Conference on World Wide Web, ser. WWW ’02. New York,
NY, USA: ACM, 2002, pp. 517–526.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[12] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factor-
ization,” in Proceedings of the 13th International Conference on Neural In-
formation Processing Systems, ser. NIPS’00. Cambridge, MA, USA: MIT
Press, 2000, pp. 535–541.

[13] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint
nonnegative matrix factorization,” in Proc. of Intl. Conf. on Data Mining.
SIAM, 2013, pp. 252–260.

[14] X. He, M.-Y. Kan, P. Xie, and X. Chen, “Comment-based multi-
view clustering of web 2.0 items,” in Proceedings of the 23th
International Conference on World Wide Web, ser. WWW ’14. New
York, NY, USA: ACM, 2014, pp. 771–782. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2567975

[15] M. Saveski and A. Mantrach, “Item cold-start recommendations:
Learning local collective embeddings,” in Proceedings of the 8th
ACM Conference on Recommender Systems, ser. RecSys ’14. New
York, NY, USA: ACM, 2014, pp. 89–96. [Online]. Available:
http://doi.acm.org/10.1145/2645710.2645751

[16] F. Costa and P. Dolog, “Hybrid learning model with barzilai-borwein
optimization for context-aware recommendations,” in Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society Con-
ference, FLAIRS 2018, Melbourne, Florida USA., May 21-23 2018., 2018, pp.
456–461.

114

http://doi.acm.org/10.1145/2566486.2567975
http://doi.acm.org/10.1145/2645710.2645751

References

[17] F. Costa, S. Ouyang, P. Dolog, and A. Lawlor, “Automatic generation
of natural language explanations,” in Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion, ser. IUI’18. ACM,
2018, pp. 57:1–57:2.

[18] Q. Le and T. Mikolov, “Distributed representations of sentences and doc-
uments,” in Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ser. ICML’14. JMLR.org,
2014, pp. II–1188–II–1196.

[19] L. Dong, S. Huang, F. Wei, M. Lapata, M. Zhou, and K. XuT, “Learning
to generate product reviews from attributes,” in Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Lin-
guistics, ser. CECACL’17. Association for Computational Linguistics,
2017, pp. 623–632.

115

References

116

Paper E

Collective Embedding for Neural Context-Aware
Recommender Systems

Felipe Costa and Peter Dolog

The paper is under revision for
a Conference publication

Abstract

Context-aware recommender systems consider contextual factors (for example, time,
location, or the company of other people) as additional information to predict user’s
preferences. Among the contextual information, time is an important feature because
user preferences tend to be similar in the near future. Researchers have modeled tem-
poral features through Tensor Factorization (TF). However, TF models suffer from in-
capability of capturing specific temporal patterns. To address this limitation observed
in previous works, we propose Collective embedding for Neural Context-Aware Rec-
ommender Systems (CoNCARS). The model jointly represents the item, user and
time embeddings. Then, CoNCARS use the pairwise product to model the user-item-
time correlations between dimensions of the embedding space. The hidden features
feed our Convolutional Neural Network (CNN) to learn the non-linearities between
different features. Finally, we combine the output from our CNN in the fusion layer
and then predict the user’s preference score. We conduct extensive experiments on
real-world datasets, which demonstrate that CoNCARS improves the top-N item rec-
ommendation task and outperform the state-of-the-art recommendation methods.

The layout has been revised.

1. Introduction

1 Introduction

Recommender systems algorithms aim to mitigate the information overload
phenomenon, where users have difficulty to decide when facing an over-
whelming amount of choices. Recommender systems play an important role
in filtering out irrelevant information and selecting only a personalized sub-
set of items to maximize the users’ satisfaction. Collaborative Filtering is of-
ten the recommendation technique applied to the modern systems, exploiting
previous user-items interactions and the interactions of other users for mod-
eling user’s preference. Among the various CF methods, model-based CF,
for example, matrix factorization based methods are known to outperform
other methods and have become the state-of-art solution of recommendation
research.

The design of a CF model requires the understanding of how to represent
a user and an item, and how to model the user-item interaction based on
their representation. Matrix factorization (MF) characterizes users and items
as vectors of latent factors (also known as embeddings) and represents a user-
item interaction as the inner product of the user and item embeddings as the
preference score. Several extensions have been developed for MF to improve
both the modeling and learning aspect. For example, APR [1] learns user
and item embeddings through an adversarial training procedure, NeuMF [2]
extends MF by learning embeddings with a multi-layer perceptron network,
and BPR [3] optimizes MF for implicit feedback applying pairwise ranking
method.

Despite the accuracy of the previous methods, they assume that the di-
mensions of the embedding space are independent with each other. This
hypothesis is impractical since the embedding dimensions could contain de-
pendent features such as items’ attributes. Furthermore, this hypothesis is
sub-optimal for learning from real-world feedback data that is rich in contex-
tual information as demonstrated by context-aware models [4, 5], which out-
performed other models by learning the interaction function from the data.

Among the context-aware models for CF, time-aware recommender sys-
tems have gained some attention, since users preferences remain the same in
the near future [6]. Tensor Factorization (TF) provides the state-of-art perfor-
mance by projecting users and items embeddings into a latent space with the
time embeddings [5]. We argue that a potential limitation of this method is
that TF assumes two consecutive time slots are independent, which makes it
infeasible to predict for the next time slot. Moreover, TF does not capture the
time-evolving patterns, for example, the user’s impression to a movie may
be dynamically affected by its winning of some movie awards or if the user’s
preferences are similar over time. Figure E.1 illustrates a scenario where a
user watches a sequence of movies in a different time slot, and after that,

119

Paper E.

the recommender engine suggests a list of items according to the previous
sequence.

Recommendation

Time

Recommender

Ordered
list of
items

…

Fig. E.1: Example for user behaviour over time.

To address these limitations, we propose a new architecture for Collective
embedding for Neural Context-aware Recommender Systems (CoNCARS).
CoNCARS represents a user by the embeddings of all items interacted with
the user in a specific time-slot. Likewise, CoNCARS models the item by the
embeddings of all users interacted with the item in a specific time-slot.

We incorporate the time as a feature to identify the importance of different
interacted items. To do that, we compute the time-based user embeddings by
aggregating the item and time embeddings. Similarly, we compute the time-
based item embeddings by aggregating the user and time embeddings. The
collective embeddings related to each user and item jointly project their latent
representations more accurately as shown in our empirical evaluation.

We also combine the time-based item embeddings and time-based user
embeddings with the user and item embeddings to model the pairwise user-
item correlations. Moreover, CoNCARS learn the non-linear correlations be-
tween different dimensions with the Convolutional Neural Network (CNN).

To summarize, this paper presents the following contributions:

• A context-aware model named CoNCARS to improve the prediction
based on user’s preferences over time;

• A training model for a better learning correlation between users, items
and time embedding dimensions;

• Empirical evaluation in three real-world datasets demonstrating the ef-
fectiveness of the CoNCARS model.

2 Related Works

Context-aware recommender systems improved the recommendation task,
especially by minimizing the cold-start problem and by retrieving items based

120

2. Related Works

on contextual information. Time has shown to be strong contextual informa-
tion because users tend to change or keep their behavior over time [6, 7]. For
a better overview, we divide the time-based recommendations approaches
into two categories and exploit the techniques closely related to ours:

• Time-dependent recommender systems model user’s preference as a chrono-
logical sequence. It considers the order of the events to have a strong
influence on the estimated predictions. This approach requires that the
input data is in chronological order and does not take the exact time-
stamps into account. Therefore, the time-dependent approach aims to
adapt the recommendations according to changes over time.

• Time-aware recommender systems assume the time as a contextual feature
during the training step, aiming to model the time as being cyclic. Time-
stamps are used as additional information to enrich the model. Time-
aware methods consider that a user’s behavior repeats at regular time
intervals. Based on this assumption, time-aware recommender systems
propose to have more accurate predictions of similar patterns in the
future.

In this paper, we propose a time-aware recommender system. Usually,
the time-aware recommender system is modeled in three different ways: pre-
filtering, post-filtering, and contextual modeling. Pre- and post-filtering have
shown slightly lower performance when comparing to contextual modeling.
Therefore, we explore the contextual modeling technique.

Baltrunas et al. [8] propose the Context-aware Matrix Factorization (CAMF)
by extending matrix factorization using context as a baseline predictor to rep-
resent the interaction of contextual information with users or items. Another
variation of MF is called TF, considering time as a third-dimensional factor
in the user-item interaction [5, 9]. CMF is an extension of MF proposing
to collective factorize multiple representations of user-item relation, identi-
fying a common latent space to both item features and user-item interaction
vector [4, 10–12].

Advances in deep learning research field allowed improvements on the
recommender systems research area, especially in learning non-linear users-
items correlations. He et al. [2] provide a neural collaborative filtering model,
named NeuMF, which adds an adaptable multi-layer perceptron (MLP) to
learn the interaction function. Wu et al. [13] propose an autoencoder based
CF method to improve the effectiveness for top-N recommendation task. Kim
et al. [14] integrate Convolutional Neural Network (CNN) into a Probabilistic
Matrix Factorization (PMF) model to address the sparsity problem in rec-
ommendation techniques. Nonetheless, the deep collaborative filtering ap-
proaches do not exploit the advantages of time as an important dimension
for the recommendations task.

