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Abstract

This Ph.D. surveys application of Process Analytical Technologies (PAT): Near Infrared
Spectroscopy (NIR), Electronic Tounge (ET), and acoustic chemometrics (a.c.), for improved
monitoring (and control) of complex biotechnological systems, both for anaerobic and aerobic
systems. Sampling within existing and new systems is validated following the Theory Of
Sampling (TOS) and where necessary improvements are suggested. The Ph.D. program,
therefore, falls naturally into three parallel pathways.

1) Two anaerobic digestion processes applying glycerol and maize silage based substrates were
monitored applying either at-line or on-line NIR and a.c. For testing the feasibility of NIR and
a.c. two anaerobic digestion trials were carried out in laboratory scale reactors with an active
volume of 5 L. Trial 1 was carried out as a co-digestion of glycerol-spiked manure and food
waste, while trial 2 was a co-digestion of maize silage-spiked manure and food waste. The
overall conclusion was that the a.c. model for total solids had fair prediction abilities (Slope:
0.85, r’: 0.85). The NIR models obtained from the two trials had good prediction abilities for
total and volatile solids (slope: 1.04-1.06, r* 0.96-0.98) and glycerol (slope: 1.0, r*: 0.92). For
volatile fatty acids generally fair to good prediction abilities were established (slope: 0.83-1.1, r
0.89-0.97), though some problems with a few of the models from trial 1. This work was
reported in two published papers (1 and 2).

2) The second pathway was directed at production of methyl ketones by Penicillium roqueforti.
This process is an industrial multi-phase fermentation; the task was to redefine the process into
a single-phase fermentation, adding the product pre-curser in a fed-batch configuration,
specifically with PAT as a possible new means of improved monitoring and control. A suitable
substrate suggested itself from an initial series of experiment and process parameters were
outlined. A second series of experiments, planned to optimise this solution were carried out,
but severe fermentation problems persisted despite extensive experimentation. In the end no
satisfactory solution could be found. Before terminating this pathway a feasibility study on
guantitative determination of octanoic acid on fermentation broth applying ET was successfully
carried out however, resulting in paper 5.

3) The final pathway work took place in close collaboration with RIS@ (now DTU-RIS@): Pilot
surveys of the potential of near infrared monitoring raw wheat straw composition with respect
to cellulose, hemicelluloses, and lignin specifically for 2" generation bioethanol production. For
this field samples were collected from several sites in Denmark, from which 44 were selected
here. Alternative pre-processing’s were evaluated; 1°* and 2" order derivative spectra (Savitzky-
Golay) and Multiplicative Scatter Correction (MSC) was found optimal for the carbohydrates
and lignin respectively. Full spectrum PLS-1 regression models resulted in less good prediction
abilities than the models based on wave number variable selection applying a jack-knife




approach. The present first foray models were validated using 4-segment cross validation
leading to fair to good accuracies (slope 0.76-0.90) and fair precisions (r? 0.77-0.83) for the
carbohydrates. The lignin model also showed a fair accuracy (0.84) but a distinctly less good
precision (0.72). The carbohydrate models were also test-set validated, resulting in an accuracy
of 0.85-0.94 and precision estimates 0.86-0.87. This corresponded to a relative root mean
square error of prediction in the interval 8 -10 % which is satisfactory for a feasibility study,
although the models should be optimized further before application in a routine monitoring
context. This work is reported in papers 3 and 4.

This thesis serves as a general introduction to the trinity of process monitoring: sampling,
sensor technologies, and chemometrics, with a natural focus on the parts most relevant for the
work carried out. Furthermore, it includes chapters introducing each pathway/project.

After the introductory chapters five papers follow:

I.  Lomborg CJ (60%), Holm-Nielsen, JB (20%), Oleskowicz-Popiel P (10%), Esbensen
KH(10%): Near infrared and acoustic chemometrics monitoring of volatile fatty acids and
dry matter during co-digestion of manure and maize silage. Bioresource Technology
100. p. 1711-1719. 2009

II.  Holm-Nielsen, JB (60%), Lomborg CJ (20%), Oleskowicz-Popiel P (10%), Esbensen KH
(10%): On-line Near Infrared monitoring of glycerol-boosted anaerobic digestion
processes — evaluation of Process Analytical Technologies. Biotechnology and
Bioengineering 99. no.2. p. 302 — 313. 2008

Il. Lomborg CJ (80%), Jensen ES (10%), Esbensen KH (10%): NIR- characterization of cut
wheat straw for bioethanol production — feasibility study. Journal of NIRS (submitted
March 2009)

IV. Lomborg CJ (80%), Thomsen MH (10%), Esbensen KH (10%): Power plant intake
quantification of wheat straw composition for 2™ generation bioethanol optimization — a Near
infrared spectroscopy (NIRS) feasibility study. Bioresource technology (submitted April
2009)

V. Lomborg CJ (70%), Wiebe L (10%), Esbensen KH (20%). At-line determination of octanoic
acid in cultivation broth - An electronic tongue (ET) feasibility study. Journal of
Biotechnology 133. p. 162-169. 2008




Synopsis

Dette Ph.d.studie undersgger anvendelsen af Proces Analytiske teknologier (PAT), Naer InfraRgd
spektroskopi (NIR), Elektronisk tunge (ET) og akustisk kemometri (a.c.), til forbedret
overvagning (og kontrol) af komplekse bioteknologiske systemer; bade anaerobe og aerobe
processer. Prgvetagning i eksisterende og nye systemer er undersggt med baggrund i teorien
om prgvetagning (TOS), og hvor ngdvendigt er forbedringer foreslaet. Ph.d.forlgbet var
naturligt inddelt i tre parallelle delprojekter:

1) En anaerob udradningsproces, der anvendte glycerol og majsensilage baseret substrater blev
monitoreret med at-line eller on-line NIR og a.c. For at teste anvendelsesmulighederne af NIR
og a.c. to anaerobe udradningsforsgg blev udfgrt i en 5 L fermentor. Forsgg et blev udfgrt som
en sam-udradning mellem gylle tilsat glycerol og madaffald, mens forsgg to anvendte gylle tilsat
majsensilage og madaffald. Den overordnede konklusion fra de to forsgg var, at a.c.
modellerne for total tgrstof gav en rimelig praediktion (haeldning 0,85; r’ 0,85). NIR modellerne
fra de to forsgg gav gode praediktioner for total og flygtig tgrstof (heaeldning 1,04-1,06, r* 0,96-
0,98) og glycerol (haldning 1,00; r* 0,92). For de flygtige fede syre blev der opnaet rimelige til
gode pradiktioner (haldning 0,83-1,1, r? 0,89-0,97). Der var dog problemer med enkelte
modeller i forsgg et. Dette arbejde er publiceret i artikel 1 og 2.

2) Det andet delprojekt var produktionen af methyl ketoner ud fra Penicillium roqueforti. Denne
proces forlgber som en industriel multifase fermentering. Opgaven her var at redefinere
processen til en enkelt-fase fermentering, hvor tilsaetning af produkt preecursoren skulle ske
ved fed-batch proces. Specielt skulle PAT undersgges om en mulighed for overvagning og
kontrol. Ud fra indledende forsgg blev et substrat sammensat og procesparametre fundet.
Yderligere forsgg for at optimere processen blev udfgrt, men pa trods omfattende forsgg var
der problemer med disse fermenteringer. Ingen tilfredsstillende Igsning blev fundet pa disse.
Fer dette delprojekt blev afsluttet, blev der udfgrt et studie hvor muligheden for bestemmelsen
af octansyre i fermenteringsmedie vha. ET blev undersggt. Konklusion var, at dette var muligt
og resulterede i artikel 5.

3) Det tredje delprojekt blev defineret i samarbejde med Risg (nuveerende DTU-Risg) og var
pilotundersggelser af NIRs potentiale for overvagning af sammensatningen af ra hvedehalm
mht. cellulose, hemicellulose og lignin til anden generations bioethanol produktion. Til denne
undersggelse prgver blev samlet over hele Danmark, og 44 blev valgt. Diverse pree-
processerings metoder blev undersggt. Anvendelse af fgrste og anden ordens spektre derivater
(Savitzky-Golay) og multiplikativ sprednings korrigeret spektre (MSC) var optimale for
henholdsvis kulhydrater og lignin. Fuld spektral PLS-1 regressions modeller resulteres i mindre
gode pradiktioner, i forhold til modeller baseret pa enkelte bglgetal udvalgt ved anvendelse af
jack-knife. De praeliminseere modeller blev valideret ved anvendelse af 4-segment kryds-




validering, hvilket resulteres i kulhydrat modeller med rimelige til gode ngjagtige (haeldning
0,76 — 0,90) og rimelig precision (r* 0,77-0,83). Ligning modellen havde ogsd en rimelig
ngjagtighed (heeldning 0,84), men en mindre god praecision (r* 0.72). Kulhydratmodellerne blev
desuden valideret med et test-sat, hvilket resulterede i en ngjagtighed pa 0,85-0,94 og en
pracision pa 0,86-0,87. Dette svarede til en relativ praediktions fejl (RMSEP%) pa 8-10%, hvilket
var tilfredsstillende for et potentialestudie. Modellerne skal dog optimeres fgr anvendelse i en
rutinemaessig monitorerings sammenhang. Dette arbejde resulterede i artikel 3 og 4.

Denne afhandling er opbygget som en generel introduktion til de tre enheder der udggr proces-
overvagning; prgvetagning, sensorteknologier og kemometri. | hvert afsnit er der et naturligt
fokus pa de dele, der er relevante for de enkelte del-processer. Efter denne introduktion findes
der tre kapitler, som introducerer de tre delprocesser, der er arbejdet pa under Ph.d.studiet. Til
sidst er placeret de fem artikler.

I.  Lomborg CJ (60%), Holm-Nielsen, JB (20%), Oleskowicz-Popiel P (10%), Esbensen
KH(10%): Near infrared and acoustic chemometrics monitoring of volatile fatty acids and
dry matter during co-digestion of manure and maize silage. Bioresource Technology
100. p. 1711-1719. 2009

II.  Holm-Nielsen, JB (60%), Lomborg CJ (20%), Oleskowicz-Popiel P (10%), Esbensen KH
(10%): On-line Near Infrared monitoring of glycerol-boosted anaerobic digestion
processes — evaluation of Process Analytical Technologies. Biotechnology and
Bioengineering 99. no.2. p. 302 — 313. 2008

Il. Lomborg CJ (80%), Jensen ES (10%), Esbensen KH (10%): NIR- characterization of cut
wheat straw for bioethanol production — feasibility study. Journal of NIRS (submitted
March 2009)

IV. Lomborg CJ (80%), Thomsen MH (10%), Esbensen KH (10%): Power plant intake
guantification of wheat straw composition for 2" generation bioethanol optimization —
a Near infrared spectroscopy (NIRS) feasibility study. Bioresource technology (submitted
April 2009)

V. Lomborg CJ (70%), Wiebe L (10%), Esbensen KH (20%). At-line determination of octanoic
acid in cultivation broth - An electronic tongue (ET) feasibility study. Journal of
Biotechnology 133. p. 162-169. 2008
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Symbols and Abbreviations

Bold phase lower case letters are vectors, Bold phase upper case letters are matrix.

a Baseline offset

A Absorbance

a; Concentration in the i sample

aL True concentration in the lot

as Concentration in sample

a.c. Acoustic Chemometrics

B Linear slope of baseline

C Sampling constant

CH, Constitutional heterogeneity

CoD Chemical Oxygen Demand

CSE Correct Sampling Error

C.v. Coefficient of Variation

d Top particle size

DH, Distributional Heterogeneity

e Residual for i object

E Error matrix

ET Electronic Tongue

FDA U.S. Department of Health and Human Services Food and Drug Administration
FFT Fast Fourier Transform

FIA Flow Injection Analysis

FIR Far Infrared

FSE Fundamental Sampling Error

GEE Global Estimation Error

GC Gas Chromatography

GSE Grouping and Segregation Error

h; Heterogeneity contribution (index refer to fragments or increments)
h Leverage

HPLC High Performance Liquid Chromatography
lo Intensity of the reference beam

I Intensity of the beam after passing through the sample
I Number of samples/observations

IDE Incorrect Delimitation Error
IEE Incorrect Extraction Error
IH Invariant Heterogeneity

IPE Incorrect Preparation Error




ISE Incorrect Sampling Error

K Number of variables

Moave i Average mass of all fragments

Me Average of replicated samples

M(h;) Average of the heterogeneity contributions =0
M; Mass of the fragment F;

MIR Mid Infrared

MSC Multiplicative scatter correction/multiplicative signal correction
Ne Number of fragments in lot

Ng Number of groups in lot

NIR Near Infrared, Near Infrared Spectroscopy
P,p Loading matrix, vector (X)

PAC Process Analytical Chemistry

PAT Process Analytical Technology

PC Principal Component

PCA Principal Component Analysis

PLSR Partial Least Square regression

PSE Primary Sampling Step

Qq Loading matrix, vector (Y)

r? Correlation

R Reflectance

RMSECV Root Mean Square Error of Cross Validation
RMSEP Root Mean Square Error of Prediction

RPD Ratio of standard error of Performance to standard Deviation
Fsig Signal of interest

e’ Variance of the sampling error

s Standard deviation

SEP Standard Error of Performance

SUO Sampling Unit Operations

SSE Secondary Sampling Step

T,t Score matrix, vector (X)

T Transmittance

TAE Total Analytical Error

TENIRS Transflexive Embedded Near Infrared Sensor
TeSe Tertiary Sampling Step

TOS Theory Of Sampling

TS Total Solids

TSE Total Sampling Error

U,u Score matrix, vector (Y)




Var
VFA

Variance

Volatile Fatty Acids

Volatile Solids

Loading-weight matrix, vector
Data matrix with dimensions (I x K)
Grouping factor

Segregation factor







I Introduction

Currently, a shift is taken place where an increasing awareness of the climate changes have
brought to the forefront salient questions, such as: how much of this is caused by human
activity?, is the process reversible?, and even more importantly: what can be done to reduce
the future impact on the global climate and its effect on nature? As a logical consequence more
attention is now placed on improving already existing production processes and designing new
processes so that waste and byproduct formation and energy consumption are reduced to a
minimum — irrespective of the sum-total of their specific contributions to the world carbon-
budget issues. At the same time a reduction in the overall cost, a higher quality, and a more
consistent product is always desirable.

