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Preface 

The present thesis is the result of an industrial PhD project carried out at Aalborg 

University, department of Chemistry and Bioscience in collaboration with Danespo 

A/S, KMC Amba and with funding from Innovation fund Denmark. The project was 

carried out in the period from April 2015 to March 2019. The aim of this industrial 

PhD project were to investigate the utility and implementation possibilities of 

molecular markers, in the form of haplotype detection in specific regions of the 

potato genome, in predictive modelling of phenotypic values for breeding 

purposes. To do this; 

 A broad selection of molecular markers of different types (e.g. RFLP, SSR 

or SNP) and for different traits (yield, starch content, chip quality, tuber 

shape, maturity, G. pallida pathotype 2 resistance, S. endobioticum 

pathotype 1 and 6 and late blight resistance) from a literature study was 

converted into locus markers and anchored on the potato reference 

genome DM v4.03. Locus markers were used for haplotype detection in a 

diversity panel of 48 accessions of elite cultivars and breeding clones.  

 Predictive models from two different approaches were tested for 

prediction accuracy and model fitness by utilizing detected haplotypes as 

predictor variables to predict phenotypic values of the diversity panel. For 

this part, historical data constituted the observed phenotypic values of 

the diversity panel. 

 Locus markers were selected based on performance of markers in the 

predictive modelling of the diversity panel. These markers were applied 

to an offspring population of 94 accessions from a bi-parental cross 

between Lady Anna and breeding clone 04-EQF-6, to evaluate the effect 

of training population size when predicting different traits (yield, starch 

content, chip quality, tuber shape, maturity, G. pallida pathotype 2 

resistance, S. endobioticum pathotype 1, 2 and 6 and late blight 

resistance).  

Three scientific manuscripts and one popular science manuscript (manuscript 4) 

have been prepared, based on the findings: 

Manuscript 1: “Anchoring molecular markers relevant for potato breeding onto the 

draft genome sequence of potato”. 
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At time of thesis submission, to be submitted to Potato Research - Journal of the 

European Association for Potato Research 

Sundmark, E.H.R., Sverrisdóttir, E., Sønderkær, M., Kirk, H.G., Nielsen, K.L. 

Manuscript 2: “Prediction of yield, starch content, maturity and late blight 

resistance in a diversity panel of breeding relevant potato”. 

At time of thesis submission, to be submitted to Theoretical and Applied Genetics - 

International Journal of Plant Breeding Research 

Sundmark, E.H.R., Sverrisdóttir, E., Sønderkær, M., Lindskou, M., Kirk, H.G., Nielsen, 

K.L. 

Manuscript 3: “Performance of predictive modelling of yield and starch content on 

a biparental cross of elite potato breeding germplasm”. 

At time of thesis submission, to be submitted to undetermined peer reviewed 

journal e.g. Molecular Breeding - New Strategies in Plant Improvement 

Sundmark, E.H.R., Sverrisdóttir, E., Sønderkær, M., Kirk, H.G., Nielsen, K.L.  

Manuscript 4: ”When breeding new potato cultivars, haplotypes are the new 

black”. 

At time of thesis submission, to be submitted to undetermined popular science 

journal e.g. The Scientist – Exploring life, inspiring innovation 

Sundmark, E.H.R, Sverrisdóttir, E., Sønderkær, M., Nielsen, K.L. 

 

Furthermore, the following popular paper was produced as part of the project, but 

not included in the thesis: Sundmark, Ea Høegh Riis (2017) Fart på forædlingen. 

Dansk Kartoffelstivelse, Maj 2017, nr. 2
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English summary 

The food industry is currently experiencing a demand for higher-yielding food crops 

for a globally growing population. At the same time, higher and higher demands 

are being made for reducing pesticides, which in particular affects the potato 

industry, as it is dependent on pesticides to control late blight in the field, among 

other things. In the pursuit to increase the acceleration of genetic gain in the 

breeding of new potato cultivars to meet the requirements, molecular markers 

have been developed since the late 1980s to analyze phenotypic traits in the 

breeding germplasm. In recent years, the focus has been on methods utilizing high-

throughput sequencing of DNA to examine large amounts of SNP markers at once. 

Genomic selection is one of these methods and it has been shown to successfully 

estimate a genomic breeding value (GEBV) from genome wide SNP markers 

through various Bayesian methods or Best Linear Unbiased Prediction (BLUP) in 

many populations and traits. However, it is unfortunately also very expensive to 

implement as it may need 100,000+ markers. 