121

Paper E.

Our recommendation method differentiates from the methods described
above by capturing the temporal information provided by user-item inter-
actions. Our model represents a user-based embedding for each item con-
sidering the time as a contextual feature, which identifies the importance of
different users and items. Likewise, our model denotes an item-based em-
bedding for each user according to the time to identify the relevance of each
user and item.

3 Problem Formulation

Consider a scenario of a user u interacting with an item i in time t in online
services, for example, Yelp, Pinterest or Netflix. To model the relationships
among users and items over time, we apply collective embedding to represent
their interactions.

The set of users is denoted as U = {u1, ..., uM} and the set of items as
I = {i1, ..., iN}. R = {rui ∈ RM×N |1 ≤ rui ≤ 5} denotes the rating matrix,
where rui is the rating of user u on item i. rui is labeled as unk if user u did
not interact with item i. The matrix R with implicit feedback is modeled as:

Rui =

{
0, if Rui = unk
1, otherwise

(E.1)

Recommender systems solve the problem of predicting the preference
score of each unobserved entry in R. The preference scores determine the
order of items displayed in the recommended list of items. We generate the
scores according to Equation E.2.

r̂vj = F(uv, ij|Θ) (E.2)

where r̂vj is the predicted score of interaction rvj between user uv and item
ij, Θ represents the model parameters, and F is the function which estimates
the predicted scores based on Θ. The function F is used to find an optimal
list of items for an individual user according to her/his preferences.

Traditionally, MF methods define function F based on element-wise prod-
uct of pu and qi to predict R̂vj as demonstrated by [15], where pu and qi
defines the hidden latent factors of uv and ij, respectively.

R̂vj = F(uv, ij|Θ) = pT
v qj (E.3)

However, CoNCARS uses pairwise product to calculate the interactions
between users and items over time. Formally, four sets are identified: u =
(u1, u2, . . . , un−1, un), i = (i1, i2, . . . , im−1, im), it = (it1, it2, . . . , ith−1, ith), and
ut = (ut1, ut2, . . . , uth−1, uth). The entry u1 in the set u denotes the interac-

122

4. Proposed Model

tions between user u and item i1, where u1 = 1 if the user u interacted with
item i1 and u1 = 0 if not. The entry i1 in the set i represents the interactions
between item i and user u1, where i1 = 1 if the item i interacted with user u1
and i1 = 0 otherwise. The entry it1 in the set it records the time t when the
item it was consumed by user it1. Similarly, the entry ut1 in the set ut records
the time t when the user ut interacted with the item ut1. Assuming, the user
preferences may repeat over time, a discretization on time is performed to
avoid the set from being extremely sparse. The time is divided in T intervals
in total. it1 = 1 if the item i is consumed in the time interval d and it1 = 0 if
not. The same is applied on the set ut.

We aim to solve the following problem. Given the four sets mentioned
above, find an embedding model which will be able to capture both, direct
interactions between the dimensions and non-linear interactions, and provide
an accurate time-aware recommendation of items.

4 Proposed Model

CoNCARS has multiple layers as illustrated in Figure E.2, which defines the
prediction model according to Equation E.2. We describe the detailed archi-
tecture of the CoNCARS model in the following sections.

4.1 Input Layer

Considering the model as a classifier, we aim to determine whether the user-
item pair (u, i) should have a higher score than (u, j) for specific time t.
We define one-hot representation vectors P for user u and Q for item i. In
addition to the one-hot vectors, CoNCARS combines the binary interaction
vectors X and Y from the observed interactions for u and i in time t. This,
gives us four feature vectors for both u and i from the input layer.

Input Layer

Embedding
Layer

Pairwise
Interaction Layer

Hidden Layer

Fusion Layer

User ID (u) Item ID(i) Item
Timestamps (Tit)

0 1 0 0 …1 0 0 0 … 0 1 1 0 … 1 0 1 0 …

User
Timestamps (Tut)

User Embeddings P Item EmbeddingsQ User-time Factors X Item-time Factors Y

User Embedding p Item Embedding q Item Embedding x User Embedding y

Fusion

�̂�#$
Training
Log loss

𝑟#$ Target
Prediction Layer

Fig. E.2: Collective Embedding for Neural Context-aware Recommender Systems.

123

Paper E.

4.2 Collective Embedding Layer

This layer aims to embed meaningful information regarding the user-item
interaction. CoNCARS considers the user-item, item-user, user-time, and
item-time vectors interactions. Formally, the Equation E.4 defines each user
feature vector and Equation E.5 defines each item feature vector from the
input layer as an embedding vector.

Ipu = PTu (E.4)

Iqi = QTi (E.5)

where P ∈ RU×K denotes the user embedding matrix and Q ∈ RI×K

denotes the item embedding matrix. K defines the number of hidden factors.
The interaction vectors X and Y are considered as another group of latent

factors associated with temporal dynamics xu for user u and yi for item i,
respectively. Consider, the user u interacted with item i in different times t,
formally defined as:

Iyu =
∑i∈T(u) fi√
|T(u)|

(E.6)

Ixi =
∑u∈T(i) gu√
|T(i)|

(E.7)

where Iyu is the time-based user embedding considering the fi latent fac-
tors and Ixi is the time-based item embedding considering the gu latent fac-
tors. T(u) and T(i) denotes all positive entries in X and Y, respectively.
Assuming that distinct items may interfere in distinct user’s preference, we
rewrite user-item interaction as:

Iyu = ∑
i∈T(u)

αifi (E.8)

Ixi = ∑
u∈T(i)

αugu (E.9)

where αi denotes the importance degree for item i rated by the user u at
time t and αu denotes the importance degree for user u interaction with item
i at time t. We define the importance degree for item i:

hi = tanh(Wcfi + ba) (E.10)

αi =
exp(hT

i ha)

∑i∈T(u) exp(hT
i ha)

(E.11)

124

4. Proposed Model

where Wc denotes the weight matrix, ba denotes the bias vector, and ha
is the time contextual vector. First, we give the item factor fi as the input
of one convolutional layer that produces hi as the latent representation of
fi. Then, we compute the similarity between hi and ha, resulting in a nor-
malized importance degree αi using a softmax function. We employ a similar
computation given by Equation E.10 and E.11 to calculate the time-based user
representation Ixi .

4.3 Pairwise Interaction Layer

The output from the embedding layer feeds the pairwise interaction layer
to model correlations between user u and item i in time t. We model the
user-item interactions considering the temporal context and obtain four rep-
resentation vectors as formally defined in Equation E.12.

en = φn
L(...(φ

n
2 (z0[n]))...) (E.12)

φn
l = σn

l (W
n
l zn

l−1 + bn
l), l ∈ [1, L] (E.13)

z0 = [pu ⊗ xi, pu ⊗ qi, yu ⊗ xi, yu ⊗ qi] (E.14)

where n ∈ {1, 2, 3, 4}; en is the deep representation of embedding in-
teraction learned by the n-th layer in the CNN, φn

l is the l-th layer in the

convolutional network n, Wj
l denotes the weight matrix, bj

l denotes the bias,
σn

l denotes the activation function, and z0 denotes the concatenation for pair-
wise correlations of user and item collective embedding.

4.4 Hidden Layer

The output of the pairwise interaction layer feeds into CNN in the hidden
layer. The CNN is responsible for learning non-linear interactions from the
interaction layer. We define the convolutional layer as c = FΘ(I), where FΘ
is the model of hidden layers with parameters Θ, and c is the feature maps
vector used to predict the final score. We describe the details about the CNN
in section 4.7.

4.5 Fusion Layer

The fusion layer is above the hidden layer, being responsible for combining
four latent feature vectors into a single one as specified in Equation E.15.

c f = δ f (W f z f + b f),

z f = c1 ⊕ c2 ⊕ c3 ⊕ c4 (E.15)

125

Paper E.

where W f is the weight matrix, b f is the bias vector, and δ f is the acti-
vation function. z f is the concatenation of four latent interaction representa-
tions.

4.6 Prediction Layer

The prediction layer uses the output vector z f from the fusion layer. The
prediction score is calculated considering the recommender system as a clas-
sification problem as defined by Rendle et al. [3]. First, let r̂vit = wTz f , where
vector w denotes the weights for the user-item-time interactions in z f . Then,
CoNCARS calculate the prediction score for user v and item j in time t, re-
sulting in a tuple (v, j, t). A positive result of the tuple (v, k, t) denotes that
r̂vjt should be larger than r̂vkt to have the correct label of +1. On the other
hand, a negative result has a label of 0.

