

Aalborg Universitet

Annotated text databases in the context of the Kaj Munk corpus

One database model, one query language, and several applications

Sandborg-Petersen, Ulrik

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sandborg-Petersen, U. (2008). Annotated text databases in the context of the Kaj Munk corpus: One database
model, one query language, and several applications. InDiMedia, Department of Communication, Aalborg
University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 17, 2024

https://vbn.aau.dk/en/publications/30d456f0-921e-11de-90ca-000ea68e967b

Annotated text databases
in the context of the Kaj Munk corpus:

One database model, one query language,
and several applications

Ulrik Sandborg-Petersen

May 5, 2008

2

PhD thesis

Submitted in partial fulfilment
of the requirements for

the ph.d. degree.

Doctoral School in
Human Centered Informatics,

Aalborg University,
Denmark

To my wife and my daughter

Contents

I Theoretical foundations 17

1 Introduction 19
1.1 Introduction . 19
1.2 Empirical application .20
1.3 What is a database system? . 20
1.4 What is an annotated text database system? 22
1.5 Emdros . 23
1.6 Recurring example . 25
1.7 Dissertation plan . 25

2 Literature review 29
2.1 Introduction . 29
2.2 Other models for annotated text .. 29

2.2.1 Introduction . 29
2.2.2 XML and SGML . 30
2.2.3 Grammar-based models of text 32
2.2.4 Graph-based models . 33
2.2.5 Range-based models of text . 33
2.2.6 Object-oriented models of text33

2.3 Query languages for annotated text 33
2.4 Relation to Information Retrieval 34
2.5 Other corpus query systems .35
2.6 Conclusion . 37

3 Ontology 39
3.1 Introduction . 39
3.2 Type and instance . 40
3.3 Ontological relations .40
3.4 Supertypes, subtypes, and lattices 41
3.5 Conclusion . 41

4 The EMdF model 43
4.1 Introduction . 43
4.2 Demands on a database model . 43

4.2.1 Introduction . 43
4.2.2 Doedens’s demands . 44
4.2.3 Critique of Doedens’s demands 45

4.3 The original MdF model . 46

3

4 CONTENTS

4.3.1 Introduction . 46
4.3.2 Monads . 47
4.3.3 Objects . 47
4.3.4 Object types . 47
4.3.5 Features . 48

4.4 The abstract EMdF model . 48
4.4.1 Introduction . 48
4.4.2 Monads . 48
4.4.3 Objects . 49
4.4.4 Object types . 50
4.4.5 Features . 51
4.4.6 Named monad sets . 52

4.5 The relational implementation of the EMdF model 52
4.5.1 Introduction . 52
4.5.2 Meta-data . 52
4.5.3 Object-data . 53

4.6 An in-memory EMdF database . 54
4.6.1 Introduction . 54
4.6.2 EmdrosObject . 55
4.6.3 InMemoryEMdFDatabase . 55

4.7 Example . 57
4.8 Conclusion . 58

5 The MQL query language 59
5.1 Introduction . 59
5.2 General remarks . 59
5.3 The MQL interpreter . 60
5.4 MQL output . 62
5.5 Type language . 63

5.5.1 Introduction . 63
5.5.2 Databases . 63
5.5.3 Enumerations . 64
5.5.4 Object types and features . 65

5.6 Data language (non-topographic) 67
5.6.1 Introduction . 67
5.6.2 Objects . 68
5.6.3 Monads . 70
5.6.4 Retrieval of object types and features 73
5.6.5 Conclusion . 74

5.7 Data language (topographic) .. 74
5.7.1 Introduction . 74
5.7.2 The MQL of my B.Sc. thesis . 74
5.7.3 The present-day MQL . 79
5.7.4 Conclusion . 85

5.8 Conclusion . 86

CONTENTS 5

6 The Sheaf 87
6.1 Introduction . 87
6.2 What is a Sheaf? . 87

6.2.1 Introduction . 87
6.2.2 Sheaf Grammar . 88

6.3 The parts of the Sheaf . 90
6.3.1 Introduction . 90
6.3.2 Matched_object . 90
6.3.3 Straw . 90
6.3.4 Sheaf . 91
6.3.5 Flat Sheaf . 91

6.4 Conclusion . 92

7 Harvesting search results 93
7.1 Introduction . 93
7.2 The problem at hand . 93
7.3 Definitions of harvesting concepts 95
7.4 A general harvesting algorithm .. . 96
7.5 Determining the “hit” . 97
7.6 Extending the harvesting algorithm 100
7.7 Conclusion . 101

8 Annotated text and time 103
8.1 Introduction . 103
8.2 Language as durations of time .103

8.2.1 Sequence . 104
8.2.2 Embedding . 104
8.2.3 Resumption . 105
8.2.4 Non-hierarchic overlap . 105

8.3 The EMdF model . 106
8.4 Criteria . 107

8.4.1 Range types . 109
8.4.2 Single monad . 109
8.4.3 Single range . 110
8.4.4 Multiple range . 110

8.5 Logical analysis of the criteria 111
8.6 FCA results . 111
8.7 Applications . 111
8.8 Implementation . 113
8.9 Conclusion . 116

II Applications 119

9 Introduction 121

6 CONTENTS

10 Implementation of the Kaj Munk corpus 123
10.1 Introduction . 123
10.2 The nature of the texts . 123
10.3 XML as the basis for encoding .124
10.4 Text Encoding Initiative .. . 126
10.5 Overview of the digitization process 127
10.6 Conversion to an Emdros database 127
10.7 Conclusion . 132

11 Principles of a collaborative annotation procedure 137
11.1 Introduction . 137
11.2 The general idea . 137
11.3 The implementation . 138

11.3.1 Introduction . 138
11.3.2 XML form and Emdros form . 140
11.3.3 Overview of annotation tool . 141
11.3.4 Adding annotations back into the XML144
11.3.5 Conclusion . 145

11.4 Conclusion . 145

12 Principles of the Munk Browser software 147
12.1 Introduction . 147
12.2 Functional overview .148
12.3 Modular overview . 150
12.4 Application of theory .152

12.4.1 Introduction . 152
12.4.2 Showing a munktxt document 152
12.4.3 Simple search . 156
12.4.4 Harvesting . 157
12.4.5 Advanced search . 160
12.4.6 Find Widget functionality . 164

12.5 Conclusion . 165

13 Quotations from the Bible in Kaj Munk 167
13.1 Introduction . 167
13.2 Electronic edition of the Danish Bible (1931/1907) 167
13.3 The general idea . 168
13.4 Process . 169
13.5 Future research . 171
13.6 Conclusion . 171

III Perspectives 173

14 Extending EMdF and MQL 175
14.1 Introduction . 175
14.2 Declarative support for structural relations 175
14.3 Object type inheritance .. 176

CONTENTS 7

14.4 Typed id_ds . 176
14.5 Complex feature-types .176
14.6 Full QL support . 177
14.7 Beyond QL . 177

14.7.1 Introduction . 177
14.7.2 block_string conjunctions .178
14.7.3 power block limitor . 178

14.8 Conclusion . 179

15 Conclusion 181

Bibliography 183

A Topographic MQL: Grammar 197

B Published articles 201

8 CONTENTS

Acknowledgements

“No man is an island,” says John Donne. Likewise, no researchis carried out in a vac-
uum. I therefore have many people to thank for their part in the successful completion of
this dissertation. First and foremost, my PhD supervisor, Professor, dr.scient, ph.d. Peter
Øhrstrøm, whose continuing support since 1996 it has been myprivilege to enjoy. Peter
Øhrstrøm embodies in his person the ideal concept of “the gracious Professor,” whose
support and sound advice has been invaluable for me through the years, and especially
during my PhD studies. I could not have been privileged with abetter supervisor.

Another person whose support I have enjoyed since 1996 is Associate Professor,
teol.dr. Nicolai Winther-Nielsen. Dr. Winther-Nielsen changed the course of my life
when, in 1996, he gave me a copy of Crist-Jan Doedens’ PhD dissertation [Doedens,
1994], with a side-remark that I might want to implement the contents of that book some
day. Little did I know that I would, in fact, do as he suggested, and as a result visit three
countries, gain many friends from all over the world, and be able to do a PhD, all as a
consequence of his gifting me with this book.

I thank Bob Pritchett, CEO of Logos Research Systems for hosting me at a fruitful
visit in their offices in the USA during my PhD studies. I also thank Professor, Dr. Eep
Talstra for hosting me at two research visits in his researchgroup, “Werkgroep Informat-
ica”, during my PhD studies.

Professor Søren Dosenrode believed in me and was instrumental in obtaining funds
for my PhD studies, for which I am grateful. My colleagues at the Kaj Munk Research
Centre, cand.scient. Jørgen Albretsen and lic.iur. AndreaDosenrode, have been pleasant
colleagues whose humor and wit I have enjoyed. Another colleague at the Kaj Munk
Research Centre, cand.mag. Jesper Valeur Mogensen, whose outstanding literary and lin-
guistic skills have helped me in many practical aspects of mywork, has also been a great
inspiration in my research. Professor, Dr. Adil Kabbaj has provided inspiration for my
work several times, and has written both the Prolog+CG software and the Amine Plat-
form software, whose program code I have had the pleasure of having a helping hand in
maintaining and extending over the past four years. Professor Kabbaj has furthermore
taught me on a number of occasions about the nature of research in genereal, and research
in knowledge representation in particular, for which I am grateful. I also wish to thank
Associate Professor, Dr. Kirk E. Lowery for fruitful discussions about technical issues.

Although we have neither met, nor corresponded, I wish to thank Søren Hornstrup for
making the texts of the Danish Old Testament from 1931 and theDanish New Testament
from 1907 available on the Internet back in the early 1990’ies. I also wish to thank
Sigve Bø of “Sigve Saker” in Norway (www.sigvesaker.no) forsending me his proof-
read, corrected version of the Danish Bible from 1931/1907.I thank Ole Madsen for
pleasant interactions concerning even older versions of the Bible in Danish.

I thank Associate Professor, dr.phil. Eckhard Bick for helpwith an early part-of-

9

10 CONTENTS

speech tagging and lemmatization of the Munk Corpus. I thankCenter for Language
Technology (CST) at the University of Copenhagen for letting me experiment with and
use their part-of-speech tagger and lemmatizer.

Last, but most certainly not least, I wish to thank my wife, Lone Margrethe, for her
love and support. Life is trulyabarêswith you.

List of published articles

The articles referenced below are part of this PhD dissertation, and can be found ap-
pended to the main body of the dissertation. The names in [square brackets], for example,
[RANLP2005], are used throughout the dissertation whenever referring to one of the ar-
ticles. All of the articles are published, and have been peer-reviewed internationally.

[COLING2004] Petersen, Ulrik. (2004)Emdros — a text database engine for analyzed
or annotated text, In Proceedings of COLING 2004, held August 23–27 in Geneva.
International Commitee on Computational Linguistics, pp.1190–1193.

[RANLP2005] Petersen,Ulrik. (2005)Evaluating corpus query systems on function-
ality and speed: TIGERSearch and Emdros.In: Angelova, G., Bontcheva, K.,
Mitkov, R., Nicolov, N. and Nikolov, N. (eds): International Conference Recent
Advances in Natural Language Processing 2005, Proceedings, Borovets, Bulgaria,
21–23 September 2005, pp. 387–391.

[FSMNLP2005] Petersen, Ulrik. (2006a)Principles, Implementation Strategies, and
Evaluation of a Corpus Query System. In: Yli-Jyrä, Anssi; Karttunen, Lauri;
Karhumäki, Juhani (eds),Finite-State Methods and Natural Language Process-
ing 5th International Workshop, FSMNLP 2005, Helsinki, Finland, September 1–
2, 2005, Revised Papers, Lecture Notes in Computer Science, Volume 4002/2006,
Springer Verlag, Heidelberg, New York, pp. 215–226. DOI: 10.1007/11780885_21.

[LREC2006] Petersen, Ulrik. (2006b)Querying both Parallel and Treebank Corpora:
Evaluation of a Corpus Query System. In: Proceedings of International Language
Resources and Evaluation Conference, LREC 2006.

[CS-TIW2006] Petersen, Ulrik. (2006c)Prolog+CG: A Maintainer’s Perspective. In: de
Moor, Aldo, Polovina, Simon and Delugach, Harry (eds.):First Conceptual Struc-
tures Interoperability Workshop (CS-TIW 2006). Proceedings. Aalborg University
Press, pp. 58–71.

[CS-TIW2007] Petersen, Ulrik (2007)Using interoperating conceptual tools to improve
searches in Kaj Munk. In: Pfeiffer, Heather D., Kabbaj, Adil and Benn, David
(eds.):Second Conceptual Structures Tool Interoperability Workshop (CS-TIW 2007).
Held on July 22, 2007 in Sheffield, UK, in conjunction with International Confer-
ence on Conceptual Structures (ICCS) 2007. Research Press International, Bristol,
UK. ISBN: 1-897851-16-2, pp. 45–55.

[ICCS-Suppl2008] Sandborg-Petersen, Ulrik (2008)An FCA classification of durations
of time for textual databases.In: Eklund, Peter and Haemmerlé, Olivier (eds):
Supplementary Proceedings of ICCS 2008, CEUR-WS.

11

12 CONTENTS

The article labelled [COLING2004] was written before my PhDstudies commenced. It
is part of this thesis because it is an important introduction to my work. Even though it
was written during the last months of my MA studies, it did notform part of the basis for
evaluation of my MA work. The ideas presented in [COLING2004] are foundational for
large portions of the theoretical as well as practical aspects my work, and so the article
finds a natural place among the other articles presented here.

Resumé

Det centrale tema for denne ph.d.-afhandling er “annoterede tekstdatabaser”. En annoteret
tekstdatabase er en samling tekst plus information on teksten, som er lagret i et computer
system med henblik på nem opdatering og tilgang. “Informationen om teksten” er anno-
teringerne af teksten.

Mit ph.d.-arbejde er blevet udført under den organisatoriske paraply, som udgøres af
Kaj Munk Forskingscentret ved Aalborg Universitet. Kaj Munk (1898–1944) var en både
indflydelsesrig og flittig dramatiker, journalist, pastor og poet, hvis indflydelse mærkedes
både i og udenfor Danmark i mellemkrigstiden. Han blev myrdet af Gestapo først i januar
1944 på grund af hans modstandsholdninger.

De to af Kaj Munk Forskningscentrets hovedaktiviteter, somjeg har været involveret i
igennem mit ph.d.-arbejde er følgende: a) At digitalisere Kaj Munks samlede værker,
og b) At gøre Kaj Munks samlede tekstproduktion tilgængeligi elektronisk form for
den brede befolkning. Min afhandling afspejler disse aktiviteter ved at tage Kaj Munks
værker, og gøre dem til det empiriske grundlag, det empiriske datamateriale, hvorpå min
afhandlings teoretiske fremskridt er blevet testet.

Mit ph.d.-arbejde har ikke omhandlet Kaj Munks værker set fra et historisk eller lit-
terært perspektiv. Nej, mit arbejde har været udført set meden datalogs briller, og med det
formål at repræsentere annoterede udgaver af Kaj Munks værker i et computerdatabas-
esystem, samt med det formål at opnå mulighed for nem adgang til disse annoterede
udgaver ved hjælp af et søgesprog. Derfor har det faktum, at det empiriske grundlag har
været Kaj Munks samlede værker, været, i alt det for resultaterne væsentlige, ligegyldigt.
Med andre ord kan resultaterne — de udkrystalliserede teorier, de opnåede metoder, og
det implementerede system — nu anvendes på andre annoteredekorpora, uafhængigt af
deres ophav med Kaj Munks værker som det empiriske grundlag.

De teoretiske fremskridt, som jeg har opnået i løbet af min ph.d., bygger naturligvis
på en række andre personers arbejde. Det primære udgangspunkt har været Dr. Crist-Jan
Doedens’s arbejde, som han udførte i sin PhD-afhandling fra1994: “Text Databases —
One Database Model and Several Retrieval Languages”, Universitetet i Utrecht, Holland.
I sin PhD-afhandling beskrev Dr. Doedens dels sin “Monads dot Features” (MdF) model
for annoterede tekstdatabaser, dels sit “QL” søgesprog, defineret over MdF databaser.

I mit arbejde har jeg taget MdF tekstdatabasemodellen, og har både udvidet og reduc-
eret dens omfang på forskellige områder. Dermed er jeg nået frem til den udvidede MdF
model, eller “EMdF modellen” (på engelsk: “Extended MdF model”). Jeg har også taget
Doedens’s QL søgesprog, og har dels reduceret en del af det til et lidt mindre del-sprog,
dels udvidet QL kraftigt til at blive et “sprog med fuld tilgang” til EMdF databaser. Jeg
kalder min udvidelse af QL for “MQL”.

EMdF modellen er i stand til at udtrykke næsten enhver form for annotering, der måtte
kræves, for at repræsentere lingvistiske annoteringer af tekst. Som jeg viser i Kapitel 10,

13

14 CONTENTS

så er det i hvert fald tilfældet, at alle de former for annoteringer, som vi i Kaj Munk
Forskningscentret har ønsket at tilføre Kaj Munk Korpusset, kan utrykkes i EMdF mod-
ellen.

MQL søgesproget er som sagt et “sprog med fuld tilgang” til EMdF databaser, idet
MQL understøtter de fire hovedoperationer på databaser: “opret”, “hent”, “opdater” og
“slet” (på engelsk: “create”, “retrieve”, “update”, and “delete”). Dette står i kontrast til
QL, som “kun” var et sprog, hvori man kunne “hente” (på engelsk: “retrieve”) visse dele
af MdF modellens datadomæner.

Jeg har implementeret EMdF modellen og MQL søgesproget i mit“Emdros” kor-
pussøgesystem. Dermed har jeg opfyldt de fleste af de krav, som Doedens stillede til et
annoteret tekstdatabasesystem, hvilket jeg viser i Kapitlerne 4, 5 og 14.

Afhandlingens første del, Part I, omhandler “teoretiske fundamenter” og indeholder
Kapitlerne 1 til og med 8.

Kapitel 1 introducerer afhandlingens emner, og definerer nogle af de hovedbegreber,
som anvendes i afhandlingen. Kapitel 2 giver et overblik over den vigtigste litteratur
indenfor afhandlingens emneområde. Kapitel 3 giver en kortintroduktion til emnet “on-
tologi”, til brug i senere kapitler. Kapitel 4 introducererog diskuterer EMdF modellen,
mens Kapitel 5 gør det samme for MQL søgesproget. Kapitel 6 introducerer og diskuterer
“Neget” (på engelsk: “The Sheaf”), som er en af de datastrukturer, som en MQL søgn-
ing kan returnere. Kapitel 7 beskriver en generel algoritmefor, og en klassificering af
mulige strategier for, at “høste” et “Neg”, det vil sige, at aflede meningsfulde resultater af
et “Neg”. Kapitel 8 diskuterer nogle mulige relationer imellem annotered tekst (som den
kan udtrykkes i og med EMdF modellen) på den ene side, og tid påden anden siden.

Afhandlingens anden del, Part II, omhandler “Anvendelser”og indeholder Kapitlerne
9 til og med 13.

Kapitel 9 introducerer Part II. Kapitel 10 beskriver hvordan de teoretiske fundamenter
lagt i Part I kan blive anvendt til at implementere Kaj Munk Korpusset i EMdF modellen.
Kapitel 11 beskriver principperne bag, og funktionaliteten af, et web-baseret værktøj, som
jeg har skrevet med brug af Emdros. Værktøjet har til formål at understøtte en kollabora-
tiv annotering af Kaj Munk Korpusset, men kunne i princippetanvendes på et hvilket som
helst andet korpus. Kapitel 12 er det centrale kapitel i PartII, i hvilket jeg viser, hvordan
både EMdF modellen og MQL søgesproget og “høstningsalgoritmen”, som alle blev ud-
viklet i Part I, kan anvendes på de problemer, der indebæres imålet, at gøre Kaj Munks
værker tilgængelige i elektronisk form for den brede befolkning. Kapitel 13 diskuterer
måder, hvorpå EMdF modellen og MQL søgesproget kan anvendestil at understøttet pro-
cessen med, automatisk at lokalisere citater fra ét korpus iet andet korpus. I dette tilfælde
er problemet, at finde citater fra Bibelen i Kaj Munk Korpusset.

Afhandlingens tredie del, Part III, er meget kort, og indeholder kun to kapitler. Den
omhandler “Perspektiver” på mit arbejde.

I Kapitel 14 diskuterer jeg måder, hvorpå EMdF modellen og MQL søgesproget kan
blive udvidet, så de endnu bedre kan understøtte problemerne indebåret i at lagre og
fremhente annoteret tekst. Kapitel 15 afrunder afhandlingen.

Appendix A giver den fulde grammatik for den delmængde af MQL, som svarer til
Doedens’s QL.

Syv allerede publicerede, internationalt peer-reviewedeartikler er vedlagt afhandlin-
gen i Appendix B, og udgør en del af bedømmelsesgrundlaget for afhandlingen..

Abstract

The central theme of this PhD dissertation is “annotated text databases”. An annotated
text database is a collection of text plus information aboutthat text, stored in a com-
puter system for easy update and access. The “information about the text” constitutes the
annotations of the text.

My PhD work has been carried out under the organizational umbrella of the Kaj Munk
Research Centre at Aalborg University, Denmark. Kaj Munk (1898–1944) was an influ-
ential and prolific playwright, journalist, pastor, and poet, whose influence was widely
felt — both inside and outside of Denmark — during the period between World War I
and World War II. He was murdered by Gestapo in early January 1944 for his resistance
stance.

The two main tasks of the Kaj Munk Research Centre in which I have been involved
during my PhD work are: a) Digitizing thenachlassof Kaj Munk, and b) Making the
texts of Kaj Munk available electronically to the general public. My dissertation reflects
these tasks by taking the works of Kaj Munk as the empirical basis, the empirical sample
data, on which to test the theoretical advancements made in my dissertation.

My work has thus not been about Kaj Munk or his works as seen from a historical or
even literary perspective. My perspective on Kaj Munk’s works has been that of a com-
puter scientist seeking to represent annotated versions ofKaj Munk’s works in a computer
database system, and supporting easy querying of these annotated texts. As such, the fact
that the empirical basis has been Kaj Munk’s works is largelyimmaterial; the principles
crystallized, the methods obtained, and the system implemented could equally well have
been brought to bear on any other collection of annotated text. Future research might see
such endeavors.

The theoretical advancements which I have gained during my PhD build on the work
of a number of other people, the primary point of departure being the work of Dr. Crist-Jan
Doedens in his PhD dissertation from 1994: “Text Databases —One Database Model and
Several Retrieval Languages”, University of Utrecht, the Netherlands. Dr. Doedens, in his
PhD dissertation, described the “Monads dot Features” (or MdF) model of annotated text,
as well as the “QL query language” defined over MdF databases.

In my work, I have taken the MdF text database model, and have both reduced it in
scope in some areas, and have also extended it in other areas,thus arriving at the EMdF
model. I have also taken Doedens’s QL query language, and have reduced part of it to a
slightly smaller sub-language, but have also extended it innumerous ways, thus arriving
at the “MQL query language”.

The EMdF model is able to express almost any annotation necessary for representing
linguistic annotations of text. As I show in Chapter 10, it iscertainly the case that all of
the annotations with which we in the Kaj Munk Research Centrehave desired to enrich
the Kaj Munk Corpus, can be expressed in the EMdF model.

15

16 CONTENTS

The MQL query language is a “full access language”, supporting the four operations
“create”, “retrieve”, “update”, and “delete” on all of the data domains in the EMdF model.
As such, it goes beyond Doedens’s QL, which was only a “retrieval” language.

I have implemented the EMdF model and the MQL query language in the “Emdros”
corpus query system. In so doing, I have fulfilled most of the demands which Doedens
placed on an annotated text database system, as I show in Chapters 4, 5, and 14.

The dissertation is structured as follows.
Part I on “Theoretrical Foundations” encompasses Chapters1 to 8.
Chapter 1 introduces the topics of the thesis, and provides definitions of some of the

main terms used in the dissertation. Chapter 2 provides a literature review. Chapter 3
provides a brief introduction to the topic of “ontology”, for use in later chapters. Chapter
4 introduces and discusses the EMdF model, while Chapter 5 does the same for the MQL
query language. Chapter 6 introduces and discusses the Sheaf, which is one kind of output
from an MQL query. Chapter 7 describes a general algorithm for, and a classification
of possible strategies for, “harvesting” a Sheaf, that is, turning a Sheaf into meaningful
results. Chapter 8 discusses the relationship between annotated text (as expressible in the
EMdF model) on the one hand, and time on the other.

Part II on “Applications” encompasses Chapters 9 to 13.
Chapter 9 introduces Part II. Chapter 10 describes how the theoretical foundations laid

in Part I can be used to implement the Kaj Munk Corpus in the EMdF model. Chapter 11
discusses the principles behind, and the functionality of,a web-based application which
I have written on top of Emdros in order to support collaborative annotation of the Kaj
Munk Corpus. Chapter 12 is the central application-chapter, in which I show how both the
EMdF model, the MQL query language, and the harvesting procedure described in Part I
can be brought to bear on the task of making Kaj Munk’s works available electronically
to the general public. I do so by describing how I have implemented a “Munk Browser”
desktop application. Chapter 13 discusses ways in which theEMdF model and the MQL
query language can be used to support the process of finding quotations from one corpus
in another corpus, in this case, finding quotations from the Bible in the Kaj Munk Corpus.

Part III on “Perspectives” is very short, encompassing onlytwo chapters.
Chapter 14 discusses ways in which the EMdF model and the MQL query language

can be extended to support the requirements of the problem ofstoring and retrieving
annotated text even better. Finally, Chapter 15 concludes the dissertation.

Appendix A gives the grammar for the subset of the MQL query language which
closely resembles Doedens’s QL.

Seven already-published, internationally peer-reviewedarticles accompany the disser-
tation in Appendix B, and form part of the basis for evaluation of the dissertation.

Part I

Theoretical foundations

17

Chapter 1

Introduction

1.1 Introduction

“There are many ways to skin a cat,” so the saying goes. Similarly, there are several
ways to write a PhD dissertation. I have chosen the way recommended to me by my
PhD supervisor, Peter Øhrstrøm, namely to publish a number of articles, and let the PhD
dissertation be a hybrid between, on the one hand, a lengthy introduction, and on the
other hand, the published articles. All of the articles appended to the main body of this
dissertation have been peer-reviewed internationally.

The contents of this introduction, together with the published articles, reflect some
of the research activities in which I have been engaged in my three years of PhD study
(May 2005 through April 2008). The common thread weaving through all of my research
activities has been that of “annotated textdatabases.” An annotated text database is, as
Doedens [1994] puts it,

“an interpreted text, i.e. a combination of text and information about this
text, stored in a computer, and structured for easy update and access. The text
and the information about the text aredifferentparts of thesamedatabase.”
(p. 19; emphasis in original)

The key notion in this definition is that of a “combination of text and information about
this text”. To me, a text by itself may be interesting and useful, but its utility can poten-
tially increase manifold when the text is combined with information about the text, and
stored in a text database. This is the basic interest, the basic wonder that has made my
PhD studies enjoyable from start to finish.

Organisation-wise, my research has been carried out at the Kaj Munk Research Cen-
tre at Aalborg University, Denmark. Therefore, the empirical basis for my theoretical
research has, for the most part, been that of the works of Kaj Munk. Kaj Munk (1898–
1944) was a Danish playwright, pastor, poet, and journalistwhose influence was widely
felt, both inside and outside of Denmark in the period between World War I and World
War II. He was murdered by Gestapo for his resistance stance in early January 1944.

My research has not been about Kaj Munk as a literary or even historical figure, nor
about his works as literary works or historical artifacts. Rather, my research has focussed
on the theoretical and practical problems centered around the task of making Kaj Munk’s
texts available as annotated text. This has been done from the perspective of computer
science, with elements of computational linguistics and knowledge representation being

19

20 CHAPTER 1. INTRODUCTION

supportive disciplines under whose broad umbrellas I have found inspiration for solutions
to some of the problems posed by the empirical data and the theoretical considerations.
This PhD dissertation thus falls within the category of “cross-disciplinary research.”

1.2 Empirical application

My PhD work is not only cross-disciplinary, it it is also a blend of theoretical and principal
considerations on the one hand, and an empirical application of these considerations to
practical problems on the other hand. The theoretical and principal considerations have
led to their application upon the following practical domains of knowledge:

1. Representation of annotated text, both in a database management system and
outside of such a system (see Chapter 10).

2. Software development, as applied to:

(a) My own database management system for annotated text, called Emdros (see
Chapters 4, 5, 6, and 7).

(b) A “Munk Browser”, i.e., a desktop software application which supports “brows-
ing” the Kaj Munk Corpus, as well as searching it (see Chapter12).

(c) Website development for collaborative annotation (seeChapter 11).

3. Artificial intelligence , that is, an attempt at building an algorithm for locating quo-
tations from the Bible in the Kaj Munk Corpus (see Chapter 13).

The most important of these applications, seen from my perspective, is the development
of my “Emdros” database management system for annotated text. Before I introduce Em-
dros, I need to define what I mean by the terms “database system”, “database management
system”, “database”, “text database”, and “annotated textdatabase”. I will define these
terms in the next two sections.

1.3 What is a database system?

A “database”, according to [Date, 1995], is not a piece of software. Rather, it is a collec-
tion of data:

“A databaseconsists of some collection of persistent data that is used by the
application systems of some given enterprise.” (Date [1995], p. 9; emphasis
in original.)

Date explains that “persistent” database data

“differs in kind from other, more ephemeral data, such as input data, output
data, control statements, work queues, software control blocks, intermediate
results, and more generally any data that is transient in nature.” (ibid.)

1.3. WHAT IS A DATABASE SYSTEM? 21

Thus the nature of the data in a database is that it is persistent, i.e., neither ephemeral
nor transient. In fact, it is “information” (p. 4) which is potentially useful to “some given
enterprise”, and which is therefore stored in a database.

Notice that Date also mentions database data as beingusedby application systems.
These application systems are made up of layers of software that include both a database
management system (DBMS) and applications running on top ofthe DBMS. These, in
turn, make up the software that is only one kind of component in a full database system.
Date explains (p. 5) that

“a database system involves four major components, namely,data, hard-
ware, software, andusers.” (Date [1995], p. 5; emphasis in original.)

The users are human beings wishing to make use of the data in the database system. The
data is the information which the users wish to use. The hardware is a physical computer
system which stores the data and which runs the database software. The database software
consists, as already mentioned, of:

1. A database management system (DBMS), which is responsible for:

(a) “the shielding of database users from hardware-level details” (Date [1995],
p. 7), that is, abstracting away the details of hardware-level storage and re-
trieval, typically abstracted away into query language constructs.

(b) Actually storing the data in physical database files (through the intermediary
agency of the operating system on which the DBMS is running),

(c) Providing high-level query language functionality foruser- and application-
initiated requests on the database.

(d) And other functions which are less important in this context.

2. A number of software applications running on top of the DBMS. The user will typ-
ically be interacting with one of these software applications rather than the DBMS
itself directly. A database application running on top of a DBMS may be domain-
specific (a good example would be the “Munk Browser” described in Chapter 12),
or it may be general (a good example would be the “MySQLAdmin”application,
which is a tool for database administrators to interact graphically with the MySQL1

database management system with the purpose of performing administrative tasks
on one or more MySQL databases).

The concepts mentioned so far can be illustrated as in Figure1.1. As can be seen, the
hardware is a box surrounding both the physical databases (data) and the software (Op-
erating System, DBMS, and Applications). The software parts run on top of each other
in the layers shown. Finally, the users are human beings who make use of the database
system through interaction with the applications.

1http://www.mysql.com

22 CHAPTER 1. INTRODUCTION

Figure 1.1: Components of a database system. The double box with an inner solid box
and an outer striped box represents the hardware. Inside thehardware, we find two files
(Database 1 and Database 2) containing the data. We also find the software, which I have
drawn as consisting of of three layers: The application-layer, the Database Management
System (DBMS), and the Operating System. The little people at the top represent users
who interact with the application-layer.

1.4 What is an annotated text database system?

I have just defined what I mean by “database system”, “database”, “database manage-
ment system”, and “database application”. These definitions are derived from those of
C.J. Date, who is an authority in the field of database systems. Now I turn to another
set of definitions, which are all related to the central themeof this dissertation, namely
“annotated text databases”.

Given that adatabaseis a collection of persistent data, atext database, then, is a
database whose primary content consists of text. As a further step, the term “annotated
text database” can be defined as a text database which, in addition to the text itself, con-
tains — as a significant part of the information-value in the database —information about
that text, i.e.,annotationsof the text.

An annotated text database management system(ATDBMS), then, is a piece of soft-
ware which performs DBMS functions on one or more annotated text databases. It is
used byannotated text database applicationsin order to provide text database services to
humanusers.

Finally, an annotated text database system consists of:

1. humanusers,

2. data in the form of annotated text databases,

1.5. EMDROS 23

3. software in the form of:

(a) an operating system,

(b) an annotated text database management system (ATDBMS),

(c) one or more annotated text database applications,

and

4. thehardware on which these three pieces of software run.

These definitions are closely tied to those of Doedens [1994], who states:

“A generalsystem, i.e., a system which is not tied to a particular application,
which holds the information of an expounded text [Doedens’sterm for an an-
notated text database] in a way which makes it possible to selectively update
and access the information according to its structure and content I call atext
database management system, or text database systemfor short. In prac-
tice a text database system is a computer program. The idea ofa text database
management system is that it supplies services to one or moreapplications.
Through the use of these services the applications can access the text data
managed by the text database management system.” (Doedens [1994], p. 21;
emphasis in original.)

Note that Doedens does not, as I do, distinguish between atext database management
systemon the one hand, and atext database systemon the other. In contrast to Doedens’s
conflation of these two terms, I define atext database systemas the whole system (users
+ annotated text databases + hardware + software), following Date [1995]. In my termi-
nology, atext database management systemis then part of the software encompassed by
the whole text database system.

The nature of the annotations added to the text in an annotated text database is not my
concern at this point. I shall return to this question in Chapter 4. For now, it is enough to
bear in mind the notion that text can be annotated, i.e., information about the text can be
added outside the text, and both can be stored in an annotatedtext database, which in turn
is managed by an annotated text database management system (ATDBMS).

The primary example of an ATDBMS with which I have been concerned in my PhD
work, is a piece of software which I call “Emdros.” It has served as the testbed for the
majority of the ideas produced in my PhD work, and also embodies many of the principles,
theories, strategies, and methods which I have developed for dealing with annotated text.
In the next section, I describe Emdros from a high-level perspective, preparing the ground
for some of the following chapters.

1.5 Emdros

Emdros is an annotated text database management system which I have been developing
from around 1999 until the present. The theoretical foundation for Emdros has, in large
part, been provided by Crist-Jan Doedens’s PhD dissertation [Doedens, 1994] from which
I have already quoted several times. Where Doedens blazed a theoretical trail in the

24 CHAPTER 1. INTRODUCTION

jungle of annotated text database theory, I have merely beenfollowing behind Doedens,
implementing many of his theoretical ideas in practice, andalso slightly repairing and
clearing the path along the theoretical trail, thus making the theoretical trail safer for
others to follow.

Doedens defined, in his PhD dissertation, a number of theoretical constructs related to
the field of annotated text database theory. From a high-level perspective, these theoretical
constructs include:

• A text database modelwhich Doedens called the “Monads dot Features” model (or
MdF model for short).

• The notion oftopographicity (to which I return below).

• A powerful text database retrieval languagewhich Doedens called “QL ”.

• A text databaseretrieval languagewhich Doedens called “LL”. Doedens also pro-
vided a formal framework for and specification of the translation of LL to QL.

In my work, I have extended the MdF model to become the “Extended Monads dot Fea-
tures model” (or EMdF for short). The EMdF model is describedin detail in Chapter 4,
and also in [COLING2004, FSMNLP2005, RANLP2005, LREC2006]. I have also im-
plemented a large subset of Doedens’s QL, resulting in the query language which I call
“MQL”.

Doedens, in his PhD work, did not provide any implementationof his ideas. The
majority of his ideas were described in abstract mathematical terms, and his “QL” query
language, in particular, was difficult to implement due to the nature of the descriptions.
As Winskel [1993] explains, there are two opposite ways of describing the semantics of
formal languages:

• Denotational semantics, which describeswhat to compute, but nothowto compute
it.

• Operational semantics, which describeshow to compute the desired result, but not
what that result should be.

Doedens, in his PhD work, described adenotationalsemantics of the QL language. Given
the level of abstraction employed in the descriptions, it was difficult for me, being a mere
undergraduate in computer science, to turn those “whats” into “hows”. Yet I succeeded in
doing precisely this for a small subset of QL, and this result(called “MQL” for “Mini QL”)
was reported on in my B.Sc. thesis [Petersen, 1999]. Since then, I have greatly expanded
the MQL query language, both before and during my PhD studies, as can be seen in
part by following the growth of MQL through the articles appended to this dissertation,
in particular [COLING2004,FSMNLP2005,RANLP2005,LREC2006]. Chapter 5 reports
on the “state of the art” of the MQL query language, and also spells out what has been
done during my PhD studies and what has been implemented before.

The notion of “topographicity” developed by Doedens can be briefly explained as
follows. A language is “topographic” if there exists an isomorphism between the structure
of the expressions in the language and the structure of the objects denoted by the language
[Doedens, 1994, p. 108]. QL is a “topographic language”, meaning that the structure

1.6. RECURRING EXAMPLE 25

of a query in the language is in a direct isomorphism relationship with the structure of
the database objects denoted by the query. Furthermore, there is a direct isomorphic
relationship between the structure of the query and the structure of the output from the
query, called a “Sheaf”. Both of these tenets make QL “topographic”.

A subset of MQL, too, is topographic in both of these ways. Butwhere QL was
“merely” a “retrieval-language”, in which it was only possible to retrieve objects from
an existing database, MQL is a “full access language”, in which it is possible to create,
update, delete, and retrieve all of the data domains expressible in the EMdF model. Thus
MQL is, in a sense, larger than QL, since it has “create, update, delete” functionality in
addition to the “retrieve” functionality provided by QL. Moreover, the topographic subset
of MQL has grown since its inception in 1999, even if it has notyet reached the full
potential expressed by Doedens’s description of QL.

1.6 Recurring example

In order to be able to write meaningfully and in practical terms about theoretical mat-
ters, I shall employ a recurring example. I have chosen to usea poem by Kaj Munk,
entitled “Den blaa Anemone” (in English: “the blue anemone”) from 1943. It appears
in Figure 1.2 on the following page both in its original Danish, and in my own English
rendition. The rendition suffers from not being a word-for-word equivalent. Instead, it is
hoped that the flavour of the original can be descried in the English rendition, however
dimly.

This poem is perhaps the most well-known of Kaj Munk’s poems,not least because it
has been set to music and is sung in most elementary schools aspart of any Danish pupil’s
learning experience. The poem provides an excellent example for the explicative purposes
of this dissertation, for the following reasons: a) It is relatively short, but not too short for
my purposes. Thus a “happy medium” between brevity on the onehand a complexity on
the other is represented by this poem. b) The poem exists bothin handwritten, original,
autograph form, and in a printed form. There are slight differences between these forms,
and even the handwritten autograph form has corrections andvariations. This entails a
certain level of complexity in the encoding and annotation of the text, since all versions
should ideally be represented and annotated.

I shall return to this example poem at opportune points in thedissertation.

1.7 Dissertation plan

The dissertation is laid out as follows. There are three parts:

1. Theoretical foundations, in which the theoretical foundations are laid for the rest of
the dissertation.

2. Applications, in which these theoretical foundations are brought to bear on a num-
ber of practical problems.

3. Perspectives, in which directions for future research are explained.

26 CHAPTER 1. INTRODUCTION

Hvad var det dog, der skete?
mit hjerte haardt og koldt som Kvarts
maa smelte ved at se det
den første Dag i Marts.
Hvad gennembrød den sorte Jord
og gav den med sit dybblaa Flor
et Stænk af Himlens Tone
den lille Anemone,
jeg planted der i Fjor.

What was it that had happened?
My heart, as hard and cold as quarts,
must melted be to see it,
this day, the first of March.
What piercéd had the darkened soil,
and giv’n it with its deep blue leaves
a touch of Heaven’s tone
the little anemone
I planted there last year.

Paa Lolland jeg den hented,
en Hilsen fra min Fødeø.
Saa gik jeg her og vented
og tænkte, den maa dø.
Den savner jo sit Skovkvarter,
sin lune Luft sit fede Ler
i denne fjendske Zone
forgaar min Anemone
jeg ser den aldrig mer.

On Lolland did I fetch it,
a greeting from my isle of birth.
Then here I walked and waited,
and thought that: “It will die.
For miss it must its coppice place,
its warmish air, its fatty clay
in this so hostile zone,
is lost my anemone
I’ll see it ne’er again.”

Nu staar den der og nikker
med Smil i Jyllands skarpe Grus
ukuelig og sikker
trods Havets Storm og Gus
som om Alverdens Modstand her
har givet den et større Værd
en lille Amazone
og dog min Anemone;
jomfruelig og skær.

Now there it stands, all nodding
with smiles in Jylland’s flinty dirt,
invincible and certain
despite sea, storm, and fog.
As if the World’s resistance here
has given it a greater worth.
A little amazone,
and yet, my anemone;
so virgin-like and clean.

Hvad var det dog, der skete
Mit Hjerte koldt og haardt som Kvarts
det smelter ved at se det
den første Dag i Marts.
Jeg mindes, under Vinters Had
jeg intet mere Haab besad.
Gør med sin vaarblaa Krone
den lille Anemone
igen mit Hjerte glad?

What was it that had happened?
My heart, as hard and cold as quarts,
is melting now to see it,
this day, the first of March.
I call to mind, through Winter’s hate
I had no longer any hope.
Will, with its spring-blue crown
the little anemone
again my heart make glad?

Ja, denne rene Farve
den er mig som en Vaarens Daab
der naadig la’r mig arve
en Evighed af Haab.
Saa bøjer jeg mig ned mod Jord
og kysser ømt dit Silkeflor
en Flig af Naadens Trone
du lille Anemone,
hvor er vor Skaber stor!

Yes, this unmixéd colour,
it is to me a bath of spring
which, graceful, lets me inherit
an eternity of hope.
I bend, then, down towards the earth
and kiss thy leaves so tenderly.
A hint of mercy’s throne —
thou, little anemone!
How great is our creator!

Figure 1.2: “Den blaa Anemone”, a poem by Kaj Munk (1943), with my own (almost
literal) translation into English

1.7. DISSERTATION PLAN 27

I now describe the chapters in Part I. Later parts will have their own introductions.
In Part I, this introductory chapter is followed by a literature review (Chapter 2). I then

describe and explain the concept of “Ontology” (Chapter 3).I then describe and explain
the EMdF model implemented in Emdros (Chapter 4), followed by a chapter on the MQL
query language of Emdros (Chapter 5). One of the data structures which can be returned
from an MQL query is a “Sheaf”, which contains the results from a topographic query
(Chapter 6). The following chapter describes a number of strategies for “harvesting” a
sheaf, i.e., for turning a sheaf into meaningful results (Chapter 7). Finally, in a chapter
on “Annotated Text and Time”, I expand upon the ideas presented in [ICCS-Suppl2008]
(Chapter 8).

28 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

2.1 Introduction

In this chapter, I will review some of the most important literature related to my own work.
The two most important aspects of my own work are: a) Databasemodels for annotated
text, and b) Query languages for annotated text. Hence, I have divided this literature
review into two main sections, one on database models for annotated text (2.2), and one on
query languages for annotated text (2.3). Since the field of Information Retrieval overlaps
to some extent with my own work, I have included a section on relevant literature from
the field of information retrieval (2.4). Since my main contribution is a “corpus query
system,” I then list some of the other corpus query systems available (2.5). Finally, I
conclude this chapter (2.6).

2.2 Other models for annotated text

2.2.1 Introduction

What is a database model? As defined by Codd [1980] (and generally accepted in the
field), a database model consists of three distinct items. A database model is, and I quote
from Codd [1980]:

“1) A collection of data structure types (the building blocks of any database
that conforms to the model);

2) a collection of operators and inference rules, which can be applied to any
valid instances of the data types listed in (1), to retrieve or derive data from
any parts of those structures in any combinations desired;

3) a collection of general integrity rules, which implicitly or explicitly define
the set of consistent database states or changes of state or both — these rules
may sometimes be expressed as insert-update-delete rules.”

This is different from what some authors call a “data model”,or a “schema”. A schema
is an application of a database model to a particular problemdomain. Where a database
model defines what it ispossibleto express in a database (constrained by Codd’s “data
structure types”, “operators and inference rules”, and “integrity rules”), a schema defines

29

30 CHAPTER 2. LITERATURE REVIEW

anactualset of constraints that conforms to some problem domain. Forexample, whereas
a database model may stipulate that it ispossibleto have objects that have attributes, a
schema may define that there must be objects ofparticular object types called “clause”,
“phrase”, and “word”, with certainparticular attributes.

Database models are used for a variety of purposes, which arenot just limited to
storing text. Some database models support text as a side-effect of supporting other kinds
of data. The variety of database models that exist becomes apparent in even a cursory
overview of the literature [Angles and Gutierrez, 2008, Loeffen, 1994, Abiteboul, 1997,
Christophides et al., 1994, Abiteboul et al., 1997, Blake etal., 1994, DeHaan et al., 2003,
Kashyap and Rusinkiewicz, 1997, Carletta et al., 2003b, Cassidy, 1999, Evert et al., 2003,
Gonnet and Tompa, 1987, Nicol, 2002, Tague et al., 1991, Tompa, 1989].

What concerns us in this dissertation, however, is not database models in general,
but database models for annotated text. The survey paper of Arjan Loeffen on “Text
Databases: A survey of text models and systems” [Loeffen, 1994] describes a view on
database models similar to Codd, and summarizes the state ofthe art up until 1994 in text
database models. Some of the salient models cited by Loeffen’s paper will be discussed
here.

In the following, I first discuss XML and SGML. Then I discuss grammar-based mod-
els of text, graph-based models of text, range-based modelsof text, and object-oriented
models of text.

2.2.2 XML and SGML

2.2.2.1 Introduction to XML and SGML

SGML was developed during the 1970’ies and 1980’ies, and waspublished as an ISO-
standard in 1986 [ISO, 1986]. XML was developed during the early 1990’ies, and is a
reduced subset of SGML [Bray et al., 2004]. According to Robin Cover,

“Both SGML and XML are "meta" languages because they are usedfor defin-
ing markup languages. A markup language defined using SGML orXML has
a specific vocabulary (labels for elements and attributes) and a declared syn-
tax (grammar defining the hierarchy and other features).”1

These descriptions very succinctly capture the essence of what XML and SGML are:
“meta-languages” in which it is possible to define other languages. When I say “lan-
guage” here, I mean “formal language”, not a “natural language” (such as English, Greek,
or Urdu). Formal languages have a formal syntax, and sometimes also a formal seman-
tics. The sense of the word “formal” here is the sense described by [Winskel, 1993] and
[Martin, 1991], namely a mathematical object (a “formal language”, “formal syntax”, or
“formal semantics”) which has been given a rigorous definition.

XML and SGML are thus formal “meta-languages” in which it is possible to define
other formal languages. I have defined a formal language using XML, which is designed
to capture the data present in the Kaj Munk Corpus. I return tothis language in Chapter
10.

1Cover Pages, [Cover, 1986-2008]. Specific URL: http://xml.coverpages.org/sgml.html Access online
April 12, 2008. Robin Cover’s “Cover Pages” is the most respected online resource for information about
XML and SGML.

2.2. OTHER MODELS FOR ANNOTATED TEXT 31

Since I will be referring to XML in Chapter 10, I now give an extremely brief tutorial
on a few important aspects of XML.

A tag in XML is a part of a document which is enclosed in <angle brackets>, for
example,<munktxt> (which in my XML language starts a Munk Text). Tags are separate
from the rest of the document, and form part of themarkupof the document. In effect, a
tag specifies either thestart of an annotation, itsend, or both at the same time.

An elementin XML terminology consists of a tag and itsattributes. The attributes of
a tag are marked up asattribute-nameswith attribute-values,and are located inside of the
tag itself. For example:

<metadata kind="title" value="La Parole"/>

Here the tag “metadata” has two attributes, with names “kind” and “value”. The value of
the attribute “kind” is “title”, and the value of the attribute “value” is “La Parole”.

XML specifies that an element can eitherhave contentor beempty. An empty element
tag looks like this:
, consisting of an “angle bracket begin”, the tag name, a front
slash, and an “angle bracket end”. It has no content because it is both astart-tagand an
end-tagin one and the same tag. Attributes may intervene bewteen thetag name and the
front slash.

A tag with content, on the other hand, has a start-tag, e.g.,<munktxt>, followed by
its contents, followed by its end-tag, e.g.,</munktxt>. The start-tag specifies where the
element starts, and the end-tag specifies where it ends. Thiscan obviously be used to
specify annotations of text. Any attributes will always occur on the start-tag, and never
on the end-tag.2

2.2.2.2 XML and SGML as models of annotated text

Both XML and SGML can be said to provide models for annotated text. Or, more pre-
cisely, the model of annotated text assumed by XML and SGML can be applied to a large
subset of the problems inherent in the domain of annotated text. Briefly put, both SGML
and XML assume that annotated text is strictly hierarchical: All tags must be strictly
hierarchically nested within each other in a tree. For example, the sequence of tags + text:

<page><paragraph>This is the start of a paragraph which

</page><page> continues on the next page.</paragraph></page>

is illegal in XML. The reason is that the end-tag for the page occurs at a place where the
paragraph tag is still open (and not closed by its end-tag). This does not form a strictly
nested hierarchy, but forms an overlapping model of text. Thus the natural way of repre-
senting annotated text in SGML and XML does not allow for overlapping hierarchies.

This obviously poses a problem for many applications. Take something as simple
as a language defined in XML which is designed to capture page layout and document
structure at once. For any given page, its start and end in thedocument must be marked
up. This is due to the purpose of the language as a page layout markup language. At
the same time, the dual purpose of this language is to describe document structure. Yet

2Pedants among my readership will be relieved to know that I shall not overlook the fact that an empty
element tag is “both start-tag and end-tag in one and the sametag”, and thus attributes may occur on the
end-tag in this special case.

32 CHAPTER 2. LITERATURE REVIEW

paragraphs and chapters (and even words) do not always stay nicely within the borders of
a single page – a chapter rarely fits on a single page, and paragraphs are certainly able to
extend over a page break, as the example above shows.

There have been two proposed ways of dealing with this problem in the SGML and
XML communities. One is standoff markup [Thompson and McKelvie, 1997], and the
other is milestones. The latter is described in the TEI Guidelines TEI [2007], where we
read that milestones

“. . . simply mark the points in a text at which some category ina reference
system changes. They have no content but subdivide the text into regions,
rather in the same way as milestones mark points along a road,thus implicitly
dividing it into segments.” [TEI, 2007, Section 3.10.3]

Thus, for example, with milestones, it is possible to say that a page starts and ends at
such and such points in the document (using start-tags and end-tags), and to say with
milestones that a paragraph begins and ends. For example:

<page><paragraphbegin/>This is the start of a paragraph which

</page><page> continues on the next page.<paragraphend/></page>

Here the <paragraph> start-tag and the </paragraph> end-tag have been replaced with
empty tags which mark with separately named tags the start and end of the paragraph.
This neatly solves the problem of representing overlappinghierarchies, but does push the
burden of keeping track of the overlapping hierarchies fromthe XML parser onto the
application which uses the XML parser.

The idea of Standoff Markup is to separate the annotations from the text itself struc-
turally, instead using pointers between the annotation andthe parts of the text which it
annotates. This involves giving every word a unique identifier, which is then referred to
in the annotations. I have not used standoff markup in the Munk XML.

Thus there are ways to overcome the apparent non-support of overlapping hierarchies
in SGML and XML, using either standoff markup or milestones,or a mixture of both.

2.2.2.3 Applications of XML to annotated text

A number of applications of XML that deal specifically with linguistic annotations have
appeared in the literature. McKelvie et al. [2001] describes the XML-based MATE work-
bench, later expanded in the NITE project [Carletta et al., 2003a,b, 2004, Evert et al.,
2003, Voormann et al., 2003]. Work on supporting linguisticqueries on XML-based
models of linguistically annotated text is described in Bird et al. [2005].

2.2.3 Grammar-based models of text

As Loeffen [1994] explains, a number of models of text have been proposed which are
based on parsing text according to a formal grammar. One of the first to do so was
Gonnet and Tompa [1987], which described “a new approach to modeling text”, viewing
texts as trees which had characters as leaves and structuralinformation (such as words,
paragraphs, headings, dictionary entry headwords, etc.) as inner nodes. This model was
later expanded in Tague et al. [1991]. A similar database model may be found in Gyssens
et al. [1989].

2.3. QUERY LANGUAGES FOR ANNOTATED TEXT 33

2.2.4 Graph-based models

The survey article of Angles and Gutierrez [2008] both surveys the state of the art in
graph-based models, and provides an overview of 40 years of research in the area. Some
of the models relevant to text, and mentioned in this survey,include:

• Gram [Amann and Scholl, 1992] (which, although a general model, can be applied
to hypertext, as shown by the authors).

• Gonnet and Tompa [1987] (already mentioned; grammar-basedmodels can, in gen-
eral, be said also to be graph-based models, since grammars result in parse-trees,
which are graphs).

• Consens and Mendelzon [1989] (which provides a visual language in which to
query hypergraph-based databases, including hypertext).

• Navarro and Baeza-Yates [1995] (which defines the “ProximalNodes” model for
structured text, later expanded in Navarro and Baeza-Yates[1997] and Baeza-Yates
and Navarro [2002]).

A number of graph-based models of text specifically suited tolinguistic annotations have
appeared in the literature. Examples can be found in [Cottonand Bird, 2002, Bird et al.,
2000a,b, Bird and Liberman, 2001, Cassidy and Bird, 2000, Cassidy and Harrington,
2001].

2.2.5 Range-based models of text

Range-based models of text generally identify regions of text by a start-pointer and an
end-pointer into the text. Examples include the seminal paper by Clarke et al. [1995] and
the paper by Nicol [2002], which attempts to provide the samekind of algebra as Clarke
et al. [1995]. I am not aware of any actual implementation of either of these models,
except that Emdros implements a (non-proper) superset of the ideas presented in these
papers. Jaakkola and Kilpeläinen [1996b] provide an algebra for structured, nested text
regions, also expounded in Jaakkola and Kilpeläinen [1996a].

2.2.6 Object-oriented models of text

Object-oriented models of text haveobjectsandobject typesas a fundamental part of the
model. Doedens [1994] provides an example of an object-oriented database model. Of
course, I have lated expanded Doedens’s work [Petersen, 1999, 2004, Sandborg-Petersen,
2002-2008, Petersen, 2006a, 2007a, 2006b, 2005]. Another database model in the object-
oriented vein is described in Abiteboul et al. [1997].

2.3 Query languages for annotated text

One part of a database management system is the database model which it supports. An-
other very important part is the means through which this data is accessed, usually through
a query language.

34 CHAPTER 2. LITERATURE REVIEW

SQL [Ullman and Widom, 1997, Date, 1995] is the most widely used database query
language in business applications. It supports the relational database model [Date, 1995].
An application of SQL to the problem of interval-based querying can be found in Zhang
et al. [2001], which was inspired by Kriegel et al. [2000]. Interval-based querying is
important in Emdros, as we shall see in Chapter 5. Kashyap andRusinkiewicz [1997]
show how to model textual data using the Entity-Relationship model, and how to query it
using SQL. Davies [2003] shows how to implement “unlimited”linguistic annotation of
text in a relational database using SQL.

Object-oriented query languages include the one defined by the Object Database Stan-
dard [Cattell and Barry, 1997], Lorel [Abiteboul et al., 1997], and Doedens’s QL [Doe-
dens, 1994]. Doedens’s QL had a predecessor, called QUEST, described in [Harmsen,
1988, 1992, Doedens and Harmsen, 1990, Talstra et al., 1992]. My own MQL is another
object-oriented query language [Petersen, 1999, 2004, 2007a, 2006b].

XML-based query languages include the “NXT Search” query language supported by
the NITE XML system [Voormann et al., 2003, Carletta et al., 2004]. In addition, Bird
et al. [2005] extend the well-known XPath language [W3C, 2007] to support queries on
linguistic structures encoded in XML. Cassidy [2002] applied XQuery [Boag et al., 2005]
to the problem of querying linguistically annotated text, while DeHaan et al. [2003] pro-
vides a “comprehensive XQuery to SQL translation using dynamic interval encoding”.
Bird et al. [2000a] described a query language which could beapplied to Annotation
Graphs; the latter is an XML schema for representation of multi-layered linguistic anno-
tation of text. The work of Baeza-Yates and Navarro [2002] supports XML-based queries
on the Proximal Nodes database model mentioned above. Similar in scope is Jaakkola
and Kilpeläinen [1996a], which defines the SGrep query language over nested text re-
gions, which can be applied to XML. Blake et al. [1994] show how to implement an
SGML-based database model in SQL, and how to query it using SQL.

The TIGERSearch query language was designed to support treebanks, or databases
containing linguistic annotations of text in the form of trees [König and Lezius, 2003,
Lezius, 2002a,b]. A related language, VIQTORIA [Steiner and Kallmeyer, 2002], used
visual representation to search treebanks. Mettler [2007]provided a re-implementation
of TIGERSearch, adapting it for use in parallel treebanks. Kallmeyer [2000] describes
an implementation of a query language on syntactically annotated corpora. Aswani et al.
[2005] show how to index and query linguistically annotatedtext using the GATE system
[Cunningham et al., 2002, Cunningham and Bontcheva, 2003].

Others which could have been cited in this section will be cited below in Section 2.5
on “Other corpus query systems”.

2.4 Relation to Information Retrieval

The subject of this thesis is “annotated text”. I see this as distinct from “raw text”, which
is the view imposed on text by most Information Retrieval researchers. In Information
Retrieval, the goal is to locate the answer to questions (“queries”) indocuments. To this
end, there exist only two levels of text: Thetoken(or word), and thedocument. One could
choose to view this arrangement as an annotated text: The text (tokens) is annotated with
one layer of information (document-boundaries). However,for the purposes of this dis-
sertation, I shall choose to define most Information Retrieval techniques as being outside
the scope of my research.

2.5. OTHER CORPUS QUERY SYSTEMS 35

Some techniques from Information Retrieval are, however, very applicable to the
problems which I have attempted to solve during my PhD work. In particular, the fol-
lowing techniques apply very well:

• Indexing of text. Indexes are indispensable for fast querying, also in the prob-
lems which I have attempted to solve. The seminal paper by Bayer and McCreight
[1972] showed that it was feasible to obtain speed-increases even with no further
investment in new hardware (by using B-Trees, introduced inthis article). Since
then, a lot of variants of B-Trees have appeared, including R-Trees [Guttman, 1984,
Lee et al., 2003] and R*-Trees [Beckmann et al., 1990] to namebut a few. Other
indexing methods include inverted files [Larson, 1984, Zobel et al., 1998], PAT-
Trees [Gonnet et al., 1992], Signature Files [Zobel et al., 1998], and the index
compression techniques described in [Zobel and Moffat, 2006, Frakes and Baeza-
Yates, 1992, Baeza-Yates and Ribeiro-Neto, 1999]. See alsoFujii and Croft [1993],
which applies text indexing techniques to Japanese, and Kornacker [1999], which
describes a high-performance, extensible indexing technique.

• Result ranking. When a number of results have been retrieved, it may be important
to the user of the database system that the results appear in an order which makes
sense from the user’s perspective. This order can be difficult to compute if there is
no a-priori ordering which makes sense.3 Some of the techniques which fall under
the category of “query result ranking” are described in the survey by Zobel and
Moffat [2006], and are also described in Baeza-Yates and Ribeiro-Neto [1999].

2.5 Other corpus query systems

This thesis would not be complete without a review of the mostimportant pieces of soft-
ware comparable to Emdros. Therefore, I give a short review here.

Several systems are aimed at doing word-level searches only. They include Corpus
Work Bench [Christ, 1994, Christ et al., 1999, Christ, 1998], SARA and its successor
XAIRA 4 (designed to search the British National Corpus), Professor Mark Davies’s on-
line search tool5 , and others.

Other tools are aimed at searching structured text, including syntactic annotations
and/or speech-based data. They include:

• SGrep [Jaakkola and Kilpeläinen, 1996a] (designed for searching general XML).

• XQuery [Boag et al., 2005, DeHaan et al., 2003] (again designed for searching
general XML).

• TGrep2 [Rohde, 2004] (designed for searching the Penn Treebank [Marcus et al.,
1994a,b]).

3In the case of a Biblical corpus, it might make sense to present the results in the order imposed by the
traditional canonical ordering of books, and at a lower level, the chapters and verses which they contain. In
the context of the Kaj Munk Corpus, however, it is not obviouswhat the ordering of search results should
be. One proposal might be to present the results in the order in which Kaj Munk wrote them (where known).
Another proposal might be to use the techniques on query result ranking in the literature mentioned.

4http://www.xaira.org
5http://davies-linguistics.byu.edu

36 CHAPTER 2. LITERATURE REVIEW

• VIQTORYA [Steiner and Kallmeyer, 2002] (designed for searching the VERBMO-
BIL German corpus).

• TIGERSearch [Lezius, 2002a,b, König and Lezius, 2003, Mengel and Lezius, 2000]
(designed for searching general treebanks, including the German newspaper corpus,
TIGERCorpus [Brants et al., 2002, Brants and Hansen, 2002]).

• STASearch [Mettler, 2007] (a reimplementation of the TIGERquery language [König
and Lezius, 2003, Lezius, 2002a], extended with capabilities for querying parallel
treebanks).

• LPath [Bird et al., 2005] (designed for querying XML-based treebanks).

• Emu [Cassidy, 1999, Cassidy et al., 2000, Cassidy and Bird, 2000, Cassidy and
Harrington, 2001] (designed for querying annotated speech).

• MATE [McKelvie et al., 2001, Mengel, 1999] (the predecessorof NITE).

• NITE [Carletta et al., 2003a, 2004, Evert et al., 2003, Carletta et al., 2003b, Voor-
mann et al., 2003, Carletta et al., 2002] (for querying XML-based corpora which
use the NITE object model [Carletta et al., 2003b, Evert et al., 2003]).

• GATE6 [Cunningham et al., 2002, Cunningham and Bontcheva, 2003, Aswani et al.,
2005] (which was designed as a general language engineeringplatform).

• Ellogon7 [Petasis et al., 2002] (which was designed as a general language engineer-
ing platform, a competitor with GATE).8

• Linguist’s Search Engine9 [Resnik and Elkiss, 2005] (which was designed as a
general-purpose linguistic search engine).

• Manatee [Rychlý, 2000] (which was designed for very fast retrieval of linguistic
markup in very large corpora).

• The Sketch Engine10 [Kilgariff et al., 2004] (which builds on Manatee).

• CorpusSearch11 (which was designed for searching treebanks in Penn Treebank
format, in particular, the Penn-Helsinki Parsed Corpora ofHistorical English).

• Finite Structure Query (FSQ) [Kepser, 2003] (which was designed for querying
treebanks, using a logic-based query language).

• Netgraph [Mírovský et al., 2002] (which was designed to search through the Prague
Dependency Treebank).

6http://gate.ac.uk
7http://www.ellogon.org
8Incidentally, the Ellogon Object Model as described in [Petasis et al., 2002] looks very much like the

original MdF model.
9http://lse.umiacs.umd.edu:8080/

10http://www.sketchengine.co.uk
11http://corpussearch.sourceforge.net/

2.6. CONCLUSION 37

• The Layered Query Language (LQL) system [Nakov et al., 2005](which was de-
signed to search through annotated MEDLINE abstracts).

There are others, but these are some of the salient ones in theliterature.

