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Abstract  

The development of an effective communication interface connecting the human brain 
to an external device, i.e., the brain-computer interface (BCI), has gained increased 
interests over the past decades. A BCI is usually based on decoding EEG 
(electroencephalograms) traces and associating commands to them. It aims at 
providing a new communication channel for patients with severe disabilities 
bypassing the normal output pathways. In addition, such interface constitutes a 
powerful tool in neuroscience for a better understanding of the brain. This Ph.D. 
project has proposed a new BCI paradigm based on distinguishing movement related 
parameters by motor imagination, which could improve the convenience of use of 
BCI and increase the degree of freedom of BCI. Besides, it has showed the 
associations between brain electrical activities and movement related parameters. 

The thesis is based on three studies. Studies I and II were conducted on healthy 
volunteers and focused on the development of the methodology. Study I was based on 
imagining isometric plantar flexion (lower limb) in four conditions involving two 
movement parameters: Rate of Torque Development (RTD) and Target Torque (TT). 
The study aimed at investigating the accuracy in discriminating combinations of these 
two parameters. The result showed that RTDs could be better distinguished than TTs 
from single-trial EEG recordings. Study II was based on imagining dynamic 
movements involving two speeds (fast and slow) and two movement types (extension 
and rotation) of the wrist. The results showed that the variable “speed” could be better 
classified than the movement type. The average misclassification rate for healthy 
volunteers between two tasks was around 20%. These results were promising for the 
application in patients. Study III was performed on patients who suffer from 
amyotrophic lateral sclerosis (ALS). The methodology developed and tested on 
healthy volunteers in the Studies I and II was applied in ALS patients. The ALS 
patients were asked to imagine wrist extension at two speeds. The instruction on 
imagery tasks and experimental procedure lasted approximately 30 minutes, which is 
a substantially shorter time compared with the training time needed by other BCI 
paradigms. The average misclassification rate obtained in ALS patients was 30%.  

In conclusion, the Ph.D. project has indicated that movement-related parameters could 
serve as an alternative or supplementary input signal for BCI. 
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Dansk resumé 
 
Der har gennem de seneste årtier været en været en stigende interesse for udviklingen 
af et effektivt kommunikationsinterface til at forbinde den menneskelige hjerne til et 
eksternt apparat, et såkaldt hjerne-computer interface (BCI). Et BCI er normalt baseret 
på dekodning af EEG (elektroencefalogram) samt tilknytning af kommandoer hertil. 
Målet er at skabe en ny kommunikationsmetode for patienter med alvorlige handicaps, 
metoder som omgår personens manglende kommunikationsforbindelser. Endvidere vil 
et sådant interface blive et stærkt værktøj inden for neurovidenskab til at opnå en 
bedre forståelse af hjernens funktion. Dette Ph.D.-studie har foreslået et nyt BCI-
paradigme, som er baseret på adskillelse af bevægelsesrelaterede parametre ved hjælp 
af motorisk visualisering, hvilket vil kunne forbedre brugen af BCI og forøge 
frihedsgraden ved eksisterende BCI. Endvidere har studiet påvist sammenhængen 
mellem hjernens elektriske aktiviteter og bevægelsesrelaterede parametre.  
 
Afhandlingen er baseret på tre studier. Studie I og II blev udført på raske 
forsøgspersoner og omhandlede udvikling af metodologien. Studie I var baseret på 
billeddannelse af isometrisk plantarfleksion (membrum inferius) under fire forhold 
med to bevægelsesparametre: Rate of torque-udvikling (RTD) og target torque (TT). 
Studiet havde til formål at undersøge præcisionen i kombinationer af disse to 
parametre. Resultatet viste, en bedre adskillelse af RTD end TT fra single-trace EEG-
optagelser. Studie II var baseret på visualisering af dynamiske bevægelser med to 
hastigheder (hurtig og langsom) og to bevægelsestyper (ekstension og rotation) af 
håndleddet. Resultatet viste, at den variable ”hastighed” bedre kunne klassificeres end 
bevægelsestypen. Den gennemsnitlige misklassificeringsrate for raske 
forsøgspersoner var ca. 20%. Disse resultater er lovende for anvendelse hos patienter. 
Studie III blev udført med patienter, som lider af amyotrofisk lateral sklerose (ALS). 
Den metodologi, som var blevet udviklet og testet på de raske forsøgspersoner i studie 
I og II, blev anvendt på ALS-patienter. ALS-patienterne blev bedt om at forstille sig 
en ekstension af håndleddet med to hastigheder. Vejledningen i 
visualiseringsopgaverne og den eksperimentelle procedure tog ca. 30 minutter, hvilket 
er betydeligt kortere end den træningstid, som kræves i forbindelse med andre BCI-
paradigmer. Den gennemsnitlige misklassificeringsrate for ALS patienter var 30%. 
 
