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ii Preface

Summary in English

This PhD thesis deals with statistical models intended for forensic genetics, which is the part of

forensic medicine concerned with analysis of DNA evidence from criminal cases together with

calculation of alleged paternity and affinity in family reunification cases. The main focus of the

thesis is on crime cases as these differ from the other types of cases since the biological material

often is used for person identification contrary to affinity.

Common to all cases, however, is that the DNA is used as evidence in order to assess the prob-

ability of observing the biological material given different hypotheses. Most countries use com-

mercially manufactured DNA kits for typing a person’s DNA profile. Using these kits the DNA

profile is constituted by the state of 10-15 DNA loci which has a large variation from person

to person in the population. Thus, only a small fraction of the genome is typed, but due to the

large variability, it is possible to identify individuals with very high probability. These probabil-

ities are used when calculating the weight of evidence, which in some cases corresponds to the

likelihood of observing a given suspect’s DNA profile in the population.

By assessing the probability of the DNA evidence under competing hypotheses the biological

evidence may be used in the court’s deliberation and trial on equal footing with other evidence

and expert statements. These probabilities are based on population genetic models whose as-

sumptions must be validated. The thesis’s first two articles describe the ”θ-correction” which

compensate for possible population structures and remote coancestry that could affect the mod-

els’ accuracy. The Danish reference database with nearly 52,000 DNA profiles, is analysed and

the number of near-matches is compared to the expected numbers under the model.

A frequent event in connection with crime cases is the detection of more than one person’s DNA

in a sample from the crime scene. In such cases, the DNA profile is called a DNA mixture as it

is not possible mechanically or chemically to separate the biological traces into its contributing

parts. To ascribe an evidentiary weight to a DNA mixture, the quantitative part (comprised

as signal intensities in a so-called electropherogram - EPG) of the result from biotechnological

analysis is used. Two models for handling DNAmixtures are presented together with an efficient

algorithm to separate the DNA mixture in the most probable contributing profiles. Furthermore,

it is discussed how the quantitative part of the evidence is included in calculating the evidential

weight.

In criminal cases, the biological traces are often found at crime scenes in conditions which

can degrade and contaminate the DNA strand, which complicates the subsequent biochemical

analysis. Furthermore, the amount of DNA may be limited which may challenge the sensitivity

of the biotechnology applied in the analysis. Models to evaluate the degree of degradation and

estimate the probability of an allelic drop-out are discussed in the thesis. Furthermore, it is

exemplified how to incorporate the probability of degradation and drop-out when calculating the

weight of evidence.
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Finally, the thesis contains an article which deals with post-processing of the data after the sig-

nal is processed by PCR thermo cycler and detected by electrophoresis apparatus. Central is the

detection of a signal-to-noise limit which currently is a fixed limit recommended by the manu-

facturer of the typing kit. This article discusses how this threshold can be determined from the

noise such that it may be specific to each case and locus. Additionally two filters are presented

that handle specific types of artifacts in the data generation process which are manifested as

increased signals in the EPG.
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Summary in Danish

Denne ph.d-afhandlingomhandler statistiske modeller med anvendelse indenfor retsgenetik, som

er den del af det retsmedicinske område som beskæftiger sig med analyser af dna-spor fra krim-

inalsager, samt beregning af påstået slægtskab i forbindelse faderskabs- og familiesamførings-

sager anvendt i retlig sammenhæng. Afhandlingen har et særligt fokus på kriminalsager, idet

disse adskiller sig fra de øvrige sagstyper ved at det biologiske materiale ofte anvendes til per-

sonidentifikation i modsætning til beslægtethed.

Fælles for sagerne er dog, at dna bruges som bevis i forhold til at sandsynliggøre forskellige

hypoteser fremsat i den respektive sag. I langt de fleste lande anvendes kommercielle dna-kit til

at typebestemme en persons dna-profil. Disse kit fastlægger dna-profilen ud fra 10 til 15 dna-

markører, som har en stor variation fra person til person i befolkningen. Således er det kun en

brøkdel af genomet som typebestemmes, men grundet den store variabilitet er det muligt ud fra

disse få markører at identificerer personer med meget høj sandsynlighed. Disse sandsynligheder

anvendes til at udregne den bevismæssigevægt, som eksempelvis beskriver sandsynligheden for

at observerer en given mistænkts dna-profil i befolkningen.

Ved at vurdere sandsynligheden for dna-beviset under konkurrerende hypoteser kan det biolo-

giske bevis inddrages i rettens votering og domsafsigelse, på lige fod med øvrige beviser og

ekspertudsagn. Disse sandsynligheder bygger på populationsgenetiske modeller, hvis antagelser

må godtgøres. I afhandlingens to første artikler beskrives den såkaldte “θ-korrektion” som

kompenserer for mulige befolkningsstrukturer og fjernt slægtskab, som kan indvirke på mod-

ellernes korrekthed. Blandt andet analyseres den danske referencedatabase med knapt 52.000

dna-profiler, hvor det undersøges, hvor meget disse dna-profiler adskiller sig fra hinanden, samt

om antallet af nærmatches kan forklares ved hjælp af de anvendte modeller.

En ofte forekommende hændelse i forbindelse med kriminalsager er detektion af mere end én

persons dna i en prøve fra et gerningssted. I sådanne tilfælde kaldes gerningsstedsprofilen en

dna-mikstur, idet det ikke er muligt rent mekanisk eller kemisk at separere det biologiske spor

i de bidragende dna-profiler. For at kunne tilskrive en bevismæssig vægt til en dna-mikstur,

bruges den kvantitative del (bestående af signalintensiteten udtryk i et såkaldt elektroferogram

- EPG) af resultatet fra de bioteknologiske analyser af dna-sporet. Der præsenteres to modeller

til håndtering af dna-miksturer og en effektiv algoritme til at separere dna-miksturer i de mest

sandsynlige bidragsprofiler. Endvidere diskuteres det, hvorledes den kvantitative del af beviset

inddrages i udregningen af den bevismæssige vægt.

I kriminalsager er det biologiske spor ofte fundet på gerningssteder under forhold, som kan

nedbryde og forurene dna-strengen, hvilket besværliggør den senere biokemiske analyse. Yder-

mere kan mængden af dna være begrænset, hvilket kan udfordre sensitiviteten af bioteknologien

anvendt i dna-analyserne. Modeller til at vurdere graden af nedbrudthed, samt estimere sandsyn-

ligheden for et alleludfald i dna-analysen behandles i afhandlingen, samt eksempler på hvorledes

dette indkoorporeres i den bevismæssige vægt præsenteres.
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Endelig indholder afhandlingen en artikel som omhandler processeringen af de kvantitative data

observeret fra EPG’et detekteret af elektroforesemaskinerne efter PCR-processen. Centralt er

detektionen af en signal-støjgrænse som hidtil har været en fast anbefalet grænse fra produ-

centen af det kommercielle kit. I artiklen diskuteres det hvorledes grænsen kan fastsættes ud

fra støjniveauet, således den kan være specifik for hver sag og dna-markør. Der præsenteres

to yderligere filtre til håndtering af særlige typer af artefakter som udtrykkes i EPG’et som

forstærkede signaler.
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CHAPTER 1

Introduction

Forensic genetics is about drawing conclusions from biological evidence related to various types

of crimes and legal disputes. It is the task of the forensic geneticists to present the genetic

evidence as scientific and impartial as possible. The scientific aspects comprises thorough inves-

tigation of the various components in the analysis process of biological evidence. The analysis

consists of several sub-analyses handling specific tasks on the route from tissue or body fluid

to data used for interpretation. Since there are many sources of variability and uncertainty, the

interpreter must be able to quantify the amount of uncertainty and include this when reporting

the evidential weight.

Evidence from a scene of crime is subject to more sources of variability than samples taken in

relation to family disputes. In the former case issues of contaminated samples or degraded DNA

due to non-optimal conditions raises problems for the typing technology. The DNA might be

too damaged for analysis or it might only be possible to obtain results from a subset of the DNA

markers used for identification yielding partial DNA profiles. In paternity disputes or family

reunification cases the problems facing the forensic geneticists are mainly related to population

genetics and pedigree analysis since in these cases the reference samples are often of high quality

and in sufficient amounts such that the risks of contamination, allelic drop-out or degradation of

the biological material are minimal. However, the tissue used for identification of body remains

found in the debris from a mass disaster or in mass graves is often severely degraded.

1



2 Introduction

1.1 Qualitative models

Even before it was possible to obtain DNA profiles, biological features or phenotypes were used

for evidential calculations. The blood type of a child is determined by the blood types of the

parents’ blood types. Hence, this information may be used in paternity disputes, where the

alleged father can be excluded if there are inconsistencies in the constitutions of the trio’s blood

types. However, the few possible states of the blood type implies that the power of discrimination

is low since many men unrelated to the child will share blood type with the true father.

Hence, the more polymorphic and diverse the biological marker, the more informative and pow-

erful it is for discriminating among individuals. The development of DNA markers has min-

imised the problem of low discriminating power. By selecting DNA markers on different chro-

mosomes forensic geneticists have obtained a powerful tool for making statements about pater-

nity, relatedness and identity. The prevailing DNA typing technology used in forensic is based

on the short tandem repeat (STR) typing technique.

The STR repeat sequences used in forensic genetics are typically made up by motifs of four or

five base pairs, e.g. the typical repeat motif for TH0 is given by TCAT (Butler, 2005, Table 5.2).

This implies that for locus TH0 an allele designated “6” has this motif repeated consecutively

six times, which if often denoted [TCAT]6.

Excluding abnormalities, every individual has two alleles per locus - one maternal and one pa-

ternal. However, it is impossible to determine the origin of the alleles and they may possibly be

identical (homozygote) which implies only one allelic type is detected. Otherwise two distinct

alleles are observed (heterozygote) and in either case at least one of the individual’s parents share

minimum one allele with their common offspring, assuming no mutations.

The commercial STR kits genotype 10 to 15 autosomal STR loci each having 10 to 25 fre-

quently occurring alleles in the Danish population. That is, the qualitative part of the DNA

profile consists of a set of loci where the DNA profile is specified by the states of the alleles. The

heterozygous DNA profile with the highest probability in the Danish population using the SGM

Plus kit (Applied Biosystems) is reported in Table 1.1.

Table 1.1: The heterozygous DNA profile with the highest probability in the Danish population.

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

Alleles 15,16 16,17 11,12 17,20 13,14 29,30 14,15 13,14 6,9.3 21,22

Since the STR loci are located on different chromosomes the laws of inheritance suggest that the

allelic distribution over loci multiply: P(A1i1A1 j1 , . . . , ALiLAL jL ) =
∏L

l=1 P(AlilAl jl ), where Alil is

the ith allele on locus l and L is the total number of typed STR loci. Using the allele probabilities

estimated for the Danish population, the probability of observing the DNA profile of Table 1.1

when sampling a random person from the population is 1.327 ×10−10.
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When a crime is committed, DNA evidence is often considered in the court of law, when convict-

ing a suspect guilty or innocent. Let respectively Hp and Hd denote the hypotheses relating to

the guilt and innocence of the suspect, and E the evidence relevant for the hypotheses. Then the

court is interested in posterior ratio P(Hp|E)/P(Hd|E). However, such statements are impossible

for the forensic geneticist to quantify since this involves the prior ratio P(Hp)/P(Hd) which is

unknown to the forensic expert. What can be evaluated by the expert witness is the likelihood ra-

tio P(E|Hp)/P(E|Hd) using a model for the occurrence of the evidence given that the hypothesis

is true.

The likelihood ratio, LR, is the essential quantity in forensic genetics and this thesis discuss

several ways to include more of the available information in its evaluation. Consider a crime

case with an identified suspect. Let GS denote the suspect’s DNA profile and Ec the DNA

stain obtained from the scene of crime, and assume that Ec is consistent with GS . That is, all

alleles in GS are present in Ec which we denote GS ≡ Ec. The two competing hypothesis state

respectively; Hp: “The suspect is the donor of the DNA stain” and Hd: “An unknown and to the

suspect unrelated person is the donor of the DNA stain”. The latter hypothesis is what is called a

“random man”-hypothesis. Let GU denote the DNA profile of the random man which assuming

no typing errors implies thatGU ≡ GS . In this case the LR is given by:

LR =
P(E|Hp)

P(E|Hd)
=

P(Ec,GS |Hp)

P(Ec,GS |Hd)
=

P(Ec|GS )P(GS )

P(Ec|GU)P(GS |GU)P(GU)
=

1

P(GU |GS )

where P(GU |GS ) under some model assumptions is the probability of observing the crime scene

profile at random in the population. Hence, the evidence enables the forensic geneticist to make

statements like “The probability of observing this particular profile at random in the reference

population is 1 in 1,000,000” or equivalently “the DNA evidence is 1,000,000 times more likely

under Hp than under Hd”. There is an ongoing debate in the forensic genetic community on

which probability is of relevance to the court. In the recent decade the “match probability”

(Balding, 2005) that takes subpopulation structures or common coancestry into account has be-

come prevalent. That is, rather than considering profiles of the suspect and “random man” as

independent, one computes the probability of the observed profile conditioned on the suspect’s

profile. Hence, using the “posterior distribution” of alleles rather than the “prior distribution”,

rare alleles are less extreme. This implies a more conservative evaluation of the evidence since

one accounts for the possibility that an allele that is rare in an admixed population is more com-

monly observed in one of its subpopulations to which the suspect (and possibly the culprit) might

belong.

Over the recent years the national databases of STR profiles have grown in size due to the suc-

cess of forensic DNA analysis in solving crimes. With these vast numbers of profiles available, it

is possible to test the validity and applicability of population models to forensic genetics (Weir,

2004, 2007; Curran et al., 2007; Mueller, 2008). Furthermore, the accumulation of DNA pro-

files implies that the probability of a random match or near match of two randomly selected

DNA profiles in the database increases. If all pairs of profiles are compared to each other in the

database this corresponds to
(
n

2

)
= n(n−1)/2 pairwise comparisons in a database with n DNA

profiles. In the Danish DNA reference database there are approximately 52,000 DNA profiles

which yield 1,351,974,000 pairwise comparisons. With these large number of comparisons it is
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likely to observe DNA profiles that coincide on many loci which has concerned some commenta-

tors and raised questions about “overstating” the power of DNA evidence. Hence, it is important

to demonstrate that the observed and expected number of matches are sufficiently close in order

to retain the confidence in DNA typing in general and the population genetic models used for

evidential calculations in particular.

1.2 Quantitative models

The commercial kits used for analysis of DNA evidence provide quantitative and qualitative

information to the analyst. The qualitative information reports which alleles that are present in

the data (like in Table 1.1), whereas the qualitative part gives information on peak intensities in

terms of height and area of the peaks obtained from the electropherogram (EPG). An example

of an EPG is given in Figure 1.1 where the peak intensities (peak heights and areas) are plotted

in relative fluorescent units (rfu) against the base pair (bp) length. Peaks with a low bp value

correspond to alleles with short amplicons (amplicons are made up by the primer binding site

and STR repeat structure). The peak intensities are measured by a CCD camera where the

observed intensity corresponds to the amount of light emitted from the fluorescence dye.
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Figure 1.1: An example of an electropherogram (EPG) for the SGM-Plus kit (Applied Biosys-

tems) with peak height (in rfu) plotted against the base pair (bp) length.
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Thus the crime scene evidence, Ec, consists of two components: The qualitative (or genetic)

part, G; and the quantitative part with peak intensities, Q. The peak intensities reflect the amount

of DNA contributed to the particular allele, and since the technology is indifferent to the origin

of the various DNA fragments, the DNA amounts contributed to shared alleles add up. The

resulting peak intensities are registered via a CCD camera that detects the light emitted from a

fluorochrome attached to DNAmolecules corresponding to a STR allele. A difference in electric

potential forces the DNA molecules to move in the capillary, where the size difference of the

molecules implies that some DNA fragments pass the CCD camera before others.

Since the length of the repeat sequences of the STR loci under investigation are overlapping,

most commercial STR kits applies 3-5 different fluorochromedyes in order to concurrently detect

signals from multiple alleles and loci. One of these dyes contain DNA fragments of known

length which are used for fragment size determination of the observed peak intensities. These

fixed lengths are used to align the observed peak intensities to an allelic ladder which converts

an observed fragment length to an allelic repeat number. For the SGM-Plus kit this size marker

is given a red fluorochrome (represented by dashed lines in Figure 1.1).

In a single contributor DNA sample it is possible to observe one or two alleles per locus depend-

ing on whether the DNA profile is homozygous or heterozygous, respectively. However, when m

DNA profiles contribute to the same sample it is possible to observe one to 2m alleles per locus,

since the individuals may share all or no alleles. The peak intensities associated to the alleles

reflect the amount of DNA contributed to that particular allele. Hence, in a two-person mixture

alleles where the major component (the DNA profile with the largest amount of DNA contributed

to the sample) contributes are often larger than those of the minor component. However, if the

DNA profiles share alleles the peak intensities of the common alleles are approximately the sum

of the contributions.

When assigning weight to the evidence under a given hypothesis the methodology needs to

consider both parts of the data. This is particularly important when the data originate from a

DNA mixture, since the quantitative evidence currently is the only way used to separate the

observed alleles into contributing profiles. Often the peak intensities are used only to reduce

the number of possible combinations entering the likelihood ratio. This approach is sometimes

called the “binary model” in the forensic literature, e.g. by Bill et al. (2005); Buckleton et al.

(2005). However, a more correct approach would be to attach a likelihood to each combination

of profiles measuring the agreement between the observed peak intensities and the expected

intensities under some model. Let the evidence E = (Ec,K) where K are the known profiles

associated to the crime, then the extended LR taking Q into account is given by:

LR =
P(E|Hp)

P(E|Hd)
=

P(Q,G,K|Hp)

P(Q,G,K|Hd)
=

P(Q|G,K,Hp)P(G|K,Hp)P(K|Hp)

P(Q|G,K,Hd)P(G|K,Hd)P(K|Hd)
, (1.1)

where P(Q|·) measures the agreement between the observed and expected peak intensities. Ide-

ally the model for P(Q|·) should take the entire EPG signal into account which includes the noise

component (pictured as a “rug” close to 0 rfu in Figure 1.1), adjustment and correction for tech-

nical artefacts (stutters and pull-up effects, cf. below), detection of degradation (discussed in the

end of this section), the genotypes of the contributors, etc.
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However, evaluating the LR under such a model is computationally intense and complicated.

That is, for each locus every pair of alleles constructed as a Cartesian product of the allelic ladder

should be considered even though the peak height imbalances (ratio of peak heights) within and

between loci were extreme. For practical purposes such an approach would be infeasible and

too computational intense for standard case work. Hence, it is common to reduce Q to a smaller

set of observations by using a criterion to separate the noise and signal into two parts, such that

the number of possible combinations of DNA profiles decreases. A limit of detection is often

used to discriminate between the noise and signal. However, such a threshold approach induces

the risk of making wrong assignment of noise and signal, i.e. false positive and negative calls.

In forensic genetics, these terms are commonly denoted drop-ins and drop-outs which refers to

extra alleles in the signal not contributed by the true donors of the stain and missing alleles of

the true donors being be below the limit of detection.

Let Q denote the part of the EPG that is classified as true signal. As mentioned above Q is cur-

rently the basis for separating DNAmixtures in its contributing components. That is, by defining

a model for Q given a set of contributing profiles, it is possible to determine the goodness-of-fit

between a hypothesised combination of DNA profiles and the observed peak intensities. Meth-

ods exist for modelling P(Q|G,G,H) of which some are more heuristic than statistical (Bill et

al., 2005; Wang et al., 2006), but progress is made towards models based on statistical methods

(Perlin and Szabady, 2001; Cowell et al., 2007a, b, 2010; Curran, 2008; Tvedebrink et al., 2010).

In cases where the amount of DNA contributed by the donor of the profile is low, there is a

risk of the peak heights being below a limit of detection. The limit of detection is introduced

in order to distinguish between noise and true signals. This may imply allelic drop-out which

causes only a partial (or no) profile to be typed. Hence, a true contributing profile to an observed

stain may have one or more alleles not present in the case sample. Not taking allelic drop-out into

consideration could imply that the true donor is erroneously excluded from further consideration.

In order to include the possibility for drop-out in the evidence evaluation it is necessary to be

able to quantify this possibility in terms of a probability.

In contrast to drop-out which is “missing” alleles, the biotechnology used in the typing of DNA

profiles may cause additional peaks to be present in the observed stain. The PCR process, which

amplifies the DNA by making multiple copies of the present alleles, causes extra peaks in the

position in front of the true peak. These peaks are called stutters and is due to mispairings

between the Taq enzyme and amplicon. This creates a DNA product one repeat unit shorter than

the true amplicon. Stutters may be produced in any cycle of the PCR process and a rule of thumb

says that the stutter peak height is about 10-15% of the true peak height. This percentage is an

overall value across alleles and loci, but shorter alleles tend to have lower stutter percentage than

longer alleles.

Another systematic component caused by the typing technology are the so called pull-up (or

bleed through) effects, where the light emitted from one fluorescent dye is detected in the spectra

of a different fluorochrome. This implies false detection of peaks with similar fragment length as

the parental peak, but on a different dye band. Furthermore, using a fixed limit of detection, of 50

rfu say, neglects important information about the noise level in a sample. If a peak in the interval

40 rfu to 49 rfu is observed, the fixed threshold-protocol determines this peak as undetected.
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However, by using a model for the threshold, it might be reasonable to have a variable limit set

such that e.g. 99.95% of all noise peaks are removed. This may for some cases imply a threshold

as low as 25 rfu allowing for a more flexible analysis scheme which may be valuable for samples

of low amounts of DNA.

When DNA is exposed to inhibitors such as chemicals, moisture, sunlight and heat, the DNA

molecules are prone to degrade and the DNA strand damaged. This causes the results of the

DNA investigation to have a characteristic profile with decreasing peak intensities as a function

of the DNA fragment length. The longer the amplicon, the more likely it is that the peaks will

have low emission values. This implies that the risk of allelic drop-outs increase for longer

amplicons and may result in partial DNA profiles since some loci fail to produce any signal.

Degraded biological material is pronounced in samples taken from the debris of mass disasters

or mass graves.
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1.3 Outline

The following seven chapters (Chapters 2-8) present the seven journal papers constituting this

PhD thesis. The organisation of each chapter is such that the paper is presented in its jour-

nal form (including bibliography) followed by supplementary remarks about the results, how

it relates to the previous chapters, further discussion and additional data analysis. As a conse-

quence notation is not necessarily consistent between the chapters and some of the material is

repeated in different chapters. On the other hand, the chapters may be read independently of

each other. Each chapter has its own bibliography with the references used in there, and on the

last pages of the thesis there is a complete list of all references. In chapters were there is a ref-

erence to supplementary material, e.g. as in journal papers, the material is available on-line at

http://people.math.aau.dk/∼tvede/thesis.

The order of the chapters is such that the number of factors considered in the evaluation of the

evidence increases. First only the qualitative part of the data is considered in the likelihood ratio

with the correction for population stratification effects. Later the quantitative data is added to

the likelihood ratio where each model relaxes the assumptions made in the preceding chapters.

Finally the last chapter combines the results and suggests topics for future research.

Chapter 2 discusses the topic of substructures in populations and how to account for this in evi-

dential calculations. Concepts of identical-by-descent and subpopulations effects are common

concepts from population genetics. The idea of measuring population stratification goes back

to Wright (1951) who defined three quantities measuring the degree of relatedness between in-

dividuals, subpopulations and the total population. The model discussed in the chapter handles

this from a statistical point of view by defining the correlation among individuals’ DNA profiles

as overdispersion and show how it is manifested in the so-called θ-correction used in forensic

genetics.

Chapter 3 is an analysis of the Danish DNA profile reference database. By the beginning of

2009 the database included 51,517 unique DNA profiles typed on ten forensic autosomal STR

loci. We investigated the methodology of Weir (2004, 2007) who made pairwise comparisons of

every pair of DNA profiles in the database. We derived an efficient way to compute the expected

number of matches and partial matches for a given θ, cf. above. Furthermore, in line with Curran

et al. (2007) we extended the model to allow for closer familial relationships (full-siblings, first-

cousins, parent-child and avuncular) and we derived expressions for the variance of the number

of matches and partial matches in the database.

Chapter 4 is the first of five papers on the quantitative part of the data available fromSTR results.

The paper is an extension of the work I did in my MSc thesis where the peak intensities of the

EPG were modelled by a multivariate normal distribution. The challenging part of the model

is the fact that the dimensions of the data vector (and sub-vectors hereof) vary among DNA

mixtures due to the different number of shared alleles between individuals. An EM-algorithm

was proposed for optimisation and we demonstrated that the model in fact is a mixed effects

model.
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Chapter 5 discusses a simpler and more operational model for DNA mixtures than the one from

the previous chapter. In order to separate an observed DNA mixture into the contributing DNA

profiles we derived a statistical model, which was suited for a greedy optimisation algorithm.

The algorithm is very efficient, separating complex DNA mixtures in a few seconds. It is imple-

mented as an on-line tool which provides valuable graphical output for further interpretation by

the forensic geneticists.

Chapter 6 addresses an important question in forensic genetics and evidential calculations: Esti-

mating the probability of allelic drop-out. We define a proxy for the amount of DNA contributed

to a sample and use this quantity to derive an logistic regression model to estimate the probability

of allelic drop-out.

Chapter 7 presents a methodology for filtering the quantitative data from STR results. The ob-

served data is a conversion of emitted light from a fluorochrome detected by a CCD camera. This

implies that the signal consists of a noise component and further systematic components, the so-

called “pull-up effects” and “stutters”. We demonstrate how to determine a floating threshold

using distribution analysis of the noise component. Pull-up and stutter corrections were per-

formed by regression analysis. The methodology decreases significantly the number of allelic

drop-outs compared to the standard protocol.

Chapter 8 is a short communication on how to model degraded DNA in a simple and intu-

itive manner. Degraded DNA is a common problem in crime case samples since the biological

material from which the DNA is extracted has often been exposed to non optimal conditions.

Sunlight, humidity, bacteria and chemicals are some of the reasons for observing degraded DNA

which complicate the succeeding analysis and interpretation. The model presented in the pa-

per is used to modify the drop-out model discussed in Chapter 6 by adjusting the proxy for the

amount of DNA taking the level of degradation into account.

Chapter 9 summarises the results from the proceeding seven chapters by forming a ’unifying’

likelihood ratio. The terms in this likelihood ratio consist of:

P(Qmis|Qobs,Gmis,Gobs,G)P(Qobs|Gmis,Gobs,G)P(Gmis,Gobs|K,G)P(K|G)P(G),

where G is a combination of DNA profiles consistent with the hypothesis under consideration.

Furthermore, Q and G symbolises the quantitative and qualitative parts of the evidence, respec-

tively. The first term, P(Qmis|·) evaluates the probability of allelic drop-out using the models of

Chapters 6, 7 and 8, P(Qobs|·) is evaluated by one of the models for DNA mixtures (Chapters 4

and 5), while the last terms are evaluated using the θ-correction discussed in Chapters 2 and 3.
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Abstract:

We present a statistical model for incorporating the extra variability in allelic counts due to sub-

population structures. In forensic genetics, this effect is modelled by the identical-by-descent

parameter θ, which measures the relationship between pairs of alleles within a population rela-

tive to the relationship of alleles between populations (Weir, 2007). In our statistical approach,

we demonstrate that θ may be defined as an overdispersion parameter capturing the subpopula-

tion effects. This formulation allows derivation of maximum likelihood estimates of the allele

probabilities and θ together with computation of the profile log-likelihood, confidence intervals

and hypothesis testing.

In order to compare our method with existing methods, we reanalysed FBI data from Budowle

and Moretti (1999) with allele counts in six US subpopulations. Furthermore, we investigate

properties of our methodology from simulation studies.

Keywords:

θ-correction; Forensic genetics; Subpopulation; Dirichlet-multinomial distribution; Maximum

likelihood estimate; Confidence interval.

2.1 Introduction

Attaching probabilities to different levels of relatedness in paternity disputes or evaluating the

weight of evidence in crime cases with biological traces present at the scene of crime are essential

tasks in forensic genetics. To this purpose, the difference in the genetic constitution of individuals

in the population is used to assess the probabilities of the evidence under competing hypotheses.

Currently, 10 to 20 locations on the genome (loci) are investigated for identification purposes

and an individual’s DNA profile is made up by the different states (alleles) of the loci.

It is well known that allele frequencies may vary between ethnic groups, geographic remote

populations and subpopulations. However, due to a common evolutionary past it is assumed that

the allele frequencies of the subpopulations have a commonmean, and that the variation between

subpopulations is due to genetic sampling (Weir, 1996).

In forensic genetics, population structures are of great importance when the probability of ob-

serving a given suspect’s DNA profile is assessed under various hypotheses. Budowle and

Moretti (1999) published allele frequencies from six different US subpopulations (AfricanAmer-

ican, Bahamian, Jamaican, Trinidad, Caucasian and Hispanic) for 13 CODIS Core STR loci. In

this study, the authors obtained allele frequency estimates varying significantly across subpop-

ulations. For example, the frequencies range from 6.9% (Hispanic) to 27.3% (Jamaican) for

allele 28 in locus D21, indicating that a homozygote on this locus could be 16 times more likely

in the Jamaican than in the Hispanic subpopulation (when assuming Hardy-Weinberg equilib-

rium). The ability to distinguish true genetic differences from sampling effects depends on the

sample size. That is, testing the significance of such allele frequency differences depends on the

database sizes, since the variance of the estimates scales inversely with the number of sampled

DNA profiles.
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In order to correct for subpopulation structure, Nichols and Balding (1991) suggested the “θ-

correction” to be used when inferring the weight of evidence in forensic genetics. Our approach

acknowledges the extra variability in the allelic counts and addresses this as overdispersion. The

statistical model of the present paper has the same properties as the genetic model. We exploit

results from the statistical literature in order to obtain maximum likelihood estimates (MLEs)

of the allele frequencies and θ-parameter, and compute profile log-likelihoods for θ providing

approximate confidence intervals.

The basic idea and principle of overdispersion in allelic counts formulated in Section 2.2 has

previously been noted in the forensic literature, although not called overdispersion, by Balding

(2005). However, the terminology of overdispersion (or heterogeneity) explicitly underlines that

a simple assumption of the sampling distribution (multinomial distribution) is insufficient to

model the data. By “overdispersion” it becomes more transparent to statisticians with limited

knowledge in population genetics to appreciate the concept of variability between population

groups. Hence, these rather specialised types of model are put into a more general statistical

framework.

2.2 Overdispersion in allelic counts

Our set-up assumes that the allelic counts in a given subpopulation X follow a multinomial

distribution with some unknown allele probabilities. Due to an evolutionary past, there exists

some variation among different subpopulations in terms of allele probabilities. However, these

allele probabilities have a common distribution across subpopulations with a mean and variance.

For now, we just let E(P ) = π be the mean of this distribution and V(P ) its covariance matrix.

Note that this parametrisation of E(P ) implies that π are the allele probabilities in the reference

population from which the subpopulations are assumed to have descended.

Let n be the number of alleles sampled from a given subpopulation with k alleles. Then the

model can be formulated as

P(X = x|P = p) =
(
n

x

) k∏

j=1

p
x j
j
, where

(
n

x

)
=

n!
∏k

j=1 x j!
, (2.1)

is the multinomial coefficient. Thus X follows a multinomial distribution when conditioned

on P = p. This implies that E(X) = E(E{X |P }) = E(nP ) = nπ from the assumption of

E(P ) = π.

2.2.1 Dirichlet-multinomial distribution

In line with other authors (Lange, 1995b,a; Weir, 1996; Rannala and Hartigan, 1996; Balding,

2003), we assume the distribution of allele probabilities to be a Dirichlet distribution. The as-

sumption of a Dirichlet distribution is based on theoretical arguments from population genetics

together with the convenience that the Dirichlet distribution is the conjugate prior of the multi-
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nomial distribution. The Dirichlet distribution has density function

f (p1, . . . , pk; γ1, . . . , γk) =
Γ(γ+)∏k
j=1 Γ(γ j)

k∏

j=1

p
γ j−1
j

, (2.2)

where γ+ =
∑k

j=1 γ j. When assuming a Dirichlet distribution of P , we can derive the marginal

distribution ofX by multiplying (2.2) and (2.1) and integrating over p. The resulting distribu-

tion is called the Dirichlet-multinomial distribution (Johnson et al., 1997) or multivariate Pòlya

distribution (from its relation to the Pòlya urn scheme, Green and Mortera (2009)) with density

P(X = x) =

(
n

x

)
Γ(γ+)

Γ(n + γ+)

k∏

j=1

Γ
(
x j + γ j

)

Γ
(
γ j

) . (2.3)

Using the results of Mosimann (1962), the mean of X j may be computed as E(X j) = nγ j/γ+,

where γ j/γ+ is the mean of P j, E(P j) = π j = γ j/γ+. Furthermore, the covariance matrix ofX is

given by V(X) = cn[diag(π)−ππ⊤], where c = (n+ γ+)/(1+ γ+) and π
⊤ is the transpose of π.

Hence, the covariance matrix of the Dirichlet-multinomial distribution is inflated by the factor c

compared to an ordinary multinomial covariance.

The Dirichlet-multinomial distribution derived in (2.3) is almost identical to Eq. (8) in Curran

et al. (1999) except for the multinomial coefficient, which is merely a constant with respect to the

parameters of the model. Furthermore, by introducing θ as in Curran et al. (1999), γ+ = (1−θ)/θ
or equivalently θ = (1 + γ+)

−1, we may rewrite c in terms of θ:

c =
n + γ+

1 + γ+
= (n + γ+)θ = nθ + (1 − θ) = 1 + θ(n − 1).

This implies that V(X) = n[diag(π) − ππ⊤][1 + θ(n − 1)] which is identical to the variance

in Curran et al. (1999). In Curran et al. (1999), this expression was derived by letting θ denote

the identical-by-descent (IBD) parameter, whereas in the statistical model θ is an overdispersion

parameter.

A direct implication fromX being Dirichlet-multinomial distributed is that the vector of propor-

tions P̃ = {P̃ j}kj=1 = {X j/n}kj=1 is an unbiased estimator ofπ with covariancematrix n−1[diag(π)−
ππ⊤][1 + θ(n − 1)]. WhenX follows a multinomial distribution, P̃ is the maximum likelihood

estimator of π. However, under the Dirichlet-multinomial model this variance does not go to

zero even for very large sample sizes n,

lim
n→∞

[
diag(π) − ππ⊤

] (
θ +

1 − θ
n

)
=

[
diag(π) − ππ⊤

]
θ,

as opposed to the asymptotic behaviour under the multinomial model where lim
n→∞

n−1[diag(π) −
ππ⊤] = O, with O being the null matrix.

Let Y n = (Y1, . . . , Yn) denote the vector of sampled alleles, of whichXn is the sufficient statistic,

where the superscript is added to stress that n alleles were sampled. Consider the probability
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P(Yn+1 = j|Y n = yn), i.e. the probability of a future j allele given the alleles previously

sampled:

P(Yn+1 = j|Y n = yn) =

∫
f (p)P(Yn+1 = j|p)∏n

i=1 P(Yi = yi|p)dp∫
f (p)

∏n
i=1 P(Yi = yi|p)dp

=
Γ(γ j + xn+1

j
)Γ(γ++ n)

Γ(γ j + xn
j
)Γ(γ++ n + 1)

=
xn
j
θ + (1 − θ)π j

1 + (n − 1)θ , (2.4)

where we used f (p) from (2.2) and xn+1
j
= xn

j
+1. This expression emphasises that the probability

of observing a future j allele only depends on the previous sampled alleles through the total allele

count, n, and how many of these alleles were of type j, xn
j
. Hence, we also apply the notation

P( j|xn
j
) for this probability which is identical to Pn(A) = (nAθ + {1 − θ}pA)/(1 + {n − 1}θ) in the

recursion equation of Balding and Nichols (1997, equation (1) where we changed their notation

from F for θ), which is the probability of observing an A allele after nA of n alleles being of type

A.

2.2.2 Application to paternity testing

Forensic genetics is widely used in paternity disputes or when a person applies for a family

reunification. In the setting of a paternity dispute, let H1 be the hypothesis: “The alleged father

is the true father” and H2 the hypothesis: “A man unrelated to the alleged father is the true

father”. The paternity index (PI) is defined as PI = P(E|H1)/P(E|H2), where the evidence, E, is

the DNA profiles of the involved individuals, i.e. child, mother and alleged father.

In paternity testing, the θ-correction enters the PI through the assumption of correlated individ-

uals in the population due to subpopulation structures (Balding and Nichols, 1995; Evett and

Weir, 1998). Consider only one locus where a child’s DNA profile is (ac) and its mother’s

profile is (ab). Assuming no mutations, the true father must pass on a c allele to the child.

If the alleged father’s DNA profile is (cd), the H1-hypothesis implies that the parents (ab, cd)

have offspring (ac). The probability of the evidence, given H1, is computed as P(E|H1) =

P(ac|ab, cd)P(ab, cd), where P(ac|ab, cd) is the probability that a child is ac when its parents

are (ab, cd), i.e. P(ac|ab, cd) = 1
4
, and P(ab, cd) is the probability for observing alleles a, b, c

and d in the population. The other hypothesis, H2, claims that the child got its c allele from a

man unrelated to the alleged father. Then the paternity index, as derived in Appendix 2.A.1, is

given by

PI(θ) =
1 + 3θ

2[θ + (1 − θ)πc]
, (2.5)

where PI(θ) is used to emphasise PI’s dependence on θ. Table 1 and 2 in Balding and Nichols

(1995) give the (reciprocal) PI(θ) for other parent-child scenarios (with θ denoted by F).

As an example, let us assume that this specific trio scenario is replicated for all S loci used for

DNA profile testing. The consequence between applying θ > 0 and and using the simple PI(0) =
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1/(2pc) for independent profiles is very pronounced even for reasonably common alleles. If

πc = 0.025 and θ = 0.03, then PI(0.03) ≈ 10 while PI(0) = 20. Hence, the numerical difference

between the two paternity indexes is for S independent DNA markers {PI(0)/PI(0.03)}S ≈ 2S ,

which for the typical forensic typing kits with S ≥ 10 yields a ratio of at least 1, 000. That is, the

evidential weight may decrease by several orders of magnitude by correcting for possible IBD

or population stratification.

2.2.3 Application to DNA mixtures

When two or more individuals contribute to a biological stain, the observable DNA profile is a

mixture of the various alleles contributing to the stain, and is therefore called a DNA mixture. In

an m-person DNA mixture, it is possible to observe 1 to 2m alleles per locus, since the involved

DNA profiles may share all or no alleles (see e.g. Tvedebrink et al., 2010, for a further discussion

of DNAmixtures). Assume for a two-personmixture, e.g. a rape case, that we observe the alleles

(abc) and that the victim’s DNA profile is (ab) and the suspect’s DNA profile is (cc). Then, in

line with the paternity index, the likelihood ratio is defined as LR = P(E|H1)/P(E|H2), where

E is the evidence (abc) and the known DNA profiles and H1 and H2 is the prosecutor’s and

defence’s hypotheses, respectively (in the literature Hp and Hd are commonly used for the same

hypotheses). The hypothesis H1 states “The victim and suspect constitute the DNA mixture”

whereas H2 acquits the suspect: “The victim and an unknown individual constitute the DNA

mixture”. Let P(abc|ab, i j) be the probability of observing the crime scene stain (abc) given the

mixture originates from genotypes ab and i j. When assuming no typing errors this probability

is 1 if (i j) ∈ {(ac), (bc), (ca), (cb), (cc)} and 0 otherwise. In line with the derivation of PI(θ) (see

Appendix 2.A.1 for the details of PI(θ)), we get

LR(θ) =
P(abc|ab, cc)P(ab, cc)∑

i j P(abc|ab, i j)P(ab, cc, i j)

=
(1 + 3θ)(1 + 4θ)

(7θ + {1 − θ}[2πa + 2πb + πc])(2θ + {1 − θ}πc)
(2.6)

In Figure 2.1, we have plotted the LR(θ) function for the DNA mixture above with πa and πb
fixed at 0.1. The solid line represents the uncorrected LR(θ = 0) and the broken lines show the

corrected LR(θ) for θ-values as described by the legend. The inserted plot shows the behaviour

close to the value πc = 0.71 where the effect of the θ-correction is reversed. We see that the

effect of θ is minimal for common alleles and more pronounced for rare ones. Hence, in practice

the larger θ is the more conservative the LR-estimates are.

The use of θ in evidential computations can be seen as a means to smoothing the allele proba-

bilities over possible subpopulations and thereby adjusting for the uncertainty associated with

unobserved or unobservable substructures in the larger database. This latent structure may

be seen as a reason for overdispersion in statistical terms, i.e. inhomogeneity due to unob-

served/unobservable variables.
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Figure 2.1: The effect of θ on LR(θ) for a single locus as exemplified. LR(θ) is plotted for

various θ-values ranging from 0.00 (no subpopulation effect) to 0.04 (large subpopulation effect)

against the allele frequency of the allele in question (here allele c) with the other probabilities

(πa and πb) fixed at 0.1. Inserted is a blow-up of the curve near πc = 0.71 (◦ marks this point).

If the suspect or alleged father in the two situations considered above has a ethnicity or na-

tionality that indicates that a specific database is representative for his genetic origin then allele

frequencies estimated from this database are the most appropriate reference sample to use for

evidential weight calculations. However, the database and the population that it resembles may

be constituted by several subpopulations or groups, which causes this conceptual population to

be heterogeneous. That is, geopolitical or tribal structures together with marital and religious

preferences may induce genetic diversity causing overdispersion. Hence, a database that seems

to be the most appropriate for a particular suspect may not be sampled on a sufficiently high

resolution to obtain a homogeneous reference subpopulation. In fact, it may not even be possible

to obtain samples with this property. Thus, genetic diversity and the resulting overdispersion in

allele counts must be accounted for by the θ-correction.
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2.3 Parameter estimation

Assume that we have allelic counts from N different subpopulations such that xi j denotes the

number of allele j in subpopulation i and that for each subpopulation i, i = 1, . . . ,N, there is a

total of ni counts, n = (n1, . . . , nN). In addition, we assume that the subpopulations are indepen-

dent, implying that the likelihoods of the counts from the subpopulations multiply.

The likelihood may then be derived by multiplying over the terms of (2.3). This likelihood

implies differentiation of Γ-functions in order to solve the likelihood equations. A useful obser-

vation about the Γ-function is that

y∏

r=1

{α + (r − 1)} = α × · · · × (α + y − 1) = Γ(α + y)
Γ(α)

, (2.7)

using the fact that xΓ(x) = Γ(x + 1). Hence, an equivalent way of expressing the distribution in

(2.3) using the rising factorials of (2.7) is given as

P(X = x) =

(
n

x

)∏k
j=1

∏x j

r=1
{π j(1 − θ) + (r − 1)θ}∏n

r=1{1 − θ + (r − 1)θ}
.

From this probability functionwe can compute the log-likelihood function ℓ(π, θ;x). Discarding

the multinomial constant (which is a constant with respect to the parameters), the log-likelihood

is

ℓ(π, θ;x) =

N∑

i=1

k∑

j=1

xi j∑

r=1

log{π j(1 − θ) + (r − 1)θ} −
N∑

i=1

ni∑

r=1

log{1 − θ + (r − 1)θ}. (2.8)

The corresponding likelihood equations, ∂ℓ(π, θ;x)/∂(π, θ) = 0, cannot be solved analytically

for the parameters; hence numerical methods need to be invoked for parameter estimation. Let

ψ denote the parameter vector ψ = (π, θ) = ({π j}k−1j=1
, θ), since πk = 1−∑k−1

j=1 π j. A possible

numerical method for solving the likelihood equations is Fisher-scoring, where the parameter

estimates in each iteration are updated using ψ̂(m+1) = ψ̂(m) + {I(ψ̂(m))}−1u(ψ̂(m)), where ψ̂(m)

is the estimate in the mth iteration, u(ψ̂(m)) is the score function, ∂ℓ(ψ;x)/∂ψ, and I(ψ̂(m)) is

the expected Fisher Information Matrix (FIM) both evaluated in ψ̂(m). Paul et al. (2005) derived

exact expressions for the expected FIM entries, I(ψ). The results of Paul et al. (2005) imply that

the expected FIM may be computed using expressions only involving the marginal distributions

of X j. Similar results were obtained by Neerchal and Morel (2005).