4.7 Convolutional Layer

CNN architecture consists of complex concepts such as stride and padding as
explained by Goodfellow et al. [16]. In this paper, we only focus on describing
the most important settings concerning our network. The embedding size of
the input layer CNN is 64 × 64. The channel has 6 hidden layers with 32
feature maps. The feature maps c in the hidden layer l is represented as a
2D matrix of the interaction layer Ile. The stride is set as [1, 2, 2, 1] which
represents the example, height, width, and channel, respectively. Considering
these settings, the size of Ile is half of its previous layer l − 1. We denote the
feature maps of the first layer as a 3D tensor εl . The tensor in CNN allows
CoNCARS to capture specific temporal patterns considering the common
latent space. We define εl as:

εl = [el
v,j,d]32×32×32, where

el
v,j,d = ReLU(b1 +

c−1

∑
a=0

c−1

∑
b=0

e2v+a,2j+b.t1
1−a,1−b,d),

(E.16)

where b1 is the bias for the first layer, and T1 = [t1]2× 2× 32 is a 3D tensor
is the convolutional filter used to generate the learning representation in the
first layer. The activation function is set as ReLU to convert negative values
to zero. The same operation is applied in the following layers. However, now
there is a 3D tensor εl as input to the next layer l + 1 as formally described
as:

126

4. Proposed Model

εl+1 = [el+1
v,j,g]s×s×32, where 1 ≤ l ≤ 5, s =

64
2l+1

el+1
v,j,g = ReLU(bl+1 +

c−1

∑
a=0

c−1

∑
b=0

e2v+a,2j+b.tl+1
1−a,1−b,g),

(E.17)

where bl+1 is the bias, while [tl+1
a,b,d,g]2×2×32×32 is the 4D convolutional

filter for the following layer l + 1. The output generated by the last layer is
a tensor of dimension 1× 1× 32 used by the prediction layer to calculate the
final score with a weight vector w.

4.8 Learning Algorithm

Element-wise squared loss has been widely used for latent factor recommen-
dation models. However, it is not optimal for the ranking task. For a better
optimization regarding top-N task, CoNCARS applies Bayesian Personalized
Ranking (BPR) [3] as the pairwise optimization method.

During the representation learning CoNCARS uses mini-batch gradient
descent to calculate the gradient with a small batch of samples, and formulate
the training set as M in Equations E.18 and E.19.

Mp = (p, q, q′)|p ∈ P ∧ q ∈ Q+
p ∧ q′ ∈ Q\Q+

p (E.18)

Mt = (t, q, q′)|t ∈ T ∧ q ∈ Q+
t ∧ q′ ∈ Q\Q+

t , (E.19)

where p denotes the users latent factors, t represents the time, q denotes
the positive feedback, and q′ represents the non-interacted items. The objec-
tive function is defined as in Equation E.20.

LBPR(M) = ∑
(p,x,x′)∈Mpx

ln σ(Îpu)

+λ1 ∑
(p,q,q′)∈Mpq

ln σ(Îqi)

+λ2 ∑
(y,x,x′)∈Mut

ln σ(Îyu)

+λ3 ∑
(y,q,q′)∈Mui

ln σ(Îxi)

−λΘ||Θ||2F,

(E.20)

where σ is the sigmoid function; Θ = {P, Q, T} and λΘ = {λ4, λ5, λ6}.
The gradient of the objective function is given by Equation E.20 and maxi-
mized based on the first order derivatives as formulated in Equation E.21.

127

Paper E.

Algorithm 2 Mini-batch gradient descent method
Input : user vector u, item vector i user-time vector ut, item-time vector it,

regularization coefficients ˘Θ, batch size b, learning rate , number
of epochs epoch_max, and convergence criteria.

Output: top-n prediction given by the prediction score r̂.

29 initialize Θ randomly
epoch = 0
while not converged && epoch < epoch_max do

30 epoch+=1
shuffle all observed interaction
split all item-user interactions into b-size mini-batches
get the mini-batch in a sequential way
foreach mini-batch do

31 foreach record in current batch do
32 select 5 non-observed items q′ randomly from

Q\(Q+
p
⋃

Q+
r)

add the negative samples to the current batch

33 end
34 calculate the gradient according to Equation E.21 for current batch

Θ = Θ + 5ΘLBPR(M)

35 end
36 concatenate the output according to Equation E.15

calculate r̂ and predict the top-N items

37 end
38 return the top-N items

5ΘLBPR(M) = σ(−Îpu

∂Îpu

∂Θ
)

+λ1σ(−Îqi

∂Îqi

∂Θ
)

+λ2σ(−Îyu

∂Îyu

∂Θ
)

+λ3σ(−Îxi

∂Îxi

∂Θ
)

−λΘ||Θ||2F,

(E.21)

CoNCARS is trained using a mini-batch as shown in Algorithm 2. First,
we randomly initialized the parameters, then for each iteration, we compute
the gradients according to Equation (E.21) with a batch of b positive samples

128

5. Empirical Evaluation

and 5 b negative samples to construct 5 b preference pairs, and update the
parameters. Finally, CoNCARS predicts the top-N items.

4.9 Model Training

We train CoNCARS model based on the BPR objective [3] with Adagrad opti-
mizer [17]. Prior computing the Algorithm 2, we pre-trained the embedding
layer of CoNCARS using MF to avoid local optimal solutions, since the objec-
tive function is non-convex. After obtaining the parameters Θ, the first epoch
of CoNCARS is trained using L2-regularization. Once the network is trained
CoNCARS ranks the personalized list of items i for a user u in time t based
on the value of r̂uit = wTz f and r̂ujt = wTz f on the set of items.

5 Empirical Evaluation

The empirical evaluation aims to answer the following research questions:

RQ1 Does the proposed method CoNCARS outperform the state-of-art meth-
ods for item recommendations?

RQ2 How do the number of feature maps c and λ affect the performance of
CoNCARS?

5.1 Experimental Settings

Datasets. The experiments are performed on three datasets: MovieLens
10M1, Yelp 2, and Pinterest 3. They are public benchmark datasets for the rec-
ommender systems research community. We covert the datasets to implicit
feedback following the Equation E.1, where 1 denotes a user interaction with
an item, and 0 denotes otherwise. Table E.1 summarizes the statistics of each
dataset. To address the sparseness of the datasets we apply the settings rec-
ommended by He et al. [2] and thereby only retrieving users with minimum
20 interactions.

Statistics Movielens Yelp Pinterest
of Users 6,040 25,815 55,187
of Items 3,706 25,677 52,400
of Interactions 1,000,209 730,791 1,5000,809
Sparcity 95.53% 99.89% 99.73%

Table E.1: Statistics of the Datasets

1https://grouplens.org/datasets/movielens/1m/
2https://github.com/hexiangnan/sigir16-eals
3https://sites.google.com/site/xueatalphabeta/academic-projects

129

Paper E.

• Movielens 10M. is a movie dataset which has been widely used to eval-
uate the accuracy of collaborative filtering methods. This version has
more than one million user interactions, where each user rated at least
20 movies. The dataset contains explicit feedback which we converted
to implicit feedback to investigate the performance of our model in this
domain. [18].

• Yelp. is restaurant dataset obtained during the Yelp Challenge. In order
to provide new items to a user, we merged the repetitive ratings at
different timestamps to the earliest one as recommended by He et al. [2].

• Pinterest. is an implicit image dataset provided by Geng et al. [19]
to evaluate content-based image recommendation. Each user-item in-
teraction denotes whether the user has brought the image to her/his
collection.

5.2 Evaluation Protocol

The evaluation of the item recommendation task using implicit feedback
is performed using an adapted version of leave-one-out evaluation proto-
col [2, 20, 21]. The latest one user-item interaction is held-out considering
it as a positive testing set, and the remaining interactions that the user did
not rat before as training set. This strategy is computationally exhaustive.
Therefore, to minimize the drawback, we follow the strategy applied by [18],
where it randomly samples 100 items which are not interacted by the users.
During the training step, CoNCARS ranks the list of all non-interacted items
in the training set according to their prediction score. The top-N evaluation
for item recommendation is based on the N number of items in the ranking
list. The metrics used to evaluate the ranking list are Hit Ratio (HR) and Nor-
malized Discounted Cumulative Gain (NDCG) [2]. HR measures whether the
testing item is in the top-N list, considering the presence of an item as a hit.
NDCG, on the other hand, measures the quality of the prediction based on
the position of an item in the recommended list. In both metrics, high values
denote better performance.

5.3 Baseline Methods

The following state-of-art methods are used as baselines to evaluate CoN-
CARS performance.

• BPR [3] optimizes the MF model of Equation E.2 by applying a pair-
wise loss function to learn from implicit feedback. We applied a fixed
learning rate, which had the best performance in our experiments.

130

5. Empirical Evaluation

• CAMF [8] extends MF by using contextual features. In our experiments,
we use time as a context to represent users interactions.

• TF [22] identifies the correlations between the user, item, and time using
a three dimensional latent space. We set the embedding size with the
best performance in our experiments.

• CHNMF [4] decomposes the user-item interaction into a common latent
space combining users interactions, item’s attributes, and contextual in-
formation. In our experiment, we consider only the time as the contex-
tual feature and use the embedding size that had the best performance.

• Neural Matrix Factorization (NeuMF) [2] pre-trains multi-layer percep-
tron (MLP) network and MF separately, and then ensembles those two
models to predict the user’s preferences. We set the embedding as 16
for each layer, since larger values caused overfitting and dropped the
performance.

• Convolutional Matrix Factorization (ConvMF) [14] integrates convo-
lutional neural network (CNN) into probabilistic matrix factorization
(PMF). ConvMF aims to capture contextual information of documents
and further enhances the rating prediction accuracy. In our experi-
ments, ConvMF is trained to predict the top-N items for implicit feed-
back.