Endelig har Ph.D.-studiet indikeret, at bevægelsesrelaterede parametre kunne tjene 
som et alternativt eller supplerende inputsignal for BCI.  
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1. Introduction  
Millions of people worldwide suffer from severe motor disabilities as result of 
accidents and neurological diseases. These persons can hardly communicate and have 
no effective control over limb movement. They depend on extensive care from others 
and their families’ quality of life is greatly impaired (Moss et al., 1996). Conventional 
assistive technologies, which depend on the user’s residual motor ability, are not 
effective for these patients since severe motor disabilities preclude their use of 
voluntary muscle control. Patients in these conditions urgently need ways to restore 
communication and interaction with the environment. Therefore, it is important and 
necessary to develop more effective alternative methods for people with severe motor 
disabilities. Brain-computer interface (BCI) technology is promising in this respect. 
The ultimate goal of BCI is to provide a non-muscular communication and control 
channel to convey messages and control the external environment for severely 
disabled individuals (Wolpaw et al., 2002). BCI would increase the target users’ 
independence and improve their access to new technologies and services. In addition 
to clinical and quality of life issues, BCIs constitute powerful tools for basic research 
on understanding brain functions. 

1.1 Overview of BCI systems 

When the normal pathways of motor functions are interrupted, BCI systems can use 
signals directly recorded from the brain for communication and control. BCI systems 
allow continuous and real-time interaction between the user and the environment. 
They provide an additional non-muscular control channel by using neuronal activity 
of the brain. Neuronal activity is sampled, amplified, processed in real time, and 
translated into commands to control an application, such as a prosthetic arm or a 
communication program.  

 

Figure 1. Overview of a BCI system. 

Figure 1 above shows a closed loop BCI system. It consists of two adaptive systems: 
the brain of the users and the machine learning. User’s learning involves learning to 
voluntarily regulate brain activity through an online feedback procedure. After 
repeatedly training, subjects can learn to manipulate the brain activity of interest, 
which is to a certain extent under voluntary control. The machine learning algorithm 
is individually adapted to the user to compensate inter-user variability and relocate the 
part of training burden from the user to the machine. Machine learning often requires 
examples from which the underlying statistical structure of the brain signals can be 
estimated. Therefore, subjects are first required to repeatedly and randomly produce 
certain brain states during a calibration session. The brain signals are then translated 
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into an output, which could be a cursor movement on a screen, the position of a 
prosthetic arm, or the selection of a character. The user receives the feedback on the 
output, which in turn affects the user’s brain activity and influences the subsequent 
output. Therefore, the effective use of a BCI depends on the mutual adaptation 
between user learning and machine learning. How to bring these two interacting 
systems optimally together is one of the most important challenges of BCI research 
and development (Daly and Wolpaw, 2008).  

Brain signals in forms of electrical, magnetic or metabolic changes can be measured 
and recorded non-invasively or invasively. Invasive recordings either measure the 
brain electrical activity on the surface of the cortex (electrocorticography, ECoG) or 
within the cortex (action potentials; local field potentials, LFP). Non-invasive 
recordings are obtained as electrical activity from the scalp (electroencephalogram, 
EEG), magnetic field fluctuation (magnetoencephalogram, MEG) or metabolic 
changes (functional magnetic resonance imaging, fMRI; near infrared spectroscopy, 
NIRS). Each recording technology has its advantages and limitations with respect to 
spatial and temporal resolution as well as portability, cost and risks for the user. 
Generally, MEG and fMRI are expensive and bound to laboratory conditions. Thus, 
these techniques are suitable for basic research or short-term location of sources of 
brain activity for early stage BCI screening. In contrast, EEG, invasive recordings, 
and NIRS have usually lower cost and are portable, thus they may offer practical ways 
to use BCI systems in daily life. The main advantage of invasive approaches is the 
good signal quality and signal selectivity. The multidimensional control of 
neuroprostheses was achieved in non-human primates by means of invasive 
recordings (Donoghue, 2002). However, invasive methods require surgery for the 
implantation of the electrodes, which implies an inherent medical risk. Invasive 
methods have to prove substantially better performance than non-invasive methods in 
order to become attractive for target users. Currently, the large majority of BCI 
research and applications in humans are based on EEG signals due to the high 
temporal resolution, low cost and risk, and portability. This Ph.D. project is based on 
recording and analysis of EEG signals. Therefore, the following parts will focus on 
EEG-based BCI technology. 

1.2 EEG-based BCI technology 

EEG records the electric potential difference between electrodes on the human scalp. 
The shapes and arrangement of cerebral neurons make it possible to monitor the brain 
electrical activity by EEG. The pyramidal neurons are arranged perpendicular to the 
surface of the cortex (illustrated in Fig. 2) and believed to be the main generator of 
EEG. Both excitatory postsynaptic potential (EPSPs) and inhibitory postsynaptic 
potential (IPSPs) contribute to the synaptic activity recorded as EEG (Olejniczak, 
2006). Further, recordable scalp potential is a result of synchronous activity of a large 
number of neurons. Brain electrical activities are volume-conducted through the skull 
and scalp, which results in considerable attenuation of the activity, especially for high 
frequency components. 
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Figure 2. Pyramidal cells in cerebral cortex (adapted from Regan, 1989).  