2.6 Conclusion

In this chapter, I have reviewed some of the most important literature related to my own
work. More citations will come in later chapters, at places where the literature is relevant
to mention. The major sections of this chapter have followedthe two major themes of my
own work, namely: a) Database models for annotated text (2.2), and b) Query languages
for annotated text (2.3). Since the field of Information Retrieval contains literature and
themes which are relevant to my own work, I have also cited some of the most impor-
tant literature from this field (2.4). Finally, I have cited most of the other “corpus query
systems” available (2.5).

38 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Ontology

3.1 Introduction

Sowa [2000, p. 492] defines the two notions “ontology” and “anontology” in the follow-
ing way:

“The subject ofontologyis the study of thecategoriesof things that exist or
may exist in some domain. The product of such a study, calledan ontology,
is a catalog of the types of things that are assumed to exist ina domain of
interestD from the perspective of a person who uses a languageL for the
purpose of talking aboutD.”

Thusan ontologyis a catalog of categories in some domain of interest, whileontologyis
the study of categories in some domain. For a similar view, see Nilsson [2001].

In later chapters, and in [CS-TIW2007], I shall make use of the notion of “an ontol-
ogy”, and so I need to discuss the notions involved.

The notion of ontology goes back at least to Aristotle, who invented the way of def-
inition by means of genus, species, and differentiae [Sowa,2000, p. 4]. In this way of
defining what a thing is, a thing (species) is defined by sayingwhat its genus is, along
with a list of differentiae that show how the species differsfrom the genus. For example,
an elephant (species) is a mammal (genus) with the followingdifferentiae: An elephant
has four legs, grey hide, a trunk, and tusks (in the male).1

The word “ontology” itself, however, does not go back to Aristotle. Although it has
Greek roots, it was actually constructed by Jacob Lorhard in1609, as Øhrstrøm et al.
[2005] report.

The rest of the Chapter is laid out as follows. First, I discuss Type and instance as
key notions in ontology (3.2). I then discuss various relations that may obtain between
types (3.3), in particular the “is-a” relation. I then discuss the notions of “supertype”
and “subtype”, which flow out of the definition of the “is-a” relation as a partial order on
types. In this section, also briefly discuss lattice-structures as a natural way of representing
ontologies (3.4). Finally, I conclude the chapter.

1Biologists would most probably beg to differ with this definition, but since this is not a thesis in biology,
I shall not concern myself with finding the exact definition inthe literature. What is important here is the
method of definition, not the definition itself.

39

40 CHAPTER 3. ONTOLOGY

3.2 Type and instance

A type(or ontotype, or concept type) is an abstract entity which consists of three things:

1. A name. We use this name whenever referring to the type.

2. An extension. That is, the set of all things that exist in the domain of interest, and
which areinstancesof this type. An instance, in turn, is a thing (physical or abstract,
real or imagined) which can be categorized as being of the type in question.

3. An intension. That is, the set of properties that are common to all of the instances
in the extension of the type.

For example, the type which we may give the name “dog” has asextensionall of the dogs
in the world. Or at least, if not all dogs in the whole world, then all dogs in the domain
of interestD. We may be interested, for example, only in the domain of “mammals from
comics”, in which case the extension of “dog” would include such instances as “Snoopy”,
“Odie”, “Dogbert”, etc. These venerable dogs might be excluded from the extension of
the type “dog”, however, if the domain of interest was not comics or imaginary dogs, but
real dogs. Thus it is important to specify what the domain of interestD is.

Theintensionof the type “dog” is the set of properties which are common to all dogs.
Again, the domain of interest D might have an influence on the intension. For example,
for dogs in comics, it is usually not a requirement that they be able to breathe real air with
nitrogen-atoms, oxygen-atoms, carbon dioxide, and other gases, whereas this is usually a
member of the set of properties in the intension of real-world dogs. That is, comic-dogs
are usually not required to ever have been alive in any real sense, whereas real-world dogs
must have been alive at some point for them to be in the extension of the type “dog”.

3.3 Ontological relations

Given that an ontology is “a catalog of the types of things that are assumed to exist in a
domain of interest”, it is usually a good idea to structure such a catalog in some way. One
way of doing so is to maintainrelationsbetween types. A relation is here understood as a
structural link which links two or more entities into a structure.

The relation which is most often used in structuring ontologies is the “is-a” relation.
If type B is-a typeA, then typeB is a species of the genusA, with some differentiae.
This usually entails that the extension ofB is smaller than the extension ofA, since the
intension ofB has more properties than the intension ofA.

For example, the following relationships would obtain:

• elephantis-amammal.

• sedimentary rockis-a rock.

• employeeis-aperson.

• artefactis-aobject.

3.4. SUPERTYPES, SUBTYPES, AND LATTICES 41

There are other relations than is-a which may obtain betweentypes. WordNet [Fellbaum,
1998] is a good example of what may be considered an ontology which implements more
relations than the is-a relation. For example, part-whole (meronymy) relationships may
obtain (e.g., “steering wheel” is part-of “car”). For a discussion of the relations employed
by WordNet, see Miller et al. [1990].

3.4 Supertypes, subtypes, and lattices

The notions of “supertype” and “subtype” are closely related to the notions of “genus”
and “species”, yet are also distinct from these notions. A type A is a supertype of type
B, if and only if B is-a A. However, the is-a relation is a partial order, which, among
other properties, means that the is-a relationship istransitive. For example, if typeC
is-a typeB, andB is-a typeA, then it also holds thatC is-a typeA. Thus, for example,
“elephant” is-a “mammal”, and “mammal” is-a “vertebrate”,and therefore, it is also true
that “elephant” is-a “vertebrate”. Thus we need to be able todistinguish between “direct
supertype” and merely “supertype”, where the former is a type in our catalog of types
(that is, our ontology) which is only one is-a step away from the type of which it is a
supertype. That is, with respect to the is-a partial order, the direct super type ofB is a
least element of the setT of typesA for which it holds thatB is-aA.

Conversely, the “subtype” relation is the opposite of the “supertype” relation. Thus,
if B is-aA, thenB is a subtype ofA. The same distinction between “direct subtype” and
“subtype” can be made as for supertype, but in the opposite direction: A direct subtypeB
of some typeA is a greatest element of the setT of typesB for which it holds thatB is-a
A.

The reason it is called a “super-type” lies in the nature of the is-a relation as a partial
order. Partial orders on sets may be viewed as chains of elements of the sets, with the
partial order relation standing between the elements in thechain. For example, the partial
order≤ on the set of the integers has a chain which looks like this:

1≤ 2≤ 3≤ 4≤ 5≤ . . .

In ontological terms, if the “is-a” relation is denoted by “≤”, then:

elephant≤ mammal≤ vertebrate

One way of thinking about these chains is that they are vertical. If so, then it is natural
from the Latin roots of “super” and “sub” that a “super”-typelies “above” its “sub”-type,
which lies “below” its “super”-type.

I said that the is-a relation is a partial order on types. It iswell-known that partial or-
ders give rise to structures known as lattices [Insall and Weisstein]. A lattice is a directed,
acyclic graph with certain properties that make them very well suited to the problem of
structuring types in ontologies. We shall see examples of lattice structures in later chap-
ters.

3.5 Conclusion

In this Chapter, I have briefly outlined some of the most important notions in the field of
ontology. First, I have discussed the way in which types may be defined in terms of their

42 CHAPTER 3. ONTOLOGY

name, their extension, and their intension. The extension is the set of all instances of the
type, whereas the intension is the set of properties common to all instances of the type. I
have then discussed ontological relations which may obtainbetween types, in particular,
the “is-a” relation. This relation is a partial order on setsof types. From the definition of
“is-a” as a partial order on sets of types, the notions of “supertype” and “subtype” flow,
as does the notion of a “lattice of types”. We shall return to examples of lattices of types
in later chapters.

Chapter 4

The EMdF model

4.1 Introduction

In this chapter, my topic is the EMdF text database model for annotated text. The EMdF
model sprang out of Doedens’s [1994] work on the MdF (Monads dot Features) model,
and is an extension of the MdF model.

In Section 4.2, I start by recounting the demands on a text database model which
Doedens defined in his PhD thesis. This is done to form a backdrop against which to
show in what ways I have extended the MdF model in order to meetthe full requirements
which Doedens stipulated must be met of a text database model.

In Section 4.3, I discuss the original MdF model of Doedens. Ido not discuss the full
MdF model, since I find some of it irrelevant to the further discussion, but the core of the
MdF model is reformulated in formal terms.

In Section 4.4, I discuss my own extensions of the MdF model, resulting in the EMdF
(Extended MdF) model. The extensions mainly have the goal ofmaking the MdF model
implementable.

In Section 4.5, I show how one can implement the EMdF model using a relational
database engine as a backend. Thus the fruit of Section 4.4, namely to make the MdF
model implementable, is borne out in practice in a recipe forimplementation in Section
4.5.

In Section 4.6, I discuss another implementation, namely anin-memory implementa-
tion of an EMdF database.

Finally, I conclude the chapter.

4.2 Demands on a database model

4.2.1 Introduction

In order to be able to know whether his work was adequate, Doedens identified and de-
fined thirteen demands on a text database model which, in his opinion, it was good for a
text database model to meet. In order to be able to talk intelligently about these demands
in later sections and chapters, I here offer a reformulationof Doedens’s demands (4.2.2),
followed by a critique and extension of Doedens’s demands (4.2.3).

43

44 CHAPTER 4. THE EMDF MODEL

4.2.2 Doedens’s demands

Doedens [1994] defines thirteen demands on a database model,of which his own EMdF
model and QL query language only meet the first ten, plus part of the twelfth. The de-
mands, which I state here in my own formulation, are as follows [Doedens, 1994, pp.
27–30]:

D1. Objects: We need to be able to identify separate parts of the text and its annotation.
This can be done with ‘objects’.

D2. Objects are unique: We need to be able to identify every object uniquely.

D3. Objects are independent:The existence of an object in the database should be pos-
sible without direct reference to other objects.

D4. Object types: Grouping objects into “object types” with like characteristics should
be possible. (Note how this is similar to the notion of “concept types” mentioned in
Chapter 3.)

D5. Multiple hierarchies: It should be possible to have several “views” of the same data,
as specified in the annotations. For example, in a Biblical database, it should be
possible to have both a “document-view” (books-chapters-verses) and a “linguistic
view” (phrases, clauses, sentences). These two hierarchies should be able to coexist.

D6. Hierarchies can share types:It should be possible for an object type to be a part of
zeroor morehierarchies.

D7. Object features: Objects should be able to have “features” (or “attributes”), with
values being assigned to these “features”. (Note how this issimilar to the notion of
“properties” or “attributes” of concept types mentioned inChapter 3.)

D8. Accommodation for variations in the surface text: For example, two different spel-
lings of the same word should be attributable to the same wordobject.

D9. Overlapping objects: It should be possible for objects of the same type to “overlap”,
i.e., they need not cover distinct parts of the text.

D10. Gaps: It should be possible for objects to cover a part of the text, then have a “gap”
(which does not cover that part of the text), and then resume coverage of the text —
and this should be possible to do arbitrarily many times for the same object (i.e., it
should be possible for an object to have arbitrarily many gaps).

All of the demands above have to do with the data structures that a database model defines.
In the terms of Codd [1980] (see Section 2.2.1 on page 29), this is equivalent to Codd’s
first point, which is a “collection of data structure types”.In order to obtain Codd’s second
and third points, Doedens defines three more demands:

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

D12. Data language:We need a strongly typed language in which it is possible to ex-
press creation, deletion, update, and retrieval of all of the data domains in the model.

4.2. DEMANDS ON A DATABASE MODEL 45

D13. Structural relations between types:It should be possible to express structural re-
lations between object types declaratively, for example, that a sentence consists of
words.

4.2.3 Critique of Doedens’s demands

Doedens went on in his PhD work to describe a database model (MdF) and a number of
retrieval languages (QL and LL) which, taken together, meetdemands D1-D10 and part
of D12. Demands D11 and D13 were left for further research, and the “create”, “update”,
“delete” parts of D12 were also left unspecified – only the “retrieve” part of D12 was
partially specified in Doedens’s work.

In my work, I have implemented full support for Doedens’s demands D1-D10. I
have also implemented full support for Doedens’s D11 and D12demands. That is, it is
possible in MQL to declare object types and their features (D11), and it is possible to
create, update, delete, and retrieve all of the data domainsof my EMdF model (D12). I
have not implemented support for Doedens’s D13 demand. Veryearly versions of Emdros
did support the kind of declarations needed by demand D13, but I took this functionality
out, for two reasons: First, it proved to be a performance bottleneck on the insertion and
update of data to have to check and maintain the integrity of these structural relations.
And second, at the time I did not see a need for these kind of declarations. I have since
then come up with a number of reasons for supporting such declarations, but I have not
had the time to implement them (see Section 14.2 on page 175).

It is possible to offer both a critique and a extension of Doedens’s demands, something
which I shall attempt to do now.

With respect to D5 (“Multiple hierarchies: It should be possible to have several
“views” of the same data”), I offer the following critique: When using the word “hi-
erarchies”, Doedens must have thought strictly in terms of structural (i.e., part-whole)
hierarchies. There are two points of critique which I want toraise in this respect. First,
there are also other types of hierarchy than structural: TheAristotelian “genus-species”
kind of hierarchy should be mentioned too. Second, the “multiple views” should not be
defined in terms of different object types; that is, it shouldbe possible to express several
“views” of the same data within the same object type. For example, it should be possible
to express that a given sentence can be analyzed in several different ways. Doedens men-
tions such an analysis (pp. 80–82), and offers a solution within his own MdF model. Thus
I have two points of critique, each leading to a new demand. I now make these further
demands explicit:

D5.1. (Multiple) inheritance: It should be possible to declare that an object type is a
subtype of one or more object types. This would mean that the newly declared
object type (let us call itA) had the union of the features of its supertypes, with
possible renaming to avoid conflicts (let us, without loss ofgenerality, call the su-
pertypesB andC), plus any features that might distinguishA from B andC. ThenA
would be said toinherit the features ofB andC, andA would be a subtype of both
B andC. Single inheritance should be possible, too, in which an objectD inherited
from a single object typeE.

This would be useful, among other times when querying. For example, if we had
an object type “Phrase” which defined, among other features,a “phrase_function”,

46 CHAPTER 4. THE EMDF MODEL

then we might further define an object type “NP”, which was a subtype of “Phrase”
and therefore had the same features as “Phrase”, as well as any other features which
might pertain to NPs (e.g., whether there is an article or another determiner in
the NP). In addition, we might define an object type “VP”, which inherited from
“Phrase” and also had other features of its own. Then, whenever querying, we
might want to specify either an “NP” or a “VP” explicitly, butwe might also “not
care”, and simply search for “Phrase”. This would find both NPs and VPs, whereas
search for “NP”s would not also find “VP”s.

D5.2. Multiple parallel analyses: It should be possible to specify (when creating an ob-
ject of a given object type) that this object is a part of a specific analysis or annota-
tion of a given piece of text. It should also be possible to express, within the same
object type, that two objects belong to different analyses of the same text.

This is possible both within the MdF model and within the EMdFmodel. A differ-
ent way of specifying the parallel analyses than the way offered by Doedens (p. 82)
would be to declare, on each object type which might be a part of several anlyses, a
feature which was simply an integer — let us call it “ambiguity_set”. Then objects
whose value for this “ambiguity_set” was the same (e.g., 1) would belong together.

With respect to D8 (“accommodation for variations in the surface text”), it should not only
be possible to describe variations in spelling for the same word; it should also be possible
to express two or more different texts which are very similar, yet which have differences
at various points in the exact number of words (e.g., words being deleted or inserted in
one text with respect to another text). There is a whole field within theology devoted to
the study of such differences, namely the field oftextual criticism. For an introduction to
textual criticism of the New Testament, see Greenlee [1995]. It would be good if a text
database model supported such “insertion” and “deletion” of words. I therefore define
another demand on textual database models, designed to encapsulate this need:

D8.1. Multiple parallel texts: It should be possible to express parallel texts which have
only slight differences (such as a word that has been inserted or deleted in one text
with respect to another text).

This is probably possible to do within the MdF and EMdF models, but further research is
needed to establish a good way to do it.

4.3 The original MdF model

4.3.1 Introduction

The original MdF model had many characteristics, and definedmany concepts and data
structures. In order to be able to describe the EMdF model, which is an extension of a
subset of the MdF model, I now describe the parts of the MdF model which are perti-
nent to the later discussion. Much of this discussion has been presented several times in
my published papers (e.g., [COLING2004, RANLP2005, FSMNLP2005, LREC2006]).
Therefore, the following discussion will be brief.

4.3. THE ORIGINAL MDF MODEL 47

4.3.2 Monads

In the MdF model, a monad is simply an integer with a specific meaning: It is a “smallest,
indivisible unit” of the backbone of the database, also known as the “monad stream”.
The “monad stream” is the sequence of monads which make up thesets of monads of
all objects in a database. The sequence of the integers (1, 2,3, . . .) defines thelogical
reading orderof the database. This is conceptually different from the physical reading-
order, which may be left-to-right, right-to-left, top-to-bottom, or combinations of these.

A monad is an integer. As such, it can be a member of a set of monads, in the usual
Zermelo-Fraenkel sense of sets. Objects are sets of monads with concomitant attributes
(known as features). We now turn to objects, followed by Object Types and Features.

4.3.3 Objects

An object in the MdF model is a pair,(M,F) whereM is an arbitrary set of monads (it
may even be empty), andF is a set of value-to-attribute assignments(fi,vi), where fi is
the ith feature (or attribute), andvi is the value offi . Whenever speaking about an object
O = (M,F), we will usually say thatO is synonymous withM, such that, for example, a
monadm may be “a member ofO” (i.e., m∈ O) when we really meanm∈ M. Features-
values are denoted with “dot-notation”, i.e., “O. f ” means “The value of featuref on the
objectO”.1

4.3.4 Object types

Objects may be grouped intoobject types. An object type has many similarities with
the conceptual types described in Chapter 3: Object types are abstract entities which
group instances with similar attributes. The instances mayhave different values for these
attributes. One difference between conceptual types as described in Chapter 3 and the
Object Types of the MdF model, is that Object Types may not (asdescribed by Doedens)
inherit characteristics from other object types. Indeed, Doedens did not even describe
a language in which to declare object types or their features; this was left for further
research, and acknowledged as such [Doedens, 1994, p. 258].

Doedens defined a number of special object types, three important ones being “all_m”,
“pow_m”, and “any_m”.

There is only one object of type all_m for any given database;it is the object having
no features and consisting of the monad set which is the big-union of all monad sets of all
objects in the database. That is, the sole object of object type all_m is the set of monads
consisting of all monads in use by all objects. This may, of course, have gaps, if there are
unused monads.

Similarly, “pow_m” is the object type having objects which have no features, and
which are monad sets which are drawn from the power set (hence“pow_m”) of the sole
object in the all_m object type.

Finally, “any_m” is the object type having objects with no features, and where each
object consists of precisely one monad from the sole object of object type all_m.

1This formalization ofO = (M,F) is not present in Doedens’s work, but is, in my opinion, a fairinter-
pretation and formalization of Doedens’s intent.

48 CHAPTER 4. THE EMDF MODEL

4.3.5 Features

In the MdF model, an object type may have zero or morefeatures. A feature is a strongly
typed attribute which may take on a range of values in specificinstances (i.e., objects) of
the object type. For example, a “Word” object type is likely to have a “surface” feature,
whose type is “string”. Or a “Phrase” object type may have a “function” feature, whose
values are drawn from the strings “Subject”, “Object”, “Predicate”, etc.

Doedens described features as functions which assigned, for each unique object, a
value to that feature of that object. In so doing, he was careful about not restricting the
co-domains of feature-functions: He left it up to the implementor to decide what should
be acceptable co-domains of feature-functions, that is, heleft it up to the implementor
both to explicify and to limit the types which a feature may take on. This is what I have
done in implementing the Extended MdF model (EMdF model), towhich I now turn.

4.4 The abstract EMdF model

4.4.1 Introduction

In this section, I show how my extension of the MdF model (my “EMdF model”) differs
from the MdF model. I also show how my extensions make the MdF model less abstrac,
more concrete, and therefore more implementable.

Some of the information below has already appeared in my MA thesis. However, it
appeared in an appendix, on five short pages, and said extremely little beyond what Doe-
dens had already said, except to say that I had implemented Doedens’s ideas. Therefore,
this Section (i.e., 4.4) presents information not presented before for the fulfilment of any
other academic degree.

The rest of Section 4.4 is laid out as follows. First, I discuss monads, then Objects
get their treatment, followed by Object types, followed by Features. Finally, I discuss
“Named Monad Sets”, which are an innovation in relation to Doedens’s work.

4.4.2 Monads

Monads are exactly the same in the EMdF model as in the MdF model, and serve the
same purpose. For purposes of implementation-efficiency and -possibility, however, the
monad stream has been limited in the EMdF model to a finite range, namely from 1 to
MAX_MONAD. The monad labelled “MAX_MONAD” is currently setto 2,100,000,000
(or 2.1 billion). This choice is “large enough” for even giga-word corpora, and neatly fits
within a signed 32-bit signed integer.

In the EMdF model, there are two special monads, and one special set of monads,
all related: The “min_m” monad is the least monad which is currently in the big-union
set of all sets of monads of all objects. That is, it is the least monad used by any object.
Similarly, “max_m” is the greatest such monad, i.e., the greatest monad in use by any
monad. The set all_m is defined (contrary to the definition by Doedens) to be the set of
monads covering all monads in the range “min_m” to “max_m”, both inclusive.

4.4. THE ABSTRACT EMDF MODEL 49

4.4.3 Objects

Objects are almost the same in the EMdF model as in the MdF model. However, in the
EMdF model, an object is always distinguished uniquely fromother objects (demand
D2), not by its set of monads being unique, but by a unique integer called an “id_d” (the
“_d” suffix distinguishes it from the “id_m” id in the MdF model, and is meant to mean
“id_database”). All object types have a feature called “self” whose type is “id_d”, and
whose value for any given object is a number which is unique inthe whole database. This
design choice was motivated by a desire to have objects of thesame object type which
have exactly the same set of monads, yet which are distinct, something which is not
possible in the MdF model due to the requirement that all objects within a single object
type be unique in their set of monads. I have found no theoretical side-effects of this
design choice which are theoretically detrimental. The choice in the MdF model to base
uniqueness on the set of monads seems to be motived on Doedens’s part by simplicity and
clarity: Doedens writes (p. 59):

“No two objects of the same object type may consist of the sameset of mon-
ads. The reason for this restriction is that it allows us a simple and clear
criterion for what different objects are.”

However, Doedens also mentions that this uniqueness based on sets of monads entails a
number of theoretical side-effects which are beneficial, including the fact that all objects
of a given object type can be said to have an “ordinal number” (id_o) which uniquely
defines it within the object type. This “ordinal” is defined interms of a lexicographic
ordering on the sets of monads of which the objects of a given object type consist. The
id_o then arises because the lexicographic ordering is whatmathematicians call “well-
ordered” [Allenby, 1991, p. 17]. Since all objects are unique in their monads, the “id_o”
uniquely identifies each object.

This theoretical gain in the MdF model is lost in the EMdF model. However, the loss
is not great, since:

1. The “id_o” ordinal number has been replaced with an “id_d”which is easy to com-
pute (just take the next one available whenever creating a new object).

2. The “id_o” is expensive to compute, since it involves comparison of sets of monads.

3. Worse, the “id_o” of an object may change when a new object is inserted into the
database. Hence, it is not a stable id, unless the database isstable. In contrast, the
id_d of an object never changes throughout the lifetime of the object, and is never
re-used for a new object.

The need for objects of the same type to consist of the same setof monads becomes appar-
ent when one studies various linguistic theories, including Role and Reference Grammar
[Van Valin and LaPolla, 1997] and X-Bar syntax [Jackendoff,1977], in which objects are
often stacked on top of each other, referencing the same string of underlying words, and
thus the same set of monads. To demand that all objects be distinct in their monads would
preclude having two objects of the same object type which wasstacked on top of another
object of the same kind. Hence this design choice on my part, of letting uniqueness be
determined, not by the set of monads, but by a distinguishingid_d feature called “self”.

50 CHAPTER 4. THE EMDF MODEL

4.4.4 Object types

Object types are almost the same in the EMdF model as in the MdFmodel. One difference
is that all object types have a feature called “self”, which is explained in the previous
section.

Another difference is that I have, in the EMdF model, restricted the possibilities for
naming an object type: In the EMdF model, the name of an objecttype must be a C
identifier, that is, it must start with a letter (a-z) or an underscore (_), and then it may have
zero or more characters in the name, which must be either letters (a-z), underscores (_),
or digits (0-9). The reason for this restriction is that somedatabase management systems
(such as the early versions of MySQL which Emdros supports) require table names to be
C identifiers. Since I have mapped the EMdF model to the relational database model, and
since Emdros was designed to support various database management systems as back-
ends, I needed a uniform “lowest common denominator” to share among the database
backends supported. I chose “C identifiers” because of theirsimplicity.

I have also extended the MdF model by supportingobject range types(which are
completely different from the “range types” of Doedens’s MdF). In the EMdF model, an
object type may be declared (upon creation) to be one of the following object range types:

1. WITH SINGLE MONAD OBJECTS, which means that all objects ofthis object
type must occupy exactly one monad. That is, the sets of monads of the object
types are limited to containing precisely one monad (a singleton).

2. WITH SINGLE RANGE OBJECTS, which means that all objects ofthis object
type must occupy exactly one, contiguous stretch of monads.The stretch is con-
tiguous, meaning it may not have gaps. It may, however, consist of a single monad
(“singleton stretch”), and so does not need to start and end on different monads.

3. WITH MULTIPLE RANGE OBJECTS, which means that there are norestrictions
on the sets of monads of the objects of the object types: They may consists of one
monad, of a single, contiguous stretch of monads, or they mayconsist of multiple
contiguous stretches of monads (including singleton “stretches”).

The reason for introducing these object range types is that it allows for more efficient
storage and retrieval of sets of monads. See especially [ICCS-Suppl2008] and Chapter 8.

Furthermore, I have extended the MdF model by supportingmonad uniqueness con-
straints. A “monad uniqueness constraint” is declared for the objecttype upon object type
creation, and may be one of the following:

1. HAVING UNIQUE FIRST MONADS, which means that all objects within the ob-
ject type must have unique first monads. That is, no two distinct objects in the
object type may have the same first monad.

2. HAVING UNIQUE FIRST AND LAST MONADS, which means that boththe first
and last monads of all objects within the object type must have both unique first
monads,andunique last monads.

3. WITHOUT UNIQUE MONADS, which means that there are no restrictions on the
uniqueness of either the first or the last monads.

4.4. THE ABSTRACT EMDF MODEL 51

The reason for introducing these monad uniqueness constraints is again that it allows
for more efficient storage and retrieval of sets of monads. Again, please see [ICCS-
Suppl2008] and Chapter 8 for more information.

4.4.5 Features

As mentioned above, Doedens did not limit the types which a feature may take on. In
implementing Emdros, I had to decide what types to support for features. I have imple-
mented support for the following:

1. integers

2. id_ds

3. strings

4. enumerations (which are finite sets of pre-declared labels, see below)

5. ordered lists of integers

6. ordered lists of id_ds

7. ordered lists of enumeration constants

As mentioned above, all objects in the EMdF model (but not in the MdF model) have a
feature called “self”, whose type is “id_d”, and whose valueis the unique id_d given to
each object.

An enumeration is a set of (label,integer) pairs. The labelsare called enumeration
constants, whereas the integers are called the “enumeration values” of each “enumeration
constant”.

This concept of enumeration is almost identical to the concept of the same name in
the C and C++ programming languages. The only difference is that in the EMdF model,
it is not allowed to have two enumeration constants with the same integer value within
the same enumeration, whereas this is allowed in C and C++. See Stroustrup [1997, pp.
76–78].

The reason for this restriction on enumeration values is that it allows the implemen-
tation to store enumeration constants unambiguously as theintegers to which they cor-
respond. That is, because there is a one-to-one correspondence between the set of enu-
meration constants and the set of integers both coming from the same enumeration, the
implementation can take advantage of this one-to-one correspondence and only store the
integer, and only pass the integer around internally. If there were no one-to-one corre-
spondence, the implementation would have to store the enumeration constants as strings,
which would be inefficient.

One of the types which a feature may take on is “id_d”. This entails that objects may
point to each other. This is useful, e.g., in the case of anaphora pointing backwards to
other objects (and similarly for cataphora pointing forwards); another example where this
is useful would be the “secondary edges” as used in the TIGER Corpus [Brants et al.,
2002, Brants and Hansen, 2002]. Tree, of course, may also be represented using id_d
pointers, which point either “upwards” (to the parent), or “downwards” (to the children).

52 CHAPTER 4. THE EMDF MODEL

In the latter case, of course, the feature should be a “list ofid_ds”. Directed acyclic graphs
can also be represented using lists of id_ds.

A string feature may be declared to be “FROM SET”, meaning that “under the hood”,
strings are changed to integers for more efficient storage and retrieval. In effect, the set of
actually occurring strings is given a one-to-one mapping toa set of integers of the same
cardinality. The one-to-one mapping is, of course, bijective, and so may be inverted for
retrieval purposes.

Any feature may be declared to be “WITH INDEX”, meaning that an SQL index is
created on the column containing the values of that feature.This may speed up search.

4.4.6 Named monad sets

I have extended the MdF model also by supporting “named sets of monads” which are not
objects. That is, it is possible to declare — and give a name to— a set of monads, which
may then be used as the basis of querying in a limited part of the database. For example,
if one had all of Kaj Munk’s works in one single database, it might be useful to declare a
named set of monads for each kind of document in the database (e.g., “plays”, “poetry”,
“sermons”, “prose”, etc.). Then, when searching, one couldlimit the search to, say, “po-
etry” simply by referencing this named set of monads in the query. As with objects, the
named sets of monads are completely arbitrary, and may have multiple, disjoint stretches
of monads. The only restriction is that they cannot be empty.Allowing them to be empty
would defeat their purpose, namely of being easy-to-use restrictions on queries.

This concludes my description of the abstract EMdF model. I now turn to the rela-
tional implementation of the EMdF model.

4.5 The relational implementation of the EMdF model

4.5.1 Introduction

In this section, I describe the implementation of the EMdF model as it is currently done
in the four relational database backends supported by Emdros: SQLite 32, SQLite 23,
MySQL4, and PostgreSQL5. I do so in two further subsections; the first is on storage of
“meta-data”, while the second subsection is on storage of “object data”.

4.5.2 Meta-data

Meta-data of various kinds need to be maintained in order to handle the various data
domains of the EMdF model. The implementation is trivial, inthat each kind of data is
implemented by a table with the requisite number of columns necessary for storing the
relevant data. In Table 4.1, I list the various kinds of meta-data implemented, along with
a brief comment on each.

I invite the reader to consult Petersen [2007b] for the details.

2http://www.sqlite.org
3http://www.sqlite.org
4http://www.mysql.com
5http://www.postgresql.org

4.5. THE RELATIONAL IMPLEMENTATION OF THE EMDF MODEL 53

Meta-data kind Comment

schema version Holds the version of the SQL schema.
Enumeration Holds the names of enumerations present
Enumeration constantsHolds the names and values of enumeration constants
Object types Holds the names and other properties of object types
features Holds the object types, names, types, and default

values of features
min_m Holds the least monad used by any object
max_m Holds the greatest monad used by any object
monad sets Holds “named monad sets”
Sequences Hold the next “unique number” to be used for

various purposes (e.g., id_ds)

Table 4.1: Kinds of EMdF meta-data.

4.5.3 Object-data

In the relational implementation of the EMdF model, I have chosen to map one object type
to one table, and to map each object to one row of such a table. Ioriginally implemented
object data more complexly, by having two tables for each object type: One containing the
features, and one containing the monad sets, one row per maximal stretch of monads (also
known as “monad set element”) per object. This turned out to be inefficient, so I opted
for storing the sets of monads as a marshalled string in the same row as the feature-data.

I have implemented three ways of storing monad sets, each corresponding to the three
object range types defined on page 50:

1. Object types declared WITH SINGLE MONAD OBJECTS get one column for
storing the monad set, namely the sole monad in the monad set (known by the
column name “first_monad”).

2. Object types declared WITH SINGLE RANGE OBJECTS get two columns for
storing the monad set, namely: The first monad and last monad (column names:
first_monad and last_monad respectively).

3. Object types declared WITH MULTIPLE RANGE OBJECTS get three columns
for storing the monad set, namely: The first monad, the last monad, and a string-
representation of the arbitrary set of monads. The reason for storing the first and
last monad, even though this information is also contained —redundantly — in
the string-representation of the arbitrary set of monads, is that this scheme allows
more efficient retrieval of certain kinds of queries, including the GET OBJECTS
HAVING MONADS IN as well as so-called “topographic queries”. See Chapter 5
for more information.

The string-representation of the monad set is an efficientlypacked delta-representation
(similar to the d-compression mentioned in Zobel and Moffat[2006]), in which only the
deltas (differences) between each end-point in the stretches and gaps of the set of monads
are encoded. Furthermore, the integers involved are efficiently encoded using a base-64
encoding scheme.

54 CHAPTER 4. THE EMDF MODEL

Furthermore, each object is represented by a column storingits id_d (column name:
“object_id_d”). This is obviously the “self” feature.

Finally, all other features than “self” are stored in other columns, one column per fea-
ture. The various kinds of EMdF feature type map to the following SQL type (PostgreSQL
syntax has been taken as the example syntax):

1. An EMdFinteger maps to an SQL INTEGER.

2. An EMdFid_d maps to an SQL INTEGER.

3. An EMdFenumeration maps to an SQL INTEGER, with appropriate conversion
inside of Emdros.

4. An EMdF string maps to an SQL TEXT, if it is not declared FROM SET. This
entails that strings of arbitrary length may be stored. Alternatively, if the string is
declared FROM SET, it maps to an SQL INTEGER, which in turn is aforeign key
in a separate table containing the strings.

5. An EMdF list of integer maps to an SQL TEXT, by storing the integers as strings
of numbers in base-10 with spaces between, and also surrounded by spaces. This
makes it easy to search by using standard SQL LIKE syntax, in that all integers will
be surrounded by a space on either side.

6. An EMdFlist of id_d maps to an SQL TEXT in exactly the same way as an EMdF
list of integer.

7. An EMdF list of enumeration constantsmaps to an SQL TEXT in the same way
as an EMdF list of integer, with appropriate conversion between enumeration con-
stants and enumeration values.

The column names of features are the same as the features, except they are always prefixed
by the string “mdf_”. This is in order to avoid name-clashes.For example, a malicious
user might declare a feature called “object_id_d”, thinking that they would be able to
wreak havoc by forcing Emdros to declare two different columns with the same name. Not
so, since the feature-name “object_id_d” maps to the column-name “mdf_object_id_d”,
thus making it distinct from the column holding the id_d of the object.

4.6 An in-memory EMdF database

4.6.1 Introduction

In this section, I describe a set of data structures which I have found useful whenever
having to deal with EMdF data in-memory. I start by defining an“EmdrosObject”. I then
describe the main data structure as it is implemented in various software libraries which I
have written. I first implemented this way of representing anin-memory EMdF database
in my “Linguistic Tree Constructor” software, which originates back in the year 1999.6

I have also implemented this representation as part of my work with the Munk Corpus,
this time implementing it twice: First, in the Python programming language, in order to

6For more information on the Linguistic Tree Constructor, please see <http://ltc.sourceforge.net>.

4.6. AN IN-MEMORY EMDF DATABASE 55

be able to build Emdros databases from the Munk Corpus. And second, in the Munk
Browser, to which I return in Chapter 12.

The information presented in this section already appearedin kernel form in my B.Sc.
thesis [Petersen, 1999], and as such has already counted towards one academic degree.
The material presented here is a modernization of the ideas presented in my B.Sc. thesis,
but does not constitute radically new information.

The reason I include it anyway is that I shall need to return tothis data structure in
Section 12.4 on page 152.

4.6.2 EmdrosObject

In order to be able to store Emdros objects in an in-memory EMdF database, I have found
it useful to declare a class (in C++, Python, Java, or whatever language I am using) which
has the following members:

1. A set of monads (implemented by the class SetOfMonads in the Emdros code base).

2. An id_d (being the object id_d of the object)

3. A map data structure mapping feature-names to strings representing the values of
those data structures. I have implemented variations on this theme over the years;
I have found it most useful to distinguish between “non-string values” and “string-
values” inside the EmdrosObject, and to let the code callingthe EmdrosObject keep
track of whether something is an integer, an id_d, an enum, ora string (leaving aside
lists for the purposes of this discussion). The utility of this arrangement is that it
is possible to have the EmdrosObject class write itself as anMQL statement that
creates the object; differentiating between string-features and non-string-features
has the effect of being able to predict (in the code that writes the EmdrosObject as
an MQL statement to create the object) whether to surround the feature-value with
quotes or not. A further extension would be to support lists of integers, id_ds, and
enums.

4. The name of the object type of the EmdrosObject (or a surrogate for the object type,
so that the real object type can be looked up somewhere else).

This data neatly encapsulates what an Emdros object is.
I now describe the main data structure that holds the in-memory database.

4.6.3 InMemoryEMdFDatabase

In order to be able to access any EmdrosObject quickly, I havefound a data structure with
the following data useful and time-efficient:

1. A container data structure to hold the object types of the database. Ideally, the
object types should each contain: a) The object type name, b)The features of the
object type, and c) The types of the features. This makes it possible to export the
whole InMemoryEMdFDatabase to MQL statements that will recreate the database
on-disk.

56 CHAPTER 4. THE EMDF MODEL

2. A map data structure mapping object id_d to EmdrosObject object. This is the only
data structure that holds the EmdrosObjects themselves.

3. A map data structuring mapping monads to the following data structure: A map
mapping object type names (or surrogates) to sets of object id_ds. Whenever an
EmdrosObject is inserted into the InMemoryEMdFDatabase, this map of monads
mapped to object types mapped to sets of id_ds is updated in such a way that all of
the monads of the EmdrosObject result in an entry in the innerset of id_ds for the
object type of the EmdrosObject. For example, if an EmdrosObject has a monad
set of {1,2}, and an object type of “Phrase”, then the following would occur:

(a) The outer map would be checked, whether it had an entry forthe monad 1. If
it did not, an instance of a map data structure mapping objecttype to set of
id_d would be created, and this instance would be inserted into the outer map
for the monad 1. On the other hand, if the outer map already hadan entry for
the monad 1, then this step would be skipped.

(b) The inner map for the monad 1 would be checked to see if it had an entry for
the object type “Phrase”. If it did not, an instance of a set ofid_ds would be
created, and this instance would be inserted into the inner map for the object
type “Phrase”. If, on the other han, the inner map already hadan entry for
“Phrase”, then this step would be skipped.

(c) By now the data structure is set up for adding the id_d, so the outer map is
checked for the monad 1, yielding an inner map mapping objecttypes to sets
of id_ds. This inner map is checked for the object type “Phrase”, yielding a
set of id_ds. Then the id_d of the EmdrosObject which we wish to insert is
added to the set, and we are done for the monad 1.

(d) The process (a)-(c) is repeated for the monad 2.

Among other questions, this data structure supports quick answering of the following
questions:

1. Which EmdrosObject has such and such an id_d.

2. Which EmdrosObjects share at least one monad with such andsuch a set of monads
(this is useful for answering the MQL statement known as GET OBJECTS HAV-
ING MONADS IN).

3. Which EmdrosObjects are within the confines of such and such a set of monads
(this is useful for answering the topographic MQL statementknown as SELECT
ALL OBJECTS).

Variations on this theme exist: For example, it is sometimesuseful to distinguish between
the starting monad of an EmdrosObject and other monads, and so information can be
stored in the data structure about which objects start at a given monad, versus which
objects merely have the monad, but do not start at the given monad.

Note that this data structure is highly memory-inefficient,and needs large amounts of
memory for large data sets. The reason is that the id_d of an EmdrosObject is duplicated
across all of the monads in the monad set of the object.

4.7. EXAMPLE 57

Monad 20001 20002 20003 20004 20005 20006

Word 1 2 3 4 5 6

surface Hvad var det dog, der skete?

part_of_speech PRON_INTER_REL V_PAST PRON_DEMO ADV ADV V_PAST

lemma hvad være det dog der ske

verse 11

Monad 20007 20008 20009 20010

Word 7 8 9 10

surface Mit vinterfrosne Hjertes Kvarts

part_of_speech PRON_POSS ADJ N_INDEF_SING_GEN N_INDEF_SING

lemma mit vinterfrossen hjerte kvarts

verse 12

Figure 4.1: Parts of “The Blue Anemone” encoded as an EMdF database. The two ta-
bles have the exact same structure. The top row represents the monads. They start at
20001 because we imagine that this document starts some distance into the collection
(i.e., database). There are two object types:word andverse. The numbers in the rows
headed by the object type names (inbold) are the “self” feature, i.e., the id_d of each ob-
ject. The non-bold headings in the first column (apart from the heading “Monad”) are the
feature-names. For example, the “surface” feature of the object of object type Word with
id_d 1 is “Hvad” (in English, “What”). The “verse” object type has no features beyond
“self”.

4.7 Example

In this section, I show how the EMdF model can be used to express the first two lines of
Kaj Munk’s poem, “The Blue Anemone”, introduced in Section 1.6 on page 25. For the
remainder of this discussion, please refer to Figure 4.1.

First, it should be obvious that the database depicted in Figure 4.1 is not the whole
database: Something comes before “The Blue Anemone”, and something comes after
what is shown.

Second, there are two tables in Figure 4.1. This is partly fortypographical reasons
(i.e., width of the page in relation to the font size), partlybecause the two lines of the first
stanza can be divided as in the two tables.

Third, the line of integers at the top of each table is the monads. In this particular
database, “The Blue Anemone” starts at monad 20001. I could have chosen any other
monad for the purposes of this example, of course.

Fourth, there are two object types in this particular database: “Word” and “Verse”7.
The object type “Word” has four features: “surface”, “part_of_speech”, “lemma”, and
“self”. The latter is shown as the integers (actually id_ds)above each “Word” object. The

7I use the terminology “stanza” for the whole of a coherent setof verses, and “verse” for the “line”.

58 CHAPTER 4. THE EMDF MODEL

“verse” object type has no features apart from the “self” feature.
Fifth, it can be seen that each “verse” object occupies the set of monads that is the

big-union of all of the sets of monads belonging to the words which make up the verse.
This will become significant in Chapter 5, when we discuss theMQL query language.

4.8 Conclusion

In this chapter, I have discussed the Extended MdF model (EMdF model). The EMdF
model is a reformulation of the MdF model described by Doedens [1994]. The main
contribution which I have made is to make the MdF model implementable.

I have first described thirteen demands on a text database model which Doedens
deemed to be requisite for a full text database model to be complete. I have shown how
the MdF model only fulfilled the first ten demands, plus part ofnumber 12, leaving num-
ber 11 and 13 completely unfulfilled. I have also given a critique of Doedens’s demands,
extending and refining them with new demands.

I have then given a reformulation of the pertinent parts of the original MdF model.
The reformulation is a formalization of the MdF model which is not in Doedens’s original
work, but is my own contribution. As I have stated, I believe that my reformulation is a
fair interpretation of Doedens’s intent.

I have then discussed the abstract EMdF model, and how it relates to the original MdF
model, showing the differences between the original and theextension. As already stated,
my main contribution is to make the MdF model less abstract, more concrete, and therefor
more implementable than the MdF model. The EMdF model fully meets demands D1-
D10.

I have then shown in two rounds how the EMdF model can be implemented: First, in
a relational database system, and second, in an in-memory database. Thus the purpose of
the EMdF model has been fulfilled, namely to be implementable. I have, of course, also
fulfilled this purpose in other ways, by implementing the EMdF model a number of times,
most notably in the Emdros corpus query system.

Chapter 5

The MQL query language

5.1 Introduction

In Chapter 4, we saw how the EMdF model, in conjunction with the MQL query language,
together constitute what Doedens called a “full access model”. In the previous chapter, it
was still unclear how exactly Deodens’s demands D11 and D12 were going to be met. In
this chapter, I show how they are met by the MQL query language. (D13 is not met by
either the EMdF model, the MQL query language, or their conjunction.)

Doedens’s demands D11-D13 sound as follows in my reformulation:

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

D12. Data language:We need a strongly typed language in which it is possible to ex-
press creation, deletion, update, and retrieval of all of the data domains in the model.

D13. Structural relations between types:It should be possible to express structural re-
lations between object types declaratively, for example, that a Clause consists of
Phrases, or that a Book consists of Chapters, Front Matter, and Back Matter.

I shall show how demands D11 and D12 are met by the MQL query language in a succes-
sion of sections, but first, I need to offer some general remarks (5.2), to discuss the design
and implementation of the MQL interpreter (5.3), and to discuss the output of an MQL
query briefly (5.4).

Then, getting back to the demands, I offer a section on the “Type language” (5.5)
(meeting demand D11), followed by two separate sections on different parts of the Data
language (meeting D12). The two sections on “Data language”are the “non-topographic”
part (5.6) and the “topographic” part (5.7). Along the way, Igive examples of how the
various statements are used. Finally, I conclude the chapter.

5.2 General remarks

Although MQL is my own invention in large part, I could not have accomplished it with-
out standing on the shoulders of a whole army of giants. MQL draws from a pool of
many sources of inspiration, among which the SQL query language [Date, 1995] and the

59

60 CHAPTER 5. THE MQL QUERY LANGUAGE

QL language [Doedens, 1994] are chief. I have explicitly striven to model the type lan-
guage and the data access language after a mixture of both SQLand QL. For example, the
“SELECT FEATURES FROM OBJECT TYPE” statement is modeled after the SELECT
statement of SQL, but “borrows” the convention of enclosingany object type in [square
brackets] from QL:

// Returns a table containing the features and their types

SELECT FEATURES

FROM OBJECT TYPE

[Word]

GO

Notice also thatcommentsmay be indicated with “//”. Such comments extend until the
end of the line. There is another kind of comment, which is started by “/*” and ended by
“*/”. The former kind of comments were borrowed from the C++ programming language,
while the second kind of comments were borrowed from the C programming language.
The second kind of comment may extend over multiple lines if need be:

/* This comment spans

multiple lines, and

does not end until

the ’star followed by a slash’... */

// ... while this comment ends at the end of the line

The keyword “GO” is used for indicating that a particular query is fully expressed, and
that the MQL interpreter can start the execution of the query. The “GO” keyword is used
throughout this dissertation whenever showing an MQL query, unless it is unambigous
(for example, for typographical reasons) that the query is fully expressed. For example:

CREATE OBJECT TYPE

[verse]

GO

I shall use the terms “MQL query” and “MQL statement” to mean the same thing: A
string of characters forming a single “thing to do” for the MQL interpreter.

5.3 The MQL interpreter

I have designed and implemented the MQL interpreter as a pipeline of “stages” (or “pro-
cesses”), each of which has a particular function to fulfill.An overview can be seen in
Figure 5.1.

The processes (or stages) involved in interpreting an MQL query start with parsing
and lexing. This may be viewed as one process, since in my implementation, the parser
drives the lexer.

“Parser” here means a program module which takes tokens as input and produces
an Abstract Syntax Tree (AST) as output, provided that the input stream of tokens con-
forms to some formal grammar which the parser implements. I have specified the formal
grammar of the MQL query language using the formalism employed by the “lemon”

5.3. THE MQL INTERPRETER 61

Figure 5.1: The data and compiler stages involved in the MQL interpreter. The process
starts in the upper left hand corner, with an MQL query in raw text form. This is passed
through the “parser” and “lexer” stage. They are counted as one stage here, for reasons
discussed in the main body of the dissertation, even though they are usually counted as
two stages. This produces an “AST”, which stands for “Abstract Syntax Tree”. The rest of
the stages operate on this AST. The next stage is the Weeder, which “weeds out” certain
parse-trees which are not well-formed for various reasons.The two next stages, Symbol-
checking and Type-checking, also weed out parse-trees thatdo not meet certain criteria,
specified in the MQL Programmer’s Reference Guide [Petersen, 2007a]. The next stage,
“monad checking”, adds some information to the AST about monads, and may do some
checking of monads. Finally, the query is executed in the Execution stage. The process
may stop with an error at any point before the Execution stage.

62 CHAPTER 5. THE MQL QUERY LANGUAGE

parser generator, available from <http://www.sqlite.org/>. The formalism is a LALR(1)
grammar, modeled after Backus-Naur Form. See Appel [1997] and Martin [1991] for
introductions to the LALR(1) class of formal languages.

“Lexer” here means a program module which takes a character string (or character
stream) as input, and produces tokens as output, ready to be converted by the parser into
an abstract syntax tree.

That the parser drives the lexer is not the traditional order: The lexer usually drives
the parser. This has been so at least since the Unix tools lex(1) and yacc(1) were invented
(see also Appel [1997]).

The output of the parsing+lexing process is an “Abstract Syntax Tree”, meaning a
data structure which has the form of a tree (in the sense used by computer scientists), and
which is an abstract representation of the pertinent parts of the parse tree deduced by the
parser.

The AST now passes through a series of stages: The “weeder” checks that the parse
tree is well-formed with respect to a number of constraints which are particular to certain
MQL statements, the details of which need not concern us here. The “symbol checker”,
among other tasks, checks that all symbols (e.g., object types, features, enumerations,
enumeration constants, etc.) do indeed exist — or do not exist — depending on the
statement at hand. The “type checker” checks that all symbols have the right type. The
“monads checker” checks for or builds certain monad sets forcertain MQL statements.
Finally the “Execution” stage executes the statement, based on the state of the AST after
the “monads checking” stage has completed.

For any given kind of MQL statement, one or more of the stages may not actually do
anything; it depends on the purpose of the statement, and what constraints exist on the
statement.

This “pipeline” architecture is standard practice within the field of compiler- and
interpreter-programming. See, e.g., Appel [1997] and Aho et al. [1985].

5.4 MQL output

The output of an MQL statement can be one of four things:

1. A table with rows and columns, where each column has a specific, specified type.

2. A “sheaf”. A sheaf is the recursive data structure which isreturned from a “topo-
graphic” query. The Sheaf is explored in Chapter 6.

3. A “flat sheaf”. A flat sheaf is a sheaf-like data structure which is not recursive. It is
also explored in Chapter 6.

4. Nothing. Some MQL statements do not return any output, butinstead merely have
some side-effect(s).

5.5. TYPE LANGUAGE 63

5.5 Type language

5.5.1 Introduction

We now finally arrive at the point where I begin to show how the MQL language meets
Doedens’s demands D11 and D12. In particular, this section deals with demand D11:

D11. Type language:We need a language in which we can define both object types and
the features that those object types contain.

I do so by showing, in this section, how the MQL query languagecan be used to create,
update, and delete the various kinds of types available in the EMdF model. The kinds of
types fall neatly into four groups:

1. Databases

2. Enumerations

3. Object types and features

4. Named monad sets

There is a fifth kind of data type, which I will only discuss very briefly here. It is the data
type called “index”. It is used here in the sense used when speaking about a relational
database system, i.e., an index on one or more columns of a table. The MQL query
language supports the creation and deletion of indexes, both at a database-wide level (i.e.,
on all object types), and on individual features. The latterwill be discussed below, but the
former is an implementation detail which need not concern ushere, since the details are
trivial, and are only there for performance reasons.

I now discuss each of the four groups of data types listed above.

5.5.2 Databases

In MQL, databases can be created with the “CREATE DATABASE” statement, and can be
deleted (or “dropped”) with the “DROP DATABASE” statement. The user can connect to an
existing EMdF database by issuing the “USE DATABASE” statement.

// Creates the database with the name munk_test,

// and populates it with empty meta-data tables

CREATE DATABASE ’munk_test’

GO

// Connects to the newly created database

USE DATABASE ’munk_test’

GO

// Drops (deletes) the database, without

// ever having filled it with any data.

DROP DATABASE ’munk_test’

GO

64 CHAPTER 5. THE MQL QUERY LANGUAGE

MQL follows the philosophy that one statement should do one thing, and do it well.
That is, there should be one purpose of an MQL statement, and therefore, several MQL
statements in combination (i.e., succession) may be neededin order to obtain a desired
result. For example, the “CREATE DATABASE” statement does not immediately connect
the user to the database; a separate “USE DATABASE” statement is needed for that. This is
in line with the philosophy that one statement should do one thing, and do it well.1

5.5.3 Enumerations

As explained in Chapter 4, an “enumeration” is a set of pairs(ci ,vi), where eachci is an
“enumeration constant” (or a label), and eachvi is the integer corresponding to that label.
All vi ’s are unique within any given enumeration.

In order to create an enumeration, the “CREATE ENUMERATION” statement is issued.
This must be done before the enumeration is used to declare the type of a feature.

/* Implicit enumeration value assignment all the way.

The first one is given the value 0, and the rest are

given the value of the previous one, plus 1.

For example, because “NOUN” is 0, “VERB” is 1,

and because “VERB” is 1, “VERB_PAST” is 2. */

CREATE ENUMERATION

part_of_speech_e = {

NOUN,

VERB,

VERB_PAST,

VERB_PAST_PARTICIPLE,

VERB_PAST_FINITE,

ADJ,

ADV,

PREP,

PROPER_NOUN,

PRON_PERS

PRON_POSS,

PRON_INTER,

PRON_RELA,

CONJ

}

GO

CREATE ENUMERATION

voltage_e = {

low = 0, // explicit value assignment

high, // implicit value assignment; will be 0 + 1 = 1

tristate // implicit value assignment; will be 1 + 1 = 2

}

1This philosophy is also the philosophy of the Unix operatingsystem, and its utility has been argued
many times by many over the years. See, for example, Raymond [2003].

5.5. TYPE LANGUAGE 65

The syntax for enumeration creation borrows both from SQL (“CREATE ENUMERATION”)
and from C/C++ (the ’enum_name = { /* enum-constants */ }’ syntax).

It is also possible to update an enumeration:

UPDATE ENUMERATION

voltage_e = {

REMOVE tristate,

ADD highest = 2

}

GO

Finally, it is possible to delete (or “drop”) an enumeration:

DROP ENUMERATION voltage_e

GO

The MQL interpreter will not allow this to happen if any feature on any object type
uses the enumeration. This is an example of a constraint on anMQL statement which
is checked in one of the compiler stages shown in Figure 5.1 onpage 61, in this case, the
“symbol-checking” stage. I have designed the statement this way because not having this
constraint would leave the database in an inconsistent state, if some enumeration was still
in use by some feature on some object type, after the enumeration had been dropped. This
consideration is similar to Codd’s requirement number (3) on a database model.2

5.5.4 Object types and features

In order to create an object type, the “CREATE OBJECT TYPE” statement must be issued.
In its simplest form, it only takes an object type name. This will create an object type
with no features (beyond the implicitly created “self” feature), no monad uniqueness
constraints, and the “WITH MULTIPLE RANGE OBJECTS” object range constraint.3 For
example:

CREATE OBJECT TYPE

[verse]

It is possible to specify the object range type and the monad uniqueness constraints, as in
the following examples:

CREATE OBJECT TYPE

WITH SINGLE MONAD OBJECTS

HAVING UNIQUE FIRST MONADS

[Token]

GO

2See Codd [1980] and Section 2.2.1 on page 29 of this dissertation.
3The reader is reminded that the “monad uniqueness constraint” and the “object range constraint” were

introduced in Section 4.4.4 on page 50.

66 CHAPTER 5. THE MQL QUERY LANGUAGE

CREATE OBJECT TYPE

WITH SINGLE RANGE OBJECTS

HAVING UNIQUE FIRST AND LAST MONADS

[sentence]

GO

CREATE OBJECT TYPE

WITH MULTIPLE RANGE OBJECTS

// no monad uniqueness constraint here

[phrase]

GO

CREATE OBJECT TYPE

/* no object range constraint means

’WITH MULTIPLE RANGE OBJECTS’ */

[clause]

GO

In order to create a feature, the following abstract syntax is used:

feature-name : feature-type ;

This is done inside the [square brackets] of theCREATE OBJECT TYPE statement:

CREATE OBJECT TYPE

WITH SINGLE MONAD OBJECTS

HAVING UNIQUE FIRST MONADS

[Word

surface : STRING;

// The enumeration created before

pos : part_of_speech_e;

// FROM SET: uses a map from strings to integers

lemma : STRING FROM SET;

// Count of occurrences of this lemma in the DB.

frequency : INTEGER;

// Useful for syntax trees.

parent : id_d;

// Useful for directed acyclic syntax graphs

parents : LIST OF id_d;

// morph_e enum must have been declared

morphology : LIST OF morph_e;

]

GO

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 67

In order to create an index on any given column in the table created for the object type in
the relational database backend, the user employ the “WITH INDEX” keywords:

CREATE OBJECT TYPE

[Phrase

phrase_type : phrase_type_e WITH INDEX;

phrase_role : phrase_role_e WITH INDEX;

]

An already-created object type may be updated by issuing an “UPDATE OBJECT TYPE”
statement. This has the effect of adding or removing columnsto the table holding the
objects. Default values must be given for each feature added. If no default values are
given, then standard default values are used.

UPDATE OBJECT TYPE

[Phrase

// Too interpretative... We shouldn’t get into semantics

// before we have mastered the syntax of this language!

REMOVE phrase_role;

// Ahhhh... Much more formal!

ADD phrase_function : phrase_type_e DEFAULT Unknown;

]

An already-created object type may be deleted (or “dropped”) with the “DROP OBJECT

TYPE” statement. Only the name of the object type is needed:

DROP OBJECT TYPE

[verse]

Taken together, the creation, update, and deletion statements available for enumerations
and object types meet the requirements of demand D11. However, creation, update, and
deletion are not the only possible operations on these data types. It is also possible to
retrieve the enumerations, enumeration constants, object types, and features present in
any EMdF database. We shall return to this retrieval facility in Section 5.6.

5.6 Data language (non-topographic)

5.6.1 Introduction

In this section, I show how the data domains present in the EMdF model can be created,
updated, deleted, and retrieved. I have appended the label “non-topographic” to the head-
ing of this section because the topographic part of MQL is so large that it deserves its own
section (5.7).

In this section, I first discuss how objects are created, updated, deleted, and retrieved
(non-topographically). I then discuss the same for “named monad sets”. I then discuss
“retrieval of object types and features”.

68 CHAPTER 5. THE MQL QUERY LANGUAGE

5.6.2 Objects

Objects can be created either individually or in bulk (batch-processing). The latter is
much more efficient than the former if many objects are to be inserted at the same time.

In order to insert objects individually, the “CREATE OBJECT” statement must be is-
sued.4

CREATE OBJECT

FROM MONADS = { 20001-20006 } // set of monads

[verse]

GO

// An explicit id_d can be given

CREATE OBJECT

FROM MONADS = { 20001 }

WITH ID_D = 1

[word

surface := ’Hvad’;

part_of_speech := PRON_INTER_REL;

lemma := ’hvad’;

]

GO

/* One can also specify a list of id_ds instead

of monads. Then the monad set will be the big-union

of the monad sets belonging to the objects which have

the id_ds given. */

CREATE OBJECT

FROM ID_DS = 1,2,3,4,5,6

[verse]

GO

In order to insert objects in bulk, the “CREATE OBJECTS WITH OBJECT TYPE” statement
must be used:

CREATE OBJECTS WITH OBJECT TYPE [verse]

CREATE OBJECT FROM MONADS = { 20001-20006 }

WITH ID_D = 11

[] // Notice how the object type is left out

CREATE OBJECT FROM MONADS = { 20007-20010 }

WITH ID_D = 12

[]

GO

Objects with specific id_ds may be updated:

4Almost all examples in this section are drawn from the EMdF database given in Figure 4.1 on page 57.

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 69

UPDATE OBJECTS

BY ID_DS = 2,6

[Word

// As opposed to V_PAST_PARTICIPLE

part_of_speech := V_PAST_FINITE;

]

GO

Or one can specify a set of monads, and all objects of the giventype which fall wholly
within that set of monads will be updated.

// Only

UPDATE OBJECTS

BY MONADS = { 20004 }

[Word

surface := ’dog’;

]

GO

Objects may be deleted, either by monads or by id_ds:

// Delete all objects of the given type

// which fall wholly within the given monad set

// (in this case, the words of the first verse).

DELETE OBJECTS BY MONADS = { 20001-20006 }

[word]

GO

// This will delete all the words in the second verse.

DELETE OBJECTS BY ID_DS = 7,8,9,10

[word]

GO

Objects may be retrieved in a number of ways. The first and foremost is the topographic
query “SELECT ALL OBJECTS”, discussed in Section 5.7. The rest, more ancillary ways,
are discussed here, since they are non-topographic. The first is “SELECT OBJECTS AT”,
which selects objects of a given type which start at a given monad.

// Will retrieve the word “Hvad”.

SELECT OBJECTS AT MONAD = 20001

[word]

It is also possible to retrieve objects which overlap with a given set of monads, i.e., to
select objects which have at least one monad in common with a given set of monads.

// Will retrieve the verbs “var” and “skete”.

SELECT OBJECTS HAVING MONADS IN { 20002, 20006 }

[word]

GO

70 CHAPTER 5. THE MQL QUERY LANGUAGE

// Will retrieve both verses, since they both

// have at least one monad in common

// with the monad set given.

SELECT OBJECTS HAVING MONADS IN { 20005-20007 }

[verse]

The “SELECT OBJECTS HAVING MONADS IN” statement returns a table, with no possi-
bility of retrieving the features or the full monad sets of objects. If one wishes to retrieve
features as well as full monad sets, the “GET OBJECTS HAVING MONADS IN” statement
is useful:

// Retrieves the words “Hvad”, “var”, “det”,

// “der”, and “skete”. Will return a flat sheaf

// containing the objects, their id_ds, their full monad

// sets, and the two features ’surface’ and ’part_of_speech’.

GET OBJECTS HAVING MONADS IN { 20001-20003, 20005-20006 }

[word GET surface, part_of_speech]

GO

It is also possible to retrieve the monads of objects separately:

GET MONADS

FROM OBJECTS WITH ID_DS = 1,2

[word]

It is also possible to retrieve the features of objects separately:

GET FEATURES surface, part_of_speech

FROM OBJECTS WITH ID_DS = 1,2

[word]

The “GET OBJECTS HAVING MONADS IN” statement was designed to combine the three
statements “SELECT OBJECTS HAVING MONADS IN”, “ GET MONADS”, and “GET FEATURES”.
The reason for introducing the “GET OBJECTS HAVING MONADS IN” statement was very
simple: The three statements which it combines were very inefficient to run in succession,
if one really wanted all three. Thus, although MQL was designed with the Unix-like phi-
losophy that each statement must “do one thing, and do it well”, the level of granularity at
which this philosophy must be applied is open for debate, especially when performance
considerations are at play.

This concludes the list of things which it is possible to do with objects in a non-
topographic way. We shall return to topographic querying ofobjects in Section 5.7.

5.6.3 Monads

In this subsection, I discuss how min_m, max_m, and named monad sets may be manip-
ulated, starting with the last.

Named monad sets were introduced in Section 4.4, and are an innovation on my part
with respect to the MdF model. The purpose of named monad setsis to allow for easy

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 71

restriction of a topographic query to a specific part of the database, by supporting the use
of named monad sets. The monad sets must, of course, be declared before they are used
in a topographic query; otherwise, the “symbol-checking” stage of the interpreter will
complain that the named monad set referenced by the topographic query does not exist.

A named monad set can be created with the “CREATE MONAD SET” statement. The ex-
amples are from a Biblical setting, namely the WIVU database[Talstra and Sikkel, 2000,
Dyk, 1994, Dyk and Talstra, 1988, Hardmeier and Talstra, 1989, Talstra and Van Wierin-
gen, 1992, Talstra et al., 1992, Talstra, 1992, 1989, 2002a,n.d., 2002b, 1998, 1997, Talstra
and van der Merwe, 2002, Verheij and Talstra, 1992, Talstra and Postma, 1989, Winther-
Nielsen and Talstra, 1995].

