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Summary in English

The continuing development of wind turbines aim at highéafproduction and reducing the
purchase and maintenance costs for the customers. Thisndsrtizat the components in the
wind turbine are optimized closer to the limit than previgusn order to determine the design
loads itis necessary with a numerical model, which reprsgae reality as good as possible. For
this purpose a flexible multibody formulation is suitabledese large nonlinear geometric de-
formations of e.g. the blades can be accounted for whilehstiling the possibility of modelling
the remaining components individually and next couple tigrase of joints. This gives a high
level of modelling flexibility, where parts of the structuséth relative ease can be interchanged
to analyze other possibilities in a design process, or ifghéi detail level is wanted for some
components. In a multibody formulation each substructigeapart of the blade is modelled by
use of Bernoulli-Euler beam elements with St. Venant terskor each substructure a belonging
moving frame is present, where to the displacements of thetgicture must be relative small,
in order for the linear displacement assumption to be fafiihside the moving frame. By mod-
elling e.g. the blades by use of several substructures @ssiple to account for large nonlinear
geometric deformations.

The multibody formulation focused on in this project is lihea the Local Observer Frame
formulation, where the parameters that determine the masfothe frames do not enter the
state vector, like in the more standard Floating Frame otfRefce formulation. Hereby, the
otherwise mixed set of referential and elastic coordinatesavoided and thereby the highly
nonlinear equations of motion. However, this demands tieparameters to define the motion
of the moving frames are regularly updated so the relativéan®f the substructure from the
belonging moving frame is reduced. The update algorithnhe$¢ parameters is based on the
motion of the belonging beam element substructure. Basemmarmber of static analyses for
a wind turbine blade with large nonlinear displacements& shown most favorable to use the
end points in the substructure for updating the moving fame

For speeding up dynamical simulations for use in e.g. actirerol or parameter studies,
system reduction of substructures in the multibody forrioiteis investigated. | the first method
a Ritz basis is used, which contains rigid body modes and @euof elastic eigenmodes com-
patible to the kinematical boundary conditions. By use af\few elastic eigenmodes to model
a blade it has shown convenient to use a quasi-static terthdaruncated elastic eigenmodes.
The second method is based on a Component Mode Synthesisdneith constraint modes
and fixed interface normal modes. Hereby, the coupling dsgoé freedom between adjacent
substructures are preserved for use in setting op the kitieahaonstraints which secure com-
patibility at the assembling point. This method is more gahand can also be used to model
the blade in e.g. two substructures or to model other compsiiie the wind turbine.

To determine the structural properties of a blade for useemnb element models, a FE-
model is implemented which besides the more common beanealgparameters also can de-
termine e.g. torsional stiffness and the position of theasleenter. The method makes use of
three node triangular elements where the different matesars in the blade profile are taken
into consideration. The results are compared to a similarntdiich makes use of straight ele-
ments of uniform thickness to discretize the cross sectidrere a mean value of the material
layers over the thickness direction is used. Good corredguee is demonstrated between the
used discretization methods.
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Summary in Danish

Den fortsatte udvikling af vindmgller tilstreeber starréektproduktion til en mindre indkgbs-
og vedligeholdelsespris for kunderne. Dette kraever, atdamanterne i en vindmaglle optimeres
teettere pa greensen end hidtil. For at kunne bestemme dastignme er det ngdvendigt med en
numerisk model, der afspejler virkeligheden s& godt somgndril dette formal er en fleksibel
multibody-formulering velegnet, da der bade kan tageséhfmjdstore ikke-linesere geometriske
deformationer af f.eks. vingerne samtidig med, at de gwligle af strukturen kan modelleres
individuelt og efterfalgende kobles sammen med de tilhdedajer. Dette giver en hgj grad af
modellerings-fleksibilitet, hvor dele af strukturen ralahemt kan udskiftes for at undersgge
andre muligheder i en udviklingsfase, eller hvis der er ok hgjere detaljering af enkelte
komponenter. | en multibody-formulering er en substrukieks. en del af vingen modelleret
ved brug af Bernoulli-Euler bjeelkeelementer med St. Venargion. Til hver substruktur er
der et tilhgrende bevaegeligt koordinatsystem, hvortihflygerne af substrukturen skal veere
relativ sma, sa den lineaere antagelse af flytningerne indeiet beveegelige koordinatsystem
er opfyldt. Ved at modellere f.eks. vingen af flere subsuitdat kan der tages hgje for store
ikke-lineaere geometriske deformationer.

Den multibody-formulering, der er i fokus i dette projekt,baseret pa en Local Observer
Frame formulering, hvor de parametrer der fastleegger belsaayaf koordinatsystemerne ikke
indgar som en del af Ilgsningsvektoren, som i den mere stdicgaede Floating Frame of Ref-
erence formulering. Hermed ungas det ellers miksede saefetnce og elastiske koordinater
som medfarer steerkt ikke-lineaere beveegelsesligningette Resever dog, at parametrene til
fastleeggelse af de bevaegelige koordinatsystemer Igbguutigeses, sa den relative bevaegelse
af substrukturen fra det tilhgrende bevaegelige koordystes reduceres. Opdateringen af disse
parametrer er bestemt udfra bevaegelsen af den pagaeldesitteddement-substruktur. Baseret
pa en raekke statiske analyser for en vinge med store ikkeelia deformationer har det vist sig
mest fordelagtigt at benytte endepunkterne i substruktutié at opdatere de beveegelige koor-
dinatsystemer.

Af hensyn til hurtige dynamiske simuleringer til brug foeks. aktiv kontrol eller parame-
terstudier er systemreduktion af substrukturer i den pdgaele multibody-formulering under-
sggt. | den fgrste metode benyttes en Ritz-basis, der itdietstiviegeme-modes samt elastiske
egensvingningsformer kompatible til de kinematiske raitigelser. Ved brug af ganske fa
elastiske egensvingningsformer til at modellere en vinigervdet sig belejligt at inddrage et
kvasistatisk led for de trunkerede elastiske egensvingsifdrmer. | den anden metode, der byg-
ger p4 Component Mode Synthesis, benyttes constraint noapfesed interface normal modes.
Hermed bevares koblingsfrihedsgraderne imellem de ditstde substrukturer til brug for op-
stilling af de kinematiske bindinger, der sikrer kompdiibt i overgangene. Denne metode er
mere generel, og kan ogsa benyttes til at opdele vingens.fieksubstrukturer eller til at mod-
ellere andre komponenter i vindmgllen.

Til at fastleegge vingens strukturelle egenskaber for brogelkemodeller, er der imple-
menteret en FE-model, som udover de mere gaengse bjelkeyiegakan fastlzegge bl.a. tor-
sionsstivheden samt placering af forskydningscentretolien benytter treknudede trekantele-
menter, hvor der tages hgjde for materialelagene i proRlesultaterne er sammenlignet med et
lignende analyseveerktgj som benytter lige elementer mé&dmstant tykkelse til at diskreticere
tveersnittet, hvor materialelagene over tykkelsesresmrgr midlet til et lag. God overensstem-
melse mellem de benyttede diskreticeringsmetoder er vist.
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CHAPTER 1
Introduction

In this chapter a brief introduction is given of the key agpéa this project related to wind
turbine dynamics. This project is based on the modellingfandulation of numerical models
for structural analysis of wind turbine dynamics, and soabedynamic part of an aeroelastic
code is not considered. The chapter contains a list of théghalal papers during this project
together with an overview of the chapters and appendicésdad in the present thesis.

1.1 Background

With the increasing size of wind turbines and the demanddet efficient turbines, the different
components in the turbines are optimized more than preljioliis calls for an accurate and
flexible numerical model of the turbine dynamics which issablmodel the different components
more realistic and to take large nonlinear geometric deftions of especially the blades into
consideration. Also, the increasing slender design of ileds makes the structural properties of
the blades more important to determine with a high accuraspecially, the torsional behavior
should be accounted for to capture eventually flutter inktiels.

In Figure 1.1 a classic three-bladed horizontal axis winditwe is illustrated with the pri-
mary structural components i.e. blades, hub, nacelle,rfamel foundation. Inside the nacelle,
several structural components exist counting the rotoit,simain bearings, gearbox, generator
shaft, brake, generator, and the support of these compoaerdtauxiliary equipment in the na-
celle. Moreover, a number of bearings are used in the tunbige to pitch the blades and to
yaw the nacelle. With the aid of large computer clusters éseurces exist to take more precise
models of the structural components and mechanical irdesfanto consideration. This could
e.g. be the bearings, gear sets, friction, and modelling@btrake. To further develop and test
new designs of the wind turbines, it is necessary to have dissilpility of implementing new
ideas with relative ease in the aeroelastic code for timellsition of the structural dynamics.
This calls for a very general formulation where it is possitd make such modifications or in-
terchange the substructures with other modules. For exarfgl offshore foundation several
possibilities exist e.g. a mono pile, gravity, bucket, akjet foundations. Lately, even the need
to model floating foundations for use at large depths hawsedtention. Inside the nacelle, the
need to model other drive trains exist e.g. without a geagdex known as a direct drive. With
such large modifications it is also necessary to remodektmaining components in the nacelle.

— 1 —
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A0
Nacell Hub
@ Pitch bearing
{ -
Yaw bearing/
Yaw bearin
\
@ \_ Tower
@ Foundation @ Foundation

Figure 1.1 A classic three-bladed horizontal axis wind turbine witd grimary structural components i.e. blades, hub,
nacelle, tower, and foundation.

For active control with state vector observation of the ituetio reduce loads and vibrations
it is necessary with a numerical model that can be processeeal time to account for the
changes in the global dynamics when an actuator is activatgd by pitching the blades or
altering the generator torque. In such cases, the mordatktaimerical models in the aeroelastic
code consisting of hundreds of degrees of freedom can rgefdse used. This calls for reduced
models which account for the primary part of the turbine dyita. In order not to operate two
more or less independent numerical models it would be caewéif the reduced models were
build directly based on the more detailed models and in theesaode. This could e.g. be done
by reducing the number of degrees of freedom to model the thieeles and keeping the models
of the remaining substructures with the original detaibleWhen the blade models are reduced
it is necessary that they still describe the majority of ttaglb dynamics especially the nonlinear
effects from the large geometric displacements. This isfeoagn the inertia and exterior loads,
which are applied and follows the deformation of the blades.parameters studies e.g. due to
different site conditions it is also convenient with reddiceodels to speed up such analyses.

Kristian Holm-Jgrgensen
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1.2 Presentation of the Problem

As described in the previous section, a wind turbine is a dertructure consisting of several
rotating structural components, where especially thedsagkhibit large geometrical deforma-
tions. In order to describe the global dynamics of such aesyghe focus in this project is
drawn towards so-called flexible multibody formulations.these formulations each structural
componentis modelled individually by means of a structaratlel forming a so-called substruc-
ture or super element. Next, the substructures are assetmplhe use of joints or kinematical
constraints. This makes a more general formulation wherdlifferent substructures with rela-
tive ease can be modelled and interchanged depending oréus in the present wind turbine
simulations.

The multibody formulation focused on in this project is lthea the so-called Local Ob-
server Frame formulation by Kawamoto et al. [1]. Kawamotoksat Toyota’s research depart-
ment, where they use this type of multibody formulation fiongating the dynamics in engines
and the belonging car body.

In the present project, the use of such a multibody appraachind turbines is investigated.
With a high level of detail the structural components in advirbine can be modelled by use of
FE beam elements. Therefore, such elements are in focus imuktibody formulation and up-
dating algorithms of the moving frames, which are necessahjs approach. However, the used
formulation is not restricted to beam elements, if e.g.dsofishell elements become relevant to
model some of the components. Besides the structural nioglelelevant joints or kinematical
constraints are necessary to assemble the different canponThis is a subject which is not
treated in Kawamoto et al. [1]. Often in multibody dynamies tonstraint equations are differ-
entiated twice with respect to time and incorporated in éesysnass matrix, Shabana [2]. Next,
constraint regularization is used to ensure that the caingtrare satisfied on the displacement
and velocity level. In the present project it is examineduiéls an approach can be avoided to
eliminate the use of such fictiones terms. Further, for timegration of the equations of motion
the use of Newmark methods are not widespread in the sceeatiftmunity of multibody dy-
namics. Therefore, to facilitate the knowledge and expegdrom classic structural dynamics
a Newmark method is investigated for use in the present bud$i approach.

In order to model large nonlinear geometrical deformatiohsspecially the blades, the
results by use of the present multibody formulation are cameg to a co-rotating beam element
formulation. These results are based on static analysiote easily include analytical results
in the comparison. Moreover, a key point in the multibodyriafation is the algorithm used to
update the motion of the moving frame. Here, it is examinettiwbpproach that performs best
to describe such large deformations.

In order to estimate the eigenfrequencies and mode shafieswind turbine it is necessary
to investigate how the present multibody approach can befieddo perform such eigenvalue
analysis. The eigenfrequencies of an assembled multibgelgrs are necessary to determine if
the exterior loading or the angular frequency of the rotdkexicite such frequencies. Moreover,
the eigenfrequencies are necessary with respect to climgrtiie wind turbine e.g. by changing
the operating conditions to avoid resonances.

As mentioned in the previous section, system reductionégeseary for active control and
convenient for parameter studies. Therefore, system tieduor use in the flexible multibody
formulation is in focus in the present project. Hereby, ip@ssible to reduce the number of
degrees of freedom in e.g. the blade structures and maimgatime remaining structures with the
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original element discretization. The blades are the pnynaaea for system reduction because
they are the most complex structures and would otherwiseineegqnany degrees of freedom.
However, the reduction should be more general than the aewefos a blade in Appendix C, so
the possibility exists of reducing other substructures al. wt is necessary for especially the
blades that the reduced models still describe the majofitii@blade dynamics especially the
nonlinear effects from the large geometric displacements.

In order to describe the dynamics of the blades it is necgsbat the cross sectional pa-
rameters for the beam elements are determined with a highramc This is especially crucial
when the used material in the blades is reduced to optim&edkts. In this project, the cross
sectional parameters are determined for a composite biat®s, but could be used for any
cross section and material distribution. The main focus iadcount for the different material
layers where they are positioned instead of using averdgewvaf the materials in the different
parts of the profile.

1.3 Published Papers

Below, the published papers during this Ph.D. project atedi. The international journal papers
are enclosed in Appendix C, D, and E.

1.3.1 Conference Papers

¢ Kristian Holm-Jgrgensen, Sgren R.K. Nielsen, Rune Rubak.
System Reduction in Nonlinear Multibody Dynamics of WindGines.
Proceeding of the 14th International Congress on Sound ahchtbn, Cairns Australia
9-12 July 2007. The International Institute of Acousticd &ibration (11AV), 2007.

1.3.2 International Journal Papers

4 Kristian Holm-Jgrgensen, Jesper Winther Staerdahl, SgtenNRelsen.
On the Nonlinear Structural Analysis of Wind Turbine Bladesng Reduced Degree-of-
Freedom Models.
Structural Engineering and Mechanij@3(1), (2008), 107-127.

¢ Kristian Holm-Jgrgensen, Sgren R.K. Nielsen.
System Reduction in Multibody Dynamics of Wind Turbines.
Multibody System Dynamicg1(2), (2009), 147-165.

¢ Kristian Holm-Jgrgensen, Sgren R.K. Nielsen.
A Component Mode Synthesis Algorithm for Multibody Dynasiaf Wind Turbines.
Journal of Sound and Vibratior{2009), to appear.
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1.4 Overview of the Thesis

4 Chapter 2. The used flexible multibody formulation based dwcal observer frame for-
mulation is introduced together with examples of how to fyetisplacement and rotation
joints or constraints. The equations of motion are set up fmmstrained multibody system.

4 Chapter 3. The updating algorithms for dynamic and statalyesis are described for up-
dating the moving frame parameters for use in the presentibadly formulation. The
implementation of the time integration algorithm togettdth iteration processes are de-
scribed.

¢ Chapter 4. Large static deformations of a cantilever beasnvénd turbine blade are cal-
culated and compared by use of the present multibody fotionland a co-rotating for-
mulation. The effect of using different updating approacinehe static updating algorithm
is examined together with convergency of the tip displag@rfa an increased number of
substructures.

4 Chapter 5. Here, the equations of motion are modified in daldetermine the undamped
eigenfrequencies and belonging eigenmodes of a multibgste. The primary modifica-
tion is in the constraint equations.

4 Chapter 6. A blade substructure in the present multibodyigation is modelled by FE
beams and reduced by use of two approaches. In the first, ke singstructure is used
to model the blade, which is reduced by a proper Ritz basighdnsecond, the blade is
modelled by two substructures by use of a component modaeasistmethod. This method
is general for an arbitrary number of substructures andfate restrictions.

4 Chapter 7. A FE program is created to determine beam prepeofi an arbitrary cross
section. The programis illustrated by the use of a wind heliilade section and compared
to the results of a program used in the wind turbine industry.

4 Chapter 8. Asummary of the main conclusions and issues wiget further investigations.

¢ Appendix A. The equations of motion for a constrained sufastire in the used multibody
formulation are derived.

¢ Appendix B. Cross section parameters for the used windrierbiade and tower.

¢ Appendix C. Enclosed journal paper: "On the Nonlinear Stmad Analysis of Wind Tur-
bine Blades using Reduced Degree-of-Freedom Models".

¢ Appendix D. Enclosed journal paper: "System Reduction intiidady Dynamics of Wind
Turbines".

4 Appendix E. Enclosed journal paper: "A Component Mode SgsithAlgorithm for Multi-
body Dynamics of Wind Turbines".
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CHAPTER 2
Multibody Formulations with a

Moving Frame of Reference

In this chapter the multibody formulation in this projecinsroduced together with the be-
longing equations of motion. This multibody formulationbiased on a Local Observer Frame
formulation, which makes the equations of motion more sintiphn the standard Floating Frame
of Reference formulations, where the rigid body motion tie¢ato the floating frame is elim-
inated. However, because the moving frame parameters dentet the system state vector
successive update of the belonging moving frame paramatersequired. Kinematical con-
straints are described together with different types afitpicommon for multibody systems.
These displacement and rotation constraints are forntuksesector relations. Normally, con-
straint equations are differentiated twice with respetinie and solved at the acceleration level.
In this project, constraint equations are solved at thdaigment and rotation level, to eliminate
the need for constraint regularization.

2.1 Multibody Formulations Based on a Moving Frame
of Reference

2.1.1 Introduction

The basic idea of flexible multibody dynamics is to introdaceoving frame of reference to each
substructure. Relative to the moving frame elastic disgtaents are relatively small, rendering
linear analysis possible. Hence, nonlinearities are cedfito the description of the moving
frame. This is defined by a position vector and a parameteoxedso known as a pseudo vec-
tor, defining the origin and rotation of the moving frame tekto a fixed frame of reference.
The standard formulation of multibody methods requires there is no rigid body motion be-
tween the substructure and its moving frame. The positichaaientation of the moving frame
is defined by a set of coordinates that describe the rigid lh@ahglation and rotation of the sub-
structure. These coordinates become a part of the degréesedbm of the multibody system,
see e.g. Nikravesh [3], Garcia and Bayo [4], Géradin and @& d5] and Shabana [2]. The
use of such a mixed set of referential and elastic coordériateds to highly non-linear system
equations. Further, as a result of the inertial couplingvben the said degrees of freedom the
mass matrix depends on the referential coordinates, even fanmulated in the moving frame.
To circumvent these difficulties Kawamoto et al. [1, 6, 7, 8)gested to let the moving frame
of reference float in a controlled way relative to the movingstructure, so these are always

— 7 —
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sufficiently close to each other, in order for the small dispiment assumption to be fulfilled.
In this approach they named the moving frame a Local Obsé&mnegene. The main difference to
the standard multibody formulations is that the paramdtarthe moving frame do not enter as
degrees of freedom in the system vector and that it is p@s&ibthe substructure to have a small
rigid body displacement relative to the moving frame. Bylexily predicting the motion of the
moving frame the system matrices no longer depend on theglezsal coordinates. To reduce
or eliminate the gap between the predicted and actual matimmecessary to regularly update
the motion of the moving frame of reference as demonstratedy. Kawamoto et al. [8].

In this project the focus is to use this Local Observer Fraommiilation for a multibody
system. In this chapter the motion of a material point for Bbdeable substructure relative to
a belonging moving frame of reference is described, whigsgential for both multibody for-
mulations. Moreover, the way of incorporating kinematwahstraints is described. The derived
equations of motion are based on a work note by Krenk [9] foueonstrained substructure,
which are extended to a constrained substructure in ApgehdiThe chapter is also based on
the journal paper attached in Appendix E.

2.1.2 Motion of a Deformable Substructure Relative to a Belo  nging
Moving Frame of Reference

| this section the motion of a material point for a deformalbstructure relative to a belonging
moving frame of referencec(, x2, x3) is described. A fixed;, Z2, Z3)-coordinate system is
introduced in order to describe the motion relative to a kmfixed position. Accordingly, fixed
frame and moving frame components of vectors and tensorde&vihdicated with and without

a bar, respectively. The originof the moving frame of reference relative to the fixed frame is
described by a position vectar., see Figure 2.1. Similarly, the rotation of the moving frame
relative to the fixed frame is determined by the parameteiovéor pseudo vecto.

Figure 2.1 Position of a material point relative to the moving frameeference £1, z2, x3).

In the following the derivations of the equations for the stnbcture will be illustrated for
a straight Bernoulli-Euler beam structure. The positioraaghaterial point on the beam axis
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2.2 Constraints to Model Joints 9

relative to the moving frame of reference is given by
x(s,t) = s+ u(s,t) (2.1)

s is a position vector from the origin of the movilg; , 22, 2:3)-coordinate system to the referen-
tial position of the bending center in a given cross-seatithe beamu(s, ¢) is the displacement
of the said material point, see Figure 2.1. In an FE disa#tnu(s, t) within a beam element
is interpolated in the form, see (A.2) in Appendix A.

u(s,t) = N(s)y(t) (2.2)

y(t) contains the degrees of freedom of the element. In an FE beadelrthey represent the
nodal displacements and rotations relative to the moviagé of reference. Next, the position
vector of the material point is described in the fixed frameubg of the position vectot,. and a
rotation matrixR. to rotate the moving frame componentsoifto fixed frame components

%(s,1) = %o + R(s +u(s, t)) (2.3)

whereR is defined by the pseudo vectias given by the Rodriquez formula, see e.g. Shabana

(2]
R = cosfI + (1 — Cos 9) nn’ + sinfn (2.4)

wheren = 6/6 is the rotation unit vector anél = |6|. The moving frame components of the
velocity and acceleration vector of the material point meaf. (A.9) and (A.14), respectively,
in Appendix A

v=v.+@(s+u)+ua (2.5)
a=a.+ (@+ww)(s+u)+20u+i (2.6)

where the angular velocity vectar and angular acceleration vectarof the moving frame of
reference have been introduced. The relation between thesmoving frame parameters are
given bya = w. @ anda denote the spin matrices in moving coordinates related tnd
a. The first termv,. in (2.5) is the translational velocity of the moving framliee tsecond term
@(s 4+ u) is the rotational velocity, and the last tenmstores the moving coordinates of the
local velocity vector of the material point, i.e. the vekycrectors seen by an observer fixed to
the moving frame. The first term. in (2.6) denotes the translational acceleration of the mpvi
frame origin. The terndx(s +u) is the angular acceleration which is orthogonaktand(s +u).
The next termo@(s + u) = w x (w x (s + u)) describes the centrifugal acceleration. The
Coriolis acceleration in moving coordinates is describg@du which is perpendicular to both
the direction of the local velocity vector of the considepaiht and to the rotation axis. Finally,
the termii describes the moving frame components of the accelerafitmeanaterial point as
seen by an observer in the moving frame.

2.2 Constraints to Model Joints

To set up the equations of motion for a multibody system ieisassary to introduce kinematical
constraints in order to incorporate compatibility of thetoal displacements and rotations of the
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substructures. Moreover, the kinematical constraintaseused to describe joints between the
substructures. In relation to wind turbines, displacensenstraints between the rotor shaft and
the nacelle are specified at the bearings of the nacelletiRadhconstraints are e.g. prescribed
between the rotor shaft and the blade substructure in tefmsantrolled pitch angle. The kine-

matic constraints are vector relations with componentschivheed to be defined in a common
coordinate system e.g. a global fixed coordinate systemeantbving frame of reference of one

of the substructures. In Figure 2.2 six different joints sketched, redrawn from Géradin and
Cardona [5], which can be used to describe the physical atiomebetween two substructures.

The different types are shortly described in the list below:
c)
| @

a) ‘

Q-

ap

b)
d) e)

Figure 2.2 lllustration of different joints between two substructire

9

4 a) The revolute or hinge joint: Rotation around one axislmagd and the remaining three
translations and two rotations are fixed.

4 b) The prismatic joint: Translation along one axis is allovemd the remaining five motions
are fixed.

4 c) The planar joint: Translation along both axis in the pland rotation around the direction
normal to the plane. The remaining translation and two iatatare fixed.

¢ d) The cylindrical joint: Both translation and rotation aibhdhe same axis is allowed and
the remaining four motions are fixed.

4 e) The screw joint: A cylindrical joint where the translatialong the axis is related to the
rotation around it.

4 ) A spherical joint: All rotations are free and all transtats are fixed.

In the following, examples are given of how to set up kinegstiisplacement and rotation con-
straints between two flexible substructures, see Figurel? tBe present case it is chosen to fix
the displacements and rotations at a common point to seocunpatibility at the interface be-
tween the two substructures. , ands; o denote the referential position vectors in the respective
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Figure 2.3 lllustration of two substructures where the kinematicapticement and rotation constraints secure compat-
ibility at the interface between the two substructures.

moving frames, defining a point in substructures 1 and 2 athvhikinematical displacement
constraint is specified, amd;  andusy o are the corresponding displacement vectors. In the
following a lower index; define one of the two substructures. A displacement constrdiich
fixes the position of two arbitrary points becomes, cf. (2.3)

Pi = Xe1+Ri(s10+ui0) — (Xe2 + Ra(s2,0 + u2y))

= X +Ri(s1,0+ Nioy1) — (Xcz + Ra(s2,0 + NQ,()YQ))

= Bgi1yi —Bg2y2—b=0 2.7)
Bsi = RiNig , b=—(xa+Risio)+ (X2 + Raszp)

In an FE formulationy; (s;, t) is interpolated by a set of shape functidNg(s;) and degrees of
freedomy;(¢), u; 0(t) = N; 0y:(t), whereN; o = N,(s; 0). FurtherR; andR represent the
rotation tensors of the moving frames relative to the glaairdinate system. Lep, , denote
the parameter vector of the local rotation tensor of thefate node relative to the moving frame
of substructuré. The rotation tensor of the said node relative to the globafdinate system is
then given by

R =RiR(p; o) *Ri(I+ ¢, ) (2.8)

where the indicated linearization presunieg ;| < 1. ¢, , may then be interpreted as the
components of the rotation vector relative to the movingneeof reference. Leh; andn, be
the local components in the moving coordinate systems afwagiors attached to the interface
nodes in substructures 1 and 2. The rotation of these veist@ven asRin; and Rin,,
respectively. Assume, that the vectors before and duriegldstic deformation of the interface
nodes remain orthogonal. Then the rotational constraimbesspecified as

(1)7‘0 = (RTnl)TR«SHQ =0 (29)
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A total of three scalar products are necessary to fix theiootsitn the joint. By insertion of (2.8)
in (2.9) the rotational constraint becomes

®,. = nyRIRin1p; o+ n] R Rofiap, o — nf R{ Romy + ¢f ;i RY Rofios
= njRJRi0 Py gy; +n] R{ RofioPo gy
—n!RTRony + (P oy1)  m R Rong Py oy (2.10)
= B,1y1+B,2y2—b=0 (2.11)
B, = nlRIRnPy , b=nlRIRon; — (P1oy) mRIRonPyoy2
B.>» = n{R{Rn,P,, (2.12)
The components of the local rotation vectors are determinyed, , = P; oy, whereP;(s;)

represents the compatible rotations derived from the shapstions. Hereby, (2.7) becomes
linear iny; whereas quadratic nonlinearties appear in (2.11) via time &e This necessitates an
iteration approach, where predicted valueg ptindy- are inserted.

Another possibility is to use the following Cayley approf&hinstead of the approximation
in (2.8).

R; =RiR(p; ) ~ Ri((l ~3%i0) A - 38 0)) (2.13)

)

The advantage of this approximation is that the unit vedtoR} remain unit vectors which is
not the case in (2.8). The rotation tensor (2.13) of the natkebe implemented similarly to (2.8)
where the ternfI — %cpiyo)*l is evaluated based on the predicted valueg,aindy.. However,
it has not been possible to get this approach to converge.sailpitity could be to use (2.8) in
the initial iteration and then switch to (2.13), but this Imas been examined.

2.3 Equations of Motion for a Constrained Substructure
based on a Local Observer Frame Formulation

In this section the equations of motion for a constrainedsubture based on the Local Observer
Frame formulation are described. The equations of motighe$ubstructurgéare conveniently
derived by analytical mechanics using an extended Lagaartgiaccount for the kinematic con-
straints, in combination to the kinetic enerfy= T'(y;, y;) and the potential enerdy = U(y;)
from all substructures. The latter contains contributia@mf the strain energy and conservative
external load€). ;(y;) such as gravity, in addition to vectorial quantities as the-nonservative
loadsQ,...;(y:). In principle, these loads may be linearized in the appliesing frame of refer-
ence. The non-conservative loads are caused by the folldveeacter of the aerodynamic loads.
The kinetic energy is most convenient determined by useenfitbving frame components of the
velocity vectorv from (2.5). In a slightly modified version of those given bywamoto et al.
[6] the resulting equations become

M,y; + (CO,i + 2Gi)}"i + (KCL +Gi+D; + Kg,i)Yi + B! (yi)Ai =
_Maia(%i - Jgj,z + ng + Q(:,i(Y’i) + an,i (YL) (214)

where the Lagrange multipliers; contain the global components of the reaction forces and
moments conjugated to the kinematic constraintsBAdy;) is the constraint matrix. Because
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the constraints have been formulated in the fixed frame areefce the vector of Lagrange
multipliers X is also specified in the fixed frame. The symmetric matrCgs andK. ; denote

the structural damping and elastic stiffness matrix, reypay. The latter includes bending,
torsional, and axial stiffnesse¥, ; denotes the geometrical stiffness matrix. For a beam-like
substructure of the length this may be written as

T
dNT . 4N,

2.1

Kgﬂ' = QQ(ﬁ) /L Qg(l‘g,t)
whereQs(x3,t) represents the distribution of the centrifugal axial fdi@e2 = 1, so
0?(t)Qs(xs,t) denotes the axial force at the positiop. N, ; includes the two first rows in
N; which represent the two displacement components orthdgotize beam axis. For a wind
turbine blade the axial load is caused by the centrifugal gnagtity forces. During operation
the geometric stiffness from the centrifugal axial forcdl wssist to stretch out the blade cor-
responding to an increased stiffness and thereby reduadighiacements in the flap direction.
Moreover, this term has shown to increase the stability @fthmerical model. The other matri-
ces and vectors are defined as

M, = / NIN;udrs , Mo, = / N,pudrs , D;= / NT@,0,Nipdas (2.16)
L L L
L L L
L L

M, is the conventional symmetric mass matrix of the substredtuthe moving frame of refer-
ence, which in the present formulation is independent oftbeing frame of reference parame-
ters. . = u(s) denotes the mass per unit lengNi, ; is a matrix representing the inertial effect
of uniform translation. The effect of centrifugal forcesedw elastic deformations is contained
in the symmetric matriXD; and the gyroscopic forces are represented by the skew syiomet
matrix G;. The remainingl, ; andJ ; terms are couplings between the reference position and
the shape functions. In Kawamoto et al. [8] it is shown How G, andG; can be simplified

by extractingw; and &; outside the integration for isoparametric volume elemefisr ease

the non-linearity displayed by the dependency pin the load vector is neglected, whereby the
equations of motion conveniently are written in the form

M, ¥ + Ciy: + Kiyi + B] (yi)hi = fi(t) (2.19)
where

Ci=Cy;+2G;, , K,=K.;+G;+D,; +K,; (2.20)
fz(t> - *Mg:iac,i - Jal + ng + Qc,i + an,i (221)

C; andK; may be interpreted as resulting non-symmetric damping tiffioess matrices for the
unconstrained substructure.

Next, the global equations of motion are formulated by caninlgj the equation of motion
(2.19) for each substructure with the kinematical constsxi2.7) and (2.11). From the structure




14 Chapter 2 — Multibody Formulations with a Moving Frame of R eference

of these kinematical constraints it can be seen that theyedncluded in the system stiffness
matrix. Often in multibody dynamics the constraints aréetléntiated twice with respect to time
and inserted in the system mass matrix. Next, constraintlaegation is used to ensure that
the constraints are satisfied on the displacement and w#elegel. In the present approach the
constraints are solved as they originally are formuladds actual displacements and rotations,
and it is therefore not necessary with constraint regudéion. For ease the equations of motion
is only demonstrated for a multibody system consisting ofif2sgructures where the equations
attain the form

M1 0 0 5’1 Cl 0 0 }"1 K1 0 B’{ Y1 f1
0 M, O y2 + 0 Cy, O }'{2 + 0 K> Bg y2 |= fH |=
0 0o O by 0 0 O by B, B, 0 A b
Mz + Cz + Kz = f(t) (2.22)
whereX = A; = —X,. It should be noted that the constraints in principle candieup in
a arbitrary coordinate system, whereby the componendswill be in that chosen coordinate
system.