EEG was first recorded by Berger in 1930. The oscillations of EEG depend on the 
degree of alertness. Several waves oscillating at specific frequency ranges have been 
consistently observed. α-wave (8-13 Hz) can be observed in awake adults with closed 
eyes. β-wave (14-30 Hz) will dominate with open eyes and normal alert 
consciousness. θ-wave (4-7 Hz) is associated with deep relaxation. δ-wave (less than 
3 Hz) occurs in deep sleep and it tends to be the highest in amplitude and slowest in 
frequency. The frequency of brain oscillation is negatively correlated with their 
amplitudes (Figure 3). EEG is a well established recording technology for 
investigating cerebral activities and for clinical applications. Robust EEG correlations 
with brain states, mental calculation, working memory, voluntary movement and 
selective attention have been revealed. EEG is an important diagnostic tool in the 
clinics, e.g., as an aid to diagnose epilepsy, to judge the degree of maturity of the 
brain, to monitor anesthesia and diagnose of brain death (Despopoilous and Silbernagl, 
1991). 

 

Figure 3. EEG waves (adapted from Despopoilous and Silbernagl, 1991). 

The most widely used method to describe the location of scalp electrodes for EEG 
recording is the international federation 10-20 system of electrode placement (Klem et 
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al., 1999), which stems from an attempt to place particular electrodes over particular 
brain areas independently of the skull size. As showed in Figure 4, the name of each 
site consists of a letter, which identifies the lobe, and a number, which identifies the 
hemisphere location. The letters used are F for Frontal lobe, T for Temporal lobe, C 
for Central lobe, P for Parietal lobe and O for Occipital lobe. Even numbers refer to 
the right hemisphere and odd numbers refer to the left hemisphere. Z refers to an 
electrode placed on the midline. The smaller the number is, the closer the position to 
the midline. Fp stands for Front polar. Nasion is the point between the forehead and 
nose. Inion is the bump at the back of the skull. The space between electrode and 
scalp should be filled with conductive gel, which serves as a medium to ensure 
lowering the contact impedance at the electrode-scalp interface.  

 
(a) 

 
(b) 

Figure 4. The 10-20 system of electrode placement. (a) top view; (b) left side view. (adapted 
from http://faculty.washington.edu/chudler/1020.html). 

BCI technology is based on the ability of individuals to voluntarily and reliably 
produce changes in EEG signals (Curran and Stokes, 2003). In a large part of BCI 
research to date, cognitive tasks are used to generate EEG changes which could be 
distinguished with some success. Results have been published on distinguishing motor 
imagery (hand closing and opening) from non-motor imagery (mental arithmetic) 
(Penny et al., 2000). Moreover, alternative approaches, such as discriminating 
between cognitive tasks (composing a letter, mathematical thoughts, visual counting 
and geometric figure rotation) have been attempted (Keirn and Aunon, 1990; 
Anderson and Sijercic, 1996). Most BCI studies using cognitive tasks employed 
motor imagery (McFarland and Wolpaw, 2005; Pfurtscheller et al., 2006). This PhD 
project is based on analyzing brain electrical activity from motor imagery. Therefore, 
the underlying neurophysiology related motor imagery will be introduced in flowing 
paragraph. 

1.3 Underlying neurophysiology  

Voluntary movements are goal directed and improve with learning and practice. All 
the body’s voluntary movements are controlled by the brain. The cerebral cortex is the 
body’s ultimate control and information processing center. The cerebral cortex is 
divided by sulci or grooves into four major lobes: frontal, parietal, occipital and 
temporal lobes (Figure 5). Each lobe engages in different jobs. The frontal lobe 
associates with reasoning, planning, parts of speech, movement, emotions and 
problem solving, the parietal lobe with movement, orientation, recognition and 
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perception of stimuli, the occipital lobe with visual processing and the temporal lobe 
with perception and recognition of auditory stimuli, memory and speech. The cerebral 
cortex consists of two hemispheres. The right hemisphere senses information from the 
left side of the body and controls movement on the left side. Similarly the left 
hemisphere is connected to the right side of the body. The two hemispheres are 
intimately connected between each other by the corpus callosum.  

 

Figure 5. Map of human cerebral cortex showing the major functional areas (adapted from 
Regan, 1989). 

One of the brain areas most involved in controlling voluntary movements is the motor 
cortex. The motor cortex is subdivided into a primary motor area and several 
premotor areas. The primary motor cortex is organized somatotopically as shown in 
Figure 6. The cortical areas assigned to body parts are proportional not to their size, 
but to the complexity of the movement. 

 
Figure 6. Primary motor cortex, showing relative size of body representation. 

Motor imagery obeys the same temporal regularity, programming rules and activates 
common neuronal substrates as the corresponding real movements (Decety, 1996). The 
decision to initiate a movement and subsequent execution of movement, with sensory 
information collected from various lobes of the brain and depending on the 
characteristics of the movement and its location in the body, give rise to increased 
electrical activity at the corresponding cortical sites. Specific EEG changes were 
found during movement planning and movement execution. The following paragraphs 
describe those changes in EEG components, especially MRCP and SMR. Changes of 
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MRCPs and SMR have been reliably and consistently observed during voluntary 
movements and imagination of voluntary movements from the same cortical areas. 
Given that the temporal-spatial pattern of SMR ERD (event related desynchronization) 
prior to a movement is different from that of MRCP, it suggests that these two are 
different responses of neuronal structures in the brain (Shibasaki and Hallett, 2006).  

