Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Annotated text databases in the context of the Kaj Munk corpus
One database model, one query language, and several applications
Sandborg-Petersen, Ulrik

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Sandborg-Petersen, U. (2008). Annotated text databases in the context of the Kaj Munk corpus: One database
model, one query language, and several applications. InDiMedia, Department of Communication, Aalborg
University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 17, 2024

https://vbn.aau.dk/en/publications/30d456f0-921e-11de-90ca-000ea68e967b

Annotated text databases
In the context of the Kaj Munk corpus:
One database model, one query language,
and several applications

Ulrik Sandborg-Petersen

May 5, 2008

PhD thesis

Submitted in partial fulfilment
of the requirements for
the ph.d. degree.

Doctoral School in
Human Centered Informatics,
Aalborg University,

Denmark

To my wife and my daughter

Contents

| Theoretical foundations 17
1 Introduction 19
1.1 Introduction e 19
1.2 Empirical application o 20
1.3 Whatisadatabasesystem?, 0. 2
1.4 Whatis an annotated text database system? 22
1.5 Emdros 23
1.6 Recurringexample 25
1.7 Dissertationplan 25
2 Literature review 29
2.1 Introduction e 29
2.2 Other models forannotatedtext 29
2.2.1 Introduction. 29
222 XMLandSGML 30
2.2.3 Grammar-based modelsoftext. 32
2.24 Graph-basedmodels 33
2.2.5 Range-based modelsoftext 33
2.2.6 Object-oriented modelsoftext 33
2.3 Query languages for annotatedtext 33
2.4 Relationto Information Retrieval 34
2.5 Othercorpusquerysystems. 35
2.6 Conclusion e 37
3 Ontology 39
3.1 Introduction e e 39
3.2 Typeandinstance e 40
3.3 Ontologicalrelations 40
3.4 Supertypes, subtypes, and lattices 41
3.5 Conclusion 41
4 The EMdF model 43
4.1 Introduction e 43
4.2 Demandsonadatabasemodel 43
4.2.1 Introduction. 43
4.2.2 Doedens'sdemands. 44
4.2.3 Critique of Doedens’sdemands 45
4.3 TheoriginalMdFmodel 46

CONTENTS

4.3.1 Introduction. 46
432 Monads e 47
4.3.3 Objects e 47
4.3.4 Objecttypes e 47
435 Features e 48
4.4 TheabstractEMdFmodel 48
441 Introduction. 48
442 Monads e 48
443 Objects 49
444 Objecttypes e 50
445 Features 51
446 Namedmonadsets 52
4.5 The relational implementation of the EMdF model 52
451 Introduction. 52
452 Meta-data 52
453 Object-data 53
4.6 Anin-memory EMdFdatabase 54
4.6.1 Introduction. 54
4.6.2 EmdrosObject 55
4.6.3 InMemoryEMdFDatabase 55
4.7 Example 57
4.8 Conclusion e 58
The MQL query language 59
5.1 Introduction 59
5.2 Generalremarks 59
5.3 The MQLinterpreter 60
5.4 MQLoutput 62
55 Typelanguage 63
5.5.1 Introduction. 63
55.2 Databases 63
553 Enumerations 64
5.5.4 Objecttypesandfeatures 65
5.6 Data language (non-topographic) 67
5.6.1 Introduction. 67
5.6.2 Objects 68
56.3 Monads 70
5.6.4 Retrieval of objecttypesandfeatures 73
5.6.5 Conclusion 74
5.7 Datalanguage (topographic) 74
5.7.1 Introduction. 74
572 TheMQLofmyB.Sc.thesis. 74
573 Thepresent-dayMQL 79
574 Conclusion e 85

5.8 Conclusion e, 86

CONTENTS 5
6 The Sheaf 87
6.1 Introduction 87
6.2 WhatisaSheaf? 87
6.2.1 Introduction. 87
6.2.2 SheafGrammar 88
6.3 ThepartsoftheSheaf 90
6.3.1 Introduction. 90
6.3.2 Matched_object. 90
6.3.3 Straw e e e e e 90
6.3.4 Sheaf 91
6.3.5 FlatSheaf 91
6.4 Conclusion 92
7 Harvesting search results 93
7.1 Introduction e 93
7.2 Theproblemathand 93
7.3 Definitions of harvesting concepts 95
7.4 Ageneral harvesting algorithm 96
7.5 Determiningthe*hit” o o 79
7.6 Extending the harvesting algorithm 100
7.7 Conclusion 101
8 Annotated text and time 103
8.1 Introduction 103
8.2 Language as durationsoftime 103
8.2.1 Sequence e 104
8.22 Embedding 104
8.2.3 Resumption 105
8.2.4 Non-hierarchicoverlap 510
8.3 TheEMdFmodel 106
8.4 Criteria e 107
8.4.1 Rangetypes. 109
84.2 Singlemonad 109
8.4.3 Singlerange 110
8.4.4 Multiplerange e 110
8.5 Logical analysisofthecriteria 111
8.6 FCAvresults e 111
8.7 Applications 111
8.8 Implementation 113
8.9 Conclusion 116
Il Applications 119
9 Introduction 121

10 Implementation of the Kaj Munk corpus

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Introduction
The nature ofthetexts
XML as the basisforencoding
Text Encoding Initiative
Overview of the digitizationprocess
Conversion to an Emdros database
Conclusion

11 Principles of a collaborative annotation procedure

111
11.2
11.3

Introduction
Thegeneralidea.

The implementation
11.3.1 Introduction.
11.3.2 XML form and Emdrosform
11.3.3 Overview of annotationtool
11.3.4 Adding annotations back into the XML
11.3.5 Conclusion
11.4 Conclusion

12 Principles of the Munk Browser software

12.1 Introduction
12.2 Functional overview
12.3 Modular overview
12.4 Application of theory
12.4.1 Introduction.
12.4.2 Showing a munktxt document

12.4.3 Simplesearch
12.4.4 Harvesting
12.45 Advancedsearch

12.4.6 Find Widget functionality
12.5 Conclusion

13 Quotations from the Bible in Kaj Munk

13.1 Introduction

13.2 Electronic edition of the Danish Bible (1931/1907)

13.3 The general idea
13.4 Process
13.5 Future research
13.6 Conclusion

[l Perspectives

14 Extending EMdF and MQL

14.1 Introduction
14.2 Declarative support for structural relations
14.3 Object type inheritance

CONTENTS

CONTENTS 7

144 Typedid_ds e 176
14.5 Complex feature-types 176
14.6 FullQL support e e 177
14.7 Beyond QL 177
14.7.1 Introduction. 177
14.7.2 block_string conjunctions 178
14.7.3 powerblocklimitor. L. 178
14.8 Conclusion 179
15 Conclusion 181
Bibliography 183
A Topographic MQL: Grammar 197

B Published articles 201

CONTENTS

Acknowledgements

“No man is an island,” says John Donne. Likewise, no rese@rchrried out in a vac-
uum. | therefore have many people to thank for their part énsiinccessful completion of
this dissertation. First and foremost, my PhD supervisafeRsor, dr.scient, ph.d. Peter
@hrstrgm, whose continuing support since 1996 it has beeprivijege to enjoy. Peter
@hrstram embodies in his person the ideal concept of “theigua Professor,” whose
support and sound advice has been invaluable for me thrdw@idars, and especially
during my PhD studies. | could not have been privileged willeter supervisor.

Another person whose support | have enjoyed since 1996 isckee Professor,
teol.dr. Nicolai Winther-Nielsen. Dr. Winther-Nielsenatged the course of my life
when, in 1996, he gave me a copy of Crist-Jan Doedens’ Phl2rtis®n [Doedens,
1994], with a side-remark that | might want to implement tbatents of that book some
day. Little did | know that | would, in fact, do as he suggestuad as a result visit three
countries, gain many friends from all over the world, and bked@o do a PhD, all as a
consequence of his gifting me with this book.

| thank Bob Pritchett, CEO of Logos Research Systems foriftngpshe at a fruitful
visit in their offices in the USA during my PhD studies. | albank Professor, Dr. Eep
Talstra for hosting me at two research visits in his resegrohp, “Werkgroep Informat-
ica”, during my PhD studies.

Professor Sgren Dosenrode believed in me and was instramertbtaining funds
for my PhD studies, for which | am grateful. My colleaguesha Kaj Munk Research
Centre, cand.scient. Jgrgen Albretsen and lic.iur. AnBr@senrode, have been pleasant
colleagues whose humor and wit | have enjoyed. Another agile at the Kaj Munk
Research Centre, cand.mag. Jesper Valeur Mogensen, wiissznaling literary and lin-
guistic skills have helped me in many practical aspects ofwosk, has also been a great
inspiration in my research. Professor, Dr. Adil Kabbaj hesvged inspiration for my
work several times, and has written both the Prolog+CG softvand the Amine Plat-
form software, whose program code | have had the pleasuraviridna helping hand in
maintaining and extending over the past four years. Profdsabbaj has furthermore
taught me on a number of occasions about the nature of réseagenereal, and research
in knowledge representation in particular, for which | amatgful. | also wish to thank
Associate Professor, Dr. Kirk E. Lowery for fruitful dis@isns about technical issues.

Although we have neither met, nor corresponded, | wish tokt@sren Hornstrup for
making the texts of the Danish Old Testament from 1931 an@d#resh New Testament
from 1907 available on the Internet back in the early 19%0’i¢ also wish to thank
Sigve Bg of “Sigve Saker” in Norway (www.sigvesaker.no) sending me his proof-
read, corrected version of the Danish Bible from 1931/19Dthank Ole Madsen for
pleasant interactions concerning even older versionseoBthle in Danish.

| thank Associate Professor, dr.phil. Eckhard Bick for helph an early part-of-

9

10 CONTENTS

speech tagging and lemmatization of the Munk Corpus. | tHaekter for Language
Technology (CST) at the University of Copenhagen for lgttine experiment with and
use their part-of-speech tagger and lemmatizer.

Last, but most certainly not least, | wish to thank my wife nedMargrethe, for her
love and support. Life is trulgbaréswith you.

List of published articles

The articles referenced below are part of this PhD dissertaaind can be found ap-
pended to the main body of the dissertation. The names imfsdurackets], for example,
[RANLP2005], are used throughout the dissertation wheneaferring to one of the ar-
ticles. All of the articles are published, and have been-p@gewed internationally.

[COLING2004] Petersen, Ulrik. (2004Emdros — a text database engine for analyzed
or annotated textin Proceedings of COLING 2004, held August 23-27 in Geneva.
International Commitee on Computational Linguistics, pp90-1193.

[RANLP2005] Petersen,Ulrik. (2005Evaluating corpus query systems on function-
ality and speed: TIGERSearch and Emdrds. Angelova, G., Bontcheva, K.,
Mitkov, R., Nicolov, N. and Nikolov, N. (eds): Internatioh@onference Recent
Advances in Natural Language Processing 2005, Proceedogsvets, Bulgaria,
21-23 September 2005, pp. 387-391.

[FSMNLP2005] Petersen, Ulrik. (2006aprinciples, Implementation Strategies, and
Evaluation of a Corpus Query Systenin: Yli-Jyra, Anssi; Karttunen, Lauri;
Karhumaéki, Juhani (edskinite-State Methods and Natural Language Process-
ing 5th International Workshop, FSMNLP 2005, Helsinki,l&rd, September 1—
2, 2005, Revised Papersecture Notes in Computer Science, Volume 4002/2006,
Springer Verlag, Heidelberg, New York, pp. 215-226. DOL1007/11780885_21.

[LREC2006] Petersen, Ulrik. (2006Querying both Parallel and Treebank Corpora:
Evaluation of a Corpus Query Systein: Proceedings of International Language
Resources and Evaluation Conference, LREC 2006.

[CS-TIW2006] Petersen, Ulrik. (2006&rolog+CG: A Maintainer’s Perspectiven: de
Moor, Aldo, Polovina, Simon and Delugach, Harry (edsijst Conceptual Struc-
tures Interoperability Workshop (CS-TIW 2006). Procegdiralborg University
Press, pp. 58-71.

[CS-TIW2007] Petersen, Ulrik (2007)Ysing interoperating conceptual tools to improve
searches in Kaj Munk In: Pfeiffer, Heather D., Kabbaj, Adil and Benn, David
(eds.):Second Conceptual Structures Tool Interoperability Wooks(CS-TIW 2007).
Held on July 22, 2007 in Sheffield, UK, in conjunction withelmational Confer-
ence on Conceptual Structures (ICCS) 20B@ésearch Press International, Bristol,
UK. ISBN: 1-897851-16-2, pp. 45-55.

[ICCS-Suppl2008] Sandborg-Petersen, Ulrik (2008 FCA classification of durations
of time for textual databasesln: Eklund, Peter and Haemmerlé, Olivier (eds):
Supplementary Proceedings of ICCS 200BUR-WS.

11

12 CONTENTS

The article labelled [COLING2004] was written before my P&iDdies commenced. It
is part of this thesis because it is an important introductomy work. Even though it
was written during the last months of my MA studies, it did fartm part of the basis for
evaluation of my MA work. The ideas presented in [COLING2P&re foundational for

large portions of the theoretical as well as practical atspery work, and so the article
finds a natural place among the other articles presented here

Resumé

Det centrale tema for denne ph.d.-afhandling er “annotetekktdatabaser”. En annoteret
tekstdatabase er en samling tekst plus information ondaksbm er lagret i et computer
system med henblik pa nem opdatering og tilgang. “Inforarath om teksten” er anno-
teringerne af teksten.

Mit ph.d.-arbejde er blevet udfgrt under den organisaterfgaraply, som udggres af
Kaj Munk Forskingscentret ved Aalborg Universitet. Kaj M@ 898-1944) var en bade
indflydelsesrig og flittig dramatiker, journalist, pastgy moet, hvis indflydelse meerkedes
bade i og udenfor Danmark i mellemkrigstiden. Han blev myadé&estapo farst i januar
1944 pa grund af hans modstandsholdninger.

De to af Kaj Munk Forskningscentrets hovedaktiviteter, $eghar veeret involveret i
igennem mit ph.d.-arbejde er fglgende: a) At digitalisesg Klunks samlede veerker,
og b) At gagre Kaj Munks samlede tekstproduktion tilgeengelgektronisk form for
den brede befolkning. Min afhandling afspejler disse aldter ved at tage Kaj Munks
veerker, og gare dem til det empiriske grundlag, det emgrtitamateriale, hvorpa min
afhandlings teoretiske fremskridt er blevet testet.

Mit ph.d.-arbejde har ikke omhandlet Kaj Munks veerker satefrr historisk eller lit-
teraert perspektiv. Nej, mit arbejde har veeret udfgrt setenethtalogs briller, og med det
formal at repreesentere annoterede udgaver af Kaj Munksevaeet computerdatabas-
esystem, samt med det formal at opna mulighed for nem addladigse annoterede
udgaver ved hjeelp af et sggesprog. Derfor har det faktunetatrdpiriske grundlag har
veeret Kaj Munks samlede veerker, veeret, i alt det for resutiatvaesentlige, ligegyldigt.
Med andre ord kan resultaterne — de udkrystalliseredegeate opnaede metoder, og
det implementerede system — nu anvendes pa andre annokempdea, uafhaengigt af
deres ophav med Kaj Munks veerker som det empiriske grundlag.

De teoretiske fremskridt, som jeg har opnaet i lgbet af minl plygger naturligvis
pa en reekke andre personers arbejde. Det primeere udgaktybpumeeret Dr. Crist-Jan
Doedens’s arbejde, som han udfgrte i sin PhD-afhandling96%: “Text Databases —
One Database Model and Several Retrieval Languages”, téitetet i Utrecht, Holland.
| sin PhD-afhandling beskrev Dr. Doedens dels sin “Monadd-@atures” (MdF) model
for annoterede tekstdatabaser, dels sit “QL" sggesprdimedet over MdF databaser.

| mit arbejde har jeg taget MdF tekstdatabasemodellen, ogdde udvidet og reduc-
eret dens omfang pa forskellige omrader. Dermed er jeg néettil den udvidede MdF
model, eller “EMdF modellen” (pa engelsk: “Extended MdF ratJl Jeg har ogsa taget
Doedens’s QL sggesprog, og har dels reduceret en del af detitit mindre del-sprog,
dels udvidet QL kraftigt til at blive et “sprog med fuld tilgg” til EMdF databaser. Jeg
kalder min udvidelse af QL for “MQL”".

EMdF modellen er i stand til at udtrykke naesten enhver fomafmotering, der matte
kreeves, for at repraesentere lingvistiske annoteringekat.t Som jeg viser i Kapitel 10,

13

14 CONTENTS

sa er det i hvert fald tilfeeldet, at alle de former for annioiger, som vi i Kaj Munk
Forskningscentret har gnsket at tilfare Kaj Munk Korpusisat utrykkes i EMdF mod-
ellen.

MQL s@gesproget er som sagt et “sprog med fuld tilgang” tildEMlatabaser, idet
MQL understgtter de fire hovedoperationer pa databaseretgghent”, “opdater” og
“slet” (pa engelsk: “create”, “retrieve”, “update”, andéflbte”). Dette star i kontrast til
QL, som “kun” var et sprog, hvori man kunne “hente” (pa enketsetrieve”) visse dele
af MdF modellens datadomaener.

Jeg har implementeret EMdF modellen og MQL sg@gesproget I'EEmtdros” kor-
pussggesystem. Dermed har jeg opfyldt de fleste af de kravDsxedens stillede til et
annoteret tekstdatabasesystem, hvilket jeg viser i Kapid 4, 5 og 14.

Afhandlingens farste del, Part I, omhandler “teoretiskedamenter” og indeholder
Kapitlerne 1 til og med 8.

Kapitel 1 introducerer afhandlingens emner, og definergtenaf de hovedbegreber,
som anvendes i afhandlingen. Kapitel 2 giver et overblikralen vigtigste litteratur
indenfor afhandlingens emneomrade. Kapitel 3 giver enikambduktion til emnet “on-
tologi”, til brug i senere kapitler. Kapitel 4 introducereg diskuterer EMdF modellen,
mens Kapitel 5 ggr det samme for MQL sggesproget. Kapiter6duncerer og diskuterer
“Neget” (pa engelsk: “The Sheaf”), som er en af de datastingkt som en MQL s@gn-
ing kan returnere. Kapitel 7 beskriver en generel algoritareog en klassificering af
mulige strategier for, at “hgste” et “Neg”, det vil sige, #iede meningsfulde resultater af
et “Neg”. Kapitel 8 diskuterer nogle mulige relationer inegh annotered tekst (som den
kan udtrykkes i og med EMdF modellen) pa den ene side, og tibbpdanden siden.

Afhandlingens anden del, Part II, omhandler “Anvendelsgyindeholder Kapitlerne
9til og med 13.

Kapitel 9 introducerer Part Il. Kapitel 10 beskriver hvandie teoretiske fundamenter
lagt i Part | kan blive anvendt til at implementere Kaj Munkridasset i EMdF modellen.
Kapitel 11 beskriver principperne bag, og funktionalites#, et web-baseret veerktgj, som
jeg har skrevet med brug af Emdros. Veerktgijet har til formahalerstgtte en kollabora-
tiv annotering af Kaj Munk Korpusset, men kunne i princippetendes pa et hvilket som
helst andet korpus. Kapitel 12 er det centrale kapitel i Pairhvilket jeg viser, hvordan
bade EMdF modellen og MQL sggesproget og “hgstningsaitgerit, som alle blev ud-
viklet i Part I, kan anvendes pa de problemer, der indebaaregdt, at gare Kaj Munks
veerker tilgaengelige i elektronisk form for den brede befolly. Kapitel 13 diskuterer
mader, hvorpa EMdF modellen og MQL sggesproget kan anveitdésnderstgttet pro-
cessen med, automatisk at lokalisere citater fra ét korptiandet korpus. | dette tilfaelde
er problemet, at finde citater fra Bibelen i Kaj Munk Korpusse

Afhandlingens tredie del, Part Ill, er meget kort, og inddlko kun to kapitler. Den
omhandler “Perspektiver” pa mit arbejde.

| Kapitel 14 diskuterer jeg mader, hvorpa EMdF modellen oglMg&@gesproget kan
blive udvidet, sa de endnu bedre kan understgtte problariadebaret i at lagre og
fremhente annoteret tekst. Kapitel 15 afrunder afhandling

Appendix A giver den fulde grammatik for den delmeengde af M@&m svarer til
Doedens’s QL.

Syv allerede publicerede, internationalt peer-reviewati&ler er vedlagt afhandlin-
gen i Appendix B, og udger en del af bedgmmelsesgrundlagatiiandlingen..

Abstract

The central theme of this PhD dissertation is “annotatetidatabases”. An annotated
text database is a collection of text plus information altbat text, stored in a com-
puter system for easy update and access. The “informatiout &lve text” constitutes the
annotations of the text.

My PhD work has been carried out under the organizationakahatof the Kaj Munk
Research Centre at Aalborg University, Denmark. Kaj MurB9@-1944) was an influ-
ential and prolific playwright, journalist, pastor, and poghose influence was widely
felt — both inside and outside of Denmark — during the perietieen World War |
and World War II. He was murdered by Gestapo in early Januddy Tor his resistance
stance.

The two main tasks of the Kaj Munk Research Centre in whichvehseen involved
during my PhD work are: a) Digitizing theachlassof Kaj Munk, and b) Making the
texts of Kaj Munk available electronically to the generabjpct My dissertation reflects
these tasks by taking the works of Kaj Munk as the empiricaldyghe empirical sample
data, on which to test the theoretical advancements madg aliseertation.

My work has thus not been about Kaj Munk or his works as sean &distorical or
even literary perspective. My perspective on Kaj Munk’s k&ohas been that of a com-
puter scientist seeking to represent annotated versidfajdflunk’s works in a computer
database system, and supporting easy querying of thestasguhtexts. As such, the fact
that the empirical basis has been Kaj Munk’s works is largmiynaterial; the principles
crystallized, the methods obtained, and the system impledecould equally well have
been brought to bear on any other collection of annotatdd kesture research might see
such endeavors.

The theoretical advancements which | have gained during myBild on the work
of a number of other people, the primary point of departunedtihe work of Dr. Crist-Jan
Doedens in his PhD dissertation from 1994: “Text Databas&3ne-Database Model and
Several Retrieval Languages”, University of Utrecht, tregidrlands. Dr. Doedens, in his
PhD dissertation, described the “Monads dot Features” @f)\nodel of annotated text,
as well as the “QL query language” defined over MdF databases.

In my work, | have taken the MdF text database model, and hatrededuced it in
scope in some areas, and have also extended it in other #reasriving at the EMdF
model. | have also taken Doedens’s QL query language, arelreaiced part of it to a
slightly smaller sub-language, but have also extendedritimerous ways, thus arriving
at the “MQL query language”.

The EMdF model is able to express almost any annotation sagefor representing
linguistic annotations of text. As | show in Chapter 10, itestainly the case that all of
the annotations with which we in the Kaj Munk Research Cenénee desired to enrich
the Kaj Munk Corpus, can be expressed in the EMdF model.

15

16 CONTENTS

The MQL query language is a “full access language”, suppgitie four operations
“create”, “retrieve”, “update”, and “delete” on all of theath domains in the EMdF model.
As such, it goes beyond Doedens’s QL, which was only a “nedfidanguage.

| have implemented the EMdF model and the MQL query languadlee “Emdros”
corpus query system. In so doing, | have fulfilled most of teendnds which Doedens
placed on an annotated text database system, as | show ine@hdp5, and 14.

The dissertation is structured as follows.

Part | on “Theoretrical Foundations” encompasses Chafters.

Chapter 1 introduces the topics of the thesis, and providésitions of some of the
main terms used in the dissertation. Chapter 2 providesgaliire review. Chapter 3
provides a brief introduction to the topic of “ontology” rfase in later chapters. Chapter
4 introduces and discusses the EMdF model, while Chaptee$ tthe same for the MQL
guery language. Chapter 6 introduces and discusses thg @hezh is one kind of output
from an MQL query. Chapter 7 describes a general algorithmaiod a classification
of possible strategies for, “harvesting” a Sheaf, thatusping a Sheaf into meaningful
results. Chapter 8 discusses the relationship betweenaeddext (as expressible in the
EMdF model) on the one hand, and time on the other.

Part Il on “Applications” encompasses Chapters 9 to 13.

Chapter 9 introduces Part Il. Chapter 10 describes how #wré¢tical foundations laid
in Part | can be used to implement the Kaj Munk Corpus in the EMabdel. Chapter 11
discusses the principles behind, and the functionalityaafeb-based application which
I have written on top of Emdros in order to support collab@eatnnotation of the Kaj
Munk Corpus. Chapter 12 is the central application-chaptevhich | show how both the
EMdF model, the MQL query language, and the harvesting jphareedescribed in Part |
can be brought to bear on the task of making Kaj Munk’s worlkslalsle electronically
to the general public. | do so by describing how | have impletaé a “Munk Browser”
desktop application. Chapter 13 discusses ways in whicklM&F model and the MQL
guery language can be used to support the process of findotgtopns from one corpus
in another corpus, in this case, finding quotations from titeeBn the Kaj Munk Corpus.

Part Il on “Perspectives” is very short, encompassing tnwly chapters.

Chapter 14 discusses ways in which the EMdF model and the Mé@kyganguage
can be extended to support the requirements of the problestoahg and retrieving
annotated text even better. Finally, Chapter 15 concluaedissertation.

Appendix A gives the grammar for the subset of the MQL quenglaage which
closely resembles Doedens’s QL.

Seven already-published, internationally peer-revieartidles accompany the disser-
tation in Appendix B, and form part of the basis for evaluatid the dissertation.

Part |

Theoretical foundations

17

Chapter 1

Introduction

1.1 Introduction

“There are many ways to skin a cat,” so the saying goes. Siildere are several
ways to write a PhD dissertation. | have chosen the way recamded to me by my
PhD supervisor, Peter @hrstram, namely to publish a numfsatioles, and let the PhD
dissertation be a hybrid between, on the one hand, a lengthgduction, and on the
other hand, the published articles. All of the articles ajojeel to the main body of this
dissertation have been peer-reviewed internationally.

The contents of this introduction, together with the puidid articles, reflect some
of the research activities in which | have been engaged inhmgetyears of PhD study
(May 2005 through April 2008). The common thread weavingtigh all of my research
activities has been that of “annotated textdatabases.” rhotated text database is, as
Doedens [1994] puts it,

“an interpreted text, i.e. a combination of text and infotimaabout this
text, stored in a computer, and structured for easy updataegess. The text
and the information about the text attéferentparts of thesamedatabase.”
(p. 19; emphasis in original)

The key notion in this definition is that of a “combination ekt and information about
this text”. To me, a text by itself may be interesting and ukddut its utility can poten-
tially increase manifold when the text is combined with mf@tion about the text, and
stored in a text database. This is the basic interest, the basder that has made my
PhD studies enjoyable from start to finish.

Organisation-wise, my research has been carried out atah®nk Research Cen-
tre at Aalborg University, Denmark. Therefore, the empirioasis for my theoretical
research has, for the most part, been that of the works of Kajkvl Kaj Munk (1898—
1944) was a Danish playwright, pastor, poet, and journaligise influence was widely
felt, both inside and outside of Denmark in the period betwderld War | and World
War II. He was murdered by Gestapo for his resistance stanearly January 1944.

My research has not been about Kaj Munk as a literary or ev&origal figure, nor
about his works as literary works or historical artifactattier, my research has focussed
on the theoretical and practical problems centered ardumthsk of making Kaj Munk’s
texts available as annotated text. This has been done frempédtspective of computer
science, with elements of computational linguistics andwiedge representation being

19

20 CHAPTER 1. INTRODUCTION

supportive disciplines under whose broad umbrellas | haved inspiration for solutions
to some of the problems posed by the empirical data and tloeetieal considerations.
This PhD dissertation thus falls within the category of «galisciplinary research.”

1.2 Empirical application

My PhD work is not only cross-disciplinary, it it is also a bteof theoretical and principal
considerations on the one hand, and an empirical applicatichese considerations to
practical problems on the other hand. The theoretical amttipal considerations have
led to their application upon the following practical domsof knowledge:

1. Representation of annotated text both in a database management system and
outside of such a system (see Chapter 10).

2. Software developmentas applied to:

(&) My own database management system for annotated t#gt] Eandros (see
Chapters 4, 5, 6, and 7).

(b) A“Munk Browser”, i.e., a desktop software applicatiohiah supports “brows-
ing” the Kaj Munk Corpus, as well as searching it (see Chali2gr

(c) Website development for collaborative annotation Gkapter 11).

3. Atrtificial intelligence, that is, an attempt at building an algorithm for locatingqu
tations from the Bible in the Kaj Munk Corpus (see Chapter 13)

The most important of these applications, seen from my getsg, is the development
of my “Emdros” database management system for annotated®efore I introduce Em-
dros, | need to define what | mean by the terms “database s}Statabase management
system”, “database”, “text database”, and “annotateddeatdbase”. | will define these
terms in the next two sections.

1.3 What is a database system?

A “database”, according to [Date, 1995], is not a piece ofvgafe. Rather, it is a collec-
tion of data

“A databaseconsists of some collection of persistent data that is ugetd
application systems of some given enterprise.” (Date [1,999; emphasis
in original.)

Date explains that “persistent” database data
“differs in kind from other, more ephemeral data, such asiimjata, output

data, control statements, work queues, software contoaks| intermediate
results, and more generally any data that is transient ur@at(ibid.)

1.3. WHAT IS A DATABASE SYSTEM? 21

Thus the nature of the data in a database is that it is persiste., neither ephemeral
nor transient. In fact, itis “information” (p. 4) which is pantially useful to “some given
enterprise”, and which is therefore stored in a database.

Notice that Date also mentions database data as hesiedby application systems
These application systems are made up of layers of softwatértclude both a database
management system (DBMS) and applications running on tagpeoDBMS. These, Iin
turn, make up the software that is only one kind of componeatfull database system
Date explains (p. 5) that

“a database system involves four major components, nardatg, hard-
ware, software, andusers” (Date [1995], p. 5; emphasis in original.)

The users are human beings wishing to make use of the data dathbase system. The
data is the information which the users wish to use. The harelvg a physical computer
system which stores the data and which runs the databaseseffThe database software
consists, as already mentioned, of:

1. A database management system (DBMS), which is respertsibl

(a) “the shielding of database users from hardware-levelilde (Date [1995],
p. 7), that is, abstracting away the details of hardwaretlstorage and re-
trieval, typically abstracted away into query languagestascts.

(b) Actually storing the data in physical database filesoftigh the intermediary
agency of the operating system on which the DBMS is running),

(c) Providing high-level query language functionality foser- and application-
initiated requests on the database.

(d) And other functions which are less important in this et

2. A number of software applications running on top of the DBMhe user will typ-
ically be interacting with one of these software applicasioather than the DBMS
itself directly. A database application running on top of ANDS may be domain-
specific (a good example would be the “Munk Browser” desctiimeChapter 12),
or it may be general (a good example would be the “MySQLAdnaipplication,
which is a tool for database administrators to interact lgicgily with the MySQL
database management system with the purpose of perfordimmistrative tasks
on one or more MySQL databases).

The concepts mentioned so far can be illustrated as in Figudre As can be seen, the
hardware is a box surrounding both the physical databases)(dnd the software (Op-
erating System, DBMS, and Applications). The softwaregparh on top of each other
in the layers shown. Finally, the users are human beings wdikeerase of the database
system through interaction with the applications.

http://www.mysgl.com

22 CHAPTER 1. INTRODUCTION

LXK

User 1 User 2 User 3

NV k /

\

Application 1 Application 2

DBMS

/ Operating System \

Database 1 Database 2
(Data) (Data)

Hardware

Figure 1.1: Components of a database system. The double itloxamwinner solid box
and an outer striped box represents the hardware. Insideatidevare, we find two files
(Database 1 and Database 2) containing the data. We alsd&rsbttware, which | have
drawn as consisting of of three layers: The applicatioreidathe Database Management
System (DBMS), and the Operating System. The little peopthetop represent users
who interact with the application-layer.

1.4 What is an annotated text database system?

| have just defined what | mean by “database system”, “datébadatabase manage-
ment system”, and “database application”. These defirstame derived from those of
C.J. Date, who is an authority in the field of database systddwsv | turn to another

set of definitions, which are all related to the central therhthis dissertation, namely
“annotated text databases”.

Given that adatabases a collection of persistent data,text databasgethen, is a
database whose primary content consists of text. As a fustiee, the termé&nnotated
text databaskecan be defined as a text database which, in addition to thetself, con-
tains — as a significant part of the information-value in thathase —nformation about
that text, i.e.annotationf the text.

An annotated text database management sy$pardBMS), then, is a piece of soft-
ware which performs DBMS functions on one or more annota¢et databases. It is
used byannotated text database applicatiansorder to provide text database services to
humanusers

Finally, an annotated text database system consists of:

1. humarusers

2. datain the form of annotated text databases,

1.5. EMDROS 23

3. softwarein the form of;:

(a) an operating system,
(b) an annotated text database management system (ATDBMS),
(c) one or more annotated text database applications,

and

4. thehardware on which these three pieces of software run.
These definitions are closely tied to those of Doedens [19%94 states:

“A generalsystem, i.e., a system which is not tied to a particular aapbn,
which holds the information of an expounded text [Doedetesis for an an-
notated text database] in a way which makes it possible exetly update
and access the information according to its structure anteood| call atext
database management systenor text database systenifor short. In prac-
tice a text database system is a computer program. The idei@xff database
management system is that it supplies services to one or apiecations.
Through the use of these services the applications cansaattesext data
managed by the text database management system.” (Dodd®€#4,[p. 21;
emphasis in original.)

Note that Doedens does not, as | do, distinguish betweentalatabase management
systenon the one hand, andtext database systeom the other. In contrast to Doedens’s
conflation of these two terms, | defindext database systeas the whole system (users
+ annotated text databases + hardware + software), folppate [1995]. In my termi-
nology, atext database management sysierthen part of the software encompassed by
the whole text database system.

The nature of the annotations added to the text in an anmidietedatabase is not my
concern at this point. | shall return to this question in Gbeag. For now, it is enough to
bear in mind the notion that text can be annotated, i.e.rimédion about the text can be
added outside the text, and both can be stored in an anné¢atethtabase, which in turn
is managed by an annotated text database management spSteBI\S).

The primary example of an ATDBMS with which | have been coneérin my PhD
work, is a piece of software which | call “Emdros.” It has seshas the testbed for the
majority of the ideas produced in my PhD work, and also ermgmoiany of the principles,
theories, strategies, and methods which | have developetefding with annotated text.
In the next section, | describe Emdros from a high-levelpectve, preparing the ground
for some of the following chapters.

1.5 Emdros

Emdros is an annotated text database management systemiiaice been developing
from around 1999 until the present. The theoretical foundaor Emdros has, in large
part, been provided by Crist-Jan Doedens’s PhD dissentHioedens, 1994] from which
| have already quoted several times. Where Doedens blazkdoaetical trail in the

24 CHAPTER 1. INTRODUCTION

jungle of annotated text database theory, | have merely fmleving behind Doedens,
implementing many of his theoretical ideas in practice, als® slightly repairing and
clearing the path along the theoretical trail, thus makimg theoretical trail safer for
others to follow.

Doedens defined, in his PhD dissertation, a number of thealebnstructs related to
the field of annotated text database theory. From a higHerspective, these theoretical
constructs include:

A text database modethich Doedens called the “Monads dot Features” model (or
MdF model for short).

The notion oftopographicity (to which | return below).

A powerfultext database retrieval languagéhich Doedens calleddL".

A text databaseetrieval languagevhich Doedens called “LL". Doedens also pro-
vided a formal framework for and specification of the trahstaof LL to QL.

In my work, | have extended the MdF model to become the “Ex¢eridonads dot Fea-
tures model” (or EMdF for short). The EMdF model is describedetail in Chapter 4,
and also in [COLING2004, FSMNLP2005, RANLP2005, LREC2006have also im-
plemented a large subset of Doedens’s QL, resulting in tleeyganguage which | call
“MQL".

Doedens, in his PhD work, did not provide any implementatbmis ideas. The
majority of his ideas were described in abstract mathemlaigems, and his “QL” query
language, in particular, was difficult to implement due te tiature of the descriptions.
As Winskel [1993] explains, there are two opposite ways aicdbing the semantics of
formal languages:

e Denotational semantics, which descrilvdsatto compute, but ndtowto compute
it.

e Operational semantics, which descriltbesvto compute the desired result, but not
whatthat result should be.

Doedens, in his PhD work, describedenotationakemantics of the QL language. Given
the level of abstraction employed in the descriptions, & @ificult for me, being a mere
undergraduate in computer science, to turn those “whats™hows”. Yet | succeeded in
doing precisely this for a small subset of QL, and this re@alled “MQL” for “Mini QL")
was reported on in my B.Sc. thesis [Petersen, 1999]. Siresg tthave greatly expanded
the MQL query language, both before and during my PhD studiescan be seen in
part by following the growth of MQL through the articles appled to this dissertation,
in particular [COLING2004,FSMNLP2005,RANLP2005,LRE@&A). Chapter 5 reports
on the “state of the art” of the MQL query language, and alsglsput what has been
done during my PhD studies and what has been implementectebefo

The notion of “topographicity” developed by Doedens can befly explained as
follows. A language is “topographic” if there exists an ismphism between the structure
of the expressions in the language and the structure of jleetsllenoted by the language
[Doedens, 1994, p. 108]. QL is a “topographic language”, mreathat the structure

1.6. RECURRING EXAMPLE 25

of a query in the language is in a direct isomorphism relatgm with the structure of
the database objects denoted by the query. Furthermone i@ direct isomorphic
relationship between the structure of the query and thetstrel of the output from the
guery, called a “Sheaf”. Both of these tenets make QL “toppQgic”.

A subset of MQL, too, is topographic in both of these ways. ®bere QL was
“merely” a “retrieval-language”, in which it was only pob# to retrieve objects from
an existing database, MQL is a “full access language”, incvhii is possible to create,
update, delete, and retrieve all of the data domains exptess the EMdF model. Thus
MQL is, in a sense, larger than QL, since it has “create, ugdiglete” functionality in
addition to the “retrieve” functionality provided by QL. Meover, the topographic subset
of MQL has grown since its inception in 1999, even if it has yet reached the full
potential expressed by Doedens’s description of QL.

1.6 Recurring example

In order to be able to write meaningfully and in practicahterabout theoretical mat-
ters, | shall employ a recurring example. | have chosen toaugpeem by Kaj Munk,
entitled “Den blaa Anemone” (in English: “the blue anemgnigdm 1943. It appears
in Figure 1.2 on the following page both in its original Danisind in my own English
rendition. The rendition suffers from not being a word-fewrd equivalent. Instead, it is
hoped that the flavour of the original can be descried in thgligim rendition, however
dimly.

This poem is perhaps the most well-known of Kaj Munk’s poemas least because it
has been set to music and is sung in most elementary schqustad any Danish pupil’s
learning experience. The poem provides an excellent exafopthe explicative purposes
of this dissertation, for the following reasons: a) It isatétely short, but not too short for
my purposes. Thus a “happy medium” between brevity on thehamel a complexity on
the other is represented by this poem. b) The poem existsibdiandwritten, original,
autograph form, and in a printed form. There are slight déffiees between these forms,
and even the handwritten autograph form has corrections/amations. This entails a
certain level of complexity in the encoding and annotatibthe text, since all versions
should ideally be represented and annotated.

| shall return to this example poem at opportune points irdibsertation.

1.7 Dissertation plan

The dissertation is laid out as follows. There are threespart

1. Theoretical foundations, in which the theoretical foatnohs are laid for the rest of
the dissertation.

2. Applications, in which these theoretical foundatiors larought to bear on a num-
ber of practical problems.

3. Perspectives, in which directions for future researeheaplained.

26

Hvad var det dog, der skete?

mit hjerte haardt og koldt som Kvarts
maa smelte ved at se det

den farste Dag i Marts.

Hvad gennembrgd den sorte Jord
og gav den med sit dybblaa Flor

et Steenk af Himlens Tone

den lille Anemone,

jeg planted der i Fjor.

Paa Lolland jeg den hented,
en Hilsen fra min Fgdeg.
Saa gik jeg her og vented

og teenkte, den maa dg.

Den savner jo sit Skovkvarter,
sin lune Luft sit fede Ler

i denne fijendske Zone
forgaar min Anemone

jeg ser den aldrig mer.

Nu staar den der og nikker

med Smil i Jyllands skarpe Grus
ukuelig og sikker

trods Havets Storm og Gus

som om Alverdens Modstand her
har givet den et stgrre Veerd

en lille Amazone

og dog min Anemone;

jomfruelig og skeer.

Hvad var det dog, der skete

Mit Hjerte koldt og haardt som Kvarts
det smelter ved at se det

den farste Dag i Marts.

Jeg mindes, under Vinters Had

jeg intet mere Haab besad.

Ggr med sin vaarblaa Krone

den lille Anemone

igen mit Hjerte glad?

Ja, denne rene Farve

den er mig som en Vaarens Daab
der naadig la’r mig arve

en Evighed af Haab.

Saa bgijer jeg mig ned mod Jord
og kysser gmt dit Silkeflor

en Flig af Naadens Trone

du lille Anemone,

hvor er vor Skaber stor!

CHAPTER 1. INTRODUCTION

What was it that had happened?

My heart, as hard and cold as quarts,
must melted be to see it,

this day, the first of March.

What piercéd had the darkened sail,
and giv'n it with its deep blue leaves
a touch of Heaven'’s tone

the little anemone

| planted there last year.

On Lolland did | fetch it,

a greeting from my isle of birth.
Then here | walked and waited,
and thought that: “It will die.

For miss it must its coppice place,
its warmish air, its fatty clay

in this so hostile zone,

is lost my anemone

I'll see it ne’er again.”

Now there it stands, all nodding
with smiles in Jylland’s flinty dirt,
invincible and certain

despite sea, storm, and fog.

As if the World's resistance here
has given it a greater worth.

A little amazone,

and yet, my anemone;

so virgin-like and clean.

What was it that had happened?

My heart, as hard and cold as quarts,
is melting now to see it,

this day, the first of March.

| call to mind, through Winter’'s hate

I had no longer any hope.

Will, with its spring-blue crown

the little anemone

again my heart make glad?

Yes, this unmixéd colour,

it is to me a bath of spring

which, graceful, lets me inherit

an eternity of hope.

| bend, then, down towards the earth
and kiss thy leaves so tenderly.

A hint of mercy’s throne —

thou, little anemone!

How great is our creator!

Figure 1.2: “Den blaa Anemone”, a poem by Kaj Munk (1943),hwity own (almost

literal) translation into English

1.7. DISSERTATION PLAN 27

I now describe the chapters in Part I. Later parts will hagrtbwn introductions.

In Part [, this introductory chapter is followed by a litaret review (Chapter 2). | then
describe and explain the concept of “Ontology” (Chapter 3hen describe and explain
the EMdF model implemented in Emdros (Chapter 4), followed lshapter on the MQL
query language of Emdros (Chapter 5). One of the data stesthich can be returned
from an MQL query is a “Sheaf”, which contains the resultsrira topographic query
(Chapter 6). The following chapter describes a number ateggies for “harvesting” a
sheaf, i.e., for turning a sheaf into meaningful resultsgi@br 7). Finally, in a chapter
on “Annotated Text and Time”, | expand upon the ideas presemt [ICCS-Suppl2008]
(Chapter 8).

28

CHAPTER 1. INTRODUCTION

Chapter 2

L iterature review

2.1 Introduction

In this chapter, | will review some of the most importantigeire related to my own work.
The two most important aspects of my own work are: a) Databas#els for annotated
text, and b) Query languages for annotated text. Hence, ¢ dauided this literature
review into two main sections, one on database models fatated text (2.2), and one on
query languages for annotated text (2.3). Since the fieldfofination Retrieval overlaps
to some extent with my own work, | have included a section devemt literature from
the field of information retrieval (2.4). Since my main calpiition is a “corpus query
system,” | then list some of the other corpus query systeradadle (2.5). Finally, |
conclude this chapter (2.6).

2.2 Other models for annotated text

2.2.1 Introduction

What is a database model? As defined by Codd [1980] (and dbnacaepted in the
field), a database model consists of three distinct itemsataAlzhse model is, and | quote
from Codd [1980]:

“1) A collection of data structure types (the building blsaif any database
that conforms to the model);

2) a collection of operators and inference rules, which eaagplied to any
valid instances of the data types listed in (1), to retrievderive data from
any parts of those structures in any combinations desired;

3) a collection of general integrity rules, which impligitr explicitly define
the set of consistent database states or changes of staitherthese rules
may sometimes be expressed as insert-update-deleté rules.

This is different from what some authors call a “data modei”a “schema”. A schema

is an application of a database model to a particular prololemain. Where a database
model defines what it ipossibleto express in a database (constrained by Codd’s “data
structure types”, “operators and inference rules”, antEanity rules”), a schema defines

29

30 CHAPTER 2. LITERATURE REVIEW

anactualset of constraints that conforms to some problem domaine¥ample, whereas
a database model may stipulate that ipassibleto have objects that have attributes, a
schema may define that there must be objecfsanotficular object types called “clause”,
“phrase”, and “word”, with certaiparticular attributes.

Database models are used for a variety of purposes, whichargist limited to
storing text. Some database models support text as a setg-ef supporting other kinds
of data. The variety of database models that exist beconesmanm in even a cursory
overview of the literature [Angles and Gutierrez, 2008, ffee, 1994, Abiteboul, 1997,
Christophides et al., 1994, Abiteboul et al., 1997, Blakal¢t1994, DeHaan et al., 2003,
Kashyap and Rusinkiewicz, 1997, Carletta et al., 2003bsi@ps1999, Evert et al., 2003,
Gonnet and Tompa, 1987, Nicol, 2002, Tague et al., 1991, &d§B9].

What concerns us in this dissertation, however, is not @salmodels in general,
but database models for annotated text. The survey paperjah Aoeffen on “Text
Databases: A survey of text models and systems” [LoeffeB4]L8escribes a view on
database models similar to Codd, and summarizes the sttite aft up until 1994 in text
database models. Some of the salient models cited by Léefieper will be discussed
here.

In the following, I first discuss XML and SGML. Then | discusagmar-based mod-
els of text, graph-based models of text, range-based mofl&dxt, and object-oriented
models of text.

2.2.2 XML and SGML
2.2.2.1 Introduction to XML and SGML

SGML was developed during the 1970’ies and 1980’ies, andpubéished as an 1SO-
standard in 1986 [ISO, 1986]. XML was developed during theyeE090’ies, and is a
reduced subset of SGML [Bray et al., 2004]. According to Rdbover,

“Both SGML and XML are "meta" languages because they are igsetkfin-
ing markup languages. A markup language defined using SGMIMir has
a specific vocabulary (labels for elements and attributed)sadeclared syn-
tax (grammar defining the hierarchy and other features).”

These descriptions very succinctly capture the essencehaf WML and SGML are:
“meta-languages” in which it is possible to define other leages. When | say “lan-
guage” here, | mean “formal language”, not a “natural laggigsuch as English, Greek,
or Urdu). Formal languages have a formal syntax, and somestatso a formal seman-
tics. The sense of the word “formal” here is the sense desdtily [Winskel, 1993] and
[Martin, 1991], namely a mathematical object (a “formaldaage”, “formal syntax”, or
“formal semantics”) which has been given a rigorous debniti

XML and SGML are thus formal “meta-languages” in which it igsgible to define
other formal languages. | have defined a formal languagg &L, which is designed
to capture the data present in the Kaj Munk Corpus. | retuthiglanguage in Chapter
10.

1Cover Pages, [Cover, 1986-2008]. Specific URL: http://kmlerpages.org/sgml.html Access online
April 12, 2008. Robin Cover’s “Cover Pages” is the most respe online resource for information about
XML and SGML.

2.2. OTHER MODELS FOR ANNOTATED TEXT 31

Since | will be referring to XML in Chapter 10, | now give an sxinely brief tutorial
on a few important aspects of XML.

A tagin XML is a part of a document which is enclosed in <angle beask, for
example<munktxt> (which in my XML language starts a Munk Text). Tags are sejgara
from the rest of the document, and form part of tharkupof the document. In effect, a
tag specifies either thetart of an annotation, itend or both at the same time

An elemenin XML terminology consists of a tag and i&ttributes The attributes of
a tag are marked up astribute-namesvith attribute-valuesand are located inside of the
tag itself. For example:

<metadata kind="title" value="La Parole"/>

Here the tag “metadata” has two attributes, with names “kamdi “value”. The value of
the attribute “kind” is “title”, and the value of the attritei“value” is “La Parole”.

XML specifies that an element can eitliave contenbr beempty An empty element
tag looks like this:
, consisting of an “angle bracket begin”, the tag name, atfron
slash, and an “angle bracket end”. It has no content becaissbath astart-tagand an
end-tagin one and the same tag. Attributes may intervene bewteetagheame and the
front slash.

A tag with content, on the other hand, has a start-tag, engnktxt>, followed by
its contents, followed by its end-tag, e.g/munktxt>. The start-tag specifies where the
element starts, and the end-tag specifies where it ends. cahi®bviously be used to
specify annotations of text. Any attributes will always ocon the start-tag, and never
on the end-tagd.

2.2.2.2 XML and SGML as models of annotated text

Both XML and SGML can be said to provide models for annotaged. tOr, more pre-
cisely, the model of annotated text assumed by XML and SGMLbsaapplied to a large
subset of the problems inherent in the domain of annotatedBeiefly put, both SGML
and XML assume that annotated text is strictly hierarchidsl tags must be strictly
hierarchically nested within each other in a tree. For eXamnipe sequence of tags + text:

<page><paragraph>This is the start of a paragraph which
</page><page> continues on the next page.</paragraph></page>

is illegal in XML. The reason is that the end-tag for the pageurs at a place where the
paragraph tag is still open (and not closed by its end-tag)s @oes not form a strictly
nested hierarchy, but forms an overlapping model of textsTthe natural way of repre-
senting annotated text in SGML and XML does not allow for ¢tegping hierarchies.
This obviously poses a problem for many applications. Takeething as simple
as a language defined in XML which is designed to capture pagsut and document
structure at once. For any given page, its start and end iddbement must be marked
up. This is due to the purpose of the language as a page layarkuplanguage. At
the same time, the dual purpose of this language is to desddbument structure. Yet

2pedants among my readership will be relieved to know thaall siot overlook the fact that an empty
element tag is “both start-tag and end-tag in one and the sagfieand thus attributes may occur on the
end-tag in this special case.

32 CHAPTER 2. LITERATURE REVIEW

paragraphs and chapters (and even words) do not alwaysisédy within the borders of
a single page — a chapter rarely fits on a single page, andrpptegjare certainly able to
extend over a page break, as the example above shows.

There have been two proposed ways of dealing with this pnolitethe SGML and
XML communities. One is standoff markup [Thompson and Maek&el1997], and the
other is milestones. The latter is described in the TEI Ginde TEI [2007], where we
read that milestones

. simply mark the points in a text at which some categorg ireference
system changes. They have no content but subdivide thertextagions,
rather in the same way as milestones mark points along attaaglimplicitly

dividing it into segments.” [TEI, 2007, Section 3.10.3]

Thus, for example, with milestones, it is possible to say thpage starts and ends at
such and such points in the document (using start-tags amdags), and to say with
milestones that a paragraph begins and ends. For example:

<page><paragraphbegin/>This is the start of a paragraph which
</page><page> continues on the next page.<paragraphend/></page>

Here the <paragraph> start-tag and the </paragraph> gnldatee been replaced with
empty tags which mark with separately named tags the stdread of the paragraph.
This neatly solves the problem of representing overlappiagarchies, but does push the
burden of keeping track of the overlapping hierarchies ftbm XML parser onto the
application which uses the XML parser.

The idea of Standoff Markup is to separate the annotatimm the text itself struc-
turally, instead using pointers between the annotationthagarts of the text which it
annotates. This involves giving every word a unique idesttifivhich is then referred to
in the annotations. | have not used standoff markup in thedVKIML.

Thus there are ways to overcome the apparent non-supporedépping hierarchies
in SGML and XML, using either standoff markup or mileston@sa mixture of both.

2.2.2.3 Applications of XML to annotated text

A number of applications of XML that deal specifically witmgjuistic annotations have
appeared in the literature. McKelvie et al. [2001] desaithee XML-based MATE work-

bench, later expanded in the NITE project [Carletta et &Q3a,b, 2004, Evert et al.,
2003, Voormann et al., 2003]. Work on supporting linguisfieeries on XML-based
models of linguistically annotated text is described indBat al. [2005].

2.2.3 Grammar-based models of text

As Loeffen [1994] explains, a number of models of text haverbproposed which are
based on parsing text according to a formal grammar. Oneeofitbt to do so was
Gonnet and Tompa [1987], which described “a new approachoabefing text”, viewing
texts as trees which had characters as leaves and structiarahation (such as words,
paragraphs, headings, dictionary entry headwords, esanrner nodes. This model was
later expanded in Tague et al. [1991]. A similar databaseaiody be found in Gyssens
et al. [1989].

2.3. QUERY LANGUAGES FOR ANNOTATED TEXT 33

2.2.4 Graph-based models

The survey article of Angles and Gutierrez [2008] both sysvihe state of the art in
graph-based models, and provides an overview of 40 yeaese#rch in the area. Some
of the models relevant to text, and mentioned in this sumnejude:

e Gram [Amann and Scholl, 1992] (which, although a general@hazhn be applied
to hypertext, as shown by the authors).

e Gonnet and Tompa [1987] (already mentioned; grammar-basekdls can, in gen-
eral, be said also to be graph-based models, since gramesails in parse-trees,
which are graphs).

e Consens and Mendelzon [1989] (which provides a visual laggun which to
guery hypergraph-based databases, including hypertext).

e Navarro and Baeza-Yates [1995] (which defines the “ProxiN@des” model for
structured text, later expanded in Navarro and Baeza-Ya89¥] and Baeza-Yates
and Navarro [2002]).

A number of graph-based models of text specifically suitdahtquistic annotations have
appeared in the literature. Examples can be found in [CatahBird, 2002, Bird et al.,
2000a,b, Bird and Liberman, 2001, Cassidy and Bird, 200@sidg and Harrington,
2001].

2.2.5 Range-based models of text

Range-based models of text generally identify regions xif lig a start-pointer and an
end-pointer into the text. Examples include the seminaépay Clarke et al. [1995] and
the paper by Nicol [2002], which attempts to provide the s&ind of algebra as Clarke
et al. [1995]. | am not aware of any actual implementation itfez of these models,
except that Emdros implements a (non-proper) superseteoiddas presented in these
papers. Jaakkola and Kilpeldinen [1996b] provide an alyédor structured, nested text
regions, also expounded in Jaakkola and Kilpeldinen [1P96a

2.2.6 Object-oriented models of text

Object-oriented models of text havbjectsandobject typess a fundamental part of the
model. Doedens [1994] provides an example of an objecttmtedatabase model. Of
course, | have lated expanded Doedens’s work [Petersef, 2004, Sandborg-Petersen,
2002-2008, Petersen, 2006a, 2007a, 2006b, 2005]. Anctt@base model in the object-
oriented vein is described in Abiteboul et al. [1997].

2.3 Query languages for annotated text

One part of a database management system is the databadenvhimthet supports. An-
other very important part is the means through which thia daticcessed, usually through
a query language.

34 CHAPTER 2. LITERATURE REVIEW

SQL [Ullman and Widom, 1997, Date, 1995] is the most widelgdudatabase query
language in business applications. It supports the relatidatabase model [Date, 1995].
An application of SQL to the problem of interval-based qumgycan be found in Zhang
et al. [2001], which was inspired by Kriegel et al. [2000].tdrval-based querying is
important in Emdros, as we shall see in Chapter 5. KashyapRarsthkiewicz [1997]
show how to model textual data using the Entity-Relatiopshodel, and how to query it
using SQL. Davies [2003] shows how to implement “unlimitédguistic annotation of
text in a relational database using SQL.

Object-oriented query languages include the one definekdd@bject Database Stan-
dard [Cattell and Barry, 1997], Lorel [Abiteboul et al., 7J9and Doedens’s QL [Doe-
dens, 1994]. Doedens’s QL had a predecessor, called QUESTrided in [Harmsen,
1988, 1992, Doedens and Harmsen, 1990, Talstra et al., 1882pwn MQL is another
object-oriented query language [Petersen, 1999, 2004,£@D06b].

XML-based query languages include the “NXT Search” quenglaage supported by
the NITE XML system [Voormann et al., 2003, Carletta et al02]. In addition, Bird
et al. [2005] extend the well-known XPath language [W3C,74@6 support queries on
linguistic structures encoded in XML. Cassidy [2002] apdIXQuery [Boag et al., 2005]
to the problem of querying linguistically annotated texhile@ DeHaan et al. [2003] pro-
vides a “comprehensive XQuery to SQL translation using dyinanterval encoding”.
Bird et al. [2000a] described a query language which couldaied to Annotation
Graphs; the latter is an XML schema for representation otiAlytered linguistic anno-
tation of text. The work of Baeza-Yates and Navarro [200Pjsuts XML-based queries
on the Proximal Nodes database model mentioned above. aimikcope is Jaakkola
and Kilpelainen [1996a], which defines the SGrep query lagguover nested text re-
gions, which can be applied to XML. Blake et al. [1994] showvhio implement an
SGML-based database model in SQL, and how to query it usirlg SQ

The TIGERSearch query language was designed to suppdoatiks, or databases
containing linguistic annotations of text in the form ofdse[Konig and Lezius, 2003,
Lezius, 2002a,b]. A related language, VIQTORIA [Steined &allmeyer, 2002], used
visual representation to search treebanks. Mettler [2P@dlided a re-implementation
of TIGERSearch, adapting it for use in parallel treebankallfeyer [2000] describes
an implementation of a query language on syntactically tatad corpora. Aswani et al.
[2005] show how to index and query linguistically annotatiext using the GATE system
[Cunningham et al., 2002, Cunningham and Bontcheva, 2003].

Others which could have been cited in this section will bectibelow in Section 2.5
on “Other corpus query systems”.

2.4 Relation to Information Retrieval

The subject of this thesis is “annotated text”. | see thisisstt from “raw text”, which

Is the view imposed on text by most Information Retrievakseshers. In Information
Retrieval, the goal is to locate the answer to questionsefigs”) indocumentsTo this
end, there exist only two levels of text: Tteken(or word), and thelocumentOne could
choose to view this arrangement as an annotated text: Th@a&rns) is annotated with
one layer of information (document-boundaries). Howefarihe purposes of this dis-
sertation, | shall choose to define most Information Resiezchniques as being outside
the scope of my research.

2.5. OTHER CORPUS QUERY SYSTEMS 35

Some techniques from Information Retrieval are, howevery\applicable to the
problems which | have attempted to solve during my PhD workpadrticular, the fol-
lowing techniques apply very well:

¢ Indexing of text. Indexes are indispensable for fast querying, also in thé-pro
lems which | have attempted to solve. The seminal paper beBayd McCreight
[1972] showed that it was feasible to obtain speed-inceeasen with no further
investment in new hardware (by using B-Trees, introducethis article). Since
then, a lot of variants of B-Trees have appeared, includiigdes [Guttman, 1984,
Lee et al., 2003] and R*-Trees [Beckmann et al., 1990] to nhotea few. Other
indexing methods include inverted files [Larson, 1984, Zatel., 1998], PAT-
Trees [Gonnet et al., 1992], Signature Files [Zobel et &98], and the index
compression techniques described in [Zobel and Moffat626@akes and Baeza-
Yates, 1992, Baeza-Yates and Ribeiro-Neto, 1999]. Sed-ajg@nd Croft [1993],
which applies text indexing techniques to Japanese, andag€&er [1999], which
describes a high-performance, extensible indexing tecteni

e Resultranking. When a number of results have been retrieved, it may be iraport
to the user of the database system that the results appeaonmder which makes
sense from the user’s perspective. This order can be diffe@ompute if there is
no a-priori ordering which makes sens&ome of the techniques which fall under
the category of “query result ranking” are described in thevey by Zobel and
Moffat [2006], and are also described in Baeza-Yates andiRikNeto [1999].

2.5 Other corpus query systems

This thesis would not be complete without a review of the niogtortant pieces of soft-
ware comparable to Emdros. Therefore, | give a short revew.h

Several systems are aimed at doing word-level searches dhly include Corpus
Work Bench [Christ, 1994, Christ et al., 1999, Christ, 199BARA and its successor
XAIRA“ (designed to search the British National Corpus), ProfeSkok Davies's on-
line search tod!, and others.

Other tools are aimed at searching structured text, inofudiyntactic annotations
and/or speech-based data. They include:

e SGrep [Jaakkola and Kilpeléainen, 1996a] (designed forchdrag general XML).

e XQuery [Boag et al., 2005, DeHaan et al., 2003] (again desigor searching
general XML).

e TGrep2 [Rohde, 2004] (designed for searching the Penn &rgefMarcus et al.,
1994a,b]).

3In the case of a Biblical corpus, it might make sense to ptakerresults in the order imposed by the
traditional canonical ordering of books, and at a lower liegtve chapters and verses which they contain. In
the context of the Kaj Munk Corpus, however, it is not obviedmsat the ordering of search results should
be. One proposal might be to present the results in the andgnich Kaj Munk wrote them (where known).
Another proposal might be to use the techniques on querjtr@siking in the literature mentioned.

“nttp://www.xaira.org

Shitp://davies-linguistics.byu.edu

36

CHAPTER 2. LITERATURE REVIEW

VIQTORYA [Steiner and Kallmeyer, 2002] (designed for séwng the VERBMO-
BIL German corpus).

TIGERSearch [Lezius, 2002a,b, Konig and Lezius, 2003, Méagd Lezius, 2000]
(designed for searching general treebanks, including gren@n newspaper corpus,
TIGERCorpus [Brants et al., 2002, Brants and Hansen, 2002])

STASearch [Mettler, 2007] (a reimplementation of the TIGdtRry language [Konig
and Lezius, 2003, Lezius, 2002a], extended with capaislitor querying parallel
treebanks).

LPath [Bird et al., 2005] (designed for querying XML-basestbanks).

Emu [Cassidy, 1999, Cassidy et al., 2000, Cassidy and B#8Q2Cassidy and
Harrington, 2001] (designed for querying annotated speech

MATE [McKelvie et al., 2001, Mengel, 1999] (the predecessbNITE).

NITE [Carletta et al., 2003a, 2004, Evert et al., 2003, Gaxlet al., 2003b, Voor-
mann et al., 2003, Carletta et al., 2002] (for querying XMdsbd corpora which
use the NITE object model [Carletta et al., 2003b, Evert.e28i03]).

GATE® [Cunningham et al., 2002, Cunningham and Bontcheva, 2088aAi et al.,
2005] (which was designed as a general language enging®atigrm).

Ellogon’ [Petasis et al., 2002] (which was designed as a generaldgegengineer-
ing platform, a competitor with GATED.

Linguist's Search Engirfe[Resnik and Elkiss, 2005] (which was designed as a
general-purpose linguistic search engine).

Manatee [Rychly, 2000] (which was designed for very fastieel of linguistic
markup in very large corpora).

The Sketch Enginé [Kilgariff et al., 2004] (which builds on Manatee).

CorpusSeardht (which was designed for searching treebanks in Penn Tr&eban
format, in particular, the Penn-Helsinki Parsed CorporHistorical English).

Finite Structure Query (FSQ) [Kepser, 2003] (which was giesd for querying
treebanks, using a logic-based query language).

Netgraph [Mirovsky et al., 2002] (which was designed tose#nrough the Prague
Dependency Treebank).

Shttp://gate.ac.uk
http://www.ellogon.org
8Incidentally, the Ellogon Object Model as described in §Ret et al., 2002] looks very much like the

original MdF model.

Shttp://lse.umiacs.umd.edu:8080/

Ohttp://www.sketchengine.co.uk
Unttp://corpussearch.sourceforge.net/

2.6. CONCLUSION 37

e The Layered Query Language (LQL) system [Nakov et al., 2@@5jch was de-
signed to search through annotated MEDLINE abstracts).

There are others, but these are some of the salient oneslitetiagure.

2.6 Conclusion

In this chapter, | have reviewed some of the most importaerdiure related to my own
work. More citations will come in later chapters, at placdseve the literature is relevant
to mention. The major sections of this chapter have follothedwo major themes of my
own work, namely: a) Database models for annotated tex}, (@2l b) Query languages
for annotated text (2.3). Since the field of Information Retal contains literature and
themes which are relevant to my own work, | have also citedesofrthe most impor-
tant literature from this field (2.4). Finally, | have citedst of the other “corpus query
systems” available (2.5).

38

CHAPTER 2. LITERATURE REVIEW

Chapter 3

Ontology

3.1 Introduction

Sowa [2000, p. 492] defines the two notions “ontology” aad 6ntology” in the follow-
ing way:

“The subject ofontologyis the study of theategoriesof things that exist or
may exist in some domain. The product of such a study, calhedntology

is a catalog of the types of things that are assumed to exestdomain of
interestD from the perspective of a person who uses a langlafyge the

purpose of talking aboud.”

Thusan ontologyis a catalog of categories in some domain of interest, wintelogyis
the study of categories in some domain. For a similar vieevNiésson [2001].

In later chapters, and in [CS-TIW2007], | shall make use efrtbtion of “an ontol-
ogy”, and so | need to discuss the notions involved.

The notion of ontology goes back at least to Aristotle, wheeirted the way of def-
inition by means of genus, species, and differentiae [S@080, p. 4]. In this way of
defining what a thing is, a thing (species) is defined by sawihgt its genus is, along
with a list of differentiae that show how the species diffieeen the genus. For example,
an elephant (species) is a mammal (genus) with the followifigrentiae: An elephant
has four legs, grey hide, a trunk, and tusks (in the male).

The word “ontology” itself, however, does not go back to Aotte. Although it has
Greek roots, it was actually constructed by Jacob Lorhartle®9, as @hrstregm et al.
[2005] report.