2.3.1 Computational considerations

Most of the methodology discussed in this section and subsections hereof have been imple-

mented in the R-package dirmult available on-line in the CRAN repository at http://www.r-

project.org (Tvedebrink, 2009).

Even though the expressions for the expected FIM, I(π, θ), given in (Paul et al., 2005, pp. 232)

are compact, they cause the parameter estimation to be computationally inefficient. Numerical
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work has shown that it is much more convenient to estimate the γ-parameters and transform the

estimates, rather than estimate θ and π directly. The log-likelihood ℓ(γ;x) is

ℓ(γ;x) =

N∑

i=1

k∑

j=1

xi j∑

r=1

log{γ j + r − 1} −
N∑

i=1

ni∑

r=1

log{γ+ + r − 1}, (2.9)

where we used (2.3) and (2.7). The first-order and second-order derivatives of the log-likelihood

ℓ(γ;x) are given by

∂ℓ(γ;x)

∂γ j

=

N∑

i=1



xi j∑

r=1

1

γ j + r − 1
−

ni∑

r=1

1

γ+ + r − 1

 (2.10)

∂2ℓ(γ;x)

∂γ j
2
=

N∑

i=1


ni∑

r=1

1

(γ+ + r − 1)2
−

xi j∑

r=1

1

(γ j + r − 1)2

 (2.11)

∂2ℓ(γ;x)

∂γ j∂γl
=

N∑

i=1

ni∑

r=1

1

(γ+ + r − 1)2
, (2.12)

where (2.10) gives the elements of the score function u(γ). Furthermore, this implies that the

diagonal elements of the expected FIM, I(γ), are

I(γ j, γ j) =

N∑

i=1



xi j∑

r=1

P(Xi j ≥ r)

(γ j + r − 1)2
−

ni∑

r=1

1

(γ+ + r − 1)2

 ,

for j = 1, . . . , k, and the off-diagonal elements, I(γ j, γl), equal (2.12). However, for most practi-

cal purposes using the observed FIM, J(γ), rather than the expected FIM, I(γ), in the Newton-

Raphson scoring ensures much lower computational time. Numerical investigations indicate that

the J(γ)-implementation converges to the same extrema and much more quickly as the diagonal

elements, J(γ j, γ j), for this matrix are as in (2.11), i.e. the terms P(Xi j ≥ r), r = 1, . . . , xi j, where

Xi j ∼ Beta-Binomial(γ j, γ+−γ j), need not be computed.

The inverse of the expected FIM is the asymptotic covariancematrix of the MLE. As our interest

is in (π, θ), we exploit that I(π, θ) = ∆⊤I(γ)∆, where {∆}i j = {∂γ/∂ψ}i j.

Simulations

Standard asymptotic theory assures that the MLE is the most efficient estimator. However, infer-

ence about θ depends mainly on the number of subpopulations sampled, N, and only to a minor

degree on the subpopulation sample sizes, n. Hence, in order to verify our implementation and

the performance of the maximum likelihood estimator for different number of subpopulations,

we simulated data with known allele frequencies, π, and θ-value. When simulating the mth data

matrix, xm, for m = 1, . . . ,M, we used the following sampling scheme:

1. Draw p′
i,m
∼ Dirichlet({π j(1−θ)/θ}kj=1), i = 1, . . . ,N.

2. Draw xi,m ∼ Multinomial(ni,p
′
i,m), i = 1, . . . ,N.

3. The mth data matrix is xm = [x1,m, . . . ,xN,m]
⊤.
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This ensures that the random variable Xi, of which xi,m is a realisation, follows a Dirichlet-

multinomial distribution with parameters π and θ. Note that the concept of N subpopulations

is a theoretical one. In practice only an overall database would exist which neglects the present

substructure. However, the intension is to account for this partitioning using the θ-correction.

In Weir and Hill (2002), the authors argue that if the expectation of a ratio was the ratio of ex-

pectations then the method of moment (MoM) estimator, θ̃MoM, of Weir and Hill (2002, equation

5) was an unbiased estimator of θ:

θ̃MoM =

∑k
j=1(MSP j −MSG j)

∑k
j=1(MSP j + (nc − 1)MSG j)

,

where nc = (N − 1)−1
(∑N

i=1 ni − n−1+
∑N

i=1 n
2
i

)
and n+ =

∑N
i=1 ni. The quantities MSG j and MSP j

are two mean squares defined as

MSP j =
1

N−1

N∑

i=1

ni( p̃i j − p̄ j)
2 and MSG j =

1
∑N

i=1(ni−1)

N∑

i=1

ni p̃i j(1 − p̃i j)

with p̃i j = xi j/ni, p̄ j = n−1+
∑N

i=1 xi j. Even though the expectation does not satisfy the property

mentioned above, the θ̃MoM-estimator seems to perform reasonably well on average.

More recently, Zhou and Lange (2010) has derived MM (Minorisationmaximisation) algorithms

for some discrete multivariate distributions and among these the Dirichlet-multinomial distribu-

tion. The authors have provided Matlab scripts (on line supplementary material available at the

website of Journal of Computational and Graphical Statistics) for estimating parameters in the

MM set-up.

In the following we compare the MLE, MoM and MM estimates on simulated data using the

relative frequencies in locus D13 from data published in Budowle and Moretti (1999) as π and

θ = 0.03. The box plot in Figure 2.2 show θ-estimates of 100 simulated datasets (M = 100)

with sample sizes, ni, of 200 and an increasing number of databases (increasing number of

subpopulations, N).

From the box plot it is evident that the MLE has a lower variance, but also that on average the

MoM and MM estimates are closer to the true value. However, as the number of databases

increases so does the accuracy of the estimates, as one would expect. In addition to the accu-

racy of the estimation procedure, it is relevant to compare the computational speed and ease of

implementation of the various methods. Naturally, the MoM estimator is the easiest to imple-

ment, and since no iterations are applied, “convergence” happens immediately. Both MLE and

MM estimates are based on iterative procedures. Where several statistical tools exist for easy

implementation of Newton-Raphson iterations, a little more code needs to be written for MM

algorithms. However, the script-files of Zhou and Lange (2010) elegantly demonstrated how

these obstacles can be handled in Matlab. We compared the computation times for the various

iterative methods (Zhou and Lange, 2010, implemented simple and more advanced MM meth-

ods in their paper) and number of iterations needed to satisfy the convergence criteria. The MLE

method implemented in R is always faster and needs fewer iterations for convergence compared
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Figure 2.2: Box plots of 100 estimates based on simulated data with θ = 0.03 for an increasing

number of databases with a fixed number of observations per database (ni = 200 for all i). White

boxes are MLE, grey boxes are MoM estimates, dark grey boxes are MM estimates, and the light

grey boxes are posterior means. The • indicates the average of the estimates within each block.

to the standard MM implementation. However, the more advanced MM updating schemes are

more efficient than the MLE for small database counts. We tested the same algorithms on larger

datasets (Danish and Greenlandic forensic databases of 20,000 and 2,000 DNA profiles). For

these larger databases, the MLE implementation was 10 times faster than the specialised MM

algorithms and up to 1,000 times faster than the standard MM implementation. However, this is

only true when using the observed FIM, J(γ), while the computation of the expected FIM, I(γ),

is very slow even for databases of moderate size.

Profile log-likelihood

From the box plots in Figure 2.2, there seems to be a tendency for the MLE to underestimate

the θ-parameter. In order to investigate the reason for this behaviour and compute the confidence

intervals for θ, we derived the profile log-likelihood, ℓ̂(θ) = maxπ ℓ(π, θ;x), for θ. That is, fixing

θ at some value θ̃ and finding the maximum likelihood value under this constraint. By fixing θ

at θ̃ we also fix γ+ at γ̃+ = (1−θ̃)/θ̃. Hence, we are maximising the regular log-likelihood under

the constraint that γ+ = γ̃+.
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Since the analytical form of the log-likelihood is complicated, the only way to evaluate the profile

log-likelihood is by numerical methods as for the maximum likelihood estimation. Applying a

Lagrange multiplier, λ, we need to find the stationary points of ℓ̃(γ) = ℓ(γ;x)+ λ(γ̃+ − γ+). The
partial derivatives yield

∂ℓ̃(γ)

∂γi
=
∂ℓ(γ;x)

∂γi
− λ; ∂ℓ̃(γ)

∂λ
= γ̃+−γ+

which implies that the score function for this new system is u(γ, λ) = (u(γ)−λ1k, γ̃+−γ+)⊤,
where u(γ) is the score function from (2.10) and 1k is a k-dimensional vector of ones. The

observed FIM, J(γ, λ), is also almost preserved from the likelihood equations,

J(γ, λ) =

[
J(γ) −1k

−1⊤
k

0

]
,

where J(γ) is the observed FIM from Section 2.3.1. Hence, we may apply Newton-Raphson iter-

ations in order to maximise ℓ(γ;x) under the constraint γ+ = γ̃+. Alternatively this constrained

optimisation problem could have been solved using (recursive) quadratic programming. How-

ever, for this particular log-likelihood function Newton-Raphson procedure works very well with

Lagrange multipliers, and the existing code for maximisation is easily extended for handling the

extra terms induced by the constraints.

In Figure 2.3 the profile log-likelihood for simulated data with θ = 0.03 is plotted. Each panel

is standardised such that the maximum value of ℓ̂(θ) is zero, 2[ℓ̂(θ) − ℓ̂(θ̂)]. The intersection

of the dotted line and the profile log-likelihood indicates a 95%-confidence interval for θ based

on a χ21-approximation of −2ℓ̂(θ). In each panel the associated MLE (marked by •), MoM (◦)
and MM (△) estimates are plotted together with the true θ-value (×). In all six panels the true

value is included in the confidence intervals. As one would expect, the width of the confidence

intervals decreases as the number of datasets increases. There are profound arguments for using

the χ2-approximation of partial maximised log-likelihood as opposed to using asymptotic results

relying on approximative normality of the MLE with a covariance matrix asymptotically equal

to the inverse FIM (Barndorff-Nielsen and Cox, 1994).

From Figure 2.3, it is evident that the profile log-likelihood is skew for small numbers of

databases. This pronounced departure from symmetry explains the bias of the MLE and MM

estimate for small numbers of databases. Using a Bayesian approach, one may assume a uni-

form prior on θ. This implies that the posterior distribution of θ approximately equals the profile

likelihood, p(θ|x) ∝ exp[ℓ̂(θ)]. The posterior mean, E(θ|x), may be evaluated using a numerical

approximation,

E(θ|x) =
∫

θp(θ|x)dθ ≈
∑n

i=1 θ̃i exp[ℓ̂(θ̃i)]∑n
i=1 exp[ℓ̂(θ̃i)]

. (2.13)

The n different θ-values used in the sums of (2.13) are the same as those used for computing the

profile log-likelihood, e.g. equidistant points covering the 95%-confidence interval. Table 2.1

lists the posterior means and estimates for the data in Figure 2.3, where the data points used for

computing each posterior mean lies within the 95%-confidence interval.
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Figure 2.3: Profile log-likelihoods for simulated data for an increasing number of databases

with θ = 0.03 for all simulations (marked by ×). The MLE (•), MoM (◦), MM (△) and posterior
mean (+) are plotted together with a 95%-confidence interval (intersection of the dotted line

and the profile log-likelihood curve). The horizontal dashed and solid lines represent bootstrap

confidence intervals based on randomisation and cluster resampling, respectively.

Table 2.1: Posterior means and estimates for the data in Figure 2.3 (θ = 0.03).

Number of databases MLE MoM MM Posterior mean

2 0.0395 0.1315 0.0411 0.0532

4 0.0271 0.0374 0.0278 0.0310

8 0.0243 0.0349 0.0249 0.0263

16 0.0258 0.0247 0.0265 0.0267

32 0.0297 0.0345 0.0306 0.0303

64 0.0286 0.0316 0.0295 0.0290
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We see that the posterior mean estimate in most situations improves the MLE estimate (except

for the first row) and reduces the amount of bias for small numbers of databases. In Figure 2.2 the

light grey boxes (rightmost box whiskers for each stratum) represent the posterior means for the

simulated data computed using θ-values within the 95%-confidence interval for the associated

MLE. Table 2.1 indicates that the bias is reduced for the posterior means, with only a minor

increment in the variance (see Figure 2.2).

A full Bayesian implementation with prior distributions on π and θ (or equivalently on γ-

parameters) was not pursued in this study. However, several authors (see e.g. Holsinger, 1999)

have discussed estimation of θ (and other population genetics diversity measures) from a Bayesi-

an perspective. We refer to the review paper by Holsinger and Weir (2009) for further results

and discussions on Bayesian methodologies.

Bootstrapping confidence intervals

In addition to computing a confidence interval for θ using the χ2
1
-approximation of the profile

log-likelihood, we also investigated the performance of bootstrap methods to construct the con-

fidence intervals. However, there are some problems when bootstrapping clustered data in order

to assess the variability of the intra-cluster correlation parameter θ.

Several studies (Davison and Hinkley, 1997; Ukoumunne et al., 2003; Fields and Welsh, 2007)

indicate that special attention needs to be paid when one applies the bootstrap methodology

to this problem. The general recommendation is to sample on a subpopulation (cluster) level

rather than an individual (randomised) level due to the dependence structure implied by the intra-

cluster correlation factor. In Figure 2.3, we have superimposed bootstrap confidence intervals

(horizontal solid and dashed lines) based on both kinds of bootstrap regime. The general picture

is that the cluster sampling underestimates θ (solid line - missing in first two panels due to few

databases), whereas the randomised bootstrap provides overestimated values (dashed line).

From numerical studies we recommend the use of the profile log-likelihood method in order to

estimate the confidence intervals for θ since this method is valid for any number of subpopula-

tions in the data. This might not be surprising (Davison and Hinkley, 1997; Ukoumunne et al.,

2003; Fields and Welsh, 2007). However, bootstrapping is often applied when assessing the

variability of estimates but for θ this is inappropriate.

Significance test

Testing whether θ satisfies certain numerical properties is interesting since equality of θ across

loci simplifies PI and LR computations. Further simplifications are possible if θ = 0 is supported

by data. This implies that there is no detectable difference among the databases, where the

reasons for this may be small sample sizes (and thus large variation), or that the databases are as

if sampled from a homogeneous population.

Samanta et al. (2009, Section 3: Hypothesis testing) derived hypothesis tests for inference about

θ under various population assumptions. Here we initiate by testing for equality of θs for the

various loci, s = 1, . . . , S . The null hypothesis is θ1 = · · · = θS = θ′ for some unknown θ′,
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where θs is the θ-value for locus s, with the alternative hypothesis specifying that at least one θs
is different from θ′. In order to test this hypothesis, we evaluate

ℓ({πs}Ss=1, θ
′;x) =

S∑

s=1

ℓs(πs, θ
′;xs) (2.14)

where ℓs is the regular log-likelihood in (2.8) with θs = θ
′ for all s. The test statistics is given by

−2 logQ = −2
ℓ({π̂s}Ss=1, θ

′;x) −
S∑

s=1

ℓs(π̂s, θ̂s;xs)

 ,

and is approximatelyχ2
S−1-distributed from the S−1 degrees of freedom (DoF). Details of finding

stationary points of (2.14) are given in Appendix 2.A.2.

Furthermore, testing whether θ = 0 is another interesting hypothesis test. Under the null hy-

pothesis there is no evident substructure in the data. Having support for θ = 0 implies that DNA

profiles may be regarded as independent, which has a high influence on the estimation of the

evidential weight (see Sections 2.2.2 and 2.2.3). The Dirichlet-multinomial model with θ = 0

is equivalent to the simpler multinomial model. However, testing the hypothesis that θ = 0 can

not be based on asymptotic theory nor inferred from the inclusion/exclusion of zero in the confi-

dence intervals from the profile log-likelihood since θ = 0 lies on the boundary of the parameter

space.

A possible method is to use a parametric bootstrap, where we simulate data x∗
1
, . . . ,x∗

M
under the

null hypothesis θ = 0. From these simulated data we estimate θ̂∗m and obtain an approximative

distribution of θ̂ under the null hypothesis, which we apply in order to test the significance of

θ , 0 for the observed data, x. Hence, the parametric bootstrap comprises two steps: (1) draw

x∗m ∼ Multinomial({xi+}Ni=1, {x+ j}
k
j=1
/n+) and (2) estimate θ̂∗m.

By choosing M large, e.g. M = 1000, one gets M estimates of θ of which most should have an

estimate smaller than θ̂ when the hypothesis θ = 0 is false. An empirical p-value is computed

by #{θ̂∗m > θ̂}/M, i.e. the ratio of the number of larger parametric bootstrap estimates to the total

number of bootstraps.

2.4 Results

The paper of Budowle and Moretti (1999) presents allele frequencies of 13 CODIS Core STR

loci in six US subpopulations. The data have previously been used to estimate the magnitude of

θ used for forensic purposes; see e.g. Weir (2007). Henceforth we refer to these data as “FBI

data”.

Estimates of θ based on the MoM, MLE and MM are given in Table 2.2. There are some distinct

differences between the θ̂MLE and θ̃MoM, with often a factor two in difference; furthermore , the

standard errors are often very much smaller for the MLE than for the MoM estimates. The

standard errors are asymptotic, where SE(θ̃) is based on a Taylor series approximation by Li
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Table 2.2: Locus-specific estimates of θ based on MLE, MoM, MM and posterior mean (PM).

The confidence interval for the MLE is based on the χ21-approximation of the profile log-

likelihood.

Locus θ̃MoM SE(θ̃) θ̂MLE SE(θ̂) 95%-CI for θ̂ θ̃MM PM

D3 0.0108 0.0085 0.0056 0.0020 (0.0028 ; 0.0110) 0.0057 0.0061

vWA 0.0107 0.0085 0.0053 0.0017 (0.0027 ; 0.0098) 0.0053 0.0056

FGA 0.0050 0.0051 0.0037 0.0010 (0.0021 ; 0.0061) 0.0037 0.0038

D8 0.0140 0.0106 0.0084 0.0024 (0.0049 ; 0.0145) 0.0085 0.0089

D21 0.0126 0.0097 0.0053 0.0013 (0.0031 ; 0.0086) 0.0053 0.0055

D18 0.0142 0.0107 0.0086 0.0019 (0.0056 ; 0.0133) 0.0087 0.0089

D5 0.0226 0.0157 0.0161 0.0042 (0.0097 ; 0.0276) 0.0163 0.0170

D13 0.0264 0.0180 0.0147 0.0040 (0.0088 ; 0.0254) 0.0149 0.0156

D7 0.0061 0.0056 0.0035 0.0013 (0.0015 ; 0.0072) 0.0036 0.0038

CSF 0.0050 0.0049 0.0091 0.0026 (0.0049 ; 0.0167) 0.0092 0.0097

TPOX 0.0306 0.0205 0.0248 0.0066 (0.0147 ; 0.0433) 0.0254 0.0263

TH01 0.0328 0.0217 0.0189 0.0054 (0.0110 ; 0.0340) 0.0193 0.0202

D16 0.0117 0.0091 0.0069 0.0023 (0.0036 ; 0.0131) 0.0070 0.0074

(Weir and Hill, 2002, pp. 730), and SE(θ̂) = {(I−1)θ,θ}1/2 from Section 2.3.1. Standard errors of

the MM estimates are not readily obtained from the Matlab scripts of the supplementarymaterial

of Zhou and Lange (2010), hence these are not provided in Table 2.2. The ratio θ̃MoM/θ̂MLE of the

estimates in Table 2.2 repeats the pattern which was indicated by the plots in Figures 2.2 and 2.3.

For most loci, the MoM estimate lies within the 95%-confidence interval. The MM estimates

coincide with the MLE for all loci. The posterior means are for most loci close to the MLE,

which is due to the rather symmetric shape of the profile log-likelihoods plotted in Figure 2.4,

where the profile log-likelihoods for the FBI data are plotted together with the MLE (marked by

•), MoM (◦), MM (△) and posterior mean (+).

We tested the hypothesis of equality of θ for all loci in the FBI data. From Table 2.2, it is clear

that there are differences among loci, but also some clustering of the estimates. In Table 2.3, we

have listed the results from testing different hypotheses.

Table 2.3: Results from testing hypothesis of equality of θ for multiple loci.

Loci θ̄ θ′ -2 logQ DoF p-value

All 0.0101 0.0090 62.8011 12 <0.0001

D5, D13, TPOX and TH01 0.0186 0.0183 2.2630 3 0.5196

Remaining loci 0.0063 0.0061 12.7175 8 0.1219
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Figure 2.4: Profile log-likelihoods for the 13 CODIS loci from the FBI data of Budowle and

Moretti (1999). The MLE is marked by •, MoM by ◦ and MM by △. For all loci the MLE

and MM estimate coincide. For most loci, the MoM estimate lies within the MLE confidence

interval. The + indicates the posterior mean.

The tests indicate that there are groups of loci with similar θ-values. The mean, θ̄, of the four

loci (D5, D13, TPOX and TH01) with the largest θ-estimates in Table 2.2 is θ̄ = 0.0186, and the

mean of the remaining loci is θ̄ = 0.0063. In both groups, the estimated θ′ = 0.0183 (95%-CI:

[0.0126; 0.0269]) and θ′ = 0.0061 (95%-CI: [0.0043; 0.0088]) is almost equal to θ̄ (Table 2.3).

Furthermore, using the methodology described in Section 2.3.1 for testing if θ = 0, the test

yielded that for no loci was θ equal to zero. This was true for both the MLE and MoM esti-

mates. However, the test based on the MLE is more powerful than using the MoM estimate.

The estimated θ-values for the Caribbean subsample (subset of FBI data: Bahamian, Jamaican

and Trinidad subpopulations) are given in Table 2.4 together with empirical p-values and 95%-

confidence intervals under the null hypothesis, H0 : θ = 0.

In locus D8, the tests based on MLE rejects the null hypothesis, whereas the MoM test accepts

that θ = 0. For this locus (and D3, D21, D7, CSF, D16) the MoM estimate is negative, and so is

the lower bound of the confidence intervals for all loci.

Conceptually, we could imagine that we only had observed a common Caribbean database with-
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Table 2.4: θ-estimates for Caribbean sample (three databases from the FBI data) together with

empirical p-values and 95%-confidence intervals when θ = 0. For each locus, the first row is

MLE and the second row MoM estimates. Note that for locus D8 the test based on MLE rejects

the hypothesis while the MoM-based test does not.

Locus θ-estimate p-value 95%-Confidence interval H0-decision

D3 2.582 ×10-11 0.099 (3.975 ×10-12 ; 7.243 ×10-11) Accept

-1.440 ×10-3 0.745 (-2.755 ×10-3 ; 5.715 ×10-3) Accept

vWA 3.904 ×10-4 0.000 (3.966 ×10-12 ; 9.639 ×10-11) Reject

3.488 ×10-3 0.030 (-2.226 ×10-3 ; 3.656 ×10-3) Reject

FGA 3.944 ×10-12 0.507 (1.772 ×10-12 ; 1.470 ×10-11) Accept

6.496 ×10-4 0.284 (-2.021 ×10-3 ; 3.221 ×10-3) Accept

D8 4.351 ×10-9 0.010 (3.973 ×10-12 ; 8.016 ×10-11) Reject

1.286 ×10-3 0.214 (-2.581 ×10-3 ; 4.404 ×10-3) Accept

D21 3.510 ×10-12 0.680 (2.654 ×10-12 ; 1.711 ×10-11) Accept

-4.964 ×10-4 0.567 (-2.196 ×10-3 ; 3.710 ×10-3) Accept

D18 6.262 ×10-4 0.000 (2.655 ×10-12 ; 2.230 ×10-11) Reject

6.657 ×10-3 0.001 (-2.066 ×10-3 ; 3.058 ×10-3) Reject

D5 3.367 ×10-3 0.000 (3.964 ×10-12 ; 5.651 ×10-11) Reject

8.452 ×10-3 0.000 (-2.314 ×10-3 ; 4.449 ×10-3) Reject

D13 1.405 ×10-11 0.197 (3.962 ×10-12 ; 9.433 ×10-11) Accept

3.693 ×10-3 0.060 (-2.449 ×10-3 ; 5.637 ×10-3) Accept

D7 4.776 ×10-12 0.712 (3.964 ×10-12 ; 5.566 ×10-11) Accept

-1.062 ×10-3 0.727 (-2.337 ×10-3 ; 4.600 ×10-3) Accept

CSF 4.399 ×10-12 163 (3.971 ×10-12 ; 8.619 ×10-11) Accept

-2.049 ×10-3 0.924 (-2.494 ×10-3 ; 4.102 ×10-3) Accept

TPOX 1.478 ×10-3 0.000 (5.950 ×10-12 ; 2.149 ×10-10) Reject

7.890 ×10-3 0.002 (-2.533 ×10-3 ; 4.135 ×10-3) Reject

TH01 8.026 ×10-12 0.735 (5.949 ×10-12 ; 1.429 ×10-10) Accept

6.922 ×10-4 0.295 (-2.700 ×10-3 ; 4.298 ×10-3) Accept

D16 7.002 ×10-12 0.704 (3.976 ×10-12 ; 1.371 ×10-10) Accept

-1.925 ×10-3 0.903 (-2.403 ×10-3 ; 4.100 ×10-3) Accept

out information on the specific island of origin. Thus for loci with θ = 0 (see Table 2.4) this

collapse of the observed databases would in principle not be a problem. However, for the other

loci the present substructure would potentially cause the LR to be anti-conservative depending

on a particular suspect’s DNA profile and origin.
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In Table 2.5, the estimated allele probabilities (π j, for appropriate subscript j) are presented for

each locus. Note that the estimated allele probabilities are estimates of the allele probabilities

in the reference population from which each of the six subpopulations is assumed to have de-

scended. Owing to lack of space, only alleles with integer values are presented, i.e. common

alleles such as 9.3 in TH01 are not reported in Table 2.5.

2.5 Discussion

The model based on the Dirichlet-multinomial distribution has previously been discussed, for

example, by Lange (1995b). However, the estimation methods suggested there relied on approx-

imations of the trigamma-function, which were avoided here due to similar results as those of

Paul et al. (2005).

The maximum likelihood estimation of parameters discussed in this paper is muchmore involved

than those of the method of moment (MoM). However, the properties of theMLE ensure reduced

variance of the estimates. In general, the π-estimates based on MoM and MLE did coincide,

indicating that the usual relative frequency estimate is adequate in order to obtain point estimates

for the allele probabilities. However, as pointed out by Curran et al. (2002), the uncertainty of

these point estimates needs to be carefully consideredwhen assessing the weight of the evidence.

If allele probabilities are estimated from limited databases the estimates of the rare alleles are

subject to large standard errors. This may lead to overestimates of the (point estimates of) LR or

PI.

Having a joint model for the allele probabilities and θ-parameter increases the belief in the es-

timates of the latter. However, since π may be estimated by the empirical probability p̄, the

simpler one-dimensional maximisation problem maxθ ℓ(θ, p̄;x) may be adequate for estimating

θ and assessing its variance. Simulations have shown that this method underestimates θ even for

large number of databases; hence this estimator is inefficient as opposed to the joint likelihood

approach, which therefore is recommended for estimation.

Balding (2003, pp. 229) argues that one should expect variability of θ across the STR loci used

in forensic genetics. This may be due to different mutation rates in the various loci and selection

or “indirect selection” from linkage between the STR loci and genes/genetic regions subject to

selection.

It is possible to test the hypothesis of equal θ across loci using our model. For the FBI data there

were two groups of loci with common θ-estimates. Figure 2.1 showed that increased θ-values

weaken the evidence in most cases. Hence, for a conservative evaluation of the evidence, it may

be reasonable to use the largest θ-value. This supports the use of the upper 95%-confidence limit

(see Table 2.2) of the θ-estimate, which in most cases does not disagree with the commonly used

value 0.03 for θ (Phillips et al., 2010). Furthermore, Balding (2005, pp. 97) argues that “plug-in

values (of θ) should tend to be towards the higher end of the range of plausible values” in order

to incorporate uncertainty from higher-order terms of θ.

However, in paternity disputes it is not common practice to evaluate the evidence conservatively

since in most circumstances these are civil lawsuits. Hence, in paternity cases it may be more ap-
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Table 2.5: Estimates of π for each locus. The first line of each cell entry gives the MLE and the

second line is the MoM estimate. In small font the associated standard errors ×10. Only integer-
valued alleles are reported, for compactness. ∗: Add 10 units to each FGA allele designation. ∗∗:
Add 20 units to each D21 allele designation.
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propriate to use the locus-specificMLEs (or the common θ-values for groups of loci in Table 2.3)

when computing PI(θ).

2.6 Conclusion

We have demonstrated how the genetic dependence caused by identical-by-descent assumption

can be modelled as overdispersion from a statistical point of view. This allowed for maximum

likelihood estimation of allele probabilities in the reference population, π, and the identical-by-

descent measure, θ. By using recent results from the statistical literature the FIM was computed

analytically and confidence intervals based on profile log-likelihoods were provided.
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Appendix

2.A Mathematical details

In Appendix 2.A.1, we give some mathematical details on how to derive the paternity index,

PI(θ), of (2.5), and Appendix 2.A.2 is about testing for equality of θ across loci.

2.A.1 Deriving paternity index (PI)

We demonstrate how to derive the paternity index, PI, in (2.5) using P(Yn+1= j|Y n=yn) = P( j|xn
j
)

in (2.4). In a given locus, the child’s profile is (ac) and the mother is heterozygous (ab), where

c is different from a and b. Discarding the possibility of mutations, the true father needs to pass

on a c allele to the child. Assume that the alleged father is heterozygous (cd), which implies

P(ac|ab, cd) = 1
4
, i.e. under hypothesis H1 the probability of the child’s profile given its parents’

profiles is 1
4
. The PI is determined by:

PI =
P(ac, ab, cd|H1)

P(ac, ab, cd|H2)
=

P(ac|ab, cd)P(ab, cd)
∑k

i, j P(ac|ab, cd, i j)P(ab, cd, i j)
,
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where (i j) denotes the profile of the true father under H2 and summation is over all k alleles

in the given locus. However, when omitting the possibility of mutations, unless i or j equals c

the child can not be the true father’s offspring, i.e. P(ac|ab, cd, i j) = 0 for (i, j) where c , i

and c , j. Hence, we fix j = c and sum over all i = 1, . . . , k, where P(ac|ab, cd, cc) = 1
2
and

P(ac|ab, cd, ic) = 1
4
for all i , c under H2. This implies that the expression for the PI is given by

PI =

1
4
P(ab, cd)

1
2
P(ab, cd, cc)+ 2

∑
i,c

1
4
P(ab, cd, ic)

=
P(ab, cd)

2P(ab, cd, c)

[
P(c|ab, cd, c)+

∑
i,c

P(i|ab, cd, c)
] = 1

2P(c|ab, cd) ,

where the sum in square brackets by definition is one. Using the expression P( j|xn
j
) in (2.4) with

x4 = (x4a, x
4
b
, x4c , x

4
d
) = (1, 1, 1, 1), we have,

PI =
1

2P(c|x4c)
=

1 + (n − 1)θ
2[xcθ + (1 − θ)πc]

=
1 + 3θ

2[θ + (1 − θ)πc]
.

2.A.2 Testing equality of θ for multiple loci

In order to find stationary points for the log-likelihood of (2.14), we use Fisher-scoring with La-

grange multipliers, λ = {λs}Ss=1, ensuring equal θ for all loci. Translating the common parameter

θ′ to γ′ ensures computational simplicity. The observed FIM, J(γ), associated with (2.14) is

J(γ) =



[J(γ1)] O1,2 · · · O1,S gk1
O2,1 [J(γ2)] · · · O2,S gk2
...

...
. . .

...
...

OS ,1 · · · OS ,S−1 [J(γ2)] gkS
g⊤
k1

g⊤
k2

· · · g⊤
kS

0



whereOs,t is a (ks+1) × (kt+1)-matrix of zeros,

[J(γs)] =

[
J(γs) −1ks

−1⊤
ks

0

]
and gks =

(
0ks

1

)

Furthermore, the score function is

u({γs, λs}Ss=1, γ
′) = ({u(γs) − λs1ks , (γ

′ − γs+)}Ss=1, λ+)

where u(γs) is the score function of (2.10).
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2.7 Supplementary remarks

The methodology presented above for estimating θ and computing the profile log-likelihood has

been applied in the publication by Phillips et al. (2010). I performed some of the computations

of that paper using the dirmult package and made plots similar to those of Figures 2.3 and

2.4 (Fig. 4 in Phillips et al., 2010). Plots in higher resolution are available from my web page

(http://people.math.aau.dk/∼tvede under “List of publication”).

In population genetics the Hardy-Weinberg equilibrium (HWE) constitute a fundamental point of

reference. Proposed independently by Hardy (1908) and Weinberg (1908), the HWE states that

assuming random mating, no selection, no mutations and infinite population size the probability

of a diploid genotype is the product of allele probabilities, P(AiA j) = 2pip j and P(AiAi) = p2
i
.

We know immediate from these assumptions that HWE fail to hold since no real world popula-

tion satisfy these restrictions. However, quoting Box and Draper (1987, pp. 74): “Remember

that all models are wrong; the practical question is how wrong do they have to be to not be use-

ful” applies also to HWE. In fact testing for HWE is often done to test for data quality, where

the test is performed on genetic data to detect possible over-representation of homozygotes due

to typing errors.

Over the last 100 years since the publication of the Hardy-Weinberg principle several genetic

models have been proposed to relax the assumptions mentioned above. One such attempt were

Wright (1951) who defined the F-statistics (FST , FIT and FS I), which are measures of popula-

tion differentiation (Holsinger and Weir, 2009). In forensic genetics the most interesting of the

parameters is FST which measures the divergence between a subpopulation, S , and the total pop-

ulation, T . Cockerham (1969, 1973) showed that for most interesting assumptions made about

the population structure and breeding patterns θ is identical to FST (Weir and Cockerham, 1984,

pp. 1358). The use of the θ-correction alters the genotype probabilities P(AiA j) = 2pip j(1 − θ)
and P(AiAi) = piθ + p2

i
(1 − θ), where the magnitude of θ controls the deviation from HWE.

In the following chapter, a paper discussing the θ-correction in relation to a DNA reference

profile databases is presented. In that setting only one database is available, hence there is no

point of reference to which extend a particular subsampled database differs in allelic constitution

from another. Therefore different means of estimating θ needs to be considered. In the setting

above θ was a measure of subpopulation structure in a larger database, whereas in the subsequent

setting θ is a measure of correlation between gametes (within and between individuals). Hence,

by making pairwise comparisons of all individuals in the database we may be able to quantify θ

by analysing the difference between expected and observed counts of matching loci.
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Abstract:

In this paper we analyse the Danish reference database accumulated over approximately 40 years

with 51,517 DNA profiles, which is close to 1% of the Danish adult population size. Each entry

in the database is associated with a civil registration number such that twins are identified and

potential near matches due to typing errors are removed.

We investigated the methodology of Weir (2004, 2007), and extensions by Curran et al. (2007) to

allow for close relatives, who derived expressions for the expected number of matches and near

matches in a database when every DNA profile is compared to all other profiles in the database.

We extended the methodology by computing the covariance matrix of the summary statistic and

used it to estimate the identical-by-descent parameter θ for the Danish database.

Keywords:

DNA database; θ-correction; Subpopulation; Close relatives; Covariance matrix.

3.1 Introduction

In order to accommodate the pressure from the legal community, Weir (2007) commented on

the rarity of DNA profiles and in particular on the number of expected profile matches and near

profile matches one should expect as the DNA databases increase in size. The fact that a pair

of profiles matches at 9 out of 13 loci in an Arizonian database of 65,493 profiles (Troyer et al.,

2001) is not unexpected. In fact Weir (2007) suggests that 163 of such pairs would be expected

under his population genetic model with the coancestry parameter θ = 0.03. However, if one

compares the expected counts and observed counts in Weir (2004), it is evident that the expected

number of partially-matching loci is much larger than what is observed. A possible explanation

is that the population is subdivided which increases the number of homozygote profiles. That is,

profiles that are homozygous are either similar or different, which is not captured in the model

discussed by Weir (2004, 2007).

Mueller (2008) investigated the performance of simple population genetic models further. He

also focused on the Arizona database and discussed how likely it was to observe the reported 122

pairs matching on 9 loci and 20 pairs matching on 10 loci out of 13 loci. By means of simulations

he increased the complexity of the model to include five ethnic groups each with four possible

subpopulations and a number of relatives. He concluded that in order to obtain sufficiently

high probabilities for the observed counts, there needed to be between 1,000 and 3,000 pairs

of full-siblings in a substructured population. Several other authors have discussed multi-locus

matching and population structures influence on match probabilities, e.g. Lange (1993, 1995);

Donnelly (1995b,a); Balding and Nichols (1995); Ayres (2000); Laurie and Weir (2003); Song

and Slatkin (2007).

The main focus of this paper is the examination and validation of the model proposed by Weir

(2004, 2007) and the modifications hereof by Curran et al. (2007) to allow for closely related

individuals in the database. To this purposewe model and analyse the distribution of matches and

partial-matches in the reference DNA database at the Section of Forensic Genetics, Department

of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen.
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3.2 Materials and methods

3.2.1 Data

The Danish reference DNA profile database contains 51,517 STR DNA profiles accumulated

from 1971 to the beginning of 2009 typed at the 10 autosomal loci included in the SGM Plus

kit (Applied Biosystems, CA, USA). The database constitute little more than 1% of the Danish

adult population (approx 4 million people). Each entry in the database is associated with a civil

registration number such that twins are identified and potential near matches due to typing errors

are removed.

The database were analysed such that every profile were compared to any other profile in the

database. For each pairwise comparison the number of matching (agreement on both alleles), m,

and partially-matching loci (sharing exactly one allele), p were registered. LetGi andG j be two

DNA profiles in the database. Then M(Gi,G j) is a 11×11-indicatormatrix with zeros except for

the (m, p)-entry corresponding to m and p matching and partially matching loci between profile

Gi and G j, respectively.

Hence, the summary statistic M = {Mm/p}m,p is formed by

M =

n−1∑

i=1

n∑

j>i

M(Gi,G j), (3.1)

which corresponds to N =
(
n

2

)
= n(n − 1)/2 pairwise comparisons of n DNA profiles. With the

database size of n = 51,517 this results in N = 1,326,974,886 comparisons.

The result of analysing the Danish database with n = 51,517 DNA profiles is summarised in

Table 3.1, where Mm/p corresponds to the number of pairs with m matching loci and p partially-

matching loci. From Table 3.1 we find that e.g. the number of pairs of profiles with 5 matching

loci and 4 partially-matching loci out of ten autosomal loci is M5/4 = 17,060. Figure 3.1 shows

a the summary statistic in an informative way where we have plotted the observed counts on

log10-scale.

Two of the authors (T. Tvedebrink and J. M. Curran) implemented computationally efficient

functions for constructing the M-table in the statistical software R (R Development Core Team,

2009). The dbCompare-function from the DNAtools-package (Tvedebrink and Curran, 2010)

took less than 5 minutes to perform all 1,326,974,886 pairwise comparisons on a 2.50 GHz

laptop computer. Most of the methodology in this paper has been implemented in the DNAtools-

package together with specialised plotting functions. The package is described in more detail

elsewhere (Curran and Tvedebrink, 2010).
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Table 3.1: Summary matrix M for the Danish reference DNA profile database with 51,517 DNA

profiles. Mm/p is the number pairs of profiles with m matching (where m is the row number) and

p partially-matching (where p is the column number) loci. Owing to lack of space the font size

is reduced for the least interesting part of the table (low number of matching loci).

M 0 1 2 3 4 5 6 7 8 9 10

0 906,881 8,707,969 37,632,872 96,157,037 160,570,778 182,820,115 143,627,613 76,852,119 26,786,782 5,486,572 501,671

1 1,100,493 9,484,061 36,229,766 80,292,877 113,733,413 106,635,954 66,164,365 26,183,818 5,992,415 604,900

2 595,135 4,531,792 14,996,133 28,165,271 32,810,688 24,271,278 11,132,519 2,887,555 325,493

3 188,146 1,237,733 3,467,281 5,353,738 4,913,791 2,683,854 805,798 103,305

4 38,094 212,192 487,484 592,929 401,832 143,202 21,490

5 5,114 23,490 42,459 37,933 17,060 3,100

6 470 1,685 2,272 1,414 378

7 26 96 91 64

8 3 6 21

9 0 0

10 0

Match/Partial match
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Figure 3.1: Plot of observed counts (marked by •) versus the number of matching and partially-

matching loci (counts on log10-scale) for the Danish database. The superimposed points (×)
represents the expected counts (under the model described in Section 3.2.2) and the vertical

bars indicate an approximative 95%-confidence interval computed by Nπ ± 2
√
diag{Σ(θ)} (see

Sections 3.3 and 3.3.2).
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3.2.2 Population genetic model

The model proposed by Weir (2007, 2004) defines for each of the L loci three probabilities

(P0/0, P0/1, P1/0), which are the probabilities for two randomly selected profiles sharing none,

one or both alleles at a given locus (Weir denoted the probabilities P0, P1, P2. The change

of subscript will hopefully be clear in the following). The probabilities Pm/p depends on the

coancestry coefficient θ through the match probability equations (Nichols and Balding, 1991)

that are derived using the recursion formula: P(Ai′ |xn) = [xn
i′θ + (1− θ)pi′ ]/[1+ (n− 1)θ], which

is the probability of observing an i′ allele after having seen xn
i′ alleles of type i

′ among n sampled

alleles.

The expected values associated with the observed counts in M under this model is computed

as Nπ, where π = {πm/p}m,p is the matrix of probabilities for the match/partially-match events

(m, p). The elements of π, πm/p,m = 0, . . . , L; p = 0, . . . , L − m, may be computed using

recursion over loci: Let πℓ
m/p

denote the probability based on ℓ loci, i.e. using only a subset of

size ℓ of the L loci. Then the following equation denote how to compute πℓ+1
m/p

for ℓ = 1, . . . , L−1:

πℓ+1m/p = Pℓ+10/0π
ℓ
m/p + Pℓ+10/1π

ℓ
m/p−1 + Pℓ+11/0π

ℓ
m−1/p, (3.2)

where the “sum” of the subscripts for each term on the right hand side equals the subscript on

the left hand side, and Pℓ
m/p

refer to the Pm/p probabilities for the ℓth added locus. When either

m = 0 and/or p = 0 we have these boundary equations:

πℓ+10/0 = Pℓ+10/0π
ℓ
0/0, πℓ+10/p = Pℓ+10/0π

ℓ
0/p + Pℓ+10/1π

ℓ
0/p−1 and πℓ+1m/0 = Pℓ+10/0π

ℓ
m/0 + Pℓ+11/0π

ℓ
m−1/0,

where π1
1/0
= P1

1/0
, π1

0/1
= P1

0/1
and π1

0/0
= P1

0/0
. These equations are easily implemented in

computer software and efficiently compute the expected numbers for various θ-values.

Weir (2007) focused in his survey paper primarily on comparison between the observed counts

and the expected number, Nπ(θ), for different values of θ. However, as Curran et al. (2007) dis-

cussed one needs to consider normalisation of these differences for a proper comparison between

the observed and expected counts. In this paper we show how to compute the covariance matrix

of M in order to make a more rigorous comparison taking the correlation between cell counts

into consideration.

Close relatedness

Weir (2007) showed that for a specified family relationship of a pairs of profiles, Pm/p is updated

using the probabilities, kI , that the two individuals share I alleles identical-by-decent (IBD):

P̃0/0 = k0P0/0 P̃0/1 = k1(1− θ)(1− S 2) + k0P0/1 and P̃1/0 = k2 + k1[θ + (1− θ)S 2] + k0P1/0,

where S 2 =
∑K

i′=1 p
2
i′ is the sum of squared allele probabilities at a given locus with K different

alleles, and P̃m/p denote the probability that two individuals with the specified family relationship

will match as m/p in a given locus. In order to compute π̃, Pm/p is replaced by P̃m/p in the (3.2).