MRCP 

It has been reported that self-paced movements, movements to a cue and movement 
imagery evoke MRCP in the motor cortex (Jankelowitz and Colebatch, 2002). MRCP 
is a slow cortical potential whose surface negativity develops ∼2 s before the 
movement onset; the potential rebounds around movement or imagination onset. It is 
detected usually by averaging repeated trials in the time domain. The basic 
assumption is that MRCPs are time locked and have more or less fixed time intervals 
to time marker, while ongoing EEG and background activities behave as random 
noises. The averaging will enhance the signal (MRCP) to noise ratio. Different 
terminologies have been proposed for the MRCP components (Table 1).  

Table 1. Terminology of MRCP components (adapted from Shibasaki and Hallett, 2006)  
 Pre-movement components Post movement components 
Kornhuber&Deecke (1965)  BP  PMP MP    RAP
Vaughan et al. (1968)  N1  P1 N2(?) N2(?)   P2

Shibasaki et al. (1980a) a   BP  NS’ P-50 N-10 N+50 P+90 N+160 P+300
Dick er al. (1991)  NS1  NS2       
Lang et al. (1991) BP1  BP2       
Tarkka & Hallett (1911) BP  NS’ PMP isMP ppMP fpMP    
Kristeva et al. (1991) b  RF   MF MEFI MEFII MEFIII PMF
Cui and Deecke (1999) BP1  BP2  MP  PMPP MEPI MEPII
a  Peak of each component, except for BP & NS’, was measured from the peak of averaged, rectified EMG. 
b  Based on movement-related magnetic fields.  

The MRCP consists of a pre-movement potential (the most investigated component, 
called Bereitschaftspotential, BP) and a post-movement potential. BP was first 
recorded and reported by Kornhuber and Deecke at the University of Freiburg in 
Germany in 1964. Given that the initiation of BP precedes movement onset, it is 
believed that BP reflects the movement preparation. The amplitude of the BP is 
maximal over the cortical area representing the moving limb. The contralateral 
maximum was found for finger and hand movements, while ipsilateral for foot 
movement. This is because the cortex representing area for foot is located deep in the 
medial fissure, which results in different ways of cortex projecting potential to the 
scalp from that for finger and hand (Figure 7) (Brunia and van den Bosch, 1984). The 
magnitude and time course of MRCP are influenced by the characteristics of the 
movement (complexity of movement, speed, force exerted, precision) and the 
subject’s psychological status (level of intention, motivation, preparatory state). 
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Figure 7. The motor cortex and somatosensory cortex areas representing right hand and right 
foot located in the left hemisphere. Due to the different directions of dipoles, left hand cortex 
area produces surface negativity over the left hemisphere, while left foot cortex area produces 
pronounced surface negativity over the right cortex (adapted from Brunia and van den Bosch, 
1984). 

ERD/ERS 

EEG desynchronization or blocking of alpha band rhythm due to sensory and motor 
events was first reported by Berger in 1930. Pfurtscheller and Aranibar in 1979 
introduced the term ERD and described the techniques for measuring it. The ERD 
reflects the decrease of oscillatory activity, which represents increased cortical 
activity. The opposite phenomena, namely increase of oscillatory activity, is called 
event related synchronization (ERS), which is associated with relaxation and 
termination of events (Pfurtscheller and Lopes da Silva, 1999). The voluntary 
movement is observed with power changes of the sensorimotor rhythm. Movement 
preparation and movement execution are typically accompanied by a power decrease 
in the mu and beta rhythms in the sensory and motor cortex, particularly contralateral 
to the movement. ERS of sensorimotor rhythm is observed after termination of 
movement. ERD/ERS also occur with motor imagery (McFarland et al., 2000; 
Pfurtscheller et al., 2006). This is in accordance with the concept that the realization 
of motor imagery occurs via the same brain structures involved in the planning and 
preparation of actual movements (Decety, 1996). ERD/ERS phenomena are believed 
to be generated by changes in parameters which control the states of synchrony in 
neuronal networks (Lopes da Silva, 1991). ERD/ERS can be studied as a function of 
time, frequency and space. The ERD/ERS features have been employed extensively 
and successfully for BCI applications (McFarland et al., 2000; Neuper et al., 2003; 
Neuper et al., 2005; Pfurtscheller et al., 2006). 

In this Ph.D. project, both MRCP features and ERD/ERS features were extracted from 
single trial and organized into a feature vector for classification. 
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1.4 State of the art of BCI  

BCI differ in the brain signals used, the degree of freedom, how the subjects are 
trained and how the brain signals are translated into the device commands. In the 
following, a brief introduction on the most common, currently available BCIs is 
provided. Then signal processing and pattern recognition tools for BCI applications 
are introduced. 

Present day BCIs  

Slow Cortical Potential (SCP) BCI: SCP shifts up to several seconds in low frequency 
band, as shown in Fig. 8. The SCP-BCI trains users to regulate SCP amplitude by 
means of feedback. The negative potential shifts represent increased neuronal activity 
whereas positive shifts are associated with reduced activities and resting (Birbaumer 
et al., 1999). In a series of classic studies, Birbaumer and his colleagues have shown 
that people can learn to control SCPs and thereby control the environment (Birbaumer 
et al., 1999). It has been tested extensively in people with late-stage ALS and has 
proven able to supply basic communication capabilities (Birbaumer et al., 2008; 
Kübler et al., 2007; Kübler et al., 2005). However, the users of SCP-BCI need 
extensive training which is in several 1-2h sessions/week over weeks or months 
(Wolpaw et al., 2002).  

