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Abstract

Backup power systems provide critical systems with a continuous supply of
electricity, even through disturbances and interruptions in the power grid.
One application, that relies on backup power systems is telecommunication
substations, which provide the critical infrastructure for cellular as well as
internet communication.

Backup power systems rely on energy storage elements to compensate
the disturbances in the power grid, to supply the load with a smooth and
continuous power profile. Normally, batteries are used as the storage element.
However, batteries might be infeasible in applications that require prolonged
backup-time capabilities from the backup system. To extend the backup-time,
diesel generators have been used in the past. However, diesel generators suffer
from a number of downsides, including high pollution levels, noise, and high
maintenance requirements. Instead of diesel generators, the telecommunication
industry has largely turned to fuel cells as the main source of backup power.

Fuel cells use hydrogen and oxygen to generate electrical power and leaves
only water and heat as waste products. However, fuel cell technology is still in
the early market phase and relies on some expensive materials in its construction.
This makes fuel cells relatively expensive to purchase.

The high initial cost can be compensated by reducing the maintenance costs
and extending the lifetime thorough predictive maintenance. The prognostics
and health management (PHM) framework describes several steps towards this
end. Two key parts of PHM, which are addressed in this work, are i) the
assessment of system condition and ii) prediction of future system condition.
The latter is often referred to as prognostics, and is a key step to enable
predictive maintenance, as maintenance efforts can be planned in advance based
on the estimated future system condition.

The studies in this work are based on a unique dataset, which comprises
field measurements from numerous fuel cell based backup power systems, which
have been operating in telecommunication substations. The main contributions
of this work are i) the extraction and analysis of key performance indicators
based on field data from a fleet of fuel cell based backup power systems. ii)
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Abstract

Estimation of the degradation level of the fuel cell stacks. iii) A method for
detecting outlier fuel cell stacks based on the extracted performance indicators.
iv) A method for predicting the future degradation levels of the fuel cell stacks
using a recurrent neural network.
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Resumé

Nødstrømssystemer forsyner kritiske systemer med kontinuer elektricitet, selv
under forstyrrelser og afbrydelser i elnettet. En applikation, som afhænger
af nødstrømssystemer, er telekommunikations stationer, som udgør en kritisk
infrastruktur for mobil-, så vel som internetkommunikation.

Nødstrømssystemer bruger energilagringselementer til at kompensere de
forstyrrelser, der forekommer i elnettet, således, at lasten forsynes med en jævn
og kontinuer strøm. Normalt bliver batterier brugt som energilagringselement.
Men, batterier kan være upraktiske i applikationer hvor langvarig nødstrøms-
forsyning er nødvendigt. For at forlænge nødstrømsforsyningstiden, har diesel
generatorer tidligere været brugt. Men diesel generatorer har en række ulem-
per, deriblandt højt forureningsniveau, støj, og høje vedligeholdelseskrav. I
stedet for diesel generatorer, anvender telekommunikationsindustrien i høj grad
brændselsceller som det primære energilagringselement.

Brændselsceller anvender hydrogen og oxygen til at generere elektricitet og
efterlader kun vand og varme som biprodukter. Men, brændselscelle teknologi
er stadig i et tidligt-marked stadie og afhænger af dyre materialer i dets kon-
struktion. Dette gør at brændselsceller er relativt dyre i indkøbspris.

Den høje indkøbspris kan kompenseres ved at reducere vedligeholdelsesomkost-
ninger og ved at forlænge levetiden igennem forudsigende vedligeholdelsesstrate-
gier. Prognostics and Health Management (PHM) modellen beskriver adskillige
trin hvormed dette kan opnås. To af hovedelementerne i PHM, hvilke er behan-
dlet i dette arbejde, er i) estimering af systemets tilstand og ii) forudsigelse af
systemets fremtidige tilstand. Sidstnævnte er også ofte kaldet Prognostics og er
et vigtigt skridt mod en forudsigende vedligeholdelsesstrategi, da vedligehold-
elsesindsatser kan planlægges baseret på den estimerede fremtidige tilstand af
systemet.

Studierne i dette arbejde er baserede på et unikt datasæt, hvilket indeholder
målinger fra talrige brændselscelle baserede nødstrømssystemer, som har været
i drift i telekommunikations stationer. Hovedbidragene i dette arbejde er i)
ekstraktion og analyse af nøgle ydeevneindikatorer baserede på feltdata fra
en flåde af brændselscelle baserede nødstrømssystemer. ii) Estimering af de-
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Resumé

graderingsniveauet af brændselscellestakkene. iii) En metode til detektering af
afvigende brændselscellestakke baseret på de ekstrakterede ydeevneindikatorer.
iv) En metode til forudsigelse af fremtidige degraderingsniveau af brændsels-
cellestakkene ved brug af Recurrent Neural Networks.
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Extended Summary

1





1
Introduction

This chapter will introduce the background and motivation behind this project
as well as an overview of the three topics that constitute the basis of this
work, namely backup power systems, fuel cells, and prognostics and health
management. Furthermore, the project objectives are presented, and the thesis
content is outlined.

1.1 Background and Motivation

With an increased effort to bring down green house gas emissions and air
pollution in urban areas, countries around the world strive for an increasingly
electrified energy system based on renewable energy technologies. This trend
will not diminish in the future, as people and governments become more aware
of the irreversible effects of climate change.

A complete reformation of the energy system on a global scale, from steady
and reliable fossil fuel based power generation to fluctuating and distributed
renewable generation, such as wind power and solar power, is not without
challenges. With an increasingly electricity-driven world, critical infrastructures,
such as telecommunication substations, will continue to depend on continuous
and reliable electricity supply. And without central fossil fuel power plants,
electrical grids might be more vulnerable and prone to faults. Therefore, backup
power systems are essential to the continuous supply of electrical power to
critical infrastructure.

Backup power systems require some form of energy storage, to continuously
supply the load with power, especially through prolonged grid outages. Tra-
ditionally, a combination of batteries and diesel generators have been used.
However, diesel generators are pollution heavy, which makes them unsuitable
in a modern renewable energy system. Batteries, on the other hand, are not
associated with pollution during operation. But batteries’ backup time is limited

3



Chapter 1. Introduction

by the amount of energy they can store electrochemically inside the cell. When
the energy capacity is exhausted, the battery can not be recharged until grid
power is restored.

Fuel cells use hydrogen and oxygen to produce electricity with water as a
bi-product. This allows for the energy capacity to be refueled simply by adding
more or refueling the hydrogen supply. The oxygen is normally supplied from
the surrounding air. Furthermore, fuel cells cause no pollution in operation and
have no moving parts. This makes fuel cell technology a promising candidate
for backup power applications, where prolonged backup-times are required.

However, fuel cell technology is still in the developing stage and rely on
relative expensive materials. This makes fuel cells expensive in terms of their
initial cost. Therefore, reduction of operation and maintenance cost and exten-
sion of system lifetime are important factors in bringing down the total cost of
ownership of such systems.

1.2 Backup Power Systems

Interruption of certain electrical systems, such as data centers, telecommunica-
tion equipment and hospital equipment, can mean loss of data, productivity
and, in the worst case, lives. These interruptions might be caused by utility grid
outages or even by minor disturbances in the voltage waveform. Therefore, it is
important to have systems that can adequately mitigate these grid disturbances
and maintain a continuous, high quality power supply to the critical loads. For
this purpose uninterruptible power supply (UPS) systems are widely used, as
they provide power from a separate source when disturbances occur on the grid.

1.2.1 Power Disturbances

Ideally, the grid voltage is a smooth sinusoidal waveform with constant amplitude
and frequency. However, in reality there is a number of natural and man-made
phenomena that affect and distort the grid voltage. This section will describe
some of these disturbances, which are typically treated by UPS systems. The
eight most common grid disturbances are: 1) line failure; 2) voltage sag; 3)
voltage surge; 4) under-voltage; 5) over-voltage; 6) voltage spike; 7) frequency
variation; 8) EMI. [1]

The disturbances are visualized in Fig. 1.1. Line failure is when the grid
power is completely lost for an extended time period, causing an outage. A
voltage sag is when the voltage level decreases for a short period of time, after
which it resumes its normal level. A voltage surge is, similarly, when the
voltage level increases for a short period of time, after which it resumes its
normal level. Under-voltage is when the grid voltage is low for an extended
period of time. Similarly, over-voltage when the grid voltage is high for an
extended period of time. A voltage spike is when a very short pulse occurs on
the voltage. Frequency variation is simply when the frequency of the voltage
waveform deviates from the intended value. EMI is when superimposed higher

4
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Fig. 1.1: Representation of common grid disturbances

frequency waveforms distort the smooth sinusoidal voltage. Harmonic distortion
is a special case of EMI, where the frequency of the distorting component is a
multiple of the fundamental frequency.

1.2.2 Uninterruptible Power Supply Architectures

UPS systems come in a wide variety of architectures, but are mainly grouped
in three categories depending on the grid disturbances they address: offline,
online, and line-interactive [2]. Basic block diagrams of the three architectures
are shown in Fig. 1.2.

The offline architecture normally supplies the load directly from the grid
through a static bypass switch. In case of grid failure, the switch is turned off
and the load is supplied from the energy storage element through a DC/AC
converter. In case of battery energy storage elements, the batteries are charged
from the grid in periods of good grid condition. The direct supply of energy
from the grid to the load gives the advantage of lossless supply in normal
operation, but also means that there is no isolation between the grid and
the load. Furthermore, the architecture provides no voltage regulation and it
requires some time to switch to the backup operation in case of grid fault. The
main advantages is the simplicity and low cost of the system. Line-interactive
UPS systems feed the grid power directly to the load through a static switch
and a filter. If grid power is absent, the storage element provides power to the
load through a bidirectional power converter, which is in parallel connection
with the load. This way, the storage element can also provide reactive power
for power factor correction (PFC). However, it provides no isolation or voltage
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Fig. 1.2: The three main classes of uninterruptible power supply architectures: offline,
line-interactive, and online

regulation capabilities. Online UPS architectures has two conversion stages: AC
to DC and DC to AC. The storage element is interfaced to the intermediate DC
stage often referred to as DC-link or DC-bus. Grid power is always fed through
both converters, which gives rise to some losses. However, the load voltage is
completely decoupled from the grid voltage, meaning that precise control of the
load voltage is possible regardless of the grid voltage instabilities. Furthermore,
there is no transition time between normal operation and the supply of backup
power. This comes at the cost of reduced efficiency, increased complexity and
cost. [1], [3]

A summary of the grid disturbance mitigation abilities of each of the three
main UPS architectures is shown in Table 1.1 [1], [2]. Although more expensive,
the online class of UPS architectures can handle all of the listed grid disturbances,
which makes them suitable in applications, such as telecommunications, where
equipment is sensitive to disturbances such as voltage spikes and EMI.

1.2.3 Telecommunication Backup Power Systems

Telecommunication facilities are critical to the infrastructure of modern society,
providing the backbone of cellular and internet communication. Therefore, their
continuous operation, regardless of utility grid condition, should be ensured
through appropriate backup power systems. Telecommunication equipment is
often sensitive to even small disturbances in the utility grid, which makes online
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Table 1.1: Power disturbances handled by different classes of UPS

Line disturbance Offline Line-interactive Online
Line failure X X X
Voltage sag X X X
Voltage surge X X X
Under-voltage X X
Over-voltage X X
Voltage spike X
Frequency variation X
EMI X

UPS architectures the most suitable choice for a telecommunication power supply.
Also, the telecommunication usually requires DC power, meaning that the AC
to DC conversion is required, even during normal operation. Hence, offline and
line-interactive solutions would require an additional AC/DC conversion step,
undermining their advantage of simplicity and lack of conversion loss.

Telecommunication sites are situated in a wide variety of locations. From
urban areas with reliable utility grid connection to rural areas where the utility
grid can be unreliable. Extreme weather conditions and natural catastrophes can
further impair grid availability, which is often when communication services are
most critical. Therefore backup power systems for telecommunication facilities
are often required to ensure extended periods of backup power. [4]–[6]

Extended backup times has traditionally been achieved through the use of
diesel generators. However, increased environmental concerns and the promise of
reduced maintenance effort has shifted the focus to fuel cell technology [6]–[10].
Fuel cells, unlike diesel generators, produce no pollution when converting their
fuel to electricity, do not emit noise, and have no moving parts which translates
to better reliability and less maintenance effort [11], [12]. Like diesel generators,
fuel cells have some startup time [13], meaning that an additional small storage
element is needed, which can provide the load power during fuel cell startup.
Often ultracapacitors or a small battery pack is used.

A typical fuel cell UPS system for telecommunication is shown in Fig. 1.3.
The load is normally supplied from the grid through the AC/DC converter.
When the grid fails, the fuel cell starts up to provide backup power. In the
meantime, the ultracapacitor module provides the load power. Both storage
elements are interfaced to the DC-bus through a DC/DC converter, which can
be shared by the two elements. [5], [14], [15]

The load usually requires DC power, but in some cases the load runs on AC
power or a combination of the two. Therefore a shaded DC/AC converter is
included in Fig. 1.3. Also, some key elements, like hydrogen supply, ultracapac-
itor charger, and fuel cell voltage-booster, are not included in the figure for the
sake of simplicity.
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Fig. 1.3: Basic architecture of fuel cell based uninterruptible power supply for telecommuni-
cation applications

1.3 Fuel Cells

Fuel cells are electrochemical devices, that converts a fuel directly to electrical
power. Unlike batteries, which are also electrochemical devices that produce
electrical power, fuel cells store their fuel externally. This way, the performance
of the cell is not limited by the amount of reactants that can be fitted within
the cell. As long as fuel is available, a fuel cell is able to produce electrical
power indefinitely. Therefore fuel cells are rated in terms of their power level,
rather than their energy capacity. [16]

Although the principal of the fuel cell was described already in 1843 [17],
the technology is only recently gaining commercial traction as an energy storage
device. The interest in fuel cell technology has seen a rise with the increasing
focus on energy storage in an increasingly renewable and distributed energy
system [18]. The relatively high initial cost of fuel cells remain a challenge
to their wide adaptation. However, this cost is projected to decrease as the
technology matures further and as the production scale increases [19].

1.3.1 Basic Working Principal

Fuel cells come in many different types, mainly distinguished by their operating
temperature and the fuel they use. The most commercially successful type is
the proton exchange membrane (PEM) fuel cell, which is a low-temperature
type operating at 30-100◦C. They require a pure hydrogen fuel and use oxygen
as the oxidant, which is normally supplied from the surrounding air.

The PEM fuel cell consists of anode and cathode electrodes, and a solid
proton conducting electrolyte membrane in-between. Each electrode consists of
a catalyst layer and a gas diffusion layer (GDL). The basic structure of a PEM
fuel cell is depicted in Fig. 1.4 which also sketches the operating principle of the
fuel cell. At the anode side, hydrogen diffuses through the GDL and undergoes
oxidization, i.e. the hydrogen atoms lose an electron and effectively becomes
hydrogen ions (protons). The released electrons are free to migrate through the

8



1.3. Fuel Cells

Fuel Air

Unused Fuel

Electric
Load

Anode Cathode

Membrane
Catalyst
Layer

Gas
Diffusion
Layer

Catalyst
Layer

Gas
Diffusion
Layer

Hydrogen Ions

Electrons

Air + Water

Fig. 1.4: Basic structure and working principal of a proton exchange membrane fuel cell [B]

GDL to the external electrical circuit and the protons can move through the
membrane. This reaction is shown in (1.1). [16], [20]

2H2 → 4H+ + 4e− (1.1)
At the cathode, oxygen from the air supply meets the electrons from the

electrode and the protons, that have migrated from the anode side through the
membrane, to form water. This reaction is shown in (1.2).

O2 + 4H+ + 4e− → 2H2O (1.2)
The overall reaction of the fuel cell is then described by (1.3). Some heat is

also produced in the process.

2H2 + O2 → 2H2O + heat (1.3)

The amount of electricity produced in a single PEM fuel cell is usually
around a single volt or less. Therefore, fuel cells are combined in series to
increase the voltage level. These combinations are referred to as fuel cell stacks.
The basic combination of fuel cells into fuel cell stacks is illustrated in Fig. 1.5.
The shown stack consists of membrane-electrode assemblies and bipolar plates,
which act as anode for one cell and cathode for the neighboring cell. The bipolar
plates also have flow channels for the fuel and oxidant.

1.3.2 Electrical Properties

Under lossless conditions, the produced voltage in the fuel cell is referred to
as the open-circuit voltage (Vr). However, real fuel cell operation is associated
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Fig. 1.5: Illustration of fuel cell stack assembly [B]

with some major voltage losses, also known as irreversibilities. The resulting
produced voltage is described by the open-circuit voltage minus the voltage
losses as shown in (1.4). The losses are: activation loss (∆Vact), ohmic loss
(∆Vohmic), and mass transportation loss (∆Vmass).

Vc = Vr −∆Vact −∆Vohmic −∆Vmass (1.4)

The activation loss is a nonlinear effect related to the chemical reactions that
transfer electrons from the anode and to the cathode, respectively. The voltage
loss caused by this effect is described in (1.5), where R is the ideal gas constant,
F is the Faraday constant, T is the cell temperature, α is the charge-transfer
coefficient, I is the produced current, and Io is the exchange current, i.e. the
continuous backwards and forwards current caused by the equilibrium reactions
when no current is drawn from the cell.

∆Vact = RT
2αF ln

(
I

Io

)
(1.5)

The ohmic loss is caused by the electrical resistance in the electrodes and
the resistance to ion flow in the membrane. This loss is described in (1.6), where
R is the combined electrical resistance of these effects.

∆Vohmic = RI (1.6)

The mass transport loss is a consequence of the falling concentration of
reactant in the supply gas, as these reactants are used to produce current.
This effect mainly happens at the cathode side as the oxygen is supplied from
air, which has a limited concentration of oxygen. The mass transport loss is
described by (1.7), where IL is the limiting current, i.e. the current at which
the fuel is consumed at the same rate as it can be supplied.

∆Vmass = −RT2F ln
(

1− I

IL

)
(1.7)
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Fig. 1.6: Illustration of fuel cell current-voltage characteristics (polarization curve)

An additional cause of loss in the fuel cell is the fuel crossover. Although
the membrane is designed to not let hydrogen atoms through, in practice, some
atoms do get through the membrane. Another, smaller loss is caused by the
conductivity of the membrane, which leads to a small internal current. These
two effects can be accounted for by subtracting a current (In) from the current
drawn from the cell. Hence, the cell voltage when accounting for activation,
ohmic, and mass transport loss, as well as internal currents and fuel crossover
is described by (1.8).

Vc = Vr −
RT
2αF ln

(
I + In
Io

)
−R(I + In) + RT2F ln

(
1− I + In

IL

)
(1.8)

The fuel cell voltage and current characteristics are illustrated in Fig. 1.6,
such a curve is often called the polarization curve. The losses are shown as
differences from the open circuit voltage. At low currents, the activation loss
is dominant, the ohmic loss increases linearly with the current, and the mass
transport loss becomes dominant at high currents, where the fuel supply is
exhausted.

1.4 Prognostics and Health Management

A suitable maintenance strategy is essential to ensure continuous availability of
the backup system [21]. Generally there are two approaches to maintenance:
reactive maintenance and proactive maintenance [22], [23]. In broad terms,
reactive maintenance waits for something to break and then replaces or repairs
the broken component or system. Whereas proactive maintenance aims to
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Fig. 1.7: Prognostics and health management framework [A]

schedule maintenance to prevent sudden system failures and to avoid unscheduled
downtime. The schedule for proactive maintenance can be predetermined,
for example during the design phase of the system, by estimated lifetimes
of components or subsystems. This is generally referred to as preventive
maintenance. However, this approach does not consider the variability of
real field conditions where external factors and abnormalities can affect the
condition of the system. Therefore, predictive maintenance strategies, that
use the actual stress loading to continuously assess the system condition and
forecasting remaining lifetime, is increasingly adopted.

A popular framework for predictive maintenance, which has been applied to
fuel cell systems, is prognostics and health management (PHM). PHM consists
of three main phases: Observation, Analysis, and Action, as outlined in Fig.
1.7. Observation includes measurement and logging of system parameters
(data acquisition) and data processing, which transforms the raw data to more
compact and useful information, for example storing data in a database and
extracting useful features for later PHM steps. The analysis phase involves
assessment of system condition, detection and localization of faults (diagnostics),
as well as prediction of future system condition (prognostics). The action phase
involves the planning of a suitable maintenance schedule based on the findings
in the analysis phase.

1.4.1 Prognostics of Fuel Cell Systems

Within fuel cell system research, PHM has been an active field of research in
the recent years [24]–[26]. Especially the topics of diagnostics and prognostics
have been addressed. Diagnostics of fuel cell systems seeks to detect and isolate
faults in the fuel cell system, which can then be mitigated to prevent further
degradation. On the other hand, the aim of prognostics is to predict the future
degradation level of the system, which can then be used to plan maintenance
activities for example through a remaining useful lifetime (RUL) metric. The
focus in this work is on the prognostics aspect. Hence, diagnostics will not be
covered further in this thesis.

Prognostics approaches described in literature can be categorized by the type
of measurement that is used as the health indicator and by the type of prediction
method. For the health indicator, two main approaches are used: i) a continuous
measurement, such as stack voltage or power and ii) intermediate test sequences
such as polarization curves or electrochemical impedance spectroscopy (EIS).
The continuous measurements such as voltage are convenient because they are
often measured for control purposes, hence no additional sensors are required.
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Polarization curves or EIS characteristics can provide more information on the
fuel cell condition, than the simple continuous measurements. EIS is especially
popular and have been very successful in diagnostics studies [27]–[29]. However,
to obtain these characteristics, it requires dedicated measuring routines, the
operation of the fuel cell is interrupted, and additional sensors or measuring
circuitry may be required. The main categories of prediction methods are model-
based, data-driven and a combination of the two (hybrid or fusion methods)
[30]. The pros and cons of model-based versus data-driven methods are outlined
from a diagnostics perspective in [31] and [32], respectively.

Model-Based Prognostics

Model-based prognostics methods rely on accurate analytical descriptions of the
systems. Mostly empirical models are used rather than theoretical models, since
the fuel cell is a multi-physics domain system and the degradation mechanisms
are not yet well understood [33].