To obtain this, more thorough knowledge and understanding of the process is needed, which
calls for a different process strategy, than what is often applied.

The strategy applied is industry dependent. In the pharmaceutical and other high-tech
biotechnological industries, production is often running at predefined settings, from which
samples are extracted and delivered to the quality laboratory for analysis of different relevant
components. These samples are analyzed and the result is delivered back to the production line
within hours or days. Often the delay time from the sample extraction to the lab result allows
that the results are seldom used for active process control, but merely as a quality parameter
telling if the given production is within specifications and can be sold — or not. In cases where
the results are critical for the next process step, the process is often designed to accommodate
a delay time’*"*.

In more low-tech biotechnological industries like anaerobic digestion plants (biogas
production), the strategy is more of an ad hoc nature. Often the operator has only little
knowledge of the material streams coming in (manure, food waste ect.) and what is going on in
the tank, and is, thus, running the biogas production more-or-less from experience alone. This
of course at times leads to a decrease in the yield, when new feed stocks are coming in.
Common for both the low and high tech industry strategy is that it is suboptimal, thus leading
to lower yield and productivity. For both the question arises: what technique/strategy can be
applied for solving this delay problem?

A strategy that comes to mind is the Process Analytical Chemistry (PAC), or the closely related
Process Analytical Technologies (PAT). Both PAC and PAT are problem driven, not technology
driven and addresses the question; what techniques can be applied for solving my specific
measurement problemgg? The basic concept in PAC is that process analysers should be placed
as close to the production as necessary, whether this is in a centralized laboratory (off-line),
right next to the process (at-line) or in the process (on-line)’.

-5-



The term process analytical chemistry emerged in ca. 1911 and was originally based on taking

samples from the process stream, which were transported to the laboratory for analysis®”***. |

n
the 1950s the petroleum and petrochemical industry started applying it. But it was not widely

used until the 1980s, where Callis et al.'’ made the following statement:

“The goal of process analytical chemistry is to supply quantitative and qualitative
information about a chemical process. Such information can be used not only to monitor
and control a process but also to optimize its efficient use of energy, time, and raw
materials. In addition it is possible to simultaneously plant effluent release and improve
quality and consistency”

In the 1980s the incorporation was due to a maturation of the manufacturing process i.e., the
competitive advantage shifted from product innovation to process innovation. This resulted in a
higher product quality and a more efficient process®”*°. This was further enhanced in 2004
where the American Food and Drug Administration (FDA) described a new comprehensive
process understanding in the Process Analytical Technology (PAT) initiative®®. PAT is more than
a mere re-compilation of the PAC approach. PAT also includes guidelines and tools for quality
1.12* stated that PAT was a
more appropriate term as measurements were expanding to include physical characterization

assurance and risk management a.o. However, in 2007 Workman et a

tools i.e., PAC converged towards PAT.

The goal set by first Callis et al.*” and later on by the FDA initiative is generally obtained by
looking at different process signatures, from which the key parameters influencing the process
are identified, and used for process monitoring and control®. The methods being applied can be
simple univariate methods such as pH, temperature, and density measurements, but there is a
very clear shift towards more comprehensive chemical analysis, chemometrics, and multi-
channel sensor technology.

From this it transpires that PAT is based on a threefold platform:

1. Obtaining representative samples (sampling)
2. Measurement of relevant process parameters (relevant sensor technologies )
3. Conversion of these measurements into process info (data analysis, chemometrics)

The latter two have been an accepted part of PAT from the start, whereas sampling was put in
with the redefinition by FDA. A basic understanding of the general principles of the Theory of
Sampling (TOS) has, however, not yet been incorporated but is never the less essential for
obtaining models with reliable prediction performance. Esbensen & Mortensen 2009°? state:




“Chemometric data models must closely adhere to reliable performance validation, e.g.
regarding prediction, classification, time forecasting. Without representative process
sampling the chain of evidence vs. lot characteristics is flawed because of inherent
materials’ heterogeneity at all scales. This applies both to samples as well as sensor
signals.”

And furthermore

“If the quality of both X- and Y-data involved is suspect, how can a multivariate calibration
be expected to be trustworthy? This also includes the issue regarding proper validation of
the chemometric multivariate calibration(s) involved, which can only be resolved based on
proper understanding of the phenomenon of heterogeneity. The TOS delivers answers to
all these issues. The TOS constitutes the missing link in PAT.”

Furthermore, Esbensen and Mortensen 2009°% emphasise that it is but a mere misconception
that the sampling errors can be eliminated through the subsequent chemometric data analysis:
once the sample is obtained nothing can be done to correct for the errors associated with the
extraction. The comprehensive platform is here therefore considered as the trinity of PAT, see
Figure 1.1, where all three elements are equally important for a successful PAT strategy.

Representative sampling

Figure 1.1: Trinity of sampling (adapted from 74)

From the above definitions it is evident that many current and future productions would
benefit from an implementation of the full PAT strategy.

For a successful implementation of PAT in an industrial process, contributions from many
branches, such as analytical chemistry, sensor technology, chemical engineering, control
(automation), are needed thus making PAT a multidisciplinary field.

Representative sampling, the measurements techniques relevant for the current work, and the
relevant data analytical approaches will be introduced in chapter 2, 3, and 4 respectively. The




PAT strategy will be applied in three different contexts; anaerobic digestion, 2" generation
bioethanol production, and aroma fermentation.

Anaerobic digestion and 2" generation bioethanol production are both processes receiving
increased attention as methods for reducing the carbon dioxide emission and their contribution
in reducing global warming. Both processes are still being developed and optimized, and will
most likely gain from the implementation of the PAT strategy. In the current dissertation, the
process in question will be looked upon and suggestions made to which key parameters might
be of the most relevant interest for monitoring and control. Furthermore, laboratory scale
experiments will be carried out to test the feasibility of the parameters and the technology
arrived at. This is done in chapter 5 and 6 and in papers 1 through 4.

The last paper, number five, concerns itself with a desired redefinition of an aroma
fermentation based on the filamentous fungi Penicilllium roqueforti. Currently, the process is
carried out applying a multiphase substrate of which only a small part is directly turned into
product. A redefinition of the process into a fed-batch -, or a continuous fermentation, applying
a specific substrate with precursor addition, is more desirable from an optimization point of
view. However, the product precursor is toxic to the organism used; thus, a strict control of the
concentration in the substrate is needed. Before carrying out any fermentation optimizations
the process is looked upon, and a method for measuring the precursor is suggested and tested
in laboratory scale fermentations. This is done in chapter 7 and paper 5 respectively.




2 Sampling

In 1950 Pierre Gy started developing the Theory Of Sampling (TOS) from a practical need in the
mining industry on how to obtain a measure of the average concentration in an ore body or in a
tailings dump. Since then TOS has found a wide array of applications in various other fields, and
is now starting to be considered in chemometrics as the first unit in the trinity of process
analytical technologies — Every multivariate model is critically dependent upon representative
samples.

Multivariate calibrations are seldom based on analyzing the entire system/material at hand, as
this would be too expensive and some analyses are destructive. For process monitoring
purposes, calibrations are typically based on extracted samples that are analysed at the
laboratory (reference values, Y) and/or measurements made directly in the system (X):
examples of the latter would be near infrared spectroscopy, acoustic chemometrics,
fluorescence, etc. A realization is that only a minute fraction of the system/material at hand is
used for establishing the calibration relation, making it essential that the samples considered
indeed represent the entire system. Current procedures for sample extraction and sensor
placement do not necessarily consider this simple fact, with the consequence that
uncontrollable and unknown sampling biases are produced, which at best may yield
unnecessary inferior calibration relations and at worst will lead to calibration failure. To avoid
this TOS should be contemplated a priori to any sample extraction and handling or placement
of a sensor®%.

To understand TOS a minimum of basic definitions and terms are given in Table 2.1.




Table 2.1: Basic definitions and terms in TOS.

Terms Definitions

Lot The original material/system, e.g. the entire content in a fermenter, a hay
bale etc.

Sample Material that is extracted from the lot without sampling bias. This process

is termed “correct sampling”

Specimen Material that is incorrectly extracted from the lot (see above).

Increment A part of a sample unit that combined with other sub-samples yields a
composite sample.

Fragment The smallest unit obtainable in the lot i.e., grain, straw, cell.

Dimensions The sampling process/lot is categorized as 0,1,2,3 dimensional respectively

depending of the nature and geometry of the lot. Often a zero dimensional
or one dimensional situation is encountered.

The aim of TOS is to reduce the mass of the lot material without changing its characteristic
(intrinsic) properties (chemical, physical), thus extracting a sample with the same properties as
the lot i.e, a representative sample.

For a sample to be representative it has to be extracted probabilistically correct, which means
that each virtual fraction of the material must have an identical (non-zero) probability of ending
up in the sample and that fractions that do not belong to the material have exactly zero
probability of ending up in the sample. Furthermore, all increments/samples have to be
extracted by a sampling process that is both accurate and precise (reproducible (re)).

2 =m?2 + s?

Where me is the average of replicated samplings
s¢’ is the variance of the sampling error

The sampling process is termed accurate when the average error (me) is statistically equal to
zero, or below or equal a predefined low acceptable value (mg). The sampling process is
characterized as precise (TOS speaks of reproducibility) when the variance of the sampling error
(se’) is below a small predefined value (so®). A non-representative specimen is an increment
delineated and extracted in any way that contradicts the above characteristics, e.g., parts of the
material lot have zero probability of ending up in the sample.

The sampling procedure consists of two parts, 1) sample delineation & extraction, followed by

79,81

2) mass reduction & handling (which must also be representative’”*"). The first step may be
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considered as the primary sampling step (PSE), whereas the latter may be a single or a series of
steps termed the secondary (SSE), tertiary (TeSE), ... sampling step.

Each of the sampling steps (PSE; SSE, TeSE etc) are associated with a relative sampling error:

SE = as — ag,

ap

Where as is the concentration in the sample
a, is the true concentration in the lot

The relative sampling error is a sum of correct and incorrect errors associated with the material
and the sampling procedure applied.

The overall error is termed the “Global Estimation Error” (GEE), which consists of a contribution
from the “Total Sampling Error” (TSE) and the “Total Analytical Error” (TAE). The latter generally
has a lot of focus in the analytical laboratory and is constantly being reduced by improvements
made in the equipment, analytical procedure, and others. The total sampling error is just as, if
not more important but is not receiving similar attention, maybe because it is impossible to
ascertain from the sample itself whether it is representative or not. Only an honest, complete
delineation of the full procedure by which the sample was obtained and handled gives full
disclosure. In the present thesis TSE will be in focus.

2.1 Total Sampling Error

The total sampling error (TSE) is caused by the material properties (heterogeneity) interacting
with the specific sampling procedure applied (which may contain “incorrect” sampling errors,
or not). TSE consist of a total of five errors as listed in Figure 2.1. This indicates that TSE is
reduced mainly by evaluating and changing the sampling process (to get rid of any “incorrect”
errors), though changing the material properties by comminution is possible. This is but only
rarely possible during process sampling.
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Figure 2.1: Sampling errors involved in 0-D and 1-D sampling.TSE: total sampling error, TAE: total analytical error,
FSE: fundamental sampling error, GSE: grouping and segregation error, IDE: Increment delimitation error, IEE:
Increment extraction error, and IPE: Increment preparation error. The latter three are collectively known as the
“incorrect” sampling errors — opposed to the “correct” sampling errors (FSE + GSE). (Adapted from reference 82)

TSE comprises both the correct (CSE) and incorrect sampling errors (ISE). The correct sampling
errors are structural errors caused by the heterogeneity of the material being sampled,
resulting in smaller or larger difference between the primary samples extracted if/when
sampled in a replication fashion. CSE is the sum of the Fundamental Sampling Error (FSE) and
the Grouping and Segregation Error (GSE), which are the two basic sampling errors

encountered in all types of lots;

m,(CSE) = m,(FSE) + m.(GSE)

Or

s2(CSE) = s?(FSE) + s2(GSE)

Where m. is the average of replicated samplings

sé2 is the variance of the sampling error

TAE
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The incorrect (ISE) sampling errors are introduced when applying a non-correct delimitation
and/or extraction of the sample and/or when the sample is not handled with care.

It is the primary objective of any sampling process to exclude the bias-generating ISE,
preferentially completely — or if not, to document the quantitative effects of any residual ISE.

2.1.1 Correct Sampling Error

The fundamental sampling error (FSE) is inherent to the material properties; size, shape,
density of the unit fragments i.e., the compositional heterogeneity of the sample. For a given
state of the lot, the FSE is constant and cannot be altered, but by changing the lot system
physically (e.g., by comminution) it may be reduced as FSE is always lower for smaller
fragments. However, generally FSE can only be reduced to a certain minimum level, as
nullification would demand for the whole lot to constitute the sample or the material to be
strictly homogenous (see below for definition). This is never the case for any naturally occurring
material; thus, FSE is considered the absolute minimum sampling error obtainable if/when all
other errors are nullified. In practice this is never carried to completion; therefore, FSE will
always have a contribution from the sampling process. See the fragmented line in Figure 2.1.

The Grouping and Segregation Error (GSE) is influenced by both the material heterogeneity i.e.,
by the compositional heterogeneity (especially by the spatial distribution of the lot) and the
sampling process itself (amongst others the sampling mass).

To enable a reduction of TSE it is important to understand all the factors that are influencing
the heterogeneity of the material. Counteracting GSE is often the most practical important
issue in representative sampling - following successful elimination of all ISE.

