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Abstract

Measuring and mapping human activities are essential steps towards construct-
ing an intelligent and efficient society. Using thermal imaging, the privacy issues
often related to surveillance can be eliminated and public acceptance of such
systems is easier to obtain.

The main focus of this thesis is automatic analysis of the use of sports
arenas. This work is organised under three themes: Occupancy analysis, Ac-
tivity recognition and Tracking. Finally, the thesis demonstrates how thermal
imaging can also be applied efficiently for analysing humans in the Smart City.

The thermal camera is still considered a new sensor within the field of
computer vision. This thesis starts by introducing the technology of the sensor
and the different application areas. Two new methods for counting people are
presented, the first method detecting objects in each frame independently. The
second method exploits temporal information by estimating stable periods in
the video and optimises the counting over a sequence of frames.

For activity recognition in sports arenas two different methods are pre-
sented. The first algorithm relies on positions of detected people. Heatmaps
representing the occupancy of the arena are generated and classified between
five different sports types using Fischer’s Linear Discriminant. The second
method for sports type classification is based on features extracted from short
trajectories of each player. Four simple features; lifespan, total distance, dis-
tance span and mean speed are extracted and used for classification of five
sports types.

Tracking of sports players is an important task in many applications, from
recognition of activities to evaluation of performance. This thesis presents a
real-time tracking algorithm based on Kalman filtering. It also introduces a
method to improve tracking performance by constraining the number of tra-
jectories produced by an offline tracking algorithm, and finally an algorithm
using local updates to improve a global tracker.

At the end of this thesis five different applications of thermal imaging in
the Smart City are presented. Methods for counting and tracking pedestrians
are presented and applied, as well as a method for detecting potential near-
collisions between cars and cyclists in large urban intersections.

v





Resumé

At kunne måle og kortlægge de menneskelige aktiviteter er et vigtigt skridt
imod et intelligent og effektivt samfund. Med termiske kameraer kan bekym-
ringerne om privatlivsrettighederne i forbindelse med overvågning undgås og
det er dermed lettere at få befolkningens accept af et sådan system.

Det primære fokus for denne afhandling er automatisk analyse af brugen
af sportshaller. Dette arbejde er organiseret under tre temaer: Analyse af
belægning, Aktivitetsgenkendelse og Tracking. Endeligt demonstreres det også
i denne afhandling hvordan termiske optagelser kan anvendes effektivt til at
analysere menneskers færden i en "Smart City".

Det termiske kamera betragtes stadig som en ny sensor indenfor Computer
Vision. Denne afhandling starter med at introducere teknologien bag disse
sensorer og de forskellige anvendelsesområder. To nye metoder til at tælle
mennesker præsenteres, hvor den første metode detekterer objekter i hver frame
uafhængigt. Den anden metode udnytter temporal information ved at estimere
stabile perioder i videoen og optimerer antallet over en sekvens af frames.

Til aktivitetsgenkendelse i sportshaller præsenteres to forskellige metoder.
Den første algoritme beror på positionerne af de detekterede personer. Heat-
maps, der repræsenterer den rumlige belægning i hallen, genereres og klassifi-
ceres mellem fem sportsgrene ved hjælp af Fischer’s Linear Discriminant. Den
anden metode for genkendelse af sportsgrene er baseret på features beregnet
fra korte spor af hver spiller. Fire simple features; Levetid, samlet afstand,
størst afstand og gennemsnitlig hastighed udtrækkes og bruges til klassificering
af fem sportsgrene.

Tracking af spillere er en vigtig opgave i mange applikationer, fra genk-
endelse af aktiviteter til evaluering af præstationer. Denne afhandling præsen-
terer en realtidstrackingalgoritme baseret på Kalman filtrering. Der introduc-
eres også en metode til at forbedre trackingresultaterne ved at indsnævre an-
tallet af spor lavet af en offline trackingalgoritme og til sidst en algoritme der
benytter lokale opdateringer til at forbedre en global tracker.

I slutningen af denne afhandling præsenteres fem forskellige anvendelser af
termiske kameraer i en "Smart City". Metoder til at tælle og tracke fodgæn-
gere er præsenteret og anvendt, ligesom en metode til at detektere potentielle
nærulykker mellem biler og cyklister i store vejkryds.
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Chapter 1

Introduction

With a society constantly looking for ways to save costs, improve efficiency,
and raise the standard of living, automation is one of the popular means ap-
plied. Robots take over trivial assembly tasks at factories, and machines will
greet you at the supermarket. In the same way, the monotonously job of mon-
itoring surveillance videos is being replaced with automatic computer vision
algorithms.

The notion of surveillance is generally being related to controlling and moni-
toring people often with the purpose of preventing or investigating crime. How-
ever, surveillance can also be used for acquisition of large amounts of anony-
mous data, which can be applied for evaluating the general behaviour and
activities in relation to the surrounding space or building.

Traditionally, the analysis of use of both indoor and outdoor facilities has
been conducted by manual observations and written notes. Being a tedious
and expensive job, automation of this process is important in order to get
more data and objective measurements for a lower cost. Compared to other
applied technologies, such as RFID and GPS, cameras normally have higher
spatial resolution and are non-intrusive to the users of the facilities. This also
means that it is not necessary to sample the user group, all individuals can be
analysed with no extra cost.

As the technology of vision sensors has evolved, the computer vision research
is also starting to take advantage of the new image modalities available. Various
types of depth sensors, as well as near-infrared night vision sensors, have been
applied in many applications, for both research, commercial and industrial
purposes. The thermal camera, sensing the long-waved infrared spectrum,
were originally developed for military use as a night vision instrument. Since
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commercialised in late 1980s they have been used for temperature measuring of
buildings and components in industry, but slowly, the use of thermal cameras
in typical surveillance systems has increased. The independence of light is
encouraging the use of thermal cameras in outdoor environments and in any
application with need for robust performance day and night.

Most important here, the privacy preserving nature of the thermal sensor
makes it suited for analysis of humans in sensitive applications. Throughout
this thesis the focus is applications in public sports arenas. With users from
young children to elderly people, privacy is an important issue. Therefore,
thermal cameras will be applied, to preclude identification of individual people.

The remaining part of this introduction will firstly specify the focus of the
thesis. The following chapter consists of the published journal paper "Thermal
Cameras and Applications: A Survey". This chapter will provide a thorough
review of the technology of thermal cameras, as well as a literature survey of
the applications of thermal imaging. Finally, chapter 3 will provide a summary
of all included papers in this thesis and sum up the contributions made to the
field of computer vision.

1.1 Focus of this thesis
The work presented in this thesis deals with automatic detection and analysis of
people observed in thermal video. The research has been conducted under three
main themes: Occupancy analysis, Activity recognition and Tracking sports
players.

Detecting people is the first step in every analysis of humans. For appli-
cations in sports arenas with various natural sports activities observed, the
methods must be robust to any pose change and heavy occlusions between
people. The occupancy analysis deals with these challenges. After occupancy,
the activities performed in a sports arena are analysed. In the third part a
very popular research area is dealt with; tracking of humans. The focus of this
part is narrowed down to methods applicable to thermal imaging and sports
players.

The work presented in the first three parts of this thesis is directly related to
the research project "Better use of sports arenas" funded by Nordea-fonden and
Lokale- og Anlægsfonden. The aim of this project was to investigate, develop
and apply new methods for analysing the use of sports arenas. The research
presented in this thesis represents the scientific content of the project, but is
has been closely coupled to the practical aspects. A very positive outcome of
this relation has been the access to several public sports arenas, from which
all thermal sports data is captured. Thus, all data used in this research is
captured from real everyday activities with regular users of the facilities.

The practical applicability of the methods presented in this work is re-
flected in part V. We present here a few applications where we in collaboration
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with both internal and external partners have demonstrated how detection and
tracking of humans can be applied in the Smart City.
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Abstract
Thermal cameras are passive sensors that capture the infrared radiation emitted
by all objects with a temperature above absolute zero. This type of camera was
originally developed as a surveillance and night vision tool for the military,
but recently the price has dropped, significantly opening up a broader field of
applications. Deploying this type of sensor in vision systems eliminates the
illumination problems of normal greyscale and RGB cameras.

This survey provides an overview of the current applications of thermal cam-
eras. Applications include animals, agriculture, buildings, gas detection, indus-
trial, and military applications, as well as detection, tracking, and recognition
of humans. Moreover, this survey describes the nature of thermal radiation and
the technology of thermal cameras.

2.1 Introduction
During the last couple of decades, research and development in automatic vision
systems has been rapidly growing. Visual cameras, capturing visible light in
greyscale or RGB images, have been the standard imaging device. There are,
however, some disadvantages to use these cameras. The colours and visibility
of the objects depend on an energy source, such as the sun or artificial lighting.
The main challenges are therefore that the images depend on the illumination,
with changing intensity, colour balance, direction, etc. Furthermore, nothing
can be captured in total darkness. To overcome some of these limitations and
add further information to the image of the scene, other sensors have been
introduced in vision systems. These sensors include 3D sensors [1–3] and near
infrared sensors [4]. Some of the devices are active scanners that emit radiation,
and detect the reflection of the radiation from an object. Night vision devices,
for example, use active infrared cameras, which illuminate the scene with near
infrared radiation (0.7–1.4 µm) and capture the radiation of both the visible
and the near infrared electromagnetic spectrum. Such active sensors are less
dependent on the illumination. Stereo vision cameras are passive 3D sensors,
but as they consist of visual cameras, they also depend on the illumination.

The described sensors indicate that some of the disadvantages of visual
cameras can be eliminated by using active sensoring. However, in many appli-
cations, a passive sensor is preferred. In the mid- and long-wavelength infrared
spectrum (3–14 µm), radiation is emitted by the objects themselves, with a
dominating wavelength and intensity depending on the temperature. Thereby
they do not depend on any external energy source. Thermal cameras utilise
this property and measure the radiation in parts of this spectrum. Figure 2.1
shows an example of the same scene captured with both a visual and a thermal
camera. The thermal image is shown as a greyscale image, with bright pixels for
hot objects. The humans are much easier to distinguish in the thermal image,
while the colours and inanimate objects, like chairs and tables, are invisible.
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Fig. 2.1: Visible and thermal image of the same scene.

A special detector technology is required to capture thermal infrared radi-
ation. Originally it was developed for night vision purposes for the military,
and the devices were very expensive. The technology was later commercialised
and has developed quickly over the last few decades, resulting in both better
and cheaper cameras. This has opened a broader market, and the technology
is now being introduced to a wide range of different applications, such as build-
ing inspection, gas detection, industrial appliances, medical science, veterinary
medicine, agriculture, fire detection, and surveillance. This wide span of appli-
cations in many different scientific fields makes it hard to get an overview. This
paper aims at providing exactly such an overview and in addition provides an
overview of the physics behind the technology.

The remaining part of this survey consists of the following sections: Section
2.2 describes the physics of thermal radiation and Section 2.3 explains the
technology of the cameras. Description of the application areas and a survey
of the work done in the different areas are found in Section 2.4. In Section
2.5 it is discussed how to fuse the thermal images with other image modalities,
and the application areas for fused systems are surveyed. Finally, Section 2.6
summarizes and discusses the use of thermal cameras.

2.2 Thermal Radiation
Infrared radiation is emitted by all objects with a temperature above absolute
zero. This is often referred to as thermal radiation. This section will go through
the source and characteristics of this type of radiation.

2.2.1 Electromagnetic Spectrum
Infrared radiation lies between visible light and microwaves within the wave-
length spectrum of 0.7–1000 µm as illustrated in Figure 2.2. The infrared
spectrum can be divided into several spectral regions. There exist different sub-
division schemes in different scientific fields, but a common scheme is shown
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Fig. 2.2: The electromagnetic spectrum with sub-divided infrared spectrum.

Division Name Abbreviation Wavelength
Near-infrared NIR 0.7–1.4 µm
Short-wavelength infrared SWIR 1.4–3 µm
Mid-wavelength infrared MWIR 3–8 µm
Long-wavelength infrared LWIR 8–15 µm
Far-infrared FIR 15–1000 µm

Table 2.1: Infrared sub-division.

in Table 2.1 [5]. The mid-wavelength and long-wavelength infrared are often
referred to as thermal infrared (TIR) since objects in the temperature range
from approximately 190 K to 1000 K emit radiation in this spectral range.

The atmosphere only transmit radiation with certain wavelengths, due to
the absorption of other wavelengths in the molecules of the atmosphere. CO2
and H2O are responsible for most of the absorption of infrared radiation [6].
Figure 2.3 illustrates the percentage of transmitted radiation depending on the
wavelength, and states the molecule that is responsible for the large transmis-
sion gaps.

Due to the large atmospheric transmission gap between 5–8 µm, there is no
reason for cameras to be sensitive in this band. The same goes for radiation
above 14 µm. A typical spectral range division for near-infrared and thermal
cameras is shown in Table 2.2.

Division Name Abbreviation Wavelength
Short-wave SWIR 0.7–1.4 µm
Mid-wave MWIR 3–5 µm
Long-wave LWIR 8–14 µm

Table 2.2: Infrared sub-division for cameras.
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Fig. 2.3: Atmospheric transmittance in part of the infrared region [7].

2.2.2 Emission and Absorption of Infrared Radiation
The radiation caused by the temperature T of an object is described by Planck’s
wavelength distribution function [8]:

I(λ, T ) = 2πhc2

λ5
(
ehc/λkBT − 1

) , (2.1)

where λ is the wavelength, h is Planck’s constant (6.626 × 10−34Js), c the
speed of light (299, 792, 458m/s) and kB Boltzmann’s constant (1.3806503 ×
10−23J/K).

Fig. 2.4: Intensity of black body radiation versus wavelength at four temperatures.

As can be seen in Figure 2.4, the intensity peak shifts to shorter wavelengths
as the temperature increases, and the intensity increases with the temperature.
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For extremely hot objects the radiation extends into the visible spectrum, e.g.,
as seen for a red-hot iron. The wavelength of the intensity peak is described
by Wien’s displacement law [8]:

λmax = 2.898× 10−3

T
. (2.2)

Planck’s wavelength distribution function, Equation 2.1, describes the radiation
from a black body. Most materials studied in practical applications are assumed
to be so called grey bodies, which have a constant scale factor of the radiation
between 0 and 1. This factor is called the emissivity. For instance, polished
silver has a very low emissivity (0.02) while human skin has an emissivity
very close to 1 [9]. Other materials, such as gases, are selective emitters,
which have specific absorption and emission bands in the thermal infrared
spectrum [6]. The specific absorption and emission bands are due to the nature
of the radiation, as described in the next section.

2.2.3 Energy States of a Molecule
The energy of a molecule can be expressed as a sum of four contributions [8]:
electronic energy, due to the interactions between the molecule’s electrons and
nuclei; translational energy, due to the motion of the molecule’s centre of mass
through space; rotational energy, due to the rotation of the molecule about its
centre of mass; and vibrational energy, due to the vibration of the molecule’s
constituent atoms:

E = Eel + Evib + Erot + Etrans. (2.3)

The translational, rotational, and vibrational energies contribute to the tem-
perature of an object.

The possible energies of a molecule are quantized, and a molecule can only
exist in certain discrete energy levels. Figure 2.5 illustrates the relation between
the electronic, vibrational, and rotational energy levels. The contribution from
the translational energy is very small and is not included in this illustration.

Electromagnetic radiation can be absorbed and emitted by molecules. In-
cident radiation causes the molecule to rise to an excited energy state, and
when it falls back to the ground state, a photon is released. Only photons
with specific energies, equal to the difference between two energy levels, can be
absorbed. Visible light usually causes electron transitions, with rising or falling
electronic energy level. Just as for visible light, infrared light can cause tran-
sitions in the vibrational or rotational energy levels. All objects emit infrared
radiation corresponding to their temperature. If more radiation is absorbed
than emitted, the temperature of the molecule will rise until equilibrium is
re-established. Likewise, the temperature will fall if more radiation is emitted
than absorbed, until equilibrium is re-established.
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Fig. 2.5: Simplified illustration of the electronic, vibrational, and rotational energy states.
Each line illustrates a discrete energy level that the molecule can exist in.

2.3 Thermal Cameras
Although infrared light was discovered by William Herschel around 1800, the
first infrared scanning devices and imaging instruments were not build before
the late 1940s and 1950s [10]. They were built for the American military for
the purpose of night vision. The first commercial products were produced in
1983 and opened up a large area of new applications.

The measurement instruments available today can be divided into three
types: point sensors, line scanners, and cameras.

2.3.1 Camera Types
Infrared cameras can be made either as scanning devices, capturing only one
point or one row of an image at a time, or using a staring array, as a two-
dimensional infrared focal plane array (IRFPA) where all image elements are
captured at the same time with each detector element in the array. Today
IRFPA is the clearly dominant technology, as it has no moving parts, is faster,
and has better spatial resolution than scanning devices [10]. Only this technol-
ogy is described in the following.

The detectors used in thermal cameras are generally of two types: photon
detectors or thermal detectors. Photon detectors convert the absorbed elec-
tromagnetic radiation directly into a change of the electronic energy distribu-
tion in a semiconductor by the change of the free charge carrier concentration.
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Thermal detectors convert the absorbed electromagnetic radiation into thermal
energy causing a rise in the detector temperature. Then the electrical output
of the thermal sensor is produced by a corresponding change in some physical
property of material, e.g., the temperature-dependent electrical resistance in a
bolometer [6].

The photon detector typically works in the MWIR band where the thermal
contrast is high, making it very sensitive to small differences in the scene tem-
perature. Also with the current technology the photon detector allows for a
higher frame rate than thermal detectors. The main drawback of this type of
detector is its need for cooling. The photon detector needs to be cooled to a
temperature below 77 K in order to reduce thermal noise. This cooling used to
be done with liquid nitrogen, but now is often implemented with a cryocooler.
There is a need for service and replacement for the cryocooler due to its moving
parts and helium gas seals. The overall price for a photon detector system is
therefore higher than a thermal detector system, both its initial costs and its
maintenance.

A thermal detector measures radiation in the LWIR band and can use
different detector types, which will be described in the next section.

Thermal Detector Types

Uncooled thermal detectors have been developed mainly with two different
types of detectors: ferroelectric detectors and microbolometers. Ferroelectric
detectors take advantages of the ferroelectric phase transition in certain dielec-
tric materials. At and near this phase transition, small fluctuations in tem-
perature cause large changes in electrical polarization [11]. Barium Strontium
Titanate (BST) is normally used as the detector material in the ferroelectric
detectors.

A microbolometer is a specific type of resistor. The materials most often
used in microbolometers are Vanadium Oxide (VOx) and Amorphous silicon
(a-Si). The infrared radiation changes the electrical resistance of the material,
which can be converted to electrical signals and processed into an image.

Today it is clear that microbolometers have more advantages over the fer-
roelectric sensors and the VOx technology has gained the largest market share.
First of all, microbolometers have a higher sensitivity. The noise equivalent
temperature difference (NETD), specifying the minimum detectable tempera-
ture difference, is 0.039 K for VOx compared to 0.1 K for BST detectors [11].
Microbolometers also have a smaller pixel size on the detector, allowing a higher
spatial resolution. Furthermore, BST detectors suffer from a halo effect, which
can often be seen as a dark ring around a bright object, falsely indicating a
lower temperature [11]. An example of the halo effect is shown in Figure 2.6.
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Fig. 2.6: Thermal image showing bright halo around a dark person [12].

2.3.2 The Lens
Since glass has a very low transmittance percentage for thermal radiation, a
different material must be used for the lenses. Germanium is used most often.
This is a grey-white metalloid material which is nearly transparent to infrared
light and reflective to visible light. Germanium has a relatively high price,
making the size of the lens important.

The f-number of an optical system is the ratio of the lens’s focal length
to the diameter of the entrance pupil. This indicates that a higher f-number
reduces the price of the lens, but at the same time, when the diameter of the
lens is reduced, a smaller amount of radiation reaches the detector. In order
to maintain an acceptable sensitivity, uncooled cameras must have a low f-
number. For cooled cameras, a higher f-number can be accepted, because the
exposure time can be increased in order to keep the same radiation throughput.
These properties of the lens cause the price for uncooled cameras to increase
significantly with the focal length, while the price for cooled cameras only
increases slightly with the focal length. For very large focal lengths, cooled
cameras will become cheaper than uncooled cameras [13].

2.3.3 Camera Output
Modern thermal cameras appear just like visual video cameras in terms of shape
and size. Figure 2.7 shows an example of a thermal network camera.

Fig. 2.7: Example of an uncooled thermal camera, AXIS Q1921.
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The data transmission typically takes place via USB, Ethernet, FireWire,
or RS-232. The images are represented as greyscale images with a depth from
8 to 16 bit per pixel. They are, however, often visualised in pseudo colours for
better visibility for humans. Images can be compressed with standard JPEG
and video can be compressed with H264 or MPEG [14]. Analogue devices use
the NTSC or PAL standards [15]. Some handheld cameras are battery-driven,
while most of the larger cameras need an external power supply or Power over
Ethernet.

The thermal sensitivity is down to 40 mK for uncooled cameras and 20 mK
for cooled devices. The spatial resolution of commercial products varies from
160 × 120 pixels to 1280 × 1024 pixels, and the field of view varies from 1◦ to
58◦ [16–19].

2.4 Application Areas
The ability to ‘see’ the temperature in a scene can be a great advantage in many
applications. The temperature can be important to detect specific objects, or
it can provide information about, e.g., type, health, or material of the object.
This section will survey the applications of thermal imaging systems with three
different categories of subjects: animals and agriculture, inanimate objects, and
humans.

2.4.1 Animals and Agriculture
Animals

Warm-blooded animals, such as humans, try to maintain a constant body tem-
perature, while cold-blooded animals adapt their temperature to their sur-
roundings. This property of warm-blooded animals makes them stand out
from their surroundings in thermal images. Warm-blooded animals can warm
their body by converting food to energy. To cool down, they can sweat or
pant to lose heat by water evaporation. The radiation of heat from animals
depends on their insulation, such as hair, fur, or feathers, for example. The
temperature distribution over the body surface can be uneven, depending on
blood-circulation and respiration. In the studies of wild animals thermal imag-
ing can be useful for diagnosis of diseases and thermoregulation, control of
reproductive processes, analysis of behaviour, as well as detection and estima-
tion of population size [20].

Diseases will often affect the general body temperature, while injuries will
be visible at specific spots, e.g., caused by inflammations. Thermal imaging has
thereby been proven to work as a diagnosis tool for some diseases of animals.
In [21] it was observed that the temperature in the gluteal region of dairy cattle
increases when the animal becomes ill and this could be detected in thermal
images prior to clinical detection of the disease. If the observed animals are
wild, the method of examining for a disease should be without contact with
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the animals. In [22] thermal cameras are used for detecting sarcoptic mange in
Spanish ibex. Although conventional binoculars have higher sensitivity over a
greater distance, thermal cameras can give indication of the prevalence of the
disease in a herd. Thermal imaging could also be used to detect diseases among
other wild animals, in [23] it is found that rabies can be detected in raccoons
by observing the temperature of the nose.

The stress level of animals before slaughtering is important to the meat
quality. The stress level is correlated with the blood and body temperature
of the animal. It is therefore important to monitor and react to a rising tem-
perature, e.g., during transport. The work of [24] measures the temperature
of pigs’ ears and finds that it is positively correlated with the concentration of
cortisol and the activity of creatine kinase.

Thermal imaging can be beneficial when diagnosing lameness in horses. [25]
suggests using thermal imaging for detecting inflammations and other irregu-
larities, especially in the legs and hoofs of horses. Figure 2.8 shows an example
of inflammation in the leg.

Fig. 2.8: The thermal image reveals inflammation in the leg of a horse. The inflamed area
is marked with a black box.

Analysis of the thermodynamic characteristics in ectotherm animals, such
as frogs, has been carried out in [26]. They measure the temperature of dif-
ferent body parts of frogs during heating from 8◦C (artificial hibernation) to
23◦C (artificial arousal). In such experiments it is a great advantage that the
measurements are taken without harming or touching the animal.

Large animals can pose a risk for traffic if they run onto the road. They can
often be hard to spot with the eye, specially in the dark or haze, also if they
are camouflaged beside the road. Deer are some of the animals that can be a
threat to safety on the roads. In [27], they propose a system for detecting and
tracking deer from a vehicle, in order to avoid collisions. Some car brands have
implemented thermal cameras and screens in their cars for manual detection
of unexpected hot objects [28].

Wild animals have a high risk of being injured or killed during farming
routines with modern high-efficiency farming equipment. Therefore [29] pro-
poses automatic analysis of thermal images for detection of animals hidden
in the vegetation. They use a pre-processing step by filtering the image with
the Laplacian of Gaussian, before using adaptive thresholding for detecting the
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animal.

Agriculture and Food

Thermal imaging systems have various applications in the agriculture and food
industry. They are suitable in the food industry due to their portability, re-
altime imaging, and non-invasive and non-contact temperature measurement
capability [30]. In food quality measurement, it is important to use a non-
destructive method to avoid waste.

The two papers [31] and [30] review the use of thermal imaging in the
agriculture and food industry, including both passive thermography (measuring
the temperature of the scene) and active thermography (adding thermal energy
to an object, and then measuring the temperature). Passive thermography is
mostly used for temperature control in food manufacturing and for monitoring
heat processes. Active thermography of food objects can give information about
the quality, such as damage and bruises in fruits and vegetables. Bruises can
be detected using active thermal imaging, due to the different thermodynamic
properties in sound and bruised tissue. Thermal imaging has been applied
in [32] to detect fungal infections in stored wheat. It could discriminate between
healthy and infected wheat, but not between different fungal species. In [33],
they classify healthy and fungal infected pistachio kernels.

2.4.2 Inanimate Objects
Inanimate objects do not maintain a constant temperature. Their temperature
depends on both the surrounding temperature, and the amount of added energy
that generates heat. Thermal images of inanimate objects depict the surface
temperature of the scene. But even in a scene in equilibrium, differences in the
image can be observed due to different emissivities of the observed surfaces.
Thus thermal imaging can be used for analysing both temperature and material.

Building Inspection

Thermal cameras have been used for years for inspecting heat loss from build-
ings, and special hand-held imaging devices have been developed with this
application in mind. Figure 2.9 shows an example of a thermal image of a
building.

Normally the inspection of buildings requires manual operation of the cam-
era and interpretation of the images to detect heat loss, e.g., as described
in [35]. More automatic methods are also being investigated. In [36], an Un-
manned Aerial Vehicle (UAV) is used for inspection of buildings, and the system
automatically detects the heat loss from windows. Another system has been
proposed, which automatically maps the images to a 3D model, eliminates win-
dows and doors, and detects regions with high heat loss on the facade [37–39].
A thermal system has also been proposed for detecting roof leakage [40].
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Fig. 2.9: Thermal image of a building, showing a higher amount of heat loss around windows
and doors [34].

Besides the detection of heat loss, thermal imaging has also been used to
detect other problems behind the surface: [41] proves that thermal imaging can
be used to detect debonded ceramic tiles on a building finish. Termites can
also be found by inspection with a thermal camera, as they produce unusual
heat behind the surface in buildings [42].

For some ancient buildings, it is of interest to monitor the wall’s hidden
structure, the surface status, and moisture content, which can be done with
a thermal camera [43]. The documentation of a building’s status can also be
done by combining visual and thermal images [44].

Another interesting application related to buildings is the one presented in
the book Mobile Robot Navigation with Intelligent Infrared Image [45]. They
present an outdoor robot system equipped with a thermal camera and an ul-
trasound sensor. In order to move around safely, the robot should be able to
classify typical outdoor objects, such as trees, poles, fences, and walls, and
make decisions about how to go around them. The classification of these non
heat-generating objects is based on their physical properties, such as emissivity,
that influence their thermal profile.

Gas Detection

Gasses are selective emitters, which have specific absorption and emission bands
in the infrared spectrum, depending on their molecular composition. By using
instruments able to measure selectable narrow infrared bands, it is possible to
measure the radiation in the absorption band of a specific gas. As the radiation
is absorbed by the gas, the observed area would appear as a cool cloud (usually
dark) if the gas is present.

Using optical bandpass filters is applied for measuring carbon monoxide
in [46]. Using a thermal spectrometer, a number of bands can be measured
concurrently to analyse the gas content in the scene. In [47], they use 12
spectral bands distributed from 8.13µm to 11.56µm to detect an anomalous gas
and track it in the image to locate the source of the gas leak. [48] tests a method
for detecting gas leakage in landfills based on the temperature measurements of
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a thermal camera (8–13 µm). They conclude that it is possible, but depends on
the weather conditions and climate. [49] detects gas leaks of ammonia, ethylene,
and methane by measuring the spectral region 7–13 µm. Volcanic ash particles
can also be detected by measuring five spectral bands between 7–14 µm [50].

Industrial Applications

In most electrical systems, a stable temperature over time is important in order
to avoid system break-downs. Sudden hot spots can indicate faulty areas and
connections, e.g., in electric circuits and heating systems. It would obviously be
of great value if devices that are starting to over-heat could be detected before
they break down. One of the reasons for using thermal imaging for temperature
measurement is that it is not in contact with the target. Thermal imaging
can be applied as a diagnosis tool for electrical joints in power transmission
systems [51], and for automatic detection of the thermal conditions of other
electrical installations [52]. It can also be used to evaluate specific properties
in different materials. In [53], the erosion resistance of silicon rubber composites
is evaluated using a thermal camera. In metal sheet stamping processes, the
mechanical energy is converted into thermal energy. An unexpected thermal
distribution can be an indication of malfunctions in the object. Therefore [54]
proposes a system that compares the thermal images to a simulated thermal
pattern in order to find a diagnosis for the object. For more complicated
objects, a 3D model is generated. [55] uses thermal imaging for measuring the
molten steel level in continuous casting tundish.

For race cars, tire management is extremely important, and one of the
main parameters of a tire is its temperature. [56] proposes the use of a thermal
camera for dynamic analysis of the temperature of the tires during a race.

Fire Detection and Military

Automatic systems for detecting objects or situations that could pose a risk
can be of great value in many applications. A fire detection system can be
used for mobile robots. [57] proposes a system using a pan-tilt camera that can
operate in two modes, either narrow field of view or wide field of view using
a conic mirror. Fires are detected as hot spots, and the location is detected
in order to move the robot to the source of fire. [58] proposes a hybrid system
for forest fire detection composed of both thermal and visual cameras, and
meteorological and geographical information, while [59] proposes a handheld
thermal imaging system for airborne fire analysis.

[60] presents a gunfire detection and localisation system for military ap-
plications. Gunfire is detected in mid-wave infrared images and validated by
acoustic events. The detected gunfire is mapped to a real-world location. [61]
proposes using thermal imaging for mine detection. Depending on circum-
stances such as the ambient air temperature and soil moisture, mines can be
detected using the assumption that the soil directly above the mine heats or
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cools at a slightly different rate than the surrounding soil. [62] uses the same
idea in their system. They spray cold water over the surrounding soil, and
capture the temperature distribution of the cooling soil with a thermal cam-
era. [63] presents the idea of using thermal imaging for detecting snipers. The
muzzle flash, the bullet in flight, and the sniper body can be detected.

2.4.3 Humans
In computer vision research, humans are often the subjects observed. Its appli-
cation areas are very wide, from surveillance through entertainment to medical
diagnostics. While the previously mentioned application areas often use simple
image processing algorithms, such as thresholding, or even manual inspection
of the images, for human systems there has been more emphasis on robust sys-
tems with automatic detection and tracking algorithms. Therefore, this part
will also contain information about the specific methods.

Just as described for warm-blooded animals, humans try to maintain a con-
stant body temperature, independent of the temperature of the surroundings.
This implies that, when capturing a thermal image, the persons stand out from
the background in most environments. Taking advantage of that feature could
improve the detection step in many vision systems. If a person is observed
from a close distance, information can be extracted about the skin temper-
ature distribution. That can be useful for, e.g., face recognition or medical
investigations.

Detection and Tracking of Humans

Detection of humans is the first step in many surveillance applications. General
purpose systems should be robust and independent of the environment. The
thermal cameras are here often a better choice than a normal visual camera. [64]
proposes a system for human detection, based on the extraction of the head
region and [65] proposes a detection system that uses background subtraction,
gradient information, watershed algorithm and A* search in order to robustly
extract the silhouettes. Similar approaches are presented in [66, 67], using Con-
tour Saliency Maps and adaptive filters, while [68] presents a detection method
based on the Shape Context Descriptor and Adaboost cascade classifier. A
common detection problem is that the surroundings during summer are hotter
than or equal to the human temperature. [69] tries to overcome this problem
by using Mahalanobis distance between pixel values and edge orientation his-
tograms. [70, 71] use automatic thresholding and a sorting and splitting of blobs
in order to detect and count people in sports arenas, see Figure 2.10.

Thermal cameras are very useful for the surveillance and detection of intrud-
ers, because of their ability to ‘see’ during the night. For trespasser detection,
classification is often based on temperature and simple shape cues. Wong et al.
propose two trespasser detection systems, one in which they adjust the camera
to detect objects in the temperature range of humans, and then classify the
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Fig. 2.10: Example of humans playing handball. Top image: Original thermal image.
Bottom image: Binarised image with all persons marked with a red dot. [70]

objects based on the shape [72]. The other work aims to identify humans using
pattern recognition to detect the human head [73]. [74] uses thresholding, and
then a validation of each blob, to determine if it contains one or more persons.
If it contains more than one, it will be split into two blobs. [75] proposes a
real time detection and tracking system with a classification step based on a
cascade of boosted classifiers.

Thermal sensors can be used in systems for the detection of fall accidents or
unusual inactivity, which is an important safety tool for the independent living
of especially elderly people. [76] proposes a system that uses a low resolution
thermal sensor. The system gives an alarm in case of a fall detected, or in the
case of inactivity over a long time period. [77] also proposes a fall detection
system for private homes by analysing the shape of the detected object. In [78]
a fall detection system for bathrooms are proposed, using a thermal sensor
mounted above the toilet.

Analysis of more general human activity has also been performed. [79]
presents a system that distinguishes between walk and run using spatio-temporal
information, while [80] estimates the gait parameters by fitting a 3D kinematic
model to the 2D silhouette extracted from the thermal images. In [81] different
sports types are classified by the detected location of people over time. [82]
proposes a system for analysing the posture of people in crowds, in order to
detect people lying down. This could be useful to detect gas attacks or other
threats at public places. [83] proposes a system for estimating the human body
posture by finding the orientation of the upper body, and locating the major
joints of the body.
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Rescue robots are used during natural disasters or terrorist attacks, and are
often equipped with a thermal camera in order to be able to look for victims in
the dark. [84] presents a rescue robot equipped with several sensors, including
thermal camera, visual camera and laser range scanner. This robot is able
to detect victims in a scene and drive autonomously to the destination. [85]
proposes a robot rescue system using thermal and visual camera to identify
victims in a scene. For use on Unmanned Aerial Vehicles [86] proposes a human
detection system that use a thermal camera to detect warm objects. The
shape of the object is analysed in order to reject false detections, before the
corresponding region in the colour image is processed with a cascade of boosted
classifiers.

Thermal cameras are very popular in the research of pedestrian detection,
due to the cameras’ independence of lighting changes, which means that it will
also work during the night, when most accidents between cars and pedestrians
happen. One of the car-based detection systems is proposed in [87], where
they present a tracking system for pedestrians. It works well with both still
and moving vehicles, but some problems still remain when a pedestrian en-
ters the scene running. [88] proposes a shape-independent pedestrian detection
method. Using a thermal sensor with low spatial resolution, [89] builds a robust
pedestrian detector by combining three different methods. [90] also proposes
a low resolution system for pedestrian detection from vehicles. [91] proposes a
pedestrian detection system, that detects people based on their temperature
and dimensions and track them using a Kalman filter. In [92] they propose a
detection system based on histogram of oriented phase congruency and a SVM
classifier for classification of pedestrians. [93] proposes a pedestrian detection
system with detection based on symmetric edges, histogram analysis and size
of the object. The subsequent work [94] adds a validation step, where the
detected objects are matched with a pedestrian model. [95] proposes a system
that uses SVM for detection and a combination of Kalman filter prediction and
mean shift for tracking.

Wide purpose pedestrian detection includes shape- and appearance-based
approaches and local feature-based approaches. [96] uses a shape-based detec-
tion and an appearance-based localisation of humans. In [97] the foreground
is separated from the background, after that shape cues are used to eliminate
non-pedestrian objects, and appearance cues help to locate the exact position
of pedestrians. A tracking algorithm is also implemented. [98] uses combina-
tions of local features and classifiers. HOG features and Edgelets are used for
detection, and Adaboost and SVM cascade are used as classifiers. [99] and [100]
do also use HOG detectors and SVM classifier for pedestrian detection. [101]
implements an embedded pedestrian detection system on FPGA. In [102, 103]
a car-based stereo-vision system has been tested, detecting warm areas and
classify if they are humans, based on distance estimation, size, aspect ratio,
and head shape localization. [104, 105] use probabilistic template models for
pedestrian classification, while [106] uses a statistical approach for head detec-
tion.
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For tracking pedestrians, [107, 108] use both spatial and temporal data as-
sociation, the Wigner distribution, and a motion-based particle filter. [109] uses
a multiple-model particle filter, and prior information about the walkways to
enhance the performance. [110] does also use a particle filter, combined with
two shape- and feature-based measurement models, to track humans in real
time from a mobile robot. Other robot-based systems for detection and track-
ing are proposed in [111, 112]. For the static case, when the robot is still,
image differencing and thresholding are applied for human detection. When it
moves, the system uses optical flow for filtering the moving foreground objects
from moving scene background. [113] proposes a human tracking algorithm for
mobile robots that combines a curve matching framework with Kalman filter
tracking. [114, 115] propose a local feature (SURF) based method for detection
of body parts and tracking of humans. The tracking part uses Kalman-based
prediction of object positions to overcome the lack of colour features for dis-
tinguishing people. For scenes captured with a moving camera, the Kalman
prediction is replaced by a calculation of shift vectors between frames.

Facial Analysis

Face detection is the first step in many applications, including face recognition,
head pose analysis, or even some full person detection systems. Since the face
is normally not covered by clothes, a thermal camera can capture the direct
skin temperature of the face. [116] and [117] propose head detection systems
based on a combination of temperature and shape.

Face recognition using thermal cameras eliminates the effects of illumina-
tion changes and eases the segmentation step, but it can also introduce some
challenges due to the different heat patterns of a subject, caused by different
activity levels or emotions such as anxiety. One of the very early approaches
is neural networks [118]. [119, 120] compare the use of thermal images in face
recognition to visual images using appearance based methods. The thermal im-
ages yield better results than visual images here. However, it has not yet been
tested how different activity levels of the subjects, and extreme ambient tem-
perature, will affect the recognition rate. In [121] a thermal face recognition
algorithm has been developed using the techniques of polar transformation,
eigenspace projection, and classification using a multilayer perceptron. [122]
tests the use of different parts of the face for facial recognition, and conclude
that using the upper part of the face gives a better recognition rate than using
the whole face. [123, 124] propose a face recognition system using characteristic
and time-invariant physiological information as features.

The recognition of common facial expressions is another task of great inter-
est. Neural networks have also been used as an early approach here [125]. Using
a sparse dataset of 120 images, showing four different expressions from one per-
son, the system showed good results. [126] proposes a system to recognise facial
expressions by analysing the geometry and local characteristics.