In [34] and [35] the continuous fuel cell stack voltage under constant load
conditions is used in a model-based particle filtering framework to estimate
degradation level and degradation rate. The degradation parameters are then
used to predict the RUL. In [36], the fuel cell voltage under constant load current
is used to estimate a state-of-health (SOH) metric. The SOH is determined in a
degradation model by an observer-based extended Kalman filter (EKF) which is
also used to for forecasting and consequently RUL estimation. The degradation
model is obtained by parameter estimation from experimental polarization
and EIS characterizations. Reference [37] uses EIS characterizations to fit an
electrical equivalent model, which can be used for prognostics.

These model-based methods are able to accurately predict the degradation in
the reported studies described above. The downside to model-based methods is
that in-depth knowledge of the fuel cell physics and degradation mechanisms or
extensive empirical testing is needed to parameterize the models. Furthermore,
a model of a specific system may not apply to other systems experiencing
different operating conditions or load profiles [38].

Data-Driven Prognostics

In data-driven prognostics methods, no knowledge of the physical properties
of the operation or degradation of the fuel cell is needed. However, example
experimental data of the degradation phenomena is required.

In [39], an artificial neural network (ANN) is used to model the polarization
characteristics from current density, anode inlet temperature, and mass flow
measurements. The method is applied throughout several thousand hours of
operation, where it is shown to be capable of capturing the degradation of the
fuel cell. In [40], wavelet analysis and several different degradation models are
used for RUL prediction from stack voltage data. Both static and dynamic load
conditions are investigated. References [41], [42] both use variations of ANNs,
namely adaptive neuro fuzzy interface system (ANFIS) and long short-term
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Table 1.2: Web of Science literature topic search results (as of July 8 2019)

Set Search statement Results
#1 TOPIC: ("backup power" OR "uninter* power" 45 377

OR "emergency power")
#2 TOPIC: ("fuel cell*") 112 808
#3 TOPIC: (prognos* OR PHM) 628 594
#4 #1 AND #2 453
#5 #1 AND #3 889
#6 #2 AND #3 123
#7 #1 AND #2 AND #3 2

memory (LSTM) recurrent neural network (RNN). Both use stack voltage
as health indicator and study both constant and dynamic load conditions.
References [38], [43], [44] all use an echo state network (ESN), which is a
variation of an RNN. In [43] the ESN is used to predict the mean cell voltage
under constant load current. In [38], [44] the ESN predicts a virtual steady
state stack voltage.

1.5 Literature in Numbers

Although prognostics of fuel cell systems is an ongoing topic of research, as
outlined in the previous section, very few studies have addressed prognostics of
fuel cells in a backup power system, where the operating conditions are very
different from those presented in literature. Common for the literature studies
is that the fuel cell stacks are continuously operating for extended periods which
allows for continuously assessing the degradation level. In the backup power
systems, the stacks are normally inactive and only operate sporadically for short
periods. This makes the approaches described in literature difficult to apply.

To illustrate the amount of existing literature on the topics of this work, a
literature search has been conducted on the research database Web of Science.
The searched topics are backup power systems, fuel cells, and prognostics. The
topics and their overlap are shown in the Venn diagram in Fig. 1.8. Some
additional search terms are included to account for variations in terminology by
different researchers. The complete search terms are shown in Table 1.2. The
results show that there are roughly 45 000 publications on backup power systems,
113 000 publications on fuel cells, and 629 000 publications on prognostics.
However, prognostics is a term which is used in many other fields such as
medicine, which skews this number considerably. Within engineering categories
there is only around 6 000 publications on prognostics.

Combining the search terms reveals the amount of research on the overlapping
topics. For example Web of Science has cataloged 453 publications on the
combination of backup power systems and fuel cells. Similarly the search shows
123 publications on prognostics of fuel cells. Combining all three topics, i.e.
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prognostics of fuel cell based backup power systems, only two publications are
found, where of one is written by the author of this thesis.

This search is not exhaustive, but represents a large portion of existing
literature and therefore illustrates the gap in research on the combined topic of
prognostics of fuel cell based backup power systems.

1.6 Project Objectives

A good prognostics and health management (PHM) strategy is a key development
towards more reliable, available, and economic fuel cell systems. PHM consists
of three main parts: observation, analysis, and action. Whereof the subtasks of
condition assessment and prognostics of the analysis part is the main focus in
this work.

Fuel cell backup power systems have fundamentally different operating
patterns than most other fuel cell-based systems investigated in literature. The
backup systems often only operate for short bursts with irregular intervals.
This means that the established monitoring and prognostics approaches, that
investigate continuous or semi-continuous operating systems, are not directly
applicable.

Many monitoring and prognostics approaches consider only constant oper-
ating conditions in a laboratory environment or are based on expensive and
time-consuming tests of the fuel cells, such as electrochemical impedance spec-
troscopy (EIS). Although effective, this is usually infeasible in commercial
systems.

A unique dataset consisting of measurements and system logs from numerous
fuel cell based backup power systems has been made available for this work.
The measurements originates from systems installed in the field, experiencing
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normal backup system operating conditions and therefore provides a unique
picture of system performance in real field application. The data is further
explained in Chapter 2.

This leads to the main objective of this project, which is:

To investigate how to assess and predict performance degradation of
fuel cell based backup power systems based on historical data from
normal backup power system operation.

To achieve this objective, the following research questions will be addressed
in the thesis:

1. How to establish a set of performance metrics for quick and easy compari-
son of fuel cell stack performance and usage?

2. How to assess fuel cell stack degradation levels?

3. How to detect fuel cell stacks with abnormal performance levels or oper-
ating patterns?

4. How to predict future degradation levels of the fuel cell stacks?

The studies of each of the research questions take offset in the available
dataset of normal in-field operation of a fleet of fuel cell based backup power
systems.

1.7 Thesis Outline

The thesis contains two parts: i) an extended summary consisting of five
chapters summarizing the project, and ii) the appended papers, which have
been submitted for publication within the project period and which makeup the
foundation of this thesis. The structure of the extended summary is as follows.

In Chapter 1, the background and motivation of the project was presented
along with background knowledge on each topic areas that are relevant to this
work, i.e. backup power systems, fuel cells, and the prognostics and health
management framework. This led to the formulation of the project objectives.

Chapter 2 presents the system architecture and the dataset under investi-
gation and how performance indicators can be extracted to provide a basis of
comparison between stacks in the fleet of backup power systems. Both single
value metrics and time series are extracted.

Chapter 3 presents methods of detecting abnormally performing stacks based
on the single value metrics extracted in Chapter 2, and to detecting groups of
similar stacks based on the time series metrics.

In Chapter 4 methods of predicting future stack performance levels are
presented. Two approaches are explored: i) predicting stack degradation
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level from examples of historic stack degradation levels and ii) predicting the
underlying stack parameters from examples of several historic stack parameters.

Finally, Chapter 5 concludes the extended summary of the thesis.
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2
Data Foundation and

Performance Indicators

This chapter starts by introducing the fuel cell based backup power systems
that are investigated in this work. Raw data from measurements and system
logs are available from a number of backup systems that have been running in
the field. The data is structured in a database and key performance indicators
are extracted to provide a simplistic overview of the performance and usage of
each stack. These metrics allow the comparison between stack performances
and provides a holistic view of the performance of the fleet as a whole. Stacks
that experience widely different performance or operating conditions compared
to other stacks in the fleet can be detected as outliers as described in Chapter 3.

2.1 System Description and Measurements

The system under investigation is a 5 kW backup system based on two 2.8 kW
PEM fuel cell stacks. The two fuel cell stacks are each supplied with hydrogen
and air to produce electrical energy, which is supplied to the load through
DCDC converters. The electrical power produced by each stack is handled by
three parallel DCDC converters. Two ultracapacitor modules, one for each fuel
cell stack, supplies the load with power during the startup of the fuel cells. An
illustration of this system architecture is depicted in Fig. 2.1.

Other than these mentioned components, the system contains several essen-
tial components including valves, booster circuits, controller units, test loads,
and many more. The configuration of which will not be addressed further.

The described system is primarily used for backup in telecommunication
sites, where they provide backup power to mitigate fluctuations and failures in
the electrical grid. The partner company has many such systems in operation in
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Fig. 2.1: Backup system architecture

Denmark as well as abroad. During the lifetime of each system, measurements
of various system parameters has been performed and collected.

2.1.1 Measurements

The measurements, that are performed on the systems in operation include
electrical and temperature measurements on each fuel cell stack as well as on
each of the DCDC converters; set points of the cathode fan speed, stack heater,
and the proportional valve; temperatures of the valve block, air inlet, air outlet,
controller box, and externally between the two stacks; inlet temperature of the
hydrogen; system output voltage. A complete list of the measured parameters
is shown in Table 2.1.

Table 2.1: Measured and logged system parameters

No. Parameter Description Unit
1 Date Date [D-M-Y]
2 Time Time [H:m:s]
3 Stack_heat Stack heater setpoint [%]
4 Fan_speed Cathode fan setpoint [%]
5 VALVE_PWM Proportional valve setpoint [%]

6-11 Iin_DCDC{1-6} DCDC converter {1-6} input cur-
rent

[A]

12-17 Uin_DCDC{1-6} DCDC converter {1-6} input volt-
age

[V]

continued . . .
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. . . continued
No. Parameter Description Unit

18-23 Iout_DCDC{1-6} DCDC converter {1-6} output
current

[A]

24-29 Uout_DCDC{1-6} DCDC converter {1-6} output
voltage

[V]

30-35 T_DCDC{1-6} DCDC converter {1-6} tempera-
ture

[◦C]

36 T_Valves Valve block temperature [◦C]
37 T_Stack_1_1 Stack 1 temperature (sensor 1) [◦C]
38 T_Stack_1_2 Stack 1 temperature (sensor 2) [◦C]
39 T_Stack_2_1 Stack 2 temperature (sensor 1) [◦C]
40 T_Stack_2_2 Stack 2 temperature (sensor 2) [◦C]
41 T_Air_Inlet Air inlet temperature [◦C]
42 T_Air_Outlet Exhaust air temperature [◦C]
43 T_Contr_Box Controller box temperature [◦C]
44 V_stack_1 Stack 1 voltage [V]
45 V_stack_2 Stack 2 voltage [V]
46 I_stack_1 Stack 1 current [A]
47 I_stack_2 Stack 2 current [A]
48 H2_P_in_LP Hydrogen inlet pressure (low pres-

sure side)
[mBar]

49 H2_P_in_HP Hydrogen inlet pressure (high
pressure side)

[mBar]

50 U_line System output voltage [V]
51 T_FCC_Room Temperature in the area between

the fuel cell stacks
[◦C]

52 Cath_fan_tacho Cathode fan tacho feedback [Hz]

2.1.2 Operating Modes

The system can operate in a number of different modes numbering 0 to 10. The
most relevant modes of operation are listed in Table 2.2. Modes 0, 1, and 7-10
are related to service and safety, and are not used in this work. The modes
are used for the overall system and for each of the fuel cell stacks individually.
Hence, the system can be in backup mode, i.e. providing power to the load,
where one fuel cell stack is supplying all the power, while the other remains
in standby mode. That is, the system mode is logged as 4, stack 1 mode as 4,
and stack 2 mode as 2 or vice versa. The system and stack modes are logged
together with the measured parameters as SYS_MODE, ST1_MODE, and ST2_MODE,
respectively.
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Table 2.2: System and stack modes

No. Mode Description
2 Standby When the system is inactive but available
3 Powerup Powering up the fuel cells before taking over

the loads
4 Backup Powering the load from the fuel cells
5 Powerdown Ramping down power after backup or selftest

event
6 Selftest A power ramp-up used for testing and exercis-

ing the fuel cells

Typical Operating Pattern

During normal operation, the system is in a standby mode. That is, the fuel
cell stack is turned off and the backup system does not provide power to the
load. This mode is used when the grid is supplying power to the load without
interruptions. A backup system supplying a normal telecommunication site will
spend the majority of its lifetime in standby mode.

When a grid failure occurs, the fuel cells must ramp up its produced current
to take over the load power. In the mean time, the ultracapacitors provide
the load power. This operating mode is called power-up. When the fuel cells
are fully powered up, they take over the entire load power and the system has
entered its backup mode. When grid power is restored, the fuel cell current is
ramped down in the power-down mode.

The self-test mode, is used to regularly exercise the fuel cell stacks during
prolonged standby periods. During self-test, the stack is powered up to a
constant power level and kept at this level for a few minutes after which it is
powered down again using the power-down mode. The power produced during
self-tests is dissipated in a test load. One stack is tested at a time: stack 1
followed by stack 2. When the self-test is being performed on one stack, the
other remains in standby mode.

2.1.3 Structuring the Data

All of the logged parameters are stored on local SD cards at each system site
and are collected manually on service visits. The data is stored in CSV files, one
or more for each day, such that file 01021601.CSV is the parameters logged on
1st of February 2016, the last ‘01’ denotes that it is the first file from that day.
Hence, the data from each site is stored in at least 365 separate CSV files per
year. This data structure makes it difficult to analyze the complete dataset of a
specific site, not to mention analyzing data across the entire fleet of systems.
Therefore, the first step is to store all the data in a database structure, where it
can be accessed and segmented more conveniently.

The programing language Python was used to write a script, which automat-
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ically goes through a data folder containing a subfolder for each system. These
system folders may contain one or more additional layers of subfolders, in which
the CSV files with raw data is located. The script uses Python’s PyMySQL
package to set up a MySQL database table containing all the raw data from all
the systems. Additionally to the raw data parameters, a system id column is
created in the database.

From the MySQL database, subsets of the raw data can be easily accessed
using SQL queries such as shown in Listing 2.1, which would extract the columns
datetime, sys_mode, and st1_v (stack 1 voltage) from the raw_data table, but
only for the system with system_id of 1 and for dates later than January 1st

2017. This extraction of data, without an SQL database, would be very tedious
and time consuming.

Listing 2.1: SQL query example

1 SELECT datetime , sys_mode , st1_v
2 FROM raw_data
3 WHERE system_id = 1 AND datet ime >= "2017−01−01"

2.2 Extracting Performance Indicators

With the amount of raw data, it can be difficult to get an overview of how
each system performs in comparison to the fleet of systems. Therefore, it is
advantageous to extract some simple metrics, that convey the performance and
usage of each system. These metrics are referred to as performance indicators
or key performance indicators (KPI). Two types of performance indicators are
extracted from the raw data set: counters and totalizers - measures of how much
the system has been used and in which modes it has operated; and self-test
characteristics - metrics extracted from each self-test, which allows for tracking
the dynamics in the performance over the system’s lifetime.

2.2.1 Counters and Totalizers

The counters and totalizers include various operating times, production and
consumption levels, and number of system startups. The definition of each
indicator is described in the following paragraphs.

System Startups

A system startup is the process of going from an inactive stack to an active
stack, i.e. providing power. The definition of system startup is when the stack
current has increased from 0 A to above 5 A, i.e. 5 A is the threshold for the
stack being active. Each system startup is associated with some degradation of
the fuel cell. The startups are extracted by counting events where the current
is increased from 0 A to above 5 A.
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When the stack has been inactive for some time, there is air present on the
anode side. The air needs to be replaced with fresh hydrogen during startup.
The filling of hydrogen into the anode will create some internal current that can
lead to corrosion and thereby irreversible degradation. The corrosion currents
are reduced by quickly purging the hydrogen into the anode as well as applying
a load during startup to draw down the cell voltage. These events are called
air-air startups and are extracted by counting the startups where the average
cell voltage is below 0.1 V.

Operating Time

Active operation of the fuel cell is another cause of performance degradation.
The active operating time (Runtime) of the fuel cell stack can be calculated
by looking at when the stack has supplied more than a certain threshold level
of current (5 A). The active operating time is derived by finding the instances
where the current rises above and falls below the threshold level.

To give an overview of the usage profile of the systems, the time spent
in each of the operating modes (Table 2.2) can be investigated. The mode
operating times are calculated by finding the instances where a certain mode
is entered (changes from a different mode) and exited (changes to a different
mode). An example of the mode logs and mode times of a specific stack is
shown in Fig. 2.2. The figure shows the system modes versus the date and the
total time spent in each of the system modes during the total operating time
of an example system. The ‘unknown’ mode is not an actual operating mode,
but simply indicates that no other system mode has been logged during a time
interval. This might be caused by a number of things, including transport time
to the system site, missing or corrupted data points, or downtime in relation to
service of the system. The figure clearly indicates that the normal state of the
system is in standby mode and only a small fraction of the time, is the system
actually actively operating.

The fuel cells have an optimum operating temperature approximated by
a linear relationship with the produced current (i): Topt = a · i + b. The
time the fuel cell stack spends at non-optimum temperatures can also have an
influence on the performance level. This is split into two indicators: under- and
over-temperature:

Tunder ≤ Topt −∆T (2.1)
Tover ≥ Topt + ∆T (2.2)

where ∆T defines the tolerable deviation from the optimum operating tempera-
ture. The under/over-temperature operating times are extracted for each of the
systems modes (Runtime_undertemp_{mode} and Runtime_overtemp_{mode})
as well as for the active operating time (Runtime_overtemp and
Runtime_undertemp).
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Fig. 2.2: Example system operating modes. Left: dots indicate instances of the different
system modes versus date. Right: Total time spent in each mode.

Production and Consumption

Another way of quantifying the usage of the stacks is to calculate the amount
of energy and charge it has produced over its lifetime. The energy produced by
the fuel cell stack is the integral of the fuel cell power as such

E =
∫ tend

0
V (t) · I(t)dt (2.3)

for the sampled measurements, trapezoidal integration is used to approximate
the energy:

E =
L∑
i=1

Vi−1 · Ii−1 + Vi · Ii
2 (ti − ti−1) (2.4)

where L is the number of samples in the dataset. Similarly, the produced charge,
which is the integral of the produced current, is calculated by

Q =
L∑
i=1

Ii−1 + Ii
2 (ti − ti−1) (2.5)

The charge can then be used to approximate the consumed hydrogen and
oxygen, respectively. The reaction levels are calculated from (2.6) and (2.7),
where KH2 and KO2 are empirical constants.

ṁH2 = KH2 ·Q (2.6)
ṁO2 = KO2 ·Q (2.7)
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Table 2.3: Counters and totalizers

KPI Description
Startups Number of startups of each stack
Airair_startups Number of startups of each stack when

there is no hydrogen at the anode
Runtime Operating time above current threshold
Runtime_{mode} Operating time in each mode
Runtime_overtemp Operating time at above optimum tem-

peratures above current threshold
Runtime_overtemp_{mode} Operating time at above optimum tem-

peratures for each mode
Runtime_undertemp Operating time at under optimum tem-

peratures above current threshold
Runtime_undertemp_{mode} Operating time at under optimum tem-

peratures for each mode
Charge_produced The amount of electric charge produced
Energy_produced The amount of electric energy produced
Oxygen_reacted The amount of reacted oxygen
Hydrogen_reacted The amount of reacted hydrogen

Extracted Values

The list of KPIs are summarized in Table 2.3 and the extracted KPIs for each
stack in the available systems’ data is shown in the boxplot of Fig. 2.3. This
provides an overview of each stack in the fleet of backup power systems and the
distribution of each KPI for the fleet. This is the basis for detecting abnormally
performing stacks, which is presented in Chapter 3.

2.2.2 Self-Test Characteristics

As the systems spend most of the time in standby mode, where it is difficult to
extract useful performance indications, the active periods can be used for getting
a picture of the change in performance over the stack lifetimes. However, the
backup events are not predictable and vary in their load profile. The self-tests,
on the other hand, are more consistent and typically more numerous. Hence,
these will be used as the basis for extracting performance indicators.

26



2.2. Extracting Performance Indicators

10 3 10 2 10 1 100 101 102

Charge_produced [kAh]
Energy_produced [kWh]

O2_reacted [kg]
H2_reacted [kg]

Air_moved [T]
Runtime_undertemp_selftest [h]

Runtime_undertemp_powerdown [h]
Runtime_undertemp_backup [h]

Runtime_undertemp_powerup [h]
Runtime_undertemp [h]

Runtime_overtemp_selftest [h]
Runtime_overtemp_powerdown [h]

Runtime_overtemp_backup [h]
Runtime_overtemp_powerup [h]

Runtime_overtemp [h]
Runtime_selftest [h]

Runtime_powerdown [h]
Runtime_backup [h]

Runtime_powerup [h]
Standby_time [w]

Runtime [h]
Air_air_starts [-]

Total_starts [-]

Fig. 2.3: Counter and totalizer performance indicators boxplot

Fig. 2.4: Self-test data of a specific stack

The investigated systems parameters are the stack power, stack voltage,
current, stack temperature, room temperature (between the two stacks), air
inlet temperature, air outlet temperature, and the hydrogen inlet pressure.
These parameters during stack self-tests are shown for a single stack in Fig. 2.4.
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Fig. 2.5: Example of extracting steady state values of a self-test of a specific stack

A zoomed view of a single self-test is shown in Fig. 2.5 where the data has
been normalized. This shows the self-test procedure of ramping up the current
until a certain power level, which is then kept constant for some time before
ramping down again. During the constant power segment, the voltage slightly
increases and the current decreases accordingly. This is due to a recovery effect,
where some of the reversible degradation from the standby period is recovered.

The fuel cell temperature increases to a steady value along with the power
increase and falls when the test is done. The room temperature increases
throughout the test as the fuel cell produces heat. The continuous increase
after the end of the test is caused by the subsequent self-test in the other stack
in the system. The air inlet temperature is approximately constant, whereas
the outlet temperature increases as the produced heat is removed through the
outlet airstream. The hydrogen pressure is approximately constant.

The extracted self-test characteristics of each stack are shown in Fig. 2.6
where three stacks have been highlighted in different colors to show the progres-
sion of values for individual stacks.

State of Health

State of health (SOH) is a single parameter which indicates the degradation
level of a system. The SOH is usually given as a percentage between 0% and
100%, where 100% SOH indicates a completely healthy system and 0% SOH
indicates a fully degraded system. SOH is commonly used in battery systems
[45], [46].
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Fig. 2.6: Extracted self-test characteristics of all fuel cell stacks. Three stacks have been
highlighted in blue, light-blue and red, respectively.

There is no standard in calculating the state of health of fuel cell stacks.
The most common metric is to look at decline in stack voltage at a given load
current [34], [35], [43]. However, the self-tests of this study are conducted in
a way that the power is ramped to a certain value. Hence, as the fuel cells
degrade and the voltage drops, the needed current to maintain the power level
must increase. Therefore, the drop in voltage can not be directly used as SOH
indicators, as they are taken at different load levels. In [47], Dolenc et al. uses
voltage and temperature measurements to estimate the area specific resistance
(ASR) of a solid oxide fuel cell. A threshold for the ASR is used as an end of
life indicator.