2.1.1.1 Material Heterogeneity

Heterogeneity is a universal characteristic of all materials and systems, and can be split in two
parts; the constitution heterogeneity of the lot (CH,) and the distributional heterogeneity of the
lot (DHL)

CH, depends on the composition, size, and shape of the fragments in the lot alone. This means
that materials having a large fragment to fragment difference have a large CH,, whereas
materials with more similar-sized fragments have a lower CH,. The CH, can never be reduced to
zero, as this would demand that all fragments were indeed strictly identical. It can however be
reduced to a practical minimum by changing the physical properties of the sample in example
by comminuting. Mixing and blending has no effect on the CH,. It is due to the constitutional
heterogeneity that the FSE exist.
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Mathematically the CH_ is defined as the variance of the heterogeneity contributions (h;) from
the lot:

CH, = s*(h;)

CH, = i (h; —m(h;))? = i h?
L NF i i NF l
i i

CH_lz(ai—aL M; )
t NF ap Mave,Fi

i

Where N is the number of fragments in the lot
h; is the heterogeneity contributions for each fragment
m(h;) is the average of the heterogeneity contributions = 0
a; is the concentration in the i™ increment
a, is the concentration in the lot
M; is the mass of the fragment F;
Move ri is the average mass of all fragments

DH, depends on the spatial composition of the lot (CH,) i.e., the tendency of fragments to group
together (characterised by a grouping factor, Y) as well as the tendency of particles to segregate
(characterised by a segregation factor, Z):

1+YZ

H, = CH
L= 14y ¢

Note that DH, is defined at the level of the group of fragments, i.e., at the scale level of the
practical sampling increment — indeed, the only scale relevant for any sampling process. The
larger the difference is in composition between increments in the spatial makeup of the lot, the
larger DH,.

The grouping factor (Y) is dimensionless parameter (Y > 0), characterising the size of the
increments. It is defined as the number of fragments in the lot (Nf) to the number of groups

(Neg):

Ng — N
y =+ "¢
N —1
Where NE is the number of fragments in the lot

N is the number of groups in the lot

The numbers of fragments are often much larger than the number of groups, thus yielding the
following approximation:
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Ng

Y ~
Ng

Decreasing the number of fragments in the increments/groups will reduce the segregation
factor, in principle down to zero when each group contains one fragment only (“ideal
sampling”, not realisable in practice). This approximation also indicates that carrying out
compositional sampling in the manner of keeping the sample mass constant and applying
many, small increments will reduce the grouping factor.

The segregation factor (Z) is also a dimensionless parameter (1 = Z > 0) characterising the
stratification/segregation status of the lot. Z will be one, if the material is totally segregated and
zero when it is totally homogenised, see Figure 2.2.

Figure 2.2: Segregation within a material. a) Totally segregated (Z=0), b) Homogenised

When Z = 0 the material is characterised by there being no correlation between the placement
of a fragment and its physical and chemical nature. This indicates that the segregation factor
may be reduced by mixing and blending.

It is due to the distributional heterogeneity GSE exist, indicating that GSE may be reduced by
changing either, the grouping factor, the segregation factor or the constitutional heterogeneity.
This indicates that GSE may be reduced by comminution (CH,), composite sampling (Y),
increment reduction (Y), and/or homogenisation (Z). The factors in parenthesis are the ones
being modified.

2.1.2 Incorrect Errors

The incorrect sampling errors (ISE) arise when the practical, operational rules of representative
sampling are not followed. ISE constitutes the Increment Delimitation Error (IDE), Increment
Extraction Error (IEE), and Increment Preparation Error (IPE) respectively. These errors are the
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sources of sampling bias, and should always be eliminated or at least reduced to a minimum
commensurate with mg above.

m,(ISE) = m,(IDE) + m,(IEE) + m,(IPE)

IDE is introduced when the material is delimited so that the fragments or increments in the
material have an unequal probability of being sampled. Before sampling, the material at hand is
delimited into different increments, of which one or more are to be extracted. To avoid a
delimitation error, each should be delimited so its probability of ending up in the sample is
never zero, and such that no increment has a higher probability of ending up in the sample than
any other.

IEE is the result of a non-correct extraction i.e., when a set of practical rules are not followed
during sample extraction, thus in practice yielding an increment that deviates from the
correctly delimited one. An example of this is seen in Figure 2.3.

A B

@ D Large particles o D
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% OO \° | 0,00 \°
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. Small particles | o ?:) = Olo X
\ Vo \

Figure 2.3: Schematic representation of the delimitation of the sample. A) Correct delimitation B) Incorrect

delimitation. In applying the incorrect delimitation samples having a larger concentration of the medium sized and
small size particles will be obtained in this example of a significantly segregated material. (Adapted from refrence
82)

For example, it is important that the rule of center-of-gravity is followed when handling
particulate material i.e., the particles with their center of gravity within the delimited area are
always found in the increment after extraction.

IPE covers situations where the integrity of the sample is not upheld after extraction, and thus
has several contributors (error sources) like contamination, loss of material, human error, and

fraud. According to TOS this is the only error that is non-statistical.****

Both the correct and the incorrect sampling errors are encountered in all sampling steps, so
that the TSE at each step is:

m,(TSE) = m,(FSE) + m,(GSE) + m,(IDE) + m,(IEE) + m,(IPE)
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2.2 Avoiding Sampling Errors

From the general knowledge obtained via the theory and the experience obtained through
applying TOS in more than 50 years, seven sampling unit operations (SUO) have been
formulated, which should be applied to avoid incorrect sampling, see Table 2.2.

Table 2.2: Sampling Unit Operations (SUO). 1-D, 2-D, 3-D: 1, 2, and 3 dimensional lots. &

Sampling Unit Operation

1 Perform a heterogeneity characterization of new material
2 Mix (homogenise) well before all further sampling steps
3 Use composite sampling whenever possible

Use only representative mass reduction

Reduce particle size whenever necessary

Characterization 1-D heterogeneity using variographic analysis

N o o b

Turn 2-D and 3-D- lots into 1 —D equivalents whenever possible

The SUO may be divided in the more practical SUO (2-5) and the guiding principles SUO (1, 6-7).
Not all of them necessarily have to be invoked in a particular sampling situation, but they
constitute the arsenal available for solving sampling problems.

2.2.1 Guiding SUO

The first sampling unit operation deals with the overall characterisation of the lot. Before
handling any lot, the empirical heterogeneity should be known, thus enabling the delineation of
a correct sampling procedure, with respect to primary sample size and the need for; composite
sampling, mass reduction, homogenisation and particle size reduction. The heterogeneity of
the lot could be obtained — at a very fundamental level — from the estimation of the
constitutional heterogeneity (CH.). However, to do so it is necessary to know the number of
fragments (Nf) constituting the lot. In most practical cases the numbers of fragments are
impossibly way too high to be counted; therefore, the heterogeneity is often estimated at a
practical level commensurate with the actual sampling process in existence, or being designed
and implemented.
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The famous “Gy’s formula” states an important empirical relationship:

C-d3

2(FSE) ~
$?(FSE) = <11

Where Cis a sampling constant
d is the top particle size (dys in material science terms)
My, is the sample size

C is a compound “materials’ sampling constant” that dependents on four factors; the average
density of the particles, the concentration of the analyte in the lot, whether the analyte is
incorporated in other components, and the shape of the analyte. For more details see Gy
1998®. The above equation requires detailed knowledge about the physical properties of the
material to be sampled and has mainly found its base in the mining industry. For some
materials the knowledge of the physical properties is limited and not easily estimated making
the determination of the variance of FSE very difficult, if not impossible. A more practical
approach for estimating the heterogeneity may be applied for such materials.

Through replicated extraction of ten samples from the lot (using the current sampling
procedure), including the estimation of the analyte concentration, it is possible to estimate the
empirical sampling variance and thus the coefficient of variation (C.V.). The result obtained is a
sum of all the sampling errors from the primary step down to the analytical technique. Often it
is possible by replicating at each sampling step to estimate the contribution (variance) at each
step.

Usually the summary TSE is the main interest. If TSE is too high, TOS’s principles must be
invoked in order for relevant improvements to be made in the sampling procedure.
Interestingly, in the most recent TOS contribution it has been possible to derive a highest
acceptable threshold for the practical sampling variability as expressed by the C.V. thus arrived
at: Any sampling process with a C.V. higher than 16% (20% in practice) is shown to reflect
uncontrolled Poisson process characteristics and will have to be worked on further®. The
threshold level is quoted here for obvious practical reasons; all theoretical argumentation is the
responsibility of the other doctoral thesis cited®.

The coefficient of variation obtained at the primary sampling step is as such not a direct
measure of the heterogeneity, but of the practical sum-of-errors caused by the heterogeneity
interacting with the specific sampling procedure. In cases where the primary sampling has been
carried out in accordance with TOS (eliminating all ISE as well as having reduced GSE as much as
needed) it can be seen as the minimal practical error obtainable (MPE) with the current
procedure. As such it has a very practical meaning as it is only theoretically possible to reduce
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the sampling error all the way down to the magnitude originating from the compositional
heterogeneity contribution CH,.

The sixth and seventh SUO is applied in process sampling when dealing with one-dimensional
process streams or time series. By applying these, the effect of long and short term periodic
fluctuations are reduced. These will not be dealt further with in the current thesis. For more
detail see reference 32, 34, 43, 79, & 84.

In order to obtain a correct primary sample, SUO 2-5 comes into play, as they specify the
possibilities for how the sample should be handled practically to eliminate all ISE’s and reduce
the contributions from the GSE and/or FSE. Contemplating SUO 2-5 it is seen that they deal
exactly with reduction of the three contributing factors to FSE and GSE.

Particle size reduction is done by reducing the size of the fragments by comminution. From the
Gy’s formula it is seen that the particle size is raised to the power of three, making it evident
that comminution has a significant effect on the reduction of the heterogeneity of the material
and thus on both the FSE and GSE. The contribution from FSE to the TSE may only be reduced
by reduction of particle size.

“Homogenisation” (which in all practical cases is mixing only) is carried out to increase the
probability of obtaining a sample concentration near the average concentration of the lot. It
may be carried out applying different techniques. At the laboratory a mechanical approach
applying a mixer or shaking the material is often applied. Another method applicable to
particulate material is the long pile method. In this method the particulate material is laid up in
a pile by a snake-wise movement of the sample container from one end of the pile to the other,
as many times as practical. The composite sample is then extracted as a full, planar-parallel
cross section cut of the pile laid up. This method is not standard laboratory practice (yet), but it
is highly effective for breaking down the spatial correlation between the different fragments.

Composite sampling is carried out by extracting many, small increments and combining them in
one sample. By applying this procedure the effect from the GSE is reduced. By applying this
approach the total mass of the sample may increase above the mass needed for analysis.
However, this problem is easily overcome by carrying out appropriate representative mass
reduction.

Mass reduction may be carried out in a number of different ways; grab sampling, fractional
shoveling, riffle splitters, rotational dividers, and others of which not all yield representative
subsamples. Description and a comprehensive testing of the different methods may be found in
Petersen et al. 2004%*. The overall conclusion from the tests carried out was that grab sampling
(the simple extraction of the mass needed for analysis from one point of the lot) yielded the
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worst results, and should never be applied; it is instructive to contemplate that the use of a
spatula in the analytical laboratory actually is a grab sampling technique.

A method not tested by Petersen et al. 2004%" paper is the long pile method. After
homogenising the material by laying it up as described above, a number of increments may be
extracted as a cross section of the pile applying a scoop. The number of increments extracted is
subsequently combined in a single sample. This is repeated until the mass of the sample is
reduced to the size needed for analysis.

2.3 Different Sampling Situations

During this Ph.D. study two completely different type of sampling situations were encountered;
sampling of liquid/solid samples from a bioreactor and sampling of straw from agricultural
fields, and all necessary mass reduction procedures needed in both cases. Samples were
extracted from two different microbial systems; aerobic fermentation representing a well
defined system and anaerobic digestion representing a rather under-defined system.

To clarify the task at hand each study was preceded by studying in detail the complete process
from primary sampling to analysis, thereby revealing all potential pitfalls. From this analysis, a
relevant, optimised sampling procedure was designed applying the SUO assessed as necessary.
The procedure outline for each system is summarised in each chapter covering the three
processes below.
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3 Analytical Measurement Technologies

The analytical measurement technologies are considered the second leg in the trinity of process
analytical technologies.

In the biotech industry different analytical technologies (chemical, physical, and biological) are
applied for measuring different variables. In Table 3.1 different sensor type examples are given.
Chemical and physical sensors are the most widespread, as the biological sensors are much
more complex and difficult to implement?®.

Table 3.1: Examples of analytical technologies. HPLC: High performance liquid chromatography, FIA: Flow injection
analysis, ELISA: Enzyme linked immunosorbent assay, PCR: Polymerase chain reaction

Sensor type
Chemical Physical Biological
HPLC Temperature ELISA
FIA Pressure PCR
lon selective electrodes Photometric DNA/RNA

The pre-request for good bioprocess monitoring and control is the use of a relevant
methodology, making the method and the implementation strategy (at-line, in-line or on-line)
very process dependent. The bioprocess industry counts several products and application fields:
pharmaceutical, food, and energy production. As a consequence the demands span from a very
high demanding mammalian cell culture where the asepticity of the system is of outmost
importance, and a small fluctuation in temperature or pH may be fatal for the quality of the
product, to anaerobic digestion plants where no such critical demands are seen®?>% 12!,

In this thesis, the frame is set by material characterisation and two different fermentations:
anaerobic digestion and aerobic aroma production. The anaerobic digestion is currently being
monitored by pH, temperature, flowmeters, and calorimeters, which is inadequate for
establishing process instabilities and predicting possible process failures. The aerobic aroma
production is being redefined, for which a method is needed for the monitoring of the product
precursor. The characterisation of wheat straw is needed for optimising the 2™ generation
bioethanol production prior to the establishment of a production facility. For handling these
three different scenarios, three analytical techniques were evaluated and their feasibility
tested: near infrared spectroscopy, acoustic chemometrics, and electronic tongue.
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3.1 Near Infrared Spectroscopy

Near infrared spectroscopy (NIRS) has a very diverse capability of analyzing different organic
constituents such as sugars, fat, specific organic compounds, moisture etc. and has been
applied to a number of different products such as grain, polymers, dairy products, coffee to
mention some. In Table 3.2 a short list of different applications reported in the bioprocces
industry is given; more examples are given in reference 9, 16, 52, & 95.

Table 3.2: Application fields reported in the bioprocess industry.

Application field

Mycelial biomass from P. Chrysogenum and S. Fradiae™®**

Biomass glycerol and methanol in high density complex fed-batch®
Oil quality for biodiesel production’

Ground barley for use as a feedstock in biofuel production'®
Chemical composition of rice straw®

Moisture, ash, and calorific content in biofuels (wood chips)®®

Monitoring the dynamics of biogas production’®

The reasons for the popularity and broad application range are many. In Table 3.3 some of the
advantages and disadvantages of NIRS reported in the literature are given. These are strongly
process dependent and some are not present in all application areas.