Also facial orientation are of interest in many vision systems. A few papers
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have proposed systems to estimate the head pose. [127] calculates the roll angle
of frontal face images while [128] proposes a system to estimate the yaw angle
of the head. [129] proposes a system for detecting the driver’s posture in a car.
First the face area is detected, and then the posture is classified as leftward,
frontward or rightward.

Measuring the heat distribution in the face can give information about
the anxiety level [130], the emotion of car drivers [131], or it can be used for
automatic blush detection [132]. For such systems to work automatically, it is
important that the system is able to follow the tissue of interest over time. [133]
proposes such a tracking system, using a particle filter tracker. For biometric
identification, [134] proposes the use of thermal ‘faceprints’. These faceprints
capture facial physiological features, representing the network of blood vessels
under the skin1. [139, 140] do also propose the use of thermal face images for
biometric identification. They extract the superficial blood vessels from MWIR
images with skeletonization. Figure 2.11 shows an example of thermal face and
hand images. The veins are visible at the dorsum of the hand.

Fig. 2.11: Thermal images of the face or hand can be used for biometric identification.

Medical Analysis

Thermal imaging provides information about physiological processes through
examining skin temperature distributions, which can be related to blood perfu-
sion. In the medical area, cameras with high thermal resolution in the human
temperature range are used in order to observe fine temperature differences.
Thermal imaging complements the standard anatomical investigations based on
X-ray and 3D scanning techniques such as CT and MR [141]. [142] and [143] re-
view the medical applications of infrared thermography, including breast cancer
detection, diabetes neuropathy, fever screening, dental diagnosis, brain imag-
ing, etc.

Thermal imaging has been shown to reveal tumours in an early state, es-
pecially with breast cancer, as described in the survey [144]. Various other
medical issues can be studied from thermal images, such as the behaviour of

1Thermal images are also used in other biometrics such as hand veins, neck veins and arm
veins [135], and palm-dorsa vein patterns [136–138]
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the ciliary muscle of the human eye [145], the pulse from the superficial tempo-
ral artery [146] or facial vasculature [147], the volumetric flow rate in superfi-
cial veins [148], or the periodic fluctuation in skin temperature [149]. Thermal
imaging of the human foot has also proven to be useful in the detection of
ulceration risks for diabetic patients [150].

In rehabilitation, thermal imaging can be employed to monitor and interpret
communications from people with motor impairments, such as mouth opening
and closing [151].

2.5 Image Fusion
As discussed in Section 2.1, visual cameras and thermal cameras have both
advantages and disadvantages in computer vision applications. Since the lim-
itations of the different technologies are independent, and often do not occur
simultaneously, it can be beneficial to combine these different types of images.
Occlusion is a well-known problem across all modalities. Separating partly
occluded persons or objects of the same temperature can be very difficult in
thermal images, as they have the same pixel intensity. Including depth infor-
mation or colour edges can help disambiguate in this situation.

The most common combination of cameras is thermal and visual. This is
due to the low price and well-known characteristics of visual cameras and the
ensuing advantages of augmenting colour with temperature.

The main challenges are how to align and fuse the different image modal-
ities. There is not necessarily any relation between brightness level in the
different spectra, thus many mutual information alignment methods are not
appropriate [152]. Often, corresponding points are manually selected to cal-
culate a planar homography, and then warp one of the images. Automatic
alignment techniques that rely on the correlation between edge orientations
are presented in [153, 154], and a method that calculates the homography from
automatically detected keypoints is presented in [155].

The standard chessboard method for geometric calibration, correction of
lens distortion, and alignment of the cameras relies on colour difference, and
can not be used for thermal cameras without some changes. [156, 157] report
that when heating the board with a flood lamp, the difference in emissivity of
the colours will result in an intensity difference in the thermal image. However,
a more crisp chessboard pattern can be obtained by constructing a chessboard
of two different materials, with large difference in thermal emissivity and/or
temperature [158]. This approach is also applied in [159] using a copper plate
with milled checker patterns in front of a different base material, and in [160]
with a metal wire in front of a plastic board. When these special chessboards
are heated by a heat gun, hairdryer or similar, a clear chessboard pattern will
be visible in the thermal image, due to the different emissivity of the materials.
At the same time, it is also visible in the visual image, due to colour difference.
Figure 2.12 shows thermal and RGB pictures from a calibration test. The
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chessboard consists of two cardboard sheets, where the white base sheet has
been heated right before assembling the board.

Fig. 2.12: Thermal and visible image of a calibration chessboard consisting of two cardboard
sheets, where only the white layer has been heated before assembling.

Fusion can take place at different levels of the processing, often described as
pixel level, feature level, or decision level [161]. In pixel level fusion, the images
need to be spatially registered, as discussed above, so that the same pixel
positions of all images correspond to the same location in the real world. The
images are then combined pixel-by-pixel using a fusion algorithm. With feature
level fusion, the features are found in all images individually and then fused into
a joint feature set. Decision level fusion follows the individual processing until
the evaluation of the observed scene is done. At the end-stage, the decisions,
or classifications, are combined into one result. The choice of fusion level will
depend on the application.

Methods for fusing visible and infrared videos are discussed in [162] and
[163], where the two images are aligned and combined using an overlay image
with the heat information. In [152] two fusion methods are compared, one
named a general fusion model (pixel level) and the other method named a
combination module (feature level). The combination module has the best
performance tested over six sequences. [164] proposes a combination of curvelet
and wavelet transforms, as well as a discrete wavelet packet transform approach
for fusing visual and thermal images. In [165] a statistical approach based
on expectation maximization is proposed. [166] uses an adaptive weighting
method, which enhances unnatural objects in each modality before fusion. An
alternative approach is to keep both colour and thermal information as separate
channels in a new ‘Red-Green-Blue-Thermal’ video format [167].

The spatial resolution of thermal cameras is still low, and the price for the
best resolution available is high. Using cheap thermal sensors with a low spatial
resolution can still improve surveillance when combined with the use of a visual
camera. [168] uses a thermal sensor with 16× 16 pixels to give an indication of
where to search in the visual image. They concentrate on calibrating the two
cameras and find the correspondence between the images. By fusing the visual
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and thermal videos, super-resolution of the thermal images can be constructed
[169]. A prototype using three cameras to combine both the visual, NIR, and
LWIR bands is proposed in [170]. Sensors other than visual cameras can also
be combined with thermal cameras in fusion systems. [171] fuses the data from
a thermal camera and a laser scanner to obtain robust pedestrian detection
for tracking. [172] fuses near-infrared sensors and low resolution far-infrared
sensors in order to obtain a low-cost night vision system.

Fused image systems find application in a variety of areas, which we now
summarize. In surveillance systems it is popular to use fused image modal-
ities, due to the necessity of a robust system that can work both night and
day, indoors and outdoors [173, 174]. In both surveillance and night vision
systems for cars, the detection of pedestrians can be improved by fusing the
image modalities [175–181]. General purpose human detection systems are
proposed in [12, 66, 182, 183]. [184] presents a surveillance system that also
estimates the attention field of the detected humans and [185] fuses the vi-
sual and thermal images for a robust foreground detection in tele-immersive
spaces. [186] proposes a combined human detection and recognition system for
a robot in domestic environment. Human tracking systems using fused images
are proposed in [187–189]. [190] uses visual stereo cameras and a thermal cam-
era, while [191–193] test different combinations of stereo and single cameras of
both colour and thermal types.

Face detection and face recognition have been thoroughly investigated and
standard methods exist using visual cameras. However, illumination changes
still have a negative impact on the performance of these systems [194]. Research
has been conducted on whether these problems could be overcome by extending
the systems with a thermal sensor. [195] shows a significant improvement by fus-
ing the visible and thermal images in a time-lapse experiment. Work has been
done on face recognition using both pixel-level fusion [196–198], feature-level
fusion [199], and decision-level fusion [200–202]. [203] proposes fusion on both
pixel- and decision-level, while [204] tests two different fusion schemes. They
all report an improved performance when fusing the different image modalities.

2.6 Discussion
Although the price of thermal cameras is still significantly higher than the
price of comparable visual cameras, the hardware cost is continuously falling
and the diversity of cameras is becoming wider. Simple sensors, such as the
cheap pyroelectric infrared (PIR) sensor, have for many years been applied
as motion detectors for light switch control, burglar alarm, etc. Although no
image can be provided by this type of sensor, it can be sufficient for detecting
a moving human or large animal. Moving towards thermal cameras, infrared
array sensors can read temperature values in a coarse image. These sensors
make it possible to analyse the movement, e.g. direction and speed, and can
be used for instance in entrance counting systems. The price for these sensors



30 Chapter 2.

are less than 50$ for 8 × 8 pixel arrays with ±2.5◦C temperature accuracy
[205]. The price increases with the resolution, framerate, and accuracy, through
uncooled cameras to high-end, specialised cooled cameras, with specifications
up to 1280 × 1024 pixels and 130 fps. Some cameras come with even higher
framerate, or optical zoom. The price of these high-end cameras can exceed
100,000$.

As seen in this survey, the wide range of cameras opens up for a great
diversity of applications of thermal cameras. Each research field has specific
needs for, e.g., resolution, field of view, thermal sensitivity, price, or size of the
camera. It is therefore expected that the diversity of cameras available will
become even larger within the next few years, not only focusing on high-end
cameras.

Thermal imaging has found use in two different types of problems: the
analysis of known subjects and the detection of unknown subjects. In the first
problem, both the subjects and their location in the image are known, and the
properties of the subjects can be analysed. The results could be the type of
material, condition, or health. The methods used here are often simply the
registration of the temperature or even a manual inspection of the images. If
computer vision methods are used, often they are just simple algorithms, such
as thresholding and blob detection. For the second problem, either the type of
objects or their location in the image are unknown. The most important step in
this type of problem is normally the detection and classification of objects. The
goal here is more often to design an automatic system, e.g., for the detection or
tracking of specific objects. More advanced computer vision algorithms can be
applied here in order to design a robust and automatic system. In applications
where the subject has a different temperature than the surroundings, thermal
cameras can significantly ease the detection step compared to visual cameras.

Methods for both analysis of known subjects and detection of unknown
subjects are rapidly expanding due to the lower prices and greater availability
of thermal cameras. In the case with known subjects, thermal cameras could
be viewed as an alternative to a non-contact thermometer. In the last case, the
thermal camera is seen more as an alternative to a visual camera, and therefore
currently of greater interest from a computer vision point of view. However, the
general trend in modern society is the implementation of automation. With
this in mind, it is expected that manual and semi-automatic image analysis
will gradually be replaced with automatic vision systems, as these become
more robust.

The usual disadvantages of changing illumination and the need for active
lighting in dark conditions are eliminated with the thermal sensor. Moreover,
in the case of surveillance, the use of thermal imaging does not raise as many
privacy concerns as the use of visual imaging does. However, new challenges
often appear with a new type of sensor. For thermal imaging the lack of
texture information can be a disadvantage in some systems, and reflections
of the thermal radiation can be a problem in surfaces with high reflectance.
For the thermal cameras to stand alone in surveillance purposes, reasonable
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priced cameras with higher resolution, effective optical zoom, or wide angle
lenses are still desired. In order to overcome some of these challenges it can be
advantageous to combine thermal images with other image modalities in many
applications. However, there is still a lack of an easy and standardised way
to calibrate thermal cameras with other sensors. This must be solved in order
to make these types of systems practical. A few pre-calibrated thermal-visual
camera set-ups exist today [18, 19], and it is expected to see more of these
combined systems in the future.

With more and more sensors becoming available, such as 3D, near-infrared,
and thermal, the usual choice of a visual camera is harder to justify. This survey
has shown that thermal sensors have advantages in a diversity of applications,
and the fusion of different sensors improves the results in some applications.
For the future development of vision systems, a careful choice of sensor can
open up both new applications as well as alternative features for improving the
performance of current applications.
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Chapter 3

Summary

This thesis consists of six parts, with this introductory part being the first.
The following four parts each covers a research topic, which will briefly be
explained in the introduction of each part. Each chapter organised under the
parts consists of a previously published text. The last part will conclude this
thesis.

The following sections will give an overview of each chapter, presenting the
overall goal, contributions and a summary of results.

3.1 Chapter 4
This chapter consists of the paper "Occupancy Analysis of Sports Arenas Using
Thermal Imaging" [1]. This represents the first work towards estimating the
occupancy of a sports arena. To goals are defined; estimating the number of
people and positions of all people.

The first step in this application is to detect people. Using thermal imag-
ing in an indoor arena simplifies the problem compared to the RGB image
modality. Assuming that people are warmer than the background, an auto-
matic thresholding method based on Maximum Entropy [2] is applied. The
ultimate goal is to have each person represented by a single white blob (binary
large object), but two types of common problems towards this goal must be
considered: Groups of people and false detection. For the first issue, groups of
people, the aim is to split these connected blobs into smaller blobs consisting of
only one person each. In order to do this, the two most common group forma-
tions, represented as tall blobs and wide blobs, should be identified. Based on
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an initialisation of the camera set-up, the conversion between image and world
coordinates is found, as well as the average image height of people, depending
on the distance to the camera. White blobs found to be taller than a fixed
threshold of 2 meters is assumed to represent two or more people standing
behind each other seen from the camera. Analysis of the convex hull and con-
vexity defects of the blob will indicate possible points to split from, illustrated
in figure 3.1(a).

(a) (b)

Fig. 3.1: Example of how to find the split location of tall or wide blobs.

Likewise, wide blobs are likely to represent a group of people standing next
to each other. These blobs can be identified by the height/width ratio of the
blob and the contour length compared to the bounding box perimeter. Blobs
satisfying the specified criteria will be split vertically from a point found using
a similar shape analysis approach as for the tall blobs. This is illustrated in
figure 3.1(b).

False detections can be caused by non-human warm objects, or reflections of
infrared waves in glossy surfaces. In the application at hand, most non-human
objects are removed by cropping the image to the court area. Furthermore,
blobs too small to represent a major part of a human are discarded. Reflections,
though, are often observed as heat waves from humans reflected in the floor,
pointed towards the camera. In order to identify reflections, the blob is mirrored
around a horisontal axis just above its top, and examined if the mirrored blob
fits into another existing blob. If this is the case for at least 90 % of the pixels,
the blob is classified as reflection and removed.

These algorithms all run as post-processing steps. The remaining blobs
are now considered true detections and can be counted in order to estimate
the occupancy. For evaluating the spatial occupancy of the court, each person
observed in a frame is represented by a 3D Gaussian distribution. The positions
of people are calculated by converting the image coordinate of the lower middle
point of the bounding box into world coordinates. The occupancy for longer
periods can be represented by summing the Gaussian distribution over the
given time period.

This work is tested on three weeks of data captured in a sports arena. For
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evaluating the precision of the system, 30 minutes of video have been manually
annotated with 30 fps and 36 hours have been manually annotated with 1 frame
per 25 seconds. For the 30 minute period, an average error in number of people
is found to 20.5 %. For the 36 hours of data the algorithm is evaluated for each
hour. The results are categorised by the number of people present during that
hour. It shows that empty videos are detected with an error close to zero and
the error increases with the number of people. This is also expected, as a higher
number of people also represents higher complexity of the videos.

3.2 Chapter 5
Chapter 5 consists of the paper "Long-term Occupancy of Analysis using Graph-
Based Optimisation in Thermal Imagery" [3]. Aiming for a better occupancy
estimation, the main contribution of this paper lies in the graph-based ap-
proach optimising between the counting during stable periods and estimated
transitions of people.

In this work a new camera set-up is developed in order to capture the entire
court of 40× 20 meters. Three cameras are mounted in one box and fixed with
adjacent fields-of-view. After capturing three video streams of 640× 480 pixels
simultaneously the images are rectified and stitched to an image of 1920× 480
pixels.

Using the algorithms for detecting and dividing blobs described in the previ-
ous section, a different sorting step is added. This step is designed to take care
of false detections and to combine small blobs that belong to the same person.
Based on the idea of probabilistic occupancy maps [4] a candidate rectangle is
produced at the position of each detected blob, with the height and width of a
standard person at the given position. Each candidate is then evaluated on two
criteria; the ratio of white pixels in the rectangle and the ratio of white pixels
on the perimeter of the rectangle. The candidate is given a weight based on
the two criteria, and for overlapping bounding boxes only the candidate with
highest ratio of white pixels is kept.

When evaluation the videos, two different modes can be activated. During
so-called stable periods, which are defined by no detections near entrance and
exit areas in the image, the number of detected people are simply counted
per frame. When people approaches the borders, their position are tracked in
order to estimate how many people leave or enter the scene. These two types
of information, weighted counts and transitions, are combined in a directed
graph, where nodes represent the number of people in stable periods and edges
represent the change in number between two periods. An example of the graph
is illustrated in fig. 3.2. A dynamic programming approach is applied to
calculate the optimal path through the graph.

A full system test is run on 30 minutes manually annotated data captured
with 20 fps. The average error per frame is 4.44 %, which is significantly better
than both our previous work and comparable methods based on RGB video.
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Fig. 3.2: Example of a simple graph. Dark nodes and edges have the highest weight. Edges
exist between all nodes in two consecutive periods, but to simplify the illustration they are
not drawn.

In addition to the full test, sub-tests are carried out on data captured in five
different arenas and on three publicly available thermal video sequences.

3.3 Chapter 6
Continuing to the topic of Activity Recognition, chapter 6 consists of the book
chapter "Classification of Sports Types using Thermal Imagery" [5]. In this
work the aim is to recognise five different sports types observed in the same
indoor sports arena. The main idea of this work is to show the ability to classify
sports types based only on position data of all people summed over time. Based
on detections of people as described in the previous section, the calibration and
conversion of detected positions to world coordinates is of great importance in
this work. In order to reduce image distortion, most significantly the barrel
effect, a method of calibrating the internal camera parameters is presented.
Constructing a calibration board with a grid of 5× 4 incandescent light bulbs
enables us to adapt traditional "checkerboard" calibration methods. Each of
the three cameras is calibrated and images are undistorted individually before
manually aligning the cameras to mimic a panoramic view of the arena. Before
processing the images they are stitched to one wide image of 1920×480 pixels.

Transformation from image coordinates to world coordinates is usually done
using a homography matrix calculated from a set of corresponding coordinates.
In the case of three cameras with different viewing angles, a minimum of three
homography matrices must be found. This assumes a perfectly rectified image,
though. Instead, it is chosen to calibrate the system in a grid of 5× 5 meters,
producing a higher precision with individual homography matrices for each
5× 5 meters square.

After mapping the positions of detected people to world coordinates, they
should be represented by a physical area in order to produce a more realistic
occupancy map. The representation described in chapter 4 is applied with
a 3-dimensional Gaussian distribution of a standard height of 1 and a radius
corresponding to 1 metre for 95 % of the volume. The occupancy heatmaps are
constructed by adding up the Gaussian distributions over a fixed time interval.
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Examples of heatmaps from each sports type are shown in figure 3.3.

(a) (b) (c)

(d) (e) (f)

Fig. 3.3: Signature heatmaps of (a) handball, (b) badminton, (c) soccer, (d) basketball, (e)
volleyball (three courts), (f) volleyball (one court)

With the hypothesis that an occupancy heatmap image is unique to a spe-
cific sports type, within a set of regular sports, classification methods from,
e.g., face recognition are considered. Considering each pixel as a dimension in
the feature space, PCA is applied to reduce the number of dimensions before
Fischer’s Linear Discriminant is calculated in the new 20-dimensional space.
This method translates the data to the space that best discriminates the differ-
ent classes of training data [6]. After these transformations, the mean feature
values for each class is calculated and used for classifying new images, by simple
Euclidean distance in the new space.

From 19 days of video, all hours with a sports activity manually classified as
badminton, basketball, soccer, handball or volleyball are picked and separated
into a training set and a test set, along with a large amount of videos classified
as miscellaneous activities. The result of this test is a correct classification
rate of 89.64 %. Additional tests on a uninterrupted full day of video and
on a publicly available handball sequence do also very positively approve this
method.

3.4 Chapter 7
Chapter 7 consists of the paper "Classification of Sports Types from Track-
lets" [7]. Taking a step further towards sports classification independent of
scale and rotation of the activities, the aim is here to classify five different
sports types from simple motion features. Using a Kalman filter [8] for track-
ing each player, short trajectories are produced. A trajectory is terminated
when no detections is associated for 10 frames, likewise, new trajectories are
started when a detection can’t be associated with an existing tracker. By this
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approach the length of each trajectory will differ. Instead of cropping the tra-
jectories to a fixed length, the track length is used as a feature, representing
the complexity of the scenario. The four features chosen for classification is
lifespan, total distance, distance span, and mean speed. Lifespan is measured
as the number of frames a trajectory exists. The total distance, measured in
meters, represents the total distance travelled, as a sum of frame-to-frame dis-
tances. The distance span is the maximum distance between any two points of
the trajectory, measured in meters. The last feature, mean speed, is found as
the mean of the speed between each observation. The four features are chosen
from the criteria that they need to be invariant to the size and direction of the
court, the position of the players and to the direction of play. They must as
well be robust to noisy detections and tracking errors.

(a) (b) (c)

(d) (e)

Fig. 3.4: Tracklets from a 2-minute period of (a) badminton, (b) basketball, (c) soccer, (d)
handball, and (e) volleyball.

For classification, all videos are split into 2-minutes sequences, for which a
single four dimensional feature vector is calculated as mean feature values of
all trajectories produced during each sequence. Using a labelled training set,
the quadratic discriminant function that best discriminates the data is found.
During the classification phase, each new sample is assigned to the class with
lowest misclassification cost.

Equivalent to the previous work based on heatmaps, the experiments are
performed with five different sports types; Badminton, basketball, handball,
soccer and volleyball. 60 minutes of video from each sports type is captured
and divided into 2-minutes sequences. Figure 3.4 shows examples of tracklets
from a sequence of each sports types. Using a 10-fold cross validation, a correct
classification rate of 94.5 % is obtained.
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3.5 Chapter 8
Moving into the field of multi-target tracking, chapter 8 consists of the paper
"Thermal Tracking of Sports Players" [9]. It presents a tracking framework
designed for thermal video, based on the well-known Kalman filter.

The Kalman filter is a recursive algorithm, predicting the next step from
previous measurements and associating new measurements to an existing filter,
depending on the distance between the predicted step and measurement.

In this work the Kalman filter is applied for multi-target tracking. In order
to keep track of several tracks simultaneously, one filter is initialised for each
object. In each frame, a set of detections is obtained and must be associated
with the existing trackers. Each existing Kalman filter is assigned to the near-
est detection, within a given distance threshold. For each detection that is
not assigned to a Kalman filter, a new track is started by initialising a new
Kalman filter. Kalman filters with no associated detections will be continued
by predictions for up to 10 frames, in order handle to short occlusions.

The proposed tracking framework is based on the relatively simple recur-
sive algorithm. A different research direction in multi-target tracking is of-
fline tracking based on batch optimisation. Exploiting the possibility of going
back and forth in time, this type of tracking algorithms has produced very
good results on standard RGB datasets recently. In the evaluation our work is
therefore compared to a publicly available implementation called Continuous
Energy Minimization (CEM) [10].

(a) (b)

(c)

Fig. 3.5: Trajectories plot in world coordinates with each identity assigned a random colour.
(a) Trajectories found by Kalman tracker, (b) trajectories found by CEM tracker (60 epochs)
and (c) manually annotated trajectories.
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The test is performed on a challenging thermal video sequence of 2 minutes,
capturing an indoor soccer game. The trajectory of each player is manually
annotated and the performance of the trackers is evaluated using the CLEAR
MOT metrics [11]. Using the same set of detections for both trackers, the
Kalman filter is able to produce more tracks, compared to the CEM tracker.
The result is an accuracy (MOTA) for the Kalman filter of 70.36 %, while the
CEM tracker ends with a negative MOTA value, due to a very high number of
false negatives. Figure 3.5 shows the trajectories produced by each method.

The drawback of the Kalman filter is a high number of ID switches. Due
to the recursive nature of this algorithm, there is no possibility of connecting
broken tracks, and no appearance model, that could be used for re-identification
of people, is obtained. The main conclusion of this work is that a Kalman filter
is well suited for tracking in the thermal modality. It produces short reliable
tracks and it easily performs fast enough for real-time applications.

3.6 Chapter 9
The paper included in chapter 9, "Constrained Multi-Target Tracking for Ther-
mal Imaging", presents the preliminary results for a work in progress. In this
chapter the work towards a robust multi-target tracking algorithm for thermal
video is continued. The results of the previous chapter showed clearly that
the offline tracker tended to produce too few trajectories, while the recursive
Kalman filter introduced a high number of ID switches and split tracks. This
work will try to improve an offline tracking algorithm for thermal videos by
introducing a new term in the energy function, constraining the number of
trajectories produced.

X1 2X 3X

5 64

time

? ?

iteration

Fig. 3.6: Illustration of the proposed method. During first iteration, stable periods of the
video sequence are identified and a number of people present are estimated. This is used as
input for the second iteration, in which trajectories are constructed and optimised.

The algorithm runs in two iterations, as illustrated in figure 3.6. During
first iteration, periods with a stable number of people present in the scene are
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detected, and the number of people is estimated, using the method presented
in chapter 5. The results are transferred to the second iteration, in which a
global tracker is applied for constructing the trajectories.

For tracking, the starting point is a state-of-the-art publicly available offline
tracking algorithm [10], which was also applied in the previous chapter. The
purpose of this algorithm is to minimise a global energy function. Included in
the energy function is a regularisation term, aiming to minimise the number of
targets and maximise the length of each trajectory. In this term the minimisa-
tion of targets is discarded and instead a constraint on number is introduced
based on the results of the counting algorithm.

The tracking algorithm is tested on four thermal video sequences, three
sequences captured from an indoor soccer game and one sequence observing
pedestrians in an outdoor courtyard. The results are compared to the original
formulation of the tracking algorithm, and shows large improvements from 1-
16% in accuracy.

3.7 Chapter 10
Chapter 10 consists of the paper "Improving Global Multi-target Tracking with
Local Updates" [12]. This work is conducted during a research stay at the
Australian Centre for Visual Technologies (ACVT) in collaboration with local
researchers. Therefore, as opposed to the rest of this thesis, this paper focuses
on RGB video. However, the focus is still on tracking of sports players and the
work presented in this chapter has been tested on two sequences of video from
a real match in the Australian Football League (AFL).

This work starts with an offline multi-target tracking algorithm, and aim
to solve one of the problems often seen when occlusions appear; interrupted
trajectories.

Assuming that people can only enter and leave the scene at the border of the
image, every trajectory terminated far from the image border are localised and
considered for improvement. A spatio-temporal window around the detection
is chosen in order to limit the complexity of the local data association problem,
but still allow for different solutions to be tested. Within the spatio-temporal
window, a single target visual tracker is initialised for each trajectory involved
in the error. Belonging to the class of tracking-by-detection algorithms, the
single target tracker usually picks the detection with highest classification score
and associates it to the tracker. However, in crowded scenes with ambiguous
situations and occlusions, several trackers might detect the same object as the
best candidate. A specific data association scheme is proposed to solve this
problem. For each tracker, several candidates is considered and added to a
bipartite graph, in addition to an occlusion node for each tracker. Using the
classification scores and a spatial proximity measure for weighting the edges,
the optimal solution of the graph is found using the Hungarian algorithm [13].

The local solution is inserted into the original global solutions and evaluated
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Fig. 3.7: Overview of the optimisation algorithm. Given a possibly erroneous solution (a),
we locate each error (b) and perform a local optimisation within its neighbourhood (c). The
newly obtained solution is inserted back into the original one if and only if it increases the
overall likelihood considering all remaining frames and targets (d).

with the same discrete-continuous objective function as the original solution.
If improving the overall energy, the new local solution replaces the original
solution. The algorithm is illustrated in figure 3.7.

The proposed method is evaluated on eight different sequences. Six videos
are publicly available datasets and enables us to compare with state-of-art
multi-target tracking algorithms. The remaining two sequences are captured
during a game of Australian Rules Football. These sequences are particularly
challenging due to frequent crowding and physical contact between players.

In short, the evaluation shows how the local optimisations improve the
results. Our proposed algorithm outperforms comparable recent multi-target
tracking algorithms.

3.8 Chapter 11
Moving into part V, the focus will change from sports applications to other
applications of thermal imaging, specifically related to the Smart City. Thermal
imaging have clear advantages compared to RGB cameras when installed in
public spaces. Firstly, privacy is a big issue when capturing video in public,
uncontrolled environments. As the thermal sensor doesn’t capture sensitive
data, people can not be identified from thermal images. Furthermore, capturing
outdoor video during day and night might be challenging, or even impossible,
with regular RGB cameras, due to changing lighting conditions and darkness
during night. In this part of the thesis it is demonstrated how the previously
presented methods for detecting and tracking people can easily be adapted and
applied in the context of Smart Cities.

Chapter 11 consists of the paper "Thermal Imaging Systems for Real-Time
Applications in Smart Cities" [14]. The purpose of this paper is to demonstrate
five successful practical applications in which thermal imaging is applied. In
order to be applicable in real-time applications, the applied computer vision
methods must be fast, but also robust to environmental changes.

The first work focuses on people counting in a pedestrian street. With the
aim of robust counting 24 hours a day, the counting method is based on double
differencing of the image, and then uses a conversion between pixel activity
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Fig. 3.8: Thermal image overlooking an urban square.

and number of people found from training data. One full week of video has
been captured. For evaluation of the precision of the system 13 sequences of
20 minutes have been chosen to cover different days, time of day and level of
activity. Using a leave-one-out approach, the mean accuracy of the system is
90.75 %.

The second application focuses on people tracking in a public urban space.
The purpose here is to intelligently control the lighting of the space based on the
positions and movement of people. The main part of the urban space is covered
with three thermal cameras. 16 RGB LED lamps are installed and connected to
a computer, which controls the lamps based on the input from computer vision
analysis. With experiments running for one week, different lighting scenarios
have been tested. Detection of people is based on background subtraction and
tracking implemented with a Kalman filter. The system is able to run real-time
with 15 fps on a regular laptop computer. This work is described in more detail
in the paper presented in chapter 12.

The third application presented in chapter 11 is a tool for evaluating the
traffic safety in large urban intersections. Aimed at detecting potential con-
flicts between cyclists and cars, a thermal camera is installed overlooking the
intersection. Using optical flow to detect and estimate the direction of motion
in predefined zones of the intersection, the system can flag potential situations
of conflicts for further manual investigations. Four different intersections have
been used for testing the system. Evaluations show that the false positive rate
is high, around 33 %, while only very few false negatives are observed. For the
purpose of flagging potential conflict situations for later manual verification, it
is desired to allow more false positive and avoid false negatives.

The fourth application focuses on people counting and activity recognition
in sports arenas. This section sums up the work presented in chapters 4, 5,
and 6 of this thesis.

The last application presented here again applies tracking of people in public
spaces. For urban planning and management, knowledge about the human
behaviour and movement is important. For large scale studies, the method
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must be automatic and fast. It is shown here that computer vision with thermal
cameras can be applied for fast and robust detection and tracking of people.
Using a georeferenced coordinate system, it is possible to analyse the movement
of people in Geographical Information Systems. The paths can be visualised
and analysed individually. This work is described in more detail in the paper
presented in chapter 13.

3.9 Chapter 12
Chapter 12 consists of the paper "Controlling Urban Lighting by Human Motion
Patterns - Results from a Full Scale Experiment" [15]. In this paper we detect
and track human movements in a urban square, and use the data as input to the
interactive lighting of the square. In this work a real-time solution is presented
for detecting and tracking groups of people and converting their positions to
a common world coordinate system. People are detected using background
subtraction, while tracking is based on Kalman filtering, as previously described
in chapter 8.

Fig. 3.9: Two frames showing the "White Aura" scenario, where the light is centred around
a person walking across the space.

Four different light scenarios are tested, where two are directly dependent
on the detected positions of people. The "White Aura" scenario illuminates a
large circle around people. Pictures from this scenario is shown in figure 3.9.
The "Treasure Hunt" scenario encourages people to play with the lighting and
walk towards a differently coloured lamp, which will then trigger a wave of light
through the square.

Tested on cold winter days, the interactive lighting didn’t change the be-
haviour of people. However, observed from the distance, the space seemed more
alive and interesting. Tested over one week, the algorithms were proved robust
and performed in real-time.
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3.10 Chapter 13
The last paper included in this thesis is "Taking the Temperature of Pedestrian
Movement in Public Spaces" [16]. Following the same approach of detecting
and tracking people as used in chapter 12, the purpose here is different. The
trajectories are used as a tool for analysing the use of public space and it is
shown that the traditional manual observation methods can be substituted by
automatic analysis using computer vision.

The location for the experiments is a busy plaza in Copenhagen, with 50-
100 pedestrians observed per minute. In this case an empty background image
can’t be obtained, and the background is instead modelled as the median image
over a 30 seconds initializing period. The positions of detected people are
projected to real world GPS coordinates in order to relate the positions to the
surroundings and to other geospatial data layers in Geographical Information
Systems (GIS).

Fig. 3.10: The site and the FOV illustrated in a 3D view with four selected tracks from
the same 30 second period coloured according to their speed. All four tracks start in the
bottom of the image in the open square and move up towards the street. The tracks indicate
both increasing and decreasing speeds. All tracks from a 5-minute period are displayed as
background. The position of the camera is shown on the corner of the building to the left.
The obstacles are indicated in grey.

During post-processing of the tracking data, statistics of the human move-
ments, such as distance, duration, speed, and start and end points are ex-
tracted. In this process a filtering of data is also performed based on the du-
ration of each track. Tracks shorter than 3 seconds are classified as noise and
discarded. Most often these short tracks are produced by non-human objects
moving in the wind or caused by occlusions between people.

5 minutes of data from one view and 1 minute from a second view have
been manually annotated with trajectories of all people and compared to the
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automatic results. The results show that the general movement patterns are
captured very precisely and the positioning is good. The main problems ob-
served for the automatic tracking system are split tracks and identity switches
in cases of occlusions. This is also expected, as the Kalman filter is a recur-
sive algorithm with no re-identification of people, or re-connection of tracks,
possible.

3.11 Contributions
This section will sum up the contributions made in this thesis.

• Survey on thermal cameras and applications. As an introduction
of thermal cameras to the computer vision community, chapter 2 explains
the nature of thermal radiation and the technology of thermal cameras.
Moreover, a thorough survey of applications of thermal cameras is pre-
sented.

• Detection of people in thermal images. In chapter 4 and 5 algo-
rithms for detecting individual people in thermal images are presented.
This includes methods for splitting and sorting detected objects.

• Robust counting of people. The counting method presented in chap-
ter 5 includes temporal information on the transition in occupancy to
account for noisy detections.

• Sports type classification. Chapter 6 and 7 introduces two different
methods for classifying sports types performed in the same arena. One
method based only on frame-based position of people, while the other
method is based on features extracted from short trajectories.

• Tracking applied to thermal video. Few works have been designed
for and tested on thermal video. In chapter 8 a real-time multi-target
tracking algorithm is presented and chapter 9 introduces a method to
improve tracking performance by constraining the number of trajectories
produced by an offline tracking algorithm.

• Demonstration of practical applications of computer vision with
thermal imaging. The methods developed in this thesis have been ap-
plied and tested in several real world cases. Part V presents five different
applications.
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Large facilities, such as sports arenas and cultural centres, are expensive in
both building expenses and maintenance. Knowledge about the use and degree
of occupancy of these facilities are therefore of great importance in order to
optimise the use and include these experiences when planning on new facilities.

Traditionally, occupancy analysis of public facilities has been conducted by
manual inspections, either by the administrative staff in the buildings or by
external observers. Hiring external observers to watch the activities in each
facility over long periods is very expensive. The alternative solution of random
checks during a day might be imprecise and misleading for the true occupancy
pattern. The work presented in this part suggests two automatic systems based
on thermal video feed. A camera can capture data day and night without
significant extra expenses. Using the computer vision methods developed in
this section the occupancy of a sports facility is automatically estimated.

This part is the first of four main parts of this thesis and includes two pub-
lished conference papers:

Rikke Gade, Anders Jørgensen and Thomas B. Moeslund, “Occupancy Analy-
sis of Sports Arenas Using Thermal Imaging,” Proceedings of the International
Conference on Computer Vision Theory and Applications (VISAPP), pp. 277–
283, February 2012.

Rikke Gade, Anders Jørgensen and Thomas B. Moeslund, “Long-term Oc-
cupancy Analysis using Graph-based Optimisation in Thermal Imagery,” Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3698–3705, June 2013.
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Abstract
This paper presents a system for automatic analysis of the occupancy of sports
arenas. By using a thermal camera for image capturing the number of persons
and their location on the court are found without violating any privacy issues.
The images are binarised with an automatic threshold method. Reflections due
to shiny surfaces are eliminated by analysing symmetric patterns. Occlusions
are dealt with through a concavity analysis of the binary regions. The system is
tested in five different sports arenas, for more than three full weeks altogether.
These tests showed that after a short initialisation routine the system oper-
ates independent of the different environments. The system can very precisely
distinguish between zero, some or many persons on the court and give a good
indication of which parts of the court that has been used.

4.1 Introduction
In the modern world jobs are becoming ever more sedentary and less physically
demanding. This leads to higher demands for activities in people’s spare time,
which puts a still growing pressure on the sports arenas. From 1964 to 2007
the number of athletes has quadrupled with a steady increase [1]. Surveys also
show that people are dropping the classic club sports in favour of more flexible
sports [2]. This calls for a better and more optimal use of the existing sports
arenas to keep up with this growing trend.

In order to improve the utilisation of a sports arena, its existing use must
be examined. This includes examining the number of users using the arena at
the same time and the occupancy of the court. Administrators are especially
interested in whether the arena is empty, used by a few people or full and
the time for when the occupancy changes. The position of the users is also
important as they might only use half a court, which means the other half
could be rented out to another group. Manual registration of this would be
cumbersome and expensive and an automatic approach is therefore needed.
For such a system to work in general it should be independent of the size of
the court, lighting conditions and without any interaction with the users. This
can be obtained with a camera.

Detecting people with a camera raises some privacy issues though. Not
all people like surveillance and the fear of being observed could keep some
people out of the arenas. This work therefore proposes an automatic method
to analyse the occupancy of a sports arena using thermal imaging. One of
the advantages of thermal cameras is that the persons recorded cannot be
identified, which is an important factor if the system is to be accepted by the
users of the sports arena. On top of that, thermal cameras are invariant to
lighting, changing backgrounds and colours, which make them more desirable
for a general application.
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4.2 Related Work
Automatic detection and tracking of sports players is a research area important
for all sports analysis. Most systems are using visual cameras. In [3] a tracking
system is proposed specifically for indoor football players, while [4] proposes
a tracking system for outdoor football using multiple cameras. The tracking
system proposed in [5] focuses on more general sports video and it is tested on
both football, basketball and hockey.

The large research area regarding automatic identification of human sub-
jects and their behaviour include both visual and thermal cameras. There exist
a number of surveys and books on the subject, including [6], [7], [8] and [9].

Thermal cameras measure the amount of thermal radiation, which lies in
the long-wavelength infrared spectrum (8-15 µm). All objects with a temper-
ature higher than the absolute zero emit thermal radiation. The intensity and
dominating wavelength depends on the temperature.