// From a Biblical setting,

// namely the WIVU database.

CREATE MONAD SET

Towrah

WITH MONADS = { 1-113226 }

GO

CREATE MONAD SET

Historical_books

WITH MONADS = { 113300-212900 }

GO

// Oops... also includeds non-Jeremiah books...

// this will be corrected below,

// under the discussion of UPDATE MONAD SET

CREATE MONAD SET

Jeremiah_Corpus

WITH MONADS = { 236000-368444 }

GO

A named monad set can also be updated using various monad set operations:

// Add the set of monads given

UPDATE MONAD SET

Historical_books

UNION

{ 110000-113250 }

GO

// Subtract the set of monads given

UPDATE MONAD SET

Historical_books

DIFFERENCE

{ 110000-113299 }

GO

72 CHAPTER 5. THE MQL QUERY LANGUAGE

// Replace it with the intersection

UPDATE MONAD SET

Historical_books

INTERSECT

{ 113300-212900 }

GO

// Replace ’Jeremiah_Corpus’ with the monad set given

UPDATE MONAD SET

Jeremiah_Corpus

REPLACE

{ 236000-265734, 366500-368444 }

GO

It is, of course, also possible to delete (or drop) a monad set:

DROP MONAD SET

Jeremiah_Corpus

GO

It is also possible to retrieve the names of the monad sets present in an EMdF database:

SELECT MONAD SETS

GO

And in order to get a table listing the monad of either all monad sets, or specific monad
sets, the “GET MONAD SETS” statement can be issued:

// Retrieves all monad sets

GET MONAD SETS ALL

GO

// Just retrieves one

GET MONAD SET Historical_books

GO

// Retrieves monad sets ’Towrah’ and ’Historical_books’

GET MONAD SETS Towrah, Historical_books

GO

It is also possible to retrieve the least monad used by any object (min_m), and the greatest
monad used by any object (max_m):

SELECT MIN_M

GO

SELECT MAX_M

GO

Both named monad sets, min_m, and max_m are innovations on mypart with respect to
the MdF model.

5.6. DATA LANGUAGE (NON-TOPOGRAPHIC) 73

5.6.4 Retrieval of object types and features

The names of the object types available in an EMdF database can be retrieved with the
“SELECT OBJECT TYPES” statement. It returns a table listing the object type names.

SELECT OBJECT TYPES

GO

The question can also be posed, which features a given objecttype has, using the “SELECT
FEATURES” statement:

SELECT FEATURES

FROM OBJECT TYPE

[Word]

GO

Again, this will return a table containing one row for each feature, giving the feature
name, its type, its default value, and a boolean saying whether it is a computed feature5

or not.
A table containing the names of the enumerations present in an EMdF database can

be retrieved with the “SELECT ENUMERATIONS” statement:

SELECT ENUMERATIONS

GO

Similarly, the enumeration constants present in a given enumeration can be retrieved as a
table:

SELECT ENUMERATION CONSTANTS

FROM ENUMERATION part_of_speech_e

GO

To find out which object types have features which use a certain enumeration, the “SELECT
OBJECT TYPES USING ENUMERATION” statement can be issued:

SELECT OBJECT TYPES

USING ENUMERATION part_of_speech_e

GO

5Only the “self” feature is said to be computed, even though it, too, is stored. Computed features is an
area of further research; the intent is to provide a mechanism for specifying features as functions which
operate on an object and return a value based on the stored values associated with the object. This has not
been implemented yet.

74 CHAPTER 5. THE MQL QUERY LANGUAGE

Database Enumeration Object Type Feature Object Monad set
(D11) (D11) (D11) (D12) (D12)

Create + + + + + +
Retrieve - + + + + +
Update N/A + + + + +
Delete + + + + + +

Table 5.1: Operations implemented on the data domains in theEMdF model.
“+” means “implemented”, “-” means “not implemented”, and “N/A” means “Not Appli-
cable”.

5.6.5 Conclusion

As should be evident from my description of the various data domains in the EMdF model,
I have implemented complete support for all create, update,delete, and retrieve operations
on all data domains, except for “databases”. Creation of databases is supported, as is
deletion. Update of databases can be said to occur at lower levels using theCREATE and
UPDATE statements meant for object types, enumerations, objects,and named monad sets.
However, retrieval of database names is not supported: The names of the EMdF databases
present on a given system cannot be retrieved within the Emdros implementation; it must
either be known by the calling application, or it must be retrieved from the system by
other means.

Table 5.1 shows which operations (create, retrieve, update, delete) are available for
which data domains. As can be seen, demands D11 and D12 are fully met.

So far, I have described the non-topographic data language part of MQL. I now turn
to the topographic part, which has been modeled after Doedens’s QL.

5.7 Data language (topographic)

5.7.1 Introduction

The topic of my B.Sc. thesis6 was two-fold: a) A sketch of an implementation of what
was the “EMdF” model as I saw it then, and b) An operational semantics for a subset of
the topographic part of “MQL” as I saw it then. Since my B.Sc.,I have expanded MQL
in numerous ways, becoming what it is today.

In the interest of being transparent about what has been written for other degrees, and
what has been written for my PhD, this section is structured as follows. First, I describe
MQL as it was in my B.Sc. thesis. Then, I describe how the present-day MQL differs
from the MQL of my B.Sc. thesis. Finally, conclude the section.

5.7.2 The MQL of my B.Sc. thesis

The MQL of my B.Sc. thesis was very limited in its expressivity, compared to the present-
day MQL. Only the core of Doedens’s QL was present. The operational semantics given
in my B.Sc. thesis was given in a PASCAL-like language, but glossed over a lot of details,
as I later found when I came to implementing it.

6See Petersen [1999]. The thesis is available online: http://ulrikp.org/studies.html

5.7. DATA LANGUAGE (TOPOGRAPHIC) 75

For the purposes of the discussion in this Chapter, let us call the MQL of my B.Sc.
thesis “BMQL” (for “Bachelor MQL”), whereas the present-day MQL will be called just
“MQL”.

In BMQL, as in MQL, the core notion is that of “block”. In BMQL,there were four
kinds of blocks:

1. object_block_first,

2. object_block,

3. opt_gap_block, and

4. power_block.

I now describe these in turn.

5.7.2.1 object_block and object_block_first

An object_block_first and an object_block both correspond to (and thus match) an object
in the database. They both look like this in their simplest form:

[Clause]

That is, an object_block (or object_block_first) consists of an object type name in [square
brackets].

An object_block (or object_block_first) can have a number ofmodifiers:
First, it is possible (in BMQL) to specify that an object should not be retrieved, or to

specify explicitly that it should be retrieved:

[Phrase retrieve]

[Phrase noretrieve]

The first Phrase above will be retrieved, whereas the second will not.
Second, it is possible (in BMQL) to specify that an object_block may optionally be

“first” or “last” in its string of blocks (a block_string). Anobject_block_first, on the other
hand, may optionally be specified as being “first”, but not “last”. The precise meaning of
“first” and last can only be specified with reference to the “substrate”, so we return to their
meaning below, when we have defined “substrate”. For now, letus continue to describe
object_blocks and object_block_firsts.

Third, it is possible (in BMQL) to specify an arbitrarily complex predicate in a subset
of First-Order-Logic (FOL), namely FOL without quantifiers, but with AND, OR, NOT,
and parentheses as connectives, and with feature-value equality-comparisons (“=”) as
atomic predicates (e.g., “phrase_type = NP”). Other comparison-operators than equal-
ity arenot possible in BMQL. An example of a legal query could be:

[Phrase (phrase_type = NP AND phrase_function = Subject)

OR (phrase_type = AdjP

AND phrase_function = Predicate_Complement)

]

76 CHAPTER 5. THE MQL QUERY LANGUAGE

Fourth, it is possible (in BMQL) to specify a set of variable assignments, which makes it
possible to refer back to the values of features of an object matched by an object_block(_first)
further up towards the top in the query. For example:

var $c,$n,$g;

[Word

$c := case;

$n := number;

$g := gender;

]

[Word

case = $c AND number = $n AND gender = $g

]

This string of blocks (technically, a block_string) would find all pairs of Words whose
case, number, and gender features agreed. The declaration “var $c,$n,$g;” at the top
is necessary in BMQL in order to declare the variables, and must be present before the
block_string starts, if any variables are used within the block_string.

Finally, the fifth modifier which may be specified on an object_block or object_block_first
is aninner blocks. A “blocks” is a sequence of an optional variable declaration (such as
was seen above), followed by a block_string. For example:

[Clause

[Phrase phrase_function = Modifier]

]

This would find all clauses which had at least one phrase inside of the clause whose
phrase_function was Modifier.

We now turn to the notion of “substrate”.

5.7.2.2 Substrate

The substrateof an MQL/BMQL query is a set of monads which defines the context
within which the blocks of a block_string (i.e., a string of blocks at the same level in the
query) will have to match. The idea of the substrate is that there must always exist some
limiting, finite set of monads within which to execute the query at a given level of nesting.

For the outermost block_string, the substrate is given (in BQML) by the set of monads
corresponding to the single object present in the all_m object type (see Section 4.3.4 on
page 47), that is, the substrate is the set of monads formed bythe big-union of all sets of
monads from all objects in the database.

When the context of a block_string is an object_block or object_block_first, then the
substrate of the inner block_string is the set of monads fromthe object which matched
the outer object_block or object_block_first. For example:

[Sentence

[Clause]

[Clause]

]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 77

In this example, the sets of monads of the two inner Clause objects must both be subsets
of the set of monads belonging to the outer Sentence object. The two clause objects must
also stand in sequence, at least with respect to the set of monads belonging to the outer
sentence object. This means that, if there are no gaps in the set of monads belonging to the
Sentence object, then, if the first Clause object ends on monad b, then the second Clause
must start on monadb+1. If, however, there are gaps in the set of monads belonging to
the outer Sentence object, then the rules are slightly different. Let us say, without loss of
generality (wlog), that the first clause ends on monadb. If there then is a gap in the outer
Sentence which starts at monadb+1 and ends at monadc, then the second clausemust
start on monadc+1.

This special rule may be circumvented by placing an exclamation mark (‘!’) between
the two clauses:

[Sentence

[Clause]

![Clause]

]

In that case, the two clauses must stand next to each other, that is, if the first clause ends
on monadb, then the second clausemuststart on monadb+1.

The substrate also defines what the keywords “first” and “last” mean on an object_block
or object_block_first: The keyword “first” means that first monad of the set of monads
belonging to the object matched by the the object_block or object_block_first must be the
same as the first monad of the substrate. Similarly, the keyword “last” means that the last
monad of the set of monads belonging to the object matched by the object_block must be
the same monad as the last monad of the substrate.

5.7.2.3 opt_gap_block

An opt_gap_block corresponds to (and thus matches) a gap in the substrate of the context.

[Sentence

[Clause]

[gap? noretrieve] // this is the opt_gap_block

[Phrase]

]

In this example, the outer sentence provides the substrate for the inner block_string. After
the Clause, there may optionally be a gap in the substrate (i.e., the set of monads of the
surrounding Sentence object). After the gap, a Phrase must exist. The gap is not retrieved
if it is found (it would have been retrieved if the “retrieve” keyword had been used
instead of “noretrieve”). If there is no gap, then the Phrase must exist right after the
Clause (i.e., if the Clause ends on monadb, the Phrase must start at monadb+1).

5.7.2.4 power_block

A power_block corresponds to “an arbitrary stretch of space” in the surrounding substrate.
It is signified by two dots (‘..’). For example:

78 CHAPTER 5. THE MQL QUERY LANGUAGE

[Phrase

[Word first]

..

[Word last]

]

This would retrieved all Phrases inside of which we found a Word (which must be “first”
in the Phrase), followed by arbitrary space (even 0 monads),followed by a Word (which
must be “last” in the Phrase). The significance of the “..” power block is here that it allows
finding Phrases that are more than two words long, even if theyhave no gaps. Had the
query been:

[Phrase

[Word first]

![Word last]

]

then the two words must take up the whole Phrase. The power_block, on the other hand,
makes it possible to say that the Phrase may be arbitrarily long, without specifying what
must be between the two Word object blocks.

Finally, BMQL allows a limiting number of monads to be specified on the power
block. For example:

[Word part_of_speech = article]

.. < 3

[Word part_of_speech = noun]

In this example, there may be at most 3 monads between the article and the noun. The
limitor is handy, especially if using the “..” operator on the outermost level. For example,
the query:

[Word]

..

[Word]

would take an awfully long time to execute, and would consumean awful amount of RAM
memory, for a decent-sized database. The reason is that the query means the following:
Find all pairs of words, where the second word appears at someunspecified point after
the first word. In general, the number of possibilities for this particular query is given by
the following formula:

S=
n−1

∑
i=1

i =
(n−1)n

2

wheren is the number of Words in the database.
This gets quite large for decent-sized databases. For example, in a database of 400,001

words, the sum is 8,000,200,000 — or eight billion, two hundred thousand. Thus the
restrictor on power blocks, though small in stature, can be put to very good use.

This concludes my summary of MQL as it was in my B.Sc. thesis.

5.7. DATA LANGUAGE (TOPOGRAPHIC) 79

5.7.3 The present-day MQL

Several innovations and/or enhancements have appeared in MQL since my B.Sc. work.
In this section, I detail the most important ones.

5.7.3.1 Kinds of blocks

The set of kinds of block has been expanded. The full set is now:

1. object_block

2. power_block

3. opt_gap_block

4. gap_block

5. NOTEXIST_object_block

Of these, number (4) and (5) are new. A gap_block is almost thesame as an opt_gap_block,
except that the gapmustbe there for for the query to match as a whole. A NOTEX-
IST_object_block is the same as an object_block, except that for it to match, no objects
of the kind specified, and with any feature-restrictions specified, may exist within the
substrate, counting from the point in the query in which the NOTEXSIT_object_block is
located. Where an object_block specifies that something must exist (a∃ existential quan-
tifier), the NOTEXIST_object_block specifies that something must not exist (a∀¬ “for
all”-quantifier, with inner negation).

The distinction between object_block and object_block_first has been done away with
in the “new MQL”.

5.7.3.2 First and last

Even though thesyntacticdistinction between object_block and object_block_first has
been done away with in the “new MQL”, the concept has not. It has just moved from the
“parsing” stage to the “weeding” stage of the interpreter. In addition, it is now possible to
specify that some object must be bother firstand last in its context:

SELECT ALL OBJECTS

WHERE

[Phrase

[Word FIRST AND LAST pos=verb]

]

Here, the inner Word (which is a verb) must occupy the whole Phrase.

80 CHAPTER 5. THE MQL QUERY LANGUAGE

5.7.3.3 Focus

It is possible, in the new MQL, to specify that a given object block, gap_block, or
opt_gap_block must be “in focus”, with the FOCUS keyword:

SELECT ALL OBJECTS

WHERE

[Clause

[Word pos=verb]

..

[Word FOCUS pos=noun]

..

[Word pos=adjective]

]

This would find clauses with a verb, followed by arbitrary space (“..”), followed by a noun,
followed by arbitrary space, followed by an adjective. The noun would be “in focus”, i.e.,
the “focus boolean” for that Word would be true in the resulting sheaf, whereas it would
be “false” for all other objects (because they did not have the FOCUS keyword).

This is useful in many cases. For example, as argued in [FSMNLP2005], it is some-
times necessary for the user to give the corpus query system a“hint” as to what part of
the query they are really interested in. This can be done withthe “FOCUS” keyword.

Note that the “focus boolean” is never interpreted inside ofEmdros. The interpreta-
tion of the focus boolean always lies in the application layer above the MQL layer (see
[LREC2006] for an explanation of the architecture behind Emdros).

5.7.3.4 Marks

Besides “FOCUS” booleans, it is possible to add a further kind of information to the
query, which can be passed upwards to the application-layer. This was first discussed
in Doedens [1994], and so the idea originates there. The ideais to allow the user to
“decorate” a block (either an object_block, an opt_gap_block, or a gap_block) with C-
identifiers which are passed back up to the application layer. The application layer is then
free to either ignore the “marks”, or to interpret them in a way which is fitting to the
purpose at hand. For example, in a graphical query application, the following might color
parts of the display:

SELECT ALL OBJECTS

WHERE

[Clause‘red

[Phrase‘blue function=Pred]

]

This would attach the mark “red” to the Clause objects, and the mark “blue” to the Phrase
object in the resulting sheaf. The graphical query application might then interpret these
as instructions to color the Clause red, except for the Predicate Phrase inside the Clause,
which must be colored blue.

This is also useful for specifying what is “meat” and what is “context” (cf. the ex-
tended discussion about this in [FSMNLP2005]):

5.7. DATA LANGUAGE (TOPOGRAPHIC) 81

SELECT ALL OBJECTS

WHERE

[Clause‘context‘red

[Word‘context pos=verb]

..

[Phrase‘meat function=Objc]

..

[Phrase‘context function=Objc]

]

This would find all verbal clauses with double objects, wherethe first object was “meat”,
and the second object was “context”. Note also how the Clauseobject has two marks,
namely “context” and “red”. There is no limit on the number ofmarks a block can have,
except that power blocks cannot have marks.

5.7.3.5 New comparison-operators on features

In “BMQL”, it was only possible to use the equality (“=”) operator on features. In the
new MQL, a range of other comparison-operators have been defined. The full set is now:

= Denotes equality

<> Denotes inequality

< Denotes “less than”

<= Denotes “less than or equal”

> Denotes “greater than”

>= Denotes “greater than or equal to”

IN Denotes “feature has to have a value IN the following comma-separated, parentheses-
surrounded list of values”. For example: “pos IN (noun,article,adjective)”

HAS Denotes “this list-feature has to have the following value”. For example: “mor-
phology HAS genitive”

~ Denotes “this feature must match the following regular expression”

!~ Denotes “this feature must not match the following regular expression”

Note that the IN and HAS operators were added so as to accommodate comparisons with
lists of values. Lists of values are new in the EMdF model since my B.Sc. thesis, and
were described in Section 4.4.5 on page 51.

82 CHAPTER 5. THE MQL QUERY LANGUAGE

5.7.3.6 Object references replace variables

In “BMQL”, it was possible to define variables, assign feature-values to these variables,
and then refer back to the variables later in the query.

In the “new MQL”, variables have been replaced with the concept of “object refer-
ences.” The concept can best be explained by reference to a concrete query. For example:

SELECT ALL OBJECTS

WHERE

[Phrase phrase_type = NP

[Word AS w1 pos=noun]

[Word pos=adjective

AND case = w1.case

AND number = w1.number

AND gender = w1.gender

]

]

This would find all NP phrases inside of which there was a noun,followed by an adjective
which agreed with the noun in case, number, and gender. The “AS w1” incantation is an
object reference declaration. It declares that the first Word must be referred to by the C-
identifier “w1”. Then, in the second word, the feature-comparisons can refer back to “w1”
with the “dot notation”: For example, “w1.case” means “The value of the w1-object’s
case-feature.”

This is very useful, not just in ensuring agreement, but alsoin other cases, such as
ensuring parentage. For example:

SELECT ALL OBJECTS

WHERE

[Clause AS c1

[Phrase parent = c1.self]

]

Here, the “parent” feature of the inner Phrase is checked to see if it is the same as the
outer Clause’s “self” feature, i.e., whether the inner Phrase’s “parent” feature “points to”
the outer Clause object.

I find that this notation is less cumbersome, more convenientto type, and more intu-
itive than the concept of variables as developed in BMQL, even though they are largely
equivalent.

5.7.3.7 OR between strings of blocks

It is now possible in MQL to specify an “OR” relationship between two strings of blocks.
For example:

SELECT ALL OBJECTS

WHERE

[Clause

[Phrase function=Subj]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 83

[Phrase function=Pred]

[Phrase function=Objc]

OR

[Phrase function=Pred]

[Phrase function=Subj]

[Phrase function=Objc]

]

This would find clauses in which either the order of constituents was Subject-Predicate-
Object, or Predicate-Subject-Object. In other words, the “OR” construct between strings
of blocks supports, among other uses, permutation of the constituents. In reality, any
string of blocks may stand on either side of the OR, not just permutation of the con-
stituents. In addition, there can be as many OR-separated strings of blocks as necessary.
For example:

SELECT ALL OBJECTS

WHERE

[Clause

[Phrase function=Subj]

[Phrase function=Pred]

[Phrase function=Objc]

OR

[Phrase function=Pred]

[Phrase function=Subj]

[Phrase function=Objc]

OR

[Phrase function=Objc]

[Phrase function=Subj]

[Phrase function=Pred]

]

OR

[Clause

[Word pos=verb]

[Phrase phrase_type=NP]

[Phrase phrase_type=AdjP]

]

[Clause

[Word pos=verb]

[Word pos=adverb]

[Phrase phrase_type=NP

[Phrase phrase_type=AdjP]

[Phrase phrase_type=NP]

]

]

5.7.3.8 Grouping

It is now possible in MQL to group strings of blocks, like this:

84 CHAPTER 5. THE MQL QUERY LANGUAGE

[Clause

[

[Phrase]

[Phrase]

]

]

The reason for including this construct in the language willbecome apparent in the next
section.

5.7.3.9 Kleene Star

It is now possible to apply a “Kleene Star” to either an objectblock or a group of blocks.
For example:

SELECT ALL OBJECTS

WHERE

[Clause

[Word pos=verb]

[Word

pos IN (noun,article,adjective,conjunction)

]* // Note star!

[Word pos=adverb]

]

This would find all Clauses, inside of which we find a verb, followed by zero or more
words whose part of speech is either noun, article, adjective, or conjunction, followed by
an adverb.

The Kleene Star can also optionally take a set of integers, denoting the number of
times that the Kleene Star must repeat:

SELECT ALL OBJECTS

WHERE

[Phrase phrase_type=NP

[Word FIRST pos=article]*{0,1}

[Word LAST pos=noun]

]

This would find all NPs of either 1 or 2 words in length, where the last word was a noun,
and (if its length was 2), the first word would be an article. This obviously allows the
specification of optional blocks.

It is also possible for the set of integers to have gaps. It is also possible for it to have
“no upper limit”:

SELECT ALL OBJECTS

WHERE

[Clause

[Phrase function=Pred]

5.7. DATA LANGUAGE (TOPOGRAPHIC) 85

[Phrase

function IN (Subj,Objc,Cmpl,Adju)

]*{2-}

]

This would find all Clauses inside of which there was a Predicate Phrase, followed by
two or more Phrases whose function was either Subject, Object, Complement, or Ad-
junct. Note that there is no integer after the “-” dash, denoting that there is no upper
limit. Notice that, even though there is no upper limit, the Kleene Star is limited by the
surrounding context, in this case, the boundaries of the Clause. Therefore, the program
code calculating the results will always terminate.

It is possible for the Kleene Star to apply to groupings:

SELECT ALL OBJECTS

WHERE

[Phrase phrase_type=NP

[Word FIRST pos=article]

[Word pos=noun]

[

[Word pos=conjunction]

[Word pos=article]

[Word pos=noun]

]*{1-} // Note the star!

]

This would find all NP Phrases which consisted of an article asthe first word, followed
by a noun, followed by one or more iterations of the sequence “conjunction”, “article”,
“noun”. An example in English would be “The duck and the hen and the eagle”.

This concludes my summary of the most important changes to MQL language since
the MQL of my B.Sc. thesis.

5.7.4 Conclusion

In this section, I have shown what MQL is today. I have done so by first discussing what
MQL looked like in my B.Sc. thesis, followed by a discussion of how the MQL of today
differs from the MQL of my B.Sc. thesis. The differences are not negligible, since the
expressive power of the language has increased dramatically since the MQL of my B.Sc.
thesis. In particular, the “OR” construct between strings of blocks, the “grouping” con-
struct, and the “Kleene Star” bring a lot of new expressive power, as do the new compar-
ison operators. The “gap_block” and “NOTEXIST_object_block” are new, and the latter
brings the expressivity of the language up to the level of full First Order Logic over EMdF
objects, since it adds the “forall” quantifier” in addition to Fthe already-implemented “ex-
ists” quantifier. The possibility of adding “FOCUS” booleans and “marks” to the resulting
sheaf opens new possibilities for allowing the user to distinguish between what is “meat”
and what is merely “context” in the query (cf. [FSMNLP2005]).

Lai [2006] is a model-theoretical and logical analysis of the requirements that tree-
banks place on query languages designed for querying treebanks. Lai concludes that the

86 CHAPTER 5. THE MQL QUERY LANGUAGE

full expressiveness of First Order Logic (FOL) over tree-structures is required for query-
ing treebanks in all relevant ways. In the following sense, Ihave fulfilled this requirement
by building the present-day MQL: MQL supports the full FOL over objects, with ex-
istentialand “forall” quantification over objects, and a full set of Boolean operators on
the attributes (i.e., features) of objects. Thus both the atoms, the predicates, the Boolean
connectives, the quantifiers, and the formulae of FOL are covered by MQL, defined over
the objects and features of the EMdF model. While this does not constitute FOL over
tree-structures, it is a step in the right direction.

Yet for all its expressive power, today’s MQL still leaves a lot to be desired, compared
with Doedens’s QL. I discuss some of the possible future enhancements in Chapter??.

5.8 Conclusion

In this chapter, I have discussed the MQL query language. MQL, in contrast to Doedens’s
QL, is a “full access language”, meaning it has statements for create, retrieve, update, and
delete operations on the full gamut of data domains in the EMdF model. Doedens’s QL
was strictly a “data retrieval” language, and only operatedwith topographic queries. Thus
I have fulfilled Doedens’s demands D11 and D12.

I started the chapter by recapitulating demands D11, D12, and D13 from Doedens
[1994]. I then promised to show, in this chapter, how demandsD11 and D12 were fully
met. I then had three sections which paved the way for fulfilling this promise, namely
a section on “general remarks” (discussing lexical conventions and comments), a section
on “the MQL interpreter” (discussing how the MQL interpreter is implemented), and a
section on “the resulting output” (discussing the four kinds of output possible from an
MQL query).

I then discussed how MQL meets the requirements of Doedens’sdemands D11 and
D12 in three sections: First, I discussed the type language of MQL, thus showing how
MQL fulfills D11. Second, I discussed the non-topographic “data language” part of MQL,
which enables the creation, retrieval, update, and deletion of objects and monad sets, as
well as the retrieval of the names of object types, features,and enumerations. Third, I
discussed the topographic “data language” part of MQL, which resembles Doedens’s QL
in numerous ways, yet is also distinct from QL. Taken together, the non-topographic “data
language” part, and the topographic “data language” part ofMQL entail that MQL fully
meets Doedens’s demand D12.

Meeting demand D13 is a future research goal. I shall return to this in Chapter 14.

Chapter 6

The Sheaf

6.1 Introduction

The datastructure known as a “Sheaf” was first introduced by Doedens [1994]. I have
modified the data structure to be able to implement it in practice, much as I modified the
MdF model to make it implementable in practice.

In this Chapter, I discuss the Sheaf, what it is and what it is for (6.2). I then discuss the
parts of the Sheaf and how they relate to the query from which it originated (6.3). Finally,
I conclude the chapter.

6.2 What is a Sheaf?

6.2.1 Introduction

A sheaf is a data structure which is the result of either a topographic query or aGET
OBJECTS HAVING MONADS IN query. As mentioned in the previous section, the Sheaf
was invented by Doedens, and was described in Section 6.5, pp. 138–147 of Doedens
[1994]. I have modified the sheaf in order to be able to implement it, and in order to make
it suit the EMdF model and the MQL query language.

The Sheaf is a recursive data structure, by which I mean that apart of a Sheaf may
contain an “inner sheaf”, which then again may contain a partthat contains an “inner
sheaf”, and so on, until there is an “inner sheaf” which is empty, and thus does not have
any more inner sheaves.

There are two kinds of Sheaf:

1. Full Sheaf (which corresponds to Doedens’s Sheaf), and

2. Flat Sheaf (which is a Sheaf with only empty inner sheaves).

I shall first define the Full Sheaf, and then define the Flat Sheaf in terms of the constructs
found in the Full Sheaf.

87

88 CHAPTER 6. THE SHEAF

6.2.2 Sheaf Grammar

A Full Sheaf either is failed, is empty, or has a comma-separated list of one or more
Straws (we’ll get to the definition of Straw in a moment). In Backus-Naur Form1:

Sheaf ::= "//" /* failed sheaf */

| "//" "<" ">" /* empty sheaf */

| "//" "<" Straw { "," Straw }* ">"

;

A Straw is a string of one or more Matched_objects:

Straw ::= "<" Matched_object { "," Matched_object }* ">"

;

A Matched_object may be of two kinds: an MO_ID_D or an MO_ID_M. An MO_ID_D
has its origin in an object block, wheras an MO_ID_M has its origin in either an opt_gap_block
or a gap_block.

Matched_object ::= /* MO_ID_D */

"[" Object_type Id_d Set_of_monads

Marks Focus_boolean Feature_values

Sheaf

"]"

| /* MO_ID_M */

"[" "pow_m" Set_of_monads

Marks Focus_boolean

Sheaf

"]"

;

The “Object_type” is an IDENTIFIER, that is, a C-identifier,just as in the EMdF model.

Object_type ::= IDENTIFIER /* C-identifier */

;

An “Id_d”, as used in the MO_ID_D, is simply an integer, representing the id_d of the
object from which the MatchedObject arose:

Id_d ::= INTEGER /* Any integer */

;

1Backus-Naur Form is a way of specifying the syntax of a formallanguage by means of a context-free
grammar. In my version of Backus-Naur Form, a rule consists of a non-terminal, followed by “::=”, fol-
lowed by one or more “|”-separated production rules, followed by a terminating “;” (semicolon). Terminals
appear either in "double quotes" or as identifiers which are ALL UPPER CASE. Non-terminals appear
with the first letter capitalized, and the rest lower-case. /* Comments may be surrounded by slash-star . . .
star-slash, as this sentence is. */

See Martin [1991] for an introduction to the theory of context-free formal languages, and Appel [1997]
for an introduction to something that looks like my Backus-Naur Form.

6.2. WHAT IS A SHEAF? 89

The “Marks” non-terminal is the list (possibly empty) of Marks as found on the block
from the the Matched_object originated. See the section on “Marks” on page 80 for an
explanation.

Marks ::= { "‘" IDENTIFIER }*

;

The “Focus_boolean” non-terminal is either “false” or “true”. It is true if an only if the
block from which this Matched_object originated had the FOCUS keyword (see page 80).

Focus_boolean ::= "false" | "true"

;

The “Feature_values” non-terminal is a possibly-empty list of value assignments to fea-
tures on the object from which the MO_ID_D originated, and isa result of the “GET
feature_list” construct on an object_block:

Feature_values ::= "(" ")" /* empty */

| "(" Feature_value { "," Feature_value }* ")"

;

Feature_value ::= Feature_name "=" Value

;

Feature_name ::= IDENTIFIER

;

Value ::= /* Any value allowed in the EMdF model. */

;

An MO_ID_M has a Set_of_monads instead of an Id_d non-terminal. It also has “pow_m”
as the object type. This indicates that it contains the set ofmonads corresponding to the
gap matched by the (opt_)gap_block from which the MO_ID_M arose.

An MO_ID_D also has a Set_of_monads corresponding to the monads of the object
which matched the object_block from which the MO_ID_D arose. These sets of monads
are never empty, but have at least one Monad_set_element.

Set_of_monads ::= "{"

Monad_set_element { "," Monad_set_element }*

"}"

;

Monad_set_element ::= /* singleton */ Monad

| /* range */ First_monad "-" Last_monad

;

First_monad ::= Monad

;

Last_monad ::= Monad

;

Monad ::= INTEGER

;

90 CHAPTER 6. THE SHEAF

Notice that a Matched_object may have an inner Sheaf, thus making the data structure
recursive. This inner Sheaf results from an inner blocks construct in an object_block,
opt_gap_block, or gap_block. Notice also that a Sheaf may beempty (see above), and
thus the data structure need not be infinitely recursive, butdoes have a “base case” in
which the recursion may stop. This is the case whenever a block does not have an inner
blocks construct.

6.3 The parts of the Sheaf

6.3.1 Introduction

The previous Section has focussed on the grammar of the sheaf, but said little about what
it means. This Section will explore the relationship between the Full Sheaf, its parts, and
the query from which it originated. This is done by discussing each of the constructs
“Matched_object”, “Straw”, and “Sheaf” in turn. I will thenalso discuss Flat Sheaves.

6.3.2 Matched_object

A Matched_object is the product of one matching of a block which is neither a power_block
or a NOTEXIST_object_block. That is, it is the product of a matching of either an ob-
ject_block, an opt_gap_block, or a gap_block. An opt_gap_block and a gap_block gives
rise to an MO_ID_M, which has a set of monads corresponding tothe gap matched. An
object_block, on ther other hand, has an object type and an id_d, both corresponding to
the object which matched the object_block.

6.3.3 Straw

A Straw is one complete matching of one block_string. This isdone right below the level
of the “OR” construct between strings of blocks. For example, the following MQL query:

SELECT ALL OBJECTS

WHERE

[Phrase function=Subj GET function]

[Phrase function=Pred GET function]

would result in a Sheaf with a number of Straws, each of which would contain two
Matched_objects, the first resulting from the Phrase object_block with the “function=Subj”
restriction, and the second Matched_object resulting fromthe Phrase object_block with
the “function=Pred” restriction:

// /* the following is a Straw */

<

/* The following is a Matched_object */

< Phrase 32 { 12-13 } false (function=Subj)

// < > /* empty, inner sheaf */

>,

/* The following is a Matched_object */

6.3. THE PARTS OF THE SHEAF 91

< Phrase 33 { 14 } false (function=Pred)

// < > /* empty, inner sheaf */

>

> /* ... more Straws likely to follow ... */

6.3.4 Sheaf

A Sheaf is the result of all matches of a givenblocks construct in a query. The outermost
blocks construct results in a Sheaf which consists of Straws of Matched_objects resulting
from the blocks in theblock_string at the outermost level. If, then, one of these
blocks has an innerblocks, that innerblocks gives rise to the inner Sheaf in the outer
Matched_object. For example:

SELECT ALL OBJECTS

WHERE

[Clause

[Phrase first function=Time]

[Phrase first function=Pred]

[Phrase first function=Subj]

]

This would give rise to a Sheaf which contained Straws, each of which had only one
Matched_object. This Matched_object would have arisen from the “Clause”object_block.
Since this “Clause”object_block has an innerblocks (namely theblock_string con-
sisting of the three Phraseobject_blocks), the MO_ID_D resulting from each Clause
object_block would have an inner Sheaf which was not empty. Each of these inner
Sheaves would contain at least one Straw, each of which wouldcontain three Matched_objects,
one for each Phraseobject_block. These inner Matched_objects would then each con-
tain an empty inner Sheaf, since none of the inner Phraseobject_blocks have an inner
blocks construct.

Thus, there is an isomorphism, not only between the structure of the query and the
structure of the objects found, but also between the structure of the query and the structure
of the Sheaf resulting from the query. It is this quality which makes MQL a “topographic”
language.

6.3.5 Flat Sheaf

A “flat sheaf” may arise in two ways: First, aGET OBJECTS HAVING MONADS IN query
may be issued, which always results in a flat sheaf. Second, the Full Sheaf of a topo-
graphic query may be post-processed in order to obtain a flat sheaf.

A flat sheaf, in essense, is a Sheaf in which all MatchedObjects of a particular object
type have been grouped into one Straw. Thus, for each object type present in the corre-
sponding Full Sheaf, a Flat Sheaf has one Straw containing all the MatchedObjects of the
Full Sheaf with that particular object type. In this respect, “pow_m” is also an object type,
meaning that a Flat Sheaf may contain MO_ID_Ms as well as MO_ID_Ds.

Furthermore, no MatchedObject in a Flat Sheaf has a non-empty or failed inner Sheaf.
That is, all MatchedObjects in a Flat Sheaf have empty inner sheaves. Therefore, a Flat
Sheaf is not recursive.

92 CHAPTER 6. THE SHEAF

For a GET OBJECTS HAVING MONADS IN statement, there never is any Full Sheaf
from which the Flat Sheaf has been obtained. Instead, the Flat Sheaf is constructed di-
rectly. In this case, the Flat Sheaf only has one Straw with Matched_objects of one object
type, namely the one which theGET OBJECTS HAVING MONADS IN statement queries.

6.4 Conclusion

In this Chapter, I have discussed the Sheaf as one of the possible kinds of output from an
MQL statement. There are two kinds of Sheaves: Full Sheaves and Flat Sheaves. A Sheaf
is a list of Straws. A Straw is a list of Matched_objects. A Matched_object corresponds to
one matching of oneblock in a topographic MQL query. A Matched_object may have an
inner Sheaf, thus making the data structure recursive. A Straw corresponds to one whole
matching of oneblock_string.

The Sheaf is a central part of the implementation of the MQL query language, and we
shall return to the Sheaf data structure several times in thethesis. In the next chapter, I
show how to “harvest” a sheaf into something even more usefulthan the Sheaf itself.

Chapter 7

Harvesting search results

7.1 Introduction

Having explained the MQL query language and its result data type (the “Sheaf”) in the
previous chapter, I now turn to the problem of how to display meaningful results from the
Sheaf.

The Chapter is laid out as follows. First, I discuss the problem at hand from a general
perspective. I call the process whereby the Sheaf is turned into meaningful, displayable
results, the process of “harvesting”. Second, I define a number of concepts to be used
when discussing the “harvesting” algorithm. Third, I lay out a general algorithm for
“harvesting” the Sheaf. Fourth, I discuss ways of determining the “hit”. Fifth, I discuss
various ways of extending the algorithm. And finally, I conclude the chapter.

7.2 The problem at hand

As explained in [FSMNLP2005], there are various strategiesfor implementing query lan-
guages for text databases. The one I have chosen is to separate the process of querying
from the process of gathering enough data to display the results. This is because this strat-
egy provides for the greatest number of possible uses of the query results, and provides
for “genericity” of the corpus query system. As [FSMNLP2005] explains, there are many
uses of the output of the topographic query-stage, including (but not limited to):

1. Statistical measurements of the results.

2. Displays of various kinds, including:

(a) word-based concordances (e.g., Keywords In Context (KWIC) [Luhn, 1960]),

(b) bracketed views of linguistic units [Van Valin, 2001, Bickford, 1998],

(c) graph-structure views of linguistic directed acyclic graphs, including:

i. tree-structure view of linguistic trees [Horrocks, 1987, Van Valin, 2001,
Bickford, 1998, Jackendoff, 1977, König and Lezius, 2003, Lezius, 2002a,b,
Van Valin and LaPolla, 1997],

ii. Role and Reference Grammar trees [Van Valin and LaPolla,1997],

iii. dependency-based views of dependency-based analyses[Van Valin, 2001],

93

94 CHAPTER 7. HARVESTING SEARCH RESULTS

iv. slot-filler views of slot-filler analyses (the work of Kenneth L. Pike and
others on Tagmemics, e.g., Pike and Pike [1982]),

v. systemic views of systemic analyses [Halliday, 1976/1969, 1994, Eggins,
1994, de Joia and Stenton, 1980]

(d) and many others

3. Database-maintenance tasks, including:

(a) Creating new objects based on the monad-sets arising outof a query.

(b) Updating existing objects based on the monad-sets arising out of a query.

(c) Deleting existing objects based on the monad-sets arising out of a query.

All of these kinds of uses require slightly different ways ofmanipulating the Sheaf. Dis-
plays drawing the output on a screen or printer may require different data to be retrieved
based on the nature of the display (KWIC, graph-based, bracketed, etc.), and most dis-
plays require slightly different data to be retrieved from the database.

A statistical view may need to know how many times a given wordor other linguistic
object occurs in the entire corpus queried, in addition to the number of times it appears in
the query results. A word-based KWIC display, on the other hand, may need to retrieve
a specified number of words of context for each “hit” word, while a tree-based view will
require information about both words (terminals in the tree), parents (non-terminals), and
the uppermost context for each “hit” (in the tree; also called the “tree root”), in addition
to the “parentage” information that inheres between the nodes in the tree. A bracketing
view will require much the same information.

For database-maintenance tasks, it may not be required to retrieve other data than what
is already present in the sheaf. But then again, depending onthe purpose, other data may,
in fact, be required. The query may only return words, for example, whereas the basis
of the database maintenance may require Sentences to be retrieved, based on the words
retrieved at first.

The benefit of separating the process of querying from the process of display is that
all of these various kinds of uses are possible from the same output from the topographic
query-stage. Thus, the system becomes generic in a very real, very applied sense.

The process of querying thus has the following stages:

1. Execute the query obtained from the user. This produces a Sheaf.

2. “Harvest” the Sheaf. This is the process of “harvesting” the “kernels” (or “hits”)
out of the Sheaf. This process produces a list of “Solutions”, where a “Solution”
is a collection of data that gives enough information that the next stage can display
the “hit”.

3. Use the Solutions in whatever manner is required to fulfillthe purpose of the system.
For example, the system may display each Solution to the userin a manner which
is applicable to the database at hand and the needs of the user.

The display of data is separate from the harvesting process.Again, the harvesting stage
can actually be made rather generic (as we shall see below), thus providing the same kind
of output for many different kinds of display.

7.3. DEFINITIONS OF HARVESTING CONCEPTS 95

In the following, I describe a general harvesting algorithmwhich I have employed
many times for various tasks relating not only to my work withthe Kaj Munk Corpus,
but also to my general work with implementing the Emdros Corpus Query System. As
explained in Chapter 1, I have implemented a generic “EmdrosQuery Tool”, and it is
precisely in this tool that the following algorithm has beenimplemented and refined.

But first, I need to define a number of concepts.

7.3 Definitions of harvesting concepts

Hit: The precise nature of “hit” is difficult to determine generically. Below, in Section 7.5
on page 97, I show some ways of determining the hit. Here it suffices to say that
the “hit” can be characterized by a set of monads.

Focus monad set:A set of monads which shows which monads are in “focus”, because
a MatchedObject in the Sheaf both had some of the monads in thefocus monad set,
and had the “focus” boolean set to “true”. Notice that the concept of “focus monad
set” may be applied both to an entire sheaf, and to a single “hit”.

Raster monad range: Most display-based (as opposed to statistics-based) uses of Em-
dros require that a certain amount of context must be shown for each “hit”. A raster
monad range is a stretch of monads which supplies “enough” context that at least
part of a “hit” can be shown. Sometimes, a “hit” will need to cover more than one
“raster monad range”, especially if the “raster monad ranges” are calculated based
on “raster units” (see the next definition).

Raster unit: A raster unit is an object type whose objects are assumed to provide “enough”
context to display for any given “hit”. For example, for a Biblical database, a good
raster unit might be “verse”. If the display is to show Kaj Munk’s plays, an “actor
line” may be a good raster unit. If the display is to show all ofthe poetry of Kaj
Munk, “poetry” might be a good raster unit. In the algorithm proposed below, there
can only be one raster unit object type.

Raster monad set: A set of monads corresponding to the big-union of all raster monad
ranges of either:

1. A single hit, or

2. All hits.

Data unit: A data unit is an object type, some of whose objects it is necessary to retrieve
in order to display a given “hit”. For example, “word” or “token” is almost always
a candidate to be a data unit. Similarly, if the database is a syntactic analysis, then
“Clause” and “Phrase” would probably be good candidates forbeing data units. If
the display is to show all of Kaj Munk’s poetry, then, in addition to “poetry” being
the raster unit, one would require that “stanza” and “line” be data units, in order
to know when to break the display into lines (at “line” objectboundaries) and into
stanzas (at “stanza” object boundaries).

96 CHAPTER 7. HARVESTING SEARCH RESULTS

Data unit feature: For any given display-purpose, the monads of a data unit may not be
enough; certain features might also need to be retrieved. For example, for a “Word”
data unit, the features “surface”, “part_of_speech”, and “lemma” may need to be
retrieved. For the “actor line” data unit in Kaj Munk’s plays, it may be necessary to
retrieve the name of the actor role which says the line. For a syntactic tree-display,
the “phrase type” may need to be retrieved for Phrases, and a “parent” feature may
point to the parent object of any given node in the tree, and hence should be retrieved
in order to recreate the tree. And so on.

Reference unit: A reference unit is an object type whose features gives information
which makes it possible to locate any given “hit” in the corpus. For example, in
a Biblical database, the “verse” reference unit may provideinformation about the
book, chapter, and verse of the given verse. If so, the “verse” object type is a good
candidate for being a reference unit. If the display is of KajMunk’s poetry, then the
object type which bears the title of each play or poem would bea good candidate for
being the reference unit. If the display is a linguistic database, there may be some
object (say, Sentence or Document) which bears a feature specifying the number of
the sentence or document in some catalog. And so on.

Reference unit feature: A feature of a reference unit which must be displayed in order
to identify the reference given by the reference unit.

Solution: A Solution is a collection of data corresponding to a single “hit”, and consisting
of:

1. The hit’s “hit monad set”.

2. The hit’s “focus monad set”.

3. The hit’s “raster monad ranges”.

4. The data units (with data unit features) necessary for displaying the hit.

5. The reference unit object which can identify the hit.

Armed with these definitions, we can now discuss the general harvesting algorithm.

7.4 A general harvesting algorithm

The following algorithm was first proposed by myself in 2001 or 2002, and was first de-
scribed by me in [Sandborg-Petersen, 2002-2008]. Hendrik Jan Bosman of the Werkgroep
Informatica, Vrije Universiteit Amsterdam was kind enoughto implement it in various
prototype programs — first a C program, then a Python program,both of which had the
purpose of displaying results from Emdros queries. In 2004 or 2005, I reimplemented Mr.
Bosman’s Python program in C++, and have since refined the algorithm.

The basic algorithm is as follows:

1. From the Sheaf, determine a list of “hits.” Some of the manyways in which this
can be done are described below.

2. Determine a set of “raster monad ranges”.

7.5. DETERMINING THE “HIT” 97

3. Obtain the set of monads arising as the big-union of all “raster monad ranges”. Call
this set of monads the “raster_monad_set”.

4. For each “data unit” to display, issue a query based on the following template:

GET OBJECTS HAVING MONADS IN <raster_monad_set>

[<data_unit> GET <data_unit_features>]

For example:

GET OBJECTS HAVING MONADS IN { 1-1083, 2435-3310 }

[token GET surface, part_of_speech, lemma]

Then store the results in a suitable data structure.

5. Do the same for the “reference unit”.

6. For each “hit” in the list of hits, create a “Solution” which contains enough data to
display the results of the Hit. Append the Solution to a list of solutions, which in
the end becomes the output from the harvesting algorithm.

Once this algorithm has run to completion, the list of Solutions can be used to display the
results in a manner which is helpful to the user. Depending onhow one calculates the
“raster_monad_set”, the Solution object can support many different kinds of display. For
example, a syntactic database likely needs a Sentence object to form the basis of the con-
text to display for any given “hit”, while a “Keywords In Context” (KWIC) concordance
may need a specified number of tokens on either side of the keyword, as explained above.

In the next section, I describe some ways that a “hit” can be determined.

7.5 Determining the “hit”

It is not at all obvious exactly what a “hit” is in the context of a Sheaf. As explained
in [FSMNLP2005], the Sheaf is generic enough that it can support a wide range of uses.
However, this genericity comes at a cost, namely that the determination of what constitues
a “hit” may need to rely on domain-specific knowledge of the database at hand.

In the following, I describe a number of ways in which the “hit” may be determined
generically. Other ways of determining the hit are most likely possible, given specific
databases and specific user needs.

What is common to all the proposed solutions is that the “hit”is characterized solely
by a set of monads. In my own experiments, this has proven to beboth useful and suffi-
cient. However, for certain kinds of database, it may be desirable also to store, with each
“hit”, information about the id_d or focus state of the MatchedObject(s) from which the
“hit” arose.

Outermost: In this strategy, the “hit” is determined by being the big-union of all Matche-
dObjects in each outermost Straw in the Sheaf. Thus each “hit” corresponds to one
string of blocks at the outermost level in the topographic query.

98 CHAPTER 7. HARVESTING SEARCH RESULTS

Focus: In this strategy, the “hit” is determined by the monad set of asingle Matche-
dObject which has the “focus” boolean set. The whole sheaf istraversed, and all
MatchedObjects in the Sheaf-tree are visited. Thus, every block in the topographic
query which has the “FOCUS” keyword will give rise to a “hit”.Obviously, this
may mean that a given Sheaf may yield an empty set of monads, ifthere is no “fo-
cus” boolean which is true in any MatchedObject in any Straw in the Sheaf. Such
empty sets of monads should be removed from the list of hits before going to the
following stages in the harvesting algorithm. This, of course, means that the list of
“hits” will be empty.

Marks: In this strategy, the “hit” is determined by a single MatchedObject which has
certain specified “marks” in its set of marks. Thus this strategy is analogous to
“Focus”, except that specified “marks”, rather than the “focus boolean” are the
basis for selecting the MatchedObjects which give rise to the “hits”. The same
remarks about empty monad sets and empty lists of “hits” apply here as they did
for “Focus”.

Outermost_focus: This strategy is the same as “outermost”, except that only Matche-
dObjects in the outermost straws whose “focus” boolean is true will contribute to
the monad set of a “hit”. Obviously, this may mean that a given“outermost Straw”
may yield an empty set of monads, if there is no “focus” boolean which is true in
any MatchedObject in the Straw. Such empty sets of monads should be removed
from the list of hits before going to the following stages in the harvesting algorithm.
This, of course, may mean that the list of “hits” will be empty.

Outermost_marks: This strategy is analogous to “Outermost_focus”, except that speci-
fied “marks” form the basis of the selection of the MatchedObjects which give rise
to “hits”. The same remarks about empty monad sets apply hereas they did for
Outermost_focus.

Innermost: In this strategy, the “hit” is calculated from a Straw in which all Matche-
dObjects have no inner sheaves. That is, in order to become a “hit”, a Straw must
contain only MatchedObjects which are terminals in the Sheaf-tree. The “hit” is
then the big-union of the monad sets of all the MatchedObjects of such a Straw.

Innermost_focus: This strategy is the same as “Innermost”, except that only the monads
of MatchedObjects whose “focus” boolean is set will contribute to a hit. Again, the
same remarks about empty monad sets and empty “hit” lists apply as they did for
“Outermost_Focus”.

Innermost_marks: This strategy is the same as “Innermost_focus”, except thatit is
MatchedObjects with certain “marks” which contribute to the “hit”, not Matche-
dObjects with the “focus” boolean set to “true”. Again, the same remarks apply as
they did for “Outermost_focus”.

Terminal: This strategy is similar to “innermost”, but does not have the requirement
that all MatchedObjects in the straw need be terminal nodes in the sheaf-tree. It is
sufficient that the MatchedObject itself does not have an inner sheaf. Obviously,
this can be combined with the “focus” and “marks” strategies.

7.5. DETERMINING THE “HIT” 99

Level: In this strategy, the “hit” is calculated as the big-union ofthe monad sets of all
Straws at a given level of nesting. Obviously, this can be combined with the “focus”
and “marks” strategies.

Object_type: In this strategy, the “hit” is calculated as the big-union ofcertain object
types present in the sheaf. Obviously, this can be combined with the “outermost”,
“innermost”, “focus” and “marks” strategies, as well as the“level” strategy, such
that only certain object types at certain levels will contribute to a “hit”. This, of
course, requires domain-specific knowledge of which objecttypes may be good to
use for this purpose.

Object_type_feature: In this strategy, the “hit” is calculated as the big-union ofcertain
object types with certain values for certain features in thesheaf. Obviously, this
can be combined with any of the “outermost”, “innermost”, “focus”, “marks”, and
“level” strategies.

Having described some example strategies, I now attempt to bring some rigor to the sub-
ject at hand by abstracting some categories out of the above.There are three categories
with various subtypes:

Initial MatchedObject candidate selection: (Also known as ’Sheaf traversal strategy’):

All MatchedObjects: All MatchedObjects are visited, and are possible candidates.
This is the basis of “Focus” and “Marks” above.

Outermost: Only the MatchedObjects which are immediate children of theouter-
most Straws in the outermost Sheaf are candidates.

Innermost: Only the MatchedObjects which are immediate children of Straws
containing only terminals in the sheaf-tree are candidates.

Terminal: Only the MatchedObjects which have no inner sheaf are candidates.

Level: Only the MatchedObjects at certain levels of nesting are candidates.

Matched-Object Filtering strategy: Once the candidate MatchedObjects are found, it
may be useful to take only some of them as a basis of a hit, thereby obtaining
“filtered candidates”.

Focus: Only candidate MatchedObjects which have the “focus” boolean set to
“true” are candidates.

Marks: Only candidate MatchedObjects which have certain specified“marks” are
candidates.

Object_type: Only candidate MatchedObjects which arise from certain specified
object types are candidates.

Object_type_feature: A special kind of Object_type filtering involves not
only object types, but also features: Only candidate MatchedObjects which
arise from certain specified object types with certain values for certain
features are candidates.

100 CHAPTER 7. HARVESTING SEARCH RESULTS

O
bject_type_features

M
arks

O
bject_type

F
ocus

Candidate−filtering

Hit−strategy

T
erm

inal
Innerm

ost

A
ll M

atchedO
bjects

O
uterm

ost

Level

S
ingle_candidate

Hit−extent selectionCandidate−selection
S

am
e_straw

_candidate

Figure 7.1: Ontology of hit strategies

Hit-extent strategy: Once the candidates are found and filtered, it may be useful tohave
each filtered candidate give rise to a hit, or it may be useful to group some of them
into a single hit:

Single_candidate: Each filtered candidate MatchedObject gives rise to a “hit”.
This forms the basis of the above “Focus” and “Marks” strategies.

Same_straw_candidate:The monad set from each filtered candidate MatchedO-
bject is big-union’ed with the monad sets from the other filtered candidate
MatchedObjects from the same straw. This forms the basis of the above “out-
ermost” and “innermost” strategies in the first descriptionabove.

This may be illustrated as in the ontology in Figure 7.1.

7.6 Extending the harvesting algorithm

There are many variations over the harvesting algorithm, some of which I list here:

No reference unit: It might not be necessary to have a reference unit for certainpur-
poses.

More than one reference unit: For certain databases, more than one object type may
need to be queried in order to obtain a full reference. For example, in a Biblical

7.7. CONCLUSION 101

SELECT ALL OBJECTS

WHERE

// Retrieve three Phrases before each hit

[Phrase]

[Phrase]

[Phrase]

// Now retrieve exactly the clauses which

// form the basis of the example hits

[Clause self IN (10321,10326,10337,...,47329)]

// Retrieve four Phrases after each hit

[Phrase]

[Phrase]

[Phrase]

[Phrase]

Figure 7.2: Example topographic query implementing raster_context_objects

database with no redundant data, the “verse” object type maycarry information only
about the verse number, while a “book” object type may carry information about
the book name, and a “chapter” object type may carry information about the chapter
number. This situation would require more than one object type to be queries in
order to obtain all relevant reference information. The display-stage would then
have to assemble this information into output which would bemeaningful to the
user.

Raster context monads:For certain types of display (e.g., KWIC concordances), it might
be desirable to retrieve a certain number of tokens as context. If a token takes up
precisely one monad, then this can be specified as a certain number of monads “be-
fore” the first monad of a given “hit”, coupled with a certain number of monads
“after” the last monad of a given “hit”.

Raster_context_objects:For certain types of display, it may be desirable to retrievea
certain number of arbitrary raster units as context. For example, one may want
to display precisely three Phrases on either side of a given “hit”. In the current
Emdros-implementation, this would have to be implemented with yet another to-
pographic query, rather than a GET OBJECTS HAVING MONADS IN query. The
topographic query could look something like the one in Figure 7.2. Notice that this
approach would require the “hit” to carry information aboutthe “self” feature of
each “hit-Clause” (i.e., the id_d of each “hit-Clause”).

7.7 Conclusion

In this chapter, I have described some ways to use the output of a topographic query (i.e.,
a Sheaf). In particular, I have described some purposes to which a Sheaf may be put,
including statistical information, display of results, and maintenance of database objects
(creation / update / deletion of objects).

102 CHAPTER 7. HARVESTING SEARCH RESULTS

I have described the process of querying an Emdros database as a three-step process
in which: (i) the topographic query is executed, (ii) the resulting Sheaf is “harvested”, and
(iii) the harvested “Solutions” are put to use.

Flowing out of this, I have described a generic algorithm for“harvesting” a sheaf, i.e.,
an algorithm for gathering enough data on the basis of a Sheafto be able to fulfill the
purpose for which the query was executed. This description required the definition of a
number of concepts, including “focus monads”, “raster monad range”, “raster unit”, “data
unit”, “data unit feature”, “reference unit”, and “Solution”, among others.

Having described the algorithm in general terms, I have thendescribed a number of
strategies which may be employed in determining what a “hit”is. This resulted in an
ontology of “hit-strategies” in which three main categories of hit-strategy were identi-
fied, namely “MatchedObject Candidate Selection Strategy”, “MatchedObject Candidate
Filtering Strategy”, and “Hit-extent strategy”.

I have then described some ways in which the basic harvestingalgorithm may be
tweaked. Some of these ways are useful at times, though all ofthem require domain-
specific judgment of whether they are useful or not.

Harvesting a Sheaf is a basic process in the toolbox of techniques which I have devel-
oped during my PhD, and I have used the technique many times invarious sub-projects
relating to Kaj Munk. We will get back to some of these sub-projects in due course. Al-
though I conceived of the basic algorithm in 2001 or 2002 (which is before I commenced
my PhD studies), the framework for describing and classifying the various “hit-strategies”
(Section 7.5) and the extensions to the general algorithm (Section 7.6) have been devel-
oped purely within the time-frame of my PhD studies. In addition, the justification for the
separation of the topographic query-stage from the harvesting stage has been developed in
[FSMNLP2005] as part of my PhD studies, and has been expandedupon in this chapter.

Chapter 8

Annotated text and time

8.1 Introduction

Formal Concept Analysis (FCA) [Lehmann and Wille, 1995, Ganter and Wille, 1997] is
a mathematically grounded method of dealing with data in tabular form, transforming it
to so-called “formal contexts” which can be drawn as lattices of objects and attributes.
As such, Formal Concept Analysis has a lot in common with the ontologies described in
Chapter 3.1

FCA has many applications, not least of which is aiding a human analyst in making
sense of large or otherwise incomprehensible data sets. In this paper, we present an appli-
cation of FCA to the problem of classifying classes of linguistic objects that meet certain
linguistically motivated criteria, with the purpose of storing them in Emdros.

The rest of the Chapter is laid out as follows. In Section 8.2,I argue that the structures
which we perceive in text can be seen as sets of durations. In Section 8.3, I recapitulate
the important parts of the EMdF model, and show how this view of text is modelled in
Emdros. In Section 8.4, I introduce certain linguisticallymotivated criteria which sets
of sets of durations may or may not exhibit. In Section 8.5, I analyze these criteria in
order to obtain a complete catalog of the combinations of thecriteria which are logically
consistent. In Section 8.6, I describe and analyze the lattice which FCA produces from
this catalog. In Section 8.7, I apply the results from the previous section to Emdros.
In Section 8.8, I show how I have implemented these results. Finally, in Section 8.9, I
conclude the Chapter and give pointers to further research.

8.2 Language as durations of time

Language is always heard or read in time. That is, it is a basichuman condition that
whenever we wish to communicate in verbal language, it takestime for us to decode
the message. A word, for example, may be seen as a duration of time during which a
linguistic event occurs, viz., a word is heard or read. This takes time to occur, and thus a
message or text occurs in time.

In this section, I describe four properties of language which have consequences for
how we may model linguistic objects such as words or sentences. The first is sequence,

1This Chapter is an expanded and edited version of the material found in my published article, [ICCS-
Suppl2008].

103

104 CHAPTER 8. ANNOTATED TEXT AND TIME

the second is embedding, the third is resumption, and the fourth is “non-hierarchic over-
lapping relationships”.

8.2.1 Sequence

As I mentioned above, a message (or text) is always heard or read in time. We experience
the passage of time as being ordered, i.e., there is a definitedirection of time: We never
experience time going “backwards”; the very language whichwe employ about time (viz.,
“forwards”, “backwards”) betrays our notions of time as a linear sequence.2

Because a message is heard or read in time, and because time isperceived as being
linear, there is always a certain sequence to a given text. Wemay call this the “hearing-
order” or “reading-order”. This ordering can be based on thepartial order≤ that exists
between non-overlapping durations.3

Thus, if we wish to build a text database system which adequately captures the lin-
guistic information in a text, the system must be able to maintain the sequence of the
hearing- or reading-order of the text.

8.2.2 Embedding

Language always carries some level of structure; at the veryleast, the total duration of
time which a message fills may be broken down into shorter durations which map to
words. The durations which are filled by the words (either heard or read) are thusembed-
dedinside the duration filled by the whole message.

Words, as we saw above, may be interpreted as durations during which a linguistic
event occurs. However, we usually speak or write not only in words, but also in sentences.
This adds another, intermediate level of structure to the message, such that words are
embedded in sentences, and sentences are embedded in the whole message.

Moreover, most languages can be analyzed at levels that are intermediate between
words and sentences.4 Linguists have called these levelsphrasesandclauses, among
other terms. For example, the sentence “The door opens towards the East” may be ana-
lyzed thus:

[The door] [opens] [towards [the East]]

Here I have added brackets, indicating the boundaries of phrases in the sentence. “The
door” is usually called anoun phrase(NP) by linguists, as is “the East”. The latter noun
phrase is, in turn, embedded inside the largerprepositional phrase(PP) “towards [the
East]”.

Thus a text can be analyzed or broken down into smaller units,which in turn may be
able to be further analyzed into smaller units. Even words may be analyzed into mor-
phemes and these, in turn, may be analyzed into graphemes/phonemes [Van Valin, 2001,
Van Valin and LaPolla, 1997, Eggins, 1994, Horrocks, 1987].

2As [Øhrstrøm and Hasle, 1995, p. 31] explains, time may also be perceived as being branching; yet what
we actually experience can always be mapped to a single line,regardless of which branches are actualized.

3See Section 8.3 for the details.
4For a lucid discussion of the linguistic terms involved in the following paragraphs, see Van Valin [2001],

Van Valin and LaPolla [1997].

8.2. LANGUAGE AS DURATIONS OF TIME 105

What I have just described is therecursivenature of language: Linguistic units are
capable of being embedded inside other, larger linguistic units, which in turn may be
embedded within yet larger linguistic units. This can be described in terms of sets of
durations which are ordered in a hierarchy based on the⊂ subset-relation between the
sets.5

Thus, if we wish to store linguistic objects adequately within a text database system,
the system must support embedding of textual objects.

8.2.3 Resumption

There is, however, another important property of linguistic units which must be men-
tioned, namely that language is, by nature,resumptive. By this I mean that linguistic units
are not alwayscontiguous, i.e., they may occupy multiple, disjoint durations of time. For
example, some linguists would claim that the sentence “Thisdoor, which opened towards
the East, was blue.” consists of two clauses: “which opened towards the East”, and “This
door . . . was blue.”6 This latter clause has a “hole” in it, in terms of time, and as such
must be described in terms of two durations, not one. Becauselanguage is generative,
and because sentences can in principle go on indefinitely [Horrocks, 1987, pp. 14–16]
this kind of resumption can in principle occur arbitrarily many times.

Hence, in order to be able to describe linguistic units adequately, a text database
system must be capable of storing not just single durations,but arbitrary sets of non-
overlapping durations.

8.2.4 Non-hierarchic overlap

A fourth important property of linguistic units is that theymay “violate each other’s bor-
ders.” By this I mean that, while unitA may start at timea and end at timec, unit B may
start at timeb and end at timed, wherea< b< c< d. Thus, whileA overlaps withB, they
cannot be placed into a strict hierarchy based on the⊂ relation. This occurs especially
in spoken dialog, where speakerS1 may speak for a while, and then speakerS2 may start
his or her speaker-turn, before speakerS1 has finished speaking (see also [Cassidy, 1999,
Bird et al., 2000b, Cassidy and Harrington, 2001]).