Table 3.3: Advantages and disadvantages of applying NIR>***%.

Advantages Disadvantages
- May be used in laboratory as well as in - Probe fouling (in-situ application)
industry
- Fiber probes available, allowing the - Calibrated models are not necessarily
instrument and operator to be situated far robust with respect to drifts, upsets and
from aggressive environments interferences
- No chemicals - Gas phase effects (bubbles)

- Quick while maintaining accuracy

- Non-invasive, inexpensive

- Multi component analysis applying a single
sensor

- Minimized or no sample preparation
- Online approach possible
- Real time control possible
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3.1.1 Electromagnetic Spectrum

NIRS is fundamentally classified as molecular spectroscopy and is based on the interaction
between electromagnetic radiation and matter. The electromagnetic spectrum spans from the
high energy y-rays (10 m (10* cm™)), where inner electron transitions in high atom number
elements is possible, to the radio waves (10° (10”7 cm-1)). The infrared region is situated in the
interval 12,500 — 10 cm™. The region is further divided into near (NIR), mid (MIR) and far (FIR)
infrared, NIR constituting the range 2,500 — 800 nm (4,000 to 12,500 cm'l), see Figure 3.1.

near infrared

2500 nm 800 nm
(4,000 cm') (12,500 cm’)
. micro .
radio waves S infrared  [MI9[ UV X-rays y-rays
] | ] | ] ] ] |
wavelength 100 cm Tcm 100 um 1 um 10nm 100 pm
wavenumber (0.01 cm’) (1cm’) (100cm™)  (10,000cm’) (1 Mcm) (0.1 Gem™)

| | | | | | | |
frequency  3-.10® 3-10" 3-10™ 3-10" 3-10% 3-10%®
(Hz)

Figure 3.1: Electromagnetic spectrum (adapted from reference 95).

A molecule can occupy different quantum energy levels, the major level corresponding to the
different electronic orbitals. Furthermore, for each major energy level a series of quantum
vibrational and rotational energy levels exist. The activity seen in the infrared region is due to
the fact that infrared radiation has a frequency corresponding to that of the vibrational levels of
many chemical compounds. The vibrations taking place may be divided into stretching and
bending, see Figure 3.2.
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Figure 3.2: Symmetrical and asymmetrical vibrational modes for a molecule containing three atoms.

Six types of fundamental vibrations exist, and the absorption bands in the mid-infrared region
are due to these. Besides these fundamental vibrations combinations of vibrations between
atoms connected to the same central atom are possible, thus yielding the so-called
combination bands.

The absorption bands in the near infrared region are caused by these combination bands and
additionally by the presence of overtones. Generally, the absorption in a molecule can be
explained by the combination of a simple harmonic oscillator and a quantum mechanical
treatment by the Schrédinger equation®. The overtones are caused by a deviation from this
harmonic state encountered when the vibrating atoms are either close together or far apart.
Being close together, a repulsive force between the two atoms exist, working in the direction of
the restoring force, resulting in a faster increase in the energy than predicted by the harmonic
model. Being far apart the opposite situation is observed, i.e., the restoring force is weak, and
as a consequence the decrease in energy is slower. These anharmonic motions yield energy
transitions with frequencies of approx. two, three, four etc. times that of the fundamental
vibration. Like combinations of fundamental vibrations, combinations of overtones are possible.
The probability of the overtones decreases significantly with their order. As a consequence the
intensities of these overtones are much lower than that of their fundamental analogs™%.
3.1.2 Absorption Bands

For absorption of infrared light to occur, and thus for the molecule to be IR active, two
conditions need to be met. The frequency of the radiation must correspond to the transitions
between vibrational energy levels in the molecule and a change in the polarity/dipole of the

-24 -



molecule is needed, i.e., only asymmetric vibration leads to an absorption of infrared light'%. As
a consequence, essentially only molecules containing covalent bonds are IR active and can be
measured by NIR. Common bonds contributing to the NIR spectrum are C-H, N-H, O-H, and S-H,
making the method versatile and applicable for measurements of many organic compounds. A
list of typical absorption bands is given in Table 3.4. The exact location of the band is molecule

dependent.

Table 3.4: Typical absorption bands for functional groups in NIR™™.

102

Group Combinations Overtones
1st znd 3rd
[cm-1]

CH 4098-4405 5618-5917 8130-8547 10695-11050
CH, 4149-4444 5714-5988 8264-8696 10811-11111
CH3 4167-4545 5848-6135 8368-8929 10989-11494
H,0 5208-5405 6920-7177 10101-10471 13072-13514
R-NH, 4535-4637 6623-6711 9542-9852 12195-12821
ArCH 6061-6211 9091-9259 11494-11765
R-OH 4785-4854 6757-7092 10638-10811 13369-13793

By looking at these intervals it is evident that the absorption bands in the NIR region are broad
and overlapping. As a consequence the specificity of NIR is low, making direct identification of
specific bands difficult if not impossible.

3.1.3 Spectral Acquisition

Two general modes of spectral acquisition exist; transmission and reflection. Furthermore, a
combination of the two is possible, thus yielding a third option termed trans-reflectance or
simply transflectance, see Figure 3.3.

Figure 3.3: Three modes for spectral acquisition. A) transmission, B) reflectance and C) transflectance.
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In transmission the near infrared light is passed through the sample, and the absorbance
calculated from the ratio of the intensity of the reference and the sample (the transmittance);

1 1 Iy
A =log <T) = log TI= log (T)

Iy

Where A'is the absorbance
T is the transmittance
lp is the intensity of the reference beam
| is the intensity of the beam after passing through the sample

Transmission is normally used for tablets and liquid samples.

In the reflection mode the light is reflected by the sample instead of going through, and a
parameter (log 1/R) corresponding to the absorbance is calculated from the reflectance.

] 1—1 ! =1 Lo
og (i) =108 | =108 ()

I

Where A'is the absorbance
R is the reflectance
lp is the intensity of the reference beam
| is the intensity of the beam being reflected by the sample

Reflection is normally used for solids, e.g., powders.

The trans-reflectance mode is as mentioned a combination of the two where light passes
through the sample, into a mirror and is then reflected back through the sample. Trans-
reflectance has proven useful when measuring liquid samples and liquid samples containing
solids.

3.1.4 Instrumentation

A number of different NIR instruments exist, and a list of various companies, type of
12 |n the
current thesis a Quant (ABB) and Corona 45 NIR (Carl Zeiss) were applied, the former being a
Fourier transform instrument and the latter a dispersive instrument.

instrument, and wavelength coverage’s was put together by Workman & Burns, 2008

A Fourier transform instrument principally consists of a light source, a Michelson
interferometer, a detector, and a laser. The near infrared light is emitted from the source to the
Michelson interferometer. Here it is divided into two by a beam splitting mirror and reflected
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by two mirrors prior to being recombined. One of the reflecting mirrors is moving, thus
changing the intensity of the near infrared light. The light is passed through the sample and into
the detector. The laser is applied for controlling the data acquisition in the detector. In the
Quant, a quartz halogen lamp and an InAs detector are applied. The signal is obtained as an
interferogram, which is the output as a function of the difference between the distances
traveled by the two beams in the interferometer. This is transformed into the frequency
domain by a fast Fourier transformation algorithm (FFT).

A dispersive instrument consists of a light source, a slit, a dispersion device, and a detector. The
near infrared light is emitted from the source and sent through the sample. From the sample it
is passed through a slit, dispersed in a monochromater (usually a grating) and sent to the
detector. In the Corona 45 NIR a halogen lamp (10 W) and a diode array detector are applied.

3.2 Acoustic chemometrics

Acoustic chemometrics (a.c.) is a multivariate analytical technique which amongst others has
shown potential for determination of particle size and quantification of oil in water. Table 3.5 is
a short list of applications reported in the literature.

Table 3.5: Application fields for acoustic chemometrics.

Application field

A pipeline transporting a dense slurry containing silica particles°

In-line prediction of powder particle size distribution**

On-line control tool for a urea fertilizer production®®

None of the cases reported is from the bioprocess industry, but from these and the advantages
and disadvantages reported for the method (Table 3.6) it is evident that a.c. should also be of
value in biotechnological applications, e.g., for monitoring of oil in water, particle size
distribution, and total solids. The fact that this sensor modality is non-intrusive may be of
significant value to the fermentation industry where ascepticity is critical (not an issue for
anaerobic fermentation).
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Table 3.6: Advantages and disadvantages of applying acoustic chemometrics.

Advantages Disadvantages

- Not necessarily as accurate and precise as
laboratory methods

- Calibrated models are not necessarily
robust with respect to process drifts,
upsets and interferences

- Non-intrusive sensors

- One sensor may be applied for
monitoring of several process parameters

- Relative inexpensive equipment

- On-line/real time approach

3.2.1 Vibrations

Vibrations are dynamic phenomena associated with transportation and/or processing, for
example, caused by the transfer of kinetic energy to a pipeline wall. During transportation of
particles in a pipeline, kinetic energy will be transferred to the wall each time a particle hits.
This energy is absorbed and released as vibrational energy. Vibrations created within a process
are process and materials dependent, and in acoustic chemometrics these are measured and
applied for quantifying different process and product parameters.

For measuring the vibrations a vibration transducer is applied, for example a piezoelectric
accelerometer, see Figure 3.4.

Delta Shear*

Figure 3.4: Schematic drawing of piezoelectric accelerometer. P) Piezoelectric crystals, M) seismic mass, R)
mounting ring, and B) accelerometer base®.

The accelerometer consists of a base which is connected to a seismic mass by piezoelectric
elements. During process monitoring the base is e.g., glued (or otherwise fixed) to, for example,
a pipeline and thus subjected to vibrations. Due to the vibrations a force corresponding to the
product of the acceleration of the seismic mass and its mass acts on each piezoelectric crystal,
and as a result each piezoelectric crystal generates a charge proportional to the applied force.
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As the mass of the seismic mass is constant the charge generated is proportional to the
acceleration of the seismic mass.

The acceleration of the seismic mass has a magnitude and phase corresponding to that of the
accelerometer base, and as a consequence the acceleration measured is that of the surface
onto which the accelerometer has been mounted.

The charge generated by the piezoelectric crystal is converted to voltage or a current and
registered by a computer. The vibrations are measured in the time domain (change of
amplitude of the vibration as a function of time) which is transformed to the frequency domain
by a fast Fourier transformation.

3.2.2 Instrumentation

The acoustic chemometric experimental setup is given in Figure 3.5.

M

Signal adaption
Vibration Bandpass filtering
A/D conversion

Signal analysis &
Multivariate calibration

Figure 3.5: Experimental setup and signal conditioning during acoustic chemometric measurements.

In the present thesis, the vibrations are measured by the accelerometer DeItatron®4396, which

generates a current that is preprocessed prior to entering the computer.

The first step in the preprocessing is a signal adaption step, where the acoustic signal is
amplified. The second step is a filtering. This is done by an analog pass-band filter, which passes
frequencies within a certain range (bandwidth), and retains those outside the bandwidth. By
applying the right filter, signals with only the frequencies of interest can be obtained. The third
step is an analog to digital conversion of the signal, thus allowing it to be transferred to the
computer.

In the computer the signal is transformed from the time domain into the frequency domain by
applying a fast Fourier transformation (FFT) algorithm. This frequency spectrum is applied as
the X data in the multivariate analysis*.
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3.3 Electronic Tongue

An array applying different chemical sensors was first introduced in 1985, and has since been

termed taste chip, taste sensor/system, and electronic tongue. The electronic tongue has since

been applied successfully for food, environmental, and industrial analysis, and a short list of

applications reported in the bioprocess industry is given in Table 3.7. More examples are given

in reference 21, 91, and 120.

Table 3.7: Application fields for electronic tongue reported in the bioprocess industry.

Application field

Prediction of Port wine age ( 2 to 70 years old)*

Identification of green tea grade level®

Off-line measurements on rapid Eschericia coli batch fermentation™’

Monitoring the production of fermented food>®

Quantification of organic acids (citric, lactic, and orotic) in a starting

culture for cheese production®

Most of the reported applications reported are off-line analyses, a few explanations to this may

be found in Table 3.8. From the disadvantages it is evident that the contamination of sensor

surfaces in complex media, the risk of drifts in characteristics, and problems with the calibration

drift, need to be seriously addressed before implementing the technology for routine analysis.

The advantages are of course sensor type specific and not all may be relevant to all chemical

sensor types.

Table 3.8: Advantages and disadvantages applying electronic tongue

67,91

Advantages

Disadvantages

- Minimized or no sample preparation

- Relatively simple and
equipment

- Easy automation of measurements

- Low concentrations can be quantified

- Recognition of complex liquids possible

- Better detection limit and selectivity than

for specific electrodes

- Real time control possible

inexpensive

Contamination of sensors

Temporal calibration drifts may be seen




3.3.1 Chemical Sensors

The electronic tongue consists of an array of sensors and as such a wide variety may be applied
in the design: electrochemical, optical or enzymatic. The most applied systems and also the one
applied in the current thesis are electrochemically based potentiometric sensors. Different
types of potentiometric sensors exist: ion-selective or cross sensitive and non-specific, where
experiments have shown that an array of cross sensitive or non-specific electrodes is optimal
compared to an array containing only specific ion selective electrodes.

The cross selective or non-specific electrodes applied in the electronic tongues consists of a
piece of PVC tubing to which a membrane has been glued. The sensor either has liquid inner
filling or solid inner contact. See Figure 3.6.

/ Internal reference electrode \
L1 Electrode body
//Reference solutiox
Solid state reference\
/on selective membrane
/ (glass, crystal or polymer \
membrane)

Figure 3.6: Schematic drawing of electrodes with liquid inner filling (right) or solid inner contact (left).

The membrane material applied in the sensors determines the selectivity of the sensors, thus
making the choice of membrane task specific. A wide variety of different materials from
inorganic compositions to organic polymers have been reported, for example chalcogenide
glasses doped with different metals, PVC polymers containing various active components as
ionophors, metalloporphirines, and crystalline compositions®. In the sensor array design phase
10-30 sensors with different membrane compositions and thus working principle are normally
tested for their cross sensitivity and their responses. The cross sensitivity, i.e., sensitivity
towards as many components in the solution as possible, should be high and the response
reproducible.