 

Figure 8. Slow cortical potentials (adapted from Wolpaw et al., 2002). 

SensoriMotor Rhythm (SMR) BCI: The groups of Prof. Wolpaw in Albany, N.Y., and 
of Prof. Pfurtscheller in Graz, Austria, demonstrated in an extensive series of 
experiments that healthy subjects and paralyzed patients achieve voluntary control of 
right and left hemispheric SMR by imagining movements (Wolpaw et al., 1991; 
Pfurtscheller et al., 1997). By performing imaginary voluntary movements, such as 
right and left hand or foot movement, the user can control a cursor. Fig. 9 showed that 
two cursor movements (up and down) on a screen can be achieved by modulating mu 
rhythm (8-12 Hz). In this example, high amplitude of the mu rhythm corresponded to 
moving the cursor to the top target, while reduced amplitude to the bottom target 
(Wolpaw et al., 2002).  
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Figure 9. SensoriMotor rhythm (adapted from Wolpaw et al., 2002). 

P300 BCI: The P300 component shown in Fig. 10 is a positive peak at approximately 
300 ms after infrequent and surprising presentation of target stimuli (Sutton et al., 
1965; Donchin and Smith, 1970). Farewell and Donchin have shown that P300 can be 
used to select items on a computer screen (Farwell and Donchin, 1988). The 
advantage of P300-BCI is that learning of self regulation of brain response and 
feedback is not necessary and the short latency of the P300 (300 ms instead of 
seconds in SCP and SMR based BCI) allows faster selection of letters. However, 
P300-BCIs rely on the user’s ability to internally spell at high speed, an intact visual 
system, and intact attention (Birbaumer and Cohen, 2007). These requirements limit 
the use of P300-BCIs. 

 

Figure 10. P300 evoked potential (adapted from Wolpaw et al., 2002). 

The Steady State Evoked Potential (SSVEP)-BCI: SSVEP shown in Fig. 11 is elicited 
by external visual stimuli, which is flickering target under specified frequency. When 
participants focused their gaze on the flickering target, the amplitude of SSVEP 
increased at the fundamental frequency of the target and their harmonics (Müller-Putz 
et al., 2006; Nielsen et al., 2006; Wang et al., 2006). It can be recorded from the 
visual cortex located in the occipital lobe and detected easily in frequency domain. 
Like P300-BCI, SSVEP-BCI requires attention and intact gaze control. The advantage 
with SSVEP BCI is no extensive training involved and multi-degree of freedom. 
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Figure 11. Steady state evoked potential (adapted from Gu master thesis) 

Signal processing and pattern recognition for BCI application 

BCI research involves the development of techniques which translate high 
dimensional EEG signals produced by the brain into a control command. The 
biofeedback approach (Birbaumer et al., 1999) instructed subjects to learn to 
voluntarily control brain activity by means of a feedback signal generated by a fixed 
translation algorithm. In such a system, the users’ learning is important and requires 
extensive training. In contrast, machine learning approaches detect the characteristics 
of the brain signals resulting from specific events. Machine learning plays an 
important role in dealing with variability among subjects and within the same subject 
over time. Current BCIs use machine learning in two distinct phases: feature 
extraction and classification. Prominent techniques for feature extraction and 
classification are presented in the following sections. 

Feature extraction: Starting with raw EEG signals, one has to extract relevant 
information which can lead to good classification performance. This procedure 
decreases the dimensionality of the raw EEG signal. Spectral filtering and spatial 
filtering are commonly used to extract relevant characteristics of EEG signals. 
Spectral filtering aims to get signals at desired frequency bands according to a prior 
neurophysiology knowledge. It is commonly done by finite and infinite impulse 
response filters or joint time-frequency analysis methods (wavelet, short-time Fourier 
transformation (STFT), and so on) (Pfurtscheller and Lopes da Silva, 1999). Raw 
EEG signals are associated with a large spatial scale due to volume conduction. 
Spatial filtering techniques are used to get more localized signals. Commonly used 
techniques are bipolar filtering (Wang and He, 2004), Laplace filtering (Pfurtscheller 
et al., 2006; Wang and He, 2004), principle component analysis (PCA) (Fatourechi et 
al., 2004), independent component analysis (ICA) (Qin et al., 2004), common spatial 
patterns (CSP) (Guger et al., 2000). 

Classification: Given empirical data points (x i, y i) for i=1,…,n with x i ∈R m  in the 
Euclidean space and  y i  ∈ { }N,...1  as class labels for N>2 different classes or y i 
∈ { }1±  as class labels for a binary problem, the goal of the classification is to find a 
generalization function f that predicts the label of future unseen data points x. The 
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current classification methods used for BCI include quadratic discriminant analysis 
(QDA) (Neuper et al., 1999), linear discriminant analysis (LDA) (Donoghue et al., 
2004), regression (Wolpaw and McFarland, 2004; McFarland and Wolpaw, 2005), 
fisher discriminant analysis (Mika et al., 2001), support vector machine (SVM) 
(Müller et al., 2001; Farina et al., 2007), linear programming machine (Bennett and 
Mangasarian, 1992), kernel methods (Müller et al., 2001), and so on.   