S1

S2

Thus, if we wish to capture all kinds of linguistic information adequately in a text
database system, the system must support linguistic units which not only occur in a hier-
archy of embedding, but which may overlap in such a way that the units are not embedded
inside each other in a strict hierarchy.

5I here abstract away from how the sets of time are actually realized. Later in the Chapter, I will show
how the statement is true if the sets are sets of monads.

6For one such opinion, see McCawley [1982].

106 CHAPTER 8. ANNOTATED TEXT AND TIME

8.3 The EMdF model

As already indicated in Chapter 4, these four properties areindeed present in the EMdF
model. I here recapitulate the EMdF model, from the perspective of “monads seen as
durations of time.”

The reader will recall that central to the EMdF model is the notion that textual units
(such as books, paragraphs, sentences, and even words) can be viewed assets of monads.
A monad is simply an integer, but may be viewed asan indivisible duration of time.

When viewed from outside the system, a monad does not map to aninstant, but rather
to a duration. This is because even words are not heard (or read) in an instant, but always
take a certain duration of time to hear or read, however small.

When viewed from inside the system, however, the length of the duration does not
matter. This is because we view a monad as anindivisibleduration of time. The duration
is indivisible, not by nature, but because we do not wish to analyze or break it down
further into smaller durations in our description of the text.

Usually, a monad maps to the duration of any givenword in the text, but this need not
be so. If we wish to analyze a text below word-level, we can stipulate that the smallest
indivisible duration which we wish to treat in the EMdF modelis some other linguistic
unit, such as the grapheme or phoneme. Then words will consist of more than one monad.

Notice that the actual length of the duration of a monad is immaterial to the database;
it has been abstracted away into the indivisibility of the monad. One monad may even
map to a different actual length of time than any other monad,since the actual length
depends on the actual linguistic unit to which the monad corresponds.

Since monads are simply integers, they form a well-ordered sequence (i.e., 1, 2, 3,
. . . , etc.). The sequence of monads can be ordered by the≤ partial order on integers.
Moreover, this partial order can be extended to durations oftime, given that a monad
represents a duration of time.

Given that textual objects such as words, sentences, and paragraphs may be viewed as
sets of durations of time, it follows that objects may be embedded inside each other. This
is because durations may embed, or be subsets of, each other.

These durations are represented as stretches ofmonads, which in turn map to indi-
visible durations of time during which linguistic events occur which we do not wish to
analyze further into smaller durations of time. A single stretch of monads thus maps to a
larger duration than each of the monads making up the stretch. Finally, a set of monads is
made up of one or more stretches of monads, thus making the setcompletely arbitrary.

Since textual objects can often be classified into similar kinds of objects with the same
attributes (such as words, paragraphs, sections, etc.), the reader will recall that EMdF
model providesobject typesfor grouping objects. An object type, though abstract in
itself, may have a set of concreteinstancesof objects with actual values.

The reader will recall that an object type may have a set ofattributes, also called
features. Each object belonging to an object typeT has a value for all of the features
belonging to the object typeT. For a given database, the set of objects belonging to an
object typeT is denoted Inst(T). For a given objectO, µ(O) denotes theM set of monads
from O.

Finally, an objectO is a two-tuple(M,F), whereM is a set of monads, andF is a
set of value-assignments to the features of the object typeT to which O belongs. It is
important to note thatM may not be empty. That is:∀T : ∀O∈ Inst(T) : µ(O) 6= /0.

8.4. CRITERIA 107

101 102 103 104 105 106 107 108 109

Word 1 2 3 4 5 6 7 8 9

surface This door, which opened towards the East, was blue

Phrase 10 11 12 13 14 15

phrase_type NP NP VP NP VP AP

Phrase 16

phrase_type PP

Clause 17 18 17

Sentence 19

Figure 8.1: EMdF database example. Note how there are two rows of Phrase objects, be-
cause Phrase-13 and Phrase-16 overlap. Phrase-13 is, in effect, embedded inside Phrase-
16. Notice also that Clause-17 is discontiguous, consisting of the monad set {101-102,
108-109}.

A small EMdF database can be seen in Figure 8.1. The line of integers at the top are
the monads. All other integers are the “self” IDs.

8.4 Criteria

In this section, we introduce some linguistically motivated criteria that may or may not
hold for the objects of a given object typeT. This will be done with reference to the
properties inherent in language as described in Section 8.2.

In the following, let Inst(T) denote the set of objects of a given object typeT. Let
a andb denote objects of a given object type. Letµ denote a function which, given an
object, produces the set of monadsM being the first part of the pair(M,F) for that object.
Let mdenote a monad. Letf (a) denoteµ(a)’s first (i.e., least) monad, and letl(a) denote
µ(a)’s last (i.e., greatest) monad. Let[m1 : m2] denote the set of monads consisting of all
the monads fromm1 to m2, both inclusive.

Range types:

single monad(T): means that all objects are precisely 1 monad long.

∀a∈ Inst(T) : f (a) = l(a)

single range(T): means that all objects have no gaps (i.e., the set of monads con-
stituting each object is a contiguous stretch of monads).

∀a∈ Inst(T) : ∀m∈ [f (a) : l(a)] : m∈ µ(a)

multiple range(T): is the negation of “single range(T)”, meaning that there exists
at least one object in Inst(T) whose set of monads is discontiguous. Notice

108 CHAPTER 8. ANNOTATED TEXT AND TIME

that the requirement is not that all objects be discontiguous; only that there
exists at least one which is discontiguous.

∃a∈ Inst(T) : ∃m∈ [f (a) : l(a)] : m 6∈ µ(a)

≡ ¬(∀a∈ Inst(T) : ∀m∈ [f (a) : l(a)] : m∈ µ(a))

≡ ¬(singlerange(T))

Uniqueness constraints:

unique first monad(T): means that no two objects share the same starting monad.

∀a,b∈ Inst(T) : a 6= b↔ f (a) 6= f (b)

≡ ∀a,b∈ Inst(T) : f (a) = f (b) ↔ a = b

unique last monad(T): means that no two objects share the same ending monad.

∀a,b∈ Inst(T) : a 6= b↔ l(a) 6= l(b)

≡ ∀a,b∈ Inst(T) : l(a) = l(b) ↔ a = b

Notice that the two need not hold at the same time.

Linguistic properties:

distinct(T): means that all pairs of objects have no monads in common.

∀a,b∈ Inst(T) : a 6= b→ µ(a)∩µ(b) = /0

≡ ∀a,b∈ Inst(T) : µ(a)∩µ(b) 6= /0→ a = b

overlapping(T): is the negation of distinct(T).

¬(distinct(T))

≡ ∃a,b∈ Inst(T) : a 6= b∧µ(a)∩µ(b) 6= /0

violates borders(T): ∃a,b∈ Inst(T) : a 6= b∧µ(a)∩µ(b) 6= /0∧ ((f (a) < f (b))∧
(l(a) ≥ f (b))∧ (l(a) < l(b)))

Notice that violatesborders(T) → overlapping(T), since violatesborders(T) is
overlapping(T), with an extra, conjoined term.

It is possible to derive the precise set of possible classes of objects, based on logical
analysis of the criteria presented above. I now turn to this derivation.

8.4. CRITERIA 109

8.4.1 Range types

Notice thatsingle monad(T) ⇒ single range(T). This is because, given that∀a∈ Inst(T) :
f (a) = l(a), then, since∀a ∈ Inst(T) : a 6= /0, it follows that∀a ∈ Inst(T) : ∀m∈ [f (a) :
l(a)] : m∈ µ(a), due to the fact thatf (a) = l(a).

The converse obviously does not hold, however: An object typeT may besingle range
without it beingsingle monad.

In the following, we treat the logical relationships that exist between the various cri-
teria within each of the range types.

8.4.2 Single monad

Notice that the following relationships hold:

singlemonad(T)∧uniquefirstmonads(T) → uniquelastmonads(T) (8.1)

singlemonad(T)∧uniquelastmonads(T) → uniquefirstmonads(T) (8.2)

This is because, since singlemonad(T) holds, then for alla, f (a) = l(a). That is, if
the first monad is unique, then the last has to be unique as well, and vice versa.

Notice also that:

singlemonad(T)∧uniquefirstmonads(T) → distinct(T)∧singlemonad(T) (8.3)

This is because, if all objects consist of a single monad, andall objects are unique in
their single monad, meaning no two objects share the same first monad, them all distinct
pairs of objectsa andb will fulfill µ(a)∩µ(b) = /0.

Notice the the converse also holdes:

distinct(T)∧singlemonad(T) → uniquefirstmonads(T) (8.4)

This is because, if all objects consist of a single monad, andall pairs of sets of monads
µ(a) andµ(b) (wherea 6= b) have an empty intersection, then, since all sets of monads
are non-empty, it follows thatf (a) 6= f (b), and hence uniquefirstmonads(T) holds.

Notice that “violates borders” requires either “single range” or “multiple range”, but
cannot be realized if the range type is “single monad”. This is because of the double
requirement thatl(a) ≥ f (b) and l(a) < l(b), which together imply thatf (b) < l(b),
which again implies thatf (b) 6= l(b). Thus “single monad” is ruled out. Thus:

violatesborders(T) →¬singlemonad(T) (8.5)

Notice that the inverse also holds:

singlemonad(T) →¬violtatesborders(T) (8.6)

110 CHAPTER 8. ANNOTATED TEXT AND TIME

8.4.3 Single range

Notice that if a “single range” object type is non-overlapping (i.e., all objects are distinct),
it implies that all objects are unique in their firstand last monads. This is because all
sets are distinct (i.e., no object overlaps with any other object); hence, for all distinct
objectsa andb, f (a) 6= f (b)∧ l(a) 6= l(b). This is because the negation, namelyf (a) =
f (b)∨ l(a) = l(b), would imply that the objects in question shared at least onemonad,
namely either the first or the last (or both).

singlerange(T)∧distinct(T) → uniquefirstmonads(T)∧uniquelastmonads(T) (8.7)

Notice that the converse does not hold: Given an object type holding only the two
objects {1,2} and {2,3}, we have both unique first monads and unique last monads, but
we also have overlapping.

Notice that if an object type is bothsingle rangeandnon-overlapping, it also holds that
it does not violate any borders. This is because violation ofborders requires overlapping
to exist.

singlerange(T)∧¬overlapping(T) →¬violatesborders(T) (8.8)

Inversely, if an object type does violate borders, it must beoverlapping:

singlerange(T)∧violatesborders(T) → overlapping(T) (8.9)

This is because violatesborders(T) → overlapping(T), as we saw above.

8.4.4 Multiple range

Notice that “multiple range” conjoined with “non-overlapping” again implies “unique
first and unique last monads”, just as it did for “single range”, and for the same reason.

multiplerange(T)∧distinct(T) → uniquefirstmonads(T)∧uniquelastmonads(T)
(8.10)

The converse does not hold, however, for the same reason it did not hold for single
range objects.

Notice finally that, just as for single range, non-overlapping implies non-violation of
borders, since violation of borders requires overlapping.

multiplerange(T)∧¬overlapping(T) →¬violatesborders(T) (8.11)

The inverse also holds:

multiplerange(T)∧violatesborders(T) → overlapping(T) (8.12)

The converse of this does not hold, however: It is possible tobe overlapping and not
have violation of borders.

8.5. LOGICAL ANALYSIS OF THE CRITERIA 111

Class name sm sr mr ufm ulm ds ol vb
1.000 X X X
1.300 X X X X X
2.000 X X
2.001 X X X
2.100 X X X
2.101 X X X X
2.200 X X X
2.201 X X X X
2.300 X X X X
2.301 X X X X X
2.310 X X X X
Class name sm sr mr ufm ulm ds ol vb
3.000 X X
3.001 X X X
3.100 X X X
3.101 X X X X
3.200 X X X
3.201 X X X X
3.300 X X X X
3.301 X X X X X
3.310 X X X X

Table 8.1: All the possible classes of object types. Legend:sm = single monad, sr =
single range, mr = multiple range, ufm = unique first monad, ulm = unique last monad, ds
= distinct, ol = overlapping, vb = violates borders.

8.5 Logical analysis of the criteria

Using the relationships in the previous section, we can derive all the possible classes of
object types based on the criteria given in that section.

The possible classes are listed in Table 8.1

8.6 FCA results

The context resulting from these tables is then processed bythe Concept Explorer soft-
ware (ConExp)7. This produces a lattice which can be seen in Figure 8.2.

8.7 Applications

It is immediately noticeable from looking at Figure 8.2 that“ds” is quite far down the
lattice, with several parents in the lattice. It is also noticeable that “ol” is quite far up in
the lattice, with only the top node as its parent. Therefore,“ds” may not be as good a

7See http://conexp.sourceforge.net. Also see Serhiy A. Yevtushenko.System of data analysis "Concept
Explorer". (In Russian). Proceedings of the 7th national conference on Artificial Intelligence KII-2000, p.
127-134, Russia, 2000.

112 CHAPTER 8. ANNOTATED TEXT AND TIME

Figure 8.2: The lattice drawn by ConExp for the whole context.

candidate for a criterion on which to index as “ol”. Hence, wedecided to experiment with
the lattice by removing the “ds” attribute. The resulting lattice can be seen in Figure 8.3

In this new lattice, it is noticeable that the only dependentattributes are “sm” and
“vb”: All other attributes are at the very top of the lattice,with only the top node as their
parent. This means we are getting closer to a set of criteria based on which to index sets
of monads.

The three range types should definitely be accommodated in any indexing scheme.
The reasons are: First, “single monad” can be stored very efficiently, namely just by
storing the single monad in the monad set. Second, “single range” is also very easy
to store: It is sufficient to store the first and the last monad.Third, “multiple range”,
as we have argued in Section 8.2.3, is necessary to support inorder to be able to store
resumptive (discontiguous) linguistic units. It can be stored by storing the monad set
itself in marshalled form, perhaps along with the first and last monads.

This leaves us with the following criteria: “unique first monad”, “unique last monad”,
“overlapping”, and “violates borders” to decide upon.

In real-life linguistic databases, “unique first monads” and “unique last monads” are
equally likely to be true of any given object type, in the sense that if one is true, then
the other is likely also to be true, while if one is false, thenthe other is likely also to be
false. This is because of the embedding nature of language explained in Section 8.2.2: If
embedding occurs at all within a single object type, then it is likely that both first and last
monads are not going to be unique. Conversely, if embedding does not occur, then it is
likely that “overlapping” also does not occur, in which caseboth “unique first monads”
and “unique last monads” are going to be true (for all three range types).

Therefore, we decided to see what happens to the lattice if weremove one of the
two uniqueness criteria from the list of attributes. The criterion chosen for removal was

8.8. IMPLEMENTATION 113

Figure 8.3: The lattice drawn without the “ds” attribute.

“unique last monads”. In Figure 8.4, the result can be seen, with “unique first monads”
selected. ConExp reports that “unique first monads” subsumes 11 objects, or 55%.

Similarly, still removing “ds” and “ulm”, and selecting “overlapping”, we get the
lattice drawn in Figure 8.5. ConExp reports that “overlapping” subsumes 17 objects, or
85%, leaving only 3 objects out of 20 not subsumed by “overlapping”. This indicates that
“overlapping” is probably too general to be a good candidatefor treating specially.

It is also noticeable that “violates borders” only subsumes4 objects. Hence it may not
be such a good candidate for a criterion to handle specially,since it is too specific in its
scope.

Thus, we arrive at the following list of criteria to handle specially in the database: a)
single monad; b) single range; c) multiple range; and d) unique first monads.

8.8 Implementation

We have already shown in Chapter 4 how these are implemented,so here we just briefly
recapitulate.

The three range types (“WITH SINGLE MONAD OBJECTS”, “ WITH SINGLE RANGE OBJECTS”,
and “WITH MULTIPLE RANGE OBJECTS”) can be easily implemented in a relational database
system along the lines outlined in the previous section.

The “unique first monads” criterion can be implemented in a relational database sys-
tem by a “unique” constraint on the “first monad” column of a table holding the objects
of a given object type. Notice that for multiple range, if we store the first monad of the

114 CHAPTER 8. ANNOTATED TEXT AND TIME

Figure 8.4: The lattice drawn without the “ds” and “ulm” attributes, and with “ufm”
selected.

8.8. IMPLEMENTATION 115

Figure 8.5: The lattice drawn without the “ds” and “ulm” attributes, and with “ol” se-
lected.

116 CHAPTER 8. ANNOTATED TEXT AND TIME

Backend SQLite 3 SQLite 2 PostgreSQL MySQL
Avg. time for DBwithout optimizations 153.92 130.99 281.56 139.41
Avg. time for DBwith optimizations 132.40 120.00 274.20 136.65
Performace gain 13.98% 8.39% 2.61% 1.98%

Table 8.2: Evaluation results on an Emdros database, in seconds.

monad set in a separate column from the monad set itself, thisis possible for all three
range types. Notice also that, if we use one row to store each object, the “first monad”
column can be used as a primary key if “unique first monads” holds for the object type.

We have run some evaluation tests of 124 diverse Emdros queries against two ver-
sions of the same linguistic database8, each loaded into four backends (SQLite 3, SQLite
2, PostgreSQL, and MySQL). One version of the database did not have the indexing op-
timizations arrived at in the previous section, whereas theother version of the database
did. The version of Emdros used was 3.0.1. The hardware was a PC with an Intel Dual
Core 2, 2.4GHz CPU, 7200RPM SATA-II disks, and 3GB of RAM, running Fedora Core
Linux 8. The 124 queries were run twice on each database, and an average obtained by
dividing by 2 the sum of the “wall time” (i.e., real time) usedfor all 2×124 queries. The
results can be seen in Table 8.2.

As can be seen, the gain obtained for MySQL and PostgreSQL is almost negligible,
while it is significant for the two versions of SQLite.

8.9 Conclusion

We have presented four properties that natural language possesses, namely sequence, em-
bedding, resumption, and non-hierarchic overlap, and we have seen how these properties
can be modeled as sets of durations of time.

We have presented the EMdF model of text, in which indivisible units of time (heard or
read) are represented by integers, called “monads”. Textual units are then seen as objects,
represented by pairs(M,F), whereM is a set of monads, andF is a set of attribute-value
assignments. An object type then gathers all objects with like attributes.

We have then presented some criteria which are derived from some of the four prop-
erties of language outlined above. We have formally defined these in terms of objects and
their monads. We have then derived an FCA context from these criteria, which we have
then converted to a lattice using the Concept Explorer Software (ConExp).

We have then analyzed the lattice, and have arrived at four criteria which should be
treated specially in an implementation.

We have then suggested how these four criteria can be implemented in a relational
database system. They are, in fact, implemented in ways similar to these suggestions in
the Emdros corpus query system. We have also evaluated the performance gains obtained
by implementing the four criteria.

Thus FCA has been used as a tool for reasoned selection of a number of criteria which
should be treated specially in an implementation of a database system for annotated text.

Future work could also include:

1. Derivation of more, pertinent criteria from the four properties of language;

8Namely the WIVU database [Talstra and Sikkel, 2000].

8.9. CONCLUSION 117

2. Exploration of these criteria using FCA;

3. Implementation of such criteria; and

4. Evaluation of any performance gains.

118 CHAPTER 8. ANNOTATED TEXT AND TIME

Part II

Applications

119

Chapter 9

Introduction

Part II of my dissertation, entitled “Applications”, summarizes some of the work which I
have done to apply empirically the theoretical and methodological concerns discussed in
Part I.

As explained in Chapter 1, the empirical basis for my work has, to a large extent,
been formed by the Kaj Munk corpus. Other empirical data setshave been employed as
well, such as the BLLIP corpus [Charniak et al., 2000] and theTIGER Corpus [Brants
and Hansen, 2002], both of which were used in Emdros in [LREC2006]. In addition, the
Danish Bible (Old Testament from 1931 and New Testament from1907) has formed the
empirical basis for some of the work done during my PhD, as explained in Chapter 13.

The rest of Part II is laid out as follows. First, in Chapter 10, I discuss the Kaj Munk
corpus and its implementation. In Chapter 11, I discuss a web-based tool which I have
developed, the purpose being for a group of people to collaborate on annotating a text
corpus with comments. In this case, of course, the text corpus is the Kaj Munk Corpus.
In Chapter 12, I discuss the use of the implementation of the Kaj Munk corpus in a
“Munk Browser”, a piece of software containing some of the works of Kaj Munk. The
“Munk Browser” is going to be published by the Kaj Munk Research Centre, and be
made commercially available. Finally, in Chapter 13, I discuss an algorithm which Peter
Øhrstrøm and I have developed in order to locate quotations from the Bible in Kaj Munk’s
works — or, in principle, in any other corpus of text.

121

122 CHAPTER 9. INTRODUCTION

Chapter 10

Implementation of the Kaj Munk
corpus

10.1 Introduction

The Kaj Munk Corpus consists of some of the most important works by Kaj Munk. It
is the product of an ongoing effort to digitize thenachlassof Kaj Munk. This task is
performed by a team consisting of student workers as well as Academic staff. Thus I am
but one cog in a larger wheel which is part of an even larger machinery, in the process of
digitizing Kaj Munk’s works, making Kaj Munk’s works available to the general public,
and performing research on Kaj Munk’s texts.

The rest of the chapter is laid out as follows. First, I discuss the nature of the texts,
as well as giving a very high level perspective on the digitization process (10.2). In then
discuss the “why” of my choice to base the encoding of the texts on XML (10.3). I then
briefly discuss the reasons for not choosing the Text Encoding Initiative (TEI) guidelines
as a basis for the encoding (10.4). I then detail the most important aspects of the digiti-
zation process (10.5). I then discuss how the XML-encoded form of a Munk document
becomes an Emdros database (10.6). This is important, sincethe rest of the research and
production which can be carried out depends either directlyor indirectly on the Emdros
databases formed from the XML-encoded form of the Munk texts. Finally, I conclude the
chapter.

10.2 The nature of the texts

The nature of the texts varies. Kaj Munk’s works can be said broadly to fall into five
categories.

1. Plays

2. Journalism

3. Poetry

4. Sermons

5. Prose

123

124 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

The choice of method of encoding has been influenced by this diversity. It seemed obvious
that what was needed was a mechanism which could be extended to cover all of these
kinds of manuscripts. XML, being extensible, seemed a good choice for dealing with this
diversity.

Some of Kaj Munk’s texts that we have in the Kaj Munk Archive have been pub-
lished, others have not. Some have been typed on a typewriter, whereas many only exist
in manuscript form, written by Kaj Munk in his own — often hard-to-read — handwriting.
The published parts of the corpus could be scanned and converted to text using Optical
Character Recognition (OCR) software,1 but always with manual correction and proof-
reading after the OCR-step. The other parts of the corpus (typed, hand-written) needed
to be keyboarded manually, again with proof-reading and manual correction as necessary
follow-up steps to take. These tasks (OCR-scanning, keyboarding, proofreading, correc-
tion) have been undertaken by the excellent student helpersof the Kaj Munk Research
Centre. I am grateful for the meticulousness with which theyhave carried out this work.

I wish to say that my own task is not that of establishment of an“authoritative text”.
That is, my task is not that of the edition-philologist, namely to establish a precise, au-
thoritative edition of Kaj Munk’s text. Rather, I leave thistask to others, who come after
me in the process.

From a high-level perspective, the process of digitizationof the Munk Corpus can be
viewed as in Figure 10.1 on the facing page. Please see the caption of the figure for an
explanation.

10.3 XML as the basis for encoding

A text is not just a string of words. For example, divisions into sentences are marked by
punctuation marks in modern texts, and divisions into paragraphs, sections, and chapters
are often marked. For plays, the text is structured into acts, scenes, stage directions, actor
names, actor lines, and other kinds of text. This kind of structural markup is easily iden-
tified on a page by human sight, by means of conventions for typesetting. For example,
a paragraph often has its first line indented, a section is marked by a heading in larger
typeface than the rest of the text, and a chapter often beginson a new page with an even
larger typeface for the chapter name. For plays, an actor name is often printed in boldface
or italics flush-left, with a colon or a period to separate theactor name from the words
which the actor says.

This kind of markup needs to be formalized (i.e., made explicit) in order for the com-
puter to be able to process the text as a structurally marked-up text. The development and
maintenance of a tagging scheme to suit the purposes of the Kaj Munk Research Centre
has been one of my main tasks. I have based this development onthe XML standard [Bray
et al., 2004, Harold and Means, 2004], which is a standard sponsored by the World Wide
Web Consortium. “XML” stands for “eXtensible Markup Language” [Bray et al., 2004],
and is a specification of a syntax for a set of formal languages, in which it is possible to
define one’s own Markup Language. One of the benefits of the XMLstandard is that,
when followed, the resulting data are easy to share across platforms and implementations.
The reason for this ease of use is that the XML specification specifies asyntaxwhich is

1For an introduction to some of the techniques used in OpticalCharacter Recognition, see Matteson
[1995].

10.3. XML AS THE BASIS FOR ENCODING 125

Figure 10.1: The process of digitization of the Munk Corpus,seen from a high-level
perspective. The process starts in the upper left corner, with an original manuscript, either
in hand-written form, or in typed or printed form. This then goes through a Student
Helper, who converts the original document to a Word(R) document. This document
then goes through me, who converts the document to XML. This XML document is then
processed by some software that I have written, to a form which is again readable by
humans. This is as far as we have got in the process to date. After this, the following steps
can take place: The human-readable document produced from the XML goes through a
team of edition-philologists, who compare the document with the original document(s),
producing a corrected document. This is then fed through me again, who makes the
necessary corrections to the XML document. At this point, the process could either stop,
or go one more round, just to be sure that I had entered every correction found by the
edition-philologists perfectly.

126 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

easy for software to parse, i.e., it is relatively easy to write a program (a “parser”) which
reads an XML document and decomposes it into its parts, whichcan then be interpreted
by another program making use of the parser.

Ease of use is one reason for choosing XML as the standard on which to base the Kaj
Munk corpus. Another reason is the ease with which XML makes it possible to sepa-
ratepresentationfrom content. For example, the XML “schema” which I have developed
in order to store the Kaj Munk corpus states that an actor linemust have an actor name
associated with it. The precise details of the syntax for specifying this actor name, and
the extent of the actor line, is immaterial for our discussion. The important point is that,
using XML markup, the computer is told unambigously what part of the text is an actor
name, what part is stage directions, and what part is the words which the actor speaks. In
other words, thekind of content is made explicit (or formalized) to the computer.This
is separated from thepresentationof that content. For example, after the conversion to
XML, it does not matter whether the actor name was printed boldface or italics, centered
or flush left. The string of characters that made up the name ofthe actor has been un-
ambiguously tagged as being an actor name. This “abstractrepresentation” entails that it
is possible to present it in any way desirable. For example, it is now possible to specify
that, when converting the play-turned-XML back to a presentation form, all actor names
should be flush-left, bold, and italic, with a colon after it.Similarly, the XML-ification
entails that the data can be used for other purposes, e.g., storing in an Emdros database.
The possibility of this separation of content and presentation made XML a good choice.

10.4 Text Encoding Initiative

I could have chosen to use the standards developed by the TextEncoding Initiative (TEI)2

in the preparation of the Kaj Munk Corpus. The reasons for notchoosing TEI as the basis
for our XML schema include:

1. The complexity of the TEI. The TEI guidelines were designed to help store many
kinds of scholarly work. We in the Kaj Munk Research Centre did not need all
of that complexity. Granted, the TEI makes it easy to choose only those parts of
the TEI “schema” (technically, a “DTD” – Document Type Definition) which are
relevant to one’s own research. Yet even with this choice of modules, the TEI was
deemed too complex to use for our purposes.

2. Control. We wanted to retain full control over how the MunkCorpus was encoded.

3. Ignorance, or: A growing understanding of the structure of the texts. At first, we did
not know exactly what a Munk text would encompass. As time went by, a clearer
picture was formed, but only through actual experimentation with actual encoding
of Munk texts.

4. Special needs. We found out that especially Kaj Munk’s plays made some distinc-
tions which would have been difficult to implement, or at least we did not know
how to implement, within the TEI guidelines alone.

2Barnard and Ide [1997]. Website: http://www.tei-c.org/

10.5. OVERVIEW OF THE DIGITIZATION PROCESS 127

10.5 Overview of the digitization process

The process used for digitizing the Kaj Munk Corpus is outlined in Figure 10.3 on
page 129. The figure should be from top to bottom. The rectangles represent data,
whereas the ellipses represent processes or programs whichthe data passes through in
order to be transformed from one kind of data to another.

At the top, we have a work by Kaj Munk in its paper form (printed, typed, or hand-
written). This is passed through a human being, who either initiates the OCR-scanning
process, or who keyboards the manuscript in. This results ina Word document in which
content is not separated from presentation: The actor namesare laid out flush left or cen-
tered (as the case may be), but there is no formalized indication that a given string of
characters is, in fact, an actor name — or any other kind of text. It is simply a Word
document which must be interpreted by human sight if it is to be disambiguated as to the
kinds of text involved.

This Word-document is then XML-ified. The process is that theWord document is
first converted to an XML form (via Abiword3) which still does not separate presentation
from content: It is still “just” a representation of the typeface and paragraph styles used
in the Word document. This XML-representation is then simplified, by a Python script
which I have written, into something that resembles very simple HTML. This document
is then manually (and semi-automatically) XML-ified to XML that does separate content
from presentation. I do this using a text editor with advanced search-and-replace func-
tionality based on patterns4. For any given text, it is most often the case that the text has
originally been typed or printed in a fairly uniform way, with given typography indicat-
ing a given kind of text. For example, within any given text, open-parentheses, followed
by something in italics, followed by close-parentheses maymean “stage directions”, and
can then be found fairly easily using ad-hoc patterns, and converted to the XML form
that strips away the parentheses and the italics, instead saying unambigously that this is a
stage direction. The reason this process cannot be more automated than it has been is that
the typographical conventions for marking out the various kinds of text varies slightly in
almost all texts. A sample XML document can be seen in Figure 10.2 on the following
page.

Now that the document has been XML-ified, and thus has had its content separated
from its presentation, various kinds of use can be made of theXML-ified document. In
Figure 10.3, I have shown two such uses: Namely conversion toan Emdros database,
and conversion to HTML for showing in a Web browser. I shall explain the process of
conversion to an Emdros database more fully in Section 10.6.For now, it suffices to say
that the XML is passed through an XML parser, and is then handed to a Python script
which transforms the XML either to Emdros MQL, or to HTML.

10.6 Conversion to an Emdros database

In order to make the most of Kaj Munk’s texts, I have devised a process whereby the
texts are enriched with annotations. In order to perform this enrichment, the processes

3Abiword is an Open Source word-processor. See http://www.abisource.com
4The editor is Emacs, and the patterns are regular expressions. For an introduction to regular expres-

sions, see Martin [1991].

128 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE munktxt SYSTEM "munkschema.dtd">

<munktxt>

<poetry>

<metadata>

<metadataitem kind="title" value="Den blaa Anemone"/>

<metadataitem kind="yearwritten" value="1943"/>

<metadataitem kind="yearpublished" value="0"/>

</metadata>

<lyrik>

<strofe>

<vers>Hvad var det dog, der skete?</vers>

<vers>mit hjerte haardt og koldt som Kvarts</vers>

<vers>maa smelte ved at se det</vers>

<vers>den første Dag i Marts.</vers>

<vers>Hvad gennembrød den sorte Jord</vers>

<vers>og gav den med sit dybblaa Flor</vers>

<vers>et Stænk af Himlens Tone</vers>

<vers>den lille Anemone,</vers>

<vers>jeg planted der i Fjor.</vers>

</strofe>

</lyrik>

</poetry>

</munktxt>

Figure 10.2: XML version of the first stanza of “The Blue Anemone”.

10.6. CONVERSION TO AN EMDROS DATABASE 129

Figure 10.3: Overview of the digitization process. Should be read from top to bottom.
The rectangles represent data, whereas the ellipses represent processes that the data passes
through in order to be transformed.

130 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

described below are carried out. The running example given throughout will parts of the
first stanza of “The blue Anemone”.

Formatting removal: The XML version of a Kaj Munk text may contain markup that
specifies the kind of text involved, as well as some markup that specifies format-
ting features, such as “italics” or “paragraph start / end”.In order to be able to
abstract away from these formatting-details, the XML is transformed to its raw text
form. This is done using a very simple Python program which I have written, which
merely parses the XML and strips off all of the markup, leaving only the words of
the text. Whitespace separates every word, and two newlinesseparate parts of the
content that do not belong together (because, e.g., they areseparated by paragraph
boundaries, or actor line boundaries).

The output of this process looks like this:

Hvad var det dog, der skete?

Mit vinterfrosne Hjertes Kvarts

Orthography modernization: In 1948, the Danish language underwent an orthography
reform. Since all of Kaj Munk’s texts were written before this reform, they all fol-
low the “old orthography”. I have devised an algorithm to take words using the
old orthography and transform them to the new orthography, with manual correc-
tion where necessary. The algorithm is partly purely algorithmic, in that a num-
ber of possible translations from old to new forms are produced. It is also partly
data-driven, in that the two Danish reference corpora, Korpus 2000 and Korpus 90
[Andersen et al., 2002], are used to check whether these possible translations are
found in either of those corpora. In addition, if this process does not yield a match,
the algorithm attempts to split the word in its constituent parts, in case it is a com-
pound, and to check each part as to presence in the reference corpora. In addition,
suffix addition and suffix stripping are used on the output of both the initial algorith-
mic translation and the split forms, in order to see whether these suffix-enhanced /
suffix-stripped forms are found in the reference corpora. Ifnone of these processes
yield a match in the reference corpora, the form is written toa file for later man-
ual translation to new orthography. These manually translated words are always
checked for a match before any other if the above processes start. Once all forms
in a text have been given a translation from old to new orthography, it is possible to
transform the text, word-by-word, from old orthography to new orthography. This
transformation is applied to the output of the previous process.

hvad var det dog , der skete ?

Mit vinterfrosne hjertes kvarts

Sentence identification and tokenization:In order to be able to perform part-of-speech
tagging, the text needs to be split into sentences, and also to be “tokenized”. Tok-
enization is the process whereby a text is split into words, and words are split into
“word-parts” and “non-word-parts” (most often punctuation). I have devised a to-
kenizer which works well for the Danish texts in the Kaj Munk corpus, based on

10.6. CONVERSION TO AN EMDROS DATABASE 131

regular expressions.

The sentence identification is performed very simply, basedon the following heuris-
tic: Any question mark (“?”) or exclamation mark (“!”) marksthe end of a sentence.
Any period (“.”) marks the end of a sentence if and only if the next word starts with
a capital letter. Of course, this heuristic fails to find the right sentence boundaries
in some cases. For example: An abbreviation terminated witha period may be fol-
lowed by a noun (nouns were capitalized in the old orthography), in which case the
sentence-identification program will mark the period as theend of a sentence, even
if it is not.

Our running example looks like this after this process:

Hvad var det dog , der skete ?

Mit vinterfrosne Hjertes Kvarts

Encoding conversion: The XML has been encoded in Unicode encoding (specifically,
UTF-8). Some of the above output needs to be converted from Unicode to ISO-
8859-1 (also known as “latin-1”) encoding. This is done witha simple Python
script which: a) translates characters with no equivalent in tha latin-1 character
set, either to nothing (thereby eliminating the characters), or to some close latin-1
equivalent, and which b) translates characters with an equivalent in latin-1 to their
latin-1 equivalent.

I will not show the latin-1 version of our running example, since there are no
changes.

Part-of-speech tagging:The modernization of orthography mentioned above was mo-
tivated in part by a desire for end-users to be able to employ both new forms and
old forms when searching. Another motivation was that Center for Language Tech-
nology (CST) at the University of Copenhagen kindly provided me with automated
web-access to their part-of-speech tagger and lemmatizer.This part-of-speech tag-
ger and lemmatizer needed to have “new ortography” as its input, and hence I
needed to provide a method of translating the text to “new orthography”. CST’s
tagger is based on that of Eric Brill [Brill, 1993].

The output from CST’s tagger has then been used to train another tagger, namely the
T3 tagger of Ingo Schröder [Schröder, 2002]. This tagger wasinspired by the TnT
tagger of Thorsten Brants [Brants, 2000]. It is my estimation that Ingo Schröder’s
T3 tagger yields slightly better results than that of CST, based on informal compar-
ison of some texts tagged with both taggers. This is in line with Schröder’s [2002]
findings, as well as those of Brants [2000].

The CST-tagged version and the T3-tagged version can be seenin Figure 10.4.

Stemming: Stemming is the process whereby affixes are stripped from a word in order to
obtain what is called a “stem”. For example, the words “cool”, “cools”, “cooling”,

132 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

[PRON_INTER_REL hvad hvad]

[V_PAST var være]

[PRON_PERS det det]

[ADV dog dog]

[TEGN , ,]

[UNIK der der]

[V_PAST skete ske]

[TEGN ? ?]

(a)

Hvad PRON var V det PRON dog ADV , PUNCT der UNIK skete V ?

PUNCT (b)

Figure 10.4: The part-of-speech tagged version of the first verse of the first stanza of “The
blue Anemone”. Part (a) is the output from the CST pos-taggerand lemmatizer, while part
(b) is the output from the T3 tagger.

“cooled”, and “coolness” would all be stemmed to the stem “cool”. In my work, I
have used the Snowball stemmer5 produced by Martin Porter and Richard Boulton
[Porter, 1980]. The Snowball stemmer has a built-in stemmerfor Danish.

Stitching: After all of the above processes have run, the results are allstitched together
into files with MQL statements that will create the Emdros database. This is done
using a fairly complex Python program which I have written. The program reads
all of the above source files, and compares them in order to ascertain which words
/ new forms / tokens / parts of speech / lemmas / stems belong together, and where
the sentence boundaries are. The XML form is also read, thereby creating objects
such as “actor line”, “stanza”, “verse”, “annotation”, etc. For technical reasons, the
annotations are written to a file which is separate from the other object types. The
end result is two files per input XML file: One file with MQL statements which will
create the annotations, and one file with MQL statements which will create the rest
of the objects. Part of the MQL output can be seen in Figure 10.5 on the next page.

Emdros database creation:After the MQL has been created, it is run through the mql
program, thereby creating the database. What can be done with the database after
its creation includes: a) research, b) display of the documents, and c) annotation of
the texts. I discuss these in later chapters.

The whole process can be seen in Figure 10.6 on page 134.

10.7 Conclusion

In this chapter, I have scratched the surface of the processes involved in digitizing and
implementing the Kaj Munk corpus. Many details have been left out. I have first discussed
the nature of the texts, followed by a defense of my choice of XML as the basis for
encoding Kaj Munk’s texts. I have then briefly discussed why Ihave not used the Text
Encoding Initiative’s (TEI’s) schema. I have then given an overview of the digitization

5See http://snowball.tartarus.org/

10.7. CONCLUSION 133

CREATE OBJECTS WITH OBJECT TYPE [munktxt]

CREATE OBJECT FROM MONADS={1-6}[kind:=poetry;

yearwritten:="1943";

basename:="Den-blaa-anemone";

title:="Den blaa Anemone";

yearpublished:="0";

]

GO

CREATE OBJECTS WITH OBJECT TYPE [lyrik]

CREATE OBJECT FROM MONADS={1-6}[]

GO

CREATE OBJECTS WITH OBJECT TYPE [strofe]

CREATE OBJECT FROM MONADS={1-6}[]

GO

CREATE OBJECTS WITH OBJECT TYPE [vers]

CREATE OBJECT FROM MONADS={1-6}[]

GO

CREATE OBJECTS WITH OBJECT TYPE [Token]

CREATE OBJECT FROM MONADS = {1}[

wholesurface:="Hvad ";

surface:="Hvad";

surface_lowcase:="hvad";

new_surface:="hvad";

new_surface_lowcase:="hvad";

lemma:="hvad";

t3pos:=PRON;

cstpos:=PRON;

cstwholepos:="PRON_INTER_REL";

morphology:=(INTER,REL);

surface_stem:="hvad";

new_surface_stem:="hvad";

prefix:="";

suffix:=" ";

break_occurs_after:=0;

]

CREATE OBJECT FROM MONADS = {2}[

wholesurface:="var ";

surface:="var";

surface_lowcase:="var";

new_surface:="var";

new_surface_lowcase:="var";

lemma:="v\xc3\xa6re";

t3pos:=V;

cstpos:=V;

cstwholepos:="V_PAST";

morphology:=(PAST);

surface_stem:="var";

new_surface_stem:="var";

prefix:="";

suffix:=" ";

break_occurs_after:=0;

]

... more Tokens follow ...

GO

Figure 10.5: Part of the MQL output for the first verse of the first stanza of “The Blue
Anemone”.

134 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

Figure 10.6: Overview of the “XML to Emdros MQL” process.

10.7. CONCLUSION 135

process. I have then discussed in some detail how a text from the Kaj Munk corpus
becomes an Emdros database, from its XML form. The Emdros database can then be
used for various purposes, some of which will be discussed inthe following chapters.

136 CHAPTER 10. IMPLEMENTATION OF THE KAJ MUNK CORPUS

Chapter 11

Principles of a collaborative annotation
procedure

11.1 Introduction

As part of the tasks of the Kaj Munk Research Centre, it is our duty to make the works of
Kaj Munk electronically available to the general public. Inorder to meet the needs of the
end-users of such an electronic edition, it is a good idea to supply the text with annotations
in the form of notes on certain words and phrases. We have employed a person to author
these annotations, and I have written a web-based tool to aidthis person in entering the
annotations. Others are helping the main annotator, and so the tool is really a web-based,
collaborative annotation tool.

The rest of the Chapter is laid out as follows. First, I discuss the general ideas and
principles behind the annotation tool (11.2). Second, I discuss the actual implementation
of these general ideas and principles (11.3). Finally, I conclude the chapter.

11.2 The general idea

The general idea is to provide a web-based, colloborative environment in which persons
who are knowledgeable about the writings of Munk (or any other author) may enter an-
notations which are attached to specific words. The environment is based on Emdros,
which stores the annotations on behalf of the annotators, aswell as storing the texts to be
annotated.

It is assumed that the text-establishment phase has alreadybeen carried out, that is,
it is assumed that the texts are more or less stable as regardsthe specific wording. Some
leeway is built into the system, however, for changes to the underlying texts.

The following principles apply:

1. All annotators are identifier to the system by means of a username and a password.

2. An annotation always carries the information that it was created by a certain anno-
tator.

3. No annotation can be altered or deleted except by its own creator.

137

138CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROCEDURE

The reason for principle (2) is that we wish to be able to identify the person who is
responsible for any given annotation. Assigning responsibility is a good idea in a project
such as this, for several reasons. First, it is standard practice in encyclopedias and other
reference works to specify after an article who has authoredthe article. Second, apart
from being standard practice, it is also a good idea, seen from the perspective of research,
to be able to go back and ask the person for more evidence or clarification.

The reason for principle (3) above is two-fold. First, we wish to maintain and retain
the “responsibility-path” of any given annotation, as being assignable only to one person.
This is the reason it is not possible for other users of the system to alter an annotation.
Second, we wish to maintain a good working relationship among the annotators, and
preventing others from deleting the annotations of their peers is one way of contributing
towards that goal. Such deletion may occur either accidentally, or because one is unhappy
with the contents of someone else’s annotation. Preventingeither of these was seen as a
goal. Thus, if one annotator disagrees with another annotator, the only recourse the first
annotator has is to add another annotation with a differing opinion.

This obviously has some relation to Wikipedia1. Wikipedia is a collaboratively edited
encyclopedia, and has an ideal of “an upward trend of quality, and a growing consensus
over a fair and balanced representation of information”2. This is also the goal of our
annotation system. However, we do not allow users other thanthe creator to edit or delete
an annotation. How is this to be resolved?

The answer is that it must be resolved at a level above the annotation itself: One user,
let us call him or her “A”, may write an annotation,a. Another user, let us call her or him
“B”, may disagree witha. The only recourse which B has is to write another annotation,
b, of the same word, as mentioned above. Then, user A may chooseto altera, after which
B can elect to deleteb. If A and B cannot agree, the disagreement must stand. The key
notion here is that any disputes must be resolved outside of the annotation-system, by
the authors themsleves. This is a necessary consequence of the desire to maintain a clear
“path of responsibility” back to precisely one author per annotation.

The system is based on Emdros, not surprisingly. The processaround the system
actually runs in a periodic cycle, as shown in Figure 11.1. The caption of this Figure has
a lot of information, and the reader is advised to peruse boththe Figure and its caption.

I now discuss how I have implemented these principles.

11.3 The implementation

11.3.1 Introduction

In this Section, I discuss the implementation of the principles laid out in Section 11.2. I do
so in the following order: First, I discuss how annotations are represented in their XML
form and in their Emdros form. Second, I discuss an overview of the processes which
the annotator can go through as he or she does his or her job. Third, I discuss how the
annotations, being stored in an Emdros database, are added back into the XML. Finally, I
conclude the Section.

1http://www.wikipedia.org/
2See http://en.wikipedia.org/wiki/Wikipedia:About

11.3. THE IMPLEMENTATION 139

Figure 11.1: The annotation process cycle. The process starts in the upper left hand
corner, with the XML version of the Munk texts. These are passed through an automatic
conversion-step, producing an Emdros database. This Emdros database is then copied to
the annotation server. On this server, the annotation tool uses the objects in the Emdros
database to display the text as HTML to the annotator in the annotator’s web-browser.
This is then fed through the annotator, who adds or deletes annotations, which the tool
then puts into the Emdros database. From time to time, the annotation tool is “taken
down” for maintenance, and the annotations are added back into the XML using a Python
script (mostly automatic), with manual addition where necessary. This XML can then be
used to produce a new Emdros database, containing the new annotations, which is then
copied to the annotation server, where the annotators can then add more annotations.

140CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROCEDURE

11.3.2 XML form and Emdros form

An “annotation” in the Munk XML DTD is an empty element which has the following
attributes:

id_d: The id_d of the object in the Emdros database. This remains stable throughout the
lifetime of the annotation, and is, of course, unique to any given annotation. These
id_ds are never reused.

annotator: The username of the annotator who created and authored the annotation.

subject: A short string of words describing the contents. Usually, itis the word which is
being annotated.

datemodified: A date and time in ISO 8601 format, namely the date and time at which
the annotation was created, or last modified, whichever is later.

content: The contents of the annotation.

No HTML is allowed in the contents of the annotation. Instead, the following “light
markup” is allowed:

• [* this is bold*]

• Two or more newlines constitute a paragraph break.

Each of the above attributes maps to a specific feature of the “annotation” object type:

CREATE OBJECT TYPE

WITH SINGLE MONAD OBJECTS

[annotation

annotator : STRING FROM SET;

subject : STRING;

content : STRING;

datemodified : STRING;

]

GO

The object type is declared “WITH SINGLE MONAD OBJECTS” in order to specify that they
only occupy one monad, namely the monad of the last word of theword or phrase being
annotated (or, put another way, the monad of the word being annotated directly after
which the annotation must make its presence known to the user, e.g., with a link such as
[∗]). The object type is not declared as “HAVING UNIQUE FIRST MONADS”, because any
given word may be subject to more than one annotation.

11.3. THE IMPLEMENTATION 141

Figure 11.2: A sample window from the collaborative annotation tool. This shows the
text of a play “An Idealist” (Danish, “En Idealist”).

11.3.3 Overview of annotation tool

The annotation tool starts with a “login” screen, which requires the user to enter their
username and password. Nothing can be done with the tool unless the user is logged in
with the right credentials.

Once logged in, the user is presented with a list of Emdros databases present on the
annotation server. The user can choose one, e.g., “Plays”.

After having chosen a database, the user can then choose a munktext from the database
in which to add or delete annotations. This brings up an HTML version of the text. For an
explanation of how the Emdros objects are converted to HTML,please see Section 12.4.
A sample window is shown in Figure 11.2.

Each word in the HTML version of the text is a hyperlink pointing to a page on
which it is possible to create an annotation. The annotationmust be given a subject and a
content. The subject is pre-filled with the word on which the user clicked. The annotation
is then created in the Emdros database, giving it the name of the user as the “annotator”
feature. The annotation is, of course, created with the MQL statementCREATE OBJECT.
An example is shown in Figure 11.3. An excerpt from the EMdF database may be seen in
Figure 11.4.

Returning to the text, the user can now see that a little greenmark has been added

142CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROCEDURE

Figure 11.3: A sample window from the collaborative annotation tool. This shows an
annotation being created. “Emne” means “Subject”, and “Indhold” means “Content”.
“Tilføj” means “Add”, and “Fortryd” means “Cancel”.

Monad 80009 80010 80011 80012

Word 230121 230122 230123 230124

surface Hjertets Renhed er at

annotation 10320001

annotator ulrikp

subject [*Renhed*]

datemodified 2008-05-05 12:00:00

content "Renhed" means "purity".

Figure 11.4: An excerpt from a sample EMdF database containing an annotation of the
word “Renhed”. Notice how the only object shown for “annotation” is the annotation
with id_d 10320001. Notice also how all the features given inSection 11.3.2 (viz., self,
annotator, subject, datemodified, and content) are present.

11.3. THE IMPLEMENTATION 143

Figure 11.5: A sample window from the collaborative annotation tool. This shows an
annotation created by “jespervm”. Note that, even though there are links to “Rediger” (in
English, “Edit”) and “Slet” (in English, “Delete”), these links will not have any effect,
since the user logged in is currently “ulrikp” in the picture.

after the word which was annotated. Clicking the word again will take the user to a page
containing the annotations on this particular word. Each annotation is shown with the
subject and content of the annotation. If the current user was also the user who created the
annotation, they are free to update or delete the annotation. An update is done with the
UPDATE OBJECT MQL statement, whereas a deletion is done with theDELETE OBJECT

MQL statement. If the user is not identical to the creator of the annotation, they can only
view the annotation. An example can be seen in Figure 11.5.

It is also possible to see a list of all annotations, sorted byuser and by subject. Again,
each subject is a hyperlink which will take the user to a page on which they can either
modify or delete the annotation (if they created it themselves), or they can view the anno-
tation (if they were not the original creator).

The whole tool has been implemented — by me — in Python, using the Django frame-
work3.

3See http://www.djangoproject.com/

144CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROCEDURE

11.3.4 Adding annotations back into the XML

As explained in the caption for Figure 11.1 on page 139, the process is cyclic, meaning
that the Emdros database is created from the XML, the annotations are added to the Em-
dros database, and the annotations are then fed from the database back into the XML, at
which point the cycle can start anew.

The annotations are “harvested” from the database in such a way that a program can
later add the annotations back into the XML automatically — or with little supervision.
This is done in the following manner.

1. The munktxt objects are retrieved.

2. Within the monads of each munktxt object, the annotation objects are retrieved.

3. Each annotation object is treated in the following way:

(a) The database is queried using a topographic query, to seeif this exact surface
form occurs anywhere else in the same munktxt. If not, the annotation is
written out to a file, together with information that identifies the word form
which it annotates.

(b) If, on the other hand, the word form is not unique within the munktxt from
which the annotation came, then the database is queried to get the surface
forms of the tokens right before and right after the annotation. This tri-gram
is then checked for existence in the database. If only one such trigram exists,
the process stops. Otherwise, the process keeps going in both directions, un-
til a n-gram has been found which is unique within the munktxt. Of course,
this process has to take into consideration factors such as:a) hitting the be-
ginning or end of the munktxt, and b) hitting a boundary such as an “actor
line” or “verse line”. Of course, if a text only contains one word-form and one
word-form only, for all tokens in the text, this strategy will fail. In practice,
a uniquen-gram is always found within a reasonable number of tokens mea-
sured from the annotation itself. Then-gram is then written to a file, along
with the annotation, and information about which word in then-gram is to
carry the annotation.

This method produces, for each munktxt, a file containing pairs of (annotation,n-gram),
where then-gram (which may be a uni-gram) uniquely identifies the placein the munktxt
where the annotation is to be inserted.

After these files have been “harvested”, it is time to add the annotations back into the
XML. This process can be mostly automated, and has been in a Python script which I have
written. In some cases, however, the script cannot figure outwhere to place an annota-
tion, perhaps because the n-gram spans some XML element boundary which it was either
impossible to take into account in the “harvesting” process, or which the “harvesting pro-
cess” simply failed to take into account. For example, the harvesting process currently
does not take tags such as ... (for emphasis) into account, and so an empha-
sized string of words may prevent the “annotation-adding” Python script from working
correctly. In such cases, the “residue” annotations are written to yet another file, which
then must be processed manually in order for the annotationsto be inserted. The majority

11.4. CONCLUSION 145

of annotations can be added automatically, while a small number of residual annotations
need manual insertion.

Thus the annotations have been added back into the XML, and the process can start
anew with XML-to-Emdros conversion, and renewed annotation.

One area of future development will be to delete annotationsfrom the XML which
have been deleted in the Emdros database. One way to do this would be to delete from
the XML any annotation which was not present in the Emdros database. This could be
done based on id_ds, since id_ds are never re-used.

11.3.5 Conclusion

In this Section, I have shown how the principles laid out in Section 11.2 have been imple-
mented in a web-based collaborative annotation tool. The tool is written in Python, using
the Django framework. It makes use of Emdros for keeping the Munk documents, and for
keeping the annotations.

I have first shown what an annotation is, in this system, both in XML form and in
Emdros form. I have then discussed what the annotation system looks like from a user’s
perspective. I have then discussed how the annotations can be added back into the XML.
The reason for adding them back is that the annotations must be re-created each time the
Emdros database is re-created, and the Emdros database is created from the XML form,
which is the “canonical” form of the database.

11.4 Conclusion

In this Chapter, I have discussed a web-based, collaborative tool for annotating any collec-
tion of texts (in particular, the Kaj Munk Corpus) with noteswhich are tied to particular
words. Other kinds of notes could be conceived of, but these are of the kind which we in
the Kaj Munk Research Centre find most useful and promising.

I have first discussed the general ideas and principles behind the annotation tool, fol-
lowed by a section on the actual implementation. The actual implementation has been
described in terms of the annotations themselves, in terms of the tool seen from a user’s
perspective, and in terms of the process which adds the annotations back into the XML
from the Emdros database.

The annotations are meant for consumption by the general public, and as such find a
nature place in the “Munk Browser” software, to which we turnin the next chapter.

146CHAPTER 11. PRINCIPLES OF A COLLABORATIVE ANNOTATION PROCEDURE

Chapter 12

Principles of the Munk Browser
software

12.1 Introduction

One of the foremost tasks of the Kaj Munk Research Centre, at which I have been em-
ployed throughout my PhD studies, is to publish the works of Kaj Munk electronically.
To this end, a large-scale digitization project has been carried out (as reported in Chapter
10) as a preliminary step. A further step is publication, andas part of this effort, I have
written a piece of software, a “Munk Browser” desktop application. The Munk Browser
is called “Kaj Munk Studieudgave” in Danish, or “Kaj Munk Study Edition” in English. I
have written it in C++, using the wxWidgets1 framework for cross-platform support. The
program runs on Windows(R), Mac OS X(R), and Linux(R).

The purpose of the program is to give the user easy-to-use access to a subset of Kaj
Munk’s writings. We at the Kaj Munk Research Centre have defined five categories of
potential users:

1. The pupil or teacher in an elementary school who wishes to read Kaj Munk’s works.

2. The student or teacher in a high school who wishes to read Kaj Munk’s works.

3. The pastor who wishes to read Kaj Munk’s works (especiallyhis sermons).

4. The scholar who wishes to study Kaj Munk’s writings.

5. The “interested man on the street” who wishes to read Kaj Munk’s works.

In designing the user interface and functionality, I have tried to meet the needs of most of
these categories of users.

The rest of the chapter is structured as follows. First, I give a functional overview of
the program (12.2), showing the capabilities of the program. Second, I give a modular
overview of the program, discussing the various software modules involved (12.3). I then
show how some of the theory developed in previous chapters has been used in the Munk
Browser (12.4). Finally, I conclude the chapter (12.5).

1See Smart et al. [2005] and http://www.wxwidgets.org/

147

148 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

Figure 12.1: Screenshot of the “Munk Browser” software application.

12.2 Functional overview

A screenshot of the “Munk Browser” can be seen in Figure 12.1.The area of the screen
labelled “1” is the “text window”. It is the main window, in which Kaj Munk’s works
are displayed. The area of the screen labelled “2” is the “information window”, in which
secondary information is displayed (usually not written byKaj Munk, but by someone
else). The area of the screen labelled “3” is the “search results window”, in which the
results of a search will appear. The “toolbar” is the bar of buttons placed above the “text
window” and “information window”. The “menu-bar” appears at the top, and the “status-
bar” appears at the very bottom.

The software application is called a “Munk Browser” becausethe basic interface
metaphor used is that of an Internet browser. That is, each window has a “history of
navigation”, which can be navigated using “backwards” and “forwards” buttons (painted
as backwards- and forwards-pointing arrows). In addition,there may be “links” within
each window which, when clicked, will take the user to another text, either in the “text
window”, or in the “information window”.

The screen with which the user is met when opening the programlooks much like the
screenshot in Figure 12.1. (The only difference between theinitial view and Figure 12.1
is that in Figure 12.1, some search results from a previous search appear.) As can be seen,
the “information window” contains a tree-like overview of the texts available (in this case,
some of the plays of Kaj Munk). The “text window” contains a “welcome screen” with
information on how to use the program. The titles of the worksin the “information win-
dow” are links which, when clicked, will open that particular work in the “text window”.
Figure 12.2 on the next page shows the screen after the work “Ordet” has ben opened. As
can be seen, the “information window” now contains some “meta-information” about the
work selected, such as “title” (“Titel”), “year of writing”(“Skriveår”), “year of publica-

12.2. FUNCTIONAL OVERVIEW 149

Figure 12.2: Screenshot of “Munk Browser” software application, after the play “Ordet”
has been opened. Note the meta-information to the right in the “information window”.

tion” (“Udgivelsesår”), and “source” (“Kilde”).
As explained in Chapters 10 and 11, a work in progress at the Kaj Munk Research

Centre is to annotate all of Kaj Munk’s plays with comments from scholars. The nature of
these comments has been dealt with in Chapter 11, so suffice ithere to say that whenever
a word has been annotated, a link appears after that word, which, when clicked, will
open that particular comment in the “information window”. An example can be seen in
Figure 12.3 on the following page, where the link after “Brix” in Figure 12.2 has been
clicked. The right-hand “information window” now displaysthe comment. It can also
be seen that the left-arrow in the “information window” is nolonger “grayed out”, but is
active: Clicking it would take the “information window” back to the previous page, which
in this case is the “meta-information” on the play “Ordet”.

The “magnifying glass” without the “academic hat” which appears in the toolbar can
be used to launch the “simple search”. It is simply a dialog box in which the user can
enter one or more words. When the user then clicks on the button that starts the search,
a search will be performed, and the results will be shown in the “search results window”.
These results are ordered after the ranking which each “document” (e.g., a “play” or a
“sermon”) receives after the results have been harvested. The results are shown document-
by-document, and each result set has an excerpt from the document from which it came.
Within each result set, the words which were searched for areshown as “live links”,
which, when clicked, will open that particular document in the “text window”. The link
will take the user directly to the place in the document at which the words in question
occur. The details of the search are described in Section 12.4.

The “magnifying glass”with the “academic hat” which appears in the toolbar should
launch the “advanced search” dialog. Although this dialog has been implemented, it is

150 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

Figure 12.3: Screenshot of “Munk Browser” software application, after the play “Ordet”
has been opened, and the link after “Brix” has been used to open the comment for “Brix”
in the right-hand “information window”.

disabled at the moment, since it requires more research to make it simple enough to use.
Some of the details of the already-implemented “advanced search” dialog are discussed
in Section 12.4.

A “Find on this page” functionality is almost implemented, but has been disabled in
the current version because it is not complete.

Pressing “F1” or using the “Help” (“Hjælp”) menu will bring up the User’s Guide.
Finally, an “About” box can be reached from the “Help” (“Hjælp”) menu.

This concludes my functional overview of the Munk Browser.

12.3 Modular overview

An overview of the most important modules and their “calls” relations can be seen in
Figure 12.4. Some of the “house-keeping” modules have been left out of the figure for
simplicity. These house-keeping modules all have to do witheither: a) Making sure that
the “backwards and forwards” browsing history mechanism works, or b) providing a doc-
ument hierarchy which is read from the Emdros databases which are installed alongside
the program. The latter module simply reads all “munktxt” objects in a given database,
harvests their “meta-data items”, and constructs a data structure which holds these “ab-
stractions” of each munktxt document.

I now explain the nature of the arrows in Figure 12.4. A single-headed arrow from box
A to box B means that module A calls module B. For example, the “Main GUI” calls the
“Advanced Search” module, which in turn calls the “Harvester”. The Harvester, in turn,

12.3. MODULAR OVERVIEW 151

Figure 12.4: An overview of the most important software modules in the “Munk
Browser”. Some house-keeping modules have been left out.

calls “Emdros”, as well as calling the “Main GUI”. A double-headed arrow means that
both modules at either end of the arrow call each other (in this diagram, the only example
is the “Find Widget”, which is called by the “Main GUI”, and which may also call the
“Main GUI” back).

As can be seen, the central module is the “Main GUI” (where “GUI” stands for
“Graphical User Interface”). It is implemented using classes from wxWidgets. It is the
module which responds to user input, and which displays the output in one of the three
“browser windows” (labelled “1”, “2”, and “3” in Figure 12.1). Since it is the module that
responds to user input, it is also the module which calls the other modules whenever an
action is needed, such as starting a simple or advanced search, or opening a document.

There are four main call-chains:

1. In order to show a document, the “Main GUI” may call the “Emdros to XML Con-
verter”, which in turn calls both Emdros and the “XML to HTML Converter”, which
in turn calls the “Main GUI” to show the text desired in the appropriate window.

2. In order to perform a search, the “Main GUI” may call the “Simple Search” module,
which calls the “Harvester”, which in turn calls both Emdros(to obtain the results),
and calls the “Main GUI” to display the “search results”.

3. Something very similar to call-chain (2) happens when an “advanced search” is
launched.

4. In order to search an already-opened document, the “Find Widget” window may be
opened by the “Main GUI”. This window then sits at the bottom of the screen and
responds to user keystrokes and mouse-button clicks. This,in turn, causes the “Find
Widget” to call the “Main GUI” in order to scroll to the desired, found positions in
the document.

In the next section, I show in some detail how each of these aredone.

152 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

12.4 Application of theory

12.4.1 Introduction

In this section, I show how the theory presented in Part I is brought to bear on the real-
world problems inherent in the functionality of the Munk Browser. I first show how a
“munktxt” document is “harvested” and then converted to XHTML for viewing. I then
show how the “simple search” works, followed by a subsectionon how “harvesting”
works. I then show how the “advanced search” works. Finally,I show how the “Find
Widget” will work once it is finished. This covers the main applications of the theory
presented in Part I.

12.4.2 Showing a munktxt document

When the user clicks on a document link, the program will display that document in the
“text window”. In order to do so, the following chain of events occurs:

1. The “Emdros to XML Converter” is called. It is given information about the kind
of link involved (e.g., munktxt document or comment within amunktxt). It is also
handed at least one of the monads in the document to be retrieved.

2. The “Emdros to XML Converter” then uses the harvesting algorithms outlined in
Chapter 7 to retrieve all of the objects from all of the objecttypes which are needed
in order to re-create the document which must be shown. This is done by calling
Emdros. While the necessary objects are being retrieved, they are placed into an
“in-memory EMdF database”, as outlined in Section 4.6 on page 54. This is done
inside the “Emdros to XML Converter”. The algorithm is as follows:

(a) From the monad handed to the “Emdros to XML Converter”, use aGET OBJECTS

HAVING MONADS IN statement to retrieve the munktxt object which is in-
tended. The necessary meta-data are also retrieved. It is placed into the “in-
memory EMdF database”.

(b) From this munktxt object, a monad range is extracted, starting at the first
monad of the munktxt object, and ending at the last monad of the munktxt
object.