In Table 3.2 we have listed the five types of relatedness considered in this paper. The avuncular
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class covers half-siblings, grandparent-grandchild and uncle-nephew (independent of gender)

since these has identical k-vector and are as such indistinguishable only using unlinked genetic

markers.

Table 3.2: Probability of sharing I alleles IBD for the specified relationship (Weir, 2007, Table

4).

Relationship Full-siblings First-cousins Parent-child Avuncular Unrelated

k = (k2, k1, k0) (0.25, 0.5, 0.25) (0, 0.25, 0.75) (0, 1, 0) (0, 0.5, 0.5) (0, 0, 1)

The effect of these types of relatedness is represented graphically in Figure 3.2 where π̃m/p is

plotted for the possible combinations of m and p for θ = 0.03. Note that parent-child (marked by

+ in Figure 3.2) must share at least one allele per locus implying that π̃m/p = 0 when m + p , L.
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Figure 3.2: Effect on π̃ for the five types of relatedness with θ = 0.03. The legend explains the

plot characters.

The inclusion of related pairs of profiles were investigated by Curran et al. (2007) using Aus-

tralian data with Caucasian and Aborigine origin. Using that E(π) = E(E[π|R]) = ∑
r∈R E(π|R =

r)P(R = r) they computed expected number of matches by stratifying on close relationships, R.
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They formulated the model with R = {Full-siblings, First-cousins, Parent-child, Unrelated}:

π̄ = απ̃Full-siblings + βπ̃First-cousins + δπ̃Parent-child + γπ, (3.3)

where γ = 1−α−β−δ and the parameters refer to the fraction of the total comparisons that are

made between pairs of full-siblings, first-cousins, parent-child and unrelated, respectively.

After fitting the model to the data, we have parameter estimates of the various parameters in the

(3.3)-model. Thus we have an overall estimate of the probability that a random pair of profiles

in the database has a certain familial relationship, e.g. the probability of two pairs of profiles

originating from a pair of full-siblings in the Western Australia database is 6.91 ×10−6 (Curran
et al., 2007, α-estimate in caption of Fig. 1).

These probabilities might be used in relation to crime cases where a suspect, S , declares that a

close relative is the culprit, C. Let GS be the suspect’s profile (known to the investigator) and

GC the profile of the culprit (unknown, but may be identical to GS ). For some crime cases the

defence may claim that the circumstances of the crime is such that the true offender is a close

relative to S . Given a specific familial relationship, r, it is possible to compute the probability

that S and C share the same DNA profile. We need to distinguish between the situation of

GS being heterozygous or homozygous, and let P(GC = Ai′A j′ |GS = Ai′A j′ ,R = r) and P(GC =

Ai′Ai′ |GS = Ai′Ai′ ,R = r) denote these probabilities, where r is the specified familial relationship

of C and S . Furthermore, the information about r, implies knowledge of k which gives these

expression for the two probabilities:

P(GC=Ai′A j′ |GS=Ai′A j′ ,R=r)=k2+
k1

2

[
P(Ai′ |A j′ , Ai′A j′)+P(A j′ |Ai′ , Ai′A j′)

]
+k0P(Ai′A j′ |Ai′A j′)

=k2+
k1

2

2θ+(1−θ)(pi′+p j′)

1+θ
+2k0

θ2+θ(1−θ)(pi′+p j′)+(1−θ)2pi′ p j′

(1+2θ)(1+θ)
(3.4)

P(GC=Ai′Ai′ |GS=Ai′Ai′ ,R=r)=k2+k1P(Ai′ |Ai′ , Ai′Ai′)+k0P(Ai′Ai′ |Ai′Ai′ )

=k2+k1
2θ+(1−θ)pi′

1+θ
+ k0

6θ2+5θ(1−θ)pi′+(1−θ)2p2i′
(1+2θ)(1+θ)

(3.5)

If the suspect is not the true culprit, then the probability that GS ≡ GC (share the same DNA

profile) is given by π̃10/0. For the five types of relatedness considered here, the probabilities are

plotted in the right-most category in Figure 3.2 for θ = 0.03.

3.3 Results

3.3.1 Simulations

We used the model discussed above to simulate DNA profile databases with known allele fre-

quencies (the estimated allele frequencies from the Danish database) and various values for θ.

For a specified number of DNA profiles, we used the recursive formula of Nichols and Balding
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(1991) for individuals only remotely related P(Ai′ |xn) = [xn
i′θ + (1 − θ)pi′ ]/[1 + (n − 1)θ] to

simulate alleles with a correlation governed by θ where pi′ in the formula is the allele frequency

of allele Ai′ and the vector xn = (xn
1
, . . . , xn

K
) is the sufficient summary statistic (Tvedebrink,

2010). In order to take close relationships among the individuals into consideration, we simu-

lated the number of individuals with a specified relationship nR = (nFS, n1C, nPC, nAV, n − n+),

where all nr are even numbers. The subscripts relates to full-siblings (FS), first-cousins (1C),

parent-child (PC) and avuncular (AV). The last entry in nR refer to the remaining number of

unrelated DNA profiles (UN). Since the comparisons M(Gi,G j) only considers pairs of profiles,

the closely related DNA profiles are simulated in pairs such that:

1. Simulate the first relative R1: R1 ∼ P(Ai′A j′ |xn) = P(Ai′ |xn+1)P(A j′ |xn), where xn+1=xn+e j′

and e j′ is a vector of zeros except for a one in entry j′.
2. Simulate the number of alleles the second relative R2 share IBD with R1: I ∼ P(k).

3. Profile R2 is simulated conditioned on the value of I:

I = 0: R2 is generated unrelated to R1: R2 ∼ P(Ak′Al′ |Ai′A j′ ,x
n), and may be identical (by

state) to R1.

I = 1: The first allele of R2 is drawn randomly from the alleles of R1, e.g. Ai′ is sampled. The

second allele is then sampled from P(Ak′ |Ai′ , Ai′A j′ ,x
n).

I = 2: R2 is identical to R1. Note that only full-siblings has this possibility in our simulations.

By using this sampling scheme we make nr/2 pairwise comparisons for relatedness on level

r, since all other pairs of simulated relatives are mutually unrelated to each other. Hence, the

known vector of pr = {P(R = r)}r∈R is for each simulated database:

pr =

(
nFS

n(n − 1) ,
n1C

n(n − 1) ,
nPC

n(n − 1) ,
nAV

n(n − 1) , 1 −
n+

n(n − 1)

)

From the expressions above it is clear that for increasing database sizes the number of com-

parisons between relatives is o(n2). However the impact on M depends on the product of the

matching probabilities and the fraction of comparisons, π̃rpr. Mueller (2008) argued that the

number of full-sibling pairs in the Arizonian database (n = 65,493) needed to be between 1,000

to 3,000 pairs. This gives that the fraction of pairwise comparisons attributed to full-siblings is

between 4.73 ×10−7 and 1.42 ×10−6 for the Arizonian database.

In the formulation of Weir (2004, 2007) θ was assumed constant across loci. However, this need

not to be the case due to different mutation rates, and possibly selection or indirect selection by

linkage to other genes/markers subject to selection (Tvedebrink, 2010). In our simulations we

used a constant θ across loci for simplicity. For each simulated database we estimated θ using

five optimisation criteria:

C1(θ) =

√∑

m,p

(
Mm/p−Nπm/p(θ)

)2
C2(θ) =

∑

m,p

(
Mm/p−Nπm/p(θ)

)2

Nπm/p(θ)
C3(θ) =

∑

m,p

|Mm/p−Nπm/p(θ)|
Nπm/p(θ)

(3.6)

T1(θ) =
∑

m,p

(
Mm/p−Nπm/p(θ)

)2

Σm/p,m/p(θ)
T2(θ) = {M−Nπ(θ)}⊤Σ(θ)−{M−Nπ(θ)}, (3.7)
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where summation is over the vector entries indexed by m = 0, . . . , L and p = 0, . . . , L−m. The
object functions in (3.6) were investigated by Curran et al. (2007) as a mean to compare the

expected and observed counts. The authors argued that numerical work indicated that C3(θ)

yielded good results since special emphasis is placed on the upper tail of the distribution (large

number of matching loci). The functions in (3.7) uses the covariance matrix, Σ(θ), computed in

this paper (cf. below). The first function, T1(θ), does not take correlations into accounts, whereas

T2(θ) is a natural measure of similarity (a so called Mahalanobis-distance) incorporating the

covariance matrix.

Let M be the M-matrix written in vector format (Appendix see 3.A for details on the transfor-

mation). We derived the expression for the variance of M , Σ(θ), such that T2(θ) = {Nπ(θ) −
M }⊤Σ(θ)−{Nπ(θ) −M } may be compared for various values of θ in order to obtain the minimal

T2(θ). We use the generalised inverse of Σ(θ) since Σ(θ) is not of full rank due to the linear

constraint N = M+/+, where the “+”-notation indicates summation over the index. Let all the

DNA profile identifiers, (i1, i2, i3, i4) be different, then the variance is computed as:

Σ(θ) =

(
n

2

)
V

[
M (Gi1 ,Gi2 )

]
+ 6

(
n

3

)
C

[
M (Gi1 ,Gi2 ),M (Gi1 ,Gi3 )

]
+ 6

(
n

4

)
C

[
M (Gi1 ,Gi2 ),M (Gi3 ,Gi4 )

]
,

(3.8)

where the covariances C
[
M (Gi1 ,Gi2),M (Gi1 ,Gi3)

]
and C

[
M (Gi1 ,Gi2),M(Gi3 ,Gi4)

]
are the

most involved terms to compute since V
[
M (Gi1 ,Gi2)

]
= diag{π(θ)} − π(θ)π(θ)⊤. The full

details are given in Appendix 3.A.

Simulations of unrelated DNA profiles

We simulated 1, 000 databases for varying θ-values, θ ∈ {0.00; 0.01; 0.02; 0.03; 0.04}with 10, 000
DNA profiles per database. For each database we computed the summary statistic M and Fig-

ure 3.3 shows box-plots of the summary statistics on logarithmic scale for eachm/p-category for

θ=0.03. The superimposed vertical boxes (dark grey) represent an approximate 95%-confidence

interval computed by Nπ(θ) ± 2
√
diag{Σ(θ)}, where the approximation rely on an approxima-

tion to normality for the counts. The performance of this approximation increases with the cell

counts, i.e. the smaller the counts the less accurate is the approximation. The light grey boxes

represent the 95% sample confidence interval based on the 2.5% and 97.5% quartiles in the dis-

tribution of the simulated values. Inserted is also the expected value (△) for each category. It is

evident that the median for most categories are identical to the expected value, except for cases

with Nπm/p small. Here, the box plot is of limited use since the observations are “all or nothing”.

For each method the minimum was found by evaluating the function for θi on a fine grid of θ-

values with step length 0.0001 for the interval [0, 0.12]. The box plot of Figure 3.4 compare the

performance of the five measures of similarity between the observed and expected numbers for

the various θ-values. In the box plot the known θ0 is subtracted from the estimated θ̂ such that

the box plot show the deviation of θ̂ from the true value.

The box plot of Figure 3.4 indicate that there is hardly no difference among the methods. How-

ever, the mean squared errors (MSE) in Table 3.3 show that the T2(θ)-method has a slightly better

overall performance compared to the four other methods. Both the box plot and MSE show an
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Figure 3.3: Box plots of the cell counts (on log10-scale) for the various categories for 1,000

simulated databases with 10,000 DNA profiles and θ = 0.03. The legend explains the plot

characters.
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Figure 3.4: Comparisons of the performance of the object functions in (3.6) and (3.7).

increase in the deviation for increasing θ-values. This is due to the larger variability (from the

higher correlation of the profiles) in the simulated data, and hence the available information for

inference about θ decreases.

Table 3.3: Mean square errors for the five different measures of similarity stratified on θ.

C1(θ) C2(θ) C3(θ) T1(θ) T2(θ)

θ = 0.00 1.072 ×10−7 1.136 ×10−7 1.078 ×10−7 1.077 ×10−7 1.205 ×10−7

θ = 0.01 3.432 ×10−5 3.418 ×10−5 3.457 ×10−5 3.280 ×10−5 3.264 ×10−5

θ = 0.02 7.509 ×10−5 7.456 ×10−5 7.601 ×10−5 7.538 ×10−5 7.460 ×10−5

θ = 0.03 1.213 ×10−4 1.205 ×10−4 1.231 ×10−4 1.222 ×10−4 1.208 ×10−4

θ = 0.04 1.711 ×10−4 1.697 ×10−4 1.730 ×10−4 1.727 ×10−4 1.702 ×10−4

Overall 8.034 ×10−5 7.977 ×10−5 8.132 ×10−5 8.061 ×10−5 7.963 ×10−5

Simulations including close relatives

The simulations in the previous section only considered remote relatedness trough allelic cor-

relation governed by θ. However, most realistic reference DNA profile databases contain DNA

profiles from closely related individuals, e.g. brothers and father-son pairs. Hence, we also inves-

tigated the performance of theC(θ) and T (θ)-functions for databases with pairs of close relatives.

For each θ-value we simulated databases with the number of relatives as specified in Table 3.4.
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Table 3.4: The number of simulated relatives for the various θ-values with a total of 10,000DNA

profiles. The numbers in brackets are the relative frequency of pairwise comparisons between

DNA profile with the specified relationship, i.e. the known P(r)-values.

Full-siblings First-cousins Parent-child Avuncular Unrelated

2,000 (2 ×10−5) 2,000 (2 ×10−5) 2,000 (2 ×10−5) 2,000 (2 ×10−5) 2,000 (0.99992)

5,000 (5 ×10−5) 1,000 (1 ×10−5) 1,000 (1 ×10−5) 1,000 (1 ×10−5) 2,000 (0.99992)

1,000 (1 ×10−5) 5,000 (5 ×10−5) 1,000 (1 ×10−5) 1,000 (1 ×10−5) 2,000 (0.99992)

1,000 (1 ×10−5) 1,000 (1 ×10−5) 5,000 (5 ×10−5) 1,000 (1 ×10−5) 2,000 (0.99992)

1,000 (1 ×10−5) 1,000 (1 ×10−5) 1,000 (1 ×10−5) 5,000 (5 ×10−5) 2,000 (0.99992)

Like in in the previous section we want to minimise the deviation between the observed and ex-

pected counts. However, for these simulations the expected value depend on θ and pr through the

expression: E(M; θ,pr) =
∑

r∈R P(R = r)E(M|θ;R = r) =
∑

r∈R prNπ̃
r , as discussed in relation

to (3.3). Let C̃(θ) and T̃ (θ) be as in (3.6) and (3.7), but with Nπ(θ) replaced by
∑

r∈R prNπ̃
r ,

then we seek (θ̂, p̂r) = arg min
(θ,pr)

F̃(θ) for F̃ being either C̃ or T̃ .

It should be noted that for consistency the variance of M should in this case be computed as

Σ̃(θ) = E(V(M |R))+V(E(M |R)). However, we argue that the complexity and cost in computing

Σ̃(θ) is far beyond the gain. Hence, when minimising with respect to T̃1(θ) and T̃2(θ) we use Σ(θ)

in the computations.

The performance of the different optimisation measures is summarised in Figure 3.5 and Ta-

ble 3.5. The pattern of larger variation of the θ-estimates for increasing θ0 is repeated in the

simulations with relatives. From Figure 3.5 there is a remarked spread in the estimates of

P(First-cousins) for the Ci(θ)-methods, i = 1, 2, 3. The MSE for P(r) are generally smaller

for Ci(θ) whereas T2(θ) has smaller MSE for θ.

Assuming that the estimators of θ and pr are unbiased, the expected values are given in Table 3.4

and the estimated variances in Table 3.5. Overall the mean is 10−5 while the standard errors

are ≈ 10−4 indicating that not all parameters seem to be significant. Since the minimisation

is computational intense, we dropped all close relationships but P(FS) and re-fitted the model.

Naturally P(FS) overestimate the actual fraction of full-siblings since it needed to compensate

for first-cousins, parent-child and avuncular. However, the estimate of P(Full-siblings) is for this

reduced model significantly different from zero.

3.3.2 Danish database

The Danish reference DNA profile database was analysed using the described methods and gave

the summary statistic presented in Table 3.1 and Figure 3.1. We have used the T2(θ) method to

estimate the θ and pr for the Danish database. The minimum was obtained with θ̂ = 0.0107 and

p̂r as reported in Table 3.6. It is noteworthy that θ̂ = 0 for all of the Ci(θ)-methods. It seems

rather unlikely that there is no effect of subpopulation after allowing for close relatives.
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Figure 3.5: Box plot of the differences between ψ0 and ψ̂ (with ψ replaced for the relevant

parameters) for various θ-values and number of relatives in the simulated databases.

Note that the estimated P(Full-siblings) for T2(θ) is about a factor 10 larger than 2 ×10
−7 which is

the approximate value obtained if one assumes that every individual of the Danish adult popula-

tion has exactly one full-sibling. However, it is likely that the frequency of full-siblings is larger

in the reference database than in the population due to various factors, e.g. the police’s sampling

criteria and social factors. Inserting these values in π̃ and Σ(θ) gives the expected values and

covariance matrix, and given these quantities we computed marginal 95%-confidence intervals

(superimposed in Figure 3.1).

The argument for using the θ-correction when assessing the evidential weight of a given DNA

profile is to adjust for possible subpopulation effects in the population from which the suspect

and profiles for estimating allele probabilities are drawn. A structured population causes the

probability of observing a specific DNA profile to be heterogeneous, since the prevalence of its

constituting alleles may be higher in some subpopulation relative to the entire population. Taking

the argument further, one could argue that adjustment should be made for close relatedness

between the suspect and “random man”. Hence, when forming the likelihood ratio, LR, the

hypothesis in the denominator could be Hd: “A man possibly related to the suspect is the true

donor of the biological stain”. The evaluation of P(E|Hd) would then be a sum
∑

r∈R P(E|Hd,R =

r)P(R = r), where (Hd,R = r) concretises the specific relationship r between suspect and culprit.
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Table 3.5: Mean squared errors (MSE) for various number of relatives stratified by θ-values.

θ Parameter C1(θ) C2(θ) C3(θ) T1(θ) T2(θ)

0.00 θ 1.354 ×10−7 1.316 ×10−7 1.539 ×10−7 2.514 ×10−4 1.202 ×10−7

P(FS) 1.008 ×10−11 1.897 ×10−8 1.683 ×10−9 1.653 ×10−10 5.238 ×10−6

P(1C) 4.813 ×10−6 8.078 ×10−6 5.762 ×10−7 1.505 ×10−10 3.630 ×10−6

P(PC) 6.835 ×10−11 5.191 ×10−10 1.362 ×10−10 4.788 ×10−9 7.962 ×10−7

P(AV) 1.835 ×10−8 7.247 ×10−8 6.895 ×10−9 1.693 ×10−10 7.217 ×10−8

0.01 θ 3.221 ×10−5 3.273 ×10−5 3.049 ×10−5 2.032 ×10−4 2.984 ×10−5

P(FS) 2.878 ×10−11 8.088 ×10−8 8.669 ×10−10 1.453 ×10−10 1.995 ×10−6

P(1C) 3.825 ×10−5 6.430 ×10−5 7.402 ×10−6 1.431 ×10−10 6.560 ×10−7

P(PC) 1.708 ×10−10 1.428 ×10−9 2.053 ×10−10 8.610 ×10−9 1.052 ×10−6

P(AV) 7.710 ×10−9 3.483 ×10−9 1.590 ×10−8 3.275 ×10−9 6.465 ×10−6

0.02 θ 7.006 ×10−5 7.165 ×10−5 6.542 ×10−5 2.472 ×10−4 6.853 ×10−5

P(FS) 4.029 ×10−11 1.727 ×10−8 1.131 ×10−9 1.719 ×10−10 6.694 ×10−7

P(1C) 7.252 ×10−5 1.055 ×10−4 9.885 ×10−6 1.050 ×10−9 3.598 ×10−7

P(PC) 1.976 ×10−10 7.711 ×10−10 2.924 ×10−10 1.024 ×10−8 5.935 ×10−7

P(AV) 4.547 ×10−9 5.264 ×10−10 1.201 ×10−8 1.250 ×10−8 5.160 ×10−6

0.03 θ 1.232 ×10−4 1.263 ×10−4 1.153 ×10−4 2.237 ×10−4 1.213 ×10−4

P(FS) 5.841 ×10−11 5.695 ×10−9 7.739 ×10−10 1.714 ×10−10 7.768 ×10−7

P(1C) 1.688 ×10−4 1.649 ×10−4 1.854 ×10−5 2.294 ×10−7 3.728 ×10−7

P(PC) 2.294 ×10−10 3.160 ×10−10 3.701 ×10−10 1.490 ×10−8 7.187 ×10−7

P(AV) 3.361 ×10−10 5.053 ×10−10 5.101 ×10−8 6.679 ×10−9 4.757 ×10−6

0.04 θ 1.661 ×10−4 1.698 ×10−4 1.532 ×10−4 2.839 ×10−4 1.463 ×10−4

P(FS) 8.469 ×10−11 1.109 ×10−9 1.195 ×10−9 2.560 ×10−10 1.063 ×10−6

P(1C) 1.886 ×10−4 1.542 ×10−4 2.180 ×10−5 3.568 ×10−7 5.585 ×10−7

P(PC) 2.318 ×10−10 2.240 ×10−10 4.195 ×10−10 1.665 ×10−8 1.028 ×10−6

P(AV) 5.348 ×10−10 8.605 ×10−11 1.799 ×10−8 1.416 ×10−8 5.296 ×10−6

Table 3.6: Estimated values for the Danish database using various object functions.

Method θ P(Full-siblings) P(First-cousins) P(Parent-child) P(Avuncular)

C1(θ) 0.0000 2.592 ×10−6 8.413 ×10−9 1.072 ×10−12 1.930 ×10−9

C2(θ) 0.0000 3.700 ×10−7 5.100 ×10−7 1.000 ×10−8 4.600 ×10−7

C3(θ) 0.0000 5.005 ×10−6 3.534 ×10−7 6.089 ×10−13 2.475 ×10−7

T1(θ) 0.0125 1.072 ×10−6 4.573 ×10−8 5.197 ×10−5 5.930 ×10−9

T2(θ) 0.0107 2.263 ×10−6 1.757 ×10−7 1.491 ×10−6 5.882 ×10−9
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The problem of this approach would be to quantify P(R = r) for a given suspect. One approach

could be to take p̂r as estimated from the database and then form a weighted sum in the denom-

inator. By doing so for the Danish database with the estimated θ, frequencies for alleles and

pairs of relatives we obtained LR and LRr, where LRr denotes the LR taking close relatives into

account:

LRr =
P(E|Hp)

P(E|Hd)
=

P(E|Hp)∑
r∈R

P(E|Hd,R = r)P(R = r)
=

1∑
r∈R

P(GC |GS ,R = r)P(R = r)
,

where P(GC |GS ,R = r) is computed by multiplying (3.4) and (3.5) over loci.

For each profile in the database we computed LR assuming that the profile was that of a suspect

in single contributor crime case, i.e. LR = 1/P(GU |GS ) where P(GU |GS ) is the probability of

observing an unknown profile, GU , (the defence hypothesis) given the suspect’s profile, GS .

Similarly we computed LRr under the same circumstances, except that the unknown profile may

a close relative to the suspect.

In Figure 3.6, we have plotted log10 LRr against log10 LR and see that the relationship is close

to linear: log10 LRr = β + α log10 LR. Estimating the parameters (α̂, β̂) = (0.115, 8.59) we ob-

tain a simple formula to calculate LRr from LR: LRr = 108.59LR0.115. In Figure 3.6, we have

superimposed the predicted value (solid line) with the uncertainty represented by the predictive

interval (dashed lines). The estimated mean and standard deviation of log10 LR/LRr are respec-

tively 3.128 and 0.97. Hence, an approximative confidence interval for the ratio is given as

103.128±1.96 ×0.97 = [27 ; 106,955], i.e. taking close relatives into account decreases the LR with up

to five orders of magnitude. The dominating contribution to the sum of P(E|Hd) is that of full-

siblings, P(E|Hd,R=FS) p̂FS, which accounts for approximately 99.5% of LRr. In Figure 3.2

this was also the category with the largest π̃10/0. Hence, for practical purposes the only relevant

type of close relatedness to include in LRr is full-siblings since the decrease in P(E|Hd,R) for

the remaining types of relatives is minimal relative to p̂r. Furthermore, previous we saw that the

model only including full-siblings and unrelated increased P(Full-siblings). Thus, this would

decrease LRr further yielding a more conservative evaluation of the evidence.

3.4 Discussion

It is evident from the analysis of the Danish reference DNA profile database that a θ-correction

close to 1% is sufficient to capture the effects from substructure among the typed DNA profiles.

Furthermore, did the analysis indicate the presence of close relatives in the database. A fact

that were known beforehand, but the number of close relatives were unknown. However, the

significance of the estimated probabilities, p̂r, were not assessed implying some of them may be

set to zero.

It is unknown whether it makes sense to present the LRr in court since often the judge and jury

are more interested in the LR for a specific relationship rather than a mean over common relation-

ships with numerical impact on P(E|Hd). However, LRr may be used in order to accommodate

for the fact that “the unrelated man” may in fact be a unknown close relative to the suspect.
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Figure 3.6: Relationship between LR and LRr with a predictive interval superimposed (solid

line: mean, dashed lines: predictive limits). The shaded hexagons indicate bin counts.

3.5 Conclusion

The main objective with the work presented in this paper were to analyse the Danish reference

DNA profile database of 51,517 different individuals. This was to accommodate the fact that at

some point two apparently unrelated individuals will share DNA profiles for all ten loci in the

Danish population. If a specified relationship is determined it is straight forward to calculate the

probability of identical DNA profiles, however, one still needs to account for remote coancestry

for both related and unrelated pairs of profiles.

Furthermore, only modelling the expected value or calculating the mean is never satisfactory in

statistics. A measure of precision or variability is needed in order to discuss the extremity of an

observation relative to the expectation under a given model. Hence, deriving and computing the

covariance matrix of M was essential. However, as the simulations exemplified that there was no

pronounced improvement by using the Mahalanobis distance, T2(θ) = [M −Nπ(θ)]⊤Σ(θ)−[M −
Nπ(θ)], rather than the C(θ)-functions for estimating θ.
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Appendix

3.A Derivation and computation of the variance

In order to compute the variance of the summary matrix, we use the definition of variance

and covariance for random variables. First, note that M(Gi,G j) may be listed as a vector:

M(Gi,G j) → M (Gi,G j), where the mapping operates on the m/p values: f (m, p; L) = m[(L +

1) + (m − 1)/2] + (p + 1), where L is the total number of loci. Next, we expand the expression

V(M) = Σ(θ):

Σ(θ)=V


n−1∑

i=1

n∑

j>i

M (Gi,G j)



=

n−1∑

i=1

n∑

j>i

V

[
M (Gi,G j)

]
+ 6

n−2∑

i=1

n−1∑

j>i

n∑

k> j

C

[
M (Gi,G j),M(Gi,Gk)

]

+

n−1∑

i=1

n∑

j>i

n−1∑

k,{i, j}

n∑

l>k
l,{i, j}

C

[
M (Gi,G j),M(Gk,Gl)

]

=

(
n

2

)
V

[
M (Gi1 ,Gi2)

]
+6

(
n

3

)
C

[
M (Gi1 ,Gi2),M(Gi1 ,Gi3)

]
+6

(
n

4

)
C

[
M (Gi1 ,Gi2),M (Gi3 ,Gi4)

]

where (i1, i2, i3, i4) in the last line relates to any of the DNA profiles in the database as long as

they are different profiles. We go from the first to second line by expanding the sum and observe

that C[M(Gi1 ,Gi2),M(Gi1 ,Gi3)] = C[M (Gi1 ,Gi2),M(Gi2 ,Gi3)] = C[M (Gi1 ,Gi3),M(Gi2 ,Gi3)]

since M (·, ·) is symmetric. The sum over the last term in the expansion,

C[M (Gi1 ,Gi2),M(Gi3 ,Gi4)] with all profile indexes different, also contain several symmetries

implying the weights in the final expression. In order to compute the covariances, we need to

compute

E

[
M(Gi1 ,Gi2)M (Gi1 ,Gi3)

⊤
]

and E

[
M (Gi1 ,Gi2)M (Gi3 ,Gi4)

⊤
]
,

respectively, given that the DNA profile indexes (i1, i2, i3, i4) are all different.

For computingE
[
M (Gi1 ,Gi2)M(Gi1 ,Gi3)

⊤]we need to account for the fact that profileGi1 enters

in both pairwise comparisons. Hence, we need to condition on Gi1 when deriving the probabil-

ities πm/p,m̃/ p̃ =
∑

i′, j′ P(m/p, m̃/ p̃|Gi1=Ai′A j′)P(Ai′A j′ ) for all combinations of m/p, m̃/ p̃, where

m/p relates to the number of matches/partial-matches ofGi1 andGi2 , with a similar definition of

m̃/ p̃ for profilesGi1 andGi3 .

As for the mean we use a recursion formula over loci to compute πm/p,m̃/ p̃. However, in this

setting there are nine terms on the right hand side:

πℓ+1m/p,m̃/ p̃ = π
ℓ
m/p,m̃/ p̃P

ℓ+1
0/0,0/0 + π

ℓ
m/p−1,m̃/ p̃P

ℓ+1
0/1,0/0 + π

ℓ
m−1/p,m̃/ p̃P

ℓ+1
1/0,0/0+

πℓm/p,m̃/ p̃−1P
ℓ+1
0/0,0/1 + π

ℓ
m/p,m̃−1/ p̃P

ℓ+1
0/0,1/0 + π

ℓ
m/p−1,m̃/ p̃−1P

ℓ+1
0/1,0/1+

πℓm−1/p,m̃/ p̃−1P
ℓ+1
1/0,0/1 + π

ℓ
m/p−1,m̃−1/ p̃P

ℓ+1
0/1,1/0 + π

ℓ
m−1/p,m̃−1/ p̃P

ℓ+1
1/0,1/0.
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When one or more of the subscripts are zero there are similar boundary conditions for πm/p,m̃/ p̃ as

those specified in Section 3.2.2. The probabilities Pm/p,m̃/ p̃ are found by considering the events

separately. For each configuration of (m/p, m̃/ p̃) ∈ {(x0/y0, x1/y1) : (xi, yi) ∈ {0, 1}∧0 ≤ xi+yi ≤
1} we compute the probabilities:

Pm/p,m̃/ p̃ = P(m/p, m̃/ p̃) =
∑

i′ , j′

P(m/p, m̃/ p̃|Gi1 = Ai′A j′)P(Ai′A j′)

Each of the probabilities in the sums are expanded such that the events specified by m/p and

m̃/ p̃ are satisfied, e.g. m/p = 1/0 and m̃/ p̃ = 1/0 implying that both profileGi2 andGi3 matches

the profiles of Gi1 on that particular locus:

P(1/0, 1/0) =
∑

i′ , j′,i′

P(Ai′A j′ , Ai′A j′ |Ai′A j′)P(Ai′A j′) +
∑

i′

P(Ai′Ai′ , Ai′Ai′ |Ai′Ai′ )P(Ai′Ai′ )

= 2
∑

i, j,i

P(Ai′Ai′A j′A j′ |Ai′A j′ )P(Ai′A j′ ) +
∑

i′

P(Ai′Ai′Ai′Ai′ |Ai′Ai′ )P(Ai′Ai′)

= 4
∑

i, j,i

P(Ai′Ai′Ai′A j′A j′A j′) +
∑

i′

P(Ai′Ai′Ai′Ai′Ai′Ai′).

From the recursive formula P(Ai′ |xn) = [xn
i′θ + (1 − θ)pi′ ]/[1 + (n − 1)θ], we see that the de-

nominator only depends on the total number of sampled alleles. Hence, for a probability like

P(Ai′A j′Ak′A j′Ai′Ai′ ) that involves six alleles, the denominator will always be
∏5

n=1(1 + nθ).

Hence, to keep the formulae simple, we only consider the numerator in the following deriva-

tions. First, we observe that:

P(Ai′A j′Ak′A j′Ai′Ai′ ) = P(Ai′ |A j′Ak′A j′Ai′Ai′)P(A j′Ak′A j′Ai′Ai′ )

= [θ(βi′ − 1) + (1 − θ)pi′]P(A j′Ak′A j′Ai′Ai′ )

= θ(βi′ − 1)P(A j′Ak′A j′Ai′Ai′) + (1 − θ)pi′P(A j′Ak′A j′Ai′Ai′ ), (3.9)

where βi′ counts the number of i′ alleles in the expression on the left hand side. Now, the term

θ(βi′ − 1)P(A j′Ak′A j′Ai′Ai′) follows a similar expansion as the left hand side of (3.9). How-

ever, the latter term of (3.9) involves pi′ which needs to be taken into account when evaluating

P(A j′Ak′A j′Ai′Ai′ ). By following the recursion to the end, that is when the left hand side of

(3.9) is, say, P(Ai′A j′ ) = P(Ai′ |A j′)P(A j′) = [(βi′ − 1)θ + (1 − θ)pi′ ]p j′ = (1 − θ)pi′ p j′ we end

up with terms of the form a0 θ
a1 (1 − θ)a2 pα1

1
· · · pαK

K
for some constants a = (a0, a1, a2) and

α = (α1, . . . , αK). The values of a andα is build up during the recursion, hence determining the

actual value is only a matter of bookkeeping.

Furthermore, consider the case where the product of allele probabilities is p2
i′ p

2
j′ p

2
k′ where the

indexes are different. A first step would be to replace p2
k′ = S 2− p2i′− p2j′ and sum over p2

i′ p
2
j′ (S 2−

p2
i′ − p2

j′) for i
′
, j′. However, such calculations are very cumbersome to do by hand and from

the equation below we see that there is a lot of repeated structure that may be exploited:

,∑

i′, j′,k′

p2i′ p
2
j′ p

2
k′ =

,∑

i′, j′

p2i′ p
2
j′ (S 2 − p2i′ − p2j′ ) = S 2

,∑

i′ , j′

p2i′ p
2
j′−

,∑

i′ , j′

p4i′ p
2
j′−

,∑

i′ , j′

p2i′ p
4
j′ ,



3.A Derivation and computation of the variance 55

where the notation imply summation over different values of the indexes. Rewriting the expres-

sion above with the powers replaced by the α-parameters we get this more general expression:

,∑

i, j,k

p
αi′
i′ p

α j′

j′ p
αk′
k′
=


∑

k′

p
αk′
k′


,∑

i, j

p
αi′
i′ p

α j′

j′ −
,∑

i, j

p
αi′+αk′
i′ p

α j′

j′ −
,∑

i, j

p
αi′
i′ p

α j′+αk′

j′

where all α-parameters were 2 in the previous example. The formula can be programmed

in a computer as a recursion formula. Hence, in contrast to the simpler situations only in-

volving a pair of DNA profiles where a few equations give the necessary probabilities (Weir,

2004, 2007), we let the computer compute the expectations E[M (Gi1 ,Gi2)M (Gi1 ,Gi3)
⊤] and

E[M (Gi1 ,Gi2)M (Gi3 ,Gi4)
⊤]. We have implemented efficient functions in R to compute these

and other expectations implying that variances is computed within 10 to 30 seconds on a 2.5

GHz laptop computer for each θ-value. In order to get a impression of the structure in the matrix

we have plotted a heat-map of the correlation matrix Ω(θ) computed by:

Ω(θ) = diag
[
1/

√
diag{Σ(θ)}

]
Σ(θ)diag

[
1/

√
diag{Σ(θ)}

]

In Figure 3.7 we have plottedΩ(0.03) in grey-scale colours. However, the on line supplementary

material has a coloured animation showing the change in pattern inΩ(θ) for θ = [0, 0.001, . . . , 1].
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Figure 3.7: Graphical representation of the correlation matrix Ω(θ) computed for θ = 0.03 and

n = 10, 000.
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3.6 Supplementary remarks

It is relevant to be aware of and acknowledge the power of the DNA typing technology and its

role in the society. To most people DNA evidence is thought of as flawless and superior to any

other sort of evidence. However, due to the very nature of DNA profiles there is a possibility that

a pair of apparently unrelated individuals share a DNA profile. As pointed out by Weir (2007,

pp. 360-361) this is related to the ’birthday problem’ where one computes the probability that

at least two individuals out of n have the same unspecified birthday. The fact that n = 23 gives

more than 50% probability of at least two individuals sharing birthday is surprising to many at

first glance. However, this is due to the fact that the birthday is not specified. Similarly, when

computing the probability that any two individuals share DNA profile the actual alleles of their

common profile is not specified. If the profile were specified the computed probability would

in fact be the match probability of two DNA profiles. When summing over the possible DNA

profiles we obtained NπL/0(θ), which was the expected number of pairs of individuals with iden-

tical DNA profiles. For the allele probabilities estimated from the Danish reference database we

obtain π10/0(θ) ≈ (α0 + α1θ)
α2 which for non-negative parameters, α̂ = (0.13, 0.87, 14.71), is a

monotonic increasing function. That is, the probability increase with θ, i.e. the more heteroge-

neous the population is, the larger is the probability of coinciding DNA profiles.

However, this fact does not imply that DNA profiling is overrated nor that the weight of evidence

reported in court is overstated. When using the LR-approach the reported evidential-value relates

to the specific DNA profile of a suspect. The pairwise comparisons of each pair in the DNA

database were used to validate the population genetic model. The diagnostics presented above

indicated that the differences between the observed and expected counts were not too extreme,

and thus we may still have confidence in the models used for reporting the evidential weight in

court.
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Abstract:

The evaluation of results from mixtures of DNA from two or more persons in crime case inves-

tigations may be improved by taking not only the qualitative but also the quantitative part of the

results into consideration. We present a statistical likelihood approach to assess the probability

of observed peak heights and peak areas information for a pair of profiles matching the DNA

mixture. Furthermore, we demonstrate how to incorporate this probability into the evaluation of

the weight of the evidence by a likelihood ratio approach.

Our model is based on a multivariate normal distribution of peak areas for assessing the weight

of the evidence. Based on data from analyses of controlled experiments with mixed DNA sam-

ples, we exploited the linear relationship between peak heights and peak areas, and the linear

relations of the means and variances of the measurements. Furthermore, the contribution from

one individual’s allele to the mean area of this allele is assumed to be proportional to the average

of peak height measurements of alleles, where the individual is the only contributor.

For shared alleles in mixed DNA samples, it is possible to observe only the cumulative peak

heights and areas. Complying with this latent structure, we used the EM-algorithm to impute

the missing variables based on a compound symmetry model. The measurements were subject

to intra- and inter-locus correlations not depending on the actual alleles of the DNA profiles.

Due to factorisation of the likelihood, properties of the normal distribution and use of auxiliary

variables, an ordinary implementation of the EM-algorithm solved the missing data problem.

Keywords:

STRDNAmixture; Forensic genetics; Missing data; EM-algorithm; Compound symmetrymodel;

Multivariate normal distribution

4.1 Introduction

4.1.1 DNA mixtures

The model presented in this paper is intended to be used in forensic genetics when facing DNA

data from biological stains with more than one contributor (see Gill et al. (2006) for a detailed

description of the DNAmixture problem). This specific problem has received increasing interest

from both forensic geneticists and statisticians over the last decade, e.g. Evett and Weir (1998);

Gill et al. (1998, 2006); Perlin and Szabady (2001); Bill et al. (2005); Cowell et al. (2007a).

When a crime has been committed, biological stains are often found at the scene of crime. DNA

is present in almost all human cells and by using biochemical procedures, forensic geneticists

are able to extract the DNA from the body fluids for further analysis. In many cases, more

than one individual has contributed to a stain, which is then called a DNA mixture. Mixtures

of DNA often appear in relation to crime cases, e.g. rape cases with one or more rapists, and

cases involving violence. DNA may be extracted from semen obtained by a vaginal swab or

from blood present on the victim’s clothing.
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In crime casework today, there is an international consensus to investigate DNA from short

tandem repeat regions - STRs. The STR regions are situated between the coding regions in

the DNA. The polymorphism of an STR region mainly results from differences in the number

of repeated sequences. This leads to variations in the total lengths of the STR regions from

person to person. In many European countries, ten STR systems and the sex-specific marker

amelogenin are routinely investigated in crime cases bymeans of the SGMPlus STR kit (Applied

Biosystems). The loci are located on different chromosomes. This is generally assumed to be

sufficient to ensure statistical independence of alleles at different loci.

For the most common STR technologies used in forensic DNA analyses, the alleles are read from

an electropherogram (pictured in Fig. 4.4) as peaks on a given scale. This makes two types of

data available: qualitative allele type data, determined by the position of the peak (measured in

DNA base pairs), and quantitative peak intensity data summarised by the height and area of the

peak (measured in relative fluorescence unit, rfu). The set of observed alleles is termed a DNA

profile.

The shaded cones in Fig. 4.4 show a typical picture of a DNA mixture comprising ten STR

loci (denoted D3, vWA, . . . , FGA in Fig. 4.4) used in forensic genetics. The peak height and

area associated with an allele reflect the amount of DNA contributed to that particular allele.

The potential peak positions of some loci overlap, which makes it necessary to use different

fluorescent dyes (the different rows in Fig. 4.4 correspond to blue (D3, vWA, D16, D2), green

(D8, D21, D18) and yellow (D19, TH0, FGA) fluorescent dyes) with a subsequent spectral

deconvolution of the signal (Butler, 2005).

Depending on the DNA profiles mixed in the sample, the number of alleles present for each locus

in a two-person DNA mixture ranges from one to four alleles since an individual may be either

homozygous (carrying two identical copies of the same allele) or heterozygous (two different

alleles), and the individuals may share one or both alleles. This implies that the amount of DNA

contributed to each allele varies and the peaks are therefore expected to vary in height and area.

In this paper, we present a statistical model for the peak areas for a given pair of profiles while

taking into account the variable dimension (sub-vectors of dimension one to four for different

loci) of the measurements.

4.1.2 Evaluating the weight of evidence

A complete DNA investigation is a very effective tool for excluding individuals who are not

very closely related to the person from whom the stain material originated. A match between

complete DNA profiles of a stain and a person is very strong evidence for the assumption that the

stain came from that person compared with the assumption that the stain came from a random

person. The weight of DNA evidence can be calculated in each case based on assumptions

about the setting and knowledge of the distribution of the DNA characteristics in the relevant

population. The weight of evidence from DNA investigations is generally accepted in almost all

countries in which DNA investigations are used.
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Methods are available to estimate the weight of the evidence of the qualitative results (Balding

and Nichols, 1994; Evett andWeir, 1998). However, we do not have goodmathematical methods

to take into consideration the quantitative aspects of the DNA results in order to answer questions

like: Can the two DNA profiles in a crime scene DNAmixture be identified based on the strength

of the DNA results? Are the strengths of the various DNA results in a crime scene mixed DNA

profile (that seems to consist of a major and a minor DNA profile) compatible with the hypothesis

that the DNA comes from two persons with known DNA profiles?

Estimating the weight of evidence in forensic sciences is often done in terms of a likelihood

ratio, which is the ratio of the probability of the evidence, E, under two competing and mutually

distinct but not exhaustive hypotheses. In the literature these two hypotheses are often denoted

Hp and Hd for the “prosecutors hypothesis” and “defence hypothesis” respectively (Evett and

Weir, 1998). Even though the hypotheses may have different origin than those of the prosecutor

and defence, we apply the notation of Hp and Hd in this paper to denote the two disjoint events

claimed in the hypothesis, i.e. the likelihood ratio is given by LR = P(E|Hp)/P(E|Hd), where

large values of LR support the Hp-hypothesis. For example in case of a rape the Hp-hypothesis

may be: “The victim and the suspect are the contributors to the stain”, whereas the Hd-hypothesis

states: “The victim and an unknown individual unrelated to the suspect are the contributors

to the stain”. We denote the crime scene evidence from the mixture Ec = (G,Q), where G

denotes the qualitative allele information, and Q represents the quantitative peak information as

measurements of peak heights and areas. The most frequent way to assess the probability P(E|H)

is by solely using the qualitative information G in terms of allele probabilities. In DNAmixtures,

however, this may discard important quantitative information of the DNA evidence. Thus, the

probability of the evidence E given a hypothesis H needs to include both parts of the evidence G

and Q.