Thermal cameras have a clear advantage over visual cameras in night condi-
tions, therefore the main focus for systems using thermal cameras have been on
security applications and trespasser detection. A few papers with the purpose
of detecting trespassers include [10] and [11].

Other work using thermal cameras include systems for pedestrian detection
and tracking. In [12] a pedestrian detection method is presented based on the
Shape Context Descriptor with the Adaboost cascade classifier framework. [13]
proposes the pedestrian detection as part of a driver assistant system while [14]
proposes a people detection system for different environments based on contour
analysis.

Most vision systems, including the systems mentions above, are only tested
on very short video sequences, proving the concept in one or few conditions.
In this work the most important issue is stability over a long time period and
under different conditions. Therefore the system will be tested over three weeks
and in five different arenas. The main results will be average values showing
the tendency of occupancy for hours or days.

4.3 Methods

4.3.1 System Overview
The desired system should take a thermal grey scale image as input and find
every person in the image. In order to analyse the nature of the problems re-
lated to this work, five different sports arenas were selected and used to develop
and test the system. During the initial investigations some typical difficulties
to obtain the result were registered. Some of these difficulties were occlusions
and reflections from both persons and other warm objects, e.g. lamps, on the
floor. These typical difficulties must all be addressed in order to make a general
system.
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As the intention is to monitor the long term use of a sports arena, the
system should always be operating. Therefore data should be processed in soft
real-time to avoid data pile ups. The output of the system should be, for a
given time, the number of users on the court and their position.

Thermal Camera Input

Find Court Corners in the Image

Person Detections

Find each Person's Position

Map to Court Coordinates
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Fig. 4.1: Diagram showing the system steps.

The system should be independent of the camera’s viewing angle in relation
to the court, as long as the camera can observe the court and is placed in a
sufficient height to avoid users covering each other too much. The users’ size,
level of activity and posture should not have an effect on the measurement
either. Figure 4.1 shows a diagram of the system structure.

The overall idea is to develop a system that can detect persons in a thermal
image and, with the inputs from the initialisation, find the persons’ positions
at the court. As mentioned in the introduction, the data should be categorised
after the occupancy level into zero, some and many people and presented in a
timetable.

4.3.2 Initialising the System
The initialisation routine must be conducted for each new mounting of the
camera. This routine handles the adjustments necessary to fit the system to
the layout of the actual sports arena. First the court must be found in the image
to avoid that cold or hot objects outside the court influences the system. As it
is only wanted to measure the players at the court, spectators should also be
removed. Defining the court in the images gives the opportunity to remove all
objects standing outside the court. During the initialisation the corners of the
visible part of the court should be marked in the image, and lines connecting
them define the outline of the court. To find the persons’ positions at the court
a mapping from the image to the court must be found. Using at least four
corresponding points in image and world coordinates, a homography matrix H
can be calculated [15].
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After initialising this matrix the mapping between image coordinates and
world coordinates is calculated as Pw = Hpi, where Pw are the weighted world
coordinates [PX PY W ]T and pi are the image coordinates [px py 1]T . The real
world coordinates are found by dividing Pw with the weight W .

At least four corresponding points must be used in order to calculateH, but
tests of the homography show that using more points increase the precision.
This is due to nonlinearity in the mapping, as the lens has some barrel effect.
Therefore it is desirable to use as many points in the initialisation as possible.
In this work a two-dimensional grid with steps of 5 metres is used to mark the
points at the court. A hot or cold object is necessary to detect the grid points
in the image.

4.3.3 Run-Time
This continuous loop receives an image from the thermal camera and after a
number of functions it delivers a set of regions each containing one person.
First the thermal camera captures a grey scale image. The warm objects (per-
sons) are bright while the surroundings are dark grey. After capturing a frame
the first step is to extract the warm objects. For this an automatic threshold
method based on Maximum Entropy is used [16]. This method maximises the
sum of the entropy above and below the threshold value s, by iterating through
every possible value. The threshold function is only run for the pixels inside
the court area, to avoid disturbance from spectators. The result is a binary
image where ideally the persons are white and anything else is black. If the
maximum entropy is below a specified threshold TH there are no persons on
the court and the frame can be discarded.

The white regions are now found using the contour finding algorithm de-
scribed in [17]. If there are no valid regions i.e. regions larger than a specified
minimum area the frame is discarded.

Split Tall Regions

People standing behind each other, seen from the camera’s point of view, can
often be found as one tall region as shown in figure 4.2(a). In order to split
such regions into the right number of people, it must be investigated when a
region is too high to contain only one person. Using the camera’s height c, the
vertical resolution rv and vertical field-of-view fv of the camera, the height in
pixels can be found as a function of the person’s height p and distance to the
camera x:

yp =
rv ·

(
tan−1

(
x
c−p

)
− tan−1 (x

c

))
fv

Statistics show that only 0.26% of Danish conscripts were taller than 2 metres
[18], therefore 2 metres is chosen as the height limit. So for each region found in
the image the distance to the camera is calculated using the homography and
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if the pixel height corresponds to more than 2 metres, the algorithm should try
to split the region horizontally. This is done by finding the convex hull and the
convexity defects of the contour, as shown in figure 4.2(b). The point selected
to split from is the defect point with the largest depth and a maximum absolute
gradient of 1.5. The gradient is calculated for the line from the defect point
perpendicular on the line between the convexity defect start and end points
(green points and yellow line in figure 4.2(c)). The defect point between the
legs of the person has the largest depth, but is discarded because the gradient
is too high. Also the defect point should not be in the top or bottom fourth of
the region, to avoid e.g. feet or head to be split from the body. As shown in
figure 4.2(d) the region is split horizontally from the selected point.

(a) (b) (c) (d)

Fig. 4.2: Example on division of tall regions. Note that black and white colours are reversed
for better visibility. The blue line is the convex hull, red marks indicate convexity defects
and the yellow line the orthogonal depth of the defect.

The algorithm starts with the defect point with largest depth and continues
until a point with an acceptable gradient and location is found. If no accepted
points are found, the region will not be split. If the region has been split, the
algorithm will start over and examine the height of the resulting regions.

Remove Reflections

Just as visible light, infrared waves are also reflected in glossy surfaces, but as
the infrared reflections are created by the persons themselves they are always
pointing towards the camera. Therefore the mirror axis will be roughly hori-
zontal, and reflections could be removed by trying to mirror them in a region
above. An example can be seen in figure 4.3(a)(Left).

In order to remove reflections the system searches for regions that are below
a larger or equally sized region. If such a region is found it is mirrored up in the
upper region to see if it fits in the person region. If it does not, the reflection is
translated one pixel horizontally and checked again. This continues up to three
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(a) (b)

Fig. 4.3: Persons having their reflection removed. The red areas mark the reflections after
they have been mirrored and translated. In (b) the reflection is first split from the person by
the algorithm splitting tall regions.

pixels in all directions. If more than 90 % of the reflection is within the person
region it is marked as a reflection and removed. Figure 4.3(a)(Right) shows a
situation where 77 out of 79 pixels are within the person region resulting in a
coverage of ≈ 97%.

In some cases the reflection is connected to the person who created it. See
figure 4.3(b)(Left). In these situations the region should first be split by the
function splitting tall regions. Figure 4.3(b) shows a situation where a region
is first split and secondly the reflection can be removed. Here 72 of 74 (≈ 97%)
reflection pixels are within the person.

Split Wide Regions

People standing close to each other will often form one large region. In order to
count the people correct such regions must be divided into regions containing
only one person. For groups of people standing side by side, seen from the
camera’s point of view, it will often be possible to separate them based on
their head position. Since their heads are narrower than the body they can
often be separated by cutting vertically from the minimum points of the upper
edge.

As it is not desired to split regions containing only one person, two criteria
for the regions must be satisfied before looking for a minimum point to split
from. Measuring the features of several regions gives the criteria that to contain
more than one person the height of the bounding box must be less than five
times the width and the contour of the region must be longer than the bounding
box perimeter. If these criteria are satisfied and a minimum point can be found
at the upper edge of the region, the region will be divided.
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The points are now found as convexity defects in the same way as described
for the tall regions. Instead of measuring the angle this method uses the y-
coordinates of the points. The found point must be located on the upper edge
of the region and have a y-value greater than both the convexity defect’s start
and end point to make it a minimum point.

As for splitting the tall regions, the algorithm will continue until no more
regions are split.

Sort Regions

The final step is to sort the regions. After the regions have been split and
the reflections have been removed, the remaining regions are now investigated
before they are counted as a person. If a region’s area does not match its
distance to the camera it is removed. This could be a small region which is
found in the foreground where persons typically would be larger. This step also
calculates the person’s position on the court, using the homography from the
initialisation. This is done for the lowest middle pixel of the accepted regions,
which will be the position on the floor.

4.3.4 Occupancy of the Court
A user’s position will be given as a x,y coordinate with multiple decimals. In
order to examine the occupancy a method must be found that preserves the
position, but also mimics the size of a person. Therefore every found region
is represented as a 3D gaussian distribution with a height of 1 and σ = 5,
equivalent to a radius of 1 metre for 95 % of the volume. This is also roughly
the radius of a person. An example for one frame can be seen in figure 4.4
where 8 persons have been found.

Fig. 4.4: A single frame where 8 persons have been found.
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For longer periods these frames can be summed to show the occupancy of
the court during e.g. an hour.

4.4 Results

4.4.1 Objective
As described in section 4.2 a very important parameter for the system is the
stability in changing conditions and in changing set-ups. Therefore the system
is tested in five different arenas, capturing more than three weeks altogether.
For all tests in different arenas the same parameters of the system has been
used. Only the initialisation of the system, described in section 4.3.2, depends
on the arena. By measuring the entropy of a number of frames with and
without people, the entropy threshold TH is chosen to be 4.1. The thermal
camera used in the test is an AXIS Q1921-E, with a resolution of 384×288
pixels and a horizontal field-of-view of 55◦.

4.4.2 Annotation of data
Capturing three weeks continuously with 30 fps gives a total of 54,432,000
frames, which would be nearly impossible to manually annotate. Therefore it
is chosen to manually annotate 54,000 frames, resulting in 30 minutes of video.
This will be used for calculating the precision of the system. But as this test
does only evaluate the system during one specific activity an additional test will
be conducted. A period of 36 consecutive hours will be sampled and manually
annotated with 0.04 fps (1 frame per 25 seconds). This is covering two days
with different sports activities and a night. Even though the frame rate here
is low this will still give a good evaluation of the system and ensure that it is
tested with both a varying number of people and different types of sports. The
data from the full test period of more than three weeks will be evaluated by
random checks against the videos.

4.4.3 30 minutes test
The results for the 30 minutes period are calculated as a mean number for every
five minutes. The automatic results compared to the ground truth (manually
annotated data) are shown in figure 4.5 with black and red.

Calculating the error of the automatic system, sampled with 30 fps, for each
five minutes period gives an average error of 20.5 %. Comparing the green line
to the black line shows that in 4 out of 6 periods the automatic results with
different sample rates are nearly the same, while for the last two periods the
difference is about 0.5 person. From this it is concluded that even with a sample
rate decreased to 0.04 fps the results will still be reliable.
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Fig. 4.5: Manual (red) and automatic (black) result for six five minutes periods, sampled
with 30 frames per second, and automatic results (green) sampled with 0.04 frames per
second.

4.4.4 Two days test
For the 36 hours, sampled with 1 frame per 25 seconds, a mean error is found
for every five minutes, and stated as a mean error for each hour, since the
activities in the arena are typically the same for at least an hour. This method
is used for both the error measured in persons and per cent. The hours are
then categorised by the maximum number of people, to investigate the relation
between the error and the number of persons. See the results in table 4.1.

# persons # hours Mean error Mean error (%)
0 12 0.0017 0.17 %
1-2 15 0.0428 7.35 %
7-15 9 0.5100 11.76 %

Table 4.1: Error categorised by the maximum number of people during the hour.

For the nine hours with maximum 7-15 persons on the court the error for
each hour lies from 4-20 %, with an average of 11.76 % as stated in table 4.1.
It is clear that the error for detecting empty arenas is very low, and the error
increases with the number of persons. This will typically be due to occlusions.
As mentioned in section 4.3.1 the occupancy level should be categorised to
zero, some or many users, which means that the precise number of people is
not critical for this application.

The 30 minutes test described in section 4.4.3 showed an error of 20.5 %,
which is equivalent to the maximum error found during this two day test. The
video of 30 minutes had a high activity level and a highly varying number of
people on the court, with up to 14 people in each frame. Therefore it is also
expected that it should have a higher error than the average videos.
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4.4.5 Evaluation of positions
The calculated positions of the persons will be evaluated by visually comparing
the manually marked positions with the automatic found positions. This is
done for the 36 hours sampled with 1 frame per 25 seconds. An example of
one hour showing a handball match can be seen in figure 4.6. The upper image
shows the positions found by the system and the lower image shows the true
position found manually for the same period. There are found more people
manually than automatic during this hour, resulting in darker colours in the
bottom image, but it is evident that there is a high correlation between the
two images and the overall picture is the same. Note that the camera could
only see the left half of the court.

(a) (b)

Fig. 4.6: Positions of users during a handball match. Left: Automatic. Right: Ground
truth. Note that there are found more people manually than automatic, resulting in darker
colours in the bottom image.

As mentioned in section 4.1 the position should be used to examine whether
the entire court is being used or only part of it. Therefore the main point in
evaluating the found positions is not to examine the position of each person,
but to ensure that the overall picture of the occupancy during a booking is
correct. This correlation between automatic and manually found positions is
found to be very high for all 36 hours.

4.4.6 One week evaluation
The main objective for this system is to analyse the use of the sports arenas.
Most sports arenas in Denmark have a booking system, where the local schools
and sports clubs book their hours in the arena. To evaluate the use of the arenas
the bookings should be considered. Seven consecutive days in one sports arena
has been chosen, and the use is here measured as a mean number of persons per
hour. The number is categorised as zero, some or many persons to describe the
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level of occupancy. Table 4.1 showed that the precision of the system depends
on the number of persons, the error increases when the number increases. As
the error is very low for detecting empty arenas and few people on the court,
the error of the exact number will not have a visible effect on the categorisation.

Finally the utilisation is compared to the booking as shown in figure 4.7.
White areas are not booked, red areas are booked but never used, orange areas
are booked and used by two or less persons in average, the green area are
booked and used by more than two persons in average while the blue areas are
used by more than two persons, but not booked. During this test a frame rate
of 1 fps has been used.

Fig. 4.7: Table of utilisation compared to the booking. White areas are not booked, red
areas are booked but never used, orange areas are booked and used by two or less persons
in average, green areas are booked and used by more than two persons in average and blue
areas are used by more than two persons, but not booked.

Figure 4.7 indicates that during the measured seven days 21.2 % of the
booked hours are not used, while 23.4 % are used by an average of two or less
persons, which either means that the arena has only been used for a very short
period of the hour, or there have been only one or two people at the court.
One hour are used but not booked, which could also be a problem, depending
on the policy for the administration of the arena.

4.5 Conclusion
This work presented an approach for automatic detection of persons using
thermal cameras. For the intended application in sports arenas the privacy
issue is important, therefore a thermal camera is chosen.

The system shows very satisfactory results, with only a short initialisation
it works independently of the changing conditions in different arenas. The
system can easily distinguish between an empty arena, few or many people.
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The work will continue with further tests of the system and work on improving
the segmentation of people. This could be by including temporal information
or by using a more detailed human template for comparison with the found
regions. For future work there are a lot of possibilities for developing new
features, including analysis of the activity level, activity type and user type.
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Abstract
This paper presents a robust occupancy analysis system for thermal imaging.
Reliable detection of people is very hard in crowded scenes, due to occlusions
and segmentation problems. We therefore propose a framework that optimises
the occupancy analysis over long periods by including information on the tran-
sition in occupancy, when people enter or leave the monitored area. In stable
periods, with no activity close to the borders, people are detected and counted
which contributes to a weighted histogram. When activity close to the border is
detected, local tracking is applied in order to identify a crossing. After a full
sequence, the number of people during all periods are estimated using a prob-
abilistic graph search optimisation. The system is tested on a total of 51,000
frames, captured in sports arenas. The mean error for a 30-minute period con-
taining 3-13 people is 4.44 %, which is a half of the error percentage optained by
detection only, and better than the results of comparable work. The framework
is also tested on a public available dataset from an outdoor scene, which proves
the generality of the method.

5.1 Introduction
Measuring the occupancy maps from people has become an essential step to-
wards an intelligent and efficient society [1, 2]. A well-known example of this
is that the whereabouts of people in shopping malls provides valuable informa-
tion for the managers. The same goes for sports arenas. These facilities are
in high demand, but very expensive to build, so focus of the political systems
has shifted towards optimising the use of the existing arenas. The first step
in this analysis is to monitor the occupancy of such facilities. As this analysis
should run for several weeks in each arena, manual observations would be ex-
pensive and cumbersome, and an automatic system based on computer vision is
therefore suggested. While RGB-based systems are normally used in previous
research in sports analysis [3–6], a general public acceptance of more permanent
installations in such facilities are harder to come by due to privacy issues. We
therefore apply thermal imagery, which captures the infrared radiation instead
of visible light, and creates an image whose pixel values represent temperature.
People can not be identified in thermal images, thereby eliminating the privacy
issues. A positive side effect of thermal imaging is that detection can often
be reduced to a trivial task. However, thermal imaging also introduces new
problems, as people are often fragmented into small parts, and reflections can
be seen in the floor. Moreover, the challenges of occlusions remain in thermal
images, see figure 5.1.

The contribution of this work is a reliable method for occupancy analysis in
thermal video. The method does not assume a perfect detection in each frame,
but handles the detection challenges by including temporal information. The
main focus is not short lab sequences, but rather long, real-life sequences. Here
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Fig. 5.1: Examples of the challenges for detection of people.

we use data from sports arenas, which are very challenging, due to the natural
physical interaction in sport.
The main idea is to split the video sequences into two types of periods. The
first type is the stable periods, where no people exit or enter the court. In
these periods, the number of people on the court must be the same, which in
turn introduces a constraint on the problem. The second type defines unstable
periods, where the occupancy is likely to change. Combining these two types
of information to model the periods and transitions between them provides a
unified framework to optimise over a long period of time.

5.1.1 Thermal radiation
Thermal imaging is still a relatively new modality in computer vision applica-
tions, and the theory behind it is relatively unknown in the computer vision
society. This section will therefore provide information on the physical foun-
dation of thermal radiation and cameras.
All objects with a temperature above the absolute zero emit infrared radia-
tion, mainly in the mid-wavelength infrared spectrum (MWIR, 3-5 µm) and
long-wavelength infrared spectrum (LWIR, 8-15 µm). This is often referred
to as thermal radiation. The intensity of the radiation from an object with
temperature T is described by Planck’s Law as a function of the wavelength λ:

I(λ, T ) = 2πhc2

λ5
(
ehc/λkBT − 1

) (5.1)

where h is Planck’s constant (6.626×10−34Js), c the speed of light (299, 792, 458m/s)
and kB Boltzmann’s constant (1.3806503× 10−23J/K). From this expression,
it can be seen that the intensity peak shifts to shorter wavelenghts as the tem-
perature increases. For extremely hot objects, the radiation extends into the
visible spectrum.
The thermal radiation originates from energy in the molecules of an object.
The energy can be expressed as a sum of four contributions [7]:

E = Eelectronic + Evibration + Erotation + Etranslation (5.2)

Only the energy caused by translation, rotation and vibration in a molecule
contributes to the temperature of an object.



5.1. Introduction 91

It is well-known from quantum physics, that visible light consists of photons
that causes electron transitions when they are absorbed or emitted from a
molecule. The same principle applies to infrared light, with the difference that
the photons contain less energy and cause transitions in the vibrational and
rotational energy levels instead. The electromagnetic radiation can be absorbed
or emitted by the molecule, then the incident radiation causes the molecule to
rise to an excited energy state, and when it falls back to ground state a photon
is released. Only photons with specific energies, equal to the difference between
two energy states, can be absorbed and emitted.
If more radiation is absorbed than emitted, the temperature of the molecule
will rise until equilibrium is re-established. Likewise, the temperature will fall
if more radiation is emitted than absorbed, until equilibrium is re-established.

5.1.2 Thermal cameras
Generally two types of detectors exist for thermal cameras: photon detectors
and thermal detectors. Photon detectors convert the absorbed electromagnetic
radiation directly into a change of the electronic energy distribution in a semi-
conductor by the change of the free charge carrier concentration. This type of
detector typically works in the MWIR spectrum, where the thermal contrast
is high, making it very sensitive to small differences in the scene temperature.
The main drawback is the need for cooling of the detector, making it more
expensive and with a higher need for maintenance. The thermal detector con-
verts the absorbed electromagnetic radiation into thermal energy causing a rise
in the detector temperature. Then, the electrical output of the thermal sensor
is produced by a corresponding change in some physical property of material,
e.g., the temperature-dependent electrical resistance in a bolometer. This type
of detector measures radiation in the LWIR spectrum. They are uncooled and
have been developed with two different types of sensors: ferroelectric detectors
and microbolometers, where today the microbolometer has shown to have more
advantages.

5.1.3 Related work
Detection of people is the first step in many applications, e.g. surveillance,
tracking, or activity analysis. General purpose detection systems should be
robust and independent of the environment. The thermal cameras can here
often be a better choice than a normal visual camera.
The methods applied to thermal imaging span from simple thresholding and
shape analysis [8–12] to more complex, but well-known methods such as HOG
and SVM [13–17] as well as contour analysis [18–21]. Using simple methods
allows for fast real-time processing, and combined with the illumination inde-
pendency, the thermal sensor is very well suited for detecting humans in real-life
applications.
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An obvious application area for thermal imaging is pedestrian detection sys-
tems for vehicles, due to the cameras’ ability to "see" during the night. These
systems are being developed both as assistance for drivers in low visibility, and
as a navigation tool for the future automatic vehicles. One of the car-based
detection systems is proposed in [22], where they present a tracking system for
pedestrians. It works well with both still and moving vehicles, but some prob-
lems still remain when a pedestrian enters the scene running. [23] proposes a
shape-independent pedestrian detection method. Using a thermal sensor with
low spatial resolution, [24] builds a robust pedestrian detector by combining
three different methods. [25] also proposes a low resolution system for pedes-
trian detection from vehicles. [26] proposes a pedestrian detection system that
detects people based on their temperature and dimensions, and tracks them
using a Kalman filter. In [27] a stereo-vision system has been tested, detecting
warm areas and classifying if they are humans, based on distance estimation,
size, aspect ratio, and head shape localisation.
A more general interest in pedestrian detection based on thermal imaging can
also be seen in surveillance or for analysis of pedestrian flow in cities. A gen-
eral purpose pedestrian detection system is proposed in [28]. The foreground
is separated from the background, after that shape cues are used to eliminate
non-pedestrian objects and appearance cues help to locate the exact position of
pedestrians. A tracking algorithm is also implemented. [29] uses probabilistic
template models of four different poses for detection. [30] also uses probabilistic
template models, here they use three models representing different scales. [31]
uses a statistical approach for head detection as the first step in the pedestrian
detection.
The previously described methods use thermal sensors only. Combining differ-
ent types of sensors could, however, eliminate some of the disadvantages from
both sensors. Examples of systems combining thermal and RGB cameras are
given by Davis et al. [19, 32] and Leykin et al. [33, 34]. Other sensors like
laser scanners and near-infrared cameras, have also been combined with ther-
mal sensors [35, 36].
Due to privacy issues, this work will concentrate on thermal cameras only. We
will also take advantage of the easy foreground segmentation, but as shown in
figure 5.1, challenges still remain. As opposed to most existing work, it will be
tested on long sequences of real data with high complexity.

5.2 Approach
As described in the introduction, precisely counting people in single frames
can be a nearly impossible task, due to occlusions and segmentation errors.
Therefore, it is suggested to include temporal information, and estimate the
occupancy over longer periods. The idea is to automatically split a video se-
quence into stable periods, with no activities near the border of the court, and
transition periods with activity near the border. During the stable periods, the
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detected number of people in each frame contributes to a distribution of obser-
vations for that period. For the transition periods, local tracking of the blobs
in the border area is applied, in order to estimate the likelihood of crossings.
The two types of data and their uncertainties are combined in a graph, where
the nodes represent the number of people, and the edges represent the change
in number between two periods. A dynamic programming approach is applied
to find the optimal path of the graph.
The remaining part of section 5.2 describes the details of the people detection
and the monitoring of transitions. In section 5.3 the graph optimisation is de-
scribed, and in section 5.4 the system is evaluated. The conclusion is found in
section 5.5.

5.2.1 People detection
The first step towards detecting people is to separate foreground from back-
ground. Using thermal imagery in an indoor environment simplifies this task,
as the surrounding temperature is normally stable and colder than the human
temperature. There can, however, be observed warm spots, e.g, from heaters,
hot water pipes, and doors or windows heated by the sun. A background sub-
traction method is used to remove static objects from the foreground. Since the
image depicts the temperature of an indoor scene, it can be assumed that only
slow changes will occur in the background. Therefore, the background image
simply consists of the average of the previous n frames, but only pixels that
are classified as background will contribute to the new background estimate.
Even though the foreground is now found, pixel noise should be removed. More-
over, due to the camera having automatic gain adjustment, the level of pixel
values can suddenly change, without any temperature changes in the scene. To
overcome these challenges, an automatic threshold method based on maximum
entropy is used to calculate the threshold value for each frame [37]. From this
point the image is binary, and all blobs found are considered potential persons.
The next part, section 5.2.2 and 5.2.3 will deal with the splitting and sorting
of blobs into single persons.

5.2.2 Groupings
Since a side-view of the scene is obtained, see section 5.4.1, it is necessary to be
able to handle occlusions. Generally, two types of occlusions are seen: people
standing behind each other, seen from the camera’s point of view ("tall blobs")
and people standing close together in a group ("wide blobs").

Split tall blobs

In order to split people that form one blob by standing behind each other, it
must be detected when the blob is too tall to contain only one person. We
here adapt the method from [9]. If the blob has a pixel height that corresponds
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to more than a maximum height at the given position, see section 5.4.1, the
algorithm should try to split the blob horizontally. The point to split from is
found by analysing the convex hull and finding the convexity defects of the blob.
Of all the defect points, the point with the largest depth and a given maximum
absolute gradient should be selected, meaning that only defects coming from
the side will be considered, discarding e.g. a point between the legs. See
examples in figure 5.2.

Split wide blobs

People standing close to each other, e.g., in a group, will often be found as
one large blob. To identify which blobs contain more than one person, the
height/width ratio and the perimeter are considered, as done in [9]. If the
criteria are satisfied, the algorithm should try to split the blob. For this type
of occlusion, it is often possible to see the head of each person, and split the
blob based on the head positions. Since the head is more narrow than the body,
people can be separated by splitting vertically from the minimum points of the
upper edge of a blob. These points can be found by analysing the convex hull
and finding the convexity defects of the blob. See examples in figure 5.2.

Fig. 5.2: Examples of wide and tall blobs that have been split.

5.2.3 Sorting people candidates
In addition to occlusions, other problems like reflections from people in the
floor, or one person split into many blobs can be observed. This means that
blobs can not always be mapped into individual people. In order to solve these
challenges, the idea of generating a probabilistic occupancy map [38, 39] is
adapted to find the probability that a person is observed at a given location.
The original ideas were applied for multi-camera tracking, where it is possible to
observe the 3D location of the scene. For this work, part of the idea is adapted
to work on binary objects, captured from a single view. The algorithm will take
all the bottom points of the blobs as person location candidates, and calculate
the probability for each of them being a true position. A rectangle is generated
from each candidate point, with a height corresponding to a given average
height of people and the width being one third of the height. Two parameters
are used for evaluating the probability of the rectangle containing a person:
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the ratio of white pixels inside the rectangle and the ratio of the rectangle
perimeter that is white. Figure 5.3 shows two histograms of the ratio of white
pixels inside the rectangles for true candidates (blue) and false candidates (red).
The histograms are built from manual annotation of 340 positive samples and
250 negative samples.

Fig. 5.3: Histograms of the percentage of white pixels in each candidate rectangle. The
blue histogram is for true candidates and red is for false candidates. No samples are found
above 70 %.

From figure 5.3 it is seen that only 1 % of the true candidates have a white
ratio less than 25 %, while a large part of the false candidates are found here,
and no true candidates are above 70 %.
For the rectangle perimeter it is found that the lower the ratio of the rectangle
perimeter that is white, the better is the fit of the rectangle to the person.
The weighting of a person, wp(i), is described in equation 5.3 from the ratio of
white pixels in the rectangle, rr, and the ratio of white pixels on the perimeter,
rp:

wp(i) =


0, ifrp > 50% ‖ rr < 20%
0.8, ifrr > 70%
0.9, ifrr < 30% ‖ rr > 60%
1, otherwise

(5.3)

Candidates with wp(i) = 0 are deleted.
There are still a lot of false candidates that will not be affected by these criteria.
Many of them contain part of a person, and overlap in the image with a true
candidate. Due to the possibility of several candidates belonging to the same
person, the overlapping rectangles must be considered. By tests from different
locations and different camera placements, it is found that if two rectangles
overlap by more than 60 %, they probably originate from the same person,
or from reflections of that person. As only one position should be accepted
per person, only one of the overlapping rectangles should be chosen. Due to
low resolution images compared to the scene depth, cluttered scenes, and no
restrictions on the posture of a person, the feet of a person can not be recognised
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from the blobs. Furthermore, due to the possibility of reflections below a person
in the image, it can not be assumed that the feet are the lowest point of the
overlapping candidates. Instead, the best candidate will be selected on the
highest ratio of white pixels, as it is seen from figure 5.3, that the probability
of false candidates are lower here.

5.2.4 Identification of people entering and leaving
During the periods with activities detected at the border of the court, it is
very likely that a change will happen. For these periods, the people near the
border are monitored in order to detect crossings. The people are detected
as described in section 5.2.3, but will not be counted during these unstable
periods. Instead, the position of each person near the border is tracked, and
if the border is crossed, it is registered along with the direction. Until a new
stable period is observed, the number of people entering or leaving the court
will contribute to the total transition in number.

5.3 Graph search optimisation
Two types of data exist now, the number of detected persons during the stable
periods, and the number of entering or leaving persons during periods with
activity at the border. The last step is now to combine these estimates in a
graph for the total observed period and estimate the most probable number
during all periods. The graph will consist of nodes, representing the number
of people in the stable periods and edges, representing the change in number
between two periods. Figure 5.4 is a simple example of a graph with three
stable periods. Edges exist between all nodes in two consecutive periods, but
to simplify the illustration they are not drawn.

Stable period 1 Stable period 2 Stable period 3

Border activity 1 Border activity 2

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

Fig. 5.4: Example of a simple graph. Dark nodes and edges have the highest weight. Edges
exist between all nodes in two consecutive periods, but to simplify the illustration they are
not drawn.

A dynamic programming approach is taken to calculate the optimal path.
The problem is solved by a version of Dijkstra’s Algorithm modified to calculate
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the path with the highest votes, instead of the traditional minimum cost. The
probabilistic weighting of nodes and edges will be described in the next section.

5.3.1 Weighting
Each node and edge must be weighted in order to calculate the best path. We
define the weights as positive, meaning that a higher weight is a better path.
As described, each node in the graph represents a possible number of persons in
a given period. The weights for the nodes will be distributed according to the
weighted histogram of the number of detected people in all frames during the
stable period. The histogram is constructed from the detected people in each
frame, with a weight describing the probability of each detection being true,
and a weight describing the uncertainty of the frame, caused by occlusions and
clutter. Each frame counting is weighted like this:

wf = α ·
n∏
i=1

wp(i) + β · ws (5.4)

where n is the number of people, wp(i) is the probability of people i being
a true detection (see equation 5.3), and ws is a weight that decreases with
the number of splits performed (described in section 5.2.2), indicating how
cluttered the scene is. α and β are the weighting of each part and should sum
to one. The observed number in a frame will be added to the histogram with
the weight wf , and after a stable period has ended, the histogram will be scaled
to an accumulated sum of 1. The circles in figure 5.4 illustrate the weighted
histogram for each period.
The weighting of edges depends on the total number of crossings during the
period of border activity, as well as the weighting of the individual people
crossing the border. The probability of change x in number of people (+n for
people entering the court and −n for people leaving) is modelled as a Gaussian
distribution, with the mean value µ being the calculated number, and the
variance σ proportional to the total number of crossings. The probability is
described as wb(x):

wb(x) = 1
σ
√

2π
e

(
− (x−µ)2

2σ2

)
× wp (5.5)

wp = 1
m

m∑
i=1

wp(i) (5.6)

wherem is the number of people crossing the border. Each dashed line in figure
5.4 illustrates the edges weighted with wb(x). In the example the variance σ
is high for the first period of border activity and low for the second period of
border activity.
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5.4 Experimental results

Fig. 5.5: Example of the thermal image, with the outline of the court drawn as a red line.

Comparing our results with others is difficult, because as far as we know,
only [9] has focused on occupancy analysis of thermal video. We therefore
compare our work to related work based on RGB cameras. Moreover, no public
datasets with long thermal videos containing more than a few people exist.
We therefore capture a new dataset, that will be available for download after
publication 1. The data contained in this video is from six different arenas, in
order to be able test the robustness of the algorithms in different environments
and set-ups. Several different activities are captured as well as both children
and adults. We test on a 5-minute sequence from each of the five arenas for the
evaluation of the detection algorithm and the tracking algorithm for the border
areas. The full system with graph search optimisation should benefit from a
longer video sequence, and will therefore be tested on a 30 minute video from
a sixth arena. Thereby, the system has been tested on a total of 51,000 frames,
which are manually annotated to provide ground truth. This data contains
between 3-16 people in each frame. The processing time is approximately
0.125 seconds per frame on an Intel Core 2 Duo 3 GHz CPU, without any
optimisation of the software.
To prove the generality of our framework, a final test has also been conducted
on a public dataset of a totally different scenario, which is an outdoor scene
from the OSU Color/Thermal database [32]. This test will be described in
section 5.4.5.
The remaining part of this section will describe the calibration and initialisation
needed for the system, before results for each test are presented.

5.4.1 Camera calibration and initialisation
Installing a camera in the ceiling above most courts is very cumbersome and
expensive and therefore not realistic in general. Therefore, it must be installed
on one of the walls or rafters around the court. A standard arena has a court of
40 × 20 metres, corresponding to a handball field, indoor soccer field, etc. As
the lenses of commercial thermal cameras today have a maximum field-of-view

1Available for download at www.vap.aau.dk
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of around 60◦, more than one camera must be used to cover the entire court.
The camera set-up used in this work consists of three thermal cameras placed at
the same location, and adjusted to have adjacent fields-of-view. Each camera is
of the type Axis Q1922, which uses an uncooled microbolometer for detection.
The resolution is 640 × 480 pixels per camera and the horizontal field-of-view
is 57◦ per camera. To make the system invariant to the cameras’ set-up, the
images are stitched together before processing. This requires the cameras to
be perfectly aligned and undistorted in order to secure smooth “crossings”
between two cameras. Calibration of thermal cameras is not a trivial task,
as they can not see the contrast differences of a typical chessboard used in
most applications. Therefore, a special calibration board is made with 5x4
small incandescent light bulbs. With this it is possible to adapt the traditional
method to estimate the intrinsic parameters of the cameras. The cameras are
manually aligned horizontally so that their pitch and roll are the same. This
mimics the well-known panorama effect, but with three cameras capturing at
the same time. An example of the resulting image is shown in figure 5.5. When
the cameras are put up in an arena, an initialisation is made. This consists of
finding the mapping between image and world coordinates, as well as finding
the correlation between peoples’ real height and their height in the images,
corresponding to their distance to the camera.
As the cameras are fixed relative to each other and then tilted downwards
when recording in arenas, the result is that people in the image are more tilted
the further they get from the image centre along the x-axis. This means that
a person’s pixel height can not always be measured vertically in the image.
Therefore, the calibration must include both the height and the angle of a
person standing upright at predefined positions on the court. For this work
we used points on a grid of 5 × 5 metres on the court resulting in 45 different
calibration images. In each image the world coordinates, image coordinates,
pixel height and angle are learned as well as the person’s real height in metres.
The four corners are used to calculate a homography for each square, making it
possible to map image coordinates to world coordinates. Using interpolation,
an angle and maximum height are calculated for each position.

5.4.2 Detection of people
The first test evaluates the detection algorithm described in section 5.2.1. The
number of detected people is registered as well as the manually counted number.
This is done for 5 videos of 5 minutes each, captured with 10 fps, altogether
15,000 frames.
The mean error for each video is found to be between 8.5 % and 22.0 %. The
errors are independent of the arena and seems primarily to depend on the level
of occlusions seen in the scene. Periods with large groupings have a higher
detection error than periods with people separated from each other. This is
also expected, as the detection algorithm works on each frame independently,
and people that are fully or mostly occluded can not be detected. Apart from
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the initialisation described in section 5.4.1, nothing has been done to fit the
system to the specific arena, and it is concluded that it is independent of the
arena.

5.4.3 Transition recognition
For the five videos of five minutes, it is registered each time a person crosses
a specified border in order to evaluate the tracking algorithm. A total of 154
crossings are detected manually, and 168 crossings are detected automatically.
108 of the crossing are detected at the exact time, which is considered within
± 2 frames of the manual detection. Most of the false crossings detected are
compensated with a crossing in the opposite direction within a few frames.
These will therefore not affect the global estimation of the number.

5.4.4 Full system test
The full system is tested on a 30 minute video, captured with 20 fps. Calculat-
ing the error for each frame gives an average error of 0.38 persons, corresponding
to 4.44 %. For comparison, the result using detection only is also found, the
error here is twice as high, 8.87 %. The number of detections is very unstable,
and could suggest to do a simple low pass filtering, to overcome what looks
like high frequency noise in the measurements. Low pass filtering the detection
data reduces the error to 7.70 %. This indicates that a simple filtering of the
data will not reduce the error as efficiently as the graph optimisation method.
In table 5.1 our results are compared to related work, based on both thermal
and RGB images.

Reported error
Gade et al. [9] 7.35-11.76 %
Rabaud and Belongie [40] * 6.3-10 %
Hou and Pang [41] * 10 %
Celik et al [42] */** 8 - 14 %
Our method 4.44 %

Table 5.1: Reported error percentage from related work compared to our result. * uses
RGB images. ** calculates the error as percentage of frames with an error larger than one
person.

5.4.5 Test on OSU dataset
To show the generality of our framework, we tested the system on the thermal
video from the OSU Color-Thermal database [32], which is dataset three from
the OTCBVS Benchmark Dataset Collection. We used sequences 4, 5 and 6,
which are videos of approximately one minute each. They contain between zero
and four people in each frame. Due to the low number of people in this dataset,
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instead of error we calculated the precision, being the number of frames with
the correct number of people estimated. The results are presented in table 5.2
and compared to the results of detection alone, as well as the results of [43],
which were provided with the dataset. However, it should be noted that the
results of [43] are obtained by fusing the thermal and visible modalities and
are intended for people tracking.

Seq. 4 Seq. 5 Seq. 6
Detection only 86.72 % 83.11 % 77.72 %
Leykin et al. [43] 85.52 % 88.77 % 64.89 %
Our full method 87.12 % 93.70 % 87.89 %

Table 5.2: Counting precision on the OSU dataset.

