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Summary (English) 

In Denmark, people spend most of their time indoors. Therefore, indoor air quality is an important 

public health issue as people are exposed to pollutants indoors. Pollutants including gases and 

particles come from outdoors to the inside of a building. They may also be generated indoors by 

cooking, candle burning, emission from building material, etc. Particles are divided into coarse, fine 

and ultrafine particles (UFP) depending on their size. Research has indicated that UFPs with 

diameters less than 100 nanometer (nm) may be harmful to the human body.  

Increased ventilation is commonly discussed by researchers as a solution for reducing the particle 

concentration in the indoor air. Recirculation of air through portable air cleaners has also been 

discussed.  

The scope of this study is to investigate possibilities, applications and limitations of using 

recirculated air in combination with new air cleaning technologies in order to improve indoor air 

quality. The objective of this study is to determine the effectiveness of portable air cleaners and to 

investigate the approaches of using these devices aiming at reducing the concentration of UFPs in 

the indoor environment. 

Experimental investigations and computational fluid dynamics (CFD) simulations were performed 

parallel in order to investigate the possibilities, limitations and possible applications to reach this 

aim.  

The Danish market was searched for portable air cleaners to be evaluated in the experiments. Five 

technologies were selected: Non Thermal Plasma, Corona Discharge Ionizer, Portable Air Purifier, 

Electrostatic Fibrous Filter (EFF) and Three Dimensional Filter. In the experimental investigations, 

the effectiveness and the generation of by-products of the air cleaners were evaluated, based on 

measurements performed in a duct, in a clean room and in an unoccupied office building, 

respectively.  

According to the results from the experiments in the clean room, the effectiveness for Non Thermal 

Plasma, Corona Discharge Ionizer, Portable Air Purifier, EFF and Three Dimensional Filter was 

0.2, 0.4, 0.2, 0.7 and 0.5 respectively. The EFF had the highest removal effectiveness. The filter 

was investigated and it was selected to be combined with a chilled beam. The improvement in UFP 

removal effectiveness of the combined chilled beam was evaluated.  

The simulations were performed using a commercial software STAR-CCM+. Two cases were 

studied, first the influence of the location of an air cleaner in a room on its UFP removal 

effectiveness and second, the influence of the height of a heat source and the height of a particle 

source on the UFP dispersion. The simulated room was based on the dimensions of a laboratory 

room. Experiments were performed in the laboratory room to validate the predictions by the 

simulation. According to the experiments performed, comparing the decay rate of UFPs and the 

decay rate of tracer gas in a room, particles having a diameter smaller than 73 nm had a faster decay 

rate than the tracer gas. Therefore, if particles are considered as a gas in a CFD simulation or if 

particles are considered of one single size, a deviation from reality may occur. 
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It was concluded that an ozone generating air cleaning technology may increase the level of ozone 

to a level that exceeds the allowed level of 120 µgm
-3

 according to Air Quality Guidelines for 

Europe provided by World Health Organization. It was also concluded that the maximum ozone 

concentration in the room and the particle generation rate of reactions between ozone and volatile 

organic compounds depend mainly on air change rate, the age of the building material and the size 

of the room.  

In addition, it was concluded that the removal efficiency of an electrostatic fibrous filter is directly 

correlated with UFP concentrations. The reason for this seems to be the formation of chain-like 

dendrites with electrostatically charged UFPs. 

The CFD simulations showed that the location of an air cleaner has a minimal effect on the removal 

effectiveness in a room with a displacement airflow pattern. According to the simulation study of 

particle dispersion in a room, it was concluded that the location of a particle source has impact on 

the UFP concentration profile in the room.  
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Summary (Danish) 

I Danmark opholder mennesker sig en stor del at tiden indendørs. Indeluftens kvalitet er derfor et 

vigtigt folkesundhedsproblem, idet mennesker udsættes for forureninger indendørs. Forureninger, 

herunder gasser og partikler, tilføres indeklimaet udefra. Forureninger kan også blive genereret 

indendørs ved madlavning, tændte stearinlys, emission fra inventar og byggematerialer osv. 

Partikler inddeles i grove, fine og ultrafine partikler (UFP) afhængig af størrelsen. Forskning har 

indikeret, at udsættelse for UFPs (diameter mindre end 100 nanometer (nm)) kan indvirke 

sundhedsskadeligt på den menneskelige krop. 

 

Et almindeligt diskussionsemne blandt forskere er forøget ventilation som middel til at nedbringe 

koncentrationen af partikler i indeluften. Også recirkulation af luft gennem transportable luftrensere 

diskuteres. 

Fokusområdet for denne undersøgelse er afdækning af muligheder, anvendelsesområder og 

begrænsninger for anvendelse af recirkulation i kombination med nye luftrensningsteknologier med 

henblik på forbedring af indeluftkvaliteten. Formålet med undersøgelsen er at bestemme 

effektiviteten af transportable luftrensere og at undersøge løsningsmetoder for anvendelse af 

sådanne luftrensere med det formål at reducere koncentrationen af UFPs i indeklimaet. 

Eksperimentelle undersøgelser og simuleringer ved hjælp af Computational Fluid Dynamics (CFD) 

er blevet udført parallelt for at undersøge muligheder, begrænsninger og mulige 

anvendelsesområder for at nå målet. 

Det danske marked med transportable luftrensere blev afsøgt, og fem teknologier blev udvalgt til at 

indgå i undersøgelserne: Non Thermal Plasma, Corona Discharge Ionizer, Portable Air Purifier, 

Elektrostatisk Fiber Filter og Tredimensionelt Filter. I de eksperimentelle undersøgelser blev 

effektiviteten af luftrensere samt genereringen af biprodukter analyseret, på grundlag af målinger 

udført henholdsvis i en kanal, i et rent rum og i en kontorbygning.  

Ifølge resultaterne af eksperimenterne i det rene rum var effektiviteten af Non Thermal Plasma, 

Corona Discharge Ionizer, Portable Air Purifier, EFF og Tredimensionelt Filter henholdsvis 0.2, 

0.4, 0.2, 0.7 and 0.5. EFF havde den højeste effektivitet. Filtret blev undersøgt yderligere og 

udvalgt til at indgå i kombination med en kølebaffel. Forbedring i effektiviteten af fjernelse af UFP 

i kombination med kølebaflen blev evalueret. 

Simuleringerne blev udført ved hjælp af STAR-CCM +, som er kommercielt tilgængelig software. 

To situationer blev undersøgt, dels luftrenserens effektivitet i relation til luftrenserens placering i et 

rum dels indflydelsen af højdeplaceringen af en varmekilde og højdeplaceringen af en partikelkilde 

på spredningen af UFP. Det simulerede rum var baseret på dimensionerne på et eksisterende rum i 

laboratoriet. Eksperimenter blev udført i laboratorierummet for at validere resultaterne af 

simuleringen. Ifølge eksperimenterne, som blev udført med det formål at sammenligne henfald af 

UFPs med henfald af sporgas i et rum, viser, at partikler, som har en diameter mindre end 73 nm, 

havde et hurtigere henfald end sporgas. Dette betyder, at såfremt partikler i forbindelse med CFD-

simuleringer betragtes som gas eller såfremt partikler antages at være ens i størrelse, kan 

resultaterne afvige fra virkeligheden. 

Det blev konkluderet, at en luftrensningsteknologi, som generer ozon, kan øge niveauet af ozon til 

et niveau, der overstiger det tilladte niveau, som er 120 µgm-3 i henhold til Air Quality Guidelines 
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for Europe. Det blev også konkluderet, at den maksimale ozonkoncentration i rummet og raten 

hvormed partikler blev genereret ved reaktion mellem ozon og flygtige organiske forbindelser 

primært afhænger af luftskifte, byggematerialernes alder og rumstørrelsen. 

Desuden blev det konkluderet, at effektiviteten af et elektrostatisk fiberfilter korrelerer med 

koncentrationen af ultrafine partikler. Årsagen til dette synes at være dannelse af kædelignende 

dendritter med elektrostatisk ladede UFPs. 

CFD simuleringerne viste, at luftrenserens placering i et rum med fortrængningsventilation har 

minimal indflydelse på luftrenserens effektivitet. I henhold til simuleringerne af partikelspredning i 

et rum blev det konkluderet, at partikelkildens placering i rummet har indvirkning på UFP-

koncentrationens profil i rummet. 
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Doctoral candidate: Siamak Rahimi Ardkpan  

Titel of thesis:  Removal of ultrafine particles from indoor environment,  Experimental and computational studies 

of possibilities, limitations and applications 

Abbreviations for different types of corrections: 

Cor – correction of language 

Cpltf – change of page layout or text format 

Page/line/footnot
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Original text (type of correction) Corrected text 

24/ 17 / “The air cleaners were also placed in a 

duct and connected to a clean room in 

order to identify and quantify the 

eventual airborne pollutants generated 

by them.” 

(Cor) The air cleaners were tested in the 

laboratory room. In addition the EFF was 

also placed in a duct and connected to a 

clean room in order to identify and 

quantify the eventual airborne pollutants 

generated by them” 

29 / 9/ ”The candle was burnt in the clean room 

and the air cleaner was connected to 

the room by a duct.” 

(Cor) “In addition for the detailed study on 

EFF, the candle was burnt in the clean 

room and the air cleaner was connected 

to the room by a duct.” 

30 / 6/ 

 
Figure 2.9 Concentration of ozone of the 
room with air cleaners NTP, PAP and CDI 

 

 
Figure 2.9 UFP concentration of the room 

with air cleaners CDI, PAP and NTP 

38 / 4/ “While K is the convective heat factor and 

a semi-empirical value…” 

(Cor) “While K is the convective heat 

factor which is a semi-empirical value…” 

41 / 10/ “As is shown in the figure, the Lagrangian 

approach includes…” 

(Cor) “As it is shown in the figure, the 

Lagrangian approach includes…” 

42 / 16/ “…torque exerted on the particle by M 

(Nm) and inertia moment…” 

(Cor) “…torque exerted on the particle by 

M (Nms) and inertia moment…” 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 / 5/ “The process the grid-independent 
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46 / 18/ “The particle source was located at three 

heights.” 

(Cor) “The particle source was located at 

two heights.” 
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Symbols and Abbreviations 

Symbols 

  

    
 

Acceleration of the particle 

ω Angular velocity  

CE  Concentration  at exhaust air 

Cx  Concentration at location x  

CS  Concentration at supply air 

Cdownstream  Concentration, downstream of flow  

Cupstream  Concentration, upstream of flow 

Pc Convective component of heat load  

K  Convective heat factor  

ε Effectiveness 

EFF Efficiency 

fb Fluid force exerted on the particle 

u  Fluid velocity at particle location 

g Gravity 

H Heat removal effect 

z Height  

Qf Induced secondary air flow rate in a chilled beam 

I Inertia moment of the particle  

k Kelvin 

k-ε  k-epsilon turbulent model 

k-ω k-omega turbulent model 

mf Mass of flow displaced because of particle volume 

µm Micrometer 

Ef  Particle removal efficiency 

λd Particle removal rate by deposition 

λv Particle removal rate by ventilation system 

v Particle velocity 

Cctrl Pollutant concentration in a room with air cleaner 

Cref Pollutant concentration in a room without air cleaner 

fs Representative of surface forces 
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C Specific heat capacity  

ΔT  Temperature difference between supply water and return water 

M Torque exerted on the particle 

Pt Total power of heat source 

V Volume of room 

f Water flow rate 

  

  

------------------------------------------------------------------------------------- 

Abbreviations 

ACH Air Change Rate per hour 

CO Carbon monoxide  

CADR Clean Air Delivery Rate  

CFD Computational Fluid Dynamics 

CPC Condensation Particle Counter 

CDI Corona Discharge Ionizer  

N2O Dinitrogen oxide 

EFF Electrostatic Fibrous Filter 

HEPA High Efficiency Particulate Air  

NOx Nitrogen Oxides 

NTP Non Thermal Plasma  

PDF Particle Distribution Functions  

ppb Parts per Billion  

PAP Portable Air Purifier  

SEM Scanning Electric Microscope  

SMPS Scanning Mobility Particle Sizer  

NaCl Sodium Chloride (Salt) 

3D filter Three-Dimensional Filter 

TVOC Total Volatile Organic Compounds  

UFP Ultrafine Particle  

VOC Volatile Organic Compounds 

V Volume 
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1.     Introduction 

The current thesis expresses the possibilities of removing UFPs from indoor air, and the limitations 

and the applications of existing air cleaning technologies. In this chapter, the properties of 

pollutants including UFPs, their health effects and the existing methods to remove them from 

indoor air will be presented briefly. In addition, the fundamentals of fluid dynamics and the 

principles of air flow patterns in the room will be presented. At the end, the scope of the work and 

the limitations occurring in the current study will be addressed.   

 

1.1. Pollutants in indoor air 

Numerous air pollutants including gasses and particles exist in indoor air. The particles are divided 

into coarse, fine and ultrafine according to their diameters (Harrison, 1999). As shown in Figure 

1.1, the term of ultrafine particle (UFP) is applied for the particles with aerodynamic diameters 

smaller than 100 nm (Preining, 1998) which represent the highest number as compared with fine 

and coarse particles (Kittelson, 1998). Ultrafine particles typically originate from combustion 

processes or condensation of gases with low volatility (Seinfeld and Pandis, 1997). The 

concentrations of UFPs indoors are influenced by indoor activities, e.g., cooking and candle burning 

and outdoor sources, e.g., traffic (Afshari et al., 2005). 
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Figure 1.1 Schematic view of the size range of Ultrafine, fine and coarse particles and their 

abundance 

 

Every single particle has its own shape, chemical composition, volume, weight etc. The movements 

of particles depend on electrical forces, inertial forces, diffusion and convection. Turbulent 

diffusion is an important factor in the transport of UFPs in the air, while for large particles the main 

factors are inertial force and gravitational force.  

UFPs have negative health effects on the functions of human body organs including cardio and 

lungs (Bräuner et al., 2007; Anderson et al., 2010; Bräuner et al., 2008; Knol et al., 2009; Utell and 

Frampton, 2000). Particles in the UFP size range are not captured in the upper nasal tracts due to 

their size, and they can settle deep down in the lungs (Ibald-Mulli et al., 2002; Penttinen et al., 

2001).  

Some gasses including, among others, carbon monoxide (CO), volatile organic compounds (VOC) 

and ozone are considered as pollutants. Exposure to concentrations of ozone higher than 120 µgm
-3

 

has a hazardous effect on living organisms (“Air Quality Guidelines for Europe”, 2000; Zwick et 

al., 1991). Ozone is a gas whose toxicity has been studied broadly (Menzel, 1984; Neidell, 2009). In 

addition, ozone reacts with terpene and other unsaturated organic compounds (Fan et al., 2003; 

Weschler and Shields, 1999). These reactions will result in the generation of new UFPs, which are 

called secondary aerosols (Rohr et al., 2003; Singer et al., 2006).  