The overall purpose of this thesis has been to investigate a possible replacement 

for genomic selection in the form of predictive modelling based on detected 

haplotypes found in a genetic diversity population called the diversity panel and an 

offspring population, called F1 population, obtained from two parents from the 

diversity panel, respectively. By utilizing the fact that haplotypes gives higher 

resolution of the underlying allele structure in the regions of the tested locus 

markers, it is theoretically possible to reduce the number of markers needed. Each 

of these markers have higher linkage between marker and trait. Through the work 

presented in manuscripts 1 and 2 of this thesis, a set of locus markers is defined 

from a thorough literature study and these are applied to the diversity panel to 

detect haplotypes. Genotype information of the detected haplotypes is 

subsequently used to make predictive models from two different approaches. The 

first approach is based on multiple linear regression and the other on regression 

trees. The studies show that the utility of the two methods depends on the trait in 

question and the population size. High prediction accuracy for both approaches is 

demonstrated in all traits, but also a large prediction error due to overfitting. In 

manuscript 3, a proportion of the markers are applied to the F1 population and 

used to investigate the applicability of the methodology in a population of full 

siblings. Here, the accuracy of the models was lower than expected, which may be 

due to the composition of the marker assay. Furthermore, the thesis contains the 

results of the two approaches of predictive models applied to the diversity panel 

for the traits that have been studied through the collaboration with Danespo A / S, 

but which have not been adapted to publication. These results also show high 

prediction accuracies, but also a higher degree of overfitting, due to smaller 
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training population size because of missing phenotypic values of some individuals 

in the diversity panel. 

Overall, the results of this thesis indicate that detected haplotypes can be used for 

predictive modelling to estimate the phenotype from a DNA sample with good 

results. Even for traits where it was only possible to obtain phenotypic values for 

less than 30 individuals of the diversity panel, a phenotypic value could still be 

estimated with high accuracy. However, this was only possible within the diversity 

panel. The best results were obtained when the training population was at least 34 

individuals. These results indicate that it is indeed possible to make useful and 

robust models for the breeding of tetraploid potatoes based on haplotype 

detection with PCR amplification and high-throughput sequencing. 
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Danish summary 

Fødevareindustrien oplever for tiden en efterspørgsel for højere ydende afgrøder 

til fødevarer til en globalt voksende befolkning. Samtidig bliver der stillet højere og 

højere krav til reduktion af sprøjtemidler, hvilket især påvirker kartoffelindustrien, 

der er afhængig af sprøjtemidler for at kontrollere blandt andet skimmel angreb i 

marken. I jagten på at forøge accelerationen af genetisk gevinst i forædlingen af 

nye kartoffelsorter, der kan imødekomme kravene, har man siden slutningen af 

1980’erne udviklet molekylære markører til at undersøge fænotypiske træk hos 

planter i forædlingsprogrammerne. I de seneste år har man fokuseret på metoder, 

der udnytter high-throughput sekventering af DNA til at undersøge store mængder 

af SNP markører på én gang. Genomisk selektion er én af disse metoder, som er 

bevist at kunne estimere et genomisk avlsværdital (GEBV) ud fra SNP markører 

spredt over hele genomet gennem forskellige Bayesian metoder eller bedst mulig 

liniære objektive forudsigelse (BLUP) i forskellige populationer og for forskellige 

træk. Det er dog desværre også en meget dyr metode at implementere, da det kan 

være nødvendigt at bruge 100.000+ markører. 

Det overordnede formal med denne afhandling har været at undersøge en mulig 

erstatning for genomisk selektion i form af prædiktiv modellering ud fra påviste 

haplotyper fundet i hhv. en genetisk divers population kaldet diversitets panelet og 

en afkomspopulation af to forældre fra diversitets panelet. Den sidstnævnt kaldes 

F1 populationen. Ved at udnytte at haplotyper bedre beskriver den underliggende 

allel struktur i de områder hvor de påvises, er det teoretisk muligt at nøjes med 

færre markører, der så hver især har højere kobling mellem markører og egenskab. 

Gennem arbejdet præsenteret i manuskript 1 og 2 af denne afhandling defineres et 

sæt af locus markører ud fra et gennemgribende litteraturstudie og disse anvendes 

på diversitets panelet for at påvise haplotyper. Genotype information om de 

påviste haplotyper anvendes efterfølgende til at lave prædiktive modeller ud fra to 

forskellige fremgangsmåder. Den første fremgangsmåde er baseret på multiple 

lineær regression og den anden på regressions træer og undersøgelserne viser at 

anvendeligheden af de to fremgangsmåder afhænger af hvilket træk der 

undersøges. Der påvises stor nøjagtighed af forudsigelserne for begge 

fremgangsmåder i alle træk, dog også en stor forudsigelsesfejl grundet overfitting. I 

manuskript 3 anvendes en andel af markørerne på F1 populationen for at 

undersøge anvendeligheden af metodikken i en population af helsøskende. Her 

findes nøjagtigheden af modellerne til at være lavere end forventet, hvilket 

muligvis kan skyldes sammensætningen af markører. Yderligere indeholder 

afhandlingen resultater af de to fremgangsmåder af prædiktive modeller anvendt 

på diversitetspanelet for de træk som er blevet undersøgt igennem samarbejdet 

med Danespo A/S, men som ikke har kunnet tilpasses publicering. Også disse 
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resultater viser høj nøjagtighed af forudsigelserne, men også en højere grad af 

overfitting, hvilket skyldes mindre træningspopulations størrelse som følge af 

manglende værdier af fænotypen for nogle individer i diversitets panelet. 