Another way of determining the SOH, is using characterizations of stacks
at their beginning of life (BOL) and at their end of life (EOL). This method
was presented in [48], where the so called representative loss, in the form of
resistance, is compared to the loss of a new cell (at BOL) and the loss at which
the cell can no longer provide the power demanded by the application (at EOL).
The formula for this comparison takes the general form:

SOH = HI −HIEOL
HIBOL −HIEOL

(2.8)

where HI is the health indicator - in the case of [48], the representative
loss. For the fuel cell under investigation in this work, BOL and EOL criteria
are given by the manufacturer in the form of polarization curves as shown in
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Fig. 2.7. The points of the BOL and EOL criteria are fitted to the polarization
equation of (1.8) to obtain the polarization curve functions, VBOL(I) and
VEOL(I), respectively.
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Fig. 2.7: Beginning of life and end of life polarization curves

These BOL and EOL functions are then used to estimate the SOH from
the steady state voltage and current measurements of each self-test using the
relation from (2.8):

SOH = V − VEOL(I)
VBOL(I)− VEOL(I) (2.9)

where V is the extracted steady state self-test voltage and I is the extracted
steady state self-test current.

Calculating the SOH for each stack, the curves of Fig. 2.8 are obtained. The
plot shows the wide range of where the stacks are in their life cycle. Some are
near to the end of life criteria (SOH ≈ 0) while some still perform better than
expected for a newly installed stack (SOH > 1).

It should be noted that the BOL and EOL criteria are idealized thresholds
obtained in a laboratory setting and do not consider the specific application.
The EOL limit has been determined as the point when the peak power point is
reached at the maximum current of the stack. A more suitable EOL criteria
could be set for this specific application, if the SOH values should be used
directly for determining the sufficiency of the fuel cell performance. This SOH
does provide a relative measure of the degradation level of the fuel cell and will
be used as such.
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Fig. 2.8: State of health of each stack in the dataset
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3
Outlier Detection and Time

Series Clustering

Having extracted key performance indicators, describing the usage and perfor-
mance levels of each stack in the available dataset, a method of comparing the
fuel cell stacks is needed. Section 3.1.1 presents a method of using the counters
and totalizer KPIs, presented in Section 2.2.1, to detect stacks that perform
significantly different compared to the fleet of systems as a whole. Also, the
self-test characteristics, presented in Section 2.2.2, are analyzed. A method of
assessing similarities in the time series and grouping the stack based on these
similarities is presented in Section 3.2.

3.1 Performance Outliers

The fuel cell stacks in the dataset undergo widely varying operating conditions
and load profiles. The extracted counter and totalizer KPIs provide simple
metrics to evaluate the usage and performance of the stacks. However, the
varying age, operating time, etc. of the fuel cell stacks makes it difficult to
directly compare the KPI values between the stacks. Therefore, a method
of detecting outlier stacks, considering all the KPI metrics simultaneously, is
needed.

Since there is no prior examples of which stacks can be considered normal
or outliers, an unsupervised method is used. Furthermore, the distribution of
the KPIs is not guaranteed to being Gaussian and several distinct groups may
be present within the dataset. Hence, a density based method, namely local
outlier factor (LOF) is chosen for this task.
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3.1.1 Local Outlier Factor

The local outlier factor algorithm is an unsupervised machine learning method
of detecting outliers in a dataset. LOF compares the local density of a given
point and compares it to that of the neighboring points to attribute an outlier
factor to the point. The point can then be classified as an inlier or an outlier
based on this outlier factor. [49], [50]

The LOF algorithm uses the distances between points in the dataset to
establish a set of k nearest neighbors for each point. For a given point A, the set
is denoted as Nk(A), which contains all points that are within the k-distance
(dk), i.e. the distance between A and its kth nearest point. The local density of
a point is estimated by the local reachability distance (lrd), which is defined as
the ratio between the number of points in the set of k nearest neighbors and
the sum of reachability distances (rd) between point A and each point in the
set of k nearest neighbors:

lrdk(A,B) = |Nk(A)|∑
B∈Nk(A)

rd(A,B) (3.1)

The reachability distance is the maximum of the k-distance of point B and
the true distance between points A and B (d):

rd(A,B) = max{d(A,B), dk(B)} (3.2)

Finally, the LOF is calculated as in (3.3).

LOFk(A) =

∑
B∈Nk(A)

lrdk(B)
lrdk(A)

|Nk(A)| (3.3)

The LOF value gives an indication of how similar a given point is to other
points in its neighborhood. An LOF score below or close to 1 indicates an inlier
point, i.e. a point with high degree of similarity to its neighbors, and an LOF
score much greater than 1 indicates an outlier. Where exactly the threshold
between inliers and outliers should be located depends on the dataset. However,
in the case of the performance levels of fuel cell stacks, it makes sense to look at
the LOF values directly and address the stack with the highest LOF value first.

Calculating the LOF values of the KPIs of each stack, as presented in [C],
the distribution of the LOF values are shown in Fig. 3.1. The majority of the
stacks score an LOF value at around 1. A few stacks score LOF values above 4,
which are definitely abnormal.

Looking at one of the abnormally performing stacks: stack 2 of system 82,
which has an outlier factor of 6.6, it has abnormally high values in the number
of startups and runtime in both powerup and powerdown modes. If the runtime
in backup mode would have been equally elevated, this might have been a sign
that the system was simply providing backup power more frequently than other
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Fig. 3.1: Local outlier factor histogram [C]

systems. However, the backup runtime is low, indicating that some error might
have occurred at the site.

This is confirmed when looking at the operating pattern of the stack (Fig.
3.2). For a few days, the stack continuously powers up to enter backup mode
for only a few seconds after which it powers down again. This leads to the low
backup time and high powerup/powerdown time and number of startups, which
is detected as an outlier.

3.2 Clustering Self-Test Time Series

Similarly to comparing stacks based on their single-value KPIs, as described in
the previous section, it would be advantageous to have a way of comparing the
stacks based on the self-test time series described in Section 2.2.2. However, a
direct comparison is not straight forward. Especially, the variation in sequence
length makes the time series of different stacks difficult to compare.

3.2.1 Dynamic Time Warping

Usual similarity measures, such as Euclidian distance, is not well suited for the
case of asynchronous time series of variable length. Hence, an alternative method
is needed. A popular method of shape similarity quantification is the dynamic
time warping (DTW) algorithm [51], which has been successfully applied in
areas such as speech recognition [52], data mining [53], and prognostics of
battery systems [54]. The DTW algorithm warps the time series in the time
dimension in order to achieve an optimal alignment between them and thereafter
calculating the distance.

For two time series of different length: Q = (q1, q2, ..., qn) and C =
(c1, c2, ..., cm), an n × m matrix (D) is constructed. The matrix is filled so
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Fig. 3.2: Operating pattern of a detected abnormal stack. Top: full view, bottom: zoomed
view of problem period.

that the entry d(i,j) is the absolute difference between qi and cj plus the
minimum value of the previous adjacent matrix entries, i.e.

d(i,j) = |qi − ci|+ min{d(i−1,j), d(i−1,j−1), d(i,j−1)} (3.4)

This procedure is illustrated in the toy example of Fig. 3.3. The two series,
Q and C are of length 6 and 5, respectively and are depicted on the left half of
the figure. The right side of the figure shows the resulting 6× 5 matrix.

The DTW algorithm tries to find the optimum path going from the starting
point of each series (bottom left corner of the matrix) to the end of both series
(top right corner of the matrix). The optimum path is the path giving the
lowest score when summing the numbers along the path. In the shown example,
the optimal path is shown in bold numbers and equates to a similarity score for
the two series of 31.

In effect, the DTW algorithm allows the comparison of two arbitrary time
series by a single similarity metric. In paper [E], the DTW algorithm is used
to estimate the similarities between the fuel cell stacks in the dataset based
on a number of features. The features used for estimating similarity are the
time series of voltage, current, stack temperature, room temperature, air-in
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Fig. 3.3: Dynamic time warping example of two time series of unequal length

temperature, air-out temperature, and hydrogen inlet pressure, extracted from
the fuel cell self-tests as presented in Section 2.2.2. The results of the DTW
algorithm on these time series is depicted in the matrix plot in Fig. 3.4. The
color of each pixel in the matrix represents the similarity between the stacks
indicated on each of the axes. A darker pixel indicates larger DTW distance
and thereby lower similarity. It is clear that some stack are more alike than
others. In the following section, it is described how these DTW distances can
be used to detecting groups of similarly behaving stacks.
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Fig. 3.4: Dynamic time warping distances between stack feature time series [E]

3.2.2 DBSCAN

Density-based spatial clustering algorithm for applications with noise, more
commonly known as DBSCAN, is a popular machine learning algorithm for
detecting clusters within datasets [55]. DBSCAN builds on some of the same
concepts as the previously described LOF algorithm for detecting outliers.
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The algorithm takes two parameters: the maximum radius of the neighbor-
hood (ε), and the minimum number of points that constitute a cluster (MinPts).
The number of points within the ε-neighborhood for each point is a measure of
that point’s density. MinPts can be thought of as a threshold to the number
of points in the neighborhood that defines the allocation of points to clusters.
For a given point A, point B is in A’s neighborhood if the distance between A
and B is less than or equal to ε. The neighborhood of A, i.e. the set of points
within ε distance of A, is denoted as Nε(A).

If there are MinPts or more points in Nε(A), A is considered a core point.
If Nε(A) contains fewer than MinPts points, but A is reachable (within ε
distance) of another core point, A’s is categorized as a border point. If neither
of the previous statements are true, A is a noise point.

Clusters are detected by looking at each detected core point. Any chain of
points that are sequentially reachable from the given core point (A), is considered
as being within the same cluster as A. Hence, clusters can contain both core
and border points, but never noise points as these can only be reachable from
other noise points.

Fig. 3.5 shows the workings of the DBSCAN algorithm on a toy dataset.
On the left hand side, the data points are shown along with their ε-distance
radius. In the example, the MinPts parameter is set to 4. The detected point
categories are shown in the different colors - blue for core points, gray for border
points, and red for noise points. On the right hand side of the figure, the
resulting clusters are shown in blue and light-blue, respectively.

Core
Border

Noise Cluster 1
Cluster 2

Noise

Fig. 3.5: Example of DBSCAN algorithm with MinPts = 4. Left: ε-distance and determi-
nation of core, border, and noise points. Right: resulting clusters.

The DBSCAN algorithm is advantageous in that it can detect clusters of
any shape and it does not need a prior specification of the expected number of
clusters, which makes it well suited for applications with an unknown number
of clusters. Furthermore, the algorithm is robust to noise, as these points are
detected and ignored in the cluster formation.

In paper [E], the DBSCAN algorithm is used to detect clusters in the
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similarity measures of the stack time series extracted by the DTW algorithm.
To reduce the complexity and improve the visualization of the DTW data, a
dimensionality reduction method is first applied to reduce the number of features
from more than 140 to 4. The used algorithm is the widely used principal
component analysis (PCA) [56]–[58], which is presented in more detail in [C],
[E].

The result of applying DBSCAN to the PCA transformed DTW data is
shown in Fig, 3.6. Each subplot shows one transformed-space feature (principal
component) plotted against another feature. Instead of plotting each feature
against itself in the diagonal subplots, these show the data distributions in a
histogram. Each point in the scatter plots represent one stack. The parameters
of the algorithm was set to MinPts = 25 and ε = 0.85. Two clusters of 67 and
33 stacks, respectively were detected in the data as well as 26 noise points. The
clusters are mainly separated in one of the four dimensions.

Fig. 3.6: Scatter matrix plot of each principal component of the transformed dynamic time
warping distance calculations on the stack time series [E]

These detected clusters of stacks are used in paper [E] to test the accuracy
of prediction models trained on groups of data versus the whole dataset. This
aspect of the predictions will not be addressed further in this thesis. For more
details on this, please refer to paper [E].
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4
Predicting Performance

Degradation

This chapter presents the chosen approach for predicting the future performance
and degradation level of the fuel cell stacks in the backup power systems.
Because the data of individual stacks is relatively sparse, a single machine
learning model is trained on multiple stacks. This gives more training data for
the model and results in a more general model that can predict future values of
any stack in a similar system.

Two approaches to predicting the performance degradation of the fuel cell
stacks has been investigated: i) forecasting SOH values directly as presented in
[D] and ii) forecasting the underlying stack voltage, current, and temperature
from varies stack measurements as presented in [E]. Common for both approaches
is that they use variants of artificial neural networks (ANN) trained on historical
data from all stacks in the dataset.

The following section will present, the basics of artificial neural networks and
its adaptation to temporal applications, the used architectures of the networks
and their implementation. Finally, the results of the predictions are presented.

4.1 Artificial Neural Networks

The basis for most ANNs is the neuron model, which takes an input vector (x),
multiplies it by a weight matrix (W ), adds biases (b), and applies an activation
function (σ):

y = σ(Wx+ b) (4.1)

Interconnecting multiple artificial neurons in networks such as shown in
Fig. 4.1, gives the ability to model complex nonlinear phenomena. In the
shown ANN, the white nodes represent individual neurons whose output is
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the nonlinear function (4.1) of the collection of its inputs. In the input layer,
there is one neuron for each of the input features (x1, x2, and x3 in Fig. 4.1)
and the output layer has the number of neurons corresponding to the wanted
output features (y1 and y2 in Fig. 4.1). The layers in between are the hidden
layers and can have any number of neurons depending on the complexity of the
phenomena which should be modeled. In the hidden layers, the input of each
neuron is the collection of all neuron outputs from the preceding layer.

x1 x2 x3

y1 y2

Input Layer

Output Layer

Hidden Layer 1

Hidden Layer 2

Fig. 4.1: Artificial neural network with four layers consisting of three, four, four, and
two neurons for the input layer, first hidden layer, second hidden layer, and output layer,
respectively

ANNs are trained on historical examples of input and output features. The
weights and biases are updated iteratively for each example of training data using
a gradient descent method known as backpropagation. The backpropagation
calculates the gradient of the chosen loss function with respect to the weights
and updates the weights based on the calculated gradient.

4.1.1 Recurrent Neural Networks

A variation of ANN is the recurrent neural network (RNN) which is adapted
for temporal data modeling. This makes RNNs well suited for predicting time
series, such as the fuel cell stack state of health progression over time.

The basic recurrent neuron is depicted in Fig. 4.2. The recurrent neuron
takes the input (x) as well as the previous output of the neuron, as a “memory”
input, and performs the weight-bias-activation operation described previously.

yt = σ(W [xt,yt−1] + b) (4.2)

When the neuron processes the second temporal input (x2 of the unfolded
recurrent neuron; Fig. 4.2), the neuron also receives an input with information
from the previously processed input (x1). Note that the unfolded recurrent
neurons all share the same weights and biases, i.e. they are essentially the same
neuron, but receive different inputs at different times.
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x

y

x1 x2 xn-1 xn

y1 y2 yn-1 yn

Unfold

Fig. 4.2: Recurrent neural network cell and its unfolding

When feeding the neuron outputs forward in the temporal dimension, weights
and biases are used to scale and offset the input similarly to the operation in the
non-temporal dimension. One problem with this structure is that the memory
of the first input is multiplied with the weight in each temporal step. For small
weights, this can lead to the vanishing gradient problem, where the memory
from the early inputs is washed out over time. Or, conversely, an exploding
gradient problem for large weights. There are several adaptations of the RNN
that solve this issue, the most used is the long short-term memory (LSTM) cell.

Long Short-Term Memory

The LSTM cell provides an internal cell-state, which is passed along the temporal
dimension together with the output [59], [60]. The LSTM uses gates that are
regulated by activation vectors of the form shown in (4.1) and (4.2). The gates
are used to regulate which information should be stored in the cell-state from
the previous cell-state as well as from the input and previous output. The
structure of the LSTM cell is depicted in Fig. 4.3.

Equations (4.3)-(4.8) describe the LSTM cell. In words, the input (xt) and
previous output (ht−1) are used to generate the forget-gate activation vector
(ft), input-gate activation vector (it), output-gate activation vector (ot), and
the candidate cell-state (gt). The previous cell-state (ct−1) is gated by the
forget gate activation vector, the candidate cell-state is gated by the input
gate activation vector, and the sum of these makeup the new cell-state (ct).
Finally, the LSTM output (yt) is calculated by gating the hyperbolic tangent
of the call-state. Hence, the output depends on the input, previous output, and
previous memory (cell-state).

ft = σ (Wf [xt,ht−1] + bf) (4.3)
it = σ (Wi [xt,ht−1] + bi) (4.4)
gt = tanh (Wg [xt,ht−1] + bg) (4.5)
ct = ft ⊗ ct−1 + it ⊗ gt (4.6)
ot = σ (Wo [xt,ht−1] + bo) (4.7)
yt = ht = ot ⊗ tanh (ct) (4.8)

43



Chapter 4. Predicting Performance Degradation
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Fig. 4.3: Long short-term memory cell [D]

4.1.2 LSTM RNN Architectures

Combining multiple LSTM cells in layers and stacking these layers, a deep
LSTM RNN can be constructed as shown unfolded in Fig. 4.4. This architecture
allows to predict sequences of equal length to the input sequence. Alternatively,
this architecture can be combined with a standard ANN layer on the output as
is done in [D]. This allows for predicting sequences of different length from the
input.

Input Layer

Output Layer

x1 x2 x3

y1 y2 y3

Hidden Layer 1

Hidden Layer 2

Fig. 4.4: Recurrent neural network with four layers and three temporal steps
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Another architecture, that is better adapted for predicting multiple features
where the input and output sequence lengths are not the same, is the encoder-
decoder architecture [61]. An encoder translates the input sequence to a single
vector, that contains the essence of the input sequence that allows the decoder
to predict the output sequence. This architecture is depicted in Fig. 4.5 and is
the approach used in [E] where multiple features are predicted.

y2

x1 x2 x3

y1

Input Layer

Hidden Layer 1

Output Layer

Hidden Layer 2

DECODER

ENCODER

Fig. 4.5: Encoder-decoder recurrent neural network consisting of two encoder layers and
two decoder layers with input sequence length of three and output sequence length of two

4.1.3 Implementations

The implementation of the recurrent neural networks are done in Python using
the Keras [62] module for high level deep learning implementation. Keras
provides an intuitive interface to the neural networks, while allowing for user
configurations of the networks and the training procedure.

The implementation of the deep RNN is shown in Listing 4.1. The model is
initialized using the Sequential, onto which layers can be added. The model
consists of three bidirectional LSTM RNN layers of 64, 128, and 64 neurons,
respectively. The return_sequences argument specifies wether each temporal
output should be passed to the following layer or just the last output of the
sequence. The input_shape specifies the dimensions of the input sequence(s)
as (bacth_size, number_of_features). The None entry implies a variable
batch_size.

Listing 4.1: deep RNN model implementation using Keras [D]

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Dense , LSTM, Dropout , B i d i r e c t i o n a l
3

4 # I n i t i a t e a s e qu en t i a l model
5 model = Sequent i a l ( )
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6 # Add f i r s t LSTM laye r and dropout
7 model . add ( B i d i r e c t i o n a l (LSTM(64 , return_sequences=True ) ,

input_shape=(None , 1) ) )
8 model . add (Dropout ( 0 . 2 ) )
9 # Add second LSTM laye r and dropout

10 model . add ( B i d i r e c t i o n a l (LSTM(128 , a c t i v a t i o n=' r e l u ' ,
return_sequences=True ) ) )

11 model . add (Dropout ( 0 . 2 ) )
12 # Add th i rd LSTM laye r
13 model . add ( B i d i r e c t i o n a l (LSTM(64 , a c t i v a t i o n=' r e l u ' ) ) )
14 # Add output l ay e r
15 model . add (Dense (6 ) )

After the two first LSTM layers, a dropout layer is added to the model.
The dropout layer randomly drops (removes) inputs to the following layer in
the model during the training phase. This helps making the network more
robust and reduces the risk of overfitting. The final dense layer is a fully
connected ANN layer, i.e. non-recurrent, which uses the last instance in the
output sequence of the previous LSTM layer to predict six values. These six
values are each considered a time step. This way, the network is configured to
predict six time steps into the future.

The encoder-decoder LSTM RNN network is implemented as shown in
Listing 4.2. The encoder consists of two LSTM layers of 64 and 128 neurons,
respectively. The second LSTM layer does not return the sequence, but only
the last instance of the sequence. This output vector is repeated to the decoder
by the RepeatVector. The decoder, similarly, has two LSTM layers of 128 and
64 neurons, respectively. The final layer in the decoder is the output layer,
which is a time-distributed dense layer.

Listing 4.2: Encoder-decoder RNN model implementation [E]

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Dense , LSTM, RepeatVector ,

TimeDistr ibuted
3

4 # I n i t i a t e s e qu en t i a l model
5 model = Sequent i a l ( )
6 # Encoder
7 model . add (LSTM(64 , a c t i v a t i o n=' r e l u ' , return_sequences=True ,

input_shape=(None , n_features_in ) ) )
8 model . add (LSTM(128 , a c t i v a t i o n=' r e l u ' ) )
9 # Decoder

10 model . add ( RepeatVector ( n_pred ) )
11 model . add (LSTM(128 , a c t i v a t i o n=' r e l u ' , return_sequences=True )

)
12 model . add (LSTM(64 , a c t i v a t i o n=' r e l u ' , return_sequences=True ) )
13 # Output
14 model . add ( TimeDistr ibuted (Dense ( n_features_out ) ) )
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4.2 Single-Feature Prediction of State of Health

The bidirectional LSTM RNN, as implemented in Listing 4.1, is trained in
paper [D] to predict future SOH values of the stacks. The SOH data, extracted
in Chapter 2, is split into training, validation, and testing data (Fig. 4.6).
The training data is used for training the RNN model in an iterative process
using backpropagation. The validation is used throughout the training phase to
evaluate the fitness of the model. The testing data is kept completely separate
from the training process. Nine stacks are reserved for validation and three for
testing. These twelve systems are not part of the training data.

Fig. 4.6: Splitting of training, validation and testing state of health data

The aim of the model is to predict the SOH value for a given stack for each
month, six months into the future. Therefore, the training data and validation
data of each stack is split into two segments. The last six samples of each stack
SOH is reserved as labels, i.e. examples of correct outputs of the RNN model.
The remaining samples are used as inputs to the model. In the training process,
the weights and biases of the RNN network are iteratively adjusted to minimize
the prediction error of the label samples from the input samples.