 

1.2. Improving the indoor air quality 

There are three main methods of improving the indoor air quality regarding UFPs: removing the 

pollutant source, dilution by supplying air from outside by a ventilation system and cleaning the 

indoor air with an air cleaning technology. The aim of a ventilation system is to fulfill human needs 

for a healthy and comfortable indoor climate. The aim may be reached by removing excess heat and 

pollutants from the air and supplying fresh air to the room.  
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In order to remove a pollutant, source control should always be the first method applied. When 

source control is not possible or practical, using a ventilation system should be the next option. But 

in current urban environments, the outside air itself is one of the main sources of pollution. 

Therefore, when it is obvious that neither of the first two methods would reduce the level of the 

pollutant in the space, an air cleaning method should be applied.  

Indoor climate is an important issue and the quality of supplied air and space-conditioning must 

improve and become more energy efficient. In order to meet the future challenges of the building 

energy demand, the objectives of this study was to improve indoor air quality while energy saving 

was justified.  

The aim of using a portable (in-room) air cleaner is in line with these aims. However, a portable air 

cleaner is not a substitute for ventilation. Different air cleaning technologies have been introduced 

to the market. Non Thermal Plasma, Corona Discharge Ionization, mechanical filters including 

High Efficiency Particulate Air (HEPA) filters, and electrostatic fibrous filter technologies are 

among the technologies used as air cleaners.  

There are two main concepts for cleaning the air: mechanical and chemical. Mechanical air cleaning 

is accomplished with different filters such as HEPA filters. Adding filter to a duct causes a pressure 

drop and consequently increases the energy consumption of the ventilation system.  

 

1.3. Simulation of an indoor airflow pattern by CFD 

It has been for decades that CFD simulation has been used to study fluid dynamics. This method of 

study is rather new in compared with experimental studies and consequently, the procedure of the 

CFD simulation is not settled for all case studies (Baker et al., 1994). A simulation can reduce 

needs for expensive tests and consequently reduce the cost of a project.  

Computational methodology of simulation includes 

1- Specifying the boundary condition of the fluid domain 

2- Specifying the physical characteristics of the flow 

3- Selecting numerical approaches and algorithms 

4- Specifying initial conditions 

5- Discretizing the geometry 

6- Solving iteratively the discretized form of governing equations for the discretized domain 

7- Evaluating the results in comparison with the experimental data 

If the prerequisites of this method have been addressed, the CFD method can determine 

computationally the flow properties of interest. However, some procedures are needed in order to 

validate a CFD solution. Two main procedures are checking the grid-independency of the solution 

and experimental validation of the results. Grid-independency means that it is essential to ensure 

that the solution is independent of the size of the meshes used to discretize the domain. 

Experimental validation is needed in order to certify if the CFD solution is physically correct.  

Mainly, there are two approaches for simulating the dynamics of pollutants including particles: the 

Eulerian approach and the Lagrangian approach. 
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The Eulerian approach assumes that the behaviour of the particle phase is similar to the continuum, 

while the Lagrangian approach considers the particles as single points (Crowe, 2005). Studies have 

been conducted on the particle phase models combined with different turbulence models for 

different particle sizes (Wang et al., 2012). In most studies, the simulated particle sizes are in the 

range of fine particles or coarse particles, i.e. particles larger than 100 nm.  

CFD simulation has been used to study the air cleaners inside a room, and to evaluate different 

initial conditions and turbulence models (Zhang et al., 2010). In addition, the impact of the 

placement of air cleaners has been studied (Zhou et al., 2009). 

 

1.4. Hypothesis 

This study intends to illustrate the potential for saving energy and at the same time to utilize the 

technical installations for providing treated good quality air for occupants. The main hypothesis of 

this study is that it is possible to recirculate air inside a room and reduce the amount of supply air 

while the indoor air quality is kept at an acceptable level. According to the current rules of Danish 

building regulation, it is not allowed to reduce the supply air and instead have recirculation of air in 

the building.  

The hypothesis is also that it is possible to improve the indoor air quality when the facts behind the 

dispersion of UFPs in an indoor environment are known. 

 

1.5. Scope 

The scope of this study is to investigate limitations, possibilities and applications of using 

recirculated air in combination with new air cleaning technologies in order to improve indoor air 

quality. The objective of this study is to determine the effectiveness of portable air cleaners and to 

investigate the approaches of using these devices aiming at reducing the concentration of UFPs in 

the indoor environment.  

1.6. Methods and limitations 

This study concentrated on the particle removal abilities of different air cleaning technologies. The 

experiments included measurements in a duct, a clean room and an office room. The measuring 

devices that were used to measure UFPs and gasses had some systematic errors and limitations. In 

the experiments, five air cleaning technologies were selected among different technologies in the 

market. 

In order to study the dispersion of UFPs in the room, CFD software was used. The computational 

solution method is an approach to achieve the solution which has some deviations with the exact 

solution. The particle phase was simulated by mainly using the Lagrangian approach, while there 

are other approaches that were not applied in this study. 
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2.     Experimental investigations 

This chapter describes experimental investigations performed on the air cleaning technologies. The 

chapter will start with a background description regarding UFPs and air cleaning technologies. The 

chapter will continue with the methods that were used, and finally some parts of the results will be 

presented.  

 

2.1. Background 

The adverse health effects of particles on humans have been studied and it has been well established 

that particles including UFPs have adverse health effects on the human body (Bräuner et al., 2007; 

Anderson et al., 2010; Kappos et al., 2004; Song et al., 2011; Strak et al., 2012; Utell and Frampton, 

2000).  

Particles deposit on different places of a lung depending mainly on their sizes (Brown and Cook, 

1950). Figure 2.1 shows three regions in the respiratory tracts where particles deposit by three 

mechanisms: Inertial impaction, sedimentation (interception) and diffusion. UFPs can lodge deep 

into the respiratory tract to the pulmonary alveoli, since they are not stopped by inertial impaction 

and interception. UFPs have a high alveolar deposition fraction because of large surface area 

compared with their mass, chemical composition, and ability to translocate (Ibald-Mulli et al., 2002; 

Penttinen et al., 2001).  
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Figure 2.1 Three regions of the respiratory tracts and their deposition mechanisms (Carvalho et al., 

2011) 

 

In addition, the number of UFPs in urban ambient air is high compared with rural ambient air, and 

the sources of UFPs in outdoor air are a variety of urban/industrial processes. A study in 

Copenhagen shows that the concentration of UFPs is the highest among the particle fractions 

(Bräuner et al., 2007).  

Different technologies have been invented to be used as an air cleaner, including mechanical filters, 

plasma technology, ozone-initiating technology, electrostatic precipitation, photocatalytic oxidation 

and technologies using O3, Tio2 and UV (Destaillats et al., 2011; Zhang et al., 2011).  

Ozone initiating air cleaning technologies have been assessed with regard to the rate of the ozone 

that they generate, maximum ozone level in a room, particle generation and the health effects of 

ozone. Some methodologies are introduced to predict the maximum ozone level caused by an air 

cleaner using the background level, the initial slope of the ozone growth curve and other factors 

(Niu, 2001; Tung, 2005).  

In order to determine the capability of an air cleaner in removing pollutants, researchers have 

introduced the term ‘effective cleaning rate’, which was later replaced by the term ‘clean air 

delivery rate’ (CADR). CADR is the difference in the detected pollutant decay rates with and 

without the air cleaner multiplied by the room volume (Shaughnessy and Sextro, 2006). In other 

words, the decay rate of a pollutant is determined first in a room without any air cleaner in 

operation. Then the decay rate is determined for the room with an air cleaner in operation. The 

difference between the decay rates is caused by the air cleaner. The difference multiplied by the 

room volume will result in CADR.  

Nazaroff (2000) has determined effectiveness as a new property in order to evaluate the influence of 

an air cleaner on the indoor pollutant concentration. This effectiveness shows how an air cleaner is 

effective for a room with a specific air change rate. Researchers have used this definition and 
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determined the effectiveness of different air cleaners (Grabarczyk, 2001; Sublett, 2011; Zhang et 

al., 2010).  

It is common for manufacturers of air cleaners to claim that their technologies can remove 

pollutants effectively. However, some studies have revealed that the manufacturers’ claims are not 

valid, and some of the technologies themselves can cause the generation of particles (Alshawa et 

al., 2007; Hubbard et al., 2005; Waring et al., 2008).  

In addition to the investigation of the ozone initiating cleaning technologies, this study focuses on 

fibrous filters. A fibrous filter is a filter comprising a huge number of small woven fibers ranging 

from Nano-size fibers to micro-size fibers. The filters and their characteristics have been studied in 

detail regarding pressure drop, penetration ratio, filter efficiency (Brown, 1993; Japuntich et al., 

1994). Figure 2.2 shows a microscopic view of a fibrous filter.  

 

Figure 2.2 Microscopic view of an electrostatic fibrous filter 

 

The particles are captured by the filters by means of diffusion, interception, impaction, electrostatic 

charge and gravitational settling. The influence of the mechanisms depends on the size of the 

particles. The minimum efficiency of a filter has been reported for particles with diameters between 

about 100 nm to about 300 nm, for which the effects of particle removal are the lowest for diffusion 

and impaction mechanisms. Moreover, the effect of air velocity on the filter removal efficiency in 

capturing UFPs has been tested. The removal efficiency decreases with increasing velocity (Brown, 

1993; Stafford and Ettinger, 1972).  

According to studies performed to assess the filter charge effect on the efficiency of the filter in 

removing particles, the size-fractional efficiency of the charged filters for particles ranging from 10 

nm to 10 µm are higher than in a normal glass fiber filter. In addition, the efficiency of the charged 

filters reduces gradually over time (Baumgartner et al., 1986; Baumgartner and Löffler, 1986).  
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2.2. Methodologies 

The methodology of the experiment part included the following steps: 

a. Literature reviews regarding particles, measuring devices and air cleaning technologies 

b. Searching the Danish market for the newest air cleaning technologies 

c. Learning experimental procedures  

d. Calibrating instruments 

e. Conducting the experimental investigations according to accepted models.  

f. Evaluating the results and discussing the hypothesis 

The outcome of the first steps, i.e. literature review, is summarized in the Background section. In 

the following sub-sections, other steps will be explained.  

 

2.2.1. Particle counters 

Different technologies have been introduced for counting the number concentration of particles 

including UFPs. In this study, three particle counters were used in order to measure number 

concentrations comprising NanoTracer, Scanning Mobility Particle Sizer (SMPS) and Condensation 

Particle Counter (CPC).   

An electrical aerosol detector applies electrical charge to count the number of particles. It 

introduces a specific electrical charge to the particles and later counts them according to the 

electrical mobility of the particles. NanoTracer PNT1000 is an electrical aerosol detector that can 

detect the total number of particles ranging between 10 and 300 nm with a concentration range of 0-

10
6
 UFPs/cm

3
.  

Another technology is the Condensation Particle Counter (CPC) which uses Butanol or water for 

counting particles. The liquid is converted to saturated gas, which condenses on the surface of the 

particles and forms the liquid droplets. The condensed drops can be counted using the light-

scattering method. The instrument, CPC 3007, can count UFPs between 10 nm and 1 micrometer 

(µm) with a concentration range of 0-10
5
 UFPs/cm

3
.   

Scanning Mobility Particle Sizer (SMPS) is a technology that classifies the particles according to 

their sizes by electrical charge and later counts the number of each size by means of the method of 

condensation particle counter. In the present study, the SMPS which was used in the experiments 

was set to count particles with a diameter range of 7- 298 nm.  

2.2.2. Measuring instruments 

The ozone level was logged by the ozone monitor BMT 930 and the ozone monitor 2B Technologies 

model 205. The ozone monitors was able to detect the ozone level down to 1 ppb accurately. The 

gas monitors Brüel&Kjær, model 1302 and Innova model 1312, were used to measure TVOCs 

during measurements. The detection limit of the gas monitors typically is 1 ppb; however it can 

change depending on the gas which is being monitored. Tinytag Ultra temperature loggers were 

used to measure the temperature and the humidity during the measurements. The velocity was 

measured by means of a Dantec anemometer. In order to determine the pressure differences, a 

digital monometer was used. 
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2.2.3. Air cleaning technologies 

In order to study the air cleaning technologies, the Danish market was searched, and five air 

cleaning technologies were selected, including Non Thermal Plasma, Corona Discharge Ionizer, 

Portable Air Purifier, Electrostatic Fibrous Filter and Three Dimensional Filter. The selected 

technologies will be briefly introduced here.  

Non-thermal Plasma technology (NTP): It is a specific kind of NTP that has two coaxial cylinders 

and a barrier which is located between the cylinders. Because of the high voltage difference 

between the cylinders, the electrons move to the lower voltage side, but because of the barrier, the 

electrons cannot flow to the other cylinder. Instead, the electrons discharge into the air and cause 

reactions. As shown in Figure 2.3, the air flows through the discharge gap between glass tube and 

outer cylinder, which is covered by a cooled steel tube, and reactions including generation of ozone 

occur. 

 

Figure 2.3 Schematic view of the Non-thermal Plasma technology (Pekárek, 2003) 

 

Corona Discharge Ionizer (CDI): The schematic picture of this technology is shown in Figure 2.4. 

The performing principle of this technology is similar to NTP, i.e. discharge of the electrons to the 

air.  However, it has a needle and a plate to discharge particles. The corona of electrons is produced 

using high voltage electricity, and the electrons are injected from the needle to the air passing 

between the plates (Paper I).  

 

Figure 2.4 Schematic view of the Corona Discharge Ionizer technology 
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Portable Air Purifier (PAP): This is a novel technology comprising UV light, ozone generator, 

electrostatic precipitator and ozone filter. It simulates the reactions of the atmosphere at the level of 

the stratosphere, which is a layer of the earth’s atmosphere starting from 12 kilometres above the 

earth. As shown in Figure 2.5, the ozone molecules are generated by an ozone generator. The UV 

lights installed in the interior wall of the air cleaner excite the generated ozone molecules, and the 

excited molecules react with contaminants in the air and generate oxidised substances (Paper I).  

 

 

Figure 2.5 Schematic view of the Portable Air Purifier technology 

 

This oxidation process causes the particles to grow in size, and finally they are captured in an 

electrostatic precipitator. An ozone filter is used at the end of the process to remove the ozone from 

the air.  

Electrostatic Fibrous Filters (EFF): A fibrous filter with electrostatically charged fibres is also 

selected as one of the air cleaning technologies. The packing density of the filter is 80 g/m
2
 and the 

size of the fibres of the filter is between 10 and 20 µm. Different types of electrostatic fibrous filters 

are used to clean the air in ventilation systems. The fibres of a filter are charged electrostatically to 

improve the cleaning ability of the filter. In the remaining part of this thesis, this technology will be 

called EFF.  

Three-dimensional filter (3D Filter): The last air cleaning technology was a filter with 

electrostatically charged fibres, similar to the fibres of the EFF technology. However, the fibres of 

this filter are packed differently. One side of the fibres is attached to a grid. Thousands of fibres are 

attached to a grid inside a frame. The air can pass along the fibres through the gap between the 

fibres.  

 

2.2.4. Experimental investigations in a duct 

The experimental investigations in a duct were performed in order to evaluate the efficiency of the 

air cleaners according to ANSI/ASHRAE Standard 52.2-2007. The air cleaners were also placed in 

a duct and connected to a clean room in order to identify and quantify the eventual airborne 

pollutants generated by them. First, the measurements were carried out when the air cleaners were 
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in operation individually and the particle source was not active. The aim was to assess the 

efficiencies of the air cleaners.  