Because the constraints in principle introduce infinitéfregss into the global system it
becomes necessary to apply unconditional stable timerati®g. In the present case this is
achieved by means of a non-linear Newmark algorithm. Theofis¢ewmark methods is not
widespread in the scientific community of multibody dynasnidowever, according to Géradin
and Cardona [5], fully implicit algorithms such as the Newknalgorithm are very useful when
dealing specifically with flexible multibody dynamics. Iretheroelastic multibody wind turbine
code HawC2 a Newmark algorithm is also used according to étafif)]. The implementation
of the non-linear Newmark algorithm and the updating alhaomiof the moving frame parameters
are described in the next chapter.

2.4 Concluding Remarks

In this chapter the multibody formulation based on a Locas@ter Frame has been described
with the equations of motion for a multibody system consgtf substructures and a number of
kinematical constraints. The used method of implementingrkatical constraints is described
for both displacements and rotations based on vector eakti These constraints are solved
as they originally are formulated i.e. as actual displacggmand rotations, and the constraint
matrix hereby enters the system stiffness matrix. By usb®ptresent multibody approach it is
necessary to update the moving frame parameters by anthlgdrecause they are not included
in the system vector as in the standard multibody formutatidhis will be described in the
following chapter.
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CHAPTER 3
Update Algorithms of the

Moving Frame of Reference

In this chapter it is described how the moving frame of refeesand the belonging substruc-
ture are updated for dynamic and static analysis. The predatgorithms are constructed with
a beam element model in focus but could be used for other kihelements. The algorithm for
dynamic simulations makes use of the motion of the two bogndades in the substructure to
update the belonging moving frame to ensure this frame mseclo the actual deformed struc-
ture. Finally, two updating methods are described for statialysis, where one makes use of
the motion at the origin of the substructure to update theingoframe. In the other method the
moving frame is updated based on the motion of both boundaags

3.1 Introduction

In the standard floating frame of reference forumlation sgeNikravesh [3], Garcia and Bayo
[4], Géradin and Cardona [5] and Shabana [2], the coordirdecribing the motion of the mov-
ing frame of reference are a part of the system state vectdriteereby automatically updated
when the equations of motion are solved. In the presentbmayi formulation where the motion
of the moving frame is predicted and these coordinates demtet the system state vector, it is
necessary to regularly update the motion of the moving frafireference as demonstrated in
Kawamoto et al. [8] to reduce or eliminate the gap betweemtbdicted and actual motion. In
Kawamoto et al. [1] the updating scheme is originally désemti where the orientation, angular
velocity, and angular acceleration of the moving frame g@ated based on a local triad linked
to four nodes in the substructure. In Kawamoto et al. [6] twal triad is updated based on a
polar decomposition. In Kawamoto et al. [7, 8] rigid body raedire used to update the motion
of the moving frame. The updating scheme of the moving framef@rence in this chapter
follows the same principles as described in Kawamoto e6dl.A small change when updating
the moving frame is presented, where the orientation of theimg frame is updated based on
the motion of two boundary nodes. It is possible to use otbdesn than the boundary nodes in
the updating procedure.

3.2 Update Algorithm for Dynamic Simulations

In this section the update algorithm of the moving frame é&nmence for dynamic simulations
is described. This algorithm is based on the descriptioménenclosed paper in Appendix E.

— 15 —
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Figure 3.1 a) Moving frame and substructure at the initial situatioriiae ¢ = ¢;. b) Prediction of moving frame
and system state vector at timg, ; = t¢; + At. c) Determination of the system state vector for the firsatien
step. d) Updating of the moving frame based on the converga@mof two boundary nodes. e) Updated position and
orientation of the moving frame. f) Determination of thetsys state vector referring the motion of the substructure to
the updated moving frame of reference.

At first an introductory overview of the following updatindgarithm will be given based on
a number of 2D illustrations depicted in Figure 3.1. The miaéion of the moving frame of
reference defined by the related rotation te8¢t) has been indicated at various levels of the
updating procedurey(t) contains all the interior and boundary degrees of freedatmenifnoving
substructure relative to the origin of the belonging movinagne.y (¢) is a part of the state vector
z(t) in (2.22), which is the variable actually solved for. Howe\er the purpose of illustrating
the steps in the updating procegs$;) is used to symbolically indicate the position vector of the
interface node, see Figure 3.1a. At the time- ¢; the system state vectar = z(t;) along
with its time derivatives:; = z(t;) andz; = Z(t;) are known. Additionally, several parameters
describing the motion of the moving frame of reference fer slibstructure are known. These
are the global components of the position vector of the neigi; = X.(¢;), the related velocity
vectorv.; = v.(t;), and acceleration vectet. ; = a.(¢;), as well as the components of
the rotation tensoR; = R(t;) and the moving frame components of the angular velocity and
angular acceleration vectots; = w(t;), anda; = «(t;), respectively. All these known
parameters and system vectors make the starting point detbamination of the corresponding
quantities at the new timig; = t; + At, on condition that the new load vectfyr.; = f(¢;,1)
can be calculated. In what follows an upper indgx) is used to specify the updating step of the
moving frame of reference parameters within the time stemil&ly, an upper indexk;, k)

is used for the system state vector, whégeindicates the iteration step of the system state
vector within the present updating stepof the moving frame of reference. When determining
the motion of the multibody system it is necessary that ble¢hmoving frame parameters and
system state vector have the same upper iridexinitially, predicted values based on simple
Taylor expansions for the vectors related to the moving &amd the moving substructure at the
timet;; are determined from the corresponding values at timeredicted values are denoted
with an upperindex; = ko = 0, and the prediction step has been sketched in Figure 3.1, Ne
the equations of motion (2.22) are solved with the predigtddes entering the system matrices
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and vectors. Hereby, the nodal displacement vector for tbeiférationyyj;}) together with
its time derivatives are determined, see Figure 3Ag. indicates the displacement difference
between predicted and corrected estimates, which shoubelog a chosen convergency limit
for the nonlinear constraints to be converged. This is whiezaupper index- is increased for
each iteration until the substructure motion relative t® pinesent moving frame parameters is
converged. When the system state vector has converged ibeagcessary to update as well
the moving frame of reference. The position of the movingniesorigin together with its time
derivatives are updated based on the motion of the belofgingdary node of the substructure.
The orientation together with angular velocity and angatareleration are updated by use of the
motion of two boundary nodes. In Figure 3.1d both nodes ae&chkd, where they have been
labelledA and B and the position vector in (2.1) from the origin of the movingme to these
nodes is denoterl4 andx g, respectively. In Figure 3.1e the updated position anchtaién of
the moving frame of reference are illustrated. In order &x#fy the substructure motion relative
to the new updated moving frame it is necessary to solve thatems of motion with updated
system matrices and vectors. Hereby, a new nodal displemeveetory;ﬁ) is determined
referring the motion of the substructure to the updated mpftiame of reference given by the
rotation tensoR(ﬁl, see Figure 3.1f. This updating of the moving frame of rafeeawithin the
time step continues a predefined number of times. For eachteids necessary to iterate the
belonging substructure motion.

Next, the indicated updating algorithm is described in afarway. At the instant of time
t = t;4+1 the vectors related to the origin of the moving frame of refee are predicted by the
truncated Taylor expansions of the solution from the pnesiime step

x) = %oy + Ve A+ A A VO = ragar &l =a. (30)

( ) 41 isusedin the displacement constraints (2.7). The movaigécomponents of the vectors
defmmg the rotation of the moving frame of reference areilaiy predicted by the Taylor
expansions

ApO) = wiAt + 1A Wl =witegAt , al) =y (3.2)

Az,bﬁr)l denotes the moving frame components of the predicted ootatctor of the moving

frame during the interval\¢. The rotation tensoR((:Zl, corresponding to the moving frame
(0)

orientation after the rotatioA; /', , is next determined by use of Rodriguez formula (A.4)

RO, = RR(A4T,) @3

In (2.21) the moving frame components of the acceleratioth@frigin are needed. These are
determined from the corresponding global components @artinsformation

0 0)T (0
<( J)+1 R§421 ag J)+1 (3.4)

Next, the system state vector are predicted based on theatethTaylor expansions

532)—ZJ+ZJAI‘,+ la,A8 gig)—zj—i—ZJAﬁ , Eig)—zj (3.5)
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Hereby, all predicted parameters for the moving frame adnegice together with the predicted
system state vector are determined. The damping m@tfik, stiffness matrixk(?), and mass
matrix M from (2.22) are next determined. Here, it should be notet ttiea mass matrix is
independent of the moving frame parameters and therebytaiansin order to solve (2.22)
the residuak and equivalent system stiffness matkxare determined by use of the nonlinear
Newmark algorithm, Géradin and Rixen [11]

_ -(0,0) 0),(0,0) 0),,(0, 0) (0) ’ 0 0
r=-Mz) - COZ0Y —KO20Y +£7 | K= ﬁAt2M+@c< '+ K© (3.6)

wherey =1 +a, 3= 1(1+ a) anda is used to incorporate numerical damping. Newmark
integration by use of3,v = 4, 2) does not guarantee unconditional stability for nonlinear

systems. By solvingKAz = r for the unknownsAz, the following corrected values of the
system state vector are determined

0.1) _ ,(0,0)

z.,) =z, + Az 501 _ ~(0,0) + T Ag 5(0.1) _ ~(0,0)
J zZ; )

iU T Ber T Ay e +5At2

Az 3.7)

Hereby the displacement and rotation degrees of freedorheofuibstructure referred to the
moving frame of reference can be determined together witin time derivatives. The converged
substructure displacements and rotations at the boursdaéereferred to as 4, ¢ 4, andug,

@ . The same notation follows for the time derivatives of thepthcements and rotations. The
position, velocity and acceleration of the origin of the nmgvframe of reference are updated by
use of (2.3), (2.5) and (2.6)

0 == R (3.8)
_(k _(k k) ([ ~(k
5 =5, + B, (@9 ) ) @9
—(k+1) - (k) ~ (k) ~ (k) ~ (k) ~ (k) - ..

a, g = cg+1+R]+1<< jH—i—w]Hw]H)(s—i-uA)+2wj+1uA+uA) (3.10)

In the following, the update of the orientation, angulare#ly and angular acceleration of the
moving frame of reference is described, which is based omibtgon of both boundary nodes
A and B. The purpose of the present update is to align the beam adithaneby thers-axis
so it passes through both nodes. In order to determine tkeatation of the remaining;- and
xo-axes the average rotatigny around the beam axis is used, which is given by the thirdicotat
component at the two nodes

¢3 = 3(pB3+ pas) (3.11)

Then, the two basis vectorg andn, for thez;- andxzs-axis are given as

cosps —sings 0
[ n; ns, ng ] = | sings cosps 0 (3.12)
0 0 1

The purpose is to rotate the full basis through the minimugleabringing one of the vectors
into a given new direction. In the present case the vegtois to be rotated into the direction
of the beam axis defined by the unit vectars — x4)/|xp — x|, Wherex4 andxp are the
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position vectors of the end nodes relative to the moving &amgin cf. Figure 3.1d. First, the
mean direction is defined by the unit vector

XB — XA

——— , n:=n/|n (3.13)
Ixp — x4

n=ns-+

Next, a Householder transformation is used, which cormedpdo a reflection in the plane or-
thogonal to the unit vectat, Krenk [12]

AR = (T-20n") [ m ny —my ] (3.14)

Hereby, a new set of unit vectors containedNR are determined, which describe the updated
orientation seen from the present orientation of the mofiame of reference. The updated
rotation tensor is given by

k+1 k
R = RIY AR (3.15)
In order to update the angular velocity it is used that théal@omponents of the velocity at
nodeB should be the same in the present known configuration of théngdrame and in the
updated one. The global components of the velocity at ri®dee determined by use of (2.5)
vp Z\_’gc]-)+1 +R§-i)1 ((;in)l(SB +uB) +le) (316)
wheresp given in the updated moving frame of reference marks the m®dérhe updating

strategy presumes that the local displacement and velatityvanish. Hereby, by use of (2.5)
and the results from (3.16) the following relation is obtadrior the updated angular velocity

E+1)T [ _(k ~ (k
R;J:;l) (VB — vg]ill)) = w§-++11)sB (3.17)
The two first rows give a solution for the two first componerithe angular velocitwg“#l) and

wgfﬁﬂ). The third component is determined from the previous knoalnerand the average of

the belonging angular velocity component of the two nodes

wé’;ﬁf = wé’fj?ﬂ + 3 (¢B,3+ ¢a3) (3.18)

Similarly, the angular acceleration is determined by use )

ap =al,, + R (@) + @) (sp +up) + 200 s + i) (3.19)
k+1)T [~ —(k+1 ~ (k+1) ~ (k+1 ~ (k+1

R (aB - a£7j+1)) —aiVelVsp = alVsp (3.20)

alif) = af) + 5 (8ma + @an) (3.21)

Hereby, all moving frame parameters have been updated adaiv necessary to solve (3.6)
with updated system matrices and vectors to determine th&trsicture motion relative to this
new frame.
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a)
R;
YiA
c) d)
RW )
R; ”1 R; R,
A A 5
XA XA
Xp

Figure 3.2 a) Moving frame and substructure at the load gtep) Iterate the system state vector for the load gtepl.
¢) Updating of the moving frame based on the motion of the raddke origin. d) Updating of the moving frame based
on the motion of two boundary nodes.

3.3 Update Algorithms for Static Simulations

In this section it is described how the moving frames are tgatifor use in static simulations.
Compared to the procedure for updating the moving frame ipreahic analysis as illustrated
in Figure 3.1, the major difference is that no predictiorpsteused in these static analysis. An
advantage of the present multibody formulation when perfog static analysis is that very few
changes of the equations of equilibrium are necessary. IBecthe constraints are formulated
so they enter the system stiffness matrix in (2.22), theybmareused for static analysis. In the
standard Floating Frame of Reference formulation the caimis are formulated so they enter
the system mass matrix and therefore need further modditétiused in static analysis. The
reason for updating the moving frames in static analysis et more correct results when the
structure exhibits large nonlinear displacements. In @rapsuch nonlinear displacements are
further examined by use of the two updating algorithms diesdrin this section. In the first
method, the motion of the node at the origin of the substredgiused to update the belonging
moving frame. The second method corresponds to a statimwersthe updating algorithm for
dynamic simulations in section 3.2. Here, the motion of théenat the origin of the substructure
is used together with the motion of an arbitrary point in thbstructure to update the moving
frame.

3.3.1 Procedure for the Static Updating Algorithms

In Figure 3.2 a series of sketches are shown to illustratpriieedure when updating the moving
frames in a static simulation. The lower indgxnow indicates a load step, otherwise the same
notation is used for the upper indices as in section 3.2. duré 3.2a the moving frame and
substructure are shown for the converged solution at lagajstin the next load step + 1 the
exterior load is changed, and the substructure is iteratedrtew position within the moving
frame, see Figure 3.2b. Due to the nonlinear constraintsrakiterations may be necessary
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to obtain a residual which is within the specified convergdimits. When the solution has
converged it is chosen to update the moving frame. In theeptesituation two methods are
possible. In Figure 3.2c¢ the node at the origin of the subsire is used to update the moving
frame. Hereby, the moving frame obtains the same positidroaientation as this node. Another
possibility is demonstrated in Figure 3.2d, where the nmotbthe node at the origin and an
arbitrary point, here the end node, are used to update thengframe. At this point the updated
moving frame and displacement vector do not correspondtasdhierefore necessary to iterate
the position of the substructure within the updated frarmeilarly to Figure 3.2b. This updating
procedure of the moving frame within each load step is peréata predefined number of times.
More ideally, a convergency criteria should be set up for wtee update the moving frame.
Hereby, fewer updates would be necessary within each lepdsstd in some cases it would not
even be necessary to update the moving frame.

3.3.2 Update Based on the Node at the Origin

This updating algorithm follows the illustrations in FiguB.2a-b-c, where the node at the origin
of the substructure labeled nodeis used to update the moving frame. The position of the
moving frame is update by use of the displacemenbf nodeA

iﬁ’f#f = iﬁ’ffﬂ + R§-'i)1u,4 (3.22)

Similarly, the small rotatiorp , of node A is used to determine the increment of the rotation
tensor

AR =R(p,) (3.23)
which is used to updated the orientation of the moving frame

k+1 k
RV =R AR (3.24)

3.3.3 Update Based on the Node at the Origin and an Arbitrary
Node

This updating algorithm is based on the updating algoritbndfynamic simulations in section
3.2, where the motion of a node at the origin of the substrecnd an arbitrary node are used
to update the moving frame. Itis not necessary that therargipoint is a node, an interior point
could also be used but then it is necessary to determine thiemad this point by use of shape
functions. The position of the origin of the moving frame e@mined similarly to (3.8)

—(k _(k k
) ==+ R g (3.25)

The orientation of the moving frame follows the same desionipas related to (3.11)—(3.15).
These equations are repeated below for completeness.

03 = 5(¢B3+9as) (3.26)

cosps —sings 0
[ n; ns ng ] = | sines cosps 0 (3.27)
0 0 1
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n=ns+ XB T XA , n:=n/n| (3.28)
IxB —xa|
AR = (If 2nnT) [ n; n, —ng } (3.29)
k41 k
RV =R AR (3.30)

3.4 Concluding Remarks

In this chapter it is described how the moving frame of refeesis updated for dynamic and static
analysis for use in the present multibody formulation. Tipeate algorithm for the dynamic
simulations is based on the motion of the boundary nodeserstibstructures. In the static
update algorithm two methods are described, one which beandtion of the node at the origin
to update the moving frame. In the other case the motion atrilgen together with an arbitrary
point in the substructure is used to update the frame. Vewnynfiedifications of the equations of
motion are necessary to change between static and dynaatisen Especially the constraints
can be used in both cases without any modification.
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_ _ CH_APTER 4
Static Analysis of Nonlinear

Displacements

In this chapter large static nonlinear geometric displaa&s are analyzed by use of the
multibody formulation. The results are based on the extdmslastica and a clamped wind
turbine blade. Different update approaches of the moviagé& and the convergency of the
displacements by increasing the number of substructuessrealyzed. The results are compared
to a co-rotating beam formulation, where good correspocelésn observed. By dividing the
blade into just two substructures of unequal referencettentakes it possible to absorb the
non-linearities in an efficient way, which otherwise wouéjuire four substructures of equal
reference length.

4.1 Co-rotating Formulation based on Beam Elements

To determine the accuracy of the multibody model a nonligeartating beam formulation is
implemented. The model is based on Krenk [12], where a @etalerivation of the tangent
stiffness matrix is given.

The idea of a co-rotating formulation is to separate the mheétion of each element into a
rigid body motion i.e. a translation and rotation of eachredat with respect to a fixed coordi-
nate system, and an elastic deformation within the locatdioate system fixed to the element.
Because the elastic deformations are moderate linear Tiemé® beam theory is adequate. In-
side the local coordinate system the beam is able to defotheitongitudinal direction, rotate
around the beam axis, and may undergo bending deformatiohsteear deformations. No cou-
pling between wharping and axial elongation is used i.ey 8nl Venant torsion (homogeneous
torsion) is used. The orientation of the local coordinattey is defined by the base unit vectors
i1, o, i3 shown in Figure 4.1a. Thes-axis is chosen along the deformed beam through the end
points A and B of the element, and the, - andz,-axis are defined by the mean rotationat
andB. The anglep around thers-axis to the principal axis is taken into consideration asash
in Figure 4.1b.

4.2 Large Deformation of a Cantilever Beam
In this section the possibility of describing a highly nawar static deformation by use of the

multibody formulation in chapter 2 is examined. Both of th@ tstatic updating algorithms de-
scribed in section 3.3 for the moving frame of reference aszlio determine the most favorable
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b)

Figure 4.1 a) An element in the co-rotating formulation. b) Rotatiotoiprincipal axes based on the initial pretwist of
the profile and the angle to the principal axes.

one. Moreover, the convergency by using more substructaresbetter description of the non-
linear deformation is demonstrated. Convergency of theotating formulation is performed
and all results are compared to the results of the extenslaica theory for Bernoulli-Euler
beams as e.g. given by Magnusson et al. [13] and reproducgerstmayr and Irschik [14]. The
implementation of the multibody formulation and the coatotg formulation are both in 3D, but
the following tests are in 2D. The setup consists of a camileam with lengti, where an
exterior tip loadP = 3E1,/L? is applied with constant orientation in the positizedirection,
see Figure 4.2a. The cross section is quadratic with a widdhilon. The cross section parame-
ters together with the size of the tip load are listed in Table In the co-rotating formulation it
is possible to incorporate the effective shear area. Horveverder to compare these results to
the results by use of the multibody formulation with BerrieEluler beam elements, the shear
deformations are eliminated, so the beam elements in thetating formulation correspond to
Bernoulli-Euler beams. In Figure 4.2b. the beam has beamalized into 3 substructures of
equal reference length. The initial orientation of the bgiag moving frame of references are
equal to the orientation of the fixed frame of refereficg 7», Z3), see Figure 4.2b.

In Figure 4.3 the deformation of the beam is shown for a timilofa%P and P, where the
beam is modelled by use of 1 element in each of the 3 substascté\ll elements have equal
reference length. In Figure 4.3a the updating algorithnedas the motion of the node at the
origin of the moving frame is used. In Figure 4.3b the updgpéfgorithm based on the motion
of the node at the origin and at the end of substructure is. Usisdclearly visible in Figure 4.3a
that large displacements of the beam from the moving frameesltzserved especially for the two
first substructures. In Figure 4.3b the displacements ob#en from the moving frames are
highly reduced. In order for the linear theory describing tleformation of the beam inside the
moving frames to be valid it is desired to have as small lotsdldcements as possible.

The two updating algorithms are further investigated bynaréng how the tip position of
the beam converges by increasing the number of substrsctiiveo cases are used one with 1
element in each substructure and another with 2 elemen&cmsibstructure. In both cases the
reference length of the elements are equal. The reasonifay 2&lements in each substructure
is to demonstrate that the best results in this example aengld by using a higher number
of substructures and not a higher number of elements insidie gubstructure. The results are
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Figure 4.2 a) Cantilever beam with a tip load. b)

Discretization of beam into 3 substructures of equal

reference length. Initial orientation of the belongingable 4.1 Cross section ared, Young’s modulusZ, moment of
moving frames and the fixed frame of reference. inertia Iz, length of beani., and applied tip load".
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Figure 4.3 Deformed beam when discretized into 3 substructures, eadelfed by 1 element. a) Update based on node
at origin. b) Update based on end nodes— ) Tip position of beam. ) Deformed beam. () x;-axis.
(—— ) xz3-axis.

compared to the results of the extensible elastica thearéonoulli-Euler beams, where the
tip position is(z1;Z3) = (1.207;1.491). This corresponds to a tip displacement of approxi-
mately 65% of the undeformed beam length. Convergency afdh®tating formulation is also
included as this model is used in a later example, where tfogrdation of a wind turbine blade
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is examined. In Figure 4.4a and Figure 4.4b the tip positith@beam int; andzs, is shown,
respectively. The abscissa denotes the total number ofelsm.;, which also is used to denote
the total number of substructures. When eng; = 20 and 1 or 2 elements are used in each
substructure a total of 20 or 10 substructures, respegtiast used in the model.

a) b)

1.53 T T T

152 b

1491 b

1.48 . L L
5 10 15 20

Nel

Figure 4.4 Tip position of beam in the: aj};-direction. b)zs-direction. (—— ) Update based on node at origin,
(x) 1 element pr. substructures)(2 elements pr. substructure—— ) Update based on end nodes,)(1 element pr.
substructure,«) 2 elements pr. substructure—— ) Co-rotating formulation. (— — ) Analytical solution.

It was not possible to get a stable solution by use of 1 suttstrel when using the updating
algorithm based on both end nodes. This is probably due tinarized rotational constraints.
In Figure 4.4 it is demonstrated that is has little to noneafby using 2 elements compared to
only using 1 element in each substructure, no matter whickatipg algorithm is used. This is
also due to the constant cross section parameters throtiiedoeam. In Figure 4.4 it is shown
that the updating algorithm based on both end nodes reaulfsdisplacements which converge
much faster than the updating algorithm where only the nodeeaorigin is used. Overall, the
multibody formulation, with the updating algorithm by usktlee end nodes, converges faster
for thez;-component but slower for the;-component, compared to the co-rotating formulation
and also towards the analytical solution. If a more precesedption of the rotational constraint
could be implemented, similar results as by use of the catirgf formulation should be obtain-
able. It has been tried to implement rotational constrdiated on the Cayley approach in (2.13),
as described in section 2.2. However, this turned out to &talite i.e. it was not possible for the
solution in the first load steps to converge.

4.3 Tip Displacement of a Clamped Wind Turbine Blade

In this section the accuracy of the updating methods for théilnody formulation are further
investigated. The co-rotational formulation with 20 elertseis used as the reference model.
The examples are based on a clamped wind turbine blade wheratiation of the cross sec-
tion parameters throughout the blade are described in Afip@& Prismatic elements are used
based on the mean value of the cross section parametersestdhpmints in the respective beam
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elements. The blade is discretized by a total of 20 elemeititstiae same reference length. The
total referential length of the blade Is = 44.8 m. An exterior tip load with orientation in the
Z1-direction is applied so the tip displacement is approxetya20% of the undeformed blade
length. The numeration of the substructures and the irgtiehtation of these are as described
in Figure 4.2a.

4.3.1 Convergency of Updating Algorithms

In this section the convergency of the two updating algarglirom section 3.3 is investigated by
increasing the number of substructures in the blade. It Wawis in Figure 4.4 that the updating
algorithm based on the motion of both end points is far sopéoithe one where only the node
at the origin of the moving frame is used. However, this waseldaon a very large deformation
which is reduced in the following examples. In this exampt®astant reference length is used
for each substructure. Because a total of 20 elements of egfeaence length are used in the
discretization of the blade the number of substructuresioee:,,,, = [1,2,4,5,10,20]. The

tip position of the blade after deformation is shown in Fegdr5 based on the two updating
algorithms and the different number of multibodes. In Fegdr5 it is shown that the updating

a) b) c)
10.5 T T T 1-1 T T T 45 T T T
10 1.05 44.5
9.5 1 44
— 2\l g
18 18 I8
9 0.95 435
8.5 0.9 43
8 I I I 0.85 I I I 425 I I I
5 10 15 20 5 10 15 20 5 10 15 20
Nmb Nmb Nmb

Figure 4.5 Tip position of the blade by use of 20 elements of equal referdength which are divided into a number of
substructures.,,,;, of equal reference length. a) Tip positionzn. b) Tip position inz2. c) Tip position inZz. (—)
Update based on node at origin—~— ) Update based on end nodes—(— ) Co-rotating formulation by use of 20
elements.

algorithm based on the motion of both end points in the subgire is the best of the two
updating algorithms. 4 substructures updated based omthpants give similar results as by
use of 20 substructures updated based on the motion of tleeaitite origin of the substructures.
A total of 168 and 360 degrees of freedom, respectively, seel in these two cases. Moreover,
far fewer moving frames need to be updated when only 4 sutiaties are present instead of 20
substructures.

4.3.2 Wind Turbine Blade Modelled by One Substructure

In order to reduce the number of degrees of freedom it is faalla with as few substructures as
possible due to the constraints and the two extra nodes ¢bresdra substructure. In this section
it is further examined if it is possible to get satisfyingukts by use of one substructure based on
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a two node updating scheme, where the one node is placedratithe/hereas the other node is
varied throughout the blade. In Figure 4.8a the enumeratidhe nodes throughout the blade
is shown. In Figure 4.8b an example of the deformed bladeas/siwhen the moving frame

is updated based on node 1 and node 18. In Figure 4.6 the tijiopas shown by use of the

different nodes from the root of the blade where node 1 isgulato the tip of the blade where
node 21 is placed. In the case of using only node 1 the updatgayithm based on the node
of the origin is used. It is shown in Figure 4.6 that the bestlts are obtained by updating the

a) b) c)
10.5 1.1> T T T T 45
10 1.05 K 44.5
9.5 1r E 44
— ™ o]
S ) )
9 b 095 y 435 ]
85 B 09y _ _ _ _ _ _ E 43+ |
8 1 1 1 1 085 1 1 1 1 425 1 1 1 1
5 10 15 20 5 10 15 20 5 10 15 20
Node Node Node

Figure 4.6 Tip position of the blade by use of 20 elements of equal refedength and 1 substructure. The belonging
moving frame is updated by use of the nodes from the root ttigh@) Tip position inz;. b) Tip position inz2. c) Tip
position inz3z. ( —— ) Update based on different element nodes of the blade.{ ) Co-rotating formulation by use
of 20 elements.

moving frame based on the node at the tip of the blade. Hetkbynoving frame rotates as
much as possible and thereby includes the largest nonrlgffesct. However, by comparison to
the results of the co-rotating formulation it is shown thagre are too large deviations for this
magnitude of the tip displacement. Therefore, a singletsutitsire is not enough to model the
wind turbine blade.

4.3.3 Wind Turbine Blade Modelled by Two Substructures

In this section two substructures are used to model the blateboth substructures the updating
algorithm based on the position of the nodes at the ends d¢f salostructure is used. It is

examined how the best results are obtained by splitting kheehinto the two substructures at
different nodes throughout the blade. In Figure 4.8a theramation of the nodes throughout the
blade is shown, which is used to identify where the bladelisigpo two substructures. Because
at least one element is necessary in each substructure iatape split at node 1 and node
21. In Figure 4.8c an example of the deformed blade is showerevit has been split into two

substructures at node 16. Hereby 15 elements are used instreufdbstructure and 5 elements in
the second substructure closest to the tip. The resultediftiposition by splitting the blade into

two substructures at different nodes are shown in FigureHere, the best results are obtained
by splitting the blade into two substructures at node 16s #l$o shown that the results by use
of these two substructures are almost identical to the tating formulation and the case where
four substructures of equal reference length are used. Fara realistic aerodynamic load the
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Figure 4.7 Position of blade tip when split into 2 substructures atedéht nodes throughout the blade. Both moving
frames are updated based on the end nodes in the respedisteusture. a) Tip position if;. b) Tip position inZz.

¢) Tip position inzz. ( —— ) 2 substructures. {----- ) 4 substructures of equal reference length- (~ ) Co-rotating
formulation by use of 20 elements.

node number where the blade should be split into two sulistreswill most likely be different.
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Figure 4.8 a) Discretization of blade into 20 elements, where the nagebering is chronological from root to tip. b)
Deformation of blade when divided into 1 substructure, witte moving frame is updated based on node 18. c) Blade
divided into 2 substructures at node 16, where each movargdris updated based on the end nodes in the respective
substructure. (—— ) Tip position of blade. (—— ) Deformed blade. (—— ) xz;-axis. (—— ) xg-axis. (——)
Co-rotating formulation by use of 20 elements.
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4.4 Concluding Remarks

Based on the analytical results for the extensible elagtigary for Bernoulli-Euler beams it can
be concluded that the multibody model and the co-rotatimgédation both converge towards
the correct results. However, the co-rotating model cap®fastest towards the correct results
which is due to the linearized rotational constraints inridtibody model. It is demonstrated
that by updating the moving frame based on the motion of tliernees in the substructure is
far superior to just using the node at the origin of the suifaestire. For the clamped wind turbine
blade it is demonstrated that by use of two substructuremefjual reference length makes it
possible to absorb the non-linearities in an efficient walyiclv otherwise would require four
substructures of equal reference length.
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_ CHAPTER 5
Eigenfrequencies and

Eigenmodes for a Multibody
System

In this chapter the undamped eigenfrequencies and modestiapa multibody model
are determined. The purpose is to demonstrate than annexistilltibody model, consisting
of several substructures with ease can be modified to detertiné eigenfrequencies and mode
shapes. Due to the linear structure of the mass and stiffnas#x only the nonlinear constraints
need to be modified. An example is demonstrated where thefedggiencies and mode shapes
are determined for a multibody model of a simple wind turbine

5.1 Linear Constraints and Generalized Eigenvalue Prob-
lem

In Chapter 3 it is described how the equations of motion amafated for the used multibody
formulation. It can be seen that because the motion of thenigeélg moving frames is assumed
known, the only reason for the equations to become nonlisehre to the rotational constraints,
which enter the system stiffness matrix. When setting upgreeralized eigenvalue problem
the moving frames are fixed to their initial position and otaion. The mode shapes of the
structure are then described relative to these fixed fraifies.fixed frames must be initialized
so the kinematical constraints at the interface to the adjesubstructure are satisfied. Hereby,
it is possible to setup the rotational constraints at therfates as linear. In Figure 5.1a a sketch
of two substructures is shown, which are assumed to be astiadn the referential state. The
constraints at the interface between the substructurestoelescribe that the interface of the two
substructures moves, so the substructures orthogongtlitg @oint is preserved, see Figure 5.1b.
In the following it is described how the original displacemand rotation constraints (2.7) and
(2.11), respectively, are modified to become linear. Fihs&,modified displacement constraints
are described. Because the frames are fixed the modifieddépkent constraint become.