The model is trained for 200 epochs with a mean absolute error loss function
using the Adam [63] optimizer. The training loss after 200 epochs reduced to
0.008 with slightly higher validation loss of 0.018. After training the model, its
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prediction performance is tested on the validation data and compared to a naive
forecasting approach. The results are shown in Fig. 4.7. The model shows good
prediction performance for most of the validation stacks, but struggles with
some stacks. Stack 84 and 96 show some deviations in the predicted SOH and
the actual values. On average, the RNN prediction beats the naive forecasting
accuracy considerably with a mean absolute error of 0.025 versus 0.074 of the
naive approach.
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Fig. 4.7: Validation systems state of health prediction results [D]

4.3 Multi-Feature Prediction of Stack Variables

In paper [E], the encoder-decoder LSTM RNN of Listing 4.2, is used to predict
voltage, current, stack temperature values of the fuel cell stacks. The input
features for predicting these values, are historic examples of voltage, current,
and stack temperature, room temperature, air inlet temperature, air outlet
temperature, hydrogen pressure, and calendar month at the measurement. The
available data is shown in Fig. 4.8.

Similar, to the previously described SOH prediction, the data is split in
training and validation stacks. In this case, no test stacks were reserved. Instead,
the validation stacks were used for the testing, as these had no influence on the
training phase.

The model is trained to predict monthly values, six months into the future.
The network is trained for 100 epochs with a mean absolute error loss function.
Fifteen separate model were trained, to provide a confidence interval for the
predictions. The prediction results on the validation data after training is shown
in Fig. 4.9.
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Fig. 4.8: Available data for multi-feature prediction

Fig. 4.9: Validation systems voltage, current and temperature prediction results [E]
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The accuracy of the predictions are acceptable, on average. However, the
confidence interval is a bit wide. For stack 12, the prediction is unable to
cope with the fluctuating values, which results in a large prediction error. The
mean-absolute-error of mean of the predictions is 0.017 for the voltage, 0.009
for the current, and 0.008 for the temperature. It is expected that the error as
well as the confidence interval improves as more data becomes available.
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5
Concluding Remarks

This is the first study to apply the Prognostics and Health Management frame-
work to fuel cell stacks in backup power systems based on actual in-field data.
Specifically, the assessment of stack degradation level and prediction of future
degradation levels where addressed. The use of already-collected in-field data,
makes this approach readily applicable to systems already installed in the field
without the need for additional sensors or measuring routines.

The main contributions of this work are

• Reducing a dataset of raw measurements from the field operation of
fuel cell based backup power systems to a set of performance metrics,
i.e. key performance indicators (KPIs). This led to a spectrum of the
performance and usage levels of all fuel cell stacks in the fleet of backup
power systems and provided the foundation for the following outlier
detection and degradation prediction.

• A method for estimating the degradation level as a state of health (SOH)
metric was proposed. The method uses the backup system self-tests to
extract steady state voltage and current values of the fuel cell stacks.
These values are then compared to the manufacturer-defined beginning of
life (BOL) and end of life (EOL) criteria in the form of polarization curves.
This method provides a load invariant method for estimating the SOH.
Hence the SOH can be compared between different systems experiencing
different load conditions.

• A method for detecting fuel cell stacks that perform or are used abnormally.
It is difficult to make a prior definition of how the normal fuel cell stack
should perform under varying conditions. Therefore, the spectrum of
KPIs for all stacks in the dataset are used to identify stacks that perform
significantly different from the majority of the stacks.
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• A method of predicting future SOH values based on historic data. The
sparsity of SOH data for each stack, meant that predictions based on
individual stacks was infeasible. Therefore, a recurrent neural network
was trained on the SOH data of all the stacks in the dataset. In machine
learning terminology, this is a single feature sequence to single feature
sequence prediction.

• A method for predicting stack voltage, current, and temperature values
from a number of parameters. A multi feature sequence to multi feature
sequence prediction where the predicted features are a subset of the input
features, was constructed in an encoder-decoder recurrent neural network
architecture.

5.1 Future Work

If given more time, the next task would be to combine the two recurrent neural
network approaches. That is, to construct an RNN, which would take various
system measurements as inputs to predict the single SOH metric. The hypothesis
is that this approach would be better than either of the tested approaches, as it
would have all the information from the various input variables, while predicting
the more steady SOH variable instead of the, sometimes, more irregular voltage,
current, and temperature variables.

To make for a better suited SOH metric for this specific application, a more
accurate definition of stack end of life is needed. This end of life criteria could
be based on the minimum requirements of power for the telecommunications
load.

As more data is collected on systems in the field, the models can be retrained.
It is expected that the prediction accuracy will improve as more data is used in
the training phase. This will need to be tested as more data becomes available.

As more stacks reach their end of life time, it would be interesting to test
the SOH predictions accuracy in estimating the remaining useful lifetime. This
could be done through iteratively predicting SOH values until the EOL criteria
is met. The remaining useful life is then the time at the EOL minus the time at
prediction. To verify these estimates, data from more stacks that have reached
their EOL is needed.

Another interesting research topic would be the health management part of
the PHM framework. That is, how to use the obtained information on stack
condition and future condition level to optimize the lifetime of the stack. One
way might be to load one stack more than the other in a two-stack system,
where one stack is less degraded than the other.
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A.1. Introduction

Abstract

Modern telecommunication power supplies are based on renewable solutions, e.g.
fuel cell/battery hybrid sys-tems, for immediate and prolonged load support
during grid faults. The high demand for power continuity increases the em-phasis
on power supply reliability and availability which raises the need for monitoring
the system condition for timely mainte-nance and prevention of downtime.
Although present on compo-nent level, no current literature addresses the
condition monitor-ing from the perspective of a fuel cell/battery hybrid system
such as the telecommunication power supply. This paper is a first step towards
a condition monitoring approach for such systems. First-ly, the application is
defined, thereafter the benefits of predictive maintenance strategies and the
prognostics and health manage-ment framework are described. A literature
review of condition monitoring of the major system components: fuel cell,
battery, and converters, is given. Finally, the paper presents a discussion on the
available monitoring techniques from a commercial hybrid system point view.

A.1 Introduction

The telecommunication network is a key part of modern society as it provides the
foundation for cellular and internet communication. With many remote sites and
in some cases unstable electrical grids, telecommunication sites require backup
power to ensure highly reliable and available communication networks. Hence,
the power supply of the telecommunication site should protect the sensitive
equipment from grid faults ranging from short voltage distortions to complete
and sudden absence of grid voltage (from here on referred to as ‘grid outage’).
This is obtained by using an uninterruptible power supply (UPS), where energy
storage devices can absorb the grid fluctuations and provide continuous power
during grid outages [1], [2]. UPS systems generally use electrochemical batteries
as the storage element. However, regulations require telecommunication sites
to be operational for extended time periods without a present grid [3], where
batteries are not an economically feasible solution.

The need for long backup times as well as an increased emphasis on environ-
mentalfriendly energy sources has fostered the use of fuel cell (FC) based backup
systems [4]. Fuel cells are well suited for backup systems, since they have large
and scalable capacity, they are highly reliable and require little maintenance
[5]. However, they suffer from high capital cost and slow dynamic performance.
The latter is the main reason why FC-based backup systems are hybrid systems
consisting of the FC along with some electrical energy storage elements, such
as batteries or capacitors [6]. The storage elements provide the telecom load
with power during FC power-up and also help to supply extra power during
load dynamics.

In some cases, it is feasible to include additional renewable energy sources,
such as wind turbines and photovoltaics, in the backup system to further reduce
the dependency on the grid [7]. This might be relevant when the grid is especially
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weak or even to reduce the power drawn from the grid to reduce the cost of
electricity.

The availability of the telecommunication service is inherently dependent on
the availability of the power supply and its backup functionality in the case of a
grid fault. Therefore, the condition of the power supply is of high concern. The
system is maintained through appropriate maintenance strategies. However,
this often consists of pre-scheduled maintenance which is suboptimal. Also, the
condition of the power supply can only be assessed during manual inspection
and is thus unknown during normal operation. Manual inspection of the system
condition might require taking the UPS system offline.

Condition monitoring (CM) might change this, as it allows for continuous
monitoring of the system condition, which can give the operators an assurance
of backup functionality. Furthermore, CM paves the way for more optimal
maintenance strategies and is a first step towards a cyber-physical system as
envisioned in the Industry 4.0 framework [8].

Despite extensive research in various engineering fields, condition monitoring
of hybrid power supplies is still an undescribed subject. This paper aims to
illuminate the topic of condition monitoring techniques in hybrid power supplies.
This is done in the following structure: Firstly, the system under investigation is
described and maintenance strategies are introduced. Then condition monitoring
and prognostics techniques in fuel cell, battery, and converter subsystems are
presented. Finally, a discussion addresses the validity of these methods from a
hybrid power supply perspective.

A.2 Telecommunication Power Supply

Telecommunication power supplies rely on energy storage devices to mitigate
the consequences of grid faults, such as voltage fluctuations and outages, from
affecting the load. Traditionally, two backup energy sources have been dominant:
lead-acid batteries and diesel engine-generator sets (gensets) [5]. The lead-acid
batteries have been popular due to their low cost and ease of implementation and
the gensets due to their extended backup time capabilities. However, by modern
standards these technologies are suboptimal. The gensets are polluting, noisy
and require relatively high amounts of maintenance. The lead-acid batteries
are non-durable and sensitive to variations in temperature and power.

Telecommunication power supplies often supply power in the range of 1 to
10 kilowatts [9]. The most relevant energy storage devices for this power range
are batteries (mainly lead-acid and li-ion), supercapacitors, and fuel cells as in
the Ragone plot of Fig. A.1. Each of these electrochemical storage elements
has its own area of expertise: supercapacitors have high power density but low
energy density, meaning that thery are well suited for delivering large, but short
bursts of power. Whereas fuel cells are better suited for the long haul, due to
their low power density and high energy density. This is highlighted by the
constant time lines of Fig. A.1: super capacitors are best suited for delivering
its stored power in the range of seconds and fuel cells, in the range of hours
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Fig. A.1: Ragone plot showing power density versus energy density of different storage
technologies. Adapted from [10].

and days. Batteries bridge the gap between these two technologies, li-ion being
slightly higher in both power density and energy density than the lead-acid
batteries.

The required backup times of telecommunication power supplies range from
a few hours to several days [3]. At these requirements, batteries would be too
large and too expensive. The fuel cell, on the other hand, is well suiteed for
long backup times, as the energy storage in the form of hydrogen (or hydrogen
rich gas) is decoupled from the power stage. The time in which the fuel cell can
deliver backup power only depends on the number of hydrogen tanks that are
available.

Several types of fuel cells exist, but the most used for the telecommunications
backup is the proton exchange membrane (PEM) fuel cell. PEM is preferred due
to its relatively high level of maturity and its low-temperature operation which
results in relatively short start-up time and fast dynamic response [5]. The
response time is in the order of one minute in the case of a cold start-up. This
response time is due to the fuel cells inability to deliver its rated power until
the temperature in the stack reaches the steady state operating condition [11].
This startup time is the reason why fuel cells for backup applications are often
integrated with an additional energy storage, such as batteries, supercapacitors,
or a combination of both. These provide power during FC start-up and during
fast load transients. Hence, the size of these additional elements is limited to a
backup time of a few minutes. This integration of two or more energy storages
is often referred to as hybridization.

The backup power supply considered in this work consists of a PEM fuel
cell and a li-ion battery as the storage elements. Additionally, a rectifier and
converters that interface the grid and the storage elements to a common DC-bus
from which the load is supplied. The load is either DC, AC, or a combination of
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Fig. A.2: Architecture of fuel cell/battery hybrid backup power supply.

the two, depending on the operator, and might include the telecommunication
equipment as well as auxiliary equipment such as air conditioning. The DC
load may be supplied directly from the DC-bus and the AC load is supplied
through an inverter. The architecture of the system is illustrated in Fig. A.2.
This architecture is a generic telecommunication power supply similar to those
presented in [5], [6], [11], [12].

During normal operation, the grid voltage is supplied directly to the AC
load and to the DC load through the rectifier. If the battery is not charged
to the desired level, it is charged from the DC-bus. In the case of grid fault,
the battery will act as a buffer and supply the required power to the load. If
the grid fault exhausts the energy storage of the battery, the fuel cell will have
started up and will supply the power to the load and possibly recharge the
battery. Hence, the load never ‘sees’ the power disturbance from the grid.

A.3 Maintenance Strategies

Maintenance of the power supply is required to ensure continuous operation of
the telecommunication equipment. Parts of the power supply, e.g. the storage
elements, spend most of the time in storage mode. However, during grid faults,
it is essential that these elements function on demand. This is obtained through
appropriate maintenance strategies.

Generally, maintenance strategies are classified in two groups: reactive and
proactive methods, each having several sub groups (Fig. A.3). The reactive
maintenance strategies, in general, operate from a run-to-failure approach, where
components are repaired or replaced when they fail. This approach often leads
to unscheduled downtime, which is highly unfortunate in backup applications.
Furthermore, this approach may lead to high maintenance costs and safety
issues.

Proactive maintenance aims to prevent the sudden failures of components,
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Fig. A.3: Maintenance approaches [13].

either through preventive maintenance or predictive maintenance. In preventive
maintenance, routine maintenance is performed in appropriate intervals. These
intervals are determined from useful lifetime forecasts during the design phase
and expert knowledge [14].

Predictive maintenance does not use fixed schedule, but an adaptively
determined schedule. In condition-based maintenance (CBM), a condition
monitoring system is used to monitor selected parameters that are indicative of
system faults or degradation. Hence, the maintenance schedule is determined
from the current condition of the system. A step further in CBM is the
utilization of prognostics, i.e. prediction of the future condition of the system.
The different maintenance strategies are summarized in Table A.1.

Prognostics and health management (PHM) is a framework, which describes
an approach to predictive maintenance. In recent years PHM has become a
popular topic of research in fuel cell [15]–[17] and battery applications [18],
[19]. PHM describes seven steps which can be used to extend the lifetime of a
system. The framework consists of three phases as depicted in Fig. A.4. The
observation includes data acquisition, i.e. measurement of relevant parameters
such as voltage, current, pressure, temperature, etc.; and data processing, which
transforms the signals (e.g. to the frequency domain) and extracts features
that may be used for the state of health (SOH) estimation of the system in the
condition assessment of the analysis phase. Diagnostics is the act of detecting
and localizing a failure in the system. The final step in the analysis phase is
prognostics, which aims to estimate the future condition of the system. PHM can
aid in two important aspects of system reliability: early warning of developing
failures and estimating remaining useful lifetime (RUL), which is a valuable
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Table A.1: Principles of maintenance approaches [14].

Corrective Preventive

Run-to-fail Predetermined Predictive

(Fix when it (Scheduled (Condition-based

brakes) maintenance) maintenance)

Diagnostics Prognostics

When
scheduled

No scheduled
maintenance

Maintenance based
on a fixed time
schedule for
inspect, repair, and
overhaul

Maintenance
based on
current
condition

Maintenance
based on
forecasting of
remaining
equipment life

Why
scheduled

N/A Intolerable failure
effect and
possibility of
preventing the
failure effect
through scheduled
overhaul or
replacement

Maintenance
scheduled
based on
evidence of
needs

Maintenance
need is
projected as
probable
within mission
time

How
scheduled

N/A Based on the
useful life of the
component
forecasted during
design and updated
through experience

Continuous
collection of
condition
monitoring
data

Forecasting of
remaining
equipment life
based on actual
stress loading

Type of
prediction

None None On and off-line,
near real-time
trend analysis

On and off-line,
real-time trend
analysis

parameter in the predictive maintenance strategy.

A.4 Condition Monitoring

Condition monitoring (CM) is the process of measuring system parameters and
using them to estimate the condition of the system. CM allows for planning
optimal maintenance strategies (thorough predictive maintenance or PHM) as
well as providing valuable knowledge of the system in a real working environment.

Condition monitoring from the perspective of telecommunication power sup-
ply or a fuel cell/battery hybrid system in general is, to the authors’ knowledge,

Observe

Condition
Assessment

Data
Processing

Data
Acqusition Diagnostics Prognostics Decision

Making

Human-
Machine
Interface

ActAnalyze

Fig. A.4: Prognostics and health management (PHM) framework.
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Fig. A.5: Illustration of phenomena and time-scales in fuel cells [20].

not described in literature. However, on subsystem level, fuel cells, batteries,
and converters have received much research attention in the fields of condition
monitoring, fault detection and prognostics as detailed in the following sections.

A.4.1 Fuel cells

Fuel cells are electrochemical devices, that produce electrical energy from
hydrogen and oxygen (or gasses that are rich in these two elements) and leave
only water as a waste product. The most adapted fuel cell technology in backup
applications and the technology of interest in this paper is the PEM fuel cell.
Fuel cells are complex systems, which are affected on multiple timescales by
electrical, chemical, and thermal phenomena as illustrated by [20] (Fig. A.5).

PEM fuel cells typically consist of two electrodes separated by a membrane.
The electrodes (anode and cathode) are both separated from the membrane by
a catalyst. The membrane allows protons to pass, while blocking the gas. On
the anode side, hydrogen enters and the catalyst causes the hydrogen to split
into free electrons and positively charged hydrogen ions, which are just protons.
The electrons travel through the electrical circuit to the cathode side and the
protons pass through the membrane to the cathode side. The electrons and
protons react with the air or oxygen, which is supplied to the cathode side, to
form water. Several of these electrode-membrane cells are combined in fuel cell
stacks to increase the voltage and power rating. [21]

Reference [21] summarizes the overall PEM fuel cell fault modes as: mem-
brane dehydration [22], [23], fuel/gas starvation [22], physical defects of mem-
brane [22], [24], and catalyst poisoning [25]. A more exhaustive degradation and
ageing analysis is presented in [26]. Each of these faults leads to performance
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Table A.2: Faults and their revealing signals in proton exchange membrane fuel cells [27].

Fault on PEMFC Signal Reference
Cathode flooding Cathode pressure drop [28]
Water present at anode side Anode pressure drop
Cathode flooding Cell voltage variance [29]

Mean cell voltages
Air starvation Voltage oscillations [30]
Flooding Cathode pressure drop [31]
Drying Cell resistance
Anode/cathode crossovers Cell open circuit voltages [32]
Flooding Stack voltage (high frequency) [33]
All Electrochemical impedance [34]

spectroscopy

degradation and potentially a failure of the fuel cell. Diagnostics is the process
of identifying which failure mode has occurred in the fuel cell. This is typically
done by observing system parameters, which are indicative of the failure modes.
For this purpose [27] identifies measurable signals that relate to specific failure
modes as listed in Table A.2.

The signals of cathode and anode pressure drops, are used for detection of
cathode flooding and water at the anode side [28] as well as flooding of the fuel
cell [31], require measurement of the pressure in the air and hydrogen supply,
respectively. This can be achieved with pressure sensors, but might not be easily
implemented in a field application. The cathode flooding detection by cell voltage
variance and mean cell voltage [29], requires voltage measurements of each cell
in the fuel cell stack. Hence, the terminals of each cell must be accessible, which
is not always feasible in the field. The drying degradation [31] and the crossover
detection [32] also require measurements of individual cell voltages. In contrast,
[30], [33] use voltage measurements on the whole stack to detect air starvation
and flooding, respectively. Reference [30] analyzes the voltage fluctuations
caused by the lag between load dynamics and air response, to detect temporary
air starvation. The approach of [33] uses wavelet transformation to extract
information of extensive water accumulation, i.e. flooding, in the electrode
from stack voltage measurements. Finally, the electrochemical impedance (EIS)
measurements can reveal all of the above faults [34].

The diagnostic approaches presented in literature are often tested on lab-
oratory setups, where there is high access to system variables, which might
not be true in a real application. Hence, [27] categorizes fuel cell diagnostics
measurements, based on the technical and economic feasibility of implementa-
tion (Table A.3). The most easily measured parameters are the stack voltage
and current. Also, the cooling water temperature and air compressor speed
are easily accessible. More difficult, but still possible, measurements are in-
dividual cell voltages, inlet and outlet gas pressures, the rate of gas flow and
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Table A.3: Economic and technical evaluation of fuel cell measurements [27].

Possible Unlikely Impossible
Stack current Single cell voltage Flows in the channels

of the bipolar plates
Stack voltage Gas pressure Local current density

(inlet/outlet)
Stack impedance* Gas flow Gas hygrometry
Cooling water Stack internal Stack impedance*
temperature temperature
Air compressor Gas composition
speed (inlet and outlet)
*The stack impedance measurement is possible if it is done
through the output DC/DC converter with a modified control,
too cumbersome and expensive through a lab spectrometer.

the internal temperature. In the impossible measurements category, internal
or complicatedly measured parameters are found, such as the local current
density, gas hygrometry, and gas composition. The powerful measurement of
EIS is located both in the possible and impossible categories. Traditionally
EIS measurements are carried out by an external spectrum analyzer, which
injects sinusoidal voltage perturbations of varying frequency to the fuel cell and
measures the corresponding current at each frequency. Thereby, a spectrum
of the fuel cell impedance is obtained. These spectrum analyzers are often
expensive and require the FC to be disconnected from the load and thereby
obstructing the application. This makes the EIS almost impossible to obtain
in a real field application. However, recent research is investigating the imple-
mentation of the EIS measurement in the DC/DC converter of the fuel cell [35],
[36]. This would allow for online EIS measurements, as the small perturbations
could be superimposed on the converter control effort. This would, however,
require special design of the DC/DC converter and its control, which makes it
impractical for implementation in already operating systems.

A.4.2 Batteries

Batteries are electrochemical devices, like fuel cells. However, unlike fuel cells,
the energy storage of the battery is internal, i.e. it relies on chemical reactions
inside the battery to produce electricity and on electricity to reverse these
reactions and thereby store energy. Several battery technologies exist; however,
few are suitable and technically mature enough to be considered for backup
systems. The focus of this paper will be on lithium-ion batteries as they are
gaining traction in a wide variety of applications and are already adapted in
backup power supplies [5], [37].

The internal processes of li-ion batteries are complicated to understand and
almost impossible to observe [38], [39]. The ageing processes are numerous and
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Table A.4: Ageing mechanisms, their effects and accelerators in lithium-ion batteries [40].