5.4 Parameters Settings

We developed the CoNCARS model in Python based on Tensorflow frame-
work. We tune the hyperparameters by keeping one training interaction for
each user in the validation set. We optimize the regularization terms sepa-
rately for the embedding layer, convolutional layers, and output layer in the
range of [0.001, 0.01, ..., 100]. We set the embedding size as 64 for all baseline
models and apply the BPR loss using Adagrad optimization with a learning
rate of η = 0.05 and batch size of 512 for a fair comparison. We set the num-
ber of layers of NeuMF method between one and three as recommended by
He et al. [2]. We pre-train the embedding layers of the neural baseline mod-
els using BPR and tuned their L2-regularization with the best values when
achieving the best performance.

5.5 Performance Comparison (RQ1)

Table E.2 summarizes the performance comparison for top-N recommenda-
tion in the datasets. The analysis considers N = 10 and N = 20 list of items as
they are generally used to express the effectiveness of item recommendation.

131

Paper E.

Movielens Yelp Pinterest
HR@N NDCG@N HR@N NDCG@N HR@N NDCG@N

N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20 N=10 N=20
CAMF 0.4816 0.4929 0.1999 0.2517 0.0535 0.1006 0.0514 0.0591 0.5738 0.5911 0.3337 0.3619
TF 0.5395 0.5548 0.3076 0.4189 0.0991 0.2061 0.0953 0.0982 0.6914 0.7028 0.4574 0.4777
CHNMF 0.5500 0.5711 0.3244 0.4365 0.1121 0.2150 0.1001 0.1013 0.7164 0.7502 0.4918 0.5009
BPR 0.5841 0.6573 0.3664 0.4395 0.1558 0.2607 0.1042 0.1379 0.7464 0.8025 0.5119 0.5371
NeuMF 0.6774 0.7300 0.4133 0.4470 0.1841 0.2967 0.1095 0.1538 0.7593 0.8770 0.5324 0.5520
ConvMF 0.6801 0.7558 0.4171 0.4494 0.1937 0.3005 0.1102 0.1547 0.7921 0.8995 0.5383 0.5636
CoNCARS 0.6974 0.8422 0.4235 0.4596 0.2442 0.3751 0.1220 0.1588 0.8801 0.9691 0.5588 0.5749

Table E.2: Top-N recommendation performance at N = 10 and N = 20. The bold font indicates
the best results.

CoNCARS outperforms ConvMF by 9% because it applies conventional
element-wise product rather than the pairwise product to capture the user,
item, and time correlations. Furthermore, ConvMF does not use temporal
features to identify the user’s preferences according to different timestamps.

CoNCARS presents a relative improvement of 10, 25% when compared to
NeuMF. The best performance achieved by CoNCARS relies on three factors
the use of time as a feature, use of pairwise interaction layer and CNN to
learn the non-linear features. Time has proved to be an essential feature to
model the user-item interactions, due to providing a more accurate sequence
of items in the top-N list. The pairwise product among the user, item, and
time embeddings captures better correlations among the embedded repre-
sentations than the element-wise product.

NeuMF applies MLP to learn non-linear interactions between the user
and item, while CoNCARS uses CNN for this purpose. MLP has a good rep-
resentation ability as described by Hornik et al. [23], however it uses a large
number of parameters. For example, assuming the embedding size as 32 and
1-layer MLP would have around 4 million parameters, while our 6-layer CNN
has around 20 thousand parameters. The number of parameters required by
MLP may drop its performance to converge to the optimal solution when
compared with methods using CNN.

Despite CoNCARS and BPR applying the same loss function, we observe
a relative improvement of 24% of the first one compared to the last. The
use of a collective embedding layer together with a CNN layer by CoNCARS
increased its accuracy for top-N recommendation.

By comparing CoNCARS with CHNMF, we observe an average relative
improvement of 37, 8%. The strategy of applying pairwise product by CoN-
CARS rather than point-wise squared loss as used by CHNMF, allowed CoN-
CARS to present a better learning process of user and item correlations over
time. Furthermore, using CNN to identify non-linear correlations from the
user, item, and time embeddings.

TF demonstrates a good representation learning for the user, item, and
time embeddings. However, it fails to capture temporal dynamics due to the
limitation of relying only on the current time-slot. Moreover, TF is not able

132

5. Empirical Evaluation

0.001 0.01 0.1 1 10 100 1000

λ

0.73

0.74

0.75

0.76

H
R
@
1
0

HR

NDCG

0.49

0.50

0.51

0.52

0.53

N
D
C
G
@
1
0

0.001 0.01 0.1 1 10 100 1000

λ

0.305

0.310

0.315

0.320

0.325

0.330

H
R
@
1
0

HR

NDCG
0.16

0.17

0.18

0.19

0.20

N
D
C
G
@
1
0

0.001 0.01 0.1 1 10 100 1000

λ

0.894

0.896

0.898

0.900

0.902

0.904

0.906

H
R
@
1
0

HR

NDCG 0.585

0.590

0.595

0.600

0.605

N
D
C
G
@
1
0

Fig. E.3: Performance of CoNCARS regarding to hyper-parameter λ on Movielens (left), Yelp
(center), and Pinterest (right).

to identify non-linear correlations. The relative improvement observed gives
CoNCARS a better performance of 43%.

CoNCARS has an average relative improvement of 65, 5% in comparison
to CAMF. CAMF’s poor performance may be caused by its use of time as a
contextual feature in the conventional MF method, resulting in the inability
to capture temporal patterns. Using conventional MF, CAMF is not able to
capture the non-linear interactions as the neural models.

Among the baselines, ConvMF performs the best, proving the advan-
tage of CNN to learn non-linear correlations between user-item interactions.
CAMF had the weakest performance as it does not use multi-dimensional
representation during the learning step. CHNMF and TF represent the cor-
relations among user and items over time in a higher-dimensional repre-
sentation. However, they do not optimize their objective function applying
pairwise correlation, causing a weaker performance than ConvMF.

5.6 Hyper-parameters Analysis (RQ2)

CoNCARS has two hyper-parameters that can affect its effectiveness. λ and
c. λ defines the regularization term, and c denotes the number of feature
maps per convolutional layer. We analyze the results for different values of λ
and c in three datasets: Movielens, Yelp, and Pinterest.

The results regarding the hyper-parameter λ are shown in Figure E.3 con-
sidering different values of λ. The curve observed in Figure E.3 leads to
interpreting that values of λ smaller than 1 demonstrate gradual improve-
ments in the performance when we analyze the convergence curve for the
Movielens, Yelp, and Pinterest datasets. However, values larger than 1 keep
the performance stable until a value of 1, 000.

Figure E.4 illustrates the top-N effectiveness for different values of hyper-
parameter c. For all values of c, CoNCARS presents a gradual increase in
the learning curve and finally reaches the convergence with a slight differ-
ence. The slight difference leads us to the conclusion that different values
of c achieve similar performance, making CoNCARS suitable for real-world
usage.

133

Paper E.

8 16 32 64

#Factors

0.735

0.740

0.745

0.750

0.755

0.760

H
R
@
1
0

HR

NDCG
0.500

0.505

0.510

0.515

0.520

0.525

0.530

0.535

N
D
C
G
@
1
0

8 16 32 64

#Factors

0.30

0.31

0.32

0.33

H
R
@
1
0

HR

NDCG
0.16

0.17

0.18

0.19

0.20

N
D
C
G
@
1
0

8 16 32 64

#Factors

0.875

0.880

0.885

0.890

0.895

0.900

0.905

H
R
@
1
0

HR

NDCG
0.585

0.590

0.595

0.600

0.605

N
D
C
G
@
1
0

Fig. E.4: Performance of CoNCARS regarding the number of factors on Movielens (left), Yelp
(center), and Pinterest (right).

6 Conclusion

We proposed a collective embedding for neural context-aware recommender
systems for item recommendations using implicit feedback. We explain how
CoNCARS uses temporal information in the feature embedding and why
it is an important feature for the recommendation task. Furthermore, the
paper described how the joint embedding and CNN improve the learning
representation of the user and item interaction over time. Finally, we present
the experimental results and CoNCARS performance regarding the hyper-
parameters variance.

CoNCARS has proved to be useful for top-N item recommendations con-
sidering implicit feedback. Moreover, pre-training the model using MF with
temporal information has presented good performance when used as input
data to the CNN. Learning deep representations for pairwise interactions
among user and item embedding over time improved the accuracy for pre-
dicting the user’s preference score, as observed in the results of our experi-
ments in the three benchmark datasets.

In the future, we will investigate other features that may influence in
the prediction of the user’s preferences, such as item’s reviews [24] as richer
contextual information due to a broader description given by users and user’s
viewpoints [25]. Another research direction is to model user’s social relations
and influence [26] since similar users tend to help in the decision-making of
each other. Moreover, we would like to apply attention mechanism [27] to
improve the recommendations based on user and item similarities.

7 Acknowledgments

The authors wish to acknowledge the financial support and the fellow schol-
arship given to this research from the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico - CNPq (grant# 206065/2014-0).

134

References

References

[1] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking
for recommendation,” in SIGIR, 2018, pp. 355–364.