The most objective report of BCI accuracy is feedback results. But, when working 
with online system and pursuing feedback experiments, one has to validate and tune 
the classification algorithm first. The evaluation of algorithm performance and tuning 
parameters of the algorithm can be achieved by a nested cross-validation. In general, 
the data samples are split in many different ways into training set and test set. The 
inner cross-validation performed on the training set aims to do the generalization; the 
outer cross-validation aims to get an estimation of the generalization error (Müller et 
al., 2001; Birch & Mason, 2000; Fatourechi et al., 2008). 

1.5 Clinical application of BCI 

Many diseases such as traumatic injury, stroke, or amyotrophic lateral sclerosis (ALS) 
may lead to motor paralysis. The locked in state (LIS) is the state in which only 
residual voluntary muscle control is possible, such as eye or lip movements. However, 
with progression of the disease, the patients may enter into the complete locked in 
state (CLIS) in which all voluntary movements are lost. In both states, the patients’ 
sensory, emotional and cognitive processing remains largely intact (Kübler et al., 
2007). In particular, ALS progresses on average over a period of three years from the 
first symptoms of muscular weakness to respiratory failure. Artificial feeding and 
ventilation are thus necessary at the later stages. BCIs provide a promising solution to 
the severely disabled individuals for interacting with the environment. 

BCI attraction for people with less impairing disabilities depends on the speed and 
precision of the control, the degree of freedom and the applications that BCI can 
provide. The effective brain signals to BCI may vary among people with different 
disabilities, due to the particular underlying central nervous system (CNS) 
abnormality. The specific BCI methods and applications should be assessed by the 
individual needs and convenience and complexity of the system. 

Three types of EEG based BCI systems have been tested on patients: SCP-BCI, SMR-
BCI and P300-BCI. After extensive training, severely disabled and LIS patients have 
communicated messages of considerable length by self regulation of SCP (Neumann 
et al., 2003; Kübler et al., 2007). It has been reported that by control of SMR 
amplitude, LIS patients can spell using a so-called virtual keyboard (Obermaier et al., 
2003). The spelling rate varied in the range 0.2-2.5 letters/minute (Neuper et al., 
2003). When confronted with P300-BCI, ALS patients were able to achieve 
accuracies up to 100% (Sellers et al., 2006). Moreover, ALS patients can use P300-
BCI systems with online accuracies of up to 79%, with stable performance over 
several months (Nijboer et al., 2008). SCP-BCI require many training sessions over 
weeks or months on learning self regulation of brain activities. Training is not 
necessary for P300-BCI, but it relies on the selective attention and gaze control. Both 
LIS and CLIS patients show intact audition and tactile perception assessed by event 
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related potentials (ERPs) (Kotchoubey, 2005). Therefore, BCI must use auditory and 
tactile modality for CLIS patients (Birbaumer et al., 2008).  

1.6 Overview of the Ph.D. project 

The BCI paradigm developed in this Ph.D. is based on imagining voluntary 
movements with varied movement-related parameters on the same joint. The purpose 
was to distinguish between two tasks involving different combinations of movement 
parameters, as a continuation of preliminary works performed at Aalborg University 
(do Nascimento et al., 2005; Nielsen et al., 2006; Farina et al., 2007). The studies 
have been focusing on two topics: a) analyzing the effect of the movement parameters 
from the MRCP perspective and understanding which movement parameters were 
best for differentiation; b) 2-class classification in single trial. The developed 
classification algorithm based on distinguishing speeds of movements has been tested 
on ALS patients offline. It achieved on average 70% classification accuracy with 
approximately 30 minutes of training. The obvious advantage of decoding movement 
parameters is that there is no extensive learning and training procedure involved 
compared with SCP-BCI. In contrast with SMR-BCI based on distinguishing different 
limbs’ movement to increase degree of freedom, this study proposes an alternative 
and extendable strategy to increase the degrees of freedom. Compared with P300-BCI, 
this new BCI paradigm does not require visual selective attention or gaze control. 
Therefore, it can benefit more locked-in users. Testing on more target users and 
testing online should be performed to provide strong evidence for advantages of the 
BCI paradigm developed in this project. The following paragraphs describe pattern 
recognition implemented and aim of the project.  

1.6.1 Pattern recognition implemented in this Ph.D. Project 

The applied pattern recognition method is derived from that described by Farina et al. 
(2007) and is based on features extracted with wavelet transform and on classification 
performed with Support Vector Machine (SVM). Fig. 12 shows the structure of the 
algorithm.  

 

Figure 12. Block diagram of the algorithm used for single-trial classification. θ  is the 
parameter for tuning the mother wavelet. σ  and C are the parameters of the SVM classifier.  

Features  

The discrete wavelet transform (DWT) decompose the signal into different scales with 
multiple resolutions by dilating a mother wavelet. The selection of the mother wavelet 
provides the way for obtaining a feature space adapted to a specific classification 
problem. The parameterization of the mother wavelet can be realized by the Multi 
Resolution Analysis (MRA) (Burrus et al., 1997) framework, in which the scaling 



13  

function φ  and its associated wavelet function ψ  are related to the Finite Impulse 
Response (FIR) filters h and g by the two-scale relations (Mallat 1989): 

[ ]∑ −= n ntnht )(2)2/( φφ                    

[ ]∑ −= n ntngt )(2)2/( ψψ  

In order to generate an orthogonal wavelet using MRA, h must satisfy some 
conditions. For FIR filter of length L, there are L/2-1 sufficient conditions to ensure 
the existence and orthogonality of the scaling function and wavelets. If L = 4, one 
parameter θ, varying over the range [-π, π], defines the decomposition (Maitrot et al., 
2005; Farina et al., 2007). In this study, values of the parameter θ, uniformly 
distributed between -π and π, were used to design h with length 4, therefore, a group 
of mother wavelet were used for optimization. 