Mechanism Effect Accelerator
Electrolyte decomposition Capacity fade High temperature
→ SEI formation Power fade High SOC
Solvent co-intercalation Capacity fade Overcharge
and gas evolution
Decrease of active surface area Power fade High temperature

High SOC
Electrode porosity change Power fade High cycling rate

High SOC
Volume changes during cycling Capacity fade High cycling rate
→ contact loss of High DOD
active material particles
Decomposition of binder Capacity fade High SOC

High temperature
Current collector corrosion Power fade Over-discharge

Enhances other Low SOC
ageing mechanisms

Metallic lithium plating Capacity fade Low temperature
Power fade High cycling rate

Poor cell balancing
Geometric misfits

interact with each other in a non-linear way and depend on the load profile of the
battery as well as its architecture and the control strategy [39]. However, most of
the ageing mechanisms lead to either capacity fade, internal resistance increase,
or both. These are both important performance parameters of any battery and
their dependability of the ageing processes has made them popular as state-of-
health metrics of batteries. Ageing processes are the irreversible changes that
occur in the battery during its lifetime. The most common ageing mechanisms
identified in [38] are solid-electrolyte interphase (SEI) formation, loss of active
material, and lithium plating on the anode side along with chemical structural
changes, decomposition, and loss of contact between inactive components on
the cathode side. A more exhaustive analysis of ageing mechanisms, their
accelerators and effects in li-ion batteries is given in Table A.4 [39].

The state of health of a battery is generally defined as the performance and
health condition of the battery compared to a new battery, i.e. how much it
has changed since its beginning of life [39]. There is no agreement between
researchers or companies on how to define this metric. However, the capacity
and internal impedance are popular indicators. A good SOH estimation should
consider both, as they both affect the battery performance.

The methods for estimating the battery SOH is split into two main groups
[38]: experimental and adaptive methods. The experimental methods combine
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Fig. A.6: State of health estimation methods of lithium-ion batteries [38].

stored data of battery operation with knowledge of how the observed parameters
affect the battery lifetime. These two parts are used to estimate the SOH of
the battery. The experimental methods can be done in two ways: firstly, the
direct measurements, which rely on special measuring techniques to extract the
battery SOH. The techniques highlighted in Fig. A.6 are EIS [41] and Ohmic
resistance measurements during current pulse injection [42].

Secondly, the models based on measurements. This category includes meth-
ods such as Coulomb counting [43], data fitting [44], sample entropy [45], and
support vector machine [46]. Opposed to the direct measurements, these meth-
ods may not require special battery operation and is thus more applicable for
online implementation, assuming the required measurements can be obtained
during normal battery operation. Common for all experimental methods, is
that they all require prior knowledge of the relationship between SOH and
the observed parameters, which is often obtained through extensive laboratory
experiments.

The other category of battery SOH estimation techniques is the adaptive
battery models. The adaptive models use degradation sensitive parameters
of the battery to calculate the SOH. These parameters should be measurable
during battery operation and are monitored throughout the battery lifetime.
The adaptive models include various Kalman filters [47]–[49], observers [50],
fuzzy logic [42], and artificial neural networks [51]. Although highly accurate,
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these methods often require large computation power, which may complicate
the online implementation in a real application. [38]

A.4.3 Converters

Converter is a general term for the interfacing electronics systems, which are
used to convert the produced voltage of the fuel cell to the DC-bus, to rectify
the AC grid voltage and to invert the DC-bus voltage to AC for the AC-load.
Additional or different converters may be included in a telecommunication power
supply depending on the power sources/storages and the system architecture.

The building blocks of any modern power converter are semiconductor
devices such as MOSFETs or IGBTs and passive components such as capacitors
and inductors. When several semiconductor devices are integrated in a single
package for increased power rating, it is referred to as a power module. These
power modules have been subject to extensive reliability studies in recent years.
The power modules house the semiconductors, which are typically mounted
on direct bonded copper (DBC), connected by aluminum bond wires, and
encapsulated in an insulating gel and plastic housing (see Fig. A.7). It is the
interconnection of the semiconductors which experience the most failures in
such a module and have therefore been studied thoroughly. It has been found
that the different coefficient of thermal expansion (CTE) of the many materials
in the power module is the main cause of failure modes such as bond wire lift-off
and solder delamination. The difference in CTE between two joint materials
will cause them to expand and contract differently during the thermal cycling,
caused by the switching events of the devices. This will produce shear stress in
the interconnections, which will develop into faults over time.

In condition monitoring of power converters the main focus of the literature is
on the semiconductor power module [52]–[54], but also the capacitor components
are described [55]. In power modules, almost all ageing mechanisms have thermal
effects [53], which can be observed in the semiconductor junction temperature,
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i.e. the temperature internally in the semiconductor. Knowledge of the junction
temperature can give valuable information on the power module state-of-health,
not only the semiconductor but also the packaging as this also has an effect on
the junction temperature. However, the junction temperature is not directly
measurable in a real application, which has caused researchers to investigate
the estimation of the junction temperature through measurable temperature
sensitive electrical parameters (TSEPs).

Common TSEPs described in literature are semiconductor on-state voltage
[56], [57], internal gate-resistance [58], and switching parameters [59], [60].
Several other TSEPs exist, as summarized by [61], and might be interesting
for condition monitoring of power converters. The monitored TSEP(s) are
converted to SOH through a damage models. The SOH parameters can then be
extrapolated to the predefined end of life (EOL) criteria, for an RUL estimate.

Alternative to the TSEP monitoring for temperature estimation which then
needs to be converted to a health metric, is the monitoring of damage sensitive
electrical parameters (DSEPs), which are electrical measurements that do not
relate to the temperature, but to the degradation processes directly. Hence,
one conversion step and thereby some uncertainty can be omitted. The DSEPs
summarized in [61] are the thermal resistance methods [62], [63], and on-state
voltage methods [56], [64]. There are two approaches to condition monitoring
using DSEPs: past-history approaches and model-based approaches. The past-
history approaches use only DSEP measurements on the device, which is under
investigation. The model-based approaches rely on DSEP data from other
devices to generate a model that can map the measured DSEP to SOH and/or
RUL. These models can be based on physical knowledge or on empirical data.
The model learning data often stems from accelerated testing of devices, because
a complete test in real field environment would be too lengthy.

A.5 Discussion

The topic of condition monitoring and prognostics of fuel cells, batteries, and
converters is subject to a lot of recent research. However, the research tends to
focus on internal issues in the components, e.g. detection of bond wire lift-off
in converters. Hence, monitoring the health condition and failure mechanisms
of a complex system, such as a hybrid telecommunication power supply, might
require improbable amounts of sensors and algorithms that would drive the
cost and effort of implementation to a point where it is not worth the cost
[65]. Furthermore, monitoring only subcomponents in a complex system will
not reveal failures and ageing of the many auxiliary components and the
interconnections between components etc. In a commercial scenario, the system
might consist of subsystems from subcontractors, which may not allow the
access of internal measurements.
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B.1. Introduction

Abstract

Proton exchange membrane (PEM) fuel cells are a maturing technology and has
in recent years entered the market of backup power systems for e.g. telecommu-
nication applications. Here they provide emission-free and long load support
during grid failures and outages. Monitoring performance indicators of PEM
fuel cell systems in the field can contribute to improved lifetime, maintenance
scheduling and thereby economic competitiveness.

This paper establishes some performance indicators and extracts these from
a number of sites, that are all installed and operating in the field. The extracted
performance indicators include stack operating time, operating time at non-
optimum temperature, consumed reactants, voltage decay, and state of health
estimation.

B.1 Introduction

The power grid is inherently vulnerable to natural or manmade events, that
can lead to areas of the network being cut off from the grid, leaving the loads
unsupplied. Therefore, critical loads such as hospitals, datacenters, communica-
tion infrastructure, etc. rely on backup power systems for continued operation
during grid faults. Especially the telecommunication and datacenter equipment
is vulnerable to grid faults [1]. Not only will grid failure cause interruptions and
loss of data, but also minor grid faults, such as voltage fluctuations, may damage
the sensitive equipment. Furthermore, these applications cannot afford any
downtime between the grid fault occurring and the backup power is connected.
This need is accommodated with backup power systems, which decouple any
fluctuations on the power grid from the load and allows for immediate transfer
of the load from the failed grid to the backup source [2].

The source of backup power can traditionally be a large variety of technologies
with the most dominating being lead-acid batteries and diesel generators [3].
However, in recent years, new technologies have entered the market and especially
one has emerged as a viable candidate: proton exchange membrane (PEM) fuel
cells. The fuel cell solution benefits from extended backup times compared to
the batteries and zero emision, less noise, and less maintenance compared to
the diesel generators, which are increasingly prohibited in urban areas.

Yet fuel cells are still a young technology on the market, and still has some
hurdles to overcome. Some of the drawbacks of the fuel cell technology are:
high cost, low power density, long start-up time, and slow dynamic response.
In the case of backup applications, power density is typically less important
than energy density. Fuel cells can have very high energy density, as the fuel
is stored in separate tanks which can be easily replaced or replenished. The
startup time of current PEM fuel cells is in the order of a few minutes [4]. The
startup time and the slow dynamic response are in practice mitigated through
the inclusion of a small battery or supercapacitor module in the system. Hence,
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only the cost issue remains as a main challenge for PEM fuel cells in backup
power applications.

It is predicted, that the cost of fuel cells will fall as the technology matures
and the production quantities increase [5]. Other than this natural cost reduction,
there are two main ways of reducing the cost of fuel cells: 1) reduce the cost
of materials and manufacturing and 2) reduce the operation and maintenance
(O&M) costs.

One way to reduce the O&M cost is through condition monitoring, which is
the act of detecting changes in system parameters which indicate developing
faults. Condition monitoring can be utilized for optimizing the maintenance
schedule (e.g. predictive maintenance), and for mitigating inappropriate con-
ditions that could otherwise lead to degradation in the system. Both seek to
extend the lifetime of the system and consequently reduce the total cost of
ownership (TCO).

However, the current state of the fuel cell technology means that references
for fuel cell performance is largely based on laboratory experiments, and often
on single cell or short-stack setups in very controlled environments. This paper
seeks to take a first step towards establishing performance references in actual
fuel cell backup systems in actual field operation. This is made possible, by the
commercial success of the fuel cell technology in backup power systems, which
has allowed for collecting data on systems in the field.

In Section B.2 the main performance degradation mechanisms of PEM fuel
cells, as reported in literature, is outlined. The system under investigation is
presented in Section B.3 and the raw data, collected on the systems is presented
in Section E.2. Section B.5 presents how some important system metrics are
extracted from the raw dataset. Finally, a conclusion and possible future work
is presented in Section B.6.

B.2 Performance Degradation Mechanisms

This section presents a brief review of the performance degradation mechanisms
of PEM fuel cells. The structure and operating principle of a PEM fuel cell, as
well as the stack assembly, is illustrated in Fig. B.1 and Fig. B.2, respectively.

Degradation of the fuel cell performance can have multiple causes. Some of
the major contributors to fuel cell performance degradation are corrosion, con-
tamination, starvation, degradation of the membrane, poor water management,
and poor thermal management, which are all briefly explained in the following
sections. [6]

B.2.1 Corrosion

Corrosion is a main cause of degradation in PEM fuel cells and can occur
in both the electro-catalyst layers, the gas diffusion layers (GDL), and the
bipolar plates [7]. The amount of degradation caused by corrosion is linked
to the time where cyclic operation of cell voltage occurs. Corrosion of the

86



B.2. Performance Degradation Mechanisms

Fuel Air

Unused Fuel

Electric
Load

Anode Cathode

Membrane
Catalyst
Layer

Gas
Diffusion
Layer

Catalyst
Layer

Gas
Diffusion
Layer

Hydrogen Ions

Electrons

Air + Water
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Fig. B.2: Sketch of fuel cell stack assembly.

platinum in the electrodes occurs mainly at the cathode side and causes the
loss of electrochemical active surface area (ECSA), increased activation loss and
therefore lower cell voltage [7], [8]. This corrosion is accelerated by high relative
humidity, cycling of the fuel cell voltage, and high operating temperature [7].
In the GDL, corrosion affects the carbon that supports the catalyst. Corrosion
of the GDL will cause lower cell voltage and reduced performance [6] and is
accelerated by voltage cycling and low relative humidity of the reactant gases
[7]. Corrosion in the bipolar plates can cause the formation of a resistive surface
layer, which will increase the ohmic resistance and thereby loss.
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B.2.2 Contamination

Contamination is when impurities pollute or cause chemical attacks and hinder
the intended reactions in the cell. Even small amounts of impurities can cause
contamination that can seriously degrade the performance and lifetime of the
fuel cell [8], [9]. Contamination can occur in both the anode electrode and the
membrane. In the anode, carbon monoxide (CO) impurities in the hydrogen
supply can lead to contamination (CO-poisoning), which leads to lower cell
voltage and reduces energy conversion efficiency [6]. Membrane contamination
can be caused by impurities in the hydrogen or air supply, or by impurities
resulting from corrosion of fuel cell components and can cause major reduction
in performance including conductivity and mass transfer [9].

B.2.3 Starvation

Starvation of the fuel cell is the lack of sufficient reactant gas and can have mul-
tiple causes including: blocked pores in the GDL; poor gas feeding management;
imperfect stack and cell design; poor stack assembly; and quick load transients
[8], [10]. The starvation of hydrogen will cause a high anode potential, since the
current cannot be maintained. This can cause the water at the anode to split.
Hence, oxygen will be present at the anode. Similarly, oxygen starvation on the
cathode side will cause a reaction where hydrogen is produced. Combined, the
oxygen on the anode side and the hydrogen on the cathode side causes voltage
reversal of the cell, i.e. a negative voltage between anode and cathode [11]. This
voltage reversal causes acceleration of carbon corrosion and eventually damaged
components [10], [12].

B.2.4 Membrane Degradation

Membrane degradation is one of the main lifetime reducing factors of PEM
fuel cells and is a complicated mechanism, consisting of both mechanical and
chemical degradation. The chemical degradation is caused by the formation
of radicals – highly chemical reactive molecules, which cause chemical attacks
in the membrane [13]. The mechanical degradation is caused by transient
operating conditions such as voltage, temperature, and humidification cycling,
along with the aforementioned chemical attacks [13]. These degradations can
lead to severe membrane degradation such as pinhole formation.

B.2.5 Water Management

Improper water management can lead to two inappropriate scenarios: fuel cell
flooding, and membrane dehydration. Flooding can occur on both the anode
and cathode side of the membrane, but occurs in particular on the cathode side
[8]. The excess water significantly reduces the transport rate of the reactants
causing increasing mass transport loss [8]. The water blocks the reactants from
passing through the GDL and thereby causes gas starvation, which leads to
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an immediate drop in cell voltage. Membrane dehydration is most likely to
occur on the anode side as opposed to the cathode side. A dehydrated cell
experiences immediate as well as long-term degradation. The decreased water
content causes a decrease in the proton conductivity, which leads to higher
ionic resistance and therefore ohmic loss [8], [14]. The effect is a voltage drop
and temporary power loss [14], [15]. The voltage is usually recoverable through
humidification, but prolonged dry cell operation lead to irreversible damage
to the membrane, such as development of crazes and cracks [16]. This can
start a destructive cycle of mechanical degradation, where the cracks cause gas
crossover leading to hotspots, which in turn causes pin holes, that facilitate
further gas crossover [17].

B.2.6 Thermal Management

In general, the fuel cell performance is decreased at both low and high tem-
peratures [8], [18]. However, sub-zero temperatures in particular can cause
issues in the fuel cell. Mainly due to the freezing of the water content in the
cell, which can cause mechanical damage to the components, delamination, and
startup issues [6]. High temperature operation has some benefits including
higher tolerance to contaminants and enhanced water management and cooling.
However, the degradation rate is accelerated and the long-time performance is
decreased. [19]

B.2.7 Summary

All of the presented degradation mechanisms, can affect the system performance
and ultimately the produced voltage output. Although some of the mentioned
mechanisms can be avoided by proper control of the fuel cell system, but many
are unavoidable in long term operation in a varying environment.

B.3 Description of the System

The system under investigation is a commercial backup system for telecom-
munication applications. A sketch of the system architecture is depicted in
Fig. B.3. The system consists of two PEM fuel cell stacks, that are supplied
with hydrogen and air. The fuel cell stack is interfaced to a DC-bus through
parallel DC/DC converters. The DC-bus collects power from the grid through
a rectifier during normal operation. Power is delivered to the load directly or
through a converter depending on the load type, which can be either DC, AC,
or a combination of the two. During grid failure, the fuel cells take over the
load. However, the fuel cells have some startup time, in which the bridging
components, i.e. batteries or supercapacitors, deliver power to the load. In
combination with the bridging components, the fuel cells provide immediate
backup, ensuring no interruption of the load.
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Fig. B.3: System architecture

B.4 Raw Data

The backup system normally resides in standby mode, as the grid is normally
supplying the load. Therefore regular self-tests are performed on the system.
The purpose of the self-tests is to both ensure that the system is functioning
and to exercise the fuel cell, keeping the performance at a high level.

An example of a system use profile is depicted in Fig. B.4. The data
originates from a complete fuel cell backup power system, installed in the field,
supplying a telecom load.

Fig. B.4: System use profile example showing the produced power of a fuel cell stack.

The system has several modes, the main ones being Standby, Backup, and
Selftest. The self-tests are performed by a sequence of system excitations,
including ramping up the power to a specific level and keeping the power
constant. The power profile during a self-test is shown in Fig. B.5. The steep
increases in power, that occur periodically throughout the self-test, are caused
by the chosen operation strategy.
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Fig. B.5: Stack power during a self-test.

The collected measurements include various electrical parameters on the
stacks and converters, temperatures on stacks and peripheral components,
reactant gas pressure, etc. In addition, the system modes and other states are
logged. In total 125 parameters are logged with a sampling frequency of 1/h in
standby mode and 1/s in all active modes. This data is available for a period
of several years for several dozen systems installed in the field.

The raw data is contained in multiple CSV files. One CSV file represents
one days worth of data from one system. Hence each system easily comprises
1000 CSV files of raw data. To greatly increase the ease of data access and
analysis, the raw CSV files are added to an SQL database.

Specific measurements are used in the following section to extract key
performance indicators (KPI) of the systems.

B.5 Performance Indicators

The amount of collected data and the variability in operating conditions can
make it difficult to compare the performance of different systems. Therefore, it is
useful to extract some performance indicators from the systems. In section B.5.1,
the presented performance indicators are limited to indicators that describe
how much the system has been used throughout its lifetime, i.e. counters and
totalizers. In Section B.5.2, the voltage decay throughout the system lifetime is
extracted of a single example system, and a state of health metric is estimated
in section B.5.3.

B.5.1 Counters and Totalizers

How much the system has been used, is highly relevant for the level of degrada-
tion, that can be expected in a given system. Some of the important use-metrics
that are presented in this section are: for how long has the system operated
above a certain current level; how much time has the system spent in each
of the system modes; for how long has the system operated at non-optimum
temperatures; how much energy and charge has the system produced; and how
many startups has the system made.
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Operating Times

The operating time, as defined by the fuel cell manufacturer, is the total time
in which the fuel cell stack has delivered above a certain level of current, in
this case 5 A. The procedure for extracting the operating time is described in
Algorithm 1, where L is the length (number of samples) of the dataset, t is the
timestamp, B denotes the beginning of the period in which the current is above
5 A, E denotes the end of the period in which the current is above 5 A, and
operation_time is the total operating time above 5 A.

Algorithm 1 Calculating stack operating time
1: initialize j = 1 and k = 1
2: for i = 2 to L− 1 do
3: if (stack_currenti > 5) then
4: if (stack_currenti−1 < 5) then
5: Bj = ti
6: j = j + 1
7: end if
8: if (stack_currenti+1 < 5) then
9: Ek = ti+1
10: k = k + 1
11: end if
12: end if
13: end for
14: operation_time = sum(E −B)

Similarly, the time the system spends in each mode (mode_time; e.g.
backup_time) is calculated as shown in Algorithm 2.

Algorithm 2 Calculating time in specific mode
1: initialize j = 1 and k = 1
2: for i = 2 to L− 1 do
3: if (stack_modei = mode) then
4: if (stack_modei−1 6= mode) then
5: Bj = ti
6: j = j + 1
7: end if
8: if (stack_modei+1 6= mode) then
9: Ek = ti+1
10: k = k + 1
11: end if
12: end if
13: end for
14: mode_time = sum(E −B)

The optimum temperature of the stack is linearly dependent on the produced
current. The algorithm of calculating the time in too high temperature operation
is shown in Algorithm 3. parameters a, and b define the relationship of the
current and optimum temperature, given in the fuel cell datasheet. ∆T is
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the allowable deviation from the optimum temperature. The time the system
operates below the optimum temperature is obtained similarly.

Algorithm 3 Calculating time above optimum temperature
1: initialize j = 1 and k = 1
2: for i = 2 to L− 1 do
3: if (stack_modei = mode) then
4: if (stack_modei−1 6= mode) then
5: Topt = a · stack_currenti + b
6: if (stack_tempi > Topt + ∆T ) then
7: Bj = ti
8: j = j + 1
9: end if
10: end if
11: if (stack_modei+1 6= mode) then
12: Topt = a · stack_currenti + b
13: if (stack_tempi > Topt + ∆T ) then
14: Ek = ti+1
15: k = k + 1
16: end if
17: end if
18: end if
19: end for
20: mode_time_overtemp = sum(E −B)

Production and Consumption

The produced energy of the stack is a useful indication of how much the
stack is aged. The produced energy is simply calculated from the trapezoidal
approximation of the stack voltage and stack current integral as so

E =
L∑
i=1

Vi−1 · Ii−1 + Vi · Ii
2 (ti − ti−1) (B.1)

where L is the length of the dataset, v is the stack voltage, and i is the stack
current. Similarly the produced charge is:

Q =
L∑
i=1

Ii−1 + Ii
2 (ti − ti−1) (B.2)

For the system to produce power, it consumes reactants, namely hydrogen
and oxygen from the air. The amount of hydrogen, consumed is calculated by

ṁH2 = KH2 ·Q (B.3)

where KH2 is a scalar obtained from the fuel cell datasheet. Similarly for the
oxygen consumption:

ṁO2 = KO2 ·Q (B.4)
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System Startups

The number of startups is expected to have an effect on system performance.
This number is calculated by counting the number of transitions from a non-
active mode (e.g. standby) to an active mode (e.g. backup). Furthermore,
air-air starts (when air is initially present at both anode and cathode), is
especially important as it can cause corrosion that leads to irreversible damage.
The air-air startups as well as total number of startup are counted in Algorithm
4.