[2] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
“Neural collaborative filtering,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW ’17. Republic and
Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2017, pp. 173–182. [Online]. Available:
https://doi.org/10.1145/3038912.3052569

[3] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings of
the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, ser. UAI
’09. Arlington, Virginia, United States: AUAI Press, 2009, pp. 452–461.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1795114.1795167

[4] F. Costa and P. Dolog, “Hybrid learning model with barzilai-borwein
optimization for context-aware recommendations,” in Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society Con-
ference, FLAIRS 2018, Melbourne, Florida USA., May 21-23 2018., 2018, pp.
456–461.

[5] P. Bhargava, T. Phan, J. Zhou, and J. Lee, “Who, what, when, and
where: Multi-dimensional collaborative recommendations using tensor
factorization on sparse user-generated data,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW ’15. Republic
and Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2015, pp. 130–140. [Online]. Available:
https://doi.org/10.1145/2736277.2741077

[6] P. G. Campos, F. Díez, and I. Cantador, “Time-aware recommender sys-
tems: a comprehensive survey and analysis of existing evaluation proto-
cols.” User Model. User-Adapt. Interact., vol. 24, no. 1-2, pp. 67–119, 2014.

[7] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, “Tem-
poral collaborative filtering with bayesian probabilistic tensor factoriza-
tion,” in Proceedings of the 2010 SIAM International Conference on Data
Mining. SIAM, 2010, pp. 211–222.

[8] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin,
K.-H. Lüke, and R. Schwaiger, “Incarmusic: Context-aware music rec-
ommendations in a car,” in E-Commerce and Web Technologies. Springer,
2011, pp. 89–100.

135

https://doi.org/10.1145/3038912.3052569
http://dl.acm.org/citation.cfm?id=1795114.1795167
https://doi.org/10.1145/2736277.2741077

References

[9] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[10] X. He, M.-Y. Kan, P. Xie, and X. Chen, “Comment-based multi-
view clustering of web 2.0 items,” in Proceedings of the 23th
International Conference on World Wide Web, ser. WWW ’14. New
York, NY, USA: ACM, 2014, pp. 771–782. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2567975

[11] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint
nonnegative matrix factorization,” in Proc. of Intl. Conf. on Data Mining.
SIAM, 2013, pp. 252–260.

[12] M. Saveski and A. Mantrach, “Item cold-start recommendations:
Learning local collective embeddings,” in Proceedings of the 8th
ACM Conference on Recommender Systems, ser. RecSys ’14. New
York, NY, USA: ACM, 2014, pp. 89–96. [Online]. Available:
http://doi.acm.org/10.1145/2645710.2645751

[13] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denois-
ing auto-encoders for top-n recommender systems,” in Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining, ser.
WSDM ’16. New York, NY, USA: ACM, 2016, pp. 153–162.

[14] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factor-
ization for document context-aware recommendation,” in Proceedings of
the 10th ACM Conference on Recommender Systems, ser. RecSys ’16. New
York, NY, USA: ACM, 2016, pp. 233–240.

[15] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[17] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, pp. 2121–2159, 2011.

[18] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’08. New York, NY, USA: ACM, 2008, pp. 426–434. [Online].
Available: http://doi.acm.org/10.1145/1401890.1401944

[19] X. Geng, H. Zhang, J. Bian, and T.-S. Chua, “Learning image and user
features for recommendation in social networks,” in Proceedings of the

136

http://doi.acm.org/10.1145/2566486.2567975
http://doi.acm.org/10.1145/2645710.2645751
http://doi.acm.org/10.1145/1401890.1401944

References

2015 IEEE International Conference on Computer Vision (ICCV), ser. ICCV
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 4274–
4282.

[20] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix
factorization models for recommender systems,” in Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 3203–3209. [Online]. Available: https://doi.org/10.
24963/ijcai.2017/447

[21] W. Cheng, Y. Shen, Y. Zhu, and L. Huang, “Delf: A dual-
embedding based deep latent factor model for recommendation,” in
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 3329–3335. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/462

[22] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver,
“Multiverse recommendation: N-dimensional tensor factorization
for context-aware collaborative filtering,” in Proceedings of the
Fourth ACM Conference on Recommender Systems, ser. RecSys ’10.
New York, NY, USA: ACM, 2010, pp. 79–86. [Online]. Available:
http://doi.acm.org/10.1145/1864708.1864727

[23] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, Mar. 1991.

[24] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware ex-
plainable recommendation by modeling aspects,” in Proceedings of the
24th ACM International on Conference on Information and Knowledge Man-
agement, ser. CIKM ’15. New York, NY, USA: ACM, 2015, pp. 1661–1670.

[25] Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke, “Social collaborative
viewpoint regression with explainable recommendations,” in Proceedings
of the Tenth ACM International Conference on Web Search and Data Mining,
ser. WSDM ’17. New York, NY, USA: ACM, 2017, pp. 485–494.

[26] M. A. Saleem, F. S. da Costa, P. Dolog, P. Karras, T. Calders, and T. B.
Pedersen, “Predicting visitors using location-based social networks,” in
MDM, 2018, pp. 245–250.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Cur-
ran Associates, Inc., 2017, pp. 5998–6008.

137

https://doi.org/10.24963/ijcai.2017/447
https://doi.org/10.24963/ijcai.2017/447
https://doi.org/10.24963/ijcai.2018/462
http://doi.acm.org/10.1145/1864708.1864727

References

138

Paper F

Convolutional Adversarial Latent Factor Model for
Recommender System

Felipe Costa and Peter Dolog

The paper was accepted and will be published in the
Proceedings of the Thirty-Second International Florida Artificial Intelligence
Research Society Conference, FLAIRS 2019, Sarasota, Florida USA, 2019.

Abstract

The high accuracy of Top-N recommendation task is a challenge in the systems with
mainly implicit user feedback considered. Adversarial training has presented suc-
cessful results in identifying real data distributions in various domains (e.g., image
processing). Nonetheless, adversarial training applied to the recommendation is still
challenged especially by interpretation of negative implicit feedback causing it to
converge slowly as well as affecting its convergence stability. The researchers [1, 2]
denotes the misinterpretation to high sparsity of the implicit feedback and discrete val-
ues characteristic from items recommendation. To face these challenges, we propose a
novel model named convolutional adversarial latent factor model (CALF), which uses
adversarial training in generative and discriminative models for implicit feedback rec-
ommendations. We assume that users prefer observed items over generated items and
then apply the pairwise product to model the user-item interactions. Additionally,
the hidden features become input data of our convolutional neural network (CNN)
to learn correlations among embedding dimensions. Finally, Rao-Blackwellized sam-
pling is adopted to deal with the discrete values optimizing CALF and stabilizing
the training step. We conducted extensive experiments on three different benchmark
datasets, where our proposed model demonstrates its efficiency for item recommenda-
tion.

The layout has been revised.

1. Introduction

1 Introduction

The internet has been facing an information overload due to a large amount
of shared data on the Web. Recommender systems have been studied to
help to overcome the information overload problem, aiming to predict user’s
preferences based on her/his history or popular items. Collaborative filter-
ing (CF) has been the most commonly used method [3, 4]. Among the CF
techniques, matrix factorization (MF) has become the most popular [5, 6] due
to high accuracy in modeling the interaction between users and items such as
browsing, rating, and clicking in latent space. Lately, implicit feedback has
been extensively explored due to its practicality and accessibility in online
services, turning the goal of recommender systems from rating predictions
to learning to rank. The recommendation model aims to predict a personal-
ized ranking over a set of items for each user based on the similarities among
the users and items. Nevertheless, unobserved items from implicit feedback
lead us to misinterpret negative values because they may be unseen items or
items whose a user did not like.

To handle the research challenges mentioned above, we explore adver-
sarial training to model users preferences from implicit feedback. Following
the concept given by [7] Generative Adversarial Networks (GAN) have two
components: a generative model trying to generate real samples and a dis-
criminative model discriminating whether the samples are real or not. The
idea is to train the model to defend against an adversary, such as the fake
samples. Adversarial training has gained success in image processing and
natural language processing, however in recommender systems it faces two
issues: highly sparse data and discrete item values. The sparse data may
cause gradient vanishing or update instability, and the discrete values do
not allow the adversarial training to directly optimizes using the gradient
descent. Recently, [8] proposed Information Retrieval GAN (IRGAN) which
applies adversarial training in the information retrieval field. IRGAN uses
policy gradient strategy to obtain the model parameters. However, the vari-
ance of the estimated gradients increases linearly according to the number
of items, making this solution impractical in recommender systems, since a
large amount of items may increase the vulnerability of adversarial training.

In order to solve the research challenges mentioned above, we propose
a new adversarial training model for implicit recommender systems named
CALF. Considering the adversarial training as a battle, the generative model
aims to identify the user preferences by fighting with the discriminative
model. The discriminative model aims to estimate the distribution distance
between the generative model and the user preferences, while the generative
model aims to minimize the estimated distance by capture the actual distri-
bution. Assuming the user prefers observed items over the generated items

141

Paper F.

and the adversarial training as a battle, the generative and the discriminative
models are opponents alternately optimizing the pairwise loss function. The
goal is to improve the discriminator’s judgment by minimizing the pairwise
objective function, while the generator tries to generate user preferred items.
The adversarial training process helps to handle the negative samples and
avoiding to design specific sampler as in the policy gradient method. More-
over, we replace the non-differentiable item sampling by a differentiable item
generating procedure using Rao-Blackwellized sampling allowing the con-
volutional adversarial latent factor model (CALF) to update the gradients
derived from the discriminator into the generator smoothly, allowing CALF
to be trained by the standard gradient descent method rather than policy
gradient.