X1 + Ri(s1,0 +u1,0) — (Xe2 + Ra(sz,0 + ugy)) = 0} N
X1+ Ris1,0 — (Xe2 + Raszo) =0

®;c=Riu; o —Rouzg=0

P4 =Bgi1y1 +Ba2y2=0 , Bg1=RiNig , Bg2=-RsNyy (5.1)
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a) b)

@ g @ g
Figure 5.1 a) A structure modelled by two substructures which are gdhal to each other at the interface. b) Sketch
where the orthogonality at the interface of the deformeualcstire is preserved.

The rotational constraints at the interface between thestvbstructures must be formulated such
that this orthogonality is preserved.

P = Rip; o — Rapy g =0
®,..=B,1y1 +B,2y2=0 , B,1=R/Pig , B,2=-RoPyp (5.2)
The modified displacement and rotation constraints whieh Inath are linear iry; and without

terms in the load vector, are inserted in the system stigfmestrix (2.22) instead of (2.7) and
(2.11), respectively. Hereby, the generalized eigenvaitablem for two substructures becomes.

(K - ij) B, =0 (5.3)
where
M; O 0 K, 0 BT
T By
M=| 0 M, 0| , K=| 0 K, B! , Bi:[B’_] (5.4)
0 0 0 B, Bs 0 e

w; denotes the undamped eigenfrequency for mpdmd®; is the belonging eigenmodes. In
the stiffness matrid, only the elastic stiffness matriK. ; from (2.20) is included. In this
example, the fixed interface to the right of substructure doisincluded but follows the same
principles.

5.2 Undamped Eigenfrequencies for a Fixed-base Wind
Turbine Blade

In this section the undamped eigenfrequencies and modeslaap determined for a fixed-base
wind turbine blade. The blade has been discretized by 20 ldaments of equal reference
length. In Appendix B the used cross section parameter$iéobliade are listed. The purpose is
to demonstrate that the eigenfrequencies and mode shapes clwange by use of 1, 2, 4, 5, and
10 substructures because the eigenvalue problem is lifreaach case an identical number of
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Figure 5.2 Wind turbine blade discretized by 20 elements where 5 elésrae used in each substructure.

Mode | Description of modeg 1 2 4 5 10
1 1st flapwise 0.737| 0.737| 0.737| 0.737| 0.737
2 1st edgewise 1.498| 1.498| 1.498| 1.498| 1.498
3 2nd flapwise 2.179| 2.179| 2.179| 2.179| 2.179
4 3rd flapwise 4.663| 4.663| 4.663| 4.663| 4.663
5 2nd edgewise 5.472| 5.472| 5.472| 5.472| 5.472
6 4th flapwise 8.383| 8.383| 8.383| 8.383| 8.383
Degrees of freedom 132| 144| 168| 180| 240

Table 5.1 6 lowest undamped eigenfrequencies in Hz for a fixed-basd tifbine blade discretized by 20 elements in
1,2,4,5, and 10 substructures.

elements are used in each substructure i.e. 5 elementsaaténusach substructure when 4 sub-
structure are used to model the blade, see Figure 5.2. Wiingthe generalized eigenvalue

problem 120 eigenfrequencies are real no-matter how mabstisictures used corresponding to
the number of actual displacement and rotation degreesed@m in the blade subtracted by the
6 degrees of freedom at the fixed base. The remaining numlegeffrequencies correspond

to twice the number of constraint equations. These eigguémecies attain 'Not a Number’ due

to no mass association to the constraint equations. In Tabléhe 6 lowest undamped eigen-
frequencies are listed by use of 1, 2, 4, 5, and 10 substegtuiere, the number of degrees
of freedom are shown based on the number of substructures 0$e number of degrees of

freedom increase heavily due to the extra nodes and camstr@hen increasing the number of

substructures in the blade. It can be seen as anticipatetthéheigenfrequencies are identical for
all cases. In the six lowest eigenmodes the largest tipatigphents are in the flapwise direction
for 4 modes, whereas the largest tip displacement compgsaeatn the edgewise direction for

the other modes. In Figure 5.3 the displacement componétite mode shapes are shown in the
flapwise and edgewise directions for the first 6 eigenmodes |argest displacement component
in the tip has been normalized to 1. The mode shapes arealladtby use of the results from 1

and 4 substructures. As anticipated the mode shapes atealem-matter the number of used

substructures.

5.3 Undamped Eigenfrequencies and Eigenmodes for a
Wind Turbine
In this section the undamped eigenfrequencies and modeslaap determined for a multibody

model consisting of a simple wind turbine based on threeddashaft, and tower. Each of the
five structures are modelled by use of one substructure. Teued are 44.8m long and have
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Figure 5.3 a) 1st flapwise mode. b) 1st edgewise mode. c) 2nd flapwise.ni)ded flapwise mode. e) 2nd edgewise
mode. f) 4th flapwise mode. {—— ) Flapwise components. {— ) Edgewise componentsx{ 1 substructure used
to model the blade.[{) 4 substructures used to model the blade.

each been discretized by 20 beam elements of equal refdergte. The blades are not coned
or pitched in this example and the shaft is not tilted. Eactuélroot is fixed to the shaft. The
shaft is 4 m long and made highly stiff so it only works as a loétween the blade roots and
tower top. The rigid body rotation of the rotor related witteteigenfrequency af; = 0 is
ignored. The elastic modes of the wind turbine is next arelylzy preventing the rotation of
the rotor corresponding to the turbine is braked. The to&@®8i.0 m high and modelled by use
of 8 beam elements of equal reference length. A concentragad of 100 T has been added to
the tower top to resemble the mass of the nacelle. The degfées=dom at the tower bottom
are fixed. In Appendix B the used cross section propertiethiiblades and tower are listed.
In Table 5.2 the 11 lowest undamped eigenfrequencies fervind turbine model are listed
with a description of each turbine mode shape. It is obsetivaitthe two first eigenfrequencies
are almost identical and dominated by the tower displacénidre reason for not being totally
identical is because the turbine is not axis symmetric. Tigplaicements of the tower in these
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Mode | Eigenfrequency Description of mode

0.446| 1sttower, diagonal

0.448| 1st tower, diagonal

0.690| 1st rotor yaw

0.711| 1strotor tilt

0.756| 1st blade flapwise

1.037| Blades in phase edgewise
1.486| 1st blade edgewise, symmetric
1.514| 1st blade edgewise, unsymmettic
1.820| 2nd rotor yaw

10 1.920| 2nd rotor tilt

11 2.195]| 2nd blade flapwise

Table 5.2 11 lowest undamped eigenfrequencies in Hz for the simplel wirbine multibody model.

O©CoO~NOOOTA, WN PP

two modes are in a plane45° to the along wind direction. The eigenfrequencies for theahs
2nd blade mode in the flapwise direction from Table 5.1 arseguein the full turbine model as
mode 5 and 11, respectively. Similarly the 1st blade modkéretigewise direction is present as
mode 7. The eigenfrequencies have changed slightly duetprésence of the shaft and tower
substructures. Besides a combination of primarily bladeespthe yaw and tilt modes of the
rotor are also present. Figure 5.4a shows the turbine eigdamumber 1, which is dominated
by the 1st tower mode. In Figure 5.4b the turbine eigenmodwebeu 5 is shown, which is
dominated by the 1st blade flapwise mode. In Figure 5.4c ttiene eigenmode number 9 is
shown, which is the 2nd rotor yaw mode. In both cases the wnohefd turbine is plotted with
thin lines.

5.4 Concluding Remarks

In this chapter it is demonstrated that very few modificagiofithe existing multibody model are
necessary in order to determine the eigenfrequencies gedraibdes of the structure it models.
The modifications are only related to the nonlinear constsaivhich are modified to become
linear. These linear constraints are next inserted in theegy stiffness matrix. An example of a
simple wind turbine model consisting of three blades, slzftl tower are used to demonstrate
the facility of the method.
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a) b) c)

Figure 5.4 Turbine mode: a) number 1 at 0.446 Hz which is the 1st towerendx) number 5 at 0.756 Hz which is
dominated by the 1st blade flapwise mode . ¢) number 9 at 1.82@Hith is the 2nd rotor yaw.
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CHAPTER 6
System Reduction in Multibody

Dynamics

In this chapter two system reduction methods are descrifredske in reducing the number
of degrees of freedom in the multibody formulation. In thetfimethod a Ritz basis is used con-
sisting of rigid body modes and some dynamic low-frequenagte eigenmodes compatible to
the kinematic constraints at the interface of the subatractMoreover, a quasi-static correction
for the response of the high-frequency truncated eigenmardeincluded. The second reduction
method is based on a component mode synthesis method byetbéaenstraint modes and fixed
interface normal modes. This makes a more general reduatisabstructures possible, where
the coupling degrees of freedom at the interface to adjetégtructures are included to secure
compatibility at the interfaces. Both methods have beerléampnted in numerical examples
and shown acceptable accuracy for the reduced models cechfmathe full FE-model.

6.1 System Reduction in Multibody Dynamics of Wind
Turbines

In this section the system reduction method and numericallisefrom the enclosed paper in
Appendix D are described. The reduction method is based oitzebRsis consisting of rigid
body modes and some dynamic low-frequency elastic eigeamoompatible to the kinematic
constraints of the related substructure. Concentrategt$owithin the substructure, e.g. due to
actuator forces from tuned mass dampers or other vibratatral devices, contain significant
high frequency components, which cannot easily be decoetjoso a limited number of modal
loads. This is also the case for the aerodynamic load, whibbw@gh continuous distributed is
confined to the outer 30% of the blade. The high-frequenaybaics of these loads do not affect
the dynamic response of the substructure, but do induces-qtadic displacement component,
which is included in the reduction method via a correctiomthe present case a wind turbine
blade modelled as one substructure is reduced by a Ritzdmsissting of rigid-body modes and
fixed interface normal modes.

6.1.1 System Reduction Method

The equations of motion for a substructure (2.19) are réswrih the form
My + Cy + Ky = g(t) = f(t) - BTA (6.1)
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g(t) is a combined external load vector encompassing wind ldadstal loads, and reaction
forces from the kinematical constraints. The idea of théesygeduction algorithm is to decom-
pose the displacement vectpft) into a rigid body component, (¢) and an elastic component

yel(t)
y(t) = yr(t) +ye(t) (6.2)

These terms are next described by a Ritz basis and belongimerajized coordinates whereby
the decompositions of,.(¢) andy.(¢) into rigid body ®, and elastic mode shapds,, respec-
tively, become

Yr (t) = (I)TQT(t) (63)
Ye (t> = q)eqe (t) (64)

whereq,.(t) andq.(t¢) store the rigid body and elastic generalized coordinaté® Ritz basis
and generalized coordinates are assembled in the follcfeing

ar(t)
e = [ e, @ ] ,at) = { qe(t) ] (6.5)
The rigid body modes are described by e.g 3 independentatamsand 3 independent rotation
modes to get a total of 6 independent rigid body mod®s.is not merely based on ones for
the respective components in each mode but contains atlitomponents, because a rotation
around ther;- andzs-axis will give a displacement in the,- andx;-direction, respectively.
The elastic mode®,. and thereby modal expansion of are compatible to the kinematical
constraints. For a blade structure this corresponds tgldeiad at the root. To incorporate the
kinematical constraints on the elastic modes the rows aluehots for the corresponding degrees
of freedom inK andM are removed resulting in the following reduced general&génvalue
problem

(K(w, @, Q) — XjM)q%S) 0, A =a? (6.6)
The eigenmodes are assumed to be constant in time, wherishyeitessary to select represen-
tative values of the angular velocity vector angular acceleration vectar, and the operating
angular frequencg, at the evaluation oK based on the stiffness matrix in (2.20). The vectors
entering®, are ordered in ascending magnitude of the frequency Next, &, is expanded

to full size ®. by insertion of zeros for the degrees of freedom correspantdi the removed
rows and columns. Insertion of (6.2)—(6.5) in (6.1) and pukiplication with ®” provides the
following reduced equations of motion

md + cq + kq = @’ g(t) (6.7)
where

m=3&TM®

c =d7C® (6.8)
k =d"K®
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Notice that none of the reduced matrices have a diagonatstes Now, all the elastic modes
with frequencies above a certain frequedgyare assumed to respond quasi-static to the com-
bined external loag(t), whereas the remaining elastic modes respond dynamic&ltyre-
spondingly, the partitioning of the elastic modes is suig#id into dynamic and quasi-static
components. TherP. andq.(t) in (6.5) are replaced by the following partitionings

o =[®, @, ] , qe<t)=[2j] (6.9)

The indices & and ’s’ stand for dynamic and static components. Hereby, the aigrhent
vectory (t) in (6.2) is reformulated as

y(t) =y (t) +yalt) +ys(t) (6.10)

The static modes are not directly used, instead the quatst-sbntribution is determined by the
already included dynamical modes as follows, Preumont [15]

~ LA = =121\ . N

yo(t) = (K™ = ®ak; ', )&(t) = Ug(!) (6.12)
where

~ ~T ~ ~

ki = &, K®, (6.12)

It is therefore necessary that the kinematical suppontsiedite any singularity oK. The full
vectory(t) is obtained by reordering of the degrees of freedo®iandg(¢) and insertion of
zeros corresponding to the kinematical supports. Hefetgndg(t) are transformed to full size
U andg(t), respectively. The displacement vecidit) is thereby determined from the linear
transformation

y(t) = Aw + Ug(t) (6.13)
where

_ _ | ar
A=[® &;] |, w{qd} (6.14)

Hereby the modal matrices from (6.8) are redefined as

m=ATMA
c =ATcA (6.15)
k =ATKA

Based on the derived system reduction algorithm a struatutes original system of equations
(2.22) can be reduced by insertion of (6.13) into (6.1). mfthllowing numerical examples the
blade structure has been reduced by using rigid body modkslastic fixed-base eigenmodes.
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Figure 6.1 a) Fixed frame of reference in the wind turbine. b) The nuo@nodel consisting of four structures.

6.1.2 Numerical example

In this section the theory is illustrated with a simplified®m consisting of four structures: one
blade, rotor shaft, nacelle and tower, labelled 1, 2, 3, aneé4gpectively, as shown in Figure
6.1b. The blade and shaft structures are fixed together amthdy with the nacelle and tower
structures. Moreover, the tower structure is fixed to theigco To connect the rotor and nacelle
structures two main bearings and B are introduced. The length of the blade is 44.8 m with
a total weight of 10t and it is constructed by NACA 63-418 setprofiles. The cross section
parameters and the mass distribution throughout the bleelprasented in Appendix B. The
numerical FE-model of all structures is based on prismagimBulli-Euler beam elements with
St. Venant torsion and has 6 degrees of freedom for each nodiee numerical tests only the
blade structure has been reduced because this is the moglexosiructure and undergoes the
largest deformations which would otherwise require margreles of freedom.

The numerical example consists of a start-up sequence aodeaating sequence. In the
start-up sequence the rotor speeds up from a stopped aittatthe nominal angular velocity
Q,, = 1.6rad/s and in the operating sequence the rotor rotates vdthdminal angular velocity.
Both sequences are modelled by prescribing the angulateaatien of the moving reference
frame for the blade and rotor shaft structure. The follonangular acceleration of each moving
frame of reference is used during the two sequences whetefines the time where the nominal
operating sequence starts

Q[ _ 2nt
a(t>{ (s (B +1) L 0<tst, (6.16)

In Figure 6.2a the angular acceleration and angular vglac# plotted for the two sequences
wheret,, = 10s and the simulation ends @at= 20s. To stress the reduction scheme a concen-
trated loadP in thewu;-direction i.e. flap-direction is applied to the bladerat~ %L. The load
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Figure 6.2 Start-up sequence= [0; 10] s and operating sequente=]10; 20] s. a) Angular acceleration— ) and
belonging angular velocity (—— ) of the moving frame of reference. b) Magnitude of the coitreged load in the flap
direction.

has the following characteristics during the start-up sege and operating sequence

P = (L) +2) L 0<t<ty

P(t) =
PO (1 + Pn COS (Qn(t - tn)) - pn) ) tn < ﬁ

(6.17)

In the start-up sequence the load is stepped up parabylfoath P = 0 att = 0 to a parabolic
maximum of P = P, att,. In the operating sequence the applied load is based on sacbns
load corresponding to a mean wind velocity and a harmonicpmorant with amplitude,, due

to a variation in the shear wind field. In the simulations tbkofving values have been used:
Py = 15-10°N, p, = 0.1, Q,, = 1.6rad/s, and,, = 10s. In Figure 6.2b the size of this
concentrated load is illustrated throughout the simutatidhe reason for applying the load
at this point is because the majority of the wind load is cot@ged around this position. A
concentrated load will regularly require a lot of modes &xdetize the response, which favors the
reduction scheme when the quasi-static contribution flwerituncated elastic modes is included.

When extracting the fixed base eigenmodes from (6.6) litfferénces are observed in the
eigenfrequencies and mode shapes when using a stiffnesx m@atresponding to a stopped
situation @ = 0, w = 0, Q = 0) or nominal operationd¢ = a,, w = w,, 2 = Q).

In the following results the mode shapes corresponding toimal operation have been used
throughout the simulation. In Figure 6.3 the tip displacetigy using 1, 2 and 3 dynamical
modes with and without the quasi-static contribution is paned to the FE-model. Here, it
appears that by using 1 or 2 dynamical modes, Figure 6.3aigndeF6.3b, respectively, without
the quasi-static contribution results in considerablgéadeflections compared to the FE-model.
However, by inclusion of the quasi-static contribution theponse is almost identical to that of
the FE-model by using merely 1 dynamical mode. The reasogdting this good results by
using only 1 dynamical mode is because the load applied isinthe blade direction. By using
a detailed load model the number of necessary dynamical snwdleprobably rise to at least
two. Using 3 dynamical modes, Figure 6.3c, it appears theagjtiasi-static contribution has very
little influence.
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Figure 6.3 Tip response with ¢----- ) and without (——) the quasi-static contribution compared to the FE-model
( —— ). Number of dynamical modes: a) 1. b) 2. c) 3.

6.1.3 Conclusions

In the present system reduction method the displacemedtidielescribed by a Ritz basis con-
sisting of rigid body and elastic fixed-base eigenmodes.edeer, the quasi-static contribution
from the truncated elastic modes is included in the fornmatBased on the numerical exam-
ples during start-up and nominal operation it is shown thdids little influence if the elastic

modes included in the Ritz basis are obtained from a sitnatizere the wind turbine is stopped
or from a situation where the wind turbine operates at theinahangular velocity. Hereby, the

same mode shapes can be used for a wide operating area wihbeing much accuracy. By

using a concentrated load almost an identical responsetasne by only using 1 dynamical

mode with the quasi-static contribution compared to theMEFmodel.
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6.2 A Component Mode Synthesis Algorithm for Multi-
body Dynamics of Wind Turbines

In this section the system reduction method and numerisaltefrom the enclosed paper in Ap-
pendix E are described. The system reduction method is lmasadcomponent mode synthesis
method, where the response of the internal degrees of fneefithe substructure is described as
the quasi-static response induced by the boundary degféesdom via the constraint modes
superimposed in combination to a dynamic component indbgedertial effects and internal
loads. The latter component is modelled by a truncated medednsion in fixed interface un-
damped eigenmodes. The selected modal vector base forténeahdynamics ensures that the
boundary degrees of freedom account for the rigid body dycsof the substructure, and ex-
plicitly represent the coupling degrees of freedom at therface to the adjacent substructures.
In order to get a better description of the large nonlinegpldicements of a wind turbine blade
it is necessary to include more than one substructure inldaeb The purpose of the present
system reduction method is to demonstrate a general agpfoaiacluding an arbitrary number
of reduced substructures to model e.g. a wind turbine blade.

6.2.1 System Reduction Method
The equations of motion for the substructure (2.19) areitemrin the form
My + Cy + Ky = g(t) = f(t) - BT X (6.18)

g(t) is a combined load vector encompassing wind loads, inéogals, and reaction forces from
the kinematical constraints.

At first, the displacement vectgr of dimensionn is partitioned into boundary, and in-
teriory; degrees of freedomi.es” = [ y/' y! |. The dimensions of;, andy; aren, and
n; = n — ny, respectively. The method will be illustrated with beanmedats with 6 degrees of
freedom for each node. Hereby takes either the value 6 or 12 depending on the substructure
has a free end or not. The two different sets of boundary tiondiare sketched in Figure 6.4a
and 6.4b. When a blade is modelled by two or more substristhreeboundary conditions in
Figure 6.4a and 6.4b are used for the innermost and outeisnbstructures, respectively. In
Figure 6.4c and 6.4d constraint modes from a unit displaoerfoe the two types of boundary
conditions are sketched. Similarly, in Figure 6.4e and 6atfstraint modes from a unit rota-
tion are sketched. Obviously, the constraint modes accfaurthe rigid body motion of the
substructure. (6.18) takes the following form by use of tagiponing ofy

My, My, Vo Cu,  Cu; Vo Kp Ky Vb g
4 4 = 6.19
[ M, My, ] [ Yi * Cip Ciy Yi * Kip Ki Yi gi ( )
Next, the interior degrees of freedgmare written as a combination of the quasi-static response

from the boundary degrees of freedgmsuperposed with a modal representation of the remain-
ing part of the internal response as follows

yi = —K;; 'Ky, + ®q (6.20)
ai(t)

a=| L e=[® - B, (6.21)
n, (1)
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Figure 6.4 (a) Boundary conditions for interior substructures. (buBdary conditions for substructure with a free end.
(c)-(f) Constraint modes based on a unit displacement aitdramation of the interface nodes. (g)-(h) Fixed interface
normal modes.

®; is the j'th fixed interface normal mode ang} is the related generalized coordinate. In
Figure 6.4g and 6.4h an example of a fixed interface normaknmdketched by use of the two
types of boundary conditions. These eigenmodes are detedrfriom the following generalized

eigenvalue problem

ii(w, 0o, 1) —wiMy; | ®; =0 :
K Q) - wMy; ) ®; (6.22)

It is intended that the eigenmodes are constant in time, eldyeit is necessary to select the
components of the angular velocity vector, angular acagter vector, and the operating angular
frequency, which all are used to set up the stiffness matr{2i20).w; denotes the undamped
angular eigenfrequencies of the substructure with fixechdaty degrees of freedog, = 0.
The eigenmodes are ordered in ascending magnitude of theeineyw; and those with fre-
quencies above a certain threshold frequenggre truncated without a quasi-static correction,
whereas the remaining eigenmodes respond dynamically, Tie dynamic degrees of freedom
qq and dynamic eigenmodds,; become

a(t)
qi = : , By=[® - @y, | (6.23)

Gna (1)

whereqq has the dimensions, < n;. The degrees of freedogn(¢t) and its time derivatives
defining the substructure can hereby be presented in tleaviol reduced form

y(t) =Aw(t) , y(t)=Aw() , y(t)=Aw() (6.24)
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where

| I o _ pe—lye. |l
A[V @d} . V=-K.'K, , w[qd] (6.25)

Insertion of (6.24) in (6.18) and premultiplication with! provide the following reduced equa-
tions of motion

mw + cw + kw = ATg(t) (6.26)
where

m=ATMA

c =ATcA (6.27)
k =ATKA

Notice that none of the reduced matrices have a diagonatstau To set up the system equations
of motion it is necessary to partitidd” andf in (6.18) consistently with the partition of

To be used for later comparison an alternative variant igl tsenodel the innermost sub-
structures of the blade. This is done by the use of the sametied scheme for these substruc-
tures as described above for the outermost substructurebigehe innermost substructures are
described by use of fixed-free eigenmodes and the dimensiba boundary degrees of freedom
is n, = 6 corresponding to the fixed end. Hereby, the first six columns correspond to rigid-
body modes. This corresponds to the reduction scheme iimsédct.1 without the quasi-static
correction.

6.2.2 Numerical example

In this section the theory is illustrated with a simplifieds®m consisting of a wind turbine
blade divided into two substructures labelled 1 and 2, awstio Figure 6.5b. The origin of the
initial moving frame of referencér; 1,221, x31) belonging to substructure 1 is identical to the
fixed frame of referencéz,, -, T3) whereas the origin of the initial moving frame of reference
(x1.2, %22, %3 2) belonging to substructure 2 is displaced half the bladetteinghezs-direction.
The initial orientation of the moving frames is identicathe fixed frame of reference, shown in
Figure 6.5a. In total 11 constraints are introduced of wigidix the relative displacements and
rotations at the assembling point of the two substructuras.remaining 5 constraints are used
at the origin of substructure 1. Here, 3 constraints fix ttspldicements and 2 constraints fix the
rotation around the,- andzs-axes. l.e. at the root it is only possible for the blade tat®t
around thez;-axis. The moving frame of reference for both substructisegpdated based on
the motion of the two end points in each substructure. Thetipgl algorithm is described in
Chapter 3 and thes-axis for the two moving frames are sketched in Figure 6.5 [Ength of
the blade is 44.8 m with a total mass of 10,000 kg and it is caottd by NACA 63-418 section
profiles. The cross section parameters throughout the bledgresented in Appendix B.

The purpose of the numerical simulation is to verify that tbsults obtained from the re-
duced model based on fixed-fixed interface normal modes fistaicture 1 are almost identical
to the full FE model. Moreover, the importance of using cotiipp@ interface normal modes
at the assembling point to substructure 2 is illustratedhieyuse of fixed-free interface normal
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Figure 6.5 (a) Fixed frame of reference in the wind turbine. (b) In thenesical model the blade is divided into two
substructures labelled 1 and 2. (c) lllustration of #ieaxis for the moving frame of reference belonging to sulzstme
1 and 2 denoted bys,1 andxs,2, respectively.
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Figure 6.6 (a) Load component in the,-direction. (b) Load component in thg -direction.

modes for substructure 1, with the free end at the assempbing. For both reduced models,
substructure 2 is modelled by the use of fixed-free interfaarenal modes. For comparison of
the two reduced models it is chosen to keep the same numbegoées of freedom. The FE
model has 132 degrees of freedom and the reduced models BaegRes of freedom.

The numerical simulation consists of a start-up sequendeaaroperating sequence. The
start-up sequence is split in two where the first sequénce < 10s speeds up the blade from
a stopped situation at= 0 to the nominal angular velocit§2,, = 1.6rads ' of the rotor at
t = 10s. In the second sequentés < t < 20s an exterior load in the globatl -direction
is stepped up. In the operating sequence 20s the exterior load is based on a constant load
corresponding to a mean wind velocity and a harmonic compiahee to a variation in the shear
wind field. The sequences are modelled by applying conaewittaads at a node in the beam
model placed at the moving coordinatg, = 6.72m. The reason for applying the load at this
point is because the maximum intensity of the wind load isceotrated around this position.
The applied load in the sequentec ¢t < 10s is oriented in the edge direction in order to speed-
up the blade with the time variation shown in Figure 6.6a.hie ¢ther two sequences the load
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Figure 6.7 (a) Tip position inz;. (b) Normalized tip position irt;. ( —— ) FE model. (— — ) Fixed-fixed modes.
( ——) Fixed-free modes.

is oriented in ther;-direction i.e. primarily in the flap direction with a time nation shown in
Figure 6.6b.

When extracting the eigenmodes from (6.22) a stiffnessimatrresponding to nominal
operation & = a,, w = wy,, 2 = Q,) is used. Results for the tip position of the blade in the
Z1-direction during the time serid$) < ¢ < 30 s are shown in Figure 6.7a for the FE model, and
the two reduced models with fixed-fixed and fixed-free int#faormal modes for substructure
1. The results from the FE model are used to normalize thdtsefsam the reduced models
shown in Figure 6.7b. The reason for not displaying the fidst 5 because these displacements
in Z;-direction are small, and the normalized response of thecedimodels is outside the area
of interest. In Figure 6.7b the results by use of the fixedefimedes are very close to the full
FE model, even though these modes are constant througletitrte series. Moreover, these
modes are based on a constant angular velocity around jesbas, which is not the actual case,
especially for substructure 2. By the use of the fixed-fred@sdhe magnitude of the response is
notably changed. The importance of using compatible iaterhormal modes at the assembling
point between the substructures is hereby demonstrated.

6.2.3 Conclusions

It is demonstrated that an FE model of a wind turbine bladigldi/into two substructures in the
used multibody formulation with completely freely movingues of reference efficiently can
be reduced by the use of constraint modes and fixed interfaweal modes. Even by keeping
these modes constant throughout the numerical simulatidrese the blade goes from a stopped
situation to the nominal operating situation, the resuksamost identical to the full FE model.
The importance of using compatible modes at the assembdiimg petween the substructures of
the blade is demonstrated.
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6.3 Concluding Remarks

In this chapter itis demonstrated that the number of degridfesedom in the used multibody for-
mulation easily can be reduced by use of standard reductiinads for dynamical systems. The
importance of including a quasi-static correction for thentated high-frequency eigenmodes is
demonstrated in which case only a few dynamically eigenmm@ie needed to discretize the
response. Moreover, the importance of using compatibleamnatithe interfaces of the substruc-
tures is demonstrated. In both system reduction methodisieut accuracy has been obtained
even though constant eigenmodes have been used througlecsititulation where the blade
speeds up from a stopped situation to nominal angular wgloci
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CHAPTER 7
Cross-section Parameters for a

Blade Section

In this chapter the cross-section parameters for a congpisitle section for use in beam el-
ements are determined by use of a finite element procedueshl@tie section is meshed in three
node triangles based on the the outer profile geometry, tblentss of the material layers, and
the internal webs. The determined cross-section parasatercompared to the corresponding
results from the program BHawC_Crs where the blade sectsnbleen discretized by use of
straight line elements of uniform thickness. The resuksemost identical by use of the created
program and BHawC_Crs.

7.1 Method to Determine Cross-section Parameters

The section describes an algorithm for determination ofcfoss-section parameters in beam
elements based on a FE solution of the underlaying Laplat®aisson partial differential equa-
tions using triangular elements with emphasis on the ddgsemetry, implementation and mesh
generation. The method is based on Krenk and Jeppesen [£8¢\ah derivations are described
and later implemented in the cross-section program CROSSISBEN by Jeppesen and Krenk
[17]. The main difference is the element type, where stitaédgments of uniform thickness are
used in Krenk and Jeppesen [16], triangular elements aikinghe present implementation.
This makes it possible to mesh e.g. a blade profile in the otispematerial layers instead of
accounting for the different material layers over the thieks by a mean value. The main focus
in the present chapter is to illustrate how the geometry dadédsection has been implemented
in the present implementation and to compare the result$@ma&_Crs which is the program
used at Siemens Wind Power A/S for calculating the crosSeseparameters for the beam el-
ements in their aeroelastic code BHawC. The computer cogéeimented in BHawC_Crs is
originally a copy of CROSS SECTION, but some improvementgehzeen performed by Jar-
gen Thirstrup Petersen [18] to take e.g. a more correct ii¢iser of the actual geometry in the
blade section into consideration. In BHawC_Crs straigbimgnts with uniform thickness are
used to discretize the outer profile geometry and the intevahs in the blade section. In the
presentimplementation three node triangles i.e. withalirsape functions are used to discretize
the geometry and material layers in the blade section. Tédteeobtained for the cross-section
parameter by the use of triangular elements are comparddse bbtained by the BHawC_Crs
implementation of straight line elements. There are twaigsof cross-section parameters. The
parameters in the first group are based on direct integratienthe area and consist of e.g. the
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cross section area, mass per unit length, center of graffgctive moments of inertia, elastic
center, and the angle to the principal axes. The second grbpprameters include torsional
stiffness, effective shear area, and the position of tharstenter. The parameters in the second
group are determined by a finite element method based on atieaal formulation. The tor-
sional stiffness and the position of the shear center aerm@ied by first solving the unknown
warping function in the Laplace equation with inhomogereedeumann conditions. Next, the
Poisson equation with homogeneous Neumann conditiondvisdstwice with a shear force in
each direction at the time, to determine the shear stresgksftective shear areas. The same
stiffness matrices are used in both cases. Zienkiewicz agthiT[19] has been used to setup
the Laplace and Poisson equations with the respective laoycdnditions by use of the present
finite element triangles.