Algorithm 4 Counting fuel cell startups
1: start_counter = 0
2: air_to_air_start_counter = 0
3: for i = 1 to L do
4: if (stack_modei changes from non-active to active) then
5: start_counter+ = 1
6: if (stack_voltagei < 6.6) then
7: air_to_air_start_counter+ = 1
8: end if
9: end if
10: end for

The above performance indicators are extracted on each stack in the available
dataset. The resulting indicators are visualized in the boxplots of Fig. B.6,
where the data has been normalized to individual parameter mean values.
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Fig. B.6: Boxplot of performance indicators showing their variation over a fleet of fuel cell
stacks. The data of each boxplot has been normalized to its own mean value. In the boxplots,
the red line indicates the median value, the blue box indicates the first and third quartile,
and the whiskers indicate the minimum and maximum values excluding outliers.

B.5.2 Voltage Decay

The self-tests provide useful information on the voltage decay of the stacks.
The useful part of the self-test voltage is when the stack power has settled at a
steady value. One example of this voltage profile is shown in Fig. B.7 as the
average cell voltage throughout the stack.
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Fig. B.7: Average cell voltage profile during self-test when the stack power has settled.
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Two successive self-test voltages are sketched in Fig. B.8 for the purpose of
illustrating the calculations in the following subsections.

Self-test 1
Self-test 2

V1,1

V1,2

V2,2

V2,1

T1,1 T1,2 T2,2T2,1

time

voltage

Fig. B.8: Illustration of two successive self-test voltage profiles.

Standby Decay

In general the fuel cell stacks experience some loss of voltage (voltage decay)
during the standby periods between the self-tests, backup, or other active
periods. This decay is defined as the decrease in voltage from the end of the
voltage profile, as shown in Fig. B.7, to the beginning of the following voltage
profile. From the illustration of Fig. B.8, this decay would be calculated as

Vstandbydecay,i = Vi,2 − Vi+1,1 (B.5)

where i indicates the self-test number (1, 2, ...).
Calculating this standby voltage decay for the two stacks in a single system

gives the points presented in Fig. B.9. Due to possible variation and noise in
the measured voltage, the voltages used for calculation are the median of the
first ten points and last ten points in the self-test voltage, respectively.

Time

40

20

0

20

Vo
lta

ge
 d

ec
ay

 [m
V]

stack1
stack2

Fig. B.9: Voltage decay during standby periods

Recovered Voltage

Some of the voltage decay from the standby periods is recovered during the
self-test, as exemplified by the rise in voltage in Fig. B.7. This recovered voltage
is calculated for each self-test (i) by

Vrecovered,i = Vi,2 − Vi,1 (B.6)
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The result from a single system is shown in Fig. B.10. In the shown case
anywhere from 1 to 11 mV is recovered per cell each self-test.
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Fig. B.10: Voltage recovery during self-tests

Unrecovered Voltage Decay

However, not all the standby decay is recovered during the self-tests, leading to
voltage decay. The unrecovered voltage decay is calculated by

Vdecay,i = Vi+1,2 − Vi,2 (B.7)

The result is shown in Fig. B.11.
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Fig. B.11: Voltage decay including recovered voltage from self-tests

B.5.3 State of Health

At the end of the self-test procedures, the voltage can be considered approx-
imately at steady state value. Plotting these voltages against the measured
current at the same instance, indicates how the fuel cell stack is degrading
from the beginning of life (BOL) and end of life (EOL) polarization curves (Fig.
B.12). The polarization curves are provided in the fuel cell manual and are
attained from controlled laboratory experiments, whereas the voltage-current
points are taken in a dynamic environment. Therefore, comparing the two
should be done with caution, and might not provide accurate information of
the actual performance level of the stack, but is nonetheless an indication that
might be used to compare fuel cell systems with each other.
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Fig. B.12: Beginning of life (BOL) and end of life (EOL) polarization curves and self-test
steady-state voltage-current points

With this in mind, a state of health (SOH) metric of the system is calculated
from the BOL and EOL references for each of the voltage current points using
the formula

SOHi = Vi − EOL(Ii)
BOL(Ii)− EOL(Ii)

(B.8)

where V and I are the average cell voltage and current, respectively, and BOL()
and EOL() are the beginning of life and end of life functions, respectively.

The resulting SOH evolution of the two stacks in the system is depicted
in Fig. B.13. It is clear from the SOH metric, that the system under investi-
gation experiences some degradation in the form of change in voltage-current
relationship at a fixed power level throughout its lifetime.
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Fig. B.13: State of Health (SOH) throughout the system operation time

B.6 Conclusion

This paper has shown how performance indicators of PEM fuel cell backup
systems can be extracted form raw measurements. The extracted performance
indicators from fuel cell stacks in the field are presented as well as voltage decay
and state of health estimation throughout the lifetime of a single system.
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B.6.1 Future Work

This paper presents a first look at field data of commercial fuel cell backup
power systems with the purpose of assessing the system performance and its
degradation. The following work will go deeper into analyzing the data to
establish useful performance assessment criteria and testing influences of specific
environmental conditions on system performance and degradation.
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C.1. Introduction

Abstract

Fuel cell based backup power systems are finding application in telecommunica-
tion applications. Due to the criticality of the application, as well as the effort
of keeping operating costs low, appropriate maintenance strategies are of high
importance. This paper investigates key performance indicators, derived from
numerous fuel cell based backup systems, installed in the field. The methods of
principal component analysis and local outlier factor are applied to the KPIs,
in order to identify systems that are performing differently from the majority
of the systems. These underperforming systems can then be examined closer to
identify potential problems.

C.1 Introduction

Fuel cell technology is a promising candidate in an increasingly renewable and
distributed generation based energy system with a growing demand for energy
storage [1]. One application where fuel cells are gaining market traction is
in backup power systems [2], [3] where they fill a gap where batteries energy
storage does not achieve high enough capacity and where diesel generators are
too polluting or too noisy [4]. Some of the big advantages of fuel cell systems
are their lack of moving parts, ease of fuel replenishment, and pollution free
operation. Some setbacks of the technology are the relatively high CAPEX cost
and slow dynamic response. The latter can be easily compensated with smaller,
faster responding energy storage units such as batteries or ultracapacitors.

The typical fuel cell backup systems, as used widely in the telecommunica-
tions, consists of proton exchange membrane (PEM) fuel cell stacks and their
peripheral components, a battery and/or ultracapacitor unit, and one or more
power electronic converters [3], [5], [6]. An example of a fuel cell based backup
power system architecture for telecommunications applications is depicted in
Fig. C.1. During normal operation, the telecom load is supplied with power
from the grid through appropriate conversion stages. When a fault occurs in
the electrical grid, the fuel cell will start up to supply the load power. During
the fuel cell start-up, the battery or ultracapacitor unit will supply the load.

The ability of the network provider to provide a reliable connection to its
costumers relies on the availability of electrical power. Therefore, the reliability
of the backup system is critical, especially in less reliable electrical grids [7].
For this reason, proper maintenance of the backup systems is required, which
can often be an expensive task in remote locations. One method for better
planning maintenance activities is to adapt a condition monitoring approach,
where system critical parameters are remotely monitored and assessed in order
to identify potential and emerging faults [8].

This paper will examine historical operating data from multiple fuel cell
based backup systems in real field operation in order to identify underperforming
systems, for further inspection and possible maintenance actions. To the authors’
knowledge, no scientific publications before this, has examined in-field operating
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data on fuel cells for the purpose of assessing performance levels within the fleet
of systems.

C.2 Monitored Parameters

Backup systems based on fuel cells for telecommunications, installed in the field,
have collected data on their operating conditions through several years. This
collected data is the basis of this study. The data contains logs of the various
system states, such as standby, backup, and self-test. As well as performance
variables such as produced voltages and currents, and operating conditions such
as temperatures of various system components.

In this work, key performance indicators (KPIs) regarding the fuel cell
stack’s operation is considered. Specifically, the number of stack startups at
different conditions and stack runtime in different system modes and system
conditions, as listed in Table C.1. For details on how the KPIs are extracted
from the raw data, please refer to [9].

DC-bus GridFuel cell Rectifier

Converter

Load

H2

Air

Fan

H2 Storage

UltraCap

Fig. C.1: Fuel cell backup system architecture. The arrows indicate the direction of energy
flow between the components.
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Table C.1: Key Performance Indicators

Name Unit Description
Airair_startups - Number of system startups where the

stack voltage is below a certain threshold
Number_Backups - Number of backup events
Number_Selftests - Number of self-test events
Startups - Total number of system startups
Runtime_Backup h Runtime in backup mode
Runtime_Bad h Runtime in bad stack condition
Runtime_Diagnost h Runtime in diagnostics mode
Runtime_Downgraded h Runtime in downgraded stack condition
Runtime_Power_down h Runtime in stack power-down mode
Runtime_Powerup h Runtime in stack power-up mode
Runtime_Safelock h Runtime in safe-lock mode
Runtime_Safemode h Runtime in safe mode
Runtime_Self_test h Runtime in self-test mode
Runtime_Shutdown h Runtime in shutdown mode
Runtime_Standby h Time in standby mode
Total_runtime h Total runtime of the stack

Because the systems under investigation have been running in the field for
varying amounts of time, the KPIs are all normalized to total runtime of the
specific system, effectively giving the number of start-ups per hour of system
runtime, etc. The KPIs are further standardized to each have zero mean and
unity variance. The resulting KPI distributions are visualized in Fig. C.2.
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Fig. C.2: Violin plot illustrating the distribution of the standardized performance indicators.
The white dot indicates the median value, the black box indicates the interquartile range
(from the 25th to the 75th percentile), and the black whiskers indicate the minimum and
maximum values, excluding outliers.
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C.3 Dimensionality Reduction

Dimensionality reduction is a means of feature extraction or feature selection
in machine learning [10]. The purpose is to reduce the number of features
(independent variables) while retaining as much information from the original
feature space as possible. A widely used method for dimensionality reduction
is principal component analysis (PCA) [11]. While the number of features in
this case is fairly low, the dimensionality reduction eliminates the covariance
between the original features. Also, a reduced number of features simplifies the
visualization of the data, and it makes this work more generally applicable to
larger feature spaces, should more KPIs be considered in future studies.

C.3.1 Principal Component Analysis

PCA is a linear method of dimensionality reduction, which maps the original
data to a lower dimensional space in such a way, that the variance in the new
space is maximized. The method is linear and relies on the computation of
eigenvectors and eigenvalues. The process of the method as applied on the
presented data is outlined in this section. [10]–[12]

Let X be the n× p matrix of p KPIs of n samples each. The first step is to
ensure that X has zero sample (column-wise) mean. This is simply achieved
by calculating the mean of each column (uj) in X and subtracting it from the
original matrix:

uj = 1
n

n∑
i=1

Xij for j = 1, . . . , p (C.1)

B = X − huT (C.2)

where Xij is the ith element of the jth column in X, h is a unit column vector
of size n and u is the column vector collection of means uj for all j. B then
represents the zero sample mean data.

The covariance matrix (Σ) of B is calculated by

Σ = 1
n− 1B

TB (C.3)

which gives a p× p matrix describing the covariance between the KPIs. This is
visualized in the matrix plot of the correlation between the KPIs in Fig. C.3
(the correlation matrix can be understood as a normalized covariance matrix).
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Fig. C.3: Correlation matrix of the examined key performance indicators

Compute the matrix Q of eigenvectors from the following equation

Q−1ΣQ = Λ (C.4)

where Λ is the diagonal matrix of eigenvalues of the covariance matrix. Both
Q and Λ will have dimensions p× p with the eigenvalue λj = Λjk, with k = j
corresponding to the jth eigenvector of Q for j = 1, . . . , p.

Now a transformation matrix (W ) can be obtained. The transformation
matrix consists of L eigenvectors, where L is the number of dimensions intended
for the transformed data. When the eigenvectors in Q are ordered in descending
order of the corresponding eigenvalues, W is obtained by

Wjl = Qjl for j = 1, . . . , p l = 1, . . . , L (C.5)

The absolute value of the eigenvalues is a measure of how much variance is
explained by the corresponding eigenvector. Hence the first principal component
is the principal components, which explains the most variance, corresponding to
the highest absolute eigenvalue. The second principal component, which explains
the second most variance, is determined from the second largest eigenvalue and
so forth.

How many principal components should be used to represent the original data
is a tradeoff between the amount of compression and the loss of variance from
the original data. A quantitative way of determining the number of principal
components (L), is to look at the proportion of explained variance (PoV ) [11],
which is the relationship between the explained variance (also called cumulative
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energy) of the L largest eigenvalues and the sum of all the eigenvalues:

PoV =

L∑
j=1

λj

p∑
j=1

λj

(C.6)

A PoV of 1 means that all the variance of the original data will be contained
in the transformed data. Hence determining L is done by defining a lower limit
of the explained variance, e.g.

PoV ≥ 0.9 (C.7)

Calculating the eigenvectors, eigenvalues and the proportion of explained
variance for each, the explained variance ratio (PoV ) contribution of each
principal component is plotted in Fig. C.4.
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Fig. C.4: Explained variance versus number of included principal components

In this case, to have a PoV above 0.9, nine principal components are needed,
giving a PoV of 0.92. Meaning that the nine eigenvectors corresponding to the
nine largest eigenvalues are included in the transformation matrix W .

Finally, the original dataset X is transformed to an L dimensional space
using the transformation matrix W :

T = XW (C.8)

The transformed dataset is visualized in Fig. C.5 where each principal
component is plotted against each other principal component. The plots in the
diagonal show the distribution of the given principal component in a histogram.
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Fig. C.5: Scatter matrix of the transformed dataset.

C.4 Anomaly Detection

There are several methods of anomaly detection in machine learning [13],
grouped mainly in supervised and unsupervised methods as well as some hybrid
methods. While the supervised methods require examples of known normal and
anomaly data, unsupervised methods assume that most of the data is normal
and looks for instances that fits the least to the remaining part of the dataset.

Since the dataset considered in this work is unlabeled, an unsupervised
anomaly detection method is used. One such method is the local outlier factor
(LOF) [14]. LOF works by measuring the relative deviation of a given point in
relation to its neighbors. It works by estimating the local density of a point
and comparing this density to the density of neighboring points. The locality
is determined by the K Nearest Neighbors (KNN) method and the density is
described by the distances to these K nearest neighbors. In the end, points
that have significantly lower local density than their neighboring points can be
considered outliers.

C.4.1 The LOF Algorithm

Let A be a point in the dataset, of which the local outlier factor is to be
calculated. The set of K nearest neighbors of point A (NK(A)) is determined
by calculating the distances from A to the other points in the dataset and
extracting a subset of K points with the lowest distance from A.

The LOF of point A is calculated by comparing its local reachability density
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(LRD) to the average LRD of the points in NK(A):

LOF (A) =

∑
B∈NK(A)

LRD(B)

|NK(A)| · LRD(A) (C.9)

The LRD of A is calculated by

LRD(A) = |NK(A)|∑
B∈NK (A)

RDK(A,B) (C.10)

LRD can be considered the inverse of the average reachability distance of the
points in the set of K nearest neighbors. Where the reachability distance of
point A from point B (RDK(A,B)) is the true distance between the points
(d(A,B)), but at least the K-distance of point B (Kd(B)):

RDK(A,B) = max{Kd(B), d(A,B)} (C.11)

Choosing K

Choosing the number of neighboring points (K) can largely affect the calculated
LOF vales. Therefore, some rules are applied in choosing this value. In practice,
The LOF values are calculated for a range of K values, and the maximum LOF
of each point, for any K in the defined rage, is considered the true LOF value
of the given point. The range of K values ([Kmin : Kmax]) is determined from
a certain set of guidelines as proposed in the original paper [14]:

• Kmin is the minimum size of a cluster to which points can be considered
outliers

• Kmin should be no less than 10

• Kmax is the maximum number of points allowed in a cluster for the points
to still be considered outliers

Interpreting the LOF Values

The LOF method is not a binary classification of points being inliers and outliers.
Rather, it assigns each point with a degree of being an outlier. On one hand,
this gives more information, in the sense, that outliers can be quantified in terms
of how much of an outlier it is. On the other hand, it leaves some uncertainty
in how to define the threshold of what should be considered inliers and what
should be considered outliers. This threshold might be difficult to define and
can vary from dataset to dataset.

In general, an LOF value of 1 or less is a good indication of a point being an
inlier and points with significantly higher LOF values indicate outliers. Where
the threshold for the outliers is located depends on the uniformity, sparseness,
and fluctuations of the data.
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C.5 Results

Calculating the LOF values on the transformed dataset of Fig. C.5 using the
described method gives the distribution of values shown in Fig. C.6. The
majority of points are clear inliers with LOF values around 1. There are also
some clear outliers with LOF values above 4. From the distribution of the
LOF values, a good definition of the outlier threshold could be between 2 and
4 depending on the percentage of points that should be considered outliers.
For a threshold of 2, 35 of the stacks would be identified as outliers (26%),
whereas a threshold of 3 or 4 would give 13 (10%) and 10 (7%) outlier stacks,
respectively. However, the LOF values might be more useful than a binary
indication of outliers. With the LOF values, the highest values and therefore
the most abnormal systems can be addressed first. The 14 stacks with the
highest LOF scores are listed in Table C.2.
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Fig. C.6: Histogram of the local outlier factors (LOF)

Table C.2: LOF scores of
detected performance out-
liers

ID Stack LOF
82 2 10.5
82 1 10.1
8 1 6.7
8 2 6.6

45 2 5.7
45 1 5.7
27 1 5.1
28 2 4.2
11 2 4.1
27 2 4.1
25 1 3.5
48 2 3.2
48 1 3.2
16 2 2.9
9 2 2.9

Fig. C.7 shows a visualization of the calculated local outlier factors. The
color of the data points shifts from blue for low outlier factors (inliers) to red
for high outlier factors (outliers).
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Fig. C.7: Scatter matrix of the nine principal components with indicated local outlier factor
by the color scale. The color scale is limited to an outlier factor of 4, whereas the range
of outlier factors extends to above 10. In Effect, all points with outlier factors above 4 are
colored in the same red color.

From a maintenance perspective, the local outlier factors could indicate
where to focus the maintenance effort. That is, stack 1 and 2 of system 82 have
the least similarity of their performance indicators to the fleet of systems as a
whole, i.e. they have the highest LOF values. Therefore, further investigation
of system 82 should have high priority. After system 82 has been addressed, the
maintenance effort can be shifted to systems with lower LOF, system 8, then
system 64 and so forth.

Fig. C.8 depicts the outlier factors of the stacks in the original (normalized)
KPI data space as well as boxplots showing the distribution of each of the
KPIs. Stack 2 of system 82, which is the stack with the highest outlier factor
(10.98), has been highlighted with a star marker in the figure. The figure shows
that, this system is within the normal range for all the KPIs, except for the
Runtime_Powerup, indicating that the system spends too much time in this
mode compared to the time spend in other modes of operation. The figure also
indicates that it is possible to have apparent outliers in one KPI without scoring
a high LOF, meaning that the stack might have a higher than normal value in
one KPI, but still be located within the main nine-dimensional cluster of all
the principal components. On the other hand, it is also possible for a stack to
be within the normal ranges for all the KPIs, but due to local fluctuations in
density, to score a high LOF value.

System 82, stack 1 and 2, both only have abnormal values in the Runtime_Powerup
KPI, whereas system 8 have abnormal values in several of the KPIs. System
48, stack 1 and 2, lie within the normal range for all the KPIs, yet scores a
relatively high LOF of 3.2.

112



C.6. Conclusion

Number_s
elfte

sts

Number_b
ackups

sta
rtu

ps

downgraded_tim
e

bad_tim
e

airair_s
tartu

ps

Runtim
e

Runtim
e_Backup

Runtim
e_Diagnost

Runtim
e_Power_d

own

Runtim
e_Powerup

Runtim
e_Safelock

Runtim
e_Safemode

Runtim
e_Self_t

est

Runtim
e_Shutdown

Runtim
e_Standby

2

0

2

4

6

8

10
N

or
m

al
iz

ed
 V

al
ue

System 82 stack 2

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
ut

lie
r 

Fa
ct

or

Fig. C.8: Distribution of key performance indicators (KPIs) with indicated outlier factors.
Each tick on the x-axis indicate a KPI and the y-axis is the normalized value of each KPI. The
box plots show the overall distributions of each KPI and the overlaying points each represent
a specific stack. The stack data points are colored by the calculated outlier factor but limited
to a score of 4 so that scores above 4 all have the same color.

C.6 Conclusion

This paper describes a method for detecting abnormalities in the performance
of a fleet of fuel cell based backup systems operating in the field. The abnormal-
ity detection is based on dimensionality reduction using principal component
analysis (PCA) and the local density-based machine learning method, local
outlier factor (LOF).

The results show that performance anomalies can be detected across multiple
performance indicators. The method uses information from all the variables in
the dataset simultaneously to give a quantitative measure for the degree of a
stack being an outlier. In this way, the most abnormally performing stacks can
be investigated with highest priority.

If there are many stacks in the fleet, that perform unintentionally, but in the
same way, the described method might not be able to detect such misbehavior.
The stacks would have high similarity to each other and therefore high local
density and would therefore score low LOF values. As such, they would not
be detected as outliers, and other methods would be required to detect such
unintentional behavior. However, this case is not present in the described
dataset.
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D.1. Introduction

Abstract

Fuel cell based backup systems are used as telecommunication power supplies,
where availability of power is crucial for a reliable service. State of health (SOH)
is a useful metric in aiding predictive maintenance actions, that aim to reduce
the system down time as well as the operating cost. In this paper, voltage,
current, and temperature data from numerous stacks installed in the field to
estimate an SOH metric. A long short term memory (LSTM) recurrent neural
network (RNN) is trained to predict SOH values six months into the future.
Finally, the RNN performance is evaluated on prediction horizons of six months,
as well as longer horizons of twelve, eighteen, and twenty-four months.

D.1 Introduction

Fuel cell based backup systems has become a popular solution in powering
telecommunication sites. The fuel cell solution provides a less polluting and less
noisy alternative to conventional diesel generators. They are more sustainable
for longer runtimes and have easier extendable capacity compared to pure
battery solutions. [1]

In backup systems, the availability of power is of paramount importance.
Therefore, the system performance should be ensured through appropriate
maintenance strategies, monitoring of system parameters, and other measures.
Assessing the performance level of a complex system is not trivial and many
approaches are described in literature. A popular metric for assessing stack
performance is the stack voltage [2], [3]. However, the voltage does not only
change with the degradation of the stack, but also with varying operating
conditions, such as load and temperature. Therefore, this approach is often used
in applications with constant load. Another popular method, especially used
for diagnostics and characterization, is based on electrochemical impedance
spectroscopy (EIS), which has proven very effective [4]–[6]. However, it requires
perturbation of the stack current at a specific operating point and additional
hardware for measuring the response.