It is seen that the results of our full method are better than both the results
from [43] and from detection alone.

5.5 Conclusion
In this work we have presented a unified framework for occupancy analysis.
This method includes temporal information in the estimation by measuring
the transition in numbers, and using that together with the detection of people
in the global optimisation. The application of this work is the analysis of a
given facility over days, weeks or even months. The need for real-time analysis
is minor, and offline processing therefore allows for a more global approach. The
main focus was on sports arenas, but we also proved that it works well in a
general outdoor scene. We have shown that including the transition information
improves the precision significantly, compared to using detection alone; even if
the detection results are filtered afterwards. The mean error for the 30-minute
test is 4.44 %, compared to 8.87 % if only the detection method was used.
The occupancy analysis is the foundation in many applications and can be
continued to further activity analysis.
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After estimating the occupancy of a sports facility the questions "Are there
anybody there?" and "How many are they?" can now be answered. For the
next step towards a thorough understanding of how the facility is used, we ask
the question "What are they doing?".

Indoor sports facilities belonging to schools or municipalities host a wide
variety of activities for all age groups. Users include schools and local clubs from
introductory level to semi-professionals. With a high number of different users
in these arenas, the knowledge about their activities is often sparse, and manual
observation or labelling of video data is very time consuming and expensive.
In this work we take the first step towards a full analysis of the activities by
automatically recognising a number of defined sports types observed in the
arena.

The two chapters in this part of the thesis present two different methods for
classification of sports types, which were originally published in a book chapter
and a workshop paper:

Rikke Gade and Thomas B. Moeslund, “Classification of Sports Types using
Thermal Imagery,” Computer Vision in Sports, Springer, January 2015.

Rikke Gade and Thomas B. Moeslund, “Classification of Sports Types from
Tracklets,” KDD workshop on Large-Scale Sports Analytics, August 2014.





Chapter 6

Classification of Sports Types using Thermal Imagery

Rikke Gade and Thomas B. Moeslund

The paper is to be published in
Computer Vision in Sports, January 2015.



c© 2015 Springer
The layout has been revised.
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Abstract
In this chapter we propose a method for automatic classification of five different
sports types. The approach is based only on occupancy heatmaps produced from
position data and is very robust to detection noise. To overcome any privacy
issues when capturing video in public sports arenas we use thermal imaging
only. This image modality also facilitates an easier detection of humans, the
detection algorithm is based on automatic thresholding of the image. After
a few occlusion handling procedures, the positions of people on the court are
calculated using homography. Heatmaps are produced by summarising Gaussian
distributions representing people over 10-minute periods. Before classification
the heatmaps are projected to a low-dimensional discriminative space using the
principle of Fisherfaces. We test our approach on two weeks of video and get
very promising results with a correct classification of 89.64 %. In addition, we
get correct classification on a publicly available handball dataset.

6.1 Introduction
In most societies, sport is highly supported by both governments and private
foundations, as physical activity is considered a good way to obtain better
health among the general population. The amount of money invested in sports
facilities alone every year is huge, not only for new constructions, but also for
maintenance of existing facilities. In order to know how the money is best
spent, it is important to thoroughly analyse the use of the facilities. Such
analyses should include information on how many people are present at any
times, where they are, and what they are doing. The first two issues are the
subjects of two recent papers by Gade et al. [1, 2].

In this chapter we will present a new method for automatic classification of
sports types. We focus on the activities observed in public indoor sports arenas.
In these arenas many types of activities take place, from physical education in
schools, to elite training of a particular sport. For the administrators as well as
the financial supporters of the arenas it is important to gain knowledge of how
the arenas are used, and use that information for future planning and decisions
on the lay-out of new arenas. In a future perspective it could also be of great
value for the coaches and managers of a sports team to be able to automatically
analyse when and where the certain activities are performed by the team.

Our goal for this work is to recognise five common sports types observed in
an indoor arena; badminton, basketball, indoor soccer, handball, and volleyball.
To overcome any privacy issues we apply thermal imaging, which produces
images where pixel values represent the observed temperature. Thereby it is
possible to detect people without identification. Figure 6.1 is an example of a
thermal image from a sports arena.

Our hypothesis is that it is possible to classify five different sports types
using a global approach based on position data only.
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Fig. 6.1: Example of an input image.

6.2 Related work
Computer aided sports analysis has become a very popular tool, particularly
in team sports, since some of the first systems were developed in the 1980’s [3].
Today the computer vision community works on a large variety of automatic
solutions to replace manual tracking systems. Many works have already focused
on automatic tracking of sports players [4]. These systems are typically used for
game statistics and evaluation of individual performances. For game analysis
purposes, automatic detection of play types or special team activities in a game
is also an area of interest. With applications mainly in football, offensive play
strategies are tried classified based on player trajectories [5–7]. However, in
situations with a high degree of interaction between people, like most types
of sport, tracking is still an unsolved problem. Many classification systems
therefore rely on manually annotated trajectories, in order to avoid noisy data.
The work of Bialkowski et al. [8] on recognising team activities in field hockey
games is related to this work in the way that they use only position data. Their
approach is robust to noisy data and they test two different representations;
team occupancy maps using different quantisation, and team centroids.

No previous work on recognising sports types has been based on thermal
imaging. All existing works use visual cameras and a few include audio as
well. For features, some works use edges that represent court lines and players.
The sports categories can then be classified by edge directions, intensity, or
ratio [9, 10]. Also based on the visual appearance of the court is a method
that uses the dominating colours of the image as features [11]. The dominant
colour can also be combined with motion features [12–14] or combined with
dominant grey level, cut rate and motion rate [15]. From the visual image
SURF features [16] and autocorrelograms [17] can be extracted and used for
classification. A combination of colour, edges, shape and texture has also been
proposed by using six of the MPEG-7 descriptors [18]. One method is based
only on location data and classifies sports categories by short trajectories [19].

After feature extraction the classification methods are based on well-known
methods, such as k-means and Expectation Maximization for clustering, and
decision trees, SVM, Hidden Markov models, Neural Network and Naive Bayesian
for classification.
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As described here, most existing works are based on colour imaging, and
many of them rely on the dominant colour of the fields as well as detection
of court lines. These methods presume that each sports type is performed
on a court designed mainly for one specific sport. In our work we aim to
distinguish different sports types performed in the same arena, meaning that
any information about the environment is not useful. Furthermore, due to
privacy issues, we have chosen to use thermal imaging, which provides heat
information only. Figure 6.1 shows an example of the thermal image, which is
combined from three cameras in order to cover the full court.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6.2: Signature heatmaps of (a) handball, (b) badminton, (c) soccer, (d) basketball, (e)
volleyball (three courts), (f) volleyball (one court), (g) miscellaneous, (h) miscellaneous.

This work is based on occupancy heatmaps, which are summations of the
registered positions of people over a given time span. It is believed that a
heatmap for one sports type is unique among a limited number of sports types.
This approach is also robust to noisy data, due to the summations over time.
Figure 6.2 shows examples of signature heatmaps, which are typical heatmaps
for each sports type. Two heatmaps of miscellaneous activities are also shown.
Each heatmap covers a 10-minute period.

The approach of this work is to detect individual people and use a homog-
raphy to calculate their position at the court. A summation of the positions
over time results in the occupancy heatmaps. These heatmaps will be classi-
fied after reducing the number of dimensions with PCA and Fisher’s Linear
Discriminant.
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6.3 Image acquisition
In order to detect individual people without occlusions, the ideal situation
would be to capture images of the scene directly from above. However, in-
stalling a camera in the ceiling above the court is generally very cumbersome
and expensive and therefore not realistic for temporary installations. Therefore,
it must be installed on one of the walls or rafters around the court. A standard
arena used in our experiments has a court size of 40×20 metres, corresponding
to a handball field, indoor soccer field, etc. As the lenses of commercial ther-
mal cameras today have a maximum field-of-view of around 60◦, more than
one camera must be used to cover the entire court. The camera set-up used
in this work consists of three thermal cameras placed at the same location in
order to limit the work load of the set-up. The cameras are adjusted to have
adjacent fields-of-view. This is illustrated in figure 6.3(a). Figure 6.3(b) shows
a picture of the camera box mounted in an arena.

(a) (b)

Fig. 6.3: (a) Illustration of the camera setup. (b) Image of the camera box mounted in an
arena.

Each camera is of the type Axis Q1922, which uses an uncooled microbolome-
ter for detection. The resolution is 640×480 pixels per camera and the horizon-
tal field-of-view is 57◦ per camera. This type of thermal camera is a passive sen-
sor which captures long-wavelength infrared radiation (8-15 µm), radiated by
all warm objects. The resulting image depicts the temperature of the scene [20].

To make the software system invariant to the cameras’ set-up, the images are
stitched together before processing. This requires the cameras to be perfectly
aligned and undistorted in order to secure smooth “crossings” between two
cameras. For calibration of the thermal cameras a special calibration board is
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made, consisting of 5x4 small incandescent light bulbs. A thermal image of the
calibration board is shown in figure 6.4. With this board it is possible to adapt

Fig. 6.4: Calibration using a board with incandescent light bulbs.

the traditional methods for estimating the intrinsic parameters of the cameras.
The cameras are manually aligned horizontally so that their pitch and roll are
the same. The result mimics the well-known panorama effect, but with three
cameras capturing images simultaneously. An example of the resulting image
is shown in figure 6.1.

6.4 Detection
For temperature controlled indoor environments, such as sports arenas, it is
assumed that people are warmer than the surroundings. For thermal images
this implies that people can be segmented using only thresholding of the image.
Since the camera has automatic gain adjustment, the level of pixel values can
change, and a constant threshold value is therefore not suitable. Instead we use
an automatic threshold method. This method calculates the threshold value
that maximises the sum of the entropy [21]. After binarising the image, ideally
people are now white and everything else in the image is black. There are,
however, challenges to this assumption. Cold/wet clothes can result in parts of
people being segmented as background, meaning that one person is represented
by a number of unconnected blobs. Likewise, partial occlusions will challenge
the detection of individual people, as more than one person is represented in
one blob. Figure 6.5 shows some examples of the challenges after binarisation
of the thermal images.

The next two sections will present methods for reducing these problems.

6.4.1 Occlusion handling
Two cases of occlusions are handled; People standing behind each other seen
from the camera and people standing close to each other horizontally, e.g., in
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Fig. 6.5: Examples of thermal sub images and the resulting binary images.

a group. In the first case, the detected blobs will appear taller than an object
corresponding to one person. Maximum height of a person at each position
will be determined during the initialisation. If the blob exceeds the maximum
height, it should be split horizontally. Since one or more people are partly
occluded in these cases, it is not trivial to find the right place to split the blob.
However, we often observe some narrowing or gap in the blob contour near the
head of the person in front, which is generally the best point to split from.
This point is found by analysing the convex hull and finding the convexity
defects of the blob. Of all the defect points, the point with the largest depth
and a given maximum absolute gradient should be selected, meaning that only
defects coming from the side will be considered, discarding e.g. a point between
the legs. An example is shown in figure 6.6(a), where the convex hull is drawn
with green and the largest convexity defect is shown with red. From the defect
point the blob is split horizontally, shown with the blue dashed line.

In the second case, wide blobs containing two or more persons standing next
to each other must be identified. The height/width ratio and the perimeter are
here considered as done in [2]. If the criteria are satisfied, the algorithm should
try to split the blob. For this type of occlusion, it is often possible to see the
head of each person, and split the blob based on the head positions. Since the
head is narrower than the body, people can be separated by splitting vertically
from the minimum points of the upper edge of a blob. These points can be
found by analysing the convex hull and finding the convexity defects of the
blob as shown in figure 6.6(b). The convex hull is drawn with green, and the
convexity defect of interest is drawn with red. The convexity defect start and
end points, shown with red crosses, must both be above the defect point in the
image, therefore other defects are discarded. The split line is shown with the
blue dashed line.

More examples of blobs to be split are shown in figure 6.7(a) and 6.7(b).

6.4.2 Joining of blobs
Another challenge to the detection of individual people is separation of one
person into several blobs. This happens when part of the body has a lower
temperature, e.g., caused by loose, wet clothes or insulating layers of clothes.
In order to detect the correct position of a person, the bottom part of the
body must be identified. We adapt here the method presented in [1]. Each
detected blob is considered a person candidate, and the probability of being a
true person is tested. From the bottom position of the blob, a bounding box of
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(a) (b)

Fig. 6.6: Example of how to find the split location of tall or wide blobs.

the expected height of an average person and the width being one third of the
height is generated. The probability for the candidate being true depends on
the ratio of white pixels (r) in the rectangle. By tests it is found that most true
detections have a ratio between 30 % and 50 %, while less than 1 % of the true
detections lie below 20 % or above 70 %. We choose to discard all detections
below 20 % and assign a value between 0.8 and 1 to all other detections:

wp(i) =


0, if r < 20%
0.8, if r > 60%
0.9, if r < 30% ‖ 50 < r < 60%
1, otherwise

(6.1)

This approach will reduce the detections of small body parts, as well as
many non-human objects. But a lot of false candidates will still exist. Many of
them contain part of a person and overlap in the image with a true candidate.
Due to the possibility of several candidates belonging to the same person, the
overlapping rectangles must be considered. By tests from different locations
and different camera placements, it is found that if two rectangles overlap
by more than 60 %, they probably originate from the same person, or from
reflections of that person. As only one position should be accepted per person,
only one of the overlapping rectangles should be chosen. Due to low resolution
images compared to the scene depth, cluttered scenes, and no restrictions on
the posture of a person, the feet of a person can not be recognised from the
blobs. Furthermore, due to the possibility of reflections below a person in
the image, it can not be assumed that the feet are the lowest point of the
overlapping candidates. Instead, the best candidate will be selected on the
highest ratio of white pixels, as the probability of false candidates is lower
here. The probabilities assigned to the approved candidates will be used later,
when registering the positions of people.

Figure 6.7(c) shows three examples of blobs being joined to one detected
person.
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(a)

(b)

(c)

Fig. 6.7: Illustration of how blobs can be split or joined to single persons.

6.4.3 Region of interest
As spectators, coaches and other persons around the court are of no interest
in this work, the image must be cropped to the border of the court before pro-
cessing. Since each sports type has its own court dimensions, a single choice of
border is not feasible. Handball and soccer are played on a 40×20 metres court,
which is also the maximum court size in the observed arena. The volleyball
court is 18× 9 metres, plus a free zone around the court, which is minimum 3
metres wide, and the standard basketball court is 28×15 metres. Badminton is
played on up to six adjacent courts of 13.4× 6.1 metres. The court dimensions
and layout in relation to each other are illustrated in figure 6.8. On the arena
floor all court lines are drawn on top of each other, but here we have split it
into two drawings for better visibility. Note that volleyball can be played on
either three courts without free zones or on one court including the free zone.

During basketball and volleyball matches coaches and substitutes will be
sitting within the dimensions of the handball court, and would be unwanted
detections if we cropped only to the largest court dimensions. Considering the
illustrated court dimensions it is therefore decided to operate with two different
court sizes, 40× 20 metres and 28× 15 metres. In test cases it is of course not
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Fig. 6.8: The outlines of the different courts illustrated. Red: volleyball, blue: basketball,
purple: handball (and soccer), green: badminton. Drawn in two figures to increase the
visibility.

known which sport is performed and thereby not known which court size to
choose. Instead both options will be tried out for all data. The classification
process will be further described in section 6.5.

6.4.4 Occupancy heat maps
The position of each person is registered in image coordinates as the bottom
centre of the bounding box. The position then needs to be converted to world
coordinates using a homography. Since the input image is combined from three
cameras, each observing the left, middle or right part of the court, at least
one homography for each camera is needed to calculate the transformation.
This assumes that the cameras are perfectly rectified. For better precision, we
instead divide the court into 5×5 metres squares for each of which we calculate a
homography. The corresponding points in image and world coordinates for each
five metres in both x- and y-direction are found during an initialisation. This
initialisation must be performed one time for each set-up. In addition to finding
the mapping between image and world coordinates, we also find the correlation
between peoples’ real height and their height in the images, corresponding to
their distance to the camera. Furthermore, as the cameras are fixed relative to
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each other in one box and then tilted downwards when mounted in arenas, the
result is that people in the image are more tilted the further they get from the
image centre along the image x-axis. This means that a person’s pixel height
can not always be measured vertically in the image. Therefore, the calibration
must include the angle of a person standing upright at predefined positions on
the court.

Figure 6.9 illustrates the result of an initialisation procedure. For each
position in the 5×5 metres grids a person stands upright, while the image
coordinates of the feet and head are registered, resulting in a white line in the
image, which gives the angle and height of a person. The world coordinate of
the feet are also registered as well as the person’s real height in metres.

Fig. 6.9: Illustration of the initialisation process, each white line represents a standard
person at that position.

The four corner points of each square are used to calculate the homogra-
phies, making it possible to map all image coordinates to world coordinates.
Using interpolation from the corner points, an angle and maximum height are
calculated for each pixel.

When mapping the observations to a world-coordinate view of the court we
need to represent the physical area of a person. A standard person is chosen
to be represented by a 3-dimensional Gaussian distribution with a standard
height of 1, corresponding to 1 person, and a radius corresponding to 1 metre
for 95% of the volume. To take into account the uncertainty of the detections,
the height of Gaussian distributions will be scaled by the probability factor wp,
described in section 6.4.2.

Figure 6.10 shows an example of the occupancy calculated for a single frame.
Six people are detected with different certainty factors.

The final occupancy heatmaps, as shown in figure 6.2, are constructed by
adding up the Gaussians over time. The time span for each heatmap should
be long enough to cover a representative section of the games and still short
enough to avoid different activities to be mixed together. To decide on the time
span, a study has been conducted between 5-, 10-, 20- and 30-minutes periods.
An example of four heatmaps with the same end-time is shown in figure 6.11.

The comparison in figure 6.11 illustrates the situation where a handball
team starts with exercises and warm-up, before playing a short handball match.
The end-time for each heatmap is the same. The 30-minute period (figure
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Fig. 6.10: Occupancy for one single frame. Each person is represented as a Gaussian
distribution.

6.11(d)) is too long, the warm-up and game is mixed together such that no
activity is recognisable. Between the 5-, 10- and 20-minute periods the 10-
minute period (figure 6.11(b)) shows the most clear pattern. The same is
observed in comparisons for other sports activities, therefore it is chosen to let
each heatmap cover 10 minutes. We will shift the starting time 5 minutes each
time, so that the periods overlap and the resolution of classifications will be 5
minutes.

6.5 Classification
Each heatmap is an images with a resolution of 200×400 pixels, thus it can
be considered a sample in an 80,000-dimensional space. Principal Component
Analysis (PCA) is a well-known method for dimension reduction, but since it
uses non-labeled data and seeks the dimensions with largest variance between
all samples, there is a risk that the differences between classes are not conserved.
Fischer’s Linear Discriminant (FLD) seeks the directions that are efficient for
discrimination between classes [22]. However, using FLD introduces the small
sample size problem: In order to have a non-singular within-class scatter matrix
(SW ) it is necessary to have more samples than dimensions. As we have an
80,000-dimensional space, it is not realistic to have a sample size of n > 80,000.
In order to solve this problem we will adapt the idea of Fisherfaces for face
recognition [23]: First, project the sample vectors onto the PCA space of r
dimensions, with r ≤rank(SW ) and then compute the Fisherimage in this
PCA space.
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(a) (b)

(c) (d)

Fig. 6.11: Heatmaps with same end-time and different time span: (a) 5 minutes, (b) 10
minutes, (c) 20 minutes, (d) 30 minutes.

6.5.1 Dimensionality reduction
Dimensionality reduction based on PCA is performed by pooling all training
samples and calculating the directions with largest variance. The PCA will only
have as many non-zero eigenvalues as the number of samples minus one, which
will be significantly less than the original 80,000 dimensions. We choose to
reduce the space to the 20 dimensions with largest eigenvalues. Even though
this is a reduction by 4000 times in the number of dimensions 73 % of the
total variance is still preserved. All heatmaps are projected to the new 20-
dimensional space before further processing.

6.5.2 Fischer’s Linear Discriminant
The optimal projection of the data is found using Fisher’s Linear Discriminant,
such that the ratio of the between-class scatter SB and the within-class scatter
SW is maximised:

Wopt = argmax
W

∣∣WTSBW
∣∣

|WTSWW |
(6.2)

where Wopt is a matrix with orthonormal columns, consisting of the set of gen-
eralised eigenvectors of SB and SW corresponding to the m largest eigenvalues.
There are at most c−1 non-zero generalised eigenvalues, where c is the number
of classes.
The between-class scatter matrix SB and the within-class scatter matrix SW



6.6. Experiments 125

are defined as:

SB =
c∑
i=1

Ni(µi − µ)(µi − µ)T (6.3)

SW =
c∑
i=1

∑
xk∈XI

Ni(µi − µ)(µi − µ)T (6.4)

where µi is the mean image of class Xi, and Ni is the number of samples in
class Xi [23].

6.5.3 Final classification
In the training phase, all data is projected to the new space found by FLD, and
the mean coordinate for each class is calculated. When testing a new sample,
the sample to classify is projected to the same space, and the nearest class is
found using the Euclidean distance.

We use video from daily activities in a public sports arena, which includes a
lot of undefined activities. Besides the five traditional sports types we therefore
define a category of miscellaneous activities. This can include everything from
specific exercises and warm-up, to cleaning the floor and an empty arena. This
category will be trained as a class in the same way as each sports type. Since
miscellaneous contains very different heatmaps, it could be argued that this
class will end up as a mean image of all other classes. However, by treating it
as a class like the other sports types, the FLD will take care of projecting the
data to a space that, as far as possible, discriminates the classes.

We will use two different court dimensions for tests, as described in section
6.4. The final classification for each time span should therefore choose between
the classifications of these two heatmaps. If they agree on the same class, the
final classification is simply that class. If one heatmap is classified as a sports
type, while the other is classified as miscellaneous, the final classification will
choose the regular sports type, as it is assumed that it found the correct court
size. If the heatmaps are classified as different sports types, the sample with
shortest distance to the class mean will decide the classification.

6.6 Experiments
19 days of data has been captured in order to test the classification approach.
Capturing from 7am to 11pm this is a total of 304 hours of recordings, of
which people are present in the arena in 163 hours and 141 hours are empty.
Video from the first week (7 days) is used for training data and the rest (12
days) is used for test. This approach is challenging, since the variety in the
play can be large between different sessions. Many undefined activities are
observed during a day, from warm-up and exercises, to more passive activities,
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such as transitions between teams, "team meetings", cleaning, etc. Only well-
known sports types performed like in matches will be used for classification.
Exercises related to a specific sport, such as practising shots at goal, will not be
considered a specific sports type, but will be counted as miscellaneous activity.
We do, however, allow variety in the play, such as different number of players
and different number of courts in use for badminton and volleyball.

The sports types that are observed during both weeks and will be used in
this work are badminton, basketball, indoor soccer, handball, and volleyball.
As shown in figure 6.8, two different layouts of volleyball courts are observed,
one with only one court in the middle of the arena (drawn on upper part of fig.
6.8 and denoted volleyball-1) and the other version which fit three volleyball
courts playing in the opposite direction (drawn with red on lower part of fig.
6.8 and denoted volleyball-3). These will be treated as two different classes,
both referring to volleyball. This results in seven classes to classify, including
miscellaneous.

For training and test of each sports type we use all heatmaps that are man-
ually labelled to be a regular performed sport. In order to have a significant
representation of the regular sports types in the total dataset we discard most
of the empty hours and use only a few heatmaps from empty periods. Fur-
thermore, the rest of the miscellaneous heatmaps are chosen as samples that
represent the various kinds of random activities that take place in the arena.
The number of heatmaps used for each class is listed in table 6.1.

Category Training heatmaps Test heatmaps
Badminton 35 19
Basketball 16 76
Soccer 20 36
Handball 18 15
Volleyball-1 33 20
Volleyball-3 15 8
Misc. 163 212
Total 300 386

Table 6.1: Data set used for training and test.

In order to test the system under real conditions, which will be continuous
video sequences of several hours, we do also perform a test on video captured
on one day continuously from 7am to 11pm. This video contains recordings
of volleyball, handball and soccer, as well as miscellaneous activities. The
training data described in table 6.1 is used again for this test. At last, we test
our algorithm on a publicly available dataset from a handball game, while still
using our own videos for training data. This will prove the portability of our
method to other arenas and set-ups.
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6.6.1 Results
12 days test