7.2 Cross-section Parameters for a Rectangular Box Pro-
file

Before analysing a blade profile a more simple test congisiima rectangular box profile is
used to determine the cross-section parameters. The ggooh#te box profile is described in
Fig. 7.1a. The profile is homogeneous where the Young’s nusdil] shear modulus:, and
densityp attain unit values. The cross-section parameters for thispbofile are determined by
use of three different programs: BHawC_Crs, the presemrpro, and the commercial program
Ansys. Petersen [18] has made the analysis in BHawC_Crs audi$ also helped in setting
up the Ansys model. In Ansys quadrilateral 8 node elememsised to mesh the profile. 8
elements are used in BHawC_Crs, 3632 elements in the pressgram, and 716 elements are
used in Ansys. The mesh used in the three different program®e seen in Fig. 7.1b—d. In

a) ] b)

|

12.2
c) d)

Figure 7.1 a) Geometry of the rectangular box profile. b) Mesh in BHaw(3. €) Mesh in present program. d) Mesh
in Ansys.

Table 7.1 the cross-section parameters for the rectangobaprofile are listed by use of the
three programs. Here, it can be seen that very good corrdspor between the three programs
are obtained. Especially the cross-section parametearsttie present program and Ansys are
almost identical. BHawC_Crs has slightly higher deviasiarich is due to overlapping areas at
the intersections between the elements.
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Description Label Unit BHawC_Crs| Present program  Ansys
Mass m | [kg/m] 7.240 7.160| 7.160
Center of gravity Teg [m)] 5.880 5.888 5.888
Center of gravity Yeg [m)] 2.100 2.100 2.100
Shear center Tsh [m] 5.680 5.672 5.672
Shear center Ysh [m)] 2.100 2.100 2.100
Bending stiffness EI, | [Nm?] 22.580 22.279| 22.280
Bending stiffness EI, | [Nm?] 117.900 117.972| 117.973
Torsion stiffness GI. | [Nm?] 57.850 58.759| 58.673
Effective shear area ka -] 0.611 0.622 0.621
Effective shear area ky -] 0.237 0.241 0.240
Area A [m?] 7.240 7.160 7.160
Angle to principal axis| ¢ [°] -0.003 0.000 0.000
Elastic center Tea [m)] 5.880 5.888 5.888
Elastic center Yea [m] 2.100 2.100 2.100

Table 7.1 Comparison of cross-section parameters for a rectangabaplofile by use of BHawC_Crs, the present
program, and Ansys.

7.3 Generate Geometry for a Blade Section

In this section the input geometry for a blade section isudlesd and how this data is used to con-
struct the contours between the different material layetsianer webs. Siemens Wind Power
A/S has delivered the input for an arbitrary blade sectiandter comparison to BHawC_Crs.
The geometric input consists of:

4 the outer profile geometry.

4 two lines to define where the beam section is placed in the rugpe lower part of the
profile, see the lines; andb, in Fig. 7.2a.

4 two lines to define the center line of the front and rear web tke linesw; andws in Fig.
7.2a.

¢ five thicknesses for the profile: outer glass, beam, corenbemer glass.
¢ three thicknesses for each web: glass, core, glass.

The outer profile geometry, the two lines defining the beartiae the upper and lower part of
the profile, and the two lines defining the webs are shown in Fga. In the two beam sections
of the profile a total of five material layers are used in mactufidng the profile. Outside these
sections only three material layers are used in manufaxjuhe profile corresponding to the
thicknesses of the: the outer glass, core, inner glasslaliynthe webs are based on three mate-
rial layers. In the present program the beam sections ayedasicribed by three material layers:
outer glass + beam, core, beam + inner glass. This makes asingke geometry and more easy
to mesh. Because the outer glass and inner glass have ahmastrhe material properties as the
beam, this restriction will have very little influence on tlesults. Moreover, the extra area in the
interface between the beam section and regular sectionall. sim Fig. 7.3 the material layers
in the profile are sketched for the manufactured profile antiénpresent numerical model. In
Fig. 7.2b the thicknesses of the three material layers irptbéle are shown where they have
been offset inwards perpendicular to the outer geometryogec look on four areas in the blade
section are shown in Fig. 7.4. In Fig. 7.4a the interface betwthe beam section and the regular
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Figure 7.2 a) Outer profile geometry and the four lines defining the twanbesections and two webs. b) The three
material layers in the profile have been offset perpendidnlgards from the outer geometry.

a) b)
outer glass outer glass
beam core outerglass + beam
core I core
inner glass - inner glass
beam inner glass + beam
inner glass

Figure 7.3 Sketch of material layers in the beam section and the regeletion. a) Manufactured profile. b) Present
numerical model.

section of the profile is shown. In Fig. 7.4b the material tayat the trailing edge of the profile
are overlapping due to offsetting from the outer geomethys problem is solved in Fig. 7.4d by
inserting nodes where the material layers intersect andvag the invalid nodes. In Fig. 7.4c
the intersection of the front web with the inner profile iswho The material layers in the webs
are also defined by offsetting the thicknesses perpendituthe center line. Hereby, all nodes
defining the geometry in the blade section are specified andekt step is to mesh the profile.
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Figure 7.4 a) Interface between beam and regular section of the prdfjl©verlapping material layers at the tail. ¢)
Intersection of the material layers in the front web with itheer profile. d) The overlapping material layers have been
removed.

7.4 Meshing of Blade Section

In the present implementation the freeware program EasiiNB8 is used to mesh the cross-
section into triangles. One of the advantages with this gaiogis that it can mesh the cross-
section into different material layers which is a necesBityuse of the present approach. An
input file for EasyMesh is constructed based on the positibitse nodes defining the geometry
and contours between the different material layers. To gegalar mesh it is necessary to define
a small reference length at the interface between the beatiorsend regular section of the
profile but also at the interface between the webs and inrenggy. A total of 28506 triangles
each with three nodes are generated in the six materialdayiére profile is shown in Fig. 7.5
and the mesh in four areas is shown in Fig. 7.6. In Fig. 7.6antbgh is shown at the interface
between the beam section and regular section of the profiletens different material layers are
used. The small thickness of the inner glass layer and thd amgle at the inner tail results
in many elements in this region, see Fig. 7.6b. It can alsceka # this figure that only one
element is used over the thickness for the outer and innss ¢ager. In Fig. 7.6¢ many elements
are necessary at the interface between the front web andrieegeometry. It was not possible
by use of EasyMesh to define the material layers in the reay thebefore this web is meshed in
the same material layer as the inner glass, see Fig. 7.6de@ken is the relatively small size of
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Figure 7.5 A total of 28506 triangles define the six material layers i phnofile.

the material layers in this web. Due to the small area of thewneb the results will not change
notably. However, for the later comparison the materia¢tayfor the rear web in BHawC_Crs
are similarly changed to just one material layer correspuantb the inner glass.
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Figure 7.6 a) Mesh at interface between the beam and regular sectidtigh)concentration of elements near the inner
side of the trailing edge. c) Mesh at interface between tbetfweb and the inner geometry. d) One material layer
corresponding to the inner glass is used for the rear web.
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Description Label Unit BHawC_Crs| Present program Difference [%]
Mass m [kg/m] 190.071 190.960 0.5
Center of gravity Teg [m] 0.291 0.289 -0.7
Center of gravity Yeg [m] -0.301 -0.301 0.0
Shear center Tsh [m] -0.054 -0.054 0.0
Shear center Ysh [m] -0.335 -0.337 0.6
Bending stiffness EI, | [1E+08Vm?] 2.670 2.710 15
Bending stiffness EI, | [LE+08Nm?] 6.476 6.618 2.2
Torsion stiffness GI. | [1IE+07Nm?] 3.492 3.661 4.8
Effective shear area kz -] 0.402 0.400 -0.5
Effective shear area ky -] 0.155 0.159 2.6
Area A [m?] 0.241 0.237 -1.7
Angle to principal axis| ¢ [°] 7.249 7.570 4.4
Elastic center Tea [m] 0.241 0.244 1.2
Elastic center Yea [m] -0.308 -0.307 -0.3

Table 7.2 Comparison of cross-section parameters for a blade profilese of BHawC_Crs and the present program.

7.5 Comparison of Results to BHawC_Crs

In this section the results from the present program are epeaito the results from BHawC_Crs.
Petersen [18] has made the correction to the rear web in BH&r&and delivered the belonging
results in Table 7.2. Here, it can be seen that there is a \@g gorrespondence between the
results from the two programs. Some deviations are prekanthis was also the case with the
rectangular box profile in section 7.2. The reasons for thvé@tiens are different discretizations
e.g. overlapping areas and the limitation with a constaeaskstress over the thickness of the
straight line elements. In Fig. 7.7 the warping functionlistied and in Fig. 7.8 the position
of the gravity-, elastic-, shear-, and aerodynamic cemeeshown together with the orientation
of the elastic axis. In Fig. 7.9 the mesh in BHawC_Crs are shtmgether with the different
centers and orientation of the principal axis. Here, it $thdve noted that the principalaxis is
plotted in the opposite direction for later use in BHawC.
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Figure 7.7 Warping function in the blade section.
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Figure 7.8 Position of the gravity-{\), elastic- (), shear- &), and aerodynamic centety( are shown together with
principal elastic axis (—— ).

O  Elastic axis

A Center of gravity
X Shear center

VvV Aerodynamic center

Figure 7.9 Position of the gravity-, elastic-, shear-, and aerodyeasanter are shown together with the principal elastic
axis, by use of BHawC_Crs.

7.6 Concluding Remarks

In this chapter it is demonstrated that by use of a finite efdrdéscretization based on trian-
gles with linear shape functions do result in almost idehtitoss-section parameters as by use
of a discretization consisting of rectangular line elerseniiere the warping function is repre-
sented by a third-degree polynomial. The reason is that lelprofile has a moderate wall
thickness where the line elements are sufficient. For furtise of the present program with
triangular elements another program for meshing is recamaie due to the very sensitive and
often uncontrollable behavior of EasyMesh.
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CHAPTER 8
Conclusion and Further Work

In this chapter the conclusions throughout the thesis amsrized and suggestions for
further work areas are listed.

8.1 Conclusion

In order to reduce the costs of wind turbines a key point igtinaze the structural components.
This calls for an accurate numerical model which can reprtesee turbine dynamics with a
high level of accuracy. In this thesis a flexible multibodynfmlation based on a Local Observer
Frame formulation is in focus together with system redurcha use in analyzing the dynamics of
a complex structure as a wind turbine. The use of a multibodyiilation makes the modelling
more flexible because each structure is modelled indivigudlthe remaining and afterwards
assembled to the full system model by use of joints and kitiealaconstraints. This is also
facilitated when creating the reduced models, by only reduthe structures containing the
most degrees of freedom.

Chapter 2 The multibody formulation based on the Local Observer Fréonmulation is
introduced with emphasis on its differences to the moredstethFloating Frame of Reference
formulations. The primary difference is that the parametirscribing the motion of the moving
frame of reference are not part of the system state vectottemdby not updated automatically
when solving the equations of motion. Moreover, small rigatly displacements are possible
between the substructure and its belonging moving frame. ailvantage is that the equations
of motion become linear except for the rotation constrdiytexplicitly predicting the moving
frame parameters. The constraint equations used to madgb@ts, boundary conditions, and
kinematical constraints for both displacements and matatiare based on vector relations and
also described in this chapter in order to set up the equatbmotion for a multibody system.
The rotational constraints have been linearized i.e. theyaly valid for small rotations of the
substructure relative to the belonging moving frame. Neatstraint regularization is used to
ensure that the constraints are satisfied on the displacemerrelocity level. Often in multibody
dynamics the constraint equations are differentiatedewiith respect to time and enter the
system mass matrix and load vector. In the present projestgpproach has been to avoid the
related fictitious terms used in the constraint regulaiorato stabilize the numerical scheme.
This is done by solving the constraint equations at the waigiisplacement level so they enter
the system stiffness matrix and load vector. Moreover,isglthe constraint equations at the
displacement level instead of the acceleration level is béneficial due to the omittance of the
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often high frequency components of the accelerations. §bate®ns of motion for a constrained
multibody system are solved by use of the nonlinear Newmark integration algorithm.

Chapter 3 Because the parameters describing the motion of the movamgef of reference
are not part of the system state vector it is necessary totepioem in a separate algorithm, to
secure that the displacements of the substructure retatie moving frame remain small. The
algorithm presented is primarily intended for beam elemsodels, but can also be used for other
types of models including reduced models. The update dlgorior the dynamic simulations
is based on the motion of the two boundary nodes in the sudtste) from which the moving
frame is aligned. Existing updating algorithms which hagerbused for inspiration are based on
the motion of three material points in the belonging sulz$tme from which three independent
base unit vectors can be extracted. These methods are yimsended for solids, because
the unit vectors to three material points in a beam model ealinkarly dependent. However,
the three unit vectors could probably be determined to thi@ets in a fictiones triad placed
in the substructure. By eliminating the velocity and aclen terms, the updating algorithm
for static simulations is devised. In the static update r@igm two methods are described, one
which uses the motion of the node at the origin to update thamgdrame. In the other case the
motion at the origin together with an arbitrary point is usedpdate the frame.

Chapter 4 Large nonlinear geometric displacements are examinedlig sinalysis of a can-
tilever beam. The results from the flexible multibody model @@mpared to a co-rotating beam
formulation and an analytical solution where good correstemce is obtained for an increased
number of substructure. The update algorithm of the moviagné based on the position of the
end nodes in each substructure shows most favorable. Fanget wind turbine blade it is
demonstrated that by use of two substructures of unequaierede length makes it possible to
absorb the non-linearities in an efficient way, which othisewwould require four substructures
of equal reference length. Very few modifications of the ¢igua of motion are necessary to
change from dynamic to static analysis. Especially the ttaims can be used in both cases
without any modification.

Chapter5 The system stiffness and mass matrix are used to deterngnattamped eigenfre-
guencies and belonging eigenmodes of the full multibody ehothis is possible by modifying
the constraint equations for use in a generalized eigeevahalysis. Especially the nonlinear
terms in the rotational constraints are replaced by eqemidinear terms. The modified con-
straint equations are still inserted in the system stiffmaatrix. An example of a simple wind
turbine model consisting of three blades, shaft, and toneused to demonstrate the facility of
the method, where the undamped eigenfrequencies of thé Titstrbine modes are determined.

Chapter 6 Here, two approaches are demonstrated on how to reducerttieenof degrees of
freedom of the blade structure in the multibody formulatibnthe first approach a Ritz basis is
used consisting of six rigid body modes and a number of dycalfiked base eigenmodes. The
importance of including a quasi-static correction for thentated high-frequency eigenmodes is
demonstrated when only a few dynamically eigenmodes ahedad to discretize the response.
The second approach is based on a component mode synthdbisdmieased on constraint
modes and fixed interface normal modes. This is a more gem@pabach, which can be used for
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other substructures of the wind turbine or when the bladeddetted by several substructures.
In the case of just using a single substructure in the bladetstre the method corresponds to
the first approach with a Ritz basis. Moreover, the imporaofcusing compatible modes at
the interfaces of the substructures is demonstrated. mdystem reduction methods sufficient
accuracy has been obtained even though constant eigentadedeen used throughout the
simulation where the blade speeds up from a stopped situtatioominal angular velocity.

Chapter 7 The cross sectional parameters for use in beam element shnadedetermined
for a composite blade section. The method is based on a filgiteeat discretization by use
of triangular elements with linear shape functions. Théed#nt material layers in the blade
profile are taken into consideration at their actual positip meshing the profile in the respective
material layers. The results are compared to BHawC_Crshuses straight line elements of
uniform thickness, whereby the material properties overtttickness direction are determined
by an average value. Overall, the results are almost idatesides the torsional stiffness which
is approximately 5% larger by use of the present approadhanihore detailed element type and
where the material layers are taken into considerationeit ttorrect position. The reason for
the overall good agreement is because the blade profile haslerate wall thickness where the
line elements are sufficient.

8.2 Further Work

Below, a number of subjects and ideas are listed suitablieiftrer investigations.

¢ Instead of using the linearized rotational constraintgptiptions should be investigated to
better describe rotations of the substructure relativheéatioving frame. This is especially
of interest if only a few substructures are used to modelteggblades. The suggested Cay-
ley approach for rotational constraints would be of intebexause it can be implemented
in the present format.

¢ A criteria should be made for when to update the moving fraarameters. This can be
based on the motion of the substructure relative to the ngofraame to secure the dis-
placements are sufficiently small. Moreover, it would pialgde possible to use the same
parameters for the moving frame in several time steps, Viydiee same system matrices
can be used to speed up the simulation time.

4 Instead of choosing fixed material points to update the ngpframme it would be interesting
with a more flexible update approach where the moving framésngatically are updated
to reduce the overall displacements of the substructuagivelto the moving frame in the
present time step.

4 A more optimal selection of both structural and numericahgang would probably sta-
bilize the numerical models. Other time integration altforis where especially the high
frequency components are damped would be convenient titiztahe numerical models.
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APPENDIX A
Equations of Motion for a

Constrained Substructure in a
Moving Frame of Reference

In this appendix the equations of motion for a substructveedarived based on Lagrange’s
equation. Bernoulli-Euler beam elements are used in thei§®elization of the displacement
field of the substructure. Small displacements of the subktre within the moving frame are
assumed whereby it is necessary that the moving frame iseiwvittinity of the substructure.
Reaction forces necessary to describe a constrained sciose are part of the equations of
motion.

This chapter is based on a work note created by Steen KrenK [8% note was later modified

and published in Kawamoto et al. [6], where volume elemergsewised in the FE discretiza-
tion. Beam elements are used for the FE discretization ofltsigacement field in the present
outline and the reaction forces necessary to describe kitieah constraints of the substructure
are included.

A.1 Motion of a Material Point Relative to a Moving Frame
of Reference

In this section the motion of a material point for a deforneeibstructure relative to a belonging
moving frame of referencec(, x2, x3) is derived. Additional, a fixedx(;, z», z3)-coordinate
system is introduced. Accordingly, fixed frame and moviragrfe components of vectors and
tensors will be indicated with and without a bar, respetyivEhe moving frame of reference is
moving in the vicinity of the substructure, and its origifatése to the fixed frame is described
by a position vectok., see Fig. A.1. Similarly, the orientation of the moving fraunelative to
the fixed frame is determined by the parameter vector (orgmse&actor)d. The position of a
material point relative to the moving frame of referenceigg by

x(s,t) =s+u(s,t) (A1)

s is a position vector from the origin of the movifg, , z2, z3)-coordinate system to the referen-
tial position of the bending center in a given cross-seatitthe beam along the moving-axis.
u(s, t) is the displacement field relative to the referential posit, see Fig A.1. In the present
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Figure A.1 Position of a material point relative to the moving frameeference €1, x2, z3).

case Bernoulli-Euler beam elements are used in an FE disatien of the displacement field.
Hereby, the displacement, (s.;, t) within a beam element is interpolated in the form

Ue(Ser, t) = Neg(Ser)yer (t)
Ny 0 0 0 N3 0 N5 O 0 0 Ng O
Nel(sel) = 0 N2 0 *N3 0 0 0 N5 0 7N6 0 0
0 0 M 0 0O 0 O 0 Ny 0 0 O
le]-*g > N2:2§573€2+1 ) N3:(§572§2+§>Lel
Ny=¢ , Ny=-28+32 | N = (& —&*)La

(A.2)

¢ = s/ Le is adimensionless interpolation parameter wherés a local reference length from
the beginnings.; = 0 to the ends.; = L.; of the element and..; is the reference length of the
beam elementy.,;(¢) contains the degrees of freedom of the element. In an FE beadelrthey
represent the nodal displacements and rotations relatitieet moving frame of reference and
N.:(se;) is an interpolation matrix. In the following, the lower indeel’ is left out indicating
that all element matrices and vectors have been assembldtfeubstructure. For convenience
the time and spatial dependencyxondu are also left out. Next, the material point is described
in the fixed frame by use of the position vectorand a rotation matriR to rotate the moving
frame components of into fixed frame components

x=%X.+Rx=%.+R(s+u) (A.3)

whereR stores the components of the rotation tensor related to twng frame.R . is defined
by the pseudo vectdr as given by Rodriquez formula, see e.g. Shabana [2]

R = cosfI + (1 — Cos 9) nn’ + sinfn (A.4)
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wheren = 0/ is the rotation unit vector] = |6|. nn” is the outer product of this vector with
itself, andn is the spin matrix related to. i is given as

0 —MnNs3 o
n= ns 0 —nNnq (A5)
—nN9 ny 0

[n1,n2, n3] specify the components af, which are identical in the fixed and the moving frame.
Time differentiation of the position vector (A.3) yieldstlelocity vector in fixed components

<

—%=% +R(s+u)+Ra (A6)

where the first terng, is the translational velocity of the moving frame, the setmmmR (s+u)

is the rotational velocity and the last tedRu is the velocity from the local deformations of the
material point inside the moving frame. Next, the fixed frasnmponents of the velocity vector
are transformed to moving frame components by pre-muttiion withR.”

v=RT%. +R'R(s+u) +u (A7)

where it has been utilized th&”R = I. The product of the rotation matric&” R can be
expressed by the following spin matrix

. 0 —Wws w2
R'R=0= w3 0 —w (A.8)
—Ww2 w1 0

wherew is the moving frame components of the angular velocity weatdhe moving frame.
The velocity of the origin of the moving frame. is next introduced together with the spin matrix
from (A.8) in (A.7)

v=v.+&(s+u)+u (A.9)

Next, the acceleration vector in fixed frame componentstisrdeéned by time differentiation of
the fixed frame velocity components in (A.6)

a=%x=x,+R(s+u)+2Ru+Rii (A.10)
The moving frame components are determined by pre-muéiptn withR”
a=a.+R'R(s+u)+2R"Ru+ii (A.11)

where the moving frame components of the acceleration afitxing frame origin in has been
introduced as... The termR” R can be determined from a time differentiationdin (A.8)

o=R"R+R'R (A.12)
This expression can be further simplified by use of the ortinadjty conditionRR” = I. More-
over,« is introduced as the angular acceleration vector detewhiioen a time differentiation of
the angular velocity vectap

@=a=R"RR"R+R"R =

R'R=a-o'o=a+aow (A.13)
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where the skew-symmetric property @fhas been used. The moving frame components of the
acceleration vector are determined by substitution of YAr&l (A.13) in (A.11)

a=a.+ (@+ww)(s+u)+20u+i (A.14)

The first terma,. denotes the moving frame components of the acceleratidonveicthe moving
frame origin. The tern&x(s + u) is the angular acceleration which is tangential to the akis o
rotation. The next termww(s + u) describes the centrifugal acceleration which acts in agplan
tangent tav and directed away from the axis of rotation. The Coriolisedexation is described
by 2@ which is perpendicular to both the direction of the localoeo#ly vector of the moving
substructure and to angular velocity vector. Finally, tkentu describes the moving frame
components of the acceleration of the material point as bgam observer fixed to the moving
frame.

A.2 Lagrange’s Equation

The equations of motion are derived using Lagrange’s eguatror a given constrained sub-
structure this reads

d (0L oL
=) - == _ X A.15
o (ayk) T Qr,i + Qr,c ( )
where(@), ; are the generalized external loads on the substructure agdnolude as well con-
servative as non-conservative loads on the substruaijre.are the generalized reaction forces
acting at the constrained degrees of freedom at the intetfeadjoint substructures. In chapter 2
the constraint equations are further describgdis the generalized coordinates of the substruc-

ture andL is the Lagrangian of the system defined as the differencedmetwhe total kinetic
T =T(y,y) and potential energy/ = U(y)

L=T-U (A.16)
By insertion of the Lagrangian in (A.15) and using the faattthe potential energy do not

contain time-derivatives of the generalized coordindtagirange’s equation may be written in
the following vector form

i oT _ oT n oUu
dt \ oyT ayT ~ oyT

In the following the kinetic and potential energy will be tiexd based on the generalized coor-
dinates and inserted in Lagrange’s equation to determaedhations of motion.

A.3 Kinetic Energy

In this section the kinetic energy for a certain substriefarderived which later will be used
in Lagrange’s equation to obtain the equations of motione Kimetic energy is determined
from the integral of the mass per unit length and the mageitfdhe absolute velocity vecter
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squared. The latter will be described in moving frame congpd®and thereby the kinetic energy
T becomes

T=1 / vIvudrs (A.18)
L

wherelL is the reference length of the substructure ansglthe mass per unit length. Previously
in (A.9) the velocity vector has been derived. Insertion of the local displacement vectom
(A.2) in (A.9) yields the moving frame components of the oiipvector

v=v.+&(s+ Ny) + Ny (A.19)
By insertion of (A.19) in (A.18) the kinetic energy is obtathas

T
T:%/(VC"“L’(S"‘NY)-FNY) (Vc—i-&(s—i-Ny)—i—Ny)udmg
L

=3 / (VIve+2vIds + 2vI@Ny + 2vI Ny + s7&" s + 2577 oNy+
L
2sT TNy + y'NTOToNy + 2y NTONy + yTNTNy) pdzxs (A.20)

where the translation velocity., the angular velocityw, the generalized coordinatgsand
their time derivatives are independent of the spatial coordinates and can be maxsid® the
integration sign. In so doing the kinetic energy in (A.20@xpressed by

T = imvIv +vEiT +vIGoy +vIMoy — LI+ Joy + Joy — 3y" Dy + 3" Gy + iy" My
(A.21)

wherem is the mass of the substructure given by

m:/uda:g (A.22)
L

M is the usual symmetric consistent mass matrix of a substreiéh a stationary frame of
reference

M = / NTNpudzs
L

My = 51';'/ NirNjjpdas (A.23)

L
where M7 ; denotes the components M. In (A.23) and below upper case indicésand J
range froml to the number of degrees of freedanior the substructure. The lower case index
1, j range from 1 to 3. The summation is still presumed over dumowef case indices.

M, is a special mass matrix of dimensi®rx n representing the effect of uniform translation

Mijo= | Nijudxs (A.24)




68 Chapter A — Equations of Motion for a Constrained Substruc ture in a Moving Frame of Reference

The effect of centrifugal forces are contained in the symimetatrix D given by

D= /LNTGJ&JNudmg

Dy = 0 /L NirNjjpdzs (A.25)
The Coriolis forces are represented by the skew-symmettcxz

G= /L NTONpdzs

G[J = (I),'j/ NL'[NjJ/j/dl‘g (A.26)
L

Notice, the integrals in the components forms of (A.23)28), and (A.26) are identical. The
special form of a uniform translation is defined by the matrix

G() = / (:)Nudiﬂd = (:)M()
L

Gr0 Z@‘j/ Njjpdzs (A.27)
L

The centrifugal and gyroscopic terms depend on the angelaciy of the moving frame of
referencev and therefore are time-dependent for accelerated rotafitire moving frame.

Next, the terms where the motion of the reference positidereare introduced. The matrix
J is the inertia tensor defining the kinetic energy of the rigadly part of the motion due to the
angular rotation.
J=w" / sspdrsw (A.28)

L
Jy determines the kinetic energy due to couplings betweeretieeence and elastic motion.

Jo=w’ / SNpudxs (A.29)
L

J; determines the kinetic energy due to coupling between tigalanvelocity vector and the
reference motion.

J = &J/Lsudm (A.30)
Finally, the termJ, determines the contribution from reference and local nmotio

Jo = w? /L SN udas (A.31)
It is chosen not to movey out of the above listed terms so the kinetic energy in (A.24ab

first look only depends on the generalized coordinates. iSlusne because is assumed to be
updated independent of the generalized coordinates.
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A.4 Potential Energy

In this section the potential energy is derived which latérlve used in Lagrange’s equation to
set up the equations of motion of the substructure. The pmtgantial energy’/ is determined
from

U="U. (A.32)

whereU, is the elastic potential energy from elastic deformatiohthe substructure. By in-
troducingK. as the stiffness of the substructure, ddg as the geometric stiffness the elastic
potential energy becomes

Ue=iy" (K. + Ky)y (A.33)

whereK. denotes the elastic stiffness matrix which is positive séefinite due to no elimina-
tion of the rigid body motion.

A.5 Equations of Motion

When both the kinetic and potential energy are derived thagans of motion can be determined
by use of Lagrange’s equation.

A.5.1 Terms from Kinetic Energy

The first term in Lagrange’s equation (A.17) is the time daixe of the term

oT .

5T =M!v.+ I + Gy + My (A.34)
whereT has been derived in (A.21). Both of the mass matrices are-itisependent buG
andJ, are not due to the dependency of the angular velocity of themgdrame cf. (A.26)
and (A.29), respectively. The time derivative of the movireme velocity in moving frame
components is determined from the fixed frame velocity cameptsv.. in the following way

Ve = %(RT\?C) —RTa. + RTv. = a, — @v. (A.35)
Hereby the time derivative of (A.34) becomes

a (a—T) =Ml (a. —av.) + I + Gy + Gy + My (A.36)
dt \ oyT

The second term in Lagrange’s equation is

aay—TT =Glv.+3 - Dy+GTy =MI&"v. +IT — Dy + Gy (A.37)

By combining these two contributions to Lagrange’s equmtiee terms containing the velocity
v, of the local system cancel, yielding

d (0T oT .. . : T TT T
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In addition to the local acceleration tefvdy this expression contains three terms generated by
the motion of the moving framéV{ a. is the inertial load due to the acceleration of the moving
frame,2Gy is a skew-symmetric gyroscopic load term g+ D)y represents a stiffness term
that combines the effect of angular acceleration and gt accelerations from the angular
velocity of the moving frameJ, andJ. are both couplings between the reference position and
the elastic displacements inside the moving frame.

A.5.2 Terms from Potential Energy

The potential energy from elastic deformations of the sulssiire (A.33) only contribute to
the third term in Lagrange’s equation (A.17) due to no terorgtaining time-derivatives of the
generalized coordinates. Hereby, the potential energyagrange’s equation from the elastic
potential is

ouU
ayT = (Ke + K,y (A.39)

A.5.3 Combined Terms from Kinetic and Potential Energy

By combining the derived terms (A.38) and (A.39) from kicedind potential energy, respec-
tively, with the right hand terms in (A.17) the equations ajtiran become

My +2Gy + (K. + G +D + K )y = ~MJa. - 3T +37 + Q, + Q. (A.40)

Here it can be seen that only the generalized coordinatésscribing the elastic displacements
inside the moving frame appear on the left side as unknowmnegsepf-freedom. Hereby, it
is necessary to know the parameters for the moving frameai.ew and a which also enter
the equations of motion. These parameters are assumed karadvonly updated when the
displacements from the moving frame exceed a certain lirhiereby the moving frame and
these parameters are updated, see chapter 3 for the upalggmghm.

A.6 Concluding Remarks

In this chapter the equations of motion for a substructura moving frame of reference is
derived based on Lagrange’s equation. In the derivatioissassumed that beam elements are
used in the FE discretization of the displacement field ferdhbstructure. The reaction forces
necessary to incorporate kinematic constraints of thetautigre are included. The motion of
the moving frame can be arbitrary, but it is necessary thabtlonging substructure is close
enough to the moving frame that linear theory is adequateréfare, it is necessary to regularly
update the motion of the moving frame.
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APPENDIX B
Cross Section Parameters for
Wind Turbine Blade and Tower

In this chapter the cross section parameters for the wirnirtetblade and tower are listed. These
data and figures originate from Holm-Jgrgensen and Jgrg§2ke The following nomenclature
is used for the cross section parameters.