The measurements continued to evaluate the efficiency of the technologies. The UFPs were 

generated by one pure wax candle in the room. The candle was burnt until the steady state 

concentration was reached.  The air inside the room was well mixed by means of two small fans. 

After reaching the steady state particle concentration in the room, the concentrations of UFPs 

upstream and downstream of the filter were recorded. The efficiencies were calculated using 

Equation 2.1. 

 

                                                 
                     

         
                                                            (2.1) 

 

Here Cupstream (UFP/cm
3
) is the concentration of UFPs upstream of the flow and Cdownstream 

(UFP/cm
3
) is the concentration of UFPs downstream of the flow.  

2.2.5. Experimental investigations in a clean room and in an office room 

The experimental investigations in a clean room were performed in order to evaluate the 

performance of air cleaners under controlled conditions according to standard ANSI/AHAM AC-1-

2006. Measurements were carried out to evaluate the performance of the air cleaners in a clean 

room and in an office room. The same procedures were used for experiments in the office room. 

The clean room had walls that were made of glass and steel. The air supplied to the clean room was 

cleaned by a charcoal filter and a HEPA filter. The volume of the clean room was 30 m
3
 with a 

floor area of 10 m
2
. The office room was an unoccupied room with the volume of 47.5 m

3
, located 

in an empty building. The office room had not been renovated for two decades, and therefore the 

building materials were old. 

In the first step, each air cleaner was in operation individually in each room to evaluate its 

performance and byproducts. Then a candle was used to evaluate the effectiveness of the air 

cleaning technologies in removing UFPs. 

The UFP concentration, ozone and total volatile compounds (TVOC) were monitored during all of 

the measurements. The background concentration of UFPs was less than 500 (UFP/cm
3
) inside the 

clean room. The particle counters logged the data in the middle of the room at a height of 1 m. The 

air cleaners were in operation individually without any pollution source in the room during the first 

step. This step of the experiments was performed for PAP both in summer and winter. 

In the second step, the effectiveness of the air cleaners was evaluated with a particle source in the 

clean room and in the office room. This method is called in situ method (Offermann et al., 1985). 

The procedure of the method is that a contaminant is added to a room, and the air is mixed, using 

small fans. After achieving the steady state condition regarding the concentration of the 

contaminant, the contaminant source is removed and the concentration of the contaminant 

continuously logged. The decay rates for the cases without an air cleaner and with an air cleaner are 

calculated using the logged data. In this study, a candle was burnt in the room and the air was well 

mixed by two small fans. The air change rates of the rooms were measured by the tracer gas N2O.  

At the first segment of determining the effectiveness, the air cleaner was off and the particles were 

removed by the ventilation system and deposition. At the second segment, the candle burnt again 

and after reaching the steady state condition, the air cleaner was turned on. The particles generated 
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by the candle were removed with the air cleaning technology together with the ventilation system 

and deposition. The particle removal rate caused by the air cleaning technology is obtained using 

Equation 2.2. 

                                                                                                                                  (2.2) 

 

Where λ(AC+v+d) (h
-1

) is the removal rate when the air cleaner is on, λ(v+d) (h
-1

) is the removal rate 

when the air cleaner is off, and λAC (h
-1

) is the removal rate caused by the air cleaner. 

The Clean Air Delivery Rate (CADR) is the removal rate caused by the air cleaner (λAC) which is 

the difference in the detected particle decay rates with and without the air cleaner in operation, 

multiplied by the room volume and calculated by Equation 2.3 (Shaughnessy and Sextro, 2006).  

                                                                                                                                  (2.3) 

Here VR (m
3
) is the volume of the room. 

The effectiveness of an air cleaner provides more information than CADR (m
3
/h) regarding the 

ability of an air cleaning technology in removing pollutants from the indoor air of a room. The air 

cleaner effectiveness is calculated using the following equation. 

 

                                                          
       (      ) 

         (      ) 
                                                            (2.4) 

In fact effectiveness is the ability of an air cleaner in reducing a specific pollutant such as UFP. If 

the pollutant concentration in a room is Cref (UFP/cm
3
) and after adding an air cleaner the 

concentration in the room is reduced to the new concentration Cctrl (UFP/cm
3
), the effectiveness can 

be determined by the following equation:  

 

                                                             
          

    
                                                                   (2.5) 

The effectiveness is directly and closely related to the key outcome of interest: how much does the 

use of this cleaning technology improve indoor air quality.  

 

2.2.6. Studying filtration dependency on ultrafine particle exposure and composition 

More investigations were performed on EFF technology regarding the dependence of the filter’s 

efficiency on particle exposure and composition. The measurement was set up according to Figure 

2.6 in order to evaluate its efficiency at different levels of UFPs. The tests were performed at five 

levels of UFP concentrations, ranging from approx. 2,800 UFP/cm
3
 to 100,000 UFP/cm

3
. The filter 

was tested at the flow rates of 60 l/s and 100 l/s. During all of the measurements, the UFP 

concentration was measured by means of NanoTracer PNT 1000 and SMPS upstream and 

downstream of the filter simultaneously.  
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Figure 2.6 The filter was placed in a steel box and connected to the test room 

 

The pressure difference was measured before and after the filter by a digital manometer. In 

addition, an optical microscope and a Scanning Electric Microscope (SEM) were also used to study 

the dendrites of the UFPs formed on the fibres. According to the microscopic visualizations by 

SEM, the sizes of the fibres of the filter were between 15 µm and 20 µm. 

The filter was also examined regarding the resuspension of the particles. The filter was placed in a 

box, and through a duct it was connected to the test room, where high concentrations of particles 

were generated by a candle. A fan was placed along the duct to cause the flow rate of 60 l/s through 

the filter. The filter was loaded for 1 hour. The fan was stopped, and the ducts were blocked to 

prevent the air flow through the filter. Then the setup of the filter in the box was connected to the 

clean room through a duct, and the clean air passed through the filter to study the resuspension of 

the filter.  

 

2.2.7. Electrostatic fibrous filter technology combined with a chilled beam 

The EFF was also combined with a chilled beam to study the particle removal ability of the EFF 

when it is combined with a chilled beam. The chilled beam is used to supply fresh air to a room 

while the excess heat generated in the room is also extracted. A schematic view of the combined 

system is shown in Figure 2.7. The primary airflow came from the supply duct as shown by No. 1 

in the figure. The induced secondary airflow (No. 2) passed through a mechanical filter (No. 3) 

located below a water coil (No. 4). The excess heat of the induced secondary air is given off to the 

water in the coil and returned to the room together with primary air because of the entrainment 

effect (Paper IV).   
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Figure 2.7 Schematic view of a combined system (Paper IV) 

 

The sensible heat removal effect of a chilled beam refers to the amount of energy that can be 

extracted from the air by a chilled beam per time unit. This is determined by Equation 2.6. 

 

                                                                       H=f×C×ΔT                                                           (2.6) 

 

Where H (W) is the effect, f (kg/s) is the water flow rate, C (Jkg
-1

K
-1

) is the specific heat capacity of 

water and ΔT (K) is the temperature difference between supply water and return water. 

The experiments of the combined system were performed in a laboratory room with a volume of 51 

m
3
. The combined system was located in the middle of the ceiling in order to conform to the 

location best suited for a chilled beam (Loudermilk 2009).  

Two sources of particles were used to measure the effectiveness of the filter in removing organic 

and inorganic material. The pure wax candle was chosen, since wax is an organic material that is 

not soluble in water. The other material was salt (NaCl) as it is an inorganic material that is soluble 

in water, and therefore static charge is hard to be build up on its surface. The particles were 

generated first with a pure wax candle and then with an aspirator to generate aqueous-based salt 

particles. The UFP source was located on the floor in the middle of the room.    

 

2.3. Results  

2.3.1. Comparing the particle counters 

The three particle counters which were evaluated in this PhD study were NanoTracer, SMPS and 

CPC. At a low level of UFPs, the results of the three counters were similar. As shown in Figure 2.8, 

NanoTracer showed more fluctions in UFP concentrations below 2000 UFPs/cm
3
.  
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Figure 2.8 Comparison of registered data of the NanoTracer with SMPS for the concentration of 

UFPs (less than 2000 UFPs/cm
3
)  

 

With the concentration higher than 90,000 UFPs/cm
3
, logged data of the NanoTracer and the SMPS 

were related by an exponential equation, while CPC did not show any change.  

 

2.3.2. Experimental investigations on the air cleaners in a duct  

First, the air cleaners were evaluated in the duct without any particle source. In this part of the 

study, there was no particle source in the test room. The results show that the level of ozone 

increased by 44%, 33% and 11% for NTP, CDI and PAP respectively. Two other technologies, 

namely EFF and 3D Filter, are mechanical filters, therefore they do not generate by-products. 

The second step of the duct experiment was to determine the efficiency of the air cleaning 

technologies in removing UFPs generated by a pure wax candle. The candle was burnt in the clean 

room and the air cleaner was connected to the room by a duct. The result is shown in Table 2.1.  

Table 2.1 Efficiency of the air cleaning technologies in removing UFPs (Paper I) 

  

Air cleaners   Efficiency  

NTP   9% 

CDI 40% 

PAP 15% 

EFF 78% 

3D Filter 50% 

 

2.3.3. Experimental investigations on the air cleaners in a clean room 

In the second part, air cleaners were in operation in a clean room. The first step was to investigate 

the substances that could be created by the technologies when they worked alone in the clean room. 

Table 2.2 shows the maximum UFP concentration and maximum ozone concentration in the clean 
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room for the experiments of the three technologies. The two other technologies, i.e. EFF and 3D 

Filter, did not generate ozone nor UFPs. 

 

Table 2.2 Concentration of UFP and ozone for air cleaners in the clean room (Paper I) 

Air cleaners Summer Winter 

 

Ozone 

(ppb) 

UFP 

(UFP/cm
3
) 

Ozone 

(ppb) 

UFP 

(UFP/cm
3
) 

NTP 28 20000 - - 

CDI 35 1100 - - 

PAP 8 23000 8 5000 

        

 

The technologies PAP and NTP caused an increase in the UFP concentration in the room while CDI 

did not cause a change. 

The particle concentration started increasing after a delay of about one hour. As shown in Figure 

2.9, after about two hours, the concentration reached its ultimate level, and then the concentration 

started falling.  

 

 

Figure 2.9 Concentration of ozone of the room with air cleaners NTP, PAP and CDI 

 

In the second step of the clean room experiments, the effectiveness of the air cleaners in removing 

UFPs was evaluated. Table 2.3 shows the CADR and effectiveness of the air cleaning technologies 

in removing UFPs. The second column in the table displays the UFP removal rate of the ventilation 

system together with an air cleaner. The third column is associated with the UFP removal rate 

caused by the ventilation system and deposition. The CADR and the Effectiveness, which are 

shown in the fourth and fifth columns, are calculated according to Equation 2.3 and Equation 2.4. 

As is shown in the table, the highest CADR and effectiveness belong to the EFF technology.  
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Table 2.3 Effectiveness of the air cleaners in removing UFPs generated by a candle inside a clean 

room (Paper I) 

Air cleaners 

UFP removal rate 

of system with air 

cleaner (λac+λv+λd) 

UFP removal rate 

of system without 

air cleaner (λv+λd) 

CADR (m
3
/h) Effectiveness (ε) 

NTP 3.5 2.8 20 0.2 

CDI 4.3 2.7 50 0.4 

PAP 3.4 2.8 18 0.2 

EFF 9.2 2.5 200 0.7 

3D Filter 3.4 1.7 50 0.5 

     

 

2.3.4. Experimental investigations on the air cleaners in an office room 

The three air cleaning technologies, NTP, CDI and PAP increased the level of ozone in the office 

room. 

Despite the results of the clean room experiments, the three first air cleaning technologies did not 

increase the particle concentration in the office room (Paper III).  

In addition, the effectiveness of the air cleaning technologies in the office room was also 

determined, which is reported in Table 2.4. 

 

Table 2.4 Effectiveness of the air cleaners in removing UFPs from the air of the office room (Paper 

III) 

          

Air cleaners 

UFP decay rate 

of system with 

air cleaner 

(λv+λd) 

UFP decay rate of 

system without air 

cleaner (λac) 

CADR (m3
/h) Effectiveness (ε) 

NTP 1.1 0.9 13 0.2 

CDI 3.6 1.2 110 0.4 

PAP 1.3 0.9 20 0.25 

EFF 5.2 1.4 180 0.42 

3D Filter 3.7 1.2 110 0.4 

          

2.3.5. Studying filtration dependency on ultrafine exposure and composition 

More evaluations were performed on EFF technology in a duct. The evaluations comprised two 

parts. First, different UFP concentrations were generated using a candle, and after achieving a 

steady state condition, the particle concentrations both before and after the filter were logged. The 
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fractional efficiency (efficiency for particles of a size) of the filter is shown in Figure 2.10 for two 

different concentrations, low concentration and high concentration. When the size of the particles 

increases, the efficiency decreases as shown in the figure.  

 

 

Figure 2.10 Efficiency of the filter for different sizes of the particles in two concentrations (Paper VII) 

 

In the second part of the measurements, the candle was extinguished and the particles were 

removed by ventilation systems and filter. The decay rates of the particles with a diameter of 7 nm 

(which is the smallest size of particles counted) measured before and after are shown in Figure 2.11.  

 

Figure 2.11 Decay rate of number of particles with diameter of 7 nm before and after the filter (Paper 

VII) 

 

The efficiency of the filter was also calculated using the data logged by NanoTracer. NanoTracer 

shows one number at a time as the total UFP concentration. Therefore, efficiency can be calculated 
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according to the total UFP concentrations shown before and after the filter. The result is shown in 

Figure 2.12.  

 

 

Figure 2.12 Efficiency of the filter for different sizes of the particles in flow rates of 60 l/s and 100 

l/s 

 

The efficiency measurement was repeated with salt particles generated with the atomizer. The result 

is shown in Table 2.5. 

 

Table 2.5 Efficiency of the filter in two concentrations of salt particles 

Test No. 
UFP concentration 

upstream (UFPs/cm
3
) 

Efficiency (%) 

1 72000 41 

2 63000 38 

3 34000 42 

 

 

2.3.6. EFF technology combined with a chilled beam 

The EFF is selected to be combined with a chilled beam to evaluate the improvement in particle 

removal rate by a chilled beam. 

Figure 2.13 shows the removal rate of the particle concentration generated by a candle in a room. 

The candle burnt until the UFP level reached a steady state. Then the candle was extinguished. The 

upper line shows the removal of the UFP concentration when the chilled beam was in operation in 

the room without the filter. The UFP removal rate due to ventilation and deposition was estimated 

using the exponential trend line of the curve to be 2.7 h-1 with R2 equal to 0.99.  
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The lower line in Figure 2.13 indicates the removal rate of the UFP concentration for the combined 

system. The corresponding removal rate was 4.7 h-1, with R2 equal to 0.99. By subtracting the effect 

of the chilled beam without filter (2.7 h-1) from the effect of the combined system (4.7 h-1), the 

effect of the filter in cleaning the air was determined to 2 h-1. The average diameter of the particles 

generated by the candle ranged between 33 nm to 47 nm. 