Generelt er resultaterne i denne afhandling et udtryk for at påviste haplotyper kan 

anvendes i prædiktive modeller til at estimere fænotypen ud fra en DNA prøve med 

gode resultater. Selv for træk hvor det kun var muligt at tilvejebringe fænotype 

værdier for få individer i diversitets panelet kunne der stadig estimeres en værdi af 

fænotypen, dog kun inden for diversitets panelet og de bedste resultater blev 

opnået når træningspopulationen var på mindst 34 individer. Disse resultater 

indikerer at det er muligt at lave anvendelige og robuste modeller til forædlingen af 

kartofler baseret på påvisning af haplotyper med PCR amplificering og high-

throughput sekventering. 
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Introduction 

With a growing global population, the world’s food supply needs to grow with it 

(Valin et al. 2013). Potato is one of the most promising food crops to meet this 

need with a potential for high calorie per hectar compared to other crops (Horton 

1980). To develop new elite cultivars, that can fulfil this potential, breeders need 

tools to improve their selection methods and increase the rate of genetic gain. To 

this extent, molecular markers has been proven effective in breeding of many crops 

including potato (Xu and Crouch 2008, Tiwari et al. 2013). 

The history of molecular markers in potato breeding 

In the general context of plant breeding, molecular markers was first used in the 

early 1980s when isozyme markers were introduced and a little later with the first 

use of restriction fragment length polymorphism (RFLP) (Botstein et al. 1980) 

markers in 1986. These molecular markers was used in potato breeding shortly 

after that, with diploid linkage maps based on RFLP markers from tomato in 1988 

and potato RFLP markers in 1989 (Barrell et al, 2013). This type of marker 

dominated throughout most of the 1990s, foremost as anchor points in map 

comparisons. Despite being able to capture genetic changes and predict linkage 

relationships between loci of different species, RFLP markers are cumbersome to 

work with and therefore limiting the amount of plants that can be screened at a 

time (Gebhardt et al. 1989, Xu and Crouch 2008). In comparison, the PCR-based 

amplified fragment length polymorphism (AFLP) (Vos et al. 1995) markers is easier 

to use and can screen up to 50 specific loci at a time (Rouppe van der Voort et al. 

1998, Poczai et al. 2013). Hence, AFLP markers followed RFLP markers in mapping 

studies and was still used in 2008 where D’hoop et al. (2008) used this type of 

marker for an association study. However, the AFLP markers are anonymous and 

mostly dominant, and therefore unfit for population structure analysis and cannot 

be readily anchored to the recent potato genome sequence (PGSC 2011). Also 

during the 1990s, randomly amplified polymorphic DNA (RAPD) (Williams et al, 

1990) markers was developed and among other uses, Jacobs et al (1996) used 

RAPD markers for fine mapping of major genes for traits of interest in potato. 

Simple sequence repeat (SSR) markers (Kit 1961) (also called microsatellites) soon 

superseded RAPD markers due to better reproducibility and reliability. SSR markers 

was first reported in potato in 1996 and has since been used for identifying SSR 

locations on potato linkage groups and constructing linkage maps for quantitative 

trait loci (QTL) mapping in potato as well as fingerprinting and identifying potato 
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germplasm accessions and cultivars (Hirsch et al. 2016, Barrell et al. 2013). 

Recently, Reid et al. (2011) showed the usefulness of SSR markers for profiling 

European potato varieties and the INRA BrACySol Biological Resource Center (UMR 

IGEPP, Ploudaniel, France) use SRR markers for genotyping their current potato 

cultivar collection (Esnault et al. 2016). Another method for fingerprinting of potato 

germplasm is the diversity array technology (DArT) (Jaccoud et al. 2001), first 

developed for the rice genome and later used in potato by Śliwka et al. (2012). The 

sequence-characterized amplified region (SCAR) (Paran and Mickelmore 1992) 

marker system followed the RAPD, SSR, RFLP and AFLP markers. This system can 

identify a unique locus because it is based on sequenced RAPD PCR products for 

specific oligonucleotide primers. It was originally developed for lettuce, but have 

been reported in potatoes by Jansen van Rensburg and Dubery (2001). The cleaved 

amplified polymorphic sequence (CAPS) (Konieczny and Ausubel 1993) markers are 

based on specific oligonucleotide primers as well, but also utilize at least 25 

restriction enzymes to target restriction site polymorphisms in the PCR product to 

distinguish different genotypes. CAPS markers were originally developed for 

Arabidopsis thaliana, but De Jong et al. (1997) converted AFLP markers into CAPS 

markers for use in mapping of a hypersensitive potato virus X resistance gene and 

more recently, Sulli et al. (2017) used CAPS markers for molecular characterization 

of a panel of tetraploid and diploid potato genotypes. 

Molecular markers in selection methods 

As the market has grown to have higher demands for multiple disease resistances 

together with high yields and quality traits in cultivars, selection has become more 

comprehensive for breeders. Breeders traditionally select candidates for sexual 

parental crossings based on phenotypic performances. More recently, selection 

methods, such as Marker Assisted Selection (MAS) (Milczarek et al. 2011), has been 

applied to analyze for specific genes known to give resistance against diseases. 