¢ x3: Position coordinate to the section in the longitudina¢diion.
¢ u: Mass per unit length.
¢ A: Area.
4 E: Young's modulus.
4 G: Shear modulus.
¢ I;: Area moment of inertia around the principal elastic axis
¢ I): Area moment of inertia around the principal elastic axXjs
¢ I3: St. Venant Torsional stiffness.
4 0: Angle from the(z, z2)-coordinate system to the princip@l}, z})-coordinate system
including the twist of the blade. Positive around the negatj-direction.
B.1 Cross Section Parameters for Wind Turbine Blade

The wind turbine blade has a length of 44.8 m and a mass of 996THe cross section parame-
ters are defined in 22 sections throughout the blade, se@HigThe data for these sections are
listed in Table B.1.
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xz3[m] | plkg/m] [ A[m?] | E[N/m?] | G[N/m?] 17 [m7] I [m7] I3 [m?] | 6 [rad]
0.0 637.7 0.319 | 3.000E+10| 1.154E+10| 1.644E-01| 1.644E-01| 3.534E-01| 0.000
3.3 637.7 0.319 | 3.000E+10| 1.154E+10| 1.644E-01| 1.644E-01| 3.534E-01| 0.000
6.3 307.4 0.154 | 3.000E+10| 1.154E+10| 8.294E-02| 5.679E-02| 1.012E-01| -0.699
7.8 309.4 0.155 | 3.000E+10| 1.154E+10| 1.019E-01| 4.478E-02| 9.259E-02| -0.587
9.4 294.5 0.147 | 3.000E+10| 1.154E+10| 9.430E-02| 3.392E-02| 7.420E-02| -0.500
12.5 266.9 0.133 | 3.000E+10| 1.154E+10| 7.700E-02| 2.047E-02| 4.823E-02| -0.379
15.5 242.0 0.121 | 3.000E+10| 1.154E+10| 6.233E-02| 1.200E-02| 3.021E-02| -0.296
18.6 220.2 0.110 | 3.000E+10| 1.154E+10| 5.028E-02| 7.000E-03| 1.865E-02| -0.234
21.7 201.9 0.101 | 3.000E+10| 1.154E+10| 4.042E-02| 4.445E-03| 1.227E-02| -0.187
24.8 184.5 0.092 [ 3.000E+10| 1.154E+10| 3.196E-02| 2.814E-03| 7.999E-03| -0.149
27.9 168.7 0.084 | 3.000E+10| 1.154E+10| 2.494E-02| 1.893E-03| 5.478E-03| -0.118

30.9 91.8 0.046 | 3.000E+10| 1.154E+10| 1.137E-02| 7.526E-04| 2.214E-03| -0.089
34.0 82.7 0.041| 3.000E+10| 1.154E+10| 8.372E-03| 5.214E-04| 1.544E-03| -0.064
37.1 73.4 0.037 | 3.000E+10| 1.154E+10| 5.889E-03| 3.486E-04( 1.038E-03| -0.039
38.8 68.2 0.034 | 3.000E+10| 1.154E+10| 4.730E-03| 2.719E-04| 8.116E-04| -0.023
40.2 63.6 0.032 | 3.000E+10| 1.154E+10| 3.858E-03| 2.170E-04| 6.492E-04| -0.008
41.7 58.3 0.029 | 3.000E+10| 1.154E+10| 2.968E-03| 1.635E-04| 4.899E-04| 0.010
42.5 55.0 0.027 | 3.000E+10| 1.154E+10| 2.500E-03| 1.351E-04( 4.057E-04| 0.023
43.3 50.1 0.025| 3.000E+10| 1.154E+10| 1.902E-03| 9.769E-05| 2.946E-04| 0.040
44.1 36.6 0.018 | 3.000E+10| 1.154E+10| 7.463E-04| 3.616E-05( 1.094E-04| 0.066
44.6 16.3 0.008 | 3.000E+10| 1.154E+10| 6.564E-05| 3.218E-06( 9.520E-06| 0.092
44.8 6.0 0.003 | 3.000E+10| 1.154E+10| 3.336E-06| 1.931E-07| 4.833E-07| -0.056

Table B.1 Cross section parameters for the wind turbine blade in 2@ogec

Figure B.1 The outer contour of the 22 sections throughout the blade.

B.2 Cross Section Parameters for Tower

The tower has a height of 68.0 m and mass of 200000kg. The towvesists of four sections
each with a constant wall thickness, see Fig. B.2. The datthése sections are listed in Table
B.2.
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x3[m] | plka/m] [ A[m?] [ E[N/m?] | GI[N/m?] 17 [m?] I, [m] Is [m?] | 6[rad]
0.0 4099.6 0.522 | 2.100E+11| 8.077E+10| 1.023E+00| 1.023E+00| 2.046E+00| 0.000
16.9 3713.5 0.473| 2.100E+11| 8.077E+10| 7.602E-01( 7.602E-01| 1.520E+00| 0.000
17.1 3359.4 0.428 | 2.100E+11| 8.077E+10| 6.875E-01| 6.875E-01| 1.375E+00| 0.000
33.9 3012.2 0.384 | 2.100E+11| 8.077E+10| 4.956E-01( 4.956E-01| 9.912E-01| 0.000
34.1 2694.7 0.343 | 2.100E+11| 8.077E+10| 4.432E-01| 4.432E-01| 8.865E-01| 0.000
50.9 2384.0 0.304 | 2.100E+11| 8.077E+10| 3.069E-01| 3.069E-01| 6.138E-01| 0.000
51.1 2103.2 0.268 | 2.100E+11| 8.077E+10| 2.707E-01( 2.707E-01| 5.414E-01| 0.000
68.0 1827.4 0.233 | 2.100E+11| 8.077E+10| 1.776E-01| 1.776E-01| 3.551E-01| 0.000

Table B.2 Cross section parameters for the tower in 8 sections.

68 |

511 |
50.9 |

34.1
33.9

17.1
16.9

4.0

Figure B.2 Sketch of the tower showing the properties. Wall thickressdasured in mm, and the height and diameter
are measured in m.
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On the nonlinear structural analysis of wind turbine
blades using reduced degree-of-freedom models

K. Holm-Jargensen®, J.W. Steerdahl* and S.R.K. Nielsen*

Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57,
DK-9000 Aalborg, Denmark

(Received October 4, 2006, Accepted August 17, 2007)

Abstract. Wind turbine blades are increasing in magnitude without a proportional increase of stiffness
for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects
are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade,
modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The
purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in
predicting the nonlinear response and stability of a blade by comparison to a full model based on a
nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that
under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred
to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability
conditions. It is demonstrated that the response predicted by such models in some cases becomes instable
or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of
chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case
of infinitely many included modes, is shown to predict stable and ordered response for all considered
parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order
overestimates the response near resonance peaks, which is a consequence of the small number of included
modes. The qualitative erratic response and stability prediction of the reduced order models take place at
frequencies slightly above normal operation. However, for normal operation of the wind turbine without
resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

Keywords: wind turbine blades; nonlinear vibration; bernoulli-euler beam; co-rotating finite elements;
truncated modal expansion.

1. Introduction

In simulating the behaviour of a wind turbine many load combinations are studied to ensure that
the wind turbine is designed to withstand throughout its lifetime. Normally, these life cycle
simulations are performed using reduced-degree-of-freedom models because the computation time
has to be short. The worst cases are next used in more advanced structural models to verify and
optimize the design. During on-line operation of the wind turbine it is also essential with fast
working models, in case of active or semi-active vibration control when such mechanisms are
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1 Assistant Professor, Ph.D., E-mail: jws@civil.aau.dk
it Professor, Ph.D., E-mail: soren.nielsen@civil.aau.dk



108 K. Holm-Jorgensen, J.W. Steerdahl and S.R.K. Nielsen

installed. In this paper the predictions of response and stability of a wind turbine blade based on
such nonlinear reduced-degree-of-freedom model are validated by comparison with those of a full
nonlinear co-rotating FE model. Both models are formulated in a moving frame of reference
following the stiff body motion of the blade. The considered reduced-order model is based on a
spatial discretization using the fixed base undamped eigenmodes as a functional basis. The model
incorporates linear and nonlinear coupling terms between the different modes making energy
transfer a possibility, contrary to a linear model. This energy transfer is essential for correct stability
and response prediction. The geometrical nonlinear terms of the model originate from a nonlinear
description of the curvature of the blade and the rotation of internal and external forces during the
deformation. The inertial nonlinearities are caused by inertial axial forces induced by the support
point motion. The undamped fixed base eigenmodes are determined from an FE model of a beam
with pretwist using the Bernoulli-Euler beam theory with St. Venant torsion.

In Larsen and Nielsen (2006a) and Larsen and Nielsen (2006b) the two lowest modes were
retained reducing the equations of motion to a nonlinear 2-degree-of-freedom system with the
above-mentioned nonlinear coupling terms. The idea was to investigate 2:1 internal resonance, due
to the eigenfrequency of the lowest edge mode is approximately two times the eigenfrequency of
the fundamental blade mode. Among the many studies was the relative influence of the different
parametric and nonparametric coupling terms along with the placement of the resonance peaks. The
stability of the 2-degree-of-freedom model was studied by a numerical calculated Lyapunov
exponent based on the algorithm of Wolf ef al. (1984) for different relations between the first two
eigenfrequencies and for different relations between the frequency of the support point motion and
rotor rotation. At some excitation frequencies the response became both instable and chaotic. During
resonance, where the influence of nonlinearities is significant and the modal equations become
strongly coupled, it is questionable if only 2 modes are sufficient to get a correct prediction of the
response and stability. For this reason a convergency test is performed in this paper increasing the
number of modes to 4 and 6. Especially, the primarily nonlinear terms responsible for the energy
transfer between the modes are identified. Finally, the response and stability of the model by 2, 4
and 6 modes are compared to a full nonlinear co-rotating FE-beam model. The idea is to investigate
to which extent the energy transfer to higher modes than included in the reduced-degree-of-freedom
may influence qualitatively on the response and stability predictions.

With emphasis on beam models for a rotor blade Volovoi et al. (2001) have reviewed several
beam theories considering effects such as transverse shear flexibility, Vlasov’s warping etc. The
overall conclusions were that for thin-walled box sections the Bernoulli-Euler theory containing
extension with St. Venant torsion and bending in two directions behaved adequately in most cases.
However, for short-wavelength modes shear effects need to be included using Timoshenko theory as
demonstrated by Yu er al. (2002). The study of flexible bodies attached to a moving support has
continued over seventy years. Baker er al. (1993) examined the response and stability of a
parametric and chaotic excited beam both experimentally and analytically. The analytical model,
derived by a Galerkin reduction of the plane equations of motion, could predict the behaviour from
parametric excitation but not for chaotic excitation. The slow convergence of a modal expansion can
be overcome by an expansion in nonlinear modes, Nayfeh er al. (1995). Based on a nonlinear
Bernoulli-Euler FE-beam model of a cantilever rotating beam, Apiwattanalunggarn ez al. (2003)
devised a reduced model by use of a nonlinear normal mode expansion. Excellent agreement was
achieved by comparison to a full reference model. In creating a reference model the nonlinear co-
rotating formulation is ideal for large displacements. In this formulation a local coordinate system
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undergoing rigid body motion is assigned to each element. In this local coordinate system the elastic
deformations are small whereby regular beam theory is sufficient. This method has existed since the
seventies and described and examined in a number of papers and text books, among these Crisfield
1990 and Krenk 2005. The primary deviation between the formulations is the way of incorporating
rotations in three dimensions, because finite rotations do not add linearly as vectors. In Sandhu
et al. (1990) Euler rotations are used and the performance of the formulation is compared to other
large deformation formulations by a number of examples using curved 3D-beam elements showing
accurate and fast converging results. In the method described in Krenk (2005) quaternions are used
to describe the finite rotation of the nodes from which mean rotations are introduced to determine
the orientation of the base unit vectors of each element. In Crisfield et al. (1997) several time
integration algorithms using 3D co-rotational beams with two nodes and six degrees of freedom per
node are examined showing good performance by including numerical damping. Other authors
observed good experience by use of the Newmark integration with Newton Raphson iteration for a
co-rotational finite element formulation, e.g., Hsiao ef al. (1999) and Behdinan et al. (1998).

In a regular three-bladed wind turbine the relation between the excitation frequency and the
rotational frequency of the rotor is @wy/Qy = 3 due to changes in wind load when the individual
blades are in top and bottom positions of the incoming shear wind field. This is an idealized ratio as
turbulence will introduce other ratios. Moreover, the relation between the excitation frequency and
the first eigenfrequency of the blade is below 1 ie., wy/@,; < 1 during normal operation. In the
following simulations the response and stability will be examined for a frequency band of @y, €
[0.5;1.5] well knowing that this interval is above the normal operating values of a wind turbine.
However, this larger interval will prove if the model produces stable results and examine what
happens in case of failure e.g., where the rotor speeds up. The chosen interval will result in
rotational frequencies of )y € [0.77;2.31]rad/s where the nominal value is €y = 1.6 rad/s. In Larsen
and Nielsen (2006a) the first fixed base eigenfrequency of the blade at the nominal rotational
frequency of the rotor is @; = 5.14 rad/s resulting in a non-dimensional excitation frequency of @,/
®; = 0.93 for normal operation. A shell model of the blade has been created giving the 10 lowest
eigenmodes i.e. up to a eigenfrequency of @y = 111.31 rad/s. The eigenfrequency corresponding to
the first torsional mode is @wy = 100.22 rad/s, which does not have any significant bending
components. Also the remaining considered modes do not show any significant coupling between
bending and torsional components. Therefore, the torsional degree-of-freedom and eventually
couplings with bending components are not included in the model.

2. Reduced degree-of-freedom model

In this section the reduced degrees-of-freedom model is introduced together with the main
expressions, ending up with the nonlinear equations of motion for the modal coordinates. The
section is based on Larsen and Nielsen (2006a) where a more detailed description of the model and
the derived equations of motion can be found.

2.1 Coordinate systems and support point motions

In Fig. 1(a) the wind turbine is seen from upwind where the rotor rotates in the clockwise
direction. A fixed global (x;,x,,x3)-coordinate system is placed at the ground level in the centre of
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® (©

Fig. 1 (a) Wind turbine seen from upwind, (b) Displacement of the nacelle, (c) Displacement of a material
point in the blade

the tower. The x;-axis is oriented parallel to the rotor axes as shown in Fig. 1. To simplify the
matter it is assumed that the nacelle is not tilted and the blades are not coned. The length of a blade
is denoted L. A local (x{,x5,x3 )-coordinate system is fixed to the blade with origin at the hub with
the centre of gravity of the sections placed on the x; -axis. The x{ -and x; -axis are placed in such a
way that they represent the flap-and edge-wise displacement, respectively. The position of the x; -
axis is determined by the phase angle ®(f) which is defined clock-wise from the global x,-axis. The
displacement and rotation of the hub, originating from the motion of the tower and nacelle, are
accounted for by introducing a prescribed linear translation and rotation with the global coordinates
u; o(f) and 6; o(f), respectively.

In the following it is assumed that the motion of the nacelle and thereby the support point motion
only take place in the (x;,x3)-plane, corresponding to the following components, see Fig. 1(b).

u,o(f) = u(t), 6 o(t) = O qu(t), us o(f) = us o(f) = 6 0(F) = 6 0(t) =0 (1)

Here it is assumed that the motion of the tower is controlled by a simple modal coordinate
representing the horizontal motion u(f) of the nacelle. ®, , is a scaling factor for the corresponding
rotation of the nacelle. In the following u(f) is assumed to vary harmonically with the amplitude u,
and excitation frequency , as

u(t) = uycosw,t (2)

Let v' and v be column matrices storing the moving frame and fixed frame components of a
vector v. These components are related as

r

]_):

(SN

v 3)

A represents the components of the rotation tensor, rotating the fixed frame base vectors to the
moving frame base vectors, i.e., i = 4;i;. The transformation matrix 4(7) is found as a sequence of
rotations. First, a rotation 6 of the rotor plane around the global x,-axis is performed, followed by
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a blade rotation ®(¢) around the x{ -axis of the blade fixed (x{,x,,x3 )-coordinate system.

v, =4y
T >y =4,4v, A= 4,4, “4)
v' = 4,y o -
where
costh, 0 —siné,, -1 0 0
4,(1) = 0 1 0 | (D =10 cosd —sind )
sinf, , 0 cos6,, 0 —sin® -—cos®

The local components of the support point motion are u;,(f) = 4;(H)u(f) and 6/,(¢) =
A,0, u(t), where 4;(f) and A,(7) denote the components in the 1st and 2nd columns of A(7).

—cos 6, g 0
ug() = —sin®sin 6, u(), O5(1) = | cos® | @2,01(?) (6)
—cos®sin 6, —sin®

To simplify matters further, the effects on the hub displacement from the rotation & , are
disregarded. Hence, u{ o (1) =—u(t), uy o(t) = u3 (()=0.
The time-derivative of @(f) specifies the rotational speed of the rotor

Q1) = B(1) (7
2.2 Modal equations of motion

In order to discretize the variational equations obtained from the principles of virtual work, the
displacement components u,(x5,#) and the variational field Ju,(x}) are represented by the
following modal expansions

ul(xi 0= 3 O30, Sulxs, 1) = Y OP(x}) g (1) ®)

Jj=1 Jj=1

where u;(x5,7) is the deformation component in the flap direction, and u;(x5,7) is the
deformation component in the edgew1se direction. ¢;(f) and &g; denote the modal coordinates and
virtual variations of this quantity. dD (x3) represents the undamped eigenmodes, where the upper
index denotes the mode number and the lower index indicates the component. A discretized version
of © )(x3) has been obtained by means of an FE-method, from which all necessary derivatives of
the eigenmodes also are obtained as described in Larsen and Nielsen (2006a). Retaining
nonlinearities up to 3rd order the ordinary differential equations for the modal coordinates become,
Larsen and Nielsen (2006a)

3 (myii + e,y + ki (D) + Y Y (@D + by ad)

Jj=1 j=1k=1

N N N
+z Z Z (99 + il 4;9x41 + 4;9441)) = [i(F) ©)

j=lk=11=1
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where
my = Mé‘y

ei(1) = 260,M5; + [ uOVE ;@

(@) @)
_ 2 0) ¢ _ 0P, P, o
kU(t) = Ma)i 5’] + -[()L|:/qu)0! Daﬂq)ﬁ - W%J‘; IUD33X3 dX3 dX3 (10)

In Eq. (10) and below the summation convention is used on the Greek indices which count from
i ) ) - i /)

o0, o0y _ 2000 o0y o]

oxy  Ox; Oxy Oxi  Ox5 Oxj

the Kronecker’s delta. w; signifies the eigenfrequency of mode i. c;(f) denotes the components of
the modal damping matrix. The first term on the right-hand side signifies the structural damping
determined by the modal damping ratio ¢; which is specified for each considered mode. As seen,
the structural damping has been assumed to decouple in agreement with the well-separated
eigenfrequencies and the low structural damping of the system. The last term represents the
contribution from the Coriolis forces. u is the mass per unit length, and E,s denotes the
components of the upper part of the spin rotational matrix £ given as

1to2, eg., . M; specifies the modal mass for mode i, ¢ is

. 0 —93',0 92’,0
En) =2404"0 =2 o7y 0 -, (11)
00 Q, 0
ki(t) represents the components of the modal stiffness matrix. The first term on the right-hand side

signifies the modal structural stiffness, whereas the second part indicates the geometrical stiffness
due to centrifugal forces. D,p and D3; denote the components in the matrix D given as

93,,20 + 6.'2',20 —6.’2', 0Qg + 6"’3,, 0 —93,, 00y — 492, 0
_ (T — ., ., ., S, )
D) = 40471 = - —02,0Q,-0650 03,20 +Qp 050070+ (12)
—6"3’, 0 Qo + 492, 0 —49.3,, 092,, 0— Qo 92,,20 + Qé
The position vector of a material point from the origin of the moving frame of reference is
denoted x(7) = xo() + u(#), where x((f) is the undeformed or referential position and u(f) specifies
the local displacement vector of the particle as seen by an observer fixed to the moving frame of

reference, see Fig. 1(c). Then, the local components of the acceleration vector are given as, Larsen
and Nielsen (2006a)

a'(1) = (1) + ¥'(1) + D()x' (1) + E()x' (1) (13)

where iij(¢) is the local components of the acceleration vector of the support point, and x'(7)
stores the moving frame components of x(#). D(#)x'(#) and E(f)x'(f) represent the local
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components of the centrifugal and Coriolis accelerations, respectively. The nonlinear coupling
coefficients in Eq. (9) are defined as follows

aq)(l) aq)(/) |: 5@(1‘)

) (k)
(I) ” aq) aq) :|dx:;

£ = —uD cp(")de' o
Uk() -[[é’x3 o, Ppa—= 1 0,,, HLD 34 35 al’ﬂ/:é,3 o,
0"(13(')5(1)(’) X , ,
bur(t) = [[| oS [ - sy s
3 OX3 %
2 () ) (k) 52 1(D) 2 1) (i) G) 22 1,0
dy = (e, p17 0 [T OOLNTA) 700 50,000 50,
! 02 oxy Ox3  Ox; oxy OxY Ox;  Ox3 oxy

206D 267 2D 2p® D 25D Ap® F#p?
o’ o0V 00 s’ Fab o0l o0 5ol !
Oxy Ox3 Ox3 oyl Oxy Ox3 Ox3 oyl

508 50 50 20
= _&_&
gz/k/ J. |:§x3 5)&73 . |:,U_[0x 5)&73 ﬁ ! dX3:|dX3:|dx3 (14)

As seen, the parametric excitation from 6, ,(¢) and 65 () is also present in the quadratic
nonlinear coupling terms a;(f) and b (). The quadratic nonlinear coupling coefficient a;;(7)
includes both contributions from the rotation of the aeroelastic loads orthogonal to the deformed
blade and inertial contributions from the support point rotations and the rotational frequency of the
rotor. b;(?) is also a quadratic non-linear coupling coefficient originating from inertial nonlinearities
from the support point rotation and the rotation of the rotor. a;(?) is influenced by centrifugal terms,
whereas Coriolis terms enter in b;(f). The cubic coupling term dj, is due to the nonlinear
description of the curvature. £ is the modulus of elasticity and e, is the permutation symbol given

as
_ 10 1
Cap = Ll 0} (15)
«p is the inertia tensor given by
1 CoChs
1" = {]1"1' 0}’ C= |:COS(0 singo} (16)
0 Iy —sing cos@

where /|1 and 1,7 are the principal moments of inertia, and ¢ is the twist angle cf. Fig. 2(b). gy is
another cublc nonhnear coupling coefficient caused by inertial nonlinearities. These are due to the
axial inertial forces which contribute to the geometrical stiffness along with the static axial force.
f{(t) denotes the modal loads in the ith mode given as

J(@0) = [F ) (g4~ it o + Doxi))dxs (17)

The support point displacement u; ,(7) only enters the equations as an additive load term via the
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modal loads f{(f). p. , is the aerodynamic load described in Appendix B. The time dependent
coefficients are derived in Appendix A.

3. Nonlinear co-rotating beam formulation

To determine the accuracy of the reduced-degree-of-freedom model a nonlinear co-rotating beam
formulation is implemented. The model is based on Krenk (2005), where a detailed derivation of
the tangent stiffness matrix is given.

The idea of a co-rotating formulation is to separate the deformation of each element into a rigid
body motion i.e., a translation and rotation of each element with respect to a fixed coordinate
system, and an elastic deformation within the local coordinate system fixed to the element. Because
the elastic deformations are moderate linear Timoshenko beam theory is adequate. Inside the local
coordinate system the beam is able to deform in the longitudinal direction, rotate around the beam
axis, and may undergo bending deformations and shear deformations. No coupling between
wharping and axial elongation is used i.e., only St. Venant torsion (homogeneous torsion) is used.
The orientation of the local coordinate system is defined by the base unit vectors i, i, i; shown
in Fig. 2(a). The xj -axis is chosen along the deformed beam through the end points 4 and B of the
element, and the x| -and x) -axis are defined by the mean rotation at 4 and B. To get a simple
approach for constructing the constitutive relations the principal axes are introduced. This is done
by rotating the base unit vectors i, i,,i; the angle ¢ around the xj -axis corresponding to the
pretwist of the profile as shown in Fig. 2(b). The inertia of the blade is described by a constant
consistent mass matrix for a 3D-beam element. The inertial loads from the support point motion
together with the centrifugal and Coriolis contributions are determined from the respective
acceleration terms in Eq. (13) multiplied with a lumped mass matrix. Prismatic elements are used
when all geometric and material parameters are assigned. In solving the equations of motion
Newton-Raphson iteration is used. For time integration a nonlinear Newmark with numerical
damping has shown reliable.

(b

Fig. 2 (a) an element in the co-rotating formulation, (b) rotation into principal axes based on the initial
pretwist of the profile and the angle to the principal axes
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4. Convergency studies of the reduced-degree-of-freedom model

In this section several simulations of the reduced-degree-of-freedom model are performed with the
intention to determine the number of necessary eigenmodes with respect to response and stability.
Also the nonlinear couplings and related energy transfer are identified. The stability analysis is
based on a numerical calculated Lyapunov exponent using the algorithm by Wolf ez al. (1984). In
the analysis the effect of including two, four and six modes is investigated.

4.1 Input parameters

As mentioned in the introduction it is chosen to fix the ratio between the support frequency and
the rotational frequency of the rotor at wy/€)y = 3. Moreover, the relation between the support
frequency and the first eigenfrequency of the blade is varied in the interval wy/m, € [0.5;1.5].
Hence, as @, is varied the rotational speed (), must change accordingly. In all the following
simulations the amplitude of the horizontal displacement of the nacelle is kept at the value u, =
0.3 m. The model parameter of the rotation of the support is held constant at ®, ¢ = 0.03 m™' cf.
Eq. (1). The time integration is performed by a 4th order Runge Kutta with the time step Ar =
1(1)—070, where T, = 25’0[ . Stabilities such as variances and the Lyapunov exponent are based on time
series of the length of 1000 periods. The results will be presented as the root-mean-square (RMS)
value of the modal coordinates for the last fifth of the simulated time series in order to have
received stationarity of the response. All initial values of the modal coordinates have been chosen to
ZET0.

4.2 Fixed base eigenmodes of the blade

The geometrical and material parameters for the used blade are described in Appendix C. Hereby,
an FE Bernoulli-Euler beam model including St. Venant torsion has been devised from which the
undamped fixed base eigenmodes are determined. In Fig. 3 the flap component ®{” and the edge-
wise componet @Y for the first six fixed base undamped eigenmodes are illustrated with the
dominating components normalized to 1 at the blade tip. Modal parameters and information
regarding the shape of the eigenmodes are listed in Table 1 for the first six modes. These modes are
determined from no rotational speed i.e., Oy = 0 whereby no additional stiffness from centrifugal
contributions are added in the modes. The damping ratio for all modes is kept constant at ¢; = 0.01.
In the fundamental blade mode the aerodynamic damping ratio may vary from about 0.2 in case of
fully attached flow to negative values under deep stall conditions. In the used load model no
aerodynamic damping is included. The result of varying ¢} has been examined in Larsen and

Table 1 Modal parameters for the first six fixed base eigenmodes

Mode @V 1 2 3 4 5 6

w; [rad/s] 4.61 9.38 13.65 29.27 34.36 52.57

M; [kg] 399.1 846.2 367.9 326.6 471.3 2323
Dominating component (O] @, (Of) (O D, (O
Internal nodes in @ 0 1 1 2 2 3
Internal nodes in @Y 0 0 0 1 1 2
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Fig. 3 First six eigenmodes normalised to 1 in the blade tip based on the dominating component. (—) flap
component, ®{” . (-—) edgewise component, D

Nielsen (2006a), where the magnitude of the response at the most dominating resonance peaks
approximately became one third by increasing ¢; from ¢; = 0.01 to £; = 0.05 and maintaining ¢, =
0.01.

As seen in Table 1 @»~2®;, which make internal resonances between these modes possible, either
due to nonlinear or parametric linear couplings between the 1st and 2nd modes.

4.3 RMS-values of the modal coordinates for different number of modes

In this section results are presented in terms of the RMS-values of the modal coordinates g(f) as
the number of modes is increased in the model. The RMS-value Q; is defined by

2 r 12 1 T
0, - (? L (qj_#qj)z dt) s =g L q,(t)dt (18)

where Uy, is the mean value and the sampling is performed over the last 7 = 200 periods of the
simulation. In Fig. 4 Q; is plotted as a function of the nondimensional excitation frequency o/,
for N = 2, 4, 6. Since the modal functions have been normalized to one at the tip in the dominating
component, O, may be interpreted physically as the RMS displacement at the tip in that component.
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The results for Oy, 05, 04, Os and O,, Qs are plotted with different scales with respect to the flap
and edge component, respectively. Two conspicuous peaks are visible in almost all modal
coordinates at wy/@; = 0.85 and wy/w; = 1.22. As seen from Eq. (19), the modal loads £(¥) and f5(¢)
contain harmonic components with the circular frequencies m€Yy, m = 1, ..., 4. In combination to the
frequency ratios @, =2w®, and @,/ = 3, it was shown in Larsen and Nielsen (2006b) that
resonance from the load terms or internal resonance caused by linear or nonlinear parametric
coupling terms may occur in the fundamental blade or edgewise modes at any of the frequency
ratios wy/@; = 3/m and @y/w, = 6/m, respectively, where m = 1, ..., 12. The most severe resonance
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Fig. 4 RMS-values for the modal coordinates with 2, 4 and 6 modes. (——) 2 modes. (—-—-) 4 modes. (—) 6
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peaks occur nearby wo/@; =~ 3/4 and @y/@w; = 1.0 corresponding to m = 4, 6. In Fig. 4 the
corresponding results have been shown for the present system. As seen, the peeks are placed at
somewhat higher frequencies due to the geometrical stiffness from the centrifugal force, which is
not introduced in the linear eigenvalue problem for finding the eigenmodes and eigenfrequencies i.e.
the geometric stiffness is not included in ;. In Larsen and Nielsen (2006b) this effect was
introduced as an additional constant term in the linear eigenvalue problem for finding the
eigenmodes and eigenfrequencies. The magnitude of especially O, at the resonance frequency ratio
wo/wy = 1.22 shown in Fig. 4(a), is high above any realistic value as the length of the blade is only
46 m. These results should merely be considered as model predictions caused by nearby instability
due to loss of damping or stiffness. In reality the wind turbine will be controlled out of this region.
For N = 2 the first peak at wy/w, = 0.85 is visible in both Fig. 4(a) and Fig. 4(b). At the second
peak the response becomes instable in both modal coordinates and blows up. For N = 4 the first
peak is slightly displaced to the left in both Fig. 4(a) and Fig. 4(b), and the next peak at wy/w; =
1.22 is now visible. For wy/@; > 1.22 the response stays inside the chosen limits, which is due to
energy transfer to especially mode 3. For N = 6 the same characteristics as for N = 4 are observed,
but with a slightly higher peak at wy/@w; = 1.22 due to resonance in mode 5, see Fig. 4(b). Both
mode 4 and mode 6 contribute insignificantly to the response at all frequencies.

4.4 Stability and chaotic behaviour of the reduced-degree-of freedom model

In this section the stability and chaotic behaviour of the response will be further examined by
increasing the number of included modes. The stability of the system is investigated by the largest
Lyapunov exponent A.
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Fig. 5 Largest Lyapunov exponent with a marking of areas with chaotic response. (a) N = 2, (b) N = 4, (¢)
N = 6. (—) Instable i.e. infinite response
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In Fig. 5 the Lyapunov exponent A has been plotted as a function of the non-dimensional
excitation frequency wy/@, for N = 2, 4, 6. A positive Lyapunov exponent may either indicate that
the response becomes instable or chaotic i.e., that exponential growth takes place of the distance
between two neighbouring states of the dynamic system in the phase space. In the following an
instable response is defined as a response with infinite magnitude, whereas a chaotic response is
finite but not periodic. For N = 2 the response is chaotic in the intervals wy/@, = [0.88;1.14], and for
wo/@; > 1.18. For wy/w; > 1.22 the response becomes instable as also shown in Fig. 4(a) and
Fig. 4(b). On Fig. 5(b) it is seen that by increasing the number of modes to N = 4 chaotic response
is registered in small intervals around the values @)/, = 1.03 and wy/®, = 1.05. For wy/w; > 1.22
the response is chaotic but finite, cf. Fig. 4. For N = 6 the value of the Lyapunov exponent is
further decreased and the chaotic response only takes place for wy/w; > 1.22. Hereby, it can be
concluded that the stability overall is increased, and the tendency for chaotic behaviour is reduced,
as the number of included modes is increased. Based on the simulations it is evident that more than
2 modes are used. The analyses show that using 4 modes result in a good prediction of the response
and stability compared with the situation where 6 modes are included. Hence, the following
analyses are restricted to N = 4.

4.5 Coupling and energy transfer between lower and higher modes

In this section the important coupling coefficients responsible for the energy transfer between the
modes are identified. The following analyses are restricted to N = 4 with focus on the energy
transfer between the two first modes and the two next modes.

4.5.1 Dominating terms

In the following simulations it is shown that energy transfer between the two lowest modes and
two next primarily takes place for wy/@, > 1.0, where the quadratic coupling terms i.e., a;(f) and
b;y(f) are shown to be the most important. In these coupling terms the gyroscopic components Ds(f)
and E;4(f) enter, which consist of the rotational speed of the rotor (), together with different rotation
components of the support point. As @y/@; increases so does the rotational speed of the rotor O
and the frequency of the support point displacement, whereby the coupling terms including these
parameters, quite reasonable become important. The cubic coupling coefficients are both time
independent and independent of the gyroscopic components whereby they have little influence on
the energy transfer.

4.5.2 Energy transfer by exclusion of coupling terms

In Fig. 6 the response for Q; is presented for the reduced model with N = 4. The idea is to
investigate the energy between the two lowest and the two highest modes within the model by
excluding in turn linear, quadratic, and cubic coupling terms between the said modes. In Fig. 6(a)
the linear coupling term i.e., the coupling coefficients m;, c¢; and k;, where i = 1, 2 and j = 3, 4 or i
=3,4,j=1, 2 are set to 0. As seen the response has only increased slightly from the full model
i.e,, only a small part of energy is transferred through these coupling terms and mainly at high
values of @y/w,. In Fig. 6(b) the quadratic coupling coefficients a;(f) between the two lowest and
two highest modes are excluded. As seen the response increases heavily at the peak @wy/@, = 1.22
from which is concluded that these coefficients carry a substantial flow of energy. For /@, > 1.22
the response corresponds more to the full model. Fig. 6(c) shows the corresponding results where
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Fig. 6 O, for the reduced-order-model with N = 4 where coupling coefficients between the two lowest and
two highest modes are excluded, (a) Exclusion of linear coupling terms, (b) Exclusion of quadratic
couplings in a;(f), (c) Exclusion of quadratic couplings in b(f), (d) Exclusion of cubic coupling
terms. (—) Reduced-order-model. (——) Exclusion of coupling coefficients

the quadratic coupling coefficients b;;(f) are excluded. A large deviation relative to the reference
model is registered between @wy/w, ~ [0.90;1.18], which to some extent corresponds to the results for
N = 2 in Fig. 4(a), but with higher RMS-values. At the peak @o/@; = 1.22 only insignificant
deviation is observed. However, for wy/@, > 1.22 the response increases fast and passes out of the
plot, and only enters the limits in the end. Similar, the cubic coupling coefficients only change the
response minor cf. Fig. 6(d) and in this case lower the response compared to the full model.
Therefore, the cubic coupling coefficients djy and g; originating from geometric and inertial
nonlinearities are not the primary terms for energy transfer. From the analysis it is concluded that
energy transfer primarily takes place through the quadratic coupling coefficients, where the
couplings in a;;(f) mainly influence the response at the peak wy/@, = 1.22 and the couplings in b;;(f)
in the remaining part of the frequency band.