The key element in the ET approach is the powerful multivariate calibration of the complement
of selected sensor signals. Sometimes a non-linear PLS approach has been found useful,
matching non-linear dose-response relationships for some sensors. Mild non-linearities may of
course be well compensated by one, or a few, more PLS-components.

A comprehensive and very useful overview of the state-of-the-art ET scene can be found in the
proceedings from the latest ISOEN conference in 2007%. In the present thesis 20 sensors were
tested for their responses to octanoic acid and six chosen for the final array, which all had
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sensitivities to octanoic acid from 10 mol/L. The sensors chosen were all potentiometric non-
selective electrodes with solid inner contact. No information regarding the actual composition
of the membrane could be obtained, making the overall selectivity of the membranes in the
array unknown.

3.3.2 Instrumentation

The array applied consisted of six non-specific potentiometric sensors with solid inner contact
and a pH electrode. The array was connected to a custom-made multi-channel digital voltmeter
with high input impedance, which was connected to a computer for data acquisition. The
signals obtained were the potential difference between each electrode and a reference
electrode. The reference applied was a double junction electrode, with an inner reservoir of
saturated potassium chloride and an outer of ammonium nitrate. See Figure 3.7.

Magnetic stirrer

Figure 3.7: Experimental set-up for the electronic tongue.
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4 Chemometrics

Chemometrics is here considered the third leg in the trinity of process analytical technologies.

Several definitions on chemometrics exist, the present one given by the journal of
Chemometrics & Intelligent Laboratory Systems™®:

“Chemometrics is the chemical discipline that uses mathematical and statistical methods to
design or select optimal procedures and experiments and to provide maximum chemical
information by analysing chemical data”

The general approach in chemometrics is to consider the world as multivariate instead of the
univariate approach often applied. When several measurements are made on the same system,
some of these may correlate in some way. By finding these correlations, new knowledge about
the system will almost always be obtained.

Three major application fields in chemometrics are: explorative data analysis, discrimination &
classification, and regression & prediction. In this thesis a short introduction to explorative data
analysis and regression & prediction is given.

Before carrying out the data analysis, the data is often assessed to see if pre-treatment is
needed. Several pre-treatment types exist of which a few are described in section 4.5.

4.1 Principal Component Analysis

For explorative data analysis, the backbone of multivariate data analysis is applied: Principal
Component Analysis (PCA). A short definition of PCA can be given as follows:

“Principal component analysis - a mathematical procedure for resolving sets of data into
orthogonal components whose linear combinations approximate the original data to any
desired degree of accuracy. As successive components are calculated, each component
accounts for the maximum possible amount of residual variance in the data set. In
spectroscopy, the data are usually spectra, and the number of components is smaller
than or equal to the number of variables or number of spectra, whichever is less.””

The starting point for resolving spectral data is a data matrix (X) consisting of / rows and K
columns, where the rows are the observations; samples, chemical reactions, etc. and the
columns the variables: electrode responses, wavelengths in a spectrum, etc. See Figure 4.1
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Figure 4.1: Raw data matrix.

The purpose of PCA is to reorganize these K variables in such a way that a new system
describing the important variation in as few factors as possible is obtained. This is done by
constructing a coordinate system that is orientated along the directions of maximum variance.
For example a 25 x 3 matrix may be plotted as seen in Figure 4.2.

K=3

T\a’arz
=25 \ o

PC2 ° 5

OO
o
o o °
QO
5 o °
o
by,
5 Z
<«

projection of sample
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Figure 4.2: A data matrix plotted in a three dimensional variable space (K=3). The intersection between all PC’s is
found as the average observation.
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By placing a line along the direction of the largest variance, more information regarding the
relationship between samples is obtained than by viewing along any of the three original axes.
This direction is termed the 1% principal component (PC;). Successive directions are placed
perpendicular to all previous directions, which all go though the PCy (calculated as the average
observation). Thus, the second highest variance will be modelled as the 2" principal
component, etc. By always calculating the components perpendicular to each other, unique
components are obtained in the sense that they alone describe a certain amount of total
variation in the data set.

The PCs can be found by many equivalent numerical procedures, e.g., fitted by reducing the
sum of all squared projection distances e; (residuals) to a minimum.

For any data matrix, centering is often performed by moving the center of the model from the
origo of the original coordinate system to the average observation. In general the average
observation does not correspond to any real-world observation (object).

By perpendicular projecting the observations onto the principal components their coordinates
in the new system, termed scores (t), are obtained, which are collected in a score matrix (T). A
row in the score matrix makes up the scores for a single observation, while the columns are the
projection points of each observation unto a single PC. Scores may be either positive or
negative depending on their location in relation to the model center (average observation). The
scores are related to the original coordinate system by weights, called loadings (p), which are
collected in the loading matrix (P). A row in the loading matrix is the contribution of a single
variable to the PCs. See Figure 4.3.

Variables PC1 PC2 .. .. Variables
or = or =
s 5 PC2
e e
: r P
v = v
2 X 2 T + E
t 1
i i
o o]
n n
s = — § b= -

Figure 4.3: Matrix representation of a centred PCA model.

Mathematically, the contribution of a variable to a PC is the cosine of the angle between the
variable axis and the PC. If a PC points in exactly the same direction as the original axis, the
angle between them is zero, thus yielding a loading of 1, i.e., the PC is a total explanation of the
variance given by this one variable alone. If the PC is placed perpendicular to original axis, a
loading of zero is obtained, i.e., the PC explains nothing of the variation seen in that variable.

E is the error matrix representing the residual part of X, which is not explained (modelled) by
the model. This part is generally regarded as the noise part of X, and is used as a measure of the
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model fit, i.e., how closely the model corresponds to X. If E is large, the PCA fits the data poorly
and vice versa.

In interpreting a model the scores and loadings are of special interest. In plotting the different
scores against each other the different observations are related to one another, while plotting

the loadings against each other gives a graphical view of the inter-variable relationship. & %% 3

104

4.2 Partial Least Square - Regression

The output from a given instrument (x) may be related to the properties of a sample (y) by
establishing a regression model (calibration), thus enabling the possibility for prediction based
on future samples. As an example, a NIR spectrum may be related to the concentration of a
specific sugar component in a sample, thereby enabling future measurements of this particular
sugar concentration by NIR. Several methods for doing this exist; the most popular however is
the Partial Least Squares (PLS) regression, originally suggested by Herman Wold in the mid

seventies>*.

One of the advantages by using PLS is that it can handle colinearity in the data, which is very
often encountered, e.g., in NIR spectra. This is done by applying new component variables,
latent variables, for expressing the relevant information found in X. The information residing in
the X matrix is termed the independent data, whereas the data in Y is dependent.

For carrying out calibration it is crucial that the samples applied span the range expected in
future samples, i.e., samples similar to the ones that are going to be obtained in the future have
to be applied. Generally the PLS regression consists of three steps, see Figure 4.4.
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Figure 4.4: Three steps in Partial Least Square regression.

The calibration step carried out in a PLSR is analogous to PCA from a projection point of view.
However, in the PLS the y-data is applied directly in decomposition of X, thereby obtaining a
regression model that contains exactly the information from X that is most relevant for
modelling the property sought in the samples. This is obtained by applying y-data information
(y-score vectors) instead of the scores (t) in calculating the X-loadings. Since these are
principally different from their PCA counterparts they are termed loading-weights (w). By doing
so the least-squares solution (w = XTy/| XTy| ) to the following equation is obtained:

X=y - w'+E

The X-data is now projected onto this loading weight, establishing the corresponding score
values (t). The first PLS component is now established in both the X- and the y-space, from
which the residual part (non-explained) of X and Y is calculated and used in establishing the
next component. The procedure is repeated until the optimal number of components
describing the sought for regression relation is obtained (see validation below).
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One algorithm applied for establishing the PLS components is termed the NIPALS-algorithm
(Nonlinear Iterative Partial Least Square) and is depicted in Figure 4.5.

Xand Y are centered
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Figure 4.5: NIPALS algorithm for PLS™.

For the final model the following is obtained: scores (T), loadings (P), and loading weights (W).
The loading weights are obtained as a result of y-guided decomposition of the X-data, and
describe the effective loadings that are needed in constructing the X-Y regression relation. For
this reason, it is only the loading weights which are of interest for interpretation of the X-Y
model relationships.

After calibration, an evaluation of the fitted model is carried out, i.e., the model is validated.
This is done by evaluating the size of the residuals in calculating a prediction error estimate.
Different methods for establishing more or less realistic validation exist: leverage correction,
cross validation, or test-set validation. These methods will be described further in section 4.3.
Validation should furnish reliable information as to the realistic magnitude of the average
prediction error for future samples. From the validation it is decided if the model quality is
good enough for the purpose for which it is intended. This is done by applying different

measures, see section 4.4. 14,30, 70, 104
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4.3 Validation

As a part of modelling, validation must always be carried out. The objective is to establish the
optimal number of component needed and to establish the validity of the final model obtained,
which will facilitate a measure of the prediction error as well. Validation is carried out by
estimating the predicted residuals, and may be performed applying one of the three following
methods; test set validation, cross validation, or leverage corrections. The only realistic
measure of the residuals is obtained by applying the first method.

4.3.1 Test Set

Test set validation is the most stringent and best, as entirely new observations/samples only
are used for evaluation. In practice this is done by collecting new samples, on which both X and
Y are measured. The X-data obtained is fed into the calibrated model, and the residuals
estimated as the difference between the predicted y-value and the y-value measured for the
observation/sample. From these individual residuals the total average prediction error for the
model is estimated. The optimal number of components determined as where the prediction
error is minimal (see 4.4.2).

In applying an entirely new data set for validation, the future situation, for which the model is
intended, is tested in as realistic scenario possible, i.e., the performance of the model on future
samples is tested under the most relevant conditions.

The reason why it is so important to apply new data for the validation procedure may be
illustrated by the Theory of Sampling. According to TOS no such thing as a constant sampling
bias exists, due to the heterogeneity of the lot (possibly augmented by non-vanishing ISE). In
practice this means that a variation from sample to sample exist, which is manifested in the
total sampling error (TSE). The ensemble TSE for two data sets will never be identical, and
definitely not in cases were a material heterogeneity exists. By drawing two independent data
sets, two estimations of this TSE manifestation are obtained, thus enabling estimation of the
overall prediction error including the contribution from the sampling procedure realizing
varying ensemble TSE. The logical consequence of this argument is that since the TSE is never
identical for two drawings, even the estimation obtained by test-set validation will not be
identical to the one obtained for future samples. In order to fully cope with this variability an
infinite number of data sets should be used for test set validation, but in practice one or two is
usually considered enough (for obvious “practical reasons”).

To get a reliable prediction error estimate it is always important that the test set(s) spans the
same range as that of the model and that all other influential factors and conditions are as
identical to the future situation in which the prediction model is to be used as possible.
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4.3.2 Cross Validation

In cross validation there is no test set. In cross validation the calibration data set is simply
divided into n segments. One segment at the time is kept out during calibration and
subsequently applied for validating the model; this is repeated n times corresponding to n
segments having been temporarily excluded. For each sub-model, in which a segment is
excluded, the predicted residuals are calculated and later summarized giving an alternative
measure of the average prediction error. The number of samples in a segment can be set
between 1 and 1/2 of the total number of samples in the calibration set, I. The first option,
termed full cross validation, gives a very clear overoptimistic prediction error estimate. The
latter, termed 2 segment cross validation, gives a prediction error estimate closest to the one
obtained using a test set. However, it is critical to acknowledge even in the case of a 2 segment
cross validation that no test set has ever been included in the validation. As a consequence
there is no way of knowing how large the full ensemble TSE contribution would have been, i.e.,
how close the prediction error obtained by cross validation is to the realistic, full test set level
and thus how good the future prediction performance of the model really is. All cross validation
results are actually just a measure of the internal subset stability of the training set
modelling®"*2.

Cross validation is often applied for establishing the optimal number of components in a model
and subsequently for validation as well with the dangers outlined above always present.

A situation where cross validation can be said to be acceptable does exist. In cases where a
small data set is at hand, applying a cross validation procedure may in fact be the only solution
possible. If this is done, the number of samples per segment should be kept as high as possible.

4.3.3 Leverage Correction

A leverage (h) is the effect of an observation on the model i.e., observations having a high
leverage is situated far from the model centre. Using the leverage for model validation is
possible, but it has been termed a “quick and dirty” method as only one data set is used for
both calibration and validation, and the prediction error obtained is over optimistic. In leverage
correction the error estimates are corrected by the leverage of each observation/sample before
calculating the prediction error. This is done by dividing the residual for an observation by (1 —
h), thus giving observations far from the model a higher contribution to the overall error
estimate. This seems fair; however, these far-away observations will often be situated close to
the PC direction, thereby giving too low residual estimations and thus an overoptimistic
prediction error estimate. Therefore, leverage correction should only be applied — if at all —in

the initial validation steps like outlier removal, and not in any final validation step.3°’ 80, 104
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4.4 Model Evaluation

As a means of evaluating the prediction models obtained, different measures may be applied.
In the present work the correlation and the slope obtained from the prediction statistics are
applied. Furthermore, different measures of the average prediction error, estimated from the
residuals, are applied: the “Root Mean Square Error of Prediction” (RMSEP), % RMSEP, and
finally the “ratio of standard error of performance to standard deviation” (RPD), which is a
special favourite in spectroscopy.

4.4.1 Slope and Correlation

The correlation and slope obtained from the predicted vs. measured plot are measures of the
precision i.e., “degree of reproducibility” and accuracy i.e., “closeness to the actual result”
respectively.

The squared sample correlation coefficient (r’) is modelled by the specific relation, i.e., the
proportion of total variation in the values of the variable Y that may be accounted for by a
linear relationship with values of a variable X:
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The squared sample correlation may be applied for comparing different models, as it is
conveniently independent of the measuring units involved.

4.4.2 Root Mean Square Error of Prediction
The average prediction error termed the Root Mean Square Error of Prediction (RMSEP) for a
test set validated model is defined as:
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z (Yipredicted - yireference )2
RMSEP = ||-=

n

Where Yioredicted IS the predicted y value of the i sample
Yireference IS the measured y value of the i sample
n is the number of samples in the model

The numerator is an expression of the error obtained when fitting the y values, and will
generally decrease as components are added to the model, thereby decreasing the RMSEP.
Adding an extra component to the model also increases the error associated with estimating
the regression parameters. By plotting the RMSEP as a function of the number of PLS
components, the two errors are summarised, thus yielding a more or less defined minimum,
see Figure 4.6.
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Figure 4.6: Prediction error as a function of the number of PLS components in the model.