 

 

Figure 2.13 Removal of UFPs generated by a candle with a chilled beam in a room (Paper VI) 

 

As regards the combined system, the supply water temperature was 12.3°C and the return water 

temperature was 14.3°C, while the return temperature was 15.3°C in the case of the chilled beam 

without filter with the same supply temperature. The water flow rate was 0.038 l/s. Assuming the 

water specific heat capacity to be 4200 Jkg
-1

K
-1

, the heat removal effect of both cases could be 

calculated by Equation 2.8.  Consequently, it was possible to calculate the reduction of the effect 

caused by the filter. To evaluate the reduction, measurements were made for three primary airflows, 

and the result is shown in Table 2.6.  

 

Table 2.6 The effect of three primary airflows for combined system and chilled beam (Paper VI) 

Primary air flow 

rate (l/s) 

Effect for the 

combined system 

(W) 

Effect for the 

chilled beam 

(W) 

Reduction in 

the effect (%) 

15 242 390 38 

25 310 435 29 

45 410 525 22 
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3.     Simulation of particle dispersion in a room 

The movements of particles in the air are considered as a flow dispersed in a continuous medium. In 

order to study the dispersion of particles in a room, the study of the dynamics of continuous flow 

(as it is the carrier of the particles) and the study of the behavior of particle phase are needed.  

In this chapter, the principles of air distribution in a room will be discussed. CFD will be described 

briefly, and the methods of particle simulation will be explained. The chapter will continue with the 

description of methodologies of this study, and finally the results will be reported.  

The aim of this CFD study was to investigate the possibilities of improving indoor air quality 

regarding removal of UFPs by air cleaners. The aim was also to see the impact of the location of 

heat source and a passive particle source on the distribution of UFPs at different heights.  

 

3.1. Principles of air distribution in a room 

The reason of using a ventilation system is to remove excess heat and pollutants from air and 

supply fresh air to the room. Among others, two air flow patterns can exist in a room, mixing 

ventilation and displacement ventilation. Mixing air flow pattern aims to dilute polluted air by 

supplying fresh air of a high velocity. The high velocity of air makes high turbulence intensity. This 

causes a good blend and a uniform temperature at all heights of a room. 

Figure 3.1 shows an example of the displacement airflow pattern. In this airflow pattern, air moves 

from a supply terminal located close to the floor toward the exhaust at the higher level and pushes 

the existing air to the exhaust. Considering the fact that there is buoyancy force with existence of a 

heat source, it is clear that the main direction is from bottom to top. However there are also 

horizontal movements in this air flow pattern due to the entrainment of the air molecules around the 

plume.  
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Figure 3.1 Displacement air flow pattern in a room 

 

One of the main positive aspects of the displacement ventilation system is high effectiveness in 

removing excess heat from a room as it works with the principle of the buoyancy effect. In contrast, 

the mixing ventilation system ideally gives the same temperature for all heights. 

The air with a temperature lower than the temperature of a room comes into the room through the 

inlet and falls down because of the higher density of cold air. Therefore, there is a temperature 

gradient in the room with a higher temperature at the higher part and a lower temperature at the 

lower part. The gradient should be restricted to avoid discomfort. As shown in Figure 3.2, there is a 

vertical temperature gradient. It is well-known that if the difference between the temperature at the 

height of a person’s head and the temperature at the person’s ankle become large, that person will 

feel draught. Draught is considered as a discomfort condition and must be avoided. Consequently, 

in order to keep the desired temperature gradient and remove the excess heat effectively, it is 

normally necessary to supply a larger amount of fresh air than that provided by the mixing 

ventilation system. This fact causes an increase in the cost of duct work.  
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Figure 3.2 Stratification Layers in a room with a displacement airflow pattern 

 

When using displacement ventilation, it is presumed that there is a heat source in the room. The 

heat source heats the air and generates plumes which move the air upward. A heat source could be 

occupants, a radiator, and a computer. In addition, there might be some heat sinks such as cold wall 

surfaces. The heat sinks reduce the temperature of adjacent air and consequently increase air density 

and cause down draught flows.  

When the plume moves upward above a heat source, other air molecules adjacent to the plume 

entrain and cause an increase in the air flow rate of the plume. The plume over a heat source gets 

affected by the surrounding stratification. It moves upward and exchanges energy with the 

surroundings. It will move upward up to the height at which the temperature difference between the 

plume and the surrounding is zero. From this height, the plume moves upward because of inertia, 

then returns downward and spreads horizontally to reach the level at which the temperature 

difference is zero.  

If a heat source has the highest heat power among all the heat sources, at a specific height, the flow 

rate by the air plume over the heat source minus the down draught flow rate equals the supplied 

flow rate. This height is called the stratification height. The height can be changed by changing the 

heat power of the main source and by changing the ventilation rate. There are some empirical 

equations for predicting the stratification height for different locations of the heat sources in a 

closure depending on source types (Mundt, 1996).  

Jacobsen and Nielsen (1992) have evaluated displacement air distribution system in detail and have 

discussed the effect of boundary conditions on a displacement ventilation pattern in CFD.   

Nielsen (1993) has established the important factors that must be taken into account in the design of 

a displacement ventilation system. The factors are free convection flows, stratification height, 

pollutant concentration distribution, temperature distribution and velocity distribution in the 

occupied zone. In addition, it has been shown that all the factors playing a role in the design of a 
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ventilation system can be described by an Archimedes number. In the guidebook number 1 of 

REHVA, displacement ventilation concept, design procedure and all other issues related to 

displacement ventilation have been explained (Skistad et al., 2004). 

To compare the concentration profiles of pollutants in a room, a value is introduced as pollutant 

removal efficiency (µ) with the following equation:  

 

                                                                       
       

       
                                                               (3.1) 

 

Here, Cx (UFP/cm
3
) is the concentration of the pollutant at location x, and CS (UFP/cm

3
) is the 

concentration of air at supply. CE (UFP/cm
3
) indicates the concentration of air at exhaust. 

In order to find the adequate model to be used in a CFD simulation for a specific problem, 

experimental validation is recommended by experts. Detailed information regarding selection of the 

governing equations and the methods of evaluating results can be found in the literature sources for 

a specific area of research. In the simulations of a ventilation system, information regarding 

boundary condition estimations, turbulence model selection and mesh quality assurance can be 

found in literature resources (Nielsen et al., 2007). Nowadays, commercial CFD software can be 

used to initialize the problem, solve it according to the governing equations of the fluid dynamics 

and visualize the results.  

There are some empirical equations to predict the airflow rate of the plume over a heat source.  

For the point heat source in a bounded surrounding with temperature stratification, the equation for 

airflow rate of the plume is as follows (Baturin and Blunn, 1972): 

 

                                                                        

 
 ⁄  

 
 ⁄                                                          (3.2)     

 

While z (m) is the distance from the virtual point, and    (W) is the convective component of the 

heat load which is calculated according to the following equation: 

       

                                                                                              (3.3) 

 

While K is the convective heat factor and a semi-empirical value depending on the size of the heat 

source,    (W), is the total power of the heat source, including the radiation term. When the 

supplied airflow rate is known, it is possible to find the location of the stratification height. Mundt 

(1996) has explained different methods of determining the flow rate of plumes over heat sources. 

The heat is mainly transferred in a room by two methods, convection and radiation. In order to 

avoid the complication of simulation by radiation, a method is used that consider just the convective 

term of the heat source as a total power of the heat source. Subsequently, it is necessary to rectify 

the wall temperatures and use those temperatures as boundary conditions of the walls in the 

simulation. The surface temperatures are obtained from the experiments. The method is illustrated 

in Figure 3.3. 
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Figure3.3 Illustration of substitution of the radiation effect of average surface temperatures obtained 

from the experiment  

 

Pollutants including gasses and particles exist in indoor environments. They can be generated inside 

the room, or they can be delivered to the indoor space by the supplied air. When the pollutant 

source is very close to the heat source, or when it is combined with the heat source, it is called a 

thermal pollutant source. Alternatively, if the pollutant source is away from the heat source, it is 

called a passive pollutant source. Pollutant distribution in a displacement air distribution system has 

been investigated by researchers. It has been established that in the case of the thermal particle 

source, the zone above the stratification height, i.e. the recirculating zone, has a higher particle 

concentration than the zone below the stratification height. However, the particle dispersion in the 

room with a passive particle source has been investigated in few cases and mainly experimentally.  

 

3.2. An overview of computational fluid dynamics  

As regards fluids, there are mainly three methods to solve the problems: experimental, theoretical 

and computational. Theoretically, there are partial differential equations to find velocity 

components, pressure and temperature. However, since in the best case, the number of unknowns is 

equal to the number of equations, no exact solution can be achieved. Instead, there is a possibility to 

use computational method to handle the fluid dynamics problems.  

The CFD method can determine numerical expression of the flow properties of interest. In this 

method, the flow domain is divided into small cells which are called meshes, and the action of 

dividing the domain into meshes is called meshing. 

It is clear that simulation of a multiphase flow is still far from reality if one wants to model all 

interactions between the dispersed phase and the continuous phase. For example, a non-spherical 

particle has a rotational behavior; it exchanges electrical charge with the surroundings and 

exchanges water content by condensation and evaporation. In all existing approaches, there are a lot 

of assumptions and simplifications (Crowe, 2005). In the following section, the simulation of 

particle phase, existing models and limitations in the simulation of particle phase will be discussed.  
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3.3. Simulation of particle phase 

Bubbles, droplets and solid particles are considered as particle phase in CFD simulations. The 

behavior of a particle is studied according to its interactions with the surroundings. Every single 

particle has its own shape, chemical composition, volume and weight (Friedlander, 2000). 

Therefore, in order to simulate the real behavior of dispersed particles in a continuous flow, it is 

essential to have a grid which is so fine that the forces acting on each single particle can be 

calculated. This method of simulation of particles is called the Resolved-Surface method. In an 

ordinary office room, thousands of particles exist in a cubic centimeter of air. Consequently, 

simulating this large number of particles with such fine grids is practically impossible. Figure 3.4 

shows the behavior of the air molecules around spherical particles. If a CFD simulation aims to 

simulate these three particles exactly as it happens, the mesh size should be fine enough to predict 

the forces exerted to the sides of the particles.  

 

 

Figure 3.4 Behavior of air molecules around particles 

 

In addition, there is still a lack of knowledge regarding the behavior of particles in the air. Some 

phenomena that contribute to the dynamics of particles have been studied broadly while other 

phenomena have not. Resuspension of particles, coagulation and particle phase change have been 

evaluated in some studies, but the knowledge is not enough to know the entire reality (Boor et al., 

2013). Dispersion of particle phase in a room depends mainly on the location of the particle source, 

air velocity at inlet, air flow rate and heating power. Knowledge regarding these phenomena is 

limited to some experimental studies and CFD simulations (Gao and Niu, 2007; Mundt, 1996; 

Nazaroff, 2004). 

The movements of particles include turbulent diffusion and convection. However, some factors 

might be the main cause of particle movement depending on the sizes of particles. Diffusion is an 

important factor in the transport of UFPs. Because of turbulent air movements in indoor air, 

diffusion is the main factor only close to the walls. For larger particles, i.e. fine particles and coarse 

particles, inertial force and gravitational force play main roles. Depending on the size of particles, 
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considering particles as gas molecules in CFD simulations may cause deviation in the results to 

some extent (Nielsen, 1994).   

The temperature stratification in a room has an effect on the profile of particle concentration in the 

room as well. A thermal particle source is a particle source which is combined with a heat source. 

Studies have shown that with a thermal particle source, the contaminant concentration in the 

recirculating zone is higher than in the bottom zone for a stratified room (Skistad et al., 2004). 

The particle dispersion in the air is considered as a multiphase flow of a particle phase and a gas 

phase. The particle phase is considered as a dispersed phase in the air if the interaction of particle-

fluid is the main drive for the overall transport of the particles. In case the volume fraction of 

particles is less than 0.001, the multiphase can be regarded as a dilute flow (Crowe et al., 2011).  

In a dilute flow, if the particles do not have impact on the behaviour of fluid, this means that only 

the flow is the motion drive of particles. This is considered as one-way coupling. Consequently, for 

a one-way coupling dilute flow, the continuous phase can be solved independent of the dispersed 

phase. It is a great advantage regarding the computing capacity saving in the CFD simulations.  

For the simulation of air in an ordinary room, the flow can be considered as dilute, since the volume 

fraction of particle phase is much less than 0.001. There are mainly three approaches of simulating 

particle behaviour, the Particle Distribution Function (PDF) approach, the Lagrangian approach and 

the Eulerian approach. 

PDF exists in two forms. In its first form, the PDF refers to the probability density for each property 

of particle such as position and velocity (Buyevich, 1972a, 1972b, 1971). In its second form, the 

PDF includes the gas phase (carrier gas) velocity together with particle velocity (Simonin et al., 

1993).  

Figure 3.5 shows the velocity vectors for the particles in two approaches, Eulerian and Lagrangian. 

As is shown in the figure, the Lagrangian approach includes trajectory calculations of the particles 

mainly for a large number of them moving through the continuous phase, while in the Eulerian 

approach, particles are considered as a continuum-like phase. 
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Figure 3.5 Illustration of velocity vectors in two multiphase approaches a) Eulerian b) Lagrangian 

(Crowe, 2005) 

 

In the Lagrangian approach, the continuous phase is solved by an Eulerian method, and the 

dispersed phase is solved by a Lagrangian method. The motion of a large number of particles 

(particle cloud) is simulated together as a parcel in the Lagrangian approach in order to have a 

statically meaningful result. Tracking trajectories of a large number of particles is time consuming 

and expensive as regards the computing capacity.  

 

3.3.1. Lagrangian approach 

In the Lagrangian approach, the properties of a particle are calculated using simple equations of 

classical mechanics. The equations of motions for the particle phase are expressed as below. 

 

                                                                  ̈  
     

 
                                                             (3.4) 

 

Where  ̈ (ms
-2

) is the acceleration of the particle, x (m) is the position of the particle, fs (N) is the 

representative of surface forces, fb (N) is fluid force exerted on the particle, i.e. body forces, m (kg) 

is the mass of the particle, and g is the gravity acceleration vector. fb (N) includes drag forces, 

pressure gradient force and virtual mass force.  

The forces exerted on the particles include drag force, gravitational force, pressure gradient force 

and virtual mass force. In the indoor air conditions, the effects of the pressure gradient force and 
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virtual mass force are negligible as they depend on the ratio of the density of the air to the density 

of the particle which is about10
-3 

(Zhao et al., 2004).  

Angular motion of a particle is calculated using the following equation. 

 

                                                                      ̇  
 

 
                                                                       (3.5) 

 

Here, the particle angular acceleration is shown by  ̇ (rads
-2

), torque exerted on the particle by M 

(Nm) and inertia moment of the particle by I (kgm
2
). The angular velocity and the acceleration of 

the particle can be counted from equations 3.4 and 3.5. Knowing the initial velocity and the time 

step, it is possible to calculate the particle velocity and position.  

The particles are simulated in the number of steps, of which the equation of motion is as below 

(Maxey, 1983). 