5. Comparison of the reduced-degree-of-freedom model and the co-rotating model

In this section the reduced-degree-of-freedom model with N = 2, 4, 6 is tested up against the
nonlinear co-rotating FE-model for static and dynamic loads. The same input parameters as previous
are used except that a time series with a sampling interval of 200 periods is used. A numerical
damping parameter of o = 0.05 is used in the nonlinear Newmark time integration scheme. In the
co-rotating model 20 beam elements are used corresponding to 126 degrees-of-freedom. The main
objectives are to compare the response and stability of the two models.
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Table 2 Comparison of tip displacement between the reduced-degree-of-freedom models and the co-rotating

FE-model

Model 2 modes 4 modes 6 modes FE-model
Flap displacement [m] 5.54 542 542 545
Edge displacement [m] 0.86 0.83 0.82 0.80

5.1 Static load

In the first comparison a static modal load corresponding to f; = fio in Eq. (25) is applied, where
the support point is fixed and the rotor does not rotate i.e. the test corresponds to a cantilever blade.
In the reduced model all included modal coordinates and their belonging mode shapes are used to
determine the displacements. In Table 2 the tip displacement in the flap and edge direction for
different number of included modes is compared to the corresponding results for the co-rotating FE-
model.

As demonstrated previously, only small differences appear between 4 and 6 modes and the results
in all cases are close to the predictions of the co-rotating FE-model. Even the results using merely 2
modes are in acceptable agreement with the referential results. It can hereby be concluded that the
two models perform almost identical for a static load when 4 modes are used in the reduced-degree-
of-freedom model.

5.2 Dynamic load

In this section the RMS-value of the tip displacement in the flap and edge direction is compared
for the reduced order model with N = 4 and the FE-model. The dynamic excitation is caused by a
harmonically varying support point motion in combination with a rotating rotor and aerodynamic
load as in the previous investigations. In Fig. 7 the results have been given for the following
interval of excitation frequencies wo/@; = [0.5;1.5]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5
wo/wl

Fig. 7 RMS-values for the tip displacement in the flap and edge direction. (——-) 4 modes included in the
reduced-degree-of-freedom model. (—) Co-rotating FE-model
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As seen, the results are qualitatively in agreement for wo/@; < 1.23, although substantial
deviations appear at the resonance peaks at @/, = 0.84 and @wy/w; ~ 1.22, where the FE-model
produces much smaller response. The characteristics of the to models for @wy/@; > 1.23 are no longer
similar which is due to chaotic behaviour of the reduced-degree-of-freedom model as shown in
Fig. 5(b). It can hereby be concluded that the reduced-degree-of-freedom model is not valid for wy/
@, > 1.23 and it predicts too high RMS-values at the resonance peaks.

5.3 Stability

From Fig. 5 it is seen that @wy/m, = 0.5 results in stable response for all three numbers of modes,
and that @y/@; = 0.9 results in chaotic response, when 2 modes are used, and ordered response for
4 and 6 modes. For wy/@, = 1.3 a chaotic response is obtained in all cases, and even instability for
N=2. These frequency ratios are used in the following stability analysis. In Fig. 8 a Poincaré map
is shown for corresponding values of the tip displacement and velocity in the flap direction at time
intervals 27/, for both the co-rotating FE-model and the reduced-degree-of-freedom model for
N=4. It turns out that the response period is determined from the interference of the response
caused by the circular frequencies @, + Qy and @y — €, and for a rational value of @,/ = 3 the
response period is in Larsen and Nielsen (2006b) shown to be periodic with the period 37;. For
the co-rotating FE-model cf. the first row in Fig. 8, the Poincaré map shows as predicted three
different points in the phase plane. This is the case for all three values of wy/@; corresponding to
an ordered response. As predicted by the Lyapunov exponent the reduced-degree-of-freedom
model is stable at wy/@; = 0.5, cf. row two in Fig. 8. For @y/@; = 0.9 the response is ordered but
with slightly more displacements of the points, and at wy/@; = 1.3 the response is chaotic. The
reduced-degree-of-freedommodel predicts chaotic response at wo/@; = 1.3 for N = 2, 4, 6, which is
not the case for a full model. This is due to increased transfer of energy to higher modes for the
full model.
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Fig. 8 Poincaré maps for tip motion in flap direction. Column (a) @y/@; = 0.5. Column (b) @y/@; = 0.9.

Column (¢) wy/@, = 1.3
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Table 3 Comparison of average computation time per period for the reduced-degreeof-freedom model and the
co-rotating model

Model 2 modes 4 modes 6 modes Co-rotating
Time/period [sek] 0.002 0.008 0.022 2.185

5.4 Time consumption

In this section the computation time of the reduced-degree-of-freedommodel and the co-rotating
FE-model are compared. Both programs are developed in Fortran and in Table 3 the average
simulation time per period is presented.

It is clear that even though the programs could be optimized further a major advantage is gained
by using the reduced-degree-of-freedom models over the co-rotating model. From the reduced-
degree-of-freedom models the time consumption increases heavily by increasing the number of
modes. For large simulations it is therefore necessary to determine the minimum number of modes
which produce acceptable results. Based on the previous simulations 4 modes are the best choice
among the used number of modes.

6. Conclusions

Based on the convergency test of the reduced-degree-of-freedom model it can be concluded that
the response by use of two modes does not deviate much from the results by including more modes
when looking at a normal operating relation between the frequency of the support point motion and
the first blade eigenfrequency. By comparing the results using four modes with the results using six
modes almost no difference appears for /@, < 1. It can also be concluded that the fourth mode
contributes very little whereby three modes would result in an efficient and qualitative prediction of
the response. If the system by malfunction speeds up the rotor resulting in a relation of wy/w; > 1 it
is shown that the response for two modes becomes instable, which is not the case for four modes.
Including six modes do not change the qualitatively and quantitatively behaviour of the system.

From the stability analysis it is shown that by increasing the number of modes the stability of the
system is improved. It is also demonstrated that the main terms for energy transfer between the first
two modes and the next two are the quadratic terms which describe inertial nonlinearties from the
support point motion and the rotor rotation.

In the comparison between the reduced-degree-of-freedom model and the co-rotating FE-model
almost identical results under normal operation except at the resonance peaks were produced if the
number of modes are four or above. This outcome was repeated both in the static, dynamic and
stability tests where four modes produced results close to the co-rotating FE-model. However, for
values of wy/@w, outside the normal operating area the reduced-degree-of-freedom model no longer
match the co-rotating FE-model in neither response nor stability. A comparison between the time
consumption for the two models showed a major gain in using the reduced-degree-of-freedom model.

It can hereby be concluded that the reduced-degree-of-freedom model is not reliable in predicting
the response nor the stability for arbitrary relations between the support point motion and the first
eigenfrequency of the blade. This way of incorporating couplings between the different modes for
energy transfer is therefore not sufficient and other methods where the truncated modes are included
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should be investigated e.g. by use of nonlinear normal modes.

However, for normal operation of the wind turbine outside the resonance peaks the two models
perform very similar when the number of modes are four but even three modes should produce
almost identical results reducing the computational cost.
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Appendix A. Time dependent coupling coefficients

In this appendix the time dependent coupling coefficients i.e., ki(?), ci(¥), a;(?), bj(f) and f(¥) are rewritten
into as many time independent terms as possible to gain a more optimized code. The aerodynamic load is also
described.
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Inserting the relevant components of D (7) and E(7) as given by Eq. (12) and Eq. (11), respectively, and the
local components of the support point motions given by Eq. (6), the time dependent coefficients Eq. (10) and
Eq. (14) may be written in the following way

ki(t) = — ki 1103 017 (1) + iy 1205, o(61(2)SINQ1 + 11(£)Q2c08 Q1)
+ kij 2105, o(=ii(2)sinQpt + 11(1)Qc0s Q)

+ ki (= ©3, 4" (£)8In° Qo — Q) + kyj 35(@3, o1 (1) c0s’ Qg + Qp)
C,-]'([) = —C,tfylil(t)®2‘(]sing20t

a(t) = aypo(1) = @y 105, o(#1(2)cOsQyt + (1) QSINQyt) — ayyy ,O3, o (£)sINQ 1Oyt
bijk(t) = - bijk, 10,1 (1) cosQyt + bz’]’k,ZQO

(1) = fio(t) + £105,0(ii(1)c0sQyt — Qui(£)sinQyt) — £;,03 o1t (1)sinQgrcos Qo + £, 5it(r)  (19)
where the time independent coefficients are found to be

L i i i j '
e = 2[ (= @YY + O ) dx]

L i i ' q)(al)aq)(l) ' ’ '
kij,aﬂ= Jo ,uq)(a)q)%)dxb ij,33 = _[ [ T o, ,ux3dx3:|dx3
(D(I)OvQ)(/) ) é’q)(k) 1o w O’)Q(/) ﬁD(/‘) ,
Ajjko = I |: a0 —Pp ﬁ,' dx; + = q)(a)p/;‘,A j|dx3
oxy Oy N 0% 2 oxy Oxq
0”@(1)5@(1) , ,
aljk a= I [ 5x, &x, _ﬂq)g{)dx3:|dx37 bijk,a - Zaljk a
foo= [ @0l adxl, fia=-[ ®Quxldx, f= [ O udx; (20)
o o

Appendix B. Aerodynamic load

The incoming wind velocity V| (x5, ) as seen from a considered cross section of the blade varies periodi-
cally with the rotational speed €. V| (x5, f) is assumed to vary logarithmic in the following way

Inx; _ Voln(h—x3 cosQt) @1
Inh Ina

where ¥} is the undisturbed mean wind velocity and /4 is the height of the rotor axis. The rotational wind
velocity is given as V3 (x7) = x5 Q. Then, the resulting wind velocity ¥(x;, ) may be written as

Vixi, 1) = JVE Gty )+ V3 (x)) (22)

Vi(x5,1) = Vo—s

The following expression for the aerodynamic loads are used

pla(xs, t) = ‘PV (x5, 0)e(xs)er = pilao (X3) + Apil 1 (x5)cosQt

1 ’ ’ ” r ”n ’
Doa(x5,1) = Esz(x3 sDe(x3)ep=p3 a0 (x3) + Apy 41 (x5)cosQot (23)
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where p is the density of air, V' is the resulting wind velocity from the incoming wind velocity and the rota-
tional wind velocity, ¢ is the chord length, and ¢; and cp are the lift and drag coefficients, respectively. In the
simulations the following values are used: ¥, = 15 m/s, h = 60 m, p = 1.2 kg/m>, ¢, = 1.5 and ¢, = 0.05.
Pa 4.0(x37) denotes the mean value of p;, (x5, ), when the blade is at the top and bottom positions. Corre-
spondingly, Ap, , (x{) denotes half of the difference between these extreme values. The coefficients a;yo(f)
and f;o(#) in Eq. (20) may then be written in the following way

aijk,O(t) = ik, 00 + Adyjy, 01€08Qt, Sio(t) = fi 00 + Af; 01008Qt (24)
with
-L 5(Dg)é7®g) " éyq)(k) ’ 1 @) _n ﬁ@?ﬂ@‘m ’
20 50 o0y’ 1 gy 20) 50}
Adyio = [— 7 ,[—Apu,l ﬂdxﬁ—cbaAp':A,l—f ?]dxé
i l E R PATT o 2 AT ol el

L i L = (i
fi, 00 = _[0 (sz)p;:A,odx,;a A.fi,()l = Io q)a)Apn’t:A, 1 dx;

Appendix C. Specifications of blade

The theory is demonstrated using a 46 m pitch regulated blade. The aerodynamic profiles are NACA 63-
418 section profiles as illustrated in Fig. 9, scaled with chord and height values indicated in Fig. 11(d). The
inner 2.0 m of the blade has a circular cross section with a diameter of 2.0 m. In Fig. 10 the blade is shown
based on the geometry of the root and the scaling and pretwisting of the NACA 63-418 profile. The blade has
the pretwist angle, the mass, local moments of inertia, chord length and thickness distributions as indicated in
Fig. 11. The total weight is 10 t. The stiffness and mass distribution are chosen so that the eigenfrequencies
approximately match those given by a manufacture of a corresponding blade size. The modulus of elasticity is
E =3 - 10* MPa. The twist throughout the blade is chosen so that the angle of attack of the resulting wind is
approximately 6° at a constant rotational speed of 1.6 rad/s, and an incoming wind velocity of 12 m/s. At
these nominal values a wind turbine with such three blades should produce approximately 2.75 MW accord-
ing to the Blade Element Momentum theory described in Hansen 2000.
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Fig. 9 Normalized profile of a NACA 63-418 blade  Fig. 10 Illustration of the used blade in the
section simulations
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Abstract A system reduction scheme is devised related to a multibody formulation from
which the dynamic response of a wind turbine is determined. In this formulation, each sub-
structure is described in its own frame of reference, which is moving freely in the vicin-
ity of the moving substructure. The Ritz bases spanning the reduced system comprises of
rigid body modes and some dynamic low-frequency elastic eigenmodes compatible to the
kinematic constraints of the related substructure. The high-frequency elastic modes are pre-
sumed to cause merely quasi-static displacements, and thus are included in the expansion
via a quasi-static correction. The results show that by using the derived reduction scheme
it is only necessary with 2 dynamical modes for the blade substructure when the remain-
ing modes are treated as quasi-static. Moreover, it is shown that it has little to none effect
if the gyroscopic stiffness matrix during a stopped situation or under nominal operational
conditions is used to derive the functional basis of the modal expansion.

Keywords Multibody dynamics - System reduction - Quasi-static modal model - Wind
turbine

1 Introduction

The analysis of large structural systems is conveniently carried out by so-called substructure
coupling methods, or component mode synthesis (CMS) methods. The basic principle is
that each substructure or component is modeled separately. Next, the components are linked
together by a coupling scheme complying with the relevant kinematical constraints at the
interfaces between the substructures.

The modeling of a component implies a discretization in space. Typically, this is done
by an FE method, often involving thousands if not millions of degrees of freedom. In order
to reduce the computational efforts, reduced order models of the components need to be
implemented, which are usually chosen with emphasis on the low frequency dynamics. The
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modes included into the reduced Ritz basis of the substructure can be any set of linearly
independent vectors capable of modeling the considered frequency range. The modes are
taken as rigid body modes whereas the flexible modes are taken as either eigenmodes free
or constrained at the boundary degrees of freedom, or as so-called constraint modes and
attachment modes. Constraint modes are static deformation modes, where the substructure
is free of internal loads, and where each boundary degree of freedom in turn is given a
unit displacement with the remaining boundary degrees of freedom fixed, and the interior
degrees of freedom are unloaded. Attachment modes are static deformation modes with
all boundary degrees of freedom fixed, and where selected internal degrees of freedom in
turn are loaded with a unit force, and the remaining degrees of freedom are unloaded, Craig
2000 [1]. Obviously, constraint and attachment modes are unable to describe high frequency
elastic deformations. CMS is often split into two methods: the constraint-mode method and
the attachment-mode method. The first method was used by Hurty [2] which consists of
constraint modes and fixed interface normal modes. The latter method is used by Rubin [3]
and MacNeal [4] based on attachment modes and free interface normal modes. In the present
paper, the system reduction is performed by a Ritz basis consisting of rigid-body modes and
fixed interface normal modes.

Concentrated forces within the substructure, e.g., due to actuator forces from tuned mass
dampers or other vibration control devises, contain significant high frequency components,
which cannot easily be decomposed into a limited number of modal loads. This is also
the case for the aerodynamic load, which although continuous distributed is confined to
the outer 30% of the blade. The high-frequency harmonics of these loads do not affect the
dynamic response of the substructure, but do induce a quasi-static displacement component,
which cannot generally be ruled out. Hence, when using reduced order component models
for substructures with substantial concentrated loads, attention should be paid to the quasi-
static part of the response from these loads. Reduction schemes based on expansion in a
truncated number of normal modes have been indicated by, e.g., Preumont [5].

The basic idea of flexible multibody dynamics is to introduce a moving frame of refer-
ence to each substructure. Relative to the moving frame elastic displacements are relatively
small rendering linear analysis possible. Hence, nonlinearites are confined to the description
of the moving frame. This frame is defined by a position vector and a parameter vector
(pseudo-vector) defining the rotation of the moving frame relative to a fixed frame of ref-
erence. The standard formulation of the method presumes that the moving frame is fixed
to the rigid body motion of the substructure, with the consequence that the coordinates
defining position and orientation of the moving frame becomes a part of the degrees of
freedom of the multibody system; see, e.g., Nikravesh [6], Garcia and Bayo [7], Géradin
and Cardona [8] and Shabana [9]. However, the use of a mixed set of referential and elastic
coordinates leads to highly nonlinear inertial couplings between the rigid body motion and
elastic deformation.

The basic modeling of the elastic deformations of the substructure in a multibody formu-
lation is performed by an FE-discretization or by eigenmodes Shabana [10]. Lee [11] also
used a modal approach where the nonlinear multibody equations of motion are linearized.
Because of the linearization of, e.g., the quadratic velocity terms it is necessary to update
the linearized equations in each updated time step. Lee also describes the advantages of
using modal integration to flexible multibody systems, e.g., to avoid problems caused by
inherently stiff systems and the possibility of using larger time steps in the time integration
algorithm. Alternatively, an unconditional stable numerical time integration scheme should
be applied. By decomposition of terms in the equations of motion into time-dependent and
time-independent parts, Pan et al. [12] have reduced the computation time even further.
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Khulief et al. [13] have analyzed the dynamic response of rotors using mode truncation in
real eigenmodes, but also complex eigenmodes by incorporating the gyroscopic damping
term. The two methods showed almost the same level of accuracy. In the present paper,
real eigenmodes have been used to create the Ritz basis. Bauchau and Rodriguez [14] and
Bauchau et al. [15] used a modal approximation based on Herting’s transformation to reduce
the computational costs in multibody dynamics. The reduced set of degrees of freedom in
this transformation is the boundary degrees of freedom and the modal participation factors
for the rigid and elastic modes. This makes a more general selection of modes and boundary
conditions.

To circumvent the difficulties with the highly nonlinear system equations, Kawamoto
et al. [16-19] suggested to let the moving reference frame float in a controlled way relative
to the moving substructure, so these are always sufficiently close to each other that lineariza-
tion becomes possible. Whenever the substructure has drifted unacceptable far away the po-
sition, velocity, and acceleration of the origin together with the rotation, angular velocity,
and angular acceleration of the moving frame must be updated. This can even be performed
with regular time intervals larger than the time step used for the numerical integration of the
equations of motion. In this formulation, the equations of motion for an unconstrained body
are linear, but iterations are necessary due to the kinematical constraints and when updating
the moving frame. In the present paper, no updating criteria is used so the moving frame
is updated in each time step. In Kawamoto et al. [17], the equations of motion in a moving
frame are further described and the update of the rotation of the moving frame is performed
by a polar decomposition.

The system reduction scheme presented in this paper is based on reducing one or several
substructures in a multibody formulation corresponding to Kawamoto et al. [17]. In the
original paper, they use a number of rigid body modes together with elastic eigenmodes
to describe the displacement field of each substructure. In the present paper, the gyroscopic
effects appearing in a rotor dynamic system, e.g., a wind turbine is included in the Ritz basis.
This is done by including different stiffness contributions from the equations of motion when
determining the elastic mode shapes. Further, the use of various functional bases for the
flexible deformation and as explained above the quasi-static contribution from the truncated
elastic modes has been included in the system reduction scheme. In contrary to the papers
by Kawamoto et al. [16, 17], constraints are described in the present paper and included in
the equations of motion. These constraints are solved as they are originally formulated by
insertion in the system stiffness matrix, whereby constraint regularization is not necessary.

2 Moving frame of reference formulation of multibody dynamics

The idea is to describe the motion of a substructure in a frame of reference which is moving
independently in the vicinity of the substructure. All quantities without a bar are defined in
the moving frame of reference given by the (x, x;, x3)-coordinate system. The (x;, X5, X3)-
coordinate system is fixed and common for all substructures. Fixed frame and moving frame
components of vectors and tensors will be indicated with and without a bar, respectively. The
moving frame origin is described by a position vector X,.. The rotation of the moving frame
relative to the fixed frame is determined by the parameter vector (or pseudo-vector) 6. The
angular velocity and angular acceleration vectors are specified by the moving frame compo-
nents @ and . Generally, the substructure may drift away from the moving frame, which
requires sequential updating of the position, velocity, and acceleration of the origin together
with the rotation, angular velocity, and angular acceleration of the referential frame to en-
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Fig. 1 Decomposition of the displacement field into rigid body and elastic components

sure small displacement components. In this respect, it is convenient to introduce an aux-
iliary (X, X, ¥3)-coordinate system, which is fully constrained to the moving substructure.
The total displacement u(s, ¢) of a certain material point relative to the moving reference
frame is given by physics, and thereby fixed. It is, however, arbitrary how this displacement
is split up into u, (s, #) and u, (s, t) corresponding to the (X, X», X3)-system can be chosen in
many ways. The rigid-body displacement u, (s, ¢) is spanned by rigid-body modes, and the
elastic displacement u,(s, ¢) is spanned by the eigenmodes of the substructure constrained
to the auxiliary moving frame. Figure 1 shows two possible definitions of the auxiliary coor-
dinate system. In Fig. 1a, the position and rotation of the auxiliary system have been chosen
as the position and rotation of the end point O. This results in larger elastic deformations
u, (s, t) than the definition in Fig. 1b where the X3-axis has been placed along two mater-
ial points O and P. For the blade substructure, the definition in Fig. 1a complies with the
kinematical constraints at the fixed end. However, this definition is not optimal, e.g., a ro-
tor shaft substructure supported by bearings where the definition in Fig. 1b is more optimal
and will reduce the number of necessary elastic modes. The eigenmodes of the substructure
constrained to the auxiliary moving frame can immediately be determined and will enter in
the system reduction algorithm. In the conventional multibody formulation, the (X;, X5, X3)-
system is used as the local frame of reference, and the parameters defining the position and
orientation of the coordinate system are introduced as degrees of freedom in the state vector.
The position vector to a material point within the substructure has the following moving and
fixed frame components

X(s,t) =s—+u(s,1), (1)
X(s,1) =X +R(s+u(s, 1), 2)

where R stores the components of the rotation tensor. R is defined by the pseudo-vector @
as given by Rodriquez formula, Shabana [9]

R = cos(®)I + (1 — cos(6))nn” + sin(6)n, A3)

where n =6 /|0|. The corresponding moving frame components of the velocity and acceler-
ation vector of the point become, Shabana [9]

V=V, +&(+u)+u, “
a=a,+ (& +@®d)(s+u) +2ou+ i, ®)
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where & = @. @ and & denote the spin matrices related to @ and oc. @ is given as, Shabana [9]

0 —w3 wy
@ = w3 0 —ow|. (6)
—wy w1 0

The first term v, in (4) is the translational velocity of the moving frame, the second term
®(s + u) is the rotational velocity, and the last term u is the velocity from elastic deforma-
tions and rigid body motions inside the moving frame. The first term a. in (5) denotes the
translational acceleration of the moving frame origin. The term & (s + u) is the angular accel-
eration which is orthogonal on & and (s 4+ u). The next term @@ (s + 1) = @ X (@ X (s +u))
describes the centrifugal acceleration. The Coriolis acceleration is described by 2@u which
is perpendicular to both the direction of the velocity of the moving body and to the rota-
tion axis. Finally, the term ii describes the moving frame components of the acceleration
of the material point as seen by an observer in the moving frame. The equations of motion
of the substructure are conveniently derived using analytical mechanics based merely on
scalar quantities such as the kinetic 7 = T (y, y) and the potential energy U = U (y) con-
taining contributions from the strain energy and conservative external loads Q.(y) such as
gravity, in addition to vectorial quantities as the nonconservative loads Q,.(y). In principle,
these loads may be linearized in the applied moving frame of reference. The nonconserva-
tive loads are caused by the follower character of the aerodynamic loads. The kinetic energy
is most convenient determined by using the moving frame components of the velocity vec-
tor v from (4). The resulting equations of motion for substructure i are given by a slightly
modified version of Kawamoto et al. [17]

My + (Co,i +2Gy)y; + (Ko,i +G;+D; + K,g,i)yz' + B (y)" A

= _M({,iac,i - jg_i + JzT,i +Qci (¥1) + Qi (¥i), @)

where the Lagrange multipliers A; contain the reaction forces and moments conjugated to
the kinematic constraints and B; (y;) is the constraint matrix. Cy; and Ko ; are the structural
damping and the elastic stiffness matrix, respectively, and

M; =/N,-TNi,0dV, MO,iZ/Nipst Di=/ N/ @;&:N;pdV, ®)
v v v

Gi:/N,'T‘biNipdVa Jo,izwirngipdV, J2,i:w,‘T/§6)iNipdvs 9
v % %

dN!; dN,
K= Qz(t)/ 03(x3) —2 —E dxs. (10)
L dJC3 dx3

In the geometric stiffness K, ;, only the contribution from the centrifugal force, 2%(1) 03(x3),
is included where the angular velocity of the rotor £2(¢), for the blade substructure, is the
only time dependent term. M; is the conventional symmetric mass matrix of the body in
the moving reference frame which in the present formulation is independent of the moving
frame of reference parameters. M ; is representing the inertial effect of uniform transla-
tion. The effect of centrifugal forces are contained in the symmetric matrix D; and the
gyroscopic forces are represented by the skew symmetric matrix G;. The remaining Jo ;-
and J, ;-terms are couplings between the reference position and the shape functions. Next,
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the following damping C; and stiffness matrices K; are introduced together with the load
vector f;

C, =Gy, +2G;, Ki:KO,i+G[+Di+Kg,is (11)
fi=-Mja.; — I, +J5, + Qui(y) + Quei (¥0), (12)

where by the equations of motion are written as
M,¥; + Ci¥i + Kiyi +Bi (y) A =1£;(1). (13)

To set up the equations of motion for a multibody system, it is necessary to introduce
kinematical constraints in order to incorporate compatibility of the mutual displacements
and rotations of the substructures. In relation to a wind turbine, the coupling of two sub-
structures can, e.g., be of the blade and rotor shaft. Additional constraints specify the
supports of the rotor shaft via bearings relative to the nacelle. The displacement con-
straint between two substructures defines that the displacement vector for each of the
two substructures at the interface point are identical. The components of this vector need
to be defined in a common coordinate system, e.g., a global fixed coordinate system or
the moving frame of reference of one of the substructures. In case of modeling, e.g., a
cylindrical bearing the relative displacements of the two substructures in this joint are
locked in two directions. This restriction is incorporated by scalar multiplication of a
unit vector n., expressing the direction where the relative displacement of the two sub-
structures is locked. In the global fixed frame, the displacement constraint when sub-
structures 1 and 2 are locked in the n.;-direction referring to substructure 1, becomes,
cf. (2)

@, =n! R} (X1 + Ri(s; +u)) — (X2 + Ro(s2 + w)))
=n/ R (X1 + Ry (51 + N1y1) — (X2 + Ra(s: + Noy»))) =0, (14)

where the lower index i refers to substructure i, and u; has been interpolated by a set of
shape functions N;(s) and generalized coordinates y;. R; and R, represent the rotation
tensors of the moving frames relative to the fixed coordinate system. The kinematic ro-
tational constraints between two substructures are determined using the triads to the de-
formed structures at the interface joint. A total of three orthogonality conditions between
these unit vectors are necessary to fix the rotations in the joint. The fixed frame com-
ponents of the triad to the deformed structure is determined by the following lineariza-
tion

R =RR(g) *R;(1+9,), 5)

where the rotation ¢; from the moving reference frame is small. In order to fix an an-
gle, e.g., m/2 between two unit vectors in the triads, the orthogonality condition be-
comes

@, = (R%i)) Riis =0, (16)

where ilT =[100] and i3T =[0 0 1]. By insertion of (15) in (16), the rotational constraint
becomes

@, = RIRii9, + (i] +¢[1))R{Rolsg, — il R{ Roiz = 0. (17
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The rotations are determined by ¢; = P;y;, where P; represents the compatible rotations de-
rived from the shape functions. Hereby both (14) and (17) become linear in y; but iterations
are necessary due to the rotational constraints. Below, an example is given for the assembly
of the displacement constraints ®,. from (14)

@, =B, 1y1 —Bsoy —b=0, (18)
B,; =n/,RTRN;, b=n] R (— (X1 +Ris1) + (X2 + Rosy)). (19)

Similarly, the rotational constraint ®,. from (17) can be written

q’rc = Br,lyl + Br,2y2 —-b= 07 (20)
B, =i RIRiiiP,  B,=(i] + ®iy)"1i)R[R:isP,,  b=i/R{Rois. (21)

From (18) and (20), it can be seen that the constraints can be included in the system stiff-
ness matrix. Often in multibody dynamics, the constraints are differentiated twice with re-
spect to time and inserted in the system mass matrix. Next, constraint regularization is used
to ensure that the constraints are satisfied on the displacement and velocity level. In this
paper, the constraints are solved as they originally are formulated, and it is therefore not
necessary with constraint regularization. By using (13), the structure of the resulting con-
strained equations of motion for a multibody system consisting of 2 substructures may be
written

M, 0 0 ¥yi C 0 0 Vi K, 0 B{ yi f,

0 M, O0f[%2(4]|0 C O|[¥2(+|0 K, Bl |[|y2|=]|F

0 0 o x 0O o0 o x B, B, 0 A b
= Mi+Cz+Kz=1(), (22)
where A = 1; = —,. Because the constraints in principle introduce infinite stiffness into the

system, it becomes necessary to apply unconditional stable time integrators. In the present
case, this is achieved by means of a nonlinear Newmark algorithm.