The rest of the Chapter is laid out as follows. First, | discligpe and instance as
key notions in ontology (3.2). | then discuss various reladi that may obtain between
types (3.3), in particular the “is-a” relation. | then dissuthe notions of “supertype”
and “subtype”, which flow out of the definition of the “is-a’lation as a partial order on
types. In this section, also briefly discuss lattice-stuites as a natural way of representing
ontologies (3.4). Finally, | conclude the chapter.

1Biologists would most probably beg to differ with this defian, but since this is not a thesis in biology,
I shall not concern myself with finding the exact definitiortliee literature. What is important here is the
method of definition, not the definition itself.

39

40 CHAPTER 3. ONTOLOGY

3.2 Type and instance

A type(or ontotype, or concept type) is an abstract entity whiaisgsis of three things:

1. A name We use this name whenever referring to the type.

2. Anextension That is, the set of all things that exist in the domain of iest, and
which areinstance®f this type. Aninstance, in turn, is a thing (physical ortadst,
real or imagined) which can be categorized as being of theityguestion.

3. Anintension That is, the set of properties that are common to all of tiseaimces
in the extension of the type.

For example, the type which we may give the name “dog” haxsensiorall of the dogs
in the world. Or at least, if not all dogs in the whole worldethall dogs in the domain
of interestD. We may be interested, for example, only in the domain of “mmeats from
comics”, in which case the extension of “dog” would includels instances as “Snoopy”,
“Odie”, “Dogbert”, etc. These venerable dogs might be eaellifrom the extension of
the type “dog”, however, if the domain of interest was not @sor imaginary dogs, but
real dogs. Thus it is important to specify what the domaimtgriesD is.

Theintensionof the type “dog” is the set of properties which are commonitdags.
Again, the domain of interest D might have an influence on titvenision. For example,
for dogs in comics, it is usually not a requirement that theable to breathe real air with
nitrogen-atoms, oxygen-atoms, carbon dioxide, and othseg whereas this is usually a
member of the set of properties in the intension of real-evddgs. That is, comic-dogs
are usually not required to ever have been alive in any reslesevhereas real-world dogs
must have been alive at some point for them to be in the extemdithe type “dog”.

3.3 Ontological relations

Given that an ontology is “a catalog of the types of thingd #ra assumed to exist in a
domain of interest”, it is usually a good idea to structurelsa catalog in some way. One
way of doing so is to maintairelationsbetween types. A relation is here understood as a
structural link which links two or more entities into a struie.

The relation which is most often used in structuring ontaedgs the “is-a” relation.
If type B is-a typeA, then typeB is a species of the genus with some differentiae.
This usually entails that the extension®is smaller than the extension &f since the
intension ofB has more properties than the intensiomof

For examplethe following relationships would obtain:

elephanis-amammal.

sedimentary rocks-arock.

employeds-aperson.

artefactis-a object.

3.4. SUPERTYPES, SUBTYPES, AND LATTICES 41

There are other relations than is-a which may obtain betwgsrs. WordNet [Fellbaum,

1998] is a good example of what may be considered an ontoldgghwmplements more

relations than the is-a relation. For example, part-wholerbnymy) relationships may
obtain (e.g., “steering wheel” is part-of “car”). For a dission of the relations employed
by WordNet, see Miller et al. [1990].

3.4 Supertypes, subtypes, and lattices

The notions of “supertype” and “subtype” are closely redatie the notions of “genus”
and “species”, yet are also distinct from these notions. getd is a supertype of type
B, if and only if B is-aA. However, the is-a relation is a partial order, which, among
other properties, means that the is-a relationshipassitive For example, if typeC
is-a typeB, andB is-a typeA, then it also holds that is-a typeA. Thus, for example,
“elephant” is-a “mammal’, and “mammal” is-a “vertebratahd therefore, it is also true
that “elephant” is-a “vertebrate”. Thus we need to be abl@istnguish between “direct
supertype” and merely “supertype”, where the former is atypour catalog of types
(that is, our ontology) which is only one is-a step away frdra type of which it is a
supertype. That is, with respect to the is-a partial ordes,direct super type @ is a
least element of the set of typesA for which it holds thaB is-aA.

Conversely, the “subtype” relation is the opposite of theptrtype” relation. Thus,
if Bis-aA, thenB is a subtype oAA. The same distinction between “direct subtype” and
“subtype” can be made as for supertype, but in the opposietitin: A direct subtyp&
of some typeA is a greatest element of the s&tof typesB for which it holds thaB is-a
A

The reason it is called astipertype” lies in the nature of the is-a relation as a partial
order. Partial orders on sets may be viewed as chains of atsroéthe sets, with the
partial order relation standing between the elements icllag. For example, the partial
order< on the set of the integers has a chain which looks like this:

1<2<3<4<L5<...
In ontological terms, if the “is-a” relation is denoted by™, then:

elephan mammal< vertebrate

One way of thinking about these chains is that they are \&rtitso, then it is natural
from the Latin roots of “super” and “sub” that a “super”-tyloes “above” its “sub”-type,
which lies “below” its “super’-type.

| said that the is-a relation is a partial order on types. Wedl-known that partial or-
ders give rise to structures known as lattices [Insall an@¥tein]. A lattice is a directed,
acyclic graph with certain properties that make them veri} stgted to the problem of
structuring types in ontologies. We shall see examplestbtdastructures in later chap-
ters.

3.5 Conclusion

In this Chapter, | have briefly outlined some of the most inigatrnotions in the field of
ontology. First, | have discussed the way in which types neagédfined in terms of their

42 CHAPTER 3. ONTOLOGY

name, their extension, and their intension. The extensiding set of all instances of the
type, whereas the intension is the set of properties commal instances of the type. |
have then discussed ontological relations which may oliteiween types, in particular,
the “is-a” relation. This relation is a partial order on setsypes. From the definition of
“is-a” as a partial order on sets of types, the notions of &type” and “subtype” flow,
as does the notion of a “lattice of types”. We shall returnxareples of lattices of types
in later chapters.

Chapter 4
The EMdF model

4.1 Introduction

In this chapter, my topic is the EMdF text database model fioogated text. The EMdF
model sprang out of Doedens’s [1994] work on the MdF (MonaatsF@atures) model,
and is an extension of the MdF model.

In Section 4.2, | start by recounting the demands on a texba@se model which
Doedens defined in his PhD thesis. This is done to form a bapkdgainst which to
show in what ways | have extended the MdF model in order to thedull requirements
which Doedens stipulated must be met of a text database model

In Section 4.3, | discuss the original MdF model of Doedert® hot discuss the full
MdF model, since | find some of it irrelevant to the furtheradission, but the core of the
MdF model is reformulated in formal terms.

In Section 4.4, | discuss my own extensions of the MdF modsljiting in the EMdF
(Extended MdF) model. The extensions mainly have the goalaking the MdF model
implementable.

In Section 4.5, | show how one can implement the EMdF modeiguai relational
database engine as a backend. Thus the fruit of Section dmvely to make the MdF
model implementable, is borne out in practice in a reciparfgjplementation in Section
4.5.

In Section 4.6, | discuss another implementation, nameiyp-amemory implementa-
tion of an EMdF database.

Finally, | conclude the chapter.

4.2 Demands on a database model

4.2.1 Introduction

In order to be able to know whether his work was adequate, Eaedtlentified and de-
fined thirteen demands on a text database model which, inpimsom, it was good for a
text database model to meet. In order to be able to talk igégitly about these demands
in later sections and chapters, | here offer a reformulatiddoedens’s demands (4.2.2),
followed by a critique and extension of Doedens’s demands3

43

44 CHAPTER 4. THE EMDF MODEL

4.2.2 Doedens’s demands

Doedens [1994] defines thirteen demands on a database robdélich his own EMdF

model and QL query language only meet the first ten, plus gaheotwelfth. The de-

mands, which | state here in my own formulation, are as fal¢idoedens, 1994, pp.
27-30]:

D1. Objects: We need to be able to identify separate parts of the text arahitotation.
This can be done with ‘objects’.

D2. Objects are unique: We need to be able to identify every object uniquely.

D3. Objects are independent: The existence of an object in the database should be pos-
sible without direct reference to other objects.

D4. Object types: Grouping objects into “object types” with like charactéds should
be possible. (Note how this is similar to the notion of “copidypes” mentioned in
Chapter 3.)

D5. Multiple hierarchies: It should be possible to have several “views” of the same, data
as specified in the annotations. For example, in a Biblictlwse, it should be
possible to have both a “document-view” (books-chapterses) and a “linguistic
view” (phrases, clauses, sentences). These two hierarshaild be able to coexist.

D6. Hierarchies can share types:It should be possible for an object type to be a part of
zeroor morehierarchies.

D7. Object features: Objects should be able to have “features” (or “attributes/ith
values being assigned to these “features”. (Note how ttasndar to the notion of
“properties” or “attributes” of concept types mentioneddhapter 3.)

D8. Accommodation for variations in the surface text: For example, two different spel-
lings of the same word should be attributable to the same wjett.

D9. Overlapping objects: It should be possible for objects of the same type to “ovérlap
i.e., they need not cover distinct parts of the text.

D10. Gaps: It should be possible for objects to cover a part of the téemthave a “gap”
(which does not cover that part of the text), and then reswowerage of the text —
and this should be possible to do arbitrarily many timeslierdame object (i.e., it
should be possible for an object to have arbitrarily manys@ap

All of the demands above have to do with the data structusgsttatabase model defines.
In the terms of Codd [1980] (see Section 2.2.1 on page 29%),shequivalent to Codd’s
first point, which is a “collection of data structure typebi.order to obtain Codd’s second
and third points, Doedens defines three more demands:

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

D12. Data language:We need a strongly typed language in which it is possible to ex
press creation, deletion, update, and retrieval of all@tiiita domains in the model.

4.2. DEMANDS ON A DATABASE MODEL 45

D13. Structural relations between types: It should be possible to express structural re-
lations between object types declaratively, for examplat & sentence consists of
words.

4.2.3 Critiqgue of Doedens’s demands

Doedens went on in his PhD work to describe a database modi#t)(®hd a number of
retrieval languages (QL and LL) which, taken together, noeebands D1-D10 and part
of D12. Demands D11 and D13 were left for further researct the “create”, “update”,
“delete” parts of D12 were also left unspecified — only thetrtexe” part of D12 was
partially specified in Doedens’s work.

In my work, | have implemented full support for Doedens’s @swhs D1-D10. |
have also implemented full support for Doedens’s D11 and @drBands. That is, it is
possible in MQL to declare object types and their featurekl{Dand it is possible to
create, update, delete, and retrieve all of the data donadimy EMdF model (D12). |
have notimplemented support for Doedens’s D13 demand. &4ty versions of Emdros
did support the kind of declarations needed by demand D13,tbok this functionality
out, for two reasons: First, it proved to be a performancédmck on the insertion and
update of data to have to check and maintain the integrithe$e structural relations.
And second, at the time | did not see a need for these kind dadgions. | have since
then come up with a number of reasons for supporting sucladgwns, but | have not
had the time to implement them (see Section 14.2 on page 175).

Itis possible to offer both a critique and a extension of Davexks demands, something
which | shall attempt to do now.

With respect to D5 (“Multiple hierarchies: It should be pibés to have several
“views” of the same data”), | offer the following critique: Nén using the word “hi-
erarchies”, Doedens must have thought strictly in termstrictural (i.e., part-whole)
hierarchies. There are two points of critique which | wantdise in this respect. First,
there are also other types of hierarchy than structural: Arsotelian “genus-species”
kind of hierarchy should be mentioned too. Second, the ‘ipleltviews” should not be
defined in terms of different object types; that is, it shdogdpossible to express several
“views” of the same data within the same object type. For eplamt should be possible
to express that a given sentence can be analyzed in sevitgzedli ways. Doedens men-
tions such an analysis (pp. 80—-82), and offers a solutiommitis own MdF model. Thus
| have two points of critique, each leading to a new demandow make these further
demands explicit:

D5.1. (Multiple) inheritance: It should be possible to declare that an object type is a
subtype of one or more object types. This would mean that gvdyndeclared
object type (let us call iA) had the union of the features of its supertypes, with
possible renaming to avoid conflicts (let us, without losgeerality, call the su-
pertypesB andC), plus any features that might distinguiaiirom B andC. ThenA
would be said tonherit the features oB andC, andA would be a subtype of both
B andC. Single inheritance should be possible, too, in which aeci) inherited
from a single object typE&.

This would be useful, among other times when querying. Fangte, if we had
an object type “Phrase” which defined, among other featar&shrase_function”,

46 CHAPTER 4. THE EMDF MODEL

then we might further define an object type “NP”, which waslatgpe of “Phrase”
and therefore had the same features as “Phrase”, as wely ashean features which
might pertain to NPs (e.g., whether there is an article orttlarodeterminer in
the NP). In addition, we might define an object type “VP”, whiaherited from
“Phrase” and also had other features of its own. Then, whengwerying, we
might want to specify either an “NP” or a “VP” explicitly, bute might also “not
care”, and simply search for “Phrase”. This would find botrsMiRd VPs, whereas
search for “NP”s would not also find “VP’s.

D5.2. Multiple parallel analyses: It should be possible to specify (when creating an ob-
ject of a given object type) that this object is a part of a gpeanalysis or annota-
tion of a given piece of text. It should also be possible toregp, within the same
object type, that two objects belong to different analydeb® same text.

This is possible both within the MdF model and within the EMdBdel. A differ-

ent way of specifying the parallel analyses than the wayredf®y Doedens (p. 82)
would be to declare, on each object type which might be a pad\eral anlyses, a
feature which was simply an integer — let us call it “ambiguget”. Then objects
whose value for this “ambiguity _set” was the same (e.g.,dyld/belong together.

With respect to D8 (“accommodation for variations in thefgoe text”), it should not only

be possible to describe variations in spelling for the sam@ it should also be possible
to express two or more different texts which are very simyat which have differences
at various points in the exact number of words (e.g., wordsgodeleted or inserted in
one text with respect to another text). There is a whole figttiwtheology devoted to

the study of such differences, namely the fieldeftual criticism For an introduction to

textual criticism of the New Testament, see Greenlee [1985%ould be good if a text

database model supported such “insertion” and “deletidnards. | therefore define

another demand on textual database models, designed toseihat@ this need:

D8.1. Multiple parallel texts: It should be possible to express parallel texts which have
only slight differences (such as a word that has been indertdeleted in one text
with respect to another text).

This is probably possible to do within the MdF and EMdF modeils further research is
needed to establish a good way to do it.

4.3 The original MdF model

4.3.1 Introduction

The original MdF model had many characteristics, and defmady concepts and data
structures. In order to be able to describe the EMdF modekiwis an extension of a
subset of the MdF model, | now describe the parts of the MdFehathich are perti-
nent to the later discussion. Much of this discussion haa peesented several times in
my published papers (e.g., [COLING2004, RANLP2005, FSMRQ®5, LREC2006)).
Therefore, the following discussion will be brief.

4.3. THE ORIGINAL MDF MODEL a7

4.3.2 Monads

In the MdF model, a monad is simply an integer with a specifiamm&y: It is a “smallest,
indivisible unit” of the backbone of the database, also km@s the “monad stream”.
The “monad stream” is the sequence of monads which make ugpetiseof monads of
all objects in a database. The sequence of the integers 81,.2,) defines théogical
reading orderof the database. This is conceptually different from thesutgt reading-
order, which may be left-to-right, right-to-left, top-tmttom, or combinations of these.
A monad is an integer. As such, it can be a member of a set of dspiathe usual
Zermelo-Fraenkel sense of sets. Objects are sets of monddsomcomitant attributes
(known as features). We now turn to objects, followed by ©bjgpes and Features.

4.3.3 Objects

An object in the MdF model is a paifM,F) whereM is an arbitrary set of monads (it
may even be empty), arfel is a set of value-to-attribute assignmeftsv;), wheref; is
theith feature (or attribute), and is the value off;. Whenever speaking about an object
O = (M,F), we will usually say thaO is synonymous wittM, such that, for example, a
monadm may be “a member oD’ (i.e., m € O) when we really meam € M. Features-
values are denoted with “dot-notation”, i.eQ.f” means “The value of featuré on the
objectO”.t

4.3.4 Object types

Objects may be grouped intmbject types An object type has many similarities with
the conceptual types described in Chapter 3: Object typeslastract entities which
group instances with similar attributes. The instances haag different values for these
attributes. One difference between conceptual types agided in Chapter 3 and the
Object Types of the MdF model, is that Object Types may notéssribed by Doedens)
inherit characteristics from other object types. Indeeded®ens did not even describe
a language in which to declare object types or their feaju@s was left for further
research, and acknowledged as such [Doedens, 1994, p. 258].

Doedens defined a number of special object types, three targanes being “all_m”,
“pow_m”, and “any_m”.

There is only one object of type all_m for any given databéss;the object having
no features and consisting of the monad set which is the higawof all monad sets of all
objects in the database. That is, the sole object of objpet &l _m is the set of monads
consisting of all monads in use by all objects. This may, afree, have gaps, if there are
unused monads.

Similarly, “pow_m" is the object type having objects whichve no features, and
which are monad sets which are drawn from the power set (Hgoee m”) of the sole
object in the all_m object type.

Finally, “any_m” is the object type having objects with nafieres, and where each
object consists of precisely one monad from the sole objeaibj@ct type all_m.

1This formalization ofO = (M, F) is not present in Doedens’s work, but is, in my opinion, a ifatier-
pretation and formalization of Doedens’s intent.

48 CHAPTER 4. THE EMDF MODEL

4.3.5 Features

In the MdF model, an object type may have zero or nieatures A feature is a strongly
typed attribute which may take on a range of values in spdosi@ances (i.e., objects) of
the object type. For example, a “Word” object type is liketyiave a “surface” feature,
whose type is “string”. Or a “Phrase” object type may haveumttion” feature, whose
values are drawn from the strings “Subject”, “Object”, “Bieate”, etc.

Doedens described features as functions which assigneeat unique object, a
value to that feature of that object. In so doing, he was chedout not restricting the
co-domains of feature-functions: He left it up to the impéartor to decide what should
be acceptable co-domains of feature-functions, that idefbét up to the implementor
both to explicify and to limit the types which a feature male@n. This is what | have
done in implementing the Extended MdF model (EMdF modelylbach | now turn.

4.4 The abstract EMdF model

4.4.1 Introduction

In this section, | show how my extension of the MdF model (mtt model”) differs
from the MdF model. | also show how my extensions make the MdBehless abstrac,
more concrete, and therefore more implementable.

Some of the information below has already appeared in my M&ith However, it
appeared in an appendix, on five short pages, and said exyrkithe beyond what Doe-
dens had already said, except to say that | had implementeddds’s ideas. Therefore,
this Section (i.e., 4.4) presents information not prestbfore for the fulfilment of any
other academic degree.

The rest of Section 4.4 is laid out as follows. First, | discusonads, then Objects
get their treatment, followed by Object types, followed lgakures. Finally, | discuss
“Named Monad Sets”, which are an innovation in relation teBens’s work.

4.4.2 Monads

Monads are exactly the same in the EMdF model as in the MdF imadd serve the

same purpose. For purposes of implementation-efficiendy-ossibility, however, the
monad stream has been limited in the EMdF model to a finiteeiangmely from 1 to

MAX_MONAD. The monad labelled “MAX_MONAD?” is currently s¢b 2,100,000,000
(or 2.1 billion). This choice is “large enough” for even gig@rd corpora, and neatly fits
within a signed 32-bit signed integer.

In the EMdF model, there are two special monads, and one asati of monads,
all related: The “min_m” monad is the least monad which igenily in the big-union
set of all sets of monads of all objects. That is, it is thetleasnad used by any object.
Similarly, “max_m” is the greatest such monad, i.e., theatgst monad in use by any
monad. The set all_m is defined (contrary to the definition lbgdns) to be the set of
monads covering all monads in the range “min_m” to “max_nothnclusive.

4.4. THE ABSTRACT EMDF MODEL 49

4.4.3 Objects

Objects are almost the same in the EMdF model as in the MdF Inbidevever, in the
EMdF model, an object is always distinguished uniquely frotiner objects (demand
D2), not by its set of monads being unique, but by a uniqueyertealled an “id_d” (the
“_d” suffix distinguishes it from the “id_m” id in the MdF mofleand is meant to mean
“id_database”). All object types have a feature calledf*sehose type is “id_d”, and
whose value for any given object is a number which is uniqubenwhole database. This
design choice was motivated by a desire to have objects cfahee object type which
have exactly the same set of monads, yet which are distinatething which is not
possible in the MdF model due to the requirement that allabjeithin a single object
type be unique in their set of monads. | have found no thexaieside-effects of this
design choice which are theoretically detrimental. Theaho the MdF model to base
uniqueness on the set of monads seems to be motived on D&eplan by simplicity and
clarity: Doedens writes (p. 59):

“No two objects of the same object type may consist of the ssehef mon-
ads. The reason for this restriction is that it allows us ap&nand clear
criterion for what different objects are.”

However, Doedens also mentions that this uniqueness basset® of monads entails a
number of theoretical side-effects which are beneficialuiding the fact that all objects
of a given object type can be said to have an “ordinal numhdr’a) which uniquely
defines it within the object type. This “ordinal” is definedterms of a lexicographic
ordering on the sets of monads of which the objects of a gilgecbtype consist. The
id_o then arises because the lexicographic ordering is wiaghematicians call “well-
ordered” [Allenby, 1991, p. 17]. Since all objects are umdu their monads, the “id_o0”
uniquely identifies each object.

This theoretical gain in the MdF model is lost in the EMdF mlothowever, the loss
is not great, since:

1. The “id_o” ordinal number has been replaced with an “idwtlich is easy to com-
pute (just take the next one available whenever creatingveohgect).

2. The “id_o" is expensive to compute, since it involves cangon of sets of monads.

3. Worse, the “id_o” of an object may change when a new obgeittserted into the
database. Hence, it is not a stable id, unless the databstsbis. In contrast, the
id_d of an object never changes throughout the lifetime efabject, and is never
re-used for a new object.

The need for objects of the same type to consist of the sanoé sethads becomes appar-
ent when one studies various linguistic theories, inclgdRole and Reference Grammar
[Van Valin and LaPolla, 1997] and X-Bar syntax [Jackendd®77], in which objects are
often stacked on top of each other, referencing the sammgsifiunderlying words, and
thus the same set of monads. To demand that all objects lrectlisttheir monads would
preclude having two objects of the same object type whichstasked on top of another
object of the same kind. Hence this design choice on my phlétting uniqueness be
determined, not by the set of monads, but by a distinguisking feature called “self”.

50 CHAPTER 4. THE EMDF MODEL

4.4.4 Object types

Object types are almost the same in the EMdF model as in thervtfel. One difference
is that all object types have a feature called “self”, whistekplained in the previous
section.

Another difference is that | have, in the EMdF model, restdcthe possibilities for
naming an object type: In the EMdF model, the name of an olygx must be a C
identifier, that is, it must start with a letter (a-z) or an argtore (_), and then it may have
zero or more characters in the name, which must be eitherseh-z), underscores (),
or digits (0-9). The reason for this restriction is that saatabase management systems
(such as the early versions of MySQL which Emdros suppaoetp)ire table names to be
C identifiers. Since | have mapped the EMdF model to the oelatidatabase model, and
since Emdros was designed to support various database emaagsystems as back-
ends, | needed a uniform “lowest common denominator” toeslaanong the database
backends supported. | chose “C identifiers” because of sivaiplicity.

| have also extended the MdF model by supportifigect range typegwhich are
completely different from the “range types” of Doedens’'sildn the EMdF model, an
object type may be declared (upon creation) to be one of thenimg object range types:

1. WITH SINGLE MONAD OBJECTS, which means that all objectstlos object
type must occupy exactly one monad. That is, the sets of nsoohthe object
types are limited to containing precisely one monad (a siogi).

2. WITH SINGLE RANGE OBJECTS, which means that all objectslo$ object
type must occupy exactly one, contiguous stretch of monads. stretch is con-
tiguous, meaning it may not have gaps. It may, however, sbo§a single monad
(“singleton stretch”), and so does not need to start and ardifferent monads.

3. WITH MULTIPLE RANGE OBJECTS, which means that there araestrictions
on the sets of monads of the objects of the object types: Tlegyaonsists of one
monad, of a single, contiguous stretch of monads, or theycoagist of multiple
contiguous stretches of monads (including singleton tsiwes™).

The reason for introducing these object range types is tratows for more efficient
storage and retrieval of sets of monads. See especiallyJi6@ppl2008] and Chapter 8.

Furthermore, | have extended the MdF model by supportingad uniqueness con-
straints A “monad unigueness constraint” is declared for the olijgmt upon object type
creation, and may be one of the following:

1. HAVING UNIQUE FIRST MONADS, which means that all objectsn the ob-
ject type must have unique first monads. That is, no two distbjects in the
object type may have the same first monad.

2. HAVING UNIQUE FIRST AND LAST MONADS, which means that bothe first
and last monads of all objects within the object type musehmth unique first
monadsandunique last monads.

3. WITHOUT UNIQUE MONADS, which means that there are no rieftins on the
uniqueness of either the first or the last monads.

4.4. THE ABSTRACT EMDF MODEL 51

The reason for introducing these monad uniqueness camistrigi again that it allows
for more efficient storage and retrieval of sets of monads.ai#\gplease see [ICCS-
Suppl2008] and Chapter 8 for more information.

4.45 Features

As mentioned above, Doedens did not limit the types whichatufe may take on. In
implementing Emdros, | had to decide what types to supportefatures. | have imple-
mented support for the following:

1. integers
2. id_ds

strings

W

enumerations (which are finite sets of pre-declared $akek below)
5. ordered lists of integers
6. ordered lists of id_ds

7. ordered lists of enumeration constants

As mentioned above, all objects in the EMdF model (but nohenMdF model) have a
feature called “self”, whose type is “id_d”, and whose vaisi¢ghe unique id_d given to
each object.

An enumeration is a set of (label,integer) pairs. The labetdscalled enumeration
constants, whereas the integers are called the “enumeratioes” of each “enumeration
constant”.

This concept of enumeration is almost identical to the cphoéthe same name in
the C and C++ programming languages. The only differendesisibh the EMdF model,
it is not allowed to have two enumeration constants with traesinteger value within
the same enumeration, whereas this is allowed in C and C+& S8eustrup [1997, pp.
76-78].

The reason for this restriction on enumeration values isitt@lows the implemen-
tation to store enumeration constants unambiguously astégers to which they cor-
respond. That is, because there is a one-to-one correspambetween the set of enu-
meration constants and the set of integers both coming fhensame enumeration, the
implementation can take advantage of this one-to-one sporedence and only store the
integer, and only pass the integer around internally. Ifehgere no one-to-one corre-
spondence, the implementation would have to store the eraime constants as strings,
which would be inefficient.

One of the types which a feature may take on is “id_d”. Thismthat objects may
point to each other. This is useful, e.g., in the case of ama@ppointing backwards to
other objects (and similarly for cataphora pointing fore&r another example where this
is useful would be the “secondary edges” as used in the TIGERUS [Brants et al.,
2002, Brants and Hansen, 2002]. Tree, of course, may alsefdresented using id_d
pointers, which point either “upwards” (to the parent), doWwnwards” (to the children).

52 CHAPTER 4. THE EMDF MODEL

In the latter case, of course, the feature should be a “list afs”. Directed acyclic graphs
can also be represented using lists of id_ds.

A string feature may be declared to be “FROM SET”, meaning‘tivader the hood”,
strings are changed to integers for more efficient storagdeetneval. In effect, the set of
actually occurring strings is given a one-to-one mapping set of integers of the same
cardinality. The one-to-one mapping is, of course, bijestand so may be inverted for
retrieval purposes.

Any feature may be declared to be “WITH INDEX”, meaning that2QL index is
created on the column containing the values of that fealthies may speed up search.

4.4.6 Named monad sets

I have extended the MdF model also by supporting “named $et®oads” which are not
objects. That is, it is possible to declare — and give a name set of monads, which
may then be used as the basis of querying in a limited parteofifttabase. For example,
if one had all of Kaj Munk’s works in one single database, ightibe useful to declare a
named set of monads for each kind of document in the databage ‘plays”, “poetry”,
“sermons”, “prose”, etc.). Then, when searching, one ctioid the search to, say, “po-
etry” simply by referencing this named set of monads in therguAs with objects, the
named sets of monads are completely arbitrary, and may haltgl®e, disjoint stretches
of monads. The only restriction is that they cannot be enmjitgwing them to be empty
would defeat their purpose, namely of being easy-to-ugactsns on queries.

This concludes my description of the abstract EMdF modelow turn to the rela-
tional implementation of the EMdF model.

4.5 The relational implementation of the EMdF model

4.5.1 Introduction

In this section, | describe the implementation of the EMdRdeia@s it is currently done

in the four relational database backends supported by Bsn@QLite %, SQLite 2,
MySQL#*, and PostgreSQL | do so in two further subsections; the first is on storage of
“meta-data”, while the second subsection is on storagelgett data”.

45.2 Meta-data

Meta-data of various kinds need to be maintained in orderatudle the various data
domains of the EMdF model. The implementation is trivialthat each kind of data is
implemented by a table with the requisite number of columersessary for storing the
relevant data. In Table 4.1, | list the various kinds of médiga implemented, along with
a brief comment on each.

| invite the reader to consult Petersen [2007Db] for the tketai

2http:/lwww.sglite.org
3http://www.sglite.org
*http://www.mysgl.com
Shitp://www.postgresgl.org

4.5. THE RELATIONAL IMPLEMENTATION OF THE EMDF MODEL 53

| Meta-data kind | Comment |

schema version Holds the version of the SQL schema.

Enumeration Holds the names of enumerations present

Enumeration constanisHolds the names and values of enumeration constants

Object types Holds the names and other properties of object types

features Holds the object types, names, types, and default
values of features

min_m Holds the least monad used by any object

max_m Holds the greatest monad used by any object

monad sets Holds “named monad sets”

Sequences Hold the next “unique number” to be used for
various purposes (e.g., id_ds)

Table 4.1: Kinds of EMdF meta-data.

4.5.3 Object-data

In the relational implementation of the EMdF model, | havesdn to map one object type
to one table, and to map each object to one row of such a tabtegihally implemented
object data more complexly, by having two tables for eackdliype: One containing the
features, and one containing the monad sets, one row penmabstretch of monads (also
known as “monad set element”) per object. This turned outetinbfficient, so | opted
for storing the sets of monads as a marshalled string in tine saw as the feature-data.

| have implemented three ways of storing monad sets, eachspmnding to the three
object range types defined on page 50:

1. Object types declared WITH SINGLE MONAD OBJECTS get ontucm for
storing the monad set, namely the sole monad in the monadseiv by the
column name “first_monad”).

2. Object types declared WITH SINGLE RANGE OBJECTS get twtugms for
storing the monad set, namely: The first monad and last mar@dnin names:
first_monad and last_monad respectively).

3. Object types declared WITH MULTIPLE RANGE OBJECTS getetinicolumns
for storing the monad set, namely: The first monad, the lastadpand a string-
representation of the arbitrary set of monads. The reasostdoing the first and
last monad, even though this information is also containedegdundantly — in
the string-representation of the arbitrary set of monagithat this scheme allows
more efficient retrieval of certain kinds of queries, inchglthe GET OBJECTS
HAVING MONADS IN as well as so-called “topographic querieSee Chapter 5
for more information.

The string-representation of the monad set is an efficigrdlgked delta-representation
(similar to the d-compression mentioned in Zobel and Md#806]), in which only the
deltas (differences) between each end-point in the sestahd gaps of the set of monads
are encoded. Furthermore, the integers involved are efflgiencoded using a base-64
encoding scheme.

54 CHAPTER 4. THE EMDF MODEL

Furthermore, each object is represented by a column stdsng) d (column name:
“object_id_d"). This is obviously the “self” feature.

Finally, all other features than “self” are stored in otheluenns, one column per fea-
ture. The various kinds of EMdF feature type map to the follmsQL type (PostgreSQL
syntax has been taken as the example syntax):

1. An EMdFinteger maps to an SQL INTEGER.
2. An EMdFid_d maps to an SQL INTEGER.

3. An EMdFenumeration maps to an SQL INTEGER, with appropriate conversion
inside of Emdros.

4. An EMdF string maps to an SQL TEXT, if it is not declared FROM SET. This
entails that strings of arbitrary length may be stored. vialively, if the string is
declared FROM SET, it maps to an SQL INTEGER, which in turnfgraign key
in a separate table containing the strings.

5. An EMdFlist of integer maps to an SQL TEXT, by storing the integers as strings
of numbers in base-10 with spaces between, and also suedundspaces. This
makes it easy to search by using standard SQL LIKE syntakaitrtl integers will
be surrounded by a space on either side.

6. An EMdFlist of id_d maps to an SQL TEXT in exactly the same way as an EMdF
list of integer.

7. An EMdFlist of enumeration constantsmaps to an SQL TEXT in the same way
as an EMdF list of integer, with appropriate conversion lesmwenumeration con-
stants and enumeration values.

The column names of features are the same as the featurept éxey are always prefixed
by the string “mdf_". This is in order to avoid name-clashEsr example, a malicious
user might declare a feature called “object_id_d”, thiigkthat they would be able to
wreak havoc by forcing Emdros to declare two different catsiwith the same name. Not
so, since the feature-name “object_id_d” maps to the colname “mdf_object_id_d”,
thus making it distinct from the column holding the id_d oé tbbject.

4.6 Anin-memory EMdF database

4.6.1 Introduction

In this section, | describe a set of data structures whichveHaund useful whenever
having to deal with EMdF data in-memory. | start by definingBmdrosObject”. | then

describe the main data structure as it is implemented ilouagoftware libraries which |
have written. | first implemented this way of representingrmmemory EMdF database
in my “Linguistic Tree Constructor” software, which origites back in the year 1999.
| have also implemented this representation as part of mk with the Munk Corpus,

this time implementing it twice: First, in the Python progmaing language, in order to

6For more information on the Linguistic Tree Constructoegsie see <http://ltc.sourceforge.net>.

4.6. AN IN-MEMORY EMDF DATABASE 55

be able to build Emdros databases from the Munk Corpus. Aodnsk in the Munk
Browser, to which | return in Chapter 12.

The information presented in this section already appeaarkernel form in my B.Sc.
thesis [Petersen, 1999], and as such has already countaditane academic degree.
The material presented here is a modernization of the idesepted in my B.Sc. thesis,
but does not constitute radically new information.

The reason | include it anyway is that | shall need to returthie data structure in
Section 12.4 on page 152.

4.6.2 EmdrosObject

In order to be able to store Emdros objects in an in-memory Eltabase, | have found
it useful to declare a class (in C++, Python, Java, or whalamguage | am using) which
has the following members:

1. Asetof monads (implemented by the class SetOfMonad®i&thdros code base).
2. Anid_d (being the object id_d of the object)

3. A map data structure mapping feature-names to stringesepting the values of
those data structures. | have implemented variations artltieine over the years;
| have found it most useful to distinguish between “nonrgfrvalues” and “string-
values” inside the EmdrosObiject, and to let the code callieg=mdrosObject keep
track of whether something is an integer, an id_d, an enumsting (leaving aside
lists for the purposes of this discussion). The utility aktarrangement is that it
is possible to have the EmdrosObject class write itself as1@b statement that
creates the object; differentiating between string-festand non-string-features
has the effect of being able to predict (in the code that witie EmdrosObject as
an MQL statement to create the object) whether to surrouadetdture-value with
guotes or not. A further extension would be to support listeitegers, id_ds, and
enums.

4. The name of the object type of the EmdrosObject (or a satedgr the object type,
so that the real object type can be looked up somewhere else).

This data neatly encapsulates what an Emdros object is.
I now describe the main data structure that holds the in-nmghatabase.

4.6.3 InMemoryEMdFDatabase

In order to be able to access any EmdrosObject quickly, | fawed a data structure with
the following data useful and time-efficient:

1. A container data structure to hold the object types of thluhse. Ideally, the
object types should each contain: a) The object type namEhé¥eatures of the
object type, and c) The types of the features. This makessipte to export the
whole InMemoryEMdFDatabase to MQL statements that wilieate the database
on-disk.

56

2.

CHAPTER 4. THE EMDF MODEL

A map data structure mapping object id_d to EmdrosObjgetd. This is the only
data structure that holds the EmdrosObjects themselves.

. A map data structuring mapping monads to the following ddtucture: A map

mapping object type names (or surrogates) to sets of olgedsi Whenever an
EmdrosObject is inserted into the InMemoryEMdFDatabdss, map of monads
mapped to object types mapped to sets of id_ds is updatedinesway that all of
the monads of the EmdrosObject result in an entry in the isatof id_ds for the
object type of the EmdrosObject. For example, if an Emdrge@ihas a monad
set of {1,2}, and an object type of “Phrase”, then the follogiwould occur:

(&) The outer map would be checked, whether it had an entthémonad 1. If
it did not, an instance of a map data structure mapping obypet to set of
id_d would be created, and this instance would be insertedie outer map
for the monad 1. On the other hand, if the outer map alreadyahashtry for
the monad 1, then this step would be skipped.

(b) The inner map for the monad 1 would be checked to see idtameentry for
the object type “Phrase”. If it did not, an instance of a setlofls would be
created, and this instance would be inserted into the inragr fior the object
type “Phrase”. If, on the other han, the inner map alreadydraéntry for
“Phrase”, then this step would be skipped.

(c) By now the data structure is set up for adding the id_dhsoouter map is
checked for the monad 1, yielding an inner map mapping obypets to sets
of id_ds. This inner map is checked for the object type “Péilagielding a
set of id_ds. Then the id_d of the EmdrosObject which we wisimsert is
added to the set, and we are done for the monad 1.

(d) The process (a)-(c) is repeated for the monad 2.

Among other questions, this data structure supports quickvaring of the following
questions:

1.
2.

Which EmdrosObject has such and such anid_d.

Which EmdrosObjects share at least one monad with sucbuanida set of monads
(this is useful for answering the MQL statement known as GBBUECTS HAV-
ING MONADS IN).

. Which EmdrosObjects are within the confines of such antl suset of monads

(this is useful for answering the topographic MQL statenmarmwn as SELECT
ALL OBJECTYS).

Variations on this theme exist: For example, it is sometioseful to distinguish between
the starting monad of an EmdrosObject and other monads, @aiaf@mation can be
stored in the data structure about which objects start at@nginonad, versus which
objects merely have the monad, but do not start at the giveratho

Note that this data structure is highly memory-inefficiaemtgd needs large amounts of
memory for large data sets. The reason is that the id_d of atr@&®bject is duplicated
across all of the monads in the monad set of the object.

4.7. EXAMPLE 57

Monad 20001 20002 20003 20004 20005 200p6
Word 1 2 3 4 5 6
surface Hvad var det dog,| der skete?
part_of speech PRON_INTER_REL V_PAST PRON_DEMO ADV ADV V_PAST
lemma hvad veere det dog| der ske
verse 11

Monad 20007 20008 20009 20010

Word 7 8 9 10

surface Mit vinterfrosne| Hijertes Kvarts

part_of speech PRON_POSS ADJ N_INDEF_SING_GEN N_INDEF_SING
lemma mit vinterfrossen hjerte kvarts

verse 12

Figure 4.1: Parts of “The Blue Anemone” encoded as an EMd&hbdase. The two ta-
bles have the exact same structure. The top row representadhads. They start at
20001 because we imagine that this document starts sonanckstnto the collection
(i.e., database). There are two object typssrd andverse The numbers in the rows
headed by the object type nameslfwid) are the “self” feature, i.e., the id_d of each ob-
ject. The non-bold headings in the first column (apart froemitbading “Monad”) are the
feature-names. For example, the “surface” feature of tlecbbf object type Word with
id_d 1is “Hvad” (in English, “What”"). The “verse” object tgphas no features beyond
“self”.

4.7 Example

In this section, | show how the EMdF model can be used to egghesfirst two lines of
Kaj Munk’s poem, “The Blue Anemone”, introduced in Sectiab bn page 25. For the
remainder of this discussion, please refer to Figure 4.1.

First, it should be obvious that the database depicted iarEig.1 is not the whole
database: Something comes before “The Blue Anemone”, amgéthing comes after
what is shown.

Second, there are two tables in Figure 4.1. This is partlytyfpographical reasons
(i.e., width of the page in relation to the font size), paltgcause the two lines of the first
stanza can be divided as in the two tables.

Third, the line of integers at the top of each table is the mdendn this particular
database, “The Blue Anemone” starts at monad 20001. | ccaNé bhosen any other
monad for the purposes of this example, of course.

Fourth, there are two object types in this particular datab&Word” and “Verse®.
The object type “Word” has four features: “surface”, “paft_speech”, “lemma”, and
“self”. The latter is shown as the integers (actually id_als)ve each “Word” object. The

7] use the terminology “stanza” for the whole of a coherentéetrses, and “verse” for the “line”.

58 CHAPTER 4. THE EMDF MODEL

“verse” object type has no features apart from the “selftiea

Fifth, it can be seen that each “verse” object occupies thefsaonads that is the
big-union of all of the sets of monads belonging to the wortisctv make up the verse.
This will become significant in Chapter 5, when we discussMi@d. query language.

4.8 Conclusion

In this chapter, | have discussed the Extended MdF model gEMddel). The EMdF
model is a reformulation of the MdF model described by Doedd®94]. The main
contribution which | have made is to make the MdF model im@etable.

| have first described thirteen demands on a text databaselmddch Doedens
deemed to be requisite for a full text database model to bept=ien | have shown how
the MdF model only fulfilled the first ten demands, plus pamwiber 12, leaving num-
ber 11 and 13 completely unfulfilled. | have also given agué of Doedens’s demands,
extending and refining them with new demands.

| have then given a reformulation of the pertinent parts ef ahiginal MdF model.
The reformulation is a formalization of the MdF model whismbt in Doedens’s original
work, but is my own contribution. As | have stated, | beliekiattmy reformulation is a
fair interpretation of Doedens’s intent.

I have then discussed the abstract EMdF model, and how testia the original MdF
model, showing the differences between the original anéxitension. As already stated,
my main contribution is to make the MdF model less abstraotemoncrete, and therefor
more implementable than the MdF model. The EMdF model fulseta demands D1-
D10.

| have then shown in two rounds how the EMdF model can be imgieed: First, in
a relational database system, and second, in an in-memtatyate. Thus the purpose of
the EMdF model has been fulfilled, namely to be implementabtave, of course, also
fulfilled this purpose in other ways, by implementing the EMdodel a number of times,
most notably in the Emdros corpus query system.

Chapter 5

The MQL query language

5.1 Introduction

In Chapter 4, we saw how the EMdF model, in conjunction withMQL query language,
together constitute what Doedens called a “full access hodaethe previous chapter, it
was still unclear how exactly Deodens’s demands D11 and Der2 going to be met. In
this chapter, |1 show how they are met by the MQL query langu#Dé3 is not met by
either the EMdF model, the MQL query language, or their cociion.)

Doedens’s demands D11-D13 sound as follows in my refornomat

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

D12. Data language:We need a strongly typed language in which it is possible to ex
press creation, deletion, update, and retrieval of alleti&ita domains in the model.

D13. Structural relations between types:It should be possible to express structural re-
lations between object types declaratively, for examgat & Clause consists of
Phrases, or that a Book consists of Chapters, Front Matté3ack Matter.

| shall show how demands D11 and D12 are met by the MQL quegulage in a succes-
sion of sections, but first, | need to offer some general remg.2), to discuss the design
and implementation of the MQL interpreter (5.3), and to descthe output of an MQL
query briefly (5.4).

Then, getting back to the demands, | offer a section on the@é&Twanguage” (5.5)
(meeting demand D11), followed by two separate sectionsféereht parts of the Data
language (meeting D12). The two sections on “Data languagethe “non-topographic”
part (5.6) and the “topographic” part (5.7). Along the wagive examples of how the
various statements are used. Finally, | conclude the chapte

5.2 General remarks
Although MQL is my own invention in large part, | could not leaccomplished it with-
out standing on the shoulders of a whole army of giants. MQdwdrfrom a pool of

many sources of inspiration, among which the SQL query laggyDate, 1995] and the

59

60 CHAPTER 5. THE MQL QUERY LANGUAGE

QL language [Doedens, 1994] are chief. | have explicitlwstr to model the type lan-
guage and the data access language after a mixture of botlasfQQL. For example, the
“SELECT FEATURES FROM OBJECT TYPE” statement is modeledratie SELECT
statement of SQL, but “borrows” the convention of enclosaing object type in [square
brackets] from QL:

// Returns a table containing the features and their types
SELECT FEATURES

FROM OBJECT TYPE

[(Word]

GO

Notice also thatommentsnay be indicated with “//”. Such comments extend until the
end of the line. There is another kind of comment, which igethby “/*” and ended by
“*". The former kind of comments were borrowed from the C+Hegramming language,
while the second kind of comments were borrowed from the @ramming language.
The second kind of comment may extend over multiple linegé#dbe:

/* This comment spans
multiple lines, and
does not end until
the ’star followed by a slash’... */
// ... while this comment ends at the end of the line

The keyword “GO” is used for indicating that a particular gues fully expressed, and
that the MQL interpreter can start the execution of the gu&hg “GO” keyword is used
throughout this dissertation whenever showing an MQL guemess it is unambigous
(for example, for typographical reasons) that the querylig £xpressed. For example:

CREATE (OBJECT TYPE
[verse]
GO

| shall use the terms “MQL query” and “MQL statement” to me&ae same thing: A
string of characters forming a single “thing to do” for the M@terpreter.

5.3 The MQL interpreter

| have designed and implemented the MQL interpreter as dipgef “stages” (or “pro-
cesses”), each of which has a particular function to ful#h overview can be seen in
Figure 5.1.

The processes (or stages) involved in interpreting an MQarystart with parsing
and lexing. This may be viewed as one process, since in myeimgrhtation, the parser
drives the lexer.

“Parser” here means a program module which takes tokenspasg amd produces
an Abstract Syntax Tree (AST) as output, provided that tpetistream of tokens con-
forms to some formal grammar which the parser implementavéspecified the formal
grammar of the MQL query language using the formalism engdogy the “lemon”

5.3. THE MQL INTERPRETER 61

C MQL-query)—) Parser + lexer AST

Symbol-checking AST Weeder
AST Type-checking AST
Execution AST Monad-checking
Output Legend:
(Table,
Flat sheaf)
Process

Figure 5.1: The data and compiler stages involved in the M@Qérpreter. The process
starts in the upper left hand corner, with an MQL query in raxt form. This is passed
through the “parser” and “lexer” stage. They are countedresstage here, for reasons
discussed in the main body of the dissertation, even thogg are usually counted as
two stages. This produces an “AST”, which stands for “Alst&yntax Tree”. The rest of
the stages operate on this AST. The next stage is the Weelieh tweeds out” certain
parse-trees which are not well-formed for various reasdhs.two next stages, Symbol-
checking and Type-checking, also weed out parse-treeslithabt meet certain criteria,
specified in the MQL Programmer’s Reference Guide [Pete2@d7a]. The next stage,
“monad checking”, adds some information to the AST about aisnand may do some
checking of monads. Finally, the query is executed in thecEten stage. The process
may stop with an error at any point before the Execution stage

62 CHAPTER 5. THE MQL QUERY LANGUAGE

parser generator, available from <http://www.sqlitelargrhe formalism is a LALR(1)
grammar, modeled after Backus-Naur Form. See Appel [198@]Martin [1991] for
introductions to the LALR(1) class of formal languages.

“Lexer” here means a program module which takes a charattaggor character
stream) as input, and produces tokens as output, ready tonberted by the parser into
an abstract syntax tree.

That the parser drives the lexer is not the traditional ordére lexer usually drives
the parser. This has been so at least since the Unix toolk)lar(l yacc(1) were invented
(see also Appel [1997]).

The output of the parsing+lexing process is an “Abstractt®yiree”, meaning a
data structure which has the form of a tree (in the sense ysedrbputer scientists), and
which is an abstract representation of the pertinent péttseoparse tree deduced by the
parser.

The AST now passes through a series of stages: The “weedeckshhat the parse
tree is well-formed with respect to a number of constrairtigtvare particular to certain
MQL statements, the details of which need not concern us dre “symbol checker”,
among other tasks, checks that all symbols (e.g., objedstyfeatures, enumerations,
enumeration constants, etc.) do indeed exist — or do not exislepending on the
statement at hand. The “type checker” checks that all sysifiae the right type. The
“monads checker” checks for or builds certain monad setgddiain MQL statements.
Finally the “Execution” stage executes the statement,asdhe state of the AST after
the “monads checking” stage has completed.

For any given kind of MQL statement, one or more of the stagag mot actually do
anything; it depends on the purpose of the statement, ant s@imgtraints exist on the
statement.

This “pipeline” architecture is standard practice withiretfield of compiler- and
interpreter-programming. See, e.g., Appel [1997] and Atead.§1985].

5.4 MQL output

The output of an MQL statement can be one of four things:

1. Atable with rows and columns, where each column has afspexpecified type.

2. A “sheaf”. A sheaf is the recursive data structure whictetsirned from a “topo-
graphic” query. The Sheaf is explored in Chapter 6.

3. A“flat sheaf”. A flat sheaf is a sheaf-like data structureckihis not recursive. Itis
also explored in Chapter 6.

4. Nothing. Some MQL statements do not return any outputinsiéad merely have
some side-effect(s).

5.5. TYPE LANGUAGE 63

5.5 Type language

5.5.1 Introduction

We now finally arrive at the point where | begin to show how th@ Mlanguage meets
Doedens’s demands D11 and D12. In particular, this seceatsdvith demand D11:

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

I do so by showing, in this section, how the MQL query languege be used to create,
update, and delete the various kinds of types availablearetidF model. The kinds of
types fall neatly into four groups:

1. Databases
2. Enumerations
3. Object types and features

4. Named monad sets

There is a fifth kind of data type, which | will only discuss ydariefly here. It is the data
type called “index”. It is used here in the sense used wheakspg about a relational
database system, i.e., an index on one or more columns ofl@ tdllne MQL query
language supports the creation and deletion of indexels di@t database-wide level (i.e.,
on all object types), and on individual features. The lattdrbe discussed below, but the
former is an implementation detail which need not concerhars, since the details are
trivial, and are only there for performance reasons.

I now discuss each of the four groups of data types listedebov

5.5.2 Databases

In MQL, databases can be created with tBBEATE DATABASE” statement, and can be
deleted (or “dropped”) with theDROP DATABASE” statement. The user can connect to an
existing EMdF database by issuing thisSE DATABASE” statement.

// Creates the database with the name munk_test,
// and populates it with empty meta-data tables
CREATE DATABASE ’munk_test’

GO

// Connects to the newly created database
USE DATABASE ’munk_test’
GO

// Drops (deletes) the database, without
// ever having filled it with any data.
DROP DATABASE ’munk_test’

GO

64 CHAPTER 5. THE MQL QUERY LANGUAGE

MQL follows the philosophy that one statement should do driegt and do it well.
That is, there should be one purpose of an MQL statement,hamndfore, several MQL
statements in combination (i.e., succession) may be needadler to obtain a desired
result. For example, theCREATE DATABASE” statement does not immediately connect
the user to the database; a separti8& “DATABASE” statement is needed for that. This is
in line with the philosophy that one statement should do biregt and do it well

5.5.3 Enumerations

As explained in Chapter 4, an “enumeration” is a set of p@iry;), where eaclt; is an
“enumeration constant” (or a label), and eacts the integer corresponding to that label.
All vi’s are unique within any given enumeration.

In order to create an enumeration, ttGREATE ENUMERATION” statement is issued.
This must be done before the enumeration is used to declkatgph of a feature.

/* Implicit enumeration value assignment all the way.
The first one is given the value O, and the rest are
given the value of the previous one, plus 1.
For example, because ‘“NOUN”’ is O, ‘‘VERB”’ is 1,
and because ‘‘VERB’ is 1, ‘“‘VERB_PAST”’ is 2. */

CREATE ENUMERATION

part_of_speech_e = {
NOUN,
VERB,
VERB_PAST,
VERB_PAST_PARTICIPLE,
VERB_PAST_FINITE,
ADJ,
ADV,
PREP,
PROPER_NOUN,
PRON_PERS
PRON_POSS,
PRON_INTER,
PRON_RELA,
CONJ

+

GO

CREATE ENUMERATION

voltage_e = {
low = 0, // explicit value assignment
high, // implicit value assignment; will be 0 + 1 =1
tristate // implicit value assignment; will be 1 + 1 = 2

b

This philosophy is also the philosophy of the Unix operatiygtem, and its utility has been argued
many times by many over the years. See, for example, Rayn20tB].

5.5. TYPE LANGUAGE 65

The syntax for enumeration creation borrows both from SQREATE ENUMERATION")
and from C/C++ (the 'enum_name = { /* enum-constants */ }’ &x).
It is also possible to update an enumeration:

UPDATE ENUMERATION

voltage_e = {
REMOVE tristate,
ADD highest = 2

}

GO

Finally, it is possible to delete (or “drop”) an enumeration

DROP ENUMERATION voltage_e
GO

The MQL interpreter will not allow this to happen if any feetuon any object type
uses the enumeration. This is an example of a constraint dMQIn statement which
is checked in one of the compiler stages shown in Figure 5{dage 61, in this case, the
“symbol-checking” stage. | have designed the statemestthly because not having this
constraint would leave the database in an inconsiste, stabme enumeration was still
in use by some feature on some object type, after the enuoreletd been dropped. This
consideration is similar to Codd’s requirement number (Bhalatabase modeél.

5.5.4 Object types and features

In order to create an object type, theREATE OBJECT TYPE” statement must be issued.
In its simplest form, it only takes an object type name. Thil eveate an object type
with no features (beyond the implicitly created “self” feat), no monad uniqueness
constraints, and thewITH MULTIPLE RANGE OBJECTS” object range constrairit. For
example:

CREATE OBJECT TYPE
[versel

It is possible to specify the object range type and the momégleness constraints, as in
the following examples:

CREATE OBJECT TYPE

WITH SINGLE MONAD OBJECTS
HAVING UNIQUE FIRST MONADS
[Token]

GO

2See Codd [1980] and Section 2.2.1 on page 29 of this disgertat
3The reader is reminded that the “monad uniqueness constaaid the “object range constraint” were
introduced in Section 4.4.4 on page 50.

66 CHAPTER 5. THE MQL QUERY LANGUAGE

CREATE OBJECT TYPE

WITH SINGLE RANGE OBJECTS

HAVING UNIQUE FIRST AND LAST MONADS
[sentence]

GO

CREATE OBJECT TYPE

WITH MULTIPLE RANGE OBJECTS

// no monad uniqueness constraint here
[phrase]

GO

CREATE OBJECT TYPE

/* no object range constraint means
’WITH MULTIPLE RANGE OBJECTS’> */

[clause]

GO

In order to create a feature, the following abstract syrgaisied:

feature-name : feature-type ;
This is done inside the [square brackets] of C(REATE OBJECT TYPE statement:

CREATE OBJECT TYPE

WITH SINGLE MONAD OBJECTS

HAVING UNIQUE FIRST MONADS

[Word
surface : STRING;
// The enumeration created before
pos : part_of_speech_e;

// FROM SET: uses a map from strings to integers
lemma : STRING FROM SET;

// Count of occurrences of this lemma in the DB.
frequency : INTEGER;

// Useful for syntax trees.
parent : id_d;

// Useful for directed acyclic syntax graphs
parents : LIST OF id_d;

// morph_e enum must have been declared
morphology : LIST OF morph_e;

GO

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 67

In order to create an index on any given column in the tablatecefor the object type in
the relational database backend, the user employWtiei“ INDEX” keywords:

CREATE OBJECT TYPE
[Phrase
phrase_type : phrase_type_e WITH INDEX;
phrase_role : phrase_role_e WITH INDEX;
]

An already-created object type may be updated by issuingJBPATE 0BJECT TYPE”
statement. This has the effect of adding or removing colutartbe table holding the
objects. Default values must be given for each feature adtfeab default values are
given, then standard default values are used.

UPDATE OBJECT TYPE

[Phrase
// Too interpretative... We shouldn’t get into semantics
// before we have mastered the syntax of this language!
REMOVE phrase_role;

// Ahhhh... Much more formal!
ADD phrase_function : phrase_type_e DEFAULT Unknown;

]

An already-created object type may be deleted (or “droppedith the “DROP 0BJECT
TYPE” statement. Only the name of the object type is needed:

DROP OBJECT TYPE
[versel

Taken together, the creation, update, and deletion statisragailable for enumerations
and object types meet the requirements of demand D11. Howareation, update, and
deletion are not the only possible operations on these gp&st It is also possible to
retrievethe enumerations, enumeration constants, object typeésfeatures present in
any EMdF database. We shall return to this retrieval faaititSection 5.6.

5.6 Datalanguage (non-topographic)

5.6.1 Introduction

In this section, | show how the data domains present in the EEMddel can be created,
updated, deleted, and retrieved. | have appended the labeltopographic” to the head-
ing of this section because the topographic part of MQL isasgd that it deserves its own
section (5.7).

In this section, | first discuss how objects are created, tgpljaeleted, and retrieved
(non-topographically). | then discuss the same for “namedand sets”. | then discuss
“retrieval of object types and features”.

68 CHAPTER 5. THE MQL QUERY LANGUAGE

5.6.2 Objects

Objects can be created either individually or in bulk (bgbcbcessing). The latter is
much more efficient than the former if many objects are to Berited at the same time.

In order to insert objects individually, the€REATE O0BJECT” statement must be is-
sued?

CREATE OBJECT

FROM MONADS = { 20001-20006 } // set of monads
[verse]

GO

// An explicit id_d can be given
CREATE OBJECT

FROM MONADS = { 20001 }

WITH ID.D = 1

[word
surface := ’Hvad’;
part_of_speech := PRON_INTER_REL;
lemma := ’hvad’;

]

GO

/* One can also specify a list of id_ds instead
of monads. Then the monad set will be the big-union
of the monad sets belonging to the objects which have
the id_ds given. */

CREATE OBJECT

FROM ID_DS = 1,2,3,4,5,6

[verse]

GO

In order to insert objects in bulk, th€REATE OBJECTS WITH OBJECT TYPE” statement
must be used:

CREATE OBJECTS WITH OBJECT TYPE [verse]
CREATE OBJECT FROM MONADS = { 20001-20006 }
WITH ID_D = 11

[1 // Notice how the object type is left out
CREATE OBJECT FROM MONADS = { 20007-20010 }
WITH ID_D = 12

(]

GO

Objects with specific id_ds may be updated:

4Almost all examples in this section are drawn from the EMdfalase given in Figure 4.1 on page 57.

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 69

UPDATE OBJECTS

BY ID_DS = 2,6

[Word
// As opposed to V_PAST_PARTICIPLE
part_of_speech := V_PAST_FINITE;

]

GO

Or one can specify a set of monads, and all objects of the gwmnwhich fall wholly
within that set of monads will be updated.

// Only
UPDATE OBJECTS
BY MONADS = { 20004 }
[Word

surface := ’dog’;
]
GO

Objects may be deleted, either by monads or by id_ds:

// Delete all objects of the given type

// which fall wholly within the given monad set
// (in this case, the words of the first verse).
DELETE OBJECTS BY MONADS = { 20001-20006 }
[word]

GO

// This will delete all the words in the second verse.
DELETE OBJECTS BY ID_DS = 7,8,9,10

[word]

GO

Objects may be retrieved in a number of ways. The first androst is the topographic
query “SELECT ALL OBJECTS”, discussed in Section 5.7. The rest, more ancillary ways,
are discussed here, since they are non-topographic. ThesfigELECT OBJECTS AT”,
which selects objects of a given type which start at a givenado

// Will retrieve the word ‘‘Hvad’.
SELECT OBJECTS AT MONAD = 20001
[word]

It is also possible to retrieve objects which overlap withizeg set of monads, i.e., to
select objects which have at least one monad in common wiivea get of monads.

// Will retrieve the verbs ‘‘var’’ and ‘‘skete’’.
SELECT OBJECTS HAVING MONADS IN { 20002, 20006 }
[word]

GO

70 CHAPTER 5. THE MQL QUERY LANGUAGE

// Will retrieve both verses, since they both
// have at least one monad in common

// with the monad set given.

SELECT OBJECTS HAVING MONADS IN { 20005-20007 }
[verse]

The “SELECT 0BJECTS HAVING MONADS IN” statement returns a table, with no possi-
bility of retrieving the features or the full monad sets ofedits. If one wishes to retrieve
features as well as full monad sets, tlg&T OBJECTS HAVING MONADS IN” statement
Is useful:

// Retrieves the words ‘“‘Hvad’’, ‘‘var’’, ‘‘det’’,

// ‘“‘der’’, and ‘‘skete’’. Will return a flat sheaf

// containing the objects, their id_ds, their full monad

// sets, and the two features ’surface’ and ’part_of_speech’.
GET OBJECTS HAVING MONADS IN { 20001-20003, 20005-20006 }
[word GET surface, part_of_speech]

GO

It is also possible to retrieve the monads of objects seplgrat

GET MONADS
FROM OBJECTS WITH ID_DS = 1,2
[word]

It is also possible to retrieve the features of objects saphy.

GET FEATURES surface, part_of_speech
FROM OBJECTS WITH ID_DS = 1,2
[word]

The “GET 0BJECTS HAVING MONADS IN” statement was designed to combine the three
statementsSELECT OBJECTS HAVING MONADS IN”,“GET MONADS”, and “GET FEATURES”.
The reason for introducing th&ET O0BJECTS HAVING MONADS IN” statement was very
simple: The three statements which it combines were veffiégirent to run in succession,
if one really wanted all three. Thus, although MQL was desywith the Unix-like phi-
losophy that each statement must “do one thing, and do it vile# level of granularity at
which this philosophy must be applied is open for debateg@afly when performance
considerations are at play.

This concludes the list of things which it is possible to dahwbbjects in a non-
topographic way. We shall return to topographic queryinglgécts in Section 5.7.

5.6.3 Monads

In this subsection, | discuss how min_m, max_m, and namedatheats may be manip-
ulated, starting with the last.

Named monad sets were introduced in Section 4.4, and arenawation on my part
with respect to the MdF model. The purpose of named monadssatsallow for easy

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 71

restriction of a topographic query to a specific part of theablase, by supporting the use
of named monad sets. The monad sets must, of course, beatkbkfore they are used
in a topographic query; otherwise, the “symbol-checkingige of the interpreter will
complain that the named monad set referenced by the topgugrapery does not exist.

A named monad set can be created with ttREATE MONAD SET” statement. The ex-
amples are from a Biblical setting, namely the WIVU dataljdaéstra and Sikkel, 2000,
Dyk, 1994, Dyk and Talstra, 1988, Hardmeier and Talstra9198lIstra and Van Wierin-
gen, 1992, Talstraetal., 1992, Talstra, 1992, 1989, 20083,2002b, 1998, 1997, Talstra
and van der Merwe, 2002, Verheij and Talstra, 1992, TalstcaRostma, 1989, Winther-
Nielsen and Talstra, 1995].

// From a Biblical setting,
// namely the WIVU database.
CREATE MONAD SET

Towrah

WITH MONADS = { 1-113226 }
GO

CREATE MONAD SET
Historical_books

WITH MONADS = { 113300-212900 }
GO

// Qops... also includeds non-Jeremiah books...
// this will be corrected below,

// under the discussion of UPDATE MONAD SET
CREATE MONAD SET

Jeremiah_Corpus

WITH MONADS = { 236000-368444 }

GO

A named monad set can also be updated using various monggesations:

// Add the set of monads given
UPDATE MONAD SET
Historical_books

UNION

{ 110000-113250 }

GO

// Subtract the set of monads given
UPDATE MONAD SET

Historical_books

DIFFERENCE

{ 110000-113299 }

GO

72 CHAPTER 5. THE MQL QUERY LANGUAGE

// Replace it with the intersection
UPDATE MONAD SET

Historical_books

INTERSECT

{ 113300-212900 }

GO

// Replace ’Jeremiah_Corpus’ with the monad set given
UPDATE MONAD SET

Jeremiah_Corpus

REPLACE

{ 236000-265734, 366500-368444 }

GO

Itis, of course, also possible to delete (or drop) a monad set

DROP MONAD SET
Jeremiah_Corpus
GO

It is also possible to retrieve the names of the monad seteptén an EMdF database:

SELECT MONAD SETS
GO

And in order to get a table listing the monad of either all nbeats, or specific monad
sets, the GET MONAD SETS” statement can be issued:

// Retrieves all monad sets
GET MONAD SETS ALL
GO

// Just retrieves one
GET MONAD SET Historical_books
GO

// Retrieves monad sets ’Towrah’ and ’Historical_books’
GET MONAD SETS Towrah, Historical_books
GO

Itis also possible to retrieve the least monad used by amgcolpin_m), and the greatest
monad used by any object (max_m):

SELECT MIN_M
GO

SELECT MAX_M
GO

Both named monad sets, min_m, and max_m are innovations granyvith respect to
the MdF model.

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 73

5.6.4 Retrieval of object types and features

The names of the object types available in an EMdF databasbeaetrieved with the
“SELECT OBJECT TYPES” statement. It returns a table listing the object type names

SELECT OBJECT TYPES
GO

The question can also be posed, which features a given appechas, using theSELECT
FEATURES” statement:

SELECT FEATURES
FROM OBJECT TYPE
[Word]

GO

Again, this will return a table containing one row for eaclattee, giving the feature
name, its type, its default value, and a boolean saying venétlis a computed featute
or not.

A table containing the names of the enumerations present ENMdF database can
be retrieved with theSELECT ENUMERATIONS” statement:

SELECT ENUMERATIONS
GO

Similarly, the enumeration constants present in a givememation can be retrieved as a
table:

SELECT ENUMERATION CONSTANTS
FROM ENUMERATION part_of_speech_e
GO

To find out which object types have features which use a cegtaimeration, theSELECT
OBJECT TYPES USING ENUMERATION” statement can be issued:

SELECT OBJECT TYPES
USING ENUMERATION part_of_speech_e
GO

5Only the “self” feature is said to be computed, even thougtod, is stored. Computed features is an
area of further research; the intent is to provide a mechafis specifying features as functions which
operate on an object and return a value based on the storgsb\vadsociated with the object. This has not
been implemented yet.