We define GV , GS and GU to be the profiles of the victim, the suspect and a potential unknown

and unrelated contributor, respectively. Both hypotheses Hp and Hd in our rape example are

formulated such that they are consistent with G, i.e. all alleles in G are accounted for and only

alleles in G appear in the included profilesGV , GS andGU . When fixing only one profile,G′′, of
a two-person mixture, the consistency with G induces the set C = {G′ : (G′,G′′) ≡ G}, which are
all profiles, G′, that together with G′′ are consistent with G. If the Hp-hypothesis claims G to be

a mixture of GV and GS , Hp:(GV ,GS ), while the Hd-hypothesis claims it is a mixture of GV and

GU , Hd:(GV ,GU), the likelihood ratio is

LR =
P(Ec,GS ,GV |Hp)

P(Ec,GS ,GV |Hd)
=

P(Q,G,GS ,GV |Hp)

P(Q,G,GS ,GV |Hd)
=

P(Q|G,GS ,GV ,Hp)P(G,GS ,GV |Hp)

P(Q|G,GS ,GV ,Hd)P(G,GS ,GV |Hd)
,

where GS and GV enter as evidence as these are determined from the case circumstances. Let

Cd = {GU : (GV ,GU) ≡ G} be the set of unknown profiles that together with GV are consistent

with G, then P(G|GV ,GU) = 1 for GU ∈ Cd and 0 otherwise, i.e. the set of possible unknowns

under Hd. We expand the denominator of the LR using hypothesis Hd,

P(E,GS ,GV |Hd) =
∑

GU∈Cd

P(Q|G,GS ,GV ,GU)P(G,GS ,GV ,GU),
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Table 4.1: The four DNA profiles used in the controlled pairwise two-person mixture experi-

ments.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

A 14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 20,22

B 15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,9 19,23

C 15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24

D 16,19 15,17 10,12 23,25 13,13 28,30 12,16 13,15 6,7 20,23

where (GV ,GU) ≡ G and Hd is assumed, which implies that P(Q|G,GS ,GV ,GU) = P(Q|GV ,GU)

and P(G,GS ,GV ,GU) = P(GS ,GV ,GU). Hence,

P(E,GS ,GV |Hd) =
∑

GU∈Cd

P(Q|GV ,GU)P(GS ,GV ,GU).

Similar arguments apply to the numerator of LR, and assuming independence between the pro-

files involved, i.e. unrelated individuals such that P(GS ,GV ,GU) = P(GS )P(GV)P(GU), the final

LR expression is:

LR =
P(Q|GS ,GV)∑

GU∈Cd

P(Q|GV ,GU)P(GU)
, (4.1)

where the factors P(GS )P(GV ) have cancelled out. The numerator P(Q|GS ,GV ) of (4.1) assesses

the probability of observing the quantitative information given that the mixture consists of ge-

netic material from the profiles GS and GV . The denominator equals the mean value of the

quantitative likelihood among the pairs of profiles that are consistent with the genetic trace. If

we assume P(Q|GS ,GV ) = P(Q|GV ,GU) for all GU , i.e. the observed quantitative information

has equal probability for all profiles paired with GV , then (4.1) reduces to the usual likelihood

ratio as in Evett and Weir (1998), since P(Q|GS ,GV ) and P(Q|GV ,GU) then cancel each other in

(4.1). The assumption that the profiles GS , GV and GU are independent is a rather strong. The

so-called “θ-correction” incorporates the correlation from shared ancestry (Balding and Nichols,

1994) and closer familial relationships induces further correlation of the genetic profiles. How-

ever, for the purpose of introducing the factorisation of the qualitative and quantitative evidence

the assumption used in (4.1) is adequate.

The objective of the present paper is to develop a methodology and an adequate statistical model

to describe P(Q|G′,G′′), where both of the true profiles G′ and G′′ are known. This comprises

a mathematical formalism of inter-locus dependencies of the quantitative evidence, the relation-

ships between a sample’s peak heights, peak areas, and the amount of DNA contributed to the

individual peak.
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Figure 4.1: Proportionality of peak areas and amounts of DNA of square root transformed data.

4.2 Material and methods

4.2.1 Experimental data

The assumptions made as to the amplification behaviour of mixed DNA samples were based

on data exploration of controlled experiments conducted at The Section of Forensic Genetics,

Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen. The

experiments consisted of pairwise two-person mixtures in various mixture ratios of the four

profiles in Table 4.1. The data were prepared as described in Tvedebrink et al. (2009). The

assumptions made did not contradict the assumptions made in e.g. Cowell et al. (2007a):

1. proportionality of the peak areas and the amount of DNA in the sample,

2. linearity of the observed peak areas and peak heights,

3. proportionality of the means and variances of peak areas.

These assumptions were supported by the plots in Fig. 4.1 and Fig. 4.2, which were based on data

from the experiments described in Tvedebrink et al. (2009). The validity of the last assumption

was emphasised by fitting a linear model: Area/
√
DNA = βs

√
DNA + ε, with ε ∼ N(0, σ2) and

with βs being a locus specific proportionality factor. Graphical inspections show no systematic

dependence of squared residuals and DNA.
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Figure 4.2: Proportionality of peak heights and peak areas. The proportionality factor depends

on loci.

4.2.2 Model description

In a DNA mixture of profiles C and D (Table 4.1) we would observe peaks for alleles 15, 16 and

19 in locus D3. The peaks are expected to vary in height and area due to the different amounts of

DNA contributed to the alleles, e.g. both profiles contribute to the peak of allele 16. For identical

alleles we assume that the peak areas of each individual are additive resulting in an observable

cumulative vector of peak areas,M . Similarly, for homozygous profiles, the contribution to the

observable peak area is the sum of two identical peak areas.

The unobservable peak areas, A, from each individual are input for modelling the observable

quantitative data, Q, from DNA traces for the assessment of P(Q|GV ,GP), where GV and GP

are the profiles of the victim and true perpetrator, respectively. We use the EM-algorithm in

addressing the DNA mixture problem because it can be formulated as a missing data problem

(Little and Rubin, 2002). The model is derived for two-person mixtures but can be extended to

cope with more than two contributors.

In the following, we let S denote the set of loci and S the number of loci used for identification,

i.e. |S| = S . For parameter estimation, we have access to data fromC mixtures of known profiles.

The amount of DNA contributed to the mixture by person k, k = 1, 2, was modelled by H(k). This

is a sum of the observed peak heights with person k as the only contributor divided by a sum
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Figure 4.3: Linearity of the H-ratio and DNA-ratio with the identity line (y = x) superimposed.

The outlier at (−2.77,−0.55) was due to entry error of the laboratory.

of indicators with value two and one for alleles from loci where person k is homozygous and

heterozygous, respectively. Let h
(k)
i

be the ith peak height with person k as the only contributor,

H(k) =
{
n
(k)

het
+ 2n

(k)

hom

}−1 ∑n(k)

i=1 h
(k)
i
, where n(k) = n

(k)

het
+ n

(k)

hom
is the number of person ks alleles from

heterozygous, n
(k)

het
, and homozygous loci, n

(k)

hom
, and person k is the only contributor. Thus, H(k)

is an estimate of the average peak height associated with person ks alleles.

Fig. 4.3 shows a plot of the ratio H(1)/H(2) against the DNA ratio reported by the laboratory. The

data demonstrate that it is reasonable to use H(k) as a proxy for the amount of DNA contributed

by person k. Furthermore, for each pair of profiles, the quantities H(1) and H(2) can be computed

using only the peak height observations.

We assumed independence among the components ofA and that they followed a normal distri-

bution with both mean and variance proportional to the amount of DNA. The components ofA

are A
(k)
s,i

for person k, locus s and allele i. We have A
(k)
s,i
∼ N(αsH

(k), σ2
sH

(k)) which implies the

same distribution of both alleles of locus s for person k.

The parameters αs and σs, s∈S, are locus dependent and shared for all cases, c = 1, . . . ,C.

This parameterisation ensures the proportionality of the mean and variance and that both are

proportional to the amount of DNA modelled by H(k). Since H(k) is the same for all loci, the

αs ensure that the amplification efficiency may vary between loci. Hence, the magnitude of αs

reflects the emission intensity of locus s. Furthermore, the variation modelled by σ2
s can be

interpreted as the data preprocessing variation of the STR allele signals, e.g. variability from
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pipetteting the samples.

The relation between M and A is expressed as a linear transformation, T , adding together

peak areas from identical alleles, and an additional error term related to the measurement error,

M = TA + ε. For the measurement errors, ε, we assume independence of A and multivariate

normal distribution with some dependencies within and across loci. We denote the covariance of

ε as Cov(ε) = Ω. Let the dimension ofM be n =
∑

s∈S ns, where ns, 1 ≤ ns ≤ 4, is the number

of observed alleles in locus s. The transformation, T , is an n × 4S -block diagonal matrix with

block matrices T s with 0 and 1 entries according to the profiles in the mixture. For each locus,

s, we sort the unobservable peak areas, As, by allelic number of each person, whereasMs is

sorted by allelic number. For a mixture of profile B and D from Table 4.1, the genotypes in locus

s = D3 are P
(1)
s = (15, 16) and P

(2)
s = (16, 19), and the associated matrix T s is

Ms =
(
Ms,15 , Ms,16 , Ms,19

)⊤
=


1 0 0 0
0 1 1 0
0 0 0 1


(
A
(1)
s,15

, A
(1)
s,16

, A
(2)
s,16

, A
(2)
s,19

)⊤
+ εs,

adding together the entries inAs that relates to the same allele, i.e. allele 16.

The number of allelic measurements within each locus varies from case to case since different

pairs of profiles will share a different number of alleles. A mixture of person A and B would

have nD3 = 4, and B and C has nD3 = 2 (see Table 4.1). Not only will the number of alleles vary,

the specific alleles present in a given mixture depends on the profiles in the mixture, e.g. A and

B give alleles {14, 15, 16, 18}, and B and C give {15, 16}. This makes it difficult to incorporate a

covariance structure covering all allele combinations.

We standardised the residual, ε, by the observed peak heights, h = (hs)s∈S with hs = (hs,i)
ns
i=1

,

by defining the scaled residual, ε̃ = (ε̃s)s∈S, where ε̃s = (εs,i/
√
hs,i)

ns
i=1

. To make the model

operational, we assumed a compound symmetry model for the covariance of ε̃, Cov(ε̃) = Ω̃ and

that this does not depend on the specific alleles in the mixture. The only case specific adjustment

made was to make the dimensions of the compound symmetry concordant with the number of

observed peaks for each locus. The compound symmetry structure of Ω̃ implies that sub-vectors

of ε̃ share some properties with respect to the scaled covariance Ω̃. There are three different

types of correlation in our setting:

• Different loci (s , t): Cov(ε̃s,i, ε̃t, j) = νst.

• Same locus, different alleles (s = t, i , j): Cov(ε̃s,i, ε̃s, j)=νss.

• Same locus, same allele (s = t, i = j): Cov(ε̃s,i, ε̃s,i) = Var(ε̃s,i) = νss + τs.

Hence, we can parameterise Ω̃ by τ = {τs}s∈S and Λ = {νst}s,t∈S. The interpretation of νst is

that the correlations between observations at different loci depend only on the loci and not on

the specific alleles present on each locus. Similarly, the correlation between alleles on the same

locus, s, is independent of the specific alleles, whereas for identical elements, the covariance

corresponds to the variance, and the addition of τs allows for a larger variance than that given by

the intra-locus covariance.
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4.2.3 Implementation of the EM-algorithm

In order to handle the latent structure of A and the associated missing data problem, we used

the EM-algorithm to impute the missing observations and estimate the parameters in the condi-

tional distribution ofA givenM . However, since the dimensions ofM and sub-vectors hereof

varied from case to case, we obtained a likelihood, which was not very well suited for the imple-

mentation of the EM-algorithm. The problem was solved by introducing appropriate auxiliary

variables.

This allowed for an implementation of the EM-algorithm in the usual full exponential family

framework with the constraint that the νss-parameters should be positive, i.e. this method implies

positive intra-locus covariances. However, the inter-locus covariances νst are not constrained.

The parameters estimated using the EM-algorithm are not case specific but reflect the distribution

of the quantitative STR DNA in the laboratory.

Appendices 4.A and 4.B give mathematical details on the model and the implementation of the

EM-algorithm.

4.3 Impact on the likelihood ratio

Asmentioned in Section 4.1.2, both the qualitative and quantitative evidence need to be evaluated

for proper use of the available information from a crime scene. The probability P(Q|G′,G′′) in
the likelihood ratio of (4.1) is evaluated by using the fitted model to calculate L(M |G′,G′′) =
|Σ(G′ ,G′′)|−1/2 exp{− 1

2
(M − µ(G′ ,G′′))

⊤Σ−1(G′ ,G′′)(M − µ(G′ ,G′′))} of (G′,G′′) and thus yielding the

observed signalM , whereas P(G′) as usual is assessed using the allele frequencies (Evett and

Weir, 1998).

Consider a more complicated case with no identified victim where the crime scene stain is as-

sumed to be a mixture of two DNA profiles, e.g. DNA extracted from a cigarette butt found

at the scene of crime. Then, given a suspect profile GS , the Hp-hypothesis claims the stain to

be a mixture of the suspect and an unrelated unknown profile, Hp:(GU ,GS ), whereas the Hd-

hypothesis states it is a mixture of two unrelated unknown profiles, Hd:(GU1
,GU2

). We form two

sets Cp = {GU : (GS ,GU) ≡ G} and Cd = {(GU1
,GU2

) : (GU1
,GU2

) ≡ G}, consistent with each

hypothesis. Similar arguments as used for obtaining (4.1) imply that LR is:

LR =
P(E,GS |Hp)

P(E,GS |Hd)
=

∑
GU∈Cp

L(M |GU ,GS )P(GU)

∑
(GU1

,GU2
)∈Cd

L(M |GU1
,GU2

)P(GU1
)P(GU2

)
.

Note that the sum in the denominator involves 7S 212S 36S 4 terms, where S i is the number of loci

with i observed peaks. This follows from the fact that there are 7, 12 and 6 possible combinations

for two, three and four alleles to be assigned to two individuals, respectively. However, this often

yields an intractable number of combinations, where only a limited number of pairwise profiles

actually have a likelihood value, L(M |GU1
,GU2

), large enough to have numerical impact on LR.
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Table 4.2: Data stratified according to STR locus.

Locus Dye Allele Height Area

D3 Blue 15 1135 10301
D3 Blue 16 1031 9405

vWA Blue 14 371 3365
vWA Blue 15 921 8654
vWA Blue 16 395 3610
vWA Blue 17 804 7382

D16 Blue 10 485 4913
D16 Blue 11 2110 21651
D16 Blue 12 417 4304

D2 Blue 17 196 2121
D2 Blue 19 700 7713
D2 Blue 25 951 11209

D8 Green 8 774 7052
D8 Green 12 1006 9297
D8 Green 13 344 3166
D8 Green 16 291 2675

Locus Dye Allele Height Area

D21 Green 29 774 7152
D21 Green 30 789 7240
D21 Green 31 982 9174

D18 Green 13 593 6455
D18 Green 15 1002 10758
D18 Green 17 865 9458

D19 Yellow 13 1614 13532
D19 Yellow 14 211 1849
D19 Yellow 15 182 1647

TH0 Yellow 6 797 6894
TH0 Yellow 8 505 4334
TH0 Yellow 9 198 1751

FGA Yellow 19 173 1606
FGA Yellow 23 880 8720
FGA Yellow 24 647 6682

4.3.1 Example

We illustrate that the inclusion of the quantitative peak information, Q, is important when evalu-

ating the weight of evidence in a mixture. In the example, we demonstrate the properties of our

approach when the data of Table 4.2 are observed.

In order to limit the number of profiles in LR, we applied the guidelines of Bill et al. (2005).

These guidelines evaluate each mixture using heuristic rules about peak height balances and

mixture proportions. The authors define the heterozygote balance Hb as the ratio of two non-

shared peaks of an assumed heterozygous profile, and provide estimators of mixture proportions

within each locus, M̂s
x. If a two-person mixture is to pass the guideline criteria, it must satisfy

3/5 ≤ Hb ≤ 5/3 and M̂x−0.35 ≤ M̂s
x ≤ M̂x+0.35, where M̂x = S −1

∑
s∈S M̂s

x is an estimate of the

overall mixture proportion. We used ±0.25 as limits on M̂s
x which resulted in 860 pairs satisfying

the heuristic rules of Bill et al. (2005).

However, instead of assigning equal weight to all these pairs, we evaluate L(M |G′,G′′) for each
pair of profiles. As mentioned in Bill et al. (2005), this approach will not yield the correct LR

as all possible combinations should be weighted by their associated L(M |G′,G′′)-value. This
attempt to evaluate the LR aims at including more of the available information and thus yielding

a better approximation to the actual LR, since each pair of profiles has its own weight reflecting

how well it fits the quantitative data.

In the example, we demonstrate the effect of including the quantitative information in the evi-

dence evaluation for three different suspect profiles. The suspect profiles used in the example
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Table 4.3: Profiles of the suspects (a)-(c), unknowns and best matching pairs of profiles (⋆)

in example of Section 4.3.1. For all the suspects, only one unknown matches the chosen sus-

pect among the 860 combinations. In loci where the suspect combination differs from the best

matching combination in part (⋆), allelic numbers are in bold font.

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

(a) Suspect 15,16 14,16 10,12 17,17 13,16 29,31 15,15 14,15 9,9 19,19

Unknown 15,16 15,17 11,11 19,25 8,12 30,31 13,17 13,13 6,8 23,24
(b) Suspect 15,16 14,16 10,12 17,25 13,16 30,30 17,17 14,15 6,9 19,19

Unknown 15,16 15,17 11,11 19,25 8,12 29,31 13,15 13,13 6,8 23,24
(c) Suspect 15,16 14,16 10,12 17,25 13,16 30,30 13,15 14,15 6,9 19,23

Unknown 15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24
(⋆) Minor 15,16 14,16 10,12 17,25 13,16 29,29 13,13 14,15 6,9 19,23

Major 15,16 15,17 11,11 19,25 8,12 30,31 15,17 13,13 6,8 23,24

are given in Table 4.3, together with the unknown profile GU that maximises L(M |GS ,GU) for

each suspect profile, GS . For each suspect profile, only one of the 860 pairs of profiles satisfies

(GU ,GS ) ≡ G which implies a product of L(M |GS ,GU) and P(GU) in the numerator for each

suspect profile, and 860 terms in the sum of the denominator of which the combination of “Mi-

nor” and “Major” of Table 4.3, part (⋆) has the largest quantitative likelihood value. Throughout

the example, the main focus will be on the suspect of part (a) in Table 4.3, with comparisons to

the results obtained using the suspects of part (b) and (c).

In Fig. 4.4 and Fig. 4.5, the observed quantitative peaks,N, are plotted together with the expected

peaks, △, for the profiles of part (a) and (⋆) of Table 4.3, respectively. The expected peaks are

given by M̂ = T µ̂, where T and H(k) in µ̂s,k = α̂sH
(k) are computed for the specific pair of

profiles. It is clear from Fig. 4.4 that the imbalances induced by the suspect combination in part

(a) imply substantial deviation from the observed data for loci D2, D21, D18, TH0 and FGA.

These are also the loci where the two pairs of profiles of part (a) and (⋆) in Table 4.3 differ.

First, we make a non-quantitative evaluation of the LR using only allele probabilities for the

suspect of part (a). Since there is only one combination among the 860 that includes this suspect,

the likelihood ratio LR = P(GU)/[
∑
P(GU1

)P(GU2
)], where the sum in the denominator is over

the set Cd, but here this set consists of 860 combinations satisfying Hb ∈ [3/5 ; 5/3] and M̂s
x ∈

[M̂x ± 0.25] for computational simplicity. This yields a non-quantitative likelihood ratio, LRG,

estimate of 4.527×1013, which is very strong evidence in favour of the hypothesis that the suspect

is a contributor to the stain.

The dominating values of the quantitative likelihood in the numerator and denominator are given

by L(M |G(a)
S
,G

(a)
U
) = 5.9×10−119 and L(M |G(⋆)

U1
,G

(⋆)
U2
) = 5.57×10−100 respectively. A large differ-

ence in the quantitative likelihood values was expected from the difference in fit to the observed

peaks pictured in Figs. 4.4 and 4.5. Thus, including the quantitative evidence, the quantitative

likelihood ratio estimate, LRGQ, decreased by a factor 1017 to 7.63×10−4 which is strongly in

favour of the suspect not having contributed to the stain.
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Figure 4.4: Observed, N, and expected peaks, △, assuming a two-person mixture of the suspect

and unknown in Table 4.3, part (a). Abscissa: Basepair (bp) values computed using the allelic

number and STR locus, Ordinate: Peak heights in rfu.

Table 4.4: Likelihood ratios for the three different suspects in Table 4.3. Here, LRG and LRGQ

denote the non-quantitative and quantitative likelihood ratios, respectively, and LRGQ/LRG is

the relative change in the weight of the evidence. The allele frequencies used in the calculations

were provided by The Section of Forensic Genetics, University of Copenhagen.

LRG LRGQ LRGQ/LRG

Suspect (a) 4.527×1013 7.630×10−4 1.685×10−17

Suspect (b) 4.216×1013 5.185×108 1.230×10−5

Suspect (c) 3.596×1013 9.744×1013 2.710

Together with similar computations for the suspects of parts (b) and (c), this information is given

in Table 4.4. Here, we see that for suspects of part (b) and (c), the change in the weight of

evidence is a moderate decrease and small increase, respectively. Note that part (b) differs from

the best matching pair of profiles in three loci (D21, D18 and FGA) and part (c) in the two loci

D21 and D18.
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Figure 4.5: Observed, N, and expected peaks, △, assuming a two-person mixture of the minor

and major profiles in Table 4.3, part (⋆). Abscissa and ordinate as in Fig. 4.4.

The non-quantitative likelihood ratio estimates, LRG, of Table 4.4 will in many legal systems

point towards conviction of any of the suspects. When including the quantitative information,

we see that the change in the weight of evidence may add further to the evidence against the

suspect (as in part (c)), or may decrease the likelihood ratio estimate such that it provides strong

evidence in favour of the suspect (part (a)), however, also situations in between these two ex-

tremes will occur (part (b)). This example shows that, even when a person’s genotype matches

the genetic stain, imbalanced STR DNA profiles judged by the observed quantitative data may

speak strongly in favour of the suspect. However, weighing each pair of genotypes by the asso-

ciated quantitative likelihood-valuemay add further to the evidence against the suspect when the

suspect’s profile only causes a few or small imbalances with respect to the observed peaks.

4.4 Parameter estimation

The EM-algorithm and the specific expressions as derived in Appendix 4.B were implemented

in the statistical software package R (R Development Core Team, 2009). In order to validate the

implementation, we simulated peak area data given the peak heights from controlled experiments

and known model parameters. After 30,000 iterations, the parameter estimates were close to the
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true values indicating a successful implementation of the fitting algorithm.

In order to estimate the model parameters, we used a training set consisting of results of investi-

gations of DNA mixtures from 71 controlled experiments conducted at The Section of Forensic

Genetics, University of Copenhagen. These 71 cases were chosen such that all alleles from

the contributing profiles were present in the data, i.e. no drop-out events occurred (see Tvede-

brink et al., 2009, for discussion on allelic drop-out). The algorithm was executed using several

different sets of initial values. For each set, we ran 30,000 iterations of the EM-algorithm all

converging to the same parameter estimates.

In order to monitor the convergence of the EM-algorithm, we computed the deviance after each

iteration. After 1,100 iterations, the absolute improvement for successive deviances was less

than 0.01.

In the Λ part of Table 4.5, the shading shows the locus correlations, νst/
√
νssνtt, while the above-

diagonal part shows the locus covariances, νst, when τs = 0 (see Section 4.5.2). Most of the

loci were highly correlated. This indicates that evaluation of quantitative DNA evidence with

the assumption of independence across loci is an extensive simplification.

The different signal intensities of the fluorescent dyes were also identifiable in the parameter

estimates. The strong signals of the green dye band and the weaker signals of the yellow dye

band (Butler, 2005) were reflected in the parameter estimates of αs. In Table 4.5, we see that the

magnitude of the αs of the yellow fluorescence was smaller than that of the blue fluorescence,

which again was smaller than that of the green fluorescence (except for loci D16 and D21).

In addition to the parameter estimates and deviance, we also computed the asymptotic variances

of the estimates by the normality approximation of the MLE with the inverse Fisher Information

as covariance matrix. We found that the estimated standard deviation of bothα and σ2 indicated

reasonably good estimates of these parameters. Large asymptotic standard deviations of Λ did,

however, indicate the possibility of model reductions.

4.5 Discussion

4.5.1 Validity of the hypothesis of a two-person mixture

When analysing the STR results of a crime scene stain, we need to be able to determine whether

the stain is likely to originate from a two-person mixture or not. In this section, we demon-

strate how this is possible using our model for the quantitative STR DNA data. In order to

verify the hypothesis of a given two-person mixture, we simulated 1,000 vectors of peak areas,

M ∗
1 . . . ,M

∗
1000, for each of the 71 cases from the controlled experiments.

Simulations of the peak areas were conditioned on the observed peak heights and true profiles of

the mixture, and we used the parameter estimates from Table 4.5. This corresponds to simulating

under a null hypothesis with the T -matrix, H = (H(1),H(2)) and h known together with fixed

parametersα, σ2 and Λ, i.e. assuming that the stain originates from a two-person mixture.
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Table 4.5: Parameter estimates after 30,000 iterations of the EM-algorithm with τ = 0 (Section

4.5.2). The Λ-matrix shows the covariances νst and correlations νst/
√
νssνtt (shaded).
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For each of the simulated peak area vectors,M ∗
i
, we found the pair of profiles maximising the

likelihood, Ĝi = (Ĝi1, Ĝi2), using the approach of (Tvedebrink et al., 2010, Chapter 5 of this

thesis) and computed T and H associated with Ĝi. Using these quantities, we can determine the

Mahalanobis distance,

Md(M
∗
i , Ĝi) = (M ∗

i − M̂Ĝi
)⊤Var(MĜi

)−1(M ∗
i − M̂Ĝi

), (4.2)

where M̂Ĝi
and Var(MĜi

) are the expected peak areas and variance assuming a mixture of Ĝi

respectively. If Ĝi were equal to the true profiles of the mixture, then Md would follow a χ2n-

distribution with n being the number of observations in the mixture. However, the true mixture

profiles may not always be identical to the pair of profiles maximising the likelihood. This may

be due to stochastic variations and systematic components, e.g. stutter and pull-up effects. The

former is caused by artefacts in the polymerase chain reaction resulting in an increase of peak

intensities typically in the allelic position before the true allele. Pull-up effects are manifested

as an increase of the true peaks caused by overlap of the spectra of the light emitted from the

various fluorochromes, which are detected by a CCD camera in the data generating process

(Butler, 2005). Hence, on average we expect Md for Ĝi to be smaller than for the true profiles

which implies fewer degrees of freedom in the χ2-distribution. Fig. 4.6 shows a histogram

of 1,000 simulated Mahalanobis distances for the data given in Table 4.2. The superimposed

curves indicate that the expectation of fewer than n degrees of freedom for the χ2-distribution is

reasonable, where n = 31 in this example. The hypothesis that the Mahalanobis distance follows

a χ2
29
-distribution is supported by a Kolmogorov-Smirnoff test (p-value of 0.2410), whereas both

30 and 31 degrees of freedom are rejected (p-values are 0.0307 and 1.966 × 10−8, respectively).

In crime casework the DNA may be degraded or partly degraded, which implies that results

only are obtained for short STR loci/alleles (loci/alleles with low base pair numbers), but not (or

weak results) with longer STR loci/alleles (loci/alleles for high base pair numbers). This is a

potential problem since this is not incorporated in the model due to the assumptions on inter-loci

correlation.

However, the Mahalanobis distance Md in (4.2) can be decomposed into two parts evaluating the

quality of the sample, M
(q)

d
in (4.3), and the goodness of fit of a proposed mixtureG = (G′,G′′)

of two profiles, M
(m)
d

in (4.4). Let ΣM |M+
= Var(MG|M+) and ΣM+

= Var(M+,G), then

M
(q)

d
(M ,G) = (M+ − µ+,G)⊤Σ−1M+

(M+ − µ+,G), (4.3)

M
(m)
d

(M ,G) = (M − µG|+)
⊤Σ−M |M+

(M − µG|+), (4.4)

where M+ is the vector of loci peak area sums and µG|+ (µ+,G) are the expected peak areas

(sums) conditioned on the loci sums for profiles G. The reason for this decomposition follows

from the normality assumption, where f (M ) = fM |+(M |M+) f+(M+), which in density func-

tions yields

|ΣM |−
1
2 e
− 1
2
Md (M ,G)

= |ΣM |M+
|− 1

2 |ΣM+
|− 1

2 e
− 1
2

{
M

(m)
d

(M ,G)+M
(q)

d
(M ,G)

}
,

where ΣM = Var(MG). We note thatM |M+ is a distribution restricted to the affine subspace

with fixed peak area sums.
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Figure 4.6: Histogram of Mahalanobis distances for simulations based on data from Table 4.2.

Superimposed are a χ231-distribution (solid), Gaussian based kernel density estimate (dashed) and

a χ2
29
-distribution (dotted).

Since |ΣM |−
1
2 = |ΣM |M+

|− 1
2 |ΣM+

|− 1
2 , taking−2 log on both sides of the equation gives the decom-

position of the Mahalanobis distance (4.2) into the two parts (4.3) and (4.4). Both Mahalanobis

distances, M
(q)

d
(M ,G) and M

(m)
d

(M ,G), follow χ2-distributions with S and n−S degrees of

freedom, respectively.

In Fig. 4.7, we have plotted histograms of the p-values for M
(m)

d
and M

(q)

d
for 66 real crime cases

made available by The Section of Forensic Genetics, University of Copenhagen. In all cases

the contributors are not known for certain. However, the circumstances of the crime cases made

a victim and suspect profile available for each case. The two profiles matched and completely

explained the mixed profile the stain.

The left panel shows the histogram of the p-values from M
(m)
d

assessing how well the proposed

pair of profiles matched the mixture given the assumptions of the model. The histogram of the

p-values indicated that the model is applicable to STR results in real crime cases, since large p-

values, or equivalently small Mahalanobis-distances, imply that Hp is supported by the evidence.

The right panel of Fig. 4.7 shows that more than half (35 cases) of the p-values from the test of

the sample quality were less than 0.01. This indicates that most of the crime case samples had

been subject to degradation of the DNA material. Degradation of the DNA is often complicating

the interpretation of DNA mixtures. It is worth emphasising that imbalances caused by degraded

DNA may imply that no pair of profiles has Md ≤ χ2
n,(1−α), where χ

2
k,(1−α) is the critical value

on significance level α (e.g. α = 0.01) for a χ2
k
-distributed variable. However, conditioned on
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Figure 4.7: Histogram of p-values of the Mahalanobis distances of 66 crime cases in which we

had found the pair of profiles maximising the likelihood. For these profiles, we have decomposed

the overall Mahalanobis distance Md into M
(m)
d

and M
(q)

d
.

the loci sums, such imbalances do not affect the evaluation of a particular pair of profiles, i.e.

M
(m)
d
≤ χ2

n−S ,(1−α) is possible.

In order to investigate whether an observed stain may originate from a two-person mixture, the

evaluation of M
(m)
d

(M , Ĝ) needs to be less than χ2
n−S ,(1−α). If this is not the case for the observed

stain, it may be a mixture of more than two contributors or the results are strongly influenced by

DNA degradation, drop-outs, stutters, pull-up effects, etc. With M
(m)
d

(M , Ĝ) ≤ χ2
n−S ,(1−α), it is

plausible for the observed stain to be a mixture of two individuals since, for the pair of profiles

maximising the likelihood, the conditional Mahalanobis distance is sufficiently small. Then the

quality of the sample may be investigated by evaluating M
(q)

d
and observing if it falls above

the critical value χ2
S ,(1−α), e.g. α = 0.01. If so, this indicates unexpected imbalances between

loci, which may be due to e.g. degraded DNA, inhibitors affecting only certain loci or allelic

drop-outs.

4.5.2 Model reductions

When fitting the parameters of the model, we find for our specific data set that the additional

variance components, τs, s ∈ S, were infinitesimally small compared to the contributions of νss.

A χ2-test indicated that the goodness of fit was not significantly improved by this parameter.

Hence, the results reported in Table 4.5 corresponded to the model with τs = 0 for all s ∈ S.

Investigations showed that further reduction of the covariance structure was not supported by the

data (see Appendix 4.C for more details).
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4.6 Conclusion

In the example of Section 4.3.1, the usual evaluation of the likelihood by considering LRG =

P(G|Hp)/P(G|Hd) gave a likelihood ratio supporting the Hp-hypothesis with a likelihood ratio

larger than 1013. However, when including the quantitative information, the weight of evidence

was decreased to a likelihood ratio, LRGQ, less than one. This was true even with limits of

±0.25 for the mixture proportion balances in the setup of Bill et al. (2005). The likelihood ratio

without taking the quantitative information into account corresponded to the situation, where all

combinations passing the guidelines of Bill et al. (2005) were given identical weights. Hence,

excluding possible combinations from entering the likelihood ratio based on the quantitative in-

formation was not sufficient for an accurate estimate of the likelihood ratio based on quantitative

information.

For cases where the qualitative results strongly support that the suspect contributed to a mixed

stain, the inclusion of the quantitative information may further support the conclusion. Con-

versely, the likelihood ratio may decrease supporting the Hd-hypothesis. Both situations were

demonstrated by the example of Section 4.3.1. Hence, the evaluation of the quantitative infor-

mation using a statistical model is of great importance in order to assess the weight of evidence

obtained from DNA mixtures.

The model derived in this paper incorporates both information on qualitative traits (STR alleles)

and on quantitative aspects of the STR alleles (peak heights and areas). Graphical diagnos-

tics (not included in this manuscript) indicate that the model is well suited for the evaluation

of P(Q|G,H). Furthermore, assuming independence of the peak areas of the various STR is a

simplification that cannot be supported by the work carried out in this paper. Hence, inter-locus

correlations or other means of correction need to be considered when assessing the weight of

evidence from quantitative data in forensic DNA STR settings.

The concordance between the model properties and prior knowledge of differences in amplifica-

tion efficiency of various STR loci and in emission intensities of various fluorescent dyes adds

further support to the model.

The model described in the present paper is also applicable in other fields of science. A useful

property is the handling of variable dimension of the observations while exploiting compound

symmetries (Votaw, 1948). For example similar problems with modelling covariance structures

may arise in animal breeding studies, where the litter size varies and offsprings may be related

through the same breeding lines.
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Appendices

4.A The model

In this section, we provide more mathematical details than given in Section 4.2.2. The model

assumes proportionality of the mean and variance of A ∼ N4S (µ,∆). The covariance, ∆, is a

diagonal matrix with elements σ2
sH

(k) and µ is a vector partitioned in a similar way with the

element αsH
(k) for both peak areas associated with locus s and person k.

The observable peak area measurements,M , were defined as a linear transformation, T , such

thatM = TA + ε. In order to model the proportionality of the mean and variance ofM , we

defined the scaled residuals ε̃ =
(
εi/
√
hi
)n
i=1

, where n =
∑

s∈S ns. For ε̃, we assumed a compound

symmetry covariance matrix Ω̃ (Votaw, 1948). Since ε̃ = diag(h)−1/2ε, the covariance of ε

is Cov(ε) = Ω = diag(h)1/2Ω̃diag(h)1/2. We parametrised the covariance, Ω̃, as an additive

structure using Λ = {νst}s,t∈S and τ = (τs)s∈S, such that Cov(ε̃s, ε̃t) = νst1ns1nt + δstτsIns ,

where ε̃s are the scaled residuals of locus s, 1k is a k-dimensional vector of ones, and δst is the

Kronecker delta. For implementation of the EM-algorithm, we need the conditional distribution

ofA|M . Using Lauritzen (1996, Proposition C.5), this is

A|M ∼ N4S

{
µ + ∆T⊤

(
T∆T⊤+Ω

)−1
(M − Tµ),∆ − ∆T⊤

(
T∆T⊤+Ω

)−1
T∆

}
. (4.5)

The model forM corresponds to a linear mixed effects model:

M = Xα + Z(ξ1, ξ2)
⊤, where ξ1 ∼ N(0, diag(14σ

2
s )s∈S) and ξ2 ∼ N(0,Ω) (4.6)

for some case specific design matrices X and Z. However, estimation of the variance components

are complicated due to the varying dimensions ofM andMs, s ∈ S from case to case.

4.B EM-estimators

In order to handle the complete structure of A that includes the missing data problem, we used

the EM-algorithm to impute the unobservable data. However, since the dimensions ofM and

sub-vectors hereof varied from case to case, we obtained a likelihood that was not very well

suited for implementation of the EM-algorithm. This was due to the dependence on ns in the

covariance of the locus-wise average of the scaled residuals ˜̄ε = ( ˜̄ε1, . . . , ˜̄εS ),

Cov(˜̄ε) = diag(τs/ns)s∈S + Λ = diag(τ/n) + Λ,

where n = (ns)s∈S and the vector division is done component-wise, x/y = (xi/yi)
n
i=1

.

The problem was solved using appropriate auxiliary variables v and u, which we assumed to

be independent and zero-mean normal distributed variables with covariances Λ and diag(τ/n),

respectively. By introducing v and u, we obtained a likelihood of a full exponential family,

where the estimation of τ and Λ may be done separately. The use of auxiliary variables is



80 Evaluating the weight of evidence using quantitative STR data in DNA mixtures

equivalent to adding constraints on the diagonal elements ofΛ. By assuming Cov(v) = Λ, we get

the constraint that νss > 0, s ∈ S. In (4.6), this corresponds to splitting ξ2 into two independent

parts ξ21 and ξ22, ξ2 = ξ21 + ξ22, where ξ21 ∼ N(0,QcΛQ
⊤
c ) and ξ22 ∼ N(0, diag(τs1ns)s∈S) with

Qc defined in (4.7).

Hence, the E-step consisted of imputingA, u and v given the observationsM . In the M-step,

we used that the full likelihood factorises into two terms modelling the biological part of the data

given the measurement noise, (A,M )|(u, v, ε̃), and the noise, (u, v, ε̃), respectively:

f (A,M ,u, v, ε̃;∆,µ, τ ,Λ|H ,h) = g(A,M ;∆,µ|u, v, ε̃,H ,h)h(u, v, ε̃; τ ,Λ|H ,h)

with g and h being the density functions of the two multivariate normal distributions below:

g :

(
A

M

∣∣∣∣∣ ε
)
∼ N

{(
µ

Tµ+ε

)
,

[
∆ ∆T⊤

T∆ T∆T⊤

]}

h :


u

v

ε̃

 ∼ N




0

0

0

 ,


diag(τ/n) O diag(τ/n)Q⊤c

O Λ ΛQ⊤c
Qcdiag(τ/n) QcΛ Ω̃




,

where Qc is defined in (4.7). In order to derive the estimators of the parameters entering the

functions g and h, we defined two matrices Q and Qc,

Q =



14 . . . O
...

. . .
...

O . . . 14

 and Qc =



1n1c . . . O
...

. . .
...

O . . . 1nS c

 , (4.7)

where subscript c refers to case c, c = 1, . . . ,C. Furthermore, the DNA proxy H = (H(1),H(2)) is

expanded to a 4S -dimensional vector,H = (Hs)s∈S, where the componentsHs are fixed for all

loci,Hs = (H(1),H(1),H(2),H(2)). Note, that the compound symmetry structure of the covariance

of ε̃ with τ = 0 can be written as Ω̃ = QcΛQ
⊤
c . The estimators of α and σ2 can be found as

α̂ =

∑
c Q
⊤E(Ac|Mc)∑
c Q
⊤Hc

σ̂2 = (4C − 1)−1
∑

c

Q⊤
[
{E(Ac|Mc) − µc}2 + diag{Cov(Ac|Mc)}

Hc

]
,

where the squaring of a vector is done component-wise, x2 = (x2
i
)n
i=1

and diag{B} extract the
diagonal vector of B, diag{B} = (Bii)

n
i=1

. Furthermore, the moments ofAc|Mc are given in (4.5).

The estimators of τ = (τs)s∈S and Λ are,

τ̂s = n−1s+

∑

c

{
E(u2sc|Mc)nsc + E(ε̃

⊤
sε̃s − ns ˜̄ε2s |Mc)

}

Λ̂ = C−1
∑

c

{
E(vc|Mc)E(vc|Mc)

⊤ + Cov(vc|Mc)
}
.

For both v and u, the covariance with M is expressed as Cov(x,M ) =

Cov(x)Q⊤c diag(h)
1/2, forx replaced by v oru. The conditionalmoments entering the estimation
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equations may be found using the formulae for computing conditional moments in the multivari-

ate normal distribution, E(X |Y ) = µX +Θ12Θ
−1
22 (Y −µY ) and Cov(X |Y ) = Θ11 −Θ12Θ

−1
22Θ21

for (X ,Y )⊤ ∼ N
(
(µX ,µY )⊤,Θ

)
with Θ =

[
Θ11 Θ12
Θ21 Θ22

]
(Lauritzen, 1996, Proposition C.5).

4.C Model reduction

As mentioned in Section 4.4, the large asymptotic standard deviations indicated that the covari-

ance structure of Ω̃ could be simplified. The estimated τ parameters for nearly all loci were neg-

ligible compared to νss. Let Diag(Ai)
n
i=1

be a block-diagonalmatrix with matrices Ai, i = 1, . . . , n

as elements and the square root of a vector defined as
√
x = (

√
xi)

n
i=1. Then, we may write the

covariance matrix ofM , ΣM , as:

ΣM = T∆T⊤ + Ω = Diag
(
σ2

sT sdiag(Hs)T
⊤
s + τs

√
hs

√
hs
⊤
)
s∈S
+

[
νst

√
hs

√
ht
⊤
]
s,t∈S

.

From the equation above, we see that setting τ = 0 does not introduce any singularities in ΣM .

Hence, the asymptotic theory is not violated. In order to test whether τ was statistically signif-

icant, we used an approximately χ2-distributed test-statistic with the difference in parameters as

degrees of freedom (Cox and Hinkley, 1974). In the full model, there were S (S + 3)/2 parame-

ters. By restricting τ = 0, we removed S parameters and the χ2
S
-test yielded a p-value of 0.9999

supporting the hypothesis of τ = 0. The reported parameter estimates in Table 4.5 were based

on this restricted model.

Data exploration and the estimated parameters of Λ from Table 4.5 suggest that further model

reductions may be feasible. Possible parametrisations of Ω̃ may be,

Cov(ε̃s, ε̃t) = νd(s),d(t)1ns1
⊤
nt
+ δstτsIns (4.8)

Cov(ε̃s, ε̃t) = νd(s),d(t)1ns1
⊤
nt
+ δd(s)d(t)τd(s)Ins (4.9)

Cov(ε̃s, ε̃t) = ν1ns1
⊤
nt
+ δstτsIns , (4.10)

where d maps locus to fluorescence dye colour, e.g. d(FGA) = Yellow. The covariance struc-

tures in (4.8)-(4.10) all use fewer parameters in Ω̃ than the restricted model with D(D+1)/2+S ,

D(D+3)/2 and 1+S parameters, respectively, where D is the number of dye colours. In our data

D = 3 and S = 10 and thus we removed 39, 46 and 44 parameters, respectively. The three tests

indicated that there were significant differences between the full model and any of the reduced

models, all with p-values < 0.0001. Hence, the model with the best fit included locus depen-

dent parameters for the between and within covariance on the measurement errors. Inspection

of the correlation matrix in Table 4.5 indicated that locus D8 was the only locus with an average

between-locus-correlation less than 0.5. This may well cause the dye covariance models to have

a poor fit.