Table 6.2 shows the result for the first test with data from 12 days. The ground
truth is compared with the classification.
````````Truth

Classified Badm. Bask. Soc. Hand. Volley-1 Volley-3 Misc.

Badminton 17 0 0 0 0 0 2
Basketball 0 69 0 0 1 0 6

Soccer 0 0 30 0 4 0 2
Handball 0 0 0 15 0 0 0

Volleyball-1 0 0 0 0 20 0 0
Volleyball-3 0 0 0 0 0 4 4

Misc. 0 14 2 1 2 2 191

Table 6.2: Classification result for data samples from one week. The number of heatmaps
classified in each category.

This results in an overall true positive rate of 89.64 %. This result is very
satisfying, considering that we classify seven classes based only on position
data.

A low number of 14 heatmaps are wrongly classified as miscellaneous in-
stead of the correct sports type. Four of them are from videos where only one
of the three volleyball courts is used, and this situation is not represented in
the training data. The error could therefore be reduced by capturing more
training data. Of the basketball videos, a few heatmaps represent periods with
unusually many players on the court, resulting in a different activity pattern
and therefore they are classified as miscellaneous. Fourteen heatmaps manu-
ally labelled as miscellaneous are automatically classified as basketball. These
heatmaps are borderline situations where exercises highly related to basketball
are performed, and it could therefore be discussed whether these should be la-
belled basketball or miscellaneous. The same happens for a few miscellaneous
heatmaps, classified as other sports types due to exercises highly related to
the sport. Four heatmaps representing soccer are misclassified as volleyball
played on the centre court. Inspecting these images, there are some similarities
between the sports, depending on how they are performed.

Full day test

The result of classifying one full day from 7am to 10pm is illustrated in figure
6.12 with each colour representing a sports type and grey representing miscel-
laneous activities (including empty arena). The ground truth is shown in the
upper row and automatic classification is shown in the bottom row.

The result is very promising, showing that of the total of 191 heatmaps that
are produced and classified for the full day, 94.24 % are correctly classified.

The green periods illustrate volleyball matches. Before these matches there
is a warm-up period, where short periods of exercises are confused with basket-
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Ground truth

Classification

7am 4pm2pm12pm10am 10pm8pm6pm

Fig. 6.12: Comparison of ground truth and classification of video from one full day.

ball or volleyball played on the three courts. The last case is obvious, because
some of their warm-up exercises include practising volleyball shots in the same
direction as volleyball is normally played using the three courts. This test does
also show like the previous test that soccer can be misclassified as volleyball in
a few situations.

The results from this test show that our approach works very satisfying
even for the challenging situation of a full day’s video, the true positive rate is
indeed better than what was obtained in the first test.

CVBASE dataset

The last test performed is classification of the sport from a publicly available
dataset. In order to do that, we need a dataset with at least 10 minutes
continuously recording of one of the five sports type considered in this pa-
per. Furthermore, calibration data must be available, so that positions can
be obtained in world coordinates. One suitable dataset is found, which is the
handball dataset from CVBASE 06 [24]. This includes annotation of position
data in world coordinates for seven players (one team) for 10 minutes of a
handball match. Since we want to test the classification algorithm specifically,
we use these annotations as input data instead of modifying our detection al-
gorithm to work on RGB video. However, as we need position data from the
players of both teams, we flip all positions along the x-axis (longest dimension
of the court) and add those positions in order to represent the other team. The
resulting heatmap for the 10-minute period is shown in figure 6.13.

Fig. 6.13: Heatmap for the 10 minutes annotated positions of the CVBASE 06 handball
dataset.

Using the one week training data from our own recordings, this 10 minute
period is correctly classified as handball. This proves the portability of our
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approach to other arenas and camera set-ups.

6.6.2 Comparison with related work
A comparison of our results with the reported results in related work is listed
in table 6.3. It should be noted that each work has its own data set, making
it hard to compare the results directly. All related works use normal visual
cameras, where we use thermal cameras. In addition to that, most work use
video from different courts for each sports type, where we use video from one
multi-purpose indoor arena.

Reference Sports types Video length Result
Gibert et. al [14] 4 220 min. 93 %
Mohan and Yegn. [9] 5 5 h. 30 min. 94.4 %
Lee and Hoff [19] 2 Approx. 1 hour 94.2 %
Li et. al [16] 14 114 hours 88.8 %
Mutch. and Sang. [11] 20 200 min. 96.65 %
Sigari et. al [15] 7 (104 video clips) 78.8 %
Wang et. al [13] 4 (173 test clips) 88 %
Wang et. al [12] 3 16 hours 100 %
Watcha. et. al [17] 7 233 min. 91.1 %
Xu et. al [18] 4 1200 frames N/A
Yuan and Wan [10] 5 N/A 97.1 %
Our work 5 65 hours 89.64 %

Table 6.3: Data set used for training and test.

Our result is comparable with the related work using an equal number of
sports types. It is also seen that we test on a large amount of data compared
to other works.

6.7 Conclusion
The work presented here shows that it is possible to classify five different sports
types based only on the position data of people detected in thermal images.
Heatmaps are produced by summarising the position data over 10-minute pe-
riods. These heatmaps are projected to a low-dimensional space using PCA
and Fischer’s Linear Discriminant. Our result is an overall recognition rate for
five sports types of 89.64 %. This is a very promising result, considering that
our work is the first to use thermal imaging for sports classification. Further-
more, we use video from the same indoor arena, meaning that no information
about the arena can be used in the classification. Our detection method is
rather simple and the registered positions of people can be noisy, but since the
classification method relies on summarised positions over time, the approach is
robust to the noisy data.
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For this work we have concentrated on sport played in match-like situations.
Problems could rise if trying to classify a video of sport played in the opposite
direction of usual, e.g. on half the court, or if trying to classify exercises related
to one sports type. To overcome these limitations future work will investigate
the possibility of including local features. These could be clues from short
trajectories, such as speed and path length and straightness to overcome these
limitations. In relation to this, it could also be possible to extend the work to
classify play types or other shorter activities within a sports game.
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Abstract
Automatic analysis of video is important in order to process and exploit large
amounts of data, e.g. for sports analysis. Classification of sports types is one
of the first steps towards a fully automatic analysis of the activities performed
at sports arenas. In this work we test the idea that sports types can be classified
from features extracted from short trajectories of the players. From tracklets
created by a Kalman filter tracker we extract four robust features; Total distance,
lifespan, distance span and mean speed. For classification we use a quadratic
discriminant analysis. In our experiments we use 30 2-minutes thermal video
sequences from each of five different sports types. By applying a 10-fold cross
validation we obtain a correct classification rate of 94.5 %.

7.1 Introduction
Manual analysis of video is very time consuming and expensive. Automating
the analysis will enable a significantly higher amount of data to be processed
and exploited for systematic analysis of, e.g., sports activities. The interest in
sports analytics has grown significantly recently as governments, broadcasters,
coaches, etc. see great potential in the data. In this work we focus on automatic
recognition of sports types. For large amounts of video, this step will help
separating the data into sequences of well-known sports types. Furthermore,
for multi-purpose indoor arenas as well as outdoor fields, it can be of great
interest to get a better knowledge of the use of the facilities, without having to
perform manual annotation. We have previously proposed a method for activity
recognition based on heatmaps produced from summed position data [1]. In
this work we will try to estimate which type of sport is being performed based
on motion features extracted from tracklets.

Previous work on sports type recognition has often been based on the visual
appearance of the court, such as court lines and dominant colour of the field
[2–4]. The dominant colour has also been combined with motion features, such
as camera/background motion [5, 6] or direction of motion vectors in image
blocks [7]. In this work we will classify different sports types performed in the
same indoor multi-purpose arena. The appearance of the court will therefore
not be useful for classification. Furthermore, we use a static camera setup
with thermal cameras, eliminating both camera motion features and any colour
features. Thermal cameras are chosen in order to minimise the privacy issues
of capturing video in public sports arenas.

Most relevant to this work then is mainly two papers. Lee and Hoff [8]
detect players and use trajectory segments of three seconds from which they
extract and test eight features based on speed, direction and path length. They
find that two features maximises the classification accuracy. These features are
average speed and the ratio of the overall distance to the path length. Using k-
means clustering and decision tree classification, they achieve 94.2% accuracy.
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However, they test on only two sports types; Ultimate Frisbee and volleyball.
Whether these two features will be sufficient to discriminate a larger set of
sports types is therefore unknown. Gade and Moeslund [1] proposed sports type
recognition based on classification of heatmaps produced from position data.
The heatmaps are projected to a low-dimensional discriminative space using
Fischers Linear Discriminant and new instances are classified as the nearest
cluster. In this work five different sports types are classified with a precision of
90.8 %. Limitations of this work include the dependency on scale, direction and
location on the field. To overcome these limitations, we will in this work extract
local features, which are invariant to the position and direction of play. Based
on trajectories (tracklets) from each player, motion features are extracted and
used for classification.

In the remaining part of this paper, section 7.2 will describe the tracking
algorithm used to produce tracklets, after which we choose the features to
extract in section 7.3. In section 7.4 the classification approach is described,
before the experiments and results are presented in section 7.5, and finally the
conclusion is found is section 7.6.

7.2 Tracking

Detect all targets 
and convert 
coordinates

Predict new 
positions for all 

targets

Match each target 
with nearest 

detection

Start new KF for 
unassigned 
detections

/ End KF if no 
matches

Update KF with the 
new measurement

Fig. 7.1: Illustration of the tracking framework which is run for every frame.

To analyse the motion of people, we need their trajectories. Tracking mul-
tiple people through interactions, occlusion and complex motion is a problem
no existing methods solve automatically yet. Instead, we here aim to obtain
short but reliable trajectories (tracklets), from which we can estimate motion
features.

In thermal images the appearance information of people is very sparse, as
only temperature is measured. When people are observed from a distance of
several metres, small differences in temperature patterns will not be visible,
hence people will appear as grey blobs of similar temperature. A cropped
input image is shown in figure 5.5. The similar appearance of people must be
considered when choosing the tracking scheme.

We choose a classic approach based on the Kalman filter [9]. This method
is one of the predict-match-update schemes, which predicts the next position
of the object from the previous state (described by, e.g., position and velocity),
then updates the estimate when a (probably noisy) measurement is obtained.
Using Kalman filtering for multi-target tracking can be done by assigning a
new Kalman filter for each new target, however, it implies some reasoning
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for assigning each detection to the right tracker. This is here determined by
the shortest Euclidean distance within a given threshold. If a detection is
not assigned to a tracker, a new Kalman filter is started. Likewise, if no
detections are assigned to a tracker in n consecutive frames, the Kalman filter
is terminated. n is experimentally set to 10 frames. Figure 7.1 illustrates the
tracking process performed for each frame.

The first step illustrated in figure 7.1 is the detection of all targets in the
frame. We use thermal imaging in an indoor arena, making it reasonable to
assume that people appear warmer than a static background. The main step
in our detection algorithm is therefore an automatic thresholding of the image.
Figure 7.2 illustrates this step.

(a) (b) (c) (d)

Fig. 7.2: Example of a thermal input images (a) and (c), and the corresponding binary
image after automatic thresholding (b) and (d).

In figure 7.2(a) and 7.2(b) people are nicely separated and easily segmented.
However, occlusions can cause problems for detecting individual people, as
shown in figure 7.2(c) and 7.2(d). To overcome some of these problems we try
to detect these blobs containing more than one person and split them either
horizontally or vertically. Further details on these procedures can be found
in [10].

To be independent of the image perspective we transform the detected po-
sitions of people in the image into world coordinates before tracking. This is
done by applying a homography matrix, calculated during initialisation.

Terminating the tracks with no possibility of re-identification later will nat-
urally lead to more split trajectories. But as the identity of players has no role
in this work, it is preferable to have short reliable tracklets instead of trying to
resolve complex situations with a higher probability of false tracks.

Figure 7.3 shows examples of typical trajectories extracted from 2-minutes
video sequences of each sports type. Each tracklet is assigned a random colour
and are presented in world coordinates (top view of the court).

7.3 Features
From the trajectories we will extract features representing the typical type of
motion for each sports type. We consider the following five types of features:
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(a) (b)

(c) (d)

(e)

Fig. 7.3: Tracklets from a 2-minute period of (a) badminton, (b) basketball, (c) soccer, (d)
handball, and (e) volleyball.

• Speed: Mean speed, acceleration, jerk

• Direction: Distribution of directions, change in direction

• Distance: Euclidean distance from start to end point, total distance
travelled, largest distance span between two points

• Motion: Total motion per frame

• Position: Distance between people, area covered

As discussed in the introduction, we aim to find a few simple features, which
should be invariant to the size and direction of the court, the position of the
players according to the court and to the direction of play. The features must
be robust to noisy detections and tracking errors as well. Acceleration, jerk,
change in direction and euclidean distance from start to end point are all dis-
carded because they are easily affected by tracking noise. The distribution of
direction depends on the direction/rotation of play, and is therefore discarded.
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The motion and position features are discarded as they depend on number of
people present on the court, as well as size of the play area. Hence, we end up
with the following four features calculated for each tracklet:

Lifespan [frames] is measured in number of frames before the tracklet is
terminated. This feature implicitly represents the complexity of the sequence;
the lifespan of each tracklet will be shorter when the scene is highly occluded:

ls = nend − nstart (7.1)

where n is the frame number.

Total distance [m] represents the total distance travelled, measured as the
sum of frame-to-frame distances in world coordinates:

td =
ls−1∑
i=0

d(i, i+ 1) (7.2)

where d is the Euclidean distance function.

Distance span [m] is measured as the maximum distance between any two
points of the trajectory. This feature is a measure of how far the player move
around at the court:

ds = max(d(i, j)), 0 < i < ls, 0 < j < ls (7.3)

Mean speed [m/s] is measured as a mean value of the speed between each
observation:

ms = td · nseq
ls · t

(7.4)

where t is the duration of the video sequence in seconds, and nseq the duration
of the sequence in number of frames.

For each video sequence used in the classification, we will use the mean value
for each feature and combine the features with equal weighting. We test all
combinations of the features described above, from using a single feature to
using all four. We find that the best results are obtained when using all four
features, indicating that none of them are redundant or misleading.

7.4 Classification
For the classification task we choose to use a supervised learning method. We
provide labelled training data and aim to find a function that best discriminates
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the different classes. For this purpose we apply discriminant analysis with both
a linear (LDA) and a quadratic discriminant function (QDA). The simpler
linear function LDA estimates the planes in the n-dimensional space that best
discriminates the data classes [11]:

gl(x) = w0 +
n∑
i=1

wixi (7.5)

where the coefficients wi are the components of the weight vector w and n is
the number of dimensions of the space. The quadratic function estimates an
hyperquadric surface:

gq(x) = w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=1

wijxixj (7.6)

The best choice of discriminant function depends on the nature of the data,
and we will test both linear and quadratic functions.

Each of the five sports types is considered a class. In the classification
phase, each new sample is assigned to the class with smallest misclassification
cost.

In this work we do not consider undefined activities, such as warm up and
exercises, as the number and variety of these activities might be unlimited,
thus not representable in a single class.

7.5 Experiments

hhhhhhhhhhTruth
Classified as Badminton Basketball Soccer Handball Volleyball

Badminton 29 0 0 1 0
Basketball 0 27 2 0 1

Soccer 0 0 29 0 1
Handball 0 0 1 27 0
Volleyball 0 2 0 0 26

Table 7.1: Classification results for 146 video sequences used for tests in a 10-fold cross
validation.

For the experiments we use sports types which can be easily defined and
thereby unambiguously annotated. From recordings made in two similar in-
door multi-purpose arenas we have five well-defined sports types available:
Badminton, basketball, handball, soccer, and volleyball. We use 60 minutes
of video recordings from each of the five sports types and divide them into
2-minutes sequences to get a total of 150 video sequences. The experiments
are run as 10-fold cross validation; using one 10th of the data for test and the
remaining part for training, then repeating the process 10 times with a new
data subset for test each time.
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For classification we test both linear and quadratic discriminant functions
as described in section 7.4. The quadratic function fits the data best and obtain
a correct classification rate of 94.5 %, while the linear discriminant function
has a correct classification rate of 90.4 %. Table 7.1 shows the classification
result of the 146 video sequences used for tests during ten iterations, using the
quadratic discriminant function.

Of the 146 sequences, 138 are correctly classified and only 8 sequences are
wrongly classified, giving a total correct classification rate of 94,5 %. The errors
are distributed with 1-3 wrongly classified sequences for each sports type.

Comparable work from [1] obtained a correct classification rate of 90.8 %
using the same five sports types, plus a miscellaneous class.

The Kalman tracking algorithm, including detection of people, is imple-
mented in C# and runs real-time with 30 ms per frame. The 10-fold classifica-
tion is implemented in Matlab and takes only 33 ms in total. Both are tested
on an Intel Core i7-3770K CPU 3.5 GHz with 8 GB RAM.

7.6 Conclusion
In this paper we introduced a new idea for sports type classification. Based on
tracklets found by a Kalman filter we extract four simple, but robust, features.
These are used for classification with a quadratic discriminant analysis. Using
a total of 150 video sequences from five different sports types in a 10-fold cross
validation we obtained a classification rate of 94.5 %. The result is better
than what was previously obtained in [1], while this new approach is also more
general; it doesn’t depend on the position of the players or direction of play.

Due to privacy issues, we used thermal imaging only. However, the classi-
fication approach presented is applicable for other image modalities. Only the
detection step should be substituted with a different method, which could be
a HOG detector or another general person detector.

The proposed method is independent of the type of arena and it is expected
that it could easily be extended to outdoor arenas as well. With the current
set-up where the entire arena is monitored from a far-view, the level of details
available for each person is limited. In a future perspective higher resolution
imaging devices is expected to be available, enabling a more fine-grained anal-
ysis of individual people, such as pose and motion of each body part.
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Intuitively, when humans observe an object, they will visually follow and "track"
the motion of the object. Thereby, information about the activities or be-
haviour of the object can automatically be inferred by the human brain. How
to copy this ability by computers is being researched within a wide variety of
fields.

In sports analysis, tracking of players is the crucial first step in order to
analyse both individual and team-based performance by extracting metrics,
such as speed, distance, acceleration, direction, etc. Performance analysis are
often seen presented in TV transmissions of sports games and used by coaches
for improving the performance of athletes. However, most commercial tracking
systems today are only semi-automatic and require skilled operators to guide
the tracking of individual players.

The first chapter in this part deals with multi-target tracking of sports
players applied to thermal video. In the second chapter we combine the work
presented in chapter 5 on robust counting of people with a multi-target tracker
on thermal video. The purpose is to improve the performance of a tracker
by constraining the number of tracks produced. The last chapter in this part
presents a method for improving multi-target tracking in RGB video, focusing
on solving difficult situations of occlusions between people.

Chapter 9 consists of unpublished work in progress, while chapters 8 and
10 were originally published in a journal and in the proceedings of a workshop:

Rikke Gade and Thomas B. Moeslund, “Thermal Tracking of Sports Play-
ers,” Sensors, vol. 14, no. 8 pp. 13679–13691, July 2014.

Anton Milan, Rikke Gade, Anthony Dick, Thomas B. Moeslund and Ian Reid,
“Improving Global Multi-target Tracking with Local Updates,” ECCV work-
shop on Visual Surveillance and Re-Identification, September 2014.
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Abstract
We present here a real-time tracking algorithm for thermal video from a sports
game. Robust detection of people includes routines for handling occlusions and
noise before tracking each detected person with a Kalman filter. This online
tracking algorithm is compared with a state-of-the-art offline multi-target track-
ing algorithm. Experiments are performed on a manually annotated 2-minutes
video sequence of a real soccer game. The Kalman filter shows a very promising
result on this rather challenging sequence with a tracking accuracy above 70 %
and is superior compared with the offline tracking approach. Furthermore, the
combined detection and tracking algorithm runs in real time at 33 fps, even
with large image sizes of 1920× 480 pixels.

8.1 Introduction
Traditionally, visual cameras, capturing RGB or greyscale images, have been
the obvious choice of sensor in surveillance applications. However, in dark envi-
ronments, this sensor has serious limitations, if capturing anything at all. This
is one of the reasons that other types of sensors are now taken into consider-
ation. One of these sensors is the thermal camera, which has recently become
available for commercial and academic purposes, although originally developed
for military purposes [1]. The light-independent nature of this sensor makes it
highly suitable for detection and tracking of people in challenging environments.
Privacy has also become a big issue, as the number of surveillance cameras have
increased rapidly. For video recording in sensitive locations, thermal imaging
might be a good option to cover the identity of the people observed, in some
applications it might even be the only legal video modality. However, like any
other sensor type, the thermal sensor has both strengths and weaknesses, which
are discussed in the survey on thermal cameras and applications [1]. One way
of overcoming some of these limitations is to combine different sensors in a
multi-modal system [2].

The visual and thermal sensors complement each other very well. Tem-
perature and colour information are independent, and besides adding extra
information on the scene each sensor might be able to detect targets in situa-
tions where the other sensor completely fails. However, registration and fusion
of the two image modalities can be challenging, since there is not necessarily
any relation between brightness level in the different spectra. Generally, three
types of fusion algorithms exist; fusion on pixel level, feature level, or decision
level. Several proposed fusion algorithms are summarised in the survey [1].

It is clear that multi-modal detection and tracking systems have several
advantages for robust performance in changing environments, which is also
shown in recent papers on tracking using thermal-visible sensors [3, 4]. The
drawbacks of these fused systems primarily relates to the fusion part, which
requires an additional fusion algorithm that might be expensive in time and
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computations. Furthermore, when applying a visual sensor, the possibility of
identification and recognition of people exists, causing privacy issues that must
be considered for each application.

A direct comparison of tracking performance in multi-modal images versus
purely thermal images in different environments would be interesting, but this
is out of scope for this paper. Here we choose to take another step towards
privacy-preserving systems and work with thermal data only. While tracking
people in RGB and greyscale images has been and is still being extensively
researched [5, 6], the research in tracking in thermal images is still rather
limited. Therefore, in this paper we wish to explore the possibility of applying
tracking algorithms in the thermal image modality.

8.1.1 Related Work
Two distinct types of thermal tracking of humans exist. One is tracking of
human faces, which requires high spatial resolution and good quality images
to detect and track facial features [7–9]. The other direction, which we will
focus on, is tracking of whole-body individual people in surveillance-like set-
tings. In this type of applications the spatial resolution is normally low and
the appearance of people is very similar. We cannot rely on having enough
unique features for distinguishing people from each other, and we must look
for tracking methods using only anonymous position data.

For tracking in traditional RGB or greyscale video, the tracking-by-detection
approach has recently become very popular [10–12]. The classifier is either
based on a pre-trained model, e.g., a pedestrian model, or it can be a model-
free tracker initialised by a single frame, learning the model online. The advan-
tage of online learning is the ability to update the classifier, as the target may
change appearance over time. In order to apply this approach for multi-target
tracking, the targets should be distinguishable from each other. This is a gen-
eral problem in thermal images, the appearance information is very sparse, as
no colour, texture, etc., are sensed by the camera.

Other approaches focus on constructing trajectories from “anonymous” po-
sition detections. Both online (recursive) and offline (batch optimisation) ap-
proaches has proven to be successful. Online approaches cover the popular
Kalman filter [13] and particle filters [14, 15]. The methods are recursive, pro-
cessing each frame as soon as it is obtained, and assigning the detection to a
trajectory. Offline methods often focus on reconstructing the trajectories by
optimising an objective function. Examples are presented in [16] by posing the
problem as an integer linear program and solving it by LP-relaxation, or in [17]
solving it with the k-shortest path algorithm.

Tracking in thermal video has often been applied in real-time applications
for pedestrian tracking or people tracking for robot-based systems. Fast online
approaches have therefore been preferred, such as the particle filter [18, 19] and
the Kalman filter [20, 21].

While most works on tracking people in thermal images have focused on
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pedestrians with low velocity and highly predictable motion, we apply tracking
to real sports video, captured in a public sports arena. It is highly desired
to track sports players in order to analyse the activities and performance of
both teams and individuals, as well as provide statistics for both internal and
commercial use. However, sports video is particularly challenging due to a high
degree of physical interaction, as well as abrupt and erratic motion.

Figure 8.1 shows an example frame from the video used for testing. The
video is captured with three cameras in order to cover the entire field of 20 m
× 40 m. The images are rectified and stitched per frame to images of 1920×480
pixels.

Fig. 8.1: Example of a frame from the thermal sports video.

This paper will investigate the applicability and performance of two dif-
ferent tracking approaches on thermal data. First, we design an algorithm
based on the Kalman filter. Then, we test a publicly available state-of-the-art
multi-target tracking algorithm [22]. The algorithms are evaluated on a 2 min
manually annotated dataset from an indoor soccer game.

8.2 Detection
Detecting people in thermal images may seem simple, due to an often higher
temperature of people compared with the surroundings. In this work we fo-
cus on indoor environments, more specifically a sports arena. This scene is
quite simple in terms of a plain background with relatively stable temperature.
Hence, people can often be segmented from the background by only threshold-
ing the image. The challenges occur in the process of converting the binary
foreground objects into individual people. In the ideal cases each blob is simply
considered as one person. However, when people interact with each other, they
overlap in the image and cause occlusions, resulting in blobs containing more
than one person. The appearance of people in thermal images is most often
as simple as grey blobs, making it impossible to robustly find the outline of
individual people in overlaps. Figure 8.2 shows four examples of occlusions and
the corresponding binarised images.

While full or severe occlusions (like Figure 8.2(e)) cannot be solved by
detection on frame basis, we aim to solve situations where people are only
partly occluded and can be split into single person. Likewise, we want to
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8.2: Examples of occlusions between people. For each example the corresponding
binarised image is shown, found by automatic thresholding.

detect only one person even when it has been split into several blobs during
thresholding. We implement three rather simple but effective routines aiming
at splitting or connecting the blobs into single person. These routines are
described in the following sections.

8.2.1 Split Tall Blobs
People standing behind each other, seen from the camera, might be detected
as one blob containing more than one person. In order to split these blobs
into single detection we here adapt the method from [23]. First, it must be
detected when the blob is too tall to contain only one person. If the blob has
a pixel height that corresponds to more than a maximum height at the given
position, found by an initialising calibration, the algorithm should try to split
the blob horizontally. The point to split from is found by analysing the convex
hull and finding the convexity defects of the blob. Of all the defect points, the
point with the largest depth and a given maximum absolute gradient should
be selected, meaning that only defects coming from the side will be considered,
discarding, e.g., a point between the legs. Figure 8.3 shows an example of how
a tall blob containing two people will be split.

(a) (b) (c)

Fig. 8.3: Example of how a tall blob containing two people will be split into two.
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8.2.2 Split Wide Blobs
Groups of people standing next to each other might be found as one large blob.
To identify which blobs contain more than one person, the height/width ratio
and the perimeter are considered, as done in [23]. If the criteria are satisfied,
the algorithm should try to split the blob. For this type of occlusion, it is
often possible to see the head of each person, and split the blob based on
the head positions. Since the head is narrower than the body, people can be
separated by splitting vertically from the minimum points of the upper edge
of a blob. These points can be found by analysing the convex hull and finding
the convexity defects of the blob. Figure 8.4 shows an example of how a wide
blob containing two people will be split.

(a) (b) (c)

Fig. 8.4: Example of how a wide blob containing two people will be split into two.

8.2.3 Connect Blobs
One person can often be split into several blobs during thresholding if some
areas of the body appear colder, e.g., due to loose or several layers of clothing.
In order to merge these parts into only one detected person, we consider each
binary blob a candidate, and generate a rectangle of standard height at the
given position (calculated during calibration) and the width being one third
of the height. For each rectangle we evaluate the ratio of foreground (white)
pixels. If the ratio of white pixels is below 15%, the blob is discarded, otherwise
the candidate is added for further processing. The second step is to check if
the candidate rectangles overlap significantly, hence probably belonging to the
same person. If two rectangles overlap by more than 45%, only the candidate
with highest ratio of white pixels is kept as a true detection. These threshold
values are chosen experimentally by evaluating 340 positive samples and 250
negative samples. Figure 8.5 illustrates this situation, where one person has
been split into three blobs.

The ultimate goal for the detection algorithm is to detect each person, and
nothing else, in each frame. However, with a side-view camera angle and a
number of people interacting, missing detections and noise must be considered
when using the detections as input for the tracking algorithms described next.
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(a) (b) (c)

Fig. 8.5: Example of a person that is split into three blobs by thresholding. Three overlap-
ping candidates are evaluated (green, blue and yellow rectangles). Only the green candidate
will be kept, because it has the highest ratio of white pixels.

8.3 Tracking

8.3.1 Kalman Filter
The Kalman filter, introduced in the early 1960s, is a now well-known algorithm
used in a wide range of signal processing applications. The recursive algorithm
filters noisy measurements by predicting the next step from previous state and
use the new measurement as feedback for updating the estimate. The Kalman
filter estimates the state x of a discrete-time controlled process controlled by
the linear stochastic difference equation [24]:

xk = Axk−1 +Buk−1 + wk−1 (8.1)

with a measurement z:
zk = Hxk + vk (8.2)

where wk and vk are random variables representing the process and measure-
ment noise, respectively. The matrix A is the transition matrix that relates
the state x at the previous time step k − 1 to the state at the current step k.
The matrix B relates the control input uk−1 to the state xk (the control input
is optional, and this term is often discarded). The matrix H relates the state
xk to the measurement zk.

Figure 8.6 illustrates the procedure of the Kalman filter, shifting between
predicting the next step from the previous state and correcting the state using
a new observed measurement.

Using the Kalman filter for tracking an object in 2D, the state x consists of
four dynamic variables; x-position, y-position, x-velocity and y-velocity. The
measurement z represents the observed x- and y-positions for each frame.

When implementing a Kalman filter, the measurement noise covariance R
and the process noise covariance Q must be tuned. R represents the measure-
ment noise variance, meaning that a high value will tell the system to rely less
on the measurements and vice versa.
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Correct
Compute the Kalman gain:

Update estimate with measurement zk:

Update the error covariance:

Predict

Project the state ahead:

Project the error covariance ahead:

Fig. 8.6: Procedure of the Kalman filter.

For more details on the Kalman filter, we refer to the introduction in [24]
or the original paper [13].

8.3.2 Multi-Target Data Association
Each Kalman filter maintains only the estimated state of one object. In order
to keep track of several targets simultaneously, the association between detec-
tions and Kalman filters must be handled explicitly. For each frame, a list of
detections are obtained as described in Section 8.2. Each existing Kalman filter
is then assigned the nearest detection, within a given distance threshold th. For
each detection that is not assigned to a Kalman filter, a new track is started, by
creating a new Kalman filter. Kalman filters that have no assigned detections
will be continued based on the predicted new positions. After a given time
period without detections, experimentally set to 10 frames, the track will be
terminated.

8.3.3 Tracking by Continuous Energy Minimization (CEM)
The choice of tracking based on the Kalman filter leaves no possibility for con-
necting broken tracks, as it is a purely recursive approach. This possibility
of optimising both forward and backward in time is instead exploited in of-
fline algorithms based on batch optimisation. We will here test one of these
algorithms, using code available online. This algorithm minimises an energy
function of five terms [22]:

E(X) = Eobs + αEdyn + βEexc + γEper + δEreg (8.3)

Eobs represents the likelihood of object presence, determined by the object
detector. Edyn is the dynamic model, using a constant velocity model. Eexc is
a mutual exclusion term, introducing the physical constraint that two objects
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cannot be present at the same space simultaneously. The target persistence
term Eper penalises trajectories with start or end points far from the image
border. The last term, Ereg, is a regularisation term that favours fewer targets
and longer trajectories.

Given the set of detections for all frames, this algorithm will try to minimise
the energy function (8.3) by growing, shrinking, splitting, merging, adding or
removing until either convergence or reaching the maximum number of itera-
tions. For further details, see [22].

The set of detections are found as described in Section 8.2. Being the same
detection algorithm used for both Kalman filter and CEM tracker, the tracking
algorithms can be compared directly.

8.4 Experiments
In this section we test the tracking algorithm on a 2-minutes (3019 frames)
video from an indoor soccer game. The frames are manually annotated using
bbLabeler from Piotr’s Image & Video MATLAB Toolbox [25]. All frames are
annotated by the same person in order to ensure consistency.

8.4.1 Kalman Tracker
The Kalman filter tracker is implemented in C# using EMGU CV wrapper
for the OpenCV library [26]. Through experiments the measurement noise
covariance R has been tuned to 0.1 and the process noise covariance Q is tuned
to 0.002 for position and 0.003 for velocity.

8.4.2 CEM Tracker
The CEM tracker is downloaded from the author’s website1. We use the 2D
tracking option, tracking in image coordinates. Default parameter values are
used, except for three parameters: Target size is reduced to ImageWidth/200
(approx. 10 pixels) due to the relatively small object size in the test video. The
maximum number of global iterations is varied between 15, 30 and 60 iterations,
along with the maximum number of iterations for each gradient descent, which
is varied between 30, 60 and 120 iterations.

8.4.3 Results
The trajectories found by the Kalman tracker, CEM tracker and manually an-
notated trajectories, respectively, are plotted in Figure 8.7. The trajectories
are plotted in world coordinates, thus each image represents the sports field
seen from above. Each new identity found by the tracker is plotted in a new

1http://www.milanton.de/contracking/index.html
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colour assigned randomly. The figure shows that while the trajectories found
by the CEM tracker is longer and smoother, the Kalman tracker produces more
tracks, which are also very close to the ground truth. We evaluate the track-

(a) (b)

(c)

Fig. 8.7: Trajectories plot in world coordinates with each identity assigned a random colour.
(a) Trajectories found by Kalman tracker, (b) trajectories found by CEM tracker (60 epochs)
and (c) manually annotated trajectories.

ing results using CLEAR MOT metrics [27], calculated by publicly available
MATLAB code [28]. The results are measured by true positives (TP), false
positives (FP), false negatives (FN), ID switches and the two combined qual-
ity measures: multiple object tracking precision (MOTP) and multiple object
tracking accuracy (MOTA):

MOTP =
∑
i,t d

i
t∑

t ct
(8.4)

where dit is the distance between the object oi and its corresponding hypothesis.
ct is the number of matches found for time t. Hence, MOTP is the total
error in estimated position for matched object–hypothesis pairs over all frames,
averaged by the total number of matches made.

MOTA = 1−
∑
t (FNt + FPt + IDSt)∑

t gt
(8.5)

where FNt, FPt and IDSt are the number of false negatives, false positives
and ID switches, respectively, for time t, while gt is the true number of objects
at time t.

The results of the Kalman tracker and the CEM tracker with three different
numbers of maximum iterations are presented in Table 8.1. The result for
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TP FP FN ID sw. MOTP MOTA Tot. tr. length #ID’s
KF 80.22% 9.86% 18.86% 219 0.75 70.36% 2506.78m 218

CEM-15 11.61% 27.38% 88.14% 60 0.58 -15.77% 933.66m 37
CEM-30 17.07% 33.19% 82.72% 51 0.59 -16.11% 1100.69m 31
CEM-60 18.14% 38.06% 81.60% 60 0.60 -19.91% 1228.14m 33

Table 8.1: Tracking results for Kalman filter and continuous energy minimization (CEM)
algorithms.

Kalman filtering is very good, considering the complexity of the data. The
true positive rate exceeds 80% and the accuracy (MOTA) is 70.36%. For the
CEM tracker these numbers are significantly lower, the best true positive rate
is 18.14% obtained after 60 epochs. This implies a high false negative rate of
81.6%, but also a high false positive rate of 38.06%. The resulting MOTA ends
up being negative. The results are clearly related to the total track length; the
Kalman filter constructs more than twice the total length of tracks, which is
closer to the total length of ground truth tracks of 3241.52 m.

8.4.4 Processing Time
The processing time, calculated for 3019 frames of video containing 8 people,
is for the MATLAB implementation of the CEM tracker (excluding detection)
with 15 epochs: 6.03 min (0.12 s per frame), 30 epochs: 8.75 min (0.17 s per
frame), 60 epochs: 16.34 min (0.32 s per frame). For the C# implementation of
Kalman filter tracking (with integrated detection) the processing time is only
1.55 min (0.03 s per frame).

Both methods are tested on an Intel Core i7-3770K CPU 3.5 GHz with
8 GB RAM.

8.5 Discussion
We have tested the CEM tracker with three different numbers of maximum
iterations, in order to investigate whether more iterations would allow the al-
gorithm to reach a better estimate. From 15 to 30 epochs we observe clear
improvements, from a true positive rate of 11.61% to 17.07% and the false neg-
ative rate decreasing accordingly. The false positive rate increases from 27.38%
to 33.19%, though. Increasing the maximum number of iterations from 30 to
60 gives only a small improvement in true positive rate from 17.07% to 18.14%,
while the false positive rate increases from 33.19% to 38.06%. This indicates
that further iterations will not improve the accuracy.

Given that the CEM tracker is an offline algorithm, processing a batch of
frames, it is able to run the optimisation both forward and backward in time.
That makes it more likely to connect broken trajectories compared with the
Kalman tracker, which is recursive and needs to start a new trajectory if it loses
one. As expected, this is observed as more identity switches by the Kalman
tracker (219 switches) compared with the CEM tracker (51–60 switches). It is
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also reflected in the mean length of each trajectory; for the Kalman tracker the
mean length is 11.5 m, compared with 25.2–37.2 m for the CEM tracker.

The processing time of the two algorithms indicates another big difference
between online and offline approaches. The Kalman filter is well-suited for
real-time applications with a processing time of only 0.03 s per frame including
both detection and tracking. For the CEM tracker the detections must be
saved for the full batch of frames before starting to construct trajectories. The
processing time is then 0.12–0.32 s per frame, depending on the number of
iterations. Furthermore, the processing time might increase significantly with
the number of targets.

Both tracking algorithms are independent of the type of detection algorithm,
making it possible to apply tracking to a wide range of applications. In this
work we demonstrated the approach on a video from an indoor sports arena,
but it could be applied directly in any scene where the human temperature
is different from the background, including outdoor scenes. The performance
depends on the quality of detections. In order to significantly reduce the occlu-
sions between people, the camera could be mounted above the scene, capturing
a top-view instead of the side-view shown in Figure 8.1.

8.6 Conclusion
We have presented an online multi-target tracking algorithm based on the
Kalman filter and compared with a state-of-the-art offline multi-target tracking
algorithm. In terms of accuracy the Kalman tracker is far superior in this appli-
cation and constructs more than twice the total length of tracks. The drawback
of this online approach is the number of split tracks and identity switches.
Depending on the application and importance of identity, a post-processing
method could be applied in order to optimise and connect trajectories.
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Abstract
The ability to track multiple people simultaneously is useful in many applica-
tions, e.g. sports analysis and analysis of human behaviour in urban spaces.
However, it is still a challenging task with no general solution. Especially for
thermal data, robust tracking solutions is still lacking. In this work we aim to
guide a global tracker with estimated knowledge on periods with a stable num-
ber of people in the scene. Using the counting algorithm presented in chapter 5
and combining it with a global offline tracker, we show clear improvement on
a test set of four thermal video sequences of 30 seconds each. Compared to the
original offline tracking algorithm, we obtain improvements from 1-16% in the
accuracy.

9.1 Introduction
After several years of research in tracking, consistent tracking of multiple peo-
ple is still very challenging. Human motion can be erratic, and interactions
between people complicates the task a lot. In most cases video is captured
from either eye-level or high-angle, but rarely from the optimal perpendicular
top-view. Therefore, occlusions must be considered, and solving these ambigu-
ous situations require some type of data association.

In this work we apply tracking to thermal video from both indoor and
outdoor scenes. Thermal video has a great potential in surveillance and any
application where privacy is an issue, such as analysis of behaviour in public
spaces and public buildings. The number of computer vision methods tested on
thermal video is still relatively low, leaving the applicability and performance
on this type of data unknown.

Fig. 9.1: Example of an outdoor courtyard captured by a thermal camera.

The properties of thermal video in far-view, surveillance-like settings, will
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result in mostly identical appearance of people. The lack of distinct appearance
information makes re-identification after full occlusions impossible. We must
rely on motion, even though some activities, such as sport, may include erratic
motion.

In this work we introduce a method to construct more reliable tracks. We
include an estimation of the occupancy of the observed scene and the duration
of stable periods without people entering or leaving the scene. We show that
including this constraint on stable periods improves the overall tracking perfor-
mance. For multi-target tracking offline approaches have become increasingly
popular, due to their superior accuracy. Compared to online (recursive) ap-
proaches, offline methods have great advances in that they optimise trajectories
over batches of frames. However, big challenges still remain in many applica-
tions, due to noise and ambiguities. From a (probably noisy) set of detections,
the algorithm must construct an unknown number of trajectories. This task
causes ambiguities and thereby errors or inaccuracies. In this work we aim to
take advantage of automatic preprocessing, which can help limiting the prob-
lem by estimating how many people are present in the scene. The next section
will provide an overview of the proposed method.

9.2 Overview
We propose a tracking algorithm which runs in two main iterations. In the
first iteration we estimate time periods which can be characterised as stable
periods, without people leaving or entering the scene, as well as the probability
of a given number of people present during that period. In the second iteration
the result is fed to a tracking algorithm in order to constrain the number of
trajectories produced during each of the stable periods. The algorithms is
illustrated in figure 9.2. The hatched areas in the top row represents stable
periods, from which the estimated number is fed to the tracking algorithm in
the second iteration. During non-stable periods no constrain is added, leaving
the tracker to try to connect the paths using the original algorithm.

9.3 Counting People
In most applications the recorded scene consists of an area where people move
around freely, and some possible entrance/exit areas. These entrance/exit areas
might only be the edge of the image, or there might be doors in the scene.
Assuming that people are not constantly moving in and out of the scene, the
number of people observed in the scene will stay constant during a time period.

An estimation of this number can be calculated using the approach pre-
sented in [1], which will briefly be described here.

Firstly, we must try to detect all people in each frame. For segmentation
purposes background subtraction is applied, followed by automatic threshold-
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Fig. 9.2: Illustration of the proposed method. During first iteration, stable periods of the
video sequence are identified and a number of people present are estimated. This is used as
input for the second iteration, in which trajectories are constructed and optimised.

ing. The resulting binary objects are then examined, and optionally split verti-
cally or horizontal if they are probable to contain more than one person. This
procedure is described in detail in [2].

An uncertainty is still related to each binary object, for it being a true
person detected or not. The probability of being a true detection is related
to the ratio of white pixels within the bounding box and the ratio of white
pixels observed on the edge of the bounding box. Experimentally it is found
that the highest probability is at a ratio of white pixels between 30 and 60%.
Furthermore, less than 50% of the edge is allowed to be white. The weighting
related to the ratio of white pixels in the rectangle (rr) and the ratio of white
pixels on the perimeter (rp) are described in eq. 9.1:

wp(i) =


0, if rp > 50% ‖ rr < 20%
0.8, if rr > 70%
0.9, if rr < 30% ‖ rr > 60%
1, otherwise

(9.1)

The weighting of each detection is combined with a weight describing the un-
certainty for each frame, caused by occlusions and clutter. Each frame counting
is weighted like this:

wf = α ·
n∏
i=1

wp(i) + β · ws (9.2)

where n is the number of people, wp(i) is the probability of person i being a
true detection (see equation 9.1), and ws is a weight that decreases with the
number of splits performed, indicating how cluttered the scene is. α and β are
the weighting of each part and should sum to one. The observed number in
a frame will be added to a histogram with the weight wf , and after a stable
period has ended, the histogram will be scaled to an accumulated sum of 1.
The circles in figure 9.3 illustrate the weighted histogram for each period.
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In order to detect stable periods of a video sequence, we must detect when