74 CHAPTER 5. THE MQL QUERY LANGUAGE

Database Enumeration Object Type| Feature| Object| Monad set
(D11) (D11) (D11) | (D12) (D12)
Create + + + + + +
Retrieve - + + + + +
Update N/A + + + + +
Delete + + + + + +

Table 5.1: Operations implemented on the data domains iBMaF model.
“+” means “implemented”, “-” means “not implemented”, and/A’ means “Not Appli-
cable”.

5.6.5 Conclusion

As should be evident from my description of the various dataains in the EMdF model,
I have implemented complete support for all create, updiatete, and retrieve operations
on all data domains, except for “databases”. Creation cdlubetes is supported, as is
deletion. Update of databases can be said to occur at lowaslasing theCREATE and
UPDATE statements meant for object types, enumerations, obgadsyamed monad sets.
However, retrieval of database names is not supported: dimes of the EMdF databases
present on a given system cannot be retrieved within the &sridrplementation; it must
either be known by the calling application, or it must beiesd from the system by
other means.

Table 5.1 shows which operations (create, retrieve, updiaiete) are available for
which data domains. As can be seen, demands D11 and D12 lgrm&il

So far, | have described the non-topographic data languagepMQL. | now turn
to the topographic part, which has been modeled after D@xi€1..

5.7 Data language (topographic)

5.7.1 Introduction

The topic of my B.Sc. thesiavas two-fold: a) A sketch of an implementation of what
was the “EMdF” model as | saw it then, and b) An operational @nas for a subset of
the topographic part of “MQL” as | saw it then. Since my B.Sdave expanded MQL
in numerous ways, becoming what it is today.

In the interest of being transparent about what has beetewifior other degrees, and
what has been written for my PhD, this section is structusetbdows. First, | describe
MQL as it was in my B.Sc. thesis. Then, | describe how the prieday MQL differs
from the MQL of my B.Sc. thesis. Finally, conclude the settio

5.7.2 The MQL of my B.Sc. thesis

The MQL of my B.Sc. thesis was very limited in its expresgiMitompared to the present-
day MQL. Only the core of Doedens’s QL was present. The ojmeraltsemantics given

in my B.Sc. thesis was given in a PASCAL-like language, basgéd over a lot of details,
as | later found when | came to implementing it.

6See Petersen [1999]. The thesis is available online: httpkp.org/studies.html

5.7. DATA LANGUAGE (TOPOGRAPHIC) 75

For the purposes of the discussion in this Chapter, let ddl@aMQL of my B.Sc.
thesis “BMQL” (for “Bachelor MQL"), whereas the presentydslQL will be called just
“MQL".

In BMQL, as in MQL, the core notion is that of “block”. In BMQlthere were four
kinds of blocks:

1. object_block_first,
2. object_block,
3. opt_gap_block, and

4. power_block.

| now describe these in turn.

5.7.2.1 object_block and object_block_first

An object_block_first and an object_block both correspan@nd thus match) an object
in the database. They both look like this in their simplestifo

[Clause]

That is, an object_block (or object_block_first) consigtaroobject type name in [square
brackets].

An object_block (or object_block_first) can have a numbemnotiifiers:

First, it is possible (in BMQL) to specify that an object shboot be retrieved, or to
specify explicitly that it should be retrieved:

[Phrase retrieve]
[Phrase noretrieve]

The first Phrase above will be retrieved, whereas the secdhaloi

Second, it is possible (in BMQL) to specify that an objecodsl may optionally be
“first” or “last” in its string of blocks (a block_string). Anbject_block_first, on the other
hand, may optionally be specified as being “first”, but nostlaThe precise meaning of
“first” and last can only be specified with reference to thdy'sttate”, so we return to their
meaning below, when we have defined “substrate”. For nowdetontinue to describe
object_blocks and object_block_firsts.

Third, it is possible (in BMQL) to specify an arbitrarily cqoiex predicate in a subset
of First-Order-Logic (FOL), namely FOL without quantifietsut with AND, OR, NOT,
and parentheses as connectives, and with feature-valuaitgegomparisons ¢”) as
atomic predicates (e.g.plirase_type = NP”). Other comparison-operators than equal-
ity arenot possible in BMQL. An example of a legal query could be:

[Phrase (phrase_type = NP AND phrase_function = Subject)
OR (phrase_type = AdjP
AND phrase_function = Predicate_Complement)

76 CHAPTER 5. THE MQL QUERY LANGUAGE

Fourth, it is possible (in BMQL) to specify a set of variabksmnments, which makes it
possible to refer back to the values of features of an objattined by an object_block(_first)
further up towards the top in the query. For example:

var $c,$n,$g;
[Word
$c := case;
$n := number;
$g := gender;
]
[Word

case = $c AND number = $n AND gender = $g
]

This string of blocks (technically, a block_string) woulddiall pairs of Words whose
case, number, and gender features agreed. The declarationt¢,$n,$g;” at the top
is necessary in BMQL in order to declare the variables, andtibe present before the
block_string starts, if any variables are used within thexkl string.

Finally, the fifth modifier which may be specified on an objébtbck or object_block_first
is aninner blocks A “blocks” is a sequence of an optional variable declarafguch as
was seen above), followed by a block_string. For example:

[Clause
[Phrase phrase_function = Modifier]

]

This would find all clauses which had at least one phrase ensfdthe clause whose
phrase_function was Modifier.
We now turn to the notion of “substrate”.

5.7.2.2 Substrate

The substrateof an MQL/BMQL query is a set of monads which defines the cantex
within which the blocks of a block_string (i.e., a string dbtks at the same level in the
guery) will have to match. The idea of the substrate is thatetimust always exist some
limiting, finite set of monads within which to execute the guat a given level of nesting.

For the outermost block_string, the substrate is given QiVR) by the set of monads
corresponding to the single object present in the all_mablyge (see Section 4.3.4 on
page 47), that is, the substrate is the set of monads forméukelyig-union of all sets of
monads from all objects in the database.

When the context of a block_string is an object_block or objelock_first, then the
substrate of the inner block_string is the set of monads fileenobject which matched
the outer object_block or object_block_first. For example:

[Sentence
[Clause]
[Clause]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 77

In this example, the sets of monads of the two inner Clausectbmust both be subsets
of the set of monads belonging to the outer Sentence objbettwo clause objects must
also stand in sequence, at least with respect to the set adissdselonging to the outer
sentence object. This means that, if there are no gaps ietlo¢ monads belonging to the
Sentence object, then, if the first Clause object ends on digrtaen the second Clause
must start on monald+ 1. If, however, there are gaps in the set of monads belonging t
the outer Sentence object, then the rules are slightlyrdife Let us say, without loss of
generality (wlog), that the first clause ends on mobald there then is a gap in the outer
Sentence which starts at monlad- 1 and ends at monag] then the second clauseust
start on monad+ 1.

This special rule may be circumvented by placing an excleomaark (‘') between
the two clauses:

[Sentence
[Clause]
! [Clause]
]

In that case, the two clauses must stand next to each otherstlif the first clause ends
on monad, then the second clauseuststart on monadb+ 1.

The substrate also defines what the keywords “first” and™tastan on an object_block
or object_block_first: The keyword “first” means that firstmad of the set of monads
belonging to the object matched by the the object_block gatbblock_first must be the
same as the first monad of the substrate. Similarly, the keyWast” means that the last
monad of the set of monads belonging to the object matchekebgtiject _block must be
the same monad as the last monad of the substrate.

5.7.2.3 opt_gap_block

An opt_gap_block corresponds to (and thus matches) a gap Bubstrate of the context.

[Sentence
[Clausel
[gap? noretrieve] // this is the opt_gap_block
[Phrasel

]

In this example, the outer sentence provides the substratied inner block_string. After

the Clause, there may optionally be a gap in the substrate ifie set of monads of the
surrounding Sentence object). After the gap, a Phrase misst €he gap is not retrieved
if it is found (it would have been retrieved if therétrieve” keyword had been used
instead of horetrieve”). If there is no gap, then the Phrase must exist right after t
Clause (i.e., if the Clause ends on motathe Phrase must start at moriag 1).

5.7.2.4 power_block

A power_block corresponds to “an arbitrary stretch of spacthe surrounding substrate.
It is signified by two dots (.’). For example:

78 CHAPTER 5. THE MQL QUERY LANGUAGE

[Phrase
[Word first]

kWord last]
]

This would retrieved all Phrases inside of which we found adNavhich must be “first”
in the Phrase), followed by arbitrary space (even 0 mon&ol&wed by a Word (which
must be “last” in the Phrase). The significance of the “..” poblock is here that it allows
finding Phrases that are more than two words long, even if tla&g no gaps. Had the
query been:

[Phrase
[Word first]
! [Word last]
]

then the two words must take up the whole Phrase. The povaak,idn the other hand,
makes it possible to say that the Phrase may be arbitranty, ivithout specifying what
must be between the two Word object blocks.

Finally, BMQL allows a limiting number of monads to be speaifion the power
block. For example:

[Word part_of_speech = article]
. <3

[Word part_of_speech = noun]

In this example, there may be at most 3 monads between tloéeaatid the noun. The
limitor is handy, especially if using the “..” operator oretbutermost level. For example,
the query:

[Word]
kWord]

would take an awfully long time to execute, and would consamawful amount of RAM

memory, for a decent-sized database. The reason is thau#mg means the following:
Find all pairs of words, where the second word appears at sorsgecified point after
the first word. In general, the number of possibilities fas gharticular query is given by
the following formula:

s nill' _ (n—21)n

wheren is the number of Words in the database.

This gets quite large for decent-sized databases. For dgamp database of 400,001
words, the sum is 8,000,200,000 — or eight billion, two hwadthousand. Thus the
restrictor on power blocks, though small in stature, canlid¢@very good use.

This concludes my summary of MQL as it was in my B.Sc. thesis.

5.7. DATA LANGUAGE (TOPOGRAPHIC) 79

5.7.3 The present-day MQL

Several innovations and/or enhancements have appeare@indihce my B.Sc. work.
In this section, | detail the most important ones.

5.7.3.1 Kinds of blocks

The set of kinds of block has been expanded. The full set is now

H

. object_block

N

. power_block

w

opt_gap_block
4. gap_block

5. NOTEXIST_object_block

Ofthese, number (4) and (5) are new. A gap_block is almosahee as an opt_gap_block,
except that the gamustbe there for for the query to match as a whole. A NOTEX-
IST_object_block is the same as an object_block, excepfahat to match, no objects
of the kind specified, and with any feature-restrictionscepe, may exist within the
substrate, counting from the point in the query in which tl&TREXSIT_object_block is
located. Where an object_block specifies that something exist (a3 existential quan-
tifier), the NOTEXIST_object_block specifies that someghmust not exist (&— “for
all’-quantifier, with inner negation).

The distinction between object_block and object_blockt ias been done away with
in the “new MQL".

5.7.3.2 First and last

Even though thesyntacticdistinction between object_block and object_block_firss$ h
been done away with in the “new MQL”", the concept has not. étjoat moved from the
“parsing” stage to the “weeding” stage of the interpreteraddition, it is now possible to
specify that some object must be bother fastllast in its context:

SELECT ALL OBJECTS
WHERE
[Phrase
[Word FIRST AND LAST pos=verb]
]

Here, the inner Word (which is a verb) must occupy the wholagd

80 CHAPTER 5. THE MQL QUERY LANGUAGE

5.7.3.3 Focus

It is possible, in the new MQL, to specify that a given objetdcl, gap_block, or
opt_gap_block must be “in focus”, with the FOCUS keyword:

SELECT ALL OBJECTS
WHERE
[Clause

[Word pos=verb]

[Word FOCUS pos=noun]

[Word pos=adjectivel
]

This would find clauses with a verb, followed by arbitraryspé'..”), followed by a noun,
followed by arbitrary space, followed by an adjective. Tloemwould be “in focus”, i.e.,
the “focus boolean” for that Word would be true in the resigtsheaf, whereas it would
be “false” for all other objects (because they did not haeeRO®CUS keyword).

This is useful in many cases. For example, as argued in [FSRAQD5], it is some-
times necessary for the user to give the corpus query systémta as to what part of
the query they are really interested in. This can be donetweiFOCUS” keyword.

Note that the “focus boolean” is never interpreted insid&widros. The interpreta-
tion of the focus boolean always lies in the application faglgove the MQL layer (see
[LREC2006] for an explanation of the architecture behindd&ws).

5.7.3.4 Marks

Besides “FOCUS” booleans, it is possible to add a furthed loh information to the
query, which can be passed upwards to the application:laleis was first discussed
in Doedens [1994], and so the idea originates there. Theigléa allow the user to
“decorate” a block (either an object_block, an opt_gapckl@r a gap_block) with C-
identifiers which are passed back up to the application layes application layer is then
free to either ignore the “marks”, or to interpret them in aywehich is fitting to the
purpose at hand. For example, in a graphical query appitatie following might color
parts of the display:

SELECT ALL OBJECTS
WHERE
[Clause‘red
[Phrase‘blue function=Pred]

]

This would attach the mark “red” to the Clause objects, aedilark “blue” to the Phrase
object in the resulting sheaf. The graphical query appbeoatight then interpret these
as instructions to color the Clause red, except for the Pa¢eliPhrase inside the Clause,
which must be colored blue.

This is also useful for specifying what is “meat” and what e®fitext” (cf. the ex-
tended discussion about this in [FSMNLP2005]):

5.7. DATA LANGUAGE (TOPOGRAPHIC) 81

SELECT ALL OBJECTS

WHERE

[Clause‘context‘red
[Word‘context pos=verb]

[Phrase‘meat function=0bjc]

[Phrase‘context function=0bjc]

This would find all verbal clauses with double objects, whaeefirst object was “meat”,
and the second object was “context”. Note also how the Clabgect has two marks,
namely “context” and “red”. There is no limit on the numbemoérks a block can have,
except that power blocks cannot have marks.

5.7.3.5 New comparison-operators on features

In “BMQL”, it was only possible to use the equality (“=") opaor on features. In the
new MQL, a range of other comparison-operators have beemedefl he full set is now:

= Denotes equality

<> Denotes inequality

< Denotes “less than”

<= Denotes “less than or equal”

> Denotes “greater than”

>= Denotes “greater than or equal to”

IN Denotes “feature has to have a value IN the following comeagated, parentheses-
surrounded list of values”. For example: “pos IN (noungetiadjective)”

HAS Denotes “this list-feature has to have the following valu€br example: “mor-
phology HAS genitive”

~ Denotes “this feature must match the following regular espion”

I~ Denotes “this feature must not match the following reguiqression”

Note that the IN and HAS operators were added so as to accoateoomparisons with
lists of values. Lists of values are new in the EMdF modelsimy B.Sc. thesis, and
were described in Section 4.4.5 on page 51.

82 CHAPTER 5. THE MQL QUERY LANGUAGE

5.7.3.6 Object references replace variables

In “BMQL”, it was possible to define variables, assign featualues to these variables,
and then refer back to the variables later in the query.

In the “new MQL”, variables have been replaced with the cpbhad “object refer-
ences.” The concept can best be explained by reference tacaate query. For example:

SELECT ALL OBJECTS
WHERE
[Phrase phrase_type = NP
[Word AS wl pos=noun]
[Word pos=adjective
AND case = wl.case
AND number = wl.number
AND gender = wl.gender

]

This would find all NP phrases inside of which there was a ntallowed by an adjective
which agreed with the noun in case, number, and gender. T8evR’ incantation is an
object reference declaratiorit declares that the first Word must be referred to by the C-
identifier “wl”. Then, in the second word, the feature-conguns can refer back to “w1”
with the “dot notation”: For example, “wl.case” means “Th@ue of the wl-object’'s
case-feature.”

This is very useful, not just in ensuring agreement, but alsother cases, such as
ensuring parentage. For example:

SELECT ALL OBJECTS
WHERE
[Clause AS c1
[Phrase parent = cl.self]

]

Here, the “parent” feature of the inner Phrase is checkea¢adifsit is the same as the
outer Clause’s “self” feature, i.e., whether the inner Bhig“parent” feature “points to”
the outer Clause object.

| find that this notation is less cumbersome, more convenetype, and more intu-
itive than the concept of variables as developed in BMQLnpaweugh they are largely
equivalent.

5.7.3.7 OR between strings of blocks

It is now possible in MQL to specify an “OR” relationship bet@n two strings of blocks.
For example:

SELECT ALL OBJECTS
WHERE
[Clause
[Phrase function=Subj]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 83

[Phrase function=Pred]

[Phrase function=0bjc]

OR

[Phrase function=Pred]

[Phrase function=Subj]

[Phrase function=0bjc]
]

This would find clauses in which either the order of constitaavas Subject-Predicate-
Object, or Predicate-Subject-Object. In other words, tDR™ construct between strings
of blocks supports, among other uses, permutation of thetitoents. In reality, any
string of blocks may stand on either side of the OR, not justnpgation of the con-
stituents. In addition, there can be as many OR-separaiedsbf blocks as necessary.
For example:

SELECT ALL OBJECTS
WHERE
[Clause

[Phrase function=Subj]

[Phrase function=Pred]

[Phrase function=0bjc]

OR

[Phrase function=Pred]

[Phrase function=Subj]

[Phrase function=0bjc]

OR

[Phrase function=0bjc]

[Phrase function=Subj]

[Phrase function=Pred]

]
OR
[Clause

[Word pos=verb]

[Phrase phrase_type=NP]

[Phrase phrase_type=AdjP]

]
[Clause

[Word pos=verb]

[Word pos=adverb]

[Phrase phrase_type=NP
[Phrase phrase_type=AdjP]
[Phrase phrase_type=NP]

]

5.7.3.8 Grouping

It is now possible in MQL to group strings of blocks, like this

84 CHAPTER 5. THE MQL QUERY LANGUAGE

[Clause
[
[Phrase]
[Phrase]
]
]

The reason for including this construct in the language baltome apparent in the next
section.

5.7.3.9 Kleene Star

It is now possible to apply a “Kleene Star” to either an objgotk or a group of blocks.
For example:

SELECT ALL OBJECTS
WHERE
[Clause
[Word pos=verb]
[(Word
pos IN (noun,article,adjective,conjunction)
1% // Note star!
[Word pos=adverb]
]

This would find all Clauses, inside of which we find a verb, daled by zero or more
words whose part of speech is either noun, article, adgotivconjunction, followed by
an adverb.

The Kleene Star can also optionally take a set of integensotdeg the number of
times that the Kleene Star must repeat:

SELECT ALL OBJECTS

WHERE

[Phrase phrase_type=NP
[Word FIRST pos=article]=*{0,1}
[Word LAST pos=noun]

]

This would find all NPs of either 1 or 2 words in length, where kst word was a noun,
and (if its length was 2), the first word would be an article.isTbbviously allows the
specification of optional blocks.

It is also possible for the set of integers to have gaps. Iisis possible for it to have
“no upper limit”:

SELECT ALL OBJECTS
WHERE
[Clause
[Phrase function=Pred]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 85

[Phrase
function IN (Subj,0bjc,Cmpl,Adju)
1x{2-}

This would find all Clauses inside of which there was a Pradiérase, followed by
two or more Phrases whose function was either Subject, Qpmplement, or Ad-
junct. Note that there is no integer after the “-” dash, dexgpthat there is no upper
limit. Notice that, even though there is no upper limit, thieéhe Star is limited by the
surrounding context, in this case, the boundaries of theselaTherefore, the program
code calculating the results will always terminate.

It is possible for the Kleene Star to apply to groupings:

SELECT ALL OBJECTS
WHERE
[Phrase phrase_type=NP
[Word FIRST pos=article]
[Word pos=noun]
A
[Word pos=conjunction]
[Word pos=article]
[Word pos=noun]
1%{1-} // Note the star!

This would find all NP Phrases which consisted of an articléhadirst word, followed
by a noun, followed by one or more iterations of the sequewgoajtinction”, “article”,
“noun”. An example in English would be “The duck and the hed #dre eagle”.

This concludes my summary of the most important changes th M@guage since
the MQL of my B.Sc. thesis.

5.7.4 Conclusion

In this section, | have shown what MQL is today. | have doneysbrbt discussing what
MQL looked like in my B.Sc. thesis, followed by a discussidriow the MQL of today
differs from the MQL of my B.Sc. thesis. The differences ao¢ megligible, since the
expressive power of the language has increased dramgtiatle the MQL of my B.Sc.
thesis. In particular, the “OR” construct between strinfjblocks, the “grouping” con-
struct, and the “Kleene Star” bring a lot of new expressiwegmas do the new compar-
ison operators. The “gap_block” and “NOTEXIST_object dibare new, and the latter
brings the expressivity of the language up to the level dfHukt Order Logic over EMdF
objects, since it adds the “forall” quantifier” in additiamfthe already-implemented “ex-
ists” quantifier. The possibility of adding “FOCUS” boolesseind “marks” to the resulting
sheaf opens new possibilities for allowing the user to Wigtish between what is “meat”
and what is merely “context” in the query (cf. [FSMNLP20Q5])

Lai [2006] is a model-theoretical and logical analysis o tlequirements that tree-
banks place on query languages designed for querying tnkebai concludes that the

86 CHAPTER 5. THE MQL QUERY LANGUAGE

full expressiveness of First Order Logic (FOL) over tretstures is required for query-
ing treebanks in all relevant ways. In the following sendegue fulfilled this requirement
by building the present-day MQL: MQL supports the full FOLeowbjects, with ex-
istentialand “forall” quantification over objects, and a full set of Boale operators on
the attributes (i.e., features) of objects. Thus both tbenat the predicates, the Boolean
connectives, the quantifiers, and the formulae of FOL aremal/by MQL, defined over
the objects and features of the EMdF model. While this doésowstitute FOL over
tree-structures, it is a step in the right direction.

Yet for all its expressive power, today’s MQL still leavesato be desired, compared
with Doedens’s QL. | discuss some of the possible future ecérments in Chaptéy?.

5.8 Conclusion

In this chapter, | have discussed the MQL query language. Mi@Qtontrast to Doedens’s
QL, is a “full access language”, meaning it has statememtsréate, retrieve, update, and
delete operations on the full gamut of data domains in the Ekiddel. Doedens’s QL
was strictly a “data retrieval” language, and only operatét topographic queries. Thus
| have fulfilled Doedens’s demands D11 and D12.

| started the chapter by recapitulating demands D11, D1@,C8 from Doedens
[1994]. | then promised to show, in this chapter, how demddtis and D12 were fully
met. | then had three sections which paved the way for fuifjliihis promise, namely
a section on “general remarks” (discussing lexical corieastand comments), a section
on “the MQL interpreter” (discussing how the MQL interpneig implemented), and a
section on “the resulting output” (discussing the four larad output possible from an
MQL query).

| then discussed how MQL meets the requirements of Doedées'snds D11 and
D12 in three sections: First, | discussed the type languad@Ql_, thus showing how
MQL fulfills D11. Second, | discussed the non-topographatéddanguage” part of MQL,
which enables the creation, retrieval, update, and deletimbjects and monad sets, as
well as the retrieval of the names of object types, featuaad, enumerations. Third, |
discussed the topographic “data language” part of MQL, Wwihesembles Doedens’s QL
in numerous ways, yet is also distinct from QL. Taken togetihe non-topographic “data
language” part, and the topographic “data language” pad @t entail that MQL fully
meets Doedens’s demand D12.

Meeting demand D13 is a future research goal. | shall retuthis in Chapter 14.

Chapter 6
The Sheaf

6.1 Introduction

The datastructure known as a “Sheaf” was first introduced bgdens [1994]. | have
modified the data structure to be able to implement it in pecactnuch as | modified the
MdF model to make it implementable in practice.

In this Chapter, | discuss the Sheaf, what it is and what @ri¢6.2). | then discuss the
parts of the Sheaf and how they relate to the query from whighginated (6.3). Finally,
| conclude the chapter.

6.2 Whatis a Sheaf?

6.2.1 Introduction

A sheaf is a data structure which is the result of either adogguhic query or &ET
OBJECTS HAVING MONADS IN query. As mentioned in the previous section, the Sheaf
was invented by Doedens, and was described in Section 6.513-147 of Doedens
[1994]. | have modified the sheaf in order to be able to implatteand in order to make

it suit the EMdF model and the MQL query language.

The Sheaf is a recursive data structure, by which | mean tpattaof a Sheaf may
contain an “inner sheaf”, which then again may contain a thet contains an “inner
sheaf”, and so on, until there is an “inner sheaf” which is gm@nd thus does not have
any more inner sheaves.

There are two kinds of Sheaf:

1. Full Sheaf (which corresponds to Doedens’s Sheaf), and

2. Flat Sheaf (which is a Sheaf with only empty inner sheaves)

| shall first define the Full Sheaf, and then define the Flat Shdarms of the constructs
found in the Full Sheaf.

87

88 CHAPTER 6. THE SHEAF

6.2.2 Sheaf Grammar

A Full Sheaf either is failed, is empty, or has a comma-sdpdrlst of one or more
Straws (we’ll get to the definition of Straw in a moment). IncRas-Naur Fornk

Sheaf ::= "//" /* failed sheaf */
| u//u ngn s /* empty sheaf */
| n//n ngn Straw { " s " Straw }* nsn

A Straw is a string of one or more Matched_objects:

Straw ::= "<" Matched_object { "," Matched_object }x ">"

3

A Matched_object may be of two kinds: an MO _ID_D or an MO_ID_Ah MO _ID_D
has its origin in an object block, wheras an MO_ID_M has itgiarin either an opt_gap_block
or a gap_block.

Matched_object ::= /x MO_ID_D */
"[" Object_type Id_d Set_of_monads
Marks Focus_boolean Feature_values
Sheaf
n] n
| /x MO_ID_M */
"[" "pow_m" Set_of_monads
Marks Focus_boolean
Sheaf
n] n

The “Object_type”is an IDENTIFIER, that is, a C-identifigrst as in the EMdF model.

Object_type ::= IDENTIFIER /% C-identifier */

b

An “Id_d", as used in the MO_ID_D, is simply an integer, reggsting the id_d of the
object from which the MatchedObject arose:

Id_d ::= INTEGER /* Any integer */

b

1Backus-Naur Form is a way of specifying the syntax of a fortaatjuage by means of a context-free
grammar. In my version of Backus-Naur Form, a rule consitts mon-terminal, followed by “::=", fol-
lowed by one or more “|"-separated production rules, fodvoy a terminating “;” (semicolon). Terminals
appear either in "double quotes" or as identifiers which aré APPER CASE. Non-terminals appear
with the first letter capitalized, and the rest lower-caséCdmments may be surrounded by slash-star ...
star-slash, as this sentence is. */

See Martin [1991] for an introduction to the theory of corttére formal languages, and Appel [1997]
for an introduction to something that looks like my BackuatKForm.

6.2. WHAT IS A SHEAF? 89

The “Marks” non-terminal is the list (possibly empty) of Maras found on the block
from the the Matched_object originated. See the sectionMerks” on page 80 for an

explanation.

Marks ::= { "‘" IDENTIFIER }x

3

The “Focus_boolean” non-terminal is either “false” or ‘&fu It is true if an only if the
block from which this Matched_object originated had the R{3Xkeyword (see page 80).

Focus_boolean ::= "false" | "true"

The “Feature_values” non-terminal is a possibly-emptydisvalue assignments to fea-
tures on the object from which the MO _ID D originated, andhigesult of the GET

feature_list construct on an object_block:

Feature_values ::= "(" "y /* empty */
| "(" Feature_value { "," Feature_value }x ")"
;eature_value ::= Feature_name "=" Value
;eature_name ::= IDENTIFIER
&alue ::= /* Any value allowed in the EMdF model. */

b

AnMO_ID_M has a Set_of _monads instead of an Id_d non-teamihalso has “pow_m”
as the object type. This indicates that it contains the set@mfads corresponding to the
gap matched by the (opt_)gap_block from which the MO _ID_bkar

An MO_ID_D also has a Set_of _monads corresponding to thea®aof the object
which matched the object_block from which the MO_ID_D arcBeese sets of monads
are never empty, but have at least one Monad_set_element.

Set_of_monads ::= "{"
Monad_set_element { "," Monad_set_element }x*
n}u
Monad_set_element ::= /* singleton */ Monad
| /% range */ First_monad "-" Last_monad
First_monad ::= Monad
Last_monad ::= Monad

Monad ::= INTEGER

3

90 CHAPTER 6. THE SHEAF

Notice that a Matched_object may have an inner Sheaf, thksngnéghe data structure

recursive. This inner Sheaf results from an inner blocksstrast in an object_block,

opt_gap_block, or gap_block. Notice also that a Sheaf magniyety (see above), and
thus the data structure need not be infinitely recursive does have a “base case” in
which the recursion may stop. This is the case whenever & loloes not have an inner
blocks construct.

6.3 The parts of the Sheaf

6.3.1 Introduction

The previous Section has focussed on the grammar of the, sheakid little about what
it means. This Section will explore the relationship betwtee Full Sheaf, its parts, and
the query from which it originated. This is done by discugsaach of the constructs
“Matched_object”, “Straw”, and “Sheaf” in turn. | will thealso discuss Flat Sheaves.

6.3.2 Matched_object

A Matched_objectis the product of one matching of a blockohlis neither a power_block
or a NOTEXIST_object_block. That is, it is the product of ataméng of either an ob-
ject_block, an opt_gap_block, or a gap_block. An opt_gémrkiand a gap_block gives
rise to an MO_ID_M, which has a set of monads correspondingeggap matched. An
object_block, on ther other hand, has an object type and_ah libth corresponding to
the object which matched the object_block.

6.3.3 Straw

A Straw is one complete matching of one block_string. Thikaise right below the level
of the “OR” construct between strings of blocks. For examgbie following MQL query:

SELECT ALL OBJECTS

WHERE

[Phrase function=Subj GET function]
[Phrase function=Pred GET function]

would result in a Sheaf with a number of Straws, each of whicula/ contain two
Matched_objects, the first resulting from the Phrase obfgatk with the “function=Subj”
restriction, and the second Matched_object resulting filoenPhrase object_block with
the “function=Pred” restriction:

// /* the following is a Straw */
<
/* The following is a Matched_object */
< Phrase 32 { 12-13 } false (function=Subj)
/] <> /* empty, inner sheaf x/
>’
/* The following is a Matched_object */

6.3. THE PARTS OF THE SHEAF 91

< Phrase 33 { 14 } false (function=Pred)
/] <> /* empty, inner sheaf */
>
> /* ... more Straws likely to follow ... */

6.3.4 Sheaf

A Sheaf is the result of all matches of a givelrocks construct in a query. The outermost
blocks construct results in a Sheaf which consists of Straws of Matcobjects resulting
from the blocks in theblock_string at the outermost level. If, then, one of these
blocks has an inneblocks, that innerblocks gives rise to the inner Sheaf in the outer
Matched_object. For example:

SELECT ALL OBJECTS

WHERE

[Clause
[Phrase first function=Time]
[Phrase first function=Pred]
[Phrase first function=Subj]

]

This would give rise to a Sheaf which contained Straws, edohich had only one
Matched_object. This Matched_object would have arisem fiwe “Clause’object_block.
Since this “Clausebdbject_block has an inneblocks (namely theblock_string con-
sisting of the three Phragsject_blocks), the MO_ID_D resulting from each Clause
object_block would have an inner Sheaf which was not empty. Each of theser in
Sheaves would contain at least one Straw, each of which veoultin three Matched_objects,
one for each Phrassject_block. These inner Matched_objects would then each con-
tain an empty inner Sheaf, since none of the inner Phsagect_blocks have an inner
blocks construct.

Thus, there is an isomorphism, not only between the streatithe query and the
structure of the objects found, but also between the strectithe query and the structure
of the Sheaf resulting from the query. It is this quality whinakes MQL a “topographic”
language.

6.3.5 Flat Sheaf

A “flat sheaf” may arise in two ways: First,GET 0BJECTS HAVING MONADS IN query
may be issued, which always results in a flat sheaf. Secoed;ul Sheaf of a topo-
graphic query may be post-processed in order to obtain ahiéefs

A flat sheaf, in essense, is a Sheaf in which all MatchedOby&ca particular object
type have been grouped into one Straw. Thus, for each olyjeetdresent in the corre-
sponding Full Sheaf, a Flat Sheaf has one Straw containitigegaMatchedObjects of the
Full Sheaf with that particular object type. In this resp&obw_m” is also an object type,
meaning that a Flat Sheaf may contain MO _ID_Ms as well as NDODis.

Furthermore, no MatchedObject in a Flat Sheaf has a nonyeonfailed inner Sheaf.
That is, all MatchedObjects in a Flat Sheaf have empty inheages. Therefore, a Flat
Sheaf is not recursive.

92 CHAPTER 6. THE SHEAF

For aGET OBJECTS HAVING MONADS IN statement, there never is any Full Sheaf
from which the Flat Sheaf has been obtained. Instead, theSRkeaf is constructed di-
rectly. In this case, the Flat Sheaf only has one Straw wittchkd _objects of one object
type, namely the one which tl&&T OBJECTS HAVING MONADS IN statement queries.

6.4 Conclusion

In this Chapter, | have discussed the Sheaf as one of thebp@ksids of output from an
MQL statement. There are two kinds of Sheaves: Full SheawtFlat Sheaves. A Sheaf
is a list of Straws. A Straw is a list of Matched_objects. A btadd_object corresponds to
one matching of onelock in a topographic MQL query. A Matched_object may have an
inner Sheaf, thus making the data structure recursive. &\&torresponds to one whole
matching of on&lock_string.

The Sheaf is a central part of the implementation of the MQé&rglanguage, and we
shall return to the Sheaf data structure several times ithigs. In the next chapter, |
show how to “harvest” a sheaf into something even more uskedul the Sheaf itself.

Chapter 7

Harvesting search results

7.1 Introduction

Having explained the MQL query language and its result dgia {the “Sheaf”) in the
previous chapter, | now turn to the problem of how to displaamingful results from the
Sheaf.

The Chapter is laid out as follows. First, | discuss the pobat hand from a general
perspective. | call the process whereby the Sheaf is tumedmneaningful, displayable
results, the process of “harvesting”. Second, | define a murmabconcepts to be used
when discussing the “harvesting” algorithm. Third, | layt @general algorithm for
“harvesting” the Sheaf. Fourth, | discuss ways of deterngrihe “hit”. Fifth, | discuss
various ways of extending the algorithm. And finally, | cardé the chapter.

7.2 The problem at hand

As explained in [FSMNLP2005], there are various stratefiesnplementing query lan-
guages for text databases. The one | have chosen is to sefiagirocess of querying
from the process of gathering enough data to display thdtsedunis is because this strat-
egy provides for the greatest number of possible uses ofubeygesults, and provides
for “genericity” of the corpus query system. As [FSMNLP2D@%plains, there are many
uses of the output of the topographic query-stage, inctutbat not limited to):

1. Statistical measurements of the results.

2. Displays of various kinds, including:

(a) word-based concordances (e.g., Keywords In Contexti®\L.uhn, 1960]),
(b) bracketed views of linguistic units [Van Valin, 2001 cRford, 1998],
(c) graph-structure views of linguistic directed acycliaghs, including:

I. tree-structure view of linguistic trees [Horrocks, 198an Valin, 2001,
Bickford, 1998, Jackendoff, 1977, Konig and Lezius, 200&;ius, 2002a,b,
Van Valin and LaPolla, 1997],

ii. Role and Reference Grammar trees [Van Valin and LaP288y7],
lii. dependency-based views of dependency-based angWge¥alin, 2001],

93

94 CHAPTER 7. HARVESTING SEARCH RESULTS

iv. slot-filler views of slot-filler analyses (the work of Keath L. Pike and
others on Tagmemics, e.g., Pike and Pike [1982]),

v. systemic views of systemic analyses [Halliday, 1976219894, Eggins,
1994, de Joia and Stenton, 1980]

(d) and many others
3. Database-maintenance tasks, including:

(a) Creating new objects based on the monad-sets arisiraf awjuery.
(b) Updating existing objects based on the monad-setsgrait of a query.
(c) Deleting existing objects based on the monad-setgrait of a query.

All of these kinds of uses require slightly different waysneénipulating the Sheaf. Dis-
plays drawing the output on a screen or printer may requiferdnt data to be retrieved
based on the nature of the display (KWIC, graph-based, btadk etc.), and most dis-
plays require slightly different data to be retrieved frdre tlatabase.

A statistical view may need to know how many times a given warrdther linguistic
object occurs in the entire corpus queried, in addition éorthmber of times it appears in
the query results. A word-based KWIC display, on the othe&dhanay need to retrieve
a specified number of words of context for each “hit” word, \eta tree-based view will
require information about both words (terminals in the Xrearents (non-terminals), and
the uppermost context for each “hit” (in the tree; also chtlee “tree root”), in addition
to the “parentage” information that inheres between theesad the tree. A bracketing
view will require much the same information.

For database-maintenance tasks, it may not be requirettiveeother data than what
is already present in the sheaf. But then again, dependitigegourpose, other data may,
in fact, be required. The query may only return words, fomepke, whereas the basis
of the database maintenance may require Sentences to iegadfrbased on the words
retrieved at first.

The benefit of separating the process of querying from thega®of display is that
all of these various kinds of uses are possible from the sanpibfrom the topographic
query-stage. Thus, the system becomes generic in a verywesglapplied sense.

The process of querying thus has the following stages:

1. Execute the query obtained from the user. This producésafS

2. "Harvest” the Sheaf. This is the process of “harvestirigg tkernels” (or “hits”)
out of the Sheaf. This process produces a list of “Solutipndiere a “Solution”
is a collection of data that gives enough information thatribxt stage can display
the “hit”.

3. Usethe Solutions in whatever manner is required to ftifdlpurpose of the system.
For example, the system may display each Solution to theimsemanner which
is applicable to the database at hand and the needs of the user

The display of data is separate from the harvesting prodsgain, the harvesting stage
can actually be made rather generic (as we shall see belayg)providing the same kind
of output for many different kinds of display.

7.3. DEFINITIONS OF HARVESTING CONCEPTS 95

In the following, | describe a general harvesting algorithmmich | have employed
many times for various tasks relating not only to my work witle Kaj Munk Corpus,
but also to my general work with implementing the Emdros @QerQQuery System. As
explained in Chapter 1, | have implemented a generic “Em@usry Tool”, and it is
precisely in this tool that the following algorithm has beeplemented and refined.

But first, | need to define a number of concepts.

7.3 Definitions of harvesting concepts

Hit: The precise nature of “hit” is difficult to determine genailg. Below, in Section 7.5
on page 97, | show some ways of determining the hit. Here ficesfto say that
the “hit” can be characterized by a set of monads.

Focus monad set:A set of monads which shows which monads are in “focus”, begau
a MatchedObiject in the Sheaf both had some of the monads fodhs monad set,
and had the “focus” boolean set to “true”. Notice that theost of “focus monad
set” may be applied both to an entire sheaf, and to a singté “hi

Raster monad range: Most display-based (as opposed to statistics-based) tigas-0
dros require that a certain amount of context must be shoneeith “hit”. A raster
monad range is a stretch of monads which supplies “enoughtegbthat at least
part of a “hit” can be shown. Sometimes, a “hit” will need toveomore than one
“raster monad range”, especially if the “raster monad rahgee calculated based
on “raster units” (see the next definition).

Raster unit: A raster unitis an object type whose objects are assumedwider‘enough”
context to display for any given “hit”. For example, for a Bdal database, a good
raster unit might be “verse”. If the display is to show Kaj Mesplays, an “actor
line” may be a good raster unit. If the display is to show altteé poetry of Kaj
Munk, “poetry” might be a good raster unit. In the algorithroposed below, there
can only be one raster unit object type.

Raster monad set: A set of monads corresponding to the big-union of all rastenaal
ranges of either:

1. Asingle hit, or
2. All hits.

Data unit: A data unitis an object type, some of whose objects it is resnggo retrieve
in order to display a given “hit”. For example, “word” or “tek” is almost always
a candidate to be a data unit. Similarly, if the database ys&astic analysis, then
“Clause” and “Phrase” would probably be good candidateb&ng data units. If
the display is to show all of Kaj Munk’s poetry, then, in adliit to “poetry” being
the raster unit, one would require that “stanza” and “line”data units, in order
to know when to break the display into lines (at “line” objecundaries) and into
stanzas (at “stanza” object boundaries).

96 CHAPTER 7. HARVESTING SEARCH RESULTS

Data unit feature: For any given display-purpose, the monads of a data unit ratlgen
enough; certain features might also need to be retrievatexample, for a “Word”
data unit, the features “surface”, “part_of _speech”, aedntma” may need to be
retrieved. For the “actor line” data unit in Kaj Munk’s playsmay be necessary to
retrieve the name of the actor role which says the line. Fgngastic tree-display,
the “phrase type” may need to be retrieved for Phrases, apdrarit” feature may
point to the parent object of any given node in the tree, andéshould be retrieved
in order to recreate the tree. And so on.

Reference unit: A reference unit is an object type whose features gives nmébion

which makes it possible to locate any given “hit” in the capuror example, in
a Biblical database, the “verse” reference unit may prownd@ mation about the
book, chapter, and verse of the given verse. If so, the “Verigiect type is a good
candidate for being a reference unit. If the display is of Mank’s poetry, then the
object type which bears the title of each play or poem would eod candidate for
being the reference unit. If the display is a linguistic datse, there may be some
object (say, Sentence or Document) which bears a featuctghgpg the number of
the sentence or document in some catalog. And so on.

Reference unit feature: A feature of a reference unit which must be displayed in order
to identify the reference given by the reference unit.

Solution: A Solution is a collection of data corresponding to a singi€” and consisting
of:

. The hit’s “hit monad set”.
. The hit's “focus monad set”.

1

2

3. The hit’s “raster monad ranges”.

4. The data units (with data unit features) necessary f@iamg the hit.
5

. The reference unit object which can identify the hit.

Armed with these definitions, we can now discuss the genarakisting algorithm.

7.4 A general harvesting algorithm

The following algorithm was first proposed by myself in 20612602, and was first de-
scribed by me in [Sandborg-Petersen, 2002-2008]. HendniBdsman of the Werkgroep
Informatica, Vrije Universiteit Amsterdam was kind enoughimplement it in various
prototype programs — first a C program, then a Python progbanti, of which had the
purpose of displaying results from Emdros queries. In 20@D605, | reimplemented Mr.
Bosman’s Python program in C++, and have since refined tlugitig.

The basic algorithm is as follows:

1. From the Sheaf, determine a list of “hits.” Some of the mamays in which this
can be done are described below.

2. Determine a set of “raster monad ranges”.

7.5. DETERMINING THE “HIT” 97

3. Obtain the set of monads arising as the big-union of afittiamonad ranges”. Call
this set of monads the “raster_monad_set”.

4. For each “data unit” to display, issue a query based onal@rfing template:

GET OBJECTS HAVING MONADS IN <raster_monad_set>
[<data_unit> GET <data_unit_features>]

For example:

GET OBJECTS HAVING MONADS IN { 1-1083, 2435-3310 }
[token GET surface, part_of_speech, lemmal

Then store the results in a suitable data structure.
5. Do the same for the “reference unit”.

6. For each “hit” in the list of hits, create a “Solution” whicontains enough data to
display the results of the Hit. Append the Solution to a liss@utions, which in
the end becomes the output from the harvesting algorithm.

Once this algorithm has run to completion, the list of Sang can be used to display the

results in a manner which is helpful to the user. Dependinyp@m one calculates the

“raster_monad_set”, the Solution object can support mé#fgreint kinds of display. For

example, a syntactic database likely needs a Sentencd tbjecm the basis of the con-

text to display for any given “hit”, while a “Keywords In Caaitt” (KWIC) concordance

may need a specified number of tokens on either side of thedwelywas explained above.
In the next section, | describe some ways that a “hit” can herdened.

7.5 Determining the “hit”

It is not at all obvious exactly what a “hit” is in the context @ Sheaf. As explained
in [FSMNLP2005], the Sheaf is generic enough that it can etppwide range of uses.
However, this genericity comes at a cost, namely that therpehation of what constitues
a “hit” may need to rely on domain-specific knowledge of thtablase at hand.

In the following, | describe a number of ways in which the *hitay be determined
generically. Other ways of determining the hit are mostljikgossible, given specific
databases and specific user needs.

What is common to all the proposed solutions is that the ‘isitharacterized solely
by a set of monads. In my own experiments, this has proven totieuseful and suffi-
cient. However, for certain kinds of database, it may berdbk also to store, with each
“hit”, information about the id_d or focus state of the Mad®bject(s) from which the
“hit” arose.

Outermost: In this strategy, the “hit” is determined by being the bigamof all Matche-
dObjects in each outermost Straw in the Sheaf. Thus eachctritesponds to one
string of blocks at the outermost level in the topographiergju

98 CHAPTER 7. HARVESTING SEARCH RESULTS

Focus: In this strategy, the “hit” is determined by the monad set @liregle Matche-
dObject which has the “focus” boolean set. The whole sheahisersed, and all
MatchedObjects in the Sheaf-tree are visited. Thus, eMegkhn the topographic
guery which has the “FOCUS” keyword will give rise to a “hitObviously, this
may mean that a given Sheaf may yield an empty set of monatt&ré is no “fo-
cus” boolean which is true in any MatchedObiject in any Strawhe Sheaf. Such
empty sets of monads should be removed from the list of hisréeoing to the
following stages in the harvesting algorithm. This, of g®ymMmeans that the list of
“hits” will be empty.

Marks: In this strategy, the “hit” is determined by a single Matc®&gect which has
certain specified “marks” in its set of marks. Thus this sygtis analogous to
“Focus”, except that specified “marks”, rather than the ti®doolean” are the
basis for selecting the MatchedObjects which give rise ®“tlits”. The same
remarks about empty monad sets and empty lists of “hits”yapple as they did
for “Focus”.

Outermost_focus: This strategy is the same as “outermost”, except that onl{chMza
dObjects in the outermost straws whose “focus” boolearues will contribute to
the monad set of a “hit”. Obviously, this may mean that a git@mrtermost Straw”
may yield an empty set of monads, if there is no “focus” booledich is true in
any MatchedObject in the Straw. Such empty sets of monadddaihe removed
from the list of hits before going to the following stageshie harvesting algorithm.
This, of course, may mean that the list of “hits” will be empty

Outermost_marks: This strategy is analogous to “Outermost_focus”, excegitsheci-
fied “marks” form the basis of the selection of the Matcheds@tg which give rise
to “hits”. The same remarks about empty monad sets apply detbey did for
Outermost_focus.

Innermost: In this strategy, the “hit” is calculated from a Straw in wiall Matche-
dObjects have no inner sheaves. That is, in order to becorh@g”ad Straw must
contain only MatchedObjects which are terminals in the $trea. The “hit” is
then the big-union of the monad sets of all the MatchedObjeicsuch a Straw.

Innermost_focus: This strategy is the same as “Innermost”, except that omyribnads
of MatchedObjects whose “focus” boolean is set will conttéto a hit. Again, the
same remarks about empty monad sets and empty “hit” listlty &gpthey did for
“Outermost_Focus”.

Innermost_marks: This strategy is the same as “Innermost_focus”, exceptithat
MatchedObjects with certain “marks” which contribute te ttnit”, not Matche-
dObjects with the “focus” boolean set to “true”. Again, ttearee remarks apply as
they did for “Outermost_focus”.

Terminal: This strategy is similar to “innermost”, but does not have thquirement
that all MatchedObijects in the straw need be terminal nauése sheaf-tree. It is
sufficient that the MatchedObject itself does not have aerirsmeaf. Obviously,
this can be combined with the “focus” and “marks” strategies

7.5. DETERMINING THE “HIT” 99

Level: In this strategy, the “hit” is calculated as the big-uniontted monad sets of all
Straws at a given level of nesting. Obviously, this can belwaed with the “focus”
and “marks” strategies.

Object_type: In this strategy, the “hit” is calculated as the big-unionceftain object
types present in the sheaf. Obviously, this can be combingdthe “outermost”,
“innermost”, “focus” and “marks” strategies, as well as thevel” strategy, such
that only certain object types at certain levels will cdmiite to a “hit”. This, of
course, requires domain-specific knowledge of which olijgms may be good to
use for this purpose.

Object_type_feature: In this strategy, the “hit” is calculated as the big-uniorceftain
object types with certain values for certain features ingheaf. Obviously, this
can be combined with any of the “outermost”, “innermostgcéis”, “marks”, and
“level” strategies.

Having described some example strategies, | now attemptrig bome rigor to the sub-
ject at hand by abstracting some categories out of the abidwere are three categories
with various subtypes:

Initial MatchedObject candidate selection: (Also known as 'Sheaf traversal strategy’):

All MatchedObjects: All MatchedObijects are visited, and are possible candgdate
This is the basis of “Focus” and “Marks” above.

Outermost: Only the MatchedObjects which are immediate children ofdinesr-
most Straws in the outermost Sheaf are candidates.

Innermost: Only the MatchedObjects which are immediate children oa\8#
containing only terminals in the sheaf-tree are candidates

Terminal: Only the MatchedObjects which have no inner sheaf are cateld
Level: Only the MatchedObjects at certain levels of nesting areliciates.

Matched-Obiject Filtering strategy: Once the candidate MatchedObjects are found, it
may be useful to take only some of them as a basis of a hit, ijievbtaining
“filtered candidates”.

Focus: Only candidate MatchedObjects which have the “focus” bawolset to
“true” are candidates.

Marks: Only candidate MatchedObjects which have certain specifieatks” are
candidates.

Object_type: Only candidate MatchedObjects which arise from certaircisiee
object types are candidates.

Object_type_feature: A special kind of Object_type filtering involves not
only object types, but also features: Only candidate Mat€Chigects which
arise from certain specified object types with certain valfigg certain
features are candidates.

100 CHAPTER 7. HARVESTING SEARCH RESULTS

Hit—strategy

Candidate—selection Candidate—filtering Hit—extent selectior

AN Z N N

— g T wn wn
2 8 ® o) o S g =1 @
< o 3 @ c =~ o0 Q
() = = - 7 n Q @ ®
5 2 3 I | s
—
> 3 = < & <
@D —~ ° > Q
o ‘ D o E
o) S !
S.) 0
(9] = = Q
o g D >
@ = 0 =
= .)
2 2 5
wn |'_"
— —
<
ko]
@
5
o)
c
o
wn

Figure 7.1: Ontology of hit strategies

Hit-extent strategy: Once the candidates are found and filtered, it may be usefave
each filtered candidate give rise to a hit, or it may be usefgroup some of them
into a single hit:

Single_candidate: Each filtered candidate MatchedObject gives rise to a “hit”.
This forms the basis of the above “Focus” and “Marks” stregeg

Same_straw_candidate:The monad set from each filtered candidate MatchedO-
bject is big-union’ed with the monad sets from the other ritecandidate
MatchedObjects from the same straw. This forms the basisecdbove “out-
ermost” and “innermost” strategies in the first descriptove.

This may be illustrated as in the ontology in Figure 7.1.

7.6 Extending the harvesting algorithm
There are many variations over the harvesting algorithmesof which | list here:

No reference unit: It might not be necessary to have a reference unit for cegam
poses.

More than one reference unit: For certain databases, more than one object type may
need to be queried in order to obtain a full reference. Fomge, in a Biblical

7.7. CONCLUSION 101

SELECT ALL OBJECTS

WHERE

// Retrieve three Phrases before each hit
[Phrase]

[Phrase]

[Phrase]

// Now retrieve exactly the clauses which
// form the basis of the example hits
[Clause self IN (10321,10326,10337,...,47329)]
// Retrieve four Phrases after each hit
[Phrase]

[Phrase]

[Phrase]

[Phrase]

Figure 7.2: Example topographic query implementing rastemtext_objects

database with no redundant data, the “verse” object typeoaway information only

about the verse number, while a “book” object type may canfgrimation about

the book name, and a “chapter” object type may carry infoionatbout the chapter
number. This situation would require more than one objegoe tp be queries in
order to obtain all relevant reference information. Thepldig-stage would then
have to assemble this information into output which wouldiesaningful to the

user.

Raster context monads: For certain types of display (e.g., KWIC concordances)jdirh
be desirable to retrieve a certain number of tokens as cbnifex token takes up
precisely one monad, then this can be specified as a certaihemof monads “be-
fore” the first monad of a given “hit”, coupled with a certaiomber of monads
“after” the last monad of a given “hit”.

Raster_context_objects:For certain types of display, it may be desirable to retriave
certain number of arbitrary raster units as context. Formgpta, one may want
to display precisely three Phrases on either side of a gihéh “In the current
Emdros-implementation, this would have to be implementdd yet another to-
pographic query, rather than a GET OBJECTS HAVING MONADS iMdry. The
topographic query could look something like the one in Fegii2. Notice that this
approach would require the “hit” to carry information abdlé “self” feature of
each “hit-Clause” (i.e., the id_d of each “hit-Clause”).

7.7 Conclusion

In this chapter, | have described some ways to use the outtputbpographic query (i.e.,

a Sheaf). In particular, | have described some purposes tchvehSheaf may be put,
including statistical information, display of results,damaintenance of database objects
(creation / update / deletion of objects).

102 CHAPTER 7. HARVESTING SEARCH RESULTS

| have described the process of querying an Emdros databaséheee-step process
in which: (i) the topographic query is executed, (ii) theuleag Sheaf is “harvested”, and
(iif) the harvested “Solutions” are put to use.

Flowing out of this, | have described a generic algorithntfarvesting” a sheaf, i.e.,
an algorithm for gathering enough data on the basis of a Sbdaé able to fulfill the
purpose for which the query was executed. This descripgguired the definition of a
number of concepts, including “focus monads”, “raster ntbraange”, “raster unit”, “data
unit”, “data unit feature”, “reference unit”, and “Solutiy among others.

Having described the algorithm in general terms, | have thestribed a number of
strategies which may be employed in determining what a ‘isit” This resulted in an
ontology of “hit-strategies” in which three main categsrigf hit-strategy were identi-
fied, namely “MatchedObject Candidate Selection StratetiatchedObject Candidate
Filtering Strategy”, and “Hit-extent strategy”.

| have then described some ways in which the basic harveatggithm may be
tweaked. Some of these ways are useful at times, though #heof require domain-
specific judgment of whether they are useful or not.

Harvesting a Sheaf is a basic process in the toolbox of tgalesiwhich | have devel-
oped during my PhD, and | have used the technique many timearious sub-projects
relating to Kaj Munk. We will get back to some of these subjgets in due course. Al-
though | conceived of the basic algorithm in 2001 or 2002 ¢ihs before | commenced
my PhD studies), the framework for describing and classgfyhe various “hit-strategies”
(Section 7.5) and the extensions to the general algorithenti@ 7.6) have been devel-
oped purely within the time-frame of my PhD studies. In additthe justification for the
separation of the topographic query-stage from the hangestage has been developed in
[FSMNLP2005] as part of my PhD studies, and has been exparutadin this chapter.

Chapter 8

Annotated text and time

8.1 Introduction

Formal Concept Analysis (FCA) [Lehmann and Wille, 1995, tdaand Wille, 1997] is
a mathematically grounded method of dealing with data inletform, transforming it
to so-called “formal contexts” which can be drawn as lattioé objects and attributes.
As such, Formal Concept Analysis has a lot in common with tiitelogies described in
Chapter 3

FCA has many applications, not least of which is aiding a huaraalyst in making
sense of large or otherwise incomprehensible data setsislpaper, we present an appli-
cation of FCA to the problem of classifying classes of lirgjigi objects that meet certain
linguistically motivated criteria, with the purpose of stgy them in Emdros.

The rest of the Chapter is laid out as follows. In Section Ba2gue that the structures
which we perceive in text can be seen as sets of durationsedtio® 8.3, | recapitulate
the important parts of the EMdF model, and show how this viétext is modelled in
Emdros. In Section 8.4, | introduce certain linguisticaltptivated criteria which sets
of sets of durations may or may not exhibit. In Section 8.5ndlgze these criteria in
order to obtain a complete catalog of the combinations ottheria which are logically
consistent. In Section 8.6, | describe and analyze thedatthich FCA produces from
this catalog. In Section 8.7, | apply the results from thevioes section to Emdros.
In Section 8.8, | show how | have implemented these resuliisalll, in Section 8.9, |
conclude the Chapter and give pointers to further research.

8.2 Language as durations of time

Language is always heard or read in time. That is, it is a b@asman condition that
whenever we wish to communicate in verbal language, it takes for us to decode
the message. A word, for example, may be seen as a duratiomefduring which a
linguistic event occurs, viz., a word is heard or read. Thkes time to occur, and thus a
message or text occurs in time.

In this section, | describe four properties of language Wwhiave consequences for
how we may model linguistic objects such as words or sengentke first is sequence,

1This Chapter is an expanded and edited version of the mifeuiad in my published article, [ICCS-
Suppl2008].

103

104 CHAPTER 8. ANNOTATED TEXT AND TIME

the second is embedding, the third is resumption, and thehfagi“non-hierarchic over-
lapping relationships”.

8.2.1 Sequence

As I mentioned above, a message (or text) is always hearddimngime. We experience
the passage of time as being ordered, i.e., there is a dadingetion of time: We never
experience time going “backwards”; the very language wiielemploy about time (viz.,
“forwards”, “backwards”) betrays our notions of time asreelar sequence.

Because a message is heard or read in time, and because perees/ed as being
linear, there is always a certain sequence to a given textmejecall this the “hearing-
order” or “reading-order”. This ordering can be based ongasial order< that exists
between non-overlapping duratiofs.

Thus, if we wish to build a text database system which adetyuaaptures the lin-
guistic information in a text, the system must be able to ma@inthe sequence of the
hearing- or reading-order of the text.

8.2.2 Embedding

Language always carries some level of structure; at the east, the total duration of
time which a message fills may be broken down into shortertaus which map to
words. The durations which are filled by the words (eitherti@a read) are thuesmbed-
dedinside the duration filled by the whole message.

Words, as we saw above, may be interpreted as durationsgdwhicth a linguistic
event occurs. However, we usually speak or write not onlyonds, but also in sentences.
This adds another, intermediate level of structure to thesage, such that words are
embedded in sentences, and sentences are embedded in taenelssage.

Moreover, most languages can be analyzed at levels thahtmeniediate between
words and sentencés Linguists have called these levgirasesand clauses among
other terms. For example, the sentence “The door opensdeviae East” may be ana-
lyzed thus:

[The door] [opens] [towards [the East]]

Here | have added brackets, indicating the boundaries afsgisrin the sentence. “The
door” is usually called moun phras€NP) by linguists, as is “the East”. The latter noun
phrase is, in turn, embedded inside the langepositional phras€PP) “towards [the
East]".

Thus a text can be analyzed or broken down into smaller uamftgsh in turn may be
able to be further analyzed into smaller units. Even wordyg beanalyzed into mor-
phemes and these, in turn, may be analyzed into graphenoegipies [Van Valin, 2001,
Van Valin and LaPolla, 1997, Eggins, 1994, Horrocks, 1987].

2As [@hrstrgm and Hasle, 1995, p. 31] explains, time may adgueiceived as being branching; yet what
we actually experience can always be mapped to a singlerégardless of which branches are actualized.

3See Section 8.3 for the details.

“4For a lucid discussion of the linguistic terms involved ie fbllowing paragraphs, see Van Valin [2001],
Van Valin and LaPolla [1997].

8.2. LANGUAGE AS DURATIONS OF TIME 105

What | have just described is thecursivenature of language: Linguistic units are
capable of being embedded inside other, larger linguistitsuwhich in turn may be
embedded within yet larger linguistic units. This can becdegd in terms of sets of
durations which are ordered in a hierarchy based ondtsibset-relation between the

sets®

Thus, if we wish to store linguistic objects adequately with text database system,
the system must support embedding of textual objects.

8.2.3 Resumption

There is, however, another important property of linguaistnits which must be men-
tioned, namely that language is, by natuesumptive By this | mean that linguistic units
are not alwaysontiguousi.e., they may occupy multiple, disjoint durations of tink@r
example, some linguists would claim that the sentence “@ba, which opened towards
the East, was blue.” consists of two clauses: “which opeoedids the East”, and “This
door ... was blue® This latter clause has a “hole” in it, in terms of time, and ashs
must be described in terms of two durations, not one. Beckamgpiage is generative,
and because sentences can in principle go on indefinitelyrfidks, 1987, pp. 14-16]
this kind of resumption can in principle occur arbitrarihany times.

Hence, in order to be able to describe linguistic units adexy, a text database
system must be capable of storing not just single duratibasarbitrary sets of non-
overlapping durations

8.2.4 Non-hierarchic overlap

A fourth important property of linguistic units is that theyay “violate each other’s bor-
ders.” By this | mean that, while uni may start at time and end at time, unit B may
start at timeéb and end at time, wherea < b < ¢ < d. Thus, whileA overlaps withB, they
cannot be placed into a strict hierarchy based onchelation. This occurs especially
in spoken dialog, where speak&rmay speak for a while, and then speagmay start

his or her speaker-turn, before speagehas finished speaking (see also [Cassidy, 1999,
Bird et al., 2000b, Cassidy and Harrington, 2001]).

S

S

Thus, if we wish to capture all kinds of linguistic informati adequately in a text
database system, the system must support linguistic uhitswnot only occur in a hier-
archy of embedding, but which may overlap in such a way tteatithits are not embedded
inside each other in a strict hierarchy.

5] here abstract away from how the sets of time are actualljzezh Later in the Chapter, | will show
how the statement is true if the sets are sets of monads.
6For one such opinion, see McCawley [1982].

106 CHAPTER 8. ANNOTATED TEXT AND TIME

8.3 The EMdF model

As already indicated in Chapter 4, these four propertiesrateed present in the EMdF
model. | here recapitulate the EMdF model, from the perspecf “monads seen as
durations of time.”

The reader will recall that central to the EMdF model is th&éarothat textual units
(such as books, paragraphs, sentences, and even words) ¢ewked asets of monads
A monad is simply an integer, but may be viewedasndivisible duration of time

When viewed from outside the system, a monad does not mapihsiamt, but rather
to a duration. This is because even words are not heard @y irean instant, but always
take a certain duration of time to hear or read, however small

When viewed from inside the system, however, the length efdiwration does not
matter. This is because we view a monad asdivisibleduration of time. The duration
is indivisible, not by nature, but because we do not wish talyae or break it down
further into smaller durations in our description of thettex

Usually, a monad maps to the duration of any givendin the text, but this need not
be so. If we wish to analyze a text below word-level, we capussite that the smallest
indivisible duration which we wish to treat in the EMdF modekome other linguistic
unit, such as the grapheme or phoneme. Then words will darfsisore than one monad.

Notice that the actual length of the duration of a monad is atamal to the database;
it has been abstracted away into the indivisibility of thenad. One monad may even
map to a different actual length of time than any other mosatte the actual length
depends on the actual linguistic unit to which the monadesponds.

Since monads are simply integers, they form a well-ordeeggisnce (i.e., 1, 2, 3,
..., etc.). The sequence of monads can be ordered by thartial order on integers.
Moreover, this partial order can be extended to durationsnod, given that a monad
represents a duration of time.

Given that textual objects such as words, sentences, aagrnaahs may be viewed as
sets of durations of time, it follows that objects may be edueel inside each other. This
is because durations may embed, or be subsets of, each other.

These durations are represented as stretchesmohds which in turn map to indi-
visible durations of time during which linguistic eventscac which we do not wish to
analyze further into smaller durations of time. A single&th of monads thus maps to a
larger duration than each of the monads making up the strEtohlly, a set of monads is
made up of one or more stretches of monads, thus making ticersgietely arbitrary.

Since textual objects can often be classified into similad&iof objects with the same
attributes (such as words, paragraphs, sections, ete.)etider will recall that EMdF
model providesobject typedor grouping objects. An object type, though abstract in
itself, may have a set of concratestance®f objects with actual values.

The reader will recall that an object type may have a sedttifbutes also called
features Each object belonging to an object typehas a value for all of the features
belonging to the object typ€. For a given database, the set of objects belonging to an
object typeT is denoted IngiT). For a given objedD, 1 (O) denotes thé set of monads
from O.

Finally, an objectO is a two-tuple(M,F), whereM is a set of monads, arfé is a
set of value-assignments to the features of the object Typ® which O belongs. It is
important to note thatl may not be empty. That i&T : VO € Inst(T) : u(O) # 0.

8.4. CRITERIA 107

101 | 102 | 103 | 104 105 106 107 108 109
Word 1 2 3 4 5 6 | 7 8 | 9
surface This door, which opened towards the East, jwas |blue
Phrase 10 11 12 13 14| 15
phrase_type NP NP VP NP VP AP
Phrase 16
phrase_type PP
Clause 17 18 17
Sentence |19

Figure 8.1: EMdF database example. Note how there are twe odbWhrase objects, be-

cause Phrase-13 and Phrase-16 overlap. Phrase-13 i®ch efhbedded inside Phrase-
16. Notice also that Clause-17 is discontiguous, congjsiithe monad set {101-102,

108-109}.

A small EMdF database can be seen in Figure 8.1. The line ejans at the top are
the monads. All other integers are the “self” IDs.

8.4 Criteria

In this section, we introduce some linguistically motivchteiteria that may or may not
hold for the objects of a given object tyde This will be done with reference to the
properties inherent in language as described in Section 8.2

In the following, let InstT) denote the set of objects of a given object typelLet
a andb denote objects of a given object type. liedenote a function which, given an
object, produces the set of monadseing the first part of the paiM, F) for that object.
Let mdenote a monad. Ldt(a) denoteu(a)’s first (i.e., least) monad, and Ig&) denote
u(a)'s last (i.e., greatest) monad. Lat : mp] denote the set of monads consisting of alll
the monads fronm; to my, both inclusive.

Range types:

single monad(): means that all objects are precisely 1 monad long.
VaeInst(T): f(a)=1(a)

single range{l'): means that all objects have no gaps (i.e., the set of monads co
stituting each object is a contiguous stretch of monads).
VaeInst(T):Vme [f(a):1(a)]:me u(a)

multiple range(T): is the negation of “single rangg]’, meaning that there exists
at least one object in InSt) whose set of monads is discontiguous. Notice

108 CHAPTER 8. ANNOTATED TEXT AND TIME

that the requirement is not that all objects be discontiguonly that there
exists at least one which is discontiguous.

JacInst(T):Ime [f(a):1(a)]:m¢ u(a)
—(VaeInst(T):Vme [f(a):1(a)]: me u(a))
= —(singlerangér))

Unigueness constraints:
unique first monad(T): means that no two objects share the same starting monad.