The paper presents the following contributions:

• A new model named CALF to improve the prediction based on user’s
preferences;

• An adversarial training model for a better learning correlation between
the embedding dimensions and accelerating the convergence;

• A differentiable sampling method to deal with the discrete values al-
lowing CALF to optimizes with gradient descent;

• Empirical evaluation in three benchmark datasets demonstrates the ef-
fectiveness of the CALF model.

2 Related Works

Extensive work has been done in recommendations using explicit feedback.
However, many online services rely on implicit feedback, where the main task
from the recommendation system perspective is to provide a personalized list
of items to each user rather than to predict the user ratings. Researchers from
the recommender systems field have been investigating neural network tech-
niques applied to collaborative filtering due to their ability to learn feature
representations.

Restricted Boltzmann machines have proven better performance than tra-
ditional MF to perform CF [9], where [10] incorporate correlation between
users and items to increase their efficiency. Other studies have focused on se-
quential recommendations such as music [11], where their goal is to learn the
content features of items. Furthermore, some researchers incorporate multi-
ple features of users and items into their recommender model, for example,
WideDeep from Google [12] and D-Attn from [13]. However, in this paper,
we focus on adversarial training for collaborative filtering.

142

3. Problem Formulation

[14] introduced NCF to model user-item interaction function with im-
plicit feedback combining a shallow MF-based neural network with a multi-
layer perceptron. Recently, an extended version named CNCF [1] uses an
interaction map layer applying the outer product to model pairwise correla-
tions between embedding dimensions. Furthermore, the embedded vectors
are used as input for the CNN to learn the user-item interactions. Despite
the effectiveness of NCF and CNCF, the neural collaborative filtering mod-
els have neglected adversarial perturbations causing vulnerabilities in their
performance. Therefore, researchers proposed adversarial training for col-
laborative filtering, such as Adversarial Matrix Factorization (AMF) [15], IR-
GAN [8]), and CFGAN [2]. AMF applies adversarial personalized ranking
(APR) on the MF method. IRGAN uses adversarial training into information
retrieval field through element-wise product and defines the objective func-
tion via a probability-based method. CFGAN explores vector-wise adversar-
ial training to solve the problem of discrete items. However, in both IRGAN
and CFGAN the discriminative model performs as a binary classifier whose
predicted values represent the probability that a user liked an item. In con-
trast, CALF is a pairwise method applying a generative and discriminative
model based on CNN learning using adversarial training to learn user-item
interactions.

3 Problem Formulation

The research problem investigated in the paper is defined as follows: How
to improve Top-N recommendation task using convolutional adversarial latent factor
model?

Consider a set of users U = {u1, ..., uM} and a set of items I = {i1, ..., iN}.
Let Y = {yvj ∈ RM×N |1 ≤ yvj ≤ 5} denotes the rating matrix, where yvj is
the rating of user v on item j, and we label as unk if it is unknown. Then,
model the matrix Y with implicit feedback as Eq. F.1.

Yvj =

{
0, if yvj = unk
1, otherwise

(F.1)

The latent factor models define the recommender systems as the problem
of predicting the preference score of each unobserved entry in Y to further
rank the list of items. We generate the scores as defined in Eq. F.2.

Ŷvj = F(uv, ij|Θ) (F.2)

where Ŷvj is the predicted score of interaction Yvj between user uv and
item ij, Θ is the model parameters, and F is the function which estimates the
predicted scores based on Θ. The function F leads to find the optimal list of

143

Paper F.

items for an individual user according to users preferences.
Traditionally, MF methods define the function F based on element-wise

product of pv and qj to predict Ŷvj as demonstrated by [5], where pv and qj
defines the hidden latent factors of uv and ij, respectively.

Ŷvj = F(uv, ij|Θ) = pT
v qj (F.3)

We apply the pairwise product to calculate the interactions between users
and items. The advantage in comparison with the element-wise product is
a better representation model for non-linear interactions between users and
items through a deep learning architecture. The loss function of the pairwise
method follows the strategy given by [16] where the difference between the
items’ ranking scores is given by:

Lvjk = ln σ(ŷvj − ŷvk), (F.4)

where ŷ is a ranking score, and a small loss represents high confidence
that user v prefers item j over item k.

We use the following notations in further sections: u denotes a user and i
denotes an item; v and j are indexes used to represent u and i, respectively.
Y defines the user-item rating matrix mapped using Eq. F.1, where I+ is the
observed interactions and I− unobserved interactions. Finally, (v, j) denotes
the −th element from the matrix Y.

4 Proposed Model

CALF is illustrated in Figure F.1, where the design of the prediction model
defined in Eq. F.2 can be observed. In the following section, we describe the
detailed architecture of the CALF model.

−
ln	𝜎(𝑦()*+ −

𝑦(*,)

𝑄/×12

pv

𝑦(*

(v,j)
v j

𝑃4×1
2

⨂ 𝑔

⨂ ∆

Rao-Blackwellized
Sampling

𝑃4×1
H

𝑄/×1
H

𝑄/×1
H

𝑞(∆

⨂

𝑞+

pv

⨀ 𝑦(*,

𝑦(*+⨂

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

Generative Model Sampling Discriminative Model

Fig. F.1: Convolutional Adversarial Latent Factor Model

144

4. Proposed Model

4.1 CALF Architecture

CALF has a generator gθ and a discriminator dφ, where θ and φ are the pa-
rameters for the generative and discriminative models, respectively. Further-
more, sθ denotes the generator distributions and sreal denotes the user’s true
preferences. Specifically, the generator gθ tries to generate personalized items
for each user through minimizing the distance between sθ and sreal . While
the discriminator dφ discriminates whether a user u prefers item j over k.

The convolutional layer in our generator and discriminator is inspired
by [1]. The CNN is responsible for processing the useful signal from the
pairwise user-item interactions. The embedding size of the input layer CNN
is 64× 64. The channel has 6 hidden layers where each of them has 32 feature
maps. A feature map y in the hidden layer l is represented as a 2D matrix
of the interaction layer Sly. The stride is set as [1, 2, 2, 1] which represents
the example, height, width, and channel, respectively. The padding is defined
as SAME. Considering these settings, the size of Slc is half of its previous
layer l − 1. Let y = F(gθ |dφ), where F(gθ |dφ) is the model function with the
parameters θ and φ. y is the mapping feature vector used to predict the final
score.

Assuming that the user prefers the observed items over the generated
items, the training step in the discriminator is a tuple (u, j, k), where user
u ∈ U, item j ∈ I+u and item k is sampled from sθ(k|u). The discriminator
objective function is defined as:

J(gθ , sφ) = max
θ

min
φ

m

∑
u=1

Ej∼sreal(j|u)&&k∼sθ(k|u)

ln σ(ŷvj − ŷvk),

(F.5)

where ln σ(·) is the pairwise loss function. CALF adopts the logistic loss
function proposed by [17], where the discriminator approximates the distance
between sθ and sreal . Note, while the discriminator in CALF minimizes the
objective function and the generator maximizes the objective function, in the
original GAN the loss function behaves oppositely.

4.2 Sampling Strategy

Due to the discrete nature of item sampling, the gradients derived from the
objective function can not directly feed the generator. To solve this problem,
IRGAN applies the policy gradient (reinforcement learning) to estimate the
generator’s gradients. However, the policy gradient presents two significant
drawbacks: unstable training and slow convergence. To avoid these issues
[18] propose to relax the discrete items. Rao-Blackwellization [19] proposes
to reduce the variance of stochastic gradient estimators. In this paper, Rao-

145

Paper F.

Blackwellization is adopted to solve the issues with the discrete items; then,
we optimize CALF using gradient descent.

For user u, we denote v̂u ∈ Rn as the the vector of item ranking scores
and g∆ as the adversarial perturbations vector whose elements are randomly
resulted from Rao-Blackwellization (0, 1). The sampling is defined as:

∆ =
1
n

n

∑
i=1

2v̂u + g∆

gi + 1
, (F.6)

where ∆ is the generated analogous one-hot item vector. To differentiate
∆ from the real items, we name it as a fake item. Each real item has a corre-
spondent feature vector. However, it is not possible to define a feature vector
for each fake item, because it can exist an infinite number of them. Therefore,
we define a differentiable method to obtain the feature vector of each fake
item as:

q̂ = ∆Q, (F.7)

where ∆ ∈ Rn is a fake item, Q ∈ Rn×h is the fake items embedding
matrix and q̂ ∈ Rh is the feature vector of item ∆. h is the number of hidden
features. The described strategy proposes to overcome the discrete items
challenge and facilitates the gradient information updates into the generator.