people are close to the border of the scene (and if applicable any other en-
trance/exit in the scene). These periods should be flagged and observed for
people leaving or entering the scene. This is done by applying local tracking on
people close to the border. All other periods are marked as stable periods, and
should contain the same number of people until next period of border activity.
Estimating the number of people are done by frame-based detection succeeded
by an graph optimisation algorithm, based on Dijkstra’s algorithm [3]. The
graph optimisation interprets the stable periods as nodes and transitions (peo-
ple leaving or entering the scene) as edges. All nodes and edges have a weight
factor based on the detection and tracking results.

Figure 9.3 illustrates the graph approach. For each stable period the number
of people are represented by circles where darker colour is higher weight. The
lines between two stable periods represent the transitions, also coloured darker
for higher weight. The path through this graph is optimised to the highest
total weight.

Stable period 1 Stable period 2 Stable period 3

Border activity 1 Border activity 2

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

Fig. 9.3: Example of a simple graph. Dark nodes and edges have the highest weight. Edges
exist between all nodes in two consecutive periods, but to simplify the illustration the edges
with lowest weight are not drawn.

9.4 Tracking by Energy Minimization
As a starting point for the offline tracking algorithm we use the algorithm
proposed by Andriyenko and Schindler [4], which has shown very good results
on real-world datasets. It has publicly available source code1, which we can use
for further testing. The aim of this method is to find the optimal solution for
multi-target tracking over an entire video sequence, given a set of coordinates
of all targets at all times. The core part of this algorithm is to minimise the
following global energy function:

E(x) = Eobs + αEdyn + βEexc + γEper + δEreg (9.3)
1http://www.milanton.de/contracking/
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Eobs represents the likelihood of object presence, determined by the object
detector. Edyn is the dynamic model, using a constant velocity model. Eexc is
a mutual exclusion term, introducing the physical constraint that two objects
cannot be present at the same space simultaneously. The target persistence
term Eper penalises trajectories with start or end points far from the image
border. The last term Ereg is a regularisation term that favours fewer targets
and longer trajectories. As Ereg is exactly a term considering the number of
target, we will investigate if the constraint could be integrated in this term.
The original Ereg term proposed in [4] is defined as follows:

Ereg(X) = N +
N∑
i=1

1
F (i) (9.4)

where F is the temporal length of trajectory i in frames and N is the total
number of trajectories. The first part of the equation is the total number of
trajectories, inferring that the energy directly increases with this number. The
second part is the sum of the inverse length of all trajectories, hence, in the
minimisation process it will favour long trajectories.

9.5 Constraining the Tracking Algorithm
We aim to constrain the tracking algorithm, to construct n trajectories, where
n is the number with highest probability, estimated by the counting algorithm
described in section 9.3. Two relevant parameters can intuitively be formulated:
the number of targets tracked per frame, and the total number of trajectories in
each stable period. Ideally, since we are only concerned about stable periods,
the total number of trajectories should correspond to the number of targets
tracked in each frame. However, if the trajectory of one person is fragmented
into shorter tracks, the total number of trajectories will increase while the
correct number of targets can still be tracked in every frame. Likewise, if the
target is lost during the sequence, the total number of trajectories might be
correct, while some frames have less targets. Therefore, both measures might
be valid parameters to include in the optimisation.

A and B represents how close the number of targets is to the estimated
number, per frame and per stable period, respectively:

A = 1
F

F∑
i=1

P (s(i), n(i)) (9.5)

B = 1
S

S∑
x=1

P (S(x), N(x)) (9.6)

where P (x) is the probability function for x number of targets. n(i) is the num-
ber of targets existing in frame i, and N(x) is the total number of trajectories
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constructed per stable period x. F is the total number of frames.
Including the original two terms we now have four possible terms with

following purposes:

1. Minimize number of targets

2. Maximize length of tracks

3. Constrain number of targets per frame

4. Constrain number of tracks per stable period

Since we now know the estimated number of people during each period, the
original term 1 which is minimizing the number of targets is conflicting the
purposes of terms 3 and 4, which add more specific constraints on the number.
As a result, we discard term 1 and propose a new Ereg term including eq. 9.5
and 9.6:

Ereg(X) =
N∑
i=1

1
F (i) + w1

1
F

F∑
i=1

P (s(i), n(i))

+w2
1
S

S∑
x=1

P (S(x), N(x))

(9.7)

A weight is added to each term, adjusting the influence from each term. These
weights will be fitted during an optimisation process, described in section 9.6.

9.6 Evaluation

9.6.1 Datasets
To prove the robustness of our proposed method, we test on two different
thermal datasets from one indoor and one outdoor environment. The main
dataset we use for both test and training is captured in an indoor sports arena.
In order to cover the entire field of 20×40 meters, three images are captured
simultaneously and are stitched horizontal to a total image size of 1920×480
pixels. The dataset is captured during a soccer game with six to eight players
at the court in all frames. Two minutes of video are captured and manually
annotated for tracking. It is separated into four sequences of 30 seconds each in
order to have a temporal window manageable for a global tracking algorithm.
One sequence is used for training and the remaining three are used for testing.
Figure 9.4 shows a frame from this soccer dataset.

The second dataset used is 30 seconds of video captured in an outdoor
courtyard environment. A total of 14 different people walk through the court-
yard, some of them in groups, causing difficult occlusions. The resolution of
the images are 640×480 pixels. Figure 9.1 shows a frame from this dataset.
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Fig. 9.4: A frame from the soccer dataset.

9.6.2 Weight parameters
The parameters of the original energy function, eq. 9.3, are kept to the default
values for 2D tracking, given in the publicly available implementation: α =
1, β = 1, γ = 0.5, δ = 1.

The weight parameters w1 and w2 introduced in section 9.4 are here fitted
experimentally in order to adjust the influence of each term. We use the 30
seconds training sequence, described in section 9.6.1. All combinations of the
following parameter values are tested for w1 and w2: {0, 0.1, 1, 5, 10, 15, 20}.

The results seem to be most sensitive to w2, where the accuracy is highest
at w2 = 10, while the accuracy varies less than 1 % with w1. We fix w1 = 0.1
which has a slightly higher accuracy.

9.6.3 Results
We compare the results of our method to the original formulation of the tracking
algorithm presented in [4].

For evaluating the performance we use the multiple object tracking precision
(MOTP) and multiple object tracking accuracy (MOTA) defined in the CLEAR
MOT metrics [5]:

MOTP =
∑
i,t d

i
t∑

t ct
(9.8)

where dit is the distance between the object oi and its corresponding hypoth-
esis. ctis the number of matches found for time t. Hence, MOTP is the total
error in estimated position for matched object-hypothesis pairs over all frames,
averaged by the total number of matches made.

MOTA = 1−
∑
t (FNt + FPt + IDSt)∑

t gt
(9.9)

where FNt, FPt and IDSt are the number of false negatives, false positives
and ID switches, respectively, for time t, while gt is the true number of objects
at time t.

The results are presented in tables 9.1-9.4
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TP FP FN ID switch MOTP MOTA
Original 74.05 % 11.8 % 25.53 % 25 19.99 cm 62.25 %
Ours 79.53 % 15.93 % 19.72 % 45 19.89 cm 63.6 %

Table 9.1: Results - soccer sequence 1.

TP FP FN ID switch MOTP MOTA
Original 76.78 % 6.32 % 22.83 % 23 15.48 cm 70.46 %
Ours 84.32 % 8.52 % 15.04 % 38 15.47 cm 75.80 %

Table 9.2: Results - soccer sequence 2.

It is clear for all sequences, that the number of true positives increases
significantly, and the number of false negatives decreases. However, we see a
small increase in false positives as well as the number of ID switches. The
final results clearly show improvements on all sequences, with 1-16% increase
in MOTA. The precision (MOTP) is unchanged for all sequences.

9.7 Conclusion
In this work we have shown how to combine a counting algorithm with an offline
tracking algorithm, in order to constrain the number of tracks and improve the
reliability. The preliminary results show good improvement on four sequences
from both indoor and outdoor scenarios. As this is still work in progress, we
will continue with more evaluations of the methods and comparisons to other
work.
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TP FP FN ID switch MOTP MOTA
Original 74.67 % 6.99 % 24.91 % 25 19.70 cm 67.69 %
Ours 80.49 % 8.19 % 18.92 % 35 19.79 cm 72.31 %

Table 9.3: Results - soccer sequence 3.

TP FP FN ID switch MOTP MOTA
Original 48.58 % 12.42 % 51.24 % 10 19.94 cm 36.15 %
Ours 69.80 % 16.85 % 29.66 % 29 18.77 cm 52.95 %

Table 9.4: Results - Courtyard sequence.
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Abstract
We propose a scheme to explicitly detect and resolve ambiguous situations in
multiple target tracking. During periods of uncertainty, our method applies
multiple local single target trackers to hypothesise short term tracks. These
tracks are combined with the tracks obtained by a global multi-target tracker,
if they result in a reduction in the global cost function. Since tracking failures
typically arise when targets become occluded, we propose a local data association
scheme to maintain the target identities in these situations. We demonstrate a
reduction of up to 50% in the global cost function, which in turn leads to supe-
rior performance on several challenging benchmark sequences. Additionally, we
show tracking results in sports videos where poor video quality and frequent and
severe occlusions between multiple players pose difficulties for state-of-the-art
trackers.

10.1 Introduction
Tracking multiple objects in a dynamic environment is crucial for visual scene
understanding. Some of the most relevant applications for this task include
driver assistance, visual surveillance, and sports analysis. The problem itself
consists of localising each target in every single time instance as well as cor-
rectly maintaining each target’s identity over time. This latter task is often
referred to as data association and can be solved by existing methods as long
as all targets remain sufficiently far apart from one another. However, chal-
lenges arise when several targets come close together causing intersecting or
intertwined trajectories. In such situations, recovering each individual’s iden-
tity has a combinatorial complexity in the number of tracks and measurements,
and thus quickly becomes infeasible. In addition, the task is complicated fur-
ther by noisy sensor data with imprecise localisation, false alarms, and missing
measurements.

Most current approaches to multi-target tracking are based on tracking
by detection [1–6]. Here, tracks are formed by linking detections obtained
independently in each frame in a preprocessing step. This helps to avoid tracker
drift, but usually depends on a pre-defined target model which is trained offline.
When tracking by detection, more accurate results have been obtained by so-
called global methods that consider a batch of several frames (or even an entire
video sequence) jointly as opposed to determining the state based only on
previous observations [7, 8]. The rationale here is that potential ambiguities
may be resolved more easily once more evidence is acquired. However one must
accept a delay in the output as a tradeoff for better accuracy.

Although tracking by detection approaches achieve state-of-the-art results,
they struggle in those situations where the detector provides little to no evi-
dence for the presence of a target. Detector failures may arise for numerous
reasons, such as low image contrast, partial or complete occlusions, or abrupt
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Fig. 10.1: Overview of our optimisation algorithm. Given a possibly erroneous solution (a),
we locate each error (b) and perform a local optimisation within its neighbourhood (c). The
newly obtained solution is inserted back into the original one if and only if it increases the
overall likelihood considering all remaining frames and targets (d).

and significant change in appearance due to lighting, posture, or object size.
Even though short detection dropouts in certain, unambiguous areas can usu-
ally be bridged robustly by global optimisation techniques, correctly resolving
data association remains challenging in cases where several targets merge on
the image plane obstructing each other’s line of sight. Long term occlusions
or ambiguities are even more challenging, as the number of feasible association
combinations increases with the time interval considered.

We propose to exploit the power of model-free visual trackers to ‘untangle’
tracks in such challenging situations (see Fig. 10.1 for an illustration). Model-
free trackers do not rely on pre-existing detections, instead building an online
model of target appearance based purely on an instance of the target appearing
in a single frame. The performance of visual object trackers has increased
dramatically in recent years [9] making them robust to appearance change
and partial occlusion, which is a desirable property for solving the problem at
hand. Moreover, we propose a strategy to integrate model-free visual object
tracking into a multi-target tracking setting. Although visual trackers have,
in one way or another, been previously used in combination with multiple
target tracking [10–12], we present a rather different strategy to couple the two
approaches.

In particular, our main contributions are as follows:

• We propose a scheme to explicitly detect challenging situations in multi-
target tracking and address these in a way that builds on recent progress
in both single and multi-target tracking.

• We apply model-free visual trackers to several targets simultaneously in
order to resolve difficult situations locally.

• We integrate visual trackers into a multi-target tracking framework to
find improved optima of the objective function by making local changes.

• We demonstrate the validity of our approach on particularly challenging
sports videos.

We argue that our approach is able to drive the optimisation much quicker
towards improved local minima leading to a substantial increase in performance
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both visually and quantitatively. Our experiments show superior performance
on several challenging benchmark sequences.

10.2 Related Work
The popularity of multi-target tracking in computer vision has increased dra-
matically in the recent past leading to a large amount of related literature. In
this section we will concentrate on the most important work related mainly to
offline multi-target tracking approaches. Despite their limitation of a delayed
output, offline approaches to multi-target tracking have become increasingly
popular due to their superior accuracy. The main difference to online (or re-
cursive) approaches, such as Kalman filters [13, 14] or particle filters [7, 8] is
that instead of processing each frame as soon as it is obtained, the optimisation
of an objective function is performed on a batch of consecutive frames simulta-
neously. These methods are usually more robust at dealing with false positives
or occlusions.

Offline multi-target tracking.

The main difference between approaches lies in the exact formulation of the
objective function and its optimisation strategy. Jiang et al. [15] solve an inte-
ger linear program using LP-relaxation to obtain a (nearly) optimal solution.
However, the number of targets in the scene needs to be fixed a-priori. Zhang
et al. [1] reformulate the task as a network flow problem, which can be solved
in polynomial time using min-cost flow algorithms. Occlusions are handled by
inserting target hypotheses in a greedy fashion. Their approach served as a
starting point for a similar strategy [16], which followed a greedy optimisation
scheme and was thus much more efficient. Another globally optimal approach,
which explicitly models merged measurements is presented in [17]. Individual
tracks are however resolved using a simple shortest paths strategy, which may
result in intersecting paths. More recently, Liu et al. [5] use a network-flow ap-
proach to recover long-term trajectories of sports players using context-aware
motion models, while Butt and Collins [18] integrate high-order dynamic terms.
A coupling of object detection and tracking has been proposed in [19, 20] with
a quadratic and linear objective, respectively. Further formulations to solve
for data association include graph-based approaches, such maximum weight
independent set [21] set-cover [22] and generalised minimum clique graphs [4].

A slightly different way to solve the task is to concentrate on reconstructing
trajectories rather than on data association and only implicitly handle the lat-
ter. A regularly discretised space allows one to pose the problem as an integer
linear program, which is solved to global optimality by LP-relaxation [23] or by
the k-shortest paths algorithm [2]. To overcome the limitation imposed by the
discrete grid, a purely continuous state space is used in [6]. However, such an
accurate description of the complex task leads to a highly non-convex optimi-
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sation problem which is minimised locally by gradient descent augmented with
heuristic discontinuous jumps. A more elegant discrete-continuous energy was
later proposed in [24], where both trajectory estimation and data association
are handled simultaneously by minimising a single objective.

The main motivation for designing such complex objective functions [6, 19,
21, 24] is to describe the problem at hand as accurately as possible. Although
they obtain state of the art results, they are difficult to optimise and often
become trapped in local minima. In practice, this manifests in tracking errors
such as fragmented trajectories or confused target identities. In this work we
focus on overcoming these errors by applying recent results from single target
tracking.

Model-free tracking.

Recent advances in visual single object tracking [25–27] have also adopted the
tracking by detection paradigm. However, rather than train the detector of-
fline, so-called model-free trackers train a classifier to separate the target from
its background, using positive and negative training examples gathered while
tracking. This has the advantage of requiring only initialisation in a single
frame and of training a detector specifically for the current appearance of the
target. Several methods have been applied to the task, including multiple in-
stance learning [28], structured output learning [26], metric learning [29] and
kernel methods [27].

In general, model-free tracking methods are successful over short time pe-
riods but their performance degrades over longer time spans, or when target
appearance changes significantly. By using them to correct short term errors
in long term tracks obtained by global methods, we play to the strength of
these two different approaches. Because the model-free tracker operates only
on the output of the global tracker, it is independent of its implementation and
can therefore be combined with any of the above tracking frameworks. The
final result is still obtained by optimising the global objective function; the
short term tracks are simply used to generate plausible hypotheses, which the
optimiser can use to break out of local minima.

Other recent work has also demonstrated the use of single target visual
trackers within multi-target tracking. In [10], contours of multiple objects of
arbitrary shape are represented using level-sets and an underlying generative
model determines location, depth ordering and segmentation of each target.
Similarly, a level-set tracker is also applied in the context of pedestrian tracking
from a moving camera in [11], where sparse person detections are augmented
with the temporally varying target contours provided by the low-level tracker.
Izadinia et al. [30] detect pedestrians using the deformable part-based model
[31] and in addition to tracking entire people, trajectories of their individual
body parts are recovered. In [12], multi-target tracking is based on both,
detections from an offline object detector and a visual tracker output. The
decision on which cue to use is made based on a pre-trained model using several
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features such as detector response or optic flow. Zhang et al. [32] also propose to
couple several individual trackers by enforcing to preserve the spatial structure
between all targets over time. While this may help to resolve data association
in certain cases where objects tend to exhibit similar motion patterns, it is not
generally applicable to arbitrary people tracking, in particular sports videos
with abrupt and erratic target motion.

Our method is different from previous work in the following aspects: (i) We
exploit the power of visual trackers explicitly in difficult situations. To this
end, we localise difficult situations in the space-time volume and use the out-
put of multiple coupled single target trackers to generate a strong set of local
hypotheses. (ii) We present a local data association scheme for single target
trackers. To avoid clumping and identity switching between individual trackers,
we follow a simple, yet effective technique based on bipartite graph matching.
(iii) We integrate the output of single target trackers into a global energy min-
imisation method. To avoid potential drift caused by online learned trackers,
the local solution is verified in the global context using a robust multiple target
objective.

10.3 Multi-target Tracking by Energy Minimi-
sation

In this work, we follow the recent trend and address multi-target tracking by
minimising a highly complex energy function. We use the discrete-continuous
formulation proposed in [24]. Note, however, that our method is generic and
does not rely on any specific formulation of the underlying objective function.

A weakness of any non-convex global objective is that it may become
trapped in local minima, which results in fragmented or incorrectly associated
tracks. To remedy this, we propose to focus explicitly on those solution regions
that are most likely to be erroneous and to guide the optimisation toward alter-
native solutions using single target tracking with local data association. The
entire algorithm is summarised in Algorithm 1, and the individual steps are
illustrated in Figure 10.1.

We now describe in more detail each of the steps in the algorithm.

10.3.1 Global data association
In our formulation, multi-target tracking is performed by optimising a discrete-
continuous objective, where both data association and trajectory estimation
are solved for by minimising a single energy function. Given a set of target
detections D = d1, . . . , dD within a video sequence of F frames, the goal is
to find the most likely solution for assigning a unique target identifier to each
detection, and at the same time to estimate a continuous trajectory for each
target.
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Algorithm 1: Tracking multiple targets by local and global optimisation
input : Initial global solution S (Sec. 10.3.1)
output: Final trajectories
while ¬ converged do

Find next error Ξ in current solution S (Section 10.3.2)
Optimise locally within spatio-temporal neighbourhood of Ξ to
obtain Ŝ (Sec. 10.3.3, 10.3.4)
Stitch partial solution Ŝ into global solution S, if global cost is
reduced (Sec. 10.3.5)

end

Following the notation of [24], we represent the state space by two sets
of variables. A discrete set f = fi, . . . , fD determines the data association,
where each variable takes on a label l from the label set L = {1, ..., L,∅}
which corresponds to a specific target (or a false alarm). A set of continuous
variables T describes the shape of all trajectories under consideration, where
each trajectory is represented by piecewise polynomials.

The discrete part of the energy is posed as a graphical model with unary
and pairwise potentials and label costs [33]:

E(f) = φd + ψd,d′ + hf + hX
f , (10.1)

while the continuous part controls the trajectories:

E(T ) = φT + hf + hX
f . (10.2)

In a nutshell, the unary (or data) terms φ measure how well the trajectory
hypotheses fit the observations, the pairwise terms ψ enforce spatio-temporal
smoothness in the labelling, and the label cost models a prior on individual
trajectories (hf ), such as target dynamics or track persistence, as well as on
pairs of tracks (hX

f ) to suppress implausible solutions with strongly overlapping
trajectories. The complete energy is then minimised by alternately fixing one
set of variables at a time, generating the initial solution S. For more details,
we refer the reader to [24].

10.3.2 Error detection
Given an initial solution hypothesis S, our goal is to localise errors within this
solution and correct them. Several types of local error may exist, including split
tracks, swapped identities and merged trajectories. The importance of each
error type is application specific, but to demonstrate our approach, we focus
only on the most obvious error type that is also convenient to detect, namely an
interrupted trajectory. Under the assumption that the scene does not contain
any doors or large scene occluders where people may disappear indefinitely, a
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target that enters the field of view must ideally remain tracked until it leaves the
scene. Therefore, any trajectory Ti that terminates prematurely and not close
to the image border is considered a candidate for improvement. In practice,
this is likely to overestimate the number of locations at which errors may occur.
This does not detract from the final solution as, in the case of a genuine track
endpoint, all hypothesised track joins are likely to result in a higher overall
cost, and therefore the initial solution will be unchanged.

Let xti be the (x, y) location of target i in frame t. Further, let t∗i denote
either the first or the last frame in which target i exists. An error Ξ = {xi, yi, t∗i }
is possibly present at the spatio-temporal location xt

∗
i
i if and only if 1 < t < F

and β(xt
∗
i
i ) > τ . β(·) computes the distance to the closest image border and

τ is a margin where trajectories are allowed to terminate, which is set to 100
pixels in our experiments.

10.3.3 Choosing the local optimisation region
To optimise the solution locally, we consider a spatio-temporal window around
each detected error. In particular, we optimise over the temporal window
Ω = {t− k, . . . , t+ k}, where k is fixed to 10 frames in our experiments. This
time span is usually long enough to resolve an ambiguity, but still local enough
to rely on the output of a visual tracker.

It remains to determine which existing trajectories are involved in the cur-
rent error and should be re-estimated within Ω. On one hand, it is desirable to
reduce the current problem to the smallest possible subset to enable efficient
optimisation. On the other hand, discarding too many concurrent trajectories
may lead to conflicts in the later step when the two solutions are to be merged.
In a typical setting, trajectories that are far apart from one another are inde-
pendent. A reasonable trade off therefore is to only consider a small subset
of trajectories T ∗ ⊂ T which is within a neighbourhood Σ of the error Ξ.
To determine the neighbourhood, we create a short auxiliary trajectory T̂ by
tracking the target back and forth within the temporal window Ω, initialised
from the error Ξ. To reduce the state space for the optimisation while at the
same time not ignoring important dependencies, we consider only those detec-
tions di that are within a certain radius of T̂ during the local optimisation (cf.
Fig. 10.1 (c)). Formally, the set of target candidates is reduced to

D̂ = {di|ti ∈ Ω, ‖di − T̂ ti‖ < 2s}, (10.3)

where di denotes the spatial and ti the temporal location of detection i, re-
spectively, and s is the target size.

10.3.4 Local optimisation
In principle, any existing method can be used to find a plausible solution within
the spatio-temporal neighbourhood of the detected error. To guide the optimi-
sation into more promising regions, we exploit single target visual trackers in
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Fig. 10.2: Example of the bipartite graph that must be solved for each frame. Each tracker
Ti is connected to all detections Dj that lie within its search radius and to one occlusion
node Oi.

combination with local data association to generate likely trajectory hypothe-
ses. To this end, we initiate a tracker Ti from each terminating point of each
trajectory Ti in T ∗ that is involved in the error Ξ. In our experiments we
employ a recent tracker by Henriques et al. [27]. We use the implementation
distributed by the authors. In practice, its high robustness and speed make it
feasible to quickly generate many short term track hypotheses, although again
other single target trackers could also be used. The resulting tracks form a set
of strong candidates for selection in the optimisation procedure.

Traditional single target tracking-by-detection algorithms consider only the
single detection in each frame with maximum classification score. In order to
solve ambiguous situations where several trackers may detect the same target,
we extend this approach by including other possible targets. We include all
non-overlapping detections whose classification score is more than 10% of the
maximum classification score for the individual tracker. The task of local data
association is then to optimise the associations between a set of individually
trained trackers T and the set of detections D for each frame. By representing
this association problem in a bipartite graph we are able to find an optimal
solution using the Hungarian algorithm. In order to handle occlusions we also
introduce an occlusion node for each tracker, which accounts for fully occluded
targets. Figure 10.2 illustrates an example of the bipartite graph for one frame.

Each tracker Ti, i = 1, . . . , n, is initialised, and linked to m detections
D1, . . . ,Dm and its respective occlusion node Oi. Edges between trackers and
detections with a distance larger than the search radius r have weights zero and
are therefore omitted in Figure 10.2. The size of r is chosen as the mean of the
height and width of the target. The weight assigned to each edge combines the
appearance measure given by the classification score and a proximity measure
that penalises large spatial jumps between consecutive frames:

wi,j = si,j · pi,j , (10.4)

where si,j is the classification score for tracker i evaluated on target j, scaled
to [0, 1]. pi,j is a linear proximity measure between the last detection of tracker
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i and target j and is defined as

pi,j = 1
r

max
(
0, r − ‖Tt−1

i − Dj‖
)
. (10.5)

The proximity measure is used as a simple random walk motion model. Par-
ticularly in sports the motion may be abrupt, therefore, we choose this zero
displacement model rather than assuming constant velocity.

Edges connecting a tracker to its occlusion node are assigned a low weight,
which is empirically chosen as 8% of the maximum classification score in order
to be lower than real detections.

10.3.5 Combining local and global solutions
To stay consistent with the overall formulation, we minimise the same discrete-
continuous objective function as is used to evaluate the quality of the complete
solution on the spatio-temporal subset {Σ,Ω} using track hypotheses from
Section 10.3.4. After the optimisation, the resulting solution Ŝ replaces the
original solution within {Σ,Ω} if the overall energy E(Ŝ ∪ S̃) is decreased. S̃
is obtained by simply removing all partial trajectories from S that lie within
the spatio-temporal neighbourhood {Σ,Ω} of the error.

10.4 Experiments

Datasets.

We demonstrate our approach on eight different sequences. The first set con-
sists of six publicly available videos including the PETS 2009 benchmark [34]1
and TUD Stadtmitte [35]. All videos show pedestrians in a single view but
they exhibit a large variation in person count, camera viewpoint and motion
patterns. Since the camera calibration is available for this dataset, we perform
tracking on the ground plane in world coordinates.

As well as evaluating on standard benchmarks, we also demonstrate the
performance on difficult sports tracking data. In particular we show tracking
on two sequences in the challenging sport of Australian Rules Football (AFL),
in which there is regular and frequent crowding of players and contact between
them, making it a very difficult tracking problem. We make this new dataset
including the ground truth annotations and the detections used in this work
publicly available2.

Metrics.

Quantifying performance of multiple target tracking is a notoriously difficult
task [36]. Ambiguities in annotations, assignments strategies and metric de-

1Sequences: S2L1, S2L2, S2L3, S1L1-2, S1L2-1
2http://research.milanton.net/data

 http://research.milanton.net/data
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scriptions prohibit a purely objective evaluation. Here we follow the most
widely used strategy and report several metrics for all our experiments. Next to
standard precision and recall figures we report the CLEAR MOT metrics [37],
which consists of tracking accuracy (MOTA) and tracking precision (MOTP).
The former combines three error types: false positives, missed targets and iden-
tity switches, into a single number such that zero errors corresponds to 100%.
The latter measures the localisation error of the tracker w.r.t. the annotated
ground truth. Moreover, we also show the number of correctly recovered tra-
jectories as proposed in [38]. A target is considered mostly tracked (MT), if
it is correctly detected in over 80% of frames within its time span. Similarly,
a mostly lost (ML) trajectory is only recover in 20% of frames or less. Fi-
nally, the numbers of track fragmentations and identity switches are stated for
completeness.

Before presenting the overall tracking performance of our system, we dis-
cuss the importance of local data association for single target trackers and
illustrate the potential of our locally driven optimisation scheme measured by
the reduction of the total cost. We then provide an extensive quantitative
evaluation on various challenging sequences and compare our results to several
state-of-the-art methods.

10.4.1 Local data association
Let us first qualitatively demonstrate the effect of local data association using
multiple model free trackers in situations with a high presence of occlusions.
Figure 10.3 shows two comparisons between tracking with and without local
data association. The first sequence is from the PETS 2009 S2L2 dataset,
and the second one is a challenging situation from an AFL game. The images
are cropped for better visibility. In all cases model-free trackers are initialised
for each target depicted with bounding boxes in the left most image. The 1st
and 3rd rows show the results of running the two, respectively three trackers
individually, without local data association. In rows two and four the results
are obtained by including the Hungarian data association described in Section
10.3.4. The results show clearly that the individual trackers are prone to drift
in settings with multiple persons. In row 1 the identity switches and the blue
target is lost after occlusion. By including local data association these situ-
ations are resolved, and the two targets are correctly tracked even after full
occlusions. In the 3rd row without data association the three trackers clump
together and follow the same person which yields the highest classifier score for
each of the trackers after the occlusion. The local data association shown in
the 4th row again resolves this situation and keeps tracking the three individual
persons while maintaining their correct identities.

To quantify the importance of multiple tracker reasoning, we minimise the
global objective with and without explicit local data association (no LDA)
for proposal generation. Experimental results are reported in the following
sections.



10.4. Experiments 187

Fig. 10.3: Visual trackers without (1st and 3rd rows) and with (2nd and 4th rows) local
data association. See text for details.

10.4.2 Energy minimisation
To verify the potential of our approach, we compare the magnitude of the initial
solution S of the overall energy to the final solution obtained after including lo-
cal tracks. Figure 10.4 shows the relative energy decrease for various sequences.
The energy is scaled in each case such that the initial point, which is obtained
by [24], corresponds to 100%. It is important to note that we minimise the ex-
act same energy without introducing new detections. By focusing on erroneous
regions and by exploiting model-free trackers for better hypothesis generation,
our proposed local optimisation can find a lower global cost in nearly every
iteration and an overall reduction of over 50% in some cases. Dotted lines for
the AFL sequences show the energy reduction using proposals of independent
single target trackers without local data association. One iteration takes ap-
proximately one second to compute on a standard PC. We set the maximum
number of iteration to 150 in all our experiments.
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Fig. 10.4: Minimising a global energy function by focusing on local optimisation windows.
The dotted plots on the right hand side depict the energy minimised by our scheme by only
using independent single target trackers without local data association (no LDA).

Table 10.1: Quantitative results on two AFL sequences. Best result across all methods is
highlighted in bold face for each measure.

Method MOTA MOTP MT ML Frag. ID sw. Precision Recall
FFP Detector [39] – – – – – – 65.4% 55.0%
SMOT [40] 16.7% 60.8% 2 3 38 14 59.8% 52.0%
DCO [24] 29.7% 63.3% 3 2 93 97 70.9% 56.3%
ours (no init) 32.0% 64.1% 6 2 54 54 67.4% 64.5%
ours (no LDA) 39.0% 63.6% 6 2 44 27 72.1% 64.2%
ours (full) 41.4% 63.6% 7 2 39 22 73.2% 65.8%

10.4.3 Quantitative evaluation
AFL sports data.

We first demonstrate quantitative performance of our approach on the two
sports sequences. To obtain candidate detections, we trained a person detector
based on fast feature pyramids [39] using only one single image as training
data resulting in moderate precision and recall. Table 10.1 shows the detec-
tor’s performance as well as tracking results from two recent multi-target track-
ing methods. The similar-appearance multiple object tracker (SMOT) [40] is
specifically designed to address situations shown in these sports sequences with
similar target appearance by relying only on motion similarity and using a gen-
eralised linear assignment to reconstruct long-term tracks. While this method
shows excellent performance with no or little detection noise, it struggles to cor-
rectly infer plausible trajectories in a realistic challenging setting. The second
baseline is a recent energy minimisation-based method (DCO) [24], which can
eliminate many false positive detections. However, due to the complex formula-
tion of its objective, the optimisation reaches only a moderate local minimum
with many short tracks leading to a high number of interrupted trajectories
and identity switches.

The second part shows three variants of our proposed method. The first one
(no init) is our optimisation strategy starting from the trivial solution, where
each detection is considered an error (or equivalently a single-frame track).
Note that we are able to outperform other methods by appying our customized
optimisation scheme. The second strategy (no LDA) uses [24] as initialisation
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Table 10.2: Comparison to previous methods on a standard benchmark (PETS, TUD). The
results are averaged over six sequences.

Method MOTA MOTP MT ML Frag. ID sw. Precision Recall
HOG/HOF Det. [41, 42] – – – – – – 79.5% 62.2%
DP [16] 46.0% 64.7% 8 11 165 204 91.7% 55.8%
KSP [2] 41.7% 62.8% 8 20 10 18 91.6% 46.8%
DCO [24] 55.7% 63.6% 11 9 49 43 93.0% 61.6%
ours 56.9% 64.1% 13 10 40 48 93.4% 62.8%

but does not involve local data association for hypothesis generation as de-
scribed in Section 10.3. Finally, by applying our full method using localised
optimisation with visual trackers, we are able to further minimise the objective
function, which is also reflected in the superior tracking performance.

Public benchmark.

Our second set of experiments involves a public tracking benchmark. Table 10.2
shows a quantitative comparison of our proposed strategy to previous methods:
A network flow-based approach solved with dynamic programming (DP) [16],
globally optimal tracking on a discrete grid (KSP) [2] and the same energy
minimisation formulation as before [24]. All numbers are computed using code
provided by the authors, publicly available detections, ground truth and evalu-
ation scripts3. Note that the slightly higher absolute number of ID switches is
a result of incorrectly bridging or extending interrupted trajectories. However,
the positive effect of recovering more tracks (MT) and thereby increasing the
recall outweighs, yielding higher overall accuracy.

Although we outperform state-of-the-art methods on this benchmark, the
improvement is less prominent than in the AFL case. One reason for this
behaviour may be that the detection quality is poorer on the sports sequences
due to large deformations and small target size (cf. Tab. 10.1 and Fig. 10.5),
yielding a more complex optimisation problem with more local minima. It is
also possible that [24] finds a solution much closer to the global optimum on the
public sequences, which may indicate that it is well suited to the benchmark
but shows limitations on novel data.

10.4.4 Qualitative results
Finally, Figure 10.5 illustrates qualitative results on three sequences. Each row
shows three frames from AFL1, AFL2, and PETS S2L2, respectively. Note
that our method is able to correctly identify nearly all targets even in extremely
challenging conditions with substantial levels of multiple occlusions. Also note
how the potential of using visual model-free trackers within a traditional multi-
person tracking setting is unfolded in situations with extensive pose variation,
such as demonstrated by the cyan (ID 33) and the blue (ID 20) targets in the

3 Note that the corrected numbers are reported for [24], which differ from the original
publication.
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Fig. 10.5: Exemplar frames from two AFL clips and the PETS S2L2 sequence. Note that
using model-free trackers allows one to maintain the identity of a player even during severe
deformations and pose changes (cf. the blue target (ID 20) in the second row).

first and second row, respectively. Please refer to the supplemental video for
further visual results.

10.5 Conclusion
We proposed a simple yet effective method to optimise highly complex objec-
tives for multiple target tracking by focusing explicitly on correcting errors
locally. A local data association technique combined with a set of visual object
trackers is able to drive the optimisation into much better minima reducing the
energy by over 50% and consequently leading to superior solutions. We demon-
strate the validity of our approach on particularly challenging sports sequences
and public benchmark data achieving state of the art performance.

In future work we plan to more thoroughly investigate different error types
and their influence on the final solution. It may also be possible to design even
more accurate and more complex objective functions that better approximate
the true state but still remain tractable using our local optimisation strategy.
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Until this part we have been focusing on the analysis of sports facilities and
sports players. This part will open up for a more broad use of the technology
and present the results from analysing humans in the city.

In the Smart City, digital technology monitors and regulates the installa-
tions of a city, for a more efficient, healthy, and liveable environment. With
cameras and automatic computer vision software, it is possible to analyse large
amounts of data in a non-intrusive manner. The privacy conserving nature
of the thermal sensor makes it well suited for use in public installations. In
the first chapter of this part we show how thermal imaging performs in five
different applications. The following two chapters go into more detail on two
different applications, using the same basic tracking framework.

The first chapter of this part consists of a paper accepted for journal pub-
lication and the two following chapters were originally published in conference
proceedings:
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Abstract
In the modern world, cities need to keep up with the demand for mobility, effi-
cient infrastructure and environmental sustainability. The future Smart Cities
use intelligent Information and Communication Technologies to raise the qual-
ity of life. This includes computer vision as one of the main technologies. It can
observe and analyse human activities from a distance in a non-invasive man-
ner. Traditional computer vision utilises RGB cameras, but problems with this
sensor include its light dependency, and the privacy issues that can be raised
by people being observed. In this paper, we propose the use of thermal imaging
in real-time Smart City applications. Thermal cameras operate independently
of light and measure the radiated infrared waves representing the temperature
of the scene. In order to showcase the possibilities, we present five different
applications which use thermal imaging only. These include both indoor and
outdoor scenarios with the purposes of people detection, counting and tracking,
as well as one application for traffic safety evaluation.

11.1 Introduction
Contemporary urbanisation on a global scale has led to a number of challenges
in terms of environmental stress, continuing migration, demographic shifts and
urban liveability. In the literature on the application of digital technologies
to these vast urban challenges, the notion of a ‘Smart City’ is frequently seen
[1, 2]. If one set aside the policy and branding value of an overarching, but
rather simplifying term, the notion of a ‘Smart City’ carries the potential for
engaging with these urban challenges. The important feature to notice is that
the contemporary city no longer can be comprehended as a bounded and mono-
nuclear unit; rather, cities are connected (or dis-connected) in globally reaching
networks that create new dynamics of mobility, regardless of whether these are
of the nature of moving goods, ecological flows or in-migrating people [3]. But
next to these vast new material transformations, the ‘network city’ has also
become over-layered with new types of digital technology, leading some scholars
to speak of a ‘sentient city’ [4] or a ‘programmable city’ [5]. The essence of this
development is that networked technologies are now able to track and detect
different types of movement (container, information, cars, or people) to such
an extent that we may speak of a new ‘digital layer’ to the city [3]. Obviously,
many scenarios may play out from this. Some would be focusing on the issue
of surveillance and control, whereas others would put focus on the potential for
these new technologies to optimise the flow of people, goods and information, as
well as to engage citizens more in their cities and to create better environmental
solutions. However, in order to explore the potential of these new networked
technologies, and thus apply them in ‘smart’ ways, basic research needs to be
undertaken. One must explore what the new networked technologies may afford
in solutions to the grand challenges facing the contemporary cities globally. As
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we are beginning to see cities where real-time location aware data is being
created on a continuous basis, we may start to ask how such data can inform
better systems of traffic planning, city governance, energy provision and other
types of urban utilities [6]. But moreover, the new ‘digital layer’ opens up a
discussion of whether it is possible to involve citizens more in the social life of
public spaces, if the new technologies hold the potential to create new aesthetic
experiences ‘on top’ of the existing ones; and if real-time data fed back to city
inhabitants will create a whole new experience of the city. These issues are
relevant dimensions of a new research agenda on the ‘Smart City’, and in this
paper we will be focusing on one particular combination of technologies that
we think need to be researched for their undiscovered potentials.

Computer vision technologies have great potential in smart city applica-
tions, due to the non-intrusive nature of the sensor. With cameras, it is possible
to record data at a distance and at real-time. There are, however, some prob-
lems with regular RGB cameras. First of all, the deterrent effects of surveillance
and control caused by cameras are high, as it is possible to visually recognise
and follow people1. Moreover, robust systems can be very hard to develop,
as cameras capture reflected lighting. Thus, they depend on sufficient light in
order to capture anything, and the visual perception of things changes with
the lighting. In the context of smart cities, these problems are critical, as 24
hour operation is assumed in many applications. This is not always possible to
achieve with RGB sensors, while the natural lighting changes with the weather
and the nights are dark. An alternative sensor, which is still non-intrusive, but
also independent of lighting, is the thermal camera; and with this sensor, pri-
vacy issues are also eliminated. Thermal cameras capture the long-wavelength
infrared radiation, which is radiated from all objects with a temperature above
absolute zero. The amount of radiation depicts the temperature of the object,
resulting in an image that visualises the temperature of the scene. People and
objects with a temperature different from the surroundings can therefore be de-
tected both day and night. Figure 11.1 shows an example of a thermal image
from an urban square.

We have in recent years done a large amount of research in thermal imaging
for different applications related to the Smart City. The purpose of this paper
is firstly, to introduce the thermal sensor and its potential to the computer
vision research community. We will compare and discuss the use of thermal
and RGB sensors for real-time people detection and tracking. Furthermore, we
will showcase five successful use-cases where we have applied computer vision
to thermal imagery in the context of Smart Cities.

The following section will discuss thermal technology and compare RGB and
thermal cameras. After that, we present five different smart city applications
where real-time thermal imaging is applied.

1In some surveillance situations, discovery of a person’s identity is the ultimate goal; but
in general, data acquisition is preferred to be anonymous
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Fig. 11.1: Thermal image overlooking an urban square.

11.2 Thermal Sensors
Originally developed for military purposes, thermal cameras have now reached a
reasonable price and have become available for commercial use. The technology
has therefore started to be deployed for surveillance purposes, where RGB
cameras would typically have been used.

The resolution of thermal sensors is slowly increasing as the technology
evolves and new materials are explored. Available today are sensors ranging
from cheap 8× 8 pixel arrays [7], up to 1280× 1024 pixel sensors [8]. The field-
of-view ranges from very narrow (approx. 1 degree), to wide angle lenses up
to 80 degrees [9]. Some types of cameras have the possibility for optical zoom.
The wide angle lenses are very useful in applications like surveillance of indoor
rooms and urban spaces. However, the selection of wide angle lenses are small
and the price is very high, due to the expensive lens material germanium. With
very narrow field-of-view lenses, it is possible to detect people several kilometres
away. This is very useful, especially for border and coastal surveillance.

For commercial use, the best known types of thermal cameras are the hand-
held cameras for building inspections. However, thermal surveillance cameras
are becoming very popular, due to their independence of lighting. These cam-
eras are very similar to regular RGB surveillance cameras in terms of size, look
and interfaces [10]. RGB cameras are still significantly cheaper than thermal
cameras, though.

Thermal network cameras with data communication over IP can be part of
larger camera networks, and they enable easy data transfer to a computer [11].
Many cameras come with built-in memory or a slot for a memory card, but
external computers, and thereby storage, can also be connected to the cam-
eras. Some cameras have small built-in processing units, where simple image
processing algorithms can be programmed; e.g., motion detection and cross
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line detection. Real-time online processing of a video with more demanding
algorithms is possible when a computer is connected.

11.2.1 Segmentation of people
Our main purpose of using computer vision in Smart Cities is to automatically,
and in real-time, detect and track the movements of humans [12, 13]. Therefore,
we will focus on the possibility of people tracking and detection in each of the
image modalities and start with a general overview of detection methods.

In almost any application of computer vision figure-ground segmentation is
needed to locate the desired object(s) in the images. Mainly, two approaches
are widely used for detecting humans: pixel-based detection and object-based
detection [14]. Pixel-based detection methods consider each pixel individually,
e.g. by comparing to a background model. The basic idea is to compare each
pixel to a background model, and if the difference exceeds a given threshold, the
pixel is classified as foreground. However, especially in outdoor scenes, obtain-
ing a valid background model is challenged by the shifting sun, clouds, moving
branches of trees, etc. Different ways of modelling a changing background, as