Va,bcInst(T):a#b« f(a) # (

b)
= VabelnsyT): f(a)=f(b) ~a=b

unique last monad(T): means that no two objects share the same ending monad.
Va,beInst(T):a# b« l(a)#I(b)
= Vabelnst(T):l(a)=I(b)«—a=Db
Notice that the two need not hold at the same time.
Linguistic properties:
distinct(T): means that all pairs of objects have no monads in common.
Va,belnst(T):a%b— u(@nub)=0
= Vabelnst(T):u(@nub)#0—a=Db
overlapping(T): is the negation of distin€T).
—(distinct(T))
= dabelnst(T):a#bAu(anu(b)#0

violates borders(T): Ja,beInst(T):a#bAu(@nub) #0A((f(a) < f(b))A
(I(a) = f(b)) A(l(a) <1(b)))

Notice that violates borde§) — overlappingT), since violatesborde($) is
overlappingT), with an extra, conjoined term.

It is possible to derive the precise set of possible classebjects, based on logical
analysis of the criteria presented above. | now turn to tarsvdtion.

8.4. CRITERIA 109

8.4.1 Range types

Notice thatsingle monadT) = single rang€T). This is because, given thé € Inst(T) :
f(a) =(a), then, sincéva € Inst(T) : a #£ 0, it follows thatva € Inst(T) : Vme [f(a) :
l(a)] : me u(a), due to the fact that(a) =1(a).

The converse obviously does not hold, however: An objea Tymay besingle range
without it beingsingle monad

In the following, we treat the logical relationships thatstoetween the various cri-
teria within each of the range types.

8.4.2 Single monad

Notice that the following relationships hold:

singlemonadT) A uniquefirstmonadd) — uniquelastmonad¥) (8.1)

singlemonadr) A unique lastmonad$) — uniquefirstmonadd) (8.2)

This is because, since single moiay holds, then for alb, f(a) =1(a). That is, if
the first monad is unique, then the last has to be unique asamellvice versa.
Notice also that:

singlemonadr) A uniquefirstmonadd) — distinc{T) Asinglemonadl’) (8.3)

This is because, if all objects consist of a single monad,adinubjects are unique in
their single monad, meaning no two objects share the samennsad, them all distinct
pairs of objects andb will fulfill u(a) N p(b) = 0.

Notice the the converse also holdes:

distinctT) A singlemonadl') — uniquefirstmonadd) (8.4)

This is because, if all objects consist of a single monad giinzhirs of sets of monads
u(a) andu(b) (wherea # b) have an empty intersection, then, since all sets of monads
are non-empty, it follows thatt(a) # f(b), and hence uniquefirstmondds holds.

Notice that “violates borders” requires either “singlegahor “multiple range”, but
cannot be realized if the range type is “single monad”. Thibecause of the double
requirement that(a) > f(b) andl(a) < I(b), which together imply thaf (b) < I(b),
which again implies that (b) # | (b). Thus “single monad” is ruled out. Thus:

violatesborderd) — —singlemonadr) (8.5)

Notice that the inverse also holds:

singlemonadr) — —violtatesborderd) (8.6)

110 CHAPTER 8. ANNOTATED TEXT AND TIME

8.4.3 Single range

Notice that if a “single range” object type is non-overlapp(i.e., all objects are distinct),
it implies that all objects are unique in their firshd last monads. This is because all
sets are distinct (i.e., no object overlaps with any othgealy hence, for all distinct
objectsa andb, f(a) # f(b) Al(a) # I(b). This is because the negation, naméfg) =
f(b)vI(a) =I(b), would imply that the objects in question shared at leastronead,
namely either the first or the last (or both).

singlerang€r) Adistinc{T) — uniquefirstmonadd’) Auniquelastmonad$) (8.7)

Notice that the converse does not hold: Given an object typeirig only the two
objects {1,2} and {2,3}, we have both unique first monads andjue last monads, but
we also have overlapping.

Notice thatif an object type is bo#ingle rangeandnon-overlappingit also holds that
it does not violate any borders. This is because violatiomooflers requires overlapping
to exist.

singlerangér) A —overlappingT) — —violates borderd) (8.8)

Inversely, if an object type does violate borders, it musbberlapping:

singlerangér) A violatesborder§) — overlappingT) (8.9)

This is because violatesbord€Fg — overlappingT), as we saw above.

8.4.4 Multiple range

Notice that “multiple range” conjoined with “non-overlapg” again implies “unique
first and unique last monads”, just as it did for “single raihgad for the same reason.

multiplerangéT) A distinct{T) — uniquefirstmonadd) A uniquelastmonad$)
(8.10)
The converse does not hold, however, for the same reasod itadihold for single
range objects.
Notice finally that, just as for single range, non-overlagpimplies non-violation of
borders, since violation of borders requires overlapping.

multiplerangéT) A —overlappingT) — —violates bordersT) (8.11)

The inverse also holds:

multiplerangé€T) A violates borderd) — overlappingT) (8.12)

The converse of this does not hold, however: It is possibleetoverlapping and not
have violation of borders.

8.5. LOGICAL ANALYSIS OF THE CRITERIA 111

Classname sm| sr| mr | ufm | ulm | ds| ol | vb
1.000 X | X X
1.300 X | X X X | X

2.000 X X
2.001 X X | X
2.100 X X X
2.101 X X X | X
2.200 X X X
2.201 X X X | X
2.300 X X X X
2.301 X X X X | X
2.310 X X X | X
Classname sm| sr| mr | ufm | ulm | ds| ol | vb
3.000 X X
3.001 X X | X
3.100 X X X
3.101 X X X | X
3.200 X X X
3.201 X X X | X
3.300 X X X X
3.301 X X X X | X
3.310 X X X | X

Table 8.1: All the possible classes of object types. Legesmd:= single monad, sr =
single range, mr = multiple range, ufm = unique first monanh glunique last monad, ds
= distinct, ol = overlapping, vb = violates borders.

8.5 Logical analysis of the criteria

Using the relationships in the previous section, we carvddil the possible classes of
object types based on the criteria given in that section.
The possible classes are listed in Table 8.1

8.6 FCA results

The context resulting from these tables is then processeatiebZoncept Explorer soft-
ware (ConExp). This produces a lattice which can be seen in Figure 8.2.

8.7 Applications

It is immediately noticeable from looking at Figure 8.2 thds” is quite far down the
lattice, with several parents in the lattice. It is also oedble that “ol” is quite far up in
the lattice, with only the top node as its parent. Thereftde; may not be as good a

’See http://conexp.sourceforge.net. Also see Serhiy Atuéienko System of data analysis "Concept
Explorer". (In Russian). Proceedings of the 7th national conferencgrtficial Intelligence KII-2000, p.
127-134, Russia, 2000.

112 CHAPTER 8. ANNOTATED TEXT AND TIME

Figure 8.2: The lattice drawn by ConExp for the whole context

candidate for a criterion on which to index as “ol”. Hence,deeided to experiment with
the lattice by removing the “ds” attribute. The resultingitae can be seen in Figure 8.3

In this new lattice, it is noticeable that the only dependattributes are “sm” and
“vb”: All other attributes are at the very top of the lattieeith only the top node as their
parent. This means we are getting closer to a set of critagadbon which to index sets
of monads.

The three range types should definitely be accommodatedyinndexing scheme.
The reasons are: First, “single monad” can be stored vergiaitly, namely just by
storing the single monad in the monad set. Second, “singigefais also very easy
to store: It is sufficient to store the first and the last monatird, “multiple range”,
as we have argued in Section 8.2.3, is necessary to supportién to be able to store
resumptive (discontiguous) linguistic units. It can berstbby storing the monad set
itself in marshalled form, perhaps along with the first ared taonads.

This leaves us with the following criteria: “unique first naaii, “unique last monad”,
“overlapping”, and “violates borders” to decide upon.

In real-life linguistic databases, “unique first monadstl danique last monads” are
equally likely to be true of any given object type, in the setizat if one is true, then
the other is likely also to be true, while if one is false, thia other is likely also to be
false. This is because of the embedding nature of languggeaiegd in Section 8.2.2: If
embedding occurs at all within a single object type, thes lilkiely that both first and last
monads are not going to be unique. Conversely, if embedddeg dot occur, then it is
likely that “overlapping” also does not occur, in which cdseh “unique first monads”
and “unique last monads” are going to be true (for all thregeatypes).

Therefore, we decided to see what happens to the lattice ifewmve one of the
two uniqueness criteria from the list of attributes. Theesron chosen for removal was

8.8. IMPLEMENTATION 113

Figure 8.3: The lattice drawn without the “ds” attribute.

“unique last monads”. In Figure 8.4, the result can be sedh, ‘wnique first monads”
selected. ConExp reports that “unique first monads” subsurebjects, or 55%.

Similarly, still removing “ds” and “ulm”, and selecting “@vlapping”, we get the
lattice drawn in Figure 8.5. ConExp reports that “overlayggisubsumes 17 objects, or
85%, leaving only 3 objects out of 20 not subsumed by “ovegilag’. This indicates that
“overlapping” is probably too general to be a good candidiatéreating specially.

Itis also noticeable that “violates borders” only subsudebjects. Hence it may not
be such a good candidate for a criterion to handle specgltige it is too specific in its
scope.

Thus, we arrive at the following list of criteria to handleesjally in the database: a)
single monad; b) single range; c) multiple range; and d) wmigst monads.

8.8 Implementation

We have already shown in Chapter 4 how these are implemesudtere we just briefly
recapitulate.

The three range types{ITH SINGLE MONAD OBJECTS”, “WITH SINGLE RANGE OBJECTS”,
and ‘WITH MULTIPLE RANGE OBJECTS”) can be easily implemented in a relational database
system along the lines outlined in the previous section.

The “unique first monads” criterion can be implemented inlati@nal database sys-
tem by a “unique” constraint on the “first monad” column of bléaholding the objects
of a given object type. Notice that for multiple range, if wvterg the first monad of the

114 CHAPTER 8. ANNOTATED TEXT AND TIME

Figure 8.4: The lattice drawn without the “ds” and “ulm” @ttites, and with “ufm”
selected.

8.8. IMPLEMENTATION 115

Figure 8.5: The lattice drawn without the “ds” and “ulm” @burtes, and with “ol” se-
lected.

116 CHAPTER 8. ANNOTATED TEXT AND TIME

Backend SQLite 3| SQLite 2| PostgreSQL MySQL
Avg. time for DBwithout optimizations | 153.92 | 130.99 281.56 139.41
Avg. time for DBwith optimizations 132.40 | 120.00 274.20 136.65
Performace gain 13.98% | 8.39% 2.61% 1.98%

Table 8.2: Evaluation results on an Emdros database, imdeco

monad set in a separate column from the monad set itselfistimessible for all three
range types. Notice also that, if we use one row to store ebgtip the “first monad”
column can be used as a primary key if “unique first monadsid$@wr the object type.

We have run some evaluation tests of 124 diverse Emdrosaguagainst two ver-
sions of the same linguistic datab&seach loaded into four backends (SQLite 3, SQLite
2, PostgreSQL, and MySQL). One version of the database didawe the indexing op-
timizations arrived at in the previous section, whereasaother version of the database
did. The version of Emdros used was 3.0.1. The hardware w&swith an Intel Dual
Core 2, 2.4GHz CPU, 7200RPM SATA-II disks, and 3GB of RAM, ming Fedora Core
Linux 8. The 124 queries were run twice on each database, masgeaage obtained by
dividing by 2 the sum of the “wall time” (i.e., real time) ustat all 2 x 124 queries. The
results can be seen in Table 8.2.

As can be seen, the gain obtained for MySQL and PostgreSQmissanegligible,
while it is significant for the two versions of SQLite.

8.9 Conclusion

We have presented four properties that natural languagepsss, namely sequence, em-
bedding, resumption, and non-hierarchic overlap, and we baen how these properties
can be modeled as sets of durations of time.

We have presented the EMdF model of text, in which indivesibits of time (heard or
read) are represented by integers, called “monads”. Textits are then seen as objects,
represented by paif#, F), whereM is a set of monads, arféis a set of attribute-value
assignments. An object type then gathers all objects wkihditributes.

We have then presented some criteria which are derived foone ©f the four prop-
erties of language outlined above. We have formally defihedd in terms of objects and
their monads. We have then derived an FCA context from thetia, which we have
then converted to a lattice using the Concept Explorer Sm&wWConEXp).

We have then analyzed the lattice, and have arrived at fat@rier which should be
treated specially in an implementation.

We have then suggested how these four criteria can be implechén a relational
database system. They are, in fact, implemented in waysasitnithese suggestions in
the Emdros corpus query system. We have also evaluatedrioerpance gains obtained
by implementing the four criteria.

Thus FCA has been used as a tool for reasoned selection of@enwaifrcriteria which
should be treated specially in an implementation of a dagbgstem for annotated text.

Future work could also include:

1. Derivation of more, pertinent criteria from the four peofes of language;

8Namely the WIVU database [Talstra and Sikkel, 2000].

8.9. CONCLUSION 117

2. Exploration of these criteria using FCA,;
3. Implementation of such criteria; and

4. Evaluation of any performance gains.

118 CHAPTER 8. ANNOTATED TEXT AND TIME

Part |l

Applications

119

Chapter 9

Introduction

Part Il of my dissertation, entitled “Applications”, sumrizes some of the work which |
have done to apply empirically the theoretical and methagiokl concerns discussed in
Part I.

As explained in Chapter 1, the empirical basis for my work, hasa large extent,
been formed by the Kaj Munk corpus. Other empirical datalsat® been employed as
well, such as the BLLIP corpus [Charniak et al., 2000] andTtieER Corpus [Brants
and Hansen, 2002], both of which were used in Emdros in [LRIB&2 In addition, the
Danish Bible (Old Testament from 1931 and New Testament t80v) has formed the
empirical basis for some of the work done during my PhD, asaéxed in Chapter 13.

The rest of Part Il is laid out as follows. First, in Chapter L@iscuss the Kaj Munk
corpus and its implementation. In Chapter 11, | discuss abesed tool which | have
developed, the purpose being for a group of people to calbamn annotating a text
corpus with comments. In this case, of course, the text soipthe Kaj Munk Corpus.
In Chapter 12, | discuss the use of the implementation of thg Munk corpus in a
“Munk Browser”, a piece of software containing some of therkgoof Kaj Munk. The
“Munk Browser” is going to be published by the Kaj Munk Res#maCentre, and be
made commercially available. Finally, in Chapter 13, | dsxan algorithm which Peter
@hrstrgm and | have developed in order to locate quotatrong the Bible in Kaj Munk’s
works — or, in principle, in any other corpus of text.

121

122 CHAPTER 9. INTRODUCTION

Chapter 10

Implementation of the Kaj Munk
corpus

10.1 Introduction

The Kaj Munk Corpus consists of some of the most importankaday Kaj Munk. It
is the product of an ongoing effort to digitize tiachlassof Kaj Munk. This task is
performed by a team consisting of student workers as wellaglémic staff. Thus | am
but one cog in a larger wheel which is part of an even largethinacy, in the process of
digitizing Kaj Munk’s works, making Kaj Munk’s works avaliée to the general public,
and performing research on Kaj Munk'’s texts.

The rest of the chapter is laid out as follows. First, | disctge nature of the texts,
as well as giving a very high level perspective on the digtian process (10.2). In then
discuss the “why” of my choice to base the encoding of thestext XML (10.3). | then
briefly discuss the reasons for not choosing the Text Engoldiitiative (TEI) guidelines
as a basis for the encoding (10.4). | then detail the most itapbaspects of the digiti-
zation process (10.5). | then discuss how the XML-encodea fof a Munk document
becomes an Emdros database (10.6). This is important, $iagest of the research and
production which can be carried out depends either direstipdirectly on the Emdros
databases formed from the XML-encoded form of the Munk teitsally, | conclude the
chapter.

10.2 The nature of the texts

The nature of the texts varies. Kaj Munk’s works can be saahdily to fall into five
categories.

1. Plays

2. Journalism
3. Poetry

4. Sermons

5. Prose

123

124 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

The choice of method of encoding has been influenced by tesgity. It seemed obvious
that what was needed was a mechanism which could be exteodmyer all of these
kinds of manuscripts. XML, being extensible, seemed a gboite for dealing with this
diversity.

Some of Kaj Munk’s texts that we have in the Kaj Munk Archiverddeen pub-
lished, others have not. Some have been typed on a typewvliereas many only exist
in manuscript form, written by Kaj Munk in his own — often hatiaread — handwriting.
The published parts of the corpus could be scanned and ¢edvertext using Optical
Character Recognition (OCR) softwdrdut always with manual correction and proof-
reading after the OCR-step. The other parts of the corpgpedtyhand-written) needed
to be keyboarded manually, again with proof-reading anduabecorrection as necessary
follow-up steps to take. These tasks (OCR-scanning, keybag proofreading, correc-
tion) have been undertaken by the excellent student hetgaree Kaj Munk Research
Centre. | am grateful for the meticulousness with which thaye carried out this work.

| wish to say that my own task is not that of establishment ofaarthoritative text”.
That is, my task is not that of the edition-philologist, ndyn® establish a precise, au-
thoritative edition of Kaj Munk’s text. Rather, | leave thask to others, who come after
me in the process.

From a high-level perspective, the process of digitizatbthe Munk Corpus can be
viewed as in Figure 10.1 on the facing page. Please see thercap the figure for an
explanation.

10.3 XML as the basis for encoding

A text is not just a string of words. For example, divisionmisentences are marked by
punctuation marks in modern texts, and divisions into paalgs, sections, and chapters
are often marked. For plays, the text is structured intg acenes, stage directions, actor
names, actor lines, and other kinds of text. This kind ofcital markup is easily iden-
tified on a page by human sight, by means of conventions fasgiing. For example,
a paragraph often has its first line indented, a section ikedaby a heading in larger
typeface than the rest of the text, and a chapter often begiasnew page with an even
larger typeface for the chapter name. For plays, an actoemgoften printed in boldface
or italics flush-left, with a colon or a period to separate dletor name from the words
which the actor says.

This kind of markup needs to be formalized (i.e., made explit order for the com-
puter to be able to process the text as a structurally maunkedxt. The development and
maintenance of a tagging scheme to suit the purposes of thlliiegk Research Centre
has been one of my main tasks. | have based this developmére XML standard [Bray
et al., 2004, Harold and Means, 2004], which is a standardsped by the World Wide
Web Consortium. “XML” stands for “eXtensible Markup Langyed [Bray et al., 2004],
and is a specification of a syntax for a set of formal languaigeshich it is possible to
define one’s own Markup Language. One of the benefits of the Xldindard is that,
when followed, the resulting data are easy to share acraf®phs and implementations.
The reason for this ease of use is that the XML specificati@tifips asyntaxwhich is

For an introduction to some of the techniques used in Op@telracter Recognition, see Matteson
[1995].

10.3. XML AS THE BASIS FOR ENCODING 125

Original document Student helpers
(manuscript or (OCR/keyboarding,
typed/printed proof-reading, Word(R)-document
edition correction)

Corrected
document

Human-readable Software XML-document
document

Figure 10.1: The process of digitization of the Munk Corpssen from a high-level
perspective. The process starts in the upper left corngr,amioriginal manuscript, either
in hand-written form, or in typed or printed form. This theneg through a Student
Helper, who converts the original document to a Word(R) doent. This document
then goes through me, who converts the document to XML. TM& Xocument is then
processed by some software that | have written, to a form lwlsagain readable by
humans. This is as far as we have got in the process to dat.tA#$, the following steps
can take place: The human-readable document produced XML goes through a
team of edition-philologists, who compare the documenhlie original document(s),
producing a corrected document. This is then fed through gagnawho makes the
necessary corrections to the XML document. At this poirg,ghocess could either stop,
or go one more round, just to be sure that | had entered evergatmn found by the
edition-philologists perfectly.

Ulrik

Edition-philologists

126 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

easy for software to parse, i.e., it is relatively easy tdevai program (a “parser”) which
reads an XML document and decomposes it into its parts, wtachthen be interpreted
by another program making use of the parser.

Ease of use is one reason for choosing XML as the standard mh Wwhbase the Kaj
Munk corpus. Another reason is the ease with which XML makgmssible to sepa-
ratepresentatiorfrom content For example, the XML “schema” which | have developed
in order to store the Kaj Munk corpus states that an actorrtinst have an actor name
associated with it. The precise details of the syntax focsypiag this actor name, and
the extent of the actor line, is immaterial for our discussi®he important point is that,
using XML markup, the computer is told unambigously what péthe text is an actor
name, what part is stage directions, and what part is theswshdach the actor speaks. In
other words, th&ind of content is made explicit (or formalized) to the comput€his
is separated from thpresentatiorof that content. For example, after the conversion to
XML, it does not matter whether the actor name was printedfaok or italics, centered
or flush left. The string of characters that made up the nantheofictor has been un-
ambiguously tagged as being an actor name. This “abstpetsentatiohentails that it
IS possible to present it in any way desirable. For exampls,riow possible to specify
that, when converting the play-turned-XML back to a preagon form, all actor names
should be flush-left, bold, and italic, with a colon after 8imilarly, the XML-ification
entails that the data can be used for other purposes, egngin an Emdros database.
The possibility of this separation of content and pres@&nmahade XML a good choice.

10.4 Text Encoding Initiative

| could have chosen to use the standards developed by th&featling Initiative (TEI}
in the preparation of the Kaj Munk Corpus. The reasons fochobsing TEI as the basis
for our XML schema include:

1. The complexity of the TEI. The TEI guidelines were desjtehelp store many
kinds of scholarly work. We in the Kaj Munk Research Centreé niot need all
of that complexity. Granted, the TEI makes it easy to choasdg those parts of
the TEI “schema” (technically, a “DTD” — Document Type Defian) which are
relevant to one’s own research. Yet even with this choice adues, the TEI was
deemed too complex to use for our purposes.

2. Control. We wanted to retain full control over how the MuD@érpus was encoded.

3. Ignorance, or: A growing understanding of the structdlitb®texts. At first, we did
not know exactly what a Munk text would encompass. As timetvgna clearer
picture was formed, but only through actual experimentaiwith actual encoding
of Munk texts.

4. Special needs. We found out that especially Kaj Munk’'yplaade some distinc-
tions which would have been difficult to implement, or at teas did not know
how to implement, within the TEI guidelines alone.

2Barnard and Ide [1997]. Website: http://www.tei-c.org/

10.5. OVERVIEW OF THE DIGITIZATION PROCESS 127

10.5 Overview of the digitization process

The process used for digitizing the Kaj Munk Corpus is oetlinn Figure 10.3 on
page 129. The figure should be from top to bottom. The rectsngdpresent data,
whereas the ellipses represent processes or programs thieictata passes through in
order to be transformed from one kind of data to another.

At the top, we have a work by Kaj Munk in its paper form (printégpbed, or hand-
written). This is passed through a human being, who eithgates the OCR-scanning
process, or who keyboards the manuscript in. This resulisWord document in which
content is not separated from presentation: The actor naredaid out flush left or cen-
tered (as the case may be), but there is no formalized indrc#ttat a given string of
characters is, in fact, an actor name — or any other kind df téxis simply a Word
document which must be interpreted by human sight if it isd@isambiguated as to the
kinds of text involved.

This Word-document is then XML-ified. The process is that\tferd document is
first converted to an XML form (via Abiwor) which still does not separate presentation
from content: It is still “just” a representation of the typee and paragraph styles used
in the Word document. This XML-representation is then sifigal, by a Python script
which | have written, into something that resembles verypdgnHTML. This document
is then manually (and semi-automatically) XML-ified to XMhat does separate content
from presentation. | do this using a text editor with advahsearch-and-replace func-
tionality based on patterfisFor any given text, it is most often the case that the text has
originally been typed or printed in a fairly uniform way, Wigiven typography indicat-
ing a given kind of text. For example, within any given texteo-parentheses, followed
by something in italics, followed by close-parentheses magn “stage directions”, and
can then be found fairly easily using ad-hoc patterns, amdexted to the XML form
that strips away the parentheses and the italics, instgauysanambigously that this is a
stage direction. The reason this process cannot be momnatéd than it has been is that
the typographical conventions for marking out the variomsli& of text varies slightly in
almost all texts. A sample XML document can be seen in Figlr@ tn the following
page.

Now that the document has been XML-ified, and thus has hadiitent separated
from its presentation, various kinds of use can be made oKMe-ified document. In
Figure 10.3, | have shown two such uses: Namely conversi@ntBmdros database,
and conversion to HTML for showing in a Web browser. | shajplein the process of
conversion to an Emdros database more fully in Section Fb6now, it suffices to say
that the XML is passed through an XML parser, and is then hdutde Python script
which transforms the XML either to Emdros MQL, or to HTML.

10.6 Conversion to an Emdros database

In order to make the most of Kaj Munk’s texts, | have devised@@ss whereby the
texts are enriched with annotations. In order to perform #nrichment, the processes

3Abiword is an Open Source word-processor. See http://whigcairce.com
4The editor is Emacs, and the patterns are regular expressiar an introduction to regular expres-
sions, see Martin [1991].

128 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>

<!DOCTYPE munktxt SYSTEM "munkschema.dtd">

<munktxt>

<poetry>

<metadata>
<metadataitem kind="title" value="Den blaa Anemone"/>
<metadataitem kind="yearwritten" value="1943"/>
<metadataitem kind="yearpublished" value="0"/>

</metadata>

<lyrik>

<strofe>

<vers>Hvad var det dog, der skete?</vers>

<vers>mit hjerte haardt og koldt som Kvarts</vers>

<vers>maa smelte ved at se det</vers>

<vers>den fgrste Dag i Marts.</vers>

<vers>Hvad gennembrgd den sorte Jord</vers>

<vers>og gav den med sit dybblaa Flor</vers>

<vers>et Stank af Himlens Tone</vers>

<vers>den lille Anemone,</vers>

<vers>jeg planted der i Fjor.</vers>

</strofe>

</lyrik>

</poetry>

</munktxt>

Figure 10.2: XML version of the first stanza of “The Blue Anemed.

10.6. CONVERSION TO AN EMDROS DATABASE 129

Printed, typed, or handwritten text
(on paper)

@ning or keyboarding

Word-document with visual layout

XML-ification (semi-a@

XML (separation of content and presentation)

Emdros MQL HTML

Emdros import @@

Emdros database On-screen represen-
tation, readable by
humans

Figure 10.3: Overview of the digitization process. Shoutdréad from top to bottom.
The rectangles represent data, whereas the ellipseseappgecesses that the data passes
through in order to be transformed.

130 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

described below are carried out. The running example giverughout will parts of the
first stanza of “The blue Anemone”.

Formatting removal: The XML version of a Kaj Munk text may contain markup that
specifies the kind of text involved, as well as some markup gpacifies format-
ting features, such as “italics” or “paragraph start / entii.order to be able to
abstract away from these formatting-details, the XML isisfarmed to its raw text
form. This is done using a very simple Python program whiciMewritten, which
merely parses the XML and strips off all of the markup, legvimly the words of
the text. Whitespace separates every word, and two newdarate parts of the
content that do not belong together (because, e.g., theseparated by paragraph
boundaries, or actor line boundaries).

The output of this process looks like this:
Hvad var det dog, der skete?

Mit vinterfrosne Hjertes Kvarts

Orthography modernization: In 1948, the Danish language underwent an orthography
reform. Since all of Kaj Munk’s texts were written beforeghmeform, they all fol-
low the “old orthography”. | have devised an algorithm todakords using the
old orthography and transform them to the new orthograpltyy manual correc-
tion where necessary. The algorithm is partly purely athamic, in that a num-
ber of possible translations from old to new forms are predudt is also partly
data-driven, in that the two Danish reference corpora, 2000 and Korpus 90
[Andersen et al., 2002], are used to check whether theseébtms$sanslations are
found in either of those corpora. In addition, if this prozeses not yield a match,
the algorithm attempts to split the word in its constitueauttp, in case it is a com-
pound, and to check each part as to presence in the referermaa. In addition,
suffix addition and suffix stripping are used on the outputathlthe initial algorith-
mic translation and the split forms, in order to see whethesé¢ suffix-enhanced /
suffix-stripped forms are found in the reference corporaolie of these processes
yield a match in the reference corpora, the form is writtea fde for later man-
ual translation to new orthography. These manually traedlavords are always
checked for a match before any other if the above procesads €nce all forms
in a text have been given a translation from old to new orthaply, it is possible to
transform the text, word-by-word, from old orthography emnorthography. This
transformation is applied to the output of the previous pssc

hvad var det dog , der skete 7
Mit vinterfrosne hjertes kvarts

Sentence identification and tokenization:In order to be able to perform part-of-speech
tagging, the text needs to be split into sentences, and alse ttokenized”. Tok-
enization is the process whereby a text is split into wordd,\sords are split into
“word-parts” and “non-word-parts” (most often punctuafiol have devised a to-
kenizer which works well for the Danish texts in the Kaj Mundrgus, based on

10.6. CONVERSION TO AN EMDROS DATABASE 131

regular expressions.

The sentence identification is performed very simply, basetthe following heuris-
tic: Any question mark (“?”) or exclamation mark (“!") markise end of a sentence.
Any period (*.") marks the end of a sentence if and only if teinword starts with
a capital letter. Of course, this heuristic fails to find tight sentence boundaries
in some cases. For example: An abbreviation terminatedaviteriod may be fol-
lowed by a noun (nouns were capitalized in the old orthogygph which case the
sentence-identification program will mark the period asatheé of a sentence, even
if itis not.

Our running example looks like this after this process:

Hvad var det dog , der skete 7
Mit vinterfrosne Hjertes Kvarts

Encoding conversion: The XML has been encoded in Unicode encoding (specifically,
UTF-8). Some of the above output needs to be converted frorooda to ISO-
8859-1 (also known as “latin-1") encoding. This is done watlsimple Python
script which: a) translates characters with no equivalertha latin-1 character
set, either to nothing (thereby eliminating the charagtensto some close latin-1
equivalent, and which b) translates characters with anvatgnt in latin-1 to their
latin-1 equivalent.

I will not show the latin-1 version of our running examplense there are no
changes.

Part-of-speech tagging: The modernization of orthography mentioned above was mo-
tivated in part by a desire for end-users to be able to empboly bew forms and
old forms when searching. Another motivation was that Qefiotd_anguage Tech-
nology (CST) at the University of Copenhagen kindly prodiaee with automated
web-access to their part-of-speech tagger and lemmalibhes.part-of-speech tag-
ger and lemmatizer needed to have “new ortography” as itstjrgnd hence |
needed to provide a method of translating the text to “nelWwamtaphy”. CST’s
tagger is based on that of Eric Brill [Brill, 1993].

The output from CST’s tagger has then been used to train antathger, namely the
T3 tagger of Ingo Schréder [Schrbéder, 2002]. This taggeringired by the TnT
tagger of Thorsten Brants [Brants, 2000]. It is my estimatimat Ingo Schroder’s
T3 tagger yields slightly better results than that of CSEdabon informal compar-
ison of some texts tagged with both taggers. This is in lin 8chroder’s [2002]
findings, as well as those of Brants [2000].

The CST-tagged version and the T3-tagged version can barséegure 10.4.

Stemming: Stemming is the process whereby affixes are stripped fronrd iworder to
obtain what is called a “stem”. For example, the words “cptitdols”, “cooling”,

132 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

[PRON_INTER_REL hvad hvad]
[V_PAST var vare]
[PRON_PERS det detl]

[ADV dog dog]

[TEGN , ,]

[UNIK der der]

[V_PAST skete skel

[TEGN 7 7]

(@)
Hvad PRON var V det PRON dog ADV , PUNCT der UNIK skete V ?
PUNCT (b)

Figure 10.4: The part-of-speech tagged version of the finstevof the first stanza of “The
blue Anemone”. Part (a) is the output from the CST pos-taggddiemmatizer, while part
(b) is the output from the T3 tagger.

“cooled”, and “coolness” would all be stemmed to the stenoftoln my work, |
have used the Snowball stemmeroduced by Martin Porter and Richard Boulton
[Porter, 1980]. The Snowball stemmer has a built-in stenforeDanish.

Stitching: After all of the above processes have run, the results astihed together
into files with MQL statements that will create the Emdrosatbaise. This is done
using a fairly complex Python program which | have writterheTprogram reads
all of the above source files, and compares them in order &rtasc which words
/ new forms / tokens / parts of speech / lemmas / stems belgagier, and where
the sentence boundaries are. The XML form is also read, ipeneating objects
such as “actor line”, “stanza”, “verse”, “annotation”, ekor technical reasons, the
annotations are written to a file which is separate from thembbject types. The
end result is two files per input XML file: One file with MQL statents which will
create the annotations, and one file with MQL statementstwihilt create the rest
of the objects. Part of the MQL output can be seen in Figurg @0 .the next page.

Emdros database creation: After the MQL has been created, it is run through the mq|
program, thereby creating the database. What can be dohe¢hgitlatabase after
its creation includes: a) research, b) display of the docus@nd c) annotation of
the texts. | discuss these in later chapters.

The whole process can be seen in Figure 10.6 on page 134.

10.7 Conclusion

In this chapter, | have scratched the surface of the proseasselved in digitizing and
implementing the Kaj Munk corpus. Many details have beerolef. | have first discussed
the nature of the texts, followed by a defense of my choice BlLXas the basis for
encoding Kaj Munk’s texts. | have then briefly discussed wimave not used the Text
Encoding Initiative’s (TEI's) schema. | have then given arerwiew of the digitization

5See http://snowball.tartarus.org/

10.7. CONCLUSION 133

CREATE OBJECTS WITH OBJECT TYPE [munktxt]
CREATE OBJECT FROM MONADS={1-6}[kind:=poetry;
yearwritten:="1943";
basename:="Den-blaa-anemone";
title:="Den blaa Anemone";
yearpublished:="0";
]
GO
CREATE 0BJECTS WITH OBJECT TYPE [lyrik]
CREATE OBJECT FROM MONADS={1-6}[]
GO
CREATE 0BJECTS WITH OBJECT TYPE [strofe]
CREATE OBJECT FROM MONADS={1-6}[]
GO
CREATE 0BJECTS WITH OBJECT TYPE [vers]
CREATE 0OBJECT FROM MONADS={1-6}[]
GO
CREATE OBJECTS WITH OBJECT TYPE [Token]
CREATE OBJECT FROM MONADS = {1}[
wholesurface:="Hvad ";
surface:="Hvad";
surface_lowcase:="hvad";
new_surface:="hvad";
new_surface_lowcase:="hvad";
lemma:="hvad";
t3pos:=PRON;
cstpos:=PRON;
cstwholepos:="PRON_INTER_REL";
morphology:=(INTER,REL) ;
surface_stem:="hvad";
new_surface_stem:="hvad";
prefix:="";
suffix:=" ";
break_occurs_after:=0;
]
CREATE OBJECT FROM MONADS = {2}[
wholesurface:="var ";
surface:="var";
surface_lowcase:="var";
new_surface:="var";
new_surface_lowcase:="var";
lemma:="v\xc3\xabre";
t3pos:=V;
cstpos:=V;
cstwholepos:="V_PAST";
morphology:=(PAST) ;
surface_stem:="var";
new_surface_stem:="var";
prefix:="";
suffix:=" ";
break_occurs_after:=0;
]

. more Tokens follow ...
GO

Figure 10.5: Part of the MQL output for the first verse of thetfstanza of “The Blue
Anemone”.

134 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

XML

Remove some tags

v

C Derived XML)

Remove all tags
C Bare UTF-8 text)

/\V\,\

Snowball Stemmer

Latinl-converter Sentence-boundary-finder

Bare text with
sentence-boundaries

Old to New
orthography converter

Bare text, new

orthography

CST POS-tagger
and lemmatizer T3 POS-tagger

Text with CST
POS-tags and
CST lemmas

Text with T3
POS tags

VA

A

\ 4 \L

Stitcher (produces MQL from all of the above)

(Annotation MQL > (MQL for all the rest)

Figure 10.6: Overview of the “XML to Emdros MQL” process.

10.7. CONCLUSION 135

process. | have then discussed in some detail how a text fnenkKaj Munk corpus
becomes an Emdros database, from its XML form. The Emdrcabdae can then be
used for various purposes, some of which will be discusséaarfiollowing chapters.

136 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

Chapter 11

Principles of a collaborative annotation
procedure

11.1 Introduction

As part of the tasks of the Kaj Munk Research Centre, it is oty tb make the works of
Kaj Munk electronically available to the general public.dmer to meet the needs of the
end-users of such an electronic edition, itis a good ideayply the text with annotations
in the form of notes on certain words and phrases. We haveogrbla person to author
these annotations, and | have written a web-based tool tthagherson in entering the
annotations. Others are helping the main annotator, antesiool is really a web-based,
collaborative annotation tool.

The rest of the Chapter is laid out as follows. First, | disctiee general ideas and
principles behind the annotation tool (11.2). Second, ¢uls the actual implementation
of these general ideas and principles (11.3). Finally, kctahe the chapter.

11.2 The general idea

The general idea is to provide a web-based, colloborative@mment in which persons
who are knowledgeable about the writings of Munk (or any otheéhor) may enter an-
notations which are attached to specific words. The enviemrs based on Emdros,
which stores the annotations on behalf of the annotatomsgliss storing the texts to be
annotated.

It is assumed that the text-establishment phase has allessaty carried out, that is,
it is assumed that the texts are more or less stable as rapardpecific wording. Some
leeway is built into the system, however, for changes to tigedying texts.

The following principles apply:

1. All annotators are identifier to the system by means of enasee and a password.

2. An annotation always carries the information that it wested by a certain anno-
tator.

3. No annotation can be altered or deleted except by its oeatar.

137

138CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROQBJRE

The reason for principle (2) is that we wish to be able to idgrihe person who is
responsible for any given annotation. Assigning respolitsiis a good idea in a project
such as this, for several reasons. First, it is standardipeaic encyclopedias and other
reference works to specify after an article who has authtredarticle. Second, apart
from being standard practice, it is also a good idea, seentine perspective of research,
to be able to go back and ask the person for more evidencerdiozfon.

The reason for principle (3) above is two-fold. First, we lwis maintain and retain
the “responsibility-path” of any given annotation, as lgeaissignable only to one person.
This is the reason it is not possible for other users of théegyso alter an annotation.
Second, we wish to maintain a good working relationship agnibre annotators, and
preventing others from deleting the annotations of thearpés one way of contributing
towards that goal. Such deletion may occur either accitlgndabecause one is unhappy
with the contents of someone else’s annotation. Preveeithgr of these was seen as a
goal. Thus, if one annotator disagrees with another anotée only recourse the first
annotator has is to add another annotation with a differpigion.

This obviously has some relation to WikipetliaVikipedia is a collaboratively edited
encyclopedia, and has an ideal of “an upward trend of qualityg a growing consensus
over a fair and balanced representation of informafioriThis is also the goal of our
annotation system. However, we do not allow users othertti@areator to edit or delete
an annotation. How is this to be resolved?

The answer is that it must be resolved at a level above thetatmoitself: One user,
let us call him or her “A’, may write an annotatioa, Another user, let us call her or him
“B”, may disagree witha. The only recourse which B has is to write another annotation
b, of the same word, as mentioned above. Then, user A may choa#iera, after which
B can elect to deletb. If A and B cannot agree, the disagreement must stand. The key
notion here is that any disputes must be resolved outsideeohihnotation-system, by
the authors themsleves. This is a hecessary consequerfeeddgire to maintain a clear
“path of responsibility” back to precisely one author penatation.

The system is based on Emdros, not surprisingly. The proaessd the system
actually runs in a periodic cycle, as shown in Figure 11.1e Gption of this Figure has
a lot of information, and the reader is advised to peruse tha&hrigure and its caption.

I now discuss how | have implemented these principles.

11.3 The implementation

11.3.1 Introduction

In this Section, | discuss the implementation of the pritespaid out in Section 11.2. 1 do
so in the following order: First, | discuss how annotatiors @presented in their XML
form and in their Emdros form. Second, | discuss an overviéthe processes which
the annotator can go through as he or she does his or her jola, Thliscuss how the
annotations, being stored in an Emdros database, are addkdhio the XML. Finally, |
conclude the Section.

Lhttp://www.wikipedia.org/
2See http://en.wikipedia.org/wiki/Wikipedia:About

11.3. THE IMPLEMENTATION 139

XML documents Emdros database

}) XML to Emdros)
in the Kaj Munk MQL converter (copied to the

Corpus annotation server)
N
Y
Program to add Emdros to HTML
annotations to XML converter (on the
(+ Ulrik) annotation server)
N
Y
Annotations in HTML in the
Emdros Annotator annotator's
database web-browser

Figure 11.1: The annotation process cycle. The procests stathe upper left hand
corner, with the XML version of the Munk texts. These are pdghirough an automatic
conversion-step, producing an Emdros database. This Endditabase is then copied to
the annotation server. On this server, the annotation tees the objects in the Emdros
database to display the text as HTML to the annotator in the@btor's web-browser.
This is then fed through the annotator, who adds or deletestations, which the tool
then puts into the Emdros database. From time to time, thetation tool is “taken
down” for maintenance, and the annotations are added baxkia XML using a Python
script (mostly automatic), with manual addition where rssegy. This XML can then be
used to produce a new Emdros database, containing the neta#ions, which is then
copied to the annotation server, where the annotators esratthd more annotations.

140CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROQRJRE

11.3.2 XML form and Emdros form

An “annotation” in the Munk XML DTD is an empty element whiclasthe following
attributes:

id_d: The id_d of the object in the Emdros database. This remaatesthroughout the
lifetime of the annotation, and is, of course, unique to amgmannotation. These
id_ds are never reused.

annotator: The username of the annotator who created and authoredrib&adion.

subject: A short string of words describing the contents. Usuallig the word which is
being annotated.

datemodified: A date and time in ISO 8601 format, namely the date and timehatiw
the annotation was created, or last modified, whichevetés.la

content: The contents of the annotation.

No HTML is allowed in the contents of the annotation. Instetied following “light
markup” is allowed:

e [*this is bold*]

e Two or more newlines constitute a paragraph break.
Each of the above attributes maps to a specific feature ofahiedtation” object type:

CREATE OBJECT TYPE
WITH SINGLE MONAD OBJECTS
[annotation
annotator : STRING FROM SET,;
subject : STRING;
content : STRING;
datemodified : STRING;
]
GO

The object type is declaredITH SINGLE MONAD OBJECTS” in order to specify that they
only occupy one monad, namely the monad of the last word oivthrel or phrase being
annotated (or, put another way, the monad of the word beimgtated directly after
which the annotation must make its presence known to the eser with a link such as
). The object type is not declared a@AYING UNIQUE FIRST MONADS”, because any
given word may be subject to more than one annotation.

11.3. THE IMPLEMENTATION 141

©@ Munk annotationssystem - Iceweasel —[ojx
File Edit View History Bookmarks Tools Help |

- @4] /\J} B http://apps.emergence.dk/annotator/showtxt/skuespi|3/400001/ [B | [C]+

@ -

Munk annotationssystem

Databaser | Alle annoteringer | Alle annoteringer af ulrikp | Log out ulrikp

En Idealist

Nogle Indtryk fra en Konges Liv
Hjertets Renhed er at ville eel

- Seren Kierkegaard

TIL

OSCAR GEISMAR

|
KONGEBORGEN | JERUSALEM

HERODES " ~ Ved Dgren MENAHEM

KOSTOBARUS: (raaber ind) Kongens Sester, Salome.
HERODES: Hvad vil hun?

- Datvndinaildin Harea Wanan
Done

Figure 11.2: A sample window from the collaborative anriotatool. This shows the
text of a play “An Idealist” (Danish, “En Idealist”).

11.3.3 Overview of annotation tool

The annotation tool starts with a “login” screen, which regsi the user to enter their
username and password. Nothing can be done with the todsitile user is logged in
with the right credentials.

Once logged in, the user is presented with a list of Emdrosbdates present on the
annotation server. The user can choose one, e.g., “Plays”.

After having chosen a database, the user can then chooseaxiifrom the database
in which to add or delete annotations. This brings up an HTMitsion of the text. For an
explanation of how the Emdros objects are converted to HTplkase see Section 12.4.
A sample window is shown in Figure 11.2.

Each word in the HTML version of the text is a hyperlink pongito a page on
which it is possible to create an annotation. The annotatiost be given a subject and a
content. The subject is pre-filled with the word on which teenclicked. The annotation
is then created in the Emdros database, giving it the nanteeadiger as the “annotator”
feature. The annotation is, of course, created with the MtatesmentCREATE OBJECT.
An example is shown in Figure 11.3. An excerpt from the EMdfaldase may be seen in
Figure 11.4.

Returning to the text, the user can now see that a little greark has been added

142CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROQRJRE

& Munk annotationssystem: Annotering - Iceweasel ~[ofx
File Edit View History Bookmarks Tools Help
'\; - - K‘_l] /L_I} u http:/fapps.emergence.dk/annotator/createann/skuespil3 vT‘T? [C]- &

Munk annotationssystem: Annotering

Databaser | Alle annoteringer | Alle annoteringer af ulrikp | Log out ulrikp

Renhed F The user may enter a topic
Emne: here

Indhold:
"Renhed" means "purity".
h The user may enter an
annotation here
(It should be in Danish)
Tilfgj
Fortryd

| Done

Figure 11.3: A sample window from the collaborative annotatool. This shows an
annotation being created. “Emne” means “Subject”, and lfbld” means “Content”.
“Tilfgj” means “Add”, and “Fortryd” means “Cancel”.

Monad 80009 80010 80011 80012
Word 230121 230122 230123 2301p4
surface Hjertets Renhed er at
annotation 10320001

annotator ulrikp

subject [*Renhed*]

datemodified 2008-05-05 12:00:00

content "Renhed" means "purity".

Figure 11.4: An excerpt from a sample EMdF database contgizn annotation of the
word “Renhed”. Notice how the only object shown for “annwmiat is the annotation
with id_d 10320001. Notice also how all the features giveBaation 11.3.2 (viz., self,
annotator, subject, datemodified, and content) are present

11.3. THE IMPLEMENTATION 143

& Munk annotationssystem: Annoteringer pa dette sted - Iceweasel —(ofx
Eile Edit View History Bookmarks Tools Help

< - - @ {L‘ 4 http://apps.emergence.dk/annotator/showanns/skuespilS/fl_‘v B |G-

Munk annotationssystem: Annoteringer pa dette sted

Databaser | Alle annoteringer | Alle annoteringer af ulrikp | Log out ulrikp

Annotering 2901180 (oprettet af jespervm)

Emne Indhold

Seren Kierkegaard citat fra "En Leiligheds-Tale" (1. afdeling af
"Opbyggelige Taler i forskjellig Aand") fra 184 7. Citatet er inspireret
af eller udviklet over en formulering i Jakobsbrevet fra Det nye
Testamente, hvor det lyder "Hold jer neer til Gud, sé vil han holde sig
neer til jer. Ger jeres haender rene, | syndere; rens jeres hjerter, |
tvesindede!" (Jakobsbrevet 4 8).

Hjertets
Renhed er
at ville eet

Rediger Slet

Opret ny

Opret

Tilbage til teksten

Tilbage

I Done

Figure 11.5: A sample window from the collaborative annotatool. This shows an
annotation created by “jespervm”. Note that, even thoughetlare links to “Rediger” (in
English, “Edit”) and “Slet” (in English, “Delete”), thesénks will not have any effect,
since the user logged in is currently “ulrikp” in the picture

after the word which was annotated. Clicking the word agalhtake the user to a page
containing the annotations on this particular word. Eachmogation is shown with the
subject and content of the annotation. If the current useradso the user who created the
annotation, they are free to update or delete the annotafiorupdate is done with the
UPDATE 0BJECT MQL statement, whereas a deletion is done withBBEETE OBJECT
MQL statement. If the user is not identical to the creatohef@annotation, they can only
view the annotation. An example can be seen in Figure 11.5.

It is also possible to see a list of all annotations, sortedd®yr and by subject. Again,
each subject is a hyperlink which will take the user to a pagevbich they can either
modify or delete the annotation (if they created it themsg)yor they can view the anno-
tation (if they were not the original creator).

The whole tool has been implemented — by me — in Python, usie®jango frame-
work®,

3See http://www.djangoproject.com/

144CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROQRJRE

11.3.4 Adding annotations back into the XML

As explained in the caption for Figure 11.1 on page 139, tloegss is cyclic, meaning
that the Emdros database is created from the XML, the anansaére added to the Em-
dros database, and the annotations are then fed from theadathack into the XML, at
which point the cycle can start anew.

The annotations are “harvested” from the database in sudyalbvat a program can
later add the annotations back into the XML automatically ~wah little supervision.
This is done in the following manner.

1. The munktxt objects are retrieved.
2. Within the monads of each munktxt object, the annotatlgaais are retrieved.

3. Each annotation object is treated in the following way:

(&) The database is queried using a topographic query, b the® exact surface
form occurs anywhere else in the same munkixt. If not, theottion is
written out to a file, together with information that ideregdithe word form
which it annotates.

(b) If, on the other hand, the word form is not unique withie tinunktxt from
which the annotation came, then the database is queriedt tihgesurface
forms of the tokens right before and right after the annotatiThis tri-gram
is then checked for existence in the database. If only onle sBigram exists,
the process stops. Otherwise, the process keeps goinghrdivettions, un-
til a n-gram has been found which is unique within the munkixt. Qfrse,
this process has to take into consideration factors such)dsitting the be-
ginning or end of the munktxt, and b) hitting a boundary sustaa “actor
line” or “verse line”. Of course, if a text only contains onesd-form and one
word-form only, for all tokens in the text, this strategy Madil. In practice,
a uniguen-gram is always found within a reasonable number of tokerns-me
sured from the annotation itself. Thmegram is then written to a file, along
with the annotation, and information about which word in thgram is to
carry the annotation.

This method produces, for each munktxt, a file containingspafi (annotationp-gram),
where then-gram (which may be a uni-gram) uniquely identifies the pladbe munktxt
where the annotation is to be inserted.

After these files have been “harvested”, it is time to add tiveogations back into the
XML. This process can be mostly automated, and has been ithafgcript which | have
written. In some cases, however, the script cannot figurewbere to place an annota-
tion, perhaps because the n-gram spans some XML elemendaurhich it was either
impossible to take into account in the “harvesting” processvhich the “harvesting pro-
cess” simply failed to take into account. For example, thevdgting process currently
does not take tags such as ...</fem> (for emphasis)dotiuat, and so an empha-
sized string of words may prevent the “annotation-addingthBn script from working
correctly. In such cases, the “residue” annotations artemrto yet another file, which
then must be processed manually in order for the annotatidms inserted. The majority

11.4. CONCLUSION 145

of annotations can be added automatically, while a smallbeuirof residual annotations
need manual insertion.

Thus the annotations have been added back into the XML, angrtitess can start
anew with XML-to-Emdros conversion, and renewed annatatio

One area of future development will be to delete annotatimome the XML which
have been deleted in the Emdros database. One way to do thid i to delete from
the XML any annotation which was not present in the Emdroaluige. This could be
done based on id_ds, since id_ds are never re-used.

11.3.5 Conclusion

In this Section, | have shown how the principles laid out iot®a 11.2 have been imple-
mented in a web-based collaborative annotation tool. Thkegavritten in Python, using
the Django framework. It makes use of Emdros for keeping tnektlocuments, and for
keeping the annotations.

I have first shown what an annotation is, in this system, botKML form and in
Emdros form. | have then discussed what the annotationmylsteks like from a user’s
perspective. | have then discussed how the annotationsecadded back into the XML.
The reason for adding them back is that the annotations neust-breated each time the
Emdros database is re-created, and the Emdros databasatsdcfrom the XML form,
which is the “canonical” form of the database.

11.4 Conclusion

In this Chapter, | have discussed a web-based, collabertaitdl for annotating any collec-
tion of texts (in particular, the Kaj Munk Corpus) with notekich are tied to particular
words. Other kinds of notes could be conceived of, but thesefathe kind which we in
the Kaj Munk Research Centre find most useful and promising.

| have first discussed the general ideas and principles d¢h@éannotation tool, fol-
lowed by a section on the actual implementation. The actapléementation has been
described in terms of the annotations themselves, in tefrtfeedool seen from a user’s
perspective, and in terms of the process which adds the atmmat back into the XML
from the Emdros database.

The annotations are meant for consumption by the generdicpahd as such find a
nature place in the “Munk Browser” software, to which we turthe next chapter.

146CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROQRJRE

Chapter 12

Principles of the Munk Browser
software

12.1 Introduction

One of the foremost tasks of the Kaj Munk Research Centre hathat have been em-
ployed throughout my PhD studies, is to publish the works af Munk electronically.
To this end, a large-scale digitization project has beenezhout (as reported in Chapter
10) as a preliminary step. A further step is publication, aagart of this effort, | have
written a piece of software, a “Munk Browser” desktop apgtion. The Munk Browser
is called “Kaj Munk Studieudgave” in Danish, or “Kaj Munk $tyiEdition” in English. |
have written it in C++, using the wxWidgétfamework for cross-platform support. The
program runs on Windows(R), Mac OS X(R), and Linux(R).

The purpose of the program is to give the user easy-to-ugsadto a subset of Kaj
Munk’s writings. We at the Kaj Munk Research Centre have eeffifive categories of
potential users:

H

. The pupil or teacher in an elementary school who wishesad Kaj Munk’s works.
2. The student or teacher in a high school who wishes to reatVidak’s works.

3. The pastor who wishes to read Kaj Munk’s works (especlallysermons).

4. The scholar who wishes to study Kaj Munk’s writings.

5. The “interested man on the street” who wishes to read Kajl4uwvorks.

In designing the user interface and functionality, | haiedtto meet the needs of most of
these categories of users.

The rest of the chapter is structured as follows. First, eg@vfunctional overview of
the program (12.2), showing the capabilities of the progr&wacond, | give a modular
overview of the program, discussing the various softwardutes involved (12.3). | then
show how some of the theory developed in previous chapterbéan used in the Munk
Browser (12.4). Finally, | conclude the chapter (12.5).

1See Smart et al. [2005] and http://www.wxwidgets.org/

147

148 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

I7 Kaj Munk Studleudgave |
Fil Vis Sog Hijelp

«5H QK

Kaj Munk Studieudgaven

- 8

Tekster
Velkommen til en verden af oplevelser med Kaj Munk
Tilgengelige tekster:
o Skuespil
o Pilatus

I venstre vindue kan du se, hvilke tekster der findes i tekstbasen,
samt valge en tekst. Du kan altid fa denne liste i venstre vindue at s
se, ved at klikke pa "det lille hus" over venstre vindue.

 Operationen
o S'mend et Offer
o Een Thranum gor ingen Sommer

- . . o Regensprovsten havde en Datter
Nar du har valgt en tekst, kommer den til syjill dette vindue. sensp

Informationer om teksten vil sd ogsd komme il yne i vinduet til
hajre.

o En Idealist

Nar du seger vha. Sog-menuen eller et af de to forsterrelsesglas,
vil segeresultaterne komme til syne forneden under dette vindue.

@ De Herrer Dommere
Udgivet af Kaj Munk Forskningscentret i samarbejde med Kaj Munk Selskabet. o Den Karlighed 1
Programudvikling: Ulrik Sandborg-Petersen o Den Karlighed 2
@ Der brander en Ild
o Katurten (21.08.01)
C’ =» o Katurten (21.08.02)
ﬂ ® Praesten og Studenten
o For Cannae

o Ewalds Dod

o Alverdens-urostifterne

Segeresultater
Der er 12 matchende dokumenter i databas® S il.

En Idealist Skuespil (Score: 9, antal hits:
.. Folket mere end nedterftigst for Tiden. Og vender jeg ikke tilbage, ... Og det har I =l

7|

Figure 12.1: Screenshot of the “Munk Browser” software aggpion.

12.2 Functional overview

A screenshot of the “Munk Browser” can be seen in Figure 1ZHe area of the screen
labelled “1” is the “text window”. It is the main window, in vith Kaj Munk’s works
are displayed. The area of the screen labelled “2” is thefmftion window”, in which
secondary information is displayed (usually not writtenK®j Munk, but by someone
else). The area of the screen labelled “3” is the “searchlteesindow”, in which the
results of a search will appear. The “toolbar” is the bar dtdms placed above the “text
window” and “information window”. The “menu-bar” appearsthe top, and the “status-
bar” appears at the very bottom.

The software application is called a “Munk Browser” becatise basic interface
metaphor used is that of an Internet browser. That is, eacdow has a “history of
navigation”, which can be navigated using “backwards” afosrards” buttons (painted
as backwards- and forwards-pointing arrows). In addittbere may be “links” within
each window which, when clicked, will take the user to anotle&t, either in the “text
window”, or in the “information window”.

The screen with which the user is met when opening the protraks much like the
screenshot in Figure 12.1. (The only difference betweernitial view and Figure 12.1
is that in Figure 12.1, some search results from a previcares@ppear.) As can be seen,
the “information window” contains a tree-like overview bEttexts available (in this case,
some of the plays of Kaj Munk). The “text window” contains aélsome screen” with
information on how to use the program. The titles of the wankihe “information win-
dow” are links which, when clicked, will open that particulgork in the “text window”.
Figure 12.2 on the next page shows the screen after the wadetChas ben opened. As
can be seen, the “information window” now contains some &xieformation” about the
work selected, such as “title” (“Titel”), “year of writing(“Skrivear”), “year of publica-

12.2. FUNCTIONAL OVERVIEW 149

&7 KaJ Munk Studieudgave & i
Fil Vis Seg Hjelp

astQq

Ordet L

@ f

Titel:

Ordet
Skrivedr:

1925

) X . e Udgivelsesir:

En nogtern Gaardmandsenke i Vederse Til Hans Brix 1932
Kilde:
1 "Ordet”, fra "Kaj Munk —
Ordet”, Nyt Nordisk Forlag,
Arnold Busck, Kebenhavn,
1932

"Nej, hans Stadsklzder! skal hange parat, for
En ved dog aldrig, om han ikke skulde komme
en Paaskemorgen."

BORGENSGAARD!"!

Mikkel: Farvel saa l@nge, Inger.

Inger: Farvel, Mikkel.

Mikkel: Lad os nu se, du klarer Arterne.

Inger: Du kan vare rolig for, jeg gor, hvad jeg kan.

=

Segeresultater

Der er 12 matchende dokumenter i databasen Skuespil.
En Idealist Skuespil (Score: 9, antal hits: 9)

.. Folket mere end nedterftigst for Tiden. Og vender jeg ikke tilbage, ... Og det har
I spildt Tiden med! Og ladet haant om ... kommende Tider ved at mindes Tiden, der |

2|

Figure 12.2: Screenshot of “Munk Browser” software apica after the play “Ordet”
has been opened. Note the meta-information to the righ@&ifiitfiormation window”.

tion” (“Udgivelsesar”), and “source” (“Kilde").

As explained in Chapters 10 and 11, a work in progress at thévkiak Research
Centre is to annotate all of Kaj Munk’s plays with commengsirscholars. The nature of
these comments has been dealt with in Chapter 11, so suffieedtto say that whenever
a word has been annotated, a link appears after that worahwhihen clicked, will
open that particular comment in the “information window’n Axample can be seen in
Figure 12.3 on the following page, where the link after “Brin Figure 12.2 has been
clicked. The right-hand “information window” now displayise comment. It can also
be seen that the left-arrow in the “information window” is leoger “grayed out”, but is
active: Clicking it would take the “information window” bl¢o the previous page, which
in this case is the “meta-information” on the play “Ordet”.

The “magnifying glass” without the “academic hat” which ajgps in the toolbar can
be used to launch the “simple search”. It is simply a dialog lmowhich the user can
enter one or more words. When the user then clicks on therbthiad starts the search,
a search will be performed, and the results will be shownat‘search results window”.
These results are ordered after the ranking which each tdenti' (e.g., a “play” or a
“sermon”) receives after the results have been harvesteaglr&sults are shown document-
by-document, and each result set has an excerpt from thersddrom which it came.
Within each result set, the words which were searched forshosvn as “live links”,
which, when clicked, will open that particular documenthe ttext window”. The link
will take the user directly to the place in the document atolwhthe words in question
occur. The details of the search are described in Sectigh 12.

The “magnifying glassWwith the “academic hat” which appears in the toolbar should
launch the “advanced search” dialog. Although this dialag heen implemented, it is

150 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

i7 Kaj Munk Studleudgave
Fil Vis Seg Hizlp

astQq

@ &
Ordet
Brix
"Nej, hans Stadsklzder! skal hange parat, for . .
En ved dog aldrig, om han ikke skulde komme Hans Nicolaus Brix (1870-1961) var professor
en Paaskemorgen." ved Kebenhavns Universitet 1924-1941. Brix

har skrevet adskillige boger om litteratur og
var en flittig og anerkendt litteratur- og,
teateranmelder. Brix arbejdede ogsd som

En nogtern Gaardmandsenke i Vederse Til Hans Brix!']

I censor ved Det kgl. Teater, hvor han var den
forste, der anbefalede Munks dramatik ("En
BORGENSGAARDI*I Idealist"), hvilket blev startskuddet til et

livsvarigt venskab og samarbejde: "(...) og
Hans Brix, der skulle blive min Kunsts
trofaste Vaerge, min uselviske n@nsomme og
myndige Vejleder, Tilretteviser og
Bestyrker", skriver Kaj Munk i
erindringsbogen "Foraaret saa sagte kommer"
=] | (1942). Mens Munk bristende af utilmodighed
ventede pa Det kgl. Teaters svar ang. "En

Lol Idealist", forslog Brix Munk at bestille noget i
~| | ventetiden: "vi har ingen Stykker, der tager

Mikkel: Farvel saa l@nge, Inger.
Inger: Farvel, Mikkel.

Mikkel: Lad os nu se, du klarer Arterne.

Sogeresultater Bender alvorligt. Kan De skrive saadan et?"
. . Og det kunne Munk - nemlig "Ordet", der
Der er 12 matchende dokumenter i databasen Skuespil. oprindeligt havde titlen "I Begyndelsen var
Ordet". Munk selv omtaler og;e’i "Ordet" som
En Idealist Skuespil (Score: 9, antal hits: 9) "Mirakelstykket".
.. Folket mere end nedterftigst for Tiden. Og vender jeg ikke tilbage, ...
Og det har I spildt Tiden med! Og ladet haant om ... kommende Tider ved (VM)

at mindes Tiden, der fostred paa

PN R W =

7

Figure 12.3: Screenshot of “Munk Browser” software apicoa after the play “Ordet”
has been opened, and the link after “Brix” has been used to thygecomment for “Brix”
in the right-hand “information window”.

disabled at the moment, since it requires more research ke ihaimple enough to use.
Some of the details of the already-implemented “advancattké dialog are discussed
in Section 12.4.

A “Find on this page” functionality is almost implementedithas been disabled in
the current version because it is not complete.

Pressing “F1” or using the “Help” (*Hjeelp”) menu will bringputhe User’'s Guide.
Finally, an “About” box can be reached from the “Help” (“Hjg&l menu.

This concludes my functional overview of the Munk Browser.

12.3 Modular overview

An overview of the most important modules and their “callsfations can be seen in
Figure 12.4. Some of the “house-keeping” modules have befeout of the figure for
simplicity. These house-keeping modules all have to do wiittner: a) Making sure that
the “backwards and forwards” browsing history mechanismkaoor b) providing a doc-
ument hierarchy which is read from the Emdros databasedwéne installed alongside
the program. The latter module simply reads all “munktxtjeais in a given database,
harvests their “meta-data items”, and constructs a datatste which holds these “ab-
stractions” of each munktxt document.

I now explain the nature of the arrows in Figure 12.4. A siAiggaded arrow from box
A to box B means that module A calls module B. For example, Maih GUI” calls the
“Advanced Search” module, which in turn calls the “Harvest@he Harvester, in turn,

12.3. MODULAR OVERVIEW 151

Advanced Find Widget
Search \
—> S
<

XML to HTML
Converter

1

Emdros to XML
Converter

Harvester Main GUI

Slmpley Emdros

Search

Figure 12.4: An overview of the most important software mleduin the “Munk
Browser”. Some house-keeping modules have been left out.

calls “Emdros”, as well as calling the “Main GUI”. A doublesaded arrow means that
both modules at either end of the arrow call each other (;xdlagram, the only example
is the “Find Widget”, which is called by the “Main GUI”, and with may also call the
“Main GUI” back).

As can be seen, the central module is the “Main GUI” (where I'G&fands for
“Graphical User Interface”). It is implemented using clkes$rom wxWidgets. It is the
module which responds to user input, and which displays thpub in one of the three
“browser windows” (labelled “1”, “2”, and “3” in Figure 12)1 Since it is the module that
responds to user input, it is also the module which calls theranodules whenever an
action is needed, such as starting a simple or advancechsea@pening a document.

There are four main call-chains:

1. In order to show a document, the “Main GUI” may call the “BEoglto XML Con-
verter”, which in turn calls both Emdros and the “XML to HTMLo@verter”, which
in turn calls the “Main GUI” to show the text desired in the apgriate window.

2. Inorder to perform a search, the “Main GUI” may call therffple Search” module,
which calls the “Harvester”, which in turn calls both Emd(tsobtain the results),
and calls the “Main GUI” to display the “search results”.

3. Something very similar to call-chain (2) happens when aavanced search” is
launched.

4. In order to search an already-opened document, the “Fiddé&¥ window may be
opened by the “Main GUI”. This window then sits at the bottofthe screen and
responds to user keystrokes and mouse-button clicks. intign, causes the “Find
Widget” to call the “Main GUI” in order to scroll to the desagfound positions in
the document.

In the next section, | show in some detail how each of thesdame.

152 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

12.4 Application of theory

12.4.1 Introduction

In this section, | show how the theory presented in Part | @bht to bear on the real-
world problems inherent in the functionality of the Munk Breer. | first show how a
“munktxt” document is “harvested” and then converted to XTfor viewing. | then
show how the “simple search” works, followed by a subsectanhow “harvesting”
works. | then show how the “advanced search” works. Finalshow how the “Find
Widget” will work once it is finished. This covers the main éipgtions of the theory
presented in Part I.