However, one has to bear in mind that the parameter estimates were based on a limited training

set. Hence, the rejections of the hypotheses of simpler models may be biased towards the four

profiles included in the training set. In order to fully verify the model we need to increase the

proportion of alleles from each locus and also the number of homozygous profiles. This will
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reduce the possible individual specific effect that may exist in the training set. Such work is in

progress.

A more detailed description of the model and the implementation of the EM-algorithm with full

R-source code are available on line at http://people.math.aau.dk/∼tvede/dna. The programs can

also be obtained from http://www.blackwellpublishing.com/rss.
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4.7 Supplementary remarks

As briefly mentioned at page 79, the model presented above is a case of the larger class of linear

mixed effects models. However, what distinguishes the model from other types of linear mixed

effects models, is the property of handling varying dimensions of the observation matrix and

subvectors hereof under the assumed mean and covariance structure. Typically an experimental

design is set up such that ns and n (as defined above) are constant over the various factors of the

experiment. In order to construct interesting and realistic experiment useful to forensic genetics

it is not possible to fulfil such restrictions. However, by restricting the intra-locus correlations to

be positive, the EM-algorithm may be used to fit the model to data where the subvectors of the

response vary across samples.

The model extends the LR by including the quantitative information in the evidence calculations.

By evaluating L(M |G) for a given pair of DNA profiles,G, it is possible to assess the goodness-

of-fit for a proposed pair of DNA profiles versus the observed peak intensities. However, since

the model presented above assumes intra-locus correlations, it is very time consuming and com-

putational intense to search for a pair of best matching profiles Ĝ = maxG L(M |G), since the

configuration on the various loci affect each other through the non-zero correlations.

Hence, in order to perform such a task, we need to relax some of the assumptions for fast com-

putation and evaluation. In the following chapter we present a statistical model and an efficient

algorithm for finding a pair of best matching profiles. The basic assumptions are similar to those

discussed above, with the difference that the peak intensities within each locus is assumed con-

ditionally independent. That is, by conditioning on an ancillary statistic (for the mixture ratio)

we assume that the configuration of the DNA profiles in locus s is independent of configurations

in locus t for all t , s.

The methodology differs from previous approaches since it is frequentistic and based on a statis-

tical model taking the present proportionality of mean and variance of the peak intensities into

account. There are several Bayesian methods for modelling and separating DNA mixtures, e.g.

Cowell et al. (2007a,b, 2010); Cowell (2009) discussed the use of probabilistic expert systems to

model DNAmixtures using first a normal distribution (2007a-paper) and later a gamma distribu-

tion, and also Curran (2008) took a Bayesian approach and modelled the peak intensities using a

multivariate normal distribution. However, Curran (2008) did not include the proportionality of

the mean and variance, which is a intrinsic feature of the gamma models of Cowell et al.

Earlier Perlin and Szabady (2001) and Wang et al. (2006) used linear models to model the peak

intensities of DNA mixtures using a frequentistic approach. However, their models did not take

the mentioned proportionalities of the first two moments into account, and their methods did

not allow for efficient and consistent modelling of all loci simultaneously. For example, Wang

et al. (2006) did not incorporate a commonmixture ratio across loci even though there are strong

biological and biochemical arguments for this assumption. Furthermore, did the method ofWang

et al. (2006) call for a reasonably large amount of manual labour in order to use the output from

their method.
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Abstract:

Estimating the weight of evidence in forensic genetics is often done in terms of a likelihood ra-

tio, LR. The LR evaluates the probability of the observed evidence under competing hypotheses.

Most often probabilities used in the LR only consider the evidence from the genomic variation

identified using polymorphic genetic markers. However, modern typing techniques supply addi-

tional quantitative data, which contain very important information about the observed evidence.

This is particularly true for cases of DNA mixtures, where more than one individual has con-

tributed to the observed biological stain.

This paper presents a method for including the quantitative information of STR DNA mixtures

in the LR. Also, an efficient algorithmic method for finding the best matching combination of

DNA mixture profiles is derived and implemented in an on-line tool for two- and three-person

DNA mixtures.

Finally, we demonstrate for two-person mixtures, how this best matching pair of profiles can

be used in estimating the likelihood ratio using importance sampling. The reason for using

importance sampling for estimating the likelihood ratio is the often vast number of combinations

of profiles needed for the evaluation of the weight of evidence.

Keywords:

Forensic genetics; STR DNA; DNA mixture; Greedy algorithm; Finding best pair of matching

profiles; Importance sampling.

5.1 Introduction

When a crime has been committed, biological traces are often found at the scene of crime. In

many cases, more than one individual have contributed to the stain, which is then determined a

DNA mixture. The evaluation of DNA mixtures is often complex and laborious taking experi-

enced case workers lots of time and effort to analyse.

Most modern DNA typing techniques are based upon polymerase chain reaction (PCR) produc-

ing millions of copies of the DNA string. The amount of DNA in the PCR vessel pre-PCR is

reflected in the concentration of target molecules post-PCR. The targets used in forensic genetics

are selected such that they are highly polymorphic (large number of possible alleles) which gives

a high power of discrimination. Furthermore, the genetic markers used for forensic purposes are

non-coding and should ideally be neutral with respect to selection.

The prevalent technology used in forensic genetics to perform genetic identification uses short

tandem repeat (STR) polymorphisms. This method relies on variability in the length of certain

repeat motifs in the genome. The STR DNA profile is observed via a so called electropherogram

(EPG), where the alleles are identified as signal peaks above a signal to noise threshold (shaded

cones of Figure 5.2). For a single person DNA profile one can observe either one or two peaks

referring to the situation, where the DNA profile is either homozygous (identical alleles on both

chromosomes) or heterozygous (different alleles on each chromosome). The commercial kits

used for identification purposes typically contain between 10 to 15 genetic markers (also called

loci: plural for locus). Within each locus the number of alleles varies from 5 to 20. For the
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kit (SGM Plus kit, Applied Biosystems, AB) depicted in Figure 5.2, the labels “D3”, “vWA”,

. . . , “FGA” refer to locus names and the integer values above the locus name corresponds to the

observed allele types for that particular locus.

It is possible only to observe the cumulative peaks in the EPG. That is, the peak heights are

expected to be twice the height for homozygous loci relative to the heterozygous loci, since the

two identical alleles doubles the amount of pre-PCR product for the homozygous peaks. This

is also true for DNA mixtures where alleles shared by two or more contributors will reflect the

contribution from more donors as higher peaks. Hence, for DNA mixtures with two contributors

the number of observable peaks ranges from one to four alleles depending on the particular

profiles in the mixture.

The kit used for STR typing comprises a set of loci, S, used for discrimination. For an arbitrary

two-person mixture the number of possible combinations are given by 1S 17S 212S 36S 4 , where S i

is the number of loci with i observations and S =
∑4

i=1 S i, is the total number of loci used for

discrimination, i.e. S is the size of S. The numbers 1, 7, 12 and 6 comes from the number of

possible combinations (see Table 5.1) when observing 1, 2, 3 and 4 alleles, respectively.

Table 5.1: Possible combinations in a two-person mixture with one to four alleles.

Alleles Possible combinations

a (aa, aa)

a, b (aa, ab) (aa, bb) (ab, aa) (ab, ab) (ab, bb) (bb, ab) (bb, aa)

a, b, c (aa, bc) (ab, ac) (ab, bc) (ab, cc) (ac, ab) (ac, bb)

(ac, bc) (bb, ac) (bc, ab) (bc, ac) (bc, aa) (cc, ab)

a, b, c, d (ab, cd) (ac, bd) (ad, bc) (bc, ad) (bd, ac) (cd, ab)

In most cases, this leads to an intractable number of combinations. However, using the quan-

titative STR data (peak heights and peak areas), the number of plausible combinations often

decreases substantially. In this paper, we develop a statistical model for STR DNA mixtures.

The statistical model is intended to measure the agreement between the expected peak intensi-

ties for a proposed combination of DNA profiles and the actual observed peak intensities. Hence,

we use an objective criterion to discriminate among the possible combinations in Table 5.1.

In order to incorporate the peak intensities in the likelihood ratio (LR), we first demonstrate how

to find a best matching pair of profiles for a given two-person mixture using an efficient algo-

rithmic approach. This algorithm iteratively builds up a best matching combination of profiles

using the statistical model for the peak intensities. The algorithm has been implemented in a

free on-line tool available at the first author’s web-site. The statistical model and algorithmic

construction are different from previously proposed methods for DNA mixture separation (e.g.

Perlin and Szabady, 2001; Bill et al., 2005; Wang et al., 2006; Cowell et al., 2007a,b; Curran,

2008).
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The inclusion of the quantitative information in the LR is done by assigning a weight to each

combination of DNA profiles consistent with the observed STR types. The weight reflects the

probability of observing the observed peak intensities given a specific combination of profiles.

The denominator in the LR will in most cases yield a sum over an intractable number of com-

bination. By sampling “close” to the best matching combination returned by the algorithm, we

show how importance sampling may be used to estimate the LR.

5.2 Data

The model is based on exploration of controlled experiments of two-person mixtures conducted

at The Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sci-

ences, University of Copenhagen, Denmark. From the data exploration it is evident that the mean

and covariance structure of the peak areas must satisfy proportionality of:

• peak areas and peak heights,

• peak area and amount of DNA in the mixture,

• the mean and variance of the peak areas.

These assumptions is supported by Figures 1 and 2 in Tvedebrink et al. (2010). The experiments

consisted of pairwise two-person mixtures in various mixture ratios of the four profiles in Table

5.2. The data were prepared as described in Tvedebrink et al. (2009).

Table 5.2: The four STR profiles used in the controlled pairwise two-person mixture experi-

ments.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

A 14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 20,22
B 15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,9 19,23
C 15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24
D 16,19 15,17 10,12 23,25 13,13 28,30 12,16 13,15 6,7 20,23

5.3 Modelling peak areas of a two-person mixture

For the search of a pair of best matching profiles to be feasible, we assume the peak areas of

the various loci to be conditionally independent given the loci area sums, A+. Performing the

inference conditioned onA+ satisfies the reasoning of Cox (1958) asA+ is an ancillary statistic

for the mixture ratio, i.e. A+ is fixed for all values of the mixture ratio. Furthermore, we assume

that the peak areas are multivariate normal distributed with conditional mean vector, E(As|As,+),
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and covariance matrix, Cov(As|As,+), defined as

E(As|As,+) = [αPs,1 + (1 − α)Ps,2]
As,+

2
and

Cov(As|As,+) = τ2Csdiag(hs)C
⊤
s , (5.1)

where α denotes the proportion with which person 1 contributes to the mixture, and Cs = Ins −
n−1s 1ns1

⊤
ns

with ns, 1 ≤ ns ≤ 4, being the number of observed peaks at locus s. Note that α

is supposed to be common to all loci. The definition of the covariance matrix is close to the

ordinary covariance when conditioning on the vector sum. However, as the variance of the peak

area is assumed proportional to the mean, we use the diagonal matrix diag(hs), where hs is the

associated peak heights on locus s, to obtain weighted observations that stabilise the variance.

Furthermore, τ2 is a common variance parameter for all loci, s ∈ S.

The Ps,k-vector is a vector of indicators taking values 0, 1 or 2 referring to the number of copies

that person k has of each allele in the mixture on locus s. E.g., if the two individuals contributing

to the mixture have genotypes (10, 12) and (14, 14), respectively, we will have Ps,1 = (1, 1, 0)⊤

and Ps,2 = (0, 0, 2)⊤. Assuming no chromosomal anomalies, each individual carries two alleles

at each locus which implies the sum of Ps,k to be 2 for all k.

The model presented here is different from e.g. the ones of Cowell et al. (2007a,b) and Cur-

ran (2008) who both takes a Bayesian approach. The model of Cowell et al. (2007a) assumes

the peak heights to be gamma-distributed to ensure proportionality of the mean and variance,

whereas Cowell et al. (2007b) assumes normality of the peak heights with parameters chosen

to ensure proportionality of mean and variance. As mentioned in Curran (2008), the model of

Cowell et al. (2007a) makes a crude adjustment for a repeat number effect, which is no longer

relevant. In Curran (2008) the peak heights are assumed multivariate normal, but here no attempt

is done in order to ensure proportionality of the mean and variance. Furthermore, by condition-

ing on the peak area sums within each locus we acknowledge the strong inter-locus correlation.

In addition to the methods based on statistical models, there are several methods that rely on

heuristics and guidelines (Gill et al., 1998; Clayton et al., 1998; Perlin and Szabady, 2001; Bill

et al., 2005; Wang et al., 2006; Gill et al., 2006). Cowell et al. (2007b) gives a nice review of

most of these methods in their introductory section.

5.4 Finding best matching pair of profiles

In order to find the most likely pair of profiles matching the observed mixture under the assump-

tions made by the model, one can decrease the number of possibilities using the following argu-

ments. Let the observed peak areas within each locus, s, be sorted such that As,(1) < · · · < As,(ns),

and assume that DNA1 < DNA2, where DNAk is the amount of DNA contributed by person k.

Then, for a locus with four observed peaks (ns = 4), the only likely pair of profiles given the

model relate the alleles with peak areas (As,(1), As,(2)) and (As,(3), As,(4)) to person 1 and person

2, respectively. For loci with one observation (ns = 1), the two individuals need both to be

homozygous for the observed allele, while for two (ns = 2) or three observations (ns = 3), the

possible profiles are listed in Table 5.3 (the notation J2 and J3 is used in Section 5.4.1).
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Table 5.3: Possible profiles for loci with two and three observations.

J2 : Ps,1Ps,2 Ps,1Ps,2 Ps,1Ps,2 Ps,1Ps,2 J3 : Ps,1Ps,2 Ps,1Ps,2 Ps,1Ps,2 Ps,1Ps,2

As,(1) 1 1 2 0 1 0 0 1 As,(1) 2 0 1 0 1 0 0 1

As,(2) 1 1 0 2 1 2 2 1 As,(2) 0 1 1 0 0 1 0 1

As,(3) 0 1 0 2 1 1 2 0

In Table 5.3, Ps,1 and Ps,2 refers to the profiles of person 1 and person 2 on the particular locus

s, respectively, and the cell values to the number of alleles associated with the profiles. The

reason for not considering the three and eight other combinations for loci with two and three

observations (Table 5.1), respectively, is that, for any of these combinations, one of the four

combinations listed in Table 5.3 will be more likely under the model assumptions, i.e. have a

better fit to the observed data. E.g. would Ps,1 = (0, 2)⊤ and Ps,2 = (2, 0)⊤ be unlikely as we

assumed person 1 to have the lowest contribution and the second area to be the larger.

The numbers of possible pairs of profiles for loci with two, three and four observations are

respectively 7, 12 and 6, when discarding the information from peak areas and only using com-

binatorics. Thus, using the assumptions of the model, we decrease the number of profiles which

needs to be examined in order to find the most likely profiles forming the observed mixture.

We assume the peak areas to be normally distributed with conditional means and covariances

as specified in (5.1). Due to the conditional independence of the loci, the overall estimates of

α and τ2 are found as sums over the loci. Let Ws = Csdiag(hs)C
⊤
s , then we can write the

conditional distribution as As|As,+ ∼ Nns (αx
s
0
− xs

1
, τ2Ws), where x

s
0
= (Ps,1 − Ps,2)As,+/2 and

xs
1
= Ps,2As,+/2 are the terms of the mean, linear and constant in α, respectively. Solving the

likelihood equation with respect to α and τ2 yield the unbiased estimators

α̂ =

∑
s∈S x

s
0
⊤W

−

s (As − xs
1
)

∑
s∈S x

s
0
⊤W

−
sx

s
0

and (5.2)

τ̂2 = N−1
∑

s∈S
(As − α̂xs

0 − x
s
1)
⊤W

−

s(As − α̂xs
0 − x

s
1),

where N = n+ − S − 1 =
∑

s∈S(ns − 1) − 1 and W
−
s is the generalised inverse of Ws. We have

to use the generalised inverse of Ws as Ws has the rank ns − 1. An approximation to this model

assumes that the precision matrix, τ−2W−1s , is given by τ−2Csdiag(hs)
−1C⊤s . Hence, we have

a closed form expression for the inverse covariance matrix yielding simple expressions for the

estimators of α and τ2,

α̃ =

∑
s∈S

∑ns
i=1

xs
0,i
(As,i − xs

1,i
)h−1

s,i∑
s∈S

∑ns
i=1

xs
0,i

2h−1
s,i

and

τ̃2 = N−1
∑

s∈S

ns∑

i=1

(As,i − α̃xs0,i − xs1,i)
2h−1s,i ,

where As,i, hs,i, x
s
0,i
and xs

1,i
are the ith components of the respective bold faced vectors. We denote
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the unbiased maximum likelihood estimates for the two models as (α̂, τ̂) and (α̃, τ̃), respectively.

The latter version is what is implemented in an on-line tool as discussed in Section 5.4.2.

In addition to the estimate of α, we are also interested in determining a confidence interval for

α. The conditional variance of α̂ givenA+ is found using the covariance operator on both sides

of (5.2),

Var(α̂|A+) =
Cov

(∑
s∈S x

s
0
⊤W

−

s (As − xs
1
)
∣∣∣A+

)

(∑
s∈S x

s
0
⊤W

−
sx

s
0

)2

=

∑
s∈S x

s
0
⊤W

−

sCov(As|A+)W−s xs
0(∑

s∈S x
s
0
⊤W−

sx
s
0

)2

= τ2
(∑

s∈S
xs
0
⊤
W
−

sx
s
0

)−1
, (5.3)

where we from the first to second equality used the conditional independence ofAs andAt given

A+, and second to third properties of the covariance together with the expression ofCov(As|A+)
in (5.1). The confidence interval of α givenA+ is then given by

CIβ(α) = α̂ ± t1−β/2,N
τ̂√∑

s∈S x
s
0
⊤W−s x

s
0

,

where t1−β/2,N is the critical value on significance level β for a t-distribution with N = n+ − S −
1 degrees of freedom. A similar confidence interval using the (α̃, τ̃)-estimates is obtained by

inserting the (α̃, τ̃)-estimates instead of (α̂, τ̂) and replacingW− with W−1. From the expression

of CIβ(α), it is obvious that a small τ-estimate decreases the width of the confidence interval and

thus increases the trust in the estimated mixture proportion.

5.4.1 Greedy algorithm

This model was used in an algorithm for finding the most likely pair of profiles contributing to

an observed mixture where the STR profiles of both individuals were assumed unknown. First,

define the set J = {J1, . . . , J4}, where Ji is the set of plausible profiles for loci with ns = i.

These sets were defined in Section 5.4 (Table 5.3). The pseudo code for a greedy algorithm

finding a pair of profiles (locally) maximising the likelihood of the model specified by (5.1) is

given in Figure 5.1. A greedy algorithm is any algorithm that solves a problem by making the

locally optimum choice at each stage with the hope of finding the global optimum. A graphical

representation of the algorithm is given in Figure 5.7 for a general number of contributors, m.

The algorithm works with both (α̂, τ̂) or (α̃, τ̃) as estimates of (α, τ).

The greedy algorithm initiates by estimating α based on a locus s with four present alleles. The

loci of S4 contain full information on the mixture ratio, α, and are thus used for assessing this

quantity. In succession, the loci with three and two (S3 and S2, respectively) observations are

analysed and the combination with the smallest contribution to τ and best concordance to the
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Algorithm: Find best matching pair of STR profiles.

Let T = ∅, α̂ = 0 and τ̂2 = ∞.
While τ̂2 decreases or T,S

For i ∈ {4, 3, 2}
For s ∈ Si = {s : s ∈ S and ns = i}

Choose combination j ∈ Ji minimising τ̂2

Set T = {T \ (s, ·)} ∪ (s, j) and compute α̂

Return α̂, τ̂ and T.

Figure 5.1: Greedy algorithm for finding a pair of profiles (locally) maximising the likelihood

of (5.1).

previously determined mixture proportion is chosen. The set T contains a list of the optimal

combinations on previously visited loci and is updated after each iteration. On termination, the

greedy algorithm returns the best matching pair of profiles together with the estimates of α and

τ. The algorithm is designed to perform calculations and decisions similar to those of a forensic

geneticist when analysing a two-person mixture.

The optimisation problem is complicated since the inputs of the function that we are interested

in minimising depend on each other, f (α,(Ps,1,Ps,2)s∈S) =
∑

s∈S Ds, where Ds = (As − αxs
0
−

xs
1
)⊤W

−

s(As−αxs
0
−xs

1
). Here, f denotes the object function and (Ps,1,Ps,2)s∈S the set of possible

combinations for all loci, s ∈ S. It is easy to see that, for a fixed α, we can minimise Ds for each

locus s by choosing the combination yielding the smallest square distance. Similarly, fixing

the combinations for all loci, α is estimated using (5.2). However, from the construction of the

greedy algorithm, the algorithm chooses the combination that minimises τ2 for locus s given α

and the configurations on loci previously visited loci, t ∈ {T \ s}. This ensures locally optimal

solutions, and for most practical purposes, the algorithm returns a global maximum. One should

note that when the algorithm recovers the best matching pair of profiles, we still need to consider

all profiles close to these profiles consistent with the evidence for likelihood ratio evaluation (see

Section 5.5 for further details).

5.4.2 On-line implementation

The greedy algorithm of Figure 5.1 together with the methods for evaluating the goodness of

fit for a given pair of profiles are implemented in an on-line application. The on-line imple-

mentation applies the (α̃, τ̃)-estimates when finding the best matching pair of profiles. The

two-person (and three-person) mixture separator is available on-line at the first author’s website

(http://people.math.aau.dk/∼tvede/dna/). The script can plot the expected and observed peak

areas for visual inspection of the fit (see Figure 5.2).

The script allows for user uploads of csv-files containing information about loci, alleles, peak

heights and peak areas. The loci implemented are those contained in the SGMPlus and Identifiler

kits (AB) excluding amelogenin.
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Figure 5.2: Plot produced by the on-line implementation of the algorithm

(http://people.math.aau.dk/∼tvede/dna/ - sample data file “Paper case”). The observed

peaks, N, are based on data from Table 5.4, and the expected peaks, △, assuming a mixture of

the best matching pair of STR profiles (Table 5.5). The observed and expected peaks coincide

for nearly all peaks.

Apart from finding the best matching pair of unknown profiles, the user can specify a suspect

profile, and the script finds the best matching unknown profile for two-person mixtures.

Example of a two-person mixture separation in an 1:1 mixture ratio

We demonstrate the algorithm and implementation on data from a controlled experiment con-

ducted at the Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health

Sciences, University of Copenhagen, Denmark. The data are presented in Table 5.4 together

with information on the true profiles of the mixture (denoted by ◦ and •).

The algorithm found that the two profiles of Table 5.5 are the best matching pair of profiles.

The profiles are consistent with the true profiles of the mixture except for loci TH0 and FGA.

In Figure 5.2, we have plotted the data from Table 5.4 (solid cones, N) together with the best

matching pair of profiles as listed in Table 5.5.

In Figure 5.3, the traces of the parameter estimates of α (dashed) and τ2 (solid) are plotted for

each successive iteration with the final parameter estimates being α̃ = 0.43 (95%-CI: [0.40 ;

0.45]) and τ̃2 = 1134.04. Evaluating the mixture of the true profiles (marked by ◦ and • in
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Table 5.4: Data used in demonstrating the algorithm. The ◦ and • represents profile 1 and 2,

respectively.

Locus Allele Height Area

D3 15 ◦ • 1802 15410
D3 16 ◦ • 1939 16282

vWA 14 ◦ 712 6128
vWA 15 • 725 6620
vWA 16 ◦ 626 5637
vWA 17 • 830 7362

D16 10 ◦ 824 7910
D16 11 • 1772 17231
D16 12 ◦ 586 6101

D2 17 ◦ 434 4558
D2 19 • 612 6563
D2 25 ◦ • 843 9257

D8 8 • 1284 10782
D8 12 • 1232 10359
D8 13 ◦ 903 7891
D8 16 ◦ 638 5291

Locus Allele Height Area

D21 29 • 1073 9454
D21 30 ◦ 1469 12828
D21 31 • 798 6992

D18 13 ◦ 1247 12302
D18 15 • 899 9104
D18 17 • 726 7549

D19 13 • 1332 10534
D19 14 ◦ 416 3478
D19 15 ◦ 504 3968

TH0 6 ◦ • 820 6739
TH0 8 • 668 5573
TH0 9 ◦ 486 4004

FGA 19 ◦ 490 4415
FGA 23 ◦ • 865 7968
FGA 24 • 527 5036

Table 5.5: Best matching pair of profiles for the data in Table 5.4. This pair of profiles is pictured

in Figure 5.2 as the expected peaks.

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

Minor 15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,6 23,23

Major 15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 8,9 19,24

Table 5.4), the α estimate is almost unchanged (α̃ = 0.42), but with an increase in τ̃2 to 1266.34

indicating a slightly worse fit.

The fact that a combination different from the true one has a better fit, indicates that there are

multiple explanations of the trace since it is a 1:1-mixture (α close to 0.5). However, the differ-

ence in τ2-estimates for the two combinations will only have a minor influence in the evaluation

of the evidence.

Example of a two-person mixture separation in an 1:2 mixture ratio

Wang et al. (2006, Table 10) presented data from a two-person DNA mixture with known minor

(victim) and major (suspect) profiles. Curran (2008) and others have analysed these data in

order to demonstrate their models for separating two-person DNA mixtures. Using the on-line

implementation we obtained the true profiles with α = 0.30 (95%-CI: [0.28 ; 0.32]) and τ2 =

124.87.
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Figure 5.3: Trace of the parameter estimates of α (dashed/right ordinate labels) and

τ2 (solid/left ordinate labels). The plot is produced by the on-line tool available at

http://people.math.aau.dk/∼tvede/dna/.

5.4.3 Dropping non-fitting loci

In some cases, the stain may be contaminated, and it may be subject to drop-in or drop-out.

Drop-ins are allelic peaks present in the DNA profile not belonging to the true profiles. Drop-ins

may occur at random (contamination) or by more systematic mechanisms such as stuttering or

pull-up effects. Stutters are caused by artefacts in the polymerase chain reaction resulting in an

increase of peak intensities typically in the allelic position before the true peaks. Pull-up effects

are manifested as an increase of true peaks caused by overlap of the spectra of the light emitted

from the various fluorochromes, which are detected by a CCD camera in the data generating

process (Butler, 2005). Drop-outs are allelic peaks of the true profiles that are absent in the DNA

profile due to, e.g. low amount of DNA or degradation of the DNA. In such cases, the observed

peak heights and peak areas no longer originates solely from a two-person mixture. Hence, the

proportionalities of Section 5.1 need no longer to be satisfied and the mean structure of (5.1)

may not explain the observed peak heights and peak areas in all loci.

We use an F-test approach to evaluate whether any of the included loci s ∈ S has significant

unexpected balances due to e.g. stutters, degradation or contamination. The purpose is to return

a list of loci in which the hypothesis of a two-person mixture can be supported.

For each locus, the contribution to τ2 is computed by Ds, which we assume to follow a χ2
ns−1-

distribution. Hence, to test whether any locus contributes significantly to the overall variance,

τ2, we evaluate for each locus s ∈ S the ratio

(ns−1)−1Ds

(n+−S−ns−1)−1
∑

t∈{S\s} Dt

∼ F(ns−1),(n+−S−ns−1),
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where F(ν1),(ν2) is an F-distribution with ν1 numerator and ν2 denominator degrees of freedom.

Since we perform this test for all loci, we make a Bonferroni-correction to compensate for mul-

tiple testing. We apply this procedure successively and drop the most significant locus (if any)

until no locus has a significant test-value. This facility is also available in the on-line implemen-

tation.

If the variance contribution from multiple loci is large, the test-value will not indicate any sig-

nificant locus as the overall noise of the sample is large or may be a mixture of more than two

individuals. This will result in large values for the overall τ2.

5.5 Likelihood ratio

Let G be the DNA profile of the crime stain, and GS and GUi
the profiles of the suspect and

unknown contributor i, respectively. Furthermore, the evidence, E, consists of both quantitative

information (peak heights and areas), Q, and the genetic crime stain (allelic information), G.

The probability P(E|H) factories as P(Q,G|H) = P(Q|G,H)P(G|H) using the definition of con-

ditional probabilities. Since Q is a continuous stochastic variable, we use the likelihood of our

model, L(A|G′,G′′) =∏
s∈S{|Ws|−1/2 exp(− 1

2
Ds)}, to evaluate P(Q|G,H), where the hypothesis

H involves profilesG′ andG′′.

Let Cp = {GU : (GS ,GU) ≡ G} be the set of unknown profiles that together withGS are consistent

with G, then P(G|GS ,GU) = 1 for GU ∈ Cp and 0 otherwise, i.e. Cp is the set of possible

unknowns underHp. Similarly, let Cd = {(GU1
,GU2

) : (GU1
,GU2

) ≡ G} be the set of two unknown
profiles consistent with G, i.e. possible pairs of profiles under Hd. This partitioning of the set

of profiles is equivalent to Assumption 2 in Evett et al. (1998), where the authors argue that the

only genotype configurations of interest are those profiles (G′,G′′) inducing the observation of

allelic peaks in G, i.e. P(G|G′,G′′) = 1 and 0 otherwise. The LR = P(E|Hp)/P(E|Hd) can be

formed as:

LR =

∑
GU∈Cp

L(A|GS ,GU)P(GU)

∑
(GU1

,GU2
)∈Cd

L(A|GU1
,GU2

)P(GU1
,GU2

)
. (5.4)

The P(G) is the profile probability as applied in the regular likelihood ratio (Evett and Weir,

1998), where P(G) may be computed using the θ-correction (Nichols and Balding, 1991; Buck-

leton et al., 2005). The expression in (5.4) is similar to equations (5) and (6) of Evett et al. (1998)

who made a Bayesian formulation of the LR for DNA mixtures.

If a case includes a victim with profileGV , the set Cp = {(GS ,GV) ≡ G} only contain one element,

(GS ,GV ). Hence, the likelihood ratio simplifies further

LR =
L(A|GS ,GV )∑

GU∈Cd

L(A|GV ,GU)P(GU)
,

where for this simpler case Cd = {GU : (GV ,GU) ≡ G}.
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Table 5.6: Expected peak areas for a two-person mixture (expressed in term of α). The list is

minimal such that equivalent combinations up to numeration of alleles are avoided. The expected

peak areas are ordered by lexicographic order of the allele designation.

ns Observed alleles Combinations Expected peak areas in terms of α

1 a4 (aa, aa) (2) ×As,+/2

2 a3b (aa, ab) (1+α, 1−α) ×As,+/2

(ab, aa) (2−α, α) ×As,+/2

a2b2 (aa, bb) (2α, 2(1−α)) ×As,+/2

(ab, ab) (1, 1) ×As,+/2

3 a2bc (aa, bc) (2α, 1−α, 1−α) ×As,+/2

(ab, ac) (1, α, 1−α) ×As,+/2

(bc, aa) (2(1−α), α, α) ×As,+/2

4 abcd (ab, cd) (α, α, 1−α, 1−α) ×As,+/2

(ac, bd) (α, 1−α, α, 1−α) ×As,+/2

In some cases, the value of L(A|GS ,GV) may be very much lower than the likelihood value

for the pair of best matching profiles. This indicates that it is inappropriate to assume that the

evidence is a mixture of GS and GV - even though the profiles (GS ,GV ) are consistent with G.

The sums involved in the evaluation of the likelihood ratio will often involve an intractable num-

ber of terms depending on the number of loci and number of observed peaks in each locus. As

the inclusion of all possible combinations is infeasible, we need at least to include combinations

with a numerical impact on the likelihood ratio for the approximation of the true likelihood ratio

to be satisfactory for forensic use.

The best matching pair of profiles will provide an estimate, of the mixture proportion α. The

expected peak areas in Table 5.6 (expressed in terms of α) indicate that alternative combinations

need to have an α-estimate close to the estimate of the best matching pair in order to have a

reasonable fit. We exploit this result when defining our proposal distribution in the section on

importance sampling.

5.6 Importance sampling of the likelihood ratio

An exact assessment of the weight of evidence comprises evaluation of every term of the numer-

ator and denominator of (5.4). However, this is infeasible and other methods of evaluating the

evidence need to be considered. In this section, we show how importance sampling can be used,

for estimation of the weight of evidence by assigning weights to the individual combinations.

Maimon (2010) also considered importance sampling in a Bayesian context for modelling DNA

mixtures.
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Let Cd = {(GU1
,GU2

) ≡ G}, andG = (G′,G′′) refer to a pair of profiles (G′,G′′). The expression
of P(E|Hd) can be interpreted as a expectation of Q with respect to the probability measure P on

G:

P(E|Hd) =
∑

G∈Cd

L(A|G)P(G) = E(h(E); P). (5.5)

Hence, simulating combinationsG from G with respect to P may be used to estimate P(E|Hd).

However, simulation with respect to P does not take the quantitative evidence, Q, into account

and will thus yield a poor estimate of P(E|Hd) due to the possible larger numerical impact from

L(A|G) compared to P(G) in (5.4). To handle this, we use importance sampling based on the

“marginal” likelihood values of each combination.

Let q(G) =
∏

s∈S qs(Gs), whereGs = (G′s,G
′′
s ) is the profiles on locus s and

qs(Gs) =
L(A|Gs, Ĝ−s)P(Gs)∑Ns

i=1
L(A|Gs,i, Ĝ−s)P(Gs,i)

, (5.6)

where Ns is the number of combinations for the observed number of alleles, (Gs, Ĝ−s) is the par-
ticular combination on locus s merged with the best matching combination, Ĝ, in the remaining

loci, t ∈ {S \ s}, and the sum in the denominator is over all possible combinations, Ns, in locus s

merge with the best matching combination in the remaining loci. Hence, L(A|Gs, Ĝ−s) is called
the “marginal” likelihood as it gives the likelihood for the particular combination on locus s with

the combinations on the remaining loci identical to the best matching pair of profiles. Further-

more, the denominator of (5.6) is a constant, Bs, for each locus. Using this proposal distribution,

P(E|Hd) may be expressed as an expectation with respect to q,

P(E|Hd) =
∑

G∈Cd

L(A|G)
P(G)

q(G)
q(G) = E(h(E)W(E); q),

where W(E) = P(G)/q(G) is the importance weight. Since P(G) =
∏

s∈S P(Gs) and B =∏
s∈S Bs, the ratio of L(A|G)P(G)/q(G) is nearly constant:

L(A|G)P(G)
∏

s∈S{L(A|Gs ,Ĝ−s)P(Gs)}∏
s∈S Bs

=
L(A|G)B

∏
s∈S

L(A|Gs, Ĝ−s)
,

where the product in the denominator in many cases is a good approximation to L(A|G). This

constantness of h(E)W(E) improves the performance of importance sampling and reduces the

number of samples needed for results with low variance (Robert and Casella, 2004).

In order to estimate P(E|Hd), we draw combinationsGi, i = 1, . . . ,M, from q(G) and compute

the Monte Carlo estimate,

P̂(E|Hd) =
1

M

M∑

i=1

L(A|Gi)W(Gi), Gi ∼ q(G),

whereW(Gi) = P(Gi)/q(Gi) are the importance weights.
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The estimate is unbiased as the terms are independently simulated from q(G) and all have ex-

pectation E(h(E)W(E); q) = P(E|Hd). For the variance of P̂(E|Hd), we compute

Var(P̂(E|Hd))=
1

M−1

M∑

i=1

{
[L(A|Gi)w(Gi)]

2 −P̂(E|Hd)
2
}
.

The numerator of LR, P(E|Hd), can be handled similarly taking into consideration that we are

summing over a restricted set of combinations, Cp, all including the suspect’s profile, Cp =

{GU : (GS ,GU) ≡ G}. The greedy algorithm of Figure 5.1 is also applicable when specifying

a suspect. We only need another ordering of the observations and a different set of J-matrices

using the extra information of the suspect’s profile. This implies that there exists a best matching

combination, Ĝ(S ), in Cp having the same properties as Ĝ for the unrestricted set, Cd. Hence,

importance sampling may also be used in estimating P(E|Hp) with similar formulae as those for

estimating P(E|Hd).

5.6.1 Example of estimating LR using importance sampling

The best matching pair of profiles for the data in Table 5.4 was found in Table 5.5 and were used

for estimating q(G) and the constant B. In the computations, we assumed uniform distributions

of the allele probabilities. Table 5.7, lists the profile of a fictive suspect, GS , together with the

unknown profile maximising the likelihood with GS fixed. This pair plays the role of Ĝ(S ) in

this example. In Figure 5.4 the observed, N, and expected peak heights, △, assuming a mixture

of these profiles are plotted.

Table 5.7: Suspect’s STR profile together with best matching STR profile of an unknown person.

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

Suspect 16,16 15,17 11,11 25,25 13,16 30,30 15,17 15,15 8,9 24,24

Unknown 15,15 14,16 10,12 17,19 8,12 29,31 13,13 13,14 6,6 19,23

In order to verify the validity of our methodology and implementation of the importance sam-

pler, we limited our data to include only loci on the blue fluorescent dye band (D3, vWA, D16

and D2). The total number of possible combinations for the blue loci is 7112261 = 6,048 and

it is therefore possible to compute the correct value of P(E|Hd) = 0.481335 ×10−10. For the

suspect’s profile specified in Table 5.7, locus D3 is the only blue locus for which it is pos-

sible to alter the unknown profile and still have consistency with G. Hence, there are only

two terms in the P(E|Hp) when restricting the analysis to the blue dye band. The value of

P(E|Hp) = 0.225730 ×10−13 indicating that the suspect is not likely to be a true contributor of the
DNA mixture since P(E|Hp) < P(E|Hd).

In order to evaluate the performance of the importance sampler, we computed 1,000 estimates of

P(E|Hd) each based on 10,000 samples. The estimates are plotted together with the correct value
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Figure 5.4: Plot of the observed peaks,N, and the expected peaks, △, assuming a mixture of the

suspect and best matching unknown (STR profiles of Table 5.7).

in the histogram of Figure 5.5. The distribution of the estimates tends to be skew for this particu-

lar example, but with most of the estimates close to the true value of P(E|Hd). The mean of the es-

timates, P̄(E|Hd), is 0.483731 ×10
−10 with a standard deviation of 0.184432 ×10−11. From the cen-

tral limit theoremwemay approximate the (positive) distribution of P̄(E|Hd) with a normal distri-

bution and compute an approximative 95%-confidence interval: [0.122243, 0.8452178] ×10−10.
In forensic genetics it is common practice to evaluate the evidence anti-conservative, mean-

ing that the estimates and approximations are favourable to the suspect/defendant (Balding,

2005). For a conservative LR the estimate of the numerator should be larger than the true value,

P̂(E|Hd) > P(E|Hd). However, 66% of the importance sample estimates are smaller than the true

value for this particular example. A likely explanation for this is that the sampling scheme places

to much of the probability mass close to the best matching pair of profiles. Hence, the (very)

large set of less likely combinations are not included in the estimate.

5.7 Results

The algorithm was tested on data from 71 controlled two-person mixtures with known profiles.

Hence, it was possible to validate the suggested profiles returned by the separation algorithm. Ta-

ble 5.8 summarises the comparisons with the best matching pair of profiles and the true mixture

profiles.
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Figure 5.5: Histogram of 1,000 estimates of P(E|Hd) each based on 10,000 samples.

Table 5.8: Detailed summary table with the number of correctly separated loci, x, stratified by

mixture ratio.

Cases with both profiles Cases with major profile Cases with minor profile
correct in x of 10 loci correct in x of 10 loci correct in x of 10 loci

Ratio 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

1:1 1 3 0 2 2 2 1 0 1 2 1 2 2 2 1 0 1 3 0 2 2 2 1 0
1:2 0 0 0 0 2 5 7 8 0 0 0 0 0 2 8 12 0 0 0 0 2 4 8 8
1:4 0 0 0 1 3 2 6 7 0 0 0 0 0 0 0 19 0 0 0 1 3 2 6 7
1:8 0 0 0 2 5 4 0 4 0 0 0 0 0 0 0 15 0 0 0 2 5 4 0 4
1:16 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 1 0 0 0 0 3

Total 1 3 1 5 12 13 14 22 1 2 1 2 2 4 9 50 1 3 1 5 12 12 15 22

From the bottom row of Table 5.8, we see that the separation algorithm returned the true mixture

profiles as the best matching combination 22 times. The number of cases where one (14 cases),

two (13 cases) or three (12 cases) loci were wrongly separated were almost the same. In five

cases, half or less of the loci were correctly separated.

In 50 cases, the true major profile were correctly identified and in another 13 there were inconsis-

tency in at most two loci between the major profile of the best matching pair and the true major

profile. Furthermore, Table 5.8 shows that the eight remaining cases with incorrect identification

of the major profile had mixture ratio 1:1. Hence, in these cases, there were no obvious major
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profiles as the amounts of DNA contributed were (almost) equal. Furthermore, for 1:1-mixtures,

there are many pairs of profiles yielding similar goodness of fit to the observed peak intensities,

which previously was exemplified in Section 5.4.2. The algorithm is less successful in identifi-

cation of the minor profile. However, in most cases, the minor profile was separated correctly in

seven or more loci.

In addition to the 71 DNA mixtures from controlled experiments, the separation algorithm was

used to separate 64 two-person DNA mixtures from real crime cases. For each of the 64 crime

cases the laboratory had two reference samples that were consistent with the observed stain.

Three experienced forensic geneticists tried to identify both the major and minor profiles of the

mixture without knowing the true profiles of the mixture for each mixture (blinded experiment).

In Table 5.9, the results from the separation using the separation algorithm is compared to those

of the forensic geneticists.

Table 5.9: Comparison of the performance of the separation algorithm and forensic geneticists.

The counts show the number of loci with the minor and major profiles correctly identified.

Geneticists Algorithm

Correct loci Minor Major Minor Major

10 8 31 16 36

9 16 8 16 9

8 13 8 14 5

7 13 4 10 6

6 6 7 1 2

5 3 2 3 2

4 2 2 2 2

3 2 1 2 2

2 0 0 0 0

1 1 1 0 0

The total number of correctly separated mixtures was 16 for the separation algorithm and 8 for

the forensic geneticists. The samples where the minor contributor were correctly identified in all

loci also had the major component correct (see Table 5.9). As for the controlled experiments,

the success rate was dependent by the mixture ratio, with number of correctly separated loci

decreasing as α increased towards 0.5.

Furthermore, it should be noted that the forensic geneticists were forced to call some pairs of

profiles resulting in some inconclusive statements. That is, the forensic geneticists were forced

to deduce major and minor profiles in cases where the regular protocol of the laboratory would

not support the separation of profiles.
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5.8 Discussion

Using the quantitative information from STR DNA analysis in terms of peak intensities is

presently the only way to separate STR mixture results. Based on a statistical model, we de-

veloped a simple greedy algorithm for finding the best matching pair of profiles.

Our model is based on few assumptions that are widely accepted among forensic geneticists.

The statistical model made it possible to make objective comparisons of various combinations

by evaluating the likelihood values. From the normal distribution assumption, this value is com-

puted by τ−N , which implies that the lower τ estimate, the better concordance between observed

and expected peaks.

Importance sampling was used in order to estimate the likelihood ratio since this becomes com-

putationally difficult when 7S 212S 36S 4 terms need to be evaluated in the numerator of the LR

with Hd:(GU1
,GU2

). The method showed to be efficient, and future work will consist of imple-

mentation of sampling schemes that explore more of the sample space. This implementation

would ideally result in fewer estimates that are less than the true value.

5.9 Conclusion

By using the greedy algorithm of Section 5.4.1, we demonstrated that it is possible to automate

the separation of DNA mixtures. However, due to the assumption of no occurrence of drop-out

or stutters, the model may be too simple for more complicated cases. Hence, this methodology

is applicable to cases where the analysis today is standard but time-consuming. This allows the

forensic geneticists to focus on more complex crime cases.

Future work comprises the development of a methodology for handling drop-outs and stutters.