The error of prediction is often termed the RMSEP or RMSECV; the latter is an abbreviation of
Root Mean Square Error of Cross Validation, the suffix being an indication of the validation
method from which it originates®*®’°. In the published articles in this thesis it was decided to

use the term RMSEP, independent of the validation method applied however.

The RMSEP is dependent on the measuring units applied and has the same unit as the y-
variable. To enable model comparison the % RMSEP may be calculated.

%RMSEP = _RMSEP 100%

ymax - ymin
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As an alternative, sometimes the average y-level can be used in the denominator. The
important issue is always to be cognizant on the definition of the specific % RMSEP in use, and
of course only compare when identical definitions are documented.

4.4.3 RPD

RPD is an abbreviation of “ratio of standard error of performance to standard deviation”, which
can also be used for model evaluation and comparison, as it is a dimensionless parameter. The
RPD is defined in two different ways:

RPD=—>Y o RPD=_Y
RMSEP SEP
Where sy is the standard deviation on the reference data used for validation

SEP is the standard error of performance

SEP is the RMSEP corrected for the bias, and it is a measure of how good the model would be if
the bias problem could be solved, and not how good it actually is. Therefore, it is here chosen
to apply the first of the two equations.

The values for the RPD may be interpreted as the ratio of natural variation in the samples to the
size of the likely prediction errors. Ideally the RMSEP should be much lower than the standard
deviation, thus yielding RPD values above five*’*??, see Table 4.1.

Table 4.1: RPD statistics™>.

RPD Classification Application
0.0-2.3 Very Poor Not recommended
24-3.0 Poor Very rough screening
3.1-49 Fair Screening
5.0-6.4 Good Quality control
6.5-8.0 Very good Process control
8.1+ Excellent Any application

One should not put emphasis on the scalar RPD values alone; RPD expresses the descriptive
“aspect ratio” of width vs. length of any data point spread, within a particular prediction
validation context. Together with graphical illustration of prediction vs. reference relationships,
RPD conveys a convenient short hand message besides other standard statics employed in
spectroscopy and chemometrics.
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4.5 Preprocessing

During data gathering, different factors (light scattering effects, noise, absorptions) may
influence the samples or variables. Often this contribution gives no chemical information, and
thus merely yields models that are more complex (more PLS components are needed), if a
decent model can be obtained at all.

Many different methods for reducing or eliminating these effects have been reported. In the
present work scaling, multiplicative scatter correction, and Savitzky—Golay derivatives have
been applied.

4.5.1 Scaling
A question to ask is to scale or not to scale? Scaling is performed by correcting each value with
the standard deviation of the given variable, by doing so each scaled variable gets the same
variance as all others:

X

=X —

scaled

Where Xscaled IS the scaled x value
X is the original x value
Sx is the standard deviation

When the x-variables are measured in different units or at different levels, e.g., mg and kg, this
effect may be dominating giving a model that is an expression of this instead of the underlying
chemistry. In such situations a clear advantage of scaling X is encountered. When the X-data
consists of spectra, the choice would appear no longer to be obvious, as the measuring units
are here identical. The absorption at the different wavelengths may vary between the different
samples, thus justifying a scaling. In the present work the effect of scaling has therefore been
investigated individually for each model and applied whenever it actually contributed to
decreasing the complexity of the model.

4.5.2 MSC and Derivatives

In spectra flat baselines, as well as baselines with slopes # 0, may be encountered, see Figure
4.7.
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Figure 4.7: Raw NIR spectrum with a baseline slope# 0.

These effects are often not a result of the underlying chemistry. An example would be light
scattering caused by interaction of the near infrared light with the particle size. Often such a
light scattering effect has no correlation with the response variable in question, and thus
removing it prior to calibration yields simpler multivariate models. A sample vector may be split
into a sum of the different effects:

r=rg, +o+px

Where Isig 1S the signal of interest
o. is the baseline offset
[ is the linear slope of the baseline

By applying Multiplicative Scatter Correction (MSC) both effects may be removed individually or
together according to:

Common offsett Lo ik = Ty - @
. : I,
Common amplification oy ik = —
- B

r. — .

Full MSC Toow ik = lkﬂ i

The offset and slope is termed the common offset and common amplification respectively, and
are obtained by fitting a regression line in a plot of the individual spectral values against the
average spectral values.

MSC was originally suggested as a technique to solve the light-scattering effect seen in
reflectance spectroscopy42 but it has also found more general use and is currently rather
termed multiplicative signal correction.
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Offset and/or slope may also be removed by applying 1* or 2" derivatives (Savitzky-Golay). By
applying these each point in the spectrum is replaced by the 1* or 2" derivative of a polynomial
approximation in that point, yielding:

ri'k :r;ig_ik +B and ri'l; = r;;g_ik
From this it is evident that applying a 1*" derivative will only remove the offset, whereas the 2"
derivative removes both the offset and slope.

Besides choosing the derivative order, the polynomial order and window size also have to be
specified. In the present work generally a 2" order polynomial and a window size of 3 — 7 have
been applied; where appropriate the results of derivation have always been investigated by
visual inspection.

The result of applying MSC and 1** and 2" order derivative (Savitzky-Golay) on NIR spectra from
Figure 4.7 is seen in Figure 4.8. As seen the derivatives changes the overall spectrum
appearance dramatically. The first derivative may be interpreted as the slope of the spectrum
at each wavelength, whereas no easy interpretation of the second derivative exists. The effects
of alternative pre-processing’s can in some situations be gauged from general experiences,
while in (many) others it is entirely related to the specifics of each data set and its alternative
modelling. Thus, it is often necessary to carry out a more-or-less extensive experimental pre-
processing pilot study in order to find the optimal choices.

With the “mechanics” of multivariate calibration mastered, the remaining prime scientific issue
often relates directly to this pre-processing theme. There are nearly always many alternatives
available — the number usually greatly augmented by pre-processing being sensitive to the
presence/absence of outliers. Often alternative pre-processing results are not very different
from one-another®*%3¢,

In the present work the different preprocessing techniques have been investigated and the one
giving the maximum reduction in model complexity and RMSEP chosen.
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5 Anaerobic Digestion

Anaerobic digestion is a complex microbiological process where organic carbon is converted to
mainly carbon dioxide and methane under anaerobic conditions in a complex multi-step
process. Besides carbon dioxide and methane small traces of hydrogen sulphide and water are
also always present in the gas produced. Anaerobic digestion is the formative basis for all

biogas production.

The steps involved in the digestion are: hydrolysis, acidogenesis (fermentation), acetogenesis,

and methanogenesis. See Figure 5.1.

Feedstock
organic material

Proteins Carbohydrates Lipids
amino acids simple sugars fatty acids
NH, H);S
H,, CO VFA, alcohol
acetic acid o)
[ l |
Co, CH,

Figure 5.1: Anaerobic digestion of organic material to biomass. Step 1: hydrolysis, Step 2: acidogenesis, Step 3:
acetogenesis, and Step 4: methanogenesis (adapted from reference 2008). VFA: volatile fatty acids.

The different steps utilize different bacterial cultures; consortia, between which a balance
should be obtained to ensure a satisfactory environment in the biogas reactor and an
acceptable biogas yield. Many process instabilities are caused by a failure to maintain the
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balance between the consortia carrying out the acetogenesis and the methanogenesis®, as
these two consortia differs in their nutritional needs, growth kinetics and sensitivity to
environmental conditions.

In the hydrolysis step, high-molecular compounds, e.g., proteins, fat, and polysaccharides are
digested to lower molecular compounds; amino acids, fatty acids, and mono-, di-, tri-, and
oligosaccharides. The degradation is carried out extracellularly typically by excretion of
enzymes; lipases, cellulases, and amylases from hydrolytic bacteria like Bacteroides,
Clostridium, Acetivibrio, and Fibrobacter. The hydrolysis involves several steps; enzyme
production, diffusion, adsorption, reaction, and enzyme deactivation. This step has been
identified as the rate-limiting step in processes applying high particulate substrates. For small
chain components however, the acidogenesis is carried out directly?®”>®,

In acidogenesis the sugar monomers from the hydrolytic step or already present in the
substrate are converted to puryvate (CsH403), ATP, and NADH (electron carrier molecule) via
the glycolysis or pentose phosphate pathway. The pyruvate and amino acids are subsequently
converted to variety of short chain fatty acids (acetic, propionic, and butyric acids), alcohols,
hydrogen, and carbon dioxide through various fermentation pathways, see Figure 5.2. The
pathway chosen is different for the different microorganisms and some microorganisms even
have branched pathways. In the latter case the pathway chosen is the one most
thermodynamically favourable under the given conditions; substrate concentration, pH and
dissolved hydrogen in the bioreactor. Acidogenesis is performed by many of the micro
organisms also responsible for the hydrolysis; Bacteroides and Clostridium. Besides organisms

like Lactobacillus and Anaerolineae carry out acidogenesis®®®°.

glucose —— biomass

lactat <—— pyruvat — ethanol

AN

propionat acetat butyrat

Figure 5.2: Fermentation products from glucose during anaerobic digestion (adapted from refrence 90)

The CO,, H, and other one carbon compounds obtained via acidogenesis are turned into
methane directly by methanogenic bacteria. Longer chain fatty acids (C>2), alcohols (C>1) and
branched chain and aromatic fatty acids however are oxidized to acetate and hydrogen in
acetogenesis. See Table 5.1 for volatile fatty acid oxidation reactions. Acetogenesis is carried
out by obligate proton reducing bacteria such as homoacetogenes living in syntrophy with
hydrogen utilising methanogenic bacteria. The syntrophic relation is necessary as all oxidations
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are thermodynamically unfavorable at standard conditions. Having a low hydrogen pressure
(<10 atm), shifts the equilibrium of the reaction towards product formation making the
reaction feasible. Different organisms are active during acetogenesis, e.g., different species
from the genus Syntrophomonas and Pelatomaculum®.

Table 5.1: Volatile fatty acid degradations.(adapted from reference 96)

Substrate Reactions
Propanoic acid CH3CH,COOH + 2H,0 —» CH3CO0H + 3H, + CO,
Butanoic acid CH3CH,CH,COOH + 2H,0 —» 2CH3;COOH + 2H,
Valeric acid CH3;CH,CH,CH,COOH + 2H,0 - 2CH3COOH + 2H,

The pathway utilised for oxidation is different for the different fatty acids. In example propinate
is mainly oxidised via the methyl-malonyl-CoA pathway, butyrate via the B-oxidation pathway,
and iso-butyrate is isomerised to n-butyrate and oxidized in the B-oxidation pathway>?°. Of the
volatile fatty acids oxidation of propionate has the lowest rate®.

In the final step of the anaerobic digestion (methanogenesis) acetat, formate and hydrogen is
converted to methane and carbon dioxide by methanogenic archaea, which are specialised in
degrading these substrates. Different methanogenes exist, some of which are able to utilise

several substrates whereas others are able to utilise a single substrate only'®

. Two dominating
routes for methane production exist. Through the first route carbon dioxide is reduced to
methane by applying hydrogen as an electron donor. This reaction is carried out by lithotrophic
hydrogen  oxidizing  methanogens like  Methanobrevibacter, = Methanobacterium,
Methanogenium, and Methanospirillium. The second route is a fermentation of acetic acid to
methane and carbon dioxide. This fermentation is carried out by organotrophic acetoclastic
methanogens like Methanosaeta and Methanosarcina. The two species are favoured under low

and high acetate concentrations respectively.
4H, + CO, - CH, + 2H,0
CH;CO0OH - CH, + CO,

Approximately two-thirds of the methane produced originates from the fermentation of acetic
acid®®*°,

5.1 Feedstock

The anaerobic digestion is carried out applying a wide variety of different feedstocks.
Theoretically the process can be run applying only farmyard manure. The dry matter content in
cattle and pig manure, however, is only around 2-6 %, which is mainly plant fibres that are not
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easy degradable, and as a consequence a low biogas yield is obtained. In practice the anaerobic
digestions are, therefore, run as co-digestion of manure and other organic materials like

69,126,127

industrial waste, energy crops, food waste, etc. . In Denmark the legislative demand is

that manure should constitute 75 % of the feedstock applied.

The overall microbial demand for the feedstock is different macro and micro nutrients. The
macro nutrients constitute carbon, hydrogen, nitrogen, oxygen, sulphur, phosphorus, calcium,
potassium, magnesium, and iron. The concentration of these present in the cell should be
around 10 M. The micronutrients are nickel, cobalt, and copper that are required in smaller
amounts (< 10 M). It is important for the bioreactor to be in balance with respect to all
nutrients, as all of them can become inhibitory if present in too high concentrations. In practice
it is often the ratio between carbon and nitrogen (C/N) that is considered. A too high C/N ratio
would increase the danger of nitrogen depletion, whereas a too low ratio would ultimately lead
to ammonium inhibition. A C/N ratio around 25 is considered optimal“’71
favourable C/N ratio is obtained by mixing feedstock with different C/N ratios. Examples of

. In practice the

feedstocks having a low C/N ratio are pig and poultry manure, whereas energy crops like silage
and straw have a high C/N ratio.

5.2 Monitoring

A stable biogas production is based on maintaining the fragile balance between the different
consortia making up the anaerobic digestion. To enable this process, changes and instabilities
should be observed and reported as quickly as possible. In general a fermentation process may
be monitored by measuring substrate conversion (COD, VS removal), intermediates
accumulation (VFA, pH, alkalinity) product formation (gas composition, production rate), and
microbial communities (activities, populations) applying a variety of different methods. The
anaerobic digestion being a complex process has made it difficult to find simple and reliable
control parameters.

Some of the most commonly used process parameters for the anaerobic digestion are gas
production, gas composition, pH, and volatile solids reduction. In general these are adequate
for detecting gradual changes but only the gas production is applicable for detecting sudden

changes'™*

. Sudden changes caused by for example a different feedstock, pH or temperature
may induce critical changes, which should be spotted as quickly as possible to prevent process
instabilities or failure. In general intermediates like volatile fatty acids are being acknowledged
as important indicators of process instabilities, and has therefore been suggested as a
monitoring parameterl'm’lz.