An alternative method is to estimate a state of health (SOH) metric, i.e. a
single number that indicates the condition of the stack. There are no established
standards in the way that SoH is derived for a fuel cell. But a number of methods
is presented in literature, including voltage based (as mentioned previously),
and internal resistance. [7], [8]

In this paper, voltage, current, and temperature measurements from nu-
merous fuel cell stacks installed in the field, are used to estimate the state
of health of the stacks. A recurrent neural network (RNN) is trained on the
data to predict the state of heath metric six months into the future. The main
contributions of this work is a method for estimating SOH of fuel cell stacks in
backup systems, where operation is sporadic. As well as a method for predicting
future SOH values of individual stacks, based on known SOH metrics from a
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Fig. D.1: Self-test example showing the steady state extraction principle.

fleet of stacks installed in the field, which to the authors’ knowledge, has not
been seen in the literature before.

D.2 Data Foundation

Data from 74 stacks is used for the studies in this paper. The stacks are used
in telecommunication uninterruptible power supplies, as described in [9]. These
systems experience some unique operating conditions, involving long periods of
inactive/standby modes and few, sporadic backup scenarios.

To ensure system functionality when backup is needed, the fuel cell stacks
are regularly conditioned in so called self-test, where the stacks are powered
up to deliver energy to a dummy load, thereby exercising the fuel cells. These
self-tests are more regular and consistent, than the backup power scenarios, and
are therefore more suited to study the fuel cell degradation over time.

The data, which is used in this work is voltage, current, and temperature of
the fuel cell during the before mentioned self-tests. An example of such data
from a single self-test of a single stack is shown in Fig. D.1. To simplify the
dataset and to allow for easier analysis of performance levels, each self-test is
reduced to a single data-point - the steady state value - for each of the three
variables.
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Fig. D.2: Steady state voltage, current, and temperature data for all the stacks in the
dataset.

The steady state values are extracted by finding the end of the constant
power segment of the data and then taking the variable values at this time-point.
The steady state extraction process is described in detail in [10].

Finding these steady state values for each self-test of each stack in the
dataset gives the cloud of data, shown in Fig. D.2. The figure does not depict
to which stack each data point belongs, but merely illustrates the dataspace.
An example of how the voltage, current and temperature steady state values
evolve in time for a single stack is shown Fig. D.3.

D.3 State of Health Estimation

To estimate the state of health of any given stack, two reference points are
needed; a beginning of life point (BOL; when the stacks is performing as a stack
is expected to perform at the beginning of its lifetime), and an end of life point
(EOL; when the stack performance has fallen to an unacceptable level).
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Fig. D.3: Steady state voltage, current, temperature evolution of an example stack.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized current

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 c
el

l v
ot

ag
e BOL data

EOL data
BOL fit
EOL fit

Fig. D.4: Beginning of life (BOL) and end of life (EOL) points as defined in the fuel cell
manual and fitted curves.

D.3.1 Beginning of Life and End of Life Definitions

The fuel cell manufacturer has provided their definitions of the beginning of life
and end of life criteria in the datasheet of the fuel cell. These boundaries are
given as polarization curves, i.e. voltage-current curves of the fuel cell, as shown
in Fig. D.4. The polarization curves are obtained through a specific sequence
of current steps in a lab environment with controlled fuel cell temperatures.
Throughout the test, the temperature of the fuel cell is kept close to the optimum
temperature for that specific current level, i.e. the temperature is lower in the
low current steps than at the high current steps.

To allow for comparing values to the polarization curves at any current level,
the formula in (D.1) [11] is fitted to the test data. The formula represents the
fuel cell voltage as the reversible open circuit voltage minus the different types
of voltage loss in the cell.
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Vc = Vr − (I + In)R− RT2αF ln
(
I + In

Io

)
+ RT2F ln

(
1− I + In

IL

)
(D.1)

where I is the cell current, T is the temperature, R is the universal gas constant
(≈ 8.314 J mol−1 K−1), and F is the Faraday constant (≈ 96 485.332 C mol−1).
The remaining parameters are the fitting parameters and are described in Table
D.1. The obtained fit is shown for three temperature levels along the datasheet
BOL and EOL definitions in Fig. D.5. The graphs show that the cell voltage
falls slightly for an increased temperature. This is not usually the case for fuel
cells and is mainly due to the fact that the parameters of (D.1), such as io and
r, have temperature dependencies, which are not modeled here. However, the
variation in voltage caused by temperature is relatively small, and the variation
in temperature is limited (between 40◦C and 60◦C for the vast majority of
the data points). Therefore, the presented fit is considered applicable for this
specific case.

D.3.2 State of Health Estimation

After obtaining an expression for the cell voltage as a function of current and
temperature at the beginning of life (Vc,bol(I, T )), and an expression at the end
of life (Vc,eol(I, T )), the state of health of the fuel cell stack is estimated using
the formula:

SOH(Vc, I, T ) = Vc − Vc,eol(I, T )
Vc,bol(I, T )− Vc,eol(I, T ) (D.2)
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Table D.1: Fuel cell polarization curve fitting parameters.

Symbol Quantity Unit
Vr Reversible open circuit voltage V
In Sum current equivalent of fuel crossover A

and the internal current
Io Exchange current A
IL Limiting current A
R Resistance Ω
α Charge transfer coefficient -
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Fig. D.6: State-of-Health estimates of an example stack.

where Vc, I, and T are the self-test steady state data points of voltage, current,
and temperature, respectively. The resulting state of health for an example
stack is shown in Fig. D.6.

D.4 Recurrent Neural Networks

Recurrent neural networks (RNN) are a variation of artificial neural networks
(ANN). The underlying equation in ANN is shown in (D.3), where y represents
the output of a neuron and x is the input, W is a weight, and b is a bias. σ
is an activation function, which adds nonlinearity to the equation. Popular
activation functions include the hyperbolic tangent, Sigmoid, and rectified linear
unit (ReLU).

y = σ (Wx+ b) (D.3)
Recurrent neural networks can be viewed as a repetition of multiple ANNs,

where the outputs of the ANN layers are used as additional inputs to the
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Fig. D.7: Left: single-layer recurrent neural network. Right: three-layer recurrent network
unrolled through time. The output and possibly some hidden states are used as additional
inputs in the next step of the sequential network.

following ANN layers. This is represented in Fig. D.7 and gives the model
a temporal dimension, which makes this type of neural networks ideal for
modeling sequential data, such as time-series. In the right hand side of Fig.
D.7, a representation of an RNN with three layers is depicted as it is unrolled
through time. So that, x0 is the input vector at t = 0 and y0 is the resulting
output when the input is fed through the three layers. For the following time
step, not only is x1 input to the first layer, but also the output of the first layer
in the previous time step. This use of previous outputs and hidden states can
be considered the models memory.

One shortcoming of the generic RNN as the one discussed above, is that
in each time step the memory term is multiplied by the same weight, leading
to the vanishing gradient problem, where the memory becomes less significant
over time, resulting in improper training of the network. However, this problem
is solved in variations of the RNN, such as long short term memory (LSTM)
RNN networks [12].

D.4.1 Long Short Term Memory Cell

The long short term memory (LSTM) cell is a variation of the recurrent neural
network. The LSTM cell has internal layers, referred to as gates, which allow the
network to choose what should be remembered and what should be forgotten.
A graphical representation of an LSTM cell is depicted in Fig. D.8. Additional
to using the output of the previous layer in the input of the subsequent layer
as in the basic RNN, an LSTM network also uses an internal cell state in the
input of the following layer. The process and the mathematics of the LSTM
cell is described in the following.

The LSTM network has three internal gates: the input gate, the forget gate,
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Fig. D.8: Long short term memory (LSTM) cell.

and the output gate. The function of the gates, is to select which parts of the
input should be passed through to the next layer. The forget gate selects which
part of the cell state from the previous step (ct−1) should be passed to the
current cell state, and hence which part should be forgotten. The activation
vector of the forget gate (ft) is calculated using artificial neuron function on
the input (xt) and the output of the previous step (ht−1) as shown in (D.4).

ft = σ (Wf [xt,ht−1] + bf) (D.4)

where Wf is the weight matrix, bf is the bias, and σ is the activation function,
in this case the sigmoid function.

The input gate has two inputs: the new candidate cell state (gt), and the
input activation vector (it). The input gate activation function is calculated
similarly to the forget gate activation function:

it = σ (Wi [xt,ht−1] + bi) (D.5)

The candidate cell state is also calculated using the artificial neuron function,
only the sigmoid activation function is replaced with an hyperbolic tangent
(tanh) activation function:

gt = tanh (Wg [xt,ht−1] + bg) (D.6)

The actual cell state (ct) is obtained by adding the outputs of the input
gate and the forget gate, i.e. the cell state is a combination of a selection of the
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previous cell state data and a selection of data from the input and foregoing
output:

ct = ft ⊗ ct−1 + it ⊗ gt (D.7)

The final gate is the output gate, which determines which parts of the cell
state should be output and fed to the next layer and/or next time step. The
activation vector of the output gate (ot) is calculated by (D.8).

ot = σ (Wo [xt,ht−1] + bo) (D.8)

Finally, the output (yt or ht) is calculated in the output gate:

yt = ht = ot ⊗ tanh (ct) (D.9)

The output is then used for two purposes: 1) as a final output of the RNN
or as an input to a following layer in the model (called yt) and 2) as a hidden
memory state to the following time step (called ht).

D.5 Constructing and Training the Model

The LSTM RNN model is constructed using the Python library Keras [13],
which is a high-level API for neural network implementation. The network
architecture is chosen to consist of three main LSTM layers with 64, 128, and 64
neurons, respectively. Each LSTM layer is put in a bidirectional wrapper, which
effectively makes two LSTM layers: One is trained in normal time order, i.e.
from past to future; the other is trained in the reverse time order, i.e. from future
to past. This allows the model to use both past and future information during
the training. This also doubles the size of the layer, so that a bidirectional LSTM
layer, with each 64 neurons will amount to a total of 128 neurons. After the two
first LSTM layers, a dropout layer is added. The dropout layer randomly zeros a
fraction of the input units, thereby ignoring these inputs in the training process.
This helps prevent overfitting the model. Finally a standard fully-connected
(dense) neural network layer with six neurons is used for the output layer. The
output of neuron 1 in the output layer represents the future value one time step
forward, neuron 2 is the value two time steps in the future and so forth.

The implementation of these layers using Keras in Python is shown in Listing
E.1. And the constructed model is summarized in Table D.2, showing that more
than 460,000 parameters (weights and biases) needs to be estimated during the
training process. The output shape column shows the shape of the output of
the specific layer in the format (batch_size, samples, units). The batch_size
refers to the number of stacks that is passed through the network at a time,
samples refers to the number of samples per stack, and units is the number
of units/neurons in the layer. The First two dimensions are listed as ’None’,
because these dimensions are of variable size, i.e. different stacks have different
number of samples and the number of stacks per batch varies, as explained in
Section D.5.1. The output shape of the output layer (Dense_1), only has two
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Listing D.1: RNN model implementation

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Dense , LSTM, Dropout ,

B i d i r e c t i o n a l
3

4 # I n i t i a t e a s e qu en t i a l model
5 model = Sequent i a l ( )
6 # Add f i r s t LSTM laye r and dropout
7 model . add ( B i d i r e c t i o n a l (
8 LSTM(64 , return_sequences=True ) ,
9 input_shape=(None , 1) ) )

10 model . add (Dropout ( 0 . 2 ) )
11 # Add second LSTM laye r and dropout
12 model . add ( B i d i r e c t i o n a l (
13 LSTM(128 , a c t i v a t i o n=' r e l u ' ,
14 return_sequences=True ) ) )
15 model . add (Dropout ( 0 . 2 ) )
16 # Add th i rd LSTM laye r
17 model . add ( B i d i r e c t i o n a l (
18 LSTM(64 , a c t i v a t i o n=' r e l u ' ) ) )
19 # Add output l ay e r
20 model . add (Dense (6 ) )
21

dimensions, namely (batch_size, n_pred), i.e. n_pred predictions are made
for batch_size stacks. n_pred is determined by the number of units in the
output layer.

D.5.1 Preprocessing

Before training the model, the dataset is split in three groups: train, validate,
and test. The training data is used for training the model, i.e. tuning the
weights and biases of the network so that outputs of the network match the
expected based on the training input. The validation data is used to valuate
the training process and is not used to update the network parameters. The
testing data is kept completely separate from the training process. The training
data sample contains 56 stacks (84%), the validation sample contains 9 stacks
(12%) and the testing sample is 3 stacks (4%).

Secondly, the training data should be grouped in batches, depending on
the number of samples per stack. The number of samples for each stack varies
between 5 and 39, with most stacks (10) having 15 samples. Consequently, 24
batches are created, containing the data of between 1 and 10 stacks, each.

The final step before actually training the model is to normalize the data.
For this purpose, the MinMaxScaler of the Scikit Learn package [14] in Python
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Table D.2: Recurrent neural network model summary.

Layer (type) Output Shape Parameters
LSTM_1 (Bidirectional LSTM) (None, None, 128) 33 792
Dropout_1 (Dropout) (None, None, 128) 0
LSTM_2 (Bidirectional LSTM) (None, None, 256) 263 168
Dropout_2 (Dropout) (None, None, 256) 0
LSTM_3 (Bidirectional LSTM) (None, 128) 164 352
Dense_1 (Dense) (None, 6) 774
Total parameters: 462 086
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Fig. D.9: Testing data; three randomly selected stacks out of the total set of 74 stacks.

is used, which scales the data to fit between two defined values, in this case, 0
and 1. The normalized data of the three testing stacks is depicted in Fig. D.9.

D.5.2 Training

The last six samples of each stack is used as labels (y), i.e. the reference for
the prediction, and the remaining samples are used as inputs (X):
X = batch[:, :-6, :]
y = batch[:, -6:, :]
where batch is a batch of stacks with the dimensions (batch_size, samples,
features).

The network is trained on the training data for 200 epochs, using the Adam
optimizer [15] and mean absolute error (MAE) as the loss function. After each
training epoch, the model is used to make predictions on the validations data.
The result of the loss function (MAE) for both training and validation data
after each epoch is depicted in Fig. D.10 along with the mean-squared-errors
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Fig. D.10: Training (left) and validation (right) accuracy (top) and loss (bottom) evolution
during the training epochs.

(MSE). After 200 epochs, the training loss has dropped to approximately 0.008
and the validation loss to approximately 0.018. The MSE is used as a secondary
metric for the accuracy of the training, which is independent from the MAE
used for optimization. After 200 epochs the training MSE is 0.0008 and the
validation MSE is 0.0005.

D.6 Model Evaluation

The trained RNN is used to predict the last six samples of each of the validation
stacks and the result is shown in Fig. D.11. Points at and below zero months
(on the x-axis) represent the data used for input to the model, i.e. considered
past data. Points above zero months are considered future values, either true
values or predictions.

As a baseline for measuring the performance of the RNN predictions, a naive
prediction is made. The naive prediction is that the final data point in the
input data is repeated for the future values. Hence, the naive estimate assumes
that the SOH at any point in the future (t > 0) is the same value as the SOH
at time zero (t = 0).

Looking at the predictions in Fig. D.11, it seems that the RNN is capable of
capturing the overall trends as well as the magnitude of the series. For stacks
13, 24, 70, 79, 98, 106, and 112 the predictions fit very well. Whereas for stacks
84 and 96, the RNN struggles a little to make an accurate prediction.

To compare the performance of the RNN to the naive predictions, the
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Fig. D.11: Prediction results on the validation data. The x-axis zero-point denotes the time
of the prediction, such that any negative x-values are past values and are used as input for the
recurrent neural network, and positive x-values are future values, which should be predicted
by the outputs of the network. The graph shows the input data, the actual future values, the
naive predictions, and the RNN predictions.

absolute errors of both to the true values are computed. The means of the
stack prediction errors of the two methods are depicted in Fig. D.12 with the
95% confidence interval indicated by the error bars. For the first prediction,
the mean error for the naive and RNN predictions are similar at 0.035 and
0.017, respectively. For the following predictions, however, the RNN performs
significantly better at around 30%-40% the mean error of the naive predictions.
At the six month prediction, the RNN prediction error is 0.032 - 64% lower
than the 0.088 error of the naive prediction. It should be noted, that there is
some overlap of the confidence intervals.

D.7 Long-Term State of Health Prediction

In this section, the trained RNN model will be used to make long-term predic-
tions on the testing data. The RNN model is constructed to make monthly
predictions six months into the future. To achieve longer prediction horizons,
the six months predictions are appended to the original input and used as a
new input to the RNN which again predicts six months into the future, making
a total of twelve predictions from the starting point. This process can be
continued indefinitely. Predictions are made using this approach for each of the
test stacks at different prediction horizons.

The number of samples of the test stacks are 33, 34, and 38, respectively.
Therefore, the maximum prediction horizon, which can be verified with the
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Fig. D.12: Prediction error on the validation data of the naive baseline prediction and the
recurrent neural network prediction. The error bars show the 95% confidence interval.

sample data, is 30, i.e. five predictions of six months each.
Firstly, a prediction horizon of six months is calculated using the first 27,

28, and 32 samples for the input, leaving six samples for verification for each of
the stacks. The results are shown in the left column of Fig. D.13.

For prediction the SOH twelve months into the future, the first 21, 22, and
26 samples, respectively are used for the initial input to the RNN, leaving
twelve samples for verification. The RNN predicts the SOH six months into the
future. These six predictions are then appended to the initial input data, so
that the new input to the RNN is the initial input samples as well as the first
six predictions. The RNN then computes six new predictions, so that twelve
predictions are made in total. The result is shown in the center column of Fig.
D.13.

The same approach is used for prediction horizons of 18, 24, and 30 months,
i.e. three, four, and five iterations of RNN predictions, respectively. The result
of the 30 month prediction horizon is shown in the right column of Fig. D.13.

The absolute error at the end of each prediction horizon for each stack is
calculated. For stack 9, the six month and twelve month prediction errors are
very low, at around 0.069 and 0.068, respectively. The eighteen, twenty-four,
and thirty months error all lie steadily between 0.225 and 0.384. The prediction
error in stack 49 starts at 0.113 for the six month horizon. For the longer
horizons, the error lies between 0.307 and 0.393. The prediction error of stack
108 has a bit more variation than the other two stacks. At six months the
error is 0.166 and at twelve months it rises to 0.258 before falling again at
eighteen months to 0.113. It increases again for the twenty-four and thirty
month horizons.

The prediction errors of each stack for each prediction horizon are sum-
marized in Table D.3 along with the mean prediction error for each of the
prediction horizons.
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Fig. D.13: Prediction results for the test stacks with a six, twelve, and thirty month
prediction horizon, from left to right, respectively.

Table D.3: Prediction errors for test stacks for prediction horizons from six to thirty months.

Prediction horizon Stack 9 Stack 49 Stack 108 Mean
6 0.069 0.113 0.166 0.116
12 0.068 0.307 0.258 0.211
18 0.225 0.393 0.113 0.243
24 0.384 0.382 0.420 0.395
30 0.284 0.381 0.535 0.400
Mean 0.206 0.315 0.298 0.273

D.8 Conclusion

Periodic self-test data has been used to estimate state of health (SOH) values
for fuel cell stacks. The data contained voltage, current, and temperature
measurements from fuel cell stacks operating in field conditions.

A long short term memory (LSTM) recurrent neural network (RNN) was
trained on the SOH data to predict values six months into the future. The
RNN was trained for 200 epochs where the mean absolute error loss function
was reduced to approximately 0.02 on validation data, with a mean squared
error of approximately 0.0005.

The prediction accuracy on the validation data was compared to a naive
prediction, where the last SOH value was simply forecast in a repetitive manner.
The RNN method showed significant improvement compared to the naive
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method, with some uncertainty.
Test data was used to test the RNN predictions at longer predictions horizons,

by iteratively using RNN predictions in the input of the same RNN. The
predictions were made from six to thirty months, in intervals of six months.
The error remained relatively low for the longer prediction horizons, although
the results vary from stack to stack.
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E.1. Introduction

Abstract

Fuel cell technology is a green alternative to diesel generators in backup power
applications that require prolonged backup times. However, fuel cells have high
initial cost and therefore rely on reduced operation and maintenance costs to
compete commercially. Prognostics is a key enabler of reducing maintenance
cost and improving life expectancy. The approach in this work takes offset
in a dataset consisting of measured parameters of numerous backup power
systems operating in field conditions. Recurrent neural network (RNN)models
are trained to predict future evolution of health indicating fuel cell parameters
from the historic data. Two approaches are compared. The first uses all available
training data to train the RNN. The second separates the dataset into two
clusters based on similarities between the stack time series and train separate
RNNs for each cluster. It is found that the model that utilizes all the available
training data, generally experiences superior performance.

E.1 Introduction

With many critical infrastructures relying on continuous electricity supply,
there is an increased demand for backup power systems and uninterruptible
power supplies (UPS). These critical infrastructures may include anything from
hospitals and data centers to industrial process where the cost of lost production
is high. In this work, the focus is on the telecommunications sector, where
critical communication infrastructure need backup power systems in the range
of 1-10 kW.

Traditionally, two main technologies have dominated the backup power sys-
tems: lead-acid batteries and diesel generators [1]. Although lead-acid batteries
are inexpensive and simple to operate, they suffer from short lifetimes and need
regular replacement. Also the weight (and size) of batteries is proportional to
the energy capacity and therefore available backup time, which makes then
unsuitable for applications that require long backup times. Diesel generators,
on the other hand, are well suited for prolonged backup times, but require high
maintenance due to the many moving parts. Perhaps the biggest drawback
of diesel generators, in a modern world with increased focus on emissions and
renewable power sources, is the pollution and emissions they produce. Also,
diesel generators are noisy, which makes them inappropriate in urban areas.
[1]–[3]

Fuel cells, like diesel generators, have decoupled power production and
energy storage, meaning that extended backup power periods are possible [1],
[3]. Furthermore they are quiet and do not pollute, at least on-site. All this have
made fuel cells a promising new technology in the backup power system/UPS
field [4], [5], as one of the first fields where fuel cells are commercially viable [3].
However, the initial cost of the fuel cell systems remain a hurdle to wide spread
adaptation. Hence, in order for fuel cell systems to be commercially viable, they
should compensate for the high initial cost, for example by reduced operations
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and maintenance cost.
Prognostics and health management (PHM) is a popular framework for

extending system lifetime and is a key enabler of predictive maintenance [6].
PHM has received increased attention in the fuel cell research community
in recent years [7]–[9]. PHM has three main stages: observation, analysis,
and action. Observation involves the acquisition and processing of data from
the system. The analysis stages includes condition assessment of the system
(some times referred to by the state-of-health term; SOH), diagnostics, and
prognostics. Diagnostics is the process of detecting and locating specific faults
in the system and prognostics focuses on predicting the future health of the
system. Prognostics is therefore a crucial part of predictive maintenance, where
actions are planned according to the projected future condition of the system to
minimize cost and/or down-time [10]. The maintenance planning and execution,
as well as possible changes in the operating strategy of the system is done in
the action phase of PHM. In this work, the focus is on the prognostics part of
the analysis step of the PHM framework.