With this it is possible to specifically identify which disease resistant cultivars 

complements others and in that way pyramid disease resistance genes in a single 

cultivar (Tomczyńska et al. 2014). The offspring with presence of the molecular 

markers are then selected for further breeding. MAS in potato, has focused on the 

large, often dominant, contributions from a limited number of molecular markers 

(Slater et al. 2016). Each marker is evaluated for presence or absence 

independently of other markers, as linkage between markers are often not studied. 

In potato breeding, selection for multiple traits with MAS is a costly process, as it is 
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necessary to produce a large number of offspring to ensure high likelihood of 

combined traits in the offspring population. The analysis of marker presence in 

each offspring is often a cumbersome and time-consuming task.  

In contrast to MAS, Genomic Selection (GS) (Meuwissen et al. 2001) strives to 

predict phenotypes based on small contributions from genome-wide markers 

(Heslot et al. 2015). It also has the benefit of only requiring one DNA sample from 

each individual, which then are tested for multiple markers, e.g. with SNP chip 

(Wang et al. 1998). Though not commonly implemented in potato breeding, 

different studies show good prospect of GS in predicting phenotypes in-population 

(Enciso-Rodriguez et al. 2018, Arruda et al. 2015, Heslot et al. 2015). However, a 

study done by Sverrisdóttir et al. (2018) showed a large drop in correlations of the 

prediction models when predicting out-of-population and Stich and Melchinger 

(2009) suggested that the prediction accuracies obtained in their study were due to 

modelling of relatedness more than due to linkage between markers and 

quantitative trait locus (QTL). GS often uses statistical methods such as best linear 

unbiased prediction (BLUP), Bayesian generalized linear regression (Bayes) or 

reproducing kernel Hilbert spaces (RKHS) (Morrell et al. 2012, Habyarimana et al. 

2017). All of these are dependent on Single Nucleotide Polymorphisms (SNPs) and 

developed for genomic analysis of far less diverse genomes as the human genome 

or Arabidopsis thaliana, which have 1 SNP per 1300 base pairs (bp) and 1 SNP per 

3.300 bp, respectively (HGSC 2001, Kaul 2000). When considering the SNP density 

in the potato reference genome of 1 SNP per 40 bp (PGSC 2011), it becomes more 

apparent why correlations drop when predicting phenotypes in an out-of-

population manner in potato. Even when using over 170.000 SNP’s to calculate 

genomic estimated breeding values as done by Sverrisdottír and Byrne et al. (2017), 

it is unlikely that many of those SNPs are distinguishing only two alleles (manuscript 

1, D'hoop et al. 2014, Esnault et al. 2016). Consequently, the SNPs will be in varying 

degree of association to traits dependent on which group of alleles the SNP 

represents and the frequency of the causal allele within that group. Linkage 

disequilibrium to QTLs are therefore not always faithfully estimated in the 

calculations. To counteract the loss of linkage, because of SNPs associating to 

multiple alleles, sequence variation in a region of interest can be combined into 

haplotype markers to obtain higher resolution of the allele structure.  
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Barriers in implementation 

Though genetic markers have been used, and are still used, in many scientific 

studies, the implementation into practical potato breeding have been limited 

(Ramakrishnan et al. 2015). One barrier for implementing molecular markers in 

practical breeding, is the very large number of different molecular biology 

techniques each breeding station will have to operate to utilize the different types 

of molecular markers. Another barrier is the high diversity, not only in potato as a 

species, but also between different breeding populations (Sverrisdóttir et al. 2018). 

Because of this, a marker with good associations to a specific trait in one 

population may not be diagnostic in other populations and simply implementing 

markers found by others in MAS often give limited results. Indeed, markers, whose 

effect was documented in diverse populations is more likely to give robust results 

in practical breeding. However, many existing markers have been identified in 

diploid germplasm and bi-parental segregating populations (Moloney et al., 2010, 

Stich et al., 2013), which are by nature less diverse. It is therefore necessary to test 

a range of different markers, of which expectedly only some will prove applicable 

for the breeding population and trait in question. Hence, a methodology, which 

considers the most suitable of the tested markers for use in predictive modelling, 

have been applied in our work. Furthermore, we utilize the higher resolution of 

haplotype markers amplified from specific loci on the potato reference genome DM 

v4.03 (PGSC 2011) to discover allele structure in sites of interest.  

Statistical methods 

By using locus specific markers (manuscript 1 and 2) to obtain haplotypes for use in 

Genomic Prediction models, we can obtain more robust and unique 1:1 linkage 

between marker and trait and predict multiple traits from the same set of 

widespread molecular markers. For this purpose, we have studied two approaches 

for Genomic Prediction, a Supervised Genomic Prediction (SGP) approach and a 

Regression Tree (RT) approach. For the SGP approach, a combination of quality 

filtering for noise haplotypes, subset selection of significant haplotypes and a 

following Multiple Linear Regression (MLR) model form the basis of our proposed 

method. Gene effects are assumed to be additive, which makes it possible to 

create a very simple stepwise addition of constants chosen based on which variable 

gives the greatest additional improvement to the model fit. The Akaike information 

criterion (AIC) for each fit is used to evaluate which model gives the best fit. 