12.4.2 Showing a munktxt document

When the user clicks on a document link, the program will idigphat document in the
“text window”. In order to do so, the following chain of everdccurs:

1. The “Emdros to XML Converter” is called. It is given infoation about the kind
of link involved (e.g., munktxt document or comment withimankixt). It is also
handed at least one of the monads in the document to be extriev

2. The “Emdros to XML Converter” then uses the harvestingalgms outlined in
Chapter 7 to retrieve all of the objects from all of the objgpies which are needed
in order to re-create the document which must be shown. Bhi®mne by calling
Emdros. While the necessary objects are being retrieveg, dlre placed into an
“in-memory EMdF database”, as outlined in Section 4.6 orepa4) This is done
inside the “Emdros to XML Converter”. The algorithm is asdals:

(&) Fromthe monad handed to the “Emdros to XML Converte®,agET 0BJECTS
HAVING MONADS IN statement to retrieve the munkixt object which is in-
tended. The necessary meta-data are also retrieved. Hdsglinto the “in-
memory EMdF database”.

(b) From this munktxt object, a monad range is extractedtistpat the first
monad of the munktxt object, and ending at the last monad efribnktxt
object.

(c) For each object type to be retrieved, iSSUsE@ 0BJECTS HAVING MONADS
IN statement, retrieving both the objects and the necessaiyrés, using the
monad-range obtained in Step (b). Place each object intSilbmemory
EMdF database”.

The database depicted in Figure 12.5 will serve as the rgrewample. For the
remainder of this discussion, the reader is invited to imaghat GET OBJECTS
HAVING MONADS IN { 20001-20010 } statements have been issuedrder to
retrieve all relevant object types, and any relevant festuirhe results have then
been placed into an in-memory EMdF database.

3. Once all necessary objects have been retrieved intorih@é&mory EMdF database”,
the document is re-assembled, monad-by-monad, into an)Xdditesentation. This

12.4. APPLICATION OF THEORY

153

Monad | 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010
Word 1 2 3 4 5 6 7 8 9 10
surface | Hvad| var det dog, der skete? Mit vinterfrosne Hjertes Kyarts
verse 11 12

stanza 13

poetry 14

munktxt 15

title Den blaa Anemone

Figure 12.5: EMdF database of the first two verses of “The Blnemone”. Notice that
we are pretending that these two verses constitute the veltenhza, the whole “poetry”
object, and the whole “munktxt” object.

is done by having an ordered list of object types, contaimihgf the object types
whose objects were retrieved in Step 2. The order in whicketlobject types occur
in this list shows the order in which start-tags must be ogefiée reverse list, of
course, shows the order in which end-tags must be closedalbathm works as
follows:

(a) Initialize a list of strings, intended to result in the XNoutput, and append
the “XML declaration” to the list. The “XML declaration” siply says that
this is an XML document, that it uses XML version 1.0, and thatcharacter
encoding is UTF-8. The list will consist of “snippets” of XML, i.e., strings
which, by themselves, are not full XML documents, but whigken together
will constitute a full, validating XML document. At the end the process,
the strings in the list will be concatenated into one largegtto produce the
final XML document.

(b) For each monadh in the range starting at the first monad of the munkixt
involved, and ending at the last monad of the munktxt invéive

i. For each object typ®T in the list of object types:

A. Query the in-memory database to see if there is one or Mgecs
of type OT at monadm. If yes, retrieve them from the in-memory
database, convert them to an XML representation, and apbena
to the list of XML snippets to result in the output. Some objec
types will result in a start-tag (such as a “paragraph” otdatine”),
while others will result in an empty element tag (e.g., “coemti or
“linebreak”). Tokens also result in an empty element, withlautes
which indicate the surface of the token as well as the monaa. A
example could bext m="20001" surface="Hvad"/>, indicating
that the surface of the token at monad 20001 is “Hvad”.

ii. For each object typ®T in the reverse of the list of object types:

2UTF-8is an 8-bit encoding which can encode a Unicode charatteam. See http://www.unicode.org
for more information.

154 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

<?xml version=’1.0’ encoding=’utf-8’ 7>
<munktxt>
<metadata>
<metadataitem kind=’title’ value=’Den blaa Anemone’/>
</metadata>
<poetry>
<stanza>
<verse>
<t m="20001" surface="Hvad"/>
<t m="20002" surface="var"/>
<t m="20003" surface="det"/>
<t m="20004" surface="dog,"/>
<t m="20005" surface="der"/>
<t m="20006" surface="skete?"/>
</verse>
<verse>
<t m="20007" surface="Mit"/>
<t m="20008" surface="vinterfrosne"/>
<t m="20009" surface="Hjertes"/>
<t m="20010" surface="Kvarts"/>
</verse>
</stanza>
</poetry>
</munktxt>

Figure 12.6: XML document arising out of the “Emdros to XML i@erter” for the
database shown in Figure 12.5.

A. Query the in-memory database to see if there is one or myezis
of type OT at monadn. If yes, retrieve the objects if they need to be
closed with close-tags, and close the tags.

(c) Join the list of XML snippets with the empty string in beten, resulting in
one XML document. Return this XML document. The XML documkemks
something like that in Figure 12.6.

4. The resulting XML document is handed to the “XML to HTML c@mter”. This
consist of a simple SAX-parséwhich | have written, which parses the XML docu-
ment and converts each XML tag to a series of zero or more XHYtdgs, possibly
with textual content. A token element, represented with tfiempty element tag,
is converted to the following string:

“##surface##", where the “place-holder” called
“##tmonad##” is replaced with the monad from the™ element, and where the
“##tsurface#t#t” place-holder is replaced with the surface from thé &lement.
For example, the XML elemenkt m="20001" surface="Hvad"/>" will result
in the XHTML string “Hvad". The “"

3See http://www.saxproject.org/
4See [W3C contributors, 2002].

12.4. APPLICATION OF THEORY 155

<?7xml version=’1.0’ encoding=’utf-8’7>
<html>
<head>
<title>Den blaa Anemone</title>
</head>
<body>
<h1>Den blaa Anemone</hi1>
<p>
Hvad var
det dog,
der skete?

Mit vinterfrosne
Hjertes Kvarts
</p>
</body>
</html>

Figure 12.7: XHTML document arising out of the XML documehbwn in Figure 12.6.

Den blaa Anemone

Hvad var det dog, der skete?
Mit vinterfrosne Hjertes Kvarts

Figure 12.8: Rendering of the XHTML document in Figure 12.7.

tag, of course, starts a “name anchor”, which “names” thiasartext between the
start- and end-tags of the™element. This “name anchor” can then be used later,
when needing to scroll to a particular monad (see the foligvgiections, on simple
search and harvesting). Another example could be the eitctaerse>’’, which
results in a “forced line-break” tag, okbr/>". Similarly, a “<stanza>" start-tag
results in a “paragraph begin” tag, otp>”", whereas a ¢/stanza>" end-tag re-
sults in a “paragraph end” tag, o« /p>".

The resulting XHTML document can be seen in Figure 12.7.

5. The resulting XHTML document is then handed to the “MainlGudndow, which
displays it in the appropriate window (“text window”, in tlease of “munktxt”
objects). The running example can be seen in its XHTML reingen Figure 12.8.

A similar, yet simpler, method is applied when needing taege a comment to be shown
in the “information window”.

I now show how “simple search” works.

156 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

12.4.3 Simple search

The “Simple Search” can be described from a high-level pointiew as happening in
four steps:

1. The user is asked, in a simple dialog, for one or more wolg dialog only con-
tains a text-field, an “OK” button, and a “Cancel” button. Hetuser presses “Can-
cel”, the process is aborted here. If the user presses “Qi€’ string of words
entered is passed on to the next step.

For the purposes of this discussion, let us assume that #recugered the string
“Hvad Dog”.

2. The string is tokenized (split into tokens, based on veipiéee). This results in a
list L of tokens® This list is turned into a topographic MQL query as follows:

(a) Start a list of strings, to become the result. Calldgsult”. As with the
XML snippets, these are “MQL snippets” which, alone, do nmbstitute a
valid MQL query, but which, when concatenated, will conggta valid MQL

query.
(b) Start a list of strings, calletbbjectBlocks”.
(c) For each tokenhin L:

I. Let term be the lower-case version ffescaped with backslashes where
appropriate, so that it can be fed into an MQL string in doujletes.

ii. Append to “objectBlocks” the string which represents an object block
with object type token”, where the following features of “token” are
compared againserm:

a) surface_lowcase, b) new_surface_lowcase, and c)lemma, with
“OR” in between. For example, the term “hvad” (“what”) would ri¢su
the following object block:

“[token surface_lowcase = "hvad" OR new_surface_lowcase =
"hvad" OR lemma = "hvad"]”®

(d) Join theobjectBlocks list into one string, with “..” in between. Prefix the
string with “SELECT ALL OBJECTS WHERE [munktxt GET title”, and ap-
pend the string]* GO” to the string. This becomes the resulting topographic
MQL query. In our running example, the full query is now as igufe 12.9
on the facing page.

Notice that every query has a surrounding “munktxt” objdotck, and that
the title of the munktxt object is retrieved. This becomepamant when
describing the harvesting algorithm below.

5The list of tokens is ["Hvad", "Dog"].
6In our running example, thesbjectBlocks” list now contains the following strings:

e [token surface_lowcase = "hvad" OR new_surface_lowcase = "hvad" OR lemma =
Ilhvadll]
e [token surface_lowcase = "dog" OR new_surface_lowcase= "dog" OR lemma = "dog"]

12.4. APPLICATION OF THEORY 157

SELECT ALL OBJECTS
WHERE
[munktxt GET title
[token surface_lowcase="hvad"
OR new_surface_lowcase="hvad"
OR lemma="hvad"

]

[token surface_lowcase="dog"
OR new_surface_lowcase="dog"
OR lemma="dog"

]
1 GO

Figure 12.9: The MQL query resulting from the “simple sedmphery-building process.

3. This topographic MQL query is handed off to the harvestiragule, which runs
the query against Emdros, and returns an ordered list ofitisols”.

4. This solution is rendered as XHTML, and shown in the “seaesults” window of
the “Main GUI".

I now describe the harvesting algorithm in detail.

12.4.4 Harvesting

Before | describe the harvesting algorithm, | need to definata structure, namely a
“Solution”.

A Solution is a C++ object which describes one munktxt objdatch has at least one
“hit” inside of it. It contains the following membefs

1. A database name (in order to be able to tell the “Emdros td_XMnverter” from
which database to load the document).

2. A munktxttitle (which can be used to show the title whensfarming to XHTML).

3. A monad (which will be set to some monad inside the munkirg thus can be
used to identify the munktxt object in the database).

4. A list of strings (which will become the list of snippetsghow together with the
document title in the search results window).

5. An overall score.

6. A hit-count.

’In Object Oriented Programming terminology, a “member” ismgable associated with the state of an
object (or class, in the case of static members). Thus a “reeoftan object” is a piece of the computer’s
memory which holds a value of some specific type.

158 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

The Solution class has a number of meth®tisp of which are important for the expla-
nation of the harvesting algorithm below. | therefore memthem here:

e addWord(): Which adds a word to the snippets. This is donedimarvesting. One
of the parameters passed to this method is the monad assbwiigh the word. This
monad is assigned to the “monad” member of the Solution objéws, whichever
word is added last, gets to define the “monad” member of thetf®aol object.

e getHTML(): This method is used when the list of Solution abgewhich results
from a harvesting procedure needs to be transformed to XHTiMdssembles the
information in the object into an XHTML snippet which repeess the title, the
score, the hit-count, and the snippets.

Given this data structure, we are now in a position to undatkthe the harvesting algo-
rithm employed in the Munk Browser.
The general Harvesting procedure runs as follows:

1. Maintain a list of Solution objects.

2. For each database present:

(&) Run the topographic input MQL query is run against thaliase.
(b) If the result is an empty or failed sheaf, go to the nexadase.

(c) Otherwise, if the result is a sheaf with content, run tharVest” algorithm
(shown below) on the sheaf. This results in a list of Solutbrects, which
are appended to the main list of Solution objects.

3. Once all databases have been processed, sort the listutib8ambjects in reverse
order of solution score, such that the solutions with thdégg scores appear first
in the list, and the solutions with the lowest score appesr la

4. If the listis empty, return with some XHTML to the effecatithere are no “hits”.

5. Otherwise, if the list is not empty, return with an XHTMLaonent that contains
the XHTML snippets of each Solution object, obtained byinglthe “getHTML()”
method on each Solution.

The “harvest” procedure mentioned above works as followse ifiput is three-fold: A
sheaf, a database name, and a length of monads to use forrttextcof each snippet
(context_length).

1. Call harvest_sheaf() on the sheaf. (See below.) Thidtsasua) A set of munktxt
tittes and munktxt ranges of monads covering each munkixiwed, and b) A set
of monads which contains the “focus monads” for this sohufice., the monads of
the words which were “hits”).

8In Object Oriented Programming terminology, a “method” jsiece of program code which is associ-
ated with an object (or class, in some programming langyagesding C++). Generally, a method is for
reading the internal state of the object, altering the stateomputing something on the basis of the state.

12.4. APPLICATION OF THEORY 159

2. Traverse the set of focus monads, creating a new set of dsomhich consists
of the ranges that arise when taking each focus monad, pdusttétch of “con-
text_monads” on either side. This results in a set of monad®sponding to the
words to retrieve.

3. Ifthis set is empty, stop the procedure here.

4. If, on the other hand, the set is not empty, then retrietb@lords of the set, using
a simple GET OBJECTS HAVING MONADS IN query. This results imap data
structure, mapping word-monads to objects representmguhface string of each
word.

5. Traverse the set of munktxt titles obtained in Step (1yabBor each triple (first_monad,
last_monad, munktxt_title):

(a) Create a Solution object.

(b) Add snippets of words and count “hits”. Also calculatecarse. (See the
Excursus below for how the score is calculated.)

The “harvest_sheaf” method is a recursive function whidtesaas input a Sheaf, and
traverses it, all the while gathering munktxt titles, mwtKirst/last monads, and “focus”
monads (from the monads of tokens). The details of the mdihud been left out of the
thesis, since they are relatively trivial.

Excursus: Calculation of score The score is currently set to the sum of those distances
(counted in monads) between each pair of “focus-monad” wiesgth is less than 50,
subtracted from 50.

For example, if there are three “hits”, each at the monadsllathd 100, then the
score will be 50 - (11 - 1) = 40. The interval from 11 to 100 wititrbe counted into
the score, because it is too long (longer than 50). This ntetticalculating the score
may seem somewhat arbitrary, and it is. Yet it is our expegedhat it is at least to some
degree meaningful, in that it helps ordering (or “rankintgi® search results in a way that
makes sense. The intuition behind the score is that if hitsster” (that is, occur closely
together), then a higher score should be awarded to thei@uluBiven that the list of
focus monads can be calleg;’x, ..., Xn,” the scoreScan be formalized as:

n
S= Y 50— f(x —x_1)
where the functiorf (m) is defined as:

_ Js50 ifm>50
f(m)_{m if m<50

Of course, this is impossible when the list contains only ib&®. In such cases, the
score is 0.

This formula is, of course, ad-hoc. There are many other \paptished in the litera-
ture for calculating a relevance-score.

The number “50” is also somewhat arbitrary, but can be thealéy validated as fol-
lows: The average sentence-length in Kaj Munk’s plays amchges can be calculated

160 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

| | Plays | Sermong Plays + Sermons

Sentence-count 28595 1680 30275
Word-count 613641 109483 723124
Average 215 65.2 23.9

Table 12.1: Sentence-lengths in the Kaj Munk Corpus. Basetth® plays and the ser-
mons. Calculated using Emdros and the script shown in Fig2irE0.

to be 23.9 words, on the basis of the sentence-boundaried topithe method sketched
in Chapter 10, using the Python script shown in Figure 12140/an Valin and LaPolla

[1997], the authors discuss Knud Lambrecht’s theory of nmfation Structure. Lam-

brecht argues that there are certain states of a heareeaders mind while hearing or
reading, which may be labelled “Active”, “Accessible”, afidactive”. Whether a refer-

entin a textis labelled “Active”, “Accessible”, or “Inage” depends on how easy it is for
the hearer or reader to infer the identitiy of the refereAttive”, in particular, means that
the referent is “active” in the hearer’s or reader’s shertit-memory, while “Accessible”

means that some degree of mental work must be exerciseden tarchfer the referent’s

identity.

The more recent the placement of the referent’s identitigertéxt, the more accessible
the referent is to the hearer’s or reader's mind. My gueskasin about the span of
two sentences, a referent slips from “Active” to “Accessibl This is only a guess, not
something empirically tested. But the span of 2 sentencabast 50 words, given that
the average sentence-length is 23.8 words in the Kaj Munk@or

The numbers used to calculate this average sentence-kareggiown in Table 123.

12.4.5 Advanced search

The Advanced Search Dialog is brought up by pressing thedwath the toolbar which
has a magnifying glass with an academic hat. The dialog Isoksething like in Figure
12.11.

In Figure 12.11, the area labelled “1” is where the user caereme or more words
to search fot?

The area labelled “2” contains a summary, which the progresdyces dynamically,
of the current settings in the dialog. The summary is givenatural language, in order
to aid the user in knowing what the options mean.

The area labelled “3” is where the user picks and choosesdriamye array of options.
The area has four tabs, of which only the first is currentlyimuiemented.

9t is interesting to note that the average length of senteircthe sermons is 65.2, versus only 21.5 for
the plays, which is more than a factor of three larger for gren®ns. One conjecture for an explanation of
this might be that the two are different genres: hortatodifi@ative homilies on the one hand (sermons),
versus spoken language on the other (plays). Further cbsé&aneeded, however, in order to conclude
anything about this. Further research should also incluctengparative study of sentence lengths in other
similarly genre-classified texts. Help might be found ig. gl ongacre [1996].

1ONote that it is a shortcoming of the current “Advanced SeaRihlog that the user has to enter at least
one word. It is very conceivable that the user would wish &rde, not on particular forms, but on other
criteria, such as parts of speech, which would not be tieschygparticular form. This is an area of possible
future development.

12.4. APPLICATION OF THEORY 161

import sys
import re

myre = re.compile(r’\{ (["\}1+)\}?)
myset = set()

The sheaf from the following query must be passed through stdin:
#

SELECT ALL OBJECTS

WHERE

[sentence]

#
#

GO

for line in sys.stdin.readlines():
if not "sentence" in line:

pass
else:
monad_str = myre.findall(line) [0]
if not "-" in monad_str:
fm = 1m = int(monad_str.strip())
else:

(fm_str, lm_str) = monad_str.strip().split("-")
fm = int(fm_str)
Im = int(lm_str)

myset.add ((fm,1m))

count = 0

mysum = 0

for (fm,1lm) in sorted(myset):
count += 1
difference = 1m - fm + 1
mysum += difference

print "Count = %d" % count
print "mysum = %d" % mysum
print "verage = %f" % (mysum*1.0)/(countx*1.0)

Figure 12.10: The Python script used to calculate averagieisee length.

162 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

% Avanceret sggning o x

Segeord: 1

Seg efter ovenstaende ord

- indenfor hele tekstmasngden

- uden konteksttypeafgraensninger

- med former segt blandt: Nye former (efter 1948)
- ved segning kun pa hele ord

- MED forskel p& store og sma bogstaver

- uden begraesninger pa ordklasse

- og uden at bruge ordlister.

Tekstudvalg | Konteksttype 0rd|ister§

Veelg segekriterier for ovenstdende ordform(er)

Vaelg basal sageform: Veelg ordklasse(r):
O Alle bgjede og afledte former
@® Eller: 0 Verbum

[] Nomen
Nye former (efter 1948) O Proprium
[Gamle former (for 1948) O Adjektiv
[] ordbogsopslagsformer [Preeposition

Adverbi
Kun hele ord [Elf2dxeruiom
@® Kun hele ord O pronomen
O Saoq fra starten af ordet [Interjektion
O Seg pa slutningen af ordet
Forskel p& store og sma bogstaver
I Afbryd |

Figure 12.11: The Advanced Search Dialog of the Munk Brov&sftware. The area
labelled “1” is where the user types in one or more words. Tiea dabelled “2” is
where the program shows a summary of the current optiongumaldanguage. The area
labelled “3” is where the user picks the options. The latteaahas four “tabs”, which
each have options for one particular aspect or “axes” of tivamced search.

12.4. APPLICATION OF THEORY 163

Text delimitation: Though currently not implemented, the idea is that this tdbpro-
vide the user with options to delimit the parts of the corpusearch, based on
textual criteria such as “year of writing”, “year of publtean”, “whether a play
has been performed or not”, etc. — based on the meta-datanifes each Munk
text. It should also be possible to choose a set of documastsdbon “genre” (in
this case, whether it is a play, a sermon, a poem, a piece eepoy a piece of
journalism — the five “genres” within which Munk wrote).

Context delimitation: This tab allows the user optionally to select zero or moreacbj
types within which the query should be executed. The comiepdct type (if there
is one) will then be the surrounding context [object blockhim which to search. If
no context type is chosen, then “munktxt” is chosen as thauleflf there is more
than one, then each will get the appropriate inner blocksli@sissed below), and
the list of “context object blocks” will then be concatergteith “OR” in between.

Word lists: We have had a student, Jéannis Fonsdal, produce a list ofdspbased on
the lemmas in Kaj Munk’s plays, where each lemma has beenedakto whether
it is “religious by definition”, or “religious by associatid, or “not religious”. The
precise definition of these terms is hard to get at, and theédosibetween the three
categories are not hard and fast, but rather fluid in natunee ¬ator might
choose to categorize a particular lemma differently thatlar annotator. The im-
portant thing here is not the particular categorization the idea of how to use it,
which | shall now describe.

In this tab, it is possible to choose whether the word(s) dyipethe area labelled
“1” should be found within another word (up to a specific dista away) which is
either “religious by definition” or “religious by associati”, or both.

The way it is done is to take each word and turn it into an olipéatk (see “Word
forms” below, for how this is done).

Then, an object block is created for the particular kind difjreus words chosen
(“by definition” or “by association”). Currently, this is de by creating an [to-
ken] object block with a feature-restriction which say4 tife lemma must be one
of the members of the chosen list. This is very inefficiend aa future work will

include storing the “religious status” on the objects oftibleen object type directly.

Then, the “religious” [token] object block is placed beforafter the “user-entered”
[token] object block, with a power block between them. Tkishen wrapped in a
[square brackets] for “grouping”. For example:

[

[Token /* religious lemmas not shown */]
<=5

[Token new_surface_lowcase="tidens"]

]

The reason it is wrapped in [grouping square brackets] is dhaower block is

164 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

SELECT ALL OBJECTS

WHERE
[poetry
[
[Token /* religious lemma-restriction not shown */]
. <=6
[Token new_surface_lowcase = "tidens"]
]
[
[Token /* religious lemma-restriction not shown */]
. <=6
[Token new_surface_lowcase = "gang"]
]
]
GO

Figure 12.12: A sample query from the “Advanced Search” @jalThe words entered
were “tidens gang” (idiomatically, “the course of time”)elyious words should be found
within a distance of 6 words before the word itself. The objgpe “poetry” should be
used as context-delimitation.

placed between the groups, if the user has entered more tlearwards. A sample
guery can be seen in Figure 12.12.

Word forms: In this tab, it is possible to choose a wide range of options.

First, it is possible to choose whether to search based ostéinemed form of the
word, or else a combination of “new form” (after the orthqgmg reform of 1948),
“old form” (before 1948), or “lemmas”.

Second, it is possible to search on “exact words”, “prefixesvards”, or “suf-
fixes of words”.

Third, it is possible to choose a set of parts of speech witviich to limit the
search.

Finally, it is possible to choose whether to ignore the upgaese / lower-case dis-
tinction, or not.

The “Advanced Search” Dialog is a work in progress. Much ddad said to its detriment.
| shall refrain from commenting on its shortcomings, exdepsay that it is an area of
future research, not only in database theory, but also iniat&face design.

12.4.6 Find Widget functionality

The “Find Widget”, it will be remembered, is supposed to p@pat the user’s behest,
and allow the user to search the currently open documentriags, and be taken to the

12.5. CONCLUSION 165

appropriate places immediately.

In order for this to work, | propose to implement the follogigeneral idea.

First, the idea is to build an “in-memory EMdF database” gldime lines outlined
in Section 4.6 on page 54, and populate it with objects of gaabllype (let us call it
“display_object_range”) which arevITH SINGLE RANGE OBJECTS”, and whose mon-
ads are character-indexes into a string. This string (letalisit “doc_text”) represents
the “bare” form of the XHTML document (i.e., a form withougs and with whitespace
normalized).

Second, the object type in question should have a “featuhg€imis an integer, which
then points into a map mapping these integers to pointeredaaight display objects
inside the XHTML window. (The first monads of the “display j@t range” objects are
not unique, and so cannot be used as a surrogate for theydapgkct.) The reason for
storing pointers to the display objects is that the XHTML dow has a capability to
scroll to any display object if only a pointer to the objecpassed as a parameter to the
scroll function.

Third, once this data structure is up and running, it shoelghbssible to search the
“doc_text” string, using a standard string-searching afgm, such as Knuth-Morris-
Pratt [Knuth et al., 1977]. This will yield zero or more cheter-indexes. If one or more
are found, the right display objects can be found using tlwelata structure, and the
XHTML window can then be scrolled to the right display objettis also possible to
traverse the list of “hits” up and down, using the “previowsid “next” buttons of the
Find Widget.

12.5 Conclusion

In this Chapter, | have described the “Munk Browser” deskdpplication which | have
developed. The purpose of the application is to provide st®the texts of Kaj Munk
for a wide range of users.

| have first described the application from a functional pafiview, followed by a
description in terms of the modules involved. | have themghbow the theory presented
in previous chapters has been brought to bear on the probigmoducing the “Munk
Browser”, in showing a document using harvesting techrégperforming simple search,
performing advanced search, harvesting, and a operatifigcawidget”.

Further research could include:

1. Searching within annotations. It is obvious that Emdnggp®rts this, especially
if the “~” regular expression operator is used. Thereforeshould probably be
included in the “Advanced Search Dialog” as an option.

2. Making user surveys to see whether a “wizard-like” apphoaould be more in-
tuitive than the current “tabbed dialog” approach. A “wiam this context is a
series of dialogs in which the user is asked for more and nmdoermation, but in
several steps, with “next” and “previous” buttons to guittng the way.

3. Making a facility for letting the user enter their own commts. Possibly, these
comments should be uploadable to the Kaj Munk Centre’s semleere someone
could then sort through the users’ comments and select gtehes for use.

166 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

4. Supporting better navigation of the databases, i.égtstlection of the document
desired.

Chapter 13

Quotations from the Bible in Kaj Munk

13.1 Introduction

In this Chapter, | discuss a general approach to discovguogations from one corpus in
another corpus. In this case, the quotations are from thie Band must be found in the
Kaj Munk Corpus. The method, however, is general enoughttbatild be applied to any
suitably tagged pair of corpora. The research idea itsedf wspired by van Wieringen
[1993], who did something similar within the Book of Isaiabrh the Old Testament, that
is, finding quotations and analogies within the book itsglsing a computer program
and the WIVU Hebrew Database [Talstra and Sikkel, 2000].

This research has been carried out in collaboration witbrB@hrstram. The division
of labor was such that Peter @hrstram came up with some oé#®arch ideas, did some
manual disambiguation, and provided general directionlewttame up with the rest of
the research ideas, and implemented the ideas in concrejguter programs.

The rest of the Chapter is laid out as follows. First, | dischew | obtained an
electronic copy of the Danish Bible that is mostly erroref@3.2). Then, | discuss the
general idea in more detail (13.3). | then discuss the psowdsch we went through
in our research (13.4), including results, followed by peia to future research (13.5).
Finally, | conclude the chapter.

13.2 Electronic edition of the Danish Bible (1931/1907)

There have been various translations of the Bible into Daover the centuries. Of these,
the most relevant ones for my purposes were the Old Testafreent1871, the New
Testament from 1907, and the Old Testament from 1931, siregewere the ones which
Kaj Munk probably used.

e 1871: Old Testament
e 1907: New Testament
e 1931: Old Testament

The Old Testament from 1871 is available on the Internet @éttebnic form, but un-
fortunately, my comparison of forms from this OCR-scanndifi@n with my database
of translations of old forms to new forms yields more than @®@rds which must be

167

168 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

“looked at”, most of them errors in the electronic text. | Bawt yet had the time to
undertake either a revision of this text, or a complete ggtidation.

The Old Testament from 1931 and the New Testament from 19¢4 Itegen available
on the Internet at least since 1993, when Sgren Hornstrug mé&eely available on the
ftp.dkuug.dk server. It was then picked up by Project Gueegiand project Runebefg

In order to establish an “authoritative text” (Sgren Homg’s text, unfortunately, had
thousands of errors), | have gone through the following @ssc

First, | compared the texts from Project Runeberg and Pr&etenberg. The result
was that the text from Project Runeberg was slightly bektan that from Project Guten-
berg. | then started correcting spelling mistakes and aticin-mistakes in the edition
from Project Runeberg. This was done using Emacs and regxgmessions. | also ran
the text through my “old to new” filter (explained in Chapt&) lthereby yielding around
two thousand forms which must be “looked at”, i.e., for whitolias not possible to derive
a modern form. | then hand-corrected any mistakes in fourlignway.

| then found out that Sigve Bg from Norway, who runs a compatied Sigve Sakér
had done extensive proof-reading of the 1931/1907 DanisleBiSigve Bg was kind
enough to send me his most current versions. | then conv8itpe: Bg's files to a form
that could be compared with my form, using the standard WR)ixgliff” tool 4. This
yielded a few thousand errors, which | corrected by handsd abrrected many errors
in Sigve Bg’s text, for | had found errors which Sigve Bg had fAdwus, in a sense, my
form is based on Sigve Bg's form, and in a sense it is not —ihiggality, a conflation of
three sources, namely the Runeberg form, the Gutenberg &manSigve Bg’s form, with
numerous manual corrections on my part. | always checkedsigaprinted edition of the
respective Testament before making any corrections, e€xecepvery small set of cases,
where the correction was exceedingly obvious as per Damahmar or orthography.

Naturally, | had to convert the orthography back to its ppd8 form, since that was
what Kaj Munk used whenever he quoted the Bible. Both the Bemgedition, the
Gutenberg edition, and Sigve Bg’s edition had a strange owtibn of old and new
orthography. For our purposes, this would not do.

In the end, the whole process had seen more than 7100 conett the Runeberg
text, and 5037 corrections had been made to Sigve Bg’s text.

Thus the end product was a Danish Bible which was mostly dreer This was
necessary in order to be able to find direct quotes. We nowttuttne general research
idea”.

13.3 The general idea

Suppose one has two corpora; let us call them “Corpus A’ armtg@s B” for generality.
Corpus A is known to quote from Corpus B in various placesjtistunknown precisely
where Corpus A quotes Corpus B. The challenge is to find theeplan Corpus A where
Corpus A quotes Corpus B.

LA project to digitize Public Domain textual resources. See:Hwww.gutenberg.org/

2Project Runeberg aims to be for the Scandinavian langualasRvoject Gutenberg is for the World’s
languages. See http://runeberg.org/

3See http://www.sigvesaker.no/

4For a description of diff, see the Unix manual page “diff(a)id Hunt and Mcllroy [1976].

13.4. PROCESS 169

There are many factors to consider in this problem. For examyhat constitutes a
quote? Especially quotes from the Bible may be hard to ckeniae completely, since
some sequences of words that appear in the Bible would appetrer corpora as well,
without necessarily being quotes from the Bible, simplysaese the sequence of words
is so common. An example in English could be “and he said”sWould be found both
in many English Bibles, and in many other texts as well, yetweeild not necessarily
say that those three words were a quotation from the Biblegssrthe context clearly
indicated that this was so.

Another factor to consider in characterizing what constgla quote from the Bible is
how to determine that something is actually a quote from tileBWe finally settled on
the following definition:

A sequence of words found both in the Bible and in anotheruoipa quote
from the Bible if two or more persons who are knowledgeabteuathe con-
tents of the Bible would agree that the sequence of words iotedrom the
Bible.

The reason for settling on this definition is that we foundtbat the problem was so hard
to characterize formally that we concluded that humanligesice is probably necessary
in order to settle whether a specific sequence of words isgdda quote from the Bible.
A third factor to consider is: Should one also look for “alrgsiotations”, or “allu-
sions”, or should the algorithm find only direct quotations® settled on the latter, with
the former two left for future research.
In the following, | discuss the process which we went thraugh

13.4 Process

The first thing we did was to choose a sub-corpus of Kaj Munk bicwvto develop the
method. Other parts of the Kaj Munk Corpus could then senaetastbed later, once the
method had been developed. We chose the sermons as ourdjpleit corpus”, since
they were intuitively likely to to contain a lot of quotatisfrom the Bible.

| then loaded the sermons into one Emdros database, andliteeio another Em-
dros database. Both had been tokenized, and both had bepdtbyy part of speech
using the CST tagger mentioned in Chapter 10.

| then wrote a Python script which did the following:

1. Load both the “development corpus” and the Bible into mgnfimm the Emdros
databases.

2. For window-lengths of length, counting down from 40 down towards 2:

(a) Create two sets af-grams from both corpora, keeping track of where they
occurred (using monads).

(b) Take the set intersection of the two sets. This is the fS&tiect quotations”
of lengthn. (Actually, the strings in the intersection need not be gapéspe-
cially if the strings are short; see below for a discussiothis.)

(c) Further process the intersection, such as to displagamat the “quotations”.

170 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

(d) Make sure that the “quotations” found in step (b) abovelmot be counted
in the next iteration, i.e., would not be counted as- 1)-grams.

This produced, for each length of sequenca set of “quotations”. For som, the set
was empty. The number 40 was chosen experimentally: We fthateho string of length
40 or above was present in Kaj Munk’s sermons (our “develaproerpus”) which was
also present in the Bible from 1931/1907.

For the sets which were not empty, we did some manual ingpeddeter @hrstrgm
and I. We found that sequences of length 7 or above were, aas#ls considered, quota-
tions in the sense defined in Section 13.3. For sequencesgihlé, the overwhelming
majority were quotations. For sequences of length 5, sonmme n@& quotations, whereas
most were. For sequences of length 4, a lot of strings wera@notations, whereas a
minority were. For sequences of length 3, the balance was ex@e in favor of non-
guotations, and so on, down to 2. We did not try “sequencesemdth 1, since they
would intuitively be very unlikely to be quotes from the Bi!

We then attempted to distinguish between quotations anejnotations using statis-
tics. This failed, mainly because we were unable to find ableétmetric with which to
measure “quotation-likelihood.

We then attempted to distinguish between quotations anejnomations using gram-
matical patterns of part-of-speech tags. This worked toesexient for sequences of
length 5, but still left some false positives in the mix, amgbasifted out some false neg-
atives. Furthermore, it failed for sequences shorter thamé did nothing for sequences
of length 6. Since sequences of length 7 and above were fdwag®to be quotations,
this method also was not fruitful.

In the end, it was decided to leave sequences of length 6 dod lier future re-
search, and simply arrive at the result that sequences gfhéhand above were always
quotations.

We then validated the method based on the play “The Word” énigh, “Ordet”) by
Kaj Munk. For this particular play, we had a set of quotatjdiosind by Niels Nielsen
[Munk, 1947], as a control. We produced a table of quotatlmased on the notes on the
play made by Niels Nielsen. We then added to the table thd exdadrom the Bible being
quoted, and the exact text from the play, and checked thesbafur program. It was
found that in every case where the quote was a direct qua&@rtyram had indeed found
the quote, and that there were no false positives. It wasfaisa that many quotes were
not found by the program, simply because they were not dipgates. Thus, our method
was validated against a control corpus which had been migrutdred for quotations,
and the program fully met its requirements.

SHowever, some words are so improbable outside of the Bilnie have their sole origin in the Bible,
that they muste factobe some kind of quotation from the Bible. One example wouldTie Son of
Man”, which is an expression originating in the books of B ind Ezechiel in the Old Testament, and
frequently used by Jesus about himself in the gospels. InsbhafiThe Son of Man” is a single word,
“Menneskesgnnen”. This word would appear to be some kinduofegjfrom the Bible, although further
philosophical considerations are needed in order to eshatie precise nature of such quotations.

6Future research will likely reference the work of H.P. Lutuio pioneered some statistical measures
in Information Retrieval.

13.5. FUTURE RESEARCH 171

13.5 Future research

Future research could include:

e Finding a general way of distinguishing between quotatenmd non-quotations of
lengths shorter than 7 words.

e Checking whether it would be fruitful to build up a databasegootations (or,
indeed, non-quotations) shorter than 7 words to aid in teandbiguation process.

e Pursuing the statistical path in more detail.

e Being able to find “almost’-quotes, e.g., with words inserbe permutated, or with
different tenses of verbs, or with different grammaticater and determination
on nouns.

e Applying the method to other pairs of corpora than the Biloié the Kaj Munk Cor-
pus. For example, it would be fruitful to be able to find qudtesn the works of
Seren Kierkegaard in other corpora. Doing so would requioéaf manual work in
identifying a common orthography, if the two corpora weré¢ cantemporaneous,
since the orthography of Danish has changed consideraiig e times of Sgren
Kierkegaard. An “old to new” othography converter, suchtes @ane sketched in
Chapter 10, would be an invaluable tool in such an endeavor.

Note that finding Kierkegaard quotations in Kaj Munk is nadtjinteresting from
a technical perspective: There is currently a debate inladiiccircles as to the
degree of influence from Kierkegaard on Kaj Munk’s works. iHgvempirical ev-
idence would help settle this debate.

Thus this problem has far from been solved. In the end, weusgiecthat it may be im-
possible to achieve 100% precision and 100% rédaaliinding quotations from the Bible
in another corpus automatically. In a sense, this problenpr®blem within “artificial in-
telligence”, because it attempts to build an automatic wefbr finding quotations from
one corpus in another corpus. This normally requires raahdn intelligence, and the
conclusion may well become (after more research) that Wehatie not found a way to
solve this problem generally without recourse to real, huingelligence. That, at least,
is the conclusion for the time being.

13.6 Conclusion

In this Chapter, | have discussed a method which | have dpedltogether with Peter
@hrstrgm, the purpose of which is to find direct quotationsiithe Bible in some other
corpus, in particular, the Kaj Munk Corpus.

| have first discussed how | obtained an electronic “authbvié” version of the Dan-
ish Bible from 1931 (Old Testament) and 1907 (New Testamervtijch formed part of
Kaj Munk’s Bible (the third part being the Danish Old Testaih&om 1871). | have

For a definition of the terms “precision” and “recall”, seec2a-Yates and Ribeiro-Neto [1999].

172 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

then discussed the general research problem, and havedlefiva¢ | mean by “quota-
tion from the Bible”. | have then discussed the process whietwent through, and the
results. Finally, | have given pointers to further research

The problem is far from solved, but is a very interesting peoh judging from the
salivation produced in the mouthes of theologians when wegat them with the prospect
of having such an algorithm.

Part |l

Perspectives

173

Chapter 14
Extending EMdF and MQL

14.1 Introduction

In this Chapter, | discuss a number of possible extensionseoEMdF model and the
MQL query language, left for future research. In Sectio214#discuss extending the
EMdF model and the MQL query language with support for deafpstructural relations

between object types. In Section 14.3, | discuss extentie@gEMdF model with support
for inheritance between object types. Then, in Section,14dicuss the need for sup-
porting “typed id_ds”, i.e., being able to retrieve the abjiype of the object which owns
a givenid_d. In Section 14.5, | talk about the need for sujppgpicomplex feature types
in EMdF. | then turn to MQL, first specifying what parts of Daws’s QL still need to be

implemented (14.6). | then discuss ways in which MQL coulcekiended beyond QL
(14.7). Finally, | conclude the Chapter.

14.2 Declarative support for structural relations

Doedens defined the “covered_by” and “buildable_from”tieles between object types.
Briefly, if object typeB is “covered_by” object typd, then all objects of typ& consist
of only of monads which can be expressed as the big-unionmés®t of objects of type
A, and the set of objects of type from which the monads of ea@rbbf typeB is con-
structed is disjoint from all other such sets for any othgectof typeB. Buildable_from
is the same as covered_by, except for a conjoined requitemamely that both typA
and typeB must be non-overlapping, i.e., all monad sets of all objettgpe A must be
disjoint, and the same must be true of all objects of tpe

Doedens states that covered_by and buildable_from cotespartial orders over ob-
ject types. As | have shown elsewhere [Petersen, 1999jisthist true.

These should, however, still be supported by the EMdF moaieltae MQL query
language, since they can be useful in query-optimizatioor. éxample, if it is known
that an object typ€ is buildable_from another object typ®, it might be possible to
make assumptions about queries that use Go#mdW, which could lead to query op-
timizations. In fact, the current implementation assurhes &ll object types are neither
covered_by nor buildable_from any other object type, aedetore does useless work in
some cases, such as when looking for more than one objectieém type starting at a
given monad. If object typ€ is buildable_from object typ@/, then clearlyw will have

175

176 CHAPTER 14. EXTENDING EMDF AND MQL

precisely one object for any given monad which is also paa @iven object from object
typeC. This is because of the requirement on buildable_from thb#t bbject types must
be non-overlapping. Hence, the implementation can asshatedr any given monad
which is also part of & object, an object of typ&/ does indeed exist which starts at
this monad, and there is only one such object. This knowledgebe exploited in doing
minimal work.

There is another kind of structural relationship which dddee able to be stated,
apart from buildable_from and covered_by: It should be ibds$o declare that a given
object typeV always stands in a structural relationship with one or mbjeais of types
S, S, ..., S This would allow for declarative support for trees and ottigected
acyclic graphs. In declaring these relationships, it sthaigo be possible to specify which
feature(s) oW would encode these structural relationships, presumaibhyig_ds.

Adding these capabilities would make EMdF and MQL meet dehiih3.

14.3 Object type inheritance

It should be possible to implement object type inheritanoaa the lines outlined in
Chapter 3. For example, an object typlraseshould be able to have subtypeB, VP,
etc., which each inherited the featuresR#frase and which might add other features of
their own. Or an object typ8yntax_nodshould be able to have subtygeisrase Clause
or SentenceThe benefits of such a scheme have already been outlinedtiosd.2.3.
Multiple inheritance should also be supported, meaningahabject type should be
able to “inherit” from more than one object type.
This would meet requirement D5.1 explained in Section 4.2.3

14.4 Typedid ds

Atthe moment, anid_d is always typeless, i.e., no inforarais stored along withan id_d
about the object type of the object which owns the id_d. Ifetevpossible to ask, for any
given id_d, to which object type it belonged, then topogrephQL queries could use

this information both to speed up the queries (namely by nggkome checks that might
cut short some otherwise-to-be-traversed query pathd)iaallow greated expressivity
of the MQL queries. For example, a “computed feature” mightrivented, which took

the id_d of another feature and returned the object typeekample:

SELECT ALL OBJECTS
WHERE

[Word type(parent) = phrasel
GO

This would find all phrases whose parent feature (which woelén id_d) would be of
the type 'phrase’. The feature “type” would be a “computeatdiee”.

14.5 Complex feature-types

The current implementation of the EMdF model only defineg fatomic feature-types
(integer, id_d, enumeration, and string), and three comg@deature-types (list of inte-

14.6. FULL QL SUPPORT 177

ger, list of id_d, and list of enumeration). At the very ledbe EMdF model should be
extended with list of string as an option.

In addition, the EMdF model should be extended with the fmilgtyiof defining com-
plex feature-types other than the simple ordered listsarhat types currently available.
For example, it should be possible to define features tha:wer

1. tuples with strongly typed members (any type),
2. sets of strongly typed members (any type), and

3. ordered lists of any other type.

It should be possible to declare these types compositigralich that, for example it
should be possible to define a pair (tuple) consisting of: sgtaf tuples of strings, and
b) a list of sets of tuples of lists of strings ... and so on,ny dinite) depth of nesting.
Needless to say, MQL would need to be extended for this todrapp

14.6 Full QL support

The full power of QL still awaits implementation, possibly MQL. In particular, the
following still need to be implemented:

e Variable support, or something that is on an equal footintp wariables theoreti-
cally. The current Object Reference implementation hakystieoretical founda-
tions.

e Wrap blocks, i.e., being able to specify that some blockngshould match a part
of the database which might not be known directly as an olnjeitte database.

e Automatic permutations of blocks, i.e., being able to sfyesets of blocks that
need to be permuted in all possible permutations.

e "AND” between block_strings (see Section 14.7 below).

e “Sifters”, i.e., being able to specify, e.g., that only sonpatraws should be re-
trieved, or that th@locks should only match if there were precisely so many hits.

The list above is a complete list of things in QL not implensehin MQL. | now turn to
the question of how to extend MQL beyond QL.

14.7 Beyond QL

14.7.1 Introduction

In this Section, | introduce two new ways of extending MQL tweg QL. First, | dis-
cuss variations over the theme of conjoining block_strifidgeen, | discuss extending the
capabilities of power blocks.

178 CHAPTER 14. EXTENDING EMDF AND MQL

14.7.2 block_string conjunctions

The “AND” operator between block_strings in QL was specified by Dasde mean that
the query would match if there were two Straws, one from eétiredwo AND-conjoined
block_strings, which extended over the same monads of tladdse, i.e., whose first and
last monads were the same. There are, however, many vagater this theme. For any
two block_stringsA andB, the following operators can be defined:

1. AOVERLAPS WITHB, which means that the Straws frodmandB must share at
least one monad.

2. A OVERLAPS WITH AND STARTS BEFORB, which means that the Straws
from A andB must share at least one monad, and the strawsmlist start before
the straws oB.

3. AVIOLATES BORDERS ORB, which means that the Straws frofnandB must
“violate the borders” of each other, as defined in [ICCS-32@p8] and Chapter 8.

4. A STARTS AT B, which means that the Straws AfandB must have the same first
monads.

5. A ENDS AT B, which means that the Straws AfandB must have the same last
monads.

6. A STARTS AND ENDS ATB, which means that the Straws AfandB must have
the same firsandlast monads. This would implement Doedens’s AND.

7. A STARTSn MONADS BEFOREB, which means that the Straws Afmust start
n monads before the Straws Bf

8. ASTARTSn MONADS AFTERB, which means that the Straws Afmust starin
monads after the Straws Bf

9. AENDSn MONADS BEFOREB, which means that the Straws Afmust endn
monads before the ending of the Straw$of

10. A ENDS n MONADS AFTER B, which means that the Straws Afmust endn
monads after the ending of the StrawsBof

The variations could probably go on, but | will stop here.

Especially the “OVERLAPS WITH” operators would be usefuly.e when dealing
with databases of annotated speech. As argued in [ICCSEZLGH]] and in Chapter 8,
speech databases often have speaker turns which overlage Heese operators could
be very useful for querying such databases.

14.7.3 power block limitor

| could also extend MQL'power block to be able to have a limitor which:

14.8.

CONCLUSION 179

Had a lower bound, but no upper bound:
>= 3

would mean that there must be at least 3 monads between tble bédore and
the block after the power block.

Had a lower bound as well as an upper bound:
>= 3 and <= 10

would mean that there must be at least 3 monads and at most A&dshbetween
the block before and the block after the power block.

Currently, it is only possible to specify an upper bound omlthmitor of a power block,
not a lower bound.

14.8 Conclusion

In this Chaper, | have discussed some possible future eatensf the EMdF model
and/or the MQL query language. They include:

1.

5.
6.

Support for declaring structural relationships betwebject types. This should,
as a minimum, include the covered_by and buildable_frowuticais discussed by
Doedens [1994]. | also suggest extending EMdF with dedlaraupport for direct
structural relationships which form a directed acyclicpjratructure. Doing so
would meet Doedens’s demand D13 on a “full access model”.

Support for (multiple) inheritance between object tyg2sing so would be extend
EMdF such that it would be possible to specify ontologieskgéot types.

. Support for typed id_ds. Adding this support would extdmelexpressivity of the

MQL query language, and might lead to performance gains.

Support for types which are more complex than either atdypies or lists of atomic
types, which is what EMdF supports today. Sets of arbitrargles of arbitrary
types, and ordered lists of arbitrary types were suggestbd would extend the
number of possibilities for encoding annotations.

Supporting the full QL language in MQL.
Going beyond QL in expressivity for MQL.

Thus there are many ways of extending the EMdF model, somdighvalso have rami-
fications for the extension of the MQL query language.

180 CHAPTER 14. EXTENDING EMDF AND MQL

Chapter 15

Conclusion

This dissertation has been about “annotated text datahasen from a theoretical as
well as a practical perspective. During the course of theeditation, | have shown how
text can be enriched with annotations of the text, and storadatabase for easy retrieval.
I have shown how | have built on the work of Doedens [1994] itenito implement the
EMdF model and the MQL query language. The EMdF model is ae@aceduction
and expansion of the MdF model introduced by Doedens [1984provides the data
structures needed in order to be able to represent “mostitations that one would wish
to express. The MQL query language, in turn, is also both aatsmh and an expansion
of the QL query language developed by Doedens. The “rechictiath respect to QL
is that a few of QL's constructs have not been implementedavetshown in Chapter
14 exactly what the very few constructs which have been lgftape. The “expansion”
of MQL with respect to QL is that it is now a “full access lange, providing the full
gamut of “create, retrieve, update, delete” on all of thexdktmains in the EMdF model.
Thus Doedens’s Demands D1-D12 have been fully met by EMdRW®QY, whereas
Doedens’s own MdF and QL only met Demands D1-D10, plus pabti@f

| have also shown how the monads sets of the EMdF model relatmé (Chapter
8). As it turns out, the relationship between a monad andithe of an utterance which
it represents is that the monad abstracts away into an integdime-span to which it
corresponds. Thus, even though the linguistic unit to wkiiehmonad corresponds has a
specific duration, which may be different from the duratiéalbother linguistic units in
the text, the monad abstracts away this duration into aeimgéger. This is part of the
genius of Doedens’s work, for it is one of the cardinal reasshy Doedens’s MdF model
Is so elegant mathematically. My EMdF model, being an extensf the MdF model,
merely inherits this elegance.

In Part I, | have shown several applications of the theoattivork described in Part
I. I have shown how the Kaj Munk Corpus has been implementest, ds XML, and
then transformed to an Emdros database. Thus the EMdF maddiden vindicated as
being able to express at least the annotation requireddangtthe Kaj Munk Corpus. As
argued many times in the articles which form an appendixigdissertation, the EMdF
model supports the free expression of almost any kind oliistg: annotation desirable.
This has not been proven yet, but [RANLP2005] goes some ofvenetowards such a
proof, by describing how the TIGER model of treebanks candmerted to the EMdF
model.

In Chapter 11, | have shown how the EMdF model and the MQL glasrguage can

181

182 CHAPTER 15. CONCLUSION

be employed in order to support the collaborative annatatioa corpus by a team of
annotators. The principles laid out in this Chapter onlyt Rinwhat is possible for a col-
laborative annotation tool to support. | have argued the éaswhy | have chosen these
principles, and leave it up to future research to find betrswof supporting collaborative
annotation procedures.

In Chapter 12, | have shown how the theory laid out in Part Ilmafrought to bear
on the Kaj Munk Corpus in a desktop software application,-aated “Munk Browser”.
This Chapter is the central empirical chapter, bringingetbgr most of the theory dis-
cussed in Part I.

In Chapter 13, | discuss a method of finding quotes from onpuim another cor-
pus, and how Peter @hrstrgm and | have tested this methodeoprdofolem of finding
quotations from the Bible in the Kaj Munk Corpus.

Finally, in Chapter 14, | have discussed ways in which the EMubdel and the MQL
guery language can be extended to support representatiogquanying of annotated text
databases even better than the current implementation.

The road goes ever on and on.
(Bilbo Baggins)

Bibliography

The TEI guidelines. http://www.tei-c.org/Guidelines/P&cess online April 12, 2008,
November 2007.

XML Path Language (XPath) 2.0 — W3C recommendation 23 Jg2@07. Published
on the web: http://www.w3.0org/TR/xpath20/ Accessed M&0688, 2007.

Serge Abiteboul. Querying semi-structured dataPtoceedings of the 6th International
Conference on Database Thepwlume 1186 of_ecture Notes on Computer Science
pages 1-18. Springer Verlag, Berlin, Heidelberg, New Yag97. ISBN 3-540-62222-
5.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Mvjdond Janet L. Wiener.
The Lorel query language for semistructured daliaternational Journal on Digital
Libraries, 1(1):68—-88, April 1997.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilers - Principles, Techniques
and Tools Addison-Wesley, Reading, Massachusetts, USA, 1985.

R. B. J. T. Allenby. Rings, Fields and Groups: An Introduction to Abstract Algeb
Edward Arnold, second edition, 1991.

Bernd Amann and Michel Scholl. Gram: a graph data model aneryqlan-
guages. InECHT '92: Proceedings of the ACM conference on Hypertpsiges
201-211, New York, NY, USA, 1992. ACM. ISBN 0-89791-547-X. oid
http://doi.acm.org/10.1145/168466.168527.

Mette Skovgaard Andersen, Helle Asmussen, and Jgrg Asmuddee project of kor-
pus 2000 going public. In Anna Braasch and Claus PovisemredProceedings of
the 10th EURALEX International Congress, EURALEX 2002 ,gabpgen, Denmark,
August 13-17, 200Dages 291-299, 2002.

Galia Angelova, Kalina Bontcheva, Ruslan Mitkov, Nicolas®ov, and Nikolai Nikolov,
editors. International Conference Recent Advances in Natural LagguProcessing
2005, Proceedings, Borovets, Bulgaria, 21-23 Septemb@b,2Bhoumen, Bulgaria,
2005. INCOMA Ltd. ISBN 954-91743-3-6.

Renzo Angles and Claudio Gutierrez. Survey of graph dataasiels ACM Computing
Surveys40(1):1-39, February 2008.

Andrew W. Appel.Modern Compiler Implementation in C: Basic Technigugambridge
University Press, Cambridge, UK, 1997.

183

184 BIBLIOGRAPHY

Actes du Troisiéme Colloque International: “Bible et Infioatique: Interprétation, Her-
méneutique, Compétence Informatique”, Tibingen, 26-3gusi) 1991 number 49
in Travaux de linguistique quantitative, Paris and Gen&®92. Association Interna-
tionale Bible et Informatique, Champion-Slatkine.

Niraj Aswani, Valentin Tablan, Kalina Bontcheva, and Ham@unningham. Indexing
and querying linguistic metadata and document content. rigefova et al. [2005],
pages 74-81. ISBN 954-91743-3-6.

Ricardo Baeza-Yates and Gonzalo Navarro. XQL and Proximaides.
Journal of the American Society for Information Science aidchnol-
ogy, b53(6):504-514, May 2002. <http://dx.doi.org/10.108RED061>,

<http://www.dcc.uchile.cl/"gnavarro/ps/jasisOl.gs.gAccess Online August 2004.

Ricardo Baeza-Yates and Berthier Ribeiro-Né&fodern Information RetrievalAddison-
Wesley, 1999.

D. Barnard and N. Ide. The text encoding initiative: Flegilind extensible document
encoding. Journal of the American Society for Information Scierd®(7):622—628,
1997.

Rudolph Bayer and Edward M. McCreight. Organization and mnteali
nance of large ordered indices. Acta Informatica 1:173-189, 1972.
<http://www6.in.tum.de/infol/literatur/Bayer_histlfip Access Online January
2005.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bewhhard Seeger. Thé-r
tree: An efficient and robust access method for points artdmgtes . In Proceedings
of the 1990 ACM SIGMOD international conference on Managdroédatg pages
322-331. ACM, ACM Press, 1990.

J. Albert Bickford.Tools for Analyzing the World’s Languages — Morphology ayt&x
Summer Institute of Linguistics, Dallas, Texas, 1998. Basge earlier work by John
Daly, Larrt Lyman, and Mary Rhodes. ISBN 1-55671-046-X.

Steven Bird and Mark Liberman. A formal framework for lin-
guistic annotation. Speech Communicatipn 33(1,2):23-60, 2001.
<http://www.ldc.upenn.edu/sb/home/papers/0010033063.pdf>, Access On-
line August 2004.

Steven Bird, Peter Buneman, and Wang-Chiew Tan. Towardsgy danguage for an-
notation graphs. IiProceedings of the Second International Conference on Liage
Resources and Evaluatippages 807-814. European Language Resources Associa-
tion, Paris, 2000a. <http://arxiv.org/abs/cs/0007028ee&ss Online August 2004.

Steven Bird, David Day, John Garofolo, John Henderson,sBbphe Laprun, and Mark
Liberman. ATLAS: A flexible and extensible architecture lmguistic annotation. In
Proceedings of the Second International Conference on Wiaag Resources and Eval-
uation, Paris pages 1699-1706. European Language Resources Associi@0b.
<http://arxiv.org/abs/cs/0007022>, Access Online Auga94.

BIBLIOGRAPHY 185

Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, andn¥iféheng. Extend-
ing XPath to support linguistic queries. Rroceedings of Programming Language
Technologies for XML (PLANX) Long Beach, California. Jary2005, pages 35-46,
2005.

G.E. Blake, M.P. Consens, P. Kilpeléinen, P.-A. Larson,nid&r, and F.W. Tompa. Text
/ relational database management systems: Harmonizingg@@SGML. InProceed-
ings of the First International Conference on ApplicatiarfsDatabases (ADB’94),
Vadstena, Swedepages 267-280, 1994.

Scott Boag, Don Chamberlin, Mary F. Fernandez, DanielaeSlax, Jonathan Robie,
and Jérdome Siméon. XQuery 1.0: An XML query language. W3Ckimgrdraft 11
february 2005, 2005. <http://www.w3.0rg/TR/2005/WD-eqy-20050211/>, Access
Online March 2005.

Sabine Brants and Silvia Hansen. Developments in the TIGHER/btation scheme
and their realization in the corpus. Froceedings of the 3rd International Con-
ference on Language Resources and Evaluation (LREC), HMR [2002], pages
1643-1649. <http://www.ims.uni-stuttgart.de/projéKt&ER/paper/lrec2002-brants-
hansen.pdf> Access Online August 2004.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Lezius §éwifj, and George Smith. The
TIGER treebank. IfProceedings of the Workshop on Treebanks and Linguistio-The
ries, Sozopol, Bulgariapages 24-41, 2002.

Thorsten Brants. TnT — a statistical part-of-speech tagffeProceedings of the Sixth
Applied Natural Language Processing (ANLP-2Q083attle, WA, 2000.

Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eva Maler,Fnaticois Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). Worldidé Web Consortium
Recommendation 04 February 2004., 2004. <http://www.rgBTdr/2004/REC-xml-
20040204> Access Online August 2004.

Eric Brill. A Corpus-Based Approach to Language LearninghD thesis, Depart of
Computer and Information Science, University of Penngyilwal993.

J. Carletta, S. Evert, U. Heid, J. Kilgour, J. Robertson, BEnd/oormann. The NITE
XML toolkit: flexible annotation for multi-modal languageath. Behavior Research
Methods, Instruments, and Computers, special issue on WiegsBehavior 35(3):
353-363, 2003a.

J. Carletta, J. Kilgour, T. O’Donnell, S. Evert, and H. Vo@amm. The NITE object model
library for handling structured linguistic annotation oulthmodal data sets. |Rro-
ceedings of the EACL Workshop on Language Technology arSetmantic Web (3rd
Workshop on NLP and XML, NLPXML-2002D03b.

J. Carletta, S. Dingare, M. Nissim, and T. Nikitina. Using tRITE XML toolkit on
the Switchboard corpus to study syntactic choice: a cas#y.stin Proc. of Fourth
Language Resources and Evaluation Conference, Lisbotudraly May 2004 2004.

186 BIBLIOGRAPHY

Jean Carletta, David McKelvie, Amy Isard, Andreas Mengelaridn Klein, and
Morten Baun Mgller. A generic approach to software suppmrtihguistic annotation
using xml. In G. Sampson and D. McCarthy, editdReadings in Corpus Linguistics
Continuum International, London and NY, 2002.

Steve Cassidy. Compiling multi-tiered speech databaseshe relational model: Exper-
iments with the Emu system. Proceedings of Eurospeech '99, Budapest, September
1999 1999.

Steve Cassidy. XQuery as an annotation query language: acase analy-
sis. In Proceedings of the Third International Conference on Lagpl Re-
sources and Evaluation (LREC 2002), Las Palmas, Spain, M®2 ELR [2002].
<http://wave.ldc.upenn.edu/Projects/QLDB/cassiayg-lpdf>, Access Online August
2004.

Steve Cassidy and Steven Bird. Querying databases of dedospeech. In
M.E. Orlowska, editor,Database Technologies: Proceedings of the Eleventh Aus-
tralasian Database Conference, volume 22 of Australian Quer Science Com-
munications, Canberra, Australiapages 12-20. IEEE Computer Society, 2000.
<http://arxiv.org/abs/cs/0204026>, Access Online Au@@94.

Steve Cassidy and Jonathan Harrington. Multi-level artrostain the Emu speech
database management syst&Speech Communicatip83(1,2):61-77, 2001.

Steve Cassidy, Pauline Welby, Julie McGory, and Mary Beckmi@sting the adequacy
of query languages against annotated spoken dialog?rdneedings of the 8th Aus-
tralian International Conference on Speech Science anthfi@ogy, Canberra, De-
cember 2000pages 428-433, 2000.

R.G.G. Cattell and Douglas K. Barry, editorfhe Object Database Standard: ODMG
2.0. Morgan Kaufmann, San Francisco, revised february 1998oadil997. ISBN
1-55860-463-4.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall, John Haled Mark Johnson.
BLLIP 1987-89 WSJ corpus release 1. Linguistic Data ConsortCatalog No
LDC2000T43, http://www.ldc.upenn.edu., 2000.

Oliver Christ. A modular and flexible architecture for aneigitated corpus query system.
In Proceedings of COMPLEX’'94, 3rd Conference on Computatibexicography and
Text Research, Budapest, Hungary, July 7-10, 1p8des 23-32, 1994.

Oliver Christ. Linking WordNet to a corpus query system. &hd Nerbonne, editor,
Linguistic Databasesvolume 77 ofCSLI Lecture Notepages 189-202. CSLI Publi-
cations, Stanford, 1998. ISBN 1-57586-092-9 (PB), ISBN/5&5-093-7 (HB).

Oliver Christ, Bruno M. Schulze, Anja Hofmann, and Esthemid The IMS cor-
pus workbench: Corpus query processor CQP. Published @t/wityw.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/CQPUserMaHRITaNL/, 1999.

Vassilis Christophides, Serge Abiteboul, Sophie Cluetl Binchel Scholl. From struc-
tured documents to novel query facilities. In Richard T. &rass and Marianne

BIBLIOGRAPHY 187

Winslett, editors,Proceedings of the 1994 ACM SIGMOD International Confeeenc
on Management of Data, Minneapolis, Minnesota, May 24-8B4lpages 313—-324.
ACM Press, 1994. <http://doi.acm.org/10.1145/191839909 > Access Online Au-
gust 2004.

Charles L.A. Clarke, G.V. Cormack, and F.J. Burkowski. Ageddra for structured text
search and a framework for its implementatidrne Computer JournaB8(1):43-56,
1995.

E.F. Codd. Data models in database managemerinténnational Conference on Man-
agement of Data, Proceedings of the 1980 workshop on datmeation, databases,
and conceptual models, Pingree Park, Colorado, Ugdges 112-114, 1980. ISBN
0-89791-031-1.

M. P. Consens and A. O. Mendelzon. Expressing structuradgpt queries in graphlog.
In HYPERTEXT '89: Proceedings of the second annual ACM caméeren Hyper-
text pages 269-292, New York, NY, USA, 1989. ACM. ISBN 0-897®B&%. doi:
http://doi.acm.org/10.1145/74224.74247.

Johann Cook, editoBible and Computer - the Stellenbosch AIBI-6 Conferencec&ed-
ings of the Association Internationale Bible Et Informaiég‘From Alpha to Byte”,
University of Stellenbosch, 17-21 July, 200@iden, 2002. Association Internationale
Bible et Informatique, Brill. ISBN 9004124950.

Scott Cotton and Steven Bird. An integrated framework feelranks and multilayer
annotations. IrProceedings of the Third International Conference on LaggiRe-
sources and Evaluation (LREC 2002), Las Palmas, Spain, M®2 ELR [2002],
pages 1670-1677. <http://arxiv.org/abs/cs/0204007ees& Online August 2004.

Robin Cover. Cover pages — online resource for markup lagguachnologies.
http://xml.coverpages.org Accessed online April 12, 200886-2008.

Hamish Cunningham and Kalina Bontcheva. Software ardhites for language en-
gineering: a critical review. Technical report, Institdte Language, Speech and
Hearing (ILASH) and Department of Computer Science, Umitgof Sheffield, UK,
2003. <http://www.dcs.shef.ac.uk/research/resmesfg&pS0309.pdf> Access Online
August 2004.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, andr¢m Tablan. GATE:
A framework and graphical development environment for sdbNLP tools and
applications. InProceedings of the 40th Anniversary Meeting of the Asso-
ciation for Computational Linguistics (ACL'02). Philagidia, July 2002 2002.
<http://gate.ac.uk/sale/acl02/acl-main.pdf> AccesBr@rAugust 2004.

C. J. Date.An Introduction to Database System&ddison-Wesley, sixth edition, 1995.
ISBN 0-201-82458-2.

Mark Davies. Relational n-gram databases as a basis fanitetl annotation on large
corpora. InProceedings of The Shallow Processing of Large Corpora ¥arg (SPro-
LaC 2003), held in conjunction with CORPUS LINGUISTICS 2@@®caster Univer-
sity (UK), 27 March, 20032003.

188 BIBLIOGRAPHY

Alex de Joia and Adrian Stentorferms in Systemic Linguistics: A Guide to Halliday
Batsford Academic and Educational Ltd., London, 1980.

David DeHaan, David Toman, Mariano P. Consens, and M. TanzsuO A compre-
hensive XQuery to SQL translation using dynamic intervalaogling. InProceedings
of SIGMOD 2003, June 9-12, San Diego, @sociation for Computing Machinery,
2003.

Crist-Jan DoedensText Databases: One Database Model and Several Retrieval La
guages Number 14 in Language and Computers. Editions Rodopi Amate, Ams-
terdam and Atlanta, GA, 1994. ISBN 90-5183-729-1.