3 Updating of system coordinates

In (22), only the system coordinates, i.e., y; and A stored in z enter as degrees of freedom
which are solved for. However, several terms in C, K, and f(¢) contain parameters related to
the motion of the moving frame of reference which are not solved. To determine these para-
meters, a prediction and correction step need to be introduced. The predicted moving frame
parameters are used to setup (22) which next is time integrated to determine the displace-
ments, velocities, and accelerations of the substructure from the predicted moving frame of
reference. If the substructure has moved too far away from the moving reference frame, the
motion of the moving frame of reference needs to be corrected. This is both to ensure that
linear theory is adequate, but also to ensure that, e.g., the gyroscopic terms in (22) are de-
termined precisely enough. The correction is performed by updating the predicted moving
frame of reference to the auxiliary (X, X, X3)-coordinate system, shown in Fig. 1. Next, the
corrected parameters are inserted in (22) until the substructure is within a chosen tolerance
from the moving reference frame.
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For clarity, the lower index defining the substructure is left out in this section and the
next following sections. Lower index “j” refers to the initial or previous time step, lower
index ‘j + 1’ to the present time step. Upper index ‘x’ defines a predicted value and for the
corrected value this index has been removed. It is assumed that the accelerations defined by
the system coordinates Z and the moving frame origin a. are constant during the time step.
Hereby, the belonging velocity and displacement are linear and quadratic varying with the
time step, respectively. Then the system coordinates 27, velocities z’; +1- and accelerations
z}‘ 41 at the time ¢, are predicted as

zj+|=z_,»+i_,«At+%i_,~At2, ij+1=ij+ijAl, Zj+]=Z/ (23)
Similarly, the motion of the moving reference frame origin is defined as

)_(c4,j+l :ic,j"’{’c.jAt‘I'%éc,jAtz» Vc,j+l :Vc,j“‘ﬁc.jAt, ﬁc,j«H :éc,jv 24)
X, j+1 18 used to construct the displacement constraints when assembling substructures in
the global fixed frame. Based on a constant angular acceleration of the moving frame of

reference during the time step the rotation increment and angular velocity become
A¢:w1At—|— %(ZjAtz, Wiy =; +(¥J‘A[, i =0, (25)
The updated rotation tensor R is determined by using quaternions. Because the quater-
nions are referred to the fixed frame, the rotation tensor R; | will transform the components
of a vector determined in the present orientation at time j + 1 of the moving frame of ref-

erence to the fixed frame. Based on the rotation increment A¢, the following quaternion
increments are determined, Krenk 2005 [20]:

Ar = cos (%AJ)) Ar = sin (%Aq})n (26)

where A¢ = R;A¢, A¢ =|A@|,andn = A(Z/A(Z). The updated quaternions are determined
from

rjy1=Arr; — Ar-rj, rjp1 =Arrj+r;Ar+ Ar xr;. 27
By usingr =rjy and [r; r 3] = r_/T +1- the updated rotation tensor then becomes
rr4 rl2 — r22 — r32 2(rirp —rrs) 2(rir3 +rrp)
Rj+1 = 2(rpry +rr3) r2— r]2 + r22 - r32 2(rpr3 —rry) . (28)
2(r3ry —rr) 2(r3ry +rry) r?— "12 - r22 + r_,%

The acceleration of the moving frame origin a. ;4 from (24) is transformed to moving
frame components for use in (12)

a1 = Rf+1ﬁc,j+1- (29)

In order to solve (22), the residual r and equivalent system stiffness matrix K are determined
by using the nonlinear Newmark algorithm, Géradin and Rixen [21]

M+ L C+K, (30

r=-Mz;, , —Cz, — Kz}, +1Q), K= e Bt
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where y = % +a, = j—‘(l + @)?, and « is used to incorporate numerical damping of high
frequency components. In the present case, C and K are not symmetric. Stability analysis of
the Newmark algorithm has originally been performed for symmetric matrices, but it turns
out that it also works in the present case. By solving KAz = r for the unknowns Az, the
following corrected values of the system coordinates are determined

¥ . . y .. - 1
Zj+1:Zj+1+AZ, Z_i+1:Zj+1+MAZ, Zj+1:Zj+l+WAZ. (31)

4 System reduction

The system reduction in this section is primarily intended for the blade substructure but
could be used for any substructure. The equations of motion for a substructure (13) are
rewritten in the form

My + Cy + Ky = g(r) =f(r) — BTk, (32)

where the displacement dependents of f(¢) in (12) have been disregarded. g(¢) is a combined
external load vector encompassing wind loads, inertial loads, and reaction forces from the
kinematical constraints. The idea of the system reduction algorithm is to decompose the
displacement vector y(¢) into a rigid body component y, (#) and an elastic component y, (¢)

Y(t):yr([)+ye(t)- (33)

These terms are next described by a Ritz basis and belonging generalized coordinates
whereby the decompositions of y,(f) and y.(¢#) into rigid body ®, and elastic mode
shapes ®,, respectively, become

Y- () = <I>rqr(t)7 (34)
Ye(t) = @.9.(), (35)

where q,(t) and q.(¢) store the rigid body and elastic generalized coordinates. The Ritz
basis and generalized coordinates are assembled in the following form

q-(1)

o=[® o], q(t)—[qe(t)] (36)
The rigid body modes are described by the regular 3 translations and 3 rotations to get a total
of 6 independent rigid body modes. ®, is not merely an identity matrix but contains addi-
tional components, because a rotation around the x- and x,-axis will give a displacement
in the x;- and x;-direction, respectively. The elastic modes ®, and thereby modal expan-
sion of y, are determined corresponding to the kinematical constraints. This is illustrated in
Fig. l1a with a fixed-base and in Fig. 1b where the elastic displacements are supported at the
points O and P. To incorporate the kinematical constraints on the elastic modes the rows
and columns for the corresponding degrees of freedom in K and M are removed resulting
in the following reduced generalized eigenvalue problem

(K-i,M)d) =0, i;=a’ 37)

The vectors entering ®, are ordered in ascending magnitude of the frequency @;. Next, o,
is expanded to full size ®, by insertion of zeros for the degrees of freedom corresponding
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to the removed rows and columns. Insertion of (33)—(36) in (32) and premultiplication with
&7 provides the following reduced equations of motion

m{ + c¢q +kq =@ g(), (38)
where
m=®"Mo
c=0"Co }. (39)
k= ®TK®

Notice that none of the reduced matrices have a diagonal structure. Now, all the elastic
modes with frequencies above a certain frequency @y are assumed to respond quasi-static to
the combined external load g(¢), whereas the remaining elastic modes respond dynamically.
Correspondingly, the partitioning of the elastic modes is subdivided into dynamic and quasi-
static components. Then ®, and q.(¢) in (36) are replaced by the following partitionings:

o, =[®, @], qe(z)=[3"] (40)

The indices “d” and “s” stand for dynamic and static components. Hereby, the displacement
vector y(¢) in (33) is reformulated as

YO =y:-() +ya () +y:(0). (41)

The static modes are not directly used, instead the quasi-static contribution is determined by
the already included dynamical modes as follows, Preumont [5]:

Fo0) = (K™ — & k; ' &;)3() = Ug(r) (42)

where
ki=®,Kd,. 43)
It is, therefore, necessary that the kinematical supports eliminate any singularity of K, which
is the case in the numerical example. The full vector y,(¢) is obtained by reordering of the

degrees of freedom and insertion of zeros corresponding to the kinematical supports. The
displacement vector y(¢) is thereby determined from

y() = Aw + Ug(1), (44)
where
q,
A=|®, &,], W= . 45
(o, @] ] @)
Hereby the modal matrices from (39) are redefined as
m=ATMA
c=ATCA ;. (46)
k = ATKA

Based on the derived system reduction algorithm, a substructure in the original system of
(22) can be reduced by insertion of (44) into (32). In the following numerical examples, the
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blade substructure has been reduced by using elastic fixed-base eigenmodes. When expand-
ing U; to full size Uy, zeros are inserted for the originally removed rows and columns corre-
sponding to the fixed boundary. B, only contains values different from zero at the boundary
degrees of freedom so B;U; = 0 and U;B7 = 0 which are used below where substructure 1
has been reduced and substructure 2 is left unchanged.

m 0 O Wi ¢ 0 0 Wi k; 0 AIBT Wi
0 M2 0 Y2 + 0 C2 0 5"2 + 0 K2 BZT Y2
0 0 0 x 0 0 o x BA; B, 0 A
Al (I-KU))fy
= f, (47)
b

It should be noted that the structure of the reduced equations of motion is similar to the
original full set of (22). Equation (44) is used to determine the original degrees of freedom
for substructure 1, i.e., y;. The velocities y; and accelerations ¥, are determined from the
following Newmark scheme:

. . v . .. 1 -
vi=Aw +—Ug, i =Aw, + —=Ug, g =f — B/ (48)

BAt BAL?

5 Numerical example

In this section, the theory is illustrated with a simplified system consisting of four substruc-
tures: one blade, rotor shaft, nacelle, and tower, labeled 1, 2, 3, and 4, respectively, as shown
in Fig. 2b. The blade and shaft substructures are fixed together and similarly with the na-
celle and tower substructures. Moreover, the tower substructure is fixed to the ground. To
connect the rotor and nacelle substructures, two main bearings B; and B, are introduced.
B is a so-called cylindrical bearing which allows rotation around the longitudinal axis of
the shaft and also displacements in the longitudinal direction relative to the nacelle. B, is a
so-called stop-bearing which is similar to By except with none relative displacements in the
longitudinal direction between the shaft and nacelle. For the formulation of the kinematical
constraints at By and B,, it is assumed that the shaft and nacelle substructures are overlap-
ping. The length L of the blade is 44.8 m with a total weight of 10 t and it is constructed
by NACA 63-418 section profiles. The cross section parameters and the mass distribution
throughout the blade are presented in Larsen and Nielsen [22]. In the following simula-
tions, the blade is not coned, the nacelle is not tilted, and the wind turbine is not yawed
from its original position. The numerical FE-model of all substructures is based on pris-
matic Bernoulli-Euler beam elements with St. Venant torsion and has 6 degrees of freedom
for each node. In the numerical tests, only the blade substructure has been reduced because
this is the most complex substructure and undergoes the largest deformations which would
otherwise require many degrees of freedom. To verify the derived reduction scheme, it is
compared to the full FE-model. In the numerical tests, only the moving reference frame for
the blade and shaft substructures are rotating. Moreover, the origin of all moving frame of
references is not moved during the simulation because these displacements are small. No
structural damping is included, i.e., Co =0 in (11). A numerical damping of o = 0.004 is
used to maintain steady constraints when only a few dynamical modes are used in the re-
duced model. This numerical damping showed no sign of changes to the response. A time
step of At =1/1000 s is used to capture all variations.
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Fig. 2 (a) Fixed frame of reference in the wind turbine. (b) The numerical model consisting of four sub-
structures

5.1 Influence on the fixed-base eigenmodes from the stiffness matrices

Due to the blade and rotor shaft substructures are fixed together, it is reasonable to believe
that the most appropriate elastic modes to describe the displacements of the blade are ob-
tained as fixed-base eigenmodes. In this section, the influence of the stiftness terms from (8)—
(10) is further investigated when obtaining the fixed base eigenmodes. As seen from (11),
the stiffness matrix consists of the elastic stiffness Ky, the geometric stiffness K,, and the
gyroscopic stiffness terms D and G which depend on the angular velocity of the frame and
angular acceleration of the frame, respectively. The following models of the stiffness matrix
when obtaining the fixed-base eigenmodes are used:

K, =K,
K, =K, +K,
K. =Ko+ K, +D . (49)

K, =K+ K, +G
K. =Ky +K,+D+G

For all situations, the same mass matrix M from (8) is used when solving the generalized
eigenvalue problem (37). The reason for examining the influence of the different stiffness
terms is to determine which are the most important for defining the functional basis for the
elastic deformations and to determine if the elastic eigenmodes obtained at one operating
situation can be used for a large operating area, i.e., with different angular velocities and
angular accelerations of the moving reference frame. The comparisons are based on the
three lowest eigenfrequencies and the shapes in the flap and edge direction of the belonging
eigenmodes. The nominal angular velocity of the rotor for this particular wind turbine is
£2, = 1.6 rad/s. Therefore, an equal size of the angular velocity of the moving frame of
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Table 1 Three lowest fixed-base

eigenfrequencies for different Kq K, K¢ Ky K
models of the stiffness matrix
w1 [rad/s] 4.63 5.16 5.15 5.16 5.15
wy [rad/s] 9.41 9.63 9.51 9.63 9.51

w3 [rad/s] 13.69 14.24 14.23 14.24 14.23

reference is used. To examine the influence of the G term, an angular acceleration of the
moving reference frame has also been included

1.6 0.4
o =| 0 | rad/s, o =| 0 rad/sz. (50)
0 0

When determining the geometric stiffness matrix, the nominal angular velocity of £2, =
1.6 rad/s is used. In Table 1, the three lowest fixed-base eigenfrequencies are given from
solving the generalized eigenvalue problem by using the five variations of the stiffness ma-
trix in (49). It appears that the eigenfrequencies for the model described by K, are the
smallest of the five models. This model is only based on the elastic stiffness matrix and,
therefore, corresponds to a situation where the wind turbine is stopped. In model K, the
geometric stiffness matrix is included and it appears that the eigenfrequencies for all three
modes are increased corresponding to an increased stiffness from the centrifugal force in
the longitudinal direction of the blade. By inclusion of the gyroscopic term D in model K,
the eigenfrequencies are slightly lowered whereby the term D reduces the stiffness. From
numerical simulations, it has shown that the geometric stiffness term is very important to
maintain a stable system, which due to the D term would otherwise become unstable. By
comparison of K, and K, it is shown that the angular acceleration of the moving frame
of reference has no influence on the eigenfrequencies. It has previously been described that
G is skew-symmetric and the possibility of complex eigenvalues therefore exists. However,
when obtaining the fixed-base eigenmodes, all eigenvalues turn out to be real. Because G
has little to no influence on the eigenfrequencies, the results for K. and K, become equal. It
is thereby concluded that the variation of the fixed-base eigenfrequencies from the stopped
situation to the nominal operation primarily is based on the geometric stiffness matrix. Be-
cause G has none influence on the eigenfrequencies only the components of the mode shapes
in the flap ®, and edge direction @, for the models K,, K;, and K, are examined. In Fig. 3,
the mode shapes are normalized with the dominating component in the tip. It appears that
&0 is dominated by a flap component, ®?® by an edge component and ®® by a flap com-
ponent. As anticipated from the variation of the eigenfrequencies, almost identical results
are presented. It is thereby concluded that even though the eigenfrequencies change from the
stopped situation to the nominal operating situation the mode shapes for the displacement
components in the flap and edge direction only change very little.

5.2 Influence of eigenmodes on the response

In this section, the elastic eigenmodes determined from the previously denoted models K,
K}, and K, are used to discretize the response of the blade. This is done to determine if it
is necessary to use different eigenmodes when the rotor rotates with different angular ve-
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Fig.4 Start-up sequence r = [0; 10] s and operating sequence t =]10; 20] s. (a) Angular acceleration (
and belonging angular velocity (
in the flap direction

)

) of the moving frame of reference. (b) Size of the concentrated load

locity. The numerical example consists of a start-up sequence and an operating sequence. In
the start-up sequence, the rotor speeds up from a stopped situation to the nominal angular
velocity, and in the operating sequence, the rotor rotates with the nominal angular velocity.
Both sequences are modeled by prescribing the angular acceleration of the moving reference
frame for the blade and rotor shaft substructure. The related angular velocity is then auto-
matically determined from (25). The following angular acceleration of each moving frame
of reference is used during the two sequences where ¢, defines the time where the nominal
operating sequence starts

2o (_ Zy 4 1), 0<t<t,
oy [ o)1), 0z .

0, t, <t.

In Fig. 4a, the angular acceleration and angular velocity are plotted for the two sequences
where f, = 10 s and the simulation ends at t = 20 s. To stress the reduction schemes, a
concentrated load in the u;-direction, i.e., flap-direction is applied to the blade at x3 ~ %L.
The reason for applying the load at this point is because the majority of the wind load is
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Fig. 5 Tip response in the flap direction. (a) FE-model during the simulated time series. (b) Normalized
tip response without quasi-static contribution. (¢) Normalized tip response with quasi-static contribution.

Ko (—), Kp (- ), Ke (—)

concentrated around this position. A concentrated load will regularly require a lot of modes
to discretize the response, which favors the reduction scheme when the quasi-static contribu-
tion from the truncated elastic modes is included. The load has the following characteristics
during the start-up sequence and operating sequence

Po(— (L) +2), 0<t<t,

Po(1+ p,cos(£2,(t — 1)) — pn), t <t.

P(t)= (52)

In the start-up sequence, the load is stepped up parabolically from P =0 at t = 0 to a par-
abolic maximum of P = P, at t,. In the operating sequence, the applied load is based on a
constant load corresponding to a mean wind velocity and a harmonic component with am-
plitude p, due to a variation in the shear wind field. In the simulations, the following values
have been used: Py =1.5 x 10° N, p, =0.1, £, = 1.6 rad/s, and ¢, = 10 s. In Fig. 5a,
the tip displacement of the blade in the flap direction u, is presented for the full FE-model
where the blade is modeled by 20 beam elements, and thereby 126 degrees of freedom. The
periods in the response are primarily based on the first eigenfrequency of the blade and for
t > 10 s the harmonic frequency of the load. In the following tests, 3 dynamical modes are
used with and without the quasi-static contribution. The derived eigenmodes are constant
throughout the simulation, i.e., the eigenmodes based on K, and K, are determined for a
situation corresponding to the nominal angular velocity of £2,, = 1.6 rad/s. The responses
from the models K,, K, and K, without the quasi-static correction i.e. U; = 0 are shown
in Fig. 5b where they are normalized with the response from the FE-model. During the first,
approximately 0.5 s large relative differences appear which are not included in the plot. As
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Fig. 6 Lagrange multiplier for displacement constraint between blade and shaft substructures in the
X1-direction. (a) FE-model during the simulated time series. (b) Normalized Lagrange multipliers for the
K. model with quasi-static contribution

Table 2 Mean value and

standard deviation, denoted by p Huy Ouy Ha O%

and o, respectively, of the

normalized response and K;,, U =0 0.988 0.002 1.000 0.005

normalized constraint. In both K, U; =0 0.993 0.002 1.000 0.004

cases, the data for ¢ > 2 s is used K. Uj =0 0.993 0.002 1.000 0.004
K,,U; #0 0.997 0.002 1.000 0.005
K;, U #0 1.001 0.001 1.000 0.004
K, Up #0 1.001 0.001 1.000 0.004

anticipated, the results from the models K, and K. are almost identical and just slightly bet-
ter than the results from model K. In Fig. 5c, the same reduced models are used together
with the quasi-static correction, i.e., U; # 0. Here, it appears that the normalized response
from the different models is increased by a constant factor of approximately 0.01. Hereby,
the model K, performs best during the first 6 s but overall the models K, and K, perform
best. In Table 2, the mean value u,, and standard deviation o,,, of the normalized response
for t+ > 2 s are shown for the three models with and without the quasi-static contribution.
From here, it can be concluded that the best overall results are obtained by using eigen-
modes derived from a nominal operating situation and inclusion of the quasi-static contribu-
tion. In Fig. 6a, the Lagrange multiplier for the displacement constraint between the blade
and shaft substructure in the x;-direction is shown for the FE-model. Here, it is shown that
the constraint ends at approximately Py at + = 10 s and has a mean value of approximately
1.35 x 10° N for ¢ > 10 s corresponding to the applied load. In Fig. 6b, the normalized
constraint by using the K. model is presented with the quasi-static contribution. This vari-
ation has a higher frequency than the response and is centered around the results from the
FE-model. Almost no difference is visible by using the three models K,, K;, and K,. This
is also presented in Table 2 with the mean and standard deviation of the normalized con-
straints. The only components entering the constraints are from the rigid body modes which
are the same no matter which model is used. Therefore, the only difference is through the
quasi-static contribution in the loading term (47) which has very little influence.
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Fig.7 Tip response with (-«---- ) and without (——) the quasi-static contribution compared to the FE-model
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5.3 Quasi-static contribution by using 1, 2, and 3 dynamical modes

In the previous section, it is shown that it has little influence which of the models K,, K,
and K. are used. In this section, it is examined if fewer than 3 dynamical modes based
on the K, eigenmodes can be used to give fair results compared to the FE-model. The
importance of the quasi-static contribution is also examined, where all the modes except
the rigid body and dynamical modes are assumed to respond quasi-static. In Fig. 7, the
tip displacement by using 1, 2, and 3 dynamical modes with and without the quasi-static
contribution is compared to the FE-model. Here, it appears that by using 1 or 2 dynamical
modes, Fig. 7a and Fig. 7b, respectively, without the quasi-static contribution results in
considerably larger deflections compared to the FE-model. However, by inclusion of the
quasi-static contribution, the response is very much similar to the FE-model and almost
identical by using 2 dynamical modes. The reason for getting these good results by using
only 1 dynamical mode is because the load applied is only in the blade direction. By using
a detailed load model, the number of necessary dynamical modes will probably rise to at
least two. Using 3 dynamical modes, Fig. 7c, it appears that the quasi-static contribution has
very little influence which also is shown in Fig. 5. It is previously shown that it has little to
none effect on the constraints if the quasi-static contribution is included. By using 1, 2, and
3 dynamical modes, the deviations from the constraint obtained from the FE-model are very
small. In Table 3, the mean and standard deviation are shown for the normalized response
and normalized constraints by using 1, 2, and 3 dynamical modes. For the constraint, it is
shown that the number of dynamical modes only is visible in the standard deviation.
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Table 3 Mean value and

standard deviation, denoted by u Huy Ouy Moy, o
and o, respectively, of the

normalized response and ng=1,0;=0 1.276 0.018 1.000 0.014
normalized constraint. In both ng=2,U0;=0 1.261 0.026 1.000 0.014

cases, the data for > 2's is used

and index ny denotes the number "' = 3U=0 0.993 0.002 1000 0.004
of dynamical modes ng=1,U; #£0 0.999 0.005 1.000 0.014
ng=2,U; #£0 0.999 0.004 1.000 0.014
ng=3,U; #£0 1.001 0.001 1.000 0.004

6 Conclusions

In this paper, it is shown how to reduce a blade substructure in a multibody formulation
where the body is able to move away from the moving frame of reference. This is done by
describing the displacement field by Ritz bases consisting of rigid body and elastic fixed-
base eigenmodes. Moreover, the quasi-static contribution from the truncated elastic modes
is included in the formulation. Based on the numerical examples during start-up and nom-
inal operation, it is shown that it has little influence if the elastic modes are obtained from
a situation where the wind turbine is stopped or from a situation where the wind turbine
operates at the nominal angular velocity. Hereby, the same mode shapes can be used for a
wide operating area without loosing much accuracy. By using a concentrated load, almost
an identical response is obtained by only using 2 dynamical modes with the quasi-static
contribution compared to the full FE-model. However, for a detailed load model, more dy-
namical modes will probably be necessary. By inclusion of 3 dynamical elastic modes, the
quasi-static contribution has no longer an important effect on the response. The displace-
ment constraint between the blade and rotor shaft substructure is also close to the FE-model
by only using 2 dynamical mode. However, the quasi-static contribution has little to no effect
on the constraints, so for a higher accuracy, more dynamical modes are necessary.
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the project “Nonlinear Multibody Dynamics of Wind Turbines.”
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is moving freely in the vicinity of the moving substructure, in principle without any
constraints to the rigid body part of the motion of the substructure. The system
reduction is based on a component mode synthesis method, where the response of the
internal degrees of freedom of the substructure is described as the quasi-static response
induced by the boundary degrees of freedom via the constraint modes superimposed in
combination to a dynamic component induced by inertial effects and internal loads. The
latter component is modelled by a truncated modal expansion in fixed interface
undamped eigenmodes. The selected modal vector base for the internal dynamics
ensures that the boundary degrees of freedom account for the rigid-body dynamics of
the substructure, and explicitly represent the coupling degrees of freedom at the
interface to the adjacent substructures. The method has been demonstrated for a blade
structure, which has been modelled as two substructures. Two modelling methods have
been examined where the first is by use of fixed-fixed eigenmodes for the innermost
substructure and fixed-free eigenmodes for the outermost substructure. The other
approach is by use of fixed-free eigenmodes for both substructures. The fixed-fixed
method shows good correspondence with the full FE model which is not the case for the
fixed-free method due to incompatible displacements and rotations at the interface
between the two substructures. Moreover, the results from the reduced model by use of
constant constraint modes and constant fixed interface modes over a large operating
area for the wind turbine blade are almost identical to the full FE model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible multibody based simulations of the dynamic behaviour of a wind turbine requires a discretization in space for
each substructure of the system. Typically, this is done by an FE method, often involving many degrees of freedom for each
substructure. In order to reduce the computational effort, reduced order models of the substructures need to be
implemented. Especially, this is necessary in stochastic analyses based on Monte Carlo simulations, or during the design
phase of a wind turbine, where multiple load cases need to be analysed. A reduced order model is also necessary in some
active vibration control algorithms, where the structural model must be processed in real time. Due to the geometric
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complexity of the blades, which otherwise requires many elements to model, the system reduction in this paper is focused
on the blades.

The basic idea of flexible multibody dynamics is to introduce a moving frame of reference to each substructure. Relative
to the moving frame elastic displacements are relatively small, rendering linear analysis possible. Hence, nonlinearities are
confined to the description of the moving frame. This is defined by a position vector and a parameter vector, also known as
a pseudovector, defining the origin and rotation of the moving frame relative to a fixed frame of reference. The standard
formulation of multibody methods requires that there is no rigid-body motion between the substructure and its moving
frame. In Agrawal and Shabana [1] an automated method is derived to eliminate the rigid-body motion of the body relative
to the moving frame. This is done by imposing reference conditions by use of a boolean matrix on the shape functions
whereby the deformation modes become consistent with the boundary conditions. In Shabana [2] it is demonstrated that
two sets of deformation modes associated with two different sets of boundary conditions e.g. simply supported and
free-free can be used to obtain the same solution provided that the moving frame is properly selected. The position and
orientation of the moving frame is defined by a set of Lagrangian coordinates that describe the rigid-body translation and
rotation. Hereby, these coordinates become a part of the degrees of freedom of the multibody system, see e.g. Nikravesh [3],
Garcia and Bayo [4], Géradin and Cardona [5] and Shabana [6]. The use of such a mixed set of referential and elastic
coordinates leads to highly nonlinear system equations. Further, as a result of the inertial coupling between the said
degrees of freedom the mass matrix depends on the referential coordinates, even when formulated in the moving frame. To
circumvent these difficulties Kawamoto et al. [7-10] suggested to let the moving frame of reference float in a controlled
way relative to the moving substructure, so these are always sufficiently close to each other, in order for the small
displacement assumption to be fulfilled. Hereby, the system matrices do not depend on the generalized coordinates by
explicitly predicting the rigid-body motion. To reduce or eliminate the gap between the predicted and actual motion, it is
necessary to regularly update the motion of the moving frame of reference as demonstrated in Kawamoto et al. [10]. The
main difference to the multibody formulation described in Agrawal and Shabana [1] and Shabana [2] is that the parameters
for the moving frame do not enter as degrees of freedom in the system state vector and that it is possible for the body to
have a small rigid-body displacement relative to the moving frame. In Kawamoto et al. [7] the updating scheme is originally
described, where the orientation, angular velocity, and angular acceleration of the moving frame are updated based on a
local triad linked to four nodes in the body. In Kawamoto et al. [8] the local triad is updated based on a polar
decomposition. In Kawamoto et al. [9,10] rigid-body modes are used to update the motion of the moving frame. In a
previous paper by the present authors [11] the same approach as described in Kawamoto et al. [8] by using a freely moving
frame in a multibody formulation is adopted. Here, the wind turbine blade is modelled by only one multibody and reduced
by a Ritz bases consisting of rigid-body and elastic fixed-base eigenmodes. Moreover, the quasi-static contribution from the
truncated elastic modes is included in the formulation. In order to get a better description of the large nonlinear
displacements of a wind turbine blade it is necessary to include more than one multibody in the blade. The purpose of the
present paper is to demonstrate a general approach for including an arbitrary number of reduced multibodies to model e.g.
a wind turbine blade. The updating scheme of the moving frame of reference in the present paper follows the same
principles as described in Kawamoto et al. [8]. A small change when updating the moving frame is presented, where the
orientation of the moving frame is updated based on the motion of two boundary nodes. It is possible to use other nodes
than the boundary nodes in the updating procedure. The selected updating nodes may even be shifted during a numerical
simulation, if this is considered favourable in reducing the displacements of the substructure relative to the moving frame.
It should be noticed that possible geometrical nonlinear elastic deformations may be further reduced or removed by
subdividing the considered substructure.

The following outline presumes a partitioning of the degrees of freedom of the substructure in the boundary
degrees at the interface to the adjacent substructures and the remaining interior degrees of freedom. Static condensation
proposed by Guyan [12] completely ignores dynamics of the interior degrees of freedom, which are described as a linear
function of the boundary degrees of freedom. Hence, the substructure is completely described by the boundary degrees of
freedom. It is well-known that this method in principle is a Ritz method, and hence leads to an overestimation of the
natural frequencies, see e.g. Bathe [13]. The so-called dynamic condensation method, proposed by Leung [14-16],
Petersmann [17] and others, is an extension of the static condensation method in the sense that a few boundary degrees of
freedom are kept and the remaining interior degrees of freedom are eliminated in terms of these. Contrary to static
condensation, the condensation matrix contains inertial and damping terms for the interior degrees of freedom and
thereby time derivatives of these, which make iterations necessary. Often the Guyan reduction is used in the first iteration.
Variants of the iterative methods have been given in [18-21]. In the present paper no iterations are performed in the
condensation matrix. The method resembles the specific realization of the component mode synthesis (CMS) method
known as the constraint-mode method, which consists of rigid-body modes, constraint modes and fixed interface normal
modes to describe the interior dynamics, Hurty [22,23]. Constraint modes are defined as static deformation modes, where
the substructure is free of internal loads, and where each boundary degree of freedom in turn is given a unit displacement
with the remaining boundary degrees of freedom fixed. Hence, these modes represent the modes available in static
condensation. The fixed interface normal modes representing the interior dynamics are determined from the generalized
eigenvalue problem of the internal degrees of freedom. Craig and Bampton [24] simplified the approach considerable by
treating rigid-body modes as a special case of constraint modes. The method in the present paper is based on this
Craig-Bampton method.
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Ambroésio and Gongalves [25] used a traditional multibody formulation with a mixed set of reference and elastic
coordinates. The elastic coordinates were later described by a reduced number of fixed interface modal coordinates.
Shanmugan and Padmanabhan [26] have described a hybrid fixed-free CMS method for rotordynamic analysis which
showed better accuracy than the traditional fixed-fixed and free-free methods. The reason for this is that the boundary
displacements in this case represent the exact coupling degrees of freedom, unaffected by the interior dynamics. This
compatibility is also achieved by the method in the present paper, and its importance is demonstrated by modelling the
blade by two substructures both by use of fixed-free eigenmodes. Hereby, compatibility at the assembling point
between the two substructures is not fulfilled, except for a large number of included eigenmodes. Moreover, the
purpose in this paper is to demonstrate that constant constraint modes and constant fixed interface normal modes can be
used over a wide operating area, where the wind turbine blade speeds up from a stopped situation to its nominal operating
situation.

2. Moving frame of reference formulation of multibody dynamics

The idea is to describe the motion of a substructure in a (x1,X5,x3)-coordinate system, which is freely moving in the
vicinity of the substructure. Further, a fixed (%;,X,,X3)-coordinate system is introduced common for all substructures.
Accordingly, fixed frame and moving frame components of vectors and tensors will be indicated with and without a bar,
respectively. The origin of the moving coordinate system is described by a position vector with the global components X,
and its rotation is determined by the parameter vector (or pseudovector) 6. The angular velocity and angular acceleration
vectors of the moving frame are specified by their moving frame components @ and «, respectively. Generally, the
substructure may drift away from the moving frame, which requires sequential updating of the position, velocity and
acceleration of the origin together with the rotation, angular velocity and angular acceleration vectors to ensure small
displacement components of the substructure relative to the moving frame, but also for the gyroscopic loads on the
substructure to be determined with a satisfying accuracy. The essential point is that the degrees of freedom for the
substructure and the parameters defining the moving frame are independently specified. Therefore, it is possible to have
rigid-body displacements of the body relative to the moving frame. This gap should be sufficiently small in order for the
small displacement assumption to be fulfilled. The gap can be reduced or eliminated by updating the motion of the moving
frame iteratively. At time t = ¢; the position of a substructure and its belonging moving frame of reference are illustrated in
Fig. 1a. s is a position vector along the moving x3-axis, identifying a given cross-section of the beam, and u(s, t) is the
moving coordinates of the displacement field for the centroid of the cross-section. u(s, t) is determined by shape functions
in the FE model and mode shapes in the reduced model, both with corresponding generalized coordinates y(t) and w(t),
respectively. Figs. 1b and c display various possibilities for updating theposition of the moving frame of reference relative to
the moving beam-like substructure at the time ¢;, 1 = t; + At where At denotes the elapsed time step. Figs. 1b and ¢ show
the cases, where the motion at one and two boundary nodes, respectively, will be used to update the parameters for the
moving frame. The latter will in most cases reduce the displacements of the substructure from the moving frame compared
to only using one boundary node in the update. Because the moving frame of reference parameters enter the equations of
motion it is necessary to iteratively update these parameters together with the motion of the substructure, which will be
described in a later section.