(c) For each object type to be retrieved, issue aGET OBJECTS HAVING MONADS

IN statement, retrieving both the objects and the necessary features, using the
monad-range obtained in Step (b). Place each object into the“in-memory
EMdF database”.

The database depicted in Figure 12.5 will serve as the running example. For the
remainder of this discussion, the reader is invited to imagine that GET OBJECTS
HAVING MONADS IN { 20001-20010 } statements have been issuedin order to
retrieve all relevant object types, and any relevant features. The results have then
been placed into an in-memory EMdF database.

3. Once all necessary objects have been retrieved into the “in-memory EMdF database”,
the document is re-assembled, monad-by-monad, into an XML representation. This

12.4. APPLICATION OF THEORY 153

Monad 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010

Word 1 2 3 4 5 6 7 8 9 10

surface Hvad var det dog, der skete? Mit vinterfrosne Hjertes Kvarts

verse 11 12

stanza 13

poetry 14

munktxt 15

title Den blaa Anemone

Figure 12.5: EMdF database of the first two verses of “The BlueAnemone”. Notice that
we are pretending that these two verses constitute the wholestanza, the whole “poetry”
object, and the whole “munktxt” object.

is done by having an ordered list of object types, containingall of the object types
whose objects were retrieved in Step 2. The order in which these object types occur
in this list shows the order in which start-tags must be opened. The reverse list, of
course, shows the order in which end-tags must be closed. Thealgorithm works as
follows:

(a) Initialize a list of strings, intended to result in the XML output, and append
the “XML declaration” to the list. The “XML declaration” simply says that
this is an XML document, that it uses XML version 1.0, and thatthe character
encoding is UTF-8.2 The list will consist of “snippets” of XML, i.e., strings
which, by themselves, are not full XML documents, but which taken together
will constitute a full, validating XML document. At the end of the process,
the strings in the list will be concatenated into one large string to produce the
final XML document.

(b) For each monadm in the range starting at the first monad of the munktxt
involved, and ending at the last monad of the munktxt involved:

i. For each object typeOT in the list of object types:

A. Query the in-memory database to see if there is one or more objects
of type OT at monadm. If yes, retrieve them from the in-memory
database, convert them to an XML representation, and appendthem
to the list of XML snippets to result in the output. Some object
types will result in a start-tag (such as a “paragraph” or “actor line”),
while others will result in an empty element tag (e.g., “comment” or
“linebreak”). Tokens also result in an empty element, with attributes
which indicate the surface of the token as well as the monad. An
example could be:<t m="20001" surface="Hvad"/>, indicating
that the surface of the token at monad 20001 is “Hvad”.

ii. For each object typeOT in the reverse of the list of object types:

2UTF-8 is an 8-bit encoding which can encode a Unicode character stream. See http://www.unicode.org
for more information.

154 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

<?xml version=’1.0’ encoding=’utf-8’ ?>

<munktxt>

<metadata>

<metadataitem kind=’title’ value=’Den blaa Anemone’/>

</metadata>

<poetry>

<stanza>

<verse>

<t m="20001" surface="Hvad"/>

<t m="20002" surface="var"/>

<t m="20003" surface="det"/>

<t m="20004" surface="dog,"/>

<t m="20005" surface="der"/>

<t m="20006" surface="skete?"/>

</verse>

<verse>

<t m="20007" surface="Mit"/>

<t m="20008" surface="vinterfrosne"/>

<t m="20009" surface="Hjertes"/>

<t m="20010" surface="Kvarts"/>

</verse>

</stanza>

</poetry>

</munktxt>

Figure 12.6: XML document arising out of the “Emdros to XML Converter” for the
database shown in Figure 12.5.

A. Query the in-memory database to see if there is one or more objects
of typeOT at monadm. If yes, retrieve the objects if they need to be
closed with close-tags, and close the tags.

(c) Join the list of XML snippets with the empty string in between, resulting in
one XML document. Return this XML document. The XML documentlooks
something like that in Figure 12.6.

4. The resulting XML document is handed to the “XML to HTML converter”. This
consist of a simple SAX-parser3 which I have written, which parses the XML docu-
ment and converts each XML tag to a series of zero or more XHTML4 tags, possibly
with textual content. A token element, represented with the“t” empty element tag,
is converted to the following string:
“##surface##”, where the “place-holder” called
“##monad##” is replaced with the monad from the “t” element, and where the
“##surface##” place-holder is replaced with the surface from the “t” element.
For example, the XML element “<t m="20001" surface="Hvad"/>” will result
in the XHTML string “Hvad”. The “”

3See http://www.saxproject.org/
4See [W3C contributors, 2002].

12.4. APPLICATION OF THEORY 155

<?xml version=’1.0’ encoding=’utf-8’?>

<html>

<head>

<title>Den blaa Anemone</title>

</head>

<body>

<h1>Den blaa Anemone</h1>

<p>

Hvad var

det dog,

der skete?

Mit vinterfrosne

Hjertes Kvarts

</p>

</body>

</html>

Figure 12.7: XHTML document arising out of the XML document shown in Figure 12.6.

Den blaa Anemone
Hvad var det dog, der skete?
Mit vinterfrosne Hjertes Kvarts

Figure 12.8: Rendering of the XHTML document in Figure 12.7.

tag, of course, starts a “name anchor”, which “names” the surface text between the
start- and end-tags of the “a” element. This “name anchor” can then be used later,
when needing to scroll to a particular monad (see the following sections, on simple
search and harvesting). Another example could be the end-tag “</verse>”, which
results in a “forced line-break” tag, or “
”. Similarly, a “<stanza>” start-tag
results in a “paragraph begin” tag, or “<p>”, whereas a “</stanza>” end-tag re-
sults in a “paragraph end” tag, or “</p>”.

The resulting XHTML document can be seen in Figure 12.7.

5. The resulting XHTML document is then handed to the “Main GUI” window, which
displays it in the appropriate window (“text window”, in thecase of “munktxt”
objects). The running example can be seen in its XHTML rendering in Figure 12.8.

A similar, yet simpler, method is applied when needing to retrieve a comment to be shown
in the “information window”.

I now show how “simple search” works.

156 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

12.4.3 Simple search

The “Simple Search” can be described from a high-level pointof view as happening in
four steps:

1. The user is asked, in a simple dialog, for one or more word. The dialog only con-
tains a text-field, an “OK” button, and a “Cancel” button. If the user presses “Can-
cel”, the process is aborted here. If the user presses “OK”, the string of words
entered is passed on to the next step.

For the purposes of this discussion, let us assume that the user entered the string
“Hvad Dog”.

2. The string is tokenized (split into tokens, based on whitespace). This results in a
list L of tokens.5 This list is turned into a topographic MQL query as follows:

(a) Start a list of strings, to become the result. Call it “result”. As with the
XML snippets, these are “MQL snippets” which, alone, do not constitute a
valid MQL query, but which, when concatenated, will constitute a valid MQL
query.

(b) Start a list of strings, called “objectBlocks”.

(c) For each tokent in L:

i. Let term be the lower-case version oft, escaped with backslashes where
appropriate, so that it can be fed into an MQL string in doublequotes.

ii. Append to “objectBlocks” the string which represents an object block
with object type “token”, where the following features of “token” are
compared againsterm:
a) surface_lowcase, b) new_surface_lowcase, and c)lemma, with
“OR” in between. For example, the term “hvad” (“what”) would result in
the following object block:
“[token surface_lowcase = "hvad" OR new_surface_lowcase =

"hvad" OR lemma = "hvad"]”6

(d) Join theobjectBlocks list into one string, with “..” in between. Prefix the
string with “SELECT ALL OBJECTS WHERE [munktxt GET title”, and ap-
pend the string “] GO” to the string. This becomes the resulting topographic
MQL query. In our running example, the full query is now as in Figure 12.9
on the facing page.

Notice that every query has a surrounding “munktxt” object block, and that
the title of the munktxt object is retrieved. This becomes important when
describing the harvesting algorithm below.

5The list of tokens is ["Hvad", "Dog"].
6In our running example, the “objectBlocks” list now contains the following strings:

• [token surface_lowcase = "hvad" OR new_surface_lowcase = "hvad" OR lemma =

"hvad"]

• [token surface_lowcase = "dog" OR new_surface_lowcase = "dog" OR lemma = "dog"]

12.4. APPLICATION OF THEORY 157

SELECT ALL OBJECTS

WHERE

[munktxt GET title

[token surface_lowcase="hvad"

OR new_surface_lowcase="hvad"

OR lemma="hvad"

]

..

[token surface_lowcase="dog"

OR new_surface_lowcase="dog"

OR lemma="dog"

]

] GO

Figure 12.9: The MQL query resulting from the “simple search” query-building process.

3. This topographic MQL query is handed off to the harvestingmodule, which runs
the query against Emdros, and returns an ordered list of “solutions”.

4. This solution is rendered as XHTML, and shown in the “search results” window of
the “Main GUI”.

I now describe the harvesting algorithm in detail.

12.4.4 Harvesting

Before I describe the harvesting algorithm, I need to define adata structure, namely a
“Solution”.

A Solution is a C++ object which describes one munktxt objectwhich has at least one
“hit” inside of it. It contains the following members7:

1. A database name (in order to be able to tell the “Emdros to XML Converter” from
which database to load the document).

2. A munktxt title (which can be used to show the title when transforming to XHTML).

3. A monad (which will be set to some monad inside the munktxt;and thus can be
used to identify the munktxt object in the database).

4. A list of strings (which will become the list of snippets toshow together with the
document title in the search results window).

5. An overall score.

6. A hit-count.

7In Object Oriented Programming terminology, a “member” is avariable associated with the state of an
object (or class, in the case of static members). Thus a “member of an object” is a piece of the computer’s
memory which holds a value of some specific type.

158 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

The Solution class has a number of methods,8 two of which are important for the expla-
nation of the harvesting algorithm below. I therefore mention them here:

• addWord(): Which adds a word to the snippets. This is done during harvesting. One
of the parameters passed to this method is the monad associated with the word. This
monad is assigned to the “monad” member of the Solution object. Thus, whichever
word is added last, gets to define the “monad” member of the Solution object.

• getHTML(): This method is used when the list of Solution objects which results
from a harvesting procedure needs to be transformed to XHTML. It assembles the
information in the object into an XHTML snippet which represents the title, the
score, the hit-count, and the snippets.

Given this data structure, we are now in a position to understand the the harvesting algo-
rithm employed in the Munk Browser.

The general Harvesting procedure runs as follows:

1. Maintain a list of Solution objects.

2. For each database present:

(a) Run the topographic input MQL query is run against the database.

(b) If the result is an empty or failed sheaf, go to the next database.

(c) Otherwise, if the result is a sheaf with content, run the “harvest” algorithm
(shown below) on the sheaf. This results in a list of Solutionobjects, which
are appended to the main list of Solution objects.

3. Once all databases have been processed, sort the list of Solution objects in reverse
order of solution score, such that the solutions with the highest scores appear first
in the list, and the solutions with the lowest score appear last.

4. If the list is empty, return with some XHTML to the effect that there are no “hits”.

5. Otherwise, if the list is not empty, return with an XHTML document that contains
the XHTML snippets of each Solution object, obtained by calling the “getHTML()”
method on each Solution.

The “harvest” procedure mentioned above works as follows: The input is three-fold: A
sheaf, a database name, and a length of monads to use for the context of each snippet
(context_length).

1. Call harvest_sheaf() on the sheaf. (See below.) This results in: a) A set of munktxt
titles and munktxt ranges of monads covering each munktxt involved, and b) A set
of monads which contains the “focus monads” for this solution (i.e., the monads of
the words which were “hits”).

8In Object Oriented Programming terminology, a “method” is apiece of program code which is associ-
ated with an object (or class, in some programming languages, including C++). Generally, a method is for
reading the internal state of the object, altering the state, or computing something on the basis of the state.

12.4. APPLICATION OF THEORY 159

2. Traverse the set of focus monads, creating a new set of monads which consists
of the ranges that arise when taking each focus monad, plus the stretch of “con-
text_monads” on either side. This results in a set of monads corresponding to the
words to retrieve.

3. If this set is empty, stop the procedure here.

4. If, on the other hand, the set is not empty, then retrieve all the words of the set, using
a simple GET OBJECTS HAVING MONADS IN query. This results in amap data
structure, mapping word-monads to objects representing the surface string of each
word.

5. Traverse the set of munktxt titles obtained in Step (1) above. For each triple (first_monad,
last_monad, munktxt_title):

(a) Create a Solution object.

(b) Add snippets of words and count “hits”. Also calculate a score. (See the
Excursus below for how the score is calculated.)

The “harvest_sheaf” method is a recursive function which takes as input a Sheaf, and
traverses it, all the while gathering munktxt titles, munktxt first/last monads, and “focus”
monads (from the monads of tokens). The details of the methodhave been left out of the
thesis, since they are relatively trivial.

Excursus: Calculation of score The score is currently set to the sum of those distances
(counted in monads) between each pair of “focus-monad” whose length is less than 50,
subtracted from 50.

For example, if there are three “hits”, each at the monads 1, 11, and 100, then the
score will be 50 - (11 - 1) = 40. The interval from 11 to 100 will not be counted into
the score, because it is too long (longer than 50). This method of calculating the score
may seem somewhat arbitrary, and it is. Yet it is our experience that it is at least to some
degree meaningful, in that it helps ordering (or “ranking”)the search results in a way that
makes sense. The intuition behind the score is that if hits “cluster” (that is, occur closely
together), then a higher score should be awarded to the Solution. Given that the list of
focus monads can be called “x1,x2, . . . ,xn,” the scoreScan be formalized as:

S=
n

∑
i=2

50− f (xi −xi−1)

where the functionf (m) is defined as:

f (m) =
{

50
m

if m≥50
if m<50

Of course, this is impossible when the list contains only oneitem. In such cases, the
score is 0.

This formula is, of course, ad-hoc. There are many other wayspublished in the litera-
ture for calculating a relevance-score.

The number “50” is also somewhat arbitrary, but can be theoretically validated as fol-
lows: The average sentence-length in Kaj Munk’s plays and sermons can be calculated

160 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

Plays Sermons Plays + Sermons

Sentence-count 28595 1680 30275
Word-count 613641 109483 723124
Average 21.5 65.2 23.9

Table 12.1: Sentence-lengths in the Kaj Munk Corpus. Based on the plays and the ser-
mons. Calculated using Emdros and the script shown in Figure12.10.

to be 23.9 words, on the basis of the sentence-boundaries found by the method sketched
in Chapter 10, using the Python script shown in Figure 12.10.In Van Valin and LaPolla
[1997], the authors discuss Knud Lambrecht’s theory of Information Structure. Lam-
brecht argues that there are certain states of a hearer’s or reader’s mind while hearing or
reading, which may be labelled “Active”, “Accessible”, and“Inactive”. Whether a refer-
ent in a text is labelled “Active”, “Accessible”, or “Inactive” depends on how easy it is for
the hearer or reader to infer the identitiy of the referent. “Active”, in particular, means that
the referent is “active” in the hearer’s or reader’s short-term-memory, while “Accessible”
means that some degree of mental work must be exercised in order to infer the referent’s
identity.

The more recent the placement of the referent’s identity in the text, the more accessible
the referent is to the hearer’s or reader’s mind. My guess is that in about the span of
two sentences, a referent slips from “Active” to “Accessible”. This is only a guess, not
something empirically tested. But the span of 2 sentences isabout 50 words, given that
the average sentence-length is 23.8 words in the Kaj Munk Corpus.

The numbers used to calculate this average sentence-lengthare shown in Table 12.1.9

12.4.5 Advanced search

The Advanced Search Dialog is brought up by pressing the button on the toolbar which
has a magnifying glass with an academic hat. The dialog lookssomething like in Figure
12.11.

In Figure 12.11, the area labelled “1” is where the user can enter one or more words
to search for.10

The area labelled “2” contains a summary, which the program produces dynamically,
of the current settings in the dialog. The summary is given innatural language, in order
to aid the user in knowing what the options mean.

The area labelled “3” is where the user picks and chooses froma large array of options.
The area has four tabs, of which only the first is currently notimplemented.

9It is interesting to note that the average length of sentences in the sermons is 65.2, versus only 21.5 for
the plays, which is more than a factor of three larger for the sermons. One conjecture for an explanation of
this might be that the two are different genres: hortatory, edificative homilies on the one hand (sermons),
versus spoken language on the other (plays). Further research is needed, however, in order to conclude
anything about this. Further research should also include acomparative study of sentence lengths in other
similarly genre-classified texts. Help might be found in, e.g., Longacre [1996].

10Note that it is a shortcoming of the current “Advanced Search” Dialog that the user has to enter at least
one word. It is very conceivable that the user would wish to search, not on particular forms, but on other
criteria, such as parts of speech, which would not be tied to any particular form. This is an area of possible
future development.

12.4. APPLICATION OF THEORY 161

import sys

import re

myre = re.compile(r’\{ ([^\}]+)\}’)

myset = set()

The sheaf from the following query must be passed through stdin:

#

SELECT ALL OBJECTS

WHERE

[sentence]

GO

#

for line in sys.stdin.readlines():

if not "sentence" in line:

pass

else:

monad_str = myre.findall(line)[0]

if not "-" in monad_str:

fm = lm = int(monad_str.strip())

else:

(fm_str, lm_str) = monad_str.strip().split("-")

fm = int(fm_str)

lm = int(lm_str)

myset.add((fm,lm))

count = 0

mysum = 0

for (fm,lm) in sorted(myset):

count += 1

difference = lm - fm + 1

mysum += difference

print "Count = %d" % count

print "mysum = %d" % mysum

print "verage = %f" % (mysum*1.0)/(count*1.0)

Figure 12.10: The Python script used to calculate average sentence length.

162 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

Figure 12.11: The Advanced Search Dialog of the Munk BrowserSoftware. The area
labelled “1” is where the user types in one or more words. The area labelled “2” is
where the program shows a summary of the current options in natural language. The area
labelled “3” is where the user picks the options. The latter area has four “tabs”, which
each have options for one particular aspect or “axes” of the advanced search.

12.4. APPLICATION OF THEORY 163

Text delimitation: Though currently not implemented, the idea is that this tab will pro-
vide the user with options to delimit the parts of the corpus to search, based on
textual criteria such as “year of writing”, “year of publication”, “whether a play
has been performed or not”, etc. — based on the meta-data present for each Munk
text. It should also be possible to choose a set of documents based on “genre” (in
this case, whether it is a play, a sermon, a poem, a piece of prose, or a piece of
journalism — the five “genres” within which Munk wrote).

Context delimitation: This tab allows the user optionally to select zero or more object
types within which the query should be executed. The contextobject type (if there
is one) will then be the surrounding context [object block] within which to search. If
no context type is chosen, then “munktxt” is chosen as the default. If there is more
than one, then each will get the appropriate inner blocks (asdiscussed below), and
the list of “context object blocks” will then be concatenated, with “OR” in between.

Word lists: We have had a student, Jóannis Fonsdal, produce a list of lemmas, based on
the lemmas in Kaj Munk’s plays, where each lemma has been marked as to whether
it is “religious by definition”, or “religious by association”, or “not religious”. The
precise definition of these terms is hard to get at, and the borders between the three
categories are not hard and fast, but rather fluid in nature. One annotator might
choose to categorize a particular lemma differently than another annotator. The im-
portant thing here is not the particular categorization, but the idea of how to use it,
which I shall now describe.

In this tab, it is possible to choose whether the word(s) typed in the area labelled
“1” should be found within another word (up to a specific distance away) which is
either “religious by definition” or “religious by association”, or both.

The way it is done is to take each word and turn it into an objectblock (see “Word
forms” below, for how this is done).

Then, an object block is created for the particular kind of religious words chosen
(“by definition” or “by association”). Currently, this is done by creating an [to-
ken] object block with a feature-restriction which says that the lemma must be one
of the members of the chosen list. This is very inefficient, and so future work will
include storing the “religious status” on the objects of thetoken object type directly.

Then, the “religious” [token] object block is placed beforeor after the “user-entered”
[token] object block, with a power block between them. This is then wrapped in a
[square brackets] for “grouping”. For example:

[

[Token /* religious lemmas not shown */]

.. <= 5

[Token new_surface_lowcase="tidens"]

]

The reason it is wrapped in [grouping square brackets] is that a power block is

164 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

SELECT ALL OBJECTS

WHERE

[poetry

[

[Token /* religious lemma-restriction not shown */]

.. <= 6

[Token new_surface_lowcase = "tidens"]

]

..

[

[Token /* religious lemma-restriction not shown */]

.. <= 6

[Token new_surface_lowcase = "gang"]

]

]

GO

Figure 12.12: A sample query from the “Advanced Search” Dialog. The words entered
were “tidens gang” (idiomatically, “the course of time”). Religious words should be found
within a distance of 6 words before the word itself. The object type “poetry” should be
used as context-delimitation.

placed between the groups, if the user has entered more than one words. A sample
query can be seen in Figure 12.12.

Word forms: In this tab, it is possible to choose a wide range of options.

First, it is possible to choose whether to search based on thestemmed form of the
word, or else a combination of “new form” (after the orthography reform of 1948),
“old form” (before 1948), or “lemmas”.

Second, it is possible to search on “exact words”, “prefixes of words”, or “suf-
fixes of words”.

Third, it is possible to choose a set of parts of speech withinwhich to limit the
search.

Finally, it is possible to choose whether to ignore the upper-case / lower-case dis-
tinction, or not.

The “Advanced Search” Dialog is a work in progress. Much could be said to its detriment.
I shall refrain from commenting on its shortcomings, exceptto say that it is an area of
future research, not only in database theory, but also in user interface design.

12.4.6 Find Widget functionality

The “Find Widget”, it will be remembered, is supposed to pop up at the user’s behest,
and allow the user to search the currently open document for strings, and be taken to the

12.5. CONCLUSION 165

appropriate places immediately.
In order for this to work, I propose to implement the following general idea.
First, the idea is to build an “in-memory EMdF database” along the lines outlined

in Section 4.6 on page 54, and populate it with objects of an object type (let us call it
“display_object_range”) which are “WITH SINGLE RANGE OBJECTS”, and whose mon-
ads are character-indexes into a string. This string (let uscall it “doc_text”) represents
the “bare” form of the XHTML document (i.e., a form without tags, and with whitespace
normalized).

Second, the object type in question should have a “feature” which is an integer, which
then points into a map mapping these integers to pointers to the right display objects
inside the XHTML window. (The first monads of the “display_object_range” objects are
not unique, and so cannot be used as a surrogate for the display object.) The reason for
storing pointers to the display objects is that the XHTML window has a capability to
scroll to any display object if only a pointer to the object ispassed as a parameter to the
scroll function.

Third, once this data structure is up and running, it should be possible to search the
“doc_text” string, using a standard string-searching algorithm, such as Knuth-Morris-
Pratt [Knuth et al., 1977]. This will yield zero or more character-indexes. If one or more
are found, the right display objects can be found using the above data structure, and the
XHTML window can then be scrolled to the right display object. It is also possible to
traverse the list of “hits” up and down, using the “previous”and “next” buttons of the
Find Widget.

12.5 Conclusion

In this Chapter, I have described the “Munk Browser” desktopapplication which I have
developed. The purpose of the application is to provide access to the texts of Kaj Munk
for a wide range of users.

I have first described the application from a functional point-of-view, followed by a
description in terms of the modules involved. I have then shown how the theory presented
in previous chapters has been brought to bear on the problem of producing the “Munk
Browser”, in showing a document using harvesting techniques, performing simple search,
performing advanced search, harvesting, and a operating a “find widget”.

Further research could include:

1. Searching within annotations. It is obvious that Emdros supports this, especially
if the “~” regular expression operator is used. Therefore, it should probably be
included in the “Advanced Search Dialog” as an option.

2. Making user surveys to see whether a “wizard-like” approach would be more in-
tuitive than the current “tabbed dialog” approach. A “wizard” in this context is a
series of dialogs in which the user is asked for more and more information, but in
several steps, with “next” and “previous” buttons to guide along the way.

3. Making a facility for letting the user enter their own comments. Possibly, these
comments should be uploadable to the Kaj Munk Centre’s server, where someone
could then sort through the users’ comments and select the best ones for use.

166 CHAPTER 12. PRINCIPLES OF THE MUNK BROWSER SOFTWARE

4. Supporting better navigation of the databases, i.e., better selection of the document
desired.

Chapter 13

Quotations from the Bible in Kaj Munk

13.1 Introduction

In this Chapter, I discuss a general approach to discoveringquotations from one corpus in
another corpus. In this case, the quotations are from the Bible, and must be found in the
Kaj Munk Corpus. The method, however, is general enough thatit could be applied to any
suitably tagged pair of corpora. The research idea itself was inspired by van Wieringen
[1993], who did something similar within the Book of Isaiah from the Old Testament, that
is, finding quotations and analogies within the book itself by using a computer program
and the WIVU Hebrew Database [Talstra and Sikkel, 2000].

This research has been carried out in collaboration with Peter Øhrstrøm. The division
of labor was such that Peter Øhrstrøm came up with some of the research ideas, did some
manual disambiguation, and provided general direction, while I came up with the rest of
the research ideas, and implemented the ideas in concrete computer programs.

The rest of the Chapter is laid out as follows. First, I discuss how I obtained an
electronic copy of the Danish Bible that is mostly error-free (13.2). Then, I discuss the
general idea in more detail (13.3). I then discuss the process which we went through
in our research (13.4), including results, followed by pointers to future research (13.5).
Finally, I conclude the chapter.

13.2 Electronic edition of the Danish Bible (1931/1907)

There have been various translations of the Bible into Danish over the centuries. Of these,
the most relevant ones for my purposes were the Old Testamentfrom 1871, the New
Testament from 1907, and the Old Testament from 1931, since they were the ones which
Kaj Munk probably used.

• 1871: Old Testament

• 1907: New Testament

• 1931: Old Testament

The Old Testament from 1871 is available on the Internet in electronic form, but un-
fortunately, my comparison of forms from this OCR-scanned edition with my database
of translations of old forms to new forms yields more than 8000 words which must be

167

168 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

“looked at”, most of them errors in the electronic text. I have not yet had the time to
undertake either a revision of this text, or a complete re-digitization.

The Old Testament from 1931 and the New Testament from 1907 have been available
on the Internet at least since 1993, when Søren Hornstrup made it freely available on the
ftp.dkuug.dk server. It was then picked up by Project Gutenberg1 and project Runeberg2.

In order to establish an “authoritative text” (Søren Hornstrup’s text, unfortunately, had
thousands of errors), I have gone through the following process.

First, I compared the texts from Project Runeberg and Project Gutenberg. The result
was that the text from Project Runeberg was slightly better than that from Project Guten-
berg. I then started correcting spelling mistakes and punctuation-mistakes in the edition
from Project Runeberg. This was done using Emacs and regularexpressions. I also ran
the text through my “old to new” filter (explained in Chapter 10), thereby yielding around
two thousand forms which must be “looked at”, i.e., for whichit was not possible to derive
a modern form. I then hand-corrected any mistakes in found inthis way.

I then found out that Sigve Bø from Norway, who runs a company called Sigve Saker3,
had done extensive proof-reading of the 1931/1907 Danish Bible. Sigve Bø was kind
enough to send me his most current versions. I then convertedSigve Bø’s files to a form
that could be compared with my form, using the standard Unix(R) “diff” tool 4. This
yielded a few thousand errors, which I corrected by hand. I also corrected many errors
in Sigve Bø’s text, for I had found errors which Sigve Bø had not. Thus, in a sense, my
form is based on Sigve Bø’s form, and in a sense it is not — it is,in reality, a conflation of
three sources, namely the Runeberg form, the Gutenberg form, and Sigve Bø’s form, with
numerous manual corrections on my part. I always checked against a printed edition of the
respective Testament before making any corrections, except in a very small set of cases,
where the correction was exceedingly obvious as per Danish grammar or orthography.

Naturally, I had to convert the orthography back to its pre-1948 form, since that was
what Kaj Munk used whenever he quoted the Bible. Both the Runeberg edition, the
Gutenberg edition, and Sigve Bø’s edition had a strange combination of old and new
orthography. For our purposes, this would not do.

In the end, the whole process had seen more than 7100 corrections to the Runeberg
text, and 5037 corrections had been made to Sigve Bø’s text.

Thus the end product was a Danish Bible which was mostly error-free. This was
necessary in order to be able to find direct quotes. We now turnto “the general research
idea”.

13.3 The general idea

Suppose one has two corpora; let us call them “Corpus A” and “Corpus B” for generality.
Corpus A is known to quote from Corpus B in various places, butit is unknown precisely
where Corpus A quotes Corpus B. The challenge is to find the places in Corpus A where
Corpus A quotes Corpus B.

1A project to digitize Public Domain textual resources. See http://www.gutenberg.org/
2Project Runeberg aims to be for the Scandinavian languages what Project Gutenberg is for the World’s

languages. See http://runeberg.org/
3See http://www.sigvesaker.no/
4For a description of diff, see the Unix manual page “diff(1)”and Hunt and McIlroy [1976].

13.4. PROCESS 169

There are many factors to consider in this problem. For example, what constitutes a
quote? Especially quotes from the Bible may be hard to characterize completely, since
some sequences of words that appear in the Bible would appearin other corpora as well,
without necessarily being quotes from the Bible, simply because the sequence of words
is so common. An example in English could be “and he said”. This would be found both
in many English Bibles, and in many other texts as well, yet wewould not necessarily
say that those three words were a quotation from the Bible, unless the context clearly
indicated that this was so.

Another factor to consider in characterizing what constitutes a quote from the Bible is
how to determine that something is actually a quote from the Bible. We finally settled on
the following definition:

A sequence of words found both in the Bible and in another corpus is a quote
from the Bible if two or more persons who are knowledgeable about the con-
tents of the Bible would agree that the sequence of words is a quote from the
Bible.

The reason for settling on this definition is that we found outthat the problem was so hard
to characterize formally that we concluded that human intelligence is probably necessary
in order to settle whether a specific sequence of words is, indeed, a quote from the Bible.

A third factor to consider is: Should one also look for “almost-quotations”, or “allu-
sions”, or should the algorithm find only direct quotations?We settled on the latter, with
the former two left for future research.

In the following, I discuss the process which we went through.

13.4 Process

The first thing we did was to choose a sub-corpus of Kaj Munk on which to develop the
method. Other parts of the Kaj Munk Corpus could then serve asa testbed later, once the
method had been developed. We chose the sermons as our “development corpus”, since
they were intuitively likely to to contain a lot of quotations from the Bible.

I then loaded the sermons into one Emdros database, and the Bible into another Em-
dros database. Both had been tokenized, and both had been tagged for part of speech
using the CST tagger mentioned in Chapter 10.

I then wrote a Python script which did the following:

1. Load both the “development corpus” and the Bible into memory from the Emdros
databases.

2. For window-lengths of lengthn, counting down from 40 down towards 2:

(a) Create two sets ofn-grams from both corpora, keeping track of where they
occurred (using monads).

(b) Take the set intersection of the two sets. This is the set of “direct quotations”
of lengthn. (Actually, the strings in the intersection need not be quotes, espe-
cially if the strings are short; see below for a discussion ofthis.)

(c) Further process the intersection, such as to display andcount the “quotations”.

170 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

(d) Make sure that the “quotations” found in step (b) above would not be counted
in the next iteration, i.e., would not be counted as(n−1)-grams.

This produced, for each length of sequencen, a set of “quotations”. For somn, the set
was empty. The number 40 was chosen experimentally: We foundthat no string of length
40 or above was present in Kaj Munk’s sermons (our “development corpus”) which was
also present in the Bible from 1931/1907.

For the sets which were not empty, we did some manual inspection, Peter Øhrstrøm
and I. We found that sequences of length 7 or above were, in allcases considered, quota-
tions in the sense defined in Section 13.3. For sequences of length 6, the overwhelming
majority were quotations. For sequences of length 5, some were not quotations, whereas
most were. For sequences of length 4, a lot of strings were notquotations, whereas a
minority were. For sequences of length 3, the balance was even more in favor of non-
quotations, and so on, down to 2. We did not try “sequences” oflength 1, since they
would intuitively be very unlikely to be quotes from the Bible.5

We then attempted to distinguish between quotations and non-quotations using statis-
tics. This failed, mainly because we were unable to find a suitable metric with which to
measure “quotation-likelihood”.6

We then attempted to distinguish between quotations and non-quotations using gram-
matical patterns of part-of-speech tags. This worked to some extent for sequences of
length 5, but still left some false positives in the mix, and also sifted out some false neg-
atives. Furthermore, it failed for sequences shorter than 5, and did nothing for sequences
of length 6. Since sequences of length 7 and above were found always to be quotations,
this method also was not fruitful.

In the end, it was decided to leave sequences of length 6 and below for future re-
search, and simply arrive at the result that sequences of length 7 and above were always
quotations.

We then validated the method based on the play “The Word” (in Danish, “Ordet”) by
Kaj Munk. For this particular play, we had a set of quotations, found by Niels Nielsen
[Munk, 1947], as a control. We produced a table of quotationsbased on the notes on the
play made by Niels Nielsen. We then added to the table the exact text from the Bible being
quoted, and the exact text from the play, and checked the output of our program. It was
found that in every case where the quote was a direct quote, the program had indeed found
the quote, and that there were no false positives. It was alsofound that many quotes were
not found by the program, simply because they were not directquotes. Thus, our method
was validated against a control corpus which had been manually filtered for quotations,
and the program fully met its requirements.

5However, some words are so improbable outside of the Bible, and have their sole origin in the Bible,
that they mustde factobe some kind of quotation from the Bible. One example would be“The Son of
Man”, which is an expression originating in the books of Daniel and Ezechiel in the Old Testament, and
frequently used by Jesus about himself in the gospels. In Danish, “The Son of Man” is a single word,
“Menneskesønnen”. This word would appear to be some kind of quote from the Bible, although further
philosophical considerations are needed in order to establish the precise nature of such quotations.

6Future research will likely reference the work of H.P. Luhn,who pioneered some statistical measures
in Information Retrieval.

13.5. FUTURE RESEARCH 171

13.5 Future research

Future research could include:

• Finding a general way of distinguishing between quotationsand non-quotations of
lengths shorter than 7 words.

• Checking whether it would be fruitful to build up a database of quotations (or,
indeed, non-quotations) shorter than 7 words to aid in the disambiguation process.

• Pursuing the statistical path in more detail.

• Being able to find “almost”-quotes, e.g., with words inserted or permutated, or with
different tenses of verbs, or with different grammatical number and determination
on nouns.

• Applying the method to other pairs of corpora than the Bible and the Kaj Munk Cor-
pus. For example, it would be fruitful to be able to find quotesfrom the works of
Søren Kierkegaard in other corpora. Doing so would require alot of manual work in
identifying a common orthography, if the two corpora were not contemporaneous,
since the orthography of Danish has changed considerably since the times of Søren
Kierkegaard. An “old to new” othography converter, such as the one sketched in
Chapter 10, would be an invaluable tool in such an endeavor.

Note that finding Kierkegaard quotations in Kaj Munk is not just interesting from
a technical perspective: There is currently a debate in scholarly circles as to the
degree of influence from Kierkegaard on Kaj Munk’s works. Having empirical ev-
idence would help settle this debate.

Thus this problem has far from been solved. In the end, we speculate that it may be im-
possible to achieve 100% precision and 100% recall7 in finding quotations from the Bible
in another corpus automatically. In a sense, this problem isa problem within “artificial in-
telligence”, because it attempts to build an automatic method for finding quotations from
one corpus in another corpus. This normally requires real, human intelligence, and the
conclusion may well become (after more research) that we still have not found a way to
solve this problem generally without recourse to real, human intelligence. That, at least,
is the conclusion for the time being.

13.6 Conclusion

In this Chapter, I have discussed a method which I have developed together with Peter
Øhrstrøm, the purpose of which is to find direct quotations from the Bible in some other
corpus, in particular, the Kaj Munk Corpus.

I have first discussed how I obtained an electronic “authoritative” version of the Dan-
ish Bible from 1931 (Old Testament) and 1907 (New Testament), which formed part of
Kaj Munk’s Bible (the third part being the Danish Old Testament from 1871). I have

7For a definition of the terms “precision” and “recall”, see Baeza-Yates and Ribeiro-Neto [1999].

172 CHAPTER 13. QUOTATIONS FROM THE BIBLE IN KAJ MUNK

then discussed the general research problem, and have defined what I mean by “quota-
tion from the Bible”. I have then discussed the process whichwe went through, and the
results. Finally, I have given pointers to further research.

The problem is far from solved, but is a very interesting problem, judging from the
salivation produced in the mouthes of theologians when we present them with the prospect
of having such an algorithm.

Part III

Perspectives

173

Chapter 14

Extending EMdF and MQL

14.1 Introduction

In this Chapter, I discuss a number of possible extensions ofthe EMdF model and the
MQL query language, left for future research. In Section 14.2, I discuss extending the
EMdF model and the MQL query language with support for declaring structural relations
between object types. In Section 14.3, I discuss extending the EMdF model with support
for inheritance between object types. Then, in Section 14.4, I discuss the need for sup-
porting “typed id_ds”, i.e., being able to retrieve the object type of the object which owns
a given id_d. In Section 14.5, I talk about the need for supporting complex feature types
in EMdF. I then turn to MQL, first specifying what parts of Doedens’s QL still need to be
implemented (14.6). I then discuss ways in which MQL could beextended beyond QL
(14.7). Finally, I conclude the Chapter.

14.2 Declarative support for structural relations

Doedens defined the “covered_by” and “buildable_from” relations between object types.
Briefly, if object typeB is “covered_by” object typeA, then all objects of typeB consist
of only of monads which can be expressed as the big-union of some set of objects of type
A, and the set of objects of type from which the monads of each object of typeB is con-
structed is disjoint from all other such sets for any other object of typeB. Buildable_from
is the same as covered_by, except for a conjoined requirement, namely that both typeA
and typeB must be non-overlapping, i.e., all monad sets of all objectsof typeA must be
disjoint, and the same must be true of all objects of typeB.

Doedens states that covered_by and buildable_from constitute partial orders over ob-
ject types. As I have shown elsewhere [Petersen, 1999], thisis not true.

These should, however, still be supported by the EMdF model and the MQL query
language, since they can be useful in query-optimization. For example, if it is known
that an object typeC is buildable_from another object typeW, it might be possible to
make assumptions about queries that use bothC andW, which could lead to query op-
timizations. In fact, the current implementation assumes that all object types are neither
covered_by nor buildable_from any other object type, and therefore does useless work in
some cases, such as when looking for more than one object of a given type starting at a
given monad. If object typeC is buildable_from object typeW, then clearlyW will have

175

176 CHAPTER 14. EXTENDING EMDF AND MQL

precisely one object for any given monad which is also part ofa given object from object
typeC. This is because of the requirement on buildable_from that both object types must
be non-overlapping. Hence, the implementation can assume that for any given monad
which is also part of aC object, an object of typeW does indeed exist which starts at
this monad, and there is only one such object. This knowledgecan be exploited in doing
minimal work.

There is another kind of structural relationship which should be able to be stated,
apart from buildable_from and covered_by: It should be possible to declare that a given
object typeW always stands in a structural relationship with one or more objects of types
S1, S2, . . . , Sn. This would allow for declarative support for trees and other directed
acyclic graphs. In declaring these relationships, it should also be possible to specify which
feature(s) onW would encode these structural relationships, presumably with id_ds.

Adding these capabilities would make EMdF and MQL meet demand D13.

14.3 Object type inheritance

It should be possible to implement object type inheritance along the lines outlined in
Chapter 3. For example, an object typePhraseshould be able to have subtypesNP, VP,
etc., which each inherited the features ofPhrase, and which might add other features of
their own. Or an object typeSyntax_nodeshould be able to have subtypesPhrase, Clause,
or Sentence. The benefits of such a scheme have already been outlined in Section 4.2.3.

Multiple inheritance should also be supported, meaning that an object type should be
able to “inherit” from more than one object type.

This would meet requirement D5.1 explained in Section 4.2.3.

14.4 Typed id_ds

At the moment, an id_d is always typeless, i.e., no information is stored along with an id_d
about the object type of the object which owns the id_d. If it were possible to ask, for any
given id_d, to which object type it belonged, then topographic MQL queries could use
this information both to speed up the queries (namely by making some checks that might
cut short some otherwise-to-be-traversed query paths), and to allow greated expressivity
of the MQL queries. For example, a “computed feature” might be invented, which took
the id_d of another feature and returned the object type. Forexample:

SELECT ALL OBJECTS

WHERE

[Word type(parent) = phrase]

GO

This would find all phrases whose parent feature (which wouldbe an id_d) would be of
the type ’phrase’. The feature “type” would be a “computed feature”.

14.5 Complex feature-types

The current implementation of the EMdF model only defines four atomic feature-types
(integer, id_d, enumeration, and string), and three compound feature-types (list of inte-

14.6. FULL QL SUPPORT 177

ger, list of id_d, and list of enumeration). At the very least, the EMdF model should be
extended with list of string as an option.

In addition, the EMdF model should be extended with the possibility of defining com-
plex feature-types other than the simple ordered lists of atomic types currently available.
For example, it should be possible to define features that were:

1. tuples with strongly typed members (any type),

2. sets of strongly typed members (any type), and

3. ordered lists of any other type.

It should be possible to declare these types compositionally, such that, for example it
should be possible to define a pair (tuple) consisting of: a) aset of tuples of strings, and
b) a list of sets of tuples of lists of strings . . . and so on, to any (finite) depth of nesting.
Needless to say, MQL would need to be extended for this to happen.

14.6 Full QL support

The full power of QL still awaits implementation, possibly in MQL. In particular, the
following still need to be implemented:

• Variable support, or something that is on an equal footing with variables theoreti-
cally. The current Object Reference implementation has shaky theoretical founda-
tions.

• Wrap blocks, i.e., being able to specify that some block_string should match a part
of the database which might not be known directly as an objectin the database.

• Automatic permutations of blocks, i.e., being able to specify sets of blocks that
need to be permuted in all possible permutations.

• “AND” between block_strings (see Section 14.7 below).

• “Sifters”, i.e., being able to specify, e.g., that only so many straws should be re-
trieved, or that theblocks should only match if there were precisely so many hits.

The list above is a complete list of things in QL not implemented in MQL. I now turn to
the question of how to extend MQL beyond QL.

14.7 Beyond QL

14.7.1 Introduction

In this Section, I introduce two new ways of extending MQL beyond QL. First, I dis-
cuss variations over the theme of conjoining block_strings. Then, I discuss extending the
capabilities of power blocks.

178 CHAPTER 14. EXTENDING EMDF AND MQL

14.7.2 block_string conjunctions

The “AND” operator between block_strings in QL was specified by Doedens to mean that
the query would match if there were two Straws, one from each of the two AND-conjoined
block_strings, which extended over the same monads of the database, i.e., whose first and
last monads were the same. There are, however, many variations over this theme. For any
two block_stringsA andB, the following operators can be defined:

1. A OVERLAPS WITHB, which means that the Straws fromA andB must share at
least one monad.

2. A OVERLAPS WITH AND STARTS BEFOREB, which means that the Straws
from A andB must share at least one monad, and the straws ofA must start before
the straws ofB.

3. A VIOLATES BORDERS OFB, which means that the Straws fromA andB must
“violate the borders” of each other, as defined in [ICCS-Suppl2008] and Chapter 8.

4. A STARTS ATB, which means that the Straws ofA andB must have the same first
monads.

5. A ENDS AT B, which means that the Straws ofA andB must have the same last
monads.

6. A STARTS AND ENDS ATB, which means that the Straws ofA andB must have
the same firstand last monads. This would implement Doedens’s AND.

7. A STARTSn MONADS BEFOREB, which means that the Straws ofA must start
n monads before the Straws ofB.

8. A STARTSn MONADS AFTERB, which means that the Straws ofA must startn
monads after the Straws ofB.

9. A ENDS n MONADS BEFOREB, which means that the Straws ofA must endn
monads before the ending of the Straws ofB.

10. A ENDS n MONADS AFTER B, which means that the Straws ofA must endn
monads after the ending of the Straws ofB.

The variations could probably go on, but I will stop here.
Especially the “OVERLAPS WITH” operators would be useful, e.g., when dealing

with databases of annotated speech. As argued in [ICCS-Suppl2008] and in Chapter 8,
speech databases often have speaker turns which overlap. Hence, these operators could
be very useful for querying such databases.

14.7.3 power block limitor

I could also extend MQL’spower block to be able to have a limitor which:

14.8. CONCLUSION 179

• Had a lower bound, but no upper bound:

.. >= 3

would mean that there must be at least 3 monads between the block before and
the block after the power block.

• Had a lower bound as well as an upper bound:

.. >= 3 and <= 10

would mean that there must be at least 3 monads and at most 10 monads between
the block before and the block after the power block.

Currently, it is only possible to specify an upper bound on the limitor of a power block,
not a lower bound.

14.8 Conclusion

In this Chaper, I have discussed some possible future extensions of the EMdF model
and/or the MQL query language. They include:

1. Support for declaring structural relationships betweenobject types. This should,
as a minimum, include the covered_by and buildable_from relations discussed by
Doedens [1994]. I also suggest extending EMdF with declarative support for direct
structural relationships which form a directed acyclic graph-structure. Doing so
would meet Doedens’s demand D13 on a “full access model”.

2. Support for (multiple) inheritance between object types. Doing so would be extend
EMdF such that it would be possible to specify ontologies of object types.

3. Support for typed id_ds. Adding this support would extendthe expressivity of the
MQL query language, and might lead to performance gains.

4. Support for types which are more complex than either atomic types or lists of atomic
types, which is what EMdF supports today. Sets of arbitrary,tuples of arbitrary
types, and ordered lists of arbitrary types were suggested.This would extend the
number of possibilities for encoding annotations.

5. Supporting the full QL language in MQL.

6. Going beyond QL in expressivity for MQL.

Thus there are many ways of extending the EMdF model, some of which also have rami-
fications for the extension of the MQL query language.

180 CHAPTER 14. EXTENDING EMDF AND MQL

Chapter 15

Conclusion

This dissertation has been about “annotated text databases”, seen from a theoretical as
well as a practical perspective. During the course of the dissertation, I have shown how
text can be enriched with annotations of the text, and storedin a database for easy retrieval.
I have shown how I have built on the work of Doedens [1994] in order to implement the
EMdF model and the MQL query language. The EMdF model is at once a reduction
and expansion of the MdF model introduced by Doedens [1994].It provides the data
structures needed in order to be able to represent “most” annotations that one would wish
to express. The MQL query language, in turn, is also both a reduction and an expansion
of the QL query language developed by Doedens. The “reduction” with respect to QL
is that a few of QL’s constructs have not been implemented. I have shown in Chapter
14 exactly what the very few constructs which have been left out are. The “expansion”
of MQL with respect to QL is that it is now a “full access language”, providing the full
gamut of “create, retrieve, update, delete” on all of the data domains in the EMdF model.
Thus Doedens’s Demands D1–D12 have been fully met by EMdF andMQL, whereas
Doedens’s own MdF and QL only met Demands D1–D10, plus part ofD12.

I have also shown how the monads sets of the EMdF model relate to time (Chapter
8). As it turns out, the relationship between a monad and the time of an utterance which
it represents is that the monad abstracts away into an integer the time-span to which it
corresponds. Thus, even though the linguistic unit to whichthe monad corresponds has a
specific duration, which may be different from the duration of all other linguistic units in
the text, the monad abstracts away this duration into a single integer. This is part of the
genius of Doedens’s work, for it is one of the cardinal reasons why Doedens’s MdF model
is so elegant mathematically. My EMdF model, being an extension of the MdF model,
merely inherits this elegance.

In Part II, I have shown several applications of the theoretical work described in Part
I. I have shown how the Kaj Munk Corpus has been implemented, first as XML, and
then transformed to an Emdros database. Thus the EMdF model has been vindicated as
being able to express at least the annotation required for storing the Kaj Munk Corpus. As
argued many times in the articles which form an appendix to this dissertation, the EMdF
model supports the free expression of almost any kind of linguistic annotation desirable.
This has not been proven yet, but [RANLP2005] goes some of theway towards such a
proof, by describing how the TIGER model of treebanks can be converted to the EMdF
model.

In Chapter 11, I have shown how the EMdF model and the MQL querylanguage can

181

182 CHAPTER 15. CONCLUSION

be employed in order to support the collaborative annotation of a corpus by a team of
annotators. The principles laid out in this Chapter only hint at what is possible for a col-
laborative annotation tool to support. I have argued the case for why I have chosen these
principles, and leave it up to future research to find better ways of supporting collaborative
annotation procedures.

In Chapter 12, I have shown how the theory laid out in Part I canbe brought to bear
on the Kaj Munk Corpus in a desktop software application, a so-called “Munk Browser”.
This Chapter is the central empirical chapter, bringing together most of the theory dis-
cussed in Part I.

In Chapter 13, I discuss a method of finding quotes from one corpus in another cor-
pus, and how Peter Øhrstrøm and I have tested this method on the problem of finding
quotations from the Bible in the Kaj Munk Corpus.

Finally, in Chapter 14, I have discussed ways in which the EMdF model and the MQL
query language can be extended to support representation and querying of annotated text
databases even better than the current implementation.

The road goes ever on and on.
(Bilbo Baggins)

Bibliography

The TEI guidelines. http://www.tei-c.org/Guidelines/P5/ Access online April 12, 2008,
November 2007.

XML Path Language (XPath) 2.0 – W3C recommendation 23 January 2007. Published
on the web: http://www.w3.org/TR/xpath20/ Accessed March2008, 2007.

Serge Abiteboul. Querying semi-structured data. InProceedings of the 6th International
Conference on Database Theory, volume 1186 ofLecture Notes on Computer Science,
pages 1–18. Springer Verlag, Berlin, Heidelberg, New York,1997. ISBN 3-540-62222-
5.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener.
The Lorel query language for semistructured data.International Journal on Digital
Libraries, 1(1):68–88, April 1997.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers - Principles, Techniques
and Tools. Addison-Wesley, Reading, Massachusetts, USA, 1985.

R. B. J. T. Allenby. Rings, Fields and Groups: An Introduction to Abstract Algebra.
Edward Arnold, second edition, 1991.

Bernd Amann and Michel Scholl. Gram: a graph data model and query lan-
guages. InECHT ’92: Proceedings of the ACM conference on Hypertext, pages
201–211, New York, NY, USA, 1992. ACM. ISBN 0-89791-547-X. doi:
http://doi.acm.org/10.1145/168466.168527.

Mette Skovgaard Andersen, Helle Asmussen, and Jørg Asmussen. The project of kor-
pus 2000 going public. In Anna Braasch and Claus Povlsen, editors,Proceedings of
the 10th EURALEX International Congress, EURALEX 2002, Copenhagen, Denmark,
August 13–17, 2002, pages 291–299, 2002.

Galia Angelova, Kalina Bontcheva, Ruslan Mitkov, Nicolas Nicolov, and Nikolai Nikolov,
editors. International Conference Recent Advances in Natural Language Processing
2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005, Shoumen, Bulgaria,
2005. INCOMA Ltd. ISBN 954-91743-3-6.

Renzo Angles and Claudio Gutierrez. Survey of graph database models.ACM Computing
Surveys, 40(1):1–39, February 2008.

Andrew W. Appel.Modern Compiler Implementation in C: Basic Techniques. Cambridge
University Press, Cambridge, UK, 1997.

183

184 BIBLIOGRAPHY

Actes du Troisième Colloque International: “Bible et Informatique: Interprétation, Her-
méneutique, Compétence Informatique”, Tübingen, 26-30 August, 1991, number 49
in Travaux de linguistique quantitative, Paris and Genève,1992. Association Interna-
tionale Bible et Informatique, Champion-Slatkine.

Niraj Aswani, Valentin Tablan, Kalina Bontcheva, and Hamish Cunningham. Indexing
and querying linguistic metadata and document content. In Angelova et al. [2005],
pages 74–81. ISBN 954-91743-3-6.

Ricardo Baeza-Yates and Gonzalo Navarro. XQL and Proximal Nodes.
Journal of the American Society for Information Science andTechnol-
ogy, 53(6):504–514, May 2002. <http://dx.doi.org/10.1002/asi.10061>,
<http://www.dcc.uchile.cl/˜gnavarro/ps/jasis01.ps.gz>, Access Online August 2004.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Retrieval. Addison-
Wesley, 1999.

D. Barnard and N. Ide. The text encoding initiative: Flexible and extensible document
encoding. Journal of the American Society for Information Science, 48(7):622–628,
1997.

Rudolph Bayer and Edward M. McCreight. Organization and mainte-
nance of large ordered indices. Acta Informatica, 1:173–189, 1972.
<http://www6.in.tum.de/info1/literatur/Bayer_hist.pdf> Access Online January
2005.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, andBernhard Seeger. The r∗-
tree: An efficient and robust access method for points and rectangles+. In Proceedings
of the 1990 ACM SIGMOD international conference on Management of data, pages
322–331. ACM, ACM Press, 1990.

J. Albert Bickford.Tools for Analyzing the World’s Languages – Morphology and Syntax.
Summer Institute of Linguistics, Dallas, Texas, 1998. Based on earlier work by John
Daly, Larrt Lyman, and Mary Rhodes. ISBN 1-55671-046-x.

Steven Bird and Mark Liberman. A formal framework for lin-
guistic annotation. Speech Communication, 33(1,2):23–60, 2001.
<http://www.ldc.upenn.edu/sb/home/papers/0010033/0010033.pdf>, Access On-
line August 2004.

Steven Bird, Peter Buneman, and Wang-Chiew Tan. Towards a query language for an-
notation graphs. InProceedings of the Second International Conference on Language
Resources and Evaluation, pages 807–814. European Language Resources Associa-
tion, Paris, 2000a. <http://arxiv.org/abs/cs/0007023> Access Online August 2004.

Steven Bird, David Day, John Garofolo, John Henderson, Christophe Laprun, and Mark
Liberman. ATLAS: A flexible and extensible architecture forlinguistic annotation. In
Proceedings of the Second International Conference on Language Resources and Eval-
uation, Paris, pages 1699–1706. European Language Resources Association, 2000b.
<http://arxiv.org/abs/cs/0007022>, Access Online August 2004.

BIBLIOGRAPHY 185

Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, and Yifeng Zheng. Extend-
ing XPath to support linguistic queries. InProceedings of Programming Language
Technologies for XML (PLANX) Long Beach, California. January 2005., pages 35–46,
2005.

G.E. Blake, M.P. Consens, P. Kilpeläinen, P.-Å. Larson, T. Snider, and F.W. Tompa. Text
/ relational database management systems: Harmonizing SQLand SGML. InProceed-
ings of the First International Conference on Applicationsof Databases (ADB’94),
Vadstena, Sweden, pages 267–280, 1994.

Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
and Jérôme Siméon. XQuery 1.0: An XML query language. W3C working draft 11
february 2005, 2005. <http://www.w3.org/TR/2005/WD-xquery-20050211/>, Access
Online March 2005.

Sabine Brants and Silvia Hansen. Developments in the TIGER annotation scheme
and their realization in the corpus. InProceedings of the 3rd International Con-
ference on Language Resources and Evaluation (LREC), 2002ELR [2002], pages
1643–1649. <http://www.ims.uni-stuttgart.de/projekte/TIGER/paper/lrec2002-brants-
hansen.pdf> Access Online August 2004.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Lezius Wolfgang, and George Smith. The
TIGER treebank. InProceedings of the Workshop on Treebanks and Linguistic Theo-
ries, Sozopol, Bulgaria., pages 24–41, 2002.

Thorsten Brants. TnT – a statistical part-of-speech tagger. In Proceedings of the Sixth
Applied Natural Language Processing (ANLP-2000), Seattle, WA, 2000.

Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eva Maler, andFrançois Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). World Wide Web Consortium
Recommendation 04 February 2004., 2004. <http://www.w3.org/TR/2004/REC-xml-
20040204> Access Online August 2004.

Eric Brill. A Corpus-Based Approach to Language Learning. PhD thesis, Depart of
Computer and Information Science, University of Pennsylvania, 1993.

J. Carletta, S. Evert, U. Heid, J. Kilgour, J. Robertson, andH. Voormann. The NITE
XML toolkit: flexible annotation for multi-modal language data. Behavior Research
Methods, Instruments, and Computers, special issue on Measuring Behavior, 35(3):
353–363, 2003a.

J. Carletta, J. Kilgour, T. O’Donnell, S. Evert, and H. Voormann. The NITE object model
library for handling structured linguistic annotation on multimodal data sets. InPro-
ceedings of the EACL Workshop on Language Technology and theSemantic Web (3rd
Workshop on NLP and XML, NLPXML-2003), 2003b.

J. Carletta, S. Dingare, M. Nissim, and T. Nikitina. Using the NITE XML toolkit on
the Switchboard corpus to study syntactic choice: a case study. In Proc. of Fourth
Language Resources and Evaluation Conference, Lisbon, Portugal, May 2004, 2004.

186 BIBLIOGRAPHY

Jean Carletta, David McKelvie, Amy Isard, Andreas Mengel, Marion Klein, and
Morten Baun Møller. A generic approach to software support for linguistic annotation
using xml. In G. Sampson and D. McCarthy, editors,Readings in Corpus Linguistics.
Continuum International, London and NY, 2002.

Steve Cassidy. Compiling multi-tiered speech databases into the relational model: Exper-
iments with the Emu system. InProceedings of Eurospeech ’99, Budapest, September
1999, 1999.

Steve Cassidy. XQuery as an annotation query language: a usecase analy-
sis. In Proceedings of the Third International Conference on Language Re-
sources and Evaluation (LREC 2002), Las Palmas, Spain, May 2002 ELR [2002].
<http://wave.ldc.upenn.edu/Projects/QLDB/cassidy-lrec.pdf>, Access Online August
2004.

Steve Cassidy and Steven Bird. Querying databases of annotated speech. In
M.E. Orlowska, editor,Database Technologies: Proceedings of the Eleventh Aus-
tralasian Database Conference, volume 22 of Australian Computer Science Com-
munications, Canberra, Australia, pages 12–20. IEEE Computer Society, 2000.
<http://arxiv.org/abs/cs/0204026>, Access Online August 2004.

Steve Cassidy and Jonathan Harrington. Multi-level annotation in the Emu speech
database management system.Speech Communication, 33(1,2):61–77, 2001.

Steve Cassidy, Pauline Welby, Julie McGory, and Mary Beckman. Testing the adequacy
of query languages against annotated spoken dialog. InProceedings of the 8th Aus-
tralian International Conference on Speech Science and Technology, Canberra, De-
cember 2000, pages 428–433, 2000.

R.G.G. Cattell and Douglas K. Barry, editors.The Object Database Standard: ODMG
2.0. Morgan Kaufmann, San Francisco, revised february 1998 edition, 1997. ISBN
1-55860-463-4.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall, John Hale, and Mark Johnson.
BLLIP 1987–89 WSJ corpus release 1. Linguistic Data Consortium Catalog No
LDC2000T43, http://www.ldc.upenn.edu., 2000.

Oliver Christ. A modular and flexible architecture for an integrated corpus query system.
In Proceedings of COMPLEX’94, 3rd Conference on Computational Lexicography and
Text Research, Budapest, Hungary, July 7–10, 1994, pages 23–32, 1994.

Oliver Christ. Linking WordNet to a corpus query system. In John Nerbonne, editor,
Linguistic Databases, volume 77 ofCSLI Lecture Notes, pages 189–202. CSLI Publi-
cations, Stanford, 1998. ISBN 1-57586-092-9 (PB), ISBN 1-57586-093-7 (HB).

Oliver Christ, Bruno M. Schulze, Anja Hofmann, and Esther König. The IMS cor-
pus workbench: Corpus query processor CQP. Published at http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/CQPUserManual/HTML/, 1999.

Vassilis Christophides, Serge Abiteboul, Sophie Cluet, and Michel Scholl. From struc-
tured documents to novel query facilities. In Richard T. Snodgrass and Marianne

BIBLIOGRAPHY 187

Winslett, editors,Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, Minneapolis, Minnesota, May 24-27, 1994, pages 313–324.
ACM Press, 1994. <http://doi.acm.org/10.1145/191839.191901> Access Online Au-
gust 2004.

Charles L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An algebra for structured text
search and a framework for its implementation.The Computer Journal, 38(1):43–56,
1995.

E.F. Codd. Data models in database management. InInternational Conference on Man-
agement of Data, Proceedings of the 1980 workshop on data abstraction, databases,
and conceptual models, Pingree Park, Colorado, USA, pages 112–114, 1980. ISBN
0-89791-031-1.

M. P. Consens and A. O. Mendelzon. Expressing structural hypertext queries in graphlog.
In HYPERTEXT ’89: Proceedings of the second annual ACM conference on Hyper-
text, pages 269–292, New York, NY, USA, 1989. ACM. ISBN 0-89791-339-6. doi:
http://doi.acm.org/10.1145/74224.74247.

Johann Cook, editor.Bible and Computer - the Stellenbosch AIBI-6 Conference: Proceed-
ings of the Association Internationale Bible Et Informatique “From Alpha to Byte”,
University of Stellenbosch, 17-21 July, 2000, Leiden, 2002. Association Internationale
Bible et Informatique, Brill. ISBN 9004124950.

Scott Cotton and Steven Bird. An integrated framework for treebanks and multilayer
annotations. InProceedings of the Third International Conference on Language Re-
sources and Evaluation (LREC 2002), Las Palmas, Spain, May 2002 ELR [2002],
pages 1670–1677. <http://arxiv.org/abs/cs/0204007>. Access Online August 2004.

Robin Cover. Cover pages – online resource for markup language technologies.
http://xml.coverpages.org Accessed online April 12, 2008., 1986-2008.

Hamish Cunningham and Kalina Bontcheva. Software architectures for language en-
gineering: a critical review. Technical report, Institutefor Language, Speech and
Hearing (ILASH) and Department of Computer Science, University of Sheffield, UK,
2003. <http://www.dcs.shef.ac.uk/research/resmes/papers/CS0309.pdf> Access Online
August 2004.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. GATE:
A framework and graphical development environment for robust NLP tools and
applications. In Proceedings of the 40th Anniversary Meeting of the Asso-
ciation for Computational Linguistics (ACL’02). Philadelphia, July 2002, 2002.
<http://gate.ac.uk/sale/acl02/acl-main.pdf> Access Online August 2004.

C. J. Date.An Introduction to Database Systems. Addison-Wesley, sixth edition, 1995.
ISBN 0-201-82458-2.

Mark Davies. Relational n-gram databases as a basis for unlimited annotation on large
corpora. InProceedings of The Shallow Processing of Large Corpora Workshop (SPro-
LaC 2003), held in conjunction with CORPUS LINGUISTICS 2003, Lancaster Univer-
sity (UK), 27 March, 2003, 2003.

188 BIBLIOGRAPHY

Alex de Joia and Adrian Stenton.Terms in Systemic Linguistics: A Guide to Halliday.
Batsford Academic and Educational Ltd., London, 1980.

David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Özsu. A compre-
hensive XQuery to SQL translation using dynamic interval encoding. InProceedings
of SIGMOD 2003, June 9-12, San Diego, CA. Association for Computing Machinery,
2003.

Crist-Jan Doedens.Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi Amsterdam, Ams-
terdam and Atlanta, GA, 1994. ISBN 90-5183-729-1.

Crist-Jan Doedens and Henk Harmsen. Quest retrieval language reference manual. un-
published reference manual, presented to AND software., September 1990.

Janet W. Dyk.Participles in Context. A Computer-Assisted Study of Old Testament He-
brew., volume 12 ofAPPLICATIO. VU University Press, Amsterdam, 1994. Doctoral
dissertation, Vrije Universiteit Amsterdam. Promotors:Prof. Dr. G. E. Booij and Prof.
Dr. E. Talstra.