Crist-Jan Doedens and Henk Harmsen. Quest retrieval lgieguederence manual. un-
published reference manual, presented to AND softwareteSer 1990.

Janet W. Dyk. Participles in Context. A Computer-Assisted Study of Oktafeent He-
brew, volume 12 ofAPPLICATIQ VU University Press, Amsterdam, 1994. Doctoral
dissertation, Vrije Universiteit Amsterdam. PromotorsfPDr. G. E. Booij and Prof.
Dr. E. Talstra.

Janet W. Dyk and Eep Talstra. Computer-assisted study tdstycal change, the shiftin
the use of the participle in Biblical and Post-Biblical Helrtexts. In Pieter van Reenen
and Karin van Reenen-Stein, edito8patial and Temporal Distributions, Manuscript
Constellations — Studies in language variation offeredithanij Dees on the occasion
of his 60th birthday pages 49-62, Amsterdam/Philadelphia, 1988. John Bengami
Publishing Co. ISBN 90-272-2062-X.

Suzanne Egging\n Introduction to Systemic Functional Linguisti€ontinuum, London
and New York, 1994.

Proceedings of the Third International Conference on LaggiResources and Evalua-
tion (LREC 2002), Las Palmas, Spain, May 20@002. ELRA, European Language
Resources Association.

Stefan Evert, Jean Carletta, Timothy J. O’Donnell, Jonathdlgour, Andreas
Vogele, and Holger Voorman. The NITE object model, versioh. 2 Published
at <http://www.ltg.ed.ac.uk/NITE/documents/NiteOliMdodel.v2.1.pdf>., 24 March
2003.

Christiane Fellbaum, editorWordNet: An Electronic Lexical DatabaseMIT Press,
London, England and Cambridge, Massachusetts, 1998.

William B. Frakes and Ricardo Baeza-Yatéstormation Retrieval: Data Structures and
Algorithms Prentice Hall, 1992.

Hideo Fujii and Bruce W. Croft. A comparison of indexing tagjues for japanese text
retrieval. InProceedings of SIGIR 1993, Pittsburgh, PA, U$Aages 237-246, 1993.

Bernhard Ganter and Rudolf WilleFormal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 198BN 3540627715.
Translator-C. Franzke.

BIBLIOGRAPHY 189

Gaston H. Gonnet and Frank Wm. Tompa. Mind your grammar. a apw
proach to modelling text. In Peter M. Stocker, Wililam Kengnd Pe-
ter Hammersley, editors,VLDB'87, Proceedings of 13th International Con-
ference on Very Large Data Bases, September 1-4, 1987, tBnghEng-
land, pages 339-346. Morgan Kaufmann, 1987. ISBN 0-934613-46-X
<http://www.sigmod.org/sigmod/dblp/db/conf/vidb/GaiT87.htmI> Access Online
August 2004.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snidexichgraphical indices
for text: Inverted files vs. pat tree. In William B. Frakes dRidardo A. Baeza-Yates,
editors,Information Retrieval: Data Structures and Algorithni&entice-Hall, 1992.
ISBN 0-13-463837-9.

Jacob Harold Greenledntroduction to New Testament Textual Criticisiendrickson,
Peabody, MA, USA, revised edition, 1995.

Antonin Guttman. R-Trees: A dynamic index structure for tegpasearch-
ing. In Proceedings of the 1984 ACM SIGMOD international confeeenc
on Management of Data, Boston, Massachusetts, ,Ug#ges 47-57, 1984.
<http://doi.acm.org/10.1145/602259.602266>, Accessn®@danuary 2005.

Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A gramasadtapproach towards
unifying hierarchical data models (extended abstract).Jdmes Clifford, Bruce G.
Lindsay, and David Maier, editorSIGMOD Conferencepages 263-272. ACM Press,
1989.

Michael Alexander Kirkwood Halliday. Systemic grammar. Gunther R. Kress, edi-
tor, Halliday: System and Function in Languageges 3—6. Oxford University Press,
London, 1976/1969. Original article from 1969.

Michael Alexander Kirkwood HallidayIntroduction to Functional GrammarEdward
Arnold, London and New York, 2nd edition, 1994.

Christof Hardmeier and Eep Talstra. Sprachgestalt undgseimat: Wege zu neuen In-
strumenten der computergestitzten Textwahrnehmuggjtschrift fir due Alttesta-
mentliche Wissenschatt01:3:408—-428, 1989.

Henk Harmsen. Software functions, quest-operating-systepublished report, Theo-
logical Faculty, Vrije Universiteit, Amsterdam., Septesnli988.

Henk Harmsen. QUEST: a query concept for text researctrdgeedings of the 3rd
Association Bible et Informatique Conference (AIBI3), ingen, 26—30 August, 1991
Ass [1992], pages 319-328.

Eliotte Rusty Harold and W. Scott Mean§ML In a Nutshell: A Desktop Quick Reference
O'Reilly, third edition, 2004.

Geoffrey Horrocks Generative GrammarLongman, London and New York, 1987.

James W. Hunt and M. Doug Mcllroy. An algorithm for differedtfile comparison.
Technical Report CSTR 41, Bell Telephone Laboratories,risuHill, NJ, 1976.

190 BIBLIOGRAPHY

Matt Insall and Eric W. Weisstein. “lattice.” from mathwd#da wolfram web resource.
http://mathworld.wolfram.com/Lattice.html.

ISO. Information processing — text and office systems — sti@hgleneralized markup lan-
guage (sgml). International ISO standard 1ISO 8879:198#, @arrigenda and amend-
ments., 1986.

Jani Jaakkola and Pekka Kilpelainen. Using sgrep for qagrsiructured text files. Tech-
nical Report C-1996-83, Department of Computer Sciencdyedsity of Helsinki,
November 1996a. http://www.cs.helsinki.fi/TR/C-1996/83

Jani Jaakkola and Pekka Kilpeldinen. Nested text-regigebmh. Technical Report
C-1999-2, Department of Computer Science, University osii&i, January 1996b.
http://www.cs.helsinki.fi/TR/C-1992/2/.

Ray Jackendoff.X-bar Syntax: A Study of Phrase StructuIT Press, Cambridge,
Massachusetts, 1977.

Laura Kallmeyer. A query tool for syntactically annotatemtpora. InProceedings of
Joint SIGDAT Conference on Empirical Methods in Natural §ia&ge Processing and
Very Large Corpora, Hong Kong, October 2Q@&ages 190-198, 2000.

Vipul Kashyap and Marek Rusinkiewicz. Modeling and quegyitextual data us-
ing E-R models and SQL. IProceedings of the Workshop on Management
of SemiStructured Data in conjunction with the 1997 ACM rma¢ional Con-
ference on the Management of Data (SIGMOD) Tucson, Arizdviay 1997
1997. <http://lsdis.cs.uga.edu/"kashyap/publicat®iidMOD-workshop.ps>, Access
Online January 2005.

Stephan Kepser. Finite structure query: a tool for quengggtactically annotated
corpora. InEACL '03: Proceedings of the tenth conference on Europeapten
of the Association for Computational Linguistigsages 179-186, Morristown, NJ,
USA, 2003. Association for Computational Linguistics. $B-333-56789-0. doi:
http://dx.doi.org/10.3115/1067807.1067832.

Adam Kilgariff, Pavel Rychly, Pavel Smrz, and David Tugwellhe sketch engine. In
Proceedings of the 11th EURALEX International CongressidtpFrance pages 105—
116, 2004.

Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratst pattern matching in
strings.SIAM Journal on Computing(2):323-350, 1977. doi: 10.1137/0206024.

Esther Konig and Wolfgang Lezius. The TIGER language. arg#gm language for
syntax graphs. formal definition. Technical report, Ingtitir Maschinelle Sprachver-
arbeitung (IMS) Unversity of Stuttgart,Germany, April 2D0. www.ims.uni-
stuttgart.de/projekte/TIGER.

Marcel Kornacker. High-performance extensible indexitig.Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, 19p8ges 699-708. ACM, 1999.

BIBLIOGRAPHY 191

Hans-Peter Kriegel, Marco Potke, and Thomas Seidl. Magaigitervals efficiently in
object-relational databases. Ww.DB '00: Proceedings of the 26th International Con-
ference on Very Large Data Basgsmges 407-418, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3.

Catherine Lai. A formal framework for linguistic tree queiMaster’s thesis, University
of Melbourne, 2006. This is a “Master of Science by Reseatbsis. 170pp.

Per-Ake Larson. A method for speeding up text retrieVaCM SIGMIS Databasel5:
19-23, 1984. <http://doi.acm.org/10.1145/1017712.¥QY?%, Access Online January
2005.

Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and Kekgreo. Supporting
frequent updates in r-trees: A bottom-up approachProceedings of the 29th VLDB
Conference, Berlin, Germany, 200003.

Fritz Lehmann and Rudolf Wille. A triadic approach to fornzaincept analysis. In
Gerard Ellis, Robert Levinson, William Rich, and John F. Speditors,Conceptual
Structures: Applications, Implementation and Theory +d liternational Conference
on Conceptual Structures, ICCS’95, Santa Cruz, CA, USAUstUP95, Proceedings
volume 954 ofLecture Notes in Artificial Intelligence (LNAlpages 32-43, Berlin,
1995. Springer Verlag.

Wolfgang Lezius.Ein Suchwerkzeug fur syntaktisch annotierte TextkorpBteD thesis,
Institut fir Maschinelle Sprachverarbeitung, UniversifyStuttgart, December 2002a.
Arbeitspapiere des Instituts fir Maschinelle Sprachvezitnng (AIMS), volume 8,
number 4. <http://www.ims.uni-stuttgart.de/projektefdex/paper/lezius/diss/>, Ac-
cess Online August 2004.

Wolfgang. Lezius. TIGERSearch — ein Suchwerkzeug fir Baamkbn. In Stephan
Busemann, editoRroceedings der 6. Konferenz zur Verarbeitung naturlicBerache
(KONVENS 2002), Saarbrickgmages 107-114, 2002b.

Arjan. Loeffen. Text databases: a survey of text models gstems. ACM SIGMOD
Record 23(1):97-106, March 1994. <http://doi.acm.org/10.718%550.181565> Ac-
cess Online August 2004.

Robert E. LongacreThe Grammar of DiscourseTopics in Language and Linguistics.
Kluwer Academic / Plenum Press, New York and London, 2nd@ditl996. ISBN
0306452359.

H. P. Luhn. Keyword-in-context index for technical liteweg¢ (KWIC index). American
Documentation11(4):288—-295, October 1960.

M. Marcus, G. Kim, M. Marcinkiewicz, R. Macintyre, A. Bies, Mrerguson, K. Katz,
and B. Schasberger. The Penn treebank: Annotating predacgtiment structure. In
ARPA Human Language Technology WorksH&g94a.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Maigewicz. Building a large
annotated corpus of english: The penn treeba@lmputational Linguistics19(2):
313-330, 1994b.

192 BIBLIOGRAPHY

John C. Martin. Introduction to Languages and the Theory of ComputatidtcGraw-
Hill, Singapore, international edition, 1991. ISBN 0-006B51-9.

Ronald G. MattesonIntroduction to Document Image Processing Techniqu&dech
House, Boston, London, 1995. ISBN 0-89006-492-X.

James D. McCawley. Parentheticals and discontinuous iteest structure.Linguistic
Inquiry, 13(1):91-106, 1982.

David McKelvie, Amy Isard, Andreas Mengel, Morten Baun Mw|IMichael Grosse, and
Marion Klein. The MATE workbench — an annotation tool for XMloded speech
corpora.Speech Communicatip83(1,2):97-112, 2001.

Andreas Mengel. MATE deliverable D3.1 - specification of iogd work-
bench: 3.8 improved query language (Q4M). Technical repamstitut far
Maschinelle Sprachverarbeitung, Stuttgart, 18. Noveni899. <http://www.ims.uni-
stuttgart.de/projekte/mate/qg4m/>.

Andreas Mengel and Wolfgang Lezius. An xml-based represent format for syn-
tactically annotated corpora. lIIm Proceedings of the International Conference on
Language Resources and Evaluation (LREC), Athens, Gre@f8) pages 121-126,
2000.

Maél Benjamin Mettler. Parallel treebank search — the imaetation of stockholm
treealigner search. B.Sc. thesis in Computational LirtgngsDepartment of Linguis-
tics, Stockholm University, Sweden., March 2007.

George A. Miller, Richard Beckwith, Christiane Fellbaurmerk Gross, and Katherine J.
Miller. Introduction to WordNet: an on-line lexical datad®a International Journal of
Lexicography3(4):235—-244, 1990.

Jifi Mirovsky, Roman Ondruska, and Daniel PruSa. Searchimgugh prague depen-
dency treebank. IfProceedings of the First Workshop on Treebanks and Liniguist
Theories (TLT2002), Sozopol, Bulgarmages 144-122, 2002.

Kaj Munk. Ordet — Skoleudgave — Med Indledning og Oplysninger ved Niglsen
Nyt Nordisk Forlag, Arnold Busck, Kjgbenhavn, 1947.

Preslav Nakov, Ariel Schwartz, Brian Wolf, and Marti HearsSupporting annotation
layers for natural language processingPhoceedings of the ACL 2005 on Interactive
poster and demonstration sessions, Ann Arbor, Michigages 65—-68, 2005.

Gonzales Navarro and Ricardo Baeza-Yates. A language &raguon structure and con-
tents of textual databases. In Edward A. Fox, Peter Ingweesel Raya Fidel, editors,
SIGIR’95, Proceedings of the 18th Annual International AGSMEIR Conference on
Research and Development in Information Retrieval. Ssatfashington, USA, July 9-
13, 1995 (Special Issue of the SIGIR Forupgges 93-101. ACM Press, 1995. ISBN
0-89791-714-6.

Gonzales Navarro and Ricardo Baeza-Yates. Proximal nédesidel to query document
databases by content and structlk€M Transactions on Information Systems (TQIS)

BIBLIOGRAPHY 193

15(4):400-435, October 1997. <http://doi.acm.org/1851263479.263482>, Access
Online August 2004.

Gavin Thomas Nicol. Core range algebra — toward a formal mnafdearkup. Online ar-
ticle, http://www.mind-to-mind.com/library/papersdiex.html Access online April 12,
2008, 2002.

Jorgen Fischer Nilsson. A logico-algebraic framework fotabogies: ONTOLOG. In
Per Anker Jensen and Peter Skadhauge, ed@mtslogy-based Interpretation of Noun
Phrases: Proceedings of the First International OntoQuéfyrkshopnumber 21/2001
in Skriftserie - Syddansk Universitet, Institut for Fagsgpr Kommunikation og Infor-
mationsvidenskab, pages 11-35, Kolding, 2001. Dept. oirféiss Communication and
Information Science, University of Southern Denmark.

Peter @hrstrgm and Per F.V. HaslBemporal Logic — From Ancient Ideas to Atrtificial
Intelligence volume 57 ofStudies in Linguistics and Philosoph¥Kluwer Academic
Publisher, Dordrecht, 1995. ISBN 0-7923-3586-4.

Peter @hrstrgm, Jan Andersen, and Henrik Scharfe. What d@sehed to ontology.
In Frithjof Dau, Marie-Laure Mugnier, and Gerd Stumme, exditConceptual Struc-
tures: Common Semantics for Sharing Knowledge: 13th lateynal Conference on
Conceptual Structures, ICCS 2Q0&mlume 3596 ofLNCS pages 425-438. Springer
Verlag, 2005.

G. Petasis, V. Karkaletsis, G. Paliouras, |. Androutsopsuand C. D. Spyropoulos. El-
logon: A new text engineering platform. Froceedings of the Third International
Conference on Language Resources and Evaluation (LREC) 2082 Palmas, Spain,
May 2002ELR [2002], pages 72—78.

Ulrik Petersen. The Extended MdF model. Unpublished B.Besis in computer sci-
ence, DAIMI, Aarhus University, Denmark. Available fromttt/ulrikp.org/., Novem-
ber 1999.

Ulrik Petersen. Emdros — a text database engine for analgeeshnotated text. In
Proceedings of COLING 20020" International Conference on Computational Lin-
guistics, Augusp3d to 27", 2004, Genevapages 1190-1193. International Commi-
tee on Computational Linguistics, 2004. http://emdragmetersen-emdros-COLING-
2004.pdf.

Ulrik Petersen. Querying both parallel and treebank c@poiEvaluation of a
corpus query system. IfProceedings of LREC 20062006a. Available as
http://ulrikp.org/ ulrikp/pdf/LREC2006.pdf.

Ulrik Petersen. MQL programmer’s reference guide. Publisas part of every Emdros
software release., 2007a.

Ulrik Petersen. Principles, implementation strategies| evaluation of a corpus query
system. InFinite-State Methods and Natural Language Processing -ttrnational
Workshop, FSMNLP 2005, Helsinki, Finland, September 16D52 Revised Papers
volume 4002 oL ecture Notes in Artifical Intelligence (LNAIpages 215226, Berlin,
Heidelberg, New York, 2006b. Springer Verlag.

194 BIBLIOGRAPHY

Ulrik Petersen. Evaluating corpus query systems on funatity and speed: Tigersearch
and emdros. In Angelova et al. [2005], pages 387—391. ISBN®543-3-6.

Ulrik Petersen. Relational implementation of the emdf nioBeblished as part of every
Emdros software release., 2007b.

Kenneth L. Pike and Evelyn Pik&rammatical AnalysisNumber 53 in Summer Institute
of Linguistics, Publications in Linguistics. Summer Iste of Linguistics, 2nd revised
edition, 1982. Reprint 1991. xxvi + 463 + 39 pages.

Martin F. Porter. An algorithm for suffix strippind?rogram 14(3):130-138, July 1980.

Eric Steven RaymondThe Art of Unix ProgrammingAddison-Wesley, Reading, Mas-
sachusetts, USA, 2003.

Philip Resnik and Aaron Elkiss. The linguist’s search ergiin overview. InProceed-
ings of ACL 2005 (Demonstration SectipBD05.

Douglas L. T. Rohde. Tgrep2 user manual, version 1.12. Ab&l online
<http://tedlab.mit.edu/"dr/Tgrep2/tgrep2.pdf>. Acc&@nline April 2005, 2004.

Pavel Rychly. Korpusové manazery a jejich effektivni implementaeaD thesis, Fac-
ulty of Informatics, Masarykova Univerzita v Ben Czech Republic, 2000. In Czech.
English translation of title: “Corpus Managers and thefeetive implementation”.

Ulrik Sandborg-Petersen. Emdros programmer’s referencaiideg
http://emdros.org/progref/ Accessed March 2008, 2002320

Ingo Schroder. A case study in part-of-speech tagging ubmgopost toolkit. Technical
Report Computer Science Memo 314/02, University of Hamb@eymany, 2002.

Julian Smart, Kevin Hock, and Stefan Csom@ross-Platform GUI Programming with
wxWidgets Bruce Perens’ Open Source Series. Prentice-Hall, 2005.

John F. Sowa.Knowledge Representation: Logical, Philosophical, andnpatational
Foundations Brooks/Cole Thomson Learning, Pacific Grove, CA, 2000.

llona Steiner and Laura Kallmeyer. VIQTORYA — a visual quaygl for syntactically
annotated corpora. IARroceedings of the Third International Conference on Laagg!
Resources and Evaluation (LREC 2002), Las Palmas, Spain,20862ELR [2002].

Bjarne StroustrupThe C++ Programming LanguageAddison-Wesley, Reading, Mas-
sachusetts, USA, third edition, 1997.

Jean Tague, Airi Salminen, and Charles McClellan. Comgtat®al model for infor-
mation retrieval systems. IRroceedings of the 14th annual international ACM SIGIR
conference on Research and Development in Informatioriévaty Chicago, lllinois,
USA pages 14-20, 1991. <http://doi.acm.org/10.1145/12286862>, Access On-
line January 2005.

BIBLIOGRAPHY 195

Eep Talstra. Text grammar and computer. The balance opirgition and calculation.
In Actes du Troisiéme Colloque International: “Bible et Infioatique: Interpréta-
tion, Herméneutique, Compétence Informatique”, Tubin@H30 August, 199Ass
[1992], pages 135-149.

Eep Talstra. Grammar and prophetic texts — computer-adsgsintactical research in
Isaiah. In Jacques Vermeylen, editbhe Book of Isaiahvolume LXXXI of Biblio-
theca Ephemeridum Theologicarum Lovaniensipages 83-91, Leuven, Netherlands,
1989. Leuven University Press.

Eep Talstra. Computer-assisted linguistic analysis. Télerelv database used in Quest.2.
In Cook [2002], pages 3—22. ISBN 9004124950.

Eep Talstra. On scrolls and screens: Bible reading betwestory and industry. Un-
published manuscript of the Werkgroep Informatica, Vrijeikérsiteit, Amsterdam,
n.d.

Eep Talstra. Signs, design, and signification. The exanfgl&imgs 21. In Cook [2002],
pages 147-166. ISBN 9004124950.

Eep Talstra. Phrases, clauses and clause connections kietirew data base of the
Werkgroep Informatica: Computer-assisted productionyotactically parsed textual
data. Unpublished manuscript detailing the procedured usthe analysis-software
developed at the Werkgroep Informatica, 3 February 1998.

Eep Talstra. A hierarchy of clauses in Biblical Hebrew nivea In Ellen van Wolde,
editor, Narrative Syntax and the Hebrew Biblolume 29 ofBiblical Interpretation
Seriespages 85-118, Leiden, New York, Kéln, 1997. Brill. ISBN @8-10787-8.

Eep Talstra and Fereng Postma. On texts and tools. A shaoorhisf the Werkgroep
Informatica (1977-1987). In Eep Talstra, editGomputer Assisted Analysis of Biblical
Texts volume 7 ofAPPLICATIQ pages 9-27, Amsterdam, 1989. VU University Press.

Eep Talstra and Constantijn Sikkel. Genese und Kategortemeklung der WIVU-
Datenbank. In Christof Hardmeier, Wolf-Dieter Syring, Ben D. Range, and Eep
Talstra, editorsAd Fontes! Quellen erfassen - lesen - deuten. Was ist Conpbulteo-
gie?, volume 15 of APPLICATIQ pages 33-68, Amsterdam, 2000. VU University
Press.

Eep Talstra and Christo H.J. van der Merwe. Analysis, redfi@and the demand for
more data. Integrating the results of a formal textlingaiahd cognitive based prag-
matic approach to the analysis of Deut 4:1-40. In Cook [20p3dpes 43—-78. ISBN
9004124950.

Eep Talstra and Archibald L.H.M. Van Wieringen, editorA.Prophet on the Screen —
Computerized Description and Literary Interpretation eaianic Textsvolume 9 of
APPLICATIQ Amsterdam, 1992. VU University Press.

Eep Talstra, Christof Hardmeier, and James Alan Groves. sQu#ectronic concor-
dance application for the Hebrew Bible (database and valrsoftware). Nederlands
Bijbelgenootschap (NBG), Haarlem, Netherlands, 1992. 0énJ.A. Groves, H.J.

196 BIBLIOGRAPHY

Bosman, J.H. Harmsen, E. Talsttdser Manual Quest. Electronic Concordance Ap-
plication for the Hebrew Bible, Haarlem, 1992

Henry S. Thompson and David McKelvie. Hyperlink semantmsdtandoff markup of
read-only documents. IRroceedings of SGML Europe '97, Barcelona, Spain, May
1997 1997. Available: <http://www.ltg.ed.ac.uk/"ht/sgm®auhtml>.

Frank Wm. Tompa. A data model for flexible hypertext datalsyséemsACM Transac-
tions on Information System#(1):85-100, January 1989.

Jeffrey D. Ullman and Jennifer WidonA First Course in Database Systenfrentice-
Hall International, London, 1997. ISBN 0-13-887647-9.

Robert D. Van Valin, Jr.An introduction to SyntaxCambridge University Press, Cam-
bridge, U.K., 2001.

Robert D. Van Valin, Jr. and Randy J. LaPol&yntax — Structure, meaning, and function
Cambridge University Press, Cambridge, U.K., 1997.

A.L.H.M. van Wieringen.Analogies in Isaiah Volumes A + BNumber 10 in Applicatio.
Free University Press, Amsterdam, 1993.

Arian J.C. Verheij and Eep Talstra. Crunching participfesaspect of computer assisted
syntactical analysis demonstrated on Isaiah 1-12. Inf8adstd Van Wieringen [1992],
pages 21-33.

Holger Voormann, Stefan Evert, Jonathan Kilgour, and Jeate@a. NXT search user’s
manual (draft). http://www.ims.uni-stuttgart.de/pidg/nite/manual/, 2003.

W3C contributors. XHTML 1.0 The extensible hypertext markanguage: A reformula-
tion of HTML 4 in XML 1.0, W3C Recommendation 26 january 200€yised 1 august
2002, 2002.

Glynn Winskel.The formal semantics of programming languages: An intrdidac MIT
Press, Cambridge, Mass., 1993. ISBN 0-262-23169-7.

Nicolai Winther-Nielsen and Eep Talstra.A Computational Display of Joshua. A
Computer-assisted Analysis and Textual Interpretatiaume 13 ofAPPLICATIQ
VU University Press, Amsterdam, 1995.

Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, anty Gohman. On support-
ing containment queries in relational database managesystems. IrProceedings
of the 2001 ACM SIGMOD international conference on Manageroédata, Santa
Barbara, California, United Statepages 425-436, 2001. ISBN:1-58113-332-4.

Justin Zobel and Alistair Moffat. Inverted files for text selaenginesACM Computing
Surveys38(2):1-56, July 2006.

Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanar&overted files versus signa-
ture files for text indexing ACM Transactions on Database Syste3(4):453—-490,
December 1998.

Appendix A
Topographic MQL: Grammar

In this Appendix, | display the grammar of the topographic ph MQL, as it is today.
This is done in something that looks like Backus-Naur form.

topograph ::= blocks.
blocks ::= block_string.

block_string ::= block_string?2
block_string ::= block_string2 KEY_OR block_string .

block_string2 ::= block_stringl

block_string2 ::= block_stringl block_string2 .

block_string2 ::= block_stringl KEY_EXCLAMATION block_string2
block_stringl ::= block_string0

block_stringl ::= block_string0 KEY_STAR star_monad_set.
block_string0 ::= block

block_string0 ::= KEY_OPEN_SQUARE_BRACKET block_string

KEY_CLOSE_SQUARE_BRACKET

block ::= object_block.

block ::= power.

block ::= opt_gap_block.

block ::= gap_block.

block ::= notexist_object_block.

object_block ::= KEY_OPEN_SQUARE_BRACKET object_type_name

mark_declaration
object_reference_declaration
retrieval firstlast
feature_constraints
feature_retrieval

opt_blocks KEY_CLOSE_SQUARE_BRACKET.

197

198

APPENDIX A. TOPOGRAPHIC MQL: GRAMMAR

notexist_object_block ::= mnotexist
KEY_OPEN_SQUARE_BRACKET object_type_name
mark_declaration
object_reference_declaration
retrieval firstlast
feature_constraints
feature_retrieval
opt_blocks KEY_CLOSE_SQUARE_BRACKET.

notexist = KEY_NOTEXIST .
notexist = KEY_NOTEXISTS .
object_reference_declaration ::= . /* empty */

object_reference_declaration

mark_declaration ::
mark_declaration ::

object_reference

retrieval
retrieval
retrieval
retrieval

firstlast
firstlast
firstlast
firstlast

feature_constraints ::=

KEY_AS object_reference.

. /* empty */
MARK .

IDENTIFIER.

1= . /% empty */
::= KEY_NORETRIEVE.
::= KEY_RETRIEVE.
::= KEY_FOCUS.

1= . /% empty */

::= KEY_FIRST.

::= KEY_LAST.

::= KEY_FIRST KEY_AND KEY_LAST.

ffeatures.

feature_constraints =

ffeatures ::= fterm.

ffeatures ::= ffeatures KEY_OR fterm.

fterm ::= ffactor.

fterm ::= fterm KEY_AND ffactor.

ffactor ::= KEY_NOT ffactor.

ffactor ::= KEY_OPEN_BRACKET ffeatures KEY_CLOSE_BRACKET.
ffactor ::= feature_comparison.

feature_comparison ::= feature_name comparison_operator value.
feature_comparison ::= feature_name KEY_IN

KEY_OPEN_BRACKET list_of_identifier KEY_CLOSE_BRACKET.

199

feature_comparison ::= feature_name KEY_IN
KEY_OPEN_BRACKET list_of_integer KEY_CLOSE_BRACKET.
feature_comparison ::= feature_name KEY_IN object_reference_usage.
comparison_operator ::= KEY_EQUALS.
comparison_operator ::= KEY_LESS_THAN.
comparison_operator ::= KEY_GREATER_THAN.
comparison_operator ::= KEY_NOT_EQUAL.
comparison_operator ::= KEY_LESS_THAN_OR_EQUAL.
comparison_operator ::= KEY_GREATER_THAN_OR_EQUAL.
comparison_operator ::= KEY_TILDE.
comparison_operator ::= KEY_NOT_TILDE.
comparison_operator ::= KEY_HAS.
value ::= enum_const.
value ::= signed_integer.
value ::= STRING.
value ::= object_reference_usage.
enum_const ::= IDENTIFIER.
object_reference_usage ::= object_reference KEY_DOT feature_name.

KEY_GET feature_list.
. /* empty */

feature_retrieval
feature_retrieval

feature_list ::= feature_name.
feature_list feature_list KEY_COMMA feature_name.

opt_blocks ::= . /* empty */

opt_blocks ::= blocks.

star_monad_set ::= .

star_monad_set = monad_set

monad_set ::= KEY_OPEN_BRACE monad_set_element_list KEY_CLOSE_BRACE.
monad_set_element_list ::= monad_set_element.

monad_set_element_list
monad_set_element_list KEY_COMMA monad_set_element.

INTEGER.
INTEGER KEY_DASH INTEGER.
INTEGER KEY_DASH .

monad_set_element
monad_set_element
monad_set_element

200 APPENDIX A. TOPOGRAPHIC MQL: GRAMMAR

opt_gap_block ::= KEY_OPEN_SQUARE_BRACKET KEY_OPT_GAP
mark_declaration gap_retrieval opt_blocks
KEY_CLOSE_SQUARE_BRACKET.

. /* empty */
KEY_NORETRIEVE.
KEY_RETRIEVE.
KEY_FOCUS.

gap_retrieval
gap_retrieval
gap_retrieval
gap_retrieval

gap_block ::= KEY_OPEN_SQUARE_BRACKET KEY_GAP
mark_declaration gap_retrieval opt_blocks
KEY_CLOSE_SQUARE_BRACKET.

KEY_POWER restrictor.
KEY_POWER KEY_BETWEEN 1limit KEY_AND limit.

power ::
power ::

. /* empty */
KEY_LESS_THAN 1limit.
KEY_LESS_THAN_OR_EQUAL 1limit.

restrictor ::
restrictor ::
restrictor ::

limit ::= INTEGER. /* non-negative integer, may be 0. */

Appendix B

Published articles

The following pages contain the published articles whiaimf@art of the basis for eval-
uation of my PhD work.

201

202 APPENDIX B. PUBLISHED ARTICLES

203

[COLING2004]

Emdros — a text database engine
for analyzed or annotated text

Ulrik Petersen

2004

Published in: Proceedings of COLING 2004, held August 23-27, 2004 in Geneva.
International Committee on Computational Linguistics, pp. 1190-1193

204

This page left intentionally blank

205

Emdros— atext database engine for analyzed or annotated text

Ulrik Petersen
Department of Communicaion
University of Aalborg
Kroghstraade 3
DK —9220Aaborg East
Denmark
ulrikp@hum.aau.dk

Abstract

Emdros is a text database engine for lingustic
analysis or anndation of text. It is applicca
ble espedaly in corpus lingustics for storing
and retrieving linguistic analyses of text, at any
lingustic level. Emdros implements the EMdF
text database model and the MQL query lan-
guage. In this paper, | present both, and gve an
example of how Emdros can be useful in com-
putational lingustics.

1 Introduction

As (Abeillé, 2003 paints out, “corpus-basel lin-
guistics hasbeen largely limited to phenomena that
can be accessk via seaches on particular words.
Inquiries dou subjed inversion o agentlesspas
sives aeimpossble to perform oncommonly avail -
able corpora” (p. xiii).

Emdros is atext database @gine which attempts
to remedy this stuation in some measire. Emdros
guery languege is very powerful, alowing the kind
of seaches which Abeillé mentions to be formu-
lated quickly and intuitively. Of coursg this pre-
suppases adatabasewhich is tagged with the data
necessey for answering the query.

Work has been dore on suppating complex
gueries e.g., (Bird et al., 200Q Cass$dy and Bird,
2000 Mengd, 1999 Clarke ¢ d., 1995. Em-
dros complements thesepiecesof work, providing
a working implementation o many of the fegures
which these gstems suppat.

In this paper, | presait the EMdF text database
model on which Emdros reds, and the MQL query
language which it implements. In addition, | give an
example of how Emdros can be usdul in answering
guedions in computational linguistics

2 History of Emdros

Emdros grings out of a reformulation and imple-
mentation d thework done by Crist-Jan Doedensin
his 1994 PhD theds (Doedens, 1994. Doedens de-
fined the MdF (Monads-dat-Fedureg text database
model, and the QL query language. Doedens gave a

dencatational semanticsfor QL and loaded QL with
feaures thus making it very difficult to implement.
The present author later took Doedens' QL, scded
it down, and gaveit an operational semantics, hence
making it easer to implement, reultinginthe MQL
guery language. | aso took the MdF modd and
extended it dightly, reaulting in the EMdF mode.
Later, | implemented bath, resulting in the Emdros
text database @gine, which has been available as
Open Source ftware dnce October 2001 The
website! hasfull sourcemde and dacumentation.

Emdros is agenerd-purpose enging, nat a e
cific goplicdion. This means that Emdros must be
incorporated into a gedfic Loftware gplication be-
fore it can be made useul.

3 TheEMdF modd

The EMdF mode is an extension o the MdF model
developed in (Doedens, 1994. The EMdF (Ex-
tended MdF) modd is basel on four concepts:
Monad, objed, objed type, and feaure. | descibe
ead of thesein turn, and gve a snal example of
an EMdF database

3.1 Monad

A monad is mply an integer. The sejuence of the
integers (1,2,3, etc.) dictates the se&uence of the
text. The monads do nd impose areading-direction
(e.g., left-to-right, right-to-left), but merely alogical
text-order.

3.2 Objea

An oljed is smply a se& of monads with an as®-
ciated obed type. The s is abitrary in the sese
that there ae no redrictions on the s¢. E.g., {1},
{2}, {1,2}, {1,2,6,7} are dl vdid oljeds. This d-
lows for objeds with gaps, or disantiguows objeds
(e.g., dismontiguows dauseg. In addition, an oljed
always has aunique integer id, separate from the the
objed’s monad sd.

Objeds ae the building Hocks of the text it-
sdf, aswell asthe aanaations or analysesin the

http://lemdros.org/

206

database To seehow, we must introduce objed
types

3.3 Objedtype

An oljea type groups a s¢ of objeds into such
classes asWord”, “Phrase’ “Clause”, “ Sentence”,
“Paragraph’, “ Chapter”, “Book’, “Quatation”, “Re-
port”, etc. Generadly, when dedgning an Em-
dros database one chocses amonadgranuarity
which dictates the gnaled objed in the database
which correpponds to ore monad. This snaled
objed is often “Word”, but could be “Morpheme”,
“Phoreme” or even “Grapheme”. Thus, for exam-
ple, Word number 1 might consist of the objed se
{1}, and Word number 2 might consist of the ob-
jed sd {2}, whereasthe first Phrasein the database
might consist of the se {1,2}.

3.4 Feature

An objed type can have any number of features A
feaureis an attribute of an ohjed, and always has a
type. The type can be a gring, an integer, an enu-
meration, or an ojed id. Thelatter all owsfor com-
plex interrdationships among oljeds, with objeds
pointing to eat other, e.g., adependent pointing to
aheal.

Anenumerationis a seof labelswith values For
example, one might define an enumeration “psp”
(part of speed) with labels such as ‘nourt, “verb”,
“adjedive”, etc. Emdros suppats abitrary defini-
tion o enumeration label sds.

3.5 Example

Consider Figure 1. It shows an EMdF database or-
regpondng to ore possble analysis of the sentence
“The doa wasblue” There ae threeobjed types
Word, Phrase and Clause The Clauseobjed type
hasno feaures The Phraseobjed type hasthe fea
ture “phr_type " (phrasetype). The Word ohjed
type hasthe feaures “surface "and“psp”.

The monad-granularity is “Word”, i.e, eadh
monad correponds to ore monad. Thus the word
with id 10001consists of the monad se {1}. The
phrase with id 10005 consists of the monad se
{1,2}. The snde dause objed consists of the
monad sd {1,2,3,4}.

The text is encoded by the “surface " feaure
on Word ohed type. One could add feaures sich
as ‘lemma”, “number”, “gender ", or any other
fedure relevant to the databaseunder construction.
The Phrase objed type could be given feaures
such as ‘function ", “apposition_head :
“relative_head ", etc. The Clauseobjed type
could be given feauresdistinguishing such things as

“VSO order”, “tenseof verbal form”, “ill ocutionary

force”, “nomina clausdverbless tause”, etc. It al
depends onthe theory used to descibe the database
aswell asthereseach gals.

1 2 3 4
w: 10001 | w: 10002 w: 10003 w: 10004
word | surface: The surface: door surface: was| surface: blue
psp: article | psp: noun | psp: verb psp: adjectivg
hrase| P 10005 p: 10006 p: 10007
P phr_type: NP phr_type: VP phr_type: AP
clause | c: 10008

Figure 1. A small EMdF database

4 TheMQL query language

MQL is basal ontwo properties of text which are
universd: sequence and embedding. All texts have
sajuence, dictated bythe mnstraints of time and the
limitation o our human vocd trad to produce only
one seuence of words & any given time. In ad-
dition, al texts have, when analyzed lingusticdly,
some dement of embedding, as enboded in the no-
tions of phrase clause sentence, paragraph, etc.

MQL diredly suppats seaching for sequence
and embedding by means of the nation o topo
graphicity. Originally invented in (Doedens, 1994,
a (formal) languege is topogaphic if and only if
there is an isomorphism between the dructure of an
expressoninthelanguege andthe objedswhich the
expresson denotes

MQL's bagc building Hock is the objeda block
An oljed block seachesfor objeds in the database
of agiven type, e.g., Word, Phraseor Clause If two
objed blocks ae ajacent, then the objeds which
they find must also be ajacent in the database If
an oljed block is embedded inside enather objed
block, then the inner objed must be embedded in
the outer objed in the database

Consider Figure 2. It shows two adjacett objed
blocks, with feaure constraints. This would find
two Phraseobjeds in the databasewhere the first is
an NP and the seondis aVP. The obeds must be
adjacent in the databasebecause the objed blocks
are ajacant.

[Phrase phrase_type
[Phrase phrase_type

NP]
VP]

Figure 2: Two adjacent objed blocks

Now consider Figure 3. This query would find
a dause with the redriction that embedded inside
the dause must be two ptrases a aubjed NP and

a predicate VP, in that order. The “.. ” operator
means that spaceis dl owed between the NP and the
VP but the gpace must be inside the limits of the
surroundng clause All of this presuppcses a ap-
propriately tagged database of course

[Clause
[Phrase phrase _type = NP
and function = Subj]
tiDhrase phrase_type = VP
and function = Pred]

Figure 3: Examplesof embedding

redrictions of

”

The type
“phrase_type = NP refer to feaures (or
atributeg of the objeds in the database The re-
striction expressons can be any Boolean expresson
(and/or/nat/parenthesey, alowing very complex
regrictions & the objed-level.

Consider Figure 4. It shows how one can look
for objeds inside “gaps” in other objeds. In some
lingustic theories the seatence “The doa, which
opened towards the Eag, wasblue” would consist of
one disoontiguows dause (“The doa .. .wasblue”)
with an intervening nomedrictive relative dause
not part of the aurroundng clause For a sustained
argument in favor of this interpretation, see(Mc-
Cawley, 1982. The query in Figure 4 seachesfor
structures of this kind. The surroundng context is
a Sentence Inside of this setence one must find a
Clause Thefirst objed inthis dausemust be a sib-
jed NP. Diredly adjacent to this subjedt NP must be
a gapin the surroundng context (the Clausg. In-
side of this gap must be aClausewhaose dausetype
is “nonrestr_rel ". Diredly &fter the dose of
the gap, one must find aVP whasefunction is pred-
icae. Mapping this dructure to the example sea-
tenceisleft as an exercisefor the reader.

[Sentence
[Clause
[Phrase FIRST phrase_type = NP
and function = Subj]
[gap
[Clause cl_type = nonrestr_rel]
|
[Phrase phrase_type = VP
and function = Pred]

Figure 4: An example with agap

207

Lagly, obeds can refer to ead other in the
guery. Thisis uséful for spedfying such things as
agreement and heads/dependents. In Figure 5, the
“AS’ keyword gives aname (“w1”) to the nounin-
side the NP, and this name can then be used inside
the adjedive in the AdjP to spedfy agreement.

[Phrase phrase type = NP
[Word AS wl psp = noun]

[Phrase phrase type = AdjP
[Word psp = adjective
and number = wl.number
and gender = wl.gender]

Figure 5. Example with agreament

MQL provides anumber of feauresnot covered
in this paper. For full documentation, seethe web-
ste.

The red power of MQL liesin its adility to ex-
press omplex seach redrictions bath at the level
of structure (sequence and embedding) and at the
objed-level.

5 Application

One prominent example of an Emdros databasein
useis the Werkgroep Informatica (WI) databaseof
the Hebrew Bible developed under Prof. Dr. Eep
Talstra & the Free University of Amsterdam. The
WI databaseis alarge text database omprising a
syntadic anaysis of the Hebrew Bible (also cdled
the Old Tegdament in Hebrew and Aramaic). Thisis
a 420000 word corpus with abou 1.4 milli on syn-
tadic objeds. The databasehasbeen anayzed up
to clause level al the way through and has been
analyzed upto sentence level for large portions of
thematerial. A complete desgiption d the database
and the underlying linguistic mode can be foundin
(Talstra and Sikkel, 2000.

In the book d Judges dapter 5 verse 1, we ae
told that “Deborah and Barak sang” a song Debo-
rah and Barak are dealy aplura entity, yet in He-
brew the verb is feminine snguar. Wasthis an in-
stance of bad grammar? Did orly Deborah sing?
Why isthe verb nat plural?

In Hebrew, the rule seens to be that the verb
agreesin number and gender with the first itemin a
compoundsubjed, when the verb precalesthe sub-
jed. This hasbeen knowvn at leas since the 19th
century, as eidenced by the Geseius-Kautzsth
grammar of Hebrew, paragraph 1464

With Emdros and the WI database we can val-
idate the rule eowve. The query in Figure 6 finds

208

234instances showing that the pattern wasnaot un-
common, and inspedion d the resilts show that the
verb most often agreeswith the first member of the
compoundsubjed. The 234 “hits” are the bare re-
sults returned from the query engine. It isupto the
reseacher to adually look at the data and verify or
falsify their hypahedss. Also, one would have to
look for courterexampleswith anather query.

[Clause
[Phrase function = Pred
[Word AS wl psp = verb
and number = singular]

]

ti:’hrase function = Subj
[Word (psp = noun

or psp = proper_noun
or psp = demonstrative_pronoun
or psp = interrogative_pronoun
or psp = personal_pronoun)

and number = singular
and gender = wl.gender]

Mord psp = conjunction]
]
]

Figure 6: Hebrew example

The query finds dauseswithin which there ae
two phrasesthe first being a predicate and the see
ond keing a subjed. The phrasesnead na be aja
cent. The predicae must contain a verb in the dn-
gular. The subjed must first contain anoun proper
noun or pronoun which agreeswith the verb in
number and gender. Then a conjunction must foll ow
the noun 4till i nside the subjed, but not necessaly
adjacant to the noun

The WI databaseis the primary example of an
Emdros database Other databases ®red in Em-
dros include the morphdogicdly encoded Hebrew
Bible produced at the Wesminster Hebrew Institute
in Philadelphia, Pennsylvania, and a corpus of 67
milli on words in use a the University of Illinais &
Urbana-Champaign.

6 Conclusion

In this paper, | have preseited the EMdF model
and the MQL query languege asimplemented in
the Emdrostext database @gine. | have showvn how
MQL suppats the formulation o complex lingus-
tic querieson tagged corpora. | have dso given an
example of a gedfic problem in Hebrew lingus-
ticswhich is nicdy answered by an Emdros query.
Thus Emdros provides a slid platform on which

to buld applicaions in corpus linguistics, cgpable
of answering lingustic quegions of a complexity
higher than what most systems can off er today.

Acknowledgements

My thanks go to Constantijn Sikkel of the Werk-
groep Informatica for coming upwith the problem
for the Hebrew query example.

References

Anre Abeillé. 2003 Introdwction. In Anne
Abelll & editor, Treebarks — Building andUsing
Parsed Corpora, volume 20 o Tex, Speet and
Languag Techndogy, pages xiii—xxvi. Kluwer
Academic Publishers, Dordredcht, Boston, Lon-
don

Steven Bird, Peter Buneman, and Wang-Chiew
Tan. 200Q Towards a query languege for an-
notation gaphs. In Procealings of the Sec
ond Intemationd Conference on Languag Re-
sources and Evaluation, pages 807-814 Eu-
ropean Language Reurces Association, Paris.
http://arxiv.org/abs/c§0007023

Steve Cas$dy and Steven Bird. 200Q Query-
ing catabasesof anndated speed). In Database
techndogies Procealings of the Elevaith Aus-
tralasian Database Conference, pages 12—-20Q
|IEEE Computer Society.

Charles L. A. Clarke, G. V. Cormadk, and F. J.
Burkowski. 1995 An algebra for structured text
seach and a framework for its implementation.
The Computer Journal, 38(1):43-56

Christianus Francisaus Jbannes Doedens. 1994
Text Databases One Databese Model and S
eral Retrieval Languags Number 14 in Lan-
guage and Computers. Editions Rodopg Amster-
dam, Amsterdam and Atlanta, GA.

JamesD. McCawley. 1982 Parentheticds and ds-
continuows @nstituent structure. Lingustic In-
quiry, 13(1):91-106

AndreasMengel. 1999 MATE dédliverable D3.1
— gpedficaion o coding workbench: 3.8
improved guery language (Q4M). Tedhnicd
report, Ingtitut fur Masdinele Sprachverar-
beitung Stuttgart, 18 Nov. http://www.ims.uni-
stuttgart.de/projekte/mate/qdm/.

Eep Tastra ad Constantijn Sikkel. 200Q
Geneseund Kategorienentwicklung der WIVU-
Datenbank. In Christof Hardmeier, Wolf-Dieter
Syring, Jochen D. Range, and Eep Talstra,
editors, Ad Fonted Quelen erfasse - lesa -
deuten. Was ist Computerphilologie?, volume 15
of APPUCATIO, pages33-68 Amsterdam. VU
University Press

209

[RANLP2005]

Evaluating Corpus Query Systems
on Functionality and Speed:

TIGERSearch and Emdros

Ulrik Petersen

2005

Published in: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N. and Nikolov,
N. (Eds): International Conference Recent Advances in Natural Language Processing
2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005, pp. 387-391.

210

This page left intentionally blank

211

Evaluating corpus query systemson functionality and spedd:
TIGERSearch and Emdros
Ulrik Petersen
Department of Communicaion, University of Aalborg
Kroghstreede 3
9220Aaborg East, Denmark
ulrikp@hum.aau.dk
http://emdros.org/

Abstract

In this paper, we evaluate two corpus query systems
with resped to search functionality and query speed.
One oorpus query system is TIGERSeach from IMS
Stuttgart andthe other isour own Emdros corpus query
system. First, we show how the database model under-
lying TIGERSeach can be mapped into the database
modd of Emdros. Sewnd the comparison is made
based on a set of standard lingustic queries culled
from the literature. We show that by mapping a
TIGERSeach corpusinto the Emdros database model,
new query posshiliti es arise.

1 Introduction

The last decale has sen a growth in the number of avail -
able mrpus query systems. Some query systems which
have seen their debut sincethe mid-1990esinclude MATE
Q4M (Mengel 99), the Emu query language (Cassdy &
Bird 00), the Annaation Graph query language (Bird et al.
00), TGrep2 (Rohde 04), TIGERSeach (LeZus02b), NXT
Seach (Heid et al. 04), Emdros (Petersen 04), and LPath
(Bird et al. 05). In this paper, we have chosen to evalu-
ate and compare two of these, namely TIGERSeach and
Emdros.

TIGERSeach is a corpus query system made & the In-
gtitut fur Maschinell e Sprachverarbeitungat the University
of Stuttgart (Lezus 02a; Lezus 02h). It is a general cor-
pus query system over so-cdled syntax graphs (Konig &
Lezus 03), utilizing the TIGER-XML format for import
(Mengel & Lezus00). Converters have been implemented
for the Penn Treebank, NeGRA, Susanne, and Christine
formats, among ahers. It is available free of charge for
reseacch puposes.t

Emdros is also a general corpus query system, devel-
oped at the University of Aalborg, Denmark. It is appli-
cable to a wide variety of linguistic corpora suppating a
wide variety of lingugtic theories, and is not limited to
treebanks. It implements the EMdF model and the MQL
guery language described in (Petersen 04). Importers for
the TIGER-XML and aher corpus formats have been im-
plemented, and more ae under development. It isavail able
free of charge a Open Source software from the aldress
spedfied at the beginning dof the paper.

The layout of the rest of the paper is as follows. First,
we briefly introduce the EMdF database model underly-
ing Emdros. Second, we introducethe database model un-
derlying TIGERSeach. Next, we show how to map the

1Seehttp:/iwww.tigersearch.de/

TIGERSeach database model into the EMdF model. The
next sedion explores how the TIGERCorpus (Brants &
Hansen 02), now in Emdros format, can be queried with
— in some instances — greder functionality and speed by
Emdros than by TIGERSeach. Finally, we conclude the

2 The EMdF modd of Emdros

The EMdF text database model underlying Emdrosis ade-
scendant of the MdF model described in (Doedens 94). At
the badkbore of an EMdF database is a string of monads.
A monadis smply aninteger. The sequenceof theintegers
dictates the logicd reading sequence of the text. An ob-
jed is an arbitrary (possbly discontiguois) set of monads
which belongs to exadly one objed type. An ohjed type
(e.g., Word, Phrase, Clause, Sentence, Paragraph, Article,
Line, etc.) determines what features an oljed has. That is,
a set of attribute-value pairs are ssciated with ead ob-
jed, and the atributes are determined by the objed type
of the objed. All attributes are strongy typed. Every ob-
jed has a database-widely unique ID cdled its id_d, and
the feaure self of an oljed denatesitsid_d. The notation
O.f isused to denatethe value of fedure f onan ohjed O.
Thus, for example, O;.sel f denctestheid_d of objed O;.
Anid_d feaure can have the value NIL, meaning it points
to no ohed. No objed can have NIL asitsid_d.

The sample treein Figure 1 shows a discontiguots el-
ement, and is adapted from (McCawley 82, p. 95). The
tree ca be visualized as an EMdF database asin Figure 2.
This figure exemplifies a useful technique used for repre-
senting tree-structures in Emdros: Since, in atreg a dild
noce dways has at most one parent, we can represent the
treeby means of id_d feaures pointing upvards from the
child to its parent. If a node has no parent (i.e., isaroct
noce), we can represent thiswith the value NIL. Thistedh-
nique will be used later when describing the mapping from
TIGERSeach to EMdF.

3 TheTIGERSearch database mode

The database model underlying TIGERSeach has been
formally described in (Lezus 02a) and (Konig & Lezus
03). The following description has been adapted from
the former, and is a dight reformali zation o the database
model with resped to edge-labels.

Definition 1 A featurereoord F isarelation over FN x C
where F'N is aset of feaure-names and C is a set of

212

S/12
S/11
NP/7 V'/10
John
V Unknown/9 PP/8
talked of course about politics

Figure 1: A treewith adiscontiguots clause, adapted from
(McCawley 82, p. 95).

constants. The relation is defined such that for any
li = (fi,ci) andany l; = (fj,¢;), L # 1 = fi # [j-
That is, al f; within afeaure-record are distinct. The
set of all feaure-recordsover FN and C is denoted F.

Definition 2 The set of al nodeidsis cdled ID and the
relationID C C hadds.

Definition 3 A nodeisatwo-tuplev € ID x F. Thatis,
anode monsists of anoceid v and afeaure-record F'.

Definition 4 A syntax graphG inthe universe of graphs G
isasix-tupeG = (Vnr, Vr, La, Fa, Og, Ra) with
the following properties:

1. V7 isthe(posshbly empty) set of nonterminals.

2. Vp isthe non-empty set of terminals.

3. L isaset of edgelabelswhere L C.2

4, Eg istheset of labeled, direded edgesof G. Eg
isaset of two-tuplesfrom Viyr x (Vnr U V7).
If Lg is nonempty, there exists an assgnment
of edge-labels el which is a total function el :
E¢ — Lg which need be neither surjedive nor
injedive.®

5. O¢g is a hijedive function O¢ Vi —
{1,2,...,|Vr|} which orders the termina
nodes. That the function is bijedive guarantees
that al terminal nodes can be ordered totally by
Og.

6. Rg € Vyr isthesingleroot noce of G, and has
noincoming edges.

G isagraphwith the foll owing charaderistics:

G1: G isaDAG with exadly oneroct noce Rg.

G2: All nodesv € ((Vivr UVr) \ Rg) have exadly
oneincomingedgein F¢.

2The latter restriction is not mentioned by (Lezus 02a) di-
redly on page 103 where thisis defined, but is inferred from the
rest of the dissertation.

3This is where our reformulation dffers in meaning from
(Lezdus 0249). We think ou formalization is dightly cleaer than
Ledus, but we may, of course, have misunderstood something.

1 2 3 4 5 6
id_d: 1 id_d: 2 id_d:3 |id_d: 4 id_d: 5 id_d: 6
Word surf.: John| surf.: talked| surf.: of | surf.: course surf.: about surf.: politics
pos: NProg pos: V pos: P |pos: N pos: P pos: N
parent: 7 | parent: 10 | parent: 9 parent: 9 parent: 8 | parent: 8
id_d: 7 id_d: 9 id_d: 8
Phrase| type: NP type: Unknown type: PP
parent: 11 parent: 12 parent: 10
id_d: 10 id_d: 10
Phrase type: V' type: V'
parent: 11 parent: 11
id_d: 11 id_d: 11
Clause| type=S type=S
parent: 12 parent: 12
id_d: 12
Clause type=S

Figure 2: An EMdF representation o thetreein Figure 1.

G3: All nonterminals v € Vyr must have & least
one outgoing edge. That is, Vo € Vyr3v' €
(VNT U VT) : (v,v’} € Eg.4

Thus gyntax graphs are nat strict trees in the traditi onal
sense, since @osdng edges are not prohibited. Neverthe-
less syntax graphs are not arbitrary DAGS, since by G2,
every node has at most one parent, andin this resped they
doresembletrees.

This brief reformulation dces not do justice to the full
description available in (Lezus 02a) and (Konig & Lezus
03). For more information onthe syntax graph formali sm,
seethe dted pubicaions.

4 Mapping syntax graphsto EMdF

TIGERSeach was developed spedficdly for use with the
TIGERCorpus (Brants & Hansen 02), thoughit is appli-
cable to other corpora @ well (Lezus 023, p. 136). In
order to compare TIGERSeach with Emdros, we had to
import a corpus avail able for TIGERSeach into Emdros.
The TIGERCorpus was chosen because it represents the
primary example of a TIGERSeach database, and because
it has areasonably large size, furnishing a basis for speed-
comparisons.

We have developed an algorithm to transform any
database encoded in the syntax graph formalism into an
EMdF database. This ®dion describes the dgorithm.
First, we give some definitions, after which we show the
four algorithmsinvolved.

Definition Al: For any syntax graph G, Obj¢ isthe set of
EMdF objeaswhich G givesriseto, and I D D¢ isthe
set of id_d’s of the objedsin Objs. Note, however,
that I DD may be defined before Objs, sincethere
isno causdlity in the diredion from Objg to IDDg;
in fad it is the other way aroundin the dgorithms
bel ow.

4Again, my reformulation dffers dightly from Lezus f ormu-

lation, due to my reinterpretation o F¢.

Definition A2: For any syntax graph G, NOBg isabijec
tive function from syntax graph nodesin G to Objc.
Thatis, NOBg : (VNT U VT> — Objg.

Definition A3: For any syntax graph G andv € (Vyp U
Vr), parent(v) isthe parent node of v if v isnot R,
orifvisRg.

Definition A4: For any syntax graph G and its concomi-
tant Objg, id_dg is a bijedive function id_dg
(VN7 UVp) — ID D¢ withthedefinitionid_d(v) ::=
NOBcg(v).self. Note, however, that this definition
only holds after the dgorithms have dl been applied;
infad id_dg isdefined by constructionrather than by
the given intensional, after-the-fad definition.

With thisapparatus, we can definefour algorithmswhich
use eat) other. Algorithm O merely creaes an empty ob-
jed with a unique EMdF id_d correspondngto ead noce
in asyntax graph G. Algorithm 1 adds monads to all ob-
jeds correspondngto a norterminal (i.e., al syntax-level
nodes). Algorithm 2 constructs a set of EMdF objedsfor a
given syntax graph GG, and wses Algorithm 0 and 1 Algo-
rithm 3 constructsan EMdF database from aset G of syntax
graphs, and uses Algorithm 2

Algorithm 0: Purpose: Credae empty objedsin Obj and
asdgnid_ds to ead oljed andto the id_ds function
and IDDg.

Input: A syntax graph G andastartingid_d d.
Output: A four-tuple consisting of the functionid_d¢,
theset IDD_G, the set Objq, theset NOBg andan
endingid_d d..

1. letid_dg := 0, andlet Objg =)

2. For all nodesv € (V1 UVr) (theordering daes
not matter, so long as eat nock is treaed only
once):

@ letiddg(v):=d
(b) Crede an EMdF objed O, being an empty
set of monadsand let O,.self :=d
(c) let Objg := Objc U{Oq4}
(d) let IDD¢ := IDD¢ U {d}
(e) let NOBg := NOBg U <1), Od>
) letd:=d+1
3. Return <id_dg, IDDg¢,Obja, NOBg, d>

Algorithm 1: Purpose: To add monadsto all objeds cor-
respondngto anonterminal.
Inpu: A nontermina p, the set 1D D¢, and the set
Objg.
Output: Nothing, but Obj¢ ischanged. (Objq iscdl-
by-value here, so it i s changed as aside-effed and na

returned.)
1. Let Ch := {c|parent(c) = p} (@l immediate
children of p.
2. Foral c e Ch:
@ If ¢ € Vp: Let IDDg(parent(c)) :=

IDDg¢(parent(c)) UIDDg(c) (Addtermi-
nals monad-set to parent.)

213

(b) Else:
i. Call ourselvesreaursively with the param-
eterslanglec, IDD¢, Objc).
ii. Let IDDg(parent(c)) =
IDD¢(parent(c)) U IDDg(c) (Add ¢'s
monad-set to parent.)

Algorithm 2; Purpose: To construct a set of EMdF ob-
jedsfrom asyntax graph G.
Inpu: A syntax graph G, astartingid_d d, and a start-
ing monad m.
Output: A threetuple consisting o a set of EMdF
objeds Objq, an incremented id_d d. and an ending
monad m..

1. Cdl Algorithm 0 on (G,d) to obktain
(iddg,IDD¢,0Objc, NOBg,d.).

2. For dl terminast € Vp:

(a) let Ot = NOBG(t) @] {mt} where my =
O¢(t) +m — 1. (Remember that an objed is
aset of monads, so we ae addingasingleton
monad set here.)

(b) Let O;.parent := id_dg(parent(t)) if t is
not Rg, andNIL if tis Rg.

(c) Asdgn aher fedures of O, acwording to the
feaure-record Fint = (v, F).5

(d) if Lg is nonempty, let O;.edge =
el({parent(t),t))

3. Cdl Algorithm 1 with the parameters
(Rg,IDDg¢,Objg). This assgns monad
setsto all objeds.

4, Foradl vinVyr:

(@ LetO, := Objg(v).

(b) Let O,.parent := id_dg(parent(vy)) if vis
not Rg, andNIL if v is Rg.

(c) Asdgn aher feaures of O, acwrdingto the
feaure-record F inv = (v, F).

(d) if Lg is nonempty, let O;.edge =
el({parent(t),t))

5. Return (Objg,d, m;) where m; = Og(vy) +
m — 1 where v; is the rightmost terminal node,
ie, v, € Vp Yoy € Vp t vy # v =
Og(vt) > Og(vy)

Algorithm 3: Purpose: To construct a set of EMdF ob-
jedsfrom auniverse of syntax graphsg.
Input: A set of syntax graphs G, astartingid_d d, and
a startingmonad m.
Output: A two-tuple consisting o anincrementedid_d
d. and an endingmonad m..

5|t is assumed, thoughthe formali sation daes not say so, that
the feaure-records of al Vr inal G € G have the same “signa-
ture”, i.e., have the same set of fegdure-names that are assgned a
valuein eat F ineah v € V. A similar assumption is made
for the signatures of al feaure-records of al Vyr. Thisis ce-
tainly the case with the TIGERCorpus. Therefore, the objed type
Terminal iswell-defined with resped to its feaures. Similarly
for the objed type Nonterminal used below.

214

Q1. Find sentences that include the word ‘saw’.

Q2. Find sentences that do not include the word ‘saw’.

Q3. Find noun phrases whose rightmost child is a noun.

Q4. Find verb phrases that contain a verb immediately
followed by a noun phrase that is immediately
followed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

Q6. Not relevant to TIGER Corpus.

Q7. Find a noun phrase dominated by a verb phrase.
Return the subtree dominated by that noun phrase.

Figure 3: Thetest queriesfrom (Lai & Bird 04), Fig. 1.

Q1 #s:[cat="S"] & #l:[word="sehen"] & #s > * #l
Q2 #s:[cat="S"] & #l:[word="sehen"] & #s !> * #
Q3 #nl:cat="NP"] & #n2:[pos="NN"] & (#nl >@r #n2)
Q4 #vp:[cat="VP"] & #v:[pos="VVFIN"] & #np:[cat="NP"]

& #pp:[cat="PP"|& #vp > * #v & #vp >* #np

& #vp >* #pp & #v >@r #vr & #np >@| #npl

& #vr .1 #npl & #np >@r #npr & #pp >@I #ppl

& #npr .1 #ppl

Q5 #vp:[cat="VP"] & #np:[cat="NP"] & (#np . * #vp)
& (#x >=* #vp) & (#x > * #np)
Q7 #vp:[cat="VP"] & #np:[cat="NP"] & (#vp > * #np)

Figure 4: The test queries of Figure 3 attempted imple-
mented in TIGERSeach. Adapted from (Lai & Bird 04),
Fig. 4. The queries marked with a* may not producethe
corred results.

1. For all graphs G in G (if an orderingis intended,
i.e., thisisnot aquaation corpus, then that order
shoud be gplied; otherwise, the order is unde-
fined):

(@ Let (Objg,d., m.) be the result of cdling
Algorithm 2 on (G, d, m)
(b) AddObjs to the EMdF database.
(c) Letd :=d. andletm :=m, + 1
2. Return (d, m)

5 Comparing TIGERSearch and Emdros

Using a variant of this algorithm, we have imported the
TIGERCorpusinto Emdros. This givesusa common besis
for comparing TIGERSeach and Emdros.

The paper (Lai & Bird 04) sets out to spedfy some re-
quirements on corpus query systems for treebanks that the
authors perceveto be esential. Among aher criteria, Lai
and Bird set up a set of standard queries which are repro-
duced in Figure 3.

La and Bird show how some of the queries can be
expressd in TIGERSeach, thoughthey find that not all
gueries can be expressd. | have atempted to reformu-
late Lai and Bird's TIGERSeach queries in therms of the
TIGERCorpus (seeFigure 4).

Query Q2 canna be formulated corredly in
TIGERSeach. This is because what is being regated
isthe exstence of the word “sehen”, andin TIGERSeach,
all nodes are implicitly existentialy quantified. Negated
existence would require a forall-quantification, as men-
tioned e.g. in (Konig & Lezus03).

Query Q5 is probably not expresshle in TIGERSeach,
and the given query fail s to find the first common ancestor
only. The aurred syntax graphs are returned, but with a

Q1 [Sentence [Word surface="sehen"]]
Q2 [Sentence NOTEXIST [Word surface="sehen"]]
Q3 [Phrase tag="NP" [Word last postag="NN"]]
Q4 [Phrase tag="VP"
[Word postag="VVFIN"]!
[Phrase tag="NP"]!
[Phrase tag="PP"]
]
Q5 [Phrase
[Phrase tag="NP"][Phrase tag="VP"]
]
% [Phrase tag="VP"

-

Q [Phrase tag="NP"]]

Figure 5;: Emdros queries for Q1-Q7

Find all NPs which is a subject, inside of which there
is a relative clause whose parent is the NP. Inside
the relative clause, there must be a phrase p2, inside
of which there must be a word which is a cardinal. At
the end of the relative clause must be a finite verb
whose parent is the same as that of p2. No PP may
intervene between p2 and the verb.

[Phrase as pl tag="NP" AND edge="SB"
[Phrase edge="RC" and parent=pl.self
[Phrase as p2 [Word postag="CARD"]]

NOTEXIST [Phrase tag="PP"]

Mord last postag="VVFIN"
AND parent=p2.parent]

Figure 6: Emdros query for Q8

number of subgraphswhich are not rooted in the first com-
mon ancestor.

Query Q7 again finds the corred syntax graphs, but fail s
to retrieve exadly the subtree dominated by the NP. In
TIGERSeach, what parts of amatched syntax-graphto re-
trieve is, in a sense, an irrelevant question, since the main
result is the syntax graph itself. Thus the asumption o
Lai andBird that only parts of the matched treeis returned
does not haold for TIGERSeach.