Starting with a null model containing only an intercept 𝑌 =  𝛽0, the stepwise 
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selection includes more haplotypes as predictor variables (𝑋) in the model step by 

step and the model takes the form: 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖, 

for 𝑝 different haplotypes as variables. 𝛽 is the slope coefficient for the predictor 

variable against the response and 𝜖 is the error term (James et al. 2013). MLR 

models assumes a linear relationship between response and predictors, and if this 

is true, the model has low bias. However, unless 𝑛 ≫ 𝑝, MLR models tend to have 

high variance and are prone to overfitting. As phenotypic values (𝑛) are more costly 

and time-comsuming to produce than genotypic observations (𝑝), overfitting can 

be counteracted by constraining predictor variables to only those of highest 

relevance for each model. In the SGP approach, this is implemented in two steps of 

quality filtering and subset selection, respectively. Quality filtering with offset in 

the Pearson correlation coefficient between observed phenotype and genotype 

evaluates the strength of the relationship between a given haplotype and the 

observed phenotype. A Pearson correlation coefficient of less than |0.2| can be 

considered negligible and therefore regarded as noise (Mukaka 2012). While 

relationships between variables can lead to an inflated significance of predictor 

variables, the subsequent use of stepwise selection for the MLR models adjusts the 

significance of each predictor for the other predictors and thereby only selects the 

most important predictor variables from the available subset. The Root Mean 

Squared Error (RMSE) is used to evaluate the robustness of the resulting multiple 

linear models (James et al. 2013). 

Decision Trees is the collective name for Classification and Regression Trees, and is 

a statistical method of selecting important predictor variables from a large number 

of detected variables for determining the response variable (Breiman 1984). A tree 

structure is grown from the root node by segmenting response data into two 

distinct groups (e.g group A and B) by the predictor variable that best describes the 

difference between the groups (𝑝1). This constitutes the internal nodes. These 

groups are then segmented once again into exclusive groups using the next 

predictor variable for each of group A and B. Hence, group A is split with 𝑝2 and 

group B with 𝑝3 and this is repeated until the number of observations in the 

resulting nodes is two. This recursive binary partition selects the predictor variables 

that minimize the residual sum of squares, the difference between the observed 

response and the response predicted by the model. In the resulting nodes, the leaf 

nodes, the mean of the resulting groups are given as the predictive phenotypic 
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value of all accessions in the node. Cost complexity pruning is applied to reduce 

overfitting by obtaining a set of best subtrees through cross-validation, which is in 

turn used to evaluate which pruning of the tree minimizes average error. To 

evaluate the robustness of each model a Cross-Validated Error Rate (CVER) can be 

estimated from the deviance between accessions in the leaf nodes. Decision Trees 

are generally considered more robust than linear models when the relationship 

between measured variables and observed responses are complex (James et al. 

2013). Using this approach therefore has the possibility of including factors such as 

epistasis in the model, a factor that is in most cases not quantified in potato (Li et 

al. 2010, Rejwan et al. 1999). 

Prediction and inference in modelling 

When performing analysis in a setting where input in the form of predictor variable 

information is more readily available than the output in the form of response, it is 

possible to predict the response based on predictor variables. In such situations, 

the goal is to predict the response with high certainty and the components of the 

estimated function of underlying predictive relationship are often treated as a 

black box. The composition of this black box is less relevant as long as the 

predictions are accurate (James et al. 2013, Hastie et al. 2009). If the goal was to 

infer the separate effect of each predictor variable on the response, the true 

function of underlying predictive relationship is estimated through estimation of 

parameters such as 𝛽 from the MLR model described above (James et al. 2013). 

From the same reasoning, correlation between predictor variables have less impact 

on the usefulness of a predictive model, as the effect of each predictor variable on 

the response does not need to be separated from the effects of other predictor 

variables. When predicting a response by models with a large number of 

variables 𝑋𝑝, such as MLR, every variable can be described by the remaining 

variables in the model and multi-collinearity becomes unavoidable. At that point, 

inference in the form of untangling the effects of each marker is not possible in a 

single data set, and the obtained model becomes one of many possible models, 

until it can be validated in another, independent data set (James et al. 2013). 
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Additional Results 

Additional results, that have been produced throughout this PhD, but not included 

in the former manuscripts, are presented in this chapter. The traits presented in 

the additional results are chip quality, tuber shape, resistance against white potato 

cyst nematode Globodera pallida pathogen 2 and resistance against Synchytrium 

endobioticum pathogen 1 and 6, a fungus causing potato wart disease. All of the 

additional traits are scored on a scale from 1 to 9, with 1 being the dark chip, round 

tubers or full susceptibility and 9 being no darkening of chip, long tubers or full 

resistance.  