 

                                               
   

   
   

       

  
                                                        (3.6) 

 

Where j=1,2,3 showing the coordinates in three dimensions respectively, and v is particle velocity, 

u (m/s) is fluid velocity at particle location, mp (kg) is particle mass and mf (kg) is the mass of flow 

displaced because of particle volume. Time step of interest is shown by τp (s). 

 

3.3.2. Eulerian approach 

In the Eulerian approach, the particle is considered as a continuous medium with similar properties. 

Therefore, the equations which are used for the particle phase are similar to those of the fluid phase. 

Consequently, the approach is cost effective, and the procedure to find the particle properties is 

analogous to those of fluid. However, there are some problematic issues such as boundary 

conditions and poly-disperse simulation for particles, which the Eulerian method cannot handle 

very well (Loth, 2000; Guha, 2008). In the Eulerian approach, the properties are calculated for a 

computational volume of the flow (Crowe, 2005).  

Both of the particle phase approaches have been used for the simulation of the particles of indoor 

air.Various studies have been conducted on these models, combined with different turbulence 

models for different particle sizes (Vegendla et al., 2011; Zhang and Chen, 2007). In most studies, 

the simulated particle sizes are in the range of fine particles or coarse particles, i.e. particles larger 

than 100 nm but not the size of UFPs.  

 

3.4. Methodologies 

In this study, a real room was selected to be simulated by commercial CFD software, STAR-CCM+, 

which is produced by the CD-Adapco Company. The real room dimensions were 5m×2m×2.9m. 

Figure 3.6 shows a three-dimensional schematic figure of the room. The red line in the figure 

indicated the inlet, which is a slot inlet with the dimensions of 4cm×53cm and an aspect ratio of 13.  
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Figure 3.6 Three dimensional schematic picture of the simulated room 

 

In order to compare the removal rate of particles and the air change rate in a room, an investigation 

was performed in the room. The tracer gas, N2O, was released inside the room, and the decay of the 

tracer gas was measured to be 1.6 h
-1

. Particles were generated by a candle in the room, and the 

decay rate of particles was measured by SMPS. As shown in Figure 3.7, particles with a diameter of 

less than 73 nm had a higher decay rate than the decay rate of the tracer gas, while particles larger 

than this size had a lower decay rate than the decay rate of tracer gas. Moreover, the fine particles 

had a similar decay rate compared with the tracer gas decay rate. Therefore, assuming particle 

behaviour identical to the behaviour of tracer gas does not result in large inaccuracy. Particles 

smaller than 73 nm have a higher decay rate than the tracer gas decay rate.  

 

 

Figure 3.7 Decay rate of particles compared with the decay rate of tracer gas 
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The weighted mean for the decay rate of all particles was determined by averaging the decay rate of 

the particles of different sizes by considering the number of each size. The weighted mean decay 

rate for the particles was 1.63 (h
-1

), which was very close to the number found for the tracer gas 

decay rate, i.e. 1.61 (h
-1

).  

The inlet velocity of the room was set to 0.3 m/s. The air movement from the inlet of the room was 

measured and visualized by smoke in the room to be used later for the assessment of turbulence 

model results.  

3.4.1. Air cleaner location in a room 

In the first study, the Lagrangian multiphase model was selected to evaluate the impact of the 

location of an air cleaner on the particle concentration inside the room. A log-normal distribution 

was considered for the particles with the source location close to the floor. The particle-size 

distribution was determined according to the size distribution that was found using the SMPS 

particle counter.  

For the air cleaner, three different locations were simulated with the k-ε model, while the particle 

movements were simulated by the Lagrangian model. A schematic view of the layout of the room 

and the three locations of the air cleaner are shown in Figure 3.8. The first place was the place 

furthest away from the inlet and outlet. The second location was close to both the inlet and to the 

outlet. The third location was at the other side of the room and far from both inlet and outlet.  

 

 

Figure 3.8 Plan view of the room, including locations of the air cleaner and the candle (Paper V) 

 

3.4.2. Location of particle source and heat source 

The second part of the study was performed to evaluate the effect of location of a heater on the 

distribution of UFPs in a room. Additionally, the effect of the location of a particle source was 

studied.  

The heater was placed at the heights 0.1 m or 0.5 m. In order to evaluate the predicted temperature 

profile by CFD, temperature loggers were mounted at specific heights in the room. The logged 
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temperature data was compared with the CFD simulation. The locations of the heat source, particle 

source and the sampling points are illustrated in Figure 3.9.  

 

 

Figure 3.9 Outline of the room including heater location, particle source and sampling points (stars) 

in the CFD simulation (Paper VI) 

 

In the CFD, the meshes were generated by tetrahedral meshing for room geometry similar to the 

real room. The number of meshes at the beginning was 400,000. The quality of mesh was improved 

sufficiently to achieve a grid-independent solution for temperature and velocity magnitude (Roache, 

1994).  

The process the grid-independent solution was repeated for the particles as well. The mesh grid was 

refined until reaching the solution at which it was independent of the grid size. Using the 

Lagrangian method, it was necessary to refine the mesh further. The number of meshes was 

increased to 3.2 million meshes. Similarly, in order to determine the number of sub-steps to follow 

the particle trajectory in the domain, the number of sub-steps was increased until reaching the 

independent solution. The number of sub-steps was 1.5 million. 

Subsequently, the simulation was run with the turbulence models, k-ε and k-ω. After comparing the 

results of both models with measurements and smoke visualizations, the k-ε model was selected. In 

order to study the effect of the radiation on the flow pattern and the particle distribution in the room, 

two cases were considered regarding the radiation effect, one without radiation solver and one with 

radiation solver. 

The process of selecting the generation rate of the particles was the same as it was increased until 

the particle concentration profile in an arbitrary place remained unchanged after increasing the 

generation rate. The particle source was located at three heights. The rate of particle generation was 

20 parcels of particles in the room with the total generation rate of 50,000 particles per second. As 

the particles are UFPs dispersed in the air, the particle-particle interaction was not considered in the 

simulations.  
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3.5. Results 

The CFD simulations were performed by the two turbulence models k-ε and k-ω. The predictions of 

the velocity profile close to the air inlet were compared with the experiment results. Figure 3.10 

shows the results of the prediction by the two turbulence models and the experiment result. 

 

 

Figure 3.10 Prediction of velocity profile at a distance of 1 m in front of the inlet by k-ε and k-ω 

compared with the measurement results (Paper VI) 

 

The aim of this CFD study was to investigate the possibilities of improving indoor air quality 

regarding removal of ultrafine particles by air cleaners. The aim was also to know the impact of the 

location of a heat source and a passive particle source on the distribution of ultrafine particles at 

different heights. Therefore, two phases of simulations were implemented. The first phase was to 

examine the effect of the location of an air cleaner on its particle removal effectiveness in a room. 

The second phase was to examine the impact of the height of a heat source and the impact of the 

height of a particle source on the UFP distribution in a room. 

For the first phase, the average concentration of the particles in the room with ventilation but 

without air cleaner was designated as C0 (UFP/cm
3
). The average concentration of the particles in 

the room for the other three cases was designated C1, C2 and C3 respectively.  

The improvement of the removal effectiveness for Locations 1, 2 and 3 is calculated using Equation 

3.7. 

 

                                                                  
     

  
                                                              (3.7) 

 

Here, I (%) is the increase of particle removal effectiveness of the ventilation system together with 

air cleaner, compared with the ventilation of the room alone. The result is shown in Table 3.1. It is 

seen that air cleaner in Location 2 caused the highest increase in effectiveness as compared with the 

two other locations.  
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Table 3.1 Effectiveness of different locations for the air cleaner (Paper V) 

Parameter Location 1 Location 2 Location 3 

Distance to particle source (m) 2.6 1.4 2.65 

Improvement by the air 

cleaners (%) 
26 27 23 

 

In the second part of the simulations, the effect of the height of a heat source and the impact of the 

height of a particle source were studied.  

To compare temperature profiles of different cases, a non-dimensional temperature has been used 

with the following equation: 

 

                                                                  
      

       
                                                                 (3.8) 

 

Here, T (°C) is the temperature of an arbitrary place, TS (°C) is the temperature of supplied air to the 

room and TE (°C) is the temperature of air in exhaust. 

The temperature was measured in the room and then compared with the CFD results for both cases 

of the heater at heights 0.1 m and 0.5 m. By introducing dimensionless temperature, it is possible to 

draw a schematic illustration regarding temperature gradient and compare different cases. In order 

to validate the CFD simulation, a temperature profile along a vertical line was obtained in the real 

room, and this was compared to the predictions of the two turbulence models k-ε and k-ω. The 

results are shown in Figure 3.11. The results are for the two cases, heater at heights 0.1 m and 0.5 

m. The Radiation model was added to k-ε model, and the result is compared with two basic models 

k-ε and k-ω. 

 

 

Figure 3.11 Measured and predicted temperature profile of a vertical line in the room 

a) heater is at height 0.1 m, b) heater is at height 0.5 m (Paper VI) 
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The stratification heights of the two cases were calculated according to equation 3.2. The predicted 

stratification height by CFD simulation and the calculated stratification height are shown in Table 

3.2.  

 

Table 3.2 Calculated and predicted stratification heights (Paper VI) 

Method 

Stratification height (m) 

Heater at 0.1m Heater at 0.5m 

Calculated by equation 0.4 0.8 

Prediction by k-ε 0.35 0.7 

Prediction by k-ε+ Radiation 0.45 0.75 

   

For the two locations of the heater, the CFD predictions by both turbulence models k-ε and k-ω 

were compared with the experimental result for an arbitrary vertical line far from the heat source 

and the particle source. Subsequently, the average value of particle concentration in the room for 

two heights of particle sources was calculated according to the CFD predictions. The particle source 

heights are 0.2 m and 1.5 m.  

The CFD prediction of particle concentrations for the vertical line when the heater is at the height of 

0.1 m is shown in Figure 3.11.  

 

 

 

Figure 3.12 Predicted average particle concentration profile and measured in the room when the 

heater is at height 0.1 m and the particle source is at 0.2 m 

 

According to the results shown in Figure 3.10, Figure 3.11 and Figure 3.12, the k-ε model 

predictions better matched to the experiment results. Therefore, this model was selected as 

turbulence model for further simulations of the case with the heater at the height of 0.1 m.  
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The focus of this study was on the average particle concentration in the room. For several heights in 

the room, the average particle concentration was obtained. For each height, the average particle 

concentration was calculated by averaging the particle concentrations of the points shown in Figure 

3.9. The average predicted concentrations of particles while the heater is at the height of 0.1 m and 

the particle source is at 0.2 m and 1.5 m are shown in Figure 3.13 from left to right respectively. 

The vertical lines that were selected close to the wall near the particle source and heat source 

showed higher particle concentrations than the other vertical lines.  

 

 

Figure 3.13 Predicted average particle concentration profile by k-ε +Radiation when the heater is at 

height 0.1 m and the particle source at heights a) 0.2 m b) 1.5 m 

 

The heater was moved to the height of 0.5 m and the same procedure was carried out regarding 

mesh refining and solution.  The predicted concentration of particles for an arbitrary vertical line 

was compared with the experiment results. Figure 3.14 displays the CFD prediction by both 

turbulence models k-ε and k-ω and the experiment results. 

 

 

Figure 3.14 Predicted average particle concentration profile and measured particle concentration in 

the experiment in the room when the heater was at height 0.5 m and the particle source was at 0.2 m 
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According to the results shown in Figure 3.14, it seems that with the Radiation model, k-ε shows 

similar results to that logged in the experiments for the case in which the heater is at the height of 

0.5 m.The average predicted concentrations of particles for the vertical line while the heater is at the 

height of 0.5 m and the particle source is at 0.2 m and 1.5 m are shown in Figure 3.15 from left to 

right respectively. According to the results the points close to the particle source show a higher 

concentration profile than the remote points. But here just the average of all points is reported.  

 

 

Figure 3.15 Predicted average particle concentration profile by k-ε +Radiation when the heater is at 

height 0.5 m and the particle source at heights a) 0.2 m b) 1.5 m 
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4.     Discussions  

The results which presented in the previous chapters of the experimental investigations and 

simulation of particle dispersion in a room are discussed in the present chapter.  

 

4.1. Experimental investigations on air cleaning technologies 

The investigation on the air cleaning technologies shows that the three air cleaning technologies 

CDI, NTP and PAP increased the ozone concentration in the clean room. According to the results, 

the level of ozone was increased by 44%, 33% and 11% with NTP, CDI and PAP respectively. It is 

clear that the ozone concentration generated by PAP was lower than for the two other technologies 

i.e. NTP and CDI (Paper I).  

As explained in section 2.2.2, the air cleaners NTP and CDI use a high voltage discharge method to 

inject the electrons into the air. By exciting the passing air including oxygen molecules, the air 

components start reactions including the generation of ozone.  

The maximum ozone concentration caused by an air cleaner has been evaluated, and some 

equations have been proposed (Niu et al., 2001; Tung and Niu, 2005). Using a mass balance 

equation, it is possible to estimate the maximum ozone concentration caused by an air cleaner, if 

ozone generation rate and ozone removal rate by surfaces and ventilation system are known. The 

generated ozone molecules are unstable and react with other components including VOCs. 

One finding in the present study was that NTP and PAP air cleaning technologies increase the 

concentration of UFPs after the ozone concentration has been increased by the cleaners in the clean 

room. According to the data of particle concentration in the room, CDI did not increase the level of 



55 
 

UFPs inside the room. PAP increased the ozone less than two other technologies, while it increased 

UFP concentration significantly. 

One possible mechanism of increasing and later decreasing the level of UFPs may have been the 

secondary formation of particles, since unsaturated VOCs might react with generated ozone 

(Alshawa et al., 2007; Hubbard et al., 2005; Waring et al., 2008). The VOCs are added to indoor air 

by different sources such as building materials, cleaning products and outdoor sources (Edwards et 

al., 2001; Knudsen et al., 1999).  

The UPF concentration in the room increased up to a maximum concentration and then it started to 

decline. There seems to be specific substances in the air that reacted with the ozone. The 

concentration of UFPs decreased slowly by decreasing the concentration of these substances in the 

room. In addition, the level of UFPs continued to be at a steady-state. A steady-state particle 

concentration higher than the background concentration seems to be achieved since the VOCs are 

entered to the clean room through the supplied air. So, the reactions between ozone molecules 

continued. However, the number of reactions was reduced because of the reduction in the number 

of unsaturated VOCs in the air. Therefore, it seems that the first possible mechanism is likely to be 

true.  

The experiment was repeated in winter for the PAP technology. The maximum level of generated 

UFPs in winter was 5000 (UFP/cm
3
). This was lower than the maximum particle concentration in 

the summer measurement. One of the sources of VOCs such as terpenes is trees. The trees emit less 

VOC in the winter time than in the summer time.  Therefore the reason seems to be a lower level of 

unsaturated VOCs in the air in winter compared with summer. According to the logged data for 

TVOC in winter, its level is lower than the level of TVOC in summer.  

In addition, there was no significant increase in the concentration of UFPs for the CDI technology. 