The DWT provides a set of detail coefficients ),( kjdi , where j2  is the scaling factor, 
k the translation parameter, and i the index identifying the mother wavelet. The 
marginals of the detail coefficients were the features used as inputs to the classifier:  
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where J is the deepest level of the decomposition and N the length of the signal. The 
feature vector iM  contains information on the distribution of the wavelet coefficients 
over J bands. The analyzing wavelet was chosen on the basis of a learning step 
(supervised classification), as described below. The MRCP energy is mainly 
concentrated at low frequencies (approximately up to 1 Hz), whereas the mu rhythm 
(8-12 Hz) and beta rhythm (18-25 Hz) are at higher frequencies. Frequency bands in 
feature vector are either selected manually covering the low frequency band for 
MRCP and SMR or full frequency bands are selected for feature vector. 

Support vector machines (SVMs) 

A non-linear SVM classifier with Gaussian kernel of parameterized width was used in 
this study. The central idea is to classify data from two classes by building a 
hyperplane from a training set. Given a training set ),( ii yx , i=1,…,N where 

n
i Rx ∈ and }1{±=iy , the standard SVM requires the solution of the following 

optimization problem (Bishop, 1995): 
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where the function φ  map ix  into a higher dimensional space. w is the weight vector 
and b is the bias of the hyperplane. A slack variable ( iξ ) and a penalty parameter (c) 
are introduced if the training data cannot be separated without error. As a 
consequence, training samples can be at a small distance iξ  on the wrong side of the 
hyperplane. In practice, there is a trade-off between a low training error and a large 
margin. This trade-off is controlled by the penalty parameter c. The following steps 
were carried out for classification with SVM. 

Scaling: data were linearly scaled. The class A is represented by the matrix 
1

A NJ×  (J 

frequency bands, 1N  number of trials from class A) and the class B by 
2

B NJ×  ( 2N  
number of trials from class B). They represent two imagination tasks, respectively. 

)A(max
1NJa ×=  )B(max

2NJb ×=  ),(max bas =  

Then sNJ /AA
1scaled ×= ,  sNJ /BB

2scaled ×=  

Kernel selection: the Gaussian kernel )
2

exp(),( 2

2

σ

yx
yxK

−
−=  was chosen. This 

kernel depends only on one parameter σ . 

Cross-validation: a double 3-fold cross-validation was applied to test the results. The 
signal data set was randomly divided into 3 subsets of equal size. One subset was used 
as testing set and the remaining 2 subsets as training set (first cross-validation). The 
signals in the training set were further divided into 3 subsets of equal size (second 
cross-validation), two used for optimizing the parameters and the last for estimating 
the probability of error of the optimized parameters (this cross-validation was 
performed for generalization purposes). The set of parameters were searched by the 
inner cross-validation in the ranges chosen empirically. The set of parameters (c, σ , 
θ) corresponding to the lowest probability of error estimated from the inner cross-
validation was applied to the test set. 

1.6.2 Aim and structure of the Ph.D. project 

The aim of the Ph.D. project is to contribute to developing a natural BCI system for 
complex motor controls for severely disabled individual. To achieve the goal, we 
investigated the possibility of distinguishing movement parameters on a single trial 
basis by imagining movements of the same joint performed at different speeds and 
force levels. Extensive previous work has been devoted to distinguishing movements 
from different joints with the purpose of increasing the number of degrees of freedom. 
The approach proposed in this Ph.D. project, based on classifying movement 
parameters from the same joint, could further increase the degrees of freedom of BCIs 
and make BCI control more natural.  

One of the outcomes of this project is that the speed of an imagined movement was 
encoded in the rebound rate of MRCPs and can be better discriminated than other 
movement parameters in healthy volunteers. The developed pattern recognition was 
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further applied to ALS patients. In these patients, the time delay of peak negativity 
was influenced by the speed of the imagined movement. The use of speed as the 
variable to discriminate has advantages with respect to other strategies, as it was 
observed in the clinical study. It was easy to instruct patients about it either by 
showing them another person doing the movement or by holding the patients’ joint to 
perform the movement passively. The difference between fast and slow speed was 
quite obvious and intuitive. The tasks themselves were well predefined. The patients 
knew the tasks to be performed exactly in the beginning. Therefore it saved training 
time, making BCI use more convenient and less frustrating. 

The Ph.D. project was organized into three studies as shown in Fig. 13. Study 1 and 
Study 2 were basic studies on healthy volunteers involving the methodological 
developments and implementations of the pattern recognition methods. Study 3 was a 
clinical study on ALS patients performed at the Institute of Medical Psychology and 
Behavioral Neurobiology, Eberhard-Karls-University, Tuebingen, Germany. Study 3 
was based on the methods developed and the results obtained in Studies 1 and 2. 

 

Figure 13. Structure of Ph.D. project (RTD: Rate of Torque Development; TT: Target Torque; 
ALS: Amyotrophic Lateral Sclerosis). 