Janet W. Dyk and Eep Talstra. Computer-assisted study of syntactical change, the shift in
the use of the participle in Biblical and Post-Biblical Hebrew texts. In Pieter van Reenen
and Karin van Reenen-Stein, editors,Spatial and Temporal Distributions, Manuscript
Constellations – Studies in language variation offered to Anthonij Dees on the occasion
of his 60th birthday, pages 49–62, Amsterdam/Philadelphia, 1988. John Benjamins
Publishing Co. ISBN 90-272-2062-X.

Suzanne Eggins.An Introduction to Systemic Functional Linguistics. Continuum, London
and New York, 1994.

Proceedings of the Third International Conference on Language Resources and Evalua-
tion (LREC 2002), Las Palmas, Spain, May 2002, 2002. ELRA, European Language
Resources Association.

Stefan Evert, Jean Carletta, Timothy J. O’Donnell, Jonathan Kilgour, Andreas
Vögele, and Holger Voorman. The NITE object model, version 2.1. Published
at <http://www.ltg.ed.ac.uk/NITE/documents/NiteObjectModel.v2.1.pdf>., 24 March
2003.

Christiane Fellbaum, editor.WordNet: An Electronic Lexical Database. MIT Press,
London, England and Cambridge, Massachusetts, 1998.

William B. Frakes and Ricardo Baeza-Yates.Information Retrieval: Data Structures and
Algorithms. Prentice Hall, 1992.

Hideo Fujii and Bruce W. Croft. A comparison of indexing techniques for japanese text
retrieval. InProceedings of SIGIR 1993, Pittsburgh, PA, USA., pages 237–246, 1993.

Bernhard Ganter and Rudolf Wille.Formal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997. ISBN 3540627715.
Translator-C. Franzke.

BIBLIOGRAPHY 189

Gaston H. Gonnet and Frank Wm. Tompa. Mind your grammar: a newap-
proach to modelling text. In Peter M. Stocker, William Kent,and Pe-
ter Hammersley, editors,VLDB’87, Proceedings of 13th International Con-
ference on Very Large Data Bases, September 1-4, 1987, Brighton, Eng-
land, pages 339–346. Morgan Kaufmann, 1987. ISBN 0-934613-46-X.
<http://www.sigmod.org/sigmod/dblp/db/conf/vldb/GonnetT87.html> Access Online
August 2004.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. Lexicographical indices
for text: Inverted files vs. pat tree. In William B. Frakes andRicardo A. Baeza-Yates,
editors,Information Retrieval: Data Structures and Algorithms. Prentice-Hall, 1992.
ISBN 0-13-463837-9.

Jacob Harold Greenlee.Introduction to New Testament Textual Criticism. Hendrickson,
Peabody, MA, USA, revised edition, 1995.

Antonin Guttman. R-Trees: A dynamic index structure for spatial search-
ing. In Proceedings of the 1984 ACM SIGMOD international conference
on Management of Data, Boston, Massachusetts, USA, pages 47–57, 1984.
<http://doi.acm.org/10.1145/602259.602266>, Access Online January 2005.

Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A grammar-based approach towards
unifying hierarchical data models (extended abstract). InJames Clifford, Bruce G.
Lindsay, and David Maier, editors,SIGMOD Conference, pages 263–272. ACM Press,
1989.

Michael Alexander Kirkwood Halliday. Systemic grammar. InGunther R. Kress, edi-
tor, Halliday: System and Function in Language, pages 3–6. Oxford University Press,
London, 1976/1969. Original article from 1969.

Michael Alexander Kirkwood Halliday.Introduction to Functional Grammar. Edward
Arnold, London and New York, 2nd edition, 1994.

Christof Hardmeier and Eep Talstra. Sprachgestalt und Sinngehalt: Wege zu neuen In-
strumenten der computergestützten Textwahrnehmung.Zeitschrift für due Alttesta-
mentliche Wissenschaft, 101:3:408–428, 1989.

Henk Harmsen. Software functions, quest-operating-system. unpublished report, Theo-
logical Faculty, Vrije Universiteit, Amsterdam., September 1988.

Henk Harmsen. QUEST: a query concept for text research. InProceedings of the 3rd
Association Bible et Informatique Conference (AIBI3), Tübingen, 26–30 August, 1991
Ass [1992], pages 319–328.

Eliotte Rusty Harold and W. Scott Means.XML In a Nutshell: A Desktop Quick Reference.
O’Reilly, third edition, 2004.

Geoffrey Horrocks.Generative Grammar. Longman, London and New York, 1987.

James W. Hunt and M. Doug McIlroy. An algorithm for differential file comparison.
Technical Report CSTR 41, Bell Telephone Laboratories, Murray Hill, NJ, 1976.

190 BIBLIOGRAPHY

Matt Insall and Eric W. Weisstein. “lattice.” from mathworld–a wolfram web resource.
http://mathworld.wolfram.com/Lattice.html.

ISO. Information processing – text and office systems – standard generalized markup lan-
guage (sgml). International ISO standard ISO 8879:1986, with corrigenda and amend-
ments., 1986.

Jani Jaakkola and Pekka Kilpeläinen. Using sgrep for querying structured text files. Tech-
nical Report C-1996-83, Department of Computer Science, University of Helsinki,
November 1996a. http://www.cs.helsinki.fi/TR/C-1996/83.

Jani Jaakkola and Pekka Kilpeläinen. Nested text-region algebra. Technical Report
C-1999-2, Department of Computer Science, University of Helsinki, January 1996b.
http://www.cs.helsinki.fi/TR/C-1992/2/.

Ray Jackendoff.X-bar Syntax: A Study of Phrase Structure. MIT Press, Cambridge,
Massachusetts, 1977.

Laura Kallmeyer. A query tool for syntactically annotated corpora. InProceedings of
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, Hong Kong, October 2000, pages 190–198, 2000.

Vipul Kashyap and Marek Rusinkiewicz. Modeling and querying textual data us-
ing E-R models and SQL. InProceedings of the Workshop on Management
of SemiStructured Data in conjunction with the 1997 ACM International Con-
ference on the Management of Data (SIGMOD) Tucson, Arizona,May 1997,
1997. <http://lsdis.cs.uga.edu/˜kashyap/publications/SIGMOD-workshop.ps>, Access
Online January 2005.

Stephan Kepser. Finite structure query: a tool for queryingsyntactically annotated
corpora. InEACL ’03: Proceedings of the tenth conference on European chapter
of the Association for Computational Linguistics, pages 179–186, Morristown, NJ,
USA, 2003. Association for Computational Linguistics. ISBN 1-333-56789-0. doi:
http://dx.doi.org/10.3115/1067807.1067832.

Adam Kilgariff, Pavel Rychly, Pavel Smrz, and David Tugwell. The sketch engine. In
Proceedings of the 11th EURALEX International Congress, Loviat, France, pages 105–
116, 2004.

Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast pattern matching in
strings.SIAM Journal on Computing, 6(2):323–350, 1977. doi: 10.1137/0206024.

Esther König and Wolfgang Lezius. The TIGER language. a description language for
syntax graphs. formal definition. Technical report, Institut für Maschinelle Sprachver-
arbeitung (IMS) Unversity of Stuttgart,Germany, April 22 2003. www.ims.uni-
stuttgart.de/projekte/TIGER.

Marcel Kornacker. High-performance extensible indexing.In Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, 1999, pages 699–708. ACM, 1999.

BIBLIOGRAPHY 191

Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing intervals efficiently in
object-relational databases. InVLDB ’00: Proceedings of the 26th International Con-
ference on Very Large Data Bases, pages 407–418, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3.

Catherine Lai. A formal framework for linguistic tree query. Master’s thesis, University
of Melbourne, 2006. This is a “Master of Science by Research”-thesis. 170pp.

Per-Åke Larson. A method for speeding up text retrieval.ACM SIGMIS Database, 15:
19–23, 1984. <http://doi.acm.org/10.1145/1017712.1017717>, Access Online January
2005.

Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin Cui, and KengLik Teo. Supporting
frequent updates in r-trees: A bottom-up approach. InProceedings of the 29th VLDB
Conference, Berlin, Germany, 2003, 2003.

Fritz Lehmann and Rudolf Wille. A triadic approach to formalconcept analysis. In
Gerard Ellis, Robert Levinson, William Rich, and John F. Sowa, editors,Conceptual
Structures: Applications, Implementation and Theory – Third International Conference
on Conceptual Structures, ICCS’95, Santa Cruz, CA, USA, August 1995, Proceedings,
volume 954 ofLecture Notes in Artificial Intelligence (LNAI), pages 32–43, Berlin,
1995. Springer Verlag.

Wolfgang Lezius.Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis,
Institut für Maschinelle Sprachverarbeitung, Universityof Stuttgart, December 2002a.
Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung (AIMS), volume 8,
number 4. <http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/diss/>, Ac-
cess Online August 2004.

Wolfgang. Lezius. TIGERSearch – ein Suchwerkzeug für Baumbanken. In Stephan
Busemann, editor,Proceedings der 6. Konferenz zur Verarbeitung natürlicherSprache
(KONVENS 2002), Saarbrücken, pages 107–114, 2002b.

Arjan. Loeffen. Text databases: a survey of text models and systems. ACM SIGMOD
Record, 23(1):97–106, March 1994. <http://doi.acm.org/10.1145/181550.181565> Ac-
cess Online August 2004.

Robert E. Longacre.The Grammar of Discourse. Topics in Language and Linguistics.
Kluwer Academic / Plenum Press, New York and London, 2nd edition, 1996. ISBN
0306452359.

H. P. Luhn. Keyword-in-context index for technical literature (KWIC index). American
Documentation, 11(4):288–295, October 1960.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz,
and B. Schasberger. The Penn treebank: Annotating predicate argument structure. In
ARPA Human Language Technology Workshop, 1994a.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank.Computational Linguistics, 19(2):
313–330, 1994b.

192 BIBLIOGRAPHY

John C. Martin. Introduction to Languages and the Theory of Computation. McGraw-
Hill, Singapore, international edition, 1991. ISBN 0-07-100851-9.

Ronald G. Matteson.Introduction to Document Image Processing Techniques. Artech
House, Boston, London, 1995. ISBN 0-89006-492-X.

James D. McCawley. Parentheticals and discontinuous constituent structure.Linguistic
Inquiry, 13(1):91–106, 1982.

David McKelvie, Amy Isard, Andreas Mengel, Morten Baun Møller, Michael Grosse, and
Marion Klein. The MATE workbench — an annotation tool for XMLcoded speech
corpora.Speech Communication, 33(1,2):97–112, 2001.

Andreas Mengel. MATE deliverable D3.1 – specification of coding work-
bench: 3.8 improved query language (Q4M). Technical report, Institut für
Maschinelle Sprachverarbeitung, Stuttgart, 18. November, 1999. <http://www.ims.uni-
stuttgart.de/projekte/mate/q4m/>.

Andreas Mengel and Wolfgang Lezius. An xml-based representation format for syn-
tactically annotated corpora. InIn Proceedings of the International Conference on
Language Resources and Evaluation (LREC), Athens, Greece,2000, pages 121–126,
2000.

Maël Benjamin Mettler. Parallel treebank search — the implementation of stockholm
treealigner search. B.Sc. thesis in Computational Linguistics, Department of Linguis-
tics, Stockholm University, Sweden., March 2007.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J.
Miller. Introduction to WordNet: an on-line lexical database. International Journal of
Lexicography, 3(4):235–244, 1990.

Jǐrí Mírovský, Roman Ondruška, and Daniel Pruša. Searching through prague depen-
dency treebank. InProceedings of the First Workshop on Treebanks and Linguistic
Theories (TLT2002), Sozopol, Bulgaria, pages 144–122, 2002.

Kaj Munk. Ordet — Skoleudgave — Med Indledning og Oplysninger ved Niels Nielsen.
Nyt Nordisk Forlag, Arnold Busck, Kjøbenhavn, 1947.

Preslav Nakov, Ariel Schwartz, Brian Wolf, and Marti Hearst. Supporting annotation
layers for natural language processing. InProceedings of the ACL 2005 on Interactive
poster and demonstration sessions, Ann Arbor, Michigan, pages 65–68, 2005.

Gonzales Navarro and Ricardo Baeza-Yates. A language for queries on structure and con-
tents of textual databases. In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors,
SIGIR’95, Proceedings of the 18th Annual International ACMSIGIR Conference on
Research and Development in Information Retrieval. Seattle, Washington, USA, July 9-
13, 1995 (Special Issue of the SIGIR Forum), pages 93–101. ACM Press, 1995. ISBN
0-89791-714-6.

Gonzales Navarro and Ricardo Baeza-Yates. Proximal nodes:A model to query document
databases by content and structure.ACM Transactions on Information Systems (TOIS),

BIBLIOGRAPHY 193

15(4):400–435, October 1997. <http://doi.acm.org/10.1145/263479.263482>, Access
Online August 2004.

Gavin Thomas Nicol. Core range algebra – toward a formal model of markup. Online ar-
ticle, http://www.mind-to-mind.com/library/papers/index.html Access online April 12,
2008, 2002.

Jórgen Fischer Nilsson. A logico-algebraic framework for ontologies: ONTOLOG. In
Per Anker Jensen and Peter Skadhauge, editors,Ontology-based Interpretation of Noun
Phrases: Proceedings of the First International OntoQueryWorkshop, number 21/2001
in Skriftserie - Syddansk Universitet, Institut for Fagsprog, Kommunikation og Infor-
mationsvidenskab, pages 11–35, Kolding, 2001. Dept. of Business Communication and
Information Science, University of Southern Denmark.

Peter Øhrstrøm and Per F.V. Hasle.Temporal Logic — From Ancient Ideas to Artificial
Intelligence, volume 57 ofStudies in Linguistics and Philosophy. Kluwer Academic
Publisher, Dordrecht, 1995. ISBN 0-7923-3586-4.

Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe. What has happened to ontology.
In Frithjof Dau, Marie-Laure Mugnier, and Gerd Stumme, editors,Conceptual Struc-
tures: Common Semantics for Sharing Knowledge: 13th International Conference on
Conceptual Structures, ICCS 2005, volume 3596 ofLNCS, pages 425–438. Springer
Verlag, 2005.

G. Petasis, V. Karkaletsis, G. Paliouras, I. Androutsopoulos, and C. D. Spyropoulos. El-
logon: A new text engineering platform. InProceedings of the Third International
Conference on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain,
May 2002ELR [2002], pages 72–78.

Ulrik Petersen. The Extended MdF model. Unpublished B.Sc. thesis in computer sci-
ence, DAIMI, Aarhus University, Denmark. Available from http://ulrikp.org/., Novem-
ber 1999.

Ulrik Petersen. Emdros — a text database engine for analyzedor annotated text. In
Proceedings of COLING 2004,20th International Conference on Computational Lin-
guistics, August23rd to 27th, 2004, Geneva, pages 1190–1193. International Commi-
tee on Computational Linguistics, 2004. http://emdros.org/petersen-emdros-COLING-
2004.pdf.

Ulrik Petersen. Querying both parallel and treebank corpora: Evaluation of a
corpus query system. InProceedings of LREC 2006, 2006a. Available as
http://ulrikp.org/˜ulrikp/pdf/LREC2006.pdf.

Ulrik Petersen. MQL programmer’s reference guide. Published as part of every Emdros
software release., 2007a.

Ulrik Petersen. Principles, implementation strategies, and evaluation of a corpus query
system. InFinite-State Methods and Natural Language Processing – 5thInternational
Workshop, FSMNLP 2005, Helsinki, Finland, September 1-2, 2005. Revised Papers,
volume 4002 ofLecture Notes in Artifical Intelligence (LNAI), pages 215–226, Berlin,
Heidelberg, New York, 2006b. Springer Verlag.

194 BIBLIOGRAPHY

Ulrik Petersen. Evaluating corpus query systems on functionality and speed: Tigersearch
and emdros. In Angelova et al. [2005], pages 387–391. ISBN 954-91743-3-6.

Ulrik Petersen. Relational implementation of the emdf model. Published as part of every
Emdros software release., 2007b.

Kenneth L. Pike and Evelyn Pike.Grammatical Analysis. Number 53 in Summer Institute
of Linguistics, Publications in Linguistics. Summer Institute of Linguistics, 2nd revised
edition, 1982. Reprint 1991. xxvi + 463 + 39 pages.

Martin F. Porter. An algorithm for suffix stripping.Program, 14(3):130–138, July 1980.

Eric Steven Raymond.The Art of Unix Programming. Addison-Wesley, Reading, Mas-
sachusetts, USA, 2003.

Philip Resnik and Aaron Elkiss. The linguist’s search engine: An overview. InProceed-
ings of ACL 2005 (Demonstration Section), 2005.

Douglas L. T. Rohde. Tgrep2 user manual, version 1.12. Available online
<http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf>. Access Online April 2005, 2004.

Pavel Rychlý. Korpusové manažery a jejich effektivní implementace. PhD thesis, Fac-
ulty of Informatics, Masarykova Univerzita v Brně, Czech Republic, 2000. In Czech.
English translation of title: “Corpus Managers and their effective implementation”.

Ulrik Sandborg-Petersen. Emdros programmer’s reference guide.
http://emdros.org/progref/ Accessed March 2008, 2002-2008.

Ingo Schröder. A case study in part-of-speech tagging usingthe icopost toolkit. Technical
Report Computer Science Memo 314/02, University of Hamburg, Germany, 2002.

Julian Smart, Kevin Hock, and Stefan Csomor.Cross-Platform GUI Programming with
wxWidgets. Bruce Perens’ Open Source Series. Prentice-Hall, 2005.

John F. Sowa.Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA, 2000.

Ilona Steiner and Laura Kallmeyer. VIQTORYA – a visual querytool for syntactically
annotated corpora. InProceedings of the Third International Conference on Language
Resources and Evaluation (LREC 2002), Las Palmas, Spain, May 2002ELR [2002].

Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, USA, third edition, 1997.

Jean Tague, Airi Salminen, and Charles McClellan. Completeformal model for infor-
mation retrieval systems. InProceedings of the 14th annual international ACM SIGIR
conference on Research and Development in Information Retrieval, Chicago, Illinois,
USA, pages 14–20, 1991. <http://doi.acm.org/10.1145/122860.122862>, Access On-
line January 2005.

BIBLIOGRAPHY 195

Eep Talstra. Text grammar and computer. The balance of interpretation and calculation.
In Actes du Troisième Colloque International: “Bible et Informatique: Interpréta-
tion, Herméneutique, Compétence Informatique”, Tübingen, 26-30 August, 1991Ass
[1992], pages 135–149.

Eep Talstra. Grammar and prophetic texts – computer-assisted syntactical research in
Isaiah. In Jacques Vermeylen, editor,The Book of Isaiah, volume LXXXI of Biblio-
theca Ephemeridum Theologicarum Lovaniensium, pages 83–91, Leuven, Netherlands,
1989. Leuven University Press.

Eep Talstra. Computer-assisted linguistic analysis. The Hebrew database used in Quest.2.
In Cook [2002], pages 3–22. ISBN 9004124950.

Eep Talstra. On scrolls and screens: Bible reading between history and industry. Un-
published manuscript of the Werkgroep Informatica, Vrije Universiteit, Amsterdam,
n.d.

Eep Talstra. Signs, design, and signification. The example of I Kings 21. In Cook [2002],
pages 147–166. ISBN 9004124950.

Eep Talstra. Phrases, clauses and clause connections in theHebrew data base of the
Werkgroep Informatica: Computer-assisted production of syntactically parsed textual
data. Unpublished manuscript detailing the procedures used in the analysis-software
developed at the Werkgroep Informatica, 3 February 1998.

Eep Talstra. A hierarchy of clauses in Biblical Hebrew narrative. In Ellen van Wolde,
editor, Narrative Syntax and the Hebrew Bible, volume 29 ofBiblical Interpretation
Series, pages 85–118, Leiden, New York, Köln, 1997. Brill. ISBN 90-04-10787-8.

Eep Talstra and Ferenç Postma. On texts and tools. A short history of the Werkgroep
Informatica (1977-1987). In Eep Talstra, editor,Computer Assisted Analysis of Biblical
Texts, volume 7 ofAPPLICATIO, pages 9–27, Amsterdam, 1989. VU University Press.

Eep Talstra and Constantijn Sikkel. Genese und Kategorienentwicklung der WIVU-
Datenbank. In Christof Hardmeier, Wolf-Dieter Syring, Jochen D. Range, and Eep
Talstra, editors,Ad Fontes! Quellen erfassen - lesen - deuten. Was ist Computerphilolo-
gie?, volume 15 ofAPPLICATIO, pages 33–68, Amsterdam, 2000. VU University
Press.

Eep Talstra and Christo H.J. van der Merwe. Analysis, retrieval and the demand for
more data. Integrating the results of a formal textlinguistic and cognitive based prag-
matic approach to the analysis of Deut 4:1-40. In Cook [2002], pages 43–78. ISBN
9004124950.

Eep Talstra and Archibald L.H.M. Van Wieringen, editors.A Prophet on the Screen –
Computerized Description and Literary Interpretation of Isaianic Texts, volume 9 of
APPLICATIO, Amsterdam, 1992. VU University Press.

Eep Talstra, Christof Hardmeier, and James Alan Groves. Quest. Electronic concor-
dance application for the Hebrew Bible (database and retrieval software). Nederlands
Bijbelgenootschap (NBG), Haarlem, Netherlands, 1992. Manual: J.A. Groves, H.J.

196 BIBLIOGRAPHY

Bosman, J.H. Harmsen, E. Talstra,User Manual Quest. Electronic Concordance Ap-
plication for the Hebrew Bible, Haarlem, 1992.

Henry S. Thompson and David McKelvie. Hyperlink semantics for standoff markup of
read-only documents. InProceedings of SGML Europe ’97, Barcelona, Spain, May
1997, 1997. Available: <http://www.ltg.ed.ac.uk/˜ht/sgmleu97.html>.

Frank Wm. Tompa. A data model for flexible hypertext databasesystems.ACM Transac-
tions on Information Systems, 7(1):85–100, January 1989.

Jeffrey D. Ullman and Jennifer Widom.A First Course in Database Systems. Prentice-
Hall International, London, 1997. ISBN 0-13-887647-9.

Robert D. Van Valin, Jr.An introduction to Syntax. Cambridge University Press, Cam-
bridge, U.K., 2001.

Robert D. Van Valin, Jr. and Randy J. LaPolla.Syntax – Structure, meaning, and function.
Cambridge University Press, Cambridge, U.K., 1997.

A.L.H.M. van Wieringen.Analogies in Isaiah Volumes A + B. Number 10 in Applicatio.
Free University Press, Amsterdam, 1993.

Arian J.C. Verheij and Eep Talstra. Crunching participles.An aspect of computer assisted
syntactical analysis demonstrated on Isaiah 1-12. In Talstra and Van Wieringen [1992],
pages 21–33.

Holger Voormann, Stefan Evert, Jonathan Kilgour, and Jean Carletta. NXT search user’s
manual (draft). http://www.ims.uni-stuttgart.de/projekte/nite/manual/, 2003.

W3C contributors. XHTML 1.0 The extensible hypertext markup language: A reformula-
tion of HTML 4 in XML 1.0, W3C Recommendation 26 january 2000,revised 1 august
2002, 2002.

Glynn Winskel.The formal semantics of programming languages: An introduction. MIT
Press, Cambridge, Mass., 1993. ISBN 0-262-23169-7.

Nicolai Winther-Nielsen and Eep Talstra.A Computational Display of Joshua. A
Computer-assisted Analysis and Textual Interpretation, volume 13 ofAPPLICATIO.
VU University Press, Amsterdam, 1995.

Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On support-
ing containment queries in relational database managementsystems. InProceedings
of the 2001 ACM SIGMOD international conference on Management of data, Santa
Barbara, California, United States, pages 425–436, 2001. ISBN:1-58113-332-4.

Justin Zobel and Alistair Moffat. Inverted files for text search engines.ACM Computing
Surveys, 38(2):1–56, July 2006.

Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files versus signa-
ture files for text indexing.ACM Transactions on Database Systems, 23(4):453–490,
December 1998.

Appendix A

Topographic MQL: Grammar

In this Appendix, I display the grammar of the topographic part of MQL, as it is today.
This is done in something that looks like Backus-Naur form.

topograph ::= blocks.

blocks ::= block_string.

block_string ::= block_string2 .

block_string ::= block_string2 KEY_OR block_string .

block_string2 ::= block_string1 .

block_string2 ::= block_string1 block_string2 .

block_string2 ::= block_string1 KEY_EXCLAMATION block_string2 .

block_string1 ::= block_string0 .

block_string1 ::= block_string0 KEY_STAR star_monad_set.

block_string0 ::= block .

block_string0 ::= KEY_OPEN_SQUARE_BRACKET block_string

KEY_CLOSE_SQUARE_BRACKET .

block ::= object_block.

block ::= power.

block ::= opt_gap_block.

block ::= gap_block.

block ::= notexist_object_block.

object_block ::= KEY_OPEN_SQUARE_BRACKET object_type_name

mark_declaration

object_reference_declaration

retrieval firstlast

feature_constraints

feature_retrieval

opt_blocks KEY_CLOSE_SQUARE_BRACKET.

197

198 APPENDIX A. TOPOGRAPHIC MQL: GRAMMAR

notexist_object_block ::= notexist

KEY_OPEN_SQUARE_BRACKET object_type_name

mark_declaration

object_reference_declaration

retrieval firstlast

feature_constraints

feature_retrieval

opt_blocks KEY_CLOSE_SQUARE_BRACKET.

notexist ::= KEY_NOTEXIST .

notexist ::= KEY_NOTEXISTS .

object_reference_declaration ::= . /* empty */

object_reference_declaration ::= KEY_AS object_reference.

mark_declaration ::= . /* empty */

mark_declaration ::= MARK .

object_reference ::= IDENTIFIER.

retrieval ::= . /* empty */

retrieval ::= KEY_NORETRIEVE.

retrieval ::= KEY_RETRIEVE.

retrieval ::= KEY_FOCUS.

firstlast ::= . /* empty */

firstlast ::= KEY_FIRST.

firstlast ::= KEY_LAST.

firstlast ::= KEY_FIRST KEY_AND KEY_LAST.

feature_constraints ::= .

feature_constraints ::= ffeatures.

ffeatures ::= fterm.

ffeatures ::= ffeatures KEY_OR fterm.

fterm ::= ffactor.

fterm ::= fterm KEY_AND ffactor.

ffactor ::= KEY_NOT ffactor.

ffactor ::= KEY_OPEN_BRACKET ffeatures KEY_CLOSE_BRACKET.

ffactor ::= feature_comparison.

feature_comparison ::= feature_name comparison_operator value.

feature_comparison ::= feature_name KEY_IN

KEY_OPEN_BRACKET list_of_identifier KEY_CLOSE_BRACKET.

199

feature_comparison ::= feature_name KEY_IN

KEY_OPEN_BRACKET list_of_integer KEY_CLOSE_BRACKET.

feature_comparison ::= feature_name KEY_IN object_reference_usage.

comparison_operator ::= KEY_EQUALS.

comparison_operator ::= KEY_LESS_THAN.

comparison_operator ::= KEY_GREATER_THAN.

comparison_operator ::= KEY_NOT_EQUAL.

comparison_operator ::= KEY_LESS_THAN_OR_EQUAL.

comparison_operator ::= KEY_GREATER_THAN_OR_EQUAL.

comparison_operator ::= KEY_TILDE.

comparison_operator ::= KEY_NOT_TILDE.

comparison_operator ::= KEY_HAS.

value ::= enum_const.

value ::= signed_integer.

value ::= STRING.

value ::= object_reference_usage.

enum_const ::= IDENTIFIER.

object_reference_usage ::= object_reference KEY_DOT feature_name.

feature_retrieval ::= KEY_GET feature_list.

feature_retrieval ::= . /* empty */

feature_list ::= feature_name.

feature_list ::= feature_list KEY_COMMA feature_name.

opt_blocks ::= . /* empty */

opt_blocks ::= blocks.

star_monad_set ::= .

star_monad_set ::= monad_set .

monad_set ::= KEY_OPEN_BRACE monad_set_element_list KEY_CLOSE_BRACE.

monad_set_element_list ::= monad_set_element.

monad_set_element_list ::=

monad_set_element_list KEY_COMMA monad_set_element.

monad_set_element ::= INTEGER.

monad_set_element ::= INTEGER KEY_DASH INTEGER.

monad_set_element ::= INTEGER KEY_DASH .

200 APPENDIX A. TOPOGRAPHIC MQL: GRAMMAR

opt_gap_block ::= KEY_OPEN_SQUARE_BRACKET KEY_OPT_GAP

mark_declaration gap_retrieval opt_blocks

KEY_CLOSE_SQUARE_BRACKET.

gap_retrieval ::= . /* empty */

gap_retrieval ::= KEY_NORETRIEVE.

gap_retrieval ::= KEY_RETRIEVE.

gap_retrieval ::= KEY_FOCUS.

gap_block ::= KEY_OPEN_SQUARE_BRACKET KEY_GAP

mark_declaration gap_retrieval opt_blocks

KEY_CLOSE_SQUARE_BRACKET.

power ::= KEY_POWER restrictor.

power ::= KEY_POWER KEY_BETWEEN limit KEY_AND limit.

restrictor ::= . /* empty */

restrictor ::= KEY_LESS_THAN limit.

restrictor ::= KEY_LESS_THAN_OR_EQUAL limit.

limit ::= INTEGER. /* non-negative integer, may be 0. */

Appendix B

Published articles

The following pages contain the published articles which form part of the basis for eval-
uation of my PhD work.

201

202 APPENDIX B. PUBLISHED ARTICLES

203

[COLING2004]

Emdros — a text database engine
for analyzed or annotated text

Ulrik Petersen

2004

Published in: Proceedings of COLING 2004, held August 23–27, 2004 in Geneva.

International Committee on Computational Linguistics, pp. 1190–1193

204

This page left intentionally blank

205

Emdros– a text database engine for analyzed or annotated text

Ulr ik Petersen
Department of Communication

University of Aalborg
Kroghstræde3

DK – 9220Aalborg East
Denmark

ulrikp@hum.aau.dk

Abstract
Emdros is a text database engine for linguistic
analysis or annotation of text. It is applicca-
ble especially in corpus linguistics for storing
and retrieving linguistic analysesof text, at any
linguistic level. Emdros implements the EMdF
text database model and the MQL query lan-
guage. In thispaper, I present both, and give an
example of how Emdros can be useful in com-
putational li nguistics.

1 Introduction

As (Abeill é, 2003) points out, “corpus-based lin-
guisticshasbeen largely limited to phenomena that
can be accessed via searches on particular words.
Inquiries about subject inversion or agentlesspas-
sives are impossible to perform oncommonly avail -
able corpora” (p. xiii).

Emdros is atext database engine which attempts
to remedy this situation in some measure. Emdros’
query language is very powerful, allowing the kind
of searches which Abeill é mentions to be formu-
lated quickly and intuitively. Of course, this pre-
supposes adatabasewhich is tagged with the data
necessary for answering the query.

Work has been done on supporting complex
queries, e.g., (Bird et al., 2000; Cassidy and Bird,
2000; Mengel, 1999; Clarke et al., 1995). Em-
dros complements thesepiecesof work, providing
a working implementation of many of the features
which these systems support.

In this paper, I present the EMdF text database
model on which Emdros rests, and the MQL query
languagewhich it implements. In addition, I give an
example of how Emdros can beuseful in answering
questions in computational li nguistics.

2 History of Emdros

Emdros springs out of a reformulation and imple-
mentation of thework doneby Crist-Jan Doedens in
his 1994PhD thesis (Doedens, 1994). Doedens de-
fined the MdF (Monads-dot-Features) text database
model, and theQL query language. Doedensgave a

denotational semantics for QL and loaded QL with
features, thus making it very difficult to implement.
The present author later took Doedens’ QL, scaled
it down, and gave it an operational semantics, hence
making it easier to implement, resulting in theMQL
query language. I also took the MdF model and
extended it slightly, resulting in the EMdF model.
Later, I implemented both, resulting in the Emdros
text database engine, which has been available as
Open Source software since October 2001. The
website1 hasfull sourcecode and documentation.

Emdros is a general-purpose engine, not a spe-
cific application. This means that Emdros must be
incorporated into a specific software application be-
fore it can be madeuseful.

3 The EMdF model
TheEMdF model is an extension of theMdF model
developed in (Doedens, 1994). The EMdF (Ex-
tended MdF) model is based on four concepts:
Monad, object, object type, and feature. I describe
each of thesein turn, and give a small example of
an EMdF database.

3.1 Monad
A monad is simply an integer. The sequenceof the
integers (1,2,3, etc.) dictates the sequence of the
text. Themonadsdo not impose areading-direction
(e.g., left-to-right, right-to-left), but merely a logical
text-order.

3.2 Object
An object is simply a set of monads with an asso-
ciated object type. The set is arbitrary in the sense
that there are no restrictions on the set. E.g., {1},
{2}, {1,2}, {1,2,6,7} are all valid objects. This al-
lows for objects with gaps, or discontiguous objects
(e.g., discontiguous clauses). In addition, an object
alwayshas aunique integer id, separate from thethe
object’s monad set.

Objects are the building blocks of the text it-
self, as well as the annotations or analysesin the

1http://emdros.org/

206

database. To seehow, we must introduce object
types.

3.3 Object type

An object type groups a set of objects into such
classes as “Word” , “Phrase”, “Clause”, “Sentence”,
“Paragraph”, “Chapter” , “Book” , “Quotation” , “Re-
port” , etc. Generally, when designing an Em-
dros database, one chooses amonad-granularity
which dictates the smallest object in the database
which corresponds to one monad. This smallest
object is often “Word” , but could be “Morpheme”,
“Phoneme” or even “Grapheme”. Thus, for exam-
ple, Word number 1 might consist of the object set
{1}, and Word number 2 might consist of the ob-
ject set {2}, whereasthefirst Phrasein thedatabase
might consist of the set {1,2}.

3.4 Feature

An object type can have any number of features. A
feature is an attribute of an object, and always has a
type. The type can be a string, an integer, an enu-
meration, or an object id. The latter allows for com-
plex interrelationships among objects, with objects
pointing to each other, e.g., a dependent pointing to
ahead.

An enumeration is a set of labelswith values. For
example, one might define an enumeration “psp”
(part of speech) with labels such as “noun”, “verb” ,
“adjective”, etc. Emdros supports arbitrary defini-
tion of enumeration label sets.

3.5 Example

Consider Figure1. It shows an EMdF database cor-
responding to one possible analysis of the sentence
“The door wasblue.” There are threeobject types:
Word, Phrase, and Clause. The Clauseobject type
hasno features. The Phraseobject type hasthe fea-
ture “phr_type ” (phrasetype). The Word object
type hasthe features “surface ” and “psp ” .

The monad-granularity is “Word” , i.e., each
monad corresponds to one monad. Thus the word
with id 10001consists of the monad set {1}. The
phrase with id 10005 consists of the monad set
{1,2}. The single clause object consists of the
monad set {1,2,3,4}.

The text is encoded by the “surface ” feature
on Word object type. One could add features such
as “lemma” , “number ” , “gender ” , or any other
feature relevant to the databaseunder construction.
The Phrase object type could be given features
such as “function ” , “apposition_head ” ,
“ relative_head ” , etc. The Clauseobject type
could begiven featuresdistinguishingsuch things as
“VSO order” , “ tenseof verbal form”, “ ill ocutionary

force”, “nominal clause/verbless clause”, etc. It all
dependsonthetheory used to describe thedatabase,
aswell asthe research goals.

 1 2 3 4

word
w: 10001
surface: The
psp: article

w: 10002
surface: door
psp: noun

w: 10003
surface: was
psp: verb

w: 10004
surface: blue.
psp: adjective

phrase
p: 10005
phr_type: NP

p: 10006
phr_type: VP

p: 10007
phr_type: AP

clause c: 10008

Figure 1: A small EMdF database

4 The MQL query language
MQL is based on two properties of text which are
universal: sequence and embedding. All texts have
sequence, dictated bythe constraintsof time andthe
limitation of our human vocal tract to produceonly
one sequence of words at any given time. In ad-
dition, all texts have, when analyzed linguistically,
some element of embedding, as embodied in theno-
tions of phrase, clause, sentence, paragraph, etc.

MQL directly supports searching for sequence
and embedding by means of the notion of topo-
graphicity. Originally invented in (Doedens, 1994),
a (formal) language is topographic if and only if
there is an isomorphism between the structure of an
expression in thelanguage andtheobjectswhich the
expression denotes.

MQL’s basic building block is the object block.
An object block searchesfor objects in thedatabase
of agiven type, e.g., Word, Phraseor Clause. If two
object blocks are adjacent, then the objects which
they find must also be adjacent in the database. If
an object block is embedded inside another object
block, then the inner object must be embedded in
the outer object in the database.

Consider Figure 2. It shows two adjacent object
blocks, with feature constraints. This would find
two Phraseobjects in the databasewhere the first is
an NP and the second is aVP. The objects must be
adjacent in the databasebecause the object blocks
are adjacent.

[Phrase phrase_type = NP]
[Phrase phrase_type = VP]

Figure 2: Two adjacent object blocks

Now consider Figure 3. This query would find
a clause, with the restriction that embedded inside
the clause must be two phrases, a subject NP and

207

a predicate VP, in that order. The “.. ” operator
means that spaceis allowed between theNPandthe
VP, but the spacemust be inside the limits of the
surrounding clause. All of this presupposes an ap-
propriately tagged database, of course.

[Clause
[Phrase phrase_type = NP

and function = Subj]
..
[Phrase phrase_type = VP

and function = Pred]
]

Figure 3: Examplesof embedding

The restrictions of type
“phrase_type = NP ” refer to features (or
attributes) of the objects in the database. The re-
strictionexpressions can be any Boolean expression
(and/or/not/parentheses), allowing very complex
restrictions at the object-level.

Consider Figure 4. It shows how one can look
for objects inside “gaps” in other objects. In some
linguistic theories, the sentence “The door, which
opened towardstheEast, wasblue” would consist of
one discontiguous clause(“The door . . .wasblue”)
with an intervening nonrestrictive relative clause,
not part of the surrounding clause. For a sustained
argument in favor of this interpretation, see(Mc-
Cawley, 1982). The query in Figure 4 searchesfor
structuresof this kind. The surrounding context is
a Sentence. Inside of this sentence, one must find a
Clause. Thefirst object in this clausemust be a sub-
ject NP. Directly adjacent to this subject NPmust be
a gap in the surrounding context (the Clause). In-
side of this gap must be aClausewhose clausetype
is “nonrestr_rel ” . Directly after the close of
thegap, onemust findaVPwhosefunction ispred-
icate. Mapping this structure to the example sen-
tenceis left as an exercisefor the reader.

[Sentence
[Clause

[Phrase FIRST phrase_type = NP
and function = Subj]

[gap
[Clause cl_type = nonrestr_rel]

]
[Phrase phrase_type = VP

and function = Pred]
]

]

Figure 4: An example with agap

Lastly, objects can refer to each other in the
query. This is useful for specifying such things as
agreement and heads/dependents. In Figure 5, the
“AS” keyword gives aname (“w1”) to the nounin-
side the NP, and this name can then be used inside
the adjective in theAdjP to specify agreement.

[Phrase phrase_type = NP
[Word AS w1 psp = noun]

]
[Phrase phrase_type = AdjP

[Word psp = adjective
and number = w1.number
and gender = w1.gender]

]

Figure 5: Examplewith agreement

MQL provides anumber of featuresnot covered
in this paper. For full documentation, seethe web-
site.

The real power of MQL lies in its abilit y to ex-
press complex search restrictions both at the level
of structure (sequence and embedding) and at the
object-level.

5 Application
One prominent example of an Emdros databasein
useis the Werkgroep Informatica (WI) databaseof
the Hebrew Bible developed under Prof. Dr. Eep
Talstra at the FreeUniversity of Amsterdam. The
WI databaseis a large text database comprising a
syntactic analysis of the Hebrew Bible (also called
theOld Testament in Hebrew andAramaic). This is
a 420,000 word corpus with about 1.4 milli on syn-
tactic objects. The databasehasbeen analyzed up
to clause level all the way through, and has been
analyzed up to sentence level for large portions of
thematerial. A completedescription of thedatabase
and theunderlying linguistic model can be foundin
(Talstra and Sikkel, 2000).

In the book of Judges chapter 5 verse1, we are
told that “Deborah and Barak sang” a song. Debo-
rah and Barak are clearly a plural entity, yet in He-
brew the verb is feminine singular. Wasthis an in-
stance of bad grammar? Did only Deborah sing?
Why is the verb not plural?

In Hebrew, the rule seems to be that the verb
agreesin number and gender with the first item in a
compoundsubject, when the verb precedesthe sub-
ject. This has been known at least since the 19th
century, as evidenced by the Gesenius-Kautzsch
grammar of Hebrew, paragraph 146g.

With Emdros and the WI database, we can val-
idate the rule above. The query in Figure 6 finds

208

234instances, showing that the pattern wasnot un-
common, and inspection of the results show that the
verb most often agreeswith the first member of the
compoundsubject. The 234 “hits” are the bare re-
sults returned from the query engine. It is up to the
researcher to actually look at the data and verify or
falsify their hypothesis. Also, one would have to
look for counterexampleswith another query.

[Clause
[Phrase function = Pred

[Word AS w1 psp = verb
and number = singular]

]
..
[Phrase function = Subj

[Word (psp = noun
or psp = proper_noun
or psp = demonstrative_pronoun
or psp = interrogative_pronoun
or psp = personal_pronoun)

and number = singular
and gender = w1.gender]

..
[Word psp = conjunction]

]
]

Figure 6: Hebrew example

The query finds clauseswithin which there are
two phrases, the first being a predicate and the sec-
ond being a subject. The phrasesneed not be adja-
cent. The predicate must contain a verb in the sin-
gular. The subject must first contain a noun, proper
noun, or pronoun which agreeswith the verb in
number and gender. Thena conjunctionmust follow
the noun, still i nside the subject, but not necessarily
adjacent to the noun.

The WI databaseis the primary example of an
Emdros database. Other databases stored in Em-
dros include the morphologically encoded Hebrew
Bibleproduced at theWestminster Hebrew Institute
in Philadelphia, Pennsylvania, and a corpus of 67
milli on words in use at the University of I lli nois at
Urbana-Champaign.

6 Conclusion
In this paper, I have presented the EMdF model
and the MQL query language asimplemented in
theEmdros text database engine. I have shown how
MQL supports the formulation of complex linguis-
tic querieson tagged corpora. I have also given an
example of a specific problem in Hebrew linguis-
ticswhich is nicely answered by an Emdros query.
Thus Emdros provides a solid platform on which

to build applications in corpus linguistics, capable
of answering linguistic questions of a complexity
higher than what most systems can offer today.

Acknowledgements
My thanks go to Constantijn Sikkel of the Werk-
groep Informatica for coming upwith the problem
for the Hebrew query example.

References
Anne Abeill é. 2003. Introduction. In Anne

Abeill é, editor, Treebanks – Building andUsing
Parsed Corpora, volume 20 of Text, Speech and
Language Technology, pages xiii –xxvi. Kluwer
Academic Publishers, Dordrecht, Boston, Lon-
don.

Steven Bird, Peter Buneman, and Wang-Chiew
Tan. 2000. Towards a query language for an-
notation graphs. In Proceedings of the Sec-
ond International Conference on Language Re-
sources and Evaluation, pages 807–814. Eu-
ropean Language Resources Association, Paris.
http://arxiv.org/abs/cs/0007023.

Steve Cassidy and Steven Bird. 2000. Query-
ing databasesof annotated speech. In Database
technologies: Proceedings of the Eleventh Aus-
tralasian Database Conference, pages 12–20.
IEEEComputer Society.

Charles L. A. Clarke, G. V. Cormack, and F. J.
Burkowski. 1995. An algebra for structured text
search and a framework for its implementation.
TheComputer Journal, 38(1):43–56.

Christianus Franciscus Joannes Doedens. 1994.
Text Databases: One DatabaseModel and Sev-
eral Retrieval Languages. Number 14 in Lan-
guage and Computers. Editions Rodopi Amster-
dam, Amsterdam and Atlanta, GA.

JamesD. McCawley. 1982. Parentheticals and dis-
continuous constituent structure. Linguistic In-
quiry, 13(1):91–106.

AndreasMengel. 1999. MATE deliverable D3.1
– specification of coding workbench: 3.8
improved query language (Q4M). Technical
report, Institut für Maschinelle Sprachverar-
beitung, Stuttgart, 18 Nov. http://www.ims.uni-
stuttgart.de/projekte/mate/q4m/.

Eep Talstra and Constantijn Sikkel. 2000.
Geneseund Kategorienentwicklung der WIVU-
Datenbank. In Christof Hardmeier, Wolf-Dieter
Syring, Jochen D. Range, and Eep Talstra,
editors, Ad Fontes! Quellen erfassen - lesen -
deuten. Was ist Computerphilologie?, volume 15
of APPLICATIO, pages33–68, Amsterdam. VU
University Press.

209

[RANLP2005]

Evaluating Corpus Query Systems
on Functionality and Speed:
TIGERSearch and Emdros

Ulrik Petersen

2005

Published in: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N. and Nikolov,

N. (Eds): International Conference Recent Advances in Natural Language Processing

2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005, pp. 387–391.

210

This page left intentionally blank

211

Evaluating corpus query systemson functionali ty and speed:
TIGERSearch and Emdros

Ulr ik Petersen
Department of Communication, University of Aalborg

Kroghstræde3
9220Aalborg East, Denmark

ulrikp@hum.aau.dk
http://emdros.org/

Abstract
In this paper, we evaluate two corpus query systems
with respect to search functionality and query speed.
One corpus query system is TIGERSearch from IMS
Stuttgart andtheother isour own Emdroscorpusquery
system. First, weshow how thedatabasemodel under-
lying TIGERSearch can be mapped into the database
model of Emdros. Second, the comparison is made
based on a set of standard linguistic queries culled
from the literature. We show that by mapping a
TIGERSearch corpusinto theEmdrosdatabasemodel,
new query possibiliti esarise.

1 Introduction

The last decade has seen a growth in the number of avail -
able corpus query systems. Some query systems which
haveseen their debut sincethemid-1990iesincludeMATE
Q4M (Mengel 99), the Emu query language (Cassidy &
Bird 00), theAnnotationGraph query language(Bird et al.
00), TGrep2(Rohde04), TIGERSearch (Lezius02b), NXT
Search (Heid et al. 04), Emdros (Petersen 04), and LPath
(Bird et al. 05). In this paper, we have chosen to evalu-
ate and compare two of these, namely TIGERSearch and
Emdros.

TIGERSearch is a corpus query system made at the In-
stitut für MaschinelleSprachverarbeitungat theUniversity
of Stuttgart (Lezius 02a; Lezius 02b). It is a general cor-
pus query system over so-called syntax graphs (König &
Lezius 03), utili zing the TIGER-XML format for import
(Mengel & Lezius00). Convertershavebeen implemented
for the Penn Treebank, NeGRA, Susanne, and Christine
formats, among others. It is available freeof charge for
research purposes.1

Emdros is also a general corpus query system, devel-
oped at the University of Aalborg, Denmark. It is appli -
cable to a wide variety of linguistic corpora supporting a
wide variety of linguistic theories, and is not limited to
treebanks. It implements the EMdF model and the MQL
query language described in (Petersen 04). Importers for
the TIGER-XML and other corpus formats have been im-
plemented, andmore areunder development. It isavailable
freeof charge as Open Source software from the address
specified at thebeginning of thepaper.

The layout of the rest of the paper is as follows. First,
we briefly introduce the EMdF database model underly-
ing Emdros. Second, we introducethe databasemodel un-
derlying TIGERSearch. Next, we show how to map the

1Seehttp://www.tigersearch.de/

TIGERSearch database model into the EMdF model. The
next section explores how the TIGERCorpus (Brants &
Hansen 02), now in Emdros format, can be queried with
– in some instances – greater functionality and speed by
Emdros than by TIGERSearch. Finally, we conclude the
paper.

2 The EMdF model of Emdros

TheEMdF text databasemodel underlyingEmdrosisade-
scendant of the MdF model described in (Doedens94). At
the backbone of an EMdF database is a string of monads.
A monad is simply an integer. Thesequenceof theintegers
dictates the logical reading sequence of the text. An ob-
ject is an arbitrary (possibly discontiguous) set of monads
which belongs to exactly one object type. An object type
(e.g., Word, Phrase, Clause, Sentence, Paragraph, Article,
Line, etc.) determineswhat featuresan object has. That is,
a set of attribute-value pairs are associated with each ob-
ject, and the attributes are determined by the object type
of the object. All attributes are strongly typed. Every ob-
ject has a database-widely unique ID called its id d, and
the feature self of an object denotes its id d. The notation
O.f isused to denotethevalueof featuref onan object O.
Thus, for example, O1.self denotes the id d of object O1.
An id d feature can have the value NIL, meaning it points
to no object. No object can haveNIL as its id d.

The sample tree in Figure 1 shows a discontiguous el-
ement, and is adapted from (McCawley 82, p. 95). The
tree can bevisualized as an EMdF database as in Figure2.
This figure exemplifies a useful technique used for repre-
senting tree-structures in Emdros: Since, in a tree, a child
node always has at most one parent, we can represent the
treeby means of id d features pointing upwards from the
child to its parent. If a node has no parent (i.e., is a root
node), we can represent thiswith thevalueNIL. This tech-
niquewill beused later when describingthemappingfrom
TIGERSearch to EMdF.

3 The TIGERSearch database model

The database model underlying TIGERSearch has been
formally described in (Lezius 02a) and (König & Lezius
03). The following description has been adapted from
the former, and is a slight reformalization of the database
model with respect to edge-labels.

Definition 1 A featurerecord F isarelation over FN ×C

where FN is a set of feature-namesandC is a set of

212

Figure1: A treewith adiscontiguousclause, adapted from
(McCawley 82, p. 95).

constants. The relation is defined such that for any
li = 〈fi, ci〉 andany lj = 〈fj , cj〉, li 6= lj ⇒ fi 6= fj .
That is, all fi within a feature-record aredistinct. The
set of all feature-recordsover FN andC isdenotedF .

Definition 2 The set of all node ids is called ID and the
relation ID ⊂ C holds.

Definition 3 A node is a two-tuple v ∈ ID × F . That is,
a node consistsof anode id ν anda feature-record F .

Definition 4 A syntax graphG in theuniverseof graphsG
is a six-tuple G = (VNT , VT , LG, EG, OG, RG) with
the following properties:

1. VNT isthe(possibly empty) set of non-terminals.
2. VT is thenon-empty set of terminals.
3. LG is aset of edge labelswhereLG ⊂ C.2

4. EG is theset of labeled, directed edgesof G. EG

is a set of two-tuples from VNT × (VNT ∪ VT).
If LG is non-empty, there exists an assignment
of edge-labels el which is a total function el :
EG → LG which need be neither surjective nor
injective.3

5. OG is a bijective function OG : VT →
{1, 2, . . . , |VT |} which orders the terminal
nodes. That the function is bijective guarantees
that all terminal nodes can be ordered totally by
OG.

6. RG ∈ VNT is the single root nodeof G, and has
no incomingedges.

G is agraphwith the followingcharacteristics:

G1: G is a DAG with exactly oneroot nodeRG.
G2: All nodesv ∈ ((VNT ∪ VT) \ RG) have exactly

one incomingedge in EG.

2The latter restriction is not mentioned by (Lezius 02a) di-
rectly on page 103where this is defined, but is inferred from the
rest of the dissertation.

3This is where our reformulation differs in meaning from
(Lezius 02a). We think our formalization is slightly clearer than
Lezius’ , but wemay, of course, have misunderstoodsomething.

1 2 3 4 5 6

Word

id_d: 1
surf.: John
pos: NProp
parent: 7

id_d: 2
surf.: talked
pos: V
parent: 10

id_d: 3
surf.: of
pos: P
parent: 9

id_d: 4
surf.: course
pos: N
parent: 9

id_d: 5
surf.: about
pos: P
parent: 8

id_d: 6
surf.: politics
pos: N
parent: 8

Phrase
id_d: 7
type: NP
parent: 11

id_d: 9
type: Unknown
parent: 12

id_d: 8
type: PP
parent: 10

Phrase
id_d: 10
type: V’
parent: 11

id_d: 10
type: V’
parent: 11

Clause
id_d: 11
type=S
parent: 12

id_d: 11
type=S
parent: 12

Clause
id_d: 12
type=S

Figure2: An EMdF representation of the treein Figure1.

G3: All nonterminals v ∈ VNT must have at least
one outgoing edge. That is, ∀v ∈ VNT∃v′ ∈
(VNT ∪ VT) : 〈v, v′〉 ∈ EG.4

Thus syntax graphs are not strict trees in the traditional
sense, since crossing edges are not prohibited. Neverthe-
less, syntax graphs are not arbitrary DAGs, since by G2,
every nodehas at most one parent, and in this respect they
do resemble trees.

This brief reformulation does not do justice to the full
description available in (Lezius02a) and (König & Lezius
03). For more information onthe syntax graph formalism,
seethe cited publications.

4 Mapping syntax graphs to EMdF

TIGERSearch was developed specifically for use with the
TIGERCorpus (Brants & Hansen 02), thoughit is appli -
cable to other corpora as well (Lezius 02a, p. 136). In
order to compare TIGERSearch with Emdros, we had to
import a corpus available for TIGERSearch into Emdros.
The TIGERCorpus was chosen because it represents the
primary exampleof aTIGERSearch database, and because
it has a reasonably largesize, furnishinga basis for speed-
comparisons.

We have developed an algorithm to transform any
database encoded in the syntax graph formalism into an
EMdF database. This section describes the algorithm.
First, we give some definitions, after which we show the
four algorithmsinvolved.

Definition A1: For any syntax graphG, ObjG is theset of
EMdF objectswhich G givesriseto, andIDDG is the
set of id d’s of the objects in ObjG. Note, however,
that IDDG may be defined before ObjG, sincethere
is no causality in the direction from ObjG to IDDG;
in fact it is the other way around in the algorithms
below.

4Again, my reformulation differs slightly from Lezius’ f ormu-
lation, due to my reinterpretation of EG.

213

Definition A2: For any syntax graphG, NOBG isabijec-
tive function from syntax graph nodes in G to ObjG.
That is, NOBG : (VNT ∪ VT) → ObjG.

Definition A3: For any syntax graph G and v ∈ (VNT ∪
VT), parent(v) is theparent nodeof v if v isnot RG,
or ∅ if v isRG.

Definition A4: For any syntax graph G and its concomi-
tant ObjG, id dG is a bijective function id dG :
(VNT ∪VT) → IDDG with thedefinitionid d(v) ::=
NOBG(v).self. Note, however, that this definition
only holdsafter the algorithmshave all been applied;
in fact id dG is defined byconstructionrather than by
the given intensional, after-the-fact definition.

With thisapparatus, we can definefour algorithmswhich
use each other. Algorithm 0 merely creates an empty ob-
ject with a unique EMdF id d corresponding to each node
in a syntax graph G. Algorithm 1 adds monads to all ob-
jects corresponding to a nonterminal (i.e., all syntax-level
nodes). Algorithm 2 constructsaset of EMdF objects for a
given syntax graph G, and uses Algorithm 0 and 1. Algo-
rithm 3 constructsan EMdFdatabasefromaset G of syntax
graphs, and usesAlgorithm 2

Algor ithm 0: Purpose: Create empty objectsin ObjG and
assign id ds to each object and to the id dG function
and IDDG.
Input: A syntax graphG anda starting id d d.
Output: A four-tuple consisting of thefunctionid dG,
the set IDD G, the set ObjG, the set NOBG and an
ending id d de.

1. let id dG := ∅, and let ObjG := ∅

2. For all nodesv ∈ (VNT ∪VT) (theordering does
not matter, so long as each node is treated only
once):
(a) let id dG(v) := d

(b) Create an EMdF object Od being an empty
set of monadsand let Od.self := d

(c) let ObjG := ObjG ∪ {Od}
(d) let IDDG := IDDG ∪ {d}
(e) let NOBG := NOBG ∪ 〈v, Od〉
(f) let d := d + 1

3. Return 〈id dG, IDDG, ObjG, NOBG, d〉.

Algor ithm 1: Purpose: To add monads to all objects cor-
respondingto anon-terminal.
Input: A non-terminal p, the set IDDG, and the set
ObjG.
Output: Nothing, but ObjG ischanged. (ObjG iscall -
by-valuehere, so it ischanged asaside-effect and not
returned.)

1. Let Ch := {c|parent(c) = p} (all i mmediate
children of p.

2. For all c ∈ Ch:
(a) If c ∈ VT : Let IDDG(parent(c)) :=

IDDG(parent(c)) ∪ IDDG(c) (Addtermi-
nals’ monad-set to parent.)

(b) Else:
i. Call ourselves recursively with the param-

eters langlec, IDDG, ObjG〉.
ii . Let IDDG(parent(c)) :=

IDDG(parent(c)) ∪ IDDG(c) (Add c’s
monad-set to parent.)

Algor ithm 2: Purpose: To construct a set of EMdF ob-
jects from a syntax graphG.
Input: A syntax graphG, astarting id d d, andastart-
ingmonad m.
Output: A three-tuple consisting of a set of EMdF
objects ObjG, an incremented id d de and an ending
monad me.

1. Call Algorithm 0 on 〈G, d〉 to obtain
〈id dG, IDDG, ObjG, NOBG, de〉.

2. For all terminals t ∈ VT :

(a) let Ot := NOBG(t) ∪ {mt} where mt =
OG(t) +m− 1. (Remember that an object is
aset of monads, so we are addingasingleton
monad set here.)

(b) Let Ot.parent := id dG(parent(t)) if t is
not RG, andNIL if t isRG.

(c) Assign other features of Ot according to the
feature-record F in t = 〈ν, F 〉.5

(d) if LG is non-empty, let Ot.edge :=
el(〈parent(t), t〉)

3. Call Algorithm 1 with the parameters
〈RG, IDDG, ObjG〉. This assigns monad
sets to all objects.

4. For all v in VNT :

(a) Let Ov := ObjG(v).
(b) Let Ov.parent := id dG(parent(vv)) if v is

not RG, andNIL if v isRG.
(c) Assign other features of Ov according to the

feature-record F in v = 〈ν, F 〉.
(d) if LG is non-empty, let Ot.edge :=

el(〈parent(t), t〉)

5. Return 〈ObjG, d, mt〉 where mt ≡ OG(vt) +
m − 1 where vt is the rightmost terminal node,
i.e., ∃vt ∈ VT : ∀vj ∈ VT : vj 6= vt ⇒
OG(vt) > OG(vj)

Algor ithm 3: Purpose: To construct a set of EMdF ob-
jects from a universeof syntax graphsG.
Input: A set of syntax graphsG, a starting id d d, and
a startingmonad m.
Output: A two-tuple consisting of an incrementedid d
de andan endingmonad me.

5It is assumed, thoughthe formalisation does not say so, that
the feature-records of all VT in all G ∈ G have the same “signa-
ture”, i.e., have the same set of feature-names that are assigned a
value in each F in each v ∈ VT . A similar assumption is made
for the signatures of all feature-records of all VNT . This is cer-
tainly the casewith theTIGERCorpus. Therefore, theobject type
Terminal is well -defined with respect to its features. Similarly
for the object type Nonterminal used below.

214

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately

followed by a noun phrase that is immediately
followed by a prepositional phrase.

Q5. Find the first common ancestor of sequences of a
noun phrase followed by a verb phrase.

Q6. Not relevant to TIGER Corpus.
Q7. Find a noun phrase dominated by a verb phrase.

Return the subtree dominated by that noun phrase.

Figure3: The test queries from (Lai & Bird 04), Fig. 1.

Q1 #s:[cat="S"] & #l:[word="sehen"] & #s > * #l
Q2* #s:[cat="S"] & #l:[word="sehen"] & #s !> * #l
Q3 #n1:[cat="NP"] & #n2:[pos="NN"] & (#n1 >@r #n2)
Q4 #vp:[cat="VP"] & #v:[pos="VVFIN"] & #np:[cat="NP"]

& #pp:[cat="PP"]& #vp > * #v & #vp > * #np
& #vp > * #pp & #v >@r #vr & #np >@l #npl
& #vr .1 #npl & #np >@r #npr & #pp >@l #ppl
& #npr .1 #ppl

Q5* #vp:[cat="VP"] & #np:[cat="NP"] & (#np . * #vp)
& (#x > * #vp) & (#x > * #np)

Q7* #vp:[cat="VP"] & #np:[cat="NP"] & (#vp > * #np)

Figure 4: The test queries of Figure 3 attempted imple-
mented in TIGERSearch. Adapted from (Lai & Bird 04),
Fig. 4. The queries marked with a * may not producethe
correct results.

1. For all graphsG in G (if an ordering is intended,
i.e., this isnot aquotationcorpus, then that order
should be applied; otherwise, the order is unde-
fined):

(a) Let 〈ObjG, de, me〉 be the result of calli ng
Algorithm 2 on〈G, d, m〉

(b) AddObjG to theEMdF database.
(c) Let d := de and let m := me + 1

2. Return 〈d, m〉

5 Compar ing TIGERSearch and Emdros

Using a variant of this algorithm, we have imported the
TIGERCorpus into Emdros. Thisgivesusa common basis
for comparingTIGERSearch andEmdros.

The paper (Lai & Bird 04) sets out to specify some re-
quirementson corpusquery systems for treebanks that the
authorsperceive to be essential. Among other criteria, Lai
and Bird set up a set of standard queries which are repro-
duced in Figure3.

Lai and Bird show how some of the queries can be
expressed in TIGERSearch, thoughthey find that not all
queries can be expressed. I have attempted to reformu-
late Lai and Bird’s TIGERSearch queries in therms of the
TIGERCorpus(seeFigure4).

Query Q2 cannot be formulated correctly in
TIGERSearch. This is because what is being negated
is theexistenceof theword “sehen” , and in TIGERSearch,
all nodes are implicitly existentially quantified. Negated
existence would require a forall -quantification, as men-
tioned e.g. in (König & Lezius03).

Query Q5 is probably not expressible in TIGERSearch,
and the given query fails to find the first commonancestor
only. The currect syntax graphs are returned, but with a

Q1 [Sentence [Word surface="sehen"]]
Q2 [Sentence NOTEXIST [Word surface="sehen"]]
Q3 [Phrase tag="NP" [Word last postag="NN"]]
Q4 [Phrase tag="VP"

[Word postag="VVFIN"]!
[Phrase tag="NP"]!
[Phrase tag="PP"]

]
Q5* [Phrase

[Phrase tag="NP"][Phrase tag="VP"]
]

Q7* [Phrase tag="VP" [Phrase tag="NP"]]

Figure5: Emdrosqueries for Q1-Q7

Find all NPs which is a subject, inside of which there
is a relative clause whose parent is the NP. Inside
the relative clause, there must be a phrase p2, inside
of which there must be a word which is a cardinal. At
the end of the relative clause must be a finite verb
whose parent is the same as that of p2. No PP may
intervene between p2 and the verb.

[Phrase as p1 tag="NP" AND edge="SB"
[Phrase edge="RC" and parent=p1.self

[Phrase as p2 [Word postag="CARD"]]
..
NOTEXIST [Phrase tag="PP"]
..
[Word last postag="VVFIN"

AND parent=p2.parent]
]

]

Figure6: Emdrosquery for Q8

number of subgraphswhich arenot rooted in thefirst com-
monancestor.

Query Q7 again findsthe correct syntax graphs, but fails
to retrieve exactly the subtree dominated by the NP. In
TIGERSearch, what partsof amatched syntax-graphto re-
trieve is, in a sense, an irrelevant question, since the main
result is the syntax graph itself. Thus the assumption of
Lai andBird that only partsof thematched treeis returned
doesnot hold for TIGERSearch.