The reason seems to be that CDI itself can eradicate the generated particles, and therefore the 

concentration of UFPs was not increased. 

The results of the evaluation of ozone and particle generation by the air cleaners can be considered 

as a basis for studying and modelling the ozone and particle generation of the air cleaners in an 

ordinary room with furniture and other material (PaperI).  

The effectiveness of the air cleaning technologies was also evaluated in the clean room and in the 

office room. Table 2.3 shows the effectiveness of the air cleaning technologies in removing UFPs 

when the air cleaners were placed in the clean room. By performing two experiments for each air 

cleaner, one without air cleaner and one with air cleaner, and subtracting the two removal rates, the 

effect of deposition is eliminated. Table 2.4 shows the results of the experiments performed to 

determine the effectiveness of the air cleaning technologies placed in an office room. According to 

the table, the effectiveness of the EFF is the highest. However the two other technologies 3D Filter 

and CDI have the effectiveness very close to that of EFF.   

According to the experiments of both clean room and office room, EFF has the highest 

effectiveness. In contrast to of NTP, CDI and PAP, this technology does not generate ozone. 

According to the experiments, it does not increase the level of UFPs eigther. The measured pressure 

drop of EFF is less than 5 Pa.  

Further experiments with EFF technology were carried out, focusing on its efficiency in removing 

UFPs. According to Figure 2.10, the EFF filter has a higher efficiency in the capture of smaller 

UFPs as compared with larger UFPs. This is due to the fact that when increasing the size of the 

particles, the effect of diffusion in the capturing of the particles by the fibers of the filter decreases.  
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According to the experiments using candle particles, filter efficiency increases by increasing the 

UFP exposure. Some hypotheses have been made to explain this phenomenon of varying the 

efficiency. One hypothesis is that it is because of an error caused by the particle counting 

instruments. NanoTracer counts the particles according to the charge taken by the particles.  SMPS 

has a CPC which uses light scattering to count the particles. This hypothesis seems unlikely to be 

true, since the counters use different methods to count the particles and they show the same trend. 

Another hypothesis is that when increasing the concentration of the particles, the number of particle 

dendrites on the fibers increase, and consequently they contribute in the process of capturing the 

other particles. After impingement of the first particle to the filter fiber, there is a high probability 

that the particles attach on this particle and construct some chain like shapes called as dendrites. 

Tien et al. (1977) introduced a theory to explain the way of forming a dendrite on a fiber located in 

a flow stream. As shown in Figure 4.1, after the first particle (a) has settled, following particles (b1 

and b2) will attach to the first particle, if their trajectory targets a point in the arc of B1B2 shown in 

the figure. This phenomenon is called the shadowing effect.  

As regards the interception and impaction effects, it has been possible for researchers to propose 

some theoretical explanations to predict the dendrite shape and the rate of its formation (Payatakes 

and Tien, 1976; Payatakes, 1977).  

 

Figure 4.1 Shadowing effect and chain-like deposition (Wang, 2001) 

  

In order to examine the validity of the hypothesis, in the second step of experiments, measurements 

were carried out on the filter. According to the inspections via microscopic investigations, the 

numbers of constructed dendrites on the fibers change by the concentration. 

In order to scrutinize whether the electrostatic charge of the fiber surface plays an important role in 

the efficiency change, the test was implemented using salt particles. The salt particles are made of 

inorganic material and are water soluble, and they are considered to be good electrical conductors. 

Therefore, they prevent the accumulation of a surface static electrical charge. According to Table 

2.5, with salt particles, there is no correlation between the particle concentration and the filter 

efficiency. Probably, the number of dendrites is low for salt particles.  
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In addition, the filter efficiency for salt particles is lower than the filter efficiency for candle 

particles. This difference is due to the difference between candle particles and salt particles 

regarding electrostatic charge. The candle particles are charged more effectively than the salt 

particles as wax is not a good conductor. This facilitates the build-up of a good surface electrical 

charge on the candle particles and improves the capturing efficiency of filter fibers. Therefore, it is 

concluded that particle composition, in addition to size, is an important factor in changing filter 

efficiency. Static electrical charging of dendrites will spread out the branches, increasing the 

capture of the rest of the particles. 

Figure 4.2 shows photos of the filter fibers exposed to the different particle concentrations. Figure 

4.2a shows a fiber of the filter piece that was subjected to particle exposure lower than 3.0E+4 

UFP.mincm
-3

, i.e. a low level. The surface of the fiber was clean with a low number of captured 

particles. Some large particles could also be detected as shown in Figure 4.2a. Figure 4.2b shows a 

fiber which was exposed to 1.2E+5 UFPmincm
-3

, i.e. a medium level. The surface of the fiber was 

clean; however, it was possible to see the nucleation of particle dendrites on the fiber. Figure 4.2c 

shows a fiber which was loaded by 1.5E+6 UFPmincm
-3

, i.e. high level of particle exposure. Few 

dendrites could be seen on the surface of the fiber. As shown in the figure, some of the dendrites 

rested parallel to the fiber. Figure 4.2d shows a filter that was loaded to 3E+6 UFPmincm
-3

, i.e. a 

high level. As shown in the figure, many dendrites formed on the surface of the fiber.  

 

 

Figure 4.2 Photos from the filters with varying exposures a) <3.0E+4 b) 1.2E+5 c) 1.5E+6 d) 

3.0E+6 

 

Bearing in mind the existing theories explaining particle deposition on a filter media and 

considering the current investigation, it seems that more investigations are needed to elucidate the 

phenomena contributing in the capturing of UFPs by an electrostatically charged filter.  

The EFF filter was combined with a chilled beam and then was tested to see whether this would 

increase the rate of the UFP removal inside a room (Paper IV). As shown in Figure 2.13, the UFPs 

were removed faster in the combined system compared with the chilled beam. The removal rate of 

the UFPs increased 2 h
-1

.  

For both cases, the tracer gas technique was used in order to study how much the airflow rate in the 

room was reduced. The pressure loss through the filter was measured, and it ranged between 2.5 

and 3.75 Pa. It was possible to estimate the total air change rate caused by the filter. The total air 

change rate for a combined system can be calculated using the following equation: 

 

                                                                                                                     (4.1) 
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Where             (h
-1

) is the particle removal rate of the combined system,      (h
-1

) is the 

particle removal rate of the ventilation system including deposition and      (h
-1

) is the particle 

removal rate by the filter. The particle removal rate was calculated by the following equation: 

 

                                                          
       

 
                                                                       (4.2)  

 

Where Ef is particle removal efficiency, Qf (m
3
/h) is air flow rate passing through the filter, i.e. 

induced secondary airflow, and V is the volume of the room. 

The magnitude of    was calculated as 126 l/s by measuring the velocity of the secondary induced 

airflow and multiplying by the cross-sectional area of the chilled beam. Assuming the efficiency of 

the filter to be 78%,       was calculated to be 1.93 h
-1

 according to Equation 4.3. 

Therefore, the particle removal rate predicted for the combined system is 4.63 h
-1

, which is similar 

to the outcome of the experiments, i.e. 4.7 h
-1

. Knowing the efficiency of the filter and the 

secondary airflow rate of the chilled beam, it is possible to calculate the total particle removal rate 

of the filter, and the total air change rate for the combined system. 

Reduction of the airflow rate had the reverse effect on the performance of the chilled beam as a 

device to exchange the heat. However, this must be evaluated considering the increase in the CADR 

of the filter for particles. As shown in Table 2.6, using the filter to remove UFPs from the 

secondary induced airflow caused a reduction of the sensible heat removal effect of the chilled 

beam. The reduction of the effect ranged between 22% and 38%. The reason was that due to the 

pressure loss caused by the filter, the amount of the induced airflow decreased.  

4.2. Simulation of particle dispersion in a room 

4.2.1. Air cleaner location in a room 

One of the methods of treating pollution in indoor air is cleaning the air. Portable air cleaners can be 

used in a room to remove pollutants. The concern arising is that what the impact of the placement of 

an air cleaner is on its effectiveness. According to the result expressed in Table 3.1, the location of 

an air cleaner has only a small impact on the average particle concentration. Changing the location 

of an air cleaner will change the air distribution in the room and consequently the average particle 

concentration in the room. However, the change is not significant according to the results.  

The effectiveness of an air cleaner has been studied by researchers and some equations have been 

introduced. One equation has been introduced by Nazaroff (2000). In this equation, it is assumed 

that the air is fully mixed and the location of an air cleaner is not considered as an important factor. 

According to the result shown in Table 3.1, the assumption in the equation seems to be reasonable. 

4.2.2. Location of particle source and heat source 

The other method of treating pollution in indoor air is diluting it by a ventilation system. It is very 

important to understand the impact of the heat source height and the particle source height on the 

dispersion of UFPs in an indoor environment.  

Figure 4.3 shows the vertical temperature profile in the room simulated with three inlet velocities, 

0.2 m/s, 0.4 m/s and 0.7 m/s. As shown in the figure, by increasing the inlet velocity from 0.2 m/s 

to 0.4 m/s, the stratification height is raised. By changing the velocity to 0.7 m/s the temperatures at 

all heights remain almost the same. This shows that by increasing the inlet velocity to above a 
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specific level, the air becomes fully mixed in the room and the temperature profile becomes similar 

to the mixing air flow pattern. This is a sample to show how hard the prediction of an air flow 

pattern in a room is.  

 

 

Figure 4.3 Effect of the inlet velocity on the vertical temperature profile in the room 

 

Without considering radiation effect, the predicted UFP concentration profile for a vertical line in 

the simulated room differs than that is expected for the case that the particle source is thermal 

particle source. The CFD with radiation predicts a higher concentration at the heights about 1 m, 

while the measurement does not show any significant difference.  

Figure 3.11 shows predicted and measured temperature profiles in the room. It is clear that the CFD 

simulation without considering the radiation effect predicts a higher temperature at the same height 

compared with the measured temperature. Without considering the radiation effect, the mixing in 

the room is predicted to be less than that which is obtained according to the experiments.  

While, by considering the radiation effect, prediction is similar to the experiment result. Radiation 

causes local turbulences close to the walls and therefore increases the total mixing in the room. The 

experiment result shows higher mixing in the room. This seems to be because the temperature 

loggers were also affected by the radiation heat transfer from the heater and candle, and therefore 

they might also record a higher temperature and cause the experimental data to deviate from CFD 

results.  

Furthermore, without considering the radiation effect, the measured ultrafine particle concentration 

profile and the simulated profile differed more than expected for turbulence models, k-ε and k-ω.  

The simulations made by the k-ε model show results closer to experimental results compared with 

the k-ω model. As shown in Figure 3.11, by changing the height of the heat source, the predicted 

temperature profile by k-ω does not show any change.  

After adding the radiation effect to the k-ε model, the result is similar to the experiment result. 

There is a method of simulation that neglects the radiation effect of a heat source and for 

compensation of radiation effect sets the temperature of the walls equals to that determined by the 
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experiment. As shown in both Figure 3.12 and Figure 3.14, the k-ε with Radiation model predicts a 

concentration profile similar to the experiment result. Therefore, neglecting the radiation effect and 

just considering the convection of a heat source causes discrepancy in the predictions of the particle 

concentrations.  

According to Table 3.2, the predicted stratification height by CFD simulation is similar to the 

calculated stratification height for both cases. However, the simulation predicts higher stratification 

height for the case where the heater is at the height of 0.1 m and lower stratification height when the 

heater is at the height of 0.5.The reason could be the discrepancy caused by the assumptions in 

Equation 1, since it is an empirical equation with assumptions.  

Figure 3.13 and Figure 3.15 show the average of the particle concentrations of the vertical lines in 

the shape of star signs in Figure 3. 9. Comparing the figures, it seems that by increasing the height 

of the heater, the average particle concentration decreases. For each vertical line close to the particle 

source, the concentration is higher than a vertical line far from the particle source. 

The particle concentration profile for the case where the heater is at 0.1 m, and the particle source is 

below the stratification height, i.e. z=0.2 m, is shown in Figure 3.13 a. The particle concentration 

along the vertical line is high in the zone below the stratification height, i.e. lower zone. The 

particle concentration is also high in the zone above the neutral line, i.e. the recirculating zone, 

which is the area in which the plumes over the heater recirculate and cause a full mixing condition.  

Comparing this figure with Figure 3.13 b, it is clear that when the candle is placed in the higher 

height, the lower zone has lower particle concentration. The reason is that the stratification height 

acts as an impermeable boundary for the particles between the upper zone and the lower zone.  

Therefore, it does not let the particles travel to the lower zone. 

The same difference is seen between Figure 3.15 a, and Figure 3.15 b. By moving the particle 

source to the zone above the stratification height, the particle concentration shows a reduction in the 

lower zone. For the case in which the particle source is at the height of 0.2 m, the particle 

concentration in the lower zone decreases the height of the heat source is increased. This can be 

interpreted by comparing Figure 3.13 a, and Figure 3.15 a.  

Since a candle is used in the experiment, the plumes generated by the candle have the mixing effect 

in both zones, above the stratification height and below the stratification height. The particles travel 

with the plumes to the upper zone. Moreover, at the height equal to the source height, the 

concentration is high and the profile resembles the previous measurements (Heiselberg and 

Sandberg, 1990; Nielsen, 1993). This is correct when the heat source and the particle source are at 

the same height close to the floor.  
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5.     Conclusions and future works 

5.1. Experimental investigations 

It is concluded from the results of experiments on the air cleaning technologies that ozone initiating 

technologies may increase the ozone concentration in a room to a level higher than the maximum 

level allowed, which is 120 µgm
-3

 (“Air Quality Guidelines for Europe”, 2000). The result showed 

that the particle generation rate and the maximum ozone concentration change depend mainly on 

the rate of air supply, the age of the building material and the size of a room.  

On the basis of the results, it was concluded that the EFF filter works efficiently in removing UFPs 

generated by a candle or a salt source. It does not generate ozone, and it showed an effectiveness of 

0.7 in removing UFPs in the clean room, while it caused a pressure drop of less than 5 Pa. 

The combined chilled beam system had a UFP removal rate which was about 2 h
-1

 higher due to the 

existence of the filter. However, it caused a reduction of 38% in the efficiency of the chilled beam. 

The filter needs to be evaluated further to examine what the relation is between the filter efficiency 

and the filter age. 

The efficiency of the EFF seems to change when the particle exposure and particle composition are 

changed. The efficiency of the electrostatic filter changed from 44% to 80% depending on the 

particle concentration and particle size. Furthermore, the efficiency of the filter in removing all 

sizes of particles decreases when the concentration of the particles is decreased. According to the 

experiment results, the main reason for the change in the efficiency of the filter when the exposure 

is changed seems to be the formation of particle dendrites.  

In order to gain more knowledge about the correlation between filter efficiency and particle 

exposure and composition more investigations are required. In addition, the effect of the charge 
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amount of a filter on its efficiency needs to be studied. In addition, it is necessary to establish a 

model for the ozone initiating air cleaning technologies which also includes the condition of the 

room in which the air cleaner is placed. This will make it possible to predict the concentration of 

particles generated.   