Prognostics of fuel cell systems is a difficult task, as the degradation mech-
anisms involve both chemical, thermal, and mechanical processes [11]. Two
main approaches are used in literature: model-based and data-driven. In the
model-based approaches, known physical or empirical relationships between
measurable system parameters and the degradation process are used to estimate
the level of degradation. In [12], the current density and stack voltage measure-
ments are used to estimate the SOH and dynamic degradation with an extended
Kalman filter (EKF). An inverse first-order reliability model (IFORM) is then
used to forecast the SOH to an end-of-life (EOL) threshold, which is then used
to give an estimate for the remaining useful life (RUL). In [13], the active area
resistance (ASR) is estimated using an unscented Kalman filter (UKF) and
used as a health indicator. A linear Kalman filter and Monte Carlo simulation
is used to predict future ASR values, which are compared to a threshold to get
an RUL estimate. Although these studies show great results, their model-based
approach, limits their use to the specific operating conditions and degradation
mechanisms included in the models [14].

Data-driven approaches are mostly limited by the available training data. As
such, they can predict any degradation mechanism in any operating condition,
provided that there are sufficient historical examples of these events available.
Li et al. have demonstrated the use of linear parameter varying (LPV) models
to estimate a virtual steady state voltage, which is used as a health indicating
feature. Predictions of future feature values are obtained through the use of
eco state networks (ESN) [14], [15]. In [8], an adaptive neuro-fuzzy interface
system (ANFIS) is used to predict the output voltage under constant operation.
In [16], stack current, power, and ageing time are used to predict degradation
under dynamic operation using a summation-wavelet extreme learning machine
(SW-ELM). Finally, Ma et al. [17], [18] use recurrent neural network (RNN)
variants to predict output voltage under constant and dynamic operation.

Common for the prognostics studies of fuel cells, presented in literature, is
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that they deal with continuous operating data, although some start-stop events
may occur throughout the test-time. This is fundamentally different to how
the backup power systems under investigation in this study, normally operate,
which will be described in Section E.2. Furthermore, the studies in literature
often conduct experiments in a controlled lab environment, which is great for
testing methods and understanding the processes. However, the conditions and
mechanisms experienced in a real-field scenario might not be represented.

In this paper, data collected on a number of fuel cell-based backup power
systems installed in real field environments will be presented. The data will
be the basis of training a recurrent neural network to predict stack voltage,
current, and temperature six months ahead in time. A comparison is made on
training the RNN on all the training data and training two separate RNNs: one
on each of the clusters detected in the dataset. The specific methods include
long short-term memory (LSTM) RNN in an encoder-decoder architecture,
dynamic time warping (DTW) for describing similarities between the time
series, principal component analysis (PCA) for dimensionality reduction, and
density-based spatial clustering of applications with noise (DBSCAN).

E.2 Data

The presented data was collected on backup power systems operating in field
conditions, i.e. different and varying load demands, usage profiles, and ambient
conditions. The systems normally reside in a standby mode, where the fuel
cells produce no power. Occasional grid fault events cause the systems to
activate to provide backup power to the load. However, these events are
rare and inconsistent, which makes them unsuitable as basis for prognostics.
However, the systems are routinely exercised in so-called self-tests, to ensure
availability. These self-tests are consistent and more frequent than the backup
events. Therefore, these self-tests are the basis for the prognostics approach in
this work.

Data from one self-test of one fuel cell stack is presented in Fig. E.1. The
presented data contains the stack power, stack voltage, current, room/ambient
temperature of the fuel cell, temperature of the air supply at the inlet and
outlet, pressure of the hydrogen supply, and the stack temperature. To enable
comparison of self-test data across stacks, each self-test event is reduced to a
single data point per variable. This is done by finding the end of the steady state
power and extracting the variable values at that time instance. The median of
ten data points before the detected time is used to mitigate noise in the signals.

The resulting data points for all self-tests of all the fuel cell stacks are shown
in Fig. E.2 along with histograms of the data distributions. The month of the
data points are added as an additional variable. This will provide the RNN with
some seasonal information, which might be associated with the environment of
the systems. The data has been further normalized to vary between 0 and 1
and has been resampled to monthly values.
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Fig. E.1: Extraction of steady state self-test values from raw data of a single stack. The
values are extracted at the point where the stack power (top graph) is at the end of its steady
state period. To account for noise in the data, the median of ten points before the steady
state point is used.
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Fig. E.2: Steady state self-test data for all stacks in the dataset. The right hand side column
of graphs show histograms of the data distributions.
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E.3 Clustering

The stacks in the dataset experience different operating conditions and have
different evolutions of their system parameters. The evolution might be similar
for some subset of the stacks, while different for other stacks. These difference
might separate the stacks in distinct groups of similar behavior, which can be
detected through clustering. Clustering is a machine learning methodology of
dividing a dataset into groups of data points with high degree of similarity.
In this case grouping the stacks based on the similarities in the time series
described in the previous section.

However, it is difficult to apply clustering methods on the time series directly.
Therefore, a similarity measure between the various time series should be applied
to obtain a representation of the stacks that are more easily compared. A simple
way of measuring similarity of two time series is to calculate the Euclidian
distance between each data point in the series. But this approach is only well
suited to series of same length, that experience the same trends at the same
time instances, which is far from the case of the dataset in question.

E.3.1 Dynamic Time Warping

Dynamic time warping (DTW) is a distance measure, capable of extracting
similarities between asynchronous time series of varying length [19]. It seeks
to optimize the alignment of the two series by nonlinear warping of the time
dimension before calculating the distances between the points in the series.
The DTW algorithm is commonly used in fields such as speech recognition [20]
and data mining [21], but has also found applications in health prognostics of
engineering systems, such as batteries [22].

Suppose two time series Q and C of length n and m, respectively. To find
the DTW alignment, we first construct an n×m matrix where the entry (i, j)
is the distance between the ith and jth element of Q and C, i.e. qi and cj . The
algorithm then seeks to find the path through the matrix, which minimizes the
cost of the path, i.e. the sum of distances tracked by the path. Some constraints
are defined when finding this path: the path starts at the beginning of both the
series, and ends at the ends of both series - the warped series are aligned both
at the beginning and the end; every point in each series should be matched to
at least one point in the other series; the path must be monotonically increasing.
[19]

Calculating the DTW distances between the times series of each of the stacks
in the dataset, gives a measure of similarity between each stack and every other
stack in the dataset. The result is visualized in Fig. E.3. A low DTW distance
represents high similarity - see the diagonal in the matrix plot, that shows that
each stack has zero DTW distance to it self. On the other hand high DTW
distance implies low similarity.

These similarities will be the basis of the clustering analysis in section E.3.3.
But firstly, the high dimensionality of this dataset (one dimension per stack) is
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Fig. E.3: Matrix plot of the dynamic time warping distances.

reduced in the following section. The reason for dimensionality reduction is to
enable easier inspection and visualization of the dataset.

E.3.2 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction method,
which transforms a dataset into a space in which the variables are linearly
uncorrelated. The transformed variables are referred to as principal components,
which are arranged so that the first principal component has the largest possible
variance, the second component has the second largest variance and so forth.
That is, the first principal components contain the most information from the
original dataset. Hence, by selecting a subset of the first principal components,
the dimensionality of the dataset can be reduced while maintaining as much
variance, and thereby information, as possible.

The PCA algorithm involves calculating the covariance matrix (Σ) of the
normalized dataset (X):

Σ = 1
n− 1X

TX (E.1)

where n is the number of samples per feature.
The eigenvalues (λ) and eigenvectors (ν) of the covariance matrix are

obtained by solving the equation

N−1ΣN = Λ (E.2)

where N is a matrix comprised of the eigenvectors and Λ is a diagonal matrix
of eigenvalues.

The transformation matrix (M) is then comprised of the first L eigenvectors
ofN . L can be determined by choosing an acceptable level of explained variance.
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Fig. E.4: Explained variance (information) of the first ten principal components of the
dynamic time warping distances.

This can be done through the proportion of variance (PoV ), which is calculated
from the eigenvalues as:

PoV =

L∑
j=1

λj

p∑
j=1

λj

(E.3)

where p is the total number of principal components. The transformed dataset
is finally calculated by

T = MX (E.4)

Applying PCA on the DTW matrix, as is visualized in Fig. E.3, the
proportion of explained variance of the first ten principal components are shown
in Fig. E.4. The figure shows that the first principal component explains
more than half of the variance of the original DTW matrix. The second
component explains roughly 15%. Four principal components are included in
the transformation matrix, which will represent just over 90% of the variance
of the original data, while reducing the dimensionality considerably.

E.3.3 DBSCAN

To detect groups within the transformed dataset, obtained through principal
component analysis on the dynamic time warping distance matrix, the DBSCAN
(density-based spatial clustering of applications with noise) algorithm is used
[23]. DBSCAN looks at the number of neighbors to a given point within a
certain distance (ε) to determine if the point is part of a cluster or a noise
point. The second parameter of the model, MinPts is the minimum number of
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Fig. E.5: Scatter matrix of the transformed and normalized dynamic time warping distances.
The clusters, as found by the K-Means method, are indicated with the different colors. The
diagonal plots show the histogram of the given principal component. Each tick on the
histogram y-axes represent ten points.

points that should be reachable from the point in question, for this point to be
considered as a member of a cluster.

The DBSCAN algorithm classifies points in three categories: core points,
border points, and noise points. A given point, p, is considered a core point if
at least MinPts points are within ε distance of p. If p is not a core point, but
there is another core point within ε distance of p, it is labeled as a border point.
Noise points are neither core nor border points and represent outliers in the
dataset. Each core and border point are assigned to a cluster by exhaustively
searching each unlabeled point. Any point within ε distance of a core point is
appended to the same cluster.

The advantages of DBSCAN are that the algorithm can detect any number
of clusters of any shape, as well as detect and ignore outliers. The drawbacks of
the algorithm is mainly its sensitivity to the selection of the parameters ε and
MinPts.

Applying the DBSCAN algorithm to the four-dimensional PCA transformed
dataset of DTW distances between fuel cell stacks, gives the clusters as shown
in Fig. E.5. The parameters of the algorithm were set to MinPts = 25 and
ε = 0.85. Two clusters were found: cluster 1 consisting of 67 sacks; and cluster
2 of 33 stacks. Also 26 noise points were detected.

The two clusters are mainly separated in one of the four dimensions, i.e.
the first principal component, and are more intertwined in the other three
dimensions.
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E.4 Recurrent Neural Network

The recurrent neural network (RNN) is a popular variation of the artificial
neural network (ANN), which is well suited for modeling temporal data, such
as time series. This temporal property comes from using a sequence of neural
networks where the internal state (memory) is fed to the subsequent neural
network. Long short term memory (LSTM) cells are a variation of classic RNN
models, which overcomes some of the RNN drawbacks such as the vanishing
gradient problem [24]. LSTM RNN is a very popular framework within deep
learning for modeling sequential data.

The basic equation of a neural network is

y = σ (Wx+ b) (E.5)

where the output (y) is calculated by scaling the input (x) with the weights
matrix (W ) and offsetting it by the bias vector (b) and finally applying the
activation function (σ). It is the activation function, which gives the neuron its
nonlinear properties. The activation function can be any nonlinear function,
but popular functions include the sigmoid, rectified linear unit (ReLU), and the
hyperbolic tangent (tanh).

The LSTM cell has internal gates, which can regulate what information
should be kept in memory and what should be forgotten. Both the output and
the memory of the LSTM cell is fed as inputs to the following LSTM cell in
the sequence. The mathematic representation of the LSTM cell is shown in
(E.6)-(E.11).

ft = σ (Wf [xt,ht−1] + bf) (E.6)
it = σ (Wi [xt,ht−1] + bi) (E.7)
gt = tanh (Wg [xt,ht−1] + bg) (E.8)
ct = ft ⊗ ct−1 + it ⊗ gt (E.9)
ot = σ (Wo [xt,ht−1] + bo) (E.10)
ht = ot ⊗ tanh (ct) (E.11)

where ft is the activation function of the forget-gate, it is the activation function
of the input-gate, gt is the candidate cell-state, ct is the actual cell-state, ot is
the activation function of the output-gate, and ht is the output also known as
the hidden state.

Since the problem is to predict multiple time steps of multiple features
from multiple input features of different dimensionality (number of features
as well as number of time steps), an encoder-decoder model architecture is
chosen. The encoder-decoder architecture is developed specifically to enable
sequence-to-sequence predictions [25]. The architecture is comprised of two
models: the encoder for representing the variable-length input sequence as a
fixed-length vector; and the decoder that predicts the output sequence from the
fixed-length vector as given by the encoder.
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Fig. E.6: Encoder-decoder long short term memory recurrent neural network architecture.
The output dimensions of each of the layers as well as the input dimensions are denoted in
the parentheses.

The model structure chosen in this paper is an encoder layer consisting of
two successive LSTM layers, the first having 64 neurons and the second with
128 neurons. The decoder, similarly, consists of two LSTM layers, the first has
128 neurons and the second has 64 neurons. A time-distributed fully connected
(dense) output layer is used to generate the output sequence. The interface
between the encoder and the decoder segments is achieved by repeating the
output vector of the second LSTM layer of the encoder to match the size of the
first LSTM layer in the decoder. The architecture is also represented in Fig.
E.6.

The described encoder-decoder LSTM RNN is implemented using the Python
module, Keras [26]. Keras is a high-level API for implementing deep learning
models and uses Google’s TensorFlow framework for the low-level tensor opera-
tions. A code segment of the implementation is shown in Listing E.1. ReLU
activation functions are used for the LSTM layers. The return_sequences
argument of the LSTM layers determines whether the LSTM gives an output
for each of the temporal steps, or only for the last step. For LSTM layers 1, 3,
and 4 (Fig. E.6) the layers should return the sequences, as these are used in the
following layers. But for LSTM layer 2, only the output of the last temporal
step is used as the encoded feature, hence this layer should not return the
sequences.

A summary of the implemented model is shown in Table E.1. LSTM_1
and LSTM_2 comprise the encoder and LSTM_3 and LSTM_4 comprise the
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Listing E.1: RNN model implementation

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Dense , LSTM, RepeatVector ,
3 TimeDistr ibuted
4

5 # I n i t i a t e s e qu en t i a l model
6 model = Sequent i a l ( )
7 # Encoder
8 model . add (LSTM(64 , a c t i v a t i o n=' r e l u ' ,
9 input_shape=(None , n_features_in ) ,

10 return_sequences=True ) )
11 model . add (LSTM(128 , a c t i v a t i o n=' r e l u ' ) )
12 # Decoder
13 model . add ( RepeatVector ( n_pred ) )
14 model . add (LSTM(128 , a c t i v a t i o n=' r e l u ' ,
15 return_sequences=True ) )
16 model . add (LSTM(64 , a c t i v a t i o n=' r e l u ' ,
17 return_sequences=True ) )
18 # Output
19 model . add ( TimeDistr ibuted (Dense ( n_features_out ) ) )
20

decoder. In total, almost 300 000 weights and biases are to be tuned in the
training process. The None notations in the output shapes of the different
layers denote that the shape is variable. This variability in shape applies to
the number of samples in the input sequence as well as the batch size, i.e. the
number of stacks passed through the model at a time.

When training the model, the last six data points of each time series for
each stack is reserved as labels, i.e. the targets for the output of the model
during the training phase. The remaining preceding data points are used as
input for the model. Hence the sample size of the input data is the number of
samples for the given stack minus the six samples, that are used as labels.

However, not all of the stacks are used for training the models. A randomly
selected portion of the stacks (approximately 20%) are reserved for testing the
models after the training. Thus for cluster 1, 13 out of 67 stacks are reserved
for testing and for cluster 2, 6 out of 33 stacks are reserved for testing. For the
model that is trained without clustering the data, the combination of the test
stacks from each of the clusters are used as the testing stacks, i.e. 19 stacks.
However, the outlier stacks from the clustering analysis are still present in this
dataset, therefore the total amount of stacks is 126, which is more than the
combination of the stacks from the two clusters.

The models are trained with a mean-absolute-error (MAE) loss function and
the Adam optimizer for 100 epochs. It is observed that the training loss for each
of the models after the 100 epochs has reduced slightly below the validation
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Table E.1: Recurrent neural network model summary.

Layer Output Shape Parameters
LSTM_1 (None, None, 64) 18 688
LSTM_2 (None, 128) 98 816
Repeat Vector (None, 6, 128) 0
LSTM_3 (None, 6, 128) 131 584
LSTM_4 (None, 6, 64) 49 408
Time-Distributed Dense (None, 6, 3) 195
Total parameters: 298 691

loss, indicating that the model has achieved a good fit without over-fitting the
input data. The value of training loss after 100 epochs is approximately 0.03,
whereas the validation loss is approximately 0.04, both have some variation
between models.

E.5 Predictions

There is some randomness involved in training the RNN models, which leads to
variability in the predictions. To mitigate this variability, 15 models are trained
on each of the three datasets (cluster 1, cluster 2, and the complete dataset).
Each of the 15 models are used to make the predictions on the testing data, and
the average of the predictions is used as the prediction result of the ensemble of
models.

The prediction results of a subset of the testing stacks are shown in Fig.
E.7.a, Fig. E.7.c, and Fig. E.7.e for the cluster 1 models, cluster 2 models, and
the models on all the data, respectively.

In the following paragraphs, the referred error is calculated by

e = y − ŷ

where y is the actual value and ŷ is the predicted value.
The models trained on cluster 1 are, on average overestimating the voltage

with the mean error across the test stacks going approximately linearly from
-0.01 for the first prediction step to -0.05 for the sixth prediction step. Both
the current and temperature are underestimated on average. The mean current
error is steady between 0.02 and 0.03. The mean temperature error increases
from 0.02 to 0.03 from the first to the sixth prediction. Fig. E.7.b shows
boxplots of the prediction errors for each predicted variable across all the test
systems for each prediction step. The middle line indicates the median, the
box indicates the inter quartile range (IQR; from the 1st quartile to the 3rd

quartile). The whiskers show the lowest data point larger than 1.5 IQR below
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Fig. E.7: Subfigures a, c, e show prediction results for a selection of testing stacks of the
models trained on cluster 1, cluster 2, and all the data, respectively. Subfigures b, d, and f
show prediction error boxplots across all the stacks in the testing set of the models trained on
cluster 1, cluster 2, and all the data, respectively.

the 1st quartile and the highest data point smaller than 1.5 IQR above the 3rd
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Fig. E.8: mean-absolute-error of the predictions for each of the trained models.

quartile.
The models trained on cluster 2 data are, on the other hand, underestimating

the voltage with the mean error going from 0.00 to 0.03 from prediction step
one to six. The mean current error starts off at -0.03 for prediction step one
and two, but then falls to land at a median error at step six of -0.11. This sharp
change in mean current error might be heavily influenced by the sudden drop
in current seen in system 12, which the model is not able to predict. For the
temperature, the mean error, starts off at 0.00 for the first two predictions but
then falls to -0.03 for the last step. The same drop occurs in the temperature
of stack 12, as for the current, but the magnitude is smaller, leading to lesser
impact on the mean error. However, the drop in mean error is still present.
boxplots of the prediction errors for each predicted variable across all the test
systems are shown in Fig. E.7.d.

The models trained on the whole dataset seems to have the best performance,
with a mean voltage error between -0.01 and -0.02, mean temperature error
between 0.01 and -0.02, and mean temperature error between -0.005 and -0.01.
Box plots of the prediction errors are shown in Fig. E.7.f.

From this look at the mean errors for each prediction step, it seems that the
models that are trained on the whole dataset perform better than the model
trained on subsets of the data, i.e. the detected clusters. This is more visible
when looking at the mean-absolute-error for the models as depicted in Fig. E.8.
This clearly shows the superiority of the all-data-models.

The all-data-models have a MAE of 0.017 on the voltage prediction, 0.009
on the current prediction, and 0.008 on the temperature prediction. The cluster
1 models have relatively low prediction MAE for both voltage, current, and
temperature at around 0.03, 0.024, and 0.025, respectively. Cluster 2 models
have comparable voltage MAE to the all-data-models of 0.014, but struggles with
the current predictions, giving an MAE of almost 0.08. The temperature MAE
is decent at 0.02, although this is almost three times that of the all-data-models.
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E.5.1 Discussion

The all-data-models clearly outperforms each of the models that are specialized
to a single cluster within the dataset. One explanation for this could be that
the RNN model is capable of learning the different groupings within the dataset
inherently, which would make the separate clustering obsolete. The all-data-
model then has the obvious advantage of more training data, which is considered
of key importance in this case, where the available data is limited to relatively
few examples with high variance.

The high variance and the accuracy of the prediction results are expected
to improve as more data is available for training. More data points from the
existing systems as well as data from additional systems would benefit the
model training.

E.6 Conclusion

Two approaches to predicting multi-time-step values of voltage, current, and
temperature of field-operating fuel-cell-based backup-power systems six months
into the future were studied. One approach used all training data to learn the
evolution of the variables. The other approach sought to cluster the stacks
based on similarities in their time-series evolutions and train separate models
on each cluster. In both cases, the same encoder-decoder long short-term
memory (LSTM) recurrent neural network (RNN) model architecture was used.
To quantify similarities between the stacks, dynamic time warping (DTW)
was used and principal component analysis (PCA) and density-based spatial
clustering of applications with noise (DBSCAN) was used to detect clusters and
eliminate outlier stacks. To mitigate variability in the prediction results, an
ensemble of 15 RNNs were trained in each of the approaches.

The models that was trained on all of the training data was found to have
better performance in predicting values of the testing stacks, than the models
that were trained and tested on specific clusters. In conclusion, for the specific
dataset in this work, it was not found that clustering and splitting the dataset
prior to RNN model training improved performance.

An ensemble of LSTM RNN models, trained on the complete dataset,
showed promising on-average performance in predicting future health indicating
parameters. But struggles to make accurate predictions in irregular examples.
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