Study 1 

Study 1 was performed on nine healthy subjects aged 22-33 years (three women and 
six men). None had known sensory-motor deficits or any history of psychological 
disorders. Study 1 aimed to investigate the accuracy in discriminating combinations of 
rate of torque development (RTD) and target torque (TT) and assess if any 
combination of these two parameters would be preferable. It was based on imagining 
isometric plantar flexion (lower limb) in four conditions involving two RTDs and two 
TTs (see Article I). The outcomes of the two-class classifications showed that RTD 
(speed) can be better classified than TT. It also showed that the selection of movement 
parameters’ combination and scalp location which led to the best performance varied 
largely among subjects.  

Study 2 

Study 2 was carried out on nine healthy subjects aged 22-30 years (four women and 
five men). None had known sensory-motor deficits or any history of psychological 
disorders. The subjects who participated in this study were different from those of 
Study 1. Based on the results of Study 1, in Study 2 we aimed to develop a more 
practical BCI system for severely disabled people in terms of easy instruction on 
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imagery tasks and less training time. A dynamic task can be more easily explained 
and is more intuitive than an isometric task. Moreover, the cortical representation area 
for hand/wrist is larger than that for the foot. Thus, we moved to investigate 
imagining dynamic movements rather than isometric movements, and to analyze wrist 
movements (upper limb) rather than plantar movements (lower limb). Based on the 
result of Study 1 that speed was better differentiated than TT, two speeds were 
examined in Study 2. In addition, two wrist movements (wrist extension and wrist 
rotation) were also investigated. Thus, the volunteers performed wrist extension and 
rotation at two speeds (see Article II). The results showed that speed can be better 
distinguished than movement type at the same joint. 

Study 3 

Study 3 was carried out on four ALS patients aged 40-70 years (three women and one 
man) (Article III). The techniques developed from the previous two studies were 
tested on patients. Based on the results from Study 1 and Study 2, the ALS patients 
were asked to imagine wrist extension at two speeds. The instruction on imagery tasks 
and experimental procedure lasted approximately 30 minutes. The same pattern 
recognition method as described in Study 1 was applied. The classification error 
ranged from 25% to 34% for patients. Binomial test performed for each subject 
showed that single trial classification accuracies were above chance level for all 
patients (p<0.004). The average classification error (30%) is acceptable for this 
clinical application due to the following reasons. First, the recording was performed at 
the patients’ home place where there were strong electromagnetic interferences and 
other environmental noise. Therefore the quality of the EEG signals was worse 
compared with recordings performed in the laboratory. Second, the classification of 
movement parameter from one joint is much more difficult than that of movements 
from different limbs. Third, there was no training and feedback involved for patients. 
It is expected that with training over several sessions and feedback, the classification 
accuracy will be improved. This result indicated that the developed methods can be 
potentially used by severely disabled patients. 

The number of subjects in Study 3 was small due to the difficulty in finding patients 
for these types of experiments. Each patient showed characteristic changes during 
imagination tasks and the classification accuracy was above chance significantly after 
individual temporal-spatial optimization. However, more tests need to be done on 
ALS patients to provide stronger evidence on the reliability and usability of proposed 
new BCI paradigm.   

1.7. Conclusions and future perspectives 

The development of BCI research for communication and control has been driven by 
its wide application potentials. Clinical applications of BCI in rehabilitation are 
becoming evident. BCI is a promising solution for patients suffering from locked-in 
syndrome or other severe paralysis to interact with the environment. In addition to 
clinical and quality of life issues, such interfaces have served as powerful tools for 
improving understanding of fundamental functions of brain. 

According to the individual needs or different underlying abnormality of the central 
nervous system (CNS) of the target users, the BCI systems should be adapted in terms 
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of selection of scalp location, EEG features, time window, and so on. The pattern 
recognition method implemented in this Ph.D. project overcomes the large inter-
subject variability by tuning the parameters related to feature extraction and 
classification for each individual. The studies conducted during this Ph.D. project 
have focused on investigating the effect of movement-related parameters on MRCPs 
from the same joint. The relevant MRCP and well studied ERD/ERS features were 
extracted for classification. The average misclassification rate of 20% and 30% for 
healthy volunteers and ALS patients, respectively, have indicated that movement-
related parameters could serve as an alternative or supplementary input signal for BCI. 

There are quite some future studies that may be suggested from this thesis. The effect 
of movement speed on ERD/ERS should be analyzed to better understand the brain 
functions. In this project, slow movements took approximately 3 s. A larger range of 
movement times could be considered in the future. In this way, the speed of BCI 
systems could be potentially increased. Online classification of speed should be 
implemented to examine if online feedback and training can improve the accuracy of 
the proposed system. The multi-classes (for example left and right wrist extension at 
two speeds) classification should be evaluated. Decoding of movement parameters 
should be tested online in patients. 

The EEG-based BCIs have begun to provide basic communication and motor control 
abilities to people with severe disabilities. Their future potential and importance 
depend on the functions they can provide, and the safety, speed, convenience and 
reliability of long time use. This Ph.D. project has contributed to the BCI system in 
terms of improving the convenience of use of BCI and increasing the degree of 
freedom. The project has proposed, designed, and validated offline a new BCI 
paradigm on both healthy volunteers and ALS patients. 
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