Use of historical data as predictor variables in models 

With the exception of tuber shape, all additional traits have a lower amount of 

phenotypic values, than those examined in manuscript 2 (yield, starch content, 

maturity and late blight resistance). Resistance to wart disease pathogen 6 has the 

lowest amount of measurements of phenotype with only 16 accessions having a 

recorded phenotypic value. Chip quality and resistance to G. pallida pathogen 2 

both have recorded phenotypic values for 20 of 48 accessions in the diversity 

panel, resistance to wart disease pathogen 1 has recorded phenotypic values for 25 

accesions and 35 out of 48 accessions in the diversity panel have a recorded tuber 

shape value. The distribution of phenotypic values of these traits can be seen in 

figure 1. Chip quality and tuber shape is approximately normally distributed around 

the mean (4.2 and 5.3, respectively), while there is a seperation into two distinct 

groups for disease resistance traits G. pallida resistance (figure 1C) and wart 

disease resistance (figure 1D and E). The normal distribution of chip quality and 

tuber shape is a result of the diversity panel consisting of elite cultivars and 

breeding clones for different market segments spanning from fresh market to 

processing. The distribution of resistance trait phenotypes reflects the presence of 

cultivars for different geographical regions, some of which requires specific disease 

resistance and some where it is not in the same way a requirement. It could also be 

a result of the diversity panel consisting of old and new cultivars, as some old 

cultivars may not have resistance genes against the current relevant diseases. 
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Figure 1: Frequency of phenotypic values for chip quality (A), tuber shape (B), resistance to G. 
pallida pathogen 2 (C), resistance to wart disease pathogen 1(D), and resistance to wart 
disease pathogen 6 (E). 
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Prediction of phenotypic values with Supervised Genomic Prediction models and 

Regression Tree models 

All predicted phenotypic values in the following figures 2-7 are found with Leave-

One-Out cross-validations of models obtained with the SGP approach and RT 

approach described in the introduction. For further details on the methods of 

model calculations, see manuscript 2. Models obtained with the SGP approach is 

given in figures 2-4. Coefficient of determination range from 0.51 for resistance to 

wart disease pathogen 6 (figure 4E, RMSE: 2.28) to 0.6 for chip quality (figure 2A, 

RMSE: 1.23) and 0.77 for both tuber shape (figure 2B, RMSE: 0.59), resistance to G. 

pallida pathogen 2 (figure 3C, RMSE: 1.79) and wart disease pathogen 1 resistance 

(figure 3D, RMSE: 1.52). Models from the RT approach are given in figures 5-7. 

Except for wart disease pathogen 1 resistance, the RT models give higher 

coefficient of determination than the SGP models. For the RT model of chip quality 

the coefficient of determination is 0.92 (figure 5A, CVER: 2.44), 0.87 for the tuber 

shape model (figure 5B, CVER: 1.13), 0.98 for the G. pallida pathogen 2 resistance 

model (figure 6C, CVER: 5.51), 0.41 for the wart disease pathogen 1 resistance 

model (figure 6D, CVER: 4.03) and 0.94 for the model of resistance to wart disease 

pathogen 6 (figure 7E, CVER: 4.02). Though the Coefficient of determination was 

higher for RT models, the RMSE values for the SGP model were lower than the 

CVER values of the RT model for every trait, suggesting more robust models are 

obtained with the GSP approach, as both evaluation parameters RMSE and CVER 

are relative to the observed response scale of 1 to 9. Sverrisdóttir et al. (2017) has 

reported chip quality heritability to be between 0.65 and 0.78 dependent on how 

the heritability was estimated. The prediction accuracies of 0.6-0.92 obtained with 

the models in this study enclose the range repoted by Sverrisdóttir et al. (2017), 

though the RT model is most likely overfitted, as reflected by the CVER value. 

Prediction accuracies of 0.77-0.87 for the tuber shape models are very close to the 

reported heritability of the trait of 0.8 (van Eck et al. 1994) and within the range of 

heritability reported by Willemsen (2014), who found heritabilities of 0.75-0.9 

dependent on population and field conditions. Heritability of G. pallida pathogen 2 

resistance is expected to range from 0.88 to 0.93 (Kreike et al. 1994, Finkers-

Tomczak et al. 2014) and as we saw with chip quality, the the SGP model falls a 

little short of the expected value, while the R
2
 of 0.98 for RT model is a little higher. 

Heritability of resistance to wart disease pathogen 1 is established by Groth et al. 

(2013) to be 0.85 while it has not been possible to find heritability values on wart 

disease pathogen 6, though Groth et al. (2013) estimates the cumulative R
2
 of 

multiple regression based on effects from 4 molecular markers to be 0.31. Hence, 

the SGP models estimate the relationship of two resistance traits fairly well (0.77 

and 0.51, respectively), while the RT models estimate the relationship to be 

opposite, though with high prediction errors of approximately 4.  
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Figure 2: Supervised Genomic Prediction models of chip quality (A) (R
2
=0.6, RMSE=1.23) and 

tuber shape (B) (R
2
=0.77, RMSE=0.59). 
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Figure 3: Supervised Genomic Prediction models of G. pallida Pa2 resistance (C) (R
2
=0.77, 

RMSE=1.79) and wart disease pathogen 1 resistance (D) (R
2
=0.77, RMSE=1.52). 
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Figure 4: Supervised Genomic Prediction models of wart disease pathogen 6 resistance (E) 
(R

2
=0.51, RMSE=2.28). 