Since stutters are profile independent (stutters from parental peaks are constant for all alleged

combinations of profiles), it is possible to remove stutters from the data prior to separation and

interpretation. Allowing for drop-outs while finding a best matching pair of profiles is also pos-

sible. Using the methodology of Tvedebrink et al. (2009), the probability of drop-out, P(D|Ĥ),

is assessed conditioned on a given profile.
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Appendix

5.A The general case with m contributors

In the general case with m contributors to the mixed stain, our method can be generalised by

assuming the mixture proportions α1, . . . , αm to be strictly increasing,

α1 < · · · < αm−1 < αm = 1 − α+, α+ =

m−1∑

i=1

αi. (5.7)

The conditional covariance structure is the same as specified in (5.1), where the conditional mean

is:

E(As|As,+) =
As,+

2


m−1∑

i=1

αiPs,i + Ps,m

1 −
m−1∑

i=1

αi



 = Xs,m +

m−1∑

i=1

αiXs,i, (5.8)

where Xs,i = (Ps,i − Ps,m)As,+/2 for i = 1, . . . ,m − 1 and Xs,m = Ps,mAs,+/2. In order to find the

MLE of α = (αi)
m−1
i=1

, we solve the likelihood equations for ℓ(α, τ2; (As)s∈S) with respect to α.

This implies that the MLE of α is:

α̂ =


∑

s∈S
X⊤s W

−
s Xs


−1 

∑

s∈S
X⊤s W

−
s (As − Xs,m)

 .

Furthermore, the estimate of τ2 in the general setting is

τ̂2 = N−1
∑

s∈S
(As−Xsα̂−Xs,m)

⊤W
−

s (As−Xsα̂−Xs,m),

where N = n+ − S − m + 1 =
∑

s∈S(ns − 1) − (m − 1).

5.A.1 Greedy algorithm

The greedy algorithm of Figure 5.1 needs only a fewmodifications to be applicable to the general

case. Most important is the specification of the number of contributors, m. This needs to be

decided before running the algorithm. For the algorithm to be successful, there should preferably

be at least one locus with 2m peaks as this increases the confidence in the estimate α̂. The

modified greedy algorithm for m contributors to a DNA mixture is given in Figure 5.6.

Furthermore, it is necessary to check if the α̂-estimate satisfies the inequalities of (5.7) for each

combination. In Table 5.10, we list fictive data together with two combinations both implying

a perfect fit. Both matrices are valid as the orders in the α-sum columns satisfy the condition

(5.7). However, for Combination 1, the estimate α̂1 = (0.2, 0.45) does not satisfies (5.7) while

the estimate for Combination 2 α̂2 = (0.2, 0.35) does. Hence, Combination 2 is chosen over

Combination 1.
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Algorithm: Find best matching set of m profiles

Specify the number m of contributors.

Let T = ∅, α̂ = 0 and τ̂2 = ∞.
While τ̂2 decreases or T,S

For i ∈ {2m, . . . , 2}
For s ∈ Si = {s : s ∈ S and ns = i}

Choose combination j ∈ Ji minimising τ̂2

and satisfying restrictions of (5.7)

Set T = {T \ (s, ·)} ∪ (s, j) and compute α̂

Return α̂, τ̂ and T.

Figure 5.6: Greedy algorithm for finding a set of profiles (locally) maximising the likelihood of

(5.8).

Table 5.10: Fictive data showing the importance of ensuring (5.7) is satisfied.

Combination 1 Combination 2
Area P1 P2 P3 α-sum P1 P2 P3 α-sum

200 1 0 0 α1 1 0 0 α1
450 0 1 0 α2 0 0 1 1−α+
550 1 0 1 1−α2 1 1 0 α1+α2
800 0 1 1 1−α1 0 1 1 1−α1

In Figure 5.7, the greedy algorithm of Figure 5.6 is described by a diagram emphasising the

various steps in the procedure of finding the best matching combination.

In step A, the parametersα and τ are estimated using only the loci with 2m observed peaks. Step

B determines the profile combination (see step D) on the current locus that minimises τ given

the combinations on the already visited loci. The algorithm visits the blocks of loci with equal

numbers of observed alleles in decreasing order: 2m−1, . . . , 2. If any of the blocks is empty, the

algorithms skips forward to the next nonempty block. The order within each block of loci with

2m−i observed peaks is arbitrary. When reaching the last locus, the combination and estimates

of α and τ are saved.

In step C, the algorithm visits each locus searching for a combination that might decrease τ with

all remaining loci combinations fixed. If τ is non-changed the algorithm stops. Otherwise step C

is looped until a fixed τ-value is obtained. On termination the algorithm returns the combination

and estimates of α and τ.

Step D pictures that, for each locus with less than 2m peaks, there are several combinations of

profiles that need to be investigated. In the figure, each ◦ depicts a combination and • symbolises

the current optimal configuration. The black arrow shows which combination is currently tested.

When all the combinations are tested the one with smallest τ is returned.
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A: 2m 2m−1 22m−i

B: 2m 2m−1 22m−i

2m 2m−1 22m−i

2m 2m−1 22m−i

C: 2m 2m−1 22m−i

2m 2m−1 22m−i

D:

Figure 5.7: Diagram describing the greedy algorithm for resolving DNA mixtures. The shaded

boxes show the loci previously visited by the algorithm. The bold lined box shows the current

locus under investigation.



Bibliography 109

Bibliography

Balding, D. J. (2005). Weight-of-evidence for Forensic DNA Profiles. Chichester, West Sussex:

John Wiley & Sons, Ltd.

Bill, M. et al. (2005). PENDULUM - a guideline-based approach to the interpretation of STR

mixtures. Forensic Science International 148, 181–189.

Buckleton, J. S., C. M. Triggs, and S. J. Walsh (2005). Forensic DNA evidence interpretation,

pp. 217–274. Boca Raton, FL: CRC Press.

Butler, J. M. (2005). Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers

(2 ed.). Burlington, MA: Elsevier Academic Press Inc., U.S.

Clayton, T. M., J. P. Whitaker, R. Sparkes, and P. D. Gill (1998). Analysis and interpretation of

mixed forensic stains using DNA STR profiling. Forensic Science International 91, 55–70.

Cowell, R. G., S. L. Lauritzen, and J. Mortera (2007a). A gamma model for DNA mixture

analyses. Bayesian Analysis 2(2), 333–348.

Cowell, R. G., S. L. Lauritzen, and J. Mortera (2007b). Identification and separation of DNA

mixtures using peak area information. Forensic Science International 166, 28–34.

Cox, D. R. (1958). Some problems connected with statistical inference. Annals of Mathematical

Statistics 29(2), 357–372.

Curran, J. M. (2008). AMCMCmethod for resolving two personmixtures. Science& Justice 48,

168–177.

Evett, I. W., P. D. Gill, and J. A. Lambert (1998). Taking account of peak areas when interpreting

mixed DNA profiles. Journal of Forensic Sciences 43(1), 62–69.

Evett, I. W. and B. S. Weir (1998). Interpreting DNA Evidence: Statistical Genetics for Forensic

Scientists. Sunderland, MA: Sinauer Associates.

Gill, P. D. et al. (1998). Interpreting simple STR mixtures using allele peak areas. Forensic

Science International 91(1), 41–53.

Gill, P. D. et al. (2006). DNA commission of the International Society of Forensic Genetics:

Recommendations on the interpretation of mixtures. Forensic Science International 160(2-3),

90–101.

Maimon, G. (2010). A Bayesian approach to the statistical interpretation of DNA evidence. Ph.

D. thesis, Department of Mathematics and Statistics, McGill University, Montreal, Canada.

Nichols, R. A. and D. J. Balding (1991). Effects of population structure on DNA fingerprint

analysis in forensic science. Heredity 66, 297–302.

Perlin, M. W. and B. Szabady (2001). Linear mixture analysis: A mathematical approach to

resolving mixed DNA samples. Journal of Forensic Science 46(6), 1372–1378.

Robert, C. P. and G. Casella (2004). Monte Carlo Statistical Methods (2 ed.). Springer.



110 Identifying contributors of DNA mixtures by means of quantitative information

Tvedebrink, T., P. S. Eriksen, H. S. Mogensen, and N. Morling (2009). Estimating the proba-

bility of allelic drop-out of STR alleles in forensic genetics. Forensic Science International:

Genetics 3(4), 222–226.

Tvedebrink, T., P. S. Eriksen, H. S. Mogensen, and N. Morling (2010). Evaluating the weight

of evidence using quantitative STR data in DNA mixtures. Journal of the Royal Statistical

Society. Series C, Applied statistics 59(5), 855–874.

Wang, T., N. Xue, and J. D. Birdwell (2006). Least-square deconvolution: A framework for

interpreting short tandem repeat mixtures. Journal of Forensic Science 51(6), 1284–1297.



5.10 Supplementary remarks 111

5.10 Supplementary remarks

In the above manuscript only two-person mixtures were analysed in practice, but the appendix

demonstrated how to extend the model and algorithm to handle m-person mixtures. The Section

of Forensic Genetics, University of Copenhagen, also prepared three-person mixtures. Five

different DNA profiles were mixed in trios in the mixture ratios: 1:2:4. The five DNA profiles

are listed in Table 5.11. There is
(
5
3

)
= 10 different triple-wise combinations and each triple

is analysed in six different mixture ratios (permutations of the three profiles). This gives 120

samples since each case is analysed in duplicates. However, 17 samples were discarded due to

pipette and amplification errors leaving 103 samples to be analysed.

Table 5.11: The five DNA profiles used in the three-person mixtures.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

A 14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 20,22

B 17,18 14,17 9,9 17,23 13,15 28,28 14,19 14,15.2 8,9.3 20,24

C 16,18 16,19 10,13 16,23 11,14 31,32.2 15,19 12,15 9,9.3 20,24

D 15,18 16,18 9,11 20,21 12,13 29,32.2 13,14 13,14 6,7 22,22

E 15,19 15,17 12,13 16,19 12,13 27,30 13,15 13,14 9,9.3 19,25

The on-line implementation is programmed such that it handles both the analysis of single source

stains, two- and three-personmixtures. In Figure 5.8 the peak intensities for a mixture of profiles

B, D and C (see Table 5.11) is plotted together with the expected values for the best matching

combination.

Since we know the true profiles, we are able to compare the best matching combination with the

true profiles as for the two-person mixtures. In Table 5.12 the three inferred profiles are listed.

The major profile coincides with profile B while the mid profile differs from profile D by one

allele in locus D19. The minor profile has five correct and 4 partially-correct loci compared to

profile C.

Table 5.12: The estimated profiles from the separation of the three-personmixture of Figure 5.8.

The major profile coincides with profile B in all loci, the mid profile differs by one allele from

profile D in locus D19, and the minor is correctly identified in five loci (compared to profile C).

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

Minor profile 16,17 17,19 10,13 16,17 11,14 28,31 14,14 12,15 9,9.3 20,24

Mid profile 15,18 16,18 9,11 20,21 12,13 29,32.2 13,15 13,14 6,7 22,22

Major profile 17,18 14,17 9,9 17,23 13,15 28,28 14,19 14,15.2 8,9.3 20,24



112 Identifying contributors of DNA mixtures by means of quantitative information

Figure 5.8: Three-person DNA mixture of profiles B, D and C in mixture ratio 4:2:1 (see Ta-

ble 5.11).

The performance of the mixture separator for the three-person DNA mixtures is summarised

in Table 5.13. For each three-person mixture the number of correctly (both alleles correctly

identified) and semi-correctly (exactly one alleles correctly identified) loci are computed. This

is done separately for the major, mid and minor profile where the median of the corresponding

amounts of DNA for these classifications are 335 pg, 168 pg and 84 pg. The first count in each

cell refers to the major profile, the second to the mid profile and lastly the minor component.

In 76 cases (73.8%) the major profile was correctly identified on at least eight loci (and partially

correct on the remaining ones), while 52 cases (50.5%) had the mid profile correct on at least

six loci. The success rate for the minor component was unsatisfactory low. However, the low

amounts of DNA compared to the other two components implies that the contributions from the

minor profile are within the limits of variation one would expect for the larger peak intensities.

That is, the unbalances induced by adding the fraction from the minor component to the peaks

of the mid and major profiles is masked by the variability of these peaks.

The authors have in collaboration with Aalborg University and University of Copenhagen ap-

plied for a patent for the intellectual rights of the mixture separating algorithm presented above:

Name of invention: A Computer-Assisted Method of Analyzing a DNA Mixture.

Application details: U.S. Provisional Application 61/148221 filed Jan. 29, 2009.
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Table 5.13: Summary table of the separation of three-person mixtures. Each cell corresponds to

the number of “major/mid/minor” counts for the number of correctly identified loci stratified on

matches and partial-matches. Row number is full matches and columns partial matches.

0 1 2 3 4 5 6 7 8 9 10

0 0/0/0 0/0/0 0/ 0/0 0/0/0 0/0/0 0/0/0 0/0/ 0 0/0/0 0/1/0 0/1/1 0/0/0

1 0/0/0 0/0/0 0/ 0/0 0/0/0 0/0/0 0/1/1 0/0/ 1 0/1/3 0/0/1 0/0/1

2 0/0/0 0/0/0 0/ 0/0 0/0/0 0/0/0 0/1/2 0/2/ 6 0/5/3 0/2/5

3 0/0/0 0/0/0 0/ 0/0 0/0/0 0/2/5 0/2/6 0/2/10 0/5/4

4 0/0/0 0/0/0 0/ 0/1 0/1/1 0/4/5 0/2/7 0/4/ 6

5 0/0/0 0/0/0 0/ 2/1 1/1/0 0/5/8 3/7/6

6 0/0/0 0/0/0 0/ 1/0 2/6/8 8/9/4

7 0/0/0 0/2/0 0/ 6/2 13/8/2

8 0/0/0 0/2/0 26/11/3

9 0/0/0 25/6/0

10 25/1/0
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Abstract:

In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting

of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible.

We present a statistical model for estimating the per locus and overall probability of allelic

drop-out using the results of all STR loci in the case sample as reference. The methodology of

logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in

a forensic genetic framework.

Keywords:

Drop-out probability; forensic genetics; logistic regression; STR.

6.1 Introduction

When assessing the weight of the evidence of STR typing in forensic genetics, the arguments

depend on the observable alleles in the crime stain. However, due to technical and biochemical

issues, it is possible that a true allele in the sample is not detected by the genetic typing method,

i.e. allelic drop-out (Gill et al., 2006). The probability of this event will affect the weight of

evidence with a decrease in the power of discrimination as the drop-out probability increases

since less individuals can be excluded as possible contributors.

It is well-known that in samples of high quality, i.e. high amount of DNA (for all contributors

if it is a mixture) and no contamination or degradation, the probability of observing a drop-out

is practically zero. Using logistic regression, we formalised this intuition by using the results of

all STR loci in the sample as an indicator of the amount of DNA. The statistical analysis showed

that the drop-out probability is locus dependent.

The DNA commission of the ISFG stressed the importance of considering allelic drop-out in

the recommendation on mixture interpretation (Gill et al., 2006, recommendation 7). In rec-

ommendation 7, the intuition of the logistic model was explained, but how to assess P(D) was

not formalised. The estimation of P(D) is important because it influences the estimation of the

weight of the evidence in the calculation of the likelihood ratio (LR).

6.2 Material and methods

6.2.1 Data

The analysis was based on 175 controlled experiments conducted at The Section of Forensic

Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University of Copen-

hagen, Denmark. The experiments consisted of pairwise mixtures of four profiles and samples

with only one contributor diluted in water.

Genomic DNA from blood-samples from two males and two females was extracted by a stan-

dard phenol-chloroform extraction method. DNA was quantified in triplicates using the Quan-

tifiler® Human DNA Quantification kit (Applied Biosystems) with Human Genomic DNA Male
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(Promega) as the quantification-standard on a ABIPrism® 7000. The median DNA concentra-

tions were used. Each sample was diluted in water to 500 pg DNA/µl. The DNA concentrations

in the diluted samples were measured again in triplicates and the median DNA concentration

was used.

Six two-person mixtures of DNA (w/v) in proportions 16:1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4; 1:8 and

1:16 were made of DNA from each of the four persons. The amount of DNA from each person

in the mixtures was calculated based on the DNA concentration in each sample. Each of the four

samples were serially diluted with water in the proportions 16:1, 8:1, 4:1, 2:1 and 1:1.

The amount of DNA in each mixture ranged from 328 to 528 pg DNA, and from 24.6 to 410

pg DNA in the diluted samples and were amplified twice with the AmpFℓSTR® SGM Plus®-kit

(Applied Biosystems) as recommended by the manufacturer in an ABI GeneAmp® 9700 PCR

thermocycler.

One ul of the amplificates in 15 ul HiDi® Formamide (Applied Biosystems) was analysed on an

ABI Prism® 3100 Genetic Analyzer using POP4 as the polymer and 5 kV injection voltage for 6

seconds. DNA fragments were detected and fragment sizes were estimated with GeneScan 3.7

with a detection threshold of 50 rfu. Genotypes were assigned using GenoTyper 3.7 with the

Kazam macro (Applied Biosystems) with no stutter filter applied.

We excluded all alleles in stutter positions of true alleles to avoid complications of masked drop-

outs due to stutter effects. Table 6.1 presents the number of observed alleles, dropouts and the

proportion of drop-outs for each locus.

Table 6.1: Observed drop-outs in the data set stratified by locus. All drop-outs were single

contributor alleles.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

Observed 306 356 322 398 362 375 315 220 258 313

Drop-outs 10 11 11 14 11 7 10 10 17 18

Proportion 0.03 0.03 0.03 0.04 0.03 0.02 0.03 0.05 0.07 0.06

There was a tendency for the high molecular loci to have more drop-outs than the remaining

ones within each fluorescent dye colour. This indicates a locus dependence of the probability of

drop-out.

6.2.2 Logistic regression model

Let D be the event “The contributor’s allele has dropped out”, and D̄ when no drop-out oc-

curs, implying that P(D̄) = 1−P(D). For evidence evaluation, we are interested in quantifying

the probability of allelic drop-out P(D). As mentioned in Section 6.1, we wish to model this

probability conditioned on the observed stain.
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Figure 6.1: Locus specific logistic curves (solid) together with an overall estimate (dashed). The

plot is on log-scale ensuring P(D|Ĥ = 0) = 1. At each panel box-plots are added, summarising

the empirical distribution of Ĥ for D and D̄.

We define H as the sum of observed peak heights divided by a sum of indicators with value two

for homozygous alleles and one for heterozygous, i.e. for hi being the ith height measurement

H = (nhet + 2nhom)
−1 ∑n

i=1 hi, where n = nhet + nhom is the number of heterozygous and homozy-

gous alleles in the profile. This was previously demonstrated to be a good proxy for the amount

of DNA contributed to a stain (Tvedebrink et al., 2010). If the stain is a mixture assumed to have

K contributors, we only use the alleles where person k, k = 1, . . . ,K, is a single contributor for

estimating H(k). We use Ĥ as a summary statistics for the observed stain in our analysis and use

logistic regression to model P(D|Ĥ), where Ĥ is found from H as (for K = 2),

P(D|Ĥ) =



P(D|H), Non-shared het allele

P(D|2H), Non-shared hom allele

P(D|H(1)+H(2)), Shared het allele,

where H(1) and H(2) may be weighted by 2 if the contributors of the shared alleles are homozy-

gous.
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Logistic regression is a standard way to estimate the probabilities for a dichotomous response

stochastic variable when explanatory variables are assumed to change the probability of the event

(McCullagh and Nelder, 1989). The logistic model is particularly simple in this case since we

only have one explanatory variable, Ĥ,

P(D|Ĥ) =
exp(β0 + β1 log Ĥ)

1 + exp(β0 + β1 log Ĥ)
,

where β1 showed to be negative such that P(D|Ĥ) decreases as Ĥ increases, and the use of log Ĥ

rather than Ĥ, ensures that with β1 being negative P(D|Ĥ = 0) = 1. When we condition on Ĥ, we

assume the event of two allelic drop-outs of the same contributor are independent, which is also

an underlying assumption of the logistic regression. That is, P(D1,D2|Ĥ) = P(D1|Ĥ)P(D2|Ĥ),

where Di: “Allele i of the contributor with DNA proxy Ĥ has dropped out”.

6.3 Results and discussion

The analysis showed that the intercept parameter, β0, varied between loci with a p-value of 0.01

indicating a significant difference between loci (Venables and Ripley, 2002). A similar test for

the slope parameter, β1, indicated that this parameter did not vary significantly across loci (p-

value of 0.49). In addition, there was no significant change of the drop-out probability caused

by the allelic number indicating that larger alleles within the same locus has the same drop-out

probability as smaller alleles. However, in the data set, the largest allelic difference was eight

repeat units. This variability may be to small to demonstrate that a possible allelic effect is

significant.

The parameters for locus s are thus β0,s and β1 for computing P(D|Ĥ), where we use the same

Ĥ for all loci. The parameter estimate of β1 is −4.35 and the estimates of β0,s are given in Table

6.2.

Table 6.2: Estimates of β0,s and β1 based on the experiments of Section 6.2.1.

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

β0,s 18.26 18.43 18.75 18.31 18.28 17.45 18.07 19.40 19.40 19.21

Note, that β0,s are larger for the loci of the yellow fluorescent dye band indicating their larger

drop-out probability as observed in Table 6.1. The corresponding logistic curves for the param-

eters of Table 6.2 are plotted in Figure 6.1 together with an overall estimate not stratifying on

loci. The parameters for the overall curve are β0 = 17.56 and β1 = −4.14.

In Figure 6.1, the box-plot added to each panel shows the DNA proxy Ĥ for the drop-outs (D)

and observed alleles (D̄). The boxes indicate the inter-quartile range (middle fifty percent of
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the data) of the observations and the whiskers extend to the most extreme data points within 1.5

times the lengths of the boxes. Remaining points are marked by dots.

It is clear from Figure 6.1 that there is an overlap of the whiskers in the box-plots. This implies

that the classification of drop-outs is associated with uncertainty as one would expect. In partic-

ular, it is true for D21 where all drop-outs observed had a mean height, Ĥ, above 70. This may

be due to the specific alleles in our data set (for D21, these were 28, 29, 30, 30.2, 31 and 32.2)

and possible individual specific effects from having only four different profiles in the data.

We used the estimated parameters of Table 6.2 in order to create a table of the mean peak heights

that correspond to the specific drop-out probabilities. For the ten different loci included in our

data set, these mean heights are presented in Table 6.3.

Table 6.3: Mean peak heights (rfu) for various drop-out probabilities for ten STR loci.

P(D|Ĥ) D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA Overall

0.0001 556 577 622 562 558 461 531 722 723 692 648

0.0005 384 399 430 388 385 318 367 499 499 478 439

0.0010 327 340 366 331 328 271 313 425 426 407 371

0.0050 226 235 253 228 226 187 216 293 294 281 251

0.0100 192 200 215 194 193 159 184 250 250 239 212

0.0500 132 137 147 133 132 109 126 171 171 164 142

0.1000 111 115 124 112 111 92 106 144 144 138 119

0.2000 92 95 103 93 92 76 88 119 120 114 98

0.3000 81 84 91 82 81 67 78 105 106 101 86

0.4000 73 76 82 74 74 61 70 95 95 91 77

0.5000 67 69 75 68 67 55 64 87 87 83 70

0.6000 61 63 68 62 61 50 58 79 79 76 63

0.7000 55 57 62 56 55 46 53 71 71 68 57

0.8000 49 50 54 49 49 40 46 63 63 60 50

0.9000 40 42 45 41 40 33 39 52 52 50 41

0.9500 34 35 38 34 34 28 32 44 44 42 34

0.9900 23 24 26 23 23 19 22 30 30 29 23

Computing the Brier Score (Brier, 1950) for the estimated locus specific model, we find that the

Brier Score = n−1
∑n

i=1(Di − P(D|Ĥi))
2 = 0.02, where Di is indicator for dropout of the allele

of the data and Ĥi is the associated proxy for the amount of DNA. A Brier Score close to zero
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indicates that the model is adequate. A simulated p-value of 0.156 indicates a satisfying fit of

the model. Furthermore, we tried to improve the model by using linear splines (Harrell Jr., 2001)

with knots at log(75) and log(100), but these model extensions were not supported by the data.

The use of the logit function implies that the interpretation is made in terms of log odds. The log

odds of the drop-out probability conditioned on Ĥ is linear in log Ĥ,

logitP(D|Ĥ) = log
P(D|Ĥ)
P(D̄|Ĥ)

= β0,s + β1,s log Ĥ.

Using H as the explanatory variable implies lower variability on the DNA proxy than if only

using a single peak height observation, e.g. the peak height on the same locus of a heterozygous

allele that has not dropped-out. Furthermore, in real crime cases such an allele might not be

observed, since both alleles of a heterozygous might have dropped-out or the other allele may be

shared with an other contributor if the stain is a mixture.

Gill et al. (2000) discussed the importance of addressing the risk of allelic drop-out and how to

incorporate this into the likelihood ratio. Combining our approach for estimating P(D|Ĥ) with

the methodology of Gill et al. (2000) may be a feasible approach for better assessment of the

weight of evidence when the level of the peak heights indicates the possibility of drop-outs.

6.4 Conclusion

We have demonstrated a simple and applicable way of assessing the drop-out probabilities of

STR alleles in forensic genetics. The drop-out probabilities computed using the model concur

with the prior knowledge of the drop-out behaviour varying with the observed peak heights.

Future work consists of testing the model on a larger data set including more alleles. With a

larger data set, it may also be possible to test whether alleles or fragment length has a significant

effect on the drop-out probability as the individual specific effect decreases with the number of

different profiles.

It is worth emphasising that the drop-out probabilities may vary between laboratories, machinery

within the same laboratory and typing kits used for profiling. This is due to differences in e.g.

the ability to amplify the DNA in the PCR and in the potential to measure the light intensities

for the electropherogram. Hence, before applying this methodology in the likelihood ratio for

evidence calculations, the laboratory needs to perform experiments with known profiles in order

to estimate the parameters in the logistic regression model.
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Appendix

6.A Examples

In forensic genetics it is common to use the likelihood ratio LR = P(E|Hp)/P(E|Hd) as mean to

assess the weight of evidence. Here P(E|H) is the probability of observing the evidence E given

the hypothesis H. The prosecutors hypothesis, Hp, often include more profiles from identified

individuals than under the defence hypothesisHd. Having a single contributor stain Hp may state

“The suspect is the only contributor to the crime stain”, whereas Hd: “An unknown individual

unrelated to the suspect is the only contributor to the crime stain”.

In the situation where the hypotheses induces that an allelic drop-out has occurred one needs

to specify the profiles that constitute the observed stain in order to compute the profile specific

drop-out probability for both Hp and Hd.

6.A.1 Example with data from a controlled experiment

We used the data in Table 6.4 to demonstrate the technique of computing the drop-out probability

of a given allele. The data originated from a mixture of a controlled experiment with the two

profiles A and B denoted in Table 6.4 by ◦ and •, respectively, where A contributed with 31.4

pg/ul and B with 424.6 pg/ul.

Table 6.4: Data used in the example of the Appendix 6.A. The sample was a mixture of the two

profiles A and B (denoted by ◦ and •) contributing 31.4 pg/ul and 424.6 pg/ul, respectively.

Locus Allele Height Area

D3 15 • 766 7264
D3 16 ◦ • 991 9165
D3 19 ◦ − −
vWA 15 ◦ • 788 7631
vWA 17 ◦ • 710 6678

D16 10 ◦ 117 1201
D16 11 • 1765 18858
D16 12 ◦ − −
D2 19 • 746 8816
D2 23 ◦ − −
D2 25 ◦ • 696 8432

D8 8 • 967 9145
D8 12 • 895 8350
D8 13 ◦ − −

Locus Allele Height Area

D21 28 ◦ 70 660
D21 29 • 767 7169
D21 30 ◦ 102 1024
D21 31 • 889 8283

D18 12 ◦ 70 736
D18 15 • 766 8501
D18 16 ◦ 127 1341
D18 17 • 687 7856

D19 13 ◦ • 1525 12862
D19 15 ◦ − −
TH0 6 ◦ • 836 7333
TH0 7 ◦ 82 736
TH0 8 • 595 5249

FGA 20 ◦ − −
FGA 23 ◦ • 638 6507
FGA 24 • 549 5542
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Under the assumption that the data in Table 6.4 originated from a two-person mixture, we need

to specify a possible pair of profiles explaining the observed alleles. We compute the individual

DNA proxies H(A) and H(B) as defined in Section 6.2.2 for the two profiles A and B of Table 6.4,

H(A) =
117 + 70 + 102 + 70 + 127 + 82

6
= 94.67

H(B) =
766 + 1765 + 746 + 967 + 895 + 767 + 889 + 766 + 687 + 595 + 549

10 + (2 × 1) = 782.67.

Let allele 19 in locus D3 be denoted by D319, then from Table 6.4 we found that the homozygous

allele D813 and the following non-shared heterozygous alleles of profile A had dropped out:

D319, D1612, D223, D1915, and FGA20.

The DNA proxy was the same for all the heterozygous drop-outs, Ĥ = H(A), and for the homozy-

gous allele Ĥ = 2H(A). The parameter estimates of Table 6.2 were then used in order to compute

the locus specific drop-out probabilities. Below, we demonstrate how to compute the drop-out

probabilities for D319, D1915 and D813:

P(DD319 |Ĥ) =
exp(18.26−4.35 log(94.67))

1 + exp(18.26−4.35 log(94.67)) = 0.177,

P(DD1915 |Ĥ) =
exp(19.40−4.35 log(94.67))

1 + exp(19.40−4.35 log(94.67)) = 0.403,

P(DD813 |Ĥ) =
exp(18.28−4.35 log(189.33))

1 + exp(18.28−4.35 log(189.33)) = 0.011.

Suppose we only had information on profile B, e.g. B being the victim of a crime, and that the

profile of the suspect S only gave a partial match. For simplicity, we use the same mean height

estimate for the suspect as for A, i.e. H(S ) = H(A). In locus D19, only allele 13 was observed

and a shared allele may have dropped out. Assuming suspect S is homozygous for allele 11

and profile B is heterozygous with alleles 11 and 13, the DNA proxy is Ĥ = 2H(S ) + H(B) =

189.33 + 782.67 = 972 and the drop-out probability is

P(DD1911 |Ĥ) =
exp(19.40−4.35 log(972))

1 + exp(19.40−4.35 log(972)) =2.69
×10−5.

6.A.2 Example in the recommendation of the ISFG Commission

Following the idea of Example 1 given in (Gill et al., 2006, Appendix B.2), we compute the

likelihood ratio using our model for assessing the drop-out probabilities.

Assume that the genetic stain G = (a, c, d) and that the prosecutors hypothesis claims that the

suspect, GS = (a, b) is a contributor to the stain. For this hypothesis to be true, the b allele must
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have dropped out. In this example, we only consider data from one locus as in Table 3 of the

ISFG recommendations. We re-use the data from TH0 in Table 6.4 in order to exemplify how to

evaluate the LR. For consistency with the example of Gill et al. (2006), denote allele 7 by a and

let c and d be allele 6 and 8, respectively.

From Table 6.4, we compute the following estimates of Ĥ and the associated P(D|Ĥ) for every

combination of the alleles assuming a two-person mixture. Suppose that a contributor has non

shared allelesmn and that the DNA proxy for this combination is Hmn. Then P(Dmn) = P(D|Hmn)

is the drop-out probability of either m or n. Alternatively in the actual case there may be one

shared allele, m, and in this case P(Dm,m) = P(D|Ĥm,m) = P(D|Hmn+Hmo) is the drop-out prob-

ability for allele m when shared by two individuals with the combinations mn and mo. The

probability P(G|Hp) is

P(G|Hp) = 2P(cd)P(D̄cd)
2P(Dab)P(D̄ab),

since allele b is assumed to have dropped out.

Assume that an allele, Q, has dropped out implying that the two profiles are heterozygous not

sharing any allele. That is, Q is any allele of ATH0 \ {a, c, d} with allele probability P(Q) =

1−[P(a)+P(c)+P(d)], where ATH0 is the set of alleles for locus TH0. All of the observed alleles

must be paired with the missing allele in order to compute the specific drop-out probabilities as

these differ due to the different peak heights. From Table 6.5, it is clear that P(DaQ) is the largest

of the three as expected since the peak height of a is only 82 rfu. When paired with any of c or

d, the drop-out probabilities are practically zero as one would require. Hence, the terms P(DcQ)

and P(DdQ) are also indicators of a poor agreement with the heterozygote balance when pairing

ad and ac, respectively.

Table 6.5: DNA proxies and drop-out probabilities for various profiles

Profile(s) Notation H Ĥ P(D|Ĥ)

aQ P(DaQ) 82.0 82.0 5.57 ×10−1

ac P(Dac) 459.0 459.0 7.02 ×10−4

ad P(Dad) 338.5 338.5 2.63 ×10−3

cQ P(DcQ) 836.0 836.0 5.17 ×10−5

dQ P(DdQ) 595.0 595.0 2.27 ×10−4

cd P(Dcd) 715.5 715.5 1.02 ×10−4

aa P(Daa) 82.0 164.0 5.82 ×10−2

cc P(Dcc) 836.0 1672.0 2.54 ×10−6

dd P(Ddd) 595.0 1190.0 1.11 ×10−5

ac, ad P(Da,a) 459.0, 338.5 797.5 6.35 ×10−5

ac, cd P(Dc,c) 459.0, 715.5 1174.5 1.18 ×10−5

ad, cd P(Dd,d) 338.5, 715.5 1054.0 1.89 ×10−5
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The probability of the evidence given the defence hypothesis and that one allele has dropped out

is given as

P1(G|Hd) = 8P(acdQ)[P(D̄ac)
2P(DdQ)P(D̄dQ)+

P(D̄ad)
2P(DcQ)P(D̄cQ) + P(D̄cd)

2P(DaQ)P(D̄aQ)],

where the multiplication by 8 is due to the number of pairwise combinations of the alleles,

e.g. pairing the alleles ac and dQ may be done as (ac)(dQ), (ac)(Qd), (ca)(dQ) and (ca)(Qd);

interchanging the profiles yields the eight combinations.

The defence hypothesis, Hd, also comprises the scenario where no alleles has dropped out. This

implies that either an allele is shared or one contributor is homozygous. The probability of

P0(G|Hd) is:

P0(G|Hd) = P(acd)
[
P(a)

{
4P(D̄aa)P(D̄cd)

2+8P(D̄a,a)P(D̄ac)P(D̄ad)
}

+ P(c)
{
4P(D̄cc)P(D̄ad)

2+8P(D̄c,c)P(D̄ac)P(D̄cd)
}

+ P(d)
{
4P(D̄dd)P(D̄ac)

2+8P(D̄d,d)P(D̄ad)P(D̄cd)
} ]
.

It is worth noting that the probabilities P(Dac) and P(Dad) are misleading as the combination of

a together with c or d causes substantially imbalances in the profile’s peak heights.

In order to compute the likelihood ratio, LR, we need only to compute the ratio of P(G|Hp) to

P1(G|Hd) + P0(G|Hd). As in Gill et al. (2006), we assume uniform allele probabilities of 0.1 for

the observed alleles implying that P(Q) = 0.7, yielding a LR of

LR =
P(G|Hp)

P1(G|Hd)+P0(G|Hd)
=

0.0049

0.0014+0.0035
= 1.0007.

For the same scenario, Gill et al. (2006) considered uniform probabilities of 0.02 of the observed

alleles. Using our model, this implies a LR of 9.6111.
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6.5 Supplementary remarks

Several authors and commentators in forensic genetics have already accepted the model above as

a mean to estimate the probability of allelic drop-out (Balding and Buckleton, 2009; Petricevic

et al., 2009; Gill and Buckleton, 2010a,b). However, as with any piece of science and each

model criticism has also been put forward. Balding and Buckleton (2009) argue that the drop-

out probability of a homozygous allele, P(D2), should satisfy the property that P(D2) < P(D)2,

where P(D) is the drop-out probability of a heterozygous allele for the same DNA profile. Their

argument is based on the fact that the superposition of two low intensity peaks should have

smaller drop-out probabilities than when peaks are considered separately. That is, allelic drop-

out may occur due to absence of molecules associated with a particular allele, but may also be

due to the insufficient amount of molecules to trigger the observation of an allele. In the latter

case, the amount of DNA might imply that heterozygous alleles yield peak height observations

close to 50 rfu while homozygous alleles are closer to 80 rfu.

Balding and Buckleton (2009) suggested that P(D2) = αP(D)
2 for some value of α < 1, and was

chosen since it satisfy the their requirement. Based on a survey from some forensic laboratories

Balding and Buckleton (2009) suggest α = 0.5. However, there are at least two problems with

the α-approach. First, there is not a solid model behind the suggestion, and second, how do one

choose the correct value for α? The model fitted to the experimental data in Tvedebrink et al.

(2009) has P(D2;H) > P(D;H)2 for H > 136 rfu. However, the differences are in the fourth

decimal place and has no practical implications. D. J. Balding (personal communication, 2010)

suggested to use
√
H rather than log(H). This transformation yields a slightly better fit to the

data and postpone the issue of P(D2;H) > P(D;H)2 to H-values > 201 rfu.

Gill et al. (2005) demonstrated how to simulate DNA mixtures by mimicking the procedure

carried out by a forensic laboratory: DNA extraction, aliquot sampling, PCR efficiency and

measurement variability. A similar approach is listed below:

(1) Assume that there are N chromosomes extracted for typing.

(2) Of these do n(0) carry the specific allele of interest, where n(0) = bin(N, x/46) where x = 1

for heterozygous and x = 2 for homozygous alleles, respectively.

(3) The PCR process is assumed to be a binomial process: n(c) = n(c−1) + bin(n(c−1), πPCR), for

c = 1, . . . ,C, cycles, where πPCR is the PCR efficiency for each cycle in the PCR process.

(4) If n(C) measured with noise gives reason to peak heights lower than a given threshold we

declare a drop-out.

By running (1)-(4) several times with varying initial values N we get an simulated distribution

of P(D). In Figure 6.2 simulations for heterozygous and homozygous alleles are simulated for

varying amounts of DNA. In these simulations πPCR = 0.85, C = 28 and each point is based

on 5,000 simulations. The solid curve is fitted to the heterozygous data points (open points) by

logit P(D;H) = β0 + β1 log(H) and demonstrates that the model fits the data well over the whole

range of the response. Dashed curves show the same regression with
√
H as covariate, and the

probit approach is discussed below. The fitted parameters (β̂0, β̂1) were used to draw the curves

for the homozygous simulations (closed points) with log(2H) as covariate. The plot shows good

agreement between the simulation homozygous data points and the model predictions. The
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Figure 6.2: Simulations using (1)-(4) for varying amounts of DNA. Open points are heterozy-

gous simulations, and closed points homozygous. The curves are explained by the legend.

dotted curve represents the αP(D;H)2-model of Balding and Buckleton (2009) with α = 0.5.

The impression is quite different from the logistic regression fitted to the data.

Another way to model the probability of allelic drop-out may be derived taking a slightly differ-

ent approach than above. Let X denote the number of molecules in a aliquot sampled for PCR.

We assume that if X is less than some threshold M the signal will not be sufficiently strong to

trigger the CCD camera and thus the signal will be undetected implying allelic drop-out.

Assume that the aliquot is sampled from a total number of molecules N in the extract. Fur-

thermore, the spacial pattern is Poisson distributed with intensity λ (the λ parameter reflects the

concentration of molecules), which implies the position of the molecules are independent of each

other. The aliquot proportion p of molecules for PCR processing is sampled from this extract,

which again is Poisson distributed with intensity pλ.

Now, X is Poisson distributed with some unknown intensity β = pλ, since p is also unknown.

We assume that the average peak height, H, is proportional to the number of sampled molecules,

X, such that H ≈ kX, X ∼ Poisson(β), which implies that E(X) = β ≈ k−1H = cH. Rather than

assuming P(D) = P(X = 0), i.e. drop-out only happens when no molecules are samples, we
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allow a positive number of molecules to be sampled:

P(D;H) = P(X ≤ M) = P

(
X − cH
√
cH

≤ M − cH
√
cH

)
≈ Φ

(
M − cH
√
cH

)
,

where the approximation of a Poisson distribution by the normal distribution is satisfied by the

large value of cH. This implies that probit[P(D;H)] = Φ−1[P(D;H)] = β1H
−1/2+β2H

1/2. Fitting

this model using the same dataset as used in Tvedebrink et al. (2009) yields a similar fit as that

of the original article. Similarly, did this approach indicate good agreement with the simulations

discussed above (as shown in Figure 6.2). Hence, this method which is more closely related

to the biochemistry than the logistic assumption adds further support to the logistic regression

approach through the similarity in results.

The Section of Forensic Genetics, University of Copenhagen, conducted after the publication of

Tvedebrink et al. (2009) more experiments with dilutions of DNA profiles. These experiments

investigated the applicability of the drop-outmodel to different DNA genotyping kits and varying

number of cycles in the PCR process (see summary of the results in Table 6.6).

Table 6.6: Summary of the experiments with diluted samples using the SEfiler kit (Applied

Biosystems). Samples from identical aliquots were used in order to compare the effect of in-

creasing number of PCR cycles.

Cycles Classification D3 vWA D16 D2 D8 SE33 D19 TH0 FGA D21 D18

28 Observed 151 152 116 139 153 127 134 148 115 130 108

Drop-outs 17 16 11 29 15 19 15 20 10 16 17

29 Observed 165 156 125 162 165 141 144 160 120 141 122

Drop-outs 7 16 5 10 7 9 8 12 8 9 6

30 Observed 170 168 127 168 168 148 151 167 126 148 124

Drop-outs 2 4 3 4 4 2 1 5 2 2 4

The overall properties of the model did not change, only an extra term caused by the cycle-factor

was included:

logitP(D;H,C) = (β0,s + γ0,C) + (β1 + γ1,C) log(H)

Hence, the overall interpretation of the model is the same. It is worth mentioning that γ̂0,30 <

γ̂0,29 < γ̂0,28 = 0 and 0 = γ̂1,28 < γ̂1,29 < γ̂1,30. This implies that for the same locus and

H0 > 60 rfu fixed:

P(D; Ĥ = H0,C = 28) < P(D; Ĥ = H0,C = 29) < P(D; Ĥ = H0,C = 30).

This seems counter-intuitive since more PCR cycles implies higher peaks. However, with Ĥ =

H0 for all three levels of C, it is more likely to have drop-out for C = 30 than C = 28 since one

would expect that peaks with 30 cycles on average are higher than peaks from a 28 cycle PCR
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process. In Figure 6.3 a plot similar to Figure 6.1 summaries the estimated model. Each panel

shows a box plot of the drop-out events for the associated Ĥ-estimate with the fitted logistic

curves superimposed.
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Figure 6.3: Box-plots of the Ĥ-estimates stratified by drop-out event. The boxes are vertically

shifted for visual comprehension. Black: 28 cycles, dark gray: 29 cycles and light gray: 30

cycles.

For low amounts of DNA there might be a potential bias when estimating H. This is due to the

fact that for a profile with many drop-outs, the peaks with heights above the detection threshold,

are “outliers” with respect to the peak height distribution. Hence, estimates based on these

observations tends to systematically overestimate the amount of DNA through biased estimates

of H. However, for a moderate number of drop-outs the bias is of minor concern.

6.5.1 Mixture separation allowing for allelic drop-out

The models for DNA mixtures presented in Chapters 4 and 5 do not allow for allelic drop-out in

their original formulation. However, they are both expendable for handling this sort of issues, in

particular the mixture separating model which is discussed in details below.
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For two-person mixtures, the possibility of allelic drop-out implies that for loci with three and

two observed alleles, the possible list of contributing DNA profiles should be extended with

“wild cards”. That is, observing alleles a, b and c, genotypes involving an additional allele

different from the three needs to be considered. In practice, this implies that J2 and J3 from

Table 5.3 should be extended as shown in Table 6.7 (denoted J′2 and J′3). Note that the columns

in J′
2
assuming allelic drop-out are identical to those of J3 and J4 with the first row(s) (lowest

peak heights/smallest peak areas) removed. Similarly the additional column in J′3 relative to J3

refers to the lowest peak intensity of the minor contributor has dropped out (first row of J4). The

number of expected alleles, Ns, is given over each block, where the number of drop-outs equals

Ns − ns.

Table 6.7: Extension of J2 and J3 of Table 5.3 allowing for drop-outs. The number of drop-outs

is equal to Ns − ns, where Ns is the expected number of alleles.