5.2. Simulations 

It is concluded that the location of an air cleaner in a room location can have a small impact on the 

effectiveness of the air cleaner. According to the simulations, it can be concluded that when the 

particle source is below the height of 0.2 m or 1.5 m, the elevation of a heater height can change 

average particle concentration profile of a room. When the heater is placed at the height of 0.5 m 

the average concentration is lower than when the heater is at a 0.1 m height.  

According to the results of the decay rate measurements for tracer gas and UFPs, considering 

particles as gas in the simulation, or considering particles of one single size will result in a deviation 

for particles smaller than 73 nm. 

According to CFD predictions, when the particle source is apart from the main heat source, the 

upper zone particle concentration is higher than the lower zone concentration. However, depending 

on the height of particle source location and heater location, the difference can change.  

More investigations are needed to complete the knowledge of the particle profile in a room and the 

best heater location and particle source location in order to achieve the best indoor air quality. It is 

also suggested that work is carried out on simulating a cooking stove case, as the cooking stove is 

also a particle source combined with a heat source which is broadly in use by people.  
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Appendix 1    Accuracy of the experiments 

When depicting the result of a measurement, it is essential to report the accuracy of the experiment 

by a quantitative method.  This provides a possibility for others who read the report to assess the 

result according to the quantitative accuracy report.            

The uncertainty of the result of a measurement expresses the lack of exact knowledge of the value 

of the measured property. Apart from the concept uncertainty, another concept is error which 

includes systematic error and random error.  

According to the definition by the International Organization for Standardization (BIPM et al., 

2008), a random error “arises from unpredictable or stochastic temporal and spatial variations of 

influence quantities”. In addition, a systematic error “cannot be eliminated but it too can often be 

reduced”. If a systematic error arises from a known effect, it is called a systematic effect, and its 

impact on the results can be minimized using a correction factor.  

In the current study, all the measuring devices were calibrated by legitimate organizations. In 

addition, the systematic effects of the measuring devices were obtained by comparing their data 

obtained in a single experiment with a more reliable device. The values were logged simultaneously 

by both devices. For those measuring devices working with different principles, the correction 

factors for different levels of the values were determined.  

In order to determine the level of uncertainty of the logged data, two methods were used. The first 

method, which is called type A by the International Organization for Standardization, was based on 

determining the value using arithmetic mean value and standard deviation using Equations A1.1 

and A1.2 respectively. 
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In order to obtain the combined standard uncertainty, for the case of uncorrelated input quantities, 

following equation can be applied.  

                                               
     ∑ (
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                                                          (A1.3) 

Here, f is the functional relationship between x and y.  

 

 

There is another type of evaluating uncertainty which is named uncertainty type B. In this type, to 

estimate the uncertainty of the measured value some information is used including “previous 

experiment data, experience or general knowledge with the measuring device, manufacturer’s 

specifications, data provided in calibration and other certificates” (BIPM et al., 2008). 

According to the manual of SMPS, the accuracy of the concentration reading is limited by a 

statistical error. As the total fractional concentration decreases the statistical error increases. The 

error is calculated using the following equation:  

                                                             
√ 

 
                                                                   (A1.4) 

Where, N is the number of particles in each size fraction. Operating at high concentrations causes a 

CPC has an error due to the overlapping of the particles when they are scattering the light beam. 

The SMPS used in the experiments has built-in coincidence correction. The coincidence is 

multiplied to the counted number, and its magnitude changes depending on the order of counted 

particles.  

In type B evaluation of standard uncertainty, the uncertainty of different components can be 

considered such as the resolution of a digital indication and finite-precision arithmetic. However, in 

this study, these amounts are negligible. 

In the case of calculating the efficiency of a filter according to the logged concentration of particles 

by the particle counters NanoTracer, the uncertainty can be determined as follows. Table A1.1 

shows eight UFP concentrations logged continuously by the NanoTracer, before and after a filter. 

By using Equation A1.1 and A1.2, it is possible to obtain the arithmetic mean and measurement 

uncertainty of the data.  

Table A1.1 Logged data of UFP concentration, upstream and downstream of a filter 
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Sample 

number 

Upstream 

(UFP/cm
3
) 

Downstream 

(UFP/cm
3
) 

S1 40722 24071 

S2 41944 23121 

S3 55446 22448 

S4 57109 21446 

S5 47640 22008 

S6 49069 20086 

S7 49864 20352 

S8 51360 20808 

 

The experimental uncertainty for downstream is 1389 and for upstream the value is 5777. The 

efficiency of a filter can be calculated by the following equation. According to the manufacturer’s 

manual, the uncertainty of readings of NanoTracer is ±1500. This should be added to the 

uncertainty. Therefore, the combined uncertainty for the concentrations will be for downstream is 

2045 and for upstream the value is 5969. 

 

                                                 
                     

         
                                                       (2.1) 

 

The equation can be rewritten as follows. According to Equation A1.5 the value of the efficiency 

depends on two variables. Therefore, in order to calculate the uncertainty of the efficiency term, 

combined uncertainty should be calculated.  

 

                                                  
           

         
                                                           (A1.5) 

 

In order to calculate the combined standard uncertainty of the efficiency, Equation A1.3 is used. 

However, the concentrations are upstream and downstream are correlated. By calling Cdownstream, D 

and Cupstream, U, for a correlated y we will have the following equation.  

 

  
      

  

  
         

  

  
         (
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)                                               (A1.6) 

 

By calculating the partial derivatives and substituting to Equation A1.6, the following equation can 

be found which can be used for calculating the combined standard uncertainty.  
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Adding standard uncertainties and the arithmetic means which obtained from Table A1.1 to 

Equation A1.7, the combined uncertainty is obtained. Here, if we consider that the concentrations 

are independent, the correlation factor, r will be zero. The correlation factor, with arithmetic 

numbers can be determined by following equation.  

 

           ̅  ̅   
 

      
∑      ̅      ̅  

        ̅    ̅                                               (A1.8) 

 

Here, the number of samples, n is eight. According to Equation A1.8 r is 0.07 and the combined 

uncertainty for efficiency is 0.46%.  

In order to determine the expanded uncertainty, a coverage factor should be determined to have 

high coverage probability for the selected interval of the value which is estimated. For the level of 

confidence of 90% according to Annex G of JCGM 100 (BIPM et al., 2008), the coverage factor is 

considered 1.645. Therefore, the expended uncertainty of the efficiency will be 0.76%.  

In the current study, manufacturer’s specifications and data provided in calibration are used. In 

addition, the experience regarding the measuring device was also used to evaluate the data gathered.  

According to the experiments, the NanoTracer showed high fluctuations in concentrations less than 

1000 UFP/cm
3
. This was reported in Paper II. Therefore, in all other experiments, the data of the 

NanoTracer for concentrations less than 1000 UFP/cm
3
 was not used.  

As reported in Paper II, the data of different particle counters were compared. In addition, all 

measuring devices were ensured to be calibrated. In order to measure the concentration of TVOC 

and the tracer gas, two gas monitors, Bruel&Kjær model 1302 and Innova131 were used in the 

experiments. An experiment was performed in order to find the correlation between the data logged 

by these two gas monitors.  
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Appendix 2    Particle simulation by Lagrangian multiphase: A benchmark 

In the following text, the method of simulating particles in indoor air is briefly depicted. The 

models of simulating forces exerted on particles should be selected depending on the size of the 

particles. In the large particles shown in Figure A2.1.a, the overall force exerted by the air 

molecules on the particle surface (pressure difference) is important. If the particles are nano size 

particles as shown in Figure A2.1.b, the drag forces caused by each air molecule is important. 

Between these two sizes will be considered as the transient size. For the particles with this size, the 

models in the simulation should be selected with more caution.  

 

Figure A2.1 Schematic view of the interaction between particles and air molecules a) Continuum 

regime b) free molecule regime c) Transient regime (Seinfeld and Pandis, 1997) 
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Regarding the particle deposition on the walls, depending on the size of the particles to be simulated 

and the temperature gradient in the room, the dominant phenomenon may be Thermophoresis or 

Diffusion. For UFPs, the dominant force is diffusion, and for micro-size particles, the dominant 

force is Thermophoresis.   

As the volume ratio of the particles to the air is less than 0.001, the particles can be solved as one-

way coupling. This means that the effect of particles on airflow pattern is minimal. Consequently, it 

is possible to solve first the continuum phase and after the solution being converged, the Lagrangian 

multiphase will be solved.  

Regardless of the methods used for solving a particle phase, it is essential to ensure that the solution 

is grid-independent. The process of achieving a grid-independent solution should be used for both 

the continuous phase and the dispersed phase. The mesh grid will be refined until reaching the 

solution that is independent of the grid size. Detailed information regarding the CFD application 

and the method of handling grid dependency can be found in the REHVA Guidebook number 10 

(Nielsen et al., 2007). 

When using the Lagrangian method, it is generally required to refine the mesh further for the 

particle simulation in indoor air. In an ordinary room the concentration of particles is in the order of 

10
3
. In this case, it is essential to inject a sufficient number of particles in order to ensure that the 

result is statistically correct.  

In order to ensure that the number of particles injected and the number of parcels are sufficient, an 

arbitrary vertical line in the room is selected, and the profile of the particle concentration along this 

line is obtained for each simulation. The number of particles injected to the room will increase until 

the change in the particle concentration profile is negligible.  

In case of the existence of a particle source combined with a heat source, the simulation of the 

particle source without considering the heat source will result in a prediction with a deviation. The 

deviation comprised two parts, deviation in the prediction of the flow pattern and deviation in the 

particle phase. Therefore, it is essential to consider the heating part as well. The radiation effect 

should be checked if it causes a dramatic prediction change. 

The predictions of particle concentration profile should be compared with the experiments to ensure 

that the results are reliable.  

In brief, the following steps should be followed: 

1- Selecting the proper models according to the size of the particles  

2- Boundary condition considerations 

3- One-way coupling, if the volume ratio of particle volume to air volume is below 0.001 

4- Ensuring grid independency for both continuous phase and dispersed phase 

5- Ensuring sufficient numbers of particles injected 

6- Ensuring the radiation effect of the heat source is considered 
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7- Comparing the predictions with the experiments for both continuous phase and dispersed 

phase. 
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SUMMARY  

UFPs are known to be harmful to the human respiratory system. Therefore, measuring the 

concentration of UFPs is common in research areas related to human health. Different technologies 

exist for measuring the number and size of particles. In the present study, a new electrical aerosol 

detector was compared with two other particle measuring technologies, scanning mobility particle 

sizer and condensation particle counter. An electrical aerosol detector charges particles and later 

counts them according to their electrical movement. The particle counters were tested in a clean 

room with clean supply air. The results showed that the three counters follow a similar pattern at a 

low level of particle concentrations. An exponential relationship was found between the electrical 

aerosol detector and the scanning mobility particle sizer for high concentrations of particles. The 

condensation particle counter showed a lower particle concentration i.e. around 100,000 particles 

per cm
3 

at high concentrations. 

 

IMPLICATIONS  

Particles are harmful to the human body and counting them in various environments is important. 

Also, it is important that the results obtained are reliable. A large portion of particles in the air are 

UFPs that can enter and stay firmly fixed deep in the human respiratory system. So, it is necessary 

to have reliable knowledge on the level of UFPs. The study showed that different technologies 

counted differently; however, all three technologies were relevant depending on their application. 

 

KEYWORDS  
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Particle counter; Electric charging; Electrical aerosol detector 

 

INTRODUCTION 

Since the beginning of the last century, because of developing the welfare state of people, lifestyles 

were changed and consequently lead to increasing energy consumption. Using the huge volume of 

fossil fuels to satisfy the demands of transport, industry and buildings, new issues arose like air 

pollution in the big cities. The air pollution caused different problems like adverse health effects 

and therefore air pollutants needed more attention. 

Pollution of the air includes two main types, gases and particles. Particles are added to the air by 

different pollutant sources like engines, stoves, etc. In addition there are different natural particle 

sources such as sea salts carried by the wind from the seas. Particles are also generated inside 

buildings by building materials.  

People spend most of their time inside buildings and consequently the quality of the indoor air is 

important. According to research studies, particles can cause poor indoor air quality. They are 

divided according to their size into coarse, fine and UFPs. UFPs (UFP) are produced in the air by 

nucleation, combustion and other chemical reactions. In highly polluted areas of big cities, the 

number of UFPs is much higher than less polluted areas, because of high number of UFPs emitted 

by cars (Kittelson, 1998). The higher number of UFPs result in a poorer air quality and consequent 

adverse health effects on human (Kappos et al. 2004). So, counting the number of UFPs is of high 

importance. Studies show that the effect of UFPs on human health is stronger than that of other 

particles (Oberdörster et al. 1994). 

Different technologies have been introduced for counting the concentration of particles including 

UFPs. The electrical aerosol detector uses electrical charge for counting particles. First it neutralises 

the particles of the air which passes through the counter. Next it applies a specific electrical charge 

to the particles and later counts them according to the electrical mobility of the particles.  

Another technology is Condensation Particle Counter (CPC) that uses butanol or water for counting 

particles. The liquid is converted to saturated gas, which condenses on the surface of the particles. 

The condensed liquid droplets can be counted by light-scattering technique afterwards.  

Scanning Mobility Particle Sizer (SMPS) is a technology that uses both electrical charge and 

condensation particle counting technology. The technology classifies the particles according to their 

sizes by electrical charge and later counts every size with high accuracy by applying the method of 

condensation particle counter. The device is not portable compare to the two previous particle 

counters.  

The objective of this study was to compare the new UFP counter with two others. In order to 

ascertain the reliability of the data from different UFP counters, it is essential to evaluate them. The 
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studied particle counter is new and there is not enough knowledge about the reliability of data 

collected by the counter.  

  

METHODS 

Three particle counters were used in this study. A new Electrical Aerosol Detector called 

NanoTracer, PNT1000 (Koninklikjke Philips Electronics N.V.) was compared with Scaning 

Mobility Particle Sizer and Condensation Particle Counter, TSI model 3007. The NanoTracer is 

able to detect the total number of particles ranging between 10 and 300 nano meters (nm) with a 

concentration range of 0-10
6
 UFPs/cm

3
. The other device, the SMPS counts particles with a 

diameter range of 7- 1000 nm. The SMPS was considered to be an immovable device. The 

instrument, CPC 3007, measures UFPs between 10 nm and 1 micro meter (µm) with a 

concentration range of 0-10
5
 UFPs/cm

3
.   

The measurements of particle concentration were carried out in a clean room with low particle 

concentration compared with ordinary residential buildings. The particle counters were settled in a 

clean room with the dimensions of 5.2m×2m×2.9 m. The walls of the clean room were made of 

steel and glass. Two displacement low velocity units have been used for supply air and the air 

change rate of the room was about 3 h
-1

.  

The mesurements included two parts. In the first part of the study, the NanoTracer was compared 

with SMPS. In the first step, the measurement was carried out when both counters were turned on 

simultaneously and recorded data during a period of eight hours. In the second step, first increasing 

the number of particles until 20,000 (counted by SMPS) and then reducing it, was done to evaluate 

the sensitivity of the electrical aerosol detector. The measurement was repeated twice to make sure 

of the results. The NanoTracer was also compared with the SMPS in a situation where the 

concentration of UFPs was as high as in ordinary residential buildings. A pure-wax candle was used 

to generate the particles. The candle burned for 30 minutes. The level of UFP was measured 

continuously during the measurement.  