Towards Predictive Modelling in Breeding of Tetraploid Potato 

 

173 

 

 

Figure 5: Regression tree models of chip quality (A) (R
2
=0.92, CVER=2.44) and tuber shape (B) 

(R
2
=0.87, CVER=1.13). 
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Figure 6: Regression tree models of G. pallida Pa2 resistance (C) (R
2
=0.98, CVER=5.51) and 

wart disease pathogen 1 resistance (D) (R
2
=0.41, CVER=4.03). 
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Figure 7: Regression tree model of wart disease pathogen 6 resistance (R
2
=0.94, CVER=4.02). 
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General discussion 

Utility of molecular markers of known marker-trait associations in potato 

The basis of this thesis is the vast amount of knowledge already available regarding 

marker-trait associations in potato. Molecular markers was acquired for relevant 

traits from a comprehensive literature study and tested on a diversity panel of 48 

accessions of elite cultivars and breeding clones (manuscript 1). Even though it was 

necessary to design new primer sequences for most of the acquired markers (table 

3, manuscript 1), this was possible to accomplish due to the application of the 

reference genome DM v4.03 (PGSC 2011) and the available genome sequences of 

the 18 MASPOT parents (Sverrisdóttir et al. 2017). From the converted markers 

presented in manuscript 1 and the markers from previous studies at Aalborg 

University in addition (manuscript 2) it has been possible to estimate the allele 

structure in 72 loci of interest. Hence, with the use of genome data obtained 

through converted markers in predictive modelling of phenotypic data (manuscript 

2), this PhD study presents a successful utilization of existing molecular markers in 

predictive modelling. 

The quality of historical data in predictive models 

To the best of our knowledge this is the first time Historical data has been used for 

predictive modelling of potato phenotypes. Many studies base their analysis on 

populations that are thoroughly phenotyped at the onset of the study (kilde). Due 

to high expenses of phenotyping the population is normally limited to only a few 

cultivars. Utilizing historical data enables the use of larger populations without 

increasing the phenotyping cost (kilde). In this study we have used historical data 

from Danespo R&D, spanning the years from 1985-2014 in our predictive models. 

In the use of this data, we have encountered issues regarding different 

irregularities in the data set, such as varying number of recorded phenotypic values 

in the diversity panel dependent on trait. For the traits starch content and tuber 

shape phenotypic values were available for 40 and 39 of the 48 accessions in the 

diversity panel, while phenotypic values were only available for 16 out of 48 

accessions for resistance against wart disease pathogen 6.  Except for chip quality, 

phenotypic values for the traits that are tested by the breeding station (e.g. yield, 

starch content, tuber shape and late blight resistance) were of higher abundance, 

than for traits that are tested externally (e.g. resistance against nematodes). Chip 

quality testing is only performed routinely on cultivars intended for the processing 

industry, and phenotypic values of chip quality is therefore scarce in the diversity 

panel, which consist of cultivars from different market segments. Apart from the 

traits described in the manuscripts and additional results of this thesis, traits for 

resistance against different pathogens of G. rostochiensis and resistance against G. 
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pallida pathogen 3 were also examined for availability of historical data, but the 

availability was insufficient.  

Distributions of phenotypic values also varied, as was shown in manuscript 2 and 

figure 1 of the additional results. It is expected that traits dependent on dominant 

resistance genes have groupings of phenotypic values into two distinct groups, and 

that was indeed the case for the three disease resistance traits covered in the 

additional results (figure 1C, D and E). However, in manuscript 2 it was shown that 

resistance against late blight had a more even distribution of phenotypic values of 

the diversity panel, though many dominant resistance genes have been associated 

with late blight resistance (Kilder). This could be because of the difference in years 

in which each cultivar was phenotyped. When there is a shift in the late blight 

pathogen population the inoculum used for infection of late blight resistance test 

fields will change in composition of pathogens. Hence, the phenotypic value of late 

blight resistance based on historical data will be corresponding to resistance 

against different pathogens dependent on which year the resistance was 

measured. Despite this, the predictive models for late blight resistance discussed in 

manuscript 2 yield similar results (0.6-0.85) to previous findings of prediction 

accuracy (0.7-0.8, Stich et al. 2018). Based on these findings, we have shown that it 

is indeed possible to obtain useful phenotypic values from historical data, though 

precautions must be taken regarding availability of phenotypic value for cultivars 

from different segments as well as potential difference in test criteria dependent 

on test year. 

Pros and cons of predictive modelling 

Prediction accuracy of the models in this study depended on the traits in question, 

which were partly due to difference in training population size between traits, 

because of varying availability of historic data. However, when the models for 

resistance against wart disease pathogen 1 and 6 are compared (pathogen 1: figure 

3D and figure 6D, pathogen 6: figure 4 and figure 7 for SGP and RT models 

respectively), the RT model for pathogen 6 performed significantly better than the 

RT model for pathogen 1, while the opposite was true for the SGP models. Hence, 

the choice of predictive model approach is of great importance to the performance 

of the predictive models. This is most likely due to difference in model calculations 

and whether the trait is polygenetic or is affected by few dominant genes. The SGP 

models generally had lower RMSE values and were therefore more robust than the 

RT models both in results in manuscript 2 and in additional results. On the other 

hand, RT models had higher or similar coefficient of determination in 6 out of 9 

traits examined in manuscript 2 (figure 4 and 5) and in the additional results (figure 

2-7) and therefore had a higher prediction accuracy. From this, it is clear that 

different prediction modelling approaches have different strengths and 
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weaknesses. On the other hand, it might not be so clear which of the prediction 

modelling approaches is best suited for the trait in question. Fortunately, both 

approaches utilize genomic data as predictor variables and phenotypic data as 

response variables, so it is possible to follow both approaches without further 

experimental work and evaluate which approach is best suited for the trait in 

question.  