Emdros fares slightly better as regards functionality, as
can be seen in Figure 5. Query Q2 is correctly expressed
in Emdros using the NOTEXIST operator at object-level,
which gives Emdros a slight edge over TIGERSearch in
this comparison. However, queries Q5 and Q7 fail to give
correct results on Emdros as they did on TIGERSearch.
Query Q5 fails because, while it returns the correct syn-
tax graphs, it fails to find only the first common ancestor.
This is the same situation as with TIGERSearch. As in
TIGERSearch, the requirement to find the “first common
ancestor” is difficult to expressin Emdros. Query Q7 fails
because Emdros, like TIGERSearch, was not designed to
retrieve subgraphsas part of the query results – subgraphs
are to be retrieved later, e.g., for viewing purposes. Like
TIGERSearch, Emdros returns the correct syntax graphs,
and thusworksasdesigned.

Query Q8 can be seen in Figure 6 along with the Em-
dros equivalent. It cannot be expressed in TIGERSearch
because of the negated existence-operator on the interven-
ingPP.

Thequerieswere all ti med, except for Q2 andQ6, which
were not expressible in either or both of the corpos query
systems. ThehardwarewasanAMD Athlon 64 3200+ with

215

Query Emdros TIGERSearch
Q1 0.199; 0.202; 0.179 0.5; 0.3; 0.3
Q3 1.575; 1.584; 1.527 10.1; 9.9; 9.9
Q4 1.604; 1.585; 1.615 9.9; 9.9; 9.9
Q5 3.449; 3.319; 3.494 5.5; 6.6; 5.5
Q7 0.856; 0.932; 0.862 1.1; 1.1; 1.1
Q8 3.877; 3.934; 4.022 N/A

Table1: Executiontimes in seconds

1GB of RAM and a 7200RPM harddrive running Linux
Fedora Core 4. Threemeasurements were taken for each
query. In the case of TIGERSearch, the timings reported
by the program’s status bar were used. For Emdros, the
standard Unix command time was used. The results can
be seen in Table1.

As can be seen, Emdros is faster than TIGERSearch on
every query that they can both handle. (Lezius 02a) men-
tions that the complexity is exponential in the number of
query terms. It is very difficult to assessthe complexity of
an Emdros query, since it depends on a handful of factors
such as the number of query items, the number of objects
that match each query item, and the number of possible
combinationsof these.

Probably Emdros is faster in part because it takes a
different algorithmic approach to query resolution that
TIGERSearch: Instead of using proof-theory, it uses a
more linear approach of first retrievingall possible object-
”hits” , then iteratively walking the query, combining the
objects in monad-order as appropriate. Part of the speed
increase may stem from its being written in C++ rather
than Java, but for queries such asQ3 andQ4, the algorithm
rather than the language seems to be the decisive factor,
sincesuch a large differencein execution time, relative to
the other increases, cannot be accounted for by language
differencesalone.

6 Conclusion

In thispaper, wehave compared two corpusquery systems,
namely TIGERSearch on the one hand and our own Em-
dros on the other. We have briefly introduced the EMdF
model underlying Emdros. The EMdF model is based on
the MdF model described in (Doedens 94). We have also
given a reformalization of the syntax graph formalism un-
derlyingTIGERSearch, based onthe presentation given in
(Lezius02a). Wehavethen presentedan algorithmfor con-
verting thesyntax graphformalism into theEMdF model.

Having done this, we have compared the two corpus
query systems with respect to query functionality and
speed. The queries were mostly culled from the literature.
It was found that Emdros was able to handle all the test
queries that TIGERSearch was able to handle, in addition
to afew that TIGERSearchwasnot ableto express. Thelat-
ter involved the negation of the existenceof an object; it is
a limitation in the current TIGERSearch that all objectsare
implicitly existentially quantified, which means that negat-
ing the existenceof an object is not possible. Negation at
the feature-level is, however, possible in both corpusquery
systems. In both systems, the semantics of feature-level

negationis thesame asthe¬ operator in First Order Logic.
Finally, the test querieswhich both systemswere able to

handle were executed onthe same machine over the same
corpus, namely the TIGERCorpus, and it was foundthat
Emdroswas faster than TIGERSearch onevery query, and
that the algorithm of Emdros seemsto scalebetter than that
of TIGERSearch.

References
(Bird et al. 00) Steven Bird, Peter Buneman, andTan Wang-Chiew. Towardsaquery

languagefor annotation graphs. In Proceedingsof theSecondInternational Con-
ferenceonLanguage ResourcesandEvaluation, pages807–814. European Lan-
guage Resources Association, Paris, 2000. http://arxiv.org/abs/cs/0007023Ac-
cessOnlineAugust 2004.

(Bird et al. 05) Steven Bird, Yi Chen, Susan Davidson, HaejoongLee, and Yifeng
Zheng. Extending XPath to support linguistic queries. In Proceedings of Pro-
gramming Language Technologies for XML (PLANX) Long Beach, California.
January 2005., pages35–46, 2005.

(Brants & Hansen 02) Sabine Brants and Silvia Hansen. Developments in
the TIGER annotation scheme and their realization in the corpus. In Pro-
ceedings of the Third International Conference on Language Resources and
Evaluation (LREC 2002), Las Palmas, Spain, May 2002, pages 1643–1649,
2002. http://www.ims.uni-stuttgart.de/projekte/TIGER/paper/lrec2002-brants-
hansen.pdf AccessOnline August 2004.

(Cassidy & Bird 00) Steve Cassidy and Steven Bird. Querying databases of an-
notated speech. In M.E. Orlowska, editor, Database Technologies: Proceed-
ingsof theEleventh AustralasianDatabaseConference, volume22 of Australian
Computer Science Communications, Canberra, Australia, pages 12–20. IEEE
Computer Society, 2000. http://arxiv.org/abs/cs/0204026, AccessOnlineAugust
2004.

(Doedens 94) Christianus Franciscus Joannes Doedens. Text Databases: One
Database Model and Several Retrieval Languages. Number 14 in Language
and Computers. EditionsRodopi, Amsterdam and Atlanta, GA., 1994.

(Heid et al. 04) U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk, and S. Pado.
Querying both time-aligned and hierarchical corpora with NXT Search. In
Fourth Language ResourcesandEvaluation Conference, Lisbon, Portugal, May
2004, 2004.

(König & Lezius 03) Esther König and Wolfgang Lezius. The TIGER language. a
descriptionlanguagefor syntax graphs. formal definition. Technical report, Insti-
tut für MaschinelleSprachverarbeitung(IMS), University of Stuttgart, Germany,
April 22 2003.

(Lai & Bird 04) Catherine Lai and Steven Bird. Querying and updating treebanks:
A critical survey and requirements analysis. In Proceedings of the Australasian
Language Technology Workshop, December 2004, pages139–146, 2004.

(Lezius 02a) Wolfgang Lezius. Ein Suchwerkzeug für syntaktisch annotierte
Textkorpora. Unpublished PhD thesis, Institut für Maschinelle Sprachver-
arbeitung, University of Stuttgart, December 2002. Arbeitspapiere des In-
stituts für Maschinelle Sprachverarbeitung (AIMS), volume 8, number 4.
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/diss/, Access On-
line August 2004.

(Lezius 02b) Wolfgang. Lezius. TIGERSearch – ein Suchwerkzeug für Baum-
banken. In Stephan Busemann, editor, Proceedings der 6. Konferenz zur Ver-
arbeitung natürlicher Sprache (KONVENS 2002), Saarbrücken, pages107–114,
2002.

(McCawley 82) James D. McCawley. Parentheticals and discontinuous constituent
structure. Linguistic Inquiry, 13(1):91–106, 1982.

(Mengel & Lezius 00) Andreas Mengel and Wolfgang Lezius. An XML-based en-
coding format for syntactically analyzed corpora. In Proceedings of the Second
International ConferenceonLanguage ResourcesandEvaluation (LREC 2000),
Athens, Greece, 31May – 2June 2000, pages121–126, 2000.

(Mengel 99) Andreas Mengel. MATE deliverable D3.1 – specification of cod-
ing workbench: 3.8 improved query language (Q4M). Technical report,
Institut für Maschinelle Sprachverarbeitung, Stuttgart, 18. November, 1999.
http://www.ims.uni-stuttgart.de/projekte/mate/q4m/.

(Petersen 04) Ulrik Petersen. Emdros — a text database engine for an-
alyzed or annotated text. In Proceedings of COLING 2004, held Au-
gust 23-27 in Geneva. International Commitee on Computational Linguistics,
2004. http://www.hum.aau.dk/˜ulrikp/pdf/petersen-emdros-COLING-2004.pdf,
Accessonline August 2004.

(Rohde 04) Douglas L. T. Rohde. Tgrep2 user manual, version 1.12. Available
online http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf. Access Online April 2005,
2004.

(Voormann & Lezius 02) Holger Voormann and Wolfgang Lezius. TIGERin -
Grafische Eingabe von Benutzeranfragen für ein Baumbank-Anfragewerkzeug.
In Stephan Busemann, editor, Proceedings der 6. Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS 2002), pages231–234, Saarbrücken, 2002.

216

This page left intentionally blank

217

[FSMNLP2005]

Principles, Implementation
Strategies, and Evaluation of a

Corpus Query System

Ulrik Petersen

2006

Published in: Yli-Jyrä, Anssi, Karttunen, Lauri and Karhumäki, Juhani (Eds.): Finite-

State Methods in Natural Language Processing; 5th International Workshop, FSMNL

2005, Helsinki, Finland, September 1–2, 2005, Revised Papers, Lecture Notes in Com-

puter Science, Volume 4002/2006, Springer-Verlag, Heidelberg, New York, pp. 215–

226

218

This page left intentionally blank

219

Principles, Implementation Strategies, and

Evaluation of a Corpus Query System

Ulrik Petersen

University of Aalborg
Department of Communication and Psychology

Kroghstræde 3
DK — 9220 Aalborg East, Denmark

ulrikp@hum.aau.dk

http://emdros.org/

Abstract. The last decade has seen an increase in the number of avail-
able corpus query systems. These systems generally implement a query
language as well as a database model. We report on one such corpus
query system, and evaluate its query language against a range of queries
and criteria quoted from the literature. We show some important prin-
ciples of the design of the query language, and argue for the strategy of
separating what is retrieved by a linguistic query from the data retrieved
in order to display or otherwise process the results, stating the needs for
generality, simplicity, and modularity as reasons to prefer this strategy.

1 Introduction

The last decade has seen a growth in the number of available corpus query
systems. Newcomers since the mid-1990ies include MATE Q4M [1], the Emu
query language [2], the Annotation Graph query language [3], TIGERSearch [4],
NXT Search [5], TGrep2 [6], and LPath [7].

Our own corpus query system, Emdros [8,9], has been in development since
1999. It is based on ideas from the PhD thesis by Crist-Jan Doedens [10]. It
implements a database model and a query language which are very general in
their applicability: Our system can be applied to almost any linguistic theory,
almost any linguistic domain (e.g., syntax, phonology, discourse) and almost
any method of linguistic tagging. Thus our system can be used as a basis for
implementing a variety of linguistic applications. We have implemented a number
of linguistic applications such as a generic query tool, a HAL1 space, and a
number of import tools for existing corpus formats. As the system is Open
Source, others are free to implement applications for their linguistic problem
domains using our system, just as we plan to continue to extend the range of
available applications.

The rest of the paper is laid out as follows: First, we briefly describe the
EMdF database model underlying Emdros, and give an example of a database

1 HAL here stands for “Hyperspace Analogue to Language,” and is a statistical method
based on lexical co-occurrence invented by Dr. Curt Burgess and his colleagues [11].

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 215–226, 2006

c© Springer-Verlag Berlin Heidelberg 2006

220

V/2

talked of course

Unknown/9

about politics

PP/8

S/12

John

S/11

NP/7 V’/10

a. A tree with a discontiguous
clause, adapted from [12, p. 95]

1 2 3 4 5 6

Word

id: 1
surf.: John
pos: NProp
parent: 7

id: 2
surf.: talked
pos: V
parent: 10

id: 3
surf.: of
pos: P
parent: 9

id: 4
surf.: course
pos: N
parent: 9

id: 5
surf.: about
pos: P
parent: 8

id: 6
surf.: politics
pos: N
parent: 8

Phrase
id: 7
type: NP
parent: 11

id: 9
type: Unknown
parent: 12

id: 8
type: PP
parent: 10

Phrase
id: 10
type: V’
parent: 11

id: 10
type: V’
parent: 11

Clause
id: 11
type=S
parent: 12

id: 11
type=S
parent: 12

Clause
id: 12
type=S

b. A EMdF representation of the tree

Fig. 1. Two representation of a tree with a discontiguous clause

expressed in EMdF. Second, we describe the MQL query language of Emdros
and its principles. Third, we argue for the strategy of separating the process of
retrieving linguistic query results from the process of retrieving linguistic objects
based on such results for application-specific purposes. Fourth, we evaluate MQL
against a set of standard queries and criteria for corpus query languages culled
from the literature. Finally, we conclude the paper.

2 The EMdF Database Model

To illustrate how data can be stored in Emdros, consider Fig. 1. It shows an
example of a discontiguous clause, taken from [12, p. 95], represented both as a
tree and as a database expressed in the EMdF database model.

At the top of Fig. 1.b. are the monads. A monad is simply an integer, and
the sequence of the monads defines the logical reading order. An object is a
(possibly discontiguous) set of monads belonging to an object type (such as
“Word”, “Phrase”, “Clause”), and having a set of associated attribute-values.
The object type of an object determines what attributes it has. For example,
the “Word” object type in Fig. 1.b has attributes “id”, “surface”, “pos” (part of
speech), and “parent”. The id is a database-widely unique number that identifies
that object. In the above database, this has been used by the “parent” attribute
to point to the immediately dominating node in the tree.

In the EMdF database model, object attributes are strongly typed. The
model supports strings, integers, ids, and enumerations as types for attributes,
as well as lists of integers, ids, and enumeration labels. Enumerations are simply
sets of labels, and have been used for the Word.pos, Phrase.type, and Clause.type

221

attributes in the figure.2 Real-number values are under implementation, and will
be useful for, e.g., acoustic-signal timelines.

3 The MQL Query Language

The MQL query language of Emdros is a descendant of the QL query language
described in [10]. Like QL, it is centered around the concept of “blocks”, of which
there are three kinds: “Object blocks”, “gap blocks”, and “power blocks”.

An “Object block” finds objects in the database (such as phonemes, words,
phrases, clauses, paragraphs, etc.) and is enclosed in [square brackets]. For ex-
ample, the query [Word surface="saw"] will find Word objects whose surface

attribute is “saw”, whereas the query [Phrase type = NP and function =

Subj] will find phrases whose phrase type is NP and whose function is Subject.
Of course, this presupposes an appropriately tagged database. The attribute-
restrictions on the object are arbitrary boolean expressions providing the prim-
itives “AND”, “OR”, “NOT”, and “grouping (parentheses)”. A range of com-
parison-operators are also provided, including equality, inequality, greater-than
(or equal to), less than (or equal to), regular expressions (optionally negated),
and IN a disjoined list of values. For lists, the HAS operator looks for a specific
value in the list.

A “gap block” finds “gaps” in a certain context, and can be used to look
for (or ignore) things like embedded relative clauses, postpositive conjunctions,
and other material which is not part of the surrounding element. A gap block is
specified as [gap ...] when obligatory, and as [gap? ...] when optional.

A “power block” is denoted by two dots (“..”), and signifies that there can
be arbitrary space between the two surrounding blocks. However, this is always
confined to be within the limits of any context block.

The power block can optionally have a restriction such as “.. <= 5” or “..
BETWEEN 3 AND 6” meaning respectively that the “space” can be between zero
and five “least units” long, or that it must be between 3 and 6 “least units” long.
Precisely what the “least unit” is, is database-dependent, but is usually “Word”
or “Phoneme”.3

The MQL query language implements the important principle of topographic-

ity described in [10], meaning that there is an isomorphism between the structure
of the query and the structure of the objects found. The principle of topographic-
ity works with respect to two important textual principles, namely embedding
and sequence.

As an example of topographicity with respect to embedding, consider the
query Q1 in Fig. 3 on page 8. This query finds sentences within which there is
at least one word whose surface is “saw”. The “[Word surface="saw"]” object

2 The “dot-notation” used here is well known to programmers, and is basically a
possessive: “Word.pos” means “the pos attribute of the Word object-type”.

3 This is an example of the generality of the EMdF database model, in that it supports
many different linguistic paradigms and methods of analysis.

222

block is embedded in the “[Sentence ...]” object block. Because of the prin-
ciple of topographicity, any Word objects found must also be embedded in the
Sentence objects found.

Similarly, in Query Q5 in Fig. 3, the two inner [Syntax level=Phrase ...]

object blocks find Syntax objects that immediately follow each other in sequen-
tial order, because the object blocks are adjacent. “Being adjacent” here means
“not being separated by other blocks” (including a power block). There is a
caveat, however. The default behavior is to treat objects in the database as “be-
ing adjacent” even if they are separated by a gap in the surrounding context.
For examle, in Query Q5, if the surrounding Sentence object has a gap between
the NP and the VP4, then that query will find such a sentence due to the default
behavior. If this is not the desired behavior (i.e., gaps are not allowed), one can
put the “!” (bang) operator in between the object blocks, as in Query Q4 in
Fig. 3. This will require the objects found by the object blocks surrounding the
bang to be strictly sequential.

An object block can be given the restriction that it must be first, last, or
first and last in its surrounding context. An example using the last keyword
can be seen in Query Q3 in Fig. 3.

The object retrieved by an object block can be given a name with the AS

keyword. Subsequent object blocks can then refer back to the named object. An
example can be seen in Query Q5 in Fig. 3, where the dominating Syntax object
is named AS S1. The dominated phrase-level Syntax object blocks then refer
back to the dominating object by means of the “possessive dot notation” men-
tioned previously. Obviously, this facility can be used to specify both agreement,
(immediate) dominance, and other inter-object relationships.

The NOTEXIST operator operates on an object block to specify that it must
not exist in a given context. An example can be seen in Query Q2 in Fig. 3, where
the existence of a word with the surface “saw” is negated. That is, the query
finds sentences in which the word “saw” does not occur.

Notice that this is different from finding sentences with words whose surface

is not “saw”, as the query [Sentence [Word surface<>"saw"]] would find.
Relating this to First Order Logic, the NOTEXIST operator is a negated exis-
tential quantifier ¬∃ at object level, whereas the <> operator is a negated equality
operator 6= at object attribute level. If the NOTEXIST operator is applied to an
object block, the object block must be the only block in its context.

The Kleene Star operator also operates on an object block, and has the usual
meaning of repeating the object block zero or more times, always restricted to
being within the boundaries of any surrounding context block. For example, the
query

[Sentence

[Word pos=preposition]

[Word pos IN (article,noun,adjective,conjunction)]*

]

4 As argued by [12], the sentence “John, of course, talked about politics” is an example
of an element with a gap, since “of course” is not part of the surrounding clause.

223

would find the words of many prepositional phrases, and could be used in a
stage of initial syntactic markup of a corpus. The Kleene Star also supports
restricting the number of repetitions with an arbitrary set of integers. For ex-
ample: [Phrase]*{0,1} means that the Phrase object may be repeated 0 or 1
times;5 [Clause]*{2-4} means that the Clause object may be repeated 2, 3, or
4 times; and any set of integers can be used, even discontiguous ones, such as
[Phrase]*{0-3,7-9,20-}. The notation “20-” signifies “from 20 to infinity”.

An OR operator operating on strings of blocks is available. It means that one
or both strings may occur in a given context. An example is given in Query Q7
in Fig. 3.

MQL has some shortcomings, some of which will be detailed later. Here we
will just mention four shortcomings which we are working to fix, but which time
has not allowed us to fix yet. We have worked out an operational semantics for
the following four constructs: AND between strings of blocks (meaning that both
strings must occur, and that they must overlap);6 Grouping of strings of blocks;
and general Kleene Star on strings of blocks (the current Kleene Star is only
applicable to one object block). A fourth operator can easily be derived from
the existing OR construct on strings of blocks, namely permutations of objects.

4 Retrieval of Results

When querying linguistic data, there are often three distinct kinds of results
involved:

1. The “meat”, or the particular linguistic construction of interest.
2. The context, which is not exactly what the user is interested in, but helps

delimit, restrict, or facilitate the search in some way. For example, the user
may be interested in subject inversion or agentless passives, but both require
the context of a sentence. Similarly, the user may be interested in objects
expressed by relative pronouns combined with a repeated pronoun in the
next clause, which might require the presence of intervening, specified, but
otherwise non-interesting material such as a complementizer.7 In both cases,
the user is interested in a specific construction, but a certain context (either
surrounding or intervening) needs to be present. The context is thus neces-
sary for the query to return the desired results, but is otherwise not a part
of the desired results.

3. The postprocessing results which are necessary for purposes which are
outside the scope of the search.

To illustrate, consider the query Q2 in Fig. 3. For display purposes, what
should be retrieved for this query? The answer depends, among other things,

5 Notice that this supports optionality in the language; that the phrase object appears
0 or 1 times is equivalent to saying that it is optional.

6 This is precisely what is needed for querying overlapping structures such as those
found in speech data with more than one speaker, where the speaker turns overlap.

7 E.g., “He gave me a ring, which, I really don’t like that it is emerald.”

224

on the linguistic domain under consideration (syntax, phonology, etc.), the lin-
guistic categories stored in the database, the purposes for which the display is
made, and the sophistication of the user. For the domain of syntax, trees might
be appropriate, which would require retrieval of all nodes dominated by the sen-
tence. For the domain of phonology, intonational phrases, tones, pauses, etc. as
well as the phonemes dominated by the sentence would probably have to be
retrieved. As to purpose, if the user only needed a concordance, then only the
words dominated by the sentence need be retrieved, whereas for purposes requir-
ing a full-fledged tree, more elements would have to be retrieved. The level of
sophistication of the user also has a role to play, since an untrained user might
balk at trees, whereas keywords in context may be more understandable.

Similarly, for statistical purposes, it is often important to retrieve frequency
counts over the entire corpus to compare against the current result set. These
frequency counts have nothing to do with the answer to the original query, but
instead are only needed after the results have been retrieved. They are, in a
very real sense, outside the scope of the query itself: The user is looking for a
particular linguistic construction, and the corpus query system should find those
constructions. That the post-query purpose of running the query is statistical
calculations is outside the scope of the query, and is very application-specific.

Thus what is asked for in a linguistic query is often very different from
what needs to be retrieved eventually, given differences in linguistic domain,
categories in the database, purpose of display, and sophistication of the user.
Therefore, in our view, it is advantageous to split the two operations into sep-
arate query language constructs. The subset of the query language supporting
linguistic querying would thus be concerned with returning results based on what
is asked for in a linguistic query, whereas other subsets of the query language
would be concerned with retrieving objects based on those results for display-
or other purposes.

This separation, because it is general, supports a multiplicity of linguistic
applications, since the concern of linguistic querying (which is common to all lin-
guistic query applications) is separated from the concern of querying for display-,
statistical, or other purposes (which are specific to a given application). More-
over, it shifts the burden of what to retrieve based on a given query (other
than what is being asked for) off the user’s mind, and onto the application, thus
making the query language simpler both for the user and for the corpus query
system implementor. Finally, this strategy lends itself well to modularization
of the query language. That modularization is good, even necessary for correct
software implementation has long been a credo of software engineering.8

5 Evaluation

Lai and Bird [13] formulate some requirements for query languages for treebanks.
They do so on the backdrop of a survey of a number of query languages, including

8 Emdros adheres to this modular principle of separation of concerns between corpus
query system and a particular linguistic application on top of it.

225

Q1. Find sentences that include the word ‘saw’.
Q2. Find sentences that do not include the word ‘saw’.
Q3. Find noun phrases whose rightmost child is a noun.
Q4. Find verb phrases that contain a verb immediately followed by a noun phrase that

is immediately followed by a prepositional phrase.
Q5. Find the first common ancestor of sequences of a noun phrase followed by a verb

phrase.
Q6. Find a noun phrase which dominates a word dark that is dominated by an inter-

mediate phrase that bears an L-tone.
Q7. Find a noun phrase dominated by a verb phrase. Return the subtree dominated

by that noun phrase.

Fig. 2. The test queries from [13], Fig. 1

TGrep2, TIGERSearch, the Emu query language, CorpusSearch, NXT Search,
and LPath. Lai and Bird set up a number of test queries (see Fig. 2) which are
then expressed (or attempted expressed) in each of the surveyed query languages.
For all query languages surveyed, it is the case that at least one query cannot
be correctly expressed.

The queries are attempted expressed in MQL as in Fig. 3. Query Q1 is triv-
ial, and performs as expected. Query Q2 has already been explained above, and
deserves no further comment. The constraint of query Q3 that the noun must be
the rightmost child is elegantly expressed by the “last” operator on the noun.

In query Q4, the verb, the NP, and the PP are not separated by power blocks
(“..”) and so must immediately follow each other. As mentioned above, gaps
are ignored unless the “bang” operator (“!”) is applied in between the object
blocks. Since the query specification explicitly mentions “immediately followed
by”, we have chosen to insert this operator. Of course, if the default behavior is
desired, the bang operator can simply be left out.

Query Q5 fails to yield the correct results in some cases because it presup-
poses that the “first common ancestor” is the immediate parent, which it need
not be. Had the “parent=S1.id” terms been left out of the conjunctions, the
query would have found all ancestors, not just the immediate ancestor. It is a
shortcoming of the current MQL that it is not easy to express other relationships
than “general ancestry” and “immediate ancestry”.

Query Q5 also presupposes a different database structure than the other
queries: In the database behind Q5, all syntax-level objects have been lumped
together into one “Syntax” type. This “Syntax” type has a “level” attribute
specifying the linguistic level at which the element occurs (Phrase, Clause, etc.),
as well as other attributes.

This reorganization of the database is necessary for Q5 because it does not
specify what level the dominating node should be at (Phrase, Clause, or Sen-
tence). It is a limitation in Emdros that it can only handle one, explicit type for
each object block.

226

Q1. [Sentence

[Word surface="saw"]

]

Q2. [Sentence

NOTEXIST [Word

surface="saw"]

]

Q3. [Phrase type=NP

[Word last pos=noun]

]

Q4. [Phrase type=VP

[Word pos=verb]!

[Phrase type=NP]!

[Phrase type=PP]

]

Q5.? [Syntax AS S1

[Syntax level=Phrase AND type=NP

AND parent=S1.id]

[Syntax level=Phrase AND type=VP

AND parent=S1.id]

]

Q6.? [Intermediate tone="L-"

[Phrase type=NP

[Word surface="dark"]

]

]

Q7. [Phrase type=VP

[Phrase type=NP AS np1

[Phrase parents HAS np1.id

[Word]

] OR

[Word parent=np1.id]

]

]

Fig. 3. MQL queries for Q1-Q7

For some lingusitic databases, query Q6 would fail to retrieve all possible
instances because it assumes that the NP is wholly contained in the Intermediate
Phrase. But as [14, p. 176] reports, this is not always true.9

Query Q7 not only needs to specify context, but also to retrieve the sub-
tree, presumably for display- or other purposes, since it is not part of what is
being asked for (i.e., the “meat”). As mentioned in Sect. 4, Emdros adheres to a
different philosophy of implementation. While it is possible in MQL to retrieve
exactly whatever the user wants, the algorithm for doing so would in most cases
be split between retrieving linguistic results and using other parts of the query
language for retrieving objects for display-purposes.

The Q7 query nevertheless fulfills its purpose by retrieving all phrases domi-
nated by the NP together with the words they contain, OR all words immediately
dominated by the NP. Thus, Emdros is able to fulfill the purpose of the query
even though Emdros was not designed for such use.

Lai and Bird go on from their survey to listing a number of requirements
on linguistic query languages. The first requirement listed is “accurate specifi-
cation of the query tree”. Lai and Bird give eight subtree-matching queries, all
of which can be expressed in MQL (see Fig. 4). Query number 5 would require
the employment of the technique used for query Q5 in Fig. 3 of using a single
object type for all syntax objects, using an attribute for the syntactic level, then
leaving out the level from the query.

9 The example given there is an intermediate phrase boundary between adjectives and
nouns in Japanese — presumably the adjective and the noun belong in the same NP,
yet the intermediate phrase-boundary occurs in the middle of the NP.

227

1. Immediate dominance: A dominates B, A may
dominate other nodes.

[A AS a1 [B parent=A1.id]]

2. Positional constraint: A dominates B, and B is the
first (last) child of A.

[A [B first]] or:
[A [B last]]

3. Positional constraint with respect to a label: A
dominates B, and B is the last B child of A.

[A [B last]]

4. Multiple Dominance: A dominates both B and C,
but the order of B and C is unspecified.

[A [B]..[C] OR [C]..[B]]

5. Sibling precedence: A dominates both B and C, B
precedes C; A dominates both B and C, B immedi-
ately precedes C, and C is unspecified.

precedes: [A [B]..[C]]

immediately precedes:
[A [B][C]] or [A [B]![C]].

6. Complete description: A dominates B and C, in
that order, and nothing else.

[A as a1

[B first parent=a1.id]!

[B last parent=a1.id]

]

7. Multiple copies: A dominates B and B, and the
two Bs are different instances.

[A [B]..[B]]

8. Negation: A does not dominate node with label B. [A NOTEXIST [B]]

Fig. 4. Subtree queries in the MQL query language, after Lai and Bird’s Fig. 9

Another requirement specified by Lai and Bird is that of reverse navigation,
i.e., the need to specify context in any direction. MQL handles this gracefully,
in our opinion, by the principle of topographicity with respect to embedding
and sequence. Using this principle, any context can be specified in both vertical
directions, as well as along the horizontal axis.

Lai and Bird then mention non-tree navigation as a requirement. They give
the example of an NP being specified either as “[NP Adj Adj N]” or as “[NP
Adj [NP Adj N]]”, the latter with a Chomsky-adjoined NP inside the larger NP.
MQL handles querying both structures with ease, as seen in Fig. 5. Note that the
query in Fig. 5.a. would also find the tree in Fig. 5.b. Thus non-tree navigation
is well supported.

Adj

NP

Adj N

[Phrase type=NP

[Word first

pos=adjective]

[Word pos=adjective]

[Word last pos=noun]

]

a. Flat structure

Adj

Adj

NP

NP

N

[Phrase type=NP

[Word first pos=adjective]

[Phrase last type=NP

[Word first pos=adjective]

[Word last pos=noun]

]

]

b. Chomsky-adjoined structure

Fig. 5. Queries on NP structure

228

Furthermore, Lai and Bird mention specification of precedence and immedi-
ate precedence as a requirement. MQL handles both with ease because of the
principle of topographicity of sequence. General precedence is signified by the
power block (“..”), whereas immediate precedence is signified by the absence
of the power block, optionally with the bang operator (“!”).

Lai and Bird then discuss closures of various kinds. MQL is closed both under
dominance (by means of topographicity of embedding) and under precedence
and sibling precedence (by means of topographicity of sequence, as well as the
power block and the AS keyword, which separately or in combination can be used
to specify closures under both relationships). MQL is also closed under atomic
queries involving one object (by means of the Kleene Star).10

Lai and Bird discuss the need for querying above sentence-level. Since the
EMdF database model is abstract and general, the option exists of using ordered
forests as mentioned by Lai and Bird. The MQL query language was designed
to complement the EMdF model in its generality, and thus querying over or-
dered forests is well supported using the principle of topographicity of sequence
combined with the AS construct. Thus the MQL language is not restricted to
querying sentence-trees alone, but supports querying above sentence-level.

Another requirement mentioned by Lai and Bird is that of integration of
several types of lingusitic data, in particular using intersecting hierarchies and
lookup of data from other sources. The EMdF model supports intersecting hi-
erarchies well. MQL, however, because of the principle of topographicity of em-
bedding and the lack of an AND construct between strings of blocks, does not
currently support querying of intersecting hierarchies very well, as illustrated by
the failure of Query Q6 in Fig. 3 to be correct. Thus Emdros currently falls short
on this account, though an AND construct is planned.

There is also currently a lack of support for querying data from other sources.
However, this can be implemented by the application using Emdros, provided
the data from other sources can be known before query-time and can thus be
written into the query. This would, of course, presuppose that the application
does some kind of rewriting of the query made by the user.

The final requirement mentioned by [13] is the need to query non-tree struc-
ture. For example, the TIGER Corpus [15] includes secondary, crossing edges,
and the Penn Treebank includes edges for WH-movement and topicalization
[16]. MQL handles querying these constructions by means of the AS keyword
and referencing the ID of the thus named object, as in Query Q5 in Fig. 3.

6 Conclusion and Further Work

We have presented the EMdF database model and the MQL query language of
our corpus query system, Emdros. We have shown how the data to be retrieved
for display-, statistical, or other purposes can often be different from what is
asked for in a linguistic query, differentiating between “meat”, “context”, and

10 Once we have implemented the general Kleene Star on strings of blocks, MQL will
be closed under atomic queries involving more than one block.

229

“postprocessing results”. On the basis of this distinction, we have argued for
the strategy of separating the process of lingusitic querying from the process of
retrieval of data for display- or other purposes. This implementation strategy of
separation of concerns gives rise to the benefits of generality of the language (and
thus its applicability to a wide variety of linguistic applications), simplicity of
the language (and thus ease of use for the user), and modularity (and thus ease
of implementation, maintainability, and attainment of the goal of correctness for
the system implementor). Finally, we have evaluated MQL against the queries
and requirements of [13], and have shown MQL to be able to express most of
the queries, and to meet most of the requirements that [13] puts forth.

However, Emdros falls short on a number of grounds. First, although its
database model is able to handle intersecting hierarchies, its query language does
not currently handle querying these intersecting hierarchies very well. This can
be fixed by the inclusion of an AND operator between strings of object blocks.
Second, a general Kleene Star is lacking that can operate on groups of (option-
ally embedded) objects. Third, the query language currently only supports one,
explicit object type for any given object block. This can be fixed, e.g., by in-
troducing true object orientation with inheritance between object types. Fourth,
the system currently does not support real numbers as values of attributes of ob-
jects, which would be very useful for phonological databases. Fifth, it is currently
not easy to express other, more specific dominance relationships than immediate
dominance and general dominance. As has been described above, the removal of
most of these shortcomings is planned.

Thus Emdros is able to meet most of the requirements being placed on today’s
linguistic query systems. We have not here fully explored its applicability to
phonological or discourse-level databases, since [13] concentrated on treebanks,
but that is a topic for a future paper.

References

1. Mengel, A.: MATE deliverable D3.1 – specification of coding workbench: 3.8
improved query language (Q4M). Technical report, Institut für Maschinelle
Sprachverarbeitung, Stuttgart, 18. November (1999)

2. Cassidy, S., Bird, S.: Querying databases of annotated speech. In Orlowska, M., ed.:
Database Technologies: Proceedings of the Eleventh Australasian Database Con-
ference, volume 22 of Australian Computer Science Communications, Canberra,
Australia. IEEE Computer Society (2000) 12–20

3. Bird, S., Buneman, P., Tan, W.C.: Towards a query language for annotation graphs.
In: Proceedings of the Second International Conference on Language Resources and
Evaluation. European Language Resources Association, Paris (2000) 807–814

4. Lezius, W.: TIGERSearch – ein Suchwerkzeug für Baumbanken. In Busemann,
S., ed.: Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache (KON-
VENS 2002), Saarbrücken. (2002) 107–114

5. Heid, U., Voormann, H., Milde, J.T., Gut, U., Erk, K., Pado, S.: Querying both
time-aligned and hierarchical corpora with NXT Search. In: Fourth Language
Resources and Evaluation Conference, Lisbon, Portugal, May 2004. (2004)

230

6. Rohde, D.L.T.: TGrep2 user manual, version 1.12. Available for download online
http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf. Access Online April 2005 (2004)

7. Bird, S., Chen, Y., Davidson, S., Lee, H., Zheng, Y.: Extending XPath to support
linguistic queries. In: Proceedings of Programming Language Technologies for XML
(PLANX) Long Beach, California. January 2005. (2005) 35–46

8. Petersen, U.: Emdros — A text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004, 20th International Conference on Computa-
tional Linguistics, August 23rd to 27th, 2004, Geneva, International Commitee on
Computational Linguistics (2004) 1190–1193 http://emdros.org/petersen-emdros-
COLING-2004.pdf.

9. Petersen, U.: Evaluating corpus query systems on functionality and speed:
Tigersearch and emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387–391 ISBN 954-91743-3-6.

10. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi, Amsterdam
and Atlanta, GA. (1994)

11. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments and Computers 28 (1996)
203–208

12. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic
Inquiry 13 (1982) 91–106

13. Lai, C., Bird, S.: Querying and updating treebanks: A critical survey and re-
quirements analysis. In: Proceedings of the Australasian Language Technology
Workshop, December 2004. (2004) 139–146

14. Beckman, M.E., Pierrehumbert, J.B.: Japanese prosodic phrasing and intonation
synthesis. In: Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics. ACL (1986) 173–180

15. Brants, S., Hansen, S.: Developments in the TIGER annotation scheme and their
realization in the corpus I. In: Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain, May
2002. (2002) 1643–1649

16. Taylor, A., Marcus, M., Santorini, B.: The Penn treebank: An overview. In
Abeillé, A., ed.: Treebanks — Building and Using Parsed Corpora. Volume 20 of
Text, Speech and Language Technology. Kluwer Academic Publishers, Dordrecht,
Boston, London (2003) 5–22

231

[LREC2006]

Querying both Parallel and
Treebank Corpora: Evaluation of

a Corpus Query System

Ulrik Petersen

2006

Published in: Proceedings of International Language Resources and Evaluation Con-

ference, LREC 2006

232

This page left intentionally blank

233

Querying Both Parallel And Treebank Corpora:
Evaluation Of A Corpus Query System

Ulr ik Petersen

Department of CommunicationandPsychology
University of Aalborg, Kroghstræde3

9220Aalborg East, Denmark
ulrikp@hum.aau.dk

Abstract
The last decade has seen a large increase in the number of available corpus query systems. Some of these are optimized for a particular
kind of linguistic annotation (e.g., time-aligned, treebank, word-oriented, etc.). In thispaper, wereport on our own corpus query system,
called Emdros. Emdros isvery generic, andcan be applied to almost any kind of linguistic annotation usingalmost any linguistic theory.
Wedescribe Emdros and itsquery language, showing some of the benefits that linguists can derive from using Emdros for their corpora.
We then describe the underlying database model of Emdros, and show how two corpora can be imported into the system. One of the
two is a parallel corpus of Hungarian and English (the Hunglish corpus), while the other is a treebank of German (the TIGER Corpus).
In order to evaluate the performance of Emdros, we then run some performance tests. It is shown that Emdros has extremely good
performanceon “small ” corpora (lessthan 1milli onwords), and that it scales well to corpora of many milli ons of words.

1. Introduction
The last decade has seen a large increase in the num-
ber of available corpus query systems. Systems such as
TGrep2 (Rohde, 2005), Emu (Cassidy and Harrington,
2001), TIGERSearch (Lezius, 2002a; Lezius, 2002b), NXT
Search (Heid et al., 2004), Viqtoria, Xaira, Emdros, and
others have been implemented during this time. Often,
these corpus query systems will specialize in one or two
kinds of corpora, such as time-aligned, treebank, parallel,
or word-oriented corpora; othersareoptimized for apartic-
ular sizeof corpus.
The value of a corpus query system lies in its two-fold
abilit y to store and retrieve corpora — both the text and
its linguistic annotation. The query capabilit y is important
for researchers in both theoretical and computational li n-
guistics. Theoretical li nguists might be enabled to answer
theoretical questions and back up their claims with actual
usage rather than introspective intuitions about language.
Computational li nguists are given a repository in which to
store their data in the short- or long-term, and are also be-
ing given query capabiliti es which might help them, e.g.,
test the accuracy of a parser or pull up a list of all words
with specific properties.
In this paper, we present our own Corpus Query System,
called Emdros1. Emdrosisvery generic, andcan be applied
to almost any kind of linguistic annotationfrom almost any
linguistic theory. We show that when applied to parallel
corpora, many milli ons of words are easily supported with
quick executiontimes. When applied to treebanks, Emdros
performs extremely well for ”small ” corpora (less than 1
milli on words; see (Petersen, 2005)), but performance is
also goodfor ” large” corpora(many milli onsof words).
Therest of thepaper is laid out as follows. First, webriefly
describe Emdros and the benefits a researcher might reap
from using the software. Second, we describe the EMdF
database model underlying Emdros. This sets the stage,

1See http://emdros.org/ and (Petersen, 2004; Pe-
tersen, 2005; Petersen, 2006to appear)

then, for describing how theEMdF model hasbeen applied
to two corpora, namely the Hunglish corpus (Varga et al.,
2005), and the TIGER Corpus (Brants and Hansen, 2002;
Brants et al., 1999). We then describe some experiments
used to evaluate the speed of Emdros based on these two
corpora, followed by the results of the experiments and an
evaluation of the results. Finally, we concludethepaper.

2. Benefits of Emdros
In this section, webriefly describesomeof the characteris-
tics and features of Emdros, as well as describing some of
thequery languageof Emdros.
Emdros has a four-layer architecture (seeFig. 1): At the
bottom, a relational DBMS lays the foundation, with back-
ends for PostgreSQL, MySQL, and SQLite currently im-
plemented. On top of that, a layer implementing the
EMdF database model is found. The EMdF model is a
particular model of text which lends itself extremely well
to linguistic annotation, and is described in more detail
in the next section. On top of the EMdF layer, a layer
implementing the MQL query language is found. MQL
is a “full access language”, featuring statements for cre-
ate/retrieve/update/deleteonthefull rangeof thedatatypes
made available in the EMdF model. The EMdF model
and the MQL query language are descendants of the MdF
model and the QL query language described in (Doedens,
1994).
On top of theMQL layer, any number of linguistic applica-
tions can be built . For example, the standard Emdros dis-
tributioncomeswith: a) a generic graphical query applica-
tion; b) importersfrom PennTreebank andNeGRA format
(with more importers to come); c) exporters to Annotation
GraphXML format and MQL; d) a console application for
accessing the features of MQL from the command-line; e)
a graphical “chunking-tool” for exempli fying how to use
Emdros; f) and a number of toy applications showing lin-
guistic use, among other tools.
Emdros has been deployed successfully in a number of
research projects, e.g., at the Free University of Amster-

234

E
m

dr
os

A
pp

lic
at

io
ns

E
m

dr
os

 Q
ue

ry
 T

oo
l

Im
po

rt
er

s.
..

O
th

er
 a

pp
lic

at
io

ns
...

Relational DB

MQL query layer

EMdF storage layer

D
B

...

(PostgreSQL, MySQL or SQLite)

Figure1: Emdrosarchitecture

dam (for a database of Hebrew), and at the Institut de Re-
cerche en Informatique de Toulouse (for a concordancer-
application), among others. Two companies have licensed
Emdros for inclusion in their software products, one of
which is Logos Research Systems, using Emdros to query
anumber of Biblical Greek andHebrew databases.
Emdros runs on Windows, Mac OS X, Linux, FreeBSD,
NetBSD, SunSolaris, and other operatingsystems, and has
been implemented in a portable subset of C++. Language
bindings are available for Java, Perl, Python, Ruby, and
PHP. It is being made available under the GNU General
Public License, but other licensing can be negotiated with
the author.
The retrieval-capabiliti es of the MQL query language are
particularly powerful, and can be very useful to linguists.
Examplesaregiven in Fig. 2 andFig. 3.
MQL is centered around “blocks” enclosed in “ [square
brackets]” . There are three kinds of blocks: Object
blocks (which match objects in the database); Gap blocks
(which match “gaps” in the database, e.g., embedded rel-
ative clauses); and power blocks (which match “arbitrary
stretches of monads”). The examples given in this paper
only use object blocks; for more examples, please seethe
website.
The overruling principle of MQL is: “The structure of the
query mirrors thestructureof theobjects found” , i.e., there
is an isomorphism between the structure of the query and
the inter-object structure of the objects found. This is with
respect to two key principlesof text, both of which arevery
famili ar to linguists, namely “sequence” and“embedding” .
For example, query Q1 in Fig. 3 simply finds “Root” ob-
jects(i.e., “Sentence”objects) embeddedwithin which there
is a “Token” object whose attribute “surface” is equal to
“sehen” .
Similarly, query Q4 finds “Nonterminal” objects of type
“NP” embedded within which we find: a) first a token of
type “VVFIN” , then b) a Nonterminal of type “NP”, and
thenc) aNonterminal of type “PP” . Thefact that thesethree

areplaced after each other implies (becauseof the overrul-
ing principleof MQL) that the objects foundmust occur in
that sequence.
Query Q9 shows how to use references between objects
— the surrounding NP Nonterminal is labelled “AS p1” ,
whicheffectively givestheobject anamewhichcan beused
further down in the query. This is used in query Q9 to
ensure that the NP is the immediate parent of the objects
foundembedded inside of it (the automatically generated
“self ” attributeof any object gives the ID of that object).
Query Q3 and Q9 show the “first” and “ last” keywords —
meaning that the object that bears such a designation must
be either “first” or “ last” in its surroundingcontext.
QueriesQ2 andQ8 show the “NOTEXIST” operator. As it
is currently implemented, the NOTEXIST operator means
that the following object must not exist in the surrounding
context from the point at which it is found onto the end of
the surrounding context. For example, in query Q8, once
theToken of type “NN” hasbeen found, theremust not ex-
ist aToken of type “ADJA” or type “ADJD” after the “NN”
token, upto the end of thesurroundingNP. Note that this is
existential negationat object-level (¬∃) — not negation of
equality at the object attribute level (6=).
Various attribute-comparison operators are available, in-
cluding“=” , “<>” (inequality)” , “<” , “>” , “<=” , “>=” , IN
a list, regular expressions “ ˜ ” , and negated regular expres-
sions “ !˜ ” , among others. Queries H1-H4 in Fig. 2 ill us-
tratetheregular expression operator “ ˜ ” for simplequeries.
These examples, however do not show the full rangeof ca-
pabiliti es in MQL. For example, Kleene Star is not shown,
nor is the ORoperator between strings of objects shown.
Thelatter supports searchesfor permutationsof positionsof
objects using one query rather than several queries. MQL
isable to handlequeriesof any complexity, and thequeries
shown here are all onthelow end of thescaleof complexity
which MQL can handle. For more information, consult ei-
ther the documentation onthe website2 or (Petersen, 2004;
Petersen, 2005; Petersen, 2006to appear).

3. The EMdF model
The EMdF (Extended MdF) model derives from the MdF
(Monads dot Features) model described in (Doedens,
1994). There are four basic concepts in the EMdF model,
which all derivefrom Doedens’ work: Monad, Object, Ob-
ject Type, andFeature. A monad is simply an integer — no
more, no less. An object is a set of monads, and belongs
to an Object Type. The Object Type groups objects with
similar characteristics, e.g., Words, Phrases, Clauses, Sen-
tences, Documents, etc. Themodel isgeneric in that it does
not dictatewhat Object Typesto instantiate in any database
schema. Thus the database designer is freeto design their
linguistic database in ways that fit the particular linguistic
problemsat hand. TheObject Typeof an Object determines
what features(or attributes) it has. Thusadatabasedesigner
might choose to let the “Word” object type have features
called “surface”, “part of speech” , “ lemma”, “gloss” , etc.
Or the database designer might choose to let the “Phrase”
object type have features called “phrase type”, “ function” ,
“parent” , etc.

2http://emdros.org

235

H1: [Sentence english ˜ " is "]
H2: [Sentence english ˜ " is " AND

english ˜ " was "
]

H3: [Sentence english ˜ " is " AND
english ˜ " necessary "

]
H4: [Sentence english ˜ " [Ii]s "

AND english ˜ " [Ww]as "
]

Figure2: Querieson theHunglish corpus

The backboneof the database is the string of monads (i.e.,
the integers: 1,2,3,. . . etc.). As mentioned, an object is
a set of monads. The set is completely arbitrary, in that
it need not be contiguous, but can have arbitrarily many
“gaps” . This supports things like embedded clauses with a
surroundingclause of which it is not a part, discontiguous
phrases, or other discontiguouselements.
Thusfar, wehavedescribed theMdF model. TheExtended
MdF (EMdF) model that Emdros implements adds some
additional concepts.
First, each object has an id d, which is simply a database-
widely unique integer that uniquely identifies theobject.
Second, the datatypes that a feature can take on includes:
strings, integers, id ds, and enumerations (sets of labels),
alongwith lists of integers, lists of id ds, and lists of enu-
merations.
Third, an object type can be declared to be one of three
range-classes. The range-classes are: a) “WITH SINGLE
MONAD OBJECTS”, b) “WITH SINGLE RANGE OB-
JECTS”, and c) “WITH MULTIPLE RANGE OBJECTS”.
The “SINGLE MONAD” range-class is for object types
that will only ever have objects that consist of a single
monad, e.g., Word-object types. The “SINGLE RANGE”
range-class is for object types that will only ever have
contiguous objects, never objects with gaps. Finally, the
“MULTIPLE RANGE” range-classis for object types that
will haveobjectsthat may (but need not) havegapsin them.
These range-classes are used for optimizations in the way
the data is stored, and can lead to large performancegains
when used properly.
In the next section, we show how we have applied the
EMdF model to the design of two Emdros databases for
two corpora.

4. Application
For the purposesof this evaluation, two corporahave been
imported into Emdros. One is the Hunglish corpus (Varga
et al., 2005), while the other is the TIGER Corpus (Brants
andHansen, 2002; Brantset al., 1999).
The TIGER Corpus has been imported from its instantia-
tion in thePennTreebank format, rather than itsnativeNe-
GRA format. That is, the secondary edges have been left
out, leaving only “normal” tree edges and labels. Corefer-
encelabelshave, however, been imported.
Each root treegets imported into an object of type “Root” .
This has been declared “WITH SINGLE RANGE OB-
JECTS”.

Q1: [Root
[Token surface="sehen"]

]
Q2: [Root

NOTEXIST [Token surface="sehen"]
]

Q3: [Nonterminal mytype="NP"
[Token last mytype="NP"]

]
Q4: [Nonterminal mytype="VP"

[Token mytype="VVFIN"]!
[Nonterminal mytype="NP"]!
[Nonterminal mytype="PP"]

]
Q8: [Nonterminal mytype="NP"

[Token mytype="NN"]
NOTEXIST [Token mytype="ADJA"

OR mytype="ADJD"]
]

Q9: [Nonterminal AS p1 mytype="NP"
[Token FIRST mytype="ART"

AND parent = p1.self
]
[Token mytype="ADJA"

AND parent = p1.self
]
[Token LAST mytype="NN"

AND parent = p1.self
]

]

Figure3: Querieson theTIGER Corpus

Likewise, eachNonterminal (whether it be an Sor aPhrase)
gets imported into an object of type “Nonterminal” . This
object type has the features “mytype” (for the edge label,
such as“NP”), function(for thefunction, such as“SUBJ”),
and “coref ” (a list of id ds pointing to coreferent nodes),
as well as a “parent” feature (pointing to the id d of the
parent).
Finally, each terminal (whether it be aword or punctuation)
is imported as an object of type “Token” . This object type
has the same features as the “Nonterminal” object type,
with the addition of a “surface” feature of type STRING,
showing the surfacetext of the token. The “Token” ob-
ject typehasbeen declared “WITH SINGLE MONAD OB-
JECTS”.
The Hunglish corpus has been imported in a very simple
manner: Each sentencehas been imported as a single ob-
ject, belonging to the object type “Sentence”. This object
type has only two features: “English” and “Hungarian” ,
both of which are of type “STRING”. For each sentence,
punctuation has been stripped, and each word surrounded
by aspaceon both sides. Thismakesfor easy searching us-
ing regular expressions. Sincethere isnosyntactic markup
for the Hunglish corpus, having only sentence-boundaries,
it seemed natural to gather all words into a single string
rather than splitti ng them out into separate objects. As it
turnsout, this leadsto ahugeincreasein performance, sim-
ply because there are fewer rows to query in the backend.
Each object occupies exactly one monad in the monad-
stream, and so the object type has been declared “WITH

236

1000Tokens H1 H2 H3 H4

16531 6.53 7.625 7.74 6.2
33063 13.345 16.095 16.085 11.91
49595 21.08 23.705 23.58 18.565
66127 26.99 30.49 32.375 24.785
82659 33.98 42.485 40.245 31.275

Table 1: Average times in seconds for SQLite on the
Hunglish corpus

1000Tokens Q1 Q2 Q3 Q4 Q8 Q9

712 0.47 0.80 1.91 1.17 3.37 2.40
2849 1.80 3.00 7.54 4.39 12.55 9.03
8547 5.37 9.16 22.97 12.75 36.56 27.64

17095 11.09 17.56 45.52 26.77 77.66 54.48
25643 16.97 26.83 72.64 43.68 117.72 84.76
34191 25.62 36.52 105.63 71.35 175.80 129.78

Table 2: Average times in seconds for SQLite on the
TIGER corpus

SINGLE MONAD OBJECTS”.

5. Experiments
In order to test thescalabilit y of Emdros, both corporahave
been concatenated a number of times: The Hunglish cor-
pus has been concatenated so as to yield the corpus 1-5
times (i.e., with 0-4 concatenation operations), while the
TIGER Corpushasbeenconcatenatedso asto yield the cor-
pus 4, 12, 24, 36, and 48times. There are 712,332tokens
and 337,881syntactic objectson top in the TIGER corpus,
yielding 34.19 milli on tokens and 16.22 milli on syntactic
objects in the case where the corpushasbeen concatenated
47 times. For the Hunglish corpus, there are 852,334sen-
tences in two languages totalli ng 16,531,968 tokens. For
the case where the corpus has been concatenated 4 times,
thisyields81.09milli ontokensand 4.26milli onsentences.
A number of querieshave been run oneither corpus. They
areshown in Fig. 2 for theHunglish corpusandin Fig. 3 for
theTIGER Corpus. For theTIGER Corpus, queriesQ1-Q4
havebeen adapted from (Lai andBird, 2004).
Theperformanceof Emdroshasbeen tested by runningall
queries in sequence, twice in a row each (i.e., Q1, Q1, Q2,
Q2, etc.). The queries have been run twice so as to guard
against bias from other system processes. This has been
done on a Linux workstation running Fedora Core 4 with
3GB of RAM, a 7200 RPM ATA-100 harddrive, and an
AMD Athlon64 3200+ processor. The queries have been
runagainst each of the concatenated databases.
For each database, a number of queries have been run
against thedatabasebeforespeed measurementshavetaken
place, in order to prime any file system caches and thus
get uniform results.3 In a production environment, the
databases would not be queried “cold” , but would be at
least partially cached in memory, thus this step ensures
production-like conditions.

6. Results
The results of the experimentscan be seen in Figures 4–5.
Fig. 4 shows the time for queriesH1-H4 added together on

3The queries used for “priming” were: H1 for the Hunglish
corpus; and Q2, Q4, and Q8 for the TIGER Corpus.

 50

 100

 150

 200

 250

 300

 350

 400

10000 20000 30000 40000 50000 60000 70000 80000 90000

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds
 fo

r
qu

er
ie

s
H

1-
H

4

Tokens in thousands

PostgreSQL
MySQL
SQLite

Figure 4: Times for all queries added together on the
Hunglish corpus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Tokens in thousands

PostgreSQL
MySQL
SQLite

Figure 5: Times for all queries added together on the
TIGER corpus

theHunglish corpus. Fig. 5 shows the same for the queries
on the TIGER Corpus. Figures 6, 7, and 8show the times
of the individual querieson theTIGER Corpus for SQLite,
MySQL, and PostgreSQL respectively. The average times
for each query can beseen for SQLiteon theHunglish cor-
pusin Table1, and for SQLiteon theTIGER Corpusin Ta-
ble 2. The distribution of times is similar for PostgreSQL
and MySQL, and so these times are not shown as tables,
only asgraphs.

7. Evaluation
As can be seen from Table 2, Emdros performs extremely
well onthesingle instanceof theTIGER corpus(712×10

3

words), running the most complex query, Q8, in lessthan
3.5 seconds. This is typical of Emdros’ performance on
“small ” corpora of less than a milli on words. For further
details, pleasesee(Petersen, 2005).
As can be seen from a comparison of Table 1 and Table
2, thequery times for theHunglish corpusaresignificantly
lower per token queried than for theTIGER corpus. This is
because of the differences in the way the EMdF databases
for the two corporahavebeen designed: TheHunglish cor-
pushasbeen gathered into far fewer RDBMSrowsthan the

237

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure6: TIGER SQLite executiontimes

 0

 50

 100

 150

 200

 250

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure7: TIGER MySQL executiontimes

TIGER Corpus, in that each sentencebecomes one row as
is the case for the Hunglish corpus, rather than one token
becoming one row as is the case for the TIGER corpus. In
addition, there is no linguistic information associated with
each word in the Hunglish corpus. These two factorsmean
that the storage overhead per token is significantly lessfor
the Hunglish corpus. This is the reason for the dramatical
differencein query timesbetween the two corpora.

 0

 50

 100

 150

 200

 250

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure8: TIGER PostgreSQL executiontimes

It will benoted, however, that theTIGERcorpus, becauseit
isa treebank, supports significantly more advanced queries
than the Hunglish corpus. Also, query Q1 on the TIGER
corpus is only marginally more advanced than query H1
on the Hunglish corpus, in that both queries query for the
existence of a single word, the only difference being that
query Q1 also retrievesthestructurally enclosingRoot (i.e.,
Sentence) object. Moreover, if we extrapolate the SQLite
query time for query Q1 linearly (see Table 2) up to the
size of the biggest concatenation of the Hunglish corpus
(82milli on), we get an execution time of 25.62 × 82659

34191
=

61.93, which isonly roughly twicethe executiontimeof H1
(33.98).4 Thus the added complexity of the TIGER corpus
only lowers performance by a factor of roughly 2, while
addingmany complex query capabiliti es, asexemplified by
query Q9.
As can be seen from Fig. 4, which shows the times of
all queries added together for the Hunglish corpus, perfor-
manceon the Hunglish corpus is very linear in the number
of tokensqueried.
The same is almost true for the TIGER corpus, as can be
seen from Fig. 5, which shows the times of all queries
added together for the TIGER corpus. However, here the
curves suffer a bend after 25 milli on tokens — at least on
PostgreSQL and SQLite, while MySQL stays linear even
up to 34 milli on words. It is our estimation that tuning
PostgreSQL’smemory usage, and increasingthe amount of
RAM available to SQLite, would change this picture back
to linear for these two databases, even beyond 25milli on
tokensqueried.
Ascan beseen from Fig. 6, which showsthetimetaken for
individual queries on SQLite, it is the case that the curve
suffersabend onall queriesafter 25milli ontokensqueried.
The same is true for PostgreSQL, as can be seen from Fig.
8. On MySQL, however, all queriesare linear even beyond
25 milli on, except for query Q9, which strangely shows
better-than-linear performance after 25 milli on words, as
can be seen in Fig. 7. We havenoexplanation for thisphe-
nomenonat thispoint.
It is curious that query Q8 is uniformly slower than query
Q9 acrossthe threebackend databases, even though query
Q8 is lesscomplex than query Q9 in the number of query
terms. This is probably because query Q8 finds more than
12.58 times the number of “hits” than query Q95, and so
hasto domorememory-house-keeping,aswell asdumping
moreresultsafterwards.

8. Conclusion and fur ther work
Corpus query systems are of great value to the Language
Resources community. In this paper, we have presented
our own corpusquery system, called Emdros, and havede-
scribed its architecture, its MQL query language, and its
underlying EMdF database model. We have then shown
how one can apply the EMdF databasemodel to two kinds

4AsFig. 6 shows, we arenot completely justified in extrapolat-
ing linearly, sincequery Q1 (as well as the other queries) show a
small but significant non-linear bend in the curve after 25 milli on
words queried. However, this bend isvery small for query Q1.

53,843,312for Q8 vs. 305,472 for Q9 onthe 34 milli on-word
corpus.

238

of corpora, one being a parallel corpus (the Hunglish cor-
pus) and theother beinga treebank (theTIGER corpus).
We have then described some experimentson the two cor-
pora, in which wehavemeasured the executiontimeof Em-
dros against the two corpora on a number of queries. The
corporahave been concatenated a number of times so as to
get more data to query. This has resulted in databases of
different sizes, upto 82milli onwordsfor theHunglish cor-
pusand upto 34milli ontokensfor theTIGER corpus. The
execution times have been plotted as graphs, which have
been shown, andselected timeshavebeen shown as tables.
We have then discussed and evaluated the results. It has
been shown that execution time is linear in the number of
tokens queried for the Hunglish corpus, and nearly linear
for the TIGER Corpus. It has also been shown that execu-
tion times are extremely goodfor “small ” corpora of less
than a milli on words, while execution time remains good
for “ large” corporaof many milli onsof words.
We plan to extend Emdros in variuos ways. For example:
Addingimportersfor more corpusformats; Addingan AND
operator between stringsof object blocks; Addingautomat-
ically generated permutationsof blocks; Addingsupport for
Kleene Star on groups of blocks rather than single blocks;
ExtendingtheunderlyingEMdF model to scale even better;
Adding ngram support directly into the underlying EMdF
model; Adding lists of strings as a feature-type; Adding
caching features which would support web-based applica-
tionsbetter; andaddingagraphical management tool in ad-
dition to the existing graphical query tool.
The goodexecution times, coupled with a query language
that is easy to read, easy to learn, and easy to understand
while supporting very complex queries, makes Emdros a
goodchoice asa tool for researchersworkingwith linguis-
tic corpora.

9. References
GaliaAngelova, KalinaBontcheva, Ruslan Mitkov, Nicolas

Nicolov, and Nikolai Nikolov, editors. 2005. Interna-
tional ConferenceRecent Advancesin Natural Language
Processing 2005, Proceedings, Borovets, Bulgaria, 21-
23 September 2005, Shoumen, Bulgaria. INCOMA Ltd.
ISBN 954-91743-3-6.

Sabine Brants and Silvia Hansen. 2002. Developments in
theTIGER annotationscheme andtheir realizationin the
corpusI. In Proceedingsof theThird International Con-
ference on Language Resources and Evaluation (LREC
2002), LasPalmas, Spain, May 2002, pages1643–1649.
ELRA, European LanguageResourcesAssociation.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
1999. Syntactic annotation of a German newspaper cor-
pus. In Proceedings of the ATALA Treebank Workshop,
pages69–76, Paris, France.

Steve Cassidy and Jonathan Harrington. 2001. Multi -level
annotationin theEmu speech databasemanagement sys-
tem. Speech Communication, 33(1,2):61–77.

Crist-Jan Doedens. 1994. Text Databases: One Database
Model and Several Retrieval Languages. Number 14 in
Language and Computers. Editions Rodopi Amsterdam,
Amsterdam andAtlanta, GA. ISBN 90-5183-729-1.

U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk, and
S. Pado. 2004. Querying both time-aligned and hierar-
chical corpora with NXT Search. In Fourth Language
ResourcesandEvaluationConference, Lisbon, Portugal,
May 2004.

CatherineLai andSteven Bird. 2004. Queryingand updat-
ing treebanks: A critical survey and requirementsanaly-
sis. In Proceedings of the Australasian Language Tech-
nology Workshop, December 2004, pages139–146.

Wolfgang Lezius. 2002a. Ein Suchwerkzeug für syntak-
tisch annotierte Textkorpora. Ph.D. thesis, Institut für
MaschinelleSprachverarbeitung, University of Stuttgart,
December. Arbeitspapiere des Instituts für Maschinelle
Sprachverarbeitung(AIMS), volume8, number 4.

Wolfgang. Lezius. 2002b. TIGERSearch – ein Suchw-
erkzeug für Baumbanken. In Stephan Busemann, ed-
itor, Proceedings der 6. Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS 2002), Saarbrücken,
pages107–114.

Ulrik Petersen. 2004. Emdros — a text database engine
for analyzed or annotated text. In Proceedings of COL-
ING 2004, 20

th International Conference on Computa-
tional Linguistics, August 23

rd to 27
th, 2004, Geneva,

pages 1190–1193. International Commitee on Compu-
tational Linguistics. http://emdros.org/petersen-emdros-
COLING-2004.pdf.