The parameters φ from the discriminator can now update via gradient
descent aiming to minimize the objective function:

φ← φ− lr×∇φ ln σ(ŷφ(vj)− ŷφ(vk)). (F.8)

On the other hand, the parameters θ from the generator aim to maximize
the objective function and optimizes using gradient ascent:

θ ← θ + lr×∇θ ln σ(ŷθ(vj)− ŷθ(vk)). (F.9)

lr denotes the learning rate. The proposed algorithm is described in Al-
gorithm 3.

5 Empirical Evaluation

We describe the experimental setup used to evaluate the CALF model per-
formance explaining the datasets, evaluation metrics, baseline methods, and
CALF settings. Moreover, we define the following research questions:

RQ1 Does the proposed model, CALF, outperform the state-of-art methods
for item recommendations?

146

5. Empirical Evaluation

Algorithm 3 CALF Algorithm
Input : generator gθ , discriminator dφ, user-item interactions Y, learning

rate , number of epochs epoch_max, and convergence criteria.
Output: top-n prediction from the prediction score ŷ.

39 initialize θ and φ randomly
epoch = 0
while not converged && epoch < epoch_max do

40 epoch+=1
shuffle all observed interaction
foreach discriminator step do

41 foreach observed feedback (u, j) in current batch do
42 compute the generator items ranking scores v̂u for user u

generate a fake item k from gθ for user u via Equation F.6
get feature vector of fake item k via Equation F.7
compute the pairwise loss ln σ(ŷvj − ŷvk)
update the discriminator parameters φ via Equation F.8

43 end
44 end
45 foreach generator step do
46 foreach observed feedback (u, j) in current batch do
47 compute the generator items ranking scores v̂u for user u

generate a fake item k from gθ for user u via Equation F.6
get feature vector of fake item k via Equation F.7
compute the pairwise loss ln σ(ŷvj − ŷvk)
update the discriminator parameters θ via Equation F.9

48 end
49 end
50 end
51 return the top-N items

RQ2 Does the Rao-Blackwellization sampling strategy outperform the policy
gradient method?

RQ3 Does CALF improve the training convergence?

5.1 Experimental Settings

Datasets. The experiments of the CALF model and baselines were con-
ducted on three datasets: MovieLens 10M1, Yelp 2, and Pinterest 3. They

1https://grouplens.org/datasets/movielens/1m/
2https://github.com/hexiangnan/sigir16-eals
3https://sites.google.com/site/xueatalphabeta/academic-projects

147

Paper F.

are public benchmark datasets for recommender systems research commu-
nity, and publicly available on their websites. The datasets were converted
to implicit feedback following Eq. F.1, where 1 denotes a user interaction
with an item and 0 otherwise. Table F.1 presents the statistics of the three
datasets. We consider only users with minimum 20 interactions as recom-
mended by [14] due to high sparsity in the datasets.

Statistics Movielens Yelp Pinterest
of Users 6,040 25,815 55,187
of Items 3,706 25,677 52,400
of Interactions 1,000,209 730,791 1,5000,809
Sparcity 95.53% 99.89% 99.73%

Table F.1: Statistics of the Datasets

Evaluation Metrics. To evaluate item recommendation using implicit feed-
back, the widely used leave-one-out evaluation protocol [1, 14] was applied.
The latest user-item interaction is held-out as the testing set, and the remain-
ing interactions as the training set. The strategy applied by [6] is adopted
to minimize the time consumed during the evaluation of the top-N recom-
mendation task. Then, randomly sample 100 items which are not interacted
by the users. During the training process, the personalized ranking of all
items which are not interacted by the user in the training set according to
the prediction score. To evaluate the performance of item recommendation
considering the top-N task, we truncate the ranking list at position N. The
metrics used to evaluate the ranking list are Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG) [14]. HR measures whether the testing
item is in the top-N list. NDCG considers not only the presence of an item in
the top-N list and its position.

Baseline Methods. The following state-of-art methods are used as baselines
to compare the effectiveness of the CALF method.

• AMF [15] applies adversarial personalized ranking (APR) on the shal-
low state-of-art MF method demonstrating good improvements in dif-
ferent datasets.

• CNCF [1] applies the outer-product pairwise model to learn the corre-
lations between the embedding dimensions, and CNN in their hidden
layer to learn the correlations in hierarchical steps;

• IRGAN [8] applies the element-wise method to the generative and dis-
criminative models, where the discriminator is a binary classifier, and it

148

5. Empirical Evaluation

Movielens Yelp Pinterest
HR@N NDCG@N HR@N NDCG@N HR@N NDCG@N RI

N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10 N=5 N=10
AMF 0.5331 0.7255 0.3517 0.4444 0.1176 0.2385 0.0950 0.1065 0.7098 0.8972 0.4946 0.5658 +31%
IRGAN 0.5400 0.7301 0.3744 0.4665 0.1321 0.2550 0.1035 0.1113 0.7200 0.9002 0.5111 0.5832 +25%
CNCF 0.6103 0.8041 0.4316 0.5011 0.1578 0.2686 0.1073 0.1200 0.7489 0.9026 0.5367 0.5881 +20%
CFGAN 0.6805 0.8352 0.4991 0.5640 0.1829 0.2889 0.1184 0.1459 0.7668 0.9053 0.5513 0.5928 +15%
CALF 0.7124 0.8596 0.5121 0.6153 0.2037 0.3148 0.1364 0.1681 0.7811 0.9155 0.5742 0.6159 -

Table F.2: Top-N recommendation performance at N = 5 and N = 10. The bold font indicates
the best results. RI indicates the relative improvement of CALF over the corresponding baseline
on average.

uses probability to obtain the objective function. Furthermore, IRGAN
applies reinforcement learning to handle the discrete item problem.

• CFGAN [2] proposes a vector-wise adversarial training to deal with the
discretization of items.

Modeling Settings. We implement the CALF model in Python based on
Tensorflow framework. CALF achieves the best performance in our experi-
ments with the hyper-parameters set as below:

• The embedding size of 64 and optimized the loss function using mini-
batch Adagrad with a batch size of 512;

• The learning rate lr for both embedding and CNN is set as grid search
from {0.001, 0.005, 0.01, 0.05, 0.1};

• The adversarial regularization term λ is set to 1 to ensure that the dis-
criminator satisfies the Lipschitz constraint regarded by the logistic loss.

5.2 Performance Comparison (RQ1)

Table F.2 summarizes the results regarding the performance comparison for
top-N recommendation in the datasets. The analysis was made considering
N = 5 and N = 10 as they are generally used to express the effectiveness of
item recommendation.

CALF has an average relative improvement of 31% when compared to
AMF. AMF applies adversarial perturbations to the shallow MF method,
what may cause poor performance in comparison to other methods using
CNN. Indicating that CNN has a better learning curve when representing
users and items embeddings considering the item recommendation task.

IRGAN presents a good overall performance. However, due to its use of
the element-wise product, CALF outperforms it with a relative improvement
of 25%.

CNCF proves the advantage of applying pairwise correlations and us-
ing CNNs to learn non-linear user-item correlations. However, CNCF is not

149

Paper F.

0 25 50 75 100 125 150 175 200

#Epoch

0.50

0.52

0.54

0.56

0.58

0.60

N
D
C
G
@
1
0

Log-loss

Log-PG

0 25 50 75 100 125 150 175 200

#Epoch

0.12

0.13

0.14

0.15

0.16

0.17

N
D
C
G
@
1
0

Log-loss

Log-PG

0 25 50 75 100 125 150 175 200

#Epoch

0.602

0.604

0.606

0.608

0.610

0.612

0.614

0.616

N
D
C
G
@
1
0

Log-loss

Log-PG

Fig. F.2: Differentiable sampling and policy gradient performance on Movielens (left), Yelp (cen-
ter), and Pinterest (right).

able to refine the relevance between user and items because it does not ap-
ply adversarial training. CALF presents a relative improvement of 20% in
comparison to CNCF.

CALF outperforms CFGAN with a relative improvement of 15% due to
its use of pairwise training and sample strategy, facilitating the adversarial
training. Furthermore, CALF applies CNN, demonstrating a higher accuracy
when learning non-linear user and item embeddings.

The results present the effectiveness of CALF, achieving the best overall
performance in all datasets.

5.3 Sampling Strategy Effectiveness(RQ2)

The sampling strategy for discrete values was evaluated considering CALF
using logistic loss function with policy gradient. The hyper-parameters from
logistic loss and policy gradient have the same values for a fair comparison.

As illustrated in Figure F.2 the learning curve of logistic loss with gradient
descent is stable in comparison with policy gradient. Analyzing the Figure
F.2, a peak is observed in the policy gradient loss when the adversarial train-
ing starts, but after some epochs, it drops, and, finally starts increasing again.
On the other hand, the logistic loss using the sampling strategy for discrete
values keeps stable during the training step. In other words, the policy gra-
dient has slower convergence, which may be caused by the high variance of
the policy gradient. Reducing the gradient variance improves the adversarial
training.