In the context of prediction accuracy of the models, it is also worth considering, 

that the high values of coefficient of determination both in manuscript 2 and in the 

additional results, might be due to relatedness of the population, as was reported 

by Stich and Melchinger (2009). While the diversity panel was composed to be as 

diverse as possible based on estimates of inbreeding, all accessions are still from 

Danespo R/D breeding germplasm. Consequently, 13 cultivars and breeding clones 

recur in the ancestry of the accessions of the diversity panel, either as parent or 

grandparent. Furthermore, due to ancestry of many cultivars being unknown or of 

commercial confidentiality, 22 out of 48 accessions have one or more unknown 

grandparents. The estimated coefficient of inbreeding used to select accessions for 

the diversity panel is therefore expectedly underestimated. Sverrisdóttir et al. 

(2018) saw the largest drop in prediction correlations when models were trained 

with a population from a different geographic region than the test population. 

Derived from this, a solution for reduction of relatedness of the population could 

be composing the training population of cultivars from different breeding 

companies, but the difference in phenotype scoring method between companies 

becomes an obstacle for such a combined population. As there are no globally 

established standards for growth conditions and phenotypic testing of traits such 

as yield, starch content or chip quality, a combined population would need 

thorough, costly and time-consuming phenotypic testing before initiation of 

predictive modelling. While this would certainly result in models more widely 

applicable for different breeding companies, arguably, it is of higher importance for 

each breeding company to have a functional model at a lower cost, than to have a 

model optimized to include only genetic effects. The model would then have to be 

recalibrated after a certain timespan, when new cultivars have entered the 

breeding germplasm, to account for the change in relatedness.  

An embedded condition in all predictive models in this thesis is the high correlation 

between markers resulting in collinearity. Increasing the resolution of allele 

structure by utilizing haplotype information as well as selecting locus markers in 

gene rich regions of the genome, results in increased linkage between haplotypes 

in close proximity. Furthermore, some markers are likely correlated because of 

chance co-inheritance due to relatedness and the small size of the diversity 

population. Correcting for correlation between markers is essential when 
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performing association studies to counter false positive results, since it becomes 

difficult to separate the effects of each marker when collinearity is present (James 

et al. 2013, D’hoop et al. 2014). Because of the collinearity of markers in this thesis 

(manuscript 2, supplementary) it is not possible to determine which of the selected 

locus markers are better associated with the trait in question, and in fact other 

locus markers might have resulted in models of the same prediction accuracy 

(James et al. 2013). The markers in this study was selected from a range of markers 

for different traits, and at a later stage, a selection of markers (35 out of 72) were 

analyzed on an offspring population. This meant a mix of markers for different 

traits were used to predict different traits, resulting in some traits being 

represented by a larger number of markers than others. In addition, because of the 

collinearity of markers, even a selection of markers resulting in high model 

prediction accuracy in the diversity panel was not guaranteed to produce the same 

results in an offspring population (manuscript 3). Because of the high collinearity of 

markers, a high risk of loss of linkage arises when the marker assay is reduced 

before employment to another population. This could be an explanation for the 

lower than expected coefficients of determination in manuscript 3. 

Future perspectives 

Regarding the implementation of molecular markers for in breeding context Slater 

et al. (2014) lists requirements for use of DNA-based markers to be effective. 

Among other conditions, the marker assay must be consistently reproducible, the 

procedure needs to be straight forward, the use must be cost-effective when 

compared to conventional procedures, and the associations between alleles and 

phenotypes should be applicable across different populations (Slater et al. 2014). 

The first and second conditions are met by our methodology, which exploits the 

standardized PCR amplifications and scripts. Regarding the cost-effectiveness, 

some phenotypic tests are readily suitable for replacement with predictive 

modelling despite the high prediction error of some models presented in this study. 

Resistance to nematodes is an example of such tests due to high variance of results 

and high cost of the testing. Expectedly, further testing of the locus markers on 

different and larger populations would result in models with lower prediction 

errors. With that, prediction of traits such as yield with higher complexity, should 

also become cost-effective compared to field screening procedures and in addition, 

further testing would make the models more applicable independent on 

population. One of the major obstacles in implementation of Genomic selection 

and prediction is the high start-up costs (Sverrisdóttir et al. 2017), which are 

lowered when using the methodology presented in this thesis. As the sequencing 

can be outsourced, the only required equipment is standard machinery, often 

already present in breeding station R&D departments. 
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