Ulrik Petersen. 2005. Evaluating corpusquery systems on
functionality andspeed: Tigersearch andemdros. In An-
gelova et al. (Angelova et al., 2005), pages 387–391.
ISBN 954-91743-3-6.

Ulrik Petersen. 2006; to appear. Principles, implementa-
tion strategies, and evaluation of a corpusquery system.
In Proceedingsof the FSMNLP 2005workshop, Lecture
Notes in Artifical Intelli gence, Berlin, Heidelberg, New
York. Springer Verlag. Accepted for publication.

Douglas L. T. Rohde. 2005. Tgrep2 user
manual, version 1.15. Available online
http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf.

Dániel Varga, Peter Hálacsy, András Kornai, Viktor Nagy,
Lázló Németh, and Viktor Trón. 2005. Parallel corpora
for medium density languages. In Angelova et al. (An-
gelova et al., 2005), pages 590–596. ISBN 954-91743-
3-6.

239

[CS-TIW2006]

Prolog+CG:
A Maintainer’s Perspective

Ulrik Petersen

2006

Published in: de Moor, Aldo, Polovina, Simon and Delugach, Harry (Eds.): First Con-

ceptual Structures Interoperability Workshop (CS-TIW 2006). Proceedings. Aalborg

University Press, pp. 58–71.

240

This page left intentionally blank

241

Prolog+CG: A maintainer’s perspective

Ulrik Petersen

Department of Communication and Psychology
Aalborg University

Kroghstræde 3
DK – 9220 Aalborg East

Denmark
ulrikp@hum.aau.dk

http://prologpluscg.sourceforge.net

Abstract. Prolog+CG is an implementation of Prolog with Concep-
tual Graphs as first-class datastructures, on a par with terms. As such,
it lends itself well to applications in which reasoning with Conceptual
Graphs and/or ontologies plays a role. It was originally developed by
Prof. Dr. Adil Kabbaj, who in 2004 turned over maintainership of Pro-
log+CG to the present author. In this paper, Prolog+CG is described in
terms of its history, evolution, and maintenance. A special web-enabled
version of Prolog+CG is also described. Possible interoperability with
CGIF and the CharGer tool are explored. Finally, we offer some general
observations about the tenets that make Prolog+CG a success.

1 Introduction

Prolog+CG is an implementation of the Prolog programming language [1, 2],
with extensions for handling the Conceptual Graphs of John Sowa [3–5] as well
as object-oriented extensions. It was first developed by Prof. Dr. Adil Kabbaj as
part of his doctoral studies at the University of Montreal in Canada. In 2004, Dr.
Kabbaj graciously turned over maintainership of Prolog+CG to the present au-
thor. Since then, Prolog+CG has had its home on the web at the SourceForge.Net
software-development collaboration site.1 Prolog+CG is being used around the
world both in teaching-environments and in research. The software has, at the
time of writing, undergone 12 releases since maintainership was handed over to
the present author, and has enjoyed more than 1800 downloads in total.

The purpose of this paper is to offer insights from the current maintainer’s
perspective on the history, maintenance, development, and future of Prolog+CG.
The rest of the paper is laid out as follows. We first provide a bit of background
on the history of Prolog+CG, followed by a description of the current version.
We then offer a description of and reflection on the maintenance of Prolog+CG
since 2004. We then describe a web-enabled version of Prolog+CG which the
current maintainer has added to Prolog+CG as part of the development of the
software. We then explore how, in the future, Prolog+CG might interoperate

1 See http://prologpluscg.sourceforge.net

242

with other software through the CGIF standard, and also how Prolog+CG might
interoperate with the CharGer tool. We then offer some general observations on
some of the tenets which make Prolog+CG a success. Finally, we conclude the
paper and describe future work.

2 History

Prolog+CG evolved out of work on the PROLOG++ system by Adil Kabbaj et
al. [6]. Dr. Kabbaj then in his PhD thesis [7] developed the system further. This
led to version 1.5, described in [8], further improved in [9]. The history thus far
can be traced in the publications cited and is thus not described further here.

After 2001, development almost halted, then at version 2.0. At the Uni-
versity of Aalborg, the present author and his colleagues, Henrik Schärfe and
Peter Øhrstrøm, became interested in using Prolog+CG as a basis for teaching
formalization of meaning as well as logic programming to 2nd and 3rd year stu-
dents of humanistic informatics. We therefore developed some teaching materials
based on Prolog+CG2 and its later successor, the Amine Platform3, also writ-
ten by Prof. Dr. Kabbaj.4 In the spring of 2004, Aalborg University successfully
attracted Dr. Kabbaj to come to Aalborg to give a PhD course on Artificial
Intelligence. During Dr. Kabbaj’s time in Aalborg, he graciously agreed that he
would relicense Prolog+CG under an Open Source and Free Software license,
the GNU Lesser General Public License version 2.1 [12], and that he would turn
over maintainership of Prolog+CG to the present author.

The first release of Prolog+CG under the current maintainer was dubbed
version 2.0.1, and was released on July 5, 2004. At the time of writing, the
current version is 2.0.12, and version 2.0.13 is being prepared.

3 Description

In the following, we describe Prolog+CG as of version 2.0.12.
Consider Fig. 1. The screen is divided into five regions: From top to bottom:

The standard menu-bar and toolbar, the Program Area (in which the Prolog
program is written or loaded), the console (in which queries are entered and
answers given), and the standard status bar.

The “File” menu supports the standard “New”, “Open”, “Save”, “Save as”,
“Close”, and “Exit” operations. In addition, two operations are available which
enable the use of Prolog+CG as a HTML-embedded Java applet over the web
(see Sect. 5).

The “Edit” menu supports the standard copy-paste-cut operations, as well
as “go to line” (in the Program Area). The latter is useful when the compiler
flags an error, giving a particular line at which the error occurs.

2 See [10].
3 See http://amine-platform.sourceforge.net
4 We have recorded some of our experiences with the teaching materials in [11].

243

Fig. 1. Screenshot of Prolog+CG.

The “Font” menu supports changing the size and bold/normal status of the
font of the current pane (either the Program Area or the console).

The “Build” menu supports compilation of the Prolog program, answering
the current query (in the console), starting the debugger, stopping execution,
and entering expert system mode.

The “Windows” menu supports opening the “primitives” window, which
briefly summarizes the built-in Prolog primitives (see Fig. 2).

The “Help” menu also supports opening the “primitives” window, as well as
showing the user’s manual and the “About” box.

4 Maintenance

The present author received the Java source files for Prolog+CG from Dr. Kab-
baj in April 2004. The present author then spent some time cleaning up the

244

Fig. 2. The “primitives” window in Prolog+CG.

code and getting to know it, fixing a few bugs that had been annoying us in our
teaching. This led to version 2.0.1, which was released on July 5, 2004.

Development has taken place via SourceForge.Net, which is an Internet-based
collaborative platform for Open Source software development and distribution.
SourceForge.Net provides gratis resources to the Open Source community, in the
form of (among other services) web-space, download-hosting, CVS repositories,
bug-tracking, and fora for discussion.

A website was put together, and was hosted on SourceForge.Net from the
time of the first release (2.0.1).5 Since the website is simple, the current main-
tainer has not had cause to alter the website drastically during the course of his
maintainership.

From the beginning of the presence of Prolog+CG on SourceForge.Net,6 de-
velopment has taken place using the CVS repository facilities of SourceForge.Net.
Not only has this helped the maintainer in the face of changing local worksta-
tions; it has also facilitated easy tracking of code-changes and versions. This has

5 See http://prologpluscg.sourceforge.net
6 The project was registered on the site on July 1, 2004.

245

proven crucial more than once, for example when needing to track exactly what
had happened to the sourcecode since a given release.

The manual has been reorganized from its original one-page HTML document
into a more highly structured LATEX document, which then becomes the source
for both the printable manual in PDF format and the HTML version.7

Throughout the process of maintenance, code-comments in French have been
translated into English, so as to better serve the current maintainer. Likewise,
many identifiers have been translated from French into English, to improve legi-
bility and intelligibility for people who, like the current maintainer, are less than
strong in French. Likewise, the code has been reindented to reach similar goals.

Gradually, features have been added. Some examples follow.
New predicates have been added, such as nl/0 (emit a newline on the con-

sole), writenl/1 (emit a term on the console, followed by newline), clearConsole/0
(erase or clear the contents of the console).8 Another predicate, concat/3 was
added to concatenate strings.9 Two other predicates, minComSuperTypes/3 and
maxComSubTypes/3 were added for those situation in which the type hierarchy
in a Prolog+CG program is not a lattice, but in which there is more than one
minimum common supertype or maximum common subtype.10 Other new pred-
icates include seed/1 and rnd/3 for doing pseudo-random number generation.11

Functionality has also been removed: For example, the generation of object
files containing the compiled versions of Prolog+CG programs was removed in
version 2.0.9; it was no longer needed, since we have fast enough machines today
that loading a compiled object file was no quicker than compiling the program
in-memory.

In version 2.0.10, the code was heavily refactored, changing almost every-
thing from French into English, also yielding a new package structure instead of
everything being in the same Java package. This helped the current maintainer
understand the code even better, as the various parts were now cleanly separated
into CG operations, Prolog implementation, GUI implementation, and top-level
entry points.

This refactoring also paved the way for another development: The STARlab
laboratory in Belgium, with which Dr. Aldo de Moor is associated, wanted to
run Prolog+CG as part of an Enterprise Java Beans application. The problems
in doing so included:

1. Prolog+CG required the presence of a GUI, in particular, an X server had
to be running on the server on which STARlab wanted to run Prolog+CG.
This was a problem on a headless server.

2. Prolog+CG was implemented with a single class, PrologPlusCGFrame, being
the centre of communication between the various parts. This would not have

7 The latex2html project is used for the conversion from LATEX to HTML. See
http://www.latex2html.org/

8 All these were added in version 2.0.6.
9 This was done in version 2.0.7.

10 These were added in version 2.0.8.
11 These were added in version 2.0.12.

246

been a problem, were it not for the fact that the fields of this class were
almost all declared static, meaning that only one instance could be present
in a Java Virtual Machine. This meant that STARlab had to implement a
wrapper around Prolog+CG which serialized access to Prolog+CG, thereby
slowing down the many-threaded application.

The solution turned out to be to separate the GUI from the Prolog and CG
engines, and to make the internal communication happen around a class having
only non-static member variables, and then passing an instance of this class
around inside of Prolog+CG.

A number of bugfixes have been made, both ancient bugs and bugs intro-
duced by the current maintainer. For example, backtracking was not always done
properly, leading to crashes and “hanging” of the program. To guard against fu-
ture bugs, a regression test suite was introduced in version 2.0.11, as was a
command-line version of Prolog+CG (to facilitate scripting of the test suite).
In addition, the “findbugs”12 program was run on the code which resulted in
version 2.0.12, and over 100 potential trouble spots were fixed.

The present author has attempted to apply standard software development
practices to the maintenance and development of Prolog+CG. For example:
Using source code control (CVS); Making regression tests; Using code analysis
tools (findbugs); Indenting code as per the structure of the flow of control [13].
Open Source practices have also been followed, such as: Release early, release
often; Value feedback from users [14].

No software is developed in a vacuum. The input of users like Dr. Aldo de
Moor and Prof. Dr. Peter Øhrstrøm and others, both as to bug-reports and as
to feature-requests, is what has really driven Prolog+CG development.13

5 An application

Prof. Dr. Peter Øhrstrøm deserves the credit for coming up with the idea of
using Prolog+CG over the web. In January of 2005, he prompted the current
maintainer to implement support for such a usage scenario. The primary goal
was to enhance the usefulness of Prolog+CG in teaching environments.

In version 2.0.6,14 an applet version of Prolog+CG was introduced, running
locally in the user’s browser. The applet attempts to follow the principle of
simplicity in design and usage. A screenshot of the applet can be seen in Fig. 3.

In Fig. 3, it can be seen that there is one input-field (“Name”) and two
buttons (“Run” and “Clear”). This is configurable such that up to five input

12 Findbugs has been developed by the Computer Science Department of the University
of Maryland. See http://findbugs.sourceforge.net/

13 This is also the experience of the present author in his various other Open Source
projects, including the Emdros corpus query system (http://emdros.org/). This
social process around Open Source software has been described and dissected at
length by Eric S. Raymond in [14].

14 Released February 2, 2005.

247

Fig. 3. An example applet written with Prolog+CG.

fields and five buttons can be added. The buttons execute arbitary Prolog+CG
goals, either built-in or in the program underlying the applet. The input-fields
are used to pass arguments to the goals executed by pressing the buttons.

The Prolog program underlying the applet shown in Fig. 3 is the following
simple example:

main(X) :-

write("Hello"), write(X), write("!"), nl.

Figure 4 shows the Applet Deployment dialog configuring the same applet
as in Fig. 3. This dialog is accessible from within the “File” menu in the main
Prolog+CG program. It can be seen that the number of input fields (“boxes”)
is configurable, as are the names of the input fields. Also, the buttons are con-
figurable as to their number, and each button can be given a label as well as
specifying the goal to execute when the button is pressed. In the figure, the
“Run” button is configured to execute the “main/1” goal of the underlying ex-
ample Prolog+CG program, passing the contents of input field 1 (signified by

248

Fig. 4. The applet deployment dialog.

“#1”) as the sole parameter to main/1. The parameters of the applet can be
saved to XML for easy loading later.

It is easy to see that, although this simple example only demonstrates “hello
world” functionality, the full scale of Prolog capabilities are potentially behind
any Prolog+CG applet. To be precise: Any goal can be called with any param-
eters, and the output can be shown in a user-friendly way through the “write”
family of built-in primitives. Because the applet is running locally and because
it is stateful (not stateless like some CGI applications), Prolog asserts can also
be made, thus growing the database behind the interface. This supports “intel-
ligent” interactivity to as high a degree as almost any other Prolog system can
afford. The only limitations are the limit on the number of buttons available
(and thus the number of goals which can be run), and the limit on the number
of input-fields available (and thus the number of unique parameters available to
any goal). The former can even be overcome by judicious usage of the “exec”
built-in primitive, which executes any goal, the idea being to have a button
which uses the “exec” primitive to execute a goal whose name is stated in one of
the input fields. The latter limitation can easily be overcome by extending the
source code, which is, of course, open source and thus available to anyone for
modification.

249

The applet version of Prolog+CG is very useful in a teaching context in
the field of humanistic informatics: Students are able to experiment not only
with writing a Prolog program, but also with the deeper applications of logic to
real-world problems, with embedding the applet in a HTML page of their own
design, and with an interactive system, simple to use yet capable of a degree
of reasoning. In addition, they are able to host it on their own web-page in
a simple-to-deploy manner, which makes it easy for them to show their work
to their parents and peers, thus enabling socialization of their studies in their
out-of-school relationships.

6 Interoperability

Interoperability is important in almost any software: Almost all software uses at
least one library, for example,15 which is a very old example of interoperability
requirements between different parts of a software solution. Furthermore, con-
sider the facts that: a) all computations by their nature have a relation between
input and output, and b) computations can be serialized, and c) software is of-
ten compartmentalized into modules16. These facts together imply that different
pieces of software often need to interoperate as to their inputs and outputs. This,
in turn, requires not only agreed-upon formats, but also agreed-upon semantics
of those formats.

In the following, we describe some problems involved in adding more interop-
erability capabilities to Prolog+CG, including some potential solutions to some
of the problems. We first explore interoperability with the CGIF standard, after
which we explore how Prolog+CG might interoperate with CharGer. We then
conclude this section.

15 E.g., the standard C library.
16 The reasons for this compartmentalization are deep and multifarious, so I shall

restrict myself here to mentioning only one: First and foremost, human beings have
limited capabilities of abstraction, memory, and ability to keep great amounts of
detail in focus at the same time. These limitations necessarily leads to methodologies
and practices of software engineering which encourage modularity in programming.
As Alfred North Whitehead famously said in his 1911 Introduction to Mathematics,
“Civilization advances by extending the number of important operations which we
can perform without thinking about them.” One might paraphrase this in software
engineering terms by saying that the quality and usefulness of software advances by
extending the number of important computational operations which we can have
the computer perform without thinking about how they are done. This requires
important functionality to be encapsulated in “black boxes” with clean and — ideally
— lean interfaces. Thus our human limitations of “intelligence” by their very nature
lead to methodologies and practices of software engineering which compartmentalizes
software.

250

6.1 CGIF

CGIF17 is one format designed for interoperability between software components.
In this section, we describe some problems involved in supporting import from
and export to CGIF in Prolog+CG.

It is an important limitation in Prolog+CG that the software only supports
a subset of the general CG theory. In particular, relations are always binary,
meaning that a relation always has exactly two concepts attached. This limita-
tion leads to the fact that, while it would be relatively easy to export CGs from
Prolog+CG to CGIF, it would be more difficult to import “general” CGs from
CGIF into Prolog+CG. The reason for the difficulty of the latter operation is
that “general” CGs might have unary relations or ternary relations, or relations
with even higher arity, which would require some massaging in order to con-
strict them into the binary relation paradigm. Exactly how this massaging is to
be done algorithmically is unclear at this stage. However, provided the particu-
lar CGs to be imported were algorithmically mappable to the subset of the CG
theory supported by Prolog+CG, there is no fundamental reason why CGs in
CGIF could not be (at least partially) imported.

Exporting to CGIF, however, might proceed as follows: Some kind of built-in
primitive would have to be added, having two parameters, namely: a) The name
of a file to which to append the output, and b) A CG. Prolog’s backtracking
mechanism could be used to call this built-in primitive repeatedly for all the
CGs which one wished to export. For example:

graph(cg1, [Man]<-agnt-[Love]-benf->[Woman]).

graph(cg2, [Woman]<-rcpt-[Flower]<-thme-[Give]-agnt->[Man]).

writeCGs :- graph(X, G), writeCGIF("/home/joe/love.cgif.txt", G).

The writeCGs predicate would first write graph cg1, then backtrack and write
graph cg2, then stop.

Various problems exist in exporting CGs from Prolog+CG to CGIF. For
example:

1. Coreferents are marked in Prolog+CG by identical variable names. This
would have to be identified and translated to the defining-label/bound-label
notation of CGIF.

2. Multi-referents are marked in Prolog+CG by concepts with the same type,
having a referent of the form “*DIGIT” (e.g., “*1”, “*2”, etc.). This notation
means that the two concepts are really the same concept. This would have
to be mapped to only one concept in CGIF.

3. Relations can be (free) variables in Prolog+CG, which (to the best of our
knowledge) is not possible in CGIF. The export of CGs with variables as
relations names would have to fail if the variables were not bound variables
at the time of the export.

17 Conceptual Graph Interchange Format.

251

Thus several problems exist in exporting CGs from Prolog+CG to CGIF,
and the above list is not even exhaustive. Solutions can be found for most of
them, of course, so it is not a completely impossible task.

6.2 CharGer

CharGer is a tool for drawing conceptual graphs, maintained by Dr. Harry Delu-
gach.18 CharGer supports export to, among other formats, CGIF. Provided the
CGs thus exported met the requirement mentioned above of being algorithmi-
cally mappable to the subset of the CG theory implemented in Prolog+CG, such
graphs could be imported into Prolog+CG.

Export to CharGer format would be difficult, but not impossible. CharGer
currently supports saving and loading an XML-based format. This format has
all of the information necessary for maintaining the CGs in a datastructure (e.g.,
concepts, concept types, referents, relations, concept attachments to relations,
etc.). This information could easily be exported to something that looks like
CharGer’s XML-based format. However, the XML also has (when saved from
CharGer) some visual information, such as: Width, height, and location of con-
cepts and relations, location and path of arrows, etc. This information seems
to be necessary for loading the CGs correctly into CharGer. This information
could be obtained automatically from within Prolog+CG by using a graph layout
engine such as graphviz19.

6.3 Conclusion

Interoperability between different software components often involves exchange
formats. We have looked at two formats, namely CGIF and the XML-based
format of CharGer. We have identified some problems involved in importing into
and exporting CGs from Prolog+CG into each of these formats. In particular, for
importing, the CGs have to be mappable to the binary-relation-only paradigm
of Prolog+CG, and for exporting, certain problems have to be overcome, such as
the differences in syntax between CGIF and Prolog+CG, or the need for visual
layout in CharGer’s XML format.

7 General Observations

Prolog+CG owes most of its success to the insights had by Dr. Adil Kabbaj while
developing the first versions. Here the present author wishes to elaborate on his
views on what makes Prolog+CG a success, both in research and in teaching.

First, the twin foundations of Prolog+CG are — and remain — two well-
studied languages, namely Prolog and Conceptual Graphs. Prolog is based on
Horn Clause logic [2], another well-studied topic, and Conceptual Graphs take

18 See http://charger.sourceforge.net
19 See http://www.graphviz.org/

252

their point of departure in the Existential Graphs of Charles Sanders Peirce [3].
These twin foundations of Prolog+CG are the core of what makes Prolog+CG
useful. Separately, they remain useful. The insight of Dr. Kabbaj was that their
combination could prove to be potentially even more useful.

Prolog is useful for reasoning about atoms and other terms. Conceptual
Graphs are a version of logic which, like any logic, is useful for reasoning. In
addition, Conceptual Graphs are able to easily express richer meaning than
what is easy to express using Prolog terms.20 By making Conceptual Graphs
first-class datastructures on a par with terms, Dr. Kabbaj has enabled much
easier integration of knowledge-bases with the reasoning powers of Prolog.21

Second, the integration of not only bare conceptual graphs, but also ontolo-
gies containing both a type hierarchy and a catalog of instances, increases the
level of usefulness of Prolog+CG. At the University of Aalborg, we have used
Prolog+CG in our teaching of the subject of formalization of meaning, and have
sometimes made use of only the ontology-part of Prolog+CG. We have been
able to apply the built-in ontology primitives to enable students to reason with
ontologies, thereby increasing their level of understanding and insight into the
subject. Ontologies are an inseparable part of Conceptual Graphs [3, 5] if one
wishes to reason with them, and as such belong in any system dealing with the
use of Conceptual Graphs. This insight has been applied in Prolog+CG by Dr.
Kabbaj, and contributes to its success.

Third, the integration of Conceptual Graphs into the Prolog programming
language has been implemented such that the tightness of the integration enables
full support of Conceptual Graphs within the Prolog paradigm. For example,
variables may appear anywhere an identifier may appear in a Conceptual Graph,
including relation-names and concept types, thereby enabling unification at all
levels, including variables being present at all levels. This is especially useful in
such predicates as branchOfCG, concOfCG, and subsume, as demonstrated in [15,
16].

Thus there are at least three tenets of Prolog+CG which contribute to its
success. First, it is founded upon two well-studied languages, namely Prolog and
Conceptual Graphs. Separately, they are useful, but in combination, they can
potentially become even more useful. Second, the integration of ontologies and
catalogs of instances into Prolog+CG enables useful reasoning over type hierar-
chies, thus enhancing the usefulness of Prolog+CG. And third, the tight integra-
tion of Conceptual Graphs into the Prolog language enables easier development
of knowledge-based systems than would have been possible with standard Prolog
alone, or with a lesser integration of Conceptual Graphs than what has, in fact,
been implemented.

20 It is possible to express Conceptual Graphs entirely within the paradigm of standard
Prolog. Yet such expressions would remain cumbersome to write and not easy to read.

21 Henrik Schärfe has shown at length how this combination can lead to not only
empirically pleasing results, but also theoretically profound insights in the field of
computer aided narrative analysis [15, 16].

253

8 Conclusion and further work

We have described the history, maintenance, and development of Prolog+CG,
an implementation of Prolog supporting Conceptual Graphs as first-class datas-
tructures. We have also reported on one application of Prolog+CG, namely a
web-enabled version running as a Java applet in the user’s local browser. This
version of Prolog+CG is especially useful in a teaching environment. In addition,
we have elaborated on some of the problems involved in adding more interoper-
ability capabilities to Prolog+CG, including potential solutions to some of the
problems. Finally, we have offered some general observations about the tenets
which make Prolog+CG a success.

As already mentioned, version 2.0.13 is under development at the time of
writing. The single largest planned change is the ability of Prolog+CG to be
embedded in a Java Servlet, serving up HTML via a Tomcat server.22 It is
planned that this version will be able to run Prolog+CG programs written in
Prolog, stored on a server, and able to answer HTTP/1.1 requests, including
GET and POST methods of communication with the Prolog+CG program. Thus
Prolog+CG will become fully web-enabled, able to act both on the client side
and on the server side.

It is hoped that some of the work which the present author has exercised
on Prolog+CG will work its way into the successor to Prolog+CG, namely the
Amine platform already mentioned. In particular, the web-enablement features
would be very useful in an Amine context, especially in a teaching-environment,
for reasons similar to those already mentioned.

Prolog+CG has already proven useful to the Conceptual Graphs commu-
nity over its long history. In order to ensure the future success of Prolog+CG,
the University of Aalborg is in the process of bringing in and funding an addi-
tional maintainer, namely cand.scient. Jørgen Albretsen. It is planned that the
maintenance of Prolog+CG will continue for the foreseeable future.

Prolog+CG’s success has largely depended on user support in the form of
feedback. It is hoped that this feedback will continue to be given.

Acknowledgements

The present author wishes to thank the Department of Communication and Psy-
chology and the Study Committee for Humanistic Informatics at the University
of Aalborg for their financial support, and SourceForge.Net for their generous
support of the Open Source community. Most of all, the present author wishes
to thank Prof. Dr. Adil Kabbaj for writing Prolog+CG in the first place, and
for having the foresight, wisdom, and willingness to hand over maintainership of
Prolog+CG to the present author.

22 See http://tomcat.apache.org/

254

References

1. Clocksin, W.F., Mellish, C.: Programming in Prolog. 2nd edn. Springer Verlag,
Berlin (1984)

2. Rogers, J.B.: A Prolog Primer. Addison-Wesley (1986)
3. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, Reading, MA. (1984)
4. Sowa, J.F.: Conceptual graphs summary. In Nagle, T.E., Nagle, J.A., Gerholz,

L.L., Eklund, P.W., eds.: Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York (1992) 3–51 ISBN: 0-13-175878-0.

5. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA (2000)

6. Kabbaj, A., Frasson, C., Kaltenbach, M., Djamen, J.Y.: A conceptual and contex-
tual object-oriented logic programming: The PROLOG++ language. In Tepfen-
hart, W.M., Dick, J.P., Sowa, J.F., eds.: Conceptual Structures: Current Practices
– Second International Conference on Conceptual Structures, ICCS’94, College
Park, Maryland, USA, August 1994, Proceedings. Volume 835 of Lecture Notes in
Artificial Intelligence (LNAI)., Berlin, Springer Verlag (1994) 251–274

7. Kabbaj, A.: Un systeme multi-paradigme pour la manipulation des connaissances
utilisant la theorie des graphes conceptuels. PhD thesis, Univ. De Montreal,
Canada (1996)

8. Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG : A CG
object-oriented logic programming language. In Ganter, B., Mineau, G.W., eds.:
Proceedings of ICCS 2000. Volume 1867 of Lecture Notes in Artificial Intelligence
(LNAI)., Berlin, Springer Verlag (2000) 540–554

9. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, improvements,
and extensions of Prolog+CG : Case studies. In Delugach, H., Stumme, G., eds.:
Conceptual Structures: 9th International Conference on Conceptual Structures,
ICCS 2001, Stanford, CA, USA, July/August 2001, Proceedings. Volume 2120 of
Lecture Notes in Artificial Intelligence (LNAI)., Berlin, Springer Verlag (2001)
346–359

10. Petersen, U., Schärfe, H., Øhrstrøm, P.: Online course in knowledge representation
using conceptual graphs. On the web: http://www.huminf.aau.dk/cg/ (2001-
2006)

11. Schärfe, H., Petersen, U., Øhrstrøm, P.: On teaching conceptual graphs. In Priss,
U., Corbett, D., Angelova, G., eds.: Proceedings of ICCS 2002. Volume 2393 of
Lecture Notes in Artificial Intelligence (LNAI). Springer Verlag, Berlin (2002)
285–298

12. Stallman, R.M.: GNU lesser general public license, version 2.1. On the web:
http://www.gnu.org/copyleft/lesser.html (1999)

13. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley (1999)
14. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. 1st edn. O’Reilly and Associates (2001)
15. Schärfe, H.: Reasoning with narratives. Master’s thesis, Department

of Communication, Aalborg University (2001) Available on the web from
http://www.hum.aau.dk/~scharfe.

16. Schärfe, H.: Computer Aided Narrative Analysis. PhD thesis, Faculty of Human-
ities, Aalborg University, Denmark (2004)

255

[CS-TIW2007]

Using interoperating conceptual

tools to improve searches
in Kaj Munk

Ulrik Petersen

2007

Published in: Pfeiffer, Heather D., Kabbaj, Adil and Benn, David (Eds.), Second

Conceptual Structures Tool Interoperability Workshop (CS-TIW 2007). Held July 22,

2007 in Sheffield, UK, in conjunction with International Conference on Conceptual

Structures (ICCS) 2007. Research Press International, Bristol, UK. ISBN: 1-897851-

16-2, pp. 45–55

256

This page left intentionally blank

257

Using interoperating conceptual tools to

improve searches in Kaj Munk

Ulrik Petersen

Department of Communication and Psychology
Kroghstræde 3

DK – 9220 Aalborg East
Denmark

ulrikp@hum.aau.dk

http://www.kajmunk.hum.aau.dk

Abstract. Query Expansion is a technique whereby a query in an infor-
mation retrieval system is expanded with more terms, thus most likely
increasing the number of relevant documents retrieved. In this paper, we
describe a prototype of a system built around a number of interoper-
ating conceptual structures tools, and how it uses Query Expansion to
retrieve greater numbers of relevant documents. Thus the system is an
example of how interoperating conceptual structures tools can be used
to implement an information retrieval system.

1 Introduction

In what ways is it possible to query a corpus of natural language text concep-
tually? That is the motivating question behind the research presented in this
paper. In order to answer this question partially, we have built a prototype sys-
tem which incorporates three technologies, namely the Amine Platform [1–6],
the Emdros corpus query system [7–10], and some natural language processing
software in the form of a lemmatizer and a part of speech tagger1. The system is
able to increase the recall of queries for a given corpus of text, by expanding the
query with lemmas taken from an Amine ontology. The system could not have
been built without the integration of the three key technologies mentioned. In
this paper, we show how the system works in terms of its architecture, and how
it is able to achieve greater recall.

The organizational context of the present research is the Kaj Munk Research
Centre at Aalborg University, Denmark. Kaj Munk (1898-1944) was a Danish
playwright, pastor, poet, and author, who was very influential both in Danish
cultural life and outside of Denmark in the period between the two World Wars.
He was killed by the Germans in 1944 for his resistance stance.

The Kaj Munk Research Centre has bought the nachlass of Kaj Munk, and is
in the process of digitizing the material for electronic publication on the web and

1 The lemmatizer and part of speech tagger employed in this research are the ones
developed by Centre for Language Technology (CST), Copenhagen, Denmark. See
http://www.cst.dk.

258

in other ways. The envisaged website will feature advanced search capabilities
that go beyond mere matching of text strings into the realm of semantics. In this
endeavour, conceptual structures play a key role, and software tools that deal
with conceptual structures become critical in the development of the underlying
database technology.

The rest of the paper is laid out as follows. First, we introduce the litera-
ture behind our system. Second, we give an overview of our system. Third, we
offer a more detailed look at the query-process that leads to semantic querying.
Fourth, we give an example of the query process. Fifth, we give an analysis of
the functionality in terms of the precision and recall of the system. Sixth, we
report on the method of achieving interoperability between the various parts of
the system. Finally, we conclude the paper.

2 Literature review

Within the field of information retrieval, the notions of precision and recall are
often used to describe how well a search system performs. Briefly, recall is a
percentage showing how many documents out of all relevant documents were
retrieved, while precision is a percentage showing how many of the retrieved
documents are in fact relevant. For more information, see [11] and [12].

Query Expansion refers to a class of techniques in Information Retrieval in
which a query given by the user is expanded with more query terms. The intent is
always either to increase the recall, or to increase the precision, or both. Query
Expansion is an old technique, but as demonstrated by the literature, a very
useful technique. See for example, [13–15]. In so far as WordNet [16] can be
considered an ontology, [13, 17, 15] among many others show that ontologies can
prove valuable in the process of Query Expansion. The article [18] shows how
compound forms in Danish can be split into their respective lemmas, then used
as a basis for Query Expansion using a thesaurus.

The present author has built a corpus query system called Emdros. The
Emdros software is a generic query system for “analyzed or annotated text.”
As such, the software accommodates “text plus information about that text.”2

In the present research, Emdros is the component that stores and queries both
the text corpus to be queried and the part of speech and lemma information
with which each token is annotated. Additional information such as sentence
boundaries, paragraph boundaries, and noun phrase boundaries are also present,
but are not used in the present research. Document boundaries, however, are
used.

Emdros was written in C++, but has language bindings for several program-
ming languages including Java. These language bindings are provided through
SWIG.3 For more information on Emdros, the reader is invited to consult both

2 This phrase is taken from [19], which is the PhD thesis of Crist-Jan Doedens. Emdros
implements an extension of Doedens’ database model, and a subset of Doedens’ query
language. As such, Emdros can be seen as a derivate of the labours of Dr. Doedens.

3 See http://www.swig.org. See also [20].

259

the Emdros website4 and [7–10], all of which can be downloaded from the au-
thor’s website5.

The Amine Platform is a platform intended for development of intelligent
systems and multi-agent systems [5]. It implements a large array of the technol-
ogy components needed for building Knowledge Systems, including an ontology
builder, a CG layer with concomitant CG operations, and a logic inference en-
gine built around the integration of Prolog and CGs.6 The latter component
is called Prolog+CG, and is the software hub in the prototype which we have
developed.

3 System Overview

An overview of the system is given in Fig. 1. It is given in the form of a conceptual
graph, with an implied ontology of concept types such as the one given in Fig.
2, and an implied relation hierarchy such as the one given in Fig. 3.

As can be seen from the ontology of concept types in Fig. 2, there are essen-
tially two kinds of concepts in Fig. 1: Software and Data. Indeed, the relation
types reflect this, as can be seen in Fig. 3, in which all subtypes of DataSoft-
wareRole have the signature (Data,Software), and all subtypes of SoftwareSoft-
wareRole have the signature (Software,Software). Consequently, the signature of
Role in our small conceptual graph of Fig. 1 must be (Bits,Software), indicating
that the outgoing arrow on every relation always is attached to a concept of type
Software (cf. [21–24]).

There are three related but distinct flows of data in Fig. 1. The first flow
starts with the TextCorpus at the left edge of the leftmost row. This TextCorpus
(which, in our case, is the corpus of published sermons of Kaj Munk) is read
by CST’s part of speech tagger and lemmatizer to produce a pos-tagged and
lemmatized corpus. This corpus is then read by a program which converts the
corpus to a number of CREATE OBJECT statements in the MQL query language
of Emdros. This produces the MQLCorpus, which is read by Emdros to produce
the EmdrosDatabase at the bottom right hand corner of Fig. 1.

The second flow starts with the Amine Ontology Builder in the middle of the
second row of Fig. 1, in which a domain expert creates an ontology of the domain
which one would like to query. This produces the AmineOntology, which again
is read by Amine’s Prolog+CG engine. Notice that the method of production
of the ontology is irrelevant for our prototype: It might just as well have been
produced automatically. In our case, for simplicity and accuracy, we produced
our own ontology “by hand.”

The third, and main, flow starts with the user query in the top right hand
corner of Fig. 1. This query is read by the Prolog+CG programs written for our

4 http://emdros.org
5 http://ulrikp.org
6 However, Amine is much more than the few components listed here. In-

terested readers are invited to consult [5, 6] and the Amine Website:
http://amine-platform.sourceforge.net

260

Fig. 1. Overview of our system

prototype, and is transformed, inside of Prolog, to an Emdros query based on
the type(s) from the AmineOntology given in the query. This Emdros query is
then fed to the Amine-Emdros bridge (through the interpreter-nature of Amine
Prolog+CG), which takes care of calling Emdros to query the EmdrosDatabase
in the bottom right hand corner of Fig. 1. An answer comes back from Em-
dros to the Amine-Emdros bridge. This answer is then further processed by the
Amine-Emdros bridge in order to obtain not only the words found, but also their
context.7 This result is then passed back to the Prolog+CG programs (through
the interpreter-nature of Amine Prolog+CG), which then displays the results to
the user.

7 Emdros’s query language is designed to be very generic. As such, it uses a generic
method of returning query results, which must then be interpreted in the context of
a given database. This interpretation usually involves retrieval of more objects from
the database, such as whole sentences and their constituent tokens, and/or the titles
of the document(s) in which the results are found.

261

SoftwareData

Bits

TextCorpus LemmatizedCorpus MQLCorpus

AmineOntology EmdrosDatabaseCorpus

Fig. 2. A possible ontology for the concept types in our system

4 Querying

In our prototype, the user enters a query in the form of a set Q of types from the
Amine ontology, along with an indication of whether supertypes or subtypes are
wanted. If supertypes are wanted, a set Ei are constructed containing n levels
of supertypes of each term ti from Q. Similarly for subtypes, if subtypes are
wanted.

An Emdros query is then constructed from the sets Ei, as follows. For each set
Ei, a single query fragment (technically, an “object block” retrieving an object
with certain characteristics) is created, finding all objects of type token whose
lemma is one of the terms ej in Ei, with Boolean disjunction being the operator
between the comparison. This could look as follows:

[token lemma=’party’ or lemma=’organization’ or lemma=’group’]

If there is more than one set Ei, then all permutations of all sequential orders
of the query fragments arising from each Ei is constructed, allowing for arbitrary
space in between each query fragment, and using an OR construct on strings
of blocks between each permutation. This results in a string of OR-separated
strings of blocks, where each string of blocks represents one possible order of the
query terms. Finally, this string of OR-separated strings is wrapped in a block
indicating that the search is to be done within document boundaries.

Variations over this theme abound. For example, the number of levels n to
go up or down in the ontology can be varied; sibling nodes may be considered;
various measures of semantic distance may be employed in determining which
concepts to include in the search; word-sense disambiguation may be performed
based on either the query terms and their cooccurrence in the query, or on
the documents actually stored in the database, or both; the context may be
changed from “Document” to a more restrictive “paragraph” or even “sentence”
textual unit, thus increasing the likelihood that the query terms do in fact have

262

writer creator

originator caller interpreter

DataSoftwareRole SoftwareSoftwareRole

user

reader

Role

accessor

Fig. 3. A possible ontology for the relation types in our system

something to do with each other; named entity recognition may be performed,
and named entities may be classified as per the ontology, thus aiding in increasing
recall; compounds may be split and used as the basis of further Query Expansion,
as described in [18]; parsing or chunking of the texts may be performed so as
to aid in identifying noun phrases that could aid in identifying more precisely
where to search for given kinds of entries from the ontology; the ontology may
be enriched with part of speech information, such that this information can be
taken into account when searching. Many other techniques have been tried over
the years, all built up around the single, simple idea of Query Expansion.

5 Query Example

In this section, we give an example of how the query-process works.
Consider the small ontology in Fig. 4. It is a sample ontology of concepts

from the political domain. Some of the concepts are annotated underneath with
zero or more lemmas, separated by a vertical bar if more than one are present.
Where no lemma corresponds to the type, the number of lemmas is zero.

Suppose the user enters a query in which the set Q of query types is {
PartyMember, PoliticalEmployee }, and suppose that the user specifies that 3
levels of subtypes are to be used for query expansion. In this case, two sets E0 =
{ partymember, minister, primeminister, MP, parliamentmember } and E1 = {
spindoctor } are constructed.

From these sets, the two object blocks:

263

PrimeMinister
primeminister

Minister
minister

MemberOfParliament
MP|parliamentmember

PartyMember
partymember

Party
party

SpinDoctor
spindoctor

PoliticalEntity

Entity

PoliticalEmployee

Fig. 4. A sample domain ontology of political language

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’]

and

[token lemma=’spindoctor’]

are constructed. There are only two possible permutations of the order in which
two objects can occur (2 factorial), so these object blocks give rise to the query
shown in Fig. 5.

Briefly, the query means that, within the context of a document, two tokens
must be found, in either order, where the lemma of each token is either drawn
from the sets E0 and E1. The “..” between each [token] object block means
that the tokens need not be adjacent, but may be separated by arbitrary space,
within the scope of the context Document.

This query is executed by the Amine-Emdros bridge, and the results post-
processed in order to get the context of the “hits”, to be shown to the user by
Prolog+CG.

264

[Document

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’

]

..

[token lemma=’spindoctor’]

OR

// Now the other order is tried...

[token lemma=’spindoctor’]

..

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’

]

]

Fig. 5. Example Emdros query

6 Precision and Recall

As mentioned in Sect. 2, “recall” is a measure used within Information Retrieval
to describe how well a system performs; in particular, it shows how many docu-
ments were retrieved, divided by the total number of relevant documents for any
given query. “Precision,” on the other hand, is the number of relevant documents
returned, divided by the number of documents returned [12].

As confirmed by the research reported in [13–15,17], our system improves
recall, and for the same reason that any Query Expansion technique in general
improves recall: Since semantically similar terms are added to the query, more
documents that contain semantically similar terms will be found. Since relevant
documents may contain terms semantically similar to the original query terms,
yet may not contain the actual query terms, increasing the number of documents
retrieved with semantically similar terms will most likely increase recall.

We have not evaluated our system formally on either precision or recall mea-
sures, but this is something for future research.

7 Interoperability

This being a practical rather than theoretical paper, a number of comments on
the interoperability of the various system components are in order.

Both Amine’s ontology builder, Amine’s Prolog+CG, and Emdros can be
viewed as tools for dealing with conceptual structures; Amine’s tools more so
than Emdros. Amine’s treatment of conceptual structures goes right to the core

265

of the very purpose for which Amine was created [5, 6]; thus a large part of
Amine’s codebase is centered around conceptual structures. Emdros, on the other
hand, has a different focus, namely that of storage and retrieval of annotated
text. Given that lemmas represent a unified form for all forms of a given word,
and given that this simplifies the task of assigning meaning to any given word,
and given that lemmas play an important role in the selection of labels for the
concept types in many kinds of ontologies, and given that Emdros can store
lemmas just as well as any other annotation, Emdros can be seen to be able to
deal with conceptual structures.

The interoperability of Amine with Emdros was achieved through the use of
a “bridge” written in Java. This bridge is simply a Java class which instantiates
a connection to an Emdros datbase, receives queries, and “harvests” the results.
The latter task involves processing the results of a query, then retrieving as much
context as necessary for the purposes at hand. This usually involves things like
retrieving document titles, all the words of the sentence surrounding a “hit”,
retrieval of other objects necessary for display of the hits, etc.

Amine’s Prolog+CG supports calling arbitrary Java methods and instanti-
ating arbitrary Java objects from within Prolog+CG. This is the method used
in our prototype system, where Prolog+CG instantiates an “Amine-Emdros
bridge” as a Java object, then calls methods on this bridge both to retrieve
query results and to postprocess them as described above.

The present author found that Amine’s Java-integration made it easy to
call both the Amine API and the Emdros bridge. The ability to call arbitrary
methods in the host language (Java, in this case) was key in making the inter-
operability work.

8 Conclusion

We have described a prototype system that enables a user to query a collection
of documents semantically rather than just by keyword. This is done through the
use of three key technologies: The Amine Platform, the Emdros Corpus Query
System, and a lemmatizer and part of speech tagger for the target language. An
ontology is used to guide the process of query expansion, leading to a greater
number of relevant documents being returned than would have been the case,
had the program only found documents containing the original query terms.

Pointers to further research have already been given.

Acknowledgements

Thanks are due to cand.scient. Jørgen Albretsen, who provided the ontology used
in this prototype. Prof. dr.scient., PhD Peter Øhrstrøm provided many of the
research ideas used in this research. The Danish Centre for Language Technology
(CST) provided the part of speech tagger and lemmatizer used. Figure 1 was

266

drawn with the CharGer software written by Harry Delugach.8 The SWIG team9

made the integration of Emdros with Java possible. Finally, many thanks to Prof.
Dr. Adil Kabbaj, who wrote the Amine-Platform, without which this research
would have been much more difficult to carry out.

References

1. Kabbaj, A., Frasson, C., Kaltenbach, M., Djamen, J.Y.: A conceptual and contex-
tual object-oriented logic programming: The PROLOG++ language. In Tepfen-
hart, W.M., Dick, J.P., Sowa, J.F., eds.: Conceptual Structures: Current Practices
– Second International Conference on Conceptual Structures, ICCS’94, College
Park, Maryland, USA, August 1994, Proceedings. Volume 835 of Lecture Notes in
Artificial Intelligence (LNAI)., Berlin, Springer Verlag (1994) 251–274

2. Kabbaj, A.: Un systeme multi-paradigme pour la manipulation des connaissances
utilisant la theorie des graphes conceptuels. PhD thesis, Univ. De Montreal,
Canada (1996)

3. Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG : A CG
object-oriented logic programming language. In Ganter, B., Mineau, G.W., eds.:
Proceedings of ICCS 2000. Volume 1867 of Lecture Notes in Artificial Intelligence
(LNAI)., Berlin, Springer Verlag (2000) 540–554

4. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, improvements,
and extensions of Prolog+CG : Case studies. In Delugach, H., Stumme, G., eds.:
Conceptual Structures: 9th International Conference on Conceptual Structures,
ICCS 2001, Stanford, CA, USA, July/August 2001, Proceedings. Volume 2120 of
Lecture Notes in Artificial Intelligence (LNAI)., Berlin, Springer Verlag (2001)
346–359

5. Kabbaj, A.: Development of intelligent systems and multi-agents systems with
amine platform. [25] 286–299

6. Kabbaj, A., Bouzouba, K., El Hachimi, K., Ourdani, N.: Ontologies in Amine
Platform: Structures and processes. [25] 300–313

7. Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190–1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

8. Petersen, U.: Evaluating corpus query systems on functionality and speed:
TIGERSearch and Emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387–391

9. Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of Lecture Notes
in Artifical Intelligence., Berlin, Heidelberg, New York, Springer Verlag (2006)

10. Petersen, U.: Querying both parallel and treebank corpora: Evaluation of a
corpus query system. In: Proceedings of LREC 2006. (2006) Available as
http://ulrikp.org/pdf/LREC2006.pdf.

11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

8 http://charger.sourceforge.net
9 http://www.swig.org, led by David Beazley.

267

12. Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures and Algo-
rithms. Prentice Hall (1992)

13. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, Springer-Verlag
New York, Inc. (1994) 61–69

14. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
Press (1998) 206–214

15. Moldovan, D.I., Mihalcea, R.: Using WordNet and lexical operators to improve
internet searches. IEEE Internet Computing 4(1) (2000) 34–43

16. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press, London,
England and Cambridge, Massachusetts (1998)

17. Smeaton, A.F., Quigley, I.: Experiments on using semantic distances between
words in image caption retrieval. In: Research and Development in Information
Retrieval. (1996) 174–180

18. Pedersen, B.S.: Using shallow linguistic analysis to improve search on Danish
compounds. Nat. Lang. Eng. 13(1) (2007) 75–90

19. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi Amsterdam,
Amsterdam and Atlanta, GA (1994) ISBN 90-5183-729-1.

20. Beazley, D.M., Fletcher, D., Dumont, D.: Perl extension building
with SWIG (1998) Presented at the O’Reilly Perl Conference 2.0,
August 17-20, 1998, San Jose, California. Access online 2007-04-22:
http://www.swig.org/papers/Perl98/swigperl.htm.

21. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA. (1984)

22. Sowa, J.F.: Conceptual graphs summary. In Nagle, T.E., Nagle, J.A., Gerholz,
L.L., Eklund, P.W., eds.: Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York (1992) 3–51

23. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA (2000)

24. Petersen, U., Schärfe, H., Øhrstrøm, P.: Online course in knowledge representation
using conceptual graphs. On the web: http://www.huminf.aau.dk/cg/ (2001-
2007)

25. Henrik Schärfe, Pascal Hitzler, P.Ø., ed.: Conceptual Structures: Inspiration and
Application. 14th International Conference on Conceptual Structures, ICCS 2006,
Aalborg, Denmark, July 2006, Proceedings. In Henrik Schärfe, Pascal Hitzler, P.Ø.,
ed.: Conceptual Structures: Inspiration and Application. 14th International Con-
ference on Conceptual Structures, ICCS 2006, Aalborg, Denmark, July 2006, Pro-
ceedings. Volume 4068 of Lecture Notes in Artificial Intelligence (LNAI)., Berlin,
Heidelberg, Springer-Verlag (2006)

268

This page left intentionally blank

269

[ICCSSuppl2008]

An FCA classification of durations
of time for textual databases

Ulrik Sandborg-Petersen

2008

Published in: Eklund, Peter and Haemmerlé, Olivier, Supplementary Proceedings of

ICCS 2008, CEUR-WS, http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

270

This page left intentionally blank

271

An FCA classification of durations of time for

textual databases

Ulrik Sandborg-Petersen

Department of Communication and Psychology
Kroghstræde 3, DK – 9220 Aalborg East, Denmark

ulrikp@hum.aau.dk

Abstract. Formal Concept Analysis (FCA) is useful in many applica-
tions, not least in data analysis. In this paper, we apply the FCA ap-
proach to the problem of classifying sets of sets of durations of time,
for the purposes of storing them in a database. The database system in
question is, in fact, an object-oriented text database system, in which all
objects are seen as arbitrary sets of integers. These sets need to be clas-
sified in textually relevant ways in order to speed up search. We present
an FCA classification of these sets of sets of durations, based on linguis-
tically motivated criteria, and show how its results can be applied to a
text database system.

1 Introduction

Formal Concept Analysis (FCA)[1, 2] has many applications, not least of which is
aiding a human analyst in making sense of large or otherwise incomprehensible
data sets. In this paper, we present an application of FCA to the problem of
classifying classes of linguistic objects that meet certain linguistically motivated
criteria, with the purpose of storing them in a text database system.

We have developed a text database system, called Emdros1, capable of storing
and retrieving not only text, but also annotations of that text [3, 4]. Emdros
implements the EMdF model, in which all textual objects are seen as sets of sets
of durations of time with certain attributes.

The rest of the paper is laid out as follows. In Sect. 2, I describe four prop-
erties of language as it relates to time. In Sect. 3, I describe the EMdF model.
In Sect. 4, I mathematically define a set of criteria which may or may not hold
for a given object type. This results in a Formal Context of possible classes of
objects, having or not having these criteria. In Sect. 5, I use FCA to arrive at a
set of criteria which should be used as indexing mechanisms in Emdros in order
to speed up search. In Sect. 6, I discuss the implementation of the criteria arrived
at in the previous section, and evaluate the performance gains obtained by using
them. Finally, I conclude the paper and give pointers to further research.

1 http://emdros.org

272

2 Language as durations of time

Language is always heard or read in time. That is, it is a basic human condition
that whenever we wish to communicate in verbal language, it takes time for us
to decode the message. A word, for example, may be seen as a duration of time
during which a linguistic event occurs, viz., a word is heard or read. This takes
time to occur, and thus a message or text occurs in time.

In this section, we describe four properties of language which have conse-
quences for how we may model linguistic objects such as words or sentences.

First, given that words occur in time, and given that words rarely stand
alone, but are structured into sentences, and given that sentences are (at one
level of analysis) sequences of words, it appears obvious that sequence is a basic
property of language. We will therefore not comment further on this property of
language.

Second, language always carries some level of structure; for example, the
total duration of time which a message fills may be broken down into shorter
durations which map to words. Intermediate between the word-level and the
message-level, we usually find sentences, clauses, and phrases. Thus, linguistic
units embed within each other. For a lucid discussion of the linguistic terms
involved, please see [5, 6].

Third, language carries the property of being resumptive. By this we mean
that linguistic units are not always contiguous, i.e., they may occupy multiple,
disjoint durations of time. For one such opinion, see [7].

A fourth important property of linguistic units is that they may “violate each
other’s borders.” By this we mean that, while unit A may start at time a and
end at time c, unit B may start at time b and end at time d, where a < b < c < d.
Thus, while A overlaps with B, they cannot be placed into a strict hierarchy.

3 The EMdF model

In his PhD thesis from 1994 [8], Crist-Jan Doedens formulated a model of text
which meets the four criteria outlined in the previous section. Doedens called
his model the “Monads dot Features” (MdF) model. We have taken Doedens’
MdF model and extended it in various ways, thus arriving at the Extended MdF
(EMdF) model. In this section, we describe the EMdF model.

Central to the EMdF model is the notion that textual units (such as books,
paragraphs, sentences, and even words) can be viewed as sets of monads. A
monad is simply an integer, but may be viewed as an indivisible duration of
time.2

Objects in the EMdF model are pairs (M, F) where M is a set of monads,
and F is a set of pairs (fi, vi) where fi is the ith feature (or attribute), and vi

is the value of fi for this particular object. A special feature, “self” is always

2 Please note that we use the term “monad”, not in the well-established algebraic
sense, but as a synonym for “integer in the context of the EMdF model, meaning an
indivisible duration of time”.

273

present in any F belonging to any object, and provides an integer ID which is
unique across the whole database. The inequality M 6= ∅ holds for all objects in
an EMdF database.

Since textual objects can often be classified into similar kinds of objects with
the same attributes (such as words, paragraphs, sections, etc.), the EMdF model
provides object types for grouping objects.

4 Criteria

In this section, we introduce some linguistically motivated criteria that may or
may not hold for the objects of a given object type T . This will be done with
reference to the properties inherent in language as described in Sect. 2.

In the following, let Inst(T) denote the set of objects of a given object type
T . Let a and b denote objects of a given object type. Let µ denote a function
which, given an object, produces the set of monads M being the first part of
the pair (M, F) for that object. Let m denote a monad. Let f(a) denote µ(a)’s
first (i.e., lowest) monad, and let l(a) denote µ(a)’s last (i.e., highest) monad.
Let [m1 : m2] denote the set of monads consisting of all the monads from m1 to
m2, both inclusive.

Range types:

single monad(T): means that all objects are precisely 1 monad long.
∀a ∈ Inst(T) : f(a) = l(a)

single range(T): means that all objects have no gaps (i.e., the set of mon-
ads constituting each object is a contiguous stretch of monads).
∀a ∈ Inst(T) : ∀m ∈ [f(a) : l(a)] : m ∈ µ(a)

multiple range(T): is the negation of “single range(T)”, meaning that
there exists at least one object in Inst(T) whose set of monads is discon-
tiguous. Notice that the requirement is not that all objects be discon-
tiguous; only that there exists at least one which is discontiguous.

∃a ∈ Inst(T) : ∃m ∈ [f(a) : l(a)] : m 6∈ µ(a)
≡ ¬(∀a ∈ Inst(T) : ∀m ∈ [f(a) : l(a)] : m ∈ µ(a))
≡ ¬(single range(T))

Uniqueness constraints:

unique first monad(T): means that no two objects share the same start-
ing monad.

∀a, b ∈ Inst(T) : a 6= b ↔ f(a) 6= f(b)
≡ ∀a, b ∈ Inst(T) : f(a) = f(b) ↔ a = b

unique last monad(T): means that no two objects share the same ending
monad.

∀a, b ∈ Inst(T) : a 6= b ↔ l(a) 6= l(b)
≡ ∀a, b ∈ Inst(T) : l(a) = l(b) ↔ a = b

Notice that the two need not hold at the same time.

274

Table 1. All the possible classes of object types. Legend: sm = single monad, sr =
single range, mr = multiple range, ufm = unique first monad, ulm = unique last monad,
ds = distinct, ol = overlapping, vb = violates borders.

Class name sm sr mr ufm ulm ds ol vb

1.000 X X X
1.300 X X X X X
2.000 X X
2.001 X X X
2.100 X X X
2.101 X X X X
2.200 X X X
2.201 X X X X
2.300 X X X X
2.301 X X X X X
2.310 X X X X

Class name sm sr mr ufm ulm ds ol vb

3.000 X X
3.001 X X X
3.100 X X X
3.101 X X X X
3.200 X X X
3.201 X X X X
3.300 X X X X
3.301 X X X X X
3.310 X X X X

Linguistic properties:

distinct(T): means that all pairs of objects have no monads in common.
∀a, b ∈ Inst(T) : a 6= b → µ(a) ∩ µ(b) = ∅
≡ ∀a, b ∈ Inst(T) : µ(a) ∩ µ(b) 6= ∅ → a = b

overlapping(T): is the negation of distinct(T).
¬(distinct(T))
≡ ∃a, b ∈ Inst(T) : a 6= b ∧ µ(a) ∩ µ(b) 6= ∅

violates borders(T): ∃a, b ∈ Inst(T) : a 6= b ∧ µ(a) ∩ µ(b) 6= ∅ ∧ ((f(a) <

f(b)) ∧ (l(a) ≥ f(b)) ∧ (l(a) < l(b)))

Notice that violates borders(T) → overlapping(T), since violates borders(T)
is overlapping(T), with an extra, conjoined term.

It is possible to derive the precise set of possible classes of objects, based on
logical analysis of the criteria presented in this section. For details, please see
[9]. The possible classes are listed in Table 1.

The context resulting from these tables is then processed by the Concept
Explorer software (ConExp)3. This produces a lattice as in Fig. 1.

5 Application

It is immediately noticeable from looking at Fig. 1 that “ds” is quite far down
the lattice, with several parents in the lattice. It is also noticeable that “ol” is
quite far up in the lattice, with only the top node as its parent. Therefore, “ds”
may not be as good a candidate for a criterion on which to index as “ol”. Hence,
we decided to experiment with the lattice by removing the “ds” attribute.

3 See http://conexp.sourceforge.net. Also see [10].

275

Fig. 1. The lattice drawn by ConExp for the whole context.

By drawing this new lattice with ConExp, it is noticeable that the only
dependent attributes are “sm” and “vb”: All other attributes are at the very
top of the lattice, with only the top node as their parent. This means we are
getting closer to a set of criteria based on which to index sets of monads.

The three range types should definitely be accommodated in any indexing
scheme. The reasons are: First, “single monad” can be stored very efficiently,
namely just by storing the single monad in the monad set. Second, “single range”
is also very easy to store: It is sufficient to store the first and the last monad.
Third, “multiple range”, as we have argued in Sect. 2, is necessary to support in
order to be able to store resumptive (discontiguous) linguistic units. It can be
stored by storing the monad set itself in marshalled form, perhaps along with
the first and last monads.

This leaves us with the following criteria: “unique first monad”, “unique last
monad”, “overlapping”, and “violates borders” to decide upon.

In real-life linguistic databases, “unique first monads” and “unique last mon-
ads” are equally likely to be true of any given object type, in the sense that if
one is true, then the other is likely also to be true, while if one is false, then
the other is likely also to be false. This is because of the embedding nature of

276

language explained in Sect. 2: If embedding occurs at all within a single object
type, then it is likely that both first and last monads are not going to be unique.

Therefore, we decided to see what happens to the lattice if we remove one
of the two uniqueness criteria from the list of attributes. The criterion chosen
for removal was “unique last monads”. Once this is done, ConExp reports that
“unique first monads” subsumes 11 objects, or 55%. This means that “unique
first monads” should probably be included in the set of criteria on which to
index.

Similarly, still removing “ds” and “ulm”, and selecting “overlapping”, we
get the lattice drawn in Fig. 2. ConExp reports that “overlapping” subsumes 17
objects, or 85%, leaving only 3 objects out of 20 not subsumed by “overlapping”.
This indicates that “overlapping” is probably too general to be a good candidate
for treating specially.

It is also noticeable that “violates borders” only subsumes 4 objects. Hence
it may not be such a good candidate for a criterion to handle specially, since it
is too specific in its scope.

Thus, we arrive at the following list of criteria to handle specially in the
database: a) single monad; b) single range; c) multiple range; and d) unique first
monads.

6 Implementation and evaluation

The three range types can be easily implemented in a relational database system
along the lines outlined in the previous section.

The “unique first monads” criterion can be implemented in a relational
database system by a “unique” constraint on the “first monad” column of a
table holding the objects of a given object type. Notice that for multiple range,
if we store the first monad of the monad set in a separate column from the
monad set itself, this is possible for all three range types. Notice also that, if
we use one row to store each object, the “first monad” column can be used as a
primary key if “unique first monads” holds for the object type.

We have run some evaluation tests of 124 diverse Emdros queries against two
versions of the same linguistic database, each loaded into four backends (SQLite
3, SQLite 2, PostgreSQL, and MySQL). One version of the database did not
have the indexing optimizations arrived at in the previous section, whereas the
other version of the database did. The version of Emdros used was 3.0.1. The
hardware was a PC with an Intel Dual Core 2, 2.4GHz CPU, 7200RPM SATA-II
disks, and 3GB of RAM, running Fedora Core Linux 8. The 124 queries were
run twice on each database, and an average obtained by dividing by 2 the sum
of the “wall time” (i.e., real time) used for all 2 × 124 queries. The results can
be seen in Table 2.

As can be seen, the gain obtained for MySQL and PostgreSQL is almost
negligible, while it is significant for the two versions of SQLite.

277

Fig. 2. The lattice drawn without the “ds” and “ulm” attributes, and with “ol” se-
lected.

7 Conclusion

We have presented four properties that natural language possesses, namely se-
quence, embedding, resumption, and non-hierarchic overlap, and we have seen
how these properties can be modeled as sets of durations of time.

We have presented the EMdF model of text, in which indivisible units of time
(heard or read) are represented by integers, called “monads”. Textual units are
then seen as objects, represented by pairs (M, F), where M is a set of monads,
and F is a set of attribute-value assignments. An object type then gathers all
objects with like attributes.

We have then presented some criteria which are derived from some of the four
properties of language outlined above. We have formally defined these in terms
of objects and their monads. We have then derived an FCA context from these
criteria, which we have then converted to a lattice using the Concept Explorer
Software (ConExp).

278

Table 2. Evaluation results on an Emdros database, in seconds.

Backend SQLite 3 SQLite 2 PostgreSQL MySQL

Avg. time for DB without optimizations 153.92 130.99 281.56 139.41
Avg. time for DB with optimizations 132.40 120.00 274.20 136.65

Performace gain 13.98% 8.39% 2.61% 1.98%

We have then analyzed the lattice, and have arrived at four criteria which
should be treated specially in an implementation.

We have then suggested how these four criteria can be implemented in a
relational database system. They are, in fact, implemented in ways similar to
these suggestions in the Emdros corpus query system. We have also evaluated
the performance gains obtained by implementing the four criteria.

Thus FCA has been used as a tool for reasoned selection of a number of
criteria which should be treated specially in an implementation of a database
system for annotated text.

Future work could also include: a) Derivation of more, pertinent criteria from
the four properties of language; b) Exploration of these criteria using FCA; c)
Implementation of such criteria; and d) Evaluation of any performance gains.

References

1. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In Ellis,
G., Levinson, R., Rich, W., Sowa, J.F., eds.: Proceedings of ICCS’95. Volume 954
of LNAI., Springer Verlag (1995) 32–43

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997) Translator-C. Franzke.

3. Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190–1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

4. Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of LNAI.,
Springer Verlag (2006)

5. Van Valin, Jr., R.D.: An introduction to Syntax. Cambridge University Press,
Cambridge, U.K. (2001)

6. Horrocks, G.: Generative Grammar. Longman, London and New York (1987)
7. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic

Inquiry 13(1) (1982) 91–106
8. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-

guages. Editions Rodopi Amsterdam (1994) ISBN 90-5183-729-1.
9. Sandborg-Petersen, U.: Annotated Text Databases in the Context of the Kaj Munk

Corpus: One database model, one query language, and several applications. PhD
thesis, Aalborg University, Denmark (2008)

10. Yevtushenko, S.A.: System of data analysis ”concept explorer”. (in russian). In:
Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Rus-
sia. (2000) 127–134