well as updating it appropriately, is still being researched. In applications with
a moving camera, it might be impossible to model the background, though.

Image thresholding is applied after background subtraction, but can also be
applied to original images of different modalities. Depending on the application,
thresholding methods vary from the simplest constant threshold value over
dynamic and automatic methods [15] to bio-inspired algorithms [16].

Object-based methods detect either entire objects or major parts in case of
a part-based model. Often these methods run by translating a window over
the image and calculate the likelihood of each window containing a human [14].
The Histogram of Oriented Gradients (HOG) detector [17] is one example of a
very popular object-based detector, searching for a learned object shape.

The pixel-based methods detects everything that is or has been moving.
This approach is fast, but it will often require post processing to filter noise
and unwanted objects from the detections.

Object-based methods on the other hand are designed to detect a specific
type of object and normally needs no post processing. However, the output is
usually bounding box locations, compared to the more precise silhouettes pro-
duced by pixel-based methods. The detection rates for HOG degrade rapidly
when the resolution decreases (people less than 80 pixels tall), or if people are
partly occluded [18]. Furthermore, object-based methods are generally compu-
tationally expensive, and often require GPU-based implementations in order
to perform in real-time.

These limitations of object-based methods affect its use in Smart City ap-
plications, since the appearance of people may vary a lot. People are often
observed from a far view, resulting in low resolution and different viewing an-
gles of the people. On the other hand, the camera is most often static, reducing
the problems of modelling a background for pixel-based methods significantly.
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For the applications at hand, with focus on robust real-time performance,
pixel-based detection methods seem best suited for detection. In the following
section we will test and compare detection in RGB and thermal images.

11.2.2 Comparison of thermal vs. RGB cameras
For any kind of detection, thermal cameras have clear advantages compared to
RGB cameras in dark conditions, due to the independence of lighting. Figure
11.2 compares the two modalities from a night scene. Even though parts of the
scene are illuminated, the person is very hard to detect in the RGB image. In
the thermal image, the person is fully visible.

(a) RGB (b) Thermal

Fig. 11.2: Example of a night scene.

Due to the properties of thermal imaging, detection of people can be easy
and fast in the situations where human temperature differs from the surround-
ings. Here, a thresholding of the images can be sufficient for segmentation.
Figure 11.3 shows an example where an automatic threshold method based on
Maximum Entropy [15] is applied to a thermal image.

(a) Thermal input (b) Automatic thresholding

Fig. 11.3: Segmentation of people using automatic thresholding.

A similar fast approach which can be applied to both RGB and thermal
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images is background subtraction, which we described in section 11.2.1. This
approach assumes that only people, or other objects of interest, are moving.
Otherwise filtering of the detections must be applied as post processing.

Figures 11.4(a) and 11.4(b) show an example of an urban outdoor space
captured simultaneously by an RGB and thermal camera (with slightly different
views). Figures 11.5 and 11.6 show the results of background subtraction and
binarisation with different threshold values. The threshold values are here
chosen manually to illustrate the best possible segmentation and to show the
effect of changing the values. In a real application an automatic thresholding
method could be applied for choosing the best threshold value in any given
frame.

Dark colours of clothes and the relatively small size of people make it very
hard to detect people in the RGB image. Furthermore, the ground is partly wet,
making it even harder to distinguish people. Using background subtraction,
some people can be detected, but as figure 11.5 shows, it is a trade-off between
too much noise and missed detections. Using the thermal image, less noise is
detected, even with a much lower threshold value of 5. Thus, as seen in figure
11.6, the trade-off is less distinct, and people can more reliably be segmented
with background subtraction using a thermal image.

(a) RGB (b) Thermal

Fig. 11.4: An urban scene captured with an RGB and a thermal camera. The cameras have
slightly different views. The images are captured on an early summer day with temperatures
around 15◦C.

Segmentation using background subtraction assumes that it is possible to
obtain a reliable background model. Fast changing lighting/temperature condi-
tions can cause problems, and a dynamic background model must be adjusted
and updated during run-time [19]. Thermal images have only one channel,
compared to three channels of an RGB image. Furthermore, the temperature
often changes more slowly than the lighting. This can make it easier to model
the background in the thermal domain. Another well-known problem in the
RGB domain is the occurrence of shadows. Shadows often cause false detec-
tions, as the shadows move just like people. Shadows are related to lighting,
and thereby do not exist in the thermal domain. However, thermal radiation
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(a) th = 30. (b) th = 40.

(c) th = 50. (d) th = 60.

Fig. 11.5: Background subtraction of the image in figure 11.4(a), then binarisation with
threshold values from 30-60. The edges of the carts in the upper right corner are detected
due to small vibrations of the camera.

can be reflected in glossy surfaces and cause false detections that are similar to
shadows. This is considered a rarer problem in Smart City applications though,
as the surfaces are often not reflective.

After detection, some Smart City applications require the object to be
tracked. Tracking humans is a complex problem, due to the dynamically chang-
ing motion, and often occlusions must be resolved. In these situations, it can
be necessary to re-identify people after an occlusion or an ambiguous situation.
Recognising individual people is difficult in thermal images, due to the lack of
colour and texture information. Thereby, re-identification of people in thermal
images is very difficult, making it very hard to solve these ambiguous situa-
tions in tracking. Thus, RGB cameras have advantages in complex tracking
scenarios.

In table 11.1, the pros and cons of using RGB and thermal cameras for
people detection and tracking are summarised.

11.3 Application of Real-time Thermal Imaging
In the remaining part of this paper, we present five different Smart City ap-
plications. The purposes are all related to real-time monitoring of the city,
in order to optimise mobility, accessibility and safety for the citizens. In all
applications, we use one or more uncooled thermal cameras with a resolution
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(a) th = 5 (b) th = 10

(c) th = 20 (d) th = 30

Fig. 11.6: Background subtraction of the image in figure 11.4(b), then binarisation with
threshold values from 5-30.

of 384 × 288 pixels (AXIS Q1921) or 640 × 480 pixels (AXIS Q1922). Table
11.2 summarises the applications in terms of purpose, equipment, test time,
type of scene, technique used and processing time. The test time stated here is
the full run time of the set-up, the manually annotated period for quantitative
evaluation may be shorter.

11.4 People Counting in Urban Environments
In a Smart City, human movement is automatically registered and analysed.
For both real-time and long-term perspectives, this knowledge can be beneficial
in relation to urban planning and for shopkeepers in the city. Information in
real-time can be used for analysing the current flow and occupancy of the city,
while long-term analysis can reveal trends and patterns related to specific days,
time or events in the city. In this work, we continuously counted people passing
through a pedestrian zone in a city environment during one week. The location
is illustrated in figure 11.7, along with a picture of the camera’s view.
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Pros Cons
RGB Cheap sensors Sensitive to light

Re-identification possible Privacy issues
Shadows

Thermal Easier segmentation Re-ident. difficult
Independent of light More expensive
No privacy issues Reflections
Single channel images

Table 11.1: Comparison of RGB and thermal cameras for people tracking and detection.

Sec. Purpose Camera(s) Test
time

Scene Technique Proc.
time

11.4 People counting 1 AXIS Q1921
10mm

1 week Outdoor
pedestrians

Image differencing 1.2 ms/f

11.5 People tracking 3 AXIS Q1921
19mm

1 week Outdoor
pedestrians

Background sub-
traction and
Kalman filtering

66 ms/f

11.6 Car and bicycle
detection

1 AXIS Q1922
10mm

20 days Outdoor
traffic

Optical flow 41 ms/f

11.7 People count-
ing and activity
recognition

3 AXIS Q1922
10mm

1 month Indoor
sports

Background sub-
traction and Fisher
faces

12.5-60
ms/f

11.8 People tracking 1 AXIS Q1922
10mm

2 hours Outdoor
pedestrians

Background sub-
traction and
Kalman filtering

20 ms/f

Table 11.2: Summary of the applications presented in this paper.

11.4.1 Methods
When counting people in a pedestrian zone or a sidewalk, it is assumed that
most people are moving across the scene. But being an outdoor scene, it cannot
be assumed that people are constantly hotter or colder than the background.
The surrounding temperature will change throughout the day, and the sun can
heat dark pavement to temperatures hotter than the human body temperature.
Therefore in this work, it has been chosen to do segmentation based on image
differencing. The activity are then counted solely on the pixel response as
opposed to connected silhouettes of people. Double differencing will be used in
order to eliminate noise. Figure 11.8 explains the algorithm.

A threshold value of 2 is applied to binarise the image. Figure 11.9 shows
an example of an input frame, and the result of double differencing with the
two previous frames.

The activity, here represented by white pixels, must be converted into a
number of people. From training data, the relation between the amount of
activity and the number of people can be calculated. This factor depends on
the specific set-up; camera specifications and mounting location. For each new
location, a training phase is needed in order to learn this factor. However, it
is tested to generalise appropriately over different days and activity levels at
the same location. When the velocity of people, and thereby the activity in
the frame, is lower, the person will instead stay longer within the region of
interest, so that the accumulated activity over a time period will be equal to
that of a person moving fast through the scene. The number of people should
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Fig. 11.7: Illustration of the location and camera view.

frame r-2

di�erence image i-1

double di�erence image t

di�erence image i

frame r-1 frame r

difference

binarization

AND operation

binarization

difference

Fig. 11.8: Double differencing algorithm.

therefore be estimated for time windows, rather than momentarily. Choosing
a smaller region of interest (ROI) in the image, as illustrated in figure 11.10,
will improve the results by reducing the perspective effects in the image. The
region is chosen to represent a section of the street as close to the camera as
possible. The top-view of the scene in combination with the chosen region of
interest implies that occlusions can be neglected.

The ROI is applied by using an AND-operation between a binary image
representing the ROI and the current frame.

11.4.2 Results
One full week of video has been captured. Due to the high time consumption
of manual video annotation, 13 video sequences of 20 minutes each have been
chosen for tests. These video sequences cover different days, times of the day
and the level of activity in the video, and they have been manually annotated.
Using a leave-one-out cross validation, with twelve video sequences used for
training and one for testing in each iteration, the mean accuracy is 90.75 %.

The full week of video has been processed and compared to the results of a
commercial system [20]. This system uses observed Bluetooth ID’s to estimate
the number of people passing a node. This does, however, only represent the
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Fig. 11.9: Left: Thermal input image, right: Result of double differencing and thresholding.

Fig. 11.10: The chosen region of interest.

percentage of people carrying a device with an open Bluetooth connection. We
scale the Bluetooth results with a factor of 25.76, in order to compare the results
as shown in figure 11.11. The factor of 25.76 has been found experimentally by
dividing the mean of our person detections with the mean of detected Bluetooth
devices.

None of these results have been manually verified, making it unclear which
is the most precise, but it is clear that they follow the same trends throughout
the week. Two times, just after 120 hours and 140 hours, our vision system
detects more people than the Bluetooth system. This is caused by police cars
driving in the pedestrian zone on Friday and Saturday nights. This is not
accounted for yet in the vision system. The advantage of a vision system in
this application is that it counts the actual number of people, compared to
counting a number of, eg. Bluetooth devices, where the relation to the number
of people is unknown.

The processing takes 1.2 ms per frame (384×288 pixels), which easily obeys
real-time requirements. The test has been performed with a multi-threaded
implementation of the system on a laptop with an 2.00GHz Intel Core i7-
2630QM CPU and 8GB RAM.
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Fig. 11.11: Our system (blue graph) compared to a commercial system based on Bluetooth
devices (red graph). The Bluetooth results have been multiplied with a factor 25.76.

11.5 Interactive Urban Lighting
In the coming years, it is expected that the type of urban illumination will
change to light emitting diodes (LED) to a greater extent. In addition to
being less energy demanding, this type of light source enables digital control
of both colour and intensity. That opens up for new possibilities for designing
interactive and adaptive lighting. Interactive environments can engage people
to feel more connected to the urban spaces and encourage them to stay or to
play in the environment. Intelligent lighting can also make the environment
appear more comfortable and secure. In this full scale experiment, we put up
three thermal cameras and 16 lamps in an urban space. A picture of the space
is shown in figure 11.12.

Fig. 11.12: Overview of part of the observed urban space.
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Four different light scenarios were tested:

1. Ambient Illumination: Static white lighting.

2. Glowing Light: Each lamp individually fades up and down between 0-20
% intensity.

3. White Aura: Illuminated circle with a diameter of min. 10 meter around
each person.

4. Red Treasure Hunt: When a person approaches a "trigger light", a wave
of light is sent out through the square.

The two first scenarios do not depend on the movement of people, while
the last two are interactive scenarios, where thermal cameras are applied to
estimate people’s movements [21].

11.5.1 Hardware setup
Figure 11.13 illustrates the hardware of the system. Three thermal cameras are
each connected to a computer, which processes the video and converts tracks
of each person at the square into a common world coordinate system. This
tracking data is sent to a computer that controls the lamps based on the live
data and a chosen light scenario. A total of 16 RGB LED lamps are controlled
by the system.

Fig. 11.13: System overview

Inside each lamp is installed a DMX module, which controls each colour of
the LED lamp in 255 brightness steps, making it possible to control both colour
and brightness of each lamp individually. The area covered by each camera is
illustrated in figure 11.14.

The real-time aspects of this project are very important, because the lighting
must react to people’s concurrent movements and have an update rate that
allows for smooth control. Communication between both computers and lamps
are handled using the Open Sound Control protocol [22].



214 Chapter 11.

Fig. 11.14: Overview of the square with camera views illustrated.

11.5.2 Methods
Input to the interactive lighting system is the real-time human movement.
Since the observed area is an urban space with restricted car access, it is as-
sumed that all observed activity is human activity of interest. People are
detected by performing background subtraction, and then the objects are fil-
tered by size. Since the background temperature naturally changes over time,
the background must be updated. It is chosen to perform a running average
background subtraction with a selective update, meaning that only pixels seg-
mented as background will contribute to the new background. The detected
image coordinates of people are transformed into world coordinates using a
homography matrix calculated during an initialisation. Further description of
the methods can be found in [21]. People walking closer than three metres to
each other are treated as groups in this work. Each person or group object is
tracked in world coordinates with a Kalman filter [23, 24]. Treating groups of
people as one object to track also helps to overcome the problems of occlusions
between people, as it is not necessary to distinguish single persons.

The videos from each camera are processed individually, but after trans-
forming the positions, all the tracking and lamp positions refer to the same
world coordinate system. The map with overlayed tracking results for a 5-
minute period is shown in figure 11.15.

For each frame, the position and velocity vector for each person is registered
from the tracking and sent to the light control system. In addition, merging
and splitting of groups are registered as special events that could trigger light
events.

The reactions from people are analysed both through interviews and from
the recorded occupancy and movements.
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Fig. 11.15: Overview of the square with tracking results overlayed. Each person is assigned
one colour.

11.5.3 Results
The system has been tested for one week during the winter, when very cold
weather could possibly affect the behaviour of people. Observations and in-
terviews showed that people used the space mostly for transit, and often they
did not notice the changed illumination. But people observing the square from
outside noticed and appreciated the interactive behaviour [21]. However, later
experiments have shown that the lighting causes a range of abnormal behaviour,
such as cat walking, dancing and light chasing.

The vision system is evaluated qualitatively by looking at the positions of
visualised tracks on a digital map compared to the real position of the person,
as well as the actuated lighting scenario compared to the expected scenario.
With a precision of approximately one meter for the mapped position, the
system works as expected, with correct and fast feedback to the lamps.

The full system runs real-time with a frame rate of 15 fps on 384×288 pixel
images with a CPU implementation on a Intel Core i5-2430M 2.4GHz CPU. The
real-time performance is crucial here, as the application does not allow delays
in the feedback to the lamps. Testing the system for one full week without
interruptions prove that the real-time performance is stable during changing
conditions. For higher frame rate or larger images the performance could easily
be improved using a faster CPU or possibly a multi-threaded implementation.

Figure 11.16 shows two frames from the "White Aura" scenario, where an
illuminated circle follows a person.

This study also showed that it is possible to save up to 90 % of the energy
for lighting, without people changing their behaviour [21].

The tracking information may both be used for instant control of the lighting
as described here, but it could also be used for later evaluation and design of
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Fig. 11.16: Two frames from the "White Aura" scenario.

urban spaces.

11.6 Automatic Near-collision Detection
In urban environments, the high density of people leads to heavy traffic. Many
people tend to use their private cars for comfortable transportation, but in
order to reduce emission and congestion, a transition from the car to more eco-
friendly means of transportation, such as the bicycle, is needed. To do this,
an enhancement of the bicycle conditions must be done in order to increase
the share of cyclists. Cities, such as Copenhagen [25], have put special focus
on the cyclists, eg., by designing special bike lanes on all the roads. However,
studies have shown that bike lanes do not improve the safety of cyclists; even
though there is a reduction in the number of crashes on road sections, where
bike lanes are established, the number of crashes increases in the intersections;
in particular at signalised intersections [26, 27].

In this work, thermal cameras are used to compare different types of in-
tersections in terms of safety. The objective is to evaluate if some geometric
designs of bike lanes through intersections are better than others. Since acci-
dents are rare, the evaluation is based on the Swedish Traffic Conflict Tech-
nique [28]. The idea is that accidents and near-collisions are related. Thus, the
near-collisions will be used as a measure of safety, since they occur more fre-
quently than accidents. The detection of near-collisions can be done manually,
but is of course very time consuming and ineffective due to the low number
of near-collisions. In the smart city, this can be done automatically using a
camera system.

11.6.1 Methods
In this work, we will look for close interactions between cars and bikes, which
are prerequisites for near-collisions to happen. Interactions are defined as the
simultaneous motion of a car and a bicycle in a given zone of interest. Shown
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in figure 11.17 is the car zone in blue and the bike zone in red. When both cars
and bikes are present at the same time in their respective zones, there is a risk
that the cyclists going straight in the red zone could be hit by a car from lane 1
or lane 2 turning towards lane 3. In both situations, the cars will pass the blue
zone with a direction towards lane 3. An example image from one intersection
is shown in figure 11.18. Since both position of the camera and the layout of
intersections and bike lanes changes between each scene captured, the car and
bike zones must be defined manually for each intersection.

Fig. 11.17: Illustration of an intersection with marked zones of interest. Blue is the car
zone, and red is the bike zone. Blue arrows indicate cars’ paths of interest, and the red arrow
indicates bikes’ path of interest.

In order to detect interactions, optical flow [29] is applied to calculate direc-
tion and magnitude of the motion. For cyclists, the direction must correspond
to going straight, and for cars, they must head towards the cyclist zone. An
angle histogram based on the optical flow vectors will be used to decide whether
the direction is correct. As shown in figure 11.18 the camera angle is chosen in
order to have a straight view on both bike and car lanes, but occlusion between
cyclists can occur as they happen to drive close to each other. However, the
optical flow method does not rely on detection of individuals, rather the overall
motion in the chosen zone. The magnitude of motion must exceed a specified
threshold in order to eliminate noise. This threshold depends on the camera
location and angle, but due to a relatively small detection area, the effects from
image perspective within each image are neglected.

The motion must be consistent for a short interval of time in order to be
considered a real detection. Therefore, we implement a buffer that flags the
frames in which either a cyclist or car’s motion is observed. In order to register
an interaction, both buffers must be flagged for a number of consecutive frames.
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Fig. 11.18: Example of an interaction between a car and a bicycle.

11.6.2 Results
One hour of video from each of the four intersections is used for testing the
system. The videos are captured from 7am to 8am, corresponding to the morn-
ing rush hour. All interaction situations are manually labelled and compared
to the output of the automatic system. The results show that we get approx.
33 % false positives. This is of course a high rate, but as it is more critical
to miss any detections, we allow more false positives. A manual verification
process of the detections can be conducted afterwards. A few false negatives
are observed. These situations occur when either a car or cyclist has a very
low speed, resulting in a motion vector below the threshold.

The speed of the algorithm obeys real-time requirements with a total pro-
cessing time of 41 ms per frame (640 × 480 pixels) on a 3.4GHz Intel Core
i7-3770 CPU with 8 GB RAM. In idle situations, with no vehicles present, the
processing time is 22 ms per frame.

11.7 Analysing the Use of Sports Arenas
The interest in analysing and optimising the use of public facilities in cities has
a large variety of applications in both indoor and outdoor spaces. While the
previously described projects focus on outdoor spaces, this work copes with
indoor scenes. Here we are focusing on sports arenas, but other possible appli-
cations could be libraries, museums, shopping malls, etc. We aim to estimate
the occupancy of sports arenas in terms of the number of people and their
positions in real time. Potential use of this information is both online book-
ing systems, and post-processing of data for analysing the general use of the
facilities. For the purpose of analysing the use of the facilities, we also try to
estimate the type of sport observed based on people’s positions.
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11.7.1 Methods
In indoor spaces, the temperature is often kept constant and cooler than the
human temperature. Foreground segmentation can therefore be accomplished
by automatic thresholding the image. In some cases unwanted hot objects, such
as hot water pipes and heaters, can appear in the scene. In these situations,
background subtraction can be utilised. After obtaining a binary image, the
foreground should be converted to a number of people. Each white blob is
simply counted as a person, but in order to handle partial occlusions, the blobs
can be split both vertically and horizontally before counting them [30]. As
described in section 11.2, no very wide angle lenses exist for thermal cameras
yet. To capture a wide area, more cameras can be put together to form a
wide angle image. In figure 11.19, three images have been stitched together to
cover a 20× 40m arena. The lower image shows the segmentation of people by
automatic thresholding and removing white pixels outside the region of interest,
here the court area.

Fig. 11.19: Upper: Thermal input image from a sports arena. Lower: Result after thresh-
olding the image and removing white pixels outside the court area (ROI).

For crowded scenes, occlusions will result in missed detections, and reflec-
tions and non-human objects can result in false detections as well. Including
temporal information may stabilise these measurements. Detecting when peo-
ple leave or enter the scene gives information about the transitions in number;
during periods with no activity in the border area, the number of people inside
the monitored area must be the same. Using a dynamic programming approach,
the results are optimised over long periods for more stable measurements [31].

From the detection of people, their activities can also be analysed. For
sports arenas, we estimate the sports type from the occupancy patterns over
10-minute periods. Each registered position of people on the court contributes
with a Gaussian distribution to a heatmap. An example of two heatmaps for
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basketball and badminton are shown in figure 11.20.

(a) Basketball (b) Badminton

Fig. 11.20: Heatmaps for 10-minute periods.

A classifier is trained to detect five different sports types from the heatmaps
only. From these images, the dimensionality is reduced with PCA and Fisher’s
Linear Discriminant (FLD), where FLD uses labelled training data and seeks
the dimensions which discriminate the classes. After transforming each sample
data to the new space, the nearest class is found using the Euclidean distance
[32].

11.7.2 Results
The detecting method has an error rate between 7.35-11.76%, depending on the
activity level in the videos. Adding the border activity detection and dynamic
programming optimisation reduces the error rate to 4.44 %. This full approach
is tested on 30 minutes of annotated video, while the underlying detection
method has been tested on a large annotated dataset from five different arenas.
The detection algorithm easily runs real-time, with a processing time of 12.5 ms
per frame for large images of 1920×480 pixels. The approach described in [31],
which includes tracking of people near the border takes 60ms per frame, without
any optimisation of the software. This means that even this method will be
able to perform in real-time. However, the dynamic programming optimisation
is a post-processing method and must run after the full period of video has
been processed. Both methods are tested on an Intel Core i7-3770K 3.5 GHz
CPU with 8GB RAM, and processing 1920× 480 pixel images.

The sports type classification has been tested on 30 heatmaps representing
five different sports types, plus a category of miscellaneous activities. The
recognition rate is 90.76%.

11.8 Mapping andModelling HumanMovement
and Behaviour in Public Spaces

In matters of urban planning and management, it is essential to know how
streets and public spaces are being used and how people move around. To
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quantify and eventually model human movements and patterns of use of a
public space over time, which we refer to as Human Spatial Dynamics (HSD),
it is thus necessary to track each individual crossing of the space under scrutiny.
Pivotal to this research is the use of Geographical Information Systems (GIS).
The idea is to use computer vision technology to extract accurate geo-referenced
tracks of people and use GIS based methods to store and analyse the HSD data
created. The advantage of utilising GIS is that the HSD data captured can be
easily related to other geospatial data layers and be directly available in the
GIS workflow of professional planners and managers.

Along with the advances in software technology and computing power in
the last decade, there has been a growing interest in modelling pedestrian
and bicyclist behaviour based on a bottom-up approach of programming them
as individual entities or agents, which can interact in simulations and yield
emergent movement patterns and behaviours resembling those observed in the
real world. Collectively, these micro models are referred to as Agent-Based
Models (ABM) and there are several approaches to programme the underlying
principles. Concepts such as Social Forces [33, 34], Cellular Automata [35], Be-
havioural Heuristics [36, 37], Discrete Choice [38–40] and Behavioral Geography
and spatial cognition [41] have been suggested. However, most models focus
specifically on crowd or evacuation dynamics and not so much on modelling
entire trips of pedestrians in regular traffic in public spaces. Despite advances
in modelling techniques towards sophisticated ABMs, they still have challenges
in reproducing real world behaviours reliably in all situations [42–44]. A main
reason for that collectively mentioned in the literature is that there exists few
empirical studies and verified standard HSD datasets from recordings of real
life pedestrian and bicycle traffic to calibrate the models against. The ther-
mal video tracking technology holds the potential for being a way to collect
long time HSD datasets in various places, and thus contribute to improve the
ABM models. This quantitative approach to tracking urban public life may
also be able to supplement the traditional and intuitive manual approaches to
HSD data collection used in the studies of urban public spaces and qualities.
Inspired by the works of [45] and [46], a possible outcome of the project is also
to contribute with new digital methods to this field.

11.8.1 Methods
A pilot study was made to prove the concept. A pedestrian zone in Copenhagen
with occasional bicycle traffic and goods delivery by vehicles was used as a test
scene. The scene was situated where one of the city’s major shopping streets
meets a perpendicular street and an open square on the way to a major subway
station. The site therefore had a continuous flow of pedestrians from several
directions that had to negotiate with others to make their way through the
scene. At the same time, there were also people in the scene waiting, meeting
and talking for longer periods of time. People dragging their bikes or pushing
prams or wheelchairs were also observed, as well as groups of school children on
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excursions. Occasionally, cyclists were observed riding their bikes despite the
legislation. Figure 11.4 shows the scene as both an RGB and thermal image,
though with slightly different views. The camera was placed as high as possible
on the roof top terrace of a 5 story building next to the scene to minimise the
number of people occluding others in the camera FOV, while at the same time
capturing the traffic of as large an area as possible. Control points in the scene
used to calibrate the homography matrix transferring image pixel coordinates
to real world coordinates were measured with high precision GPS equipment.

Computer vision software was applied to analyse 5 minutes of thermal video
for which a simultaneous RGB video was also recorded for reference. Back-
ground subtraction was used in order to detect people. Since the observed
scene was very busy, it was not possible to find an empty frame which could be
used as background. Instead, a background model was obtained by calculating
the median value for each pixel over a 30 second initialising period. The back-
ground was updated during run-time, using a selective update method equal
to the one described in section 11.5.2. The foreground objects were filtered by
size, in order to remove noise. Even though the camera was mounted at a high
position, occlusions still caused problems due to the high density of people.
In order to solve partial occlusions, we are able to split blobs both vertically
and horizontally [30]. After converting the position of the remaining objects
to world coordinates, they were tracked using Kalman filtering [23]. For each
frame, the tracking software yields a list of ID numbers and positions of the
detected persons in real world coordinates. To read the data in a GIS, the
raw files were passed by a Python script to render a list of locations for the
tracking of each of the IDs. To reduce the amount of data processed while
still maintaining sufficient location accuracy the points were down-sampled to
fewer instances per second than the original frame rate (30 fps). During pars-
ing of the raw files, a series of attributes were added to the individual points,
including speed (in relation to the previous point, a given interval back in time,
and accumulated for the track up to the given point) and incremental distance
and time. Further metadata was generated for each individual track, including
distance, duration, Euclidean distance, average speed, number of points etc.

11.8.2 Results
The attributes added allowed for various ways of sorting and visualizing the
tracks in GIS. First noise and false detection needed to be identified and re-
moved. A threshold value of 3 seconds was chosen as the acceptable quality
criterion for the minimum duration of a track. From the segmentation of the
thermal video described in figure 11.6 it was known that there were areas with
a high degree of noise, particularly to the right in the FOV near the camera,
caused by wind movement of the edges of some sun shades in the scene. Tracks
detected along or intersecting the edges of this area were thus classified as
unreliable and removed from the rest of the tracks. In figure 11.21 the green
lines depict the tracks that met the quality criteria (460 tracks) whereas the
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red crosses indicate detections that were too short in time or distance (1475
IDs). The green tracks clearly show the movement patterns of the area as well
as the density of the tracks indicating which routes were the most used. The
shaded areas depict the obstacles that the traffic had to evade. An interesting
observation concerning the obstacles is the diverging traffic flow in the upper
part of the figure, where it is clearly seen that tracks split into two routes,
indicating that people are passing either to the left or right around the shaded
area in the urban square seen outside the FOV.

Concerning the false detections, the ones caused by the sun shades are
clearly seen in the FOV to the right of the camera position. A dense cluster
of short detections is also seen near the camera. This was caused by two
persons standing close together at that same spot talking for the entire period
analysed, including the initialisation period. This caused the two persons to be
part of the background model, but small movements and gestures of the people
generate short detections. A dense cluster of short detections is also evident
at the entrance to the building in the southern end of the FOV. This was
caused by several persons passing the doorway simultaneously, thus creating
heavy occlusions. Several short detections are also seen spread out across the
area where the green tracks dominate. These are probably caused by people
occluding each other when walking close together or passing others in the scene.
The number of occlusions would probably be able to be lowered substantially
with a nadir looking camera to monitor the scene.

Fig. 11.21: The green lines indicate all the tracks from the 5 minute period analysed, where
an ID was followed for more than 3 seconds. The red crosses represent short detections that
did not fit the quality criterion. The shaded areas represent obstacles that the traffic had to
evade.
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The GIS setup made it possible to make analysis of each individual track
and to compare tracks spatio-temporally in order to assess behavioural patterns
and the HSD seen in the scene. To show an example of this, four tracks of people
moving in the same direction in the same 30 second period were selected and
colourized according to their speed as shown in figure 11.22. Both increasing
and decreasing speeds are seen on the tracks.

Fig. 11.22: The site and the FOV illustrated in a 3D view with four selected tracks from the
same 30 second period coloured according to their speed. All four tracks start in the bottom
of the image in the open square and move up towards the street. The tracks indicate both
increasing and decreasing speeds. All tracks from figure 11.21 are displayed as background.
The position of the camera is shown on the corner of the building to the left. The obstacles
are indicated in grey.

To assess the method’s overall ability to measure speed, the distribution of
the average speeds of all tracks from figure 11.21 were plotted in the histogram
shown in figure 11.23. The graph shows a normal distribution of speeds around
5 km/h, which is typical for pedestrian traffic. In the lower extreme around
speeds of 1-2 km/h there are more tracks than in the higher end around 8-9
km/h. This is possibly due the fact that more people are stopping or waiting
briefly while in the scene, which lowers their average speed, as opposed to fewer
individuals that hurry through the scene. The few tracks in the upper extreme
around 13-14km/h were identified as bicyclist in the video.

Further research based on this project will aim to develop more advanced
GIS methods to study behaviour, such as people’s choices of direction and
speed, and the interaction with others, in order to enable extraction of be-
havioural parameters that can be used in ABMs. The analyses shown here
were all made as post-processing procedures, but there is nothing hindering
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Fig. 11.23: The graph shows the distribution of average speeds of the green tracks dis-
played in figure 11.21. The distribution is as expected for pedestrians with speeds normally
distributed around 5 km/h. The few tracks with an average speed of around 13 km/h were
identified as bicyclists in the video.

the GIS analysis from being automated to generate near real-time online maps
of the tracked scene. The processing time of the computer vision tracking algo-
rithm was 20 ms per frame for 640×480 pixel images on an Intel Core i7-3770K
3.5 GHz CPU with 8GB RAM. Even without any optimisation or paralleliza-
tion of the algorithm this easily obey real-time requirements, and could be used
as input for any real-time analysis of the human behaviour in the public space.
GIS methods could thus also be applied in conjunction with some of the other
projects presented to make spatial analyses of the tracks generated.

11.9 Conclusion
The thermal camera is considered an important technology for use in the future
Smart Cities. Being a non-intrusive passive sensor, which also preserves privacy,
makes it very suitable for the purpose. Furthermore, the thermal camera is
independent of light, and thereby operates equally well during day and night,
compared to other sensors like the RGB camera; which is strongly dependent
on sufficient and stable lighting. For the purposes of e.g. people counting
and simple tracking, thermal imaging is highly suited. Some segmentation
methods, such as thresholding and image differencing are extremely fast, and
still accurate. For more complex tasks, such as tracking of individual people
through the city, a different technology able to detect unique features or ID’s
must be applied.

This paper presented five different Smart City applications in which we
applied thermal imaging. They cover both indoor and outdoor environments,
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monitoring the movements of people, cars and bikes. All systems have proven
to be real-time compatible and are tested over very long time in real-world
settings.

We have shown here, that by employing thermal cameras it is possible to
measure the human use of a city, without violating the privacy of citizens.
For the expected future scenario of large scale implementation of intelligent
technology in smart cities, we find it crucial to consider sensors and methods
that protect the privacy of people. Furthermore, being able to operate day
and night without any manual involvement opens up a great number of new
applications. Thus, the applications presented in this paper could easily be
extended to other smart city applications based on detection and tracking of
humans or vehicles.
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Abstract
This paper presents a full-scale experiment investigating the use of human mo-
tion intensities as input for interactive illumination of a town square in the
city of Aalborg in Denmark. As illuminators sixteen 3.5 meter high RGB LED
lamps were used. The activity on the square was monitored by three thermal
cameras and analysed by computer vision software from which motion inten-
sity maps and peoples trajectories were estimated and used as input to control
the interactive illumination. The paper introduces a 2-layered interactive light
strategy addressing ambient and effect illumination criteria totally four light
scenarios were designed and tested. The result shows that in general people im-
mersed in the street lighting did not notice that the light changed according to
their presence or actions, but people watching from the edge of the square no-
ticed the interaction between the illumination and the immersed persons. The
experiment also demonstrated that interactive can give significant power sav-
ings. In the current experiment there was a difference of 92% between the most
and less energy consuming light scenario.

12.1 Introduction
For the first time in human history, more than half of the human population
inhabits urban environments, and this now presents itself as second nature to
humans. The urban context is of a very complex nature and is composed by
a multitude of different networks, infrastructures and volumes. The city has
become the dominant scenery for everyday life. As such it presents still greater
design challenges for an improved urban spatial performance, which can adapt
to changes and present inspiring, efficient and stimulating public spaces.

One must acknowledge that urban spaces are sites of movement and inter-
action that contain unused potential [1, 2]. If we can monitor and potentially
understand how the urban space is used in terms of movement and occupancy
patterns, we can generate site specific maps that can be used to control elements
in the environment such as the illumination.

People will in this way interact direct or indirect with elements in the envi-
ronments, thus establish an exchange also described as feedback in the world
of computation. The study of feedback in computer systems, describing the
relationship between sensor and acting environments, can be tracked back to
Norbert Wieners [3] notion of cybernetics; a marriage of control theory, in-
formation science, and biology that seeks to explain the common principles of
control and communication in both animals and machines [3]. Since then much
work has been done in the field of computer human interaction. Research fields
such as robotics [4], responsive environments [5], situated technologies [6] all
contributes to a particular focus within the field of sensing and responding to
change.

Inspired by the cybernetic notions from Gorden Pask [7] Usman Haque
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(a) Overview of the Kennedy square with-
out the lamps, seen from the position of
the thermal cameras.

(b) Kennedy square with the lamps at day-
time. The main train station in the back-
ground.

Fig. 12.1: Kennedy square in the city of Aalborg in Denmark.

Fig. 12.2: Overview of the Kennedy square with the 16 lamps, seen from the position of
the thermal cameras.

presents experiments that utilize sensor technologies and lighting as part of a
larger collective constructed environment where people and objects collabora-
tively create social domains as in the case of Sky Ear and Open Burble [8]. In
the two cases environmental feedback between weather systems (electromag-
netic waves and local winds) and social actors are essential in the temporary
composition of the color and the intensity of the light. Hence the balloons me-
diate a direct relation between subjects and weather phenomena, it establish
a platform for conversations, between the humans, calling a balloon, causing
waves of light to appear between the sky ear and the observers. On the level
of the subject, internal conversations presents questions related to the level of
engagement; to what level does I feel like participating? As performer, ac-
tor or just a passive observer enjoying the show? More external stimuli are
constantly affecting our choices and engagement in the event, (weather, social
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norms, economy etc.) these internal and external conversations is a keystone
in the understanding of systems and knowledge produced within them [9]. An-
other example is MY Studios Low Rez reactive sound poles [10], which is a
spatial sequencer, allowing the by-passer to compose different sound-scapes.
This installation has proven to be a mediator for vivid interactions between
performers and observers of the event [11].

Within the contemporary art field Philipe Beesley [12] pushes the explo-
ration of responsive environment inspired by reaction patterns in nature, ex-
emplified in the art installations Endothelium and Hydrozoic. In these Beesley
explore how he, inspired by nature, can design artificial life forms that produce
life like behaviors and appearances, this artistic approach motivate a series of
internal conversations; What is this? Is it a life? I am just a significant small
part of the interaction pattern, but still I affect the ecology like behavior etc.
Thus the installations are not build to be interactive toys but rather respon-
sive environments, where relations and interdependencies are to be explored.
In the project Dune [13] the artist Daan Roosegaarde brings a 60 meter long
permanent reactive light and sound installation into the landscape along the
Mass river in Rotterdam. The installation consists of thousands illuminating
light straws that react in different behaviors. Similar to Beeslys the behavior of
the lighting is inspired by natural mechanisms, hence it can be scared, excited,
curios. Within the last decade these and many other art installations represent
cases in the emergence of a new artistic expression in media, interactive and
installation art that has proven a creative aesthetic, social and architectural
potential for a design discipline concerned with feedback between humans and
environments.

Within the industry of lighting, firms like Echelon [14] and Philips [15] has
entered the development of technologies for large-scale control systems of out-
door lighting. They contribute to the development of tools and techniques for
new types of light designs, which open the window into the design of behaviors
of the light. Within the larger urban perspective notions of the smart grid [16]
also support this trend of a more efficient and intelligent energy use. This
responsive paradigm is deeply related to the discipline of design.

This study will focus on the development, implementation and investigation
of interactive urban lightings. It is motivated by the fact that in the coming
years urban illumination will change from light sources based on mercury or
similar technologies into Light Emitting Diodes (LED) or other less energy
demanding light sources. Especially LED light sources is from a control point
of view interesting as they will open for new ways to control the illumination,
allowing designers and engineers to develope interactive light settings that for
example dim or change color in real-time.

To fully release this potential it will be necessary to automatically monitor
the activity in the urban environments. This task is very difficult and can be
solved at various levels of detail. In the fully monitored situation a persons
status of mind could be estimated, as being glad, sad, busy, relax etc. This is,
however, at the moment not feasible with the current sensing technologies and
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models for human behavior at hand, which will require front views and high
resolution images of the face [17, 18]. However, computer vision technologies
has developed so it is now possible to track peoples trajectory in urban en-
vironments and in this context especially newer thermal imaging cameras has
shown promising results [19]. In this study we will utilize recent results within
thermal computer vision combined with new LED lights for development of an
interactive illumination setting where the ambition is to make the illumination
provide safety, being energy effective, aesthetic appealing and potentially give
the people another experience of the urban space.

During January these technologies were used in a full-scale experiment on
a town square in the city of Aalborg in Denmark. Figure 12.1(a) shows an
overview of the square seen from the position of the thermal cameras and figure
12.1(b) shows the interactive lamps at daytime. In figure 12.2 the light setup
is shown at nighttime. The activity on the square was monitored using three
thermal cameras mounted on a building facing the square. The trajectories of
the pedestrians where estimated using computer vision analysis and used as
input to control the light behavior in four different responsive light scenarios.

The finding of the study was that in general people immersed in the interac-
tive light setting did not notice that the illumination was changing according to
their motion despite the fact that in one of the scenarios the illumination was
dimmed significantly in comparison to the normal illumination of the square.
On the other hand people watching the square from the outside clearly noticed
the interactive light setting and hence got a new experience and impression of
the square.

The paper is organised as follows, first the experimental site and setup is
presented followed by and introducing to the applied computer vision analysis
and the interactive illumination design. The observations of the four different
light scenarios are then presented and discussed and finally the findings are
concluded.

12.2 Material and Methods
The experiment took place at Kennedy square in the city of Aalborg in Den-
mark. The square is located between the main train and bus station and the
city center and serves primarily as a transit space between these two locations,
see figure 1(a) To monitor the square three thermal cameras type Axis Q-1921-
E, with a 19mm lens were mounted in the height of 15 meters at one of the
buildings facing the square. The cameras covered the area from where an exit
of a subway from the main train station is located to where people leave the
square on their way to the city center, as illustrated in figure 12.3.

Along this pathway the 16 RGB LED lamps were placed, figure 12.1. The
street lamp is composed of a 70 cm tall Riegens Ray light fixture, figure 12.4(a),
a 3.5 meter tall light post and a 60x60 cm concrete tile as foundation. An LED
module containing 18 1W LEDs, six in each color (RGB) was mounted in the
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Fig. 12.3: Overview map of Kennedy square with the areas covered by the three cameras.

bottom of the light fixture. The individual LEDs are mounted on the module
in a two rings configuration, where the inner ring holds the 6 red LEDs and the
outer ring holds 6 green LEDs interleaved with 6 blue LEDs, figure 12.4(b).
The LED module is connected to a DMX module installed inside the lamp
post. This module enables a 0-255 step brightness control of each led color as
well as an unique address of each lamp.

(a) Profile of the lamp housing. (b) LED module.

Fig. 12.4: The LED lamp head.

12.2.1 Qualitative assessment methodology
To evaluate the performance of the computer vision analysis and the control of
the illumination a mobile phone application was used to display the activity at
the square and the light setting of the lamps, figure 12.5. The application also