5.4 Time Complexity Analysis (RQ3)

The complexity analysis of GAN models is O(|Y|nh), where |Y| denotes the
number of user-item interactions. CALF has additional computations when
compared, for example, with the policy gradient applied by IRGAN. How-
ever, the computational time in adversarial models relies on the iterations.
Moreover, the generative and discriminative models of CALF alternates the

150

6. Conclusion

Movielens Yelp Pinterest
CALF AMF CNCF IRGAN CFGAN CALF AMF CNCF IRGAN CFGAN CALF AMF CNCF IRGAN CFGAN

D 1 m - - 45 s 50 s 1.7 m - - 55 s 1.3 m 1.9 m - - 1.9 m 1.9 m
G 1.7 m - - 1.5 m 1.2 m 3.9 m - - 1.7 m 2.5 m 3.7 m - - 4.9 m 3.9
EC 50 60 50 60 60 50 100 90 120 100 70 90 80 70 70
TC 3 h 4 h 3.5 h 5 h 4.6 h 4.6 h 5.3 h 5 h 7 h 6.5 h 6.5 h 6.9 6.8 h 8 h 7 h

Table F.3: Convergence time. - denotes the methods without generative and discriminative mod-
els; D is the discriminative model; G is the generative model; EC denotes the epoch convergence;
and TC denotes the time convergence

optimization in each step, while in the other GANs the training epoch of the
discriminator spends double time than the generator.

Table F.3 presents the computational time spent by CALF in comparison
with other models. Analyzing the Table F.3 CALF spends more time to train
the generator and discriminator in each epoch, however, the convergence
time is shorter compared to the other models. Therefore, considering the
total training time, the sampling strategy adopted by CALF improves the
computational time and the stability.

6 Conclusion

We proposed a convolutional adversarial latent factor model for items rec-
ommendations using implicit feedback, named CALF. A detailed description
explains how CALF uses adversarial training for its recommendation. Fur-
thermore, we presented the results of the conducted experiments.

CALF has proved to be useful for top-N items recommendations consid-
ering implicit feedback. Moreover, learning deep representations for pair-
wise interactions among user and item embeddings improved the accuracy
for predicting the user’s preference score, as observed in the results of our
experiments in the three benchmark datasets.

In the future, we will conduct investigations regarding richer contexts
such as social relations and user’s reviews. Moreover, we would like to apply
attention mechanisms to learn user and item similarities.

7 Acknowledgments

The authors wish to acknowledge the financial support and the fellow schol-
arship given to this research from the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico - CNPq (grant# 206065/2014-0).

151

References

References

[1] X. He, X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua, “Outer product-
based neural collaborative filtering,” in IJCAI, 2018, pp. 2227–2233.

[2] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J.-T. Lee, “Cfgan: A generic
collaborative filtering framework based on generative adversarial net-
works,” in CIKM, 2018, pp. 137–146.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in WWW, 2001, pp. 285–295.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions,” TKDE, pp. 734–749, 2005.

[5] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[6] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’08. New York, NY, USA: ACM, 2008, pp. 426–434. [Online].
Available: http://doi.acm.org/10.1145/1401890.1401944

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” CoRR, 2014.

[8] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and
D. Zhang, “Irgan: A minimax game for unifying generative and dis-
criminative information retrieval models,” in SIGIR, 2017, pp. 515–524.

[9] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann ma-
chines for collaborative filtering,” in ICML, 2007, pp. 791–798.

[10] K. Georgiev and P. Nakov, “A non-iid framework for collaborative filter-
ing with restricted boltzmann machines,” in ICML, 2013, pp. III–1148–
III–1156.

[11] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-aware recom-
mender systems,” ACM Comput. Surv., pp. 66:1–66:36, 2018.

[12] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning
for recommender systems,” in DLRS, 2016, pp. 7–10.

152

http://doi.acm.org/10.1145/1401890.1401944

References

[13] S. Seo, J. Huang, H. Yang, and Y. Liu, “Interpretable convolutional neural
networks with dual local and global attention for review rating predic-
tion,” in Proceedings of the 11th ACM Conference on Recommender Systems,
ser. RecSys’17, 2017, pp. 297–305.

[14] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
“Neural collaborative filtering,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW ’17. Republic and
Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2017, pp. 173–182. [Online]. Available:
https://doi.org/10.1145/3038912.3052569

[15] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking
for recommendation,” in SIGIR, 2018, pp. 355–364.

[16] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proceedings of
the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, ser. UAI
’09. Arlington, Virginia, United States: AUAI Press, 2009, pp. 452–461.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1795114.1795167

[17] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item
recommendation from implicit feedback,” in WSDM, 2014, pp. 273–282.

[18] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete randomvariables,” CoRR, 2016.

[19] R. Liu, J. Regier, N. Tripuraneni, M. I. Jordan, and J. McAuliffe, “Rao-
blackwellized stochastic gradients for discrete distributions,” CoRR,
2018.

153

https://doi.org/10.1145/3038912.3052569
http://dl.acm.org/citation.cfm?id=1795114.1795167

Felipe So
a

r
eS d

a C
o

Sta
M

u
lti-view

 laten
t Fa

C
to

r
 M

o
d

elS Fo
r

 r
eC

o
M

M
en

d
er

 SySteM
S

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-391-4

	Front page
	Abstract
	Resumé
	Acknowledgments
	Contents
	Thesis Details
	I Thesis Summary
	1 Introduction
	1 Background and Motivation
	2 Research Problems
	2.1 Sparsity in Recommender Systems
	2.2 Explainability in Recommender Systems
	2.3 Null Values in Recommender Systems

	3 Evaluation Methods
	4 Organization

	2 Collective Matrix Factorization for Top-N Recommendation
	1 Motivation and Problem Statement
	2 Collective Hybrid Non-negative Matrix Factorization Model
	3 Hybrid Learning Model
	4 Discussion

	3 Prediction of Visitors
	1 Motivation and Problem Statement
	2 Collective Matrix Factorization-based Visitor Prediction Model
	3 Discussion

	4 Review-based Explanations for Recommender Systems
	1 Motivation and Problem Statement
	2 Explainable Model
	3 Discussion

	5 Neural Explainable Latent Factor Model for Recommender Systems
	1 Motivation and Problem Statement
	2 Neural Explainable Collective Non-negative Matrix Factorization Model
	3 Hybrid Learning Model
	4 Natural Language Explainable Model
	5 Discussion

	6 Neural Latent Factor Model for Context-aware Recommender Systems
	1 Motivation and Problem Statement
	2 Collective Embedding for Neural Context-Aware Recommender Systems
	3 Discussion

	7 Convolutional Adversarial Latent Factor Model for Recommender System
	1 Motivation and Problem Statement
	2 Convolutional Adversarial Latent Factor Model
	3 Discussion

	8 Summary of Contributions
	9 Future Directions
	References

	II Papers
	A Hybrid Learning Model with Barzilai-Borwein Optimization for Context-aware Recommendations
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Collective Non-negative Matrix Factorization
	4.1 Optimization

	5 Hybrid Learning Model
	5.1 Barzilai-Borwein
	5.2 Multiplicative Update Rules
	5.3 Complexity Analysis of CHNMF

	6 Recommendation Process
	6.1 Parameter Analysis

	7 Experiments
	8 Conclusions
	9 Acknowledgments
	References

	B Predicting Visitors Using Location-Based Social Networks
	1 Introduction
	2 Related Works
	3 Problem Formulation
	3.1 Preliminaries
	3.2 CMViP
	3.3 Problem Statement

	4 Solution Framework
	4.1 Non-Negative Collective Matrix Factorization
	4.2 Prediction of Visitors

	5 Experiments
	5.1 Data-sets
	5.2 Evaluation Measures
	5.3 Parameter Analysis
	5.4 Competitors
	5.5 Results

	6 Conclusions
	7 Acknowledgments
	References

	C Automatic Generation of Natural Language Explanations
	1 Introduction
	2 Interpretation model
	3 Results
	4 Conclusion
	5 Acknowledgments
	References

	D Neural Explainable Collective Non-negative Matrix Factorization for Recommender Systems
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Methodology
	4.1 Collective Matrix Factorization
	4.2 Multiplicative Update Rule
	4.3 Barzilai-Borwein
	4.4 Top-N Recommendation Process
	4.5 Natural Language Explanation

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Comparison Baselines

	6 Results and Discussions
	6.1 Overall Performance
	6.2 Explainability

	7 Conclusions
	8 Acknowledgments
	References

	E Collective Embedding for Neural Context-Aware Recommender Systems
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Proposed Model
	4.1 Input Layer
	4.2 Collective Embedding Layer
	4.3 Pairwise Interaction Layer
	4.4 Hidden Layer
	4.5 Fusion Layer
	4.6 Prediction Layer
	4.7 Convolutional Layer
	4.8 Learning Algorithm
	4.9 Model Training

	5 Empirical Evaluation
	5.1 Experimental Settings
	5.2 Evaluation Protocol
	5.3 Baseline Methods
	5.4 Parameters Settings
	5.5 Performance Comparison (RQ1)
	5.6 Hyper-parameters Analysis (RQ2)

	6 Conclusion
	7 Acknowledgments
	References

	F Convolutional Adversarial Latent Factor Model for Recommender System
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Proposed Model
	4.1 CALF Architecture
	4.2 Sampling Strategy

	5 Empirical Evaluation
	5.1 Experimental Settings
	5.2 Performance Comparison (RQ1)
	5.3 Sampling Strategy Effectiveness(RQ2)
	5.4 Time Complexity Analysis (RQ3)

	6 Conclusion
	7 Acknowledgments
	References

	Blank Page
	Blank Page
	Blank Page