For monitoring of volatile fatty acids (VFA) on-line continuous determination by GC**” and IR '%°
have been suggested. Another method; near infrared spectroscopy has been found applicable

to monitor complex mixtures - one of which is fermentation broth from anaerobic digestion
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processes'®’ and monitoring of the anaerobic digestion of a mixture of cellulose, albumin, and
minerals’®. Furthermore, earlier off-line NIR experiments have shown good results for
monitoring of several parameters amongst others VFA*.

In the current thesis it was therefore decided to investigate the feasibility of applying NIR for at-
line and on-line determination of the VFA concentration when applying different substrates for
the co-digestion.

Additionally, it was decided to test the feasibility of applying acoustic chemometrics (a.c.) for
monitoring the total solids in the complex matrix applied for biogas production.

5.3 Experiment

For testing the feasibility of NIR and a.c. two anaerobic digestion trials were carried out
applying reactors with an active volume of 5 L. Trial 1 was carried out as a co-digestion of
glycerol spiked manure and food waste, and trial 2 as a co-digestion of maize silage and spiked
manure and food waste. Before carrying out the experiments the sampling procedure and
handling was outlined see Figure 5.3.

Incremental extraction from
bioreactor PSS
(13 x 10 mL)
Sample bottle
mass reduction mass reduction SSS
(3x5mlL) (3x2mlL)
= ]
W
=) -c"2; Pretreatment
S S sample
=) <
I D>

Figure 5.3: Sampling procedure and handling during anaerobic digestion trials.

During the fermentation monitoring trial a 100 mL/130 mL sample (primary sample) was
collected from the bioreactor for reference analysis and simultaneously at/on-line
measurements were carried out applying NIR and a.c. This resulted in two potential sampling
error contributions; sample extraction and spectral recording. In the system, the heterogeneity
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was being caused by a density difference in the substrate, thus demanding extraction of a total
top to bottom column, for the sample to be representative. This was not easily realisable, so it
was chosen to transform the sampling situation to 1-dimension, SUO no. 7.

The 1-dimensional sampling situation was obtained for both extraction and spectral recordings
by implementation of the TENIRS system. In earlier studies the TENIRS system had been applied
successfully, for off-line NIR analysis of samples extracted from a bioreactor®. In short the
system works by pumping bioslurry from a 1L bottle, mounted onto the system into a
horizontal loop, through a macerator, through a flow-through measuring cell for spectral
recordings and back into the bottle. A more through description of the system is given in
reference 2.

For the current purpose the TENIRS system was rebuilt and connected directly to the bioreactor
(at an intermediate height), pumping the bioslurry from the reactor into the loop, thereby
enabling on-line spectral recordings. Samples were obtained by a sampling aggregate
implemented right after the flow through cell, thereby ensuring that samples measured by the
TENIRS and the volume withdrawn for reference analysis were pair-wise comparable. As a
consequence multivariate calibration with an absolute minimum of sample-spectrum mismatch
was obtained, although not eliminating IDE mismatch completely. The system had a length 230
cm in total and a diameter of 2 cm. The system is seen in Figure 5.4.

NN

N
\JhJ

Figure 5.4: Experimental set-up during anaerobic digestion trials. 1A and 1B represents the two different operation
modes. 1A represents the on-line fermentation, the grey line representing the connection of the loop to the
fermentor, and 1B is applied in the at-line trial; (2) Impeller pump with motor; (3) Frequency inverter; (4) Cell for
NIR measurement; (5) Zeiss Corona NIR instrument; (6) Sampling device; (7) constriction for a.c. attachment; (8)
Signal amplifying module for a.c.
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To avoid flow segregation, and thus obtaining samples in total compliance with TOS the sample
extraction and spectral recordings should have been implemented in an upwardly flowing

strea m32’49.

In these first studies in the system this was not obtainable, and a horizontally
placed loop had to be accepted. The consequence was sample extraction from the bottom of a
horizontally flowing pipe, introducing a certain risk of an overrepresentation of the heavy
particle in the sample i.e., an IEE. As an attempt to compensate composite sampling, applying

the 10 mL bottle repeatedly as several increments, was effectuated.

Recently this particular sampling device has been further evaluated by Boland (2008)*3, who
showed that highly significant sampling bias will develop if circulation speed and solid loads are
unbalanced. The characterisation was carried out applying different frequencies (20, 30 Hz) and
solid loadings (2.5, 5.0, and 7.5) and overall conclusion was that the reproducibility of the
sampling device was very good, close to zero, but the accuracy was very much frequency and
solid load dependent, thus leading to non representativeness. With respect to
representativeness Boland concludes:

“Once again the TENIRS valve is precisely wrong and the composite samples only lead to
slightly better results than the grab samples.”

In the current anaerobic digestion trials, the pump frequency applied was 40 Hz, meaning that
the accuracy was probably better than the ones reported by Boland 2008". This of course does
not change the fact that the samples were not representative and that the loop should be
changed before carrying out any more experiments.

The primary samples were thoroughly mixed before being subdivided into secondary samples
having volumes suitable for reference analysis in the laboratory. Subsampling was achieved by
vigorous shaking followed by fast pouring the amount needed for reference analysis, into a
beaker. This technique was employed based on slurry sampling development work by Holm-
Nielsen et al. 2006*, who demonstrated that this particular procedure produced minimum
contributions to the overall sampling error.

From these samples the VFA, total and volatile solids (trial 2 only) and glycerol (trial 1 only)
concentrations were determined and used as y parameters in a PLSR model. The models
obtained for the VFA in the two experiments are seen in Table 5.2, whereas the NIR models for
glycerol and the NIR and a.c. models for total and volatile solids may be seen in paper 1 and 2.
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Table 5.2: VFA models obtained in trial 1(upper) and 2(lower).

Components Slope r? RMSEP RPD
Acetic acid 3 1.1 0.95 1645 4.3
Propionic 1 0.37 0.54 1364 2.2
i-butanoic 6 0.97 0.97 26.46 6.2
Butanoic 5 0.51 0.55 271.9 1.5
i-valeric 6 0.88 0.94 55.82 3.9
Valeric 3 0.66 0.86 2431 24
Total VFA 3 1.0 0.95 2333 3.7
Acetic acid 3 0.89 0.89 913 3.1
Propionic 3 0.89 0.91 206 34
i-butanoic 3 0.83 0.89 43.8 2.8
Butanoic 3 0.87 0.92 400 3.6
i-valeric 3 0.86 0.89 76.4 3.1
Valeric 3 0.92 0.92 43.2 3.5
Total VFA 3 0.87 0.90 1594 3.3

Contemplating the results from the two trials it is seen that trial 2 yield models with
comparable prediction statistics for the different compounds. From this it was concluded that
the NIR could be applied for the monitoring of all contributors to the total VFA.

The trend seen from trial 1 is not exactly the same. The models obtained for acetic, i-butanoic,
i-valeric, and total volatile fatty acid also had good prediction statistics and RPD values. In
contrast the models obtained for propanoic, butanoic, and valeric acid had inferior prediction
statistics. From the knowledge that these could in fact be modelled in trial 2 and that their
corresponding iso-compound could be modelled this seemed a bit strange. Being able to model
the compounds in one trial but not the other could be explained by a matrix effect, as the two
trials were carried out applying different substrates. However, this does not explain the success
obtained for the iso-compound. Therefore, the three models were contemplated. For valeric
acid the problem was not the precision of the model but the accuracy (slope), this was probably
caused by the fact that the validation set didn’t span the range of the calibration set — for
undisclosed reasons.

For propanoic and butanoic acid the problems exist within the calibration-validation relation
Prior to modelling it was decided that fermentation 1 and 3 should be applied as calibration
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sets and fermentation 2 as a test-set for the models, which turned out not to be optimal for
these two components. For butanoic acid the validation range was situated in the lower 20% of
the calibration range, which might have caused the results. For propanoic acid a wider
concentration span in the validation set than in the calibration set was obtained, and as a
consequence the model was validated outside the calibration range. In an attempt to correct
this, samples outside the calibration range were removed, which however did not improve the
model performance, indicating that fermentation 2 was significantly different from
fermentation 1 and 3.

5.4 Conclusion

The overall conclusion from the two trials was that the a.c. model for total and volatile solids
had fair prediction abilities, but a low RPD. Therefore, further experiments should be carried
out, preferably at industrial scale to test the real feasibility of a.c. for TS and VS monitoring. It is
likely that a.c. sensor deployment also may have contributed to the relatively discouraging
results (Esbensen, pers. com.).

The NIR models obtained from the two trials had good prediction abilities for total and volatile
solids and glycerol. For VFA fair to good prediction abilities were established.

The VFA models obtained have been validated applying VFA concentrations that will hopefully
never be encountered in a sound biogas process context. This is not necessarily a serious
problem in practice, but it does pose a risk of obtaining more-or-less relevant calibration
models, where samples with high concentrations have too high influence on the model. The
specific VFA operating level in biogas plants is different for different locations, as it is very much
substrate dependent or plant specific, and as a consequence some reactors have low VFA level
<1 g/L, whereas others are above 5 g/L. The reason that some reactors are able to run at high
levels whereas others are not, is that the bacteria cultures have been accustomed to high VFA
levels over a period of time. They have however not been accustomed to such a degree, that
the methanogenic step can degrade the fatty acids formed in the acidogenic and acetogenic
step, thus indicating that the reactors are running under suboptimal conditions. For the models
to be implementable in an industrial biogas monitoring application, they have to be validated in
the lower concentration range where the majority of plants are operating; 0.1 -5 g/L%’.
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6 2"4 Generation Bioethanol

For production of 2" generation bioethanol a wide variety of lignocellulosic materials such as

. 40,94,12
straws, corn stover, bagasse and forest residues have been reported 094,128

In Denmark 25.6 % of the total agricultural area is used for wheat production, resulting in
substantial wheat straw production, making it the natural focus of attention in Danish 2"
generation bioethanol research.

6.1 Wheat Straw

Lignocellulosic materials, i.e., wheat straw, consist of three main components; cellulose,
hemicelluloses, and lignin, with the average composition being 30-40 % cellulose, 20-50%
hemicelluloses, and 10-20% lignin>°>*1411>,

Cellulose is a linear molecule consisting of up to 15,000 D-glucose sub-units linked by B-1,4
glycosid bonds. Every second glucose unit is rotated 180° relative to the neighbour molecule.

The repeating unit is cellobiose. See Figure 6.1.

H OH CH,OH H OH
HO H H o —o0 H
oH H OH
H OH H H
H o', H H o"L_on
CH,OH H OH CH,OH

Figure 6.1: Cellulose chain consisting of D-glucose units.

The long cellulose chains link to each other by hydrogen bonds and Van der Waals forces
forming micro fibrils containing highly ordered crystalline regions combined with less ordered
amorphous regions. As a consequence cellulose is a crystalline, strong molecule, which is not
easily hydrolysable.

Hemicelluloses are heterogeneous polysaccharides consisting of different pentoses, hexoses
and sugar acids, the specific composition being raw material dependent. The main pentoses in
wheat straw are xylose and arabinose. The carbohydrates are linked together mainly by B-1,4
glycosid bonds, but B-1,3 glycosid bonds are seen as well. To these chains, branches of short
chains (di or trisaccharides, acetyl groups) are linked making it non-crystalline and as a
consequence more easily hydrolysable. In plant cells the hemicelluloses form a protective coat
around the cellulose fibrils and acts as the connecting link between cellulose and lignin.
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Lignin’s are present in the plant cell wall. It is an amorphous complex molecule consisting of
aromatic polymers of phenylpropane molecules linked together in a three dimensional
structure. In wheat straw the primary building blocks are aromatic alcohols; p-coumaryl alcohol,
coniferyl alcohol, sinapyl alcohol™’#%", See Figure 6.2. The proportion between these in wheat
straw is 5, 49, and 46% respectivelyls.

(|3H20H <|3H20H
B ﬁH B ﬁH
a CH a CH
1 1
6 2 6 2
5 3 5
3
P ) OCHs,
OH OH
A B C

Figure 6.2: Primary building blocks in lignin. A) p-coumaryl alcohol, B) coniferyl alcohol, C) sinapy! alcohol (adapted
from reference 15).

During lignifications these building blocks are linked together in a three dimensional structure
through a variety of different linkages, a-0-4, B-0-4, B-5, B-1, 5-5, 4-0O-5, and B-B. Furthermore
the lignin structure is linked to the hemicelluloses structure via covalent bonds from the a-
carbon and C-4 in the benzene ring.

Lignins presence in the cell wall provides rigidity, internal transport of water, and nutrients and

protection against microbial degradation. It is extremely resistant to both chemical and

. . 15,78,101
enzymatic hydrolysis™ 8,101
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6.2 Ethanol Production

A general outline of the bioethanol production is given in Figure 6.3.

Raw materials

i

l large polymer structure

Pretreatment

l small polymers

Hydrolysis

Fermentation |<— yeast

Ethanol

Distillation —
~90-95 %

Solid separation

Figure 6.3: Outline of 2nd generation bioethanol production.(adapted from reference 75)

6.2.1 Pretreatment

The objective of having a pretreatment process is to speed up the following hydrolysis by
opening up the biomass structure making the material more accessible to hydrolysis. A number
of different pretreatments processes have been developed in laboratories; physical,
physiochemical, and chemical. Examples of the different techniques are seen in Table 6.1.
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Table 6.1:Different pretreatment techniques applied for lignocellulosic material.

Pretreatment methods

Physical: mechanical comminution, pyrolysis and irradiation

Physiochemical: steam explosion, ammonia fiber explosion (AFEX), SO, explosion and CO,
explosion

Chemical: Dilute acid hydrolysis, alkaline hydrolysis, organosolvent process and

oxidative delignification

Biological: Fungal pretreatment

More information regarding the different techniques is given in reference 28, 94, 110, 114, &
125. In a given process one or several of the pretreatments methods may be applied. The
choice of pre-treatment method is raw material dependent.