Emdros fares dightly better as regards functionality, as
can be seen in Figure 5. Query Q2 is corredly expressd
in Emdros using the NOTEXIST operator at objed-level,
which gives Emdros a dight edge over TIGERSeach in
this comparison. However, queries Q5 and Q7 fail to give
corred results on Emdros as they did on TIGERSeach.
Query Q5 fails becaise, while it returns the corred syn-
tax graphs, it fails to find orly the first common ancestor.
This is the same situation as with TIGERSeach. As in
TIGERSeach, the requirement to find the “first common
ancestor” is difficult to expressin Emdros. Query Q7 fails
becaise Emdros, like TIGERSeach, was nat designed to
retrieve subgraphs as part of the query results — subgraphs
are to be retrieved later, e.g., for viewing puposes. Like
TIGERSeach, Emdros returns the corred syntax graphs,
and thus works as designed.

Query Q8 can be seen in Figure 6 along with the Em-
dros equivalent. It canna be expressed in TIGERSeach
becaise of the negated existence-operator on the interven-
ing PP

The querieswere dl ti med, except for Q2 and Q6, which
were not expressble in either or both of the corpos query
systems. The hardwarewasan AMD Athlon 64 3200 with

Query Emdros TIGERSearch
Q1 0.199 0.202 0.179 05; 0.3;0.3
Q3 1575 1.584, 1.527 101; 9.9; 9.9
Q4 1604 1.585 1.615 99; 9.9; 9.9
Q5 3449 3.319 3.494 55; 6.6; 5.5
Q7 0.856, 0.932 0.862 11,1111
Q8 3.877 3.934 4.022 N/A

Table 1: Exeautiontimesin seconds

1GB of RAM and a 720(RPM harddrive running Linux
Fedora Core 4. Three measurements were taken for eadt
guery. Inthe cae of TIGERSeach, the timings reported
by the program’s gatus bar were used. For Emdros, the
standard Unix commandtime was used. The results can
be seen in Table 1.

As can be seen, Emdrosiis faster than TIGERSeach on
every query that they can bah hande. (Lezus 02a) men-
tions that the complexity is exporential in the number of
guery terms. It is very difficult to assessthe complexity of
an Emdros query, sinceit depends on a handful of fadors
such as the number of query items, the number of objeds
that match ead query item, and the number of posshle
combinations of these.

Probably Emdros is faster in part because it takes a
different algorithmic gpproach to query resolution that
TIGERSeach: Instead of using proof-theory, it uses a
more linea approadc of first retrieving all possble objed-
"hits’, then iteratively walking the query, combining the
objeds in monad-order as appropriate. Part of the speed
incresse may stem from its being written in C++ rather
than Java, but for queries auch as Q3 and Q4, the dgorithm
rather than the language seems to be the dedsive fador,
since such a large differencein exeautiontime, relative to
the other increases, canna be acourted for by language
differences alone.

6 Conclusion

In this paper, we have compared two corpus query systems,
namely TIGERSeach onthe one hand and ou own Em-
dros on the other. We have briefly introduced the EMdF
model underlying Emdros. The EMdF model is based on
the MdF model described in (Doedens 94). We have dso
given a reformalization o the syntax graph formalism un-
derlying TIGERSeach, based onthe presentation gvenin
(Leaus02a). We havethen presented an algorithm for con-
verting the syntax graph formali sm into the EMdF model.
Having dore this, we have compared the two corpus
guery systems with resped to query functionality and
speal. The queries were mostly culled from the literature.
It was foundthat Emdros was able to hande dl the test
gueries that TIGERSeach was able to handle, in addition
to afew that TIGERSeachwasnot ableto express Thelat-
ter involved the negation o the existenceof an ohjed; itis
alimitationin the aurrent TIGERSeach that all objedsare
implicitly existentialy quantified, which means that negat-
ing the existence of an ohjed is not possble. Negation at
the fedure-level is, however, possblein bah corpus query
systems. In bah systems, the semantics of fedure-level

215

negationisthe same asthe — operator in First Order Logic.

Finally, the test queries which bah systems were eleto
handle were exeauted onthe same machine over the same
corpus, namely the TIGERCorpus, and it was found that
Emdros was faster than TIGERSeach onevery query, and
that the dgorithm of Emdros ssensto scd e better than that
of TIGERSeach.

References

(Bird et al. 00) Steven Bird, Peter Buneman, and Tan Wang-Chiew. Towardsaquery
languege for annaation graphs. In Procealings of the SecondInternationd Con-
ference on Langua@ Resources and Evaluation, pages 807—814 European Lan-
guage Resources Association, Paris, 200Q http://arxiv.org/abs/cs/0007023Ac-
cessOnline August 2004

(Bird et al. 05) Steven Bird, Yi Chen, Susan Davidson, HagoongLeeg and Yifeng
Zheng. Extending XPath to suppat linguistic queries. In Proceealings of Pro-
gramming Langua@ Techndogies for XML (PLANX) Long Beach, California.
Januay 2005, pages 35-46 2005

(Brants & Hansen 02 Sabine Brants and Silvia Hansen. Developments in
the TIGER anndation scheme and their redization in the corpus. In Pro-
cedlings of the Third Internationd Conference on Languag@ Resources and
Evaluation (LREC 2002, Las Palmas, Span, May 2002 pages 1643-1649
2002 http://www.ims.uni-stuttgart.de/projekte/TI GER/paper/Irec2002 brants-
hansen.pdf AccessOnline August 2004

(Casdgdy & Bird 00) Steve Cassdy and Steven Bird. Querying databases of an-
notated speed. In M.E. Orlowska, editor, Database Techndogies. Proceel-
ings of the Eleventh Australasian Database Conference, volume 22 of Australian
Computer Science Comnunications, Cankerra, Australia, pages 12—-20 IEEE
Computer Society, 200Q http://arxiv.org/abs/cs/0204026 AccessOnline August
2004

(Doedens 94) Christianus Franciscus Jannes Doedens. Text Databases: One
Database Model and ®veal Retrieval Languags. Number 14 in Language
and Computers. Editions Rodop, Amsterdam and Atlanta, GA., 1994

(Heid et al. 04) U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk, and S. Pado.
Querying bah time-aligned and herarchica corpora with NXT Seach. In
Fourth Langua@ Resources and Evaluation Conference, Lisbon, Portugd, May
2004 2004

(Konig & Lezus 03) Esther Konig and Wolfgang Lezus. The TIGER languege. a
descriptionlanguege for syntax graphs. formal definition. Technicd report, Insti-
tut fur Maschinell e Sprachverarbeitung (IMS), University of Stuttgart, Germany,
April 22 2003

(La & Bird 04) Catherine Lai and Steven Bird. Querying and upditing treebanks:
A criticd survey and requirements analysis. In Procealings of the Australasian
Languag Techndogy Workshop, Decenber 2004 pages 139-146 2004

(Lezus 023) Wolfgang Lezus. Ein Swchwerkzeug fir syntaktisch anndierte
Textkorpora. Unpubished PhD thesis, Institut fur Maschinelle Sprachver-
arbeitung, University of Stuttgart, December 2002 Arbeitspapiere des In-
stituts fur Maschinelle Sprachverarbeitung (AIMS), volume 8, number 4.
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezus/disg, Access On-
line August 2004

(Lezus 02b) Wolfgang. Lezus. TIGERSeach — ein Suchwerkzeug fur Baum-
banken. In Stephan Busemann, editor, Procealings der 6. Konferenz aur \er-
arbeitung ndurlicher Sprache (KONVENS 2002, Saabricken, pages 107-114
2002

(McCawley 82) James D. McCawley. Parentheticds and dscontinuous constituent
structure. Lingustic Inquiry, 13(1):91-106 1982

(Mengel & Lezus 00) Andreas Mengel and Wolfgang Lezus. An XML-based en-
coding format for syntadicdly analyzed corpora. In Proceedings of the Second
Internationd Conferenceon Langua@ Resources and Evaluation (LREC 2000,
Athens, Greece 31 May — 2 June 2000 pages 121-126200Q

(Mengel 99) Andreas Mengel. MATE deliverable D3.1 — spedfication o cod
ing workbench: 3.8 improved query language (Q4M). Technicd report,
Institut fur Maschinelle Sprachverarbeitung Stuttgart, 18. November, 1999
http://www.ims.uni-stuttgart.de/proj ekte/mate/qdm/.

(Petersen 04) Ulrik Petersen. Emdros — a text database engine for an-
alyzed or anndated text. In Procealings of COLING 2004 held Au-
gust 23-27 in Genewa. International Commitee on Computational Linguistics,
2004 http:/iwww.hum.aau.dk/"ulrikp/pdf/petersen-emdros-COL ING-2004pdf,
Accessonline August 2004

(Rohde 04) Doudas L. T. Rohde. Tgrep2 user manual, version 112. Available
online http://tedlab.mit.edu dr/Tgrep2/tgrep2.pdf. Access Online April 2005
2004

(Voormann & Lezus 02) Holger Voormann and Wolfgang Lezus. TIGERIn -
Grafische Eingabe von Benutzeranfragen fur ein Baumbank-Anfragewerkzeug.
In Stephan Busemann, editor, Procealings der 6. Konferenz aur Verarbeitung
natirlicher Sprache (KONVENS 2002, pages 231-234 Saabriicken, 2002

216

This page left intentionally blank

[FSMINLP2005]

Principles, Implementation
Strategies, and Evaluation of a
Corpus Query System

Ulrik Petersen

2006

Published in: Yli-Jyrd, Anssi, Karttunen, Lauri and Karhuméki, Juhani (Eds.): Finite-
State Methods in Natural Language Processing; 5th International Workshop, FSMNL
2005, Helsinki, Finland, September 1-2, 2005, Revised Papers, Lecture Notes in Com-
puter Science, Volume 4002/2006, Springer-Verlag, Heidelberg, New York, pp. 215-
226

217

218

This page left intentionally blank

Principles, Implementation Strategies, and
Evaluation of a Corpus Query System

Ulrik Petersen

University of Aalborg
Department of Communication and Psychology
Kroghstraede 3
DK — 9220 Aalborg East, Denmark
ulrikp@hum.aau.dk
http://emdros.org/

Abstract. The last decade has seen an increase in the number of avail-
able corpus query systems. These systems generally implement a query
language as well as a database model. We report on one such corpus
query system, and evaluate its query language against a range of queries
and criteria quoted from the literature. We show some important prin-
ciples of the design of the query language, and argue for the strategy of
separating what is retrieved by a linguistic query from the data retrieved
in order to display or otherwise process the results, stating the needs for
generality, simplicity, and modularity as reasons to prefer this strategy.

1 Introduction

The last decade has seen a growth in the number of available corpus query
systems. Newcomers since the mid-1990ies include MATE Q4M [1], the Emu
query language [2], the Annotation Graph query language [3], TIGERSearch [4],
NXT Search [5], TGrep2 [6], and LPath [7].

Our own corpus query system, Emdros [8,9], has been in development since
1999. It is based on ideas from the PhD thesis by Crist-Jan Doedens [10]. It
implements a database model and a query language which are very general in
their applicability: Our system can be applied to almost any linguistic theory,
almost any linguistic domain (e.g., syntax, phonology, discourse) and almost
any method of linguistic tagging. Thus our system can be used as a basis for
implementing a variety of linguistic applications. We have implemented a number
of linguistic applications such as a generic query tool, a HAL! space, and a
number of import tools for existing corpus formats. As the system is Open
Source, others are free to implement applications for their linguistic problem
domains using our system, just as we plan to continue to extend the range of
available applications.

The rest of the paper is laid out as follows: First, we briefly describe the
EMdF database model underlying Emdros, and give an example of a database

! HAL here stands for “Hyperspace Analogue to Language,” and is a statistical method

based on lexical co-occurrence invented by Dr. Curt Burgess and his colleagues [11].

A. Yli-Jyra, L. Karttunen, and J. Karhuméki (Eds.): FSMNLP 2005, LNAT 4002, pp. 215-226, 2006
© Springer-Verlag Berlin Heidelberg 2006

219

220

1 2 3 4 5 6
S/12
id: 1 id: 2 id: 3 id: 4 id: 5 id: 6
Word surf.: John| surf.: talked surf.: of | surf.: coursg surf.: about surf.: politics|
s/11 pos: NProg pos: V pos: P |pos: N pos: P pos: N
parent: 7 | parent: 10 | parent: 9 parent: 9 | parent: 8 | parent: 8
id: 7 id: 9 id: 8
, Phrase| type: NP type: Unknown type: PP
NF"/? Vo parent: 11 parent: 12 parent: 10
h id: 10 id: 10
John Phrase type: V' type: V'
V/I2 Unknown/9 PP/8 parent: 11 parent: 11
‘ id: 11 id: 11
Clause| type=S type=S
talked of course about politics parent: 12 parent: 12
id: 12
Clause type=S

a. A tree with a discontiguous

clause, adapted from [12, p. 95]
b. A EMdF representation of the tree

Fig. 1. Two representation of a tree with a discontiguous clause

expressed in EMdF. Second, we describe the MQL query language of Emdros
and its principles. Third, we argue for the strategy of separating the process of
retrieving linguistic query results from the process of retrieving linguistic objects
based on such results for application-specific purposes. Fourth, we evaluate MQL
against a set of standard queries and criteria for corpus query languages culled
from the literature. Finally, we conclude the paper.

2 The EMdAF Database Model

To illustrate how data can be stored in Emdros, consider Fig. 1. It shows an
example of a discontiguous clause, taken from [12, p. 95], represented both as a
tree and as a database expressed in the EMdF database model.

At the top of Fig. 1.b. are the monads. A monad is simply an integer, and
the sequence of the monads defines the logical reading order. An object is a
(possibly discontiguous) set of monads belonging to an object type (such as
“Word”, “Phrase”, “Clause”), and having a set of associated attribute-values.
The object type of an object determines what attributes it has. For example,
the “Word” object type in Fig. 1.b has attributes “id”, “surface”, “pos” (part of
speech), and “parent”. The id is a database-widely unique number that identifies
that object. In the above database, this has been used by the “parent” attribute
to point to the immediately dominating node in the tree.

In the EMdF database model, object attributes are strongly typed. The
model supports strings, integers, ids, and enumerations as types for attributes,
as well as lists of integers, ids, and enumeration labels. Enumerations are simply
sets of labels, and have been used for the Word.pos, Phrase.type, and Clause.type

attributes in the figure.? Real-number values are under implementation, and will
be useful for, e.g., acoustic-signal timelines.

3 The MQL Query Language

The MQL query language of Emdros is a descendant of the QL query language
described in [10]. Like QL, it is centered around the concept of “blocks”, of which
there are three kinds: “Object blocks”, “gap blocks”, and “power blocks”.

An “Object block” finds objects in the database (such as phonemes, words,
phrases, clauses, paragraphs, etc.) and is enclosed in [square brackets]. For ex-
ample, the query [Word surface="saw"] will find Word objects whose surface
attribute is “saw”, whereas the query [Phrase type = NP and function =
Subj] will find phrases whose phrase type is NP and whose function is Subject.
Of course, this presupposes an appropriately tagged database. The attribute-
restrictions on the object are arbitrary boolean expressions providing the prim-
itives “AND”, “OR”, “NOT”, and “grouping (parentheses)”. A range of com-
parison-operators are also provided, including equality, inequality, greater-than
(or equal to), less than (or equal to), regular expressions (optionally negated),
and IN a disjoined list of values. For lists, the HAS operator looks for a specific
value in the list.

A “gap block” finds “gaps” in a certain context, and can be used to look
for (or ignore) things like embedded relative clauses, postpositive conjunctions,
and other material which is not part of the surrounding element. A gap block is
specified as [gap ...] when obligatory, and as [gap? ...] when optional.

A “power block” is denoted by two dots (“..”), and signifies that there can
be arbitrary space between the two surrounding blocks. However, this is always
confined to be within the limits of any context block.

The power block can optionally have a restriction such as “.. <= 5”7 or “..
BETWEEN 3 AND 6” meaning respectively that the “space” can be between zero
and five “least units” long, or that it must be between 3 and 6 “least units” long.
Precisely what the “least unit” is, is database-dependent, but is usually “Word”
or “Phoneme”.?

The MQL query language implements the important principle of topographic-
ity described in [10], meaning that there is an isomorphism between the structure
of the query and the structure of the objects found. The principle of topographic-
ity works with respect to two important textual principles, namely embedding
and sequence.

As an example of topographicity with respect to embedding, consider the
query Q1 in Fig. 3 on page 8. This query finds sentences within which there is
at least one word whose surface is “saw”. The “[Word surface="saw"]” object

2 The “dot-notation” used here is well known to programmers, and is basically a
possessive: “Word.pos” means “the pos attribute of the Word object-type”.

3 This is an example of the generality of the EMdF database model, in that it supports
many different linguistic paradigms and methods of analysis.

221

222

block is embedded in the “[Sentence ...]” object block. Because of the prin-
ciple of topographicity, any Word objects found must also be embedded in the
Sentence objects found.

Similarly, in Query Qb in Fig. 3, the two inner [Syntax level=Phrase ...]
object blocks find Syntax objects that immediately follow each other in sequen-
tial order, because the object blocks are adjacent. “Being adjacent” here means
“not being separated by other blocks” (including a power block). There is a
caveat, however. The default behavior is to treat objects in the database as “be-
ing adjacent” even if they are separated by a gap in the surrounding context.
For examle, in Query Q5, if the surrounding Sentence object has a gap between
the NP and the VP#, then that query will find such a sentence due to the default
behavior. If this is not the desired behavior (i.e., gaps are not allowed), one can
put the “!” (bang) operator in between the object blocks, as in Query Q4 in
Fig. 3. This will require the objects found by the object blocks surrounding the
bang to be strictly sequential.

An object block can be given the restriction that it must be first, last, or
first and last in its surrounding context. An example using the last keyword
can be seen in Query Q3 in Fig. 3.

The object retrieved by an object block can be given a name with the AS
keyword. Subsequent object blocks can then refer back to the named object. An
example can be seen in Query Q5 in Fig. 3, where the dominating Syntax object
is named AS S1. The dominated phrase-level Syntax object blocks then refer
back to the dominating object by means of the “possessive dot notation” men-
tioned previously. Obviously, this facility can be used to specify both agreement,
(immediate) dominance, and other inter-object relationships.

The NOTEXIST operator operates on an object block to specify that it must
not exist in a given context. An example can be seen in Query Q2 in Fig. 3, where
the existence of a word with the surface “saw” is negated. That is, the query
finds sentences in which the word “saw” does not occur.

Notice that this is different from finding sentences with words whose surface
is not “saw”, as the query [Sentence [Word surface<>"saw"]] would find.
Relating this to First Order Logic, the NOTEXIST operator is a negated exis-
tential quantifier —3 at object level, whereas the <> operator is a negated equality
operator # at object attribute level. If the NOTEXIST operator is applied to an
object block, the object block must be the only block in its context.

The Kleene Star operator also operates on an object block, and has the usual
meaning of repeating the object block zero or more times, always restricted to
being within the boundaries of any surrounding context block. For example, the

query

[Sentence
[Word pos=preposition]
[Word pos IN (article,noun,adjective,conjunction)]*

]

4 As argued by [12], the sentence “John, of course, talked about politics” is an example
of an element with a gap, since “of course” is not part of the surrounding clause.

would find the words of many prepositional phrases, and could be used in a
stage of initial syntactic markup of a corpus. The Kleene Star also supports
restricting the number of repetitions with an arbitrary set of integers. For ex-
ample: [Phrase]*{0,1} means that the Phrase object may be repeated 0 or 1
times;? [Clause]*{2-4} means that the Clause object may be repeated 2, 3, or
4 times; and any set of integers can be used, even discontiguous ones, such as
[Phrase] *{0-3,7-9,20-}. The notation “20-" signifies “from 20 to infinity”.

An OR operator operating on strings of blocks is available. It means that one
or both strings may occur in a given context. An example is given in Query Q7
in Fig. 3.

MQL has some shortcomings, some of which will be detailed later. Here we
will just mention four shortcomings which we are working to fix, but which time
has not allowed us to fix yet. We have worked out an operational semantics for
the following four constructs: AND between strings of blocks (meaning that both
strings must occur, and that they must overlap);® Grouping of strings of blocks;
and general Kleene Star on strings of blocks (the current Kleene Star is only
applicable to one object block). A fourth operator can easily be derived from
the existing OR construct on strings of blocks, namely permutations of objects.

4 Retrieval of Results

When querying linguistic data, there are often three distinct kinds of results
involved:

1. The “meat”, or the particular linguistic construction of interest.

2. The context, which is not exactly what the user is interested in, but helps
delimit, restrict, or facilitate the search in some way. For example, the user
may be interested in subject inversion or agentless passives, but both require
the context of a sentence. Similarly, the user may be interested in objects
expressed by relative pronouns combined with a repeated pronoun in the
next clause, which might require the presence of intervening, specified, but
otherwise non-interesting material such as a complementizer.” In both cases,
the user is interested in a specific construction, but a certain context (either
surrounding or intervening) needs to be present. The context is thus neces-
sary for the query to return the desired results, but is otherwise not a part
of the desired results.

3. The postprocessing results which are necessary for purposes which are
outside the scope of the search.

To illustrate, consider the query Q2 in Fig. 3. For display purposes, what
should be retrieved for this query? The answer depends, among other things,

5 Notice that this supports optionality in the language; that the phrase object appears
0 or 1 times is equivalent to saying that it is optional.

S This is precisely what is needed for querying overlapping structures such as those
found in speech data with more than one speaker, where the speaker turns overlap.

" E.g., “He gave me a ring, which, I really don’t like that it is emerald.”

223

224

on the linguistic domain under consideration (syntax, phonology, etc.), the lin-
guistic categories stored in the database, the purposes for which the display is
made, and the sophistication of the user. For the domain of syntax, trees might
be appropriate, which would require retrieval of all nodes dominated by the sen-
tence. For the domain of phonology, intonational phrases, tones, pauses, etc. as
well as the phonemes dominated by the sentence would probably have to be
retrieved. As to purpose, if the user only needed a concordance, then only the
words dominated by the sentence need be retrieved, whereas for purposes requir-
ing a full-fledged tree, more elements would have to be retrieved. The level of
sophistication of the user also has a role to play, since an untrained user might
balk at trees, whereas keywords in context may be more understandable.

Similarly, for statistical purposes, it is often important to retrieve frequency
counts over the entire corpus to compare against the current result set. These
frequency counts have nothing to do with the answer to the original query, but
instead are only needed after the results have been retrieved. They are, in a
very real sense, outside the scope of the query itself: The user is looking for a
particular linguistic construction, and the corpus query system should find those
constructions. That the post-query purpose of running the query is statistical
calculations is outside the scope of the query, and is very application-specific.

Thus what is asked for in a linguistic query is often very different from
what needs to be retrieved eventually, given differences in linguistic domain,
categories in the database, purpose of display, and sophistication of the user.
Therefore, in our view, it is advantageous to split the two operations into sep-
arate query language constructs. The subset of the query language supporting
linguistic querying would thus be concerned with returning results based on what
is asked for in a linguistic query, whereas other subsets of the query language
would be concerned with retrieving objects based on those results for display-
or other purposes.

This separation, because it is general, supports a multiplicity of linguistic
applications, since the concern of linguistic querying (which is common to all lin-
guistic query applications) is separated from the concern of querying for display-,
statistical, or other purposes (which are specific to a given application). More-
over, it shifts the burden of what to retrieve based on a given query (other
than what is being asked for) off the user’s mind, and onto the application, thus
making the query language simpler both for the user and for the corpus query
system implementor. Finally, this strategy lends itself well to modularization
of the query language. That modularization is good, even necessary for correct
software implementation has long been a credo of software engineering.®

5 Evaluation

Lai and Bird [13] formulate some requirements for query languages for treebanks.
They do so on the backdrop of a survey of a number of query languages, including

8 Emdros adheres to this modular principle of separation of concerns between corpus
query system and a particular linguistic application on top of it.

Q1. Find sentences that include the word ‘saw’.

Q2. Find sentences that do not include the word ‘saw’.

Q3. Find noun phrases whose rightmost child is a noun.

Q4. Find verb phrases that contain a verb immediately followed by a noun phrase that
is immediately followed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a noun phrase followed by a verb
phrase.

Q6. Find a noun phrase which dominates a word dark that is dominated by an inter-
mediate phrase that bears an L-tone.

Q7. Find a noun phrase dominated by a verb phrase. Return the subtree dominated
by that noun phrase.

Fig. 2. The test queries from [13], Fig. 1

TGrep2, TIGERSearch, the Emu query language, CorpusSearch, NXT Search,
and LPath. Lai and Bird set up a number of test queries (see Fig. 2) which are
then expressed (or attempted expressed) in each of the surveyed query languages.
For all query languages surveyed, it is the case that at least one query cannot
be correctly expressed.

The queries are attempted expressed in MQL as in Fig. 3. Query Q1 is triv-
ial, and performs as expected. Query Q2 has already been explained above, and
deserves no further comment. The constraint of query Q3 that the noun must be
the rightmost child is elegantly expressed by the “last” operator on the noun.

In query Q4, the verb, the NP, and the PP are not separated by power blocks
(“..”) and so must immediately follow each other. As mentioned above, gaps
are ignored unless the “bang” operator (“!”) is applied in between the object
blocks. Since the query specification explicitly mentions “immediately followed
by”, we have chosen to insert this operator. Of course, if the default behavior is
desired, the bang operator can simply be left out.

Query Qb fails to yield the correct results in some cases because it presup-
poses that the “first common ancestor” is the immediate parent, which it need
not be. Had the “parent=S1.id” terms been left out of the conjunctions, the
query would have found all ancestors, not just the immediate ancestor. It is a
shortcoming of the current MQL that it is not easy to express other relationships
than “general ancestry” and “immediate ancestry”.

Query Qb5 also presupposes a different database structure than the other
queries: In the database behind Q5, all syntax-level objects have been lumped
together into one “Syntax” type. This “Syntax” type has a “level” attribute
specifying the linguistic level at which the element occurs (Phrase, Clause, etc.),
as well as other attributes.

This reorganization of the database is necessary for Q5 because it does not
specify what level the dominating node should be at (Phrase, Clause, or Sen-
tence). It is a limitation in Emdros that it can only handle one, explicit type for
each object block.

225

226

Q1. [Sentence Q5.7 [Syntax AS S1
[Word surface="saw"] [Syntax level=Phrase AND type=NP
1 AND parent=S1.id]
Q2. [Sentence [Syntax level=Phrase AND type=VP
NOTEXIST [Word AND parent=S1.id]
surface="saw"]]
] Q6.7 [Intermediate tone="L-"
Q3. [Phrase type=NP [Phrase type=NP
[Word last pos=noun] [Word surface="dark"]
]]
Q4. [Phrase type=VP]
[Word pos=verb]! Q7. [Phrase type=VP
[Phrase type=NP]! [Phrase type=NP AS npl
[Phrase type=PP] [Phrase parents HAS npl.id
] [Word]
1 OrR

[Word parent=npl.id]

]
Fig. 3. MQL queries for Q1-Q7

For some lingusitic databases, query Q6 would fail to retrieve all possible
instances because it assumes that the NP is wholly contained in the Intermediate
Phrase. But as [14, p. 176] reports, this is not always true.”

Query Q7 not only needs to specify context, but also to retrieve the sub-
tree, presumably for display- or other purposes, since it is not part of what is
being asked for (i.e., the “meat”). As mentioned in Sect. 4, Emdros adheres to a
different philosophy of implementation. While it is possible in MQL to retrieve
exactly whatever the user wants, the algorithm for doing so would in most cases
be split between retrieving linguistic results and using other parts of the query
language for retrieving objects for display-purposes.

The Q7 query nevertheless fulfills its purpose by retrieving all phrases domi-
nated by the NP together with the words they contain, OR all words immediately
dominated by the NP. Thus, Emdros is able to fulfill the purpose of the query
even though Emdros was not designed for such use.

Lai and Bird go on from their survey to listing a number of requirements
on linguistic query languages. The first requirement listed is “accurate specifi-
cation of the query tree”. Lai and Bird give eight subtree-matching queries, all
of which can be expressed in MQL (see Fig. 4). Query number 5 would require
the employment of the technique used for query Q5 in Fig. 3 of using a single
object type for all syntax objects, using an attribute for the syntactic level, then
leaving out the level from the query.

9 The example given there is an intermediate phrase boundary between adjectives and
nouns in Japanese — presumably the adjective and the noun belong in the same NP,
yet the intermediate phrase-boundary occurs in the middle of the NP.

1. Immediate dominance: A dominates B, A may
dominate other nodes.

2. Positional constraint: A dominates B, and B is the
first (last) child of A.

3. Positional constraint with respect to a label: A
dominates B, and B is the last B child of A.

4. Multiple Dominance: A dominates both B and C,
but the order of B and C is unspecified.

5. Sibling precedence: A dominates both B and C, B
precedes C; A dominates both B and C, B immedi-
ately precedes C, and C is unspecified.

6. Complete description: A dominates B and C, in
that order, and nothing else.

7. Multiple copies: A dominates B and B, and the
two Bs are different instances.

8. Negation: A does not dominate node with label B.

[A AS al [B parent=A1.id]]

[A [B first]] or:
[A [B last]]

[A [B last]]

(A [B]..[c] OR [C]..[B]]

precedes: [A [BI..[C]]
immediately precedes:
[A [BI[CI] or [A [BI![CI].
[A as a1l
[B first parent=al.id]!
[B last parent=al.id]
]

[A [B]..[B]]

[A NOTEXIST [B] 1]

Fig. 4. Subtree queries in the MQL query language, after Lai and Bird’s Fig. 9

Another requirement specified by Lai and Bird is that of reverse navigation,
i.e., the need to specify context in any direction. MQL handles this gracefully,
in our opinion, by the principle of topographicity with respect to embedding
and sequence. Using this principle, any context can be specified in both vertical

directions, as well as along the horizontal axis.

Lai and Bird then mention non-tree navigation as a requirement. They give
the example of an NP being specified either as “[NP Adj Adj N]” or as “[NP
Adj [NP Adj NJJ”, the latter with a Chomsky-adjoined NP inside the larger NP.
MQL handles querying both structures with ease, as seen in Fig. 5. Note that the
query in Fig. 5.a. would also find the tree in Fig. 5.b. Thus non-tree navigation

is well supported.

[Phrase type=NP

[Phrase type=NP

[Word first pos=adjectivel

NP [Word fl_rs(;:‘ tive] S [Phrase last type=NP
PN pos=ac)ective Ad NP [Word first pos=adjective]
Adj Adj N [Word pos=adjective] Ad»/\N [Word last pos=noun]
[Word last pos=noun])
!]
a. Flat structure b. Chomsky-adjoined structure

Fig. 5. Queries on NP structure

227

228

Furthermore, Lai and Bird mention specification of precedence and immedi-
ate precedence as a requirement. MQL handles both with ease because of the
principle of topographicity of sequence. General precedence is signified by the
power block (“..”), whereas immediate precedence is signified by the absence
of the power block, optionally with the bang operator (“!”).

Lai and Bird then discuss closures of various kinds. MQL is closed both under
dominance (by means of topographicity of embedding) and under precedence
and sibling precedence (by means of topographicity of sequence, as well as the
power block and the AS keyword, which separately or in combination can be used
to specify closures under both relationships). MQL is also closed under atomic
queries involving one object (by means of the Kleene Star).!®

Lai and Bird discuss the need for querying above sentence-level. Since the
EMAF database model is abstract and general, the option exists of using ordered
forests as mentioned by Lai and Bird. The MQL query language was designed
to complement the EMdF model in its generality, and thus querying over or-
dered forests is well supported using the principle of topographicity of sequence
combined with the AS construct. Thus the MQL language is not restricted to
querying sentence-trees alone, but supports querying above sentence-level.

Another requirement mentioned by Lai and Bird is that of integration of
several types of lingusitic data, in particular using intersecting hierarchies and
lookup of data from other sources. The EMdF model supports intersecting hi-
erarchies well. MQL, however, because of the principle of topographicity of em-
bedding and the lack of an AND construct between strings of blocks, does not
currently support querying of intersecting hierarchies very well, as illustrated by
the failure of Query Q6 in Fig. 3 to be correct. Thus Emdros currently falls short
on this account, though an AND construct is planned.

There is also currently a lack of support for querying data from other sources.
However, this can be implemented by the application using Emdros, provided
the data from other sources can be known before query-time and can thus be
written into the query. This would, of course, presuppose that the application
does some kind of rewriting of the query made by the user.

The final requirement mentioned by [13] is the need to query non-tree struc-
ture. For example, the TIGER Corpus [15] includes secondary, crossing edges,
and the Penn Treebank includes edges for WH-movement and topicalization
[16]. MQL handles querying these constructions by means of the AS keyword
and referencing the ID of the thus named object, as in Query Q5 in Fig. 3.

6 Conclusion and Further Work

We have presented the EMdF database model and the MQL query language of
our corpus query system, Emdros. We have shown how the data to be retrieved
for display-, statistical, or other purposes can often be different from what is
asked for in a linguistic query, differentiating between “meat”, “context”, and

10 Once we have implemented the general Kleene Star on strings of blocks, MQL will
be closed under atomic queries involving more than one block.

“postprocessing results”. On the basis of this distinction, we have argued for
the strategy of separating the process of lingusitic querying from the process of
retrieval of data for display- or other purposes. This implementation strategy of
separation of concerns gives rise to the benefits of generality of the language (and
thus its applicability to a wide variety of linguistic applications), simplicity of
the language (and thus ease of use for the user), and modularity (and thus ease
of implementation, maintainability, and attainment of the goal of correctness for
the system implementor). Finally, we have evaluated MQL against the queries
and requirements of [13], and have shown MQL to be able to express most of
the queries, and to meet most of the requirements that [13] puts forth.

However, Emdros falls short on a number of grounds. First, although its
database model is able to handle intersecting hierarchies, its query language does
not currently handle querying these intersecting hierarchies very well. This can
be fixed by the inclusion of an AND operator between strings of object blocks.
Second, a general Kleene Star is lacking that can operate on groups of (option-
ally embedded) objects. Third, the query language currently only supports one,
explicit object type for any given object block. This can be fixed, e.g., by in-
troducing true object orientation with inheritance between object types. Fourth,
the system currently does not support real numbers as values of attributes of ob-
jects, which would be very useful for phonological databases. Fifth, it is currently
not easy to express other, more specific dominance relationships than immediate
dominance and general dominance. As has been described above, the removal of
most of these shortcomings is planned.

Thus Emdros is able to meet most of the requirements being placed on today’s
linguistic query systems. We have not here fully explored its applicability to
phonological or discourse-level databases, since [13] concentrated on treebanks,
but that is a topic for a future paper.

References

1. Mengel, A.: MATE deliverable D3.1 — specification of coding workbench: 3.8
improved query language (Q4M). Technical report, Institut fiir Maschinelle
Sprachverarbeitung, Stuttgart, 18. November (1999)

2. Cassidy, S., Bird, S.: Querying databases of annotated speech. In Orlowska, M., ed.:
Database Technologies: Proceedings of the Eleventh Australasian Database Con-
ference, volume 22 of Australian Computer Science Communications, Canberra,
Australia. IEEE Computer Society (2000) 12-20

3. Bird, S., Buneman, P., Tan, W.C.: Towards a query language for annotation graphs.
In: Proceedings of the Second International Conference on Language Resources and
Evaluation. European Language Resources Association, Paris (2000) 807-814

4. Lezius, W.: TIGERSearch — ein Suchwerkzeug fiir Baumbanken. In Busemann,
S., ed.: Proceedings der 6. Konferenz zur Verarbeitung natirlicher Sprache (KON-
VENS 2002), Saarbriicken. (2002) 107-114

5. Heid, U., Voormann, H., Milde, J.T., Gut, U., Erk, K., Pado, S.: Querying both
time-aligned and hierarchical corpora with NXT Search. In: Fourth Language
Resources and Evaluation Conference, Lisbon, Portugal, May 2004. (2004)

229

230

10.

11.

12.

13.

14.

15.

16.

Rohde, D.LL.T.: TGrep2 user manual, version 1.12. Available for download online
http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf. Access Online April 2005 (2004)
Bird, S., Chen, Y., Davidson, S., Lee, H., Zheng, Y.: Extending XPath to support
linguistic queries. In: Proceedings of Programming Language Technologies for XML
(PLANX) Long Beach, California. January 2005. (2005) 35-46

Petersen, U.: Emdros — A text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004, 20*" International Conference on Computa-
tional Linguistics, August 23" to 27", 2004, Geneva, International Commitee on
Computational Linguistics (2004) 1190-1193 http://emdros.org/petersen-emdros-
COLING-2004.pdf.

Petersen, U.: Evaluating corpus query systems on functionality and speed:
Tigersearch and emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387-391 ISBN 954-91743-3-6.
Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi, Amsterdam
and Atlanta, GA. (1994)

Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments and Computers 28 (1996)
203-208

McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic
Inquiry 13 (1982) 91-106

Lai, C., Bird, S.: Querying and updating treebanks: A critical survey and re-
quirements analysis. In: Proceedings of the Australasian Language Technology
Workshop, December 2004. (2004) 139-146

Beckman, M.E., Pierrehumbert, J.B.: Japanese prosodic phrasing and intonation
synthesis. In: Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics. ACL (1986) 173-180

Brants, S., Hansen, S.: Developments in the TIGER annotation scheme and their
realization in the corpus I. In: Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain, May
2002. (2002) 1643-1649

Taylor, A., Marcus, M., Santorini, B.: The Penn treebank: An overview. In
Abeillé, A., ed.: Treebanks — Building and Using Parsed Corpora. Volume 20 of
Text, Speech and Language Technology. Kluwer Academic Publishers, Dordrecht,
Boston, London (2003) 5-22

231

[LREC2006]

Querying both Parallel and
Treebank Corpora: Evaluation of
a Corpus Query System

Ulrik Petersen

2006

Published in: Proceedings of International Language Resources and Evaluation Con-
ference, LREC 2006

232

This page left intentionally blank

233

Querying Both Parallel And Treebank Cor por a:
Evaluation Of A Corpus Query System

Ulrik Petersen

Department of Communicationand Psychology
University of Aalborg, Kroghstraade 3
9220Aaborg East, Denmark
ulrikp@hum.aau.dk

Abstract

The last decale has s2en alarge increase in the number of avail able corpus query systems. Some of these are optimized for a particular
kind o lingustic annaation (e.g., time-aligned, treebank, word-oriented, etc.). In this paper, we report on ou own corpus query system,
cdled Emdros. Emdrosisvery generic, and can be gplied to ailmost any kind d linguistic anndation wsing amost any linguistic theory.
We describe Emdros and its query language, showing some of the benefits that linguists can derive from using Emdros for their corpora.
We then describe the underlying database model of Emdros, and show how two corpora can be imported into the system. One of the
two isaparalée corpus of Hungarian and English (the Hundish corpus), whil e the other is atreeébank of German (the TIGER Corpus).
In order to evaluate the performance of Emdros, we then run some performance tests. It is shown that Emdros has extremely good
performance on“small” corpora (lessthan 1 milli onwords), and that it scdes well to corpora of many milli ons of words.

1. Introduction

The last decale has sen a large increase in the num-
ber of available corpus query systems. Systems such as
TGrep2 (Rohde, 2005, Emu (Cassdy and Harrington,
2001, TIGERSeach (Lezus, 2002; Lezus, 2002, NXT
Seach (Heid et a., 2004, Vigtoria, Xaira, Emdros, and
others have been implemented duing this time. Often,
these corpus query systems will spedalizein ore or two
kinds of corpora, such as time-aligned, treebank, parallel,
or word-oriented corpora; others are optimized for a partic-
ular sizeof corpus.

The value of a mrpus query system lies in its two-fold
ability to store and retrieve corpora — both the text and
its lingustic annaation. The query capability isimportant
for reseachers in bah theoreticd and computational li n-
guistics. Theoreticd linguists might be enabled to answer
theoreticd questions and badk up their claims with adual
usage rather than introspedive intuitions about language.
Computational li nguists are given a repository in which to
store their data in the short- or longterm, and are dso be-
ing gven query capabiliti es which might help them, e.g.,
test the acaracgy of a parser or pull up alist of al words
with spedfic properties.

In this paper, we present our own Corpus Query System,
cdled Emdrost. Emdrosisvery generic, andcan be gpplied
to almost any kind d lingustic annatation from almost any
lingustic theory. We show that when applied to parallel
corpora, many milli ons of words are eaily suppated with
quick exeautiontimes. When appli ed to treebanks, Emdros
performs extremely well for "small” corpora (lessthan 1
milli on words; see (Petersen, 2009), but performance is
also goodfor "large” corpora (many milli ons of words).
Therest of the paper islaid ou asfoll ows. First, we briefly
describe Emdros and the benefits a reseacher might reg
from using the software. Sewnd, we describe the EMdF
database model underlying Emdros. This sts the stage,

1See http://femdros.org/ and (Petersen, 2004 Pe-
tersen, 2005 Petersen, 2006to appea)

then, for describing hav the EMdF model has been applied
to two corpora, namely the Hundish corpus (Varga € al.,
2005, and the TIGER Corpus (Brants and Hansen, 2002
Brants et al., 1999. We then describe some experiments
used to evaluate the speed of Emdros based on these two
corpora, followed by the results of the experiments and an
evaluation o the results. Finally, we conclude the paper.

2. Benefits of Emdros

In this sdion, we briefly describe some of the charaderis-
tics and feaures of Emdros, as well as describing some of
the query language of Emdros.

Emdros has a four-layer architedure (see Fig. 1): At the
bottom, arelational DBMS lays the foundation, with bacdk-
ends for PostgreSQL, MySQL, and SQLite airrently im-
plemented. On top o that, a layer implementing the
EMdF database model is found The EMdF model is a
particular model of text which lends itself extremely well
to lingustic anndation, and is described in more detail
in the next sedion. On top o the EMdF layer, a layer
implementing the MQL query language is found MQL
is a “full accesslanguage”, feauring statements for cre-
ate/retrieve/update/delete onthe full range of the datatypes
made available in the EMdF model. The EMdF model
and the MQL query language ae descendants of the MdF
model and the QL query language described in (Doedens,
1999.

Ontop o the MQL layer, any number of linguistic gpplica
tions can be built. For example, the standard Emdros dis-
tribution comes with: a) a generic graphicd query applica-
tion; b) importersfrom Penn Treebank and NeGRA format
(with more importersto come); ¢) exportersto Annaation
Graph XML format and MQL; d) a console goplicationfor
accessng the feaures of MQL from the command-ling; €)
a graphicd “chunking-tod” for exemplifying hov to use
Emdros; f) and a number of toy applicaions showing lin-
guistic use, among cher toals.

Emdros has been deployed succes<ully in a number of
reseach projeds, e.g., a the Free University of Amster-

234

Emdros Query Tool
Other applications...

Importers...

MQL query layer

EMdF storage layer

Relational DB
(PostgreSQL, MySQL or SQLite)

— DB ——— Emdros ——— Applications

Figure 1. Emdrosarchitedure

dam (for a database of Hebrew), and at the Ingtitut de Re-
cerche en Informatique de Toulouse (for a concordancer-
application), anong ahers. Two companies have licensed
Emdros for inclusion in their software products, one of
which is Logeos Research Systems, using Emdrosto query
anumber of Biblicad Greek and Hebrew databases.
Emdros runs on Windows, Mac OS X, Linux, FreeBSD,
NetBSD, Sun Solaris, and ather operating systems, and hes
been implemented in a portable subset of C++. Language
bindings are available for Java, Perl, Python Ruby, and
PHP. It is being made available under the GNU General
Public License, but other licensing can be negotiated with
the author.

The retrieval-cgpabiliti es of the MQL query language ae
particularly powerful, and can be very useful to lingusts.
Examplesaregivenin Fig. 2 and Fig. 3.

MQL is centered around “blocks’ enclosed in “[square
brakets]”. There ae three kinds of blocks: Objed
blocks (which match ohjeds in the database); Gap Hocks
(which match “gaps’ in the database, e.g., embedded rel-
ative dauses); and power blocks (which match “arbitrary
stretches of monads’). The examples given in this paper
only use objed blocks; for more examples, please seethe
website.

The overruling principle of MQL is. “The structure of the
query mirrors the structure of the objedsfound', i.e., there
is an isomorphism between the structure of the query and
the inter-objed structure of the objeds found Thisiswith
resped to two key principles of text, both of which arevery
famili ar to lingusts, namely “sequence” and “embedding’.
For example, query Q1 in Fig. 3 simply finds “Root” ob-
jeds(i.e., “ Sentence” objeds) embedded within which there
is a “Token” objed whaose atribute “surface”is equal to
“sehen”.

Similarly, query Q4 finds “Nontermina” objeds of type
“NP” embedded within which we find: a) first a token of
type “VVFIN", then b) a Nonterminal of type “NP’, and
then c) aNonterminal of type “PP’. Thefad that thesethree

are placal after eath other impli es (because of the overrul-
ing principle of MQL) that the objeds foundmust occur in
that sequence.

Query Q9 shows how to use references between ohjeds
— the surroundng NP Nonterminal is labelled “AS p1”,
which eff edively givesthe objea anamewhich can beused
further down in the query. This is used in query Q9 to
ensure that the NP is the immediate parent of the objeds
foundembedded inside of it (the automaticdly generated
“self” attribute of any objed givesthe ID of that objea).
Query Q3 and Q9 show the “first” and “last” keywords —
meaning that the objed that bears such a designation must
be ather “first” or “last” in its surroundng context.
Queries Q2 and Q8 show the “NOTEXIST” operator. Asit
is currently implemented, the NOTEXIST operator means
that the following ojed must not exist in the surroundng
context from the point at which it is found onto the end o
the surroundng context. For example, in query Q8, once
the Token of type “NN” has been found there must not ex-
ist a Token of type “ADJA” or type “ADJD” after the “NN”
token, upto the end o the surroundngNP. Note that thisis
exstential negation at objed-levd (—3) — not negation of
equdity at the objed attribute level (#).

Various attribute-comparison operators are available, in-
cluding“=",“<>" (inequality)”, “<”, “>", “<=",“>="IN
aligt, regular expressons“™ ", and negated regular expres-
sions“!™ 7, among ahers. Queries H1-H4 in Fig. 2 illus-
tratetheregular expresson operator “~ ” for smple queries.
These examples, however do nd show the full range of ca
pabiliti esin MQL. For example, Kleene Star is not shown,
nor is the ORoperator between strings of objeds shown.
Thelatter suppats sachesfor permutationsof pasitionsof
objeds using ore query rather than several queries. MQL
isableto hande queries of any complexity, and the queries
shown here ae dl onthelow end o the scd e of complexity
which MQL can hande. For more information, consult ei-
ther the documentation onthe website? or (Petersen, 2004
Petersen, 2005 Petersen, 2006to apped).

3. The EMdF modd

The EMdF (Extended MdF) model derives from the MdF
(Monads dot Feaures) model described in (Doedens,
1994). There ae four basic concepts in the EMdF model,
which all derive from Doedens work: Monad, Objed, Ob-
jed Type, and Feaure. A monadis dmply an integer — no
more, no less An oljed is a set of monads, and belongs
to an Objea Type. The Objed Type groups objeds with
similar charaderigtics, e.g., Words, Phrases, Clauses, Sen-
tences, Documents, etc. The model isgenericin that it does
not dictate what Objed Typesto instantiate in any database
schema. Thus the database designer is freeto design their
lingustic database in ways that fit the particular lingustic
problemsat hand. The Objed Type of an Objed determines
what features (or attributes) it has. Thusadatabase designer
might chocse to let the “Word” objed type have feaures
cdled “surface”, “part_of _speed”, “lemma”, “gloss’, etc.
Or the database designer might choose to let the “Phrase”
objed type have feaures cdled “ phrase_type”, “function”,

“parent”, etc.

2http://lemdros.org

H1: [Sentence english ™ " is "]
H2: [Sentence english ™ " is " AND
english ~ " was "
]
H3: [Sentence english ™ " is " AND
english ™ " necessary "
]
H4: [Sentence english ™ " [li]s "
AND english © " [Ww]as "

]

Figure 2: Queries onthe Hundish corpus

The badkbore of the database is the string of monads (i.e.,
the integers: 1,2,3,... €tc.). As mentioned, an oljed is
a set of monads. The set is completely arbitrary, in that
it need na be contiguows, but can have abitrarily many
“gaps’. This suppatsthingslike enbedded clauses with a
surroundng clause of which it is not a part, discontiguows
phrases, or other discontiguous elements.

Thusfar, we have described the MdF model. The Extended
MdF (EMdF) model that Emdros implements adds some
additi onal concepts.

First, each ohed has an id_d, which is smply a database-
widely unique integer that uniquely identifies the objed.
Seaond, the datatypes that a feaure can take on includes:
strings, integers, id_ds, and enumerations (sets of labels),
aongwith lists of integers, lists of id_ds, and lists of enu-
merations.

Third, an objed type can be dedared to be one of three
range-classes. The range-classs are: a) “WITH SINGLE
MONAD OBJECTS’, b) “WITH SINGLE RANGE OB-
JECTS’, andc) “WITH MULTIPLE RANGE OBJECTS'".
The “SINGLE MONAD” range-classis for objed types
that will only ever have objeds that consist of a single
monad, e.g., Word-objed types. The “SINGLE RANGE”
range-class is for objed types that will only ever have
contiguows objeds, never objeds with gaps. Finaly, the
“MULTIPLE RANGE" range-classis for objed types that
will have objedsthat may (but need na) have gapsin them.
These range-classes are used for optimizaions in the way
the data is gored, and can lead to large performancegains
when used properly.

In the next sedion, we show how we have gplied the
EMdF model to the design o two Emdros databases for
two corpora.

4. Application

For the purposes of this evaluation, two corpora have been
imported into Emdros. One is the Hundish corpus (Varga
et a., 2005, whil e the other is the TIGER Corpus (Brants
and Hansen, 2002 Brantset a., 1999.

The TIGER Corpus has been imported from its instantia-
tionin the Penn Tredbank format, rather than its native Ne-
GRA format. That is, the secondary edges have been left
out, leaving orly “normal” tree alges and labels. Corefer-
encelabels have, however, been imported.

Each roat treegets imported into an oljed of type “Roat”.
This has been dedared “WITH SINGLE RANGE OB-
JECTS'.

235

Q1: [Root
[Token surface="sehen"]

]
Q2: [Root
NOTEXIST [Token surface="sehen"]

]
Q3: [Nonterminal mytype="NP"
[Token last mytype="NP"]

]

Q4: [Nonterminal mytype="VP"
[Token mytype="VVFIN"]!
[Nonterminal mytype="NP"]!
[Nonterminal mytype="PP"]

]
Q8: [Nonterminal mytype="NP"
[Token mytype="NN"]
NOTEXIST [Token mytype="ADJA"
OR mytype="ADJD"]
]
Q9: [Nonterminal AS pl mytype="NP"
[Token FIRST mytype="ART"
AND parent = pl.self

]
[Token mytype="ADJA"
AND parent = pl.self

]
[Token LAST mytype="NN"

AND parent = pl.self
]

Figure 3: Queriesonthe TIGER Corpus

Likewise, eat Norterminal (whether it be an Sor aPhrase)
gets imported into an oljed of type “Nontermina”. This
objed type has the feaures “mytype” (for the edge label,
such as“NP"), function (for the function, such as“ SUBJ'),
and “coref” (alist of id_ds pointing to coreferent nodes),
as well as a “parent” feaure (pointing to the id_d of the
parent).

Finally, eat terminal (whether it be aword or punctuation)
isimported as an oljed of type “Token”. This objed type
has the same feaures as the “Nonterminal” objed type,
with the adition o a “surface” feaure of type STRING,
showing the surfacetext of the token. The “Token” ob-
jea type hasbeen dedared “WITH SINGLE MONAD OB-
JECTS".

The Hundish corpus has been imported in a very simple
manner: Each sentence has been imported as a single ob-
jed, belongngto the objed type “Sentence”. This objed
type has only two feaures: “English” and “Hungarian”,
both of which are of type “STRING”. For eat sentence,
purctuation has been stripped, and ead word surrounced
by aspaceon bah sides. Thismakesfor easy seaching us-
ing regular expressons. Sincethere is no syntadic markup
for the Hundi sh corpus, having orly sentence-boundries,
it seemed natural to gather all words into a single string
rather than splitting them out into separate objeds. Asiit
turnsout, thisleadsto ahugeincreasein performance, sm-
ply because there ae fewer rows to query in the badend.
Each ohjed occupies exadly one monad in the monad-
strean, and so the objed type has been dedared “WITH

236

! PoslgreSéL -------
MySQL

SQLIte -meer
350 -]

200 -

150

Cumulative time in seconds for queries H1-H4

100

L L L L L
40000 50000 60000 70000 80000

Tokens in thousands

50 L L
10000 20000 30000 90000

| 1000Tokens | H1 | H2 | H3 | H4 |
16531 | 653 | 7625] 7.74 62
33063 | 13345 | 16095 | 16085 | 1191
49595 | 2108 | 23705 | 2358 | 18565
66127 26.99 3049 | 32375 | 24785
82659 3398 | 42485 | 40245 | 31275
Table 1: Average times in seands for SQLite on the
Hundish corpus
[Ioo0Tokens | Q1 [Q2] Q] Q4] Q8] Q9]
712 | 047 | 080 | 191] 117 | 337] 240
2849 1.80 3.00 7.54 4.39 1255 9.03
8547 5.37 9.16 2297 | 1275 36.56 27.64
17095 | 1109 | 17.56 4552 | 26.77 77.66 54.48
25643 | 1697 | 2683 | 7264 | 4368 | 11772 | 8476
34191 | 2562 | 3652 | 10563 | 7135 | 17580 | 12978
Table 2: Average times in seands for SQLite on the

Figure 4: Times for

al queries added

together on the

TIGER corpus

SINGLE MONAD OBJECTS'.

5. Experiments

In order to test the scdabilit y of Emdros, both corporahave
been concaenated a number of times: The Hundish cor-
pus has been concaenated so as to yield the corpus 1-5
times (i.e., with 0-4 concaenation operations), while the
TIGER Corpushasbeen concaenated so asto yield the cor-
pus4, 12, 24, 36, and 48times. There ae 712,332tokens
and 337881syntadic objedsontopin the TIGER corpus,
yielding 3419 milli on tokens and 1622 milli on syntadic
objedsin the cae where the corpus has been concatenated
47 times. For the Hundish corpus, there ae 852,334 sen-
tences in two languages totalling 16531968 tokens. For
the case where the arpus has been concatenated 4 times,
thisyields 81.09 milli ontokens and 4.26 milli on sentences.
A number of queries have been run oneither corpus. They
areshowninFig. 2 for the Hundish corpusandin Fig. 3 for
the TIGER Corpus. For the TIGER Corpus, queries Q1-Q4
have been adapted from (Lai and Bird, 2004).

The performance of Emdros has been tested by runningall
queriesin sequence, twicein arow ead (i.e., Q1, Q1, Q2,
Q2, etc.). The queries have been run twice so as to guard
against bias from other system proceses. This has been
dore on a Linux workstation running Fedora Core 4 with
3GB of RAM, a 7200RPM ATA-100 terddrive, and an
AMD Athlon64 3208 procesr. The queries have been
run against ead of the concatenated databases.

For eat database, a number of queries have been run
against the database before speed measurements have taken
place in order to prime any file system cades and thus
get uniform results® In a production environment, the
databases would na be queried “cold”, but would be &
least partialy caded in memory, thus this g¢ep ensures
production-like condtions.

6. Results

The results of the experiments can be seen in Figures 4-5,
Fig. 4 shows the time for queries H1-H4 added together on

3The queries used for “priming’” were: H1 for the Hundish
corpus; and Q2, Q4, and Q8 for the TIGER Corpus.

Hundi sh corpus

1600 T T T T

T
PostgreSQL -------
MySOL =--veeer
SQLite
1400 1

1200 e

1000

Time in seconds
©
S
3
T

1 1 1 1
15000 20000 25000 30000

Tokens in thousands

1
10000 35000

Figure 5: Times for al queries added together on the
TIGER corpus

the Hundish corpus. Fig. 5 shows the same for the queries
onthe TIGER Corpus. Figures 6, 7, and 8 show the times
of theindividual queriesonthe TIGER Corpus for SQL ite,
MySQL, and PostgreSQL respedively. The average times
for eath query can be seen for SQL ite onthe Hundi sh cor-
pusin Table 1, andfor SQLite onthe TIGER Corpusin Ta-
ble 2. The distribution d times is smilar for PostgreSQL
and MySQL, and so these times are not shown as tables,
only asgraphs.

7. Evaluation

As can be seen from Table 2, Emdros performs extremely
well onthe singleinstanceof the TIGER corpus (712 x 103
words), runnng the most complex query, Q8, in lessthan
3.5 sewnds. Thisis typicd of Emdros performance on
“small” corpora of lessthan a milli on words. For further
detail s, please see(Petersen, 2005.

As can be seen from a comparison o Table 1 and Table
2, the query times for the Hundi sh corpus are significantly
lower per token queried than for the TIGER corpus. Thisis
because of the differencesin the way the EMdF databases
for the two corpora have been designed: The Hundi sh cor-
pus has been gathered into far fewer RDBM S rows than the

180 T T T T T

160 |

140 q
120 | e P
100

80 -

Time in seconds

60 |

40 +

20

0 1 1 1 1
) 5000 10000 15000 20000 25000 30000 35000

Tokens in thousands

Figure 6: TIGER SQL ite exeaitiontimes

250 T T T T T T

200 + Q8 A

Time in seconds

2 i
0 5000 10000 15000 20000 25000 30000 35000

Tokens in thousands

Figure 7: TIGER MySQL exeautiontimes

TIGER Corpus, in that ead sentence becomes one row as
is the cae for the Hundish corpus, rather than one token
bemming orerow asis the case for the TIGER corpus. In
additi on, there is no linguistic information associated with
eadt word in the Hundish corpus. These two fadors mean
that the storage overhead per token is sgnificantly lessfor
the Hundish corpus. Thisis the reason for the dramaticd
differencein query times between the two corpora.

250 T T T T T

200 |

150 R R

Time in seconds

100 |

50 |

22
0 L 1
0 5000 10000 15000 20000 25000 30000 35000
Tokens in thousands

Figure 8: TIGER PostgreSQL exeautiontimes

237

Itwill benoted, however, that the TIGER corpus, becaiseit
isatredoank, suppats sgnificantly more advanced queries
than the Hundish corpus. Also, query Q1 onthe TIGER
corpus is only marginally more alvanced than query H1
on the Hundish corpus, in that both queries query for the
existence of a single word, the only diff erence being that
query Q1 also retrievesthe structurally enclosing Roat (i.e.,
Sentence) objed. Moreover, if we extrapolate the SQLite
query time for query Q1 linealy (see Table 2) up to the
size of the biggest concaenation o the Hundish corpus
(82 milli on), we get an exeautiontime of 25.62 x 52939 —
61.93, whichisonly rougHy twicethe exeautiontime of H1
(33.98).* Thus the added complexity of the TIGER corpus
only lowers performance by a fador of rougHy 2, while
adding many complex query capabiliti es, as exemplified by
query Q9.

As can be seen from Fig. 4, which shows the times of
al queries added together for the Hundi sh corpus, perfor-
mance on the Hundish corpusis very linea in the number
of tokens queried.

The same is amost true for the TIGER corpus, as can be
seen from Fig. 5, which shows the times of all queries
added together for the TIGER corpus. However, here the
curves auffer a bend after 25 milli on tokens — at least on
PostgreSQL and SQL ite, while MySQL stays linea even
up to 34 million words. It is our estimation that tuning
PostgreSQL's memory usage, and increasing the amourt of
RAM avail able to SQL ite, would change this picture badk
to linea for these two databases, even beyond 25milli on
tokens queried.

Ascan be seen from Fig. 6, which shows the time taken for
individual queries on SQLite, it is the case that the aurve
suffersabend onall queriesafter 25 milli ontokens queried.
The sameis true for PostgreSQL, as can be seen from Fig.
8. On MySQL, however, al queriesare linea even beyond
25 milli on, except for query Q9, which strangely shows
better-than-linea performance dter 25 milli on words, as
can be seen in Fig. 7. We have no explanation for this phe-
nomenonat this paint.

It is curious that query Q8 is uniformly slower than query
Q9 acossthe threebadkend databases, even though qery
Q8 islesscomplex than query Q9 in the number of query
terms. Thisis probably becaise query Q8 finds more than
12.58 times the number of “hits’ than query Q9°, and so
hasto domore memory-house-keeping, aswell asdumping
more results afterwards.

8. Conclusion and further work

Corpus query systems are of grea value to the Language
Resources community. In this paper, we have presented
our own corpus query system, cdled Emdros, and heve de-
scribed its architedure, its MQL query language, and its
underlying EMdF database model. We have then shown
how one can apply the EMdF database model to two kinds

4AsFig. 6 shows, we aenot completely justified in extrapol at-
ing linealy, since query Q1 (as well as the other queries) show a
small but significant nortlinea bend in the aurve ter 25 milli on
words queried. However, thisbend is very small for query Q1.

53,843312for Q8 vs. 305472 for Q9 onthe 34 milli on-word
corpus.

238

of corpora, one being a parallel corpus (the Hundish cor-
pus) and the other being a treebank (the TIGER corpus).
We have then described some experiments on the two cor-
pora, in which we have measured the exeautiontime of Em-
dros against the two corpora on a number of queries. The
corpora have been concatenated a number of times 0 asto
get more data to query. This has resulted in databases of
different sizes, upto 82milli onwordsfor the Hundi sh cor-
pusand upto 34milli ontokensfor the TIGER corpus. The
exeaution times have been plotted as graphs, which have
been shown, and seleded times have been shown as tables.
We have then discussed and evaluated the results. It has
been shown that exeautiontime is linea in the number of
tokens queried for the Hundish corpus, and realy linea
for the TIGER Corpus. It has also been shown that exeau-
tion times are extremely goodfor “small” corpora of less
than a milli on words, while exeaution time remains good
for “large” corpora of many milli ons of words.

We plan to extend Emdros in variuos ways. For example:
Addingimportersfor more acorpusformats; Addingan AND
operator between strings of objed blocks; Adding automat-
icdly generated permutationsof blocks; Addingsuppat for
Kleene Star on goups of blocks rather than single blocks;
Extendingthe underlyingEMdF model to scade even better;
Adding ngam suppat diredly into the underlying EMdF
model; Adding lists of strings as a feaure-type; Adding
cading feaures which would suppat web-based applica-
tionsbetter; and addinga graphicd management tool in ad-
ditionto the existing graphicd query toal.

The goodexeaution times, couded with a query language
that is essy to read, easy to lean, and easy to uncerstand
while suppating very complex queries, makes Emdros a
goodchoice s atod for reseachers working with lingus-
tic corpora.

9. References

GaliaAngelova, KalinaBontcheva, Ruslan Mitkov, Nicolas
Nicolov, and Nikolai Nikolov, editors. 2005 Interna-
tiond ConferenceRecent Advancesin Natural Languag
Procesdng 2005 Procealings, Borovets, Bulgaria, 21-
23 Sgptember 2005 Shoumen, Bulgaria. INCOMA Ltd.
ISBN 954-917433-6.

Sabine Brants and Silvia Hansen. 2002 Developmentsin
the TIGER anndationscheme andtheir redizaionin the
corpus|. In Procealings of the Third Internationd Con-
ference on Languag Resources and Evaluation (LREC
2002, Las Palmas, Span, May 2002 pages 1643-1649
ELRA, European Language Resources Asociation.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
1999 Syntadic annatation df a German newspaper cor-
pus. In Procedalings of the ATALA Treebark Workshop,
pages 69-76 Paris, France

Steve Casddy and Jonathan Harrington. 2001 Multi-level
annatationin the Emu speed database management sys-
tem. Speed Comnunication, 33(1,2):61-77

Crist-Jan Doedens. 1994 Tex Databases: One Database
Model and S®veal Retrieval Languags. Number 14 in
Language and Compuiters. Editions Rodopg Amsterdam,
Amsterdam and Atlanta, GA. ISBN 90-5183729-1.

U. Heid, H. Voormann, JT Milde, U. Gut, K. Erk, and
S. Pado. 2004 Querying bah time-aligned and hierar-
chicd corpora with NXT Seach. In Fourth Languag
ResourcesandEvaluation Conference, Lisbon Portugd,
May 2004

Catherine Lai and Steven Bird. 2004 Queryingand upadit-
ing treebanks: A criticd survey and requirements analy-
sis. In Proceadings of the Australasian Languag Tech-
nology Workshop, Decenber 2004 pages 139-146

Wolfgang Lezus. 2002a. Ein Sichwerkzeug fur syntak-
tisch anndierte Texkorpora. Ph.D. thesis, Institut fur
Maschinell e Sprachverarbeitung, University of Stuttgart,
Deceanber. Arbeitspapiere des Instituts fur Maschinelle
Sprachverarbeitung(AIMS), volume 8, number 4.

Wolfgang. Lezus. 2002b TIGERSeach — ein Suchw-
erkzeug fur Baumbanken. In Stephan Busemann, ed-
itor, Procealings der 6. Konferenz arr \erarbeitung
natirlicher Sprache (KONVENS 2003, Saabriicken,
pages107-114

Ulrik Petersen. 2004 Emdros — a text database engine
for analyzed or annaated text. In Procealings of COL-
ING 2004 20" Internationa Conference on Computa-
tiond Lingustics, August 23™ to 27", 2004 Genewa,
pages 1190-1193International Commitee on Compu-
tational Lingustics. http://emdros.org/petersen-emdros-
COLING-2004pdf.

Ulrik Petersen. 2005 Evaluating corpus query systems on
functionality and speed: Tigersearch andemdros. In An-
gelova ¢ a. (Angelova & a., 2005, pages 387-391
ISBN 954-917433-6.

Ulrik Petersen. 2006 to appea. Principles, implementa
tion strategies, and evaluation of a corpus query system.
In Procealings of the FSMINLP 2005workshop, Ledure
Notes in Artificd Intelligence, Berlin, Heidelberg, New
York. Springer Verlag. Accepted for pulbication.

Dougas L. T. Rohce 2005 Tgrep2 user
manual, verson 115 Available online
http://tedlab.mit.edw”dr/Tgrep2/tgrep2.pdf.