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gave the possibility to control the lamps. Using the application it was possible
in real-time to evaluate if the computer vision analysis worked as expected and
that the light scenarios gave the right response according to the position and
velocity of people passing through the light setup.

Fig. 12.5: Snapshot of the iPhone application by which it was possible in real-time to see
the result of the computer vision tracking and the resulting control of lamps. It was also
possible to manually control the lamps by the application.

12.2.2 Observations
During the experiment observations of body language, gestures and behavior
of the occupants on the square were made. The observation methodology was
based on ethnographic studies and fieldwork techniques as they are articulated
by the sociologists such as Erving Goffman and Edward T. Hall [2, 20, 21] and
utilized by architects such as Jan Gehl, William Whyte [22, 23]. By observing
the interactions from the edge of the street we were able to describe "space
routines" in the transit space [22] and evaluate if people where immersed in or
affected by the different light scenarios.

12.2.3 Computer vision analysis
Detecting and tracking people is a large research area in computer vision, most
approaches using normal visual cameras. But due to falling prices on ther-
mal cameras new approaches using these sensors have been developed lately.
Thermal cameras measure the amount of thermal radiation that lies in the
long-wavelength infrared spectrum (8-15 µm). All objects with a tempera-
ture higher than the absolute zero emit thermal radiation. The intensity and
dominating wavelength depends on the temperature.

Since thermal cameras do not measure visible light, they have a clear ad-
vantage over visual cameras in night conditions. Also with visual cameras it is
illegal to film public places in Denmark, but since people can not be identified
from thermal images, this is not an issue with thermal cameras. This is the
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primary reason to utilize thermal cameras in this work. Figure 12.6(a) shows
an example of the input image from one of the camera views.

(a) Thermal image. (b) Binary image.

Fig. 12.6: Example of the thermal input image and resulting binary image from one camera
view.

As input to the illumination system real-time information about the po-
sition and velocity of people at the square should be found. The experiment
is conducted in outdoor environment running continuously for a week. The
temperature naturally changes, which gives a slowly changing background.
Therefore it is chosen to perform a running average background subtraction
as the first step in detecting people [24]. The background will be updated with
selectivity, meaning that only if the pixel is segmented as background it will
contribute to the new background:

Bt+1(x, y) =
{
αFt(x, y) + (1− α)Bt(x, y) if Ft(x, y) background
Bt(x, y) if Ft(x, y) foreground

(12.1)

where Bt is the current background, Ft the current input image, α the learning
rate and Bt+1 the new background image. As the experiments take place at
an urban space with limited car access, it is assumed that all activity detected
is human activity of interest. The difference image produced by background
subtraction is binarised with a threshold value of 10. The resulting BLOB’s
with area of minimum 10 pixels are considered objects of interest. The detected
objects must be mapped to real world coordinates at the square in order to cor-
respond to the lamps positions. The mapping is calculated using a homography
matrix [25]. This matrix can be calculated using at least four corresponding
points in image and world coordinates. Since the camera views are not aligned,
a mapping must be calculated for each individual view. Figure 12.7 illustrates
the mapping from image to world plane.

For this purpose of illumination control from tracking data, groups of people
should be considered as one object. The individual objects detected are grouped
using single linkage clustering [26] with a distance threshold of 3 meters. This
grouping also ensures that an imprecise segmentation, resulting in one person
split in more BLOB’s, or more persons found in one BLOB, does not change
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Fig. 12.7: Illustration of the mapping from image to world plane.

the result, as they will be treated as one group anyway. In order to determine
stable positions and velocity of the groups, a Kalman filter is applied to track
the groups [27]. Splits and merging of groups are handled based on the distance
between predictions of group tracks.

(a) One minute trajectories
for two persons splitting up
and leaving the subway.

(b) Two minute trajectories,
with one person showing a
distinct path towards the
Bank located on the square.

(c) One hour velocity map
of the activity that clearly
demonstrates the used of the
square. Especially, the use of
the pathway from the subway
to and from the main train sta-
tion and the city center.

Fig. 12.8: Example of the thermal input image and resulting binary image from one camera
view.

From the analysis it is now possible to estimate trajectories of persons on
the square. Figure 12.8 shows the results of such trajectories in (a) for one
minute, (b) two minutes, and in (c) the velocities vectors for persons walking
on the square for a period of one hour. This information may also be illustrated
by how the square is occupied, that is not taking the motion of the persons
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into account. Such an occupancy map with a resolution of 1 × 1 meter for 24
hour is illustrated in figure 12.9 sampled for every 10th second.

Fig. 12.9: Occupancy map of the square counting number of observed persons in 1×1 meter
cells sampled per 10 second.

In this way it is possible to both get information about the instant motion
of people on the square and accumulated motion over time. The first infor-
mation may be used for instant control of the illumination whereas the later
representation can be used for placement of lamps, that is the physical design
of the illumination setup for a given urban environment, and to design basic
illumination according to how the area is being used.

12.2.4 Interactive illumination design
To approach a responsive light design of an urban square calls for a creative
process similar to that needed in the development of architectural space. In
addition, we need to develop tools to provide creative techniques where interac-
tive scenarios can be sketched and evaluated in a creative and intuitive design
process. To approach the design challenge, a physical 1:50 model of the square
was developed. Simple white LEDs were used to represent the lamps, and,
by using video input recorded on-site by the thermal cameras, we could test
how different illumination designs would unfold on the square. In this way, we
could simulate the light design using reallife video feeds and evaluate response
times, rhythms and the placement of the lamps. When designing interactive
illumination for a square, there are multiple factors affecting the formalized
lighting, and the illumination becomes a result of many variables including
security, social space, functionality, aesthetics, and energy. When these are
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merged together in a layered model, one can develop more or less interactive or
playful light strategies, which still fulfill functional and aesthetic requirements.

12.2.5 Interactive lighting strategy
To ensure a persistent minimum illumination of the square when there were no
occupants, we divided the illumination design into an ambient contribution and
an effect contribution, which are later summarized into the final illumination.

Ambient Illumination

The ambient illumination is used to ensure that the square is illuminated when
there are no occupants. We followed the hypothesis that a minimum of light
is necessary to ensure that people feel that it is secure to enter the square. In
the experiment, we worked with two ambient light scenarios:

1. A global minimum; all lamps are dimmed down equally to 10% of the full
intensity.

2. Ember; the light slowly fades up and down between 0 to 20% in a random
pattern.

Effect illumination

Effect illumination is the response that occur if an event takes place at the
square. The event is detected by the computer vision analysis that in turn
controls what light response to give according to the activity on the square.
One can design a range of different complicated, banal or playful scenarios
depending on the level of occupancy, velocity, climate, time of day etc. In this
initial experiment, we tested the following two effects:

1. Light circle; as an illuminated aura around the occupants the localized
light would secure an illuminated circle on min. 10 meter in diameter.
This would allow the occupant to perceive variations in pavement and
the face of people passing by, which in turn facilitate a secure navigation
and travel over the square.

2. Light wave; As a playful illumination scenario we designed a treasure
hunt scenario where two of the lights on the square indicate (blue light)
the position of a trigger causing a wave of white light to travel over the
square. After 10 seconds, a new blue light will emerge in another location.
The hypothesis was to make a playful illumination that engaged people
in playful and creative situations.
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Final Illumination

Summarizing the intensities from the ambient and effect illumination gives the
light emitted from each lamp. If the sum of the two exceeds its maximum,
the effect is truncated to 100%. The ambient illumination is active when no
one is occupying the actual space. This, however, does not mean that the
square is not experienced. Typically, it will be observed from a distance, a
balcony, a living room, cafe etc. The illumination can then, with very low power
consumption, make light patterns that are embracing, inspiring, scary, natural
or just neutral depending on the design intentions. However, when people
enter the space effect lighting strategies will secure a suitable illumination that
potentially address security, aesthetics and social requirements.

12.3 Experiment
The experiment was conducted in the last week of January 2012 from late
afternoon and into the early evening. At this time the sun set at 17.00 and thus
collection of data and observations took place from 17.00 and until 20.00. The
weather during this period was very cold by Danish standards, ranging from
-5 to -10 degrees Celsius and very windy. Data was collected by observations
and by logging of the results of the computer vision analysis. Between 100
to 150 persons passed the square each day in the observations period. The
observations of them was done from the train and bus station and a bar facing
the square. Each day 10 to 15 persons were interviewed.

12.4 Result
During the experiment the experience and effect of the four different light
scenarios were investigated. The normal illumination of the square was turned
off during the experimental period. See appendix A for video examples.

12.4.1 Scenario 1, "Ambient Illumination"
The first scenario is a homogeneous illumination of the square. The 16 lamps
had a static intensity of 80% white light and no effect was added. This light
scenario was similar to, what could have been a traditional static illumination
of the square, and was motivated by a need to compare the change of flow
and social behavior on the square in different light scenarios. It seemed that
people did not see the changed illumination and acted like nothing was changed
from the everyday life. When people were asked about the illumination only a
few recognized the changed lighting, even though the lighting before were very
limited.
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Fig. 12.10: Illumination scenario 1 "Ambient Illumination".

12.4.2 Scenario 2, "Glowing Light"

Fig. 12.11: Illumination scenario 2 "Glowing Light".

The intention of the slowly fading white illumination was to make a lighting
that would illuminate the square in an aperiodic way, leaving the square half
lit but always in a process of fading down or up, this would give a feeling of
overview of the square and support the feeling of security (figure 12.11). As
a playful chance encounter a light wave effect was introduced. A few people,
realized the changing lighting and stopped to look at it, some looked like they
thought the light fixtures were broken or out of order, one even asked if there
was a loose connection and laughed. The majority of the by-passers did not
seem to notice the change in the light intensity when they triggered the light
wave; it was like the contrast between the slowly fading lamps in the ember
scenario and the slowly moving wave was too small. Observed from a distance
the slowly fading lamps had a calming, inspiring and lively expression, one
should look very carefully to notice the wave.

12.4.3 Scenario 3, "White Aura"
Because of the relative big illuminated area around the people (10 meters) they
did not seem to realize the darker square surrounding them. Observed from a
distance one could se how people on the edge of the square were making pointing
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Fig. 12.12: Illumination scenario 3 "White Aura". Notice how the light is following the
person on the pathway.

gestures towards the "performing" people moving over the square. The simple
effect and the large contrast to the surrounding darkness made the pedestrian
a natural focal point on the square.

12.4.4 Scenario 4, "Red Treasure Hunt"

Fig. 12.13: Illumination scenario 4 "Red Treasure Hunt" seen from the perspective of a
person walking towards the subway entrance.

The hypothesis of this scenario was to establish an unusual illumination, an
illumination that made people stop up and confront the lighting in a playful
manner. Figure 12.13 shows a sequence of images visualizing the effect scenario.
1 - A person is approaching the blue "trigger" light. 2 - The person triggered
the effect which sends out a wave of light from the triggered lamp outwards. 3,4
- The light wave travels through the square. 5 - The light wave has ended and
the trigger point is disabled for 10 seconds before it lights up a lamp again and
a new person can trigger yet another light wave. The few people who realized
the changing illumination, did engage in the investigation of the lighting. When
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they realized that the illumination changed based on their presence, they began
calling the lamp "it", which shows that they are giving the lamp a personality.

12.4.5 Energy consumption

Fig. 12.14: Energy consumption of the four illumination scenarios. The fluctuations around
the mean is due to the light effect being set or not set according to the activity at the square
and the effect of the changing ambient illumination.

In figure 12.14, the energy consumption for the different light scenarios
is illustrated. The Ambient Illumination scenario as reference gave an energy
consumption of approximately 230 Watt for the sixteen lamps. The other three
scenarios are fluctuating in energy consumption due to the deliberate effects
and the reactive effects according to the activity at the square. Clearly, the
energy consumption of these scenarios are depending on the light design, and
especially the choice of ambient light has a significant contribution of the mean
value that the scenario fluctuate around. The order of the energy consumption
for the scenarios were that the Glowing Light had a consumption of around
100Watt and this was the scenario with the largest fluctuation that in some
cases almost reached the Ambient Illumination level. In the design a lamp
is chosen at random and then the light level is set to 10% of the maximum
level from which it is then decreased. The Red Treasure Hunt had the second
lowest energy consumption and was the scenario that fluctuated most due to
the activity at the square whereas the White Aura had the overall lowest energy
consumption about 20 Watt in average or 11.5% of the Ambient Illumination
scenario. This is also the scenario that mainly depends on the activity at the
square.
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12.5 Discussion and Future Work
The flow maps of the 4 different light scenarios present no change in move-
ment patterns; there is high intensity of movement on the paths in south and
towards the subway, which correlate with the observations, done from the bal-
cony. Hence, we can conclude that the reactive light patterns do not affect the
overall movement and use of the square. People did not engage in, what we
designed as "playful" and did not engage in the exploration of the reactive light
system. This can be due to a less successful design, the fact that people mind
their own business, because of the cold evening hours of the Danish winter
climate or because of the evening time, that produced a dominate goal ori-
ented behavior. The effect illuminations were directly triggered by the action
of individuals, in the initial hypothesis we assumed that these effects would
change the behavior of people and affect their way of seeing each other. In
the observations of the life on the street, we did observe that people crossing
the square, did not realize the changing lighting, but people observing from a
distance could see how people "painted" light paths on the square or triggered
a wave. The observer could be a person in a bus, on a balcony, in the waiting
room for the cinema etc. For them the square became a stage setting where
actors, whiteout being aware of it affected the lighting and was observed more
carefully. This observation supports the concept of passive surveillance as pre-
sented by Jane Jacobs [28]. These observations leave the light designers with a
new challenge: How can we design adaptive systems that change behavior due
to changing situations and needs? In times of low occupancy a simple and func-
tional reactive light strategy might be sufficient whereas in a warmer climate
interactive playful scenarios might be applicable. Furthermore, at public events
the street lighting might be used as an extension of the stage lighting. Extend-
ing the notion of centralized light control in to the world of smart phones, one
can imagine a light system that knows your personal preferences for lighting
and prepare the city or park with your favorite settings, as such it becomes
an extension of your expression of mood, identity or just favorite color. These
possibilities are subjects for future experiments. Furthermore the experiment
underline the hypothesis that reactive and sensor based lighting systems will
save energy and the amount of energy saved depends on the designed light
scenarios. In the experiment we present an energy saving of 92%. However
to access this resource new robust technologies need to be developed. This
contribution encourages a stronger link between studies in the contemporary
interactive art scene and the behavior design of public lighting. The authors
have not been able to find systematic research in the field of experienced social
and aesthetic qualities of responsive light design in the "smart city" context.
When we still have the centralized control unit for sketching light scenarios, a
wide range of design drivers has the capacity to control the illumination and
there are three main challenges in the future work: 1) to further develop design
scenarios, and develop the ethnographical and qualitative evaluation techniques
of such, 2) to face the technical challenge and build simple reactive and robust
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stand alone solutions, which perform sensing and acting behaviors, and 3) we
suggest further development and explorations of the flow maps, which can in-
form us about usage of space instantly and over time and thermal comfort. To
approach these design challenges will call for interdisciplinary research, where
engineers and architects will work together for development of new robust tools
and novel design methods, to be tested in the ’laboratory of the street’. Fa-
voring a design side of mediated lighting can cause inefficient light tools and
favoring a technical side would risk to create normative and boring environ-
ments. Embarking in this interdisciplinary journey, we will search for skills to
develop new tools and techniques to modulate a new creative environment.

12.6 Conclusion
Street lighting is build to illuminate the square extending the potential use of
public space into the dark hours. Until now we have focused on the energy
performance of the light bulb street lamp. Because of the recent development
in the field of sensor and LED technologies we are now able to modulate the
light to any given control paradigm. This study shows new possibilities and
reflections for applying simple reactive light strategies, together with pragmatic
reactive lighting models in the design of interactive urban lighting scenarios.
It does this through four experiments using thermal cameras and computer
analysis that allow designers to detect occupancy and flow patterns on the
street. The data is utilized both as input to a real-time light control system
and as a mapping of long-term occupancy and flow, allowing researchers and
urban planners to access data on the use of urban spaces. In this paper, the
evaluation of three interactive light strategies; Glowing Aura, Glowing Light &
Red Treasure Hunt, reveal the possibility for reactive lighting to be applied in
public spaces and present a significant energy saving up to 90% without people
changing behavior. This result shows that very dramatic changes are needed if
light designers are to engage a person in transit. However people making light
patterns as actors on a stage, underline the points of Presentation of Self in
Everyday Life by Erving Goffman [29]. The majority of the visitors did not
realize the changing of the light, the first time of their visit, but after observing
other people perform from a distance their occupancy and flow patterns became
a natural part of the architectural expression of the square.
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Appendix
For video examples of the scenarios explored in the experiment please go to the
following urls:

Glowing Light
http://vimeo.com/40589332

White Aura
http://vimeo.com/40653666

Red Treasure Hunt
http://vimeo.com/40589333
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Abstract
Cities require data on pedestrian movement to evaluate the use of public spaces.
We propose a system using thermal cameras and Computer Vision (CV) com-
bined with Geographical Information Systems (GIS) to track and assess pedes-
trian dynamics and behaviors in urban plazas. Thermal cameras operate inde-
pendent of light and the technique is non-intrusive and preserves privacy. The
approach extends the analysis to the GIS domain by capturing georeferenced
tracks. We present a pilot study conducted in Copenhagen in 2013. The tracks
retrieved by CV are compared to manually annotated ground truth tracks, and
an example of pedestrian behavior is analyzed.

13.1 Introduction
Planners designing well-functioning liveable cities for people need to know how
streets and public spaces are being used and how pedestrians move. The classic
approach to collect such data is to make sample counts of people at points
of interest a few times a year and conduct qualitative urban analysis [1, 2].
With the rapid development of computing and networking technologies, the
miniaturization of sensors, and the introduction of smartphones, a range of
new ways to capture data on people’s movement have become available in
recent years with potential to supplement and extent the classic methods.

Several studies that track people by using data from smartphones and their
signals and sensors, such as Bluetooth, Wi-Fi and Global Navigation Satellite
System (GNSS), have been made [3–7]. These studies are interesting on a city
wide scale to understand macro movement patterns of samples of people, but
the spatial accuracy of data from smartphones is not good enough to study
detailed pedestrian movement patterns and behaviors in urban streets and
plazas. This instead requires accurate and simultaneous tracking of several
individuals who may move close together, and where the movement of each
individual depends upon interactions with others as well as on the physical
layout of the place and attractors in the space traversed [8, 9]. For such micro
scale pedestrian studies Computer Vision (CV) based tracking technology is
more appropriate to use as it is able to passively register the activity in a
plaza without affecting the behavior of people in the space. However there are
several challenges to capture reliable data this way. This paper presents results
of capturing and exploring data on pedestrian movement with CV tracking
technology from a pilot study we conducted in the summer of 2013 in the
urban plaza ’Kultorvet’ in central Copenhagen (see Fig. 13.1).
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Fig. 13.1: Overview map of central Copenhagen with the tracked area at ’Kultorvet’ high-
lighted. The background data for this map and the buildings in Fig. 13.5, 13.6, and 13.7 are
taken from the open public geographic data courtesy of the Danish Geodata Agency.

13.2 Methods
As Computer Vision technology has made rapid progress in recent years [10–12]
we wanted to test it in studies of pedestrian movement patterns and behaviors
in everyday traffic in public spaces to assess its potential as a tool to capture
such data and aid planners in future Smart Cities [13]. Camera surveillance of
public spaces in the form of CCTV systems is already installed in many cities,
but these systems are often calibrated to aid the police in crime fighting or as
traffic cameras to identify vehicles and report on the traffic situation. Police
cameras are often Pan-Tilt-Zoom (PTZ) cameras which can be used to zoom
in on situations and identify suspects and follow them within a network of
cameras around the city, and traffic cameras are focused on vehicle traffic on
the road network. To conduct pedestrian movement studies with CV tracking
it is necessary to have dedicated cameras with a fixed Field of View (FOV)
that can be set up to constantly monitor an Area of Interest (AOI), such as an
urban plaza, preferably from an elevated position. This in order to get close to
a nadir looking position to avoid the occlusions that occur when people pass
each other in front of the camera as CV algorithms can have difficulties to
handle occlusions and to distinguish individuals that move close together. The
height for optimal camera installation is also a balance between how large a
FOV needs to be surveyed versus the level of detail that can be seen in the
image. The fact that the further away objects are in a camera’s FOV the
smaller they appear in the image needs to be taken into account since it is
more difficult for CV algorithms to detect and distinguish individuals if they
only take up few pixels in the image [14].
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Computer Vision algorithms can be applied on video from both normal RGB
cameras and thermal cameras. In terms of performance of CV algorithms there
are advantages and disadvantages in both technologies that need to be consid-
ered [15, 16]. Normal RGB cameras record reflected light in three channels,
one for the red, green, and blue color respectively, and therefore these cameras
depend on sufficient light to operate. RGB sensors are cheap, but they are
also somewhat complicated to use for CV tracking of humans in urban scenes.
Light conditions change between day and night, and they can change fast in
different weather situations or when the scene is illuminated from headlights
on a moving vehicle etc. This is a challenge for CV algorithms that depend on
a reliable background model to segment moving objects from the background
by the use of background subtraction. Segmentation using background sub-
traction assumes that it is possible to obtain a reliable background model and
that only people, or other objects of interest, are moving. A dynamic back-
ground model can be adjusted and updated during run-time of the algorithm,
but it is often not enough to achieve good results with RGB cameras. Another
well-known problem for CV in the RGB-domain is the occurrence of shadows
which often cause false detections, as the shadows move just like people.

In the thermal domain there are no shadows and no issues with fast changing
lighting conditions as thermal cameras record the long-wave infrared radiation
(8-15µm) emitted by all objects with a temperature above absolute zero. Ther-
mal cameras can thus detect people and objects with a temperature different
from the surroundings both day and night independent on the light in the
scene. The concept of establishing a background model and use background
subtraction to segment moving objects is the same in the thermal domain, and
it is easier here to model the background and update it dynamically as tem-
perature conditions in a scene often change more slowly compared to lighting
conditions. Dynamic updating of the background model is necessary in out-
door scenes as the surrounding temperature change throughout the day as well
as the sun can heat dark pavements to temperatures hotter than the human
body temperature. Therefore it cannot just be assumed that people are con-
stantly hotter or colder than the background and thus the CV algorithm has
to adjust accordingly. Still people can often more reliably be segmented with
background subtraction using thermal cameras in comparison with RGB cam-
eras, and the method is computationally fast, making it well suited for real-time
applications. In terms of false detections in thermal images there can be issues
for glossy surfaces as thermal radiation can be reflected from these. This is
however considered a rare problem in Smart Cities applications as the surfaces
are often not reflective and those that are, such as windows, are permanent
installations so data from these areas in a scene can easily be filtered out.

When it comes to resolving occlusions and ambiguous situations the RGB
cameras have an advantage over the thermal cameras. The three channel RGB
images contain more information compared to the one channel of thermal cam-
eras. Colors and textures extracted from RGB images can be applied to re-
identify individuals after occlusions, which is not possible for thermal images.
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However, tracking can often be simplified to the detection of an object, and
then assigning the detection to a path established in previous frames by consid-
ering the velocity and direction of the object. Where perfect re-identification
of objects is not required tracking in thermal imaging can perform well. At the
same time the inability to identify individuals in thermal imaging is also one
of its greatest assets because privacy issues related to recording video in public
places can be neglected as there is no risk of revealing individuals identity in
the thermal images. Privacy by design is thus ensured when using thermal
cameras for tracking. The pros and cons of RGB versus thermal cameras are
summarized in table 13.1 below.

Pros Cons
RGB Cheap sensors Sensitive to light

Re-identification possible Privacy issues
Shadows

Thermal Easier segmentation Re-ident. difficult
Independent of light More expensive
No privacy issues Reflections
Single channel images

Table 13.1: Overview of pros and cons of RGB versus thermal camera for computer vision
tracking applications in urban outdoor scenes.

Even though thermal cameras are more expensive than RGB cameras, es-
pecially because of the germanium metalloid needed for the lenses, they have
some clear advantages in CV tracking applications [16]. With the development
in thermal camera technology the resolution of thermal cameras is slowly in-
creasing as the technology evolves and new materials are explored. The cost
is also lowering and will probably continue to do so and make them more cost
effective to deploy. Considering the capabilities of thermal cameras we wanted
to explore their potentials and pitfalls, as well as the quality of the data they
create, in a real life CV tracking experiment on pedestrian movement patterns
and behavior in urban public spaces. Related studies on pedestrian tracking
using thermal cameras are [17] and [18]. However these studies use slightly
different Computer Vision techniques and are applied in a different context.

In our pilot study we used one state-of-the-art uncooled passive thermal
camera with a resolution of 640 × 480 pixels (Axis Q1922), a lens with a fo-
cal length of 10 mm, a viewing angle of 57◦, and 30 fps camera frame rate.
Background subtraction was applied to detect people. A background model
was obtained by calculating the median value for each pixel over a 30 sec-
ond initializing period. The background was updated during run-time, using
a selective update method, meaning that only pixels segmented as background
contribute to the updated background. The foreground objects were filtered by
size, in order to remove noise. In order to solve partial occlusions, we were able
to split BLOBs both vertically and horizontally [19]. Binary Large Objects
(BLOB) refers to a group of connected pixels in a binary image [20]. After
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Fig. 13.2: The near nadir view. The areas highlighted in A refer to examples of behaviors
and situations. The image in B is generated in T-analyst and shows the uncertainty for the
pixels in the image in relation the real world coordinates.

Fig. 13.3: The view overlooking the plaza. The areas highlighted in A refers to examples of
behaviors and situations. The image in B is generated in T-analyst and shows the uncertainty
for the pixels in the image in relation the real world coordinates.

converting the position of the remaining objects to world coordinates, they
were tracked using Kalman filtering [21]. The processing time of the computer
vision tracking algorithm was 20ms per frame on an Intel Core i7-3770K 3.5
GHz CPU with 8GB RAM. This is fast enough to provide the raw tracking
data in real-time, even though this capability was not tested in our pilot study.

A coordinate system is needed in order to relate the captured tracks to
each other and the surrounding space. In a fixed FOV the pixel coordinates
in the camera image will remain pointed at the same locations in the scene.
By measuring control points in the scene homography can be used to relate
the pixel coordinates in the image plane to the real world coordinates in the
ground plane by use of a transformation matrix [22]. To georeference the scene
we measured the control points with high precision GPS equipment. With a
georeferenced scene the movement data can be related to the surroundings and
other geospatial data layers in Geographic Information Systems (GIS), which
also allow for spatio-temporal analysis of the data. Depending on people’s
position in the FOV the spatial accuracy for each pixel is between 0.1 and 1



260 Chapter 13.

Fig. 13.4: The two views with the GT tracks digitized manually in T-Analyst overlaid.

meter (see Fig. 13.2B and Fig. 13.3B).
For each frame, the CV tracking software yields a list of ID numbers and

positions of the detected persons in real world coordinates. To read the data in
a GIS, the raw text files from the CV software were passed to a Python script
to render a list of locations for the tracking of each of the IDs. To reduce the
amount of data processed while still maintaining sufficient location accuracy
the points were down-sampled to five track points per second than the original
rate of 30 points per second. During parsing of the raw files, a series of at-
tributes were added to the individual points, including speed (in relation to the
previous point, a given interval back in time and accumulated for the track up
to the given point) and incremental distance and time. Further metadata were
generated for each individual track, including distance, duration, Euclidean
distance, average speed, number of points etc.

To assess the quality of the CV trajectories in terms of their completeness
and accuracy the CV tracks needed to be able to be evaluated against Ground
Truth (GT) trajectories. To do so we have manually digitized the GT trajecto-
ries of all individuals in the video recordings presented in this study. This has
been done in T-Analyst developed at Lund University [23]. In this software
pedestrians are modeled as 3D rectangles with the dimension of 0.5x0.5x1.8
meters (see Fig. 13.4). The user can then manually digitize the position of a
pedestrian frame by frame. The GT tracks digitized in T-Analyst were also
transformed from pixel to real world coordinates in a similar manner as for the
CV tracks and imported into GIS.

13.3 Scene Description
The plaza ’Kultorvet’ was used as a test scene. It is in a pedestrian zone
in central Copenhagen with occasional bicycle traffic and goods delivery by
vehicles. The part of the scene closest to the camera was situated where one of
the city’s major shopping streets meets a perpendicular street at the entrance
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to the open plaza. The street at the far end of the plaza leads directly to the
subway station with the most traffic in the city. The scene had a continuous
flow of pedestrians (50-100 per minute) coming from several directions that
needed to negotiate and avoid each. The thermal camera was placed on the
roof top terrace of a five story building. Two views were recorded. The first
one, which we label the near-nadir view, was a straight down view to get
as close to the nadir position as possible in order to minimize the number of
people occluding each other in the camera FOV (Fig. 13.2A). Consecutively the
second view, labeled the overlooking view, was taken from the same spot but
now instead overlooking the entire plaza from an oblique angle (Fig. 13.3A).
The scenes were recorded around noon on a Friday. The weather was overcast
with occasional showers of rain.

Tracks of people walking alone or in social groups of different sizes were
recorded (Fig. 13.2A a and Fig. 13.3A f), as well as people sitting or waiting
(Fig. 13.3A h), people having a conversation (Fig. 13.2A d and b), and people
dragging their bikes (Fig. 13.2A k) or pushing a pram or stroller (Fig. 13.3A
j). The tracks of ’facers’ working for a charity organization trying to stop
people in the street to make them donate to the cause were also recorded in
the scene (Fig. 13.2A b). Occasionally cyclists riding through the scene despite
the legislation were observed (Fig. 13.2A c).

Following the video recordings the permanent objects in the scene such as
hotdog stands, sun shades, benches, a fountain etc. were digitized as polygons
in GIS from the most recent orthophotos of the place and cross checked with
the thermal video recordings to confirm their actual positions (grey objects in
Fig. 13.5, Fig. 13.6, and Fig. 13.7). In this way these objects could be drawn
and georeferenced in GIS and the tracks thus analyzed in relation these objects.
A layer with the surrounding building footprints were added and drawn as well
(green polygons in Fig. 13.5, Fig. 13.6 and Fig. 13.7).

13.4 Analysis and Results
Half an hour of thermal video was recorded for both views. It was decided to
only process five minutes of the video from the first view and one minute from
the second view. The reasons for processing only these sections was mainly due
to long time it took to manually digitize the GT tracks for assessment of the
CV tracks. However it was considered that this was enough to get data on the
general movement patterns as well as to identify areas and standard situations
in the scenes in which the CV software was challenged.

The data generated for the CV and GT tracks were imported to a geo-
database in the ArcGIS software as a point feature class. For each point record
the basic data was in the format (FrameNumber, ID, Xcoordinate, Ycoordinate,
TimeStamp). Furthermore the derived variables in terms of the accumulated
time, distance and average speed for the track were written for each point
record. The Python script passing the data also generated a table summariz-
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ing statistics such as total distance, total duration, average speed, start and
end frame number, and number of track points for each ID. The track point
table and the statistics table were joined on the ID. To enable visualization of
the temporal dimension the data was converted to 3D by using the FrameNum-
ber attribute as the Z coordinate. Since the geodatabase date-time format did
not natively support milliseconds the TimeStamp field could not be used. To
connect track points to lines a standard point to line tool based on the ID and
sorted by the FrameNumber was applied.

Inspired by the works on visual analytics of movement by [24] and [25] the
data was explored visually in 2D and 3D. The tracks obtained for the near nadir
view and the overlooking view are shown in Fig. 13.5 and Fig. 13.6 respectively.
The A parts in the figures depict the tracks obtained from the CV algorithm
in a 2D map, the B parts show the manually digitized GT tracks for the same
scene, and the C parts show the data from A and B plotted in a Space-Time
Cube (STC) for visualization of the temporal dimension. For Fig. 13.5C only
the first minute of data is shown in the STC, but data for all five minutes
are shown in Fig. 13.5A and Fig. 13.5B. A visual exploration of the data is
naturally best undertaken in a 3D GIS program where one can work with the
STC to rotate, pan and zoom in on interesting areas of the cube. It is much
more challenging to communicate the results visually on paper. The following
describes our visual inspection and interpretation of the data to identify areas
and situations in the scenes where the CV software had difficulties in tracking
individuals correctly.

To filter out noise in the CV data it was decided to accept only CV tracks
with duration of three or more seconds. This approach identified most of the
ambiguous situations in which people had occluded each other from view which
confused the CV software. The situations occurred most often in the area with
the main flow of people i.e. the highest density of tracks as seen on Fig. 13.5A,
Fig. 13.5B and Fig. 13.6A, Fig. 13.6B. The short detections are plotted as red
dots. A prominent red area is spotted near the camera in Fig. 13.5A. This was
caused by the two people marked with d on Fig. 13.2A, who stood close on the
same spot and talked for all five minutes of video, which gave the CV algorithm
a challenge to obtain a lock on them as two individuals. Instead it saw them as
part of the background in most frames and assigned them new track IDs each
time they moved slightly. The same was the case for the sitting people marked
with h in Fig. 13.3A. These two are thus examples of false negative detections.

It was evident from the data that there were areas with a large amount of
detections that could not be moving people, but instead movement of objects
such as tree branches (area i on Fig. 13.3A) or the canvas on sun shades (areas
e and l on Fig. 13.2A and 13.3A) swaying in the wind. These were thus all
tagged as red short detections as seen in the upper grey area depicting the sun
shades in Fig. 13.5A, and in the long dense red area in Fig. 13.6A that is due
to the tree branches. These areas are thus examples of false positive detections.
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Fig. 13.5: The tracks from the near nadir view. A shows the good CV tracks as well as
the short CV detections. B shows the manually digitized GT tracks for comparison to A. C
shows a Space-Time Cube of the first minute of data from A and B.

Fig. 13.6: The tracks from the view overlooking the plaza. A shows the good CV tracks as
well as the short CV detections. B shows the manually digitized GT tracks for comparison
to A. C shows a Space-Time Cube of the data from A and B.

Since it was difficult for the CV algorithm as well as manually to track
individuals in the far end of the plaza in the overlooking view (area g in Fig.
13.3A), it was decided to draw a polygon in which at least unambiguous manual
GT tracks could be digitized (see Fig. 13.6). All CV detections outside this
area were tagged as short detections and clipped from the good CV tracks
inside the polygon.

In our manually digitized GT we found 297 tracks crossing the near nadir
scene in the 5 minutes of data. The CV algorithm found 460 tracks that could
be classified as good tracks. 1475 track IDs were classified as short detections.
Close inspection of the STC showed that several of the good CV tracks could
be referred to as being parts of one corresponding GT track. This indicates
the IDs of good CV tracks have been changed after ambiguous situations, but
that the same individuals have been tracked all through the scene. In the one
minute data from the overlooking view we found 124 tracks by the manual GT
method and the CV method found 146 tracks. There were 977 IDs classified
as short detections.

The overall movement patterns detected by the CV fit well with the GT
tracks, and in the STC in Fig. 13.5C and Fig. 13.6C it can be seen that
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Fig. 13.7: Example of extraction of the two tracks of a couple. The GT tracks are shown
in A, the CV track points are shown along with the GT tracks in B, and the thermal images
for three step sequence is shown in C.

individual GT and CV tracks are fairly good aligned. A quick inspection (not
shown) of the speeds of the good CV tracks yielded a Gaussian distribution
around 5km/h for pedestrian tracks. A small spike around 13 km/h was clearly
identified as cyclists in the scene.

The data also allowed for extraction of individual tracks for analysis of
movement behaviors seen in the video. An example of this is shown in Fig.
13.7 where the two tracks of a couple are shown and where three situations
from their tracks are highlighted. In situation 1 they walk together, in 2 they
stop to discuss and one points at the fashion shop on the street corner, in 3
the two tracks split up as the woman (verified by live observation when the
scene was recorded) decides to enter the shop while the man waits outside.
The thermal images of the situations are shown in Fig. 13.7C. In Fig. 13.7A
the GT tracks are shown in a 3D plot with the two tracks colored in red when
they move more than 2 km/h and green when they move slow or stand still.
The tracks are projected on the 2D plane for reference. In Fig. 13.7B the
CV track points detected within a radius of one meter and one second, in the
spatial and temporal dimensions respectively, of the corresponding GT tracks
are displayed. The different CV tracks are colored according to their IDs. It
is evident that the IDs are changed quite a few times for the CV track points,
even though the two persons remained tracked throughout the sequence. The
CV method is thus not robust enough yet for tracking individuals consistently
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in advanced and ambiguous situations, but it performs fairly well to extract
overall movement patterns.

13.5 Discussion and Conclusion
In this paper we have presented a method using thermal cameras and state-
of-the-art Computer Vision technology to track pedestrians in public plazas.
The tracks are georeferenced to enable analysis in GIS. Furthermore we have
compared the tracks obtained from Computer Vision with manually annotated
ground truth tracks by visual analysis of the data on 2D maps and in 3D
Space-Time Cubes. The analysis showed examples of situations in which the
Computer Visions tracking was challenged, but indicated also that the method
has potential to provide reliable data on general movement patterns in a plaza
with a similar density of people. An example of extraction and analysis of two
tracks of a couple in a standard situation was shown. From this it was clear
that the Computer Vision software was not able to keep the individuals tracked
consistently, however it was able to detect the persons present all the time. The
changing of track IDs was most likely caused by the two people walking and
standing close together as well as by others passing close by. It could be useful
to test our method in other types of plazas and with higher densities, and to
extract and analyze tracks from different situations to compare data.

Further development of the method could be to enable computation of
statistics for the relation between Computer Visions and ground truth tracks in
terms of accuracy and completeness. An idea could also be to enable automatic
classification of moving individuals into types such as pedestrians, cyclist, peo-
ple pushing prams etc. The dataset obtained in this pilot study has enabled
a better understanding of the difficulties for further automation. While going
through the videos to digitize ground truth tracks we identified characteris-
tic movement behaviors such as meeting, flocking, avoidance, and following
a leader [26]. Further research could hence be in the field of Computational
Movement Analysis to automate search for characteristic movement patterns
and behaviors in this kind of dataset.

We are working on plans to carry out a full scale study with multiple thermal
cameras over a sustained period of time. Inspired by the works of [2] and [27]
the ambition is to contribute with new digital methods and tools in the field
of urban analysis by linking the field of Computer Vision to that of GIS. The
long term goal is to further investigate the applicability and suitability of this
type of studies to provide data for models of everyday pedestrian behavior in
urban public spaces.
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Chapter 14

Conclusion

This thesis has presented methods to automatically analyse the human motion
and activities captured with thermal cameras. With main focus on the analy-
sis of sports arenas, the work was organised within three themes; Occupancy
analysis, Activity recognition and Tracking sports players.

Two methods were presented within the topic of occupancy analysis. While
the first method analysed each frame individually and suggested a number of
steps for splitting and sorting blobs, the second method included temporal
information. A graph-based approach was proposed to optimise the result over
a sequence of frames.

In the third part of this thesis, two different methods for recognition of
activities were presented. Based on heatmaps, the first method relied only on
the position of people. The second method were based on features extracted
from tracklets. Five sports types were classified in each work.

In the topic of tracking, this thesis presented two methods designed for
thermal video, and a third method improving a global tracking algorithm for
RGB data. The first method based on Kalman filtering showed robust real-
time performance and high accuracy. However, being a recursive algorithm,
split tracks cannot be reconnected. The second method showed how to use
the estimated number of people in the scene for constraining the number of
trajectories. Implemented with an offline tracker the tracking performance was
improved.

The last part of this thesis presented three papers in the context of Smart
Cities. Here it was demonstrated how thermal imaging can be used for robust
performance in a number of real-time applications.
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During the thesis, all methods have been tested on real world data and
shown good and robust results over very long test periods. The detection
and tracking algorithms have shown fast real-time performance and the future
potential for use in real world applications is high.

14.1 Outlook and Perspectives
This thesis has just revealed solutions for a few of the infinite number of ap-
plications within analysis of humans. Research on analysis of people occupies
a major part of the program in every conference on computer vision and will
probably continue doing so for many years. When trying to mimic the abilities
of the human vision system, we have only reached the most basic layers yet.

In this thesis methods for analysing humans in thermal images has been
developed and applied. Choosing to work with thermal imaging has a clear
advantage in real applications, as the privacy issues can be discarded. With
thermal cameras, the use is no longer restricted to private ground, or to short
sequences with staged activities. Without violating the privacy rights we have
demonstrated applications, from sports arenas to city streets and plazas, with
regular users and pedestrians captured.

Designing algorithms specifically for thermal imaging also implies that there
is no standard test datasets with annotations available. That makes it harder
to directly compare the results to other work. We have published the dataset
used in chapter 5 and plan to publish the dataset used in chapter 8 and 9 with
annotated tracking data. Over time, this might contribute to a larger thermal
dataset used for state-of-the-art evaluation.

In this thesis we have focused on analysis of sports players, from the per-
spective of the use of sports arenas. Obvious potential is seen in applying some
of the methods for other sports facilities, such as outdoor fields and trails. Fo-
cusing more on the players, the potential in sports analytics is also endless.
Within the entertainment and broadcasting industry huge amounts of money
are being invested to be able to provide unique and vivid experiences for the
audience. For post-game analysis within the teams, coaches and athletes also
need detailed evidence on their performance. As the research area develops,
we expect to see more commercialised products within this field in the future.
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Measuring and mapping human activities are essential steps towards con-
structing an intelligent and efficient society. Using thermal imaging, the 
privacy issues often related to surveillance can be eliminated and public 
acceptance of such systems is easier to obtain. The main focus of this thesis 
is automatic analysis of the use of sports arenas. This work is organised un-
der three themes: Occupancy analysis, Activity recognition and Tracking. 
Finally, the thesis demonstrates how thermal imaging can also be applied 
efficiently for analysing humans in the Smart City. This thesis starts by in-
troducing the technology of the sensor and the different application areas. 
Two new methods for counting people are presented, as well as two methods 
for sports type recognition. Tracking of sports players is an important task 
in many applications, from recognition of activities to evaluation of perfor-
mance. This thesis presents a real-time tracking algorithm based on Kalman 
filtering and it suggests two methods for improving global offline tracking. 
At the end of this thesis five different applications of thermal imaging in the 
Smart City are presented. Methods for counting and tracking pedestrians are 
presented and applied, as well as a method for detecting potential near-colli-
sions between cars and cyclists in large urban intersections.
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