In the second part, the NanotTracer was compared with the CPC. In the first step, both counters 

were turned on while the concentration was low to compare the two counters in the low 

concentration of UFPs. They were turned on, and then the counters measured the number of UFPs 

continuously for two hours. In the second step, a candle was used to generate a high concentration 

of UFPs. The candle burned for 30 minutes.  The level of UFPs was counted continuously by the 

two counters.   

 

RESULTS 

The first part of the measurements was to compare the SMPS and the NanoTracer. In the first step 

of the measurements, the NanoTracer, and the SMPS were used to log the data on a low 
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concentration of UFPs. As shown in Figure 1, both devices showed almost the same results for the 

case of low level of UFPs. However, the fluctuation of the NanoTracer was higher than the SMPS. 

The calculated average data for the NanoTracer was 600 UFP/cm
3
, while the number was 900 for 

SMPS. 

 

 

 

Figure 1. Comparison of registered data of the NanoTracer with SMPS for a low level of UFP 

 

In the second step, small changes occurred in the number of UFPs. The result is shown in Figure 2. 

SMPS showed a trend of decreasing the number of UFPs and it showed a small peak at the time of 

15:30. However, the data provided by the NanoTracer showed a lot of fluctuations averaging 500 

UFPs/cm
3
. On the other hand the data of the SMPS started at 20,679 UFPs/cm

3 
and the final 

number recorded was 47 UFPs/cm
3
. The average of all data recorded by recorded SMPS was 1775 

UFPs/cm
3
. 
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Figure 2. Comparison of the data of the NanoTracer with recorded SMPS at changing UFP 

 

At this step, the high concentration of the particles was generated by a burning candle. The data of 

the particle counters are shown in Figure 3. The horizontal axis is related to SMPS data, while the 

vertical axis represents NanoTracer data. The trendline for the curve is an exponential equation with 

the R2 of about 0.9.  

 

 

 

Figure 3. Comparison of registered data of the NanoTracer with recorded SMPS at high levels of 

UFP 
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The second part of the measurements consisted of comparing the NanoTracer with the condensation 

particle counter (CPC). At the first step, a low level of UFPs was compared. As it is shown in 

Figure 4, the detected data of both counters showed the same shape but with different levels.  

 

 

Figure 4. Comparison of registered data of the NanoTracer with CPC for a low concentration of 

UFP 

 

The data of the CPC showed a smaller number compared with the NanoTracer data. The data of 

both counters are related by the following equation: 

 

                                                  (1) 

 

 The variable X shows the data of theCPC and Y shows calculated data for the NanoTracer. The 

average error is shown by R, which equals 179. 

As shown in Figure 5, the results related to a high concentration of UFPs showed that the data of 

CPC and NanoTracer follow the same trace until concentration of about 90,000 UFPs. The relation 

between is linear and it is:  

 

                                                  (2) 
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After that a discrepancy between the results of the two counting devices became obvious. The data 

shown by the CPC were almost constant while the NanoTracer showed an increased number of 

particles.  

 

 

 

Figure 5. Comparison of the data of the NanoTracer with the CPC at high concentrations of UFP 

 

DISCUSSION 

A new electrical aerosol detector was compared with two other counters. First, the detector was 

compared with the SMPS. In a low concentration as shown in Figure 1, the data logged by both 

counters were similar. By decreasing the ultrafine concentration, as shown in Figure 2, the 

NanoTracer did not show the right number but showed a number of fluctuations close to the 

previous level. The possible reason could be that the resolution of the device for the concentration 

which is ± 1500 UFPs/cm
3
. Another possible reason could be the limitation of the diameter range 

that the electrical aerosol detector could detect. 

In the case of higher concentrations, the logged data of the both UFP counters showed an increased 

number of UFPs. However, they did not show the same number for this case. Figure 3 shows the 

data of the NanoTracer versus the SMPS data. The trend line best suited to the data was an 

exponential line with the R-squared of 90%. One possible reason could be a bigger increase in the 

number of particles with an out-sized diameter which NanoTracer can count.  

The second part of the measurement consisted of comparing the NanoTracer with CPC. The logged 

data of both UFP counters are shown in Figure 3. The data of the condensation particle counter 

(CPC) showed a smaller number compared with the NanoTracer data.  However, the fluctuations of 

the UFP concentration logged by the two counters were similar and the data of the NanoTracer is 

related to the data of CPC with a linear equation as shown in Equation (1). 
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In addition, with high concentration of UFPs, the logged data of NanoTracer and the CPC were to 

some extent the same. Then after about 90,000 UFPs, as we can see in Figure 5, the NanoTracer 

showed a higher number than the CPC. It seems that the main reason for the discrepancy between 

the data of the CPC and the NanoTracer was due to the counting limitations of the CPC after 

100,000 UFPs/cm
3
.  

 

CONCLUSIONS 

Three particle counters were evaluated in this study. At low level of UFPs, the results of the three 

counters were similar. In the case of small changes in the number of UFPs, the NanoTracer did not 

show clearly the change, while the SMPS did. At a high level of UFPs, logged data of the 

NanoTracer and the SMPS were related by an exponential equation. The possible reason could be 

the wider diameter range of the SMPS compared with the NanoTracer. With the concentration 

higher than 90,000, the NanoTracer presented more reliable results than the CPC. The reason seems 

to be the existing limitation by the CPC for the maximum concentration. The three counters are 

useful depending on the application. In the case of measuring the pollution of ordinary residential 

buildings, the NanoTracer was found to be reliable. In the case of studying small changes in the 

concentration of UFPs, the counter was found not to be reliable. It must be taken into account that it 

is easier to handle the NanoTracer than the two other particle counters. The SMPS has the biggest 

size and it needs to be kept in a fixed horizontal position during the measurement. The NanoTracer 

works continuously in all positions. Its size is also smaller than the two others, so its handling is 

easier than that of the two other particle counters.  
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SUMMARY 

Ventilation is one of the ways that humans can keep the indoor air quality at the proper level. 

Portable air cleaners have been developed to improve indoor air quality while reducing the energy 

consumption of the ventilation system. The aim of this study is to find the correct turbulence model 

and particle phase model for simulating an air cleaner in a room. In addition, the aim is to study the 

impact of location of an air cleaner in a room. The dynamics of the particle inside a room was 

simulated by computational fluid dynamics software. Furthermore, the air change rate was 

measured by both tracer gas and particles with different sizes. The proper turbulence model was 

selected after comparing the results with the behaviour of the gas in the test room. The simulations 

showed the effect that the location of an air cleaner had on the particle level. The results showed 

that the location of the air cleaner in relation to inlet, outlet and particle source had a significant 

effect on the effectiveness of the air cleaner.  

 

Keywords: Air cleaning; Particle dynamics; Particles; Computational Fluid Dynamics; 

Turbulence Models 

1 INTRODUCTION 

The purpose of a ventilation system is to supply heating, cooling and clean air to the residents of 

buildings. For years, computational fluid dynamics (CFD) has been used for simulating ventilation 

systems. It has included simulating the behaviour of gases and particles. Mainly, there are two 

models for simulating the pollutants including particles, the Eulerian model and the Lagrangian 

model. 

 

The Eulerian model assumes that the behaviour of the particle phase is a continuum, while the 

Lagrangian model coupled with the point-force approach considers the particles as single points 

(Crowe, 2006). Various studies have been conducted on the particle phase models combined with 

different turbulence models for different particle sizes (Wang et al., 2011). In most studies, the 

simulated particle sizes are in the range of fine particles or coarse particles, i.e. particles larger than 

100 nm.  

 

The aim of this evaluation was to simulate the behaviour of particles including UFPs, i.e. particles 

smaller than 100 nm. In addition, the aim was to study the discrepancy of the Lagrangian model 

compared with the real measurements. Moreover, the effect of the location of an air cleaner on its 

effectiveness was assessed.   
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2 METHODOLOGY 

In this study, a real room was simulated by CFD software, STAR-CCM+. The meshes were 

generated by both polyhedral meshing and prism layer meshing. The quality of mesh was improved 

sufficiently to achieve a grid-independent solution. To select the proper turbulence model, the air 

movement from the inlet was visualised by smoke in a test room. Thereafter, the simulation was run 

with the turbulence models, K-epsilon and K-omega. In order to simulate the behaviour of particles, 

the Lagrangian multiphase was selected. Next, an air cleaner was added to the simulation. Three 

different locations of the air cleaner were simulated. 

 

In the test room, the tracer gas N2O was used to measure the ventilation rate of the room. A photo- 

acoustic gas monitor was used for measuring the tracer gas. For different sizes of particles, 

Scanning Mobility Particle Sizer (SMPS) was used to count the number of particles for each size. 

The SMPS could count sizes from 7 nm to 1000 nm. The particles were generated by a burning 

pure wax candle. The decay rate of different particle sizes was calculated and then the decay rates 

were compared with the tracer gas decay. The size of simulated particles was determined to be 

normal distribution according to the results of SMPS.  

 

3 RESULTS 

First, the results of measurements will be shown. The tracer gas, N2O, was released inside the room 

and the decay of the tracer gas was measured to be 1.6 h
-1

. Particles were generated by a candle in 

the room and the decay rate of particles was measured by SMPS. According to the results of the 

SMPS, different particle sizes had different decay rates in the room. As shown in Figure 1, particles 

with a diameter of less than 73 nm had a higher decay rate than the decay rate of the tracer gas, 

while particles larger than this size had a lower decay rate than the decay rate of tracer gas. 

Moreover, the fine particles had a similar decay rate compared with the tracer gas decay rate. 

Therefore, assuming particle behaviour identical to the behaviour of tracer gas does not give large 

inaccuracy. Particles smaller than 73 nm have a higher decay rate than the tracer gas decay rate.  

 

 

Figure 1. Decay rate of particles compared with the decay rate of tracer gas. 

 

The weighted mean for the decay rate of whole particles was determined by averaging the decay 

rate of the particles with different sizes by considering the number of every size. The weighted 

mean decay rate for the particles was 1.63 (h
-1

), which was very close to the number given by tracer 

gas decay rate, i.e. 1.61 (h
-1

).  
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The measurement showed that the weighted mean of the decay rate of particles was almost the same 

as the decay rate of the tracer gas. However, different sizes of particles showed different decay 

rates. In this study, the Lagranigian method was used for the case simulating different sizes of 

particles in the room. The size of particle was considered a normal distribution that is determined 

according to the results of the SMPS.  

 

The simulation was run to select a proper turbulence model for the case study. The results of the K-

epsilon and K-omega models were compared with the behaviour of air in the real room. As 

indicated in Figure 2, the smoke visualizations showed that the K-epsilon model matched the real 

case the best. After entering the room, the air dropped down after 20 cm due to temperature 

difference. The temperature of the test room was 2 degrees higher than the supply air. The 

dimensions of the inlet was 4×52 cm and the inlet velocity of the air was 0.3m/s. The K-epsilon 

model showed the same behaviour of the real flow, while the K-omega model showed that the air 

first reached the floor close to the opposite wall.  

 

 

Figure2. Smoke visualisation and simulation results a) smoke, b) K-epsilon, c) K-omega. 

 

The velocity profile predicted by K-epsilon and K-omega models was compared with the measured 

velocity in the room in Figure 3. As seen from the figure, the results of simulation by the K-epsilon 

turbulence model showed results similar to the velocities measured in the test room. The Y axis 

showed the height from the floor in front of the inlet at a distance of 1m. 

 

 
 

Figure 3. Prediction of velocity profile at a distance of 1 m in front of the inlet by K-epsilon and K-

omega compared with the measurement results. 

There are two ways of modelling the particle behaviour of the air, the Lagrangian model and the 

Eulerian model. In the Eulerian approach, the particles are considered as a continuum with 

a b c 
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properties similar to the properties of a fluid. The Lagrangian multiphase model does not consider 

the properties of the particles similar to the fluid. Instead, it solves the equations with regard to the 

forces exerted by the flow to the discretised cells that contain particles. In the software, the 

Trajectory method was used for the Lagrangian model (Crowe, 2006).  

 

In this study, the Lagrangian multiphase model was selected to evaluate the impact of the location 

of air cleaner on the particle concentration inside the room. A log normal distribution was 

considered for the particles with the source location similar to the candle in the real room close to 

the floor. The particle size distribution was determined according to the size distribution found by 

the SMPS measurements.  

 

Next, the air cleaner was added to the simulation. Three different locations of the air cleaner were 

simulated with the K-epsilon model, while the particle movements were simulated by Lagrangian 

model.  

 

As shown in Figure 4, the air cleaner was placed in three different locations. The locations were 

evaluated in the simulations. The first place was the remotest place from the inlet and outlet. The 

second location was close both to the inlet and to the outlet. The third location was at the other side 

of the room but close to both inlet and outlet. Therefore, the position of Location 1 is similar to that 

of Location 3. 

 

 
 

Figure 4. The locations of the air cleaner in the room. 

 

A global value such as average particle concentration is used in the room. The average 

concentration of the particles in the room for the case of ventilation without air cleaner is 

designated C0. The average concentration of the particle in the room for the other three cases is 

designated C1, C2 and C3 respectively.  

The improvement of the removal effectiveness for Locations 1, 2 and 3 is calculated by Equation 1. 

 

                                          
     

  
                                                                            (1) 
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Where, I is the improvement in the particle removal efficiency of the ventilation system together 

with air cleaner, compared with the ventilation of the room alone. The result is shown in Table 1. It 

is seen that Location 2 had the best effectiveness. The worst effectiveness was for  Location 3.  

 

Table 1. The effectiveness of different locations for the air cleaner. 

Parameter Location 1 Location 2 Location 3 

Distance to particle source (m) 2.62 1.39 2.65 

Improvement by the air 

cleaners (%) 
 26  27  23 

 

4 DISCUSSION 

As shown in Figure 1, the decay rate of fine particles was similar to the tracer gas decay rate and the 

figure confirmed that for UFPs there was a great difference between the decay rate of tracer gas and 

the decay rate of UFPs. This means that it is possible to use both the Lagrangian model and the 

Eulerian model for the same size of fine particles (Zhang and Chen, 2006).  

 

However, for UFPs the faster decay of UFPs must be taken into account. The main reasons for the 

faster decay rate of UFPs are agglomeration and coagulation which must be handled in the 

simulation separately. More investigations will be done concerning this phenomenon to determine 

the best multiphase model for predicting the behaviour of UFPs in the simulation. 

 

Two of the frequently used turbulence models are K-epsilon and K-omega. After evaluating the 

results of the simulations with both models for the real room in a laboratory environment, it was 

proven that for this case the K-epsilon model predicts the flow most accurately. Therefore, it was 

used for the rest of the simulations. 

 

The location of an air cleaner has only a small impact on the average particle concentration. 

Changing the location of the air cleaner will change the air distribution in the room and 

consequently it changes the average particle concentration in the room.  

 

5 CONCLUSION 

It is concluded that to determine the exact behaviour of the whole range of particles, the behaviour 

of UFPs needs to be studied and then to be simulated in CFD. It is also concluded that the location 

of an air cleaner can have a small impact on the effectiveness of an air cleaner. 
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