Daniel Varga, Peter Halacsy, Andras Kornai, Viktor Nagy,
Laa6 Németh, and Viktor Tron. 2005 Paralel corpora
for medium density languages. In Angelova € al. (An-
gelova € a., 2005, pages 590-596 ISBN 95491743
3-6.

[CS-TIW2006]

Prolog+CQG:
A Maintainer’s Perspective

Ulrik Petersen

2006

Published in: de Moor, Aldo, Polovina, Simon and Delugach, Harry (Eds.): First Con-
ceptual Structures Interoperability Workshop (CS-TIW 2006). Proceedings. Aalborg
University Press, pp. 58-71.

239

240

This page left intentionally blank

Prolog+CG: A maintainer’s perspective

Ulrik Petersen

Department of Communication and Psychology
Aalborg University
Kroghstraede 3
DK — 9220 Aalborg East
Denmark
ulrikp@hum.aau.dk
http://prologpluscg.sourceforge.net

Abstract. Prolog+CG is an implementation of Prolog with Concep-
tual Graphs as first-class datastructures, on a par with terms. As such,
it lends itself well to applications in which reasoning with Conceptual
Graphs and/or ontologies plays a role. It was originally developed by
Prof. Dr. Adil Kabbaj, who in 2004 turned over maintainership of Pro-
log+CG to the present author. In this paper, Prolog+CG is described in
terms of its history, evolution, and maintenance. A special web-enabled
version of Prolog+CG is also described. Possible interoperability with
CGIF and the CharGer tool are explored. Finally, we offer some general
observations about the tenets that make Prolog+CG a success.

1 Introduction

Prolog+CG is an implementation of the Prolog programming language [1,2],
with extensions for handling the Conceptual Graphs of John Sowa [3-5] as well
as object-oriented extensions. It was first developed by Prof. Dr. Adil Kabbaj as
part of his doctoral studies at the University of Montreal in Canada. In 2004, Dr.
Kabbaj graciously turned over maintainership of Prolog+CG to the present au-
thor. Since then, Prolog+CG has had its home on the web at the SourceForge.Net
software-development collaboration site.! Prolog+CG is being used around the
world both in teaching-environments and in research. The software has, at the
time of writing, undergone 12 releases since maintainership was handed over to
the present author, and has enjoyed more than 1800 downloads in total.

The purpose of this paper is to offer insights from the current maintainer’s
perspective on the history, maintenance, development, and future of Prolog+CG.
The rest of the paper is laid out as follows. We first provide a bit of background
on the history of Prolog+CG, followed by a description of the current version.
We then offer a description of and reflection on the maintenance of Prolog+CG
since 2004. We then describe a web-enabled version of Prolog+CG which the
current maintainer has added to Prolog+CG as part of the development of the
software. We then explore how, in the future, Prolog+CG might interoperate

! See http://prologpluscg.sourceforge.net

241

242

with other software through the CGIF standard, and also how Prolog+CG might
interoperate with the CharGer tool. We then offer some general observations on
some of the tenets which make Prolog+CG a success. Finally, we conclude the
paper and describe future work.

2 History

Prolog+CG evolved out of work on the PROLOG++ system by Adil Kabbaj et
al. [6]. Dr. Kabbaj then in his PhD thesis [7] developed the system further. This
led to version 1.5, described in [8], further improved in [9]. The history thus far
can be traced in the publications cited and is thus not described further here.

After 2001, development almost halted, then at version 2.0. At the Uni-
versity of Aalborg, the present author and his colleagues, Henrik Schérfe and
Peter Qhrstrgm, became interested in using Prolog+CG as a basis for teaching
formalization of meaning as well as logic programming to 2°4 and 3'¢ year stu-
dents of humanistic informatics. We therefore developed some teaching materials
based on Prolog+CG? and its later successor, the Amine Platform?, also writ-
ten by Prof. Dr. Kabbaj.? In the spring of 2004, Aalborg University successfully
attracted Dr. Kabbaj to come to Aalborg to give a PhD course on Artificial
Intelligence. During Dr. Kabbaj’s time in Aalborg, he graciously agreed that he
would relicense Prolog+CG under an Open Source and Free Software license,
the GNU Lesser General Public License version 2.1 [12], and that he would turn
over maintainership of Prolog+CG to the present author.

The first release of Prolog+CG under the current maintainer was dubbed
version 2.0.1, and was released on July 5, 2004. At the time of writing, the
current version is 2.0.12, and version 2.0.13 is being prepared.

3 Description

In the following, we describe Prolog+CG as of version 2.0.12.

Consider Fig. 1. The screen is divided into five regions: From top to bottom:
The standard menu-bar and toolbar, the Program Area (in which the Prolog
program is written or loaded), the console (in which queries are entered and
answers given), and the standard status bar.

The “File” menu supports the standard “New”, “Open”, “Save”, “Save as”,
“Close”, and “Exit” operations. In addition, two operations are available which
enable the use of Prolog+CG as a HTML-embedded Java applet over the web
(see Sect. 5).

The “Edit” menu supports the standard copy-paste-cut operations, as well
as “go to line” (in the Program Area). The latter is useful when the compiler
flags an error, giving a particular line at which the error occurs.

2 See [10].
3 See http://amine-platform.sourceforge.net
4 We have recorded some of our experiences with the teaching materials in [11].

o Prolog+CG 2.0.12
File Edit Font Build Windows Help

D@ B & =@ 5/ 7 e s

The Main Frame - Prolog+CG File : fhome/ulrikp/PPCG-2.0.12... o

gr{act2,
[act: ask]-
-agnt->[person: Macbeth],
-thrmne- > [proposition = =
[act: see]-

-agnt->[person: pn_I]
-obj->[object: *x]-
-bfore->[person: pn_me)],
-type->[dagger]]).

g

?- conceptsPropiC).

{C = [act : see]} —

{C = [person : pn_IJ}

{C = [object]}

{C = [person : pn_me]}

C = [dagger]}

{C = [act : will_fight]}

{C = [person : pn_I]}

{C = [state = [act : hacked] -
-ptnt->[flesh] < -poss-[person : pr_rmy]-poss->[bone : {}],
-from->[bone : {}]I}

i

—3

4]

k/home/ulrikp/PPCG— 2.0.12/Samples/AAlJ{ macbeth.plgCG is open

Fig. 1. Screenshot of Prolog+CG.

The “Font” menu supports changing the size and bold/normal status of the
font of the current pane (either the Program Area or the console).

The “Build” menu supports compilation of the Prolog program, answering
the current query (in the console), starting the debugger, stopping execution,
and entering expert system mode.

The “Windows” menu supports opening the “primitives” window, which
briefly summarizes the built-in Prolog primitives (see Fig. 2).

The “Help” menu also supports opening the “primitives” window, as well as
showing the user’s manual and the “About” box.

4 Maintenance

The present author received the Java source files for Prolog+CG from Dr. Kab-
baj in April 2004. The present author then spent some time cleaning up the

243

244

I Primitive goals -

o=] Arithmetic_Goals

o= [] Relational_Goals

o= (] Logical_Goals

¢ [CJ List_Goals
D | : the constructor operator
[y member : member(argl, List)
D length : lengthilist, Integer)

o=] Stringldent_Goals

o= [Types_Goals

Q CG_Goals
D concOfCG : concOfCG(Concept, CC) ; checks if Concept is a concept of
D hranchOfCG : branchOfCG{CG_Branch, CC) ; checks if CG_Branch is a |l
D maximaljoin : maximaljoin{CG1, EntryConc_CGC1, CG2, EntrnyConc_CG2
D generalize : generalize{CG1, EntnyConc_CG1, CG2, EntnyConc_CG2, C
D subsume : subsume(CGl, Entn/Conc_CG1, CG2, EntnyConc_CG2, CGR4

o=] Meta_Goals

o=] Call_To_Application_Goals
o= ([(all Fram Annlication Goals

Fig. 2. The “primitives” window in Prolog+CG.

code and getting to know it, fixing a few bugs that had been annoying us in our
teaching. This led to version 2.0.1, which was released on July 5, 2004.

Development has taken place via SourceForge.Net, which is an Internet-based
collaborative platform for Open Source software development and distribution.
SourceForge.Net provides gratis resources to the Open Source community, in the
form of (among other services) web-space, download-hosting, CVS repositories,
bug-tracking, and fora for discussion.

A website was put together, and was hosted on SourceForge.Net from the
time of the first release (2.0.1).% Since the website is simple, the current main-
tainer has not had cause to alter the website drastically during the course of his
maintainership.

From the beginning of the presence of Prolog+CG on SourceForge.Net,5 de-
velopment has taken place using the CVS repository facilities of SourceForge.Net.
Not only has this helped the maintainer in the face of changing local worksta-
tions; it has also facilitated easy tracking of code-changes and versions. This has

5 See http://prologpluscg.sourceforge.net
5 The project was registered on the site on July 1, 2004.

proven crucial more than once, for example when needing to track exactly what
had happened to the sourcecode since a given release.

The manual has been reorganized from its original one-page HTML document
into a more highly structured ETEX document, which then becomes the source
for both the printable manual in PDF format and the HTML version.”

Throughout the process of maintenance, code-comments in French have been
translated into English, so as to better serve the current maintainer. Likewise,
many identifiers have been translated from French into English, to improve legi-
bility and intelligibility for people who, like the current maintainer, are less than
strong in French. Likewise, the code has been reindented to reach similar goals.

Gradually, features have been added. Some examples follow.

New predicates have been added, such as nl/0 (emit a newline on the con-
sole), writenl/1 (emit a term on the console, followed by newline), clearConsole/0
(erase or clear the contents of the console).® Another predicate, concat/3 was
added to concatenate strings.® Two other predicates, minComSuperTypes/3 and
maxComSubTypes/3 were added for those situation in which the type hierarchy
in a Prolog+CG program is not a lattice, but in which there is more than one
minimum common supertype or maximum common subtype.'® Other new pred-
icates include seed/1 and rnd/3 for doing pseudo-random number generation.!!

Functionality has also been removed: For example, the generation of object
files containing the compiled versions of Prolog+CG programs was removed in
version 2.0.9; it was no longer needed, since we have fast enough machines today
that loading a compiled object file was no quicker than compiling the program
in-memory.

In version 2.0.10, the code was heavily refactored, changing almost every-
thing from French into English, also yielding a new package structure instead of
everything being in the same Java package. This helped the current maintainer
understand the code even better, as the various parts were now cleanly separated
into CG operations, Prolog implementation, GUI implementation, and top-level
entry points.

This refactoring also paved the way for another development: The STARIlab
laboratory in Belgium, with which Dr. Aldo de Moor is associated, wanted to
run Prolog+CG as part of an Enterprise Java Beans application. The problems
in doing so included:

1. Prolog+CG required the presence of a GUI, in particular, an X server had
to be running on the server on which STARlab wanted to run Prolog+CG.
This was a problem on a headless server.

2. Prolog+CG was implemented with a single class, PrologPlusCGFrame, being
the centre of communication between the various parts. This would not have

" The latex2html project is used for the conversion from KTEX to HTML. See
http://www.latex2html.org/

8 All these were added in version 2.0.6.

9 This was done in version 2.0.7.

10 These were added in version 2.0.8.

1 These were added in version 2.0.12.

245

246

been a problem, were it not for the fact that the fields of this class were
almost all declared static, meaning that only one instance could be present
in a Java Virtual Machine. This meant that STARIlab had to implement a
wrapper around Prolog+CG which serialized access to Prolog+CG, thereby
slowing down the many-threaded application.

The solution turned out to be to separate the GUI from the Prolog and CG
engines, and to make the internal communication happen around a class having
only non-static member variables, and then passing an instance of this class
around inside of Prolog+CG.

A number of bugfixes have been made, both ancient bugs and bugs intro-
duced by the current maintainer. For example, backtracking was not always done
properly, leading to crashes and “hanging” of the program. To guard against fu-
ture bugs, a regression test suite was introduced in version 2.0.11, as was a
command-line version of Prolog+CG (to facilitate scripting of the test suite).
In addition, the “findbugs”!? program was run on the code which resulted in
version 2.0.12, and over 100 potential trouble spots were fixed.

The present author has attempted to apply standard software development
practices to the maintenance and development of Prolog+CG. For example:
Using source code control (CVS); Making regression tests; Using code analysis
tools (findbugs); Indenting code as per the structure of the flow of control [13].
Open Source practices have also been followed, such as: Release early, release
often; Value feedback from users [14].

No software is developed in a vacuum. The input of users like Dr. Aldo de
Moor and Prof. Dr. Peter Qhrstrgm and others, both as to bug-reports and as
to feature-requests, is what has really driven Prolog+CG development.'3

5 An application

Prof. Dr. Peter Qhrstrgm deserves the credit for coming up with the idea of
using Prolog+CG over the web. In January of 2005, he prompted the current
maintainer to implement support for such a usage scenario. The primary goal
was to enhance the usefulness of Prolog+CG in teaching environments.

In version 2.0.6,'* an applet version of Prolog+CG was introduced, running
locally in the user’s browser. The applet attempts to follow the principle of
simplicity in design and usage. A screenshot of the applet can be seen in Fig. 3.

In Fig. 3, it can be seen that there is one input-field (“Name”) and two
buttons (“Run” and “Clear”). This is configurable such that up to five input

12 Findbugs has been developed by the Computer Science Department of the University
of Maryland. See http://findbugs.sourceforge.net/

13 This is also the experience of the present author in his various other Open Source
projects, including the Emdros corpus query system (http://emdros.org/). This
social process around Open Source software has been described and dissected at
length by Eric S. Raymond in [14].

14 Released February 2, 2005.

Prolog+CG Applet - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

é - - ?@ ﬁ ‘LJ ﬁIe:///home/uIrikp/PPCG-Z@ 9 GCo HQ,
[P Red Hat, Inc. [ARed Hat Network (JSupport [3Shop (JProducts (JTraining
Prolog+CG Applet
Nameljohn

Run | Clear |
Hello Ulrik! a
Hello Adil! B
Hella John!

Il

[l i [»]

Applet PrologPlusCG/PrologPlusCGApplet started

Fig. 3. An example applet written with Prolog+CG.

fields and five buttons can be added. The buttons execute arbitary Prolog+CG
goals, either built-in or in the program underlying the applet. The input-fields
are used to pass arguments to the goals executed by pressing the buttons.

The Prolog program underlying the applet shown in Fig. 3 is the following
simple example:

main(X) :-
write("Hello"), write(X), write("!"), nl.

Figure 4 shows the Applet Deployment dialog configuring the same applet
as in Fig. 3. This dialog is accessible from within the “File” menu in the main
Prolog+CG program. It can be seen that the number of input fields (“boxes”)
is configurable, as are the names of the input fields. Also, the buttons are con-
figurable as to their number, and each button can be given a label as well as
specifying the goal to execute when the button is pressed. In the figure, the
“Run” button is configured to execute the “main/1” goal of the underlying ex-
ample Prolog+CG program, passing the contents of input field 1 (signified by

247

248

Applet Deployment

Title: |Prolog+CG Applet | Width: |600| Height (400
No. of boxes: 15
Box 1 label: MName
Box 2 label:
Box 3 label:
Box 4 label:
Box 5 label:
No. of buttons: ZE
Label: Goal:
Button 1: Run main{#1).
Button 2: Clear clearConsole.
Button 3:
Button 4:
Button 5:
‘ OK l Cancel I Save | Load from XML

Fig. 4. The applet deployment dialog.

“417) as the sole parameter to main/1. The parameters of the applet can be
saved to XML for easy loading later.

It is easy to see that, although this simple example only demonstrates “hello
world” functionality, the full scale of Prolog capabilities are potentially behind
any Prolog+CG applet. To be precise: Any goal can be called with any param-
eters, and the output can be shown in a user-friendly way through the “write”
family of built-in primitives. Because the applet is running locally and because
it is stateful (not stateless like some CGI applications), Prolog asserts can also
be made, thus growing the database behind the interface. This supports “intel-
ligent” interactivity to as high a degree as almost any other Prolog system can
afford. The only limitations are the limit on the number of buttons available
(and thus the number of goals which can be run), and the limit on the number
of input-fields available (and thus the number of unique parameters available to
any goal). The former can even be overcome by judicious usage of the “exec”
built-in primitive, which executes any goal, the idea being to have a button
which uses the “exec” primitive to execute a goal whose name is stated in one of
the input fields. The latter limitation can easily be overcome by extending the
source code, which is, of course, open source and thus available to anyone for
modification.

The applet version of Prolog+CG is very useful in a teaching context in
the field of humanistic informatics: Students are able to experiment not only
with writing a Prolog program, but also with the deeper applications of logic to
real-world problems, with embedding the applet in a HTML page of their own
design, and with an interactive system, simple to use yet capable of a degree
of reasoning. In addition, they are able to host it on their own web-page in
a simple-to-deploy manner, which makes it easy for them to show their work
to their parents and peers, thus enabling socialization of their studies in their
out-of-school relationships.

6 Interoperability

Interoperability is important in almost any software: Almost all software uses at
least one library, for example,'® which is a very old example of interoperability
requirements between different parts of a software solution. Furthermore, con-
sider the facts that: a) all computations by their nature have a relation between
input and output, and b) computations can be serialized, and ¢) software is of-
ten compartmentalized into modules'S. These facts together imply that different
pieces of software often need to interoperate as to their inputs and outputs. This,
in turn, requires not only agreed-upon formats, but also agreed-upon semantics
of those formats.

In the following, we describe some problems involved in adding more interop-
erability capabilities to Prolog+CG, including some potential solutions to some
of the problems. We first explore interoperability with the CGIF standard, after
which we explore how Prolog+CG might interoperate with CharGer. We then
conclude this section.

15 B.g., the standard C library.

16 The reasons for this compartmentalization are deep and multifarious, so I shall
restrict myself here to mentioning only one: First and foremost, human beings have
limited capabilities of abstraction, memory, and ability to keep great amounts of
detail in focus at the same time. These limitations necessarily leads to methodologies
and practices of software engineering which encourage modularity in programming.
As Alfred North Whitehead famously said in his 1911 Introduction to Mathematics,
“Civilization advances by extending the number of important operations which we
can perform without thinking about them.” One might paraphrase this in software
engineering terms by saying that the quality and usefulness of software advances by
extending the number of important computational operations which we can have
the computer perform without thinking about how they are done. This requires
important functionality to be encapsulated in “black boxes” with clean and — ideally
— lean interfaces. Thus our human limitations of “intelligence” by their very nature
lead to methodologies and practices of software engineering which compartmentalizes
software.

249

250

6.1 CGIF

CGIF'7 is one format designed for interoperability between software components.
In this section, we describe some problems involved in supporting import from
and export to CGIF in Prolog+CG.

It is an important limitation in Prolog+CG that the software only supports
a subset of the general CG theory. In particular, relations are always binary,
meaning that a relation always has exactly two concepts attached. This limita-
tion leads to the fact that, while it would be relatively easy to export CGs from
Prolog+CG to CGIF, it would be more difficult to import “general” CGs from
CGIF into Prolog+CG. The reason for the difficulty of the latter operation is
that “general” CGs might have unary relations or ternary relations, or relations
with even higher arity, which would require some massaging in order to con-
strict them into the binary relation paradigm. Exactly how this massaging is to
be done algorithmically is unclear at this stage. However, provided the particu-
lar CGs to be imported were algorithmically mappable to the subset of the CG
theory supported by Prolog+CG, there is no fundamental reason why CGs in
CGIF could not be (at least partially) imported.

Exporting to CGIF, however, might proceed as follows: Some kind of built-in
primitive would have to be added, having two parameters, namely: a) The name
of a file to which to append the output, and b) A CG. Prolog’s backtracking
mechanism could be used to call this built-in primitive repeatedly for all the
CGs which one wished to export. For example:

graph(cgl, [Man]<-agnt-[Love]-benf->[Woman]) .
graph(cg2, [Woman]<-rcpt-[Flower]<-thme-[Give]-agnt->[Man]).

writeCGs :- graph(X, G), writeCGIF("/home/joe/love.cgif.txt", G).

The writeCGs predicate would first write graph cgl, then backtrack and write
graph cg2, then stop.

Various problems exist in exporting CGs from Prolog+CG to CGIF. For
example:

1. Coreferents are marked in Prolog+CG by identical variable names. This
would have to be identified and translated to the defining-label/bound-label
notation of CGIF.

2. Multi-referents are marked in Prolog+CG by concepts with the same type,
having a referent of the form “*DIGIT” (e.g., “*1”, “*2” etc.). This notation
means that the two concepts are really the same concept. This would have
to be mapped to only one concept in CGIF.

3. Relations can be (free) variables in Prolog+CG, which (to the best of our
knowledge) is not possible in CGIF. The export of CGs with variables as
relations names would have to fail if the variables were not bound variables
at the time of the export.

17 Conceptual Graph Interchange Format.

Thus several problems exist in exporting CGs from Prolog+CG to CGIF,
and the above list is not even exhaustive. Solutions can be found for most of
them, of course, so it is not a completely impossible task.

6.2 CharGer

CharGer is a tool for drawing conceptual graphs, maintained by Dr. Harry Delu-
gach.'® CharGer supports export to, among other formats, CGIF. Provided the
CGs thus exported met the requirement mentioned above of being algorithmi-
cally mappable to the subset of the CG theory implemented in Prolog+CG, such
graphs could be imported into Prolog+CG.

Export to CharGer format would be difficult, but not impossible. CharGer
currently supports saving and loading an XML-based format. This format has
all of the information necessary for maintaining the CGs in a datastructure (e.g.,
concepts, concept types, referents, relations, concept attachments to relations,
etc.). This information could easily be exported to something that looks like
CharGer’s XML-based format. However, the XML also has (when saved from
CharGer) some visual information, such as: Width, height, and location of con-
cepts and relations, location and path of arrows, etc. This information seems
to be necessary for loading the CGs correctly into CharGer. This information
could be obtained automatically from within Prolog+CG by using a graph layout

engine such as graphviz'®.

6.3 Conclusion

Interoperability between different software components often involves exchange
formats. We have looked at two formats, namely CGIF and the XML-based
format of CharGer. We have identified some problems involved in importing into
and exporting CGs from Prolog+CG into each of these formats. In particular, for
importing, the CGs have to be mappable to the binary-relation-only paradigm
of Prolog+CG, and for exporting, certain problems have to be overcome, such as
the differences in syntax between CGIF and Prolog+CG, or the need for visual
layout in CharGer’s XML format.

7 General Observations

Prolog+CG owes most of its success to the insights had by Dr. Adil Kabbaj while
developing the first versions. Here the present author wishes to elaborate on his
views on what makes Prolog+CG a success, both in research and in teaching.
First, the twin foundations of Prolog+CG are — and remain — two well-
studied languages, namely Prolog and Conceptual Graphs. Prolog is based on
Horn Clause logic [2], another well-studied topic, and Conceptual Graphs take

18 See http://charger.sourceforge.net
9 See http://www.graphviz.org/

251

252

their point of departure in the Existential Graphs of Charles Sanders Peirce [3].
These twin foundations of Prolog+CG are the core of what makes Prolog+CG
useful. Separately, they remain useful. The insight of Dr. Kabbaj was that their
combination could prove to be potentially even more useful.

Prolog is useful for reasoning about atoms and other terms. Conceptual
Graphs are a version of logic which, like any logic, is useful for reasoning. In
addition, Conceptual Graphs are able to easily express richer meaning than
what is easy to express using Prolog terms.?’ By making Conceptual Graphs
first-class datastructures on a par with terms, Dr. Kabbaj has enabled much
easier integration of knowledge-bases with the reasoning powers of Prolog.?!

Second, the integration of not only bare conceptual graphs, but also ontolo-
gies containing both a type hierarchy and a catalog of instances, increases the
level of usefulness of Prolog+CG. At the University of Aalborg, we have used
Prolog+CG in our teaching of the subject of formalization of meaning, and have
sometimes made use of only the ontology-part of Prolog+CG. We have been
able to apply the built-in ontology primitives to enable students to reason with
ontologies, thereby increasing their level of understanding and insight into the
subject. Ontologies are an inseparable part of Conceptual Graphs [3,5] if one
wishes to reason with them, and as such belong in any system dealing with the
use of Conceptual Graphs. This insight has been applied in Prolog+CG by Dr.
Kabbaj, and contributes to its success.

Third, the integration of Conceptual Graphs into the Prolog programming
language has been implemented such that the tightness of the integration enables
full support of Conceptual Graphs within the Prolog paradigm. For example,
variables may appear anywhere an identifier may appear in a Conceptual Graph,
including relation-names and concept types, thereby enabling unification at all
levels, including variables being present at all levels. This is especially useful in
such predicates as branchOfCG, concOfCG, and subsume, as demonstrated in [15,
16].

Thus there are at least three tenets of Prolog+CG which contribute to its
success. First, it is founded upon two well-studied languages, namely Prolog and
Conceptual Graphs. Separately, they are useful, but in combination, they can
potentially become even more useful. Second, the integration of ontologies and
catalogs of instances into Prolog+CG enables useful reasoning over type hierar-
chies, thus enhancing the usefulness of Prolog+CG. And third, the tight integra-
tion of Conceptual Graphs into the Prolog language enables easier development
of knowledge-based systems than would have been possible with standard Prolog
alone, or with a lesser integration of Conceptual Graphs than what has, in fact,
been implemented.

20 Tt is possible to express Conceptual Graphs entirely within the paradigm of standard
Prolog. Yet such expressions would remain cumbersome to write and not easy to read.

2! Henrik Schirfe has shown at length how this combination can lead to not only
empirically pleasing results, but also theoretically profound insights in the field of
computer aided narrative analysis [15, 16].

8 Conclusion and further work

We have described the history, maintenance, and development of Prolog+CG,
an implementation of Prolog supporting Conceptual Graphs as first-class datas-
tructures. We have also reported on one application of Prolog+CG, namely a
web-enabled version running as a Java applet in the user’s local browser. This
version of Prolog+CG is especially useful in a teaching environment. In addition,
we have elaborated on some of the problems involved in adding more interoper-
ability capabilities to Prolog+CG, including potential solutions to some of the
problems. Finally, we have offered some general observations about the tenets
which make Prolog+CG a success.

As already mentioned, version 2.0.13 is under development at the time of
writing. The single largest planned change is the ability of Prolog+CG to be
embedded in a Java Servlet, serving up HTML via a Tomcat server.?? It is
planned that this version will be able to run Prolog+CG programs written in
Prolog, stored on a server, and able to answer HTTP/1.1 requests, including
GET and POST methods of communication with the Prolog+CG program. Thus
Prolog+CG will become fully web-enabled, able to act both on the client side
and on the server side.

It is hoped that some of the work which the present author has exercised
on Prolog+CG will work its way into the successor to Prolog+CG, namely the
Amine platform already mentioned. In particular, the web-enablement features
would be very useful in an Amine context, especially in a teaching-environment,
for reasons similar to those already mentioned.

Prolog+CG has already proven useful to the Conceptual Graphs commu-
nity over its long history. In order to ensure the future success of Prolog+CG,
the University of Aalborg is in the process of bringing in and funding an addi-
tional maintainer, namely cand.scient. Jorgen Albretsen. It is planned that the
maintenance of Prolog+CG will continue for the foreseeable future.

Prolog+CG’s success has largely depended on user support in the form of
feedback. It is hoped that this feedback will continue to be given.

Acknowledgements

The present author wishes to thank the Department of Communication and Psy-
chology and the Study Committee for Humanistic Informatics at the University
of Aalborg for their financial support, and SourceForge.Net for their generous
support of the Open Source community. Most of all, the present author wishes
to thank Prof. Dr. Adil Kabbaj for writing Prolog+CG in the first place, and
for having the foresight, wisdom, and willingness to hand over maintainership of
Prolog+CG to the present author.

22 See http://tomcat.apache.org/

253

254

References

10.

11.

12.

13.
14.

15.

16.

. Clocksin, W.F., Mellish, C.: Programming in Prolog. 2nd edn. Springer Verlag,

Berlin (1984)

Rogers, J.B.: A Prolog Primer. Addison-Wesley (1986)

Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA. (1984)

. Sowa, J.F.: Conceptual graphs summary. In Nagle, T.E., Nagle, J.A., Gerholz,

L.L., Eklund, P.W., eds.: Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York (1992) 3-51 ISBN: 0-13-175878-0.

Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA (2000)

Kabbaj, A., Frasson, C., Kaltenbach, M., Djamen, J.Y.: A conceptual and contex-
tual object-oriented logic programming: The PROLOG++ language. In Tepfen-
hart, W.M., Dick, J.P., Sowa, J.F., eds.: Conceptual Structures: Current Practices
— Second International Conference on Conceptual Structures, ICCS’94, College
Park, Maryland, USA, August 1994, Proceedings. Volume 835 of Lecture Notes in
Artificial Intelligence (LNAI)., Berlin, Springer Verlag (1994) 251-274

Kabbaj, A.: Un systeme multi-paradigme pour la manipulation des connaissances
utilisant la theorie des graphes conceptuels. PhD thesis, Univ. De Montreal,
Canada (1996)

Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG : A CG
object-oriented logic programming language. In Ganter, B., Mineau, G.W., eds.:
Proceedings of ICCS 2000. Volume 1867 of Lecture Notes in Artificial Intelligence
(LNAI)., Berlin, Springer Verlag (2000) 540-554

Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, improvements,
and extensions of Prolog+CG : Case studies. In Delugach, H., Stumme, G., eds.:
Conceptual Structures: 9th International Conference on Conceptual Structures,
ICCS 2001, Stanford, CA, USA, July/August 2001, Proceedings. Volume 2120 of
Lecture Notes in Artificial Intelligence (LNAI)., Berlin, Springer Verlag (2001)
346-359

Petersen, U., Schérfe, H., @hrstrgm, P.: Online course in knowledge representation
using conceptual graphs. On the web: http://www.huminf.aau.dk/cg/ (2001-
2006)

Schérfe, H., Petersen, U., @hrstrgm, P.: On teaching conceptual graphs. In Priss,
U., Corbett, D., Angelova, G., eds.: Proceedings of ICCS 2002. Volume 2393 of
Lecture Notes in Artificial Intelligence (LNAI). Springer Verlag, Berlin (2002)
285-298

Stallman, R.M.: GNU lesser general public license, version 2.1. On the web:
http://www.gnu.org/copyleft/lesser.html (1999)

Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley (1999)
Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. 1st edn. O’Reilly and Associates (2001)
Scharfe, H.: Reasoning with narratives. Master’s thesis, Department
of Communication, Aalborg University (2001) Available on the web from
http://www.hum.aau.dk/~scharfe.

Schérfe, H.: Computer Aided Narrative Analysis. PhD thesis, Faculty of Human-
ities, Aalborg University, Denmark (2004)

[CS-TIW2007]

Using interoperating conceptual

tools to improve searches
in Kaj Munk

Ulrik Petersen

2007

Published in: Pfeiffer, Heather D., Kabbaj, Adil and Benn, David (Eds.), Second
Conceptual Structures Tool Interoperability Workshop (CS-TIW 2007). Held July 22,
2007 in Sheffield, UK, in conjunction with International Conference on Conceptual
Structures (ICCS) 2007. Research Press International, Bristol, UK. ISBN: 1-897851-
16-2, pp. 45-55

255

256

This page left intentionally blank

Using interoperating conceptual tools to
improve searches in Kaj Munk

Ulrik Petersen

Department of Communication and Psychology
Kroghstraede 3
DK — 9220 Aalborg East
Denmark
ulrikp@hum.aau.dk
http://www.kajmunk.hum.aau.dk

Abstract. Query Expansion is a technique whereby a query in an infor-
mation retrieval system is expanded with more terms, thus most likely
increasing the number of relevant documents retrieved. In this paper, we
describe a prototype of a system built around a number of interoper-
ating conceptual structures tools, and how it uses Query Expansion to
retrieve greater numbers of relevant documents. Thus the system is an
example of how interoperating conceptual structures tools can be used
to implement an information retrieval system.

1 Introduction

In what ways is it possible to query a corpus of natural language text concep-
tually? That is the motivating question behind the research presented in this
paper. In order to answer this question partially, we have built a prototype sys-
tem which incorporates three technologies, namely the Amine Platform [1-6],
the Emdros corpus query system [7-10], and some natural language processing
software in the form of a lemmatizer and a part of speech tagger!. The system is
able to increase the recall of queries for a given corpus of text, by expanding the
query with lemmas taken from an Amine ontology. The system could not have
been built without the integration of the three key technologies mentioned. In
this paper, we show how the system works in terms of its architecture, and how
it is able to achieve greater recall.

The organizational context of the present research is the Kaj Munk Research
Centre at Aalborg University, Denmark. Kaj Munk (1898-1944) was a Danish
playwright, pastor, poet, and author, who was very influential both in Danish
cultural life and outside of Denmark in the period between the two World Wars.
He was killed by the Germans in 1944 for his resistance stance.

The Kaj Munk Research Centre has bought the nachlass of Kaj Munk, and is
in the process of digitizing the material for electronic publication on the web and

! The lemmatizer and part of speech tagger employed in this research are the ones
developed by Centre for Language Technology (CST), Copenhagen, Denmark. See
http://wuw.cst.dk.

257

258

in other ways. The envisaged website will feature advanced search capabilities
that go beyond mere matching of text strings into the realm of semantics. In this
endeavour, conceptual structures play a key role, and software tools that deal
with conceptual structures become critical in the development of the underlying
database technology.

The rest of the paper is laid out as follows. First, we introduce the litera-
ture behind our system. Second, we give an overview of our system. Third, we
offer a more detailed look at the query-process that leads to semantic querying.
Fourth, we give an example of the query process. Fifth, we give an analysis of
the functionality in terms of the precision and recall of the system. Sixth, we
report on the method of achieving interoperability between the various parts of
the system. Finally, we conclude the paper.

2 Literature review

Within the field of information retrieval, the notions of precision and recall are
often used to describe how well a search system performs. Briefly, recall is a
percentage showing how many documents out of all relevant documents were
retrieved, while precision is a percentage showing how many of the retrieved
documents are in fact relevant. For more information, see [11] and [12].

Query Expansion refers to a class of techniques in Information Retrieval in
which a query given by the user is expanded with more query terms. The intent is
always either to increase the recall, or to increase the precision, or both. Query
Expansion is an old technique, but as demonstrated by the literature, a very
useful technique. See for example, [13-15]. In so far as WordNet [16] can be
considered an ontology, [13,17, 15] among many others show that ontologies can
prove valuable in the process of Query Expansion. The article [18] shows how
compound forms in Danish can be split into their respective lemmas, then used
as a basis for Query Expansion using a thesaurus.

The present author has built a corpus query system called Emdros. The
Emdros software is a generic query system for “analyzed or annotated text.”
As such, the software accommodates “text plus information about that text.”?
In the present research, Emdros is the component that stores and queries both
the text corpus to be queried and the part of speech and lemma information
with which each token is annotated. Additional information such as sentence
boundaries, paragraph boundaries, and noun phrase boundaries are also present,
but are not used in the present research. Document boundaries, however, are
used.

Emdros was written in C++, but has language bindings for several program-
ming languages including Java. These language bindings are provided through
SWIG.? For more information on Emdros, the reader is invited to consult both

2 This phrase is taken from [19], which is the PhD thesis of Crist-Jan Doedens. Emdros
implements an extension of Doedens’ database model, and a subset of Doedens’ query
language. As such, Emdros can be seen as a derivate of the labours of Dr. Doedens.

3 See http://wwu.swig.org. See also [20].

the Emdros website! and [7-10], all of which can be downloaded from the au-
thor’s website®.

The Amine Platform is a platform intended for development of intelligent
systems and multi-agent systems [5]. It implements a large array of the technol-
ogy components needed for building Knowledge Systems, including an ontology
builder, a CG layer with concomitant CG operations, and a logic inference en-
gine built around the integration of Prolog and CGs.% The latter component
is called Prolog+CG, and is the software hub in the prototype which we have
developed.

3 System Overview

An overview of the system is given in Fig. 1. It is given in the form of a conceptual
graph, with an implied ontology of concept types such as the one given in Fig.
2, and an implied relation hierarchy such as the one given in Fig. 3.

As can be seen from the ontology of concept types in Fig. 2, there are essen-
tially two kinds of concepts in Fig. 1: Software and Data. Indeed, the relation
types reflect this, as can be seen in Fig. 3, in which all subtypes of DataSoft-
wareRole have the signature (Data,Software), and all subtypes of SoftwareSoft-
wareRole have the signature (Software,Software). Consequently, the signature of
Role in our small conceptual graph of Fig. 1 must be (Bits,Software), indicating
that the outgoing arrow on every relation always is attached to a concept of type
Software (cf. [21-24]).

There are three related but distinct flows of data in Fig. 1. The first flow
starts with the TextCorpus at the left edge of the leftmost row. This TextCorpus
(which, in our case, is the corpus of published sermons of Kaj Munk) is read
by CST’s part of speech tagger and lemmatizer to produce a pos-tagged and
lemmatized corpus. This corpus is then read by a program which converts the
corpus to a number of CREATE OBJECT statements in the MQL query language
of Emdros. This produces the MQLCorpus, which is read by Emdros to produce
the EmdrosDatabase at the bottom right hand corner of Fig. 1.

The second flow starts with the Amine Ontology Builder in the middle of the
second row of Fig. 1, in which a domain expert creates an ontology of the domain
which one would like to query. This produces the AmineOntology, which again
is read by Amine’s Prolog+CG engine. Notice that the method of production
of the ontology is irrelevant for our prototype: It might just as well have been
produced automatically. In our case, for simplicity and accuracy, we produced
our own ontology “by hand.”

The third, and main, flow starts with the user query in the top right hand
corner of Fig. 1. This query is read by the Prolog+CG programs written for our

4 http://emdros.org

5 http://ulrikp.org

S However, Amine is much more than the few components listed here. In-
terested readers are invited to consult [5,6] and the Amine Website:
http://amine-platform.sourceforge.net

259

260

=

reader

@ Software: Amine Ontology Builder Software: Prolog+CG programs

reader creator interpreter

Software: Lemmatizer AmineOntology user

writer caller

T

Software: Amine Prolog+CG

LemmatizedCorpus Software: Amine-Emdros bridge

reader

Software: Emdros corpus importer writer M reader

caller

Software: Emdros

accessor

EmdrosDatabase

Fig. 1. Overview of our system

prototype, and is transformed, inside of Prolog, to an Emdros query based on
the type(s) from the AmineOntology given in the query. This Emdros query is
then fed to the Amine-Emdros bridge (through the interpreter-nature of Amine
Prolog+CG), which takes care of calling Emdros to query the EmdrosDatabase
in the bottom right hand corner of Fig. 1. An answer comes back from Em-
dros to the Amine-Emdros bridge. This answer is then further processed by the
Amine-Emdros bridge in order to obtain not only the words found, but also their
context.” This result is then passed back to the Prolog+CG programs (through
the interpreter-nature of Amine Prolog+CG), which then displays the results to
the user.

7 Emdros’s query language is designed to be very generic. As such, it uses a generic
method of returning query results, which must then be interpreted in the context of
a given database. This interpretation usually involves retrieval of more objects from
the database, such as whole sentences and their constituent tokens, and/or the titles
of the document(s) in which the results are found.

Bits
Data Software
AmineOntology Corpus EmdrosDatabase
TextCorpus LemmatizedCorpus MQLCorpus

Fig. 2. A possible ontology for the concept types in our system

4 Querying

In our prototype, the user enters a query in the form of a set @) of types from the
Amine ontology, along with an indication of whether supertypes or subtypes are
wanted. If supertypes are wanted, a set E; are constructed containing n levels
of supertypes of each term ¢; from . Similarly for subtypes, if subtypes are
wanted.

An Emdros query is then constructed from the sets E;, as follows. For each set
E;, a single query fragment (technically, an “object block” retrieving an object
with certain characteristics) is created, finding all objects of type token whose
lemma is one of the terms e; in F;, with Boolean disjunction being the operator
between the comparison. This could look as follows:

[token lemma=’party’ or lemma=’organization’ or lemma=’group’]

If there is more than one set E;, then all permutations of all sequential orders
of the query fragments arising from each E; is constructed, allowing for arbitrary
space in between each query fragment, and using an OR construct on strings
of blocks between each permutation. This results in a string of OR-separated
strings of blocks, where each string of blocks represents one possible order of the
query terms. Finally, this string of OR-separated strings is wrapped in a block
indicating that the search is to be done within document boundaries.

Variations over this theme abound. For example, the number of levels n to
go up or down in the ontology can be varied; sibling nodes may be considered;
various measures of semantic distance may be employed in determining which
concepts to include in the search; word-sense disambiguation may be performed
based on either the query terms and their cooccurrence in the query, or on
the documents actually stored in the database, or both; the context may be
changed from “Document” to a more restrictive “paragraph” or even “sentence”
textual unit, thus increasing the likelihood that the query terms do in fact have

261

262

Role
DataSoftwareRole SoftwareSoftwareRole
A /\
reader originator caller interpreter
/\
user writer creator

accessor

Fig. 3. A possible ontology for the relation types in our system

something to do with each other; named entity recognition may be performed,
and named entities may be classified as per the ontology, thus aiding in increasing
recall; compounds may be split and used as the basis of further Query Expansion,
as described in [18]; parsing or chunking of the texts may be performed so as
to aid in identifying noun phrases that could aid in identifying more precisely
where to search for given kinds of entries from the ontology; the ontology may
be enriched with part of speech information, such that this information can be
taken into account when searching. Many other techniques have been tried over
the years, all built up around the single, simple idea of Query Expansion.

5 Query Example

In this section, we give an example of how the query-process works.

Consider the small ontology in Fig. 4. It is a sample ontology of concepts
from the political domain. Some of the concepts are annotated underneath with
zero or more lemmas, separated by a vertical bar if more than one are present.
Where no lemma corresponds to the type, the number of lemmas is zero.

Suppose the user enters a query in which the set @ of query types is {
PartyMember, PoliticalEmployee }, and suppose that the user specifies that 3
levels of subtypes are to be used for query expansion. In this case, two sets Ey =
{ partymember, minister, primeminister, MP, parliamentmember } and F; = {
spindoctor } are constructed.

From these sets, the two object blocks:

Entity

PoliticalEntity

Party PartyMember
party partymember
Minister MemberOfParliament

minister MP|parliamentmember

PrimeMinister
primeminister

263

PoliticalEmployee

SpinDoctor
spindoctor

Fig. 4. A sample domain ontology of political language

[token lemma=’partymember’ OR lemma=’minister’
OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’]

and

[token lemma=’spindoctor’]

are constructed. There are only two possible permutations of the order in which
two objects can occur (2 factorial), so these object blocks give rise to the query

shown in Fig. 5.

Briefly, the query means that, within the context of a document, two tokens
must be found, in either order, where the lemma of each token is either drawn
from the sets Ey and E7. The “..” between each [token] object block means
that the tokens need not be adjacent, but may be separated by arbitrary space,

within the scope of the context Document.

This query is executed by the Amine-Emdros bridge, and the results post-
processed in order to get the context of the “hits”, to be shown to the user by

Prolog+CG.

264

[Document
[token lemma=’partymember’ OR lemma=’minister’
OR lemma=’primeminister’ OR lemma=’MP’
OR lemma=’parliamentmember’

]
[token lemma=’spindoctor’]
OR

// Now the other order is tried...
[token lemma=’spindoctor’]

[token lemma=’partymember’ OR lemma=’minister’
OR lemma=’primeminister’ OR lemma=’MP’
OR lemma=’parliamentmember’

Fig. 5. Example Emdros query

6 Precision and Recall

As mentioned in Sect. 2, “recall” is a measure used within Information Retrieval
to describe how well a system performs; in particular, it shows how many docu-
ments were retrieved, divided by the total number of relevant documents for any
given query. “Precision,” on the other hand, is the number of relevant documents
returned, divided by the number of documents returned [12].

As confirmed by the research reported in [13-15,17], our system improves
recall, and for the same reason that any Query Expansion technique in general
improves recall: Since semantically similar terms are added to the query, more
documents that contain semantically similar terms will be found. Since relevant
documents may contain terms semantically similar to the original query terms,
yet may not contain the actual query terms, increasing the number of documents
retrieved with semantically similar terms will most likely increase recall.

We have not evaluated our system formally on either precision or recall mea-
sures, but this is something for future research.

7 Interoperability

This being a practical rather than theoretical paper, a number of comments on
the interoperability of the various system components are in order.

Both Amine’s ontology builder, Amine’s Prolog+CG, and Emdros can be
viewed as tools for dealing with conceptual structures; Amine’s tools more so
than Emdros. Amine’s treatment of conceptual structures goes right to the core

of the very purpose for which Amine was created [5,6]; thus a large part of
Amine’s codebase is centered around conceptual structures. Emdros, on the other
hand, has a different focus, namely that of storage and retrieval of annotated
text. Given that lemmas represent a unified form for all forms of a given word,
and given that this simplifies the task of assigning meaning to any given word,
and given that lemmas play an important role in the selection of labels for the
concept types in many kinds of ontologies, and given that Emdros can store
lemmas just as well as any other annotation, Emdros can be seen to be able to
deal with conceptual structures.

The interoperability of Amine with Emdros was achieved through the use of
a “bridge” written in Java. This bridge is simply a Java class which instantiates
a connection to an Emdros datbase, receives queries, and “harvests” the results.
The latter task involves processing the results of a query, then retrieving as much
context as necessary for the purposes at hand. This usually involves things like
retrieving document titles, all the words of the sentence surrounding a “hit”,
retrieval of other objects necessary for display of the hits, etc.

Amine’s Prolog+CG supports calling arbitrary Java methods and instanti-
ating arbitrary Java objects from within Prolog+CG. This is the method used
in our prototype system, where Prolog+CG instantiates an “Amine-Emdros
bridge” as a Java object, then calls methods on this bridge both to retrieve
query results and to postprocess them as described above.

The present author found that Amine’s Java-integration made it easy to
call both the Amine API and the Emdros bridge. The ability to call arbitrary
methods in the host language (Java, in this case) was key in making the inter-
operability work.

8 Conclusion

We have described a prototype system that enables a user to query a collection
of documents semantically rather than just by keyword. This is done through the
use of three key technologies: The Amine Platform, the Emdros Corpus Query
System, and a lemmatizer and part of speech tagger for the target language. An
ontology is used to guide the process of query expansion, leading to a greater
number of relevant documents being returned than would have been the case,
had the program only found documents containing the original query terms.
Pointers to further research have already been given.

Acknowledgements

Thanks are due to cand.scient. Jergen Albretsen, who provided the ontology used
in this prototype. Prof. dr.scient., PhD Peter @hrstrgm provided many of the
research ideas used in this research. The Danish Centre for Language Technology
(CST) provided the part of speech tagger and lemmatizer used. Figure 1 was

265

266

drawn with the CharGer software written by Harry Delugach.® The SWIG team?
made the integration of Emdros with Java possible. Finally, many thanks to Prof.
Dr. Adil Kabbaj, who wrote the Amine-Platform, without which this research
would have been much more difficult to carry out.

References

10.

11.

. Kabbaj, A., Frasson, C., Kaltenbach, M., Djamen, J.Y.: A conceptual and contex-

tual object-oriented logic programming: The PROLOG++ language. In Tepfen-
hart, W.M., Dick, J.P., Sowa, J.F., eds.: Conceptual Structures: Current Practices
— Second International Conference on Conceptual Structures, ICCS’94, College
Park, Maryland, USA, August 1994, Proceedings. Volume 835 of Lecture Notes in
Artificial Intelligence (LNAI)., Berlin, Springer Verlag (1994) 251-274

Kabbaj, A.: Un systeme multi-paradigme pour la manipulation des connaissances
utilisant la theorie des graphes conceptuels. PhD thesis, Univ. De Montreal,
Canada (1996)

Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG : A CG
object-oriented logic programming language. In Ganter, B., Mineau, G.W., eds.:
Proceedings of ICCS 2000. Volume 1867 of Lecture Notes in Artificial Intelligence
(LNAI)., Berlin, Springer Verlag (2000) 540-554

. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, improvements,

and extensions of Prolog+CG : Case studies. In Delugach, H., Stumme, G., eds.:
Conceptual Structures: 9th International Conference on Conceptual Structures,
ICCS 2001, Stanford, CA, USA, July/August 2001, Proceedings. Volume 2120 of
Lecture Notes in Artificial Intelligence (LNAI)., Berlin, Springer Verlag (2001)
346-359

Kabbaj, A.: Development of intelligent systems and multi-agents systems with
amine platform. [25] 286-299

Kabbaj, A., Bouzouba, K., El Hachimi, K., Ourdani, N.: Ontologies in Amine
Platform: Structures and processes. [25] 300-313

Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190-1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

Petersen, U.: Evaluating corpus query systems on functionality and speed:
TIGERSearch and Emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387-391

Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of Lecture Notes
in Artifical Intelligence., Berlin, Heidelberg, New York, Springer Verlag (2006)
Petersen, U.: Querying both parallel and treebank corpora: Evaluation of a
corpus query system. In: Proceedings of LREC 2006. (2006) Available as
http://ulrikp.org/pdf/LREC2006.pdf.

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

8 http://charger.sourceforge.net
% http://www.swig.org, led by David Beazley.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures and Algo-
rithms. Prentice Hall (1992)

Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, Springer-Verlag
New York, Inc. (1994) 61-69

Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
Press (1998) 206-214

Moldovan, D.I., Mihalcea, R.: Using WordNet and lexical operators to improve
internet searches. IEEE Internet Computing 4(1) (2000) 34-43

Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press, London,
England and Cambridge, Massachusetts (1998)

Smeaton, A.F., Quigley, I.. Experiments on using semantic distances between
words in image caption retrieval. In: Research and Development in Information
Retrieval. (1996) 174-180

Pedersen, B.S.: Using shallow linguistic analysis to improve search on Danish
compounds. Nat. Lang. Eng. 13(1) (2007) 75-90

Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi Amsterdam,
Amsterdam and Atlanta, GA (1994) ISBN 90-5183-729-1.

Beazley, D.M., Fletcher, D., Dumont, D.: Perl extension building
with SWIG (1998) Presented at the O'Reilly Perl Conference 2.0,
August 17-20, 1998, San Jose, California. Access online 2007-04-22:
http://www.swig.org/papers/Perl98/swigperl.htm.

Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA. (1984)

Sowa, J.F.: Conceptual graphs summary. In Nagle, T.E., Nagle, J.A., Gerholz,
L.L., Eklund, P.W., eds.: Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York (1992) 3-51

Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA (2000)
Petersen, U., Schérfe, H., @hrstrgm, P.: Online course in knowledge representation
using conceptual graphs. On the web: http://www.huminf.aau.dk/cg/ (2001-
2007)

Henrik Schéarfe, Pascal Hitzler, P.0., ed.: Conceptual Structures: Inspiration and
Application. 14th International Conference on Conceptual Structures, ICCS 2006,
Aalborg, Denmark, July 2006, Proceedings. In Henrik Schérfe, Pascal Hitzler, P.Q.,
ed.: Conceptual Structures: Inspiration and Application. 14th International Con-
ference on Conceptual Structures, ICCS 2006, Aalborg, Denmark, July 2006, Pro-
ceedings. Volume 4068 of Lecture Notes in Artificial Intelligence (LNAI)., Berlin,
Heidelberg, Springer-Verlag (2006)

267

268

This page left intentionally blank

269

[ICCSSuppl2008]

An FCA classification of durations
of time for textual databases

Ulrik Sandborg-Petersen

2008

Published in: Eklund, Peter and Haemmerlé, Olivier, Supplementary Proceedings of
ICCS 2008, CEUR-WS, http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

270

This page left intentionally blank

An FCA classification of durations of time for
textual databases

Ulrik Sandborg-Petersen

Department of Communication and Psychology
Kroghstraede 3, DK — 9220 Aalborg East, Denmark
ulrikp@hum.aau.dk

Abstract. Formal Concept Analysis (FCA) is useful in many applica-
tions, not least in data analysis. In this paper, we apply the FCA ap-
proach to the problem of classifying sets of sets of durations of time,
for the purposes of storing them in a database. The database system in
question is, in fact, an object-oriented text database system, in which all
objects are seen as arbitrary sets of integers. These sets need to be clas-
sified in textually relevant ways in order to speed up search. We present
an FCA classification of these sets of sets of durations, based on linguis-
tically motivated criteria, and show how its results can be applied to a
text database system.

1 Introduction

Formal Concept Analysis (FCA)[1, 2] has many applications, not least of which is
aiding a human analyst in making sense of large or otherwise incomprehensible
data sets. In this paper, we present an application of FCA to the problem of
classifying classes of linguistic objects that meet certain linguistically motivated
criteria, with the purpose of storing them in a text database system.

We have developed a text database system, called Emdros?®, capable of storing
and retrieving not only text, but also annotations of that text [3,4]. Emdros
implements the EMdF model, in which all textual objects are seen as sets of sets
of durations of time with certain attributes.

The rest of the paper is laid out as follows. In Sect. 2, I describe four prop-
erties of language as it relates to time. In Sect. 3, I describe the EMdF model.
In Sect. 4, I mathematically define a set of criteria which may or may not hold
for a given object type. This results in a Formal Context of possible classes of
objects, having or not having these criteria. In Sect. 5, I use FCA to arrive at a
set of criteria which should be used as indexing mechanisms in Emdros in order
to speed up search. In Sect. 6, I discuss the implementation of the criteria arrived
at in the previous section, and evaluate the performance gains obtained by using
them. Finally, I conclude the paper and give pointers to further research.

! http://emdros.org

271

272

2 Language as durations of time

Language is always heard or read in time. That is, it is a basic human condition
that whenever we wish to communicate in verbal language, it takes time for us
to decode the message. A word, for example, may be seen as a duration of time
during which a linguistic event occurs, viz., a word is heard or read. This takes
time to occur, and thus a message or text occurs in time.

In this section, we describe four properties of language which have conse-
quences for how we may model linguistic objects such as words or sentences.

First, given that words occur in time, and given that words rarely stand
alone, but are structured into sentences, and given that sentences are (at one
level of analysis) sequences of words, it appears obvious that sequence is a basic
property of language. We will therefore not comment further on this property of
language.

Second, language always carries some level of structure; for example, the
total duration of time which a message fills may be broken down into shorter
durations which map to words. Intermediate between the word-level and the
message-level, we usually find sentences, clauses, and phrases. Thus, linguistic
units embed within each other. For a lucid discussion of the linguistic terms
involved, please see [5, 6].

Third, language carries the property of being resumptive. By this we mean
that linguistic units are not always contiguous, i.e., they may occupy multiple,
disjoint durations of time. For one such opinion, see [7].

A fourth important property of linguistic units is that they may “violate each
other’s borders.” By this we mean that, while unit A may start at time a and
end at time ¢, unit B may start at time b and end at time d, wherea < b < ¢ < d.
Thus, while A overlaps with B, they cannot be placed into a strict hierarchy.

3 The EMdAF model

In his PhD thesis from 1994 [8], Crist-Jan Doedens formulated a model of text
which meets the four criteria outlined in the previous section. Doedens called
his model the “Monads dot Features” (MdF) model. We have taken Doedens’
MdF model and extended it in various ways, thus arriving at the Extended MdF
(EMdAF) model. In this section, we describe the EMdF model.

Central to the EMdF model is the notion that textual units (such as books,
paragraphs, sentences, and even words) can be viewed as sets of monads. A
monad s simply an integer, but may be viewed as an indivisible duration of
time.?

Objects in the EMAF model are pairs (M, F)) where M is a set of monads,
and F is a set of pairs (f;,v;) where f; is the i*' feature (or attribute), and v;
is the value of f; for this particular object. A special feature, “self” is always

2 Please note that we use the term “monad”, not in the well-established algebraic
sense, but as a synonym for “integer in the context of the EMdF model, meaning an
indivisible duration of time”.

present in any F' belonging to any object, and provides an integer ID which is
unique across the whole database. The inequality M # () holds for all objects in
an EMdF database.

Since textual objects can often be classified into similar kinds of objects with
the same attributes (such as words, paragraphs, sections, etc.), the EMdF model
provides object types for grouping objects.

4 Criteria

In this section, we introduce some linguistically motivated criteria that may or
may not hold for the objects of a given object type T. This will be done with
reference to the properties inherent in language as described in Sect. 2.

In the following, let Inst(7") denote the set of objects of a given object type
T. Let a and b denote objects of a given object type. Let p denote a function
which, given an object, produces the set of monads M being the first part of
the pair (M, F) for that object. Let m denote a monad. Let f(a) denote pu(a)’s
first (i.e., lowest) monad, and let I(a) denote p(a)’s last (i.e., highest) monad.
Let [m1 : ma] denote the set of monads consisting of all the monads from m; to
ms, both inclusive.

Range types:

single monad(7'): means that all objects are precisely 1 monad long.
Va € Inst(T) : f(a) =l(a)

single range(7'): means that all objects have no gaps (i.e., the set of mon-
ads constituting each object is a contiguous stretch of monads).
Va € Inst(T) : Vm € [f(a) : l(a)] : m € p(a)

multiple range(7T): is the negation of “single range(T")”, meaning that
there exists at least one object in Inst(7") whose set of monads is discon-
tiguous. Notice that the requirement is not that all objects be discon-
tiguous; only that there exists at least one which is discontiguous.
Jda € Inst(T) : Im € [f(a) : I(a)] : m & p(a)
= —(Va € Inst(T) : Vm € [f(a) : l(a)] : m € p(a))
= —(single range(T))

Uniqueness constraints:

unique first monad(7"): means that no two objects share the same start-
ing monad.
Va,b € Inst(T) : a £ b < f(a) # f(b)
=Va,beInst(T) : f(a) = f(b) »a=1D

unique last monad(7): means that no two objects share the same ending
monad.
Va,b € Inst(T) : a # b < l(a) #1(b)
=Va,b € Inst(T) : l(a) =1(b) > a=Db

Notice that the two need not hold at the same time.

273

274

Table 1. All the possible classes of object types. Legend: sm = single monad, sr =
single range, mr = multiple range, ufm = unique first monad, ulm = unique last monad,
ds = distinct, ol = overlapping, vb = violates borders.

Class name||sm|sr|mr||ufm|ulm|ds|ol{vb

1.000 X X X Class name||sm|sr|mr||ufm|ulm|ds|ol{vb
1.300 X X X | X [X 3.000 X X
2.000 X X 3.001 X XX
2.001 X XX [{3.100 X X X
2.100 X X X 3.101 X X XX
2.101 X X XX 113.200 X|| X X
2.200 X X X 3.201 X|| X XX
2.201 X X X[X1]3.300 X|| X | X X
2.300 X X | X X 3.301 X|| X | X XX
2.301 X X | X X[1X1]3.310 X X | X |X
2.310 X X | X [X

Linguistic properties:

distinct(7"): means that all pairs of objects have no monads in common.
Va,b € Inst(T):a#b— ula) Nud) =0
=Va,b €Inst(T) : pla) Npu(d) #D —a=5b

overlapping(7): is the negation of distinct(7T).
—(distinct (7))
= Ja,b € Inst(T) : a £ b A p(a) N u(b) # 0

violates borders(T): Ja,b € Inst(T) : @ # b A p(a) N u(b) # O A ((fla) <
F@) A (U(a) = £(b)) A (I{a) <1(b)))

Notice that violates borders(T) — overlapping(T'), since violates borders(T")

is overlapping(7'), with an extra, conjoined term.

It is possible to derive the precise set of possible classes of objects, based on
logical analysis of the criteria presented in this section. For details, please see
[9]. The possible classes are listed in Table 1.

The context resulting from these tables is then processed by the Concept
Explorer software (ConExp)3. This produces a lattice as in Fig. 1.

5 Application

It is immediately noticeable from looking at Fig. 1 that “ds” is quite far down
the lattice, with several parents in the lattice. It is also noticeable that “ol” is
quite far up in the lattice, with only the top node as its parent. Therefore, “ds”
may not be as good a candidate for a criterion on which to index as “ol”. Hence,
we decided to experiment with the lattice by removing the “ds” attribute.

3 See http://conexp.sourceforge.net. Also see [10].

Fig. 1. The lattice drawn by ConExp for the whole context.

By drawing this new lattice with ConExp, it is noticeable that the only
dependent attributes are “sm” and “vb”: All other attributes are at the very
top of the lattice, with only the top node as their parent. This means we are
getting closer to a set of criteria based on which to index sets of monads.

The three range types should definitely be accommodated in any indexing
scheme. The reasons are: First, “single monad” can be stored very efficiently,
namely just by storing the single monad in the monad set. Second, “single range”
is also very easy to store: It is sufficient to store the first and the last monad.
Third, “multiple range”, as we have argued in Sect. 2, is necessary to support in
order to be able to store resumptive (discontiguous) linguistic units. It can be
stored by storing the monad set itself in marshalled form, perhaps along with
the first and last monads.

This leaves us with the following criteria: “unique first monad”, “unique last
monad”, “overlapping”, and “violates borders” to decide upon.

In real-life linguistic databases, “unique first monads” and “unique last mon-
ads” are equally likely to be true of any given object type, in the sense that if
one is true, then the other is likely also to be true, while if one is false, then
the other is likely also to be false. This is because of the embedding nature of

275

276

language explained in Sect. 2: If embedding occurs at all within a single object
type, then it is likely that both first and last monads are not going to be unique.

Therefore, we decided to see what happens to the lattice if we remove one
of the two uniqueness criteria from the list of attributes. The criterion chosen
for removal was “unique last monads”. Once this is done, ConExp reports that
“unique first monads” subsumes 11 objects, or 55%. This means that “unique
first monads” should probably be included in the set of criteria on which to
index.

Similarly, still removing “ds” and “ulm”, and selecting “overlapping”, we
get the lattice drawn in Fig. 2. ConExp reports that “overlapping” subsumes 17
objects, or 85%, leaving only 3 objects out of 20 not subsumed by “overlapping”.
This indicates that “overlapping” is probably too general to be a good candidate
for treating specially.

It is also noticeable that “violates borders” only subsumes 4 objects. Hence
it may not be such a good candidate for a criterion to handle specially, since it
is too specific in its scope.

Thus, we arrive at the following list of criteria to handle specially in the
database: a) single monad; b) single range; ¢) multiple range; and d) unique first
monads.

6 Implementation and evaluation

The three range types can be easily implemented in a relational database system
along the lines outlined in the previous section.

The “unique first monads” criterion can be implemented in a relational
database system by a “unique” constraint on the “first monad” column of a
table holding the objects of a given object type. Notice that for multiple range,
if we store the first monad of the monad set in a separate column from the
monad set itself, this is possible for all three range types. Notice also that, if
we use one row to store each object, the “first monad” column can be used as a
primary key if “unique first monads” holds for the object type.

We have run some evaluation tests of 124 diverse Emdros queries against two
versions of the same linguistic database, each loaded into four backends (SQLite
3, SQLite 2, PostgreSQL, and MySQL). One version of the database did not
have the indexing optimizations arrived at in the previous section, whereas the
other version of the database did. The version of Emdros used was 3.0.1. The
hardware was a PC with an Intel Dual Core 2, 2.4GHz CPU, 7200RPM SATA-IT
disks, and 3GB of RAM, running Fedora Core Linux 8. The 124 queries were
run twice on each database, and an average obtained by dividing by 2 the sum
of the “wall time” (i.e., real time) used for all 2 x 124 queries. The results can
be seen in Table 2.

As can be seen, the gain obtained for MySQL and PostgreSQL is almost
negligible, while it is significant for the two versions of SQLite.

Fig. 2. The lattice drawn without the “ds” and “ulm” attributes, and with “ol” se-
lected.

7 Conclusion

We have presented four properties that natural language possesses, namely se-
quence, embedding, resumption, and non-hierarchic overlap, and we have seen
how these properties can be modeled as sets of durations of time.

We have presented the EMdF model of text, in which indivisible units of time
(heard or read) are represented by integers, called “monads”. Textual units are
then seen as objects, represented by pairs (M, F'), where M is a set of monads,
and F' is a set of attribute-value assignments. An object type then gathers all
objects with like attributes.

We have then presented some criteria which are derived from some of the four
properties of language outlined above. We have formally defined these in terms
of objects and their monads. We have then derived an FCA context from these
criteria, which we have then converted to a lattice using the Concept Explorer
Software (ConExp).

277

278

Table 2. Evaluation results on an Emdros database, in seconds.

Backend SQLite 3|SQLite 2|PostgreSQL|MySQL
Avg. time for DB without optimizations|| 153.92 | 130.99 281.56 139.41
Avg. time for DB with optimizations 132.40 | 120.00 274.20 136.65
Performace gain 13.98% | 8.39% 2.61% 1.98%

We have then analyzed the lattice, and have arrived at four criteria which
should be treated specially in an implementation.

We have then suggested how these four criteria can be implemented in a
relational database system. They are, in fact, implemented in ways similar to
these suggestions in the Emdros corpus query system. We have also evaluated
the performance gains obtained by implementing the four criteria.

Thus FCA has been used as a tool for reasoned selection of a number of
criteria which should be treated specially in an implementation of a database
system for annotated text.

Future work could also include: a) Derivation of more, pertinent criteria from
the four properties of language; b) Exploration of these criteria using FCA; ¢)
Implementation of such criteria; and d) Evaluation of any performance gains.

References

1. Lehmann, F.; Wille, R.: A triadic approach to formal concept analysis. In Ellis,
G., Levinson, R., Rich, W., Sowa, J.F., eds.: Proceedings of ICCS’95. Volume 954
of LNAI, Springer Verlag (1995) 3243

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997) Translator-C. Franzke.

3. Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190-1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

4. Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of LNAI,
Springer Verlag (2006)

5. Van Valin, Jr., R.D.: An introduction to Syntax. Cambridge University Press,
Cambridge, U.K. (2001)

6. Horrocks, G.: Generative Grammar. Longman, London and New York (1987)

7. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic
Inquiry 13(1) (1982) 91-106

8. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Editions Rodopi Amsterdam (1994) ISBN 90-5183-729-1.

9. Sandborg-Petersen, U.: Annotated Text Databases in the Context of the Kaj Munk
Corpus: One database model, one query language, and several applications. PhD
thesis, Aalborg University, Denmark (2008)

10. Yevtushenko, S.A.: System of data analysis ”concept explorer”. (in russian). In:
Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Rus-
sia. (2000) 127-134