First, the equations of motion for a constrained multibody system are described. The position vector to a material point
within the substructure has the following moving and fixed frame components:

X(s,t) = S + u(s, t) (1)

X(s,t) = Xc + R(S + u(s, t)) (2)

(a) (b)

Fig. 1. (a) A substructure and the belonging moving frame of reference at time ¢ = t;. At time t;, = t; + At the moving frame of reference has been
updated based on: (b) the motion of one boundary node; (c) the motion of both boundary nodes.
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where R stores the components of the rotation tensor related to the moving frame. R is defined by the pseudovector 0 as
given by the Rodriquez formula, see e.g. Shabana [6]

R = cos 01 + (1 — cos O)nn" + sin O 3)

where n = 0//0) is the rotation unit vector. nn! is the outer product of this vector with itself, and i is the spin matrix
related to n. A is given as

0 —n3 np
n= ns 0 —nq (4)
—ny n 0

[n1,ny,n3] specify the components of n. These are the same in the fixed and the moving coordinate systems. The
corresponding moving frame components of the velocity and acceleration vector of the material point become

V=Vc+DS+u+u (5)

a=ac+ @+ dD)(s+u)+ 200 +1 (6)

where a = @. @ and & denote the spin matrices in moving coordinates related to @ and a. The first term v¢ in Eq. (5) is the
translational velocity of the moving frame, the second term @(s + u) is the rotational velocity, and the last term u stores the
moving coordinates of the velocity from elastic deformations and rigid-body motions inside the moving frame. The first
term a¢ in Eq. (6) denotes the translational acceleration of the moving frame origin. The term d&(s + u) is the angular
acceleration which is orthogonal on a and (s + u). The next term A@(s + u) = ® x (» x (s + w)) describes the centrifugal
acceleration. The Coriolis acceleration in moving coordinates is described by 2@u which is perpendicular to both the
direction of the velocity of the moving body and to the rotation axis. Finally, the term @ describes the moving frame
components of the acceleration of the material point as seen by an observer in the moving frame. Based on an FE
discretization the local displacement field for a beam element is interpolated in the form

U (Sep, t) = Ney(Se)Vel ()
N, 0 0 0 Ny ONs 0 0 0 Ng O

Nei(Se)=| 0 N 0 -N3 0 0 0 Ns 0 -Ng 0 O
0 0Ny O OO0 O O N4 O 0O
Ny=1-¢ Np=28-32 11, N3=(B-2819Lgy
Ng=¢& Ns=-28 438 Neg=( -l (7)

& = s¢1/Le) is a dimensionless interpolation parameter where s is a local reference length from the beginning s, = O to the
end so; = Lo of the element and L, is the reference length of the beam element. y;(t) is the degrees of freedom of the FE
model of the substructure i. In a beam model they represent the moving coordinates of the nodal displacements and
rotations relative to the moving frame of reference and N;(s) is an interpolation matrix. The equations of motion of the
substructure i are conveniently derived using analytical mechanics using an extended Lagrangian to account for the
kinematic constraints, in combination with the kinetic energy T = T(y;,y;) and the potential energy U = U(y;) from all
substructures. The latter contains contributions from the strain energy and conservative external loads Q;(y;) such as
gravity, in addition to vectorial quantities as the non-conservative loads Q. ;(y;). In principle, these loads may be linearized
in the applied moving frame of reference. The non-conservative loads are caused by the follower character of the
aerodynamic loads. The kinetic energy is most convenient determined by use of the moving frame components of the
velocity vector v from Eq. (5). In a slightly modified version of those given by Kawamoto et al. [8] the resulting equations
become

M§; + (Co; + 2G)Y; + (Ke; + G; + D; + Kg p)y; + Bl (¥4
T
=—Mgac; —Joi+J0; + Qei¥) + Quc (Vi) (8)

where the Lagrange multipliers Z; contain the global components of the reaction forces and moments conjugated to the
kinematic constraints and BiT(y,-) is the constraint matrix. Because the constraints have been formulated in the fixed frame
of reference the components of Z are also in the fixed frame. The symmetric matrices Cp,; and K, ; denote the structural
damping and elastic stiffness matrix, respectively. The latter includes bending, torsional, and axial stiffnesses. K, ; denotes
the geometrical stiffness matrix. For a beam-like substructure of the length L this may be written as

K, ;= Q¢ t ANy dNy, d 9
g = ()/LQ3(X3a ) dx; dxs X3 9

where Q3(x3, t) represents the distribution of the centrifugal axial force for Q = 1, so Qz(t)Q3(x3, t) denotes the axial force

at the position x3. Ng; includes the two first rows in N; which represent the two displacement components orthogonal to

the beam axis. For a wind turbine blade the axial load is caused by the centrifugal and gravity forces. During operation the
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geometric stiffness from the centrifugal axial force will assist to stretch out the blade corresponding to an increased
stiffness and thereby reduce the displacements in the flap direction. Moreover, this term has shown to increase the stability
of the numerical model. The other matrices and vectors are defined as

Mi = /I: N;FNI,U dX3, MO,i = /[_ Nlu dX3, D,' = /]_ N;rd)ld)lN,,u dX3 (10)
G = /L Nl @Njudxs, Jo; =of /L SNijudxs, Jp; =] /L S@;N;ptdx3 (11)
Ci=/LNiT°?iNi/1dX3, Jo,i=°‘iT/L§NiﬂdX3 (12)

M; is the conventional symmetric mass matrix of the body in the moving frame of reference, which in the present
formulation is independent of the moving frame of reference parameters. u = p(s) denotes the mass per unit length. My ; is
a matrix representing the inertial effect of uniform translation. The effect of centrifugal forces due to elastic deformations is
contained in the symmetric matrix D; and the gyroscopic forces are represented by the skew symmetric matrix G;. The
remaining Jo; and J, ; terms are couplings between the reference position and the shape functions. In Kawamoto et al. [10]
it is shown how D;, G;, and G; can be simplified by extracting &; and &; outside the integration for isoparametric volume
elements. For ease the nonlinearity displayed by the dependency of y; in the load vector is neglected, whereby the
equations of motion conveniently are written in the form

Myy; + Ciy; + Kiy; + Bl (¥ Z; = fi(0) (13)
where
C = cO,i +2G;, K;= Ke,i + C,‘ +D; + Kg’,‘ (14)
T il T
fi(t) = —Mypaci —Joi+J2;+Qci+ Qnci (15)

C; and K; may be interpreted as resulting non-symmetric damping and stiffness matrices for the unconstrained
substructure.

To set up the equations of motion for a multibody system it is necessary to introduce kinematical constraints in order to
incorporate compatibility of the mutual displacements and rotations of the substructures. In relation to wind turbines,
displacement constraints between the rotor shaft and the nacelle are specified at the bearings of the nacelle. Rotational
constraints are e.g. prescribed between the rotor shaft and the blade substructure in terms of a controlled pitch angle. The
kinematic constraints are vector relations with components, which need to be defined in a common coordinate system e.g.
a global fixed coordinate system or the moving frame of reference of one of the substructures. The following constraint
equations can be generalized to an arbitrary number of constraints and substructures, but are here shown for two adjacent
substructures. Below, s; g and s; o denote the referential position vectors in the respective moving frames, defining a point
in substructures 1 and 2 at which a kinematical displacement constraint is specified, and u; g and u, o are the
corresponding displacement vectors. A displacement constraint which fixes the position of two arbitrary points in the
substructures 1 and 2 becomes, cf. Eq. (2)

Dy =X +Ry(S1 0+ Uy 0) — X2 +Ry(S30 +Upp))
=Xc1 +R1(S1,0 + N1 g¥1) — X2 + Ra(S20 + N2 gy2))
=By1y1 — B2y, —b=0 (16)

Byi =RiNjg, b=-X:1 +RyS10)+ X2 +RyS20)

In an FE formulation, where u;(s;, t) is interpolated by a set of shape functions N;(s;) and degrees of freedom y;(t),
u; o(t) = N; oy;(t), where N; o = N;(s; ). Further, R; and R, represent the rotation tensors of the moving frames relative to
the global coordinate system. Let ¢; denote the local rotation components of the interface node relative to the moving
frame of substructure i. The rotation tensor of the said node is then given by

R = RiR(¢; ) ~ Ry + ;) (17)

where the indicated linearization presumes |@g ;| <1. Let n; and n; be the local components in the moving coordinate
systems of unit vectors attached to the interface nodes in substructures 1 and 2. The rotation of these vectors is given as
Rin; and R3ny, respectively. Assume that the vectors before and during the elastic deformation of the interface nodes
remain orthogonal. Then the rotational constraint can be specified as

®re = (Rny)'REN; =0 (18)

A total of three scalar products are necessary to fix the rotations in the joint. In the following derivations, focus is on a
fixed interface where the unit vectors are orthogonal throughout the simulations. By insertion of Eq. (17) in Eq. (18) the

Please cite this article as: K. Holm-Jgrgensen, & S.R.K. Nielsen, A component mode synthesis algorithm for multibody
dynamics of wind turbines, Journal of Sound and Vibration (2009), doi:10.1016/j.jsv.2009.05.007



dx.doi.org/10.1016/j.jsv.2009.05.007

6 K. Holm-Jorgensen, S.R.K. Nielsen / Journal of Sound and Vibration n (xu) mi-am

rotational constraint becomes
®rc = nyR3R 11 @1 o + N{R[ Ry iz 05 o — N{RIR N, + @] o RIRo 12005
=nJRIR 1Py gy; + n{R{Ry1,P; oy — n{R{Ryn; + (P1 oy1) i RIR 1P, oy
= Br,lY] + Br,2Y2 -b=0 (19)

B, =nJRIRi;P1o, B,y =n]R{RyiPy0, b =n]RIRyny — (P oy i RIRy1,P; oys, (20)

The rotations are determined by ¢, o = P; gy;, where Pj(s;) represents the compatible rotations derived from the shape
functions. Hereby, both Eqgs. (16) and (19) become linear in y; but iterations are necessary due to the rotational constraints.
This can be seen in b in Eq. (20), where it is necessary to insert predicted values of y; and y, until it has converged.

Next, the global equations of motion are formulated by combining the equation of motion Eq. (13) for each substructure
with the kinematical constraints Eqs. (16) and (19). For ease this is only demonstrated for a multibody system consisting of
two substructures where the equations attain the form

M, 0 07[¥ C; 0 0][Vi Ki 0 B[]y fi
0 My 0 |V2|+|0 C O0||¥2/+|0 K, BJ||y2]|=|F2 -
0 0 0] 0 0 0| B, B, 0|4 b 21
= Mz + Cz + Kz = f(t)

where 1 = i; = —J,. Because the constraints in principle introduce infinite stiffness into the global system it becomes

necessary to apply unconditional stable time integrators. In the present case this is achieved by means of a nonlinear
Newmark algorithm.

3. System reduction

The following reduction scheme deals with a specific substructure for which reason the index i is omitted for ease.
Hereby, the equations of motion for the substructure equation (13) are rewritten in the form

My + Cy + Ky = g(t) = f(t) — BT (22)

g(t) is a combined load vector encompassing wind loads, inertial loads, and reaction forces from the kinematical
constraints.

3.1. System reduction by use of fixed—fixed and fixed—free eigenmodes

At first, the vector y of dimension n is partitioned into boundary y;, and interior y, degrees of freedom i.e. yT = [yg vl
The dimensions of y, and y, are n,, and ne = n — ny, respectively. The method will be illustrated with beam elements with 6
degrees of freedom for each node. Hereby n, takes either the value 6 or 12 depending on the substructure has a free end or
not. The two different sets of boundary conditions are sketched in Figs. 2a and b. When a blade is modelled by two or more
substructures the boundary conditions in Figs. 2a and b are used for the innermost and outermost substructures,
respectively. In Figs. 2c and d constraint modes from a unit displacement for the two types of boundary conditions are
sketched. Similarly, in Figs. 2e and f constraint modes from a unit rotation are sketched. Obviously, the constraint modes
account for the rigid-body motion of the substructure. Eq. (22) takes the following form by use of the partitioning of y:

My, My | |9 Cop Che | |V Kpp Kpe | [¥p 8
.|+ o+ = (23)

Mgy Mee | | ¥e Cep Cee || Ve Kep Kee || Ve ge
Next, the interior degrees of freedom y, are written as a combination of the quasi-static response from the boundary
degrees of freedom y; superposed with a modal representation of the remaining part of the internal response as follows:

Ve = Koo' Kby, + @q (24)
q1(t)

a=| : |, ®=[®; - @] (25)
A, (O

®@; is the jth fixed interface normal mode and g; is the related generalized coordinate. In Figs. 2g and h an example of a fixed
interface normal mode is sketched by use of the two types of boundary conditions. These eigenmodes are determined from
the following generalized eigenvalue problem

(Kee(, @, Q) — 07 Mee)®j = 0 (26)
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Fig. 2. (a) Boundary conditions for interior substructures. (b) Boundary conditions for substructure with a free end. (c)-(f) Constraint modes based on a
unit displacement and unit rotation of the interface nodes. (g)-(h) Fixed interface normal modes.

It is intended that the eigenmodes are constant in time, whereby it is necessary to select the components of the angular
velocity vector, angular acceleration vector, and the operating angular frequency, which all are used to set up the stiffness
matrix in Eq. (14). w; denotes the undamped angular eigenfrequencies of the substructure with fixed boundary degrees of
freedom yj, = 0. The eigenmodes are ordered in ascending magnitude of the frequency w; and those with frequencies above
a certain threshold frequency wq are truncated, whereas the remaining eigenmodes respond dynamically. Then, the
dynamic degrees of freedom q4 and dynamic eigenmodes ®; become

q1(0)
Qnd(t)

where q4 has the dimensions ny <ne. The degrees of freedom y(t) and their time derivatives defining the substructure can
hereby be presented in the following reduced form:

y(©) = Aw(b), y(t) = AW(D), V() = AW(D) (28)
where

I o Vb
— K] -
v %}’ V=-K.K,, w_{qd} (29)

Insertion of Eq. (28) in Eq. (22) and premultiplication with AT provide the following reduced equations of motion:

mw + cw + kw = ATg(t) (30)
where
m = ATMA
c=ATcA (31)
k = ATKA

Notice that none of the reduced matrices have a diagonal structure. To set up the system equations of motion it is necessary
to partition BT and f in Eq. (22) consistently with the partition of y.
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3.2. System reduction by use of fixed-free eigenmodes

To be used for later comparison an alternative variant is used to model the innermost substructures of the blade. This is
done by use of the procedure described above for the outermost substructure. Hereby, the innermost substructures are
described by use of fixed-free eigenmodes and the dimension of the boundary degrees of freedom is nj, = 6 corresponding
to the fixed end. Hereby, the first six columns in A correspond to rigid-body modes.

3.3. Reduced system of equations
Based on the derived system reduction algorithm a substructure in the system can be reduced by use of Eq. (30)

together with Eq. (28) for the constraints. For the illustrative example described by Eq. (21) substructure 1 will be reduced,
whereas substructure 2 is left unchanged

m 0 0][W ¢ 0 o)[wi] [k 0 A[B][w, ATf,
0 M, 0/|V2/+|0 C O||V2(+| 0 K, B) |[|[¥2|=]| T, (32)
0 0 o0]| J 0 0 0| J B/A; B, 0 2 b

The state vector related to the reduced system is now defined as
Wq T
Z(t)= | ¥2 (33)

A

4. Updating of system state vector and moving frame of reference

At first an introductory overview of the following updating algorithm will be given based on a number of 2D
illustrations depicted in Fig. 3. The updating scheme of the moving frame of reference follows the same principles as
described in Kawamoto et al. [8]. The orientation of the moving frame of reference with the related rotation tensor R(t) has
been indicated at various levels of the updating procedure. The corresponding degrees of freedom vector y(t) is
symbolically indicated by the position vector of the interface node, describing the position and rotation of the substructure
from the moving frame, see Fig. 3a. At the time t = t; the system state vector z; = z(t;) along with its time derivatives
z; = (tj) and Z; = Z(t;) are known. Additionally, several parameters describing the motion of the moving frame of reference
for each substructure are known. These are the global components of the position vector of the origin X.; = Xc(tj), the
related velocity vector V. ; = Vc(t;), and acceleration vector d.; = ac(t;), as well as the components of the rotation tensor
R; = R(tj) and the moving frame components of the angular velocity and angular acceleration vectors ; = a(t;), and
a; = a(t;), respectively. All these known parameters and system vectors make the starting point at the determination of the

(a) (b)

(f)

(1) (1)
J+1 (2) Rj+1

Fig. 3. (a) Moving frame and substructure at the initial situation at time t = t;. (b) Prediction of moving frame and system state vector at time
tiy1 = tj + At. (c) Determination of the system state vector for the first iteration step. (d) Updating of the moving frame based on the motion of two
boundary nodes. (e) Updated position and orientation of the moving frame. (f) Determination of the system state vector for the second iteration referring

the motion of the substructure to the updated moving frame of reference.
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corresponding quantities at the new time t;,; = t; + At, on condition that the new load vector f;,; =f(tj1) can be
calculated. In what follows an upper index (k) is used to specify the iteration step during the c0n51dered time step. Initially,
predicted values based on simple Taylor expansions for the vectors related to the moving frame and the moving
substructure at the time ¢;,  are determined from the corresponding values at time ¢;. Predicted values are denoted with an
upper index k = 0, and the prediction step has been sketched in Fig. 3b. Next, the equations of motion Eq. (32) are solved
with the predlcted values entering the system matrices and vectors. Hereby, the nodal displacement vector for the first
iteration y] +] together with its time derivatives are determined, see Fig. 3c. Ay indicates the displacement difference
between predicted and corrected estimates, which should be zero when the displacements of the substructure from the
moving frame are converged. Based on the displacements of the substructure from the moving frame of reference another
convergency criterion is set up. If these displacements are above a chosen tolerance the moving frame of reference is
updated. The position of the origin together with its time derivatives is updated based on the motion of the belonging
boundary node of the substructure. The orientation together with angular velocity and angular acceleration is updated by
use of the motion of two boundary nodes, as sketched in Fig. 1c. In Fig. 3d both nodes are sketched, where they have been
labelled A and B and the position vector in Eq. (1) from the origin of the moving frame to these nodes is denoted x4 and xg,
respectively. In Fig. 3e the updated position and orientation of the moving frame of reference are illustrated. If convergence
has not been achieved the updated system equations are solved again with updated system matrices and vectors. Hereby, a
new nodal displacement vectory: 2] is determmed referring the motion of the substructure to the updated moving frame of
reference given by the rotation tensor R ], see Fig. 3f. This iteration continues until convergency is obtained.

Next, the indicated updating algorlthm is described in a formal way. At the instant of time ¢ = t;, ; the vectors related to
the origin of the moving frame of reference are predicted by the truncated Taylor expansions of the solution from the
previous time step

{0 _x L. 15 A2 O _g 5. ;0 _ 5
xcj+1_xCJ+chAt+2acJAt, VCJ+]—VCJ+aCJAt, aiq =4 (34)
x(c?])H is used in the displacement constraints Eq. (16). The moving frame components of the vectors defining the rotation of
the moving frame of reference are similarly predicted by the Taylor expansions
(0) 2 (0) o _ ..
Az// 1 = WAL+ 2oz]At 0 =0+ o;At, %y =9 (35)

Aw( denotes the movmg frame components of the predicted rotation vector of the movmg frame during the interval At.
The rotatlon tensor R¢ )], corresponding to the moving frame orientation after the rotation Au// , is next determined by use
of Rodriguez formula Eq. (3)
0 0
R?, = RRAY) (36)
In Eq. (15) the moving frame components of the acceleration of the origin are needed. These are determined from the
corresponding global components via the transformation

0) OT 50
acJ+1 R}+1 cj+1 (37)

Next, the system coordinates are predicted based on the truncated Taylor expansions

z](g)] =7Z; + Z;At + 22 A2, Zﬁ)] =z + ZAt, z](g)l =7 (38)

Hereby, all predicted parameters for the moving frame of reference together with the predicted system coordinates are
determined. The damping matrix C©), stiffness matrix K9, and mass matrix M from Eq. (32) are determined next. Here, it
should be noted that the mass matrix is independent of the moving frame parameters and thereby constant. In order to
solve Eq. (32) the residual r and equivalent system stiffness matrix K are determined by use of the nonlinear Newmark
algorithm, Géradin and Rixen [27]

— M5O _ Oy 070 L0 g__1 70 4 KO
= sz+ -C z - K z;, +f]+1, K_ﬁAtzM ﬁAc +K (39)
where y = %4— o, f= 411(1 + )2, and o is used to incorporate numerical damping. By solving KAz = r for the unknowns Az,
the following corrected values of the system coordinates are determined:

11(1)1 = ](3)1 + Az, 151)1 = zj(g) ﬁAz zj(.l)1 = 11(3)1 + ﬂA—tzAZ (40)

Hereby the displacement and rotation degrees of freedom of the substructure referred to the moving frame of reference
can be determined together with their time derivatives. In case of using the reduced models the transformations to the full
set of degrees of freedom are performed by use of Eq. (28). The displacements and rotations at the boundaries are referred
to as uy, @4, and ug, @p. The same notation follows for the time derivatives of the displacements and rotations. The used
convergency criterion is based on the position of the moving frame of reference. Therefore, the Euclidian norms of u, and
up are used. If these norms are within a chosen tolerance there is no need to update the moving frame of reference and the
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present solution is used as input in the new time step. If this is not the case, the moving frame of reference parameters are
updated.

The position, velocity and acceleration of the origin of the moving frame of reference are updated by use of Egs. (2), (5)
and (6)

—(k+1)

2K (k)
CJ+1 - xc,}+ R]+1 (41)
—(k+1 k k K
Vi) =00+ R (01 (5 + ug) + 1) (42)
0D _ 300 5 (@® L a® )
il =gt +R (@ i1 T 95 1+1)(s+uﬁ)+2 ]+]uA + i) (43)

In the following, the update of the orientation, angular velocity and angular acceleration of the moving frame of reference
is described, which is based on the motion of both boundary nodes A and B. The purpose of the present update is to align
the beam axis and thereby the x3-axis so it passes through both nodes. In order to determine the orientation of the
remaining x;- and x,-axes the average rotation ¢3 around the beam axis is used, which is given by the third rotation
component at the two nodes

®3=3Pp3+ Pa3) (44)
Then, the two basis vectors n; and n, for the x;- and x,-axis are given as

cospsz —singz 0
[my ny n3]= | singps cosgpz O (45)
0 0 1

The purpose is to rotate the full basis through the minimum angle bringing one of the vectors into a given new direction.
In the present case the vector n3 is to be rotated into the direction of the beam axis defined by the unit vector
(Xg — Xa)/|Xg — X4|, where X, and xg are the position vectors of the end nodes relative to the moving frame origin cf. Fig. 3d.
First, the mean direction is defined by the unit vector n

Xp — X4
n=n3+———, n=n/n| 46
ER ey / (46)
Next, a Householder transformation is used, which corresponds to a reflection in the plane orthogonal to the unit vector
n, Krenk [28]

AR =(1-2nn")[n; n, —ny] (47)

Hereby, a new set of unit vectors contained in AR are determined, which describe the updated orientation seen from the
present orientation of the moving frame of reference. The updated rotation tensor is given by, cf. Fig. 3e
(k+1) (k)
R =R AR (48)
In order to update the angular velocity it is used that the global components of the velocity at node B should be the same
in the present known configuration of the moving frame and in the updated one. The global components of the velocity at
node B are determined by use of Eq. (5)

k k)  ~(k .
Vi) | + R (@) (55 + up) + iip) (49)

B =V
where sp given in the updated moving frame of reference marks the node B. The updating strategy presumes that the local
displacement and velocity at B vanish, cf. Fig. 3e. Hereby, by use of Eq. (5) and the results from Eq. (49) the following

relation is obtained for the updated angular velocity

R(k+1)

e (Vg — (k+1))_ ~(k+]) sg (50)

c,}+1 ]+1

The two first rows give a solution for the two first components of the angular velocity w(]’i]t]l) and w(kfl) The third
component is determined from the previous known value and the average of the belonging angular velocity component of
the two nodes

k+1 k . )
(3;4) w(gJ)H +HPp3 + Pa3) (51)

Similarly, the angular acceleration is determined by use of Eq. (6)

k k (K ~(k ~k ~k
ap=al) | + RO @Y + & 0 sp + up) + 207, g + iip) (52)
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RK+DT - (k+1) ~(k+1)

< =(k+1) k)
i1 @B — A y) — @ @ Sp = S (53)
(k+1) (k 1, .
oS =) + g3 + daz) (54)

5. Numerical example

In this section the theory is illustrated with a simplified system consisting of a wind turbine blade divided into two
substructures labelled 1 and 2. The fixed frame of reference is shown in Fig. 4a and the two substructures are shown in
Fig. 4b. The origin of the initial moving frame of reference (x; 1,5 1,%3 1) belonging to substructure 1 is identical to the
fixed frame of reference (%;,%;,X3) whereas the origin of the initial moving frame of reference (x4 3, %, 2,X3 ») belonging to
substructure 2 is displaced half the blade length in the %3-direction. In total 11 constraints are introduced where six fix
displacements and rotations at the assembling point of the two substructures. The remaining five constraints are used at
the origin of substructure 1. Here, three constraints fix the displacements and two constraints fix the rotation around the
X5- and X3-axes. L.e. at the root it is only possible for the blade to rotate around the X;-axis. The moving frame of reference
for both substructures is updated based on the motion of the two end points in each substructure. The updating algorithm
is described in Section 4 and the x3-axis for the two moving frames are sketched in Fig. 4c. The length of the blade is 44.8 m
with a total weight of 10t and it is constructed by NACA 63-418 section profiles. The cross section parameters throughout
the blade are presented in Fig. 5. A Young’s modulus of E = 3 x 101° Pa, shear modulus of G = E/2.6, and density p =
2 x 103 kgm~3 are used for all sections. The element stiffness matrix is setup in principal directions and rotated the angle
¢ to align with the (xq,x;)-coordinate system, see Fig. 5f. The FE model of both substructures is based on prismatic
Bernoulli-Euler beam elements with St. Venant torsion and has 6 degrees of freedom for each node. Both substructures
have equal reference length of 22.4m and both are discretized by use of 10 prismatic elements of equal length. This FE
model constitutes the full model which the reduced models are compared to. No structural damping is included i.e. Cy = 0
in Eq. (14) and o = 0.08 is used to incorporate numerical damping in the nonlinear Newmark algorithm with constant time
steps of At = 0.02s. The moving frames are updated in each time step. In Holm-Jergensen and Nielsen [11] the three lowest
undamped fixed-base circular eigenfrequencies of the blade are w{ =5.15, w, = 9.51, and w3 = 14.23. In determining
these a constant angular velocity of the moving frame corresponding to the operating frequency of the rotor is used to set
up the stiffness matrix.

The purpose of the numerical simulation is to verify that the results from the reduced model based on fixed-fixed
interface normal modes for substructure 1 are almost identical to the full FE model. Moreover, the importance of using
compatible interface normal modes at the assembling point to substructure 2 is illustrated by use of fixed-free interface
normal modes for substructure 1, with the free end at the assembling points. For both reduced models, substructure 2 is
modelled by use of fixed-free interface normal modes. For comparison of the two reduced models it is chosen to keep the
same number of degrees of freedom. When referring to the number of fixed-fixed and fixed-free interface normal modes, it
is only the modes with the lowest eigenfrequencies cf. Eq. (26) which are used and the remaining modes are truncated. In
one case substructure 1 has 12 boundary degrees of freedom and three fixed-fixed interface normal modes. In the other
case substructure 1 is modelled by 6 boundary degrees of freedom and nine fixed-free interface normal modes. In both

(a) (b) (c)

)/I:xl,i’:s T3
2,1, T2 T2
| @»CL , T
— i 1,1,41 —~—u

Fig. 4. (a) Fixed frame of reference in the wind turbine. (b) In the numerical model the blade is divided into two substructures labelled 1 and 2. (c)
Ilustration of the x3-axis for the moving frame of reference belonging to substructure 1 and 2 denoted by x3 1 and X3 5, respectively.
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Fig. 6. (a) Load component in the x,-direction. (b) Load component in the X;-direction.

cases substructure 2 is modelled as fixed—free with a total of 6 boundary degrees of freedom and 12 fixed-free interface
normal modes. Hereby, the FE model has 132 degrees of freedom and the reduced models have 33 degrees of freedom.

5.1. Exterior load and fixed interface normal modes

The numerical simulation consists of a start-up sequence and an operating sequence. The start-up sequence is split in
two where the first sequence 0 <t < t; speeds up the blade from a stopped situation at t = 0 to the nominal angular
velocity Q@ = 1.6rads™! of the rotor at t = t1. In the second sequence t; <t < ty an exterior load in the global X, -direction
is stepped up. In the operating sequence t>t, the exterior load is based on a constant load corresponding to a mean wind
velocity and a harmonic component due to a variation in the shear wind field. The sequences are modelled by applying
concentrated loads at a node in the beam model placed at the moving coordinate x3 ; = 6.72 m. The reason for applying the
load at this point is because the maximum intensity of the wind load is concentrated around this position. The components
of the applied exterior load at substructure 2 are shown in Fig. 6 and defined as

[010]T1P0 1— cos (2%t , O<t<ty
2 t
2
f20 = RI[1 0 0/P, *(t_t]> +2l70) 0 farsg 52
-t -t

RI[1 0 0]'P; (1 + pcos(Qn(t - t3)) —p), t>ty

Here, it is seen that the applied load in the sequence 0 < t < t; is oriented in the edge direction in order to speed-up the
blade. In the other two sequences the load is oriented in the X;-direction i.e. primarily in the flap direction. In the
simulations the following values have been used: Py = —3.5x 10*N, P{ =15 x10°N, p=0.1, @, = 1.6rad —s~1,
t; = 10s, and t; = 20s. Based on the applied load the components of the angular velocity and angular acceleration of the
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moving frames during the time series are determined by use of the FE model. The orientation of the moving frames given
by the parameter vector 6 is determined by use of Spurriers algorithm, see e.g. Crisfield [29]. All three components of the
parameter vector, angular velocity, and angular acceleration for the two moving frames are plotted in Fig. 7. Here, it is
shown that for both substructures 1 and 2 the first component of the angular velocity of the belonging moving frame of
reference is almost constant at wq 1 ~ wj ~ 1.6rad s~ in the operating sequence t>t, and considerably larger than the
second and third components. The reason for not being constant is because no generator is applied to control the angular
velocity. Another reason is that the blade is twisted resulting in both flap and edge wise displacements when a load in the
flap direction is applied. It can also be seen that all second and third components for substructure 1 are considerably
smaller than for substructure 2. This is due to the small displacement in the X;-direction at the end node of this
substructure which leaves the X3 1-axis almost orthogonal to the X;-axis. Moreover, in the operating situation the angular
acceleration is close to zero. When creating the fixed interface normal modes Eq. (26) for the reduced models it is
computational advantageous if these are constant throughout the simulated time series. Similarly with the constraint
modes listed in Eq. (29). As seen from Eq. (14), the stiffness matrix consists of the elastic stiffness K¢, the geometric stiffness
K¢ and the gyroscopic stiffness terms D and G which depend on the angular velocity and angular acceleration of the moving
frame, respectively. In a previous paper by the authors [11] three different stiffness matrices were used to extract the
eigenmodes for a blade modelled by fixed-free eigenmodes, depending on different values of the angular velocity and
angular acceleration vectors and different terms of the included stiffness matrices from Eq. (14). Small differences were
observed but the overall best results were obtained by use of

n
K = Ke + Kg(Qn) + D(@n), on=| 0 (56)
0
(a) (b) (c)

< g
(d) (f)
0.05
0.06
0.04
< ) 0 S
0.02
0
1 1 7005 1 1
0 10 20 30 0 10 20 30
ts] t[s]
(9) (h)

0 10 20 30
t [s]

Fig. 7. Moving frame components of the parameter vector 6, angular velocity w, and angular acceleration « for the two moving frames. (a)-(c) First
component. (d)-(f) Second component. (g)-(i) Third component. (--) Substructure 1. (—) Substructure 2.
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which is used for both substructures in the present simulations. For all situations the same mass matrix M from Eq. (10) is
used when solving the generalized eigenvalue problem Eq. (26).

5.2. Results for response and constraint

Results for the tip position of the blade in X; during the time series 10 < t < 30s are shown in Fig. 8a for the FE model,
and the two reduced models with fixed-fixed and fixed-free interface normal modes for substructure 1. The results from
the FE model are used to normalize the results from the reduced models shown in Fig. 8b. The reason for not displaying the
first 10s is because these displacements in %; are small, and the normalized response of the reduced models is outside the
area of interest. In Fig. 8b the results by use of the fixed-fixed modes are very close to the full FE model, even though these
modes are constant throughout the time series. Moreover, these modes are based on a constant angular velocity around
just one axis, where it is shown in Fig. 7 that this is not the actual case, especially for substructure 2. By use of the
fixed-free modes the size of the response is notably changed. The importance of using compatible interface normal modes
at the assembling point between the substructures is hereby demonstrated.

In Fig. 9a the Lagrange multiplier for the displacement constraint in the %;-direction at the root of the blade is shown.
Here, the reaction force is approximately P; at t = 20s and has a mean value of approximately 1.35 x 10° N for t>20s
corresponding to the applied load component. In Fig. 9b the normalized Lagrange multiplier by use of fixed-fixed and
fixed-free interface normal modes for substructure 1 is presented. Again, the best results are obtained by use of fixed-fixed
modes, but the results by use of fixed-free modes are at least centred around the results from the FE model.
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Fig. 8. (a) Tip position in %;. (b) Normalized tip position in %;. (—) FE model. (- -) Fixed-fixed modes. (—) Fixed-free modes.
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Fig. 9. (a) Lagrange multiplier for displacement constraint in the X;-direction at the hub of the blade. (b) Normalized Lagrange multiplier. (—) FE model.
(--) Fixed-fixed modes. (—) Fixed-free modes.
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6. Conclusions

In this paper it is demonstrated that an FE model of a wind turbine blade divided into two substructures in the used
multibody formulation with completely freely moving local frames of reference efficiently can be reduced by use of
constraint modes and fixed interface normal modes. Even by keeping these modes constant throughout the numerical
simulations, where the blade goes from a stopped situation to the nominal operating situation, the results are almost
identical to the full FE model. The importance of using compatible modes at the assembling point between the
substructures of the blade is demonstrated. Further, an updating algorithm for the freely moving frame based on the
motion of two arbitrary nodes in the substructure has been devised and its applicability has been demonstrated by use of
the end nodes in the belonging substructures. For smaller displacements of the substructure from the moving frame of
reference and to get a better nonlinear description of the displacements the reference length of the two multibodies should
be further examined instead of splitting the blade into two multibodies of equal reference length.
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