Expected number of alleles: Ns=2 Ns=3 Ns=4

Number of drop-outs: 0 1 2

J′
2
: P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

As,(1) 1 1 2 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1

As,(2) 1 1 0 2 1 2 2 1 0 1 0 2 1 1 2 0 0 1

Expected number of alleles: Ns=3 Ns=4

Number of drop-outs: 0 1

J′3 : P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

As,(1) 2 0 1 0 1 0 0 1 1 0

As,(2) 0 1 1 0 0 1 0 1 0 1

As,(3) 0 1 0 2 1 1 2 0 0 1

The statistical formulation of mean and variance are identical, drop-out allowed or not. However,

due to the missing data problem induced by the assumption of allelic drop-out we must impute

the missing data. An ad-hoc way to do this has been implemented and showed reasonably good

results:

Ns = 4 and ns = 3: The missing data is imputed by repeating the As,(1)-data row.

Ns = 4 and ns = 2: The algorithm will always choose the leftmost configuration of J′2 since Ds

will be similar to that of the rightmost configuration, i.e. the difference between the observed

and expected peak areas is similar when conditioned on the locus sum, As,+. However, the

ratio of the likelihood values will approximately be P(Ds|H(1))2 due to the two drop-outs for

Ns = 4.

Ns = 3 and ns = 2: There are four different configurations that need to be considered (numbers

refer to order in J′
2
where Ns = 3):

(1) If a homozygous allele drops-out the situation is the same as above for Ns = 4 and ns = 2.

(2) The missing data is imputed by repeating the As,(1)-row.
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(3) The missing data is imputed as the difference of the As,(3)- and As,(2)-row.

(4) The missing data is imputed by repeating the As,(1)-row.

A more rigorous approach would be to use the EM-algorithm, however, for practical purposes it

is believed, that there would be no substantial difference.

Furthermore, the likelihood now includes an extra term P(D;H), where H is calculated as de-

scribed above. Assume that only alleles of the minor contributor have dropped out, then al-

lowing for drop-outs in mixture separation, implies that the selection criterion needs to evaluate

P(D; Ĥ=H(1))nD1P(D; Ĥ=2H(1))nD2 τ−N , where nD1
and nD2

respectively are the number of het-

erozygous and homozygous drop-outs.

Example

Table 6.8 lists the STR data of a two-person mixture where several allelic drop-out has occurred.

In fact only three of the minor profile’s (marked by ◦ in Table 6.8) alleles not shared by the major

profile (•) had peak heights above the 50 rfu limit of detection.

Table 6.8: Observed STR data of a two-person DNA mixture. The estimated H-values were

respectively 60.3 rfu (Profile ◦) and 765.8 rfu (•). The profiles denoted by squares and triangles
are respectively iditified without drop-out allowed and taking drop-out into consideration.

Locus Allele Profiles Height Area

D3 15 • � � N △ 884 7787
D3 16 • ◦ � � N 816 7140
D3 19 ◦ △ - -

vWA 15 • ◦ � � N △ 519 5067
vWA 17 • ◦ � � N △ 530 4928

D16 10 ◦ - -
D16 11 • � � N △ 1373 14302
D16 12 ◦ - -

D2 19 • � � N △ 565 6635
D2 23 ◦ △ - -
D2 25 • ◦ � � N 518 6120

D8 8 • � � N △ 993 8720
D8 12 • � N 807 7320
D8 13 ◦ � △ 78 891

Locus Allele Profiles Height Area

D21 28 ◦ - -
D21 29 • � � N △ 773 6867
D21 30 ◦ - -
D21 31 • � N △ 637 5867

D18 12 ◦ - -
D18 15 • � � N △ 762 8449
D18 16 ◦ � △ 52 663
D18 17 • � N 644 7316

D19 13 • ◦ � � N △ 1163 9550
D19 15 ◦ � △ 51 631

TH0 6 • ◦ � � N △ 553 4691
TH0 7 ◦ - -
TH0 8 • � � N △ 572 4936

FGA 20 ◦ △ - -
FGA 23 • ◦ � � N △ 403 4024
FGA 24 • � � N 363 3651

The drop-out probabilities of one of minor profile’s alleles for the various loci are listed in

Table 6.9. From this table we see that it is likely that one or more of the minor profile’s alleles

has dropped out.
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Table 6.9: Drop-out probabilities for the minor contributor (see Table 6.8). The probabilities

were computed using (β̂s,0, β̂1) from Tvedebrink et al. (2009).

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

P
(
D|H(1)=60.3

)
0.61 0.65 0.72 0.62 0.61 0.41 0.56 0.83 0.83 0.80

We may analyse the data of Table 6.8 using the mixture separating algorithm. We first anal-

yse the data assuming no allelic drop-out and next allowing for allelic drop-out. The likeli-

hood value when not allowing for allelic drop-outs is 1.908 ×10−10 which corresponds to τ̂ =

7.65. The identified profiles when drop-outs are neglected are denoted by square-symbols

in Table 6.8. Similarly, when allowing for drop-outs τ̂ = 5.82 and the likelihood value is

1.178 ×10−9. Since the best matching profiles when allowing for drop-outs has three drop-outs

(see the identified profiles in Table 6.8 marked by triangles) the likelihood value is computed as

τ̂−NP(DD3|H(1))P(DD2|H(1))P(DFGA|H(1)), with the locus specific drop-out probabilities listed in

Table 6.9.

Even though the algorithm allowing for drop-out correctly identified three allelic drop-outs, the

number of correctly identified loci for the two methods are almost the same. This is due to the

peak height imbalances of the peaks of the major profile. Often the shared allele of the two

true contributors is smaller than the one where the major profile is the only contributor (e.g. loci

D3, D2 and TH0 in Table 6.8). Hence, for D3 and D2 the larger of the two observed alleles is

assumed to be a shared allele.

In addition to the example above, we also simulated data mimicking a two-person DNAmixture.

The minor contributor had a fixed mean peak height of 60 rfu, while the major component had

peak heights of 2000, 1500, 1000, 750, 500, 250, 150, 100 and 75 rfu. The reason for decreasing

the peak height of the major contributor is that since the variance is proportional to the mean, the

contribution from the minor component is masked in the variability for large peak intensities.

That is, it is not possible to detect whether the minor component has dropped out or if it shares

alleles with the major profile. Hence, the smaller the peak intensities of the major, the easier

it should become to detect allelic drop-out. For each mean value of the major peak height, the

standard deviation, τ, takes integer values from 0 to 10. The locus where an allele of a four-allele

locus has dropped out, the methods detects most of the drop-outs for small values of τ and the

mean values of the major profile. For three-allele loci the method is less successful even for

moderate values of τ and low major peak heights.

Both experimental data and the simulations indicate that it is difficult to identify allelic drop-out

of a contributor to a DNA mixture. The problem with allelic drop-out is not only due to limited

amount of DNA in the sample. Lowering the limit of detection naturally decreases the number of

drop-outs. However, this might come with the cost of increased drop-in peaks. In the following

paper we discuss how the background noise can be used to determine a limit of detection using

the sample itself as reference.
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Abstract:

The discrimination between positive and negative results in forensic genetic STR DNA analyses

is of outmost importance. We present a method for identification of STR alleles that is based on

(1) discrimination between positive and negative STR results that are specific for the sample and

each STR locus, (2) correction of stutter effects and (3) correction of pull-up effects. The sample

and STR locus specific discrimination was based on a floating threshold that was estimated by

means of distribution analysis of the true negative data elements, i.e. the noise component. The

correction of stutter effects and pull-ups was based on regression analysis. The method was

developed on the basis of STR data of serial dilutions of DNA from four persons in amounts

ranging from 24.6 to 410 pg DNA. The method was tested on two types of data: (1) controlled

experiments with two-person mixtures of DNA in proportions 16:1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4;

1:8 and 1:16 with a total of 328 to 528 pg DNA in the two-person mixtures, and (2) data from

fingernail swabs from real crime cases.

The method yielded a 16% increase in allele assignment compared to that of a conventional

assignment of STR alleles for the two-person DNA mixtures and 24% increase for the fingernail

data. A further gain from the method was a more precise identification of the STR types of

contaminated or otherwise compromised DNA samples.

Keywords:

STR typing; Allele assignment; Investigation specific floating threshold; Stutters; Pull-up ef-

fects.

7.1 Introduction

DNA typing with Short Tandem Repeat (STR) alleles is typically based on multiplex Polymerase

Chain Reaction (PCR) amplification of the relevant STR DNA, capillary electrophoresis and

fluorescence detection of the resulting PCR products. In European DNA crime case laboratories,

the AmpFℓSTR SGM Plus kit (Applied Biosystems - AB) is widely used. The discrimination

between positive and negative STR results may rely on the individual judgement of the scientist

responsible for the STR typing or on fixed criteria like a cut-off of 50 relative fluorescent units

(rfu) between positive and negative responses as recommended by the supplier of the kit. A

fixed cut-off level may be very useful for practical routine work, but fixed cut-off values may

ignore specific circumstances of the investigation being carried out and introduce errors in the

interpretation of the results.

A fixed cut-off of 50 rfu is used in many laboratories for the analysis of routine results although

other methods based on e.g. the signal-to-noise ratio may be used (Gilder et al., 2007). A number

of factors influence the general magnitude of the fluorescent signal, e.g. (1) the amount of am-

plifiable DNA in the PCR, (2) the amount of fluorochrome molecules bound to the oligo-DNA

molecules acting as primers in the PCR, (3) the number of PCR cycles, (4) the amount of de-

tectable, amplified PCR products injected into the electrophoresis capillary typically controlled

by the injection voltage and injection time, (5) the sensitivity of the fluorescent detections system

and (6) other factors. The level of irrelevant signals, the noise component, is determined by fac-

tors like impurities of the fluorochrome not attached to the amplified DNAmolecules, impurities
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of the primers and conglomerates of the primers, conglomerates of fluorochromes and other sub-

stances that may be present in the post-PCR reaction volume that is injected into the capillaries.

The PCR amplification with the fluorescent primers is usually responsible for the majority of the

noise signal. Large variations may exist from kit to kit and from batch to batch. Other contrib-

utors to irrelevant noise signals include impurities in the DNA preparations and other chemical

reagents than the STR kit, the DNA sequencer equipment, including the electronic detection and

amplification system and other components of minor importance.

In multiplex PCR STR kits, a number of fluorochromes are typically used, and the balance

between signal and noise between the fluorochromes vary. The signal intensities of the various

STR loci also vary. Thus, systematic variations such as the STR kit, the batch, batches of other

reagents, the DNA sample, the DNA sequencers with attached electronic equipment, etc., may

influence the level of discrimination between positive and negative reactions in STR typing.

Therefore, it is desirable to develop methods that can determine the threshold between positive

and negative reactions for each of the investigated DNA samples and for each STR locus.

Systematic extra reactions such as “stutters”, which are caused by infidelity of the Taq poly-

merase in the PCR resulting in amplification products typically 4 base pairs (bp) shorter than the

true PCR products, and “pull-ups” that are caused by spectral overlap of the fluorochromes used

for the detection of the PCR products must also be handled during the interpretation of the STR

results. Stutters are often compensated for by ignoring results below a certain ratio of the signal

of the “parental peak”, i.e. the DNA fragment supposed to cause the stutter signal. Stutter filter

ratios are usually decided for each STR locus based on average data from initial investigations

of small numbers of samples performed by the supplier of the STR kit and, thus, not necessarily

optimal for all laboratories and/or all alleles in an STR locus. Correction for pull-ups is most

often done by visual inspection although IT-based expert programmes may be used to remove

signals that most likely are caused by pull-up effects.

We have developed a new method for the discrimination between positive and negative STR

results based primarily on analyses of the “noise component” of the data that represent true neg-

ative STR results. The positive results were further analyzed to identify and correct for stutters

and pull-up effects. We used distribution analysis of the noise component in order to separate the

negative and positive results. Algorithms based on regression analysis were developed to correct

for stutter effects of each STR locus and pull-up effects of each sample. The method makes it

possible to analyze the STR results of a sample according to the results that are specific for the

sample and each STR locus.

The results of the method were compared to those obtained by the method recommended by the

manufacturer of the SGM Plus kit with fixed cut-offs for positive reactions (50 rfu) and stutters.
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7.2 Materials and methods

7.2.1 Data

Controlled experiments

The laboratory investigations were performed at the Section of Forensic Genetics, Department

of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen and approved by

the local ethical committee (KF-01-037/03). Genomic DNA from blood samples from two males

and two females was extracted by a standard phenol-chloroform extraction method. The DNA

was quantified in triplicates using the Quantifiler Human DNA Quantification kit (AB) with

Human Genomic DNA Male (Promega) as the quantification-standard on an ABI Prism 7000

(AB). The median DNA concentrations were used. Each sample was diluted in water to approx-

imately 500 pg DNA/µl. The DNA concentrations in the diluted samples were measured again

in triplicates and the medians of the DNA concentrations were recorded for further use.

DNA from each of the four persons was serially diluted with water in the proportions 16:1, 8:1,

4:1, 2:1 and 1:1 for the training STR data set, cf. below. Pair-wise two-person mixtures of DNA

(w/v) in proportions 16:1, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4; 1:8 and 1:16 were made of DNA from each

pair of the four persons for the validation STR data set, cf. below.

The amount of DNA from each person in the diluted single donor samples and the two-person

mixtures was calculated based on the measured DNA concentration of each sample. The total

amount of DNA ranged from 24.6 to 410 pg DNA in the dilutions of single donor samples and

from 328 to 528 pg DNA in two-person mixtures. The DNA was amplified with the AmpFℓSTR

SGM Plus kit (AB) in a GeneAmp 9700 PCR thermocycler (AB) as recommended by the man-

ufacturer.

One ul of the amplificate in 15 ul HiDi Formamide (AB) was analysed on an ABI Prism 3100

Genetic Analyzer (AB) using POP4 (AB) as the polymer and 3 kV injection voltage for 6 sec-

onds.

DNA fragments were detected and fragment sizes were estimated with GeneScan 3.7 (AB).

Genotypes were assigned using GenoTyper 3.7 (AB). The data were analyzed in two ways: (1)

With the method recommended by the manufacturer of the SGM Plus kit with a fixed cut-off of

50 Relative Fluorescence Units (rfu) for the discrimination between positive and negative results

and the recommended stutter filter, and (2) by the presented floating threshold method. The data

for the floating method were generated by GeneScan 3.7 with a detection threshold of 5 rfu.

Genotypes were assigned using GenoTyper 3.7 with no stutter filter applied.

Crime scene fingernail swabs

In addition to the DNA mixtures from controlled experiments with known contributors, the

methodology were also tested on samples from real crime cases. DNA transfer between a victim

and suspect frequently occurs during violent crimes. Debris from fingernail swabs are routinely

analysed in many crime cases such as rapes, assaults and other violent crimes. Often the contri-
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bution of DNA from the suspect is limited and low peak intensities of alleles associated with the

suspect’s DNA profile will be produced on analysis.

Data from fingernail swabs from 98 real crime cases were analysed (1) using the standard pro-

tocol with a 50 rfu cut-off and the recommended stutter filter (2) and a 5 rfu detection threshold

and no stutter filters, similar to that of the experimental data.

With DNA from a single person, the SGM Plus STR kit detects 10 STR loci and X- and Y-

specific (amelogenin) DNA fragments resulting in a maximum of 22 data elements representing

DNA fragments. The data from single donor dilutions (training data) were used for developing

the various mathematical models, while the data from the two-person mixtures and crime case

samples from fingernail swabs were used to evaluate the performance/efficiency of the mathe-

matical models.

7.2.2 Data model

The statistical model was derived from STR data from each of four donors (training data). The

model assumes the following major components of STR data:

(1) True positive results from the STRs.

(2) So-called “stutters” (cf. below) that are DNA artefacts created during the investigations.

(3) So-called “pull-ups” (cf. below) that are artefacts created during the detection of the various

signals of the fluorochromes that contribute to the identification of the signals of each of the

STR alleles.

(4) Back-ground noise of various kinds.

The quantitative STR data is a mixture of contributions from various sources. Apart from the

signals from true alleles, the signals consist of at least two error components from (1) the PCR

amplification (stutters) and (2) the measurement technique (pull-ups). Stutters are PCR products

typically four base pairs (bp) shorter and to some extend four bp longer than the true PCR

product (“back-stutters”). Stutters originate from primer mis-pairing in the PCR amplification

creating PCR products that mimic alleles typically one repeat shorter than the true peak (Butler,

2005). In Figure 7.1, the stutter products are shown with effects on both the true peaks (“Signal

+ stutter”) and on the noise. In the “double stutter” situation, the stutter peak is caused by stutter

effects from both peaks to the right of the stutter peak. This causes the double stutter peak to

be larger than single stutter peaks because a double-stutter peak is the stutter product of two

peaks. However, the effect of double stutters is not directly implemented in our model, but it is

accounted for in the parameter estimates used in the algorithm (Section 7.2.4).

The quantitative signals are obtained by a very sensitive photocell (CCD camera) detecting the

intensity of light emitted from a fluorochrome on DNA molecules corresponding to alleles of

each STR locus. The signal intensities are measured as rfu. Due to noise in the apparatus,

the observed signal contains a continuous noise part that we denote background noise (peaks

designated “Noise” in Figure 7.1). The light-detecting system also causes a systematic error

component, namely the pull-up effects. This is caused by overlap of the spectra of the light

emitted from the various fluorochromes as illustrated in Figure 7.2. The pull-up effect is observed
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Figure 7.1: Picture of the non-signal components of a STR DNA trace.
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Figure 7.2: Fluorescent dye bands: Blue (dashed/semi-gray), green (solid/dark-gray), yellow

(dot-dashed/light-gray) and red (dotted/white). The shaded areas under each curve indicate the

amount of spectral overlap between the various dyes. Reproduced from Applied Biosystems

(2000).

as an increase in the intensities of both the background noise and true peaks. The shaded areas

in Figure 7.2 represent the amount of overlapping light frequencies of the four different colours

(blue, green, yellow and red) used in the SGM Plus kit. The increases caused by pull-up effects

are pictured in Figure 7.1 as “Pull-up effect”.

In our model, pull-up effects cannot cause stutters, whereas stutters may induce pull-up effects

on other dye bands.
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7.2.3 Determination of floating threshold

For each STR locus and amelogenin of a sample, we wanted to obtain a set of negative data in

order to model the negative data elements and develop a threshold for discrimination of positive

and negative signals based on the distribution of the negative signals. We used the training data

set for the development of the mathematical model. The peak height observations (intensities

of fluorescent signals) below 5 rfu were removed at the first step of analysis with the Genescan

software because the software was unable to handle the large amount of data elements below 5

rfu. The remaining signals comprised both background noise and more systematic components.

We removed (1) all peaks on the allelic ladder that primarily represent true alleles and (2) all off-

ladder signals in pull-up positions. This ensured that the remaining data points represented true

noise. The peaks designated “Noise” in Figure 7.1 illustrate the data used for the determination

of the threshold.

Inspection of the data indicated that the noise followed a right-skewed distribution. In order

to obtain a normal distribution, the peak heights were transformed by loge(peak height − 4.5).
The distribution of the noise data fitted the log-normal distribution, and the fit was not better

with distributions like the exponential, Fisher-Tippett, Pareto, Rayleigh, or Weibull distributions.

Figure 7.3 shows the distribution of the observed peak heights of the noise for each locus of a

sample after the data had been transformed by loge(peak height in rfu − 4.5) against a standard

normal distribution in a QQ-plot. Note that the “outliers” in the upper tail of the distribution are

in fact the true positive signal. The plots demonstrated that the noise (shifted by −4.5) followed a
log-normal distribution with individual parameters µs and σs for each locus, s. These parameters

determined the intercept and slope of the superimposed QQ-line and were estimated by

σ̂s =
xs(q1) − xs(q0)

z(q1) − z(q0)
and µ̂s = xs(q0) − σ̂sz(q0),

where xs(q) and z(q) are the empirical and standard normal q-quantiles, respectively. We used

these quantile estimators rather than the ordinary maximum likelihood estimators in order to

increase the robustness of the method.

Figure 7.3 shows that the fit to normality was better for the higher values of

loge(peak height in rfu − 4.5) than for the lower ones. The observations in the upper part of

the peak heights of the noise are those of main interest for the estimation of the threshold. Thus,

we chose to use the (q0, q1) = (50%, 90%)-interval for the estimation of the threshold. The

threshold was determined by the mean plus 3.29 times the standard deviation. The locus specific

threshold can be written as:

Threshold for locus s = exp(3.29σ̂s + µ̂s) + 4.5.

Approximately 99.95% of the noise will be below the threshold and, thus, will be categorized

as noise. However, 0.05% of the true negative results will be above the threshold and, thus, will

be categorized as positive signals. For practical purposes, the majority of such false positive

assignments will be in off-ladder positions rather than in allele positions.

Figure 7.3 shows that only few noise data elements were recorded for amelogenin. This is due

to the fact that the interval, in which noise could be recorded around the X- and Y-windows of
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Figure 7.3: QQ-plots of the observed peaks. Note the different thresholds computed using the

data of the locus itself as reference. For this particular sample, the fixed 50 rfu-threshold causes

five drop-outs (in loci D3, D2, D19, D2 and FGA) and two drop-out (in loci D19 and D21)

with the locus specific threshold (one true peak in locus D21 has a peak height of 22 rfu and is

embedded in the noise).

amelogenin, is small. However, amelogenin and D8 are marked with the same fluorochrome

and D8 alleles are only slightly longer than the DNA fragments of X- and Y-amelogenin. The

distributions of noise in amelogenin and D8 were rather similar to each other and, therefore, the

threshold of D8 was also used for amelogenin.

7.2.4 Stutter correction

Figure 7.4 shows three different situations involving stutters. The background noise (grey peaks)

is the same in all three scenarios, but the parental peaks and, thus, the stutter peaks (black peaks)

differ in sizes.

We used the training data set to develop the mathematical model based on a regression model on

the peak intensities of the parental peaks. Assuming additivity of the noise and stutter product,

we take into account that peaks in stutter positions in front of small peaks mainly consist of noise
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Figure 7.4: Stutter peaks caused by different parental peaks (in black). The grey peaks picture

the noise and the dashed line the median of the noise.

as pictured in Figure 7.4. The model of the expected stutter height, hStutter, is given by

hStutter = hNoise,s + (βs + γsb̃ps)hParent, (7.1)

where hNoise,s is the known/determined median of the off-ladder peaks not in pull-up position

on locus s (see Section 7.2.3) and hParent is the parental peak’s height. The parameters were

estimated by a weighted least square fit with weights 1/hParent, due to the proportionality of the

mean and variance of the peak heights (Tvedebrink et al., 2010). In the latter term, b̃ps is the

base pair deviation from the mean base pair, b̄ps, on locus s, b̃ps = bps − b̄ps. The parameter βs
is the average stutter effect at a given locus, s. By including the base pairs in the model, we are

able to have different stutter fractions for various alleles within a locus, if necessary.

Table 7.1: Estimates of γs and βs in the stutter model (7.1).

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

βs ×10
2 7.209 6.714 6.101 7.712 4.996 6.359 7.031 7.252 2.031 6.508

SE(βs) ×10
3 0.930 0.883 0.874 0.848 0.645 0.836 0.776 1.348 1.310 1.221

γs ×10
2 0.104 0.203 0.212 0.091 0.096 0.075 0.172 0.215 0.069 0.123

SE(γs) ×10
3 0.112 0.118 0.137 0.064 0.069 0.140 0.099 0.215 0.184 0.139

The previously observed increase in stutter percentage as a function of allele number (Applied

Biosystems, 2006) was reproduced by the positive estimates of γs in Table 7.1. The STR locus

specific βs parameters in Table 7.1 are in accordance with the picture in the manufacturer’s kit

documentation (Applied Biosystems, 2006, Figure 9-5, 9-6 and 9-7), where e.g. the average

stutter effect, βTH0, in TH0 is the weakest.

Figure 7.5 shows the stutter peak heights predicted by the model compared to the observed stutter

peak heights. The plot demonstrates that the model in (7.1) is sufficient in order to describe

the stutters. For adjacent heterozygous alleles, the base pairs typically differ by only a limited

number of bp, which minimizes the effect of the length of the DNA fragment estimated by γs.

Additional examinations of the data also made it clear that back-stutters were present typically

in the position 4 bp larger than the parental peak. The model for back-stutters and correction
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Figure 7.5: Predicted stutter peak heights plotted against observed stutter peak heights with the

identity line superimposed. The scale of the plot is the variance stabilising square-root transfor-

mation.

is based on the same idea as those concerning conventional stutters with a noise level and an

additional effect from the parental peak, i.e.

hBackstutter = hNoise,s + βshParent. (7.2)

Table 7.2 shows the parameter estimates. The lack of homozygous alleles in some of the loci in

the actual data set implied that the estimates of βs were insignificant for these loci. This is due to

the fact that the parental peak needs to reach a certain height (typically well above 1,000 rfu) for

the back-stutter to exceed the noise level. For the same reason, base pairs were not included in

the back-stutter model as only a few base pair lengths were represented in the back stutter data.

Double stutters originating from two adjacent alleles separated by 4 bp in a heterozygous indi-

vidual behave slightly differently from single stutters. In Appendix 7.A, we evaluate the ratio

of the stutter peak to the mean of the two parental peaks. In situations where the heterozygous

alleles are not adjacent (separated by more than 4 bp) or when a stutter originates from a ho-

mozygous allele, for practical purposes, we only need to consider the ratio of the stutter peak to

the parental peak.
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Table 7.2: Parameter estimates of the backstutter model (7.2). Loci with insignificant βs esti-

mates due to lack of homozygous alleles were removed.

Locus D3 vWA D16 D2 D8 D21 D18 FGA

βs ×10
2 0.233 0.211 0.428 0.187 0.293 0.615 0.560 0.638

SE(βs) ×10
3 0.643 0.738 0.628 0.627 0.551 0.625 0.561 0.747

7.2.5 Pull-up correction

We defined pull-ups as peaks on different dye bands within ±0.5 bp of the parental bp lengths.

Only the peaks not being true alleles or possible stutters on a different dye band than the parental

peak were included in the data analyses. Figure 7.1 shows an increase of the noise level (right-

most on the upper band) and a true peak (heterozygote imbalance, leftmost on the upper band).

We used the training data set to develop the mathematical model based on regression.

Figure 7.6 shows examples of pull-up values as function of the values of the parental peaks for

the various colours. The magnitudes of the observed pull-up effects were in accordance with the

spectral overlap in Figure 7.2, i.e. the effects of green signals in the yellow spectrum and of green

signals in the blue spectrum were the two largest, and yellow signals had the smallest effect in

the blue spectrum.

For predictive purposes, we fitted a linear model to the observed data in Figure 7.6. Of the in-

cluded data points, only a limited subset comprised detectable pull-up peaks, while the remaining

observations were background noise in pull-up positions. Our model takes this into account by

having a noise dependent intercept, hNoise,s, for locus s (median of the noise data described in

Section 7.2.3). This approach is similar to the one used in the model for correction of stutter

effects. In the formulation of the model, the notation D → d reflects that the parental peak is in

fluorescent dye band D and the pull-up peak is located in the fluorescent dye band, d,

hPull-up = hNoise,s + βD→dhParent, (7.3)

where parameters were estimated by a weighted least-square fit. Table 7.3 shows the parameter

estimates of βD→d . The superimposed lines in Figure 7.6 were based on the parameter estimates

of Table 7.3. Thus, the superimposed lines are in accordance with the spectral overlaps in Fig-

ure 7.2 except for βG→B, which is smaller than expected. This may be due to the particular alleles

included in our data set.

Table 7.3: Parameter estimates of the various overlapping fluorescent dyes.

Dye→dye B→G B→Y G→B G→Y Y→B Y→G

βD→d
×102 1.039 0.449 0.342 0.978 0.322 0.597

SE(βD→d) ×10
3 0.405 0.357 0.411 0.341 0.560 0.482
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Figure 7.6: Pull-up effects stratified by overlapping fluorescent dyes. The superimposed lines

indicate the estimated model. The scale of the plot is the variance stabilising square-root trans-

formation.

7.3 Results

The parameters for correction of pull-up and stutter effects were estimated using the dilutions of

non mixture samples, whereas the overall performance of the filter was based on analysis of all

possible combinations of pairwise two-person mixtures of four profiles in mixture ratios ranging

from 1:16 to 1:1.

The procedure of events were the following:

(1) Determination of the floating threshold: Determine the threshold and detect potential stut-

ters, pull up effects and true peaks, i.e. alleles with peak heights above the threshold.

(2) Pull-up correction: Correcting for pull-up effects caused by peaks above the threshold deter-

mined in (1).

(3) Stutter correction: Correcting for stutter effects caused by peaks above the threshold deter-

mined in (1).

(4) Allele assignment: Assignment of alleles according to the determined floating threshold in

(1) and the allelic ladder.

Note, that the corrections for pull-up effects were made before the stutter correction was applied,

because stutters may cause pull-ups while pull-ups cannot make stutters.
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7.3.1 DNA mixtures from controlled experiments

We used our floating threshold, stutter and pull-up correction method on 107 two-person mix-

tures. In Table 7.4, we summarise the performance of the overall filter. It is worth emphasising

that 263 of the true alleles dropped out and that the stutter filter let 6 stutters and no backstutters

slip through. In addition to the stutter peaks, another 25 (21 drop-ins and 4 pull-ups) on-ladder

peaks were classified as proper peaks of the samples.

Table 7.4: Filtered and passed peaks classified by type.

Classification Assigned negative result Assigned positive result

True allele 263 3,308

Stutter 2,167 6

Backstutter 1,260 0

Noise 62,669 324
On-ladder 11,619 21
Off-ladder 51,050 303

Pull-up 3,825 14
On-ladder 982 4
Off-ladder 2,843 10

The remaining peaks passing the filter were all in off-ladder positions and removed from the

analysis afterwards. The data were also analysed following the standard protocol of The Section

of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University

of Copenhagen. Using the technique recommended by the manufacturer, 312 drop-outs were

observed together with 27 stutters and 7 pull-up peaks. Thus, the number of drop-outs of true

alleles was 16% lower with locus specific filtering than with a fixed 50 rfu threshold.

The classification tables for the two methods are listed in Table 7.5. In the classification tables

each observation is categorised by its classification and actual class. In Table 7.5 the diagonals

are the correctly classified observations, while the off-diagonals are the misclassified. The lower

the counts in the off-diagonal cells the better is the classification methodology.

To summarize the classification table in a single value we suggest the misclassification rate,

which is the total of misclassified observations to the total of correctly classified observations.

From the misclassification rates (bottom lines in Table 7.5) we see that the floating threshold

method yields a better classification than the fixed 50 rfu threshold.

Table 7.5: Classification tables for the two methods: Fixed 50 rfu and floating threshold.

Floating threshold

Expected + ÷
Observed + 3308 31

÷ 263 69,921

Misclassification rate: 0.401%

Fixed 50 rfu threshold

Expected + ÷
Observed + 3259 34

÷ 312 69,918

Misclassification rate: 0.473%
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7.3.2 Fingernail swabs from crime cases

Data from 98 crime cases were analysed using the approach presented. The Section of Forensic

Genetics, University of Copenhagen, supplied the data from the crime cases together with ref-

erence samples associated with the crime. These reference samples may explain the observed

stain, but since contamination from other biological material and debris may accumulate under

the fingernails, the number of “random” drop-ins may be misleading (Cook and Dixon, 2006).

From Table 7.6 we see that the number of drop-outs decreased by 220 events from 912 using the

standard protocol to 692 using the samples specific setup (decrease of 24%). However, this gain

in fewer drop-outs comes with a cost in more drop-ins. The standard protocol gave 15 drop-ins

versus 90 using our approach. In the experiment conducted by Cook and Dixon (2006), foreign

DNA were detected in 13% of the fingernail swabs taken from the participating individuals.

Hence, the higher number of drop-ins using our more sensitive methodology may be caused

by foreign DNA. These alleles are actually true alleles rather than drop-ins, however, this is

impossible to conclude from the available data.

Table 7.6: Classification tables for the two methods: Fixed 50 rfu and floating threshold.

Floating threshold

Expected + ÷
Observed + 1,460 90

÷ 692 82,497

Misclassification rate: 0.931%

Fixed 50 rfu threshold

Expected + ÷
Observed + 1,240 15

÷ 912 82,572

Misclassification rate: 1.106%

The misclassification rates in Table 7.6 are more than twice the rates of Table 7.5. This is

a consequence of the data being from real crime cases with many degraded samples and low

amounts of DNA. Hence, the number of drop-outs is larger and so is the number of partial DNA

profiles.

In addition Table 7.7 compare the drop-outs and drop-ins of the two methods. We see that 236

of the drop-outs under the standard protocol were correctly declared as true alleles using the

floating threshold method. However, sixteen of the allelic drop-outs from the floating threshold

method did not drop-out using standard methods. More than half of these “new” drop-outs were

located in locus D3 which tends to have a higher noise level compared to the other loci in this

dataset. This may be due to primer residue increasing the background noise for the shorter loci

in the electrophoresis.

Table 7.7: Comparisons of the drop-ins and drop-outs produced by the two methods.

Dropped out Dropped in

Fixed 50 rfu threshold Yes No Yes No

Floating threshold Yes 676 16 7 83

No 236 1,224 8 -
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7.4 Discussion

Previously Gilder et al. (2007) indicated that using observations from the negative controls from

the same run as the samples could be used to extract information about the noise level. However,

their approach did not take variation between the capillaries into account. From our analysis

there are significant differences between the capillaries with negative controls within each run,

and also significant differences between the same capillaries with negative controls for different

runs. This suggest that the noise distribution is neither constant within runs nor for the same

capillary for consecutive runs. Hence, our approach where we use the sample itself in order to

determine the noise distribution is recommended, as it eliminates the between run and capillary

variation. Furthermore, the stratification on loci for determining the threshold clearly improves

the noise filtering as indicated by Figure 7.3.

The fixed 50 rfu-threshold yields in many cases the same number of drop-outs as the locus

specific floating threshold. In Figure 7.7, the box-plots show the thresholds of the 107 mixture

samples. For all loci, the median of the floating threshold is lower than the fixed 50 rfu limit.

Note that within each dye band, the threshold median tends to decrease with the base pair length.
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Figure 7.7: Box-plots of the estimated locus specific floating threshold for the 107 mixture

cases.
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An advantage of the locus specific threshold is that it enables the case worker to assess the noise

level of the sample. Hence, for cases where a peak lies just below 50 rfu, the magnitude of the

locus specific threshold indicates whether it is reasonable to include the peak in the signal or not.

Furthermore, in cases where the transformed peak heights, loge(peak height − 4.5), deviate sub-
stantially from normality, the data indicate that the sample may be subject to extensive noise or

contamination of some kind. This may be used as sample quality diagnostic in order to deter-

mine if a re-analysis is necessary. This deviation may be observed from the QQ-plots and other

usual diagnostics to validate assumptions of normality.

Since the stutter and pull-up corrections are based on a regression model, the parameters has

been tuned for this specific data set. In general, the parameters must be determined for each

laboratory, kit and DNA sequencer.

However, the trend in parameter magnitudes for the different pull-up directions is expected to be

satisfied in general - possibly with an increase in the βG→B-parameter estimate. It is also worth

emphasising the dependency on the kit used for DNA typing. The data used in our analyses were

obtained using the SGM-Plus kit from Applied Biosystems. I.e., the parameters of stutter and

pull-up filters are not directly applicable to other kits.

7.5 Conclusion

The methodology of regression and distributional analysis of the noise yielded satisfactory re-

sults in order to deduce a sample and investigation specific filter for STR DNA typing. Compar-

isons of the results with those based on the recommendations of the manufacturers indicated that

the number of drop-outs for the two validation datasets decreased by 16% and 24%, respectively.

Studies of different data sets supported this improvement and suggests that the methodology of

the threshold determination is adequate for the noise filtering of STR quantitative data.

The filters for pull-up effects and stutters based on regression analysis trained on non-mixture

data also showed applicability to mixed DNA samples. As mentioned in Section 7.4, the pa-

rameter estimates in the filter were tuned for this specific data set and the alleles of included

profiles. Hence, the estimation of the parameters must be a part of a laboratory’s internal quality

assessment, where the consistency of the estimates over time are quality indicators.

Appendix

7.A Double stutters

In Gill et al. (2005), the authors argue that, once a stutter has been formed, its replication during

subsequent PCR cycles perform as an ordinary allele. We investigate the behaviour of stutters,

when we have two adjacent alleles of a heterozygous profile, i.e. what we called a double stutter.

Let hi denote the expected value of pre-PCR peak height of allele i. Then for two adjacent alleles
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n and n+1 from the same contributor, we have hn = hn+1 = h and hn−1 = 0 for the stutter position

n−1. Let P denote the effect of one PCR-cycle, then after t PCR-cycles, the expected value of

post-PCR peak heights h
(t)
i
is given by,

(
h
(t)
n+1
, h(t)n , h

(t)
n−1

)⊤
= Pt(h, h, 0)⊤,

where x⊤ denotes the transpose of the vector x. P may be specified in terms of the PCR effi-

ciency in one cycle, p, and the one-cycle stutter percentage, δ,


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The second equality can be shown using some linear algebra. Define β = tδ/(1+p) to be the

stutter percentage for the entire PCR process comprising t cycles. This definition ensures that

the stutter percentage increases with the number of cycles as noted in the literature (Gill et al.,

2000). The expression can then be rewritten as


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n
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β 1 0
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β 1
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where h0 = (1+p)th and the ≈ is due to t(t−1)/2 ≈ t2/2 from the binomial coefficient. The error

induced from this approximation is negligible for t ≥ 28 cycles.

The peak height, h0, can be interpreted as the actual peak height after the PCR process. In Gill

et al. (2005), the authors use p = 0.8 as the efficiency of a PCR cycle, hence indicating the

theoretical doubling effect (requires that p = 1) from each cycle is not met in practice. Note, that

there is a difference to the work of Gill et al. (2005) where they model the PCR process at the

nucleic level. Our approach is in terms of quantitative measures of peak heights.

Often it is assumed that the peak at position n+1, ĥ
(t)
n+1

, equals some “true” height, ĥ, after t PCR

cycles. Due to stuttering, the peak at position n equals ĥ plus an additional fraction, β̂, from the

n+1-position peak, ĥ
(t)
n = (1+β̂)ĥ

(t)
n+1
= (1+β̂)ĥ. Furthermore, the peak height of stutter peak at

position n−1 is ĥ(t)
n−1 = β̂ĥ

(t)
n = (β̂+β̂2)ĥ. This can be written using matrices as
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where the difference (β2/2 , β̂2) between the matrices in (7.5) and (7.4) is induced by the delay

of one cycle in the stutter product from the n+1-position peak to the stutter peak in position n.

Hence, the relative contribution from the n+1-peak is smaller than modelled in (7.5) since when

formed, the stutter peak is amplified as a regular peak (Gill et al., 2005), which is captured using

(7.4).
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When referring to the stutter percentage, β, we define it as the percentage of the parental peak

that is transferred to the stutter peak, β = h
(t)
n−1/h

(t)
n . However, having two true alleles located at

position n and n + 1, we find

h
(t)
n−1

h
(t)
n

=
h0β

(
1+

β

2

)

h0(1+β)
, β.

In this situation, the ratio of the stutter peak to the mean of the two parental peaks yields the

stutter percentage,

h
(t)
n−1

1
2

(
h
(t)
n +h

(t)
n+1

) =
h0β

(
1+

β

2

)

1
2
(h0(1+β)+h0)

=
h0β

(
1+

β

2

)

h0
(
1+

β

2

) = β.

In situations where the heterozygous alleles are not adjacent (separated by more than 4 base

pairs) or when stutter originates from a homozygous allele, we need for practical purposes only

to consider the direct ratio h
(t)
n−1/h

(t)
n in order to estimate β.
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7.6 Supplementary remarks

The three-personmixtures discussed in Section 5.10were also analysed using the floating thresh-

old methodology. As in Section 5.10 we discarded 17 out of the 120 samples due to preparation

or run errors. For the remaining cases, the minimum amount of DNA contributed to a true allele

was approximately 77.5 pg. Hence, the number of peak heights close to the limit of detection

(50 rfu) is expected to be low, since experience show that with about 50 pg pre-PCR product the

average peak heights are close to this limit.

When using the standard protocol with a fixed 50 rfu threshold, there was observed 8 drop-outs

and 80 extra peaks not assigned to the contributors. These were distributed as 47 stutters, 10 pull-

ups and 23 drop-ins. For the floating threshold there were 4 drop-outs and 85 extra peaks, which

were categorised as 27 stutters, 2 pull-ups and 56 drop-ins. Hence, the performance of the two

methods were almost identical with respect to the misclassification rates, which were 0.123%

and 0.124%, respectively. This non-significant difference in assignment of alleles indicates that

the fixed 50 rfu threshold is very reasonable for standard applications.

However, the methodologymay be useful in situations were a the amount of DNA contributed by

a suspect is limited. Given such circumstances the peak intensities associated with the suspect’s

profile may be close to the fixed limit of detection, e.g. with the majority of peak heights in the

range 40 rfu to 60 rfu. Peaks below the limit of detection, 50 rfu say, would conventionally be

declared as drop-outs. However, if the level of the noise supports a floating threshold limit of 30

rfu such considerations need not to be made, since no alleles would drop-out in this case. Often

a case worker is able to visually detect peaks belonging to the suspect in the EPG below the limit

of detection. However, lowering the limit of detection in order to include the suspect is clearly

very erroneous and unfavourable to the defendant, since taken to the extreme, any DNA profile

could be included in the crime related stain.

Furthermore, the method of adjusting for the contribution of stutter and pull-up effects is more

accurate than just removing the peaks due to so-called masking. Keeping all relevant in the

system is desirable since having a peak in stutter position that after adjustment has a peak height

of 35 rfu, say, is more informative than having a NA observation due to removal of a potential

stutter.
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Abstract:

DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident

are often subject to degradation. When using the STR DNA technology the DNA profile is

observed via a so called electropherogram (EPG), where the alleles are identified as signal peaks

above a signal to noise threshold. Degradation implies that these peak intensities decrease in

strength for longer repeat sequences. Consequently, long STR loci possibly fail to produce peak

heights above the limit of detection resulting in allelic drop-outs.

In this paper we present at method for measuring the degree of degradation of a sample and

demonstrate how to incorporate this in estimating the probability of allelic drop-out. This is

done by extending an existing method derived for non-degraded samples. The performance of

the methodology is evaluated using data from degraded DNA where cases with varying amounts

of DNA and levels of degradation are investigated.

Keywords:

Forensic genetics; STR DNA; Degraded DNA; Allelic dropout.

8.1 Introduction

This paper presents a statistical analysis of degraded STR DNA samples. The model derived

in the subsequent sections is based on analysis of degraded DNA from body tissue kept under

various non-optimal conditions. This implies that the DNA is affected by degradation, which

is a commonly occurring event in crime cases, where evidence is collected after it has been

exposed to e.g. sunlight, humidity and other degrading conditions (see e.g. Alaeddini et al.,

2010). Furthermore, when identifying body remains in mass disaster cases, the samples are often

found in the debris of the accident or in mass graves. Samples taken under these circumstances

are often highly degraded and it is often hard to obtain full DNA profiles from longer STR loci

(Schneider et al., 2004; Bender et al., 2004; Alonso et al., 2005; Dixon et al., 2006; Irwin et al.,

2007; Prinz et al., 2007; Colotte et al., 2009).

In samples with degraded DNA, the signal intensities for the STR fragments decreases with the

fragment length, due to the higher likelihood of the longer fragments to be degraded compared

to the shorter fragments. Consequently, signals for the longest alleles are frequently missing, a

phenomena called allelic drop-out. Allelic drop-out of the long alleles can also occur in sam-

ples with apparently moderate amount of DNA since the available quantification kits (Plexor,

Applied Biosystems, and QHum, Qiagen) are based on amplicons less than 200 bp (Green et al.,

2005), which is about half the length of the longest amplicons in e.g. the SGM Plus kit (Applied

Biosystems).