6.2.2 Hydrolysis

The hydrolysis step may be carried out either as a chemical hydrolysis or an enzymatic
hydrolysis. During chemical hydrolysis the lignocellulosic material is subjected to acid at a
specific temperature and for a period of time. As a result cellulose and hemicelluloses are
degraded into sugar monomers. The enzymatic hydrolysis is carried out applying highly specific
cellulose and hemicelluloses enzymes, the group containing at least 15 protein families.
Different enzymes; Endo-endo, exo-exo, and exo-endo are applied simultaneously, obtaining a
synergetic effect that reduces the time needed for the hydrolysis. As a result of the enzyme
hydrolysis the hemicelluloses and cellulose is degraded to sugar monomers (glucose, fructose,
arabinose ect.)?>2113,

6.2.3 Fermentation

From the hydrolysis step both hexoses and pentoses are obtained, which should both be
converted to bioethanol in a fermentation step. For the hexoses the conversion may be carried
out under anerobic conditions applying a yeast; Saccharomyces cerevisiae.

CoHy,04 » 2C,HsOH + CO,

This process has a theoretical yield of 0.51 g ethanol/ g sugar, which in practice never is
obtained, as energy is used for biomass and by product (glycerol, carboxylic acids) formation as
well. The pentoses are not converted by S. cerevisiae, so to improve the yield they should either
be transformed to a component that may be metabolized by yeast or another organism should
be used for fermentation. The major pentose constituent xylose may be isomerised into
xylulose, which is converted by S. cerevisiae with the same theoretical yield as hexoses.

3CsH,,05 - 5C,HsOH + 5C0,
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The metabolism of xylulose is a slow process making it less attractive for industrial application.
As a consequence research is being carried out to identify or develop an organism able to
metabolise other sugars in addition to glucose. This should be done with a high rate and
yield®®. In some processes the enzymatic hydrolysis and fermentation step has been
integrated into a process termed simultaneous saccharification and fermentation (SSF).

The broth from the fermentation step contains ethanol (2-12 %), biomass, fusel oil, volatile
components, and stillage. Typically ethanol is removed by distillation. Before doing so the
biomass is allowed to settle or removed by centrifugation.

At each process step a number of technologies have been investigated, and the choice of
technology for a given production is, amongst others, raw material dependent. For production
from wheat straw a production termed the Integrated Biomass Utilization System (IBUS) is close
to commercial reality. IBUS consists of the following process steps; hydrothermal pretreatment,
prehydrolysis (enzymatic liquefaction), SSF, and distillation. By applying this process 1 ton of
wheat straw (dm 86%) 143 kg bioethanol, 353 kg solid biofuel, and 420 kg animal feed is
obtained®.

6.3 Monitoring

The focus of attention in the development of the 2" generation ethanol from wheat straw has
been primarily on the conditions for the different steps, thus obtaining knowledge about the

k™58 These optimal settings are

optimal parameter settings for this specific feedstoc
estimated by applying material with a certain composition, and the process is subsequently
being run without taking into account the different feedstock compositions or the effect of the
process prior to the one being carried out. The feedstock composition varies as a function of
harvest time, year, and storage condition and is by no means stationary. As a consequence, the
parameters are at best estimated from an average composition of the feedstock and

subsequently applied in the production.

The consequence of applying pre-fixed parameter settings may be a suboptimal utilisation of
the feedstock and of the utilisation of each process step, e.g., the addition of a too low or high
enzyme dose to the enzymatic hydrolysis, both making the process less economical feasible. In
the prior case due to a too low hydrolysis of the feedstock leading to a reduced utilisation of
the feedstock, and the latter due to the extra enzyme cost. As bioethanol is a low value
product, it is important not to apply such suboptimal conditions, as it may contribute to making
the process non-feasible.

As a solution to this process analytical technologies may be applied for process monitoring
throughout the process. In the bioethanol production knowledge of the sugar concentration
through the different process steps and also the presence of inhibitors before carrying out the
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fermentation would be of great value. In this thesis it was chosen to investigate the feasibility
of applying NIR for such process monitoring starting at the beginning of the production line
with the quantification of sugar components in the feedstock. NIR was chosen as it had
successfully been applied for quantification of sugar concentration in others lignocellulosic
feedstocks, see Table 6.2.

Table 6.2: Different application fields of NIR on various biomasses reported in the literature. DTG: Derivative
thermogravimetric analysis, ADF: Acid detergent fibre, NDF natural detergent fibre.

Raw material Application Components

Rice straw’> Quantitative determination cellulose, hemicellulose, lignin,
moisture, total ash, and acid insoluble
ash

Ground Analysis  for  fuel ethanol moisture, starch, B-glucan, protein, oil

barley105 production and ash

Foliar®® Alternative to wet lab analysis mineral nutrients, carbon, fibre
constituents (ADF, NDF, cellulose and
lignin)

Corn stover?’ Alternative to wet lab analysis glucan, xylan, arabinan, lignin, protein,
acetyl

Flax Fibres® Assessing physical and chemical AlRflow, DTG, fibre strength, NDF, ADF

characteristics and hemicelluloses
Forages and Quantitative determination fiores and protein, nitrobenzene
byproducts®’ oxidation products of lignin, six
measures for lignin content
Silage® Analysis of different components dry matter, crude protein, different
acids, pH

Ultimately what is of most interest to the bioethanol industry would be instantaneous
compositional characterisation directly on the feedstock (straw bales and similar) for example
by applying a handheld NIR spectrophotometer or by a suitable “at-line” facility in the field.
Measuring directly at the bale arises a question regarding representativeness of the spectra
being measured and the material collected for reference analysis. Unless the situation is
handled in compliance with TOS a risk of obtaining non-corresponding samples is high. Once
incorporated such a mismatch would follow the samples through the subsequent sample
handling stages. Furthermore, in each stage a contribution from the stage itself, will be
incorporated: this only increases the overall total sampling error (TSE). The TSE will
subsequently be built into the analysis result and, hence, finally the modelling stage. As a
consequence this could ultimately lead to false conclusions regarding the feasibility of the NIR
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analysis itself. The question of obtaining such a primary sample is of course by no means
irrelevant; ultimately it is a critical success factor for the future implementation of NIR in the
process and should be dealt with.

In the current context, however, it was decided to focus exclusively on the feasibility of NIR for
quantification of cellulose (glucan), hemicelluloses (xylan and arabinan) and lignin in wheat
straw starting the sampling delineation from the individual primary bags collected. It is not
meaningful to investigate the full field sampling variability before it is known with certainty that
the subsequent analytical procedure in fact can deliver the results it is supposed to.
Consequently a matching experimental design was delineated.

6.4 Experimental Design

For the NIR model on wheat straw a total of 95 samples were collected. Sixty-five of these were
collected from fields and barns and had an overall straw size from a few cm to approximately
25 to 30 cm. These samples were called field samples. The remaining 30 samples were obtained
from Kgge Bio pellets factory (Denmark). They were sampled from the bio pellets production
line over a 30 day period, and had a cut straw size of 0.5 to 2 cm. These were called industrial
samples. The complex sampling procedure and handling is outlined in Figure 6.4.
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Figure 6.4: Sampling procedure and handling during wheat straw trial. PPS: Primary sampling step, SSS: Secondary
sampling step, TSS: Tertiary sampling step, QSS: quaternary sampling step

The second sampling step applied the long pile method. Due to the physical properties of the
material (static electricity) special care had to be taken to avoid loss of material (Incorrect
Preparation Error, IPE). Therefore, a right-angle gutter with a length of 1 m was fabricated,
Figure 6.5, and applied for splitting the sample in two approximately even sizes; an A and a B
sample respectively. For further analysis sample A or B was chosen at random.
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Figure 6.5: Right-angle gutter fabricated for mass reduction of primary wheat straw samples. B illustrates a specific
long-pile cross-cut being taken, emphasizing attention to eliminate IDE.

The resulting sub-sample was now further size reduced to a particle size of 1 mm, see Figure
6.6.

Figure 6.6: Wheat straw size after size reduction in first and second mass reduction (and comminution) steps.

In the tertiary sampling step the material for NIR and strong acid hydrolysis was further sub-
sampled by applying the long pile method once again extracting approximately 2 x 5 g wheat
straw for NIR analysis and 2 g for reference analysis.

In the quaternary sampling step the material was packed in plastic bags and vials. The vials
were scanned with NIR spectroscopy and the spectra applied as X in the subsequent PLSR.
Furthermore 4 x 0.16 g of material was extracted from the plastic bags directly for reference
analysis by composite sampling. The 0.16 g was subjected to strong acid hydrolysis and the
carbohydrate concentration estimated by HPLC and Klason lignin as the dryweight after strong
acid hydrolysis subtracted the weight of the ash. The obtained results were used as y
parameters in a PLSR. Detailed information regarding the sampling procedure is given in paper
3.
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Different pre-processing techniques were investigated for the spectra, and a 2" order
derivative with five smoothing points was found optimal for the carbohydrate, and a full MSC
for lignin. The best models obtained are summarised in Table 6.3. The details regarding the pre-
processing’s are given in paper 3 and the discussion of the models in paper 3 and 4.

Table 6.3: PLS-1 models for sugar components and lignin. “Components”: Number of PLS components applied in the
model, numbers in brackets are the explained calibration and the residual validation variance, “Outliers”: Number
of outliers excluded from the set during calibration, numbers in brackets are the corresponding percentage,
“RMSEP”: Root Mean Square Error of Prediction

Components Outliers Slope r? RMSEP % RMSEP
Glucan 5 (80% X, 83% Y) 5 (11%) 0.88 0.83 0.60 11
Xylan 5(92% X, 83% YY) 1(2%) 0.90 0.82 0.43 11
Arabinan 4 (97% X, 77%Y) 6 (14%) 0.76 0.77 0.12 13
Lignin 7(100% X, 72% Y) 8 (18%) 0.84 0.72 0.38 12

As seen the models have a relatively constant, intermediate % RMSEP. This may be due a
significant material heterogeneity, not handled properly during the sample stages. To
investigate this, a heterogeneity estimation of the material should be carried out, but for a
material like wheat straw this is not straight forward. Furthermore, it is only possible
theoretically to reduce the sampling error to a contribution from the heterogeneity alone, thus
from a practical point of view making an empirical estimation of the TSE more interesting.

6.4.1 Estimation of Laboratory TSE

Estimation of TSE for the laboratory procedure was carried out by a replication experiment. This
was carried by independently extracting and handling ten samples from a single primary field
sample according to the procedure delineated in Figure 6.4. From these replicates TSE was
estimated for each component, see Table 6.4. As seen the TSE is generally small and much
below the 16 % set by Pitard 2009% as the maximum allowable error, meaning that the
sampling procedure applied was in full control. Incorporation of an error in this range into the
multivariate model is acceptable. For arabinan the error was a bit higher, than for glucan and
xylan, which may only be explained by a larger contribution from the analytical procedure;
expectably the HPLC analysis. As a consequence the models obtained for arabinan would have
worse prediction abilities than for glucan and arabinan, which was also found to be the case.
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Table 6.4: Mean [g-(100g DM)Y], standard deviation [g-(100g DM)'1] and coefficient of variation [%] for sample
replicate experiment.

Glucan Xylan Arabinan Lignin
Mean 39.0 23.0 3.4 20
Standard deviation 0.76 0.41 0.16 0.26
Coefficient of variation 1.9 1.8 4.6 1.3

6.5 Conclusion

From the results delineated the feasibility of applying NIR spectroscopy for quantification of the
selected sugars in wheat straw is substantiated. The models obtained for all carbohydrates
have relative high % RMSEP, which means that they are not yet directly implementable in a
professional monitoring context. This is not surprising as a minimum number of samples were
used in the pilot study. In order to improve model performances, more samples should be
collected, appropriately mass reduced and analyzed. The model obtained from lignin had
distinctly less good accuracy and precision. Therefore, further samples need to be incorporated
into the data set before any final conclusion can be made on the feasibility of applying NIR
spectroscopy for lignin quantification in wheat straw. On the whole the feasibility of NIR
characterisation in the context investigated appears sufficiently substantiated.

From the estimation of the total sampling error, it is evident that the procedure for handling
this type of sample in the laboratory was in acceptable control.

Upon this basis, the next meaningful task remaining is incorporating the primary field sampling
into the replication validation procedure applied above. This may very well relate to quite
different orders of sampling errors.

- 69 -



-70-



7 Aerobic Bioconversion

A known important aroma constituent in Roquefort cheeses is 2-heptanone and it is, therefore,
added to products like salad dressings, soups and crackers to simulate blue cheese flavour.

Currently, industrial production of 2-heptanone is carried out as a complex multiphase
fermentation involving an agueous phase, a hydrophobic phase, and a solid phase to which an
enzyme and a filamentous fungi is added. During fermentation 2-heptanone is produced from
B-oxidation of the octanoic acid by Penicillium roqueforti’. Octanoic acid is released from the
organic phase by the added enzyme (lipase). See Figure 7.1.

Hydrophobic Hydrophilic

P.roqueforti
phase phase
ﬁ-.\
triglycerides —— fatty acids —1 methyl ketones
interphase cell wall
(lipase)

Figure 7.1: Schematic representation of the system applied for methyl ketone production.

Only a small part of these phases are used for product formation, and thus a substantial
amount of waste is generated. Attempts have been made to optimise the production with
respect to classical parameters such as stirring rate, pH, temperature, and enzyme load. Only
minor improvements have been obtained however. An alternative solution would be a total
redefinition of the process in terms of substrate compositions, running conditions etc.

24,61,77

7

In the literature different methods have been reported for production of 2-heptanone
one being a fed-batch technique, where octanoic acid is added in the feed?. This technique
allows for 2-heptanone production from a well defined aqueous system, where only the
amount of precursor needed (octanoic acid) is added.

To enable fed-batch fermentation, a process parameter suitable for monitoring the process is
needed; in the current case octanoic acid in the broth could be such parameter. For monitoring
this parameter an at- or on-line method is needed.
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7.1 Monitoring

A production of 2-heptanone from a defined substrate should be run with the concentration
level of octanoic acid between 5 to 10 mM at all times to avoid inhibition of the organism, see
paper 5 for details. To enable this, process analytical technologies may be applied. The method
needed is one that may be applied on- or at-line and is sensitive to the octanoic acid
concentration in the water phase within 2.5 to 20 mM.

Different methods have been suggested in the literature, for example a pH state, which
counteracts the decrease in H' concentration, as octanoic acid is degraded, by adding the
octanoic acid as the feed, thereby enabling control of the fed-batch?*. However, in a later paper

1.%° this method failed due to a parallel H* generating reaction taking place,

by Larroche et a
making complex processes difficult to monitor using this method. Other methods reported are
chromatographic method; either GC with different detectors or HPLC, see Table 7.1