In order to assign weight to the evidence in cases involving degraded samples, the case worker

needs to be able to account for the fact that alleles or loci have dropped out. I.e. alleles of the

true DNA profile fail to cause peak heights large enough to pass a limit of detection. Tvedebrink

et al. (2009) presented a method for estimating the probability of allelic drop-out based on a

logistic regression. However, the analysis was based on diluted samples from “healthy” DNA

samples where degradation was absent. Here we show how to extend the drop-out model of
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Tvedebrink et al. (2009) to handle degraded samples by adjusting the proxy for the amount of

DNA to correct for degradation.

8.2 Materials and methods

8.2.1 Data

The data used in this study were investigated by The Section of Forensic Genetics, Department

of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen. DNA profiles

from 47 crime case samples were identified as degraded due to the decreasing signal intensities

in the electropherogram (EPG) for longer fragments in the SGM Plus analysis. Of these were

eight samples discarded due to obvious inhibition and for five samples the amount of DNA were

limited such that the observed peak heights were in the range 40 to 15 rfu. The remaining 34

samples originated from saliva on a shirt (three samples), blood stains on paper (eight samples),

blood sample from a decomposed body (five samples), a spleen from a decomposed body (one

sample) and paraffin-embedded tissue (17 samples). The amounts of DNA varied from 17 pg to

1244 pg as quantified with Plexor (Applied Biosystems) and QHum (Qiagen) quantification kits.

We used the methodology of Chapter 7 for filtering the raw signal, where the detection limit was

set to 5 rfu in GeneScan. The Kazam macro in Genotyper was used for allele designation.

8.2.2 Model

It is well known to case workers investigating DNA from crime scenes that the DNA often is

subject to degradation to some degree. The most common effect is an observable decrease in

peak intensities for increasing base pair length of the amplicons. A probable explanation for

this is that the longer the repeat sequence the higher the probability of a breakage in the primer

binding sequence. Let p denote the probability that there is no breakage between two DNA

bases (A, T, C or G). For simplicity we assume p to be constant with respect to length and the

two adjacent DNA bases. That is, the probability of breakage between A and G is the same as T

and C, and so on. Furthermore, by a constant probability of breakage as a function of base pair,

bp, we do not assume any region of the genome to be more susceptible to breakage than others.

Hence, this simple model does not include the possibility that proteins may protect some regions

or segments of the DNA from degradation. Therefore, the longer the primer binding site the

more possibilities exists for the occurrence of just one breakage. I.e. longer sequences increase

the probability of damaged DNA:

P(No degradation) = P(No breakage between any base pair)

= P(No breakage between a given base pair)bp

= pbp,

where we from the first to second line used that the probability of breakage is constant and

that the probability of breakage between any two pairs is assumed independent of the con-

stitution between all other pairs. Since p ≤ 1 the function pbp is a decreasing function of
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bp. This implies that the longer amplicon (larger bp-values), the smaller is the probability of

no degradation. Conversely this increases the probability of degradation as P(Degradation) =

1 − P(No degradation) = 1 − pbp.

For healthy DNA samples the peak heights for the various loci are almost constant. This is due

to the fact that there is no degradation acting in healthy samples with p ≈ 1. This led Tvedebrink

et al. (2009) to argue that the amount of DNA is well modelled using the average peak height H:

Amount of DNA ∝ H = (nhet + 2nhom)
−1

∑n

i=1
hi, (8.1)

where n = nhet + nhom is the number of observed heterozygous and homozygous alleles in the

profile. This was previously demonstrated to be a good proxy for the amount of DNA contributed

to a stain (Tvedebrink et al., 2010).

However, in degraded samples one need to take the varying bp into account when modelling the

mean peak height. Rather than being constant, the peak heights are affected by p and bp. By

modelling the mean peak height as

H(bp) = cpbp, (8.2)

where c is some proportionality factor, depending e.g. on the amount of DNA in the sample,

we obtain an expression for the mean peak heights in degraded samples. Note that for healthy

samples p ≈ 1 which implies that c ≈ H as defined in (8.1).

Hence, pmay be taken as a measure of the level degradation of a given sample: the smaller p the

more severe is the degradation, whereas values close to 1 indicate only moderate degradation.

Taking logs on both sides of (8.2), we get:

logH(bp) = log(c) + log(p)bp = α0 + α1bp. (8.3)

This implies a linear relationship between bp and logH(bp). However, the assumption of linear-

ity does not correct for the possibility of homozygocity. Hence, peak heights from homozygous

loci needs to be divided by 2 in order for the model to be applicable to all loci. In Figure 8.1

we see that the model is supported by the data given in Table 8.1. Analysis of all the samples

described in Section 8.2.1 indicated that linearity were satisfied for all samples (plots similar to

Figure 8.1 are provided as supplementary on-line material). When applying this methodology to

analyse degraded samples, it is important to verify the model fit by graphical diagnostics (as in

Figure 8.1) and the R2-statistic of the linear model in (8.3). This is due to the fact that a linear

model may be fitted to any data set, but without reasonable validity the interpretation might be

dubious.

This model formulation is in itself simple and intuitive. Furthermore, equation (8.3) enables

direct implementation in the model of Tvedebrink et al. (2009) for estimating dropout probabil-

ities P(D), where D indicates a drop-out event. Since the probability of drop-out is primarily

determined by the amount of DNA, it is natural to implement this into the model for drop-out

probabilities. In Tvedebrink et al. (2009) the authors demonstrated that a logistic regression with

H as explanatory variable yield an applicable model to estimate the drop-out probability for a

given value of H:

logit P(D;H) = log
P(D;H)

P(D̄;H)
= β0,s + β1 log Ĥ, (8.4)
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Figure 8.1: Peak heights on logarithmic scale plotted against base pair (bp). The black points

are assigned true peaks by the floating threshold methodology (Chapter 7) and the grey points

are assigned noise (negative signal). The numbers in brackets on the ordinate are the rfu values.

The dashed horizontal line shows the fixed 50 rfu detection threshold.

where Ĥ = H and Ĥ = 2H for heterozygous and homozygous loci, respectively. The subscript

s in β0,s indicate that this parameter is locus specific whereas β1 is not (Tvedebrink et al., 2009).

Since the model in (8.3) measures the degree of degradation, we may adjust the estimate of H by

H(bp), such that the model for dropout also is applicable to degraded DNA samples with H(bp)

as explanatory variable.

8.2.3 Implementation of degradation in drop-out probability estimation

The definition of H in Tvedebrink et al. (2009) assumes that H is estimated based on all peak

height observations (see (8.1)). However, since the peak height decreases for increasing bp in a

degraded DNA sample, the assumptions for the drop-out model it not satisfied. To compensate

for the decrease in peak heights and thereby increase in drop-out probability, we incorporate the

level of degradation in the drop-out model. Let GS be the profile of a given individual, e.g. the

suspect of a crime case. First, the peaks related to the alleles originating fromGS is determined,

and the α-parameters of the degradation model, (8.3), are estimated based on a linear regression
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Table 8.1: Data used in Figures 8.1 and 8.2. The drop-out probability of allele 24 in locus

D2 (shaded row) is assessed in the example of Section 8.3. The column ’Corrected height’ is

computed using the method discussed in Section 8.6.

Dye Locus bp Allele Height log(Height)

Blue D3 120.22 14 3349.00 8.12

Blue D3 140.66 19 2295.52 7.74

Blue vWA 178.58 17 1272.69 7.15

Blue vWA 186.85 19 1470.00 7.29

Blue D16 246.78 9 627.00 6.44

Blue D16 262.74 13 377.00 5.93

Blue D2 307.57 19 77.40 4.35

Blue D2 327.87 24 42.00 3.74

Green AME 103.27 1 7188.76 8.88

Green D8 140.74 12 3303.01 8.10

Green D8 144.74 13 3026.21 8.02

Green D21 205.27 29 581.91 6.37

Green D21 209.17 30 737.10 6.60

Green D18 307.99 18 175.50 5.17

Green D18 312.12 19 173.54 5.16

Yellow D19 122.67 14 2853.63 7.96

Yellow D19 126.67 15 2546.79 7.84

Yellow TH0 185.90 9.3 1217.00 7.10

Yellow FGA 224.93 20 460.00 6.13

Yellow FGA 241.76 24 355.00 5.87

Corrected height

4790.12

4714.49

5114.07

6838.08

8424.95

6719.33

3050.41

2370.77

7617.12

6793.26

6680.60

3750.30

5090.00

6967.80

7412.75

4262.48

4083.25

5566.79

4198.52

4364.55

of log peak height on bp. The GS -specific regression (α̂0, α̂1)-parameters are inserted in (8.3)

together with the bp-value for the allele under investigation for drop-out. For the ith allele ofGS

the adjusted H-estimate is: H(bpi) = exp(α̂0 + α̂1bpi) which we then insert in (8.4):

logit P[Di; Ĥ(bpi)] = β0,s + β1 log Ĥ(bpi) (8.5)

where Ĥ(bpi) = H(bpi) or Ĥ(bpi) = 2H(bpi) depending on whether Di represents a drop-out

on a heterozygous or homozygous loci, respectively. The information about bpi and homozy-

gous/heterozygous locus is given by the specified profile. Hence, as for the drop-out model of

Tvedebrink et al. (2009) the drop-out probabilities are determined for a specific profile since the

drop-out probability depends on the observed peak heights associated to that particular profile.

8.3 Results

In Figure 8.2, the observed peak heights of Table 8.1 are plotted against their base pair lengths

(the peak heights of homozygous loci are divided by 2 in Figure 8.2). The superimposed curves

represents the adjusted, H(bp), observed mean peak heights, H, and the fixed 50 rfu detection
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Figure 8.2: Peak heights plotted against base pair length. The solid curve show the adjusted

mean peak height, the dotted line the observed mean peak height and the dashed line the fixed

50 rfu detection threshold.

threshold, respectively. Note that the profile of Table 8.1 is homozygous for Amelogenin (fe-

male) and TH0. This implies that the observed peak heights for these two loci are divided by 2

before the linear model (8.3) is fitted to the data.

In Table 8.1, the rowwith a grey shading show the peak below the fixed 50 rfu detection threshold

which is represented by the dashed line in Figures 8.1 and 8.2. However, using the methodology

of Chapter 7, it is possible to have locus specific thresholds enabling detection of all the alleles

in Table 8.1. In the following we assume that the identified alleles in Table 8.1 represents a true

DNA profile, e.g. identified from a blood stain left by the suspect found at the scene of crime.

The drop-out model and fitted parameters in Tvedebrink et al. (2009) are calibrated for the event

D = {peak height < 50 rfu} for non-degraded DNA. Hence, the H-estimate must only be based

on the peak heights above 50 rfu for the drop-out model to be applicable. Under the assumption

that the alleles in Table 8.1 constitute the profile, i.e. the suspect profile is heterozygous for all

loci but Amelogenin and TH0, we find that H = 1460.41 rfu. Most of the observed peak heights

deviates substantially from H due to degradation (see dotted line in Figure 8.2).

For evidential computations we need the probability that allele 24 in locus D2 has dropped out.
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The methodology of Tvedebrink et al. (2009) makes this computation straight forward using

the estimated H-value. By plugging-in the estimated H in (8.4) and taking the inverse of the

logit-function, logit−1(x) = exp(x)/[1+ exp(x)], we obtain the drop-out probability P(DD224 ; Ĥ =

1460.41) = 1.54 ×10−6, where we used β0,D2 = 18.31 and β0 = −4.35 from Table 2 of Tvedebrink

et al. (2009). This is an extremely low drop-out probability when considering the fact that allele

19 in the same locus has a peak height of 77 rfu.

From graphical inspections of the (simplified) EPG in Figure 8.2 it is obvious that the DNA

sample is subject to degradation. In order to take the degradation of the DNA into account we

adjust the estimated H. The solid line in Figure 8.1 has (α̂0, α̂1) = (10.262,−0.0177) with R2 =

0.931 which together with Figures 8.1 and 8.2 and other graphical diagnostics indicate a good

agreement with the model. Since the fragment length, bp, of allele 24 in locus D2 is bpD224 =

327.87 (see Table 8.1), the adjusted H-value yields H(bp) = exp(10.262 − 0.0177 ×327.87) =

85.25 rfu. This estimated peak height is reasonably close to the observed peak height (77 rfu)

for the other allele in the same locus (Table 8.1). The estimated peak height is plugged into

(8.5) which implies that P[DD224 ; Ĥ(bp) = 85.25] = 0.26. This drop-out probability is more

reasonable than P(D; Ĥ) not taking degradation into account.

Note from (8.3) we may compute p from the estimate of α1, p̂ = exp(α̂1) = exp(−0.0177) =
0.982. From experience (see the supplementary material) this sample is moderately degraded.

8.4 Discussion

Since most DNA samples are analysed in replicates (or at least in duplicates), an additional

source of information is the consistency of the estimated degradation parameter across replicates.

For replicates the amount of DNA may vary, however, this affects (in principle) only α0, whereas

α1 should remain constant. For most of the samples analysed in this paper the were no significant

difference between the levels of degradation p̂Ri
and p̂R j

for different replicates Ri and R j, i , j.

Similarly, for samples originating from the same body tissue or fluid, the degradation pattern

should be reasonably similar across samples taken from the same source of the crime scene. This

were supported by the data, however, some cases had significant differences between tissue/fluid

samples.

The likelihood ratio is defined as LR = P(E|Hp)/P(E|Hd), where Hp and Hd are two competing

hypotheses that could represents the statements of the prosecutor and defence. Let GS be the

DNA profile of the suspect, which in the example of Section 8.3 equals the profile in Table 8.1.

In order to evaluate P(E|Hp) whereHp claims thatGS is the donor of the observed stain, an allelic

drop-out need to have occurred in order to explain the missing 24 allele in locus D2. Hence, the

probability P(DD224) enters in the numerator of LR. Thus, the smaller this probability the smaller

the LR. Hence, the prosecutor will claim that degradation is present since the probability of

allelic drop-out is approximately 105 larger when assuming degradation, compared to the non-

degraded probability of allelic drop-out.

P(E|Hd) is evaluated by summation over the set of possible unknown profiles with or without

allelic drop-out. Whether or not it is favourable for the defence to consider unknown profiles
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with drop-outs depend on the allele probabilities for the homozygous loci. That is, if

P(D̄; 2H)P(AiAi) < P(D;H)P(D̄;H)

k∑

j,i

P(AiA j)

then P(E|Hd) is increased by allowing for drop-out which results in a decreased LR. This con-

sideration applies whether or not the sample is degraded. However, the drop-out probabilities

will only increase when considering degradation since H(bp) = cpbp ≤ H and P(D;H) increases

as H decreases. On the other hand, the probability of alleles not dropping out is possibly larger

when correcting for possible degradation, P(D̄;H(bp)) < P(D̄;H), since H(bp) may be larger

than H for short amplicons.

8.5 Conclusion

We presented a method for the decay in the peak intensities of forensic STR loci as a function

of increasing base pairs, bp. The model showed satisfactory agreement to data and is simple and

intuitive. Furthermore, we demonstrated how to implement the information of degradation in the

computation of the probability of allelic drop-out in the situation of degraded samples.
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8.6 Supplementary remarks

Degradation affects the mean of the peak heights and areas. Since degradation is a very common

situation in forensic case work, the models developed should be able to handle degradation. As

with the extension of the mixture separation method to allowing for allelic drop-out, the method

is extensible to correct for degradation.

Assume that the biological material contributed by the donors is of similar type, e.g. blood,

tissue, body fluids, etc., and that the material has been exposed to similar conditions over an

approximate identical time span. Based on these assumptions it is reasonable to assume that the

level of degradation is common for the DNA and that the peak intensities may be modelled by

ckp
bp, where ck reflects the amount of DNA contributed by the kth individual and p is common

for all k = 1, . . . ,m.

In cases of degradation, the effect on a four peak locus might be such that the highest and lowest

peak heights relate to the major component and the two alleles with intermediate peak heights

belong to the minor contributor of a two-person DNA mixture. This could happen if the highest

and lowest peaks are in each end of the ladder interval and the intermediate in between. Fig-

ure 8.3 shows examples of this situation for the base pair interval from 125 bp to 280 bp for the

SGM Plus kit.

The plot in Figure 8.3 exemplifies a two-person DNA mixture with p = 0.98 and amounts of

DNA corresponding approximately to an 1:2 mixture. That is, the expected peak heights of

heterozygous loci are given by h
(k)
s,i
= ckp

bp
(k)
s,i , which implies that

∑4
i=1 log hs,i = 2α

(+)
0
+ α1bps,+,

where α
(+)
0
= α

(1)
0
+ α

(2)
0
, α

(i)
0
= log ci and α1 = log p.

Hence, a regression of
∑4

i=1 log hs,i on bps,+ would give estimates of (α
(+)
0
, α1). However, ad-

ditivity of peak heights on natural-scale does not transfer to additivity on log-scale. Homozy-

gous allele peak heights are log h
(k)
s,1
= log 2 + α

(k)
0
+ α1bp

(k)
s,1

and shared alleles has log hs,i′ =

log(c1 + c2) + α1bp
(·)
s,i′ , where in particular the shared alleles implies that the regression of∑ns

i=1
log hs,i on bps,+ would yield locus dependent intercept.

Thus, different means for estimating p for DNA mixtures need to be considered. By simulating

a large number (e.g. 1,000) DNA mixtures with known profiles, amounts of DNA and level of

degradation, p0, it was possible numerically to compare the performance of different estimators

of p. Of the investigated methods a regression of log to the mean of peak heights, log h̄, on

the mean of base pairs, b̄ps, yielded a good approximation based on simulations with a 95%-

confidence interval of (−8.58 ×10−5, 4.62 ×10−5) for the difference between p0 and p̂.

The relevant observation window for the loci included in the SGM Plus kit (AB) starts around

100 bp. Using this off-set the observed peak intensities may be adjusted for degradation by

compensating by the fitted decay. Given α̂ and the peak height h it is possible to compute the

degradation corrected peak height h̃. By multiplying the observed peak heights by exp[−α0(bp−
100)] the effect of degradation is inverted resulting in less imbalances between loci, h̃s,i =

hs,i exp[−α̂1(bps,i − 100)].

In the example of Section 8.3, α̂1 = −0.0177 and by using the approach above we get the peak
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Figure 8.3: Degradation of a two-person DNA mixture. The highest and lowest peaks belong to

the major component. The shaded areas below the first axis show the range of the allelic ladder

for the various STR loci in the 125-280 bp window of the SGM-Plus kit (Applied Biosystems,

AB).

heights reported in the ’Corrected height’-column of Table 8.1. There is still evidence of peak

height imbalances within loci. However, the heterozygote balance, Hb, which is the ratio of the

heterozygous peak heights (see e.g. Bill et al., 2005), is improved by the correction, where the

range of Hb for the observed peak heights is (0.54, 0.99) it is (0.74, 0.98) after the peak height

correction.

In order for the models for DNA mixtures of Chapters 4 and 5 to be valid, the proportionalities

of peak heights and peak areas need to be preserved. However, the correction of peak heights

is also applicable to peak areas, hence ãs,i = as,i exp[−α̂1(bps,i − 100)] which ensures the same

proportionality as before the correction. Therefore, no changes are needed in the sets J′
i
for the

mixture separator when the peak intensities are adjusted for degradation.

In the next chapter the model for degraded DNA is combined with the models from the previous

chapters in a ’unifying likelihood ratio’. That is, a likelihood ratio were all the discussed com-

plications can be included and accounted for when assessing the weight of the DNA evidence in

crime cases.



CHAPTER 9

Epilogue

9.1 Conclusion

In the preceding seven chapters (Chapters 2-8) the core content of this present PhD thesis has

been presented. The main focus of the PhD project has been to develop statistical models ap-

plicable to the quantitative part of the STR analysis and in particular DNA mixtures. However,

since the genetic part (qualitative allelic data) of the evidence constitutes the fundamental inputs

in evidential weight calculations, it was difficult not to treat this topic. This lead to the interest for

IBD and the effect of population structures when computing the evidential weight. As pointed

out by one of the reviewers of the paper in Chapter 2 (’Overdispersion in allelic counts and θ-

correction in forensic genetics’ to appear in Theoretical Population Biology) does the forensic

databases not constitute the databases of interest. More general population surveys should be

used when making inference about θ, e.g. random samples taken from well-defined subpopula-

tions on a high resolution. For the Danish population this could be samples taken from small

villages or islands since these subpopulations may cause large allelic divergence and thus yield

θ-estimates in the higher end of the plausible range (Balding, 2005). From Figure 2.1 we saw

that this in practise would lead to conservative evaluation of the evidence. Furthermore, this is

equivalent to the fact that the probability of a “random match” (a profile match of two unrelated

individuals) increases with θ.

For the quantitative part, the work was initiated by assuming no complications of stutters, pull-up

effects, allelic drop-out or degradation. Under these settings it was possible to derive two models

for DNA mixtures, where the simplest of the two was wrapped into a greedy algorithm which

167
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efficiently separated DNA mixtures. For the particular data used in the paper the algorithm

was at least as successful as three experienced case workers. However, the analysis did also

emphasise that the results should be interpreted with caution. This was especially important

for samples close to 1:1-mixture proportion and when the interest was about the minor profile.

The analysis of three-person mixtures repeated this picture where the success rate for the 1:2:4-

mixture proportion was rather low for the mid and minor profiles.

Having done this, a natural extension of the models was to handle allelic drop-out and degraded

DNA samples as these phenomena are frequently occurring in real crime case work. From

the remarks of Sections 6.5.1 and 8.6 it was demonstrated how the presented models may be

combined in order to handle these complications. In the remarks it was only exemplified how

to modify the statistical model and mixture separating algorithm for two-person DNA mixtures.

However, the cases of more contributors follow along the same lines. The work with allelic

drop-out also made it evident that there were possibilities for refinement of the determination

of the signal-to-noise ratio. The use of a fixed threshold may in some cases discard important

information regarding the distribution of the noise component from the measurement technique.

The model proposed to determine this threshold was based on a simple analysis of quartiles in

order to estimate the parameters of the log-normal distribution. However, for some situations

this approach seemed to be too simple as a sudden increase of the noise level was detected for

a short bp-interval. This temporally increase in the background noise caused non-linearity in

the QQ-plots and in some cases increased the variance estimate substantially. Loess-curves were

investigated to handles this non-linearity. However, they did not improve the overall performance

significantly. Further work may suggest ways to adjust for this fact, but one has to focus the

attention on newer typing kits, as these should have better signal-to-noise ratios than the SGM-

Plus kit (Applied Biosystems).

9.2 Weight of evidence calculations

In the preceding chapters it has been demonstrated how to incorporate the quantitative part of the

STR typing results in the likelihood ratio approach. The principle was to assign a weight to each

quantitative term of the LR, where the weight should reflect the compliance between the expected

and observed peak intensities. Terms with minor disagreement (e.g. due to measurement errors)

should receive a large weight whereas profile combinations leading to substantial differences

would be weighted by a quantity close to zero.

This extendability of the LR is one of the many arguments for using this approach rather than the

“Random man not excluded”-approach (often abbreviated RMNE-approach in the literature). I

will not discuss the philosophical differences or many advantages of LR over RMNE, since these

are irrelevant at this point. However, it should be noted that the models discussed above is of no

use when assessing the weight of evidence through RMNE. In line with many others (e.g. Evett

and Weir, 1998; Balding, 2005; Buckleton et al., 2005; Gill et al., 2006; Buckleton and Curran,

2008) I strongly recommend the LR-approach in evidential calculations carried out in forensic

genetics.

The LR is formed by evaluating the evidence (crime scene evidence and identified profiles) under
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competing hypothesis, often denoted Hp and Hd for the prosecutor and defence hypotheses.

Since Hp and Hd are only mutually exclusive, and not exhaustive, one needs to recall that there

are several LRs - one for every (H′p,H
′
d
)-pair of hypotheses. Hence, the fact that the LR favours

Hp over Hd does not imply that there cannot exist a H′
d
for which LR′ = P(E|Hp)/P(E|H′d) < 1

(Balding, 2005).

The extensions of the LR derived in Chapters 4 and 5 only considered cases assuming no allelic

drop-outs. However, as previously argued does this assumption often fail together with the ’no

degradation’-assumption. Hence, for proper inclusion of the available data and applicability

to most types of crime cases, the LR needs to be extended further. Let Q = (Qmis,Qobs) and

G = (Gmis,Gobs), where the subscripts refer to dropped-out and observed alleles. That is, Qobs are

the observed peak intensities, whereas Qmis denotes the event of an allelic drop-out, i.e. the peak

failed to be detected. Similarly are Gobs and Gmis the associated types of alleles, where the need

for Qmis and Gmis is induced by the hypothesis under consideration.

Given a specific hypothesis the set of plausible profile combinations C is induced. That is, if the

prosecutors hypothesis Hd claims that the observed crime scene stain originates from a victim,

V , and suspect S then Cp = {(GV ,GS )}, where respectively GV and GS are the profiles of V

and S . In connection to this hypothesis the defence states that “The observed crime scene stain

originates from the victim and an unknown profile” then Cd = {GU : (GV ,GU) ≡ Hd}, with GU

being the profile of the unknown contributor U. This definition of Cd does not limit GU to be

consistent with (Qobs,Gobs), hence drop-out of U’s alleles is allowed with this formulation. Note

that this definition of C is different from that of Sections 4.3 and 5.5 where the plausible profiles

in C needed to be consistent with the observed alleles, i.e. no allelic drop-outs were allowed.

Additionally, drop-ins, stutters and pull-up peaks possibly causes more alleles to be observed

than those of the true contributors. However, as claimed in Section 5.9 are stutters (and pull-

up peaks) profile independent. Hence, given the peak intensity information in allele position

n it is (in principle) possible to predict and adjust for the stutter contribution to the peak in

position n−1. Similarly, the pull-up contribution can be removed from peaks with overlapping

bp-values. However, not all such peaks were successfully removed as 6 stutters and 4 pull-ups

were observed above the signal-to-noise threshold (Table 7.4) for the two-person mixtures, and

for the three-person mixtures 27 stutters and 2 pull-ups were detected. Hence, peaks other than

those belonging to the true donors must be incorporated in the ’unifying’ model to be consistent

with the observed data.

9.3 Unifying likelihood ratio

The evaluation of the LR consists of computing the probability of the evidence under the two

hypothesis and form their ratio. Since the C-sets are discrete the probability P(E|H) may be

evaluated using the law of total probability P(E|H) =
∑

G∈C P(E|G)P(G), where G is short for

the profiles involved, e.g. G = (GV ,GS ) under the prosecutors hypothesis in the example above.

In order to discuss the evidential weight there need to be at least one identified DNA profile,

namely the suspect’s profile GS . For general purposes let K be the known DNA profiles as-

sociated with the case, e.g. K = (GV ,GS ) above. Then the evidence E consists of Ec and K,
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where Ec were the crime scene evidence including both the quantitative and qualitative parts,

Ec = (Q,G). First we note that the crime scene evidence, E, and the known profiles, K are as-

sumed conditionally independent given (G,G). That is, givenG ∈ C and G the known profilesK

has no influence on the crime scene stain. Hence, using the definition of conditional probability

we can forG ∈ C factorise P(E|G) as:

P(E|G) = P(Ec,K|G) = P(Q,G,K|G) = P(Q|G,G)P(G|K,G)P(K|G). (9.1)

In (9.1) the P(Q|G,G)-term measures the agreement of the observed and expected peak inten-

sities under some model. If the detected alleles in G equals those of G neither drop-out nor

drop-in (including stutters and pull-ups) have caused missing or additional alleles to be present

in the signal. Hence, P(Q|G,G) = P(Q|G) may be evaluated by the one of models as presented

in Chapters 4 or 5, and since G = (G ∩G) = G, i.e. the profiles are consistent, P(G|G) = 1.

However, in cases with stutters, pull-ups or drop-ins present Q is split into two parts ascribed

respectively to G = G ∩ G and Ḡ = G \ (G ∩ G). The evaluation is done by P(Q|G,G) =

P(QḠ|QG,G,G)P(QG|G), where in cases of possible stuttering P(QḠ|QG,G,G) assigns prob-

ability to this event. In this thesis such models have not been discussed, however, a logistic

regression (similar to that of the drop-out model) may be derived, where the explanatory vari-

able for stutters and pull-ups would be the parental peak’s intensities. For drop-ins (additional

peaks not possible to categorise as stutters or pull-ups), the noise level of the sample might be

an appropriate covariate.

Furthermore, if G implies allelic drop-out Q can be decomposed into (Qmis,Qobs) and the quan-

titative term then factorises further P(Q|G,G) = P(Qmis|Qobs,G,G)P(Qobs|G,G). The probability

of an allelic drop-out, P(Qmis|Qobs,G,G), is computed given the observations and information

about the sample’s genotypes. An allelic drop-out is equivalent to the event that the peak height

is less than the limit of detection. Hence, P(Qmis|·) could be evaluated by
∫ T

0
P(h|·) dh, where T

and h are the limit of detection and peak height, respectively. However, the drop-out model of

Chapter 6 is an approximation to this integral and since it is easier to compute we use P(D;H)

to quantify P(Qmis|Qobs,G,G).

Thus combining (9.1) with the extension for drop-outs and additional alleles compared to G the

’unifying likelihood ratio’ can be defined as:

LR =
P(E|Hp)

P(E|Hd)

=

∑
G∈Cp

P(Qmis|Qobs,G)P(Qobs,Ḡ|Qobs,G,G,G)P(Qobs,G|G)P(G|K,G)P(K|G)P(G)

∑
G′∈Cd

P(Qmis|Qobs,G
′)P(Qobs,Ḡ|Qobs,G,G,G

′)P(Qobs,G|G′)P(G|K,G′)P(K|G′)P(G′)

(9.2)

This LR is constructed such that it (in principle) is applicable in all possible scenarios arising

from crime cases.

For the example above with Hp: (GV ,GS ) and Hd: (GV ,GU) the known profiles are thus K =

(GV ,GS ). Assume that GS has alleles not present in G implying that allelic drop-out must have
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occurred if the suspect is a true contributor to the stain. Furthermore, all alleles in G is accounted

for by (GV ,GS ). Then the LR is given by:

LR =
P(Q|G,GV ,GS )P(G|GV ,GS )P(GV ,GS )∑

GU∈Cd

P(Q|G,GV ,GU)P(G|GV ,GU)P(GS |GV ,GU)P(GU ,GV)

=
P(Qmis|Qobs,G,GV ,GS )P(Qobs|G,GV ,GS )P(Gmis,Gobs|GV ,GS )∑

GU∈Cd

P(Qmis|Qobs,G,GV ,GU)P(Qobs|G,GV ,GU)P(Gmis,Gobs|GV ,GU)P(GU |GV ,GS )
,

where P(Gmis,Gobs|GV ,GS ) = 1 since (GV ,GS ) ≡ (Gmis,Gobs). Assume further that Cd = {GU :

(GV ,GU) ≡ Gobs}, i.e. the set of possible unknown profiles is restricted to be consistent with

the observed alleles when combined with GV . Thus, P(Gobs,Gmis|GV ,GU) = 1 and LR reduces

further:

LR =
P(Qmis|Qobs,G,GV ,GS )P(Qobs|G,GV ,GS )∑

GU∈Cd

P(Qobs|GV ,GU)P(GU |GV ,GS )

9.4 Future research

9.4.1 Replicates

When a sample is taken from a crime scene the number of molecules may be limited, e.g. does

dead hair follicles only contain limited amounts of DNA and similarly for ’touch DNA’ which

is biological material transferred by physical contact (Gill and Buckleton, 2010a). Let N be

the number of DNA molecules present after extraction and n be the number of replicates, Ri,

made based on the N molecules. For the n replicates to be comparable in terms of drop-outs

(and possibly stutters and contamination) it is desirable for the amount of DNA to be evenly

distributed among R1, . . . ,Rn, e.g. for n = 3 one could imagine to have approximately 30% in

each replicate leaving 10% of the extracted DNA in the tube.

Let πA denote the aliquot proportion, then this sampling scheme implies that R1 ∼ bin(N, πA)

and (Ri|R1, . . . ,Ri−1) ∼ bin(N − ∑i−1
j=1 R j, πA/[1 − (i−1)πA]) for j = 2, . . . , n. It is easy to verify

that this construction yields the expected values as desired: E(R1) = NπA and

E(Ri) = E[E(Ri|R1, . . . ,Ri−1)] =
[N − (i−1)NπA]πA

1 − (i−1)πA
= NπA.

Furthermore, this implies that (R,Q) = (R1, . . . ,Rn,Q) ∼ mult(N, {1πA, 1 − nπa}), where Q is

the remaining extract. Assume that there need to be M molecules of an allele prior to PCR in

order to be detected by the CCD camera in the electrophoresis machine post-PCR. Hence, for

the allele to be detected in each replicate we require that Ri > M for all i:

P(R1 > M,R2 > M, . . . ,Rn > M) =

N∑

r1>M

N−r1∑

r2>M

· · ·
N−r+∑

rn>M

P(R1 = r1,R2 = r2, . . . ,Rn = rn), (9.3)
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where r+ =
∑n−1

i=1 ri. This probability depends on several factors but most importantly δ =

N−nM. For small δ the probability that the allele has dropped out in at least one of the replicates

is considerable, and for negative δ we are sure to have drop-outs. However, when δ >> 0 the

probability of drop-outs in any of the replicates is minimal, i.e. when the amount of DNA is large

all the replicates should have all alleles present.

In low template DNA (LT-DNA, formerly known as Low Copy Number DNA, LCN-DNA, Gill

and Buckleton (2010a)) it is common to use the ’biologicalmodel’ to form a so-called ’consensus

profile’ (Buckleton et al., 2005, Chapter 8). That is, only alleles present in at least two replicates

are reported in the consensus profile (Gill et al., 2000). However, from the probability in (9.3)

it is for small N very likely that an allele present in some replicates is absent in others. Hence,

the definition of a consensus profile may not be the best approach when it is expected that the

replicates will show different alleles for small amounts of DNA, which is the case for LT-DNA. A

better method would be to model the negative correlation between peak intensities of replicates.

In the left panel of Figure 9.1 the probability that the consensus profile excludes a true al-

lele is plotted for two and three replicates against the total amount of extracted DNA, i.e.

2 ×P(R1<M,R2>M) and 3 ×P(R1<M,R2<M,R3>M), where permutation of replicates induce the

multiplication of weights. It is assumed that in order to trigger the observation of an allele using

a 50 rfu threshold it is required to have 50 pg of DNA material prior to PCR. Furthermore, for

the two replicate case all of the extracted DNA is used in equal amounts. For the three replicate

situation it is intended to assign 30% of the total DNA to each replicate.
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Figure 9.1: Left: Probability that the ’consensus profile’ excludes a true allele for two and three

replicates. Centre: Probability that the allele will be included in the ’consensus profile’ for two

and three replicates. Right: Pairwise correlation between consensus profile inducing replicates.

From the curves in the left panel of Figure 9.1 it is evident that for small and large amounts

of DNA the probabilities are effectively zero. For the small values this is because neither of

the replicates have observed alleles (no allele in consensus profile due to drop-out in both repli-

cates), whereas for the large values it is because the allele is observed in all replicates (allele in
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consensus profile). The maximum are respectively at 101 pg and 160 pg while the ranges where

the probabilities are larger than 10−3 are 75-136 pg and 112-201 pg, for two and three replicates.

In the centre panel of Figure 9.1 the probability that the consensus profile will include the allele

for two and three-replicates is plotted against the amount of extracted DNA. For an allele to be

present in the consensus profile it must be detected at least twice:

P(R1 > M,R2 > M) and 3 ×P(R1 < M,R2 > M,R3 > M) + P(R1 > M,R2 > M,R3 > M)

To be 99.9% certain that an allele is present in the consensus profile the minimum required

amount of extracted DNA are 140 pg for two replicates and 245 pg for three replicates using the

assumed aliquot sampling scheme.

Define the indicator variables Ti which are 1 if Ri > M and 0 otherwise. Hence, Ti indicates

whether replicate i triggers the observation of an allele above the threshold. The “consensus

inducing correlations” are thus Cor(T1, T2) for two replicates and similarly Cor(T1, T2|T3 = 0)

for three replicates. The latter correlation is naturally subject to permutation of replicates, but

since the amount of DNA for one replicate, here R3, is less than M, the two other replicates need

to show the allele for it to be included in the consensus profile. The right panel of Figure 9.1

shows the negative correlations as expected due to the limited amount of DNA. For two replicates

the pairwise correlation is approximately equal to the negative probability of the left panel of

Figure 9.1.

The general picture from the model and analysis of replicates indicate that the concept of the

consensus profile (or biological model) is flawed, due to the disproportion between expected

peak intensities and consensus profile construction. However, it should be added that the figures

above are computed without taking measurement error, PCR efficiency variation, quantification

inaccuracy, etc. into account. A more refined model should include these and other factors to be

applicable to real STR data.

9.4.2 The number of contributors

When evaluating DNA mixtures a source of uncertainty is the number of contributors. Lau-

ritzen and Mortera (2002) derived an upper bound on the number of unknown contributors

worth considering (typically) under Hd. That is, the bound b is computed such that if the

number of unknown profiles x is larger than ⌈b⌉, the evidence is less favourable to the de-

fendant than with x = ⌈b⌉. However, this bound is computed without taking the quantita-

tive part of the evidence into consideration and may therefore yield an inaccurate bound for

LR = P(Q,G,K|Hp)/P(Q,G,K|Hd).

9.4.3 Distribution of maxG L(Q|G) - optimisation over a discrete space

In relation to the problem above, it is relevant to be able to quantify the distribution of L(Q|G).

How does one measure the significance in the L(Q|G)-value when changing the number of con-

tributors m? And how is this related to the mixture proportions α? For a fixed combination of
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profiles, going from m to m − 1 contributors is equivalent to setting α1 = 0. However, since the

greedy algorithm searches over all possible combination in the discrete space G, it may be inap-

propriate to rely on asymptotic theory or other common approaches to test H0: α1 = 0 against

H1:α1 > 0.

9.4.4 Estimation of P(D) using the floating threshold methodology

In the drop-out model of Chapter 6 the limit of detection threshold was fixed at 50 rfu. How-

ever, if the STR signal is assigned positive and negative by the floating threshold methodology

(Chapter 7), the threshold is not fixed and the previous definition of a dropout, D = {h < 50},
does not apply. The definition of the drop-out probability on page 170 as an integral may be

used in this setting. That is, the quantitative data is spilt into two disjoint partitions where

the noise part (off-ladder observation not in pull-up position) is used to determine T and is

therefore independent of the quantitative signal in the remaining part. Hence, it would be pos-

sible to estimate a mean, µh, and standard deviation, σh, for the peak heights and evaluate

P(D; µh, σh) = P(h < T ; µh, σh) =
∫ T

0
f (h; µh, σh) dh.

9.4.5 Evaluating the entire signal

As mentioned in Chapter 1 the use of threshold or limit of detection imply the possibility for

drop-out. In that chapter the argument for using a threshold strategy in this thesis were to limit

the set of possible combinations that were needed to evaluate LR. However, it may be possible to

evaluate the entire STR signal by including all observations above a given limit, 5 rfu say. This

would lead to more complicated expressions for the LR, however with a gain in conceptual clarity

since assignment of positive/negative alleles is superfluous. Using this methodology, especially

the P(E|Hd) could imply a summation over a huge set which would be computationally intense.

However, the terms in P(E|Hp) and P(E|Hd) that would have numerical impact on the LR would

be those including the observed alleles with the strongest signals. Often this would be those

associated with the alleles in K. However this need not to be the case, but searching for a best

matching pair of profiles would still be possible. For the evaluation of LR to be operational, it

might be necessary to use importance sampling in order to evaluate the sum in the denominator

since fewer known profiles is specified by Hd than by Hp. Assume that the hypothesis Hd states

that the observed crime scene stain was a two-person DNA mixture, then correcting for stutters

and pull-up effects, it may be possible to determine a best matching pair of profiles Ĝ. This

best matching configuration is then applicable as “reference profiles” for importance sampling

similar to the construction in Section 5.6.

Let E denote the signal obtained from the EPG based on a crime related sample, e.g. a sample

taken from a scene of crime. When evaluating the sample we are interested in P(E|Ha) for some

Ha-hypothesis. Ha induces a discrete set of DNA profiles and we denote this Ca = {G : G ≡ Ha}.
Furthermore,Ha may specify further evidence in terms of DNA profiles of identified individuals.

Let K denote the common set of known profiles of the two hypotheses evaluated in the LR. For

example, in a two-person DNA mixture K may be the profiles of a victim and the suspect,
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K = (GV ,GS ). Thus the likelihood ratio is LR = P(E,K|Hp)/P(E,K|Hd). This LR is evaluated

by summing in both numerator and denominator over profiles in Cp and Cd, respectively. That

is, P(E,K|Ha) =
∑

G∈Ca
P(E,K|G)P(G).

We assume that givenG no other profiles affect the observed signal. In particular this is true for

the known profiles, K. Hence, E and K are conditionally independent given G: P(E,K|G) =

P(E|G)P(K|G). For each set of profiles G ∈ Ca a set of stutters and on-ladder pull-up peaks

are induced. Let SG and PG denote these “derivatives”, where SG includes both stutters (first,

second, third, etc.) and back-stutters. Furthermore, for each G the allelic ladder, L, is known

and fixed.

Given G the observed signal, E, may decomposed into five parts that constitute a STR signal:

• Off-ladder noise, EL̄
n which are all intensity observations in off-ladder position and not in

possible pull-up position. EL̄
n is fixed for all G since the it only rely on the fixed ladder, L.

• The signal due to the proposed profiles in G: EG.

• The signal due to stutters induced by profiles in G: ESG
.

• The signal due to pull-up peaks induced by profiles in G and SG: EPG
.

• On-ladder noise, EL
n which are all on-ladder observations not ascribed toG and its derivatives.

Using this decomposition we have for G ∈ Ca:

P(E|G)= P(EL
n |EPG

,ESG
,EG,E

L̄
n ,G)P(EPG

|ESG
,EG,E

L̄
n ,G)P(ESG

|EG,E
L̄
n ,G)P(EG|EL̄

n ,G)P(EL̄
n |G)

= P(EL
n |EL̄

n ,G)P(EPG
|ESG

,EG,E
L̄
n ,G)P(ESG

|EG,E
L̄
n ,G)P(EG |EL̄

n ,G)P(EL̄
n ), (9.4)

where P(EL̄
n |G) = P(EL̄

n ) since it is fixed for all profilesG and thus cancels out when forming the

likelihood ratio. It is likely that some of the terms in (9.4) can be simplified due to conditional in-

dependence givenG. For example, may the on-ladder noise, EL
n , be independent of the off-ladder

noise, EL̄
n , givenG when the parameters of P(EL̄

n ) is determined, i.e. P(EL
n |EL̄

n ,G) = P(EL
n |EL̄

n ,G).

The LR is formed by a hypothesis specific ratio of the expression in (9.4):

LR=

∑
G∈Cd

P(EL
n |EL̄

n ,G)P(EPG
|ESG

,EG,E
L̄
n ,G)P(ESG

|EG,E
L̄
n ,G)P(EG|EL̄

n ,G)P(K|G)P(G)

∑
G
′∈Cd

P(EL
n |EL̄

n ,G
′)P(EPG′

|ESG′
,EG′ ,EL̄

n ,G
′)P(ESG

|EG′ ,EL̄
n ,G

′)P(EG′ |EL̄
n ,G

′)P(K|G′)P(G′)

As in Section 9.3 we consider a two-person DNA mixture with known victim profile GV and

suspect profile GS where Hp:(GV ,GS ) and Hd: (GV ,GU). Due to limited space we define

GV,S = (GV ,GS ) andGU,S = (GU ,GS ), then the likelihood ratio is

LR=
P(EL

n |EL̄
n ,GV,S )P(EPGV,S

|ESGV,S
,EGV,S

,EL̄
n ,GV,S )P(ESGV,S

|EGV,S
,EL̄

n ,GV,S )P(EGV,S
|EL̄

n ,GV,S )
∑

GU∈Cd

P(EL
n |EL̄

n ,GV,U)P(EPGV,U
|ESGV,U

,EGV,U
,EL̄

n ,GV,U)P(ESGV,U
|EGV,U

,EL̄
n ,GV,U)P(EGV,U

|EL̄
n ,GV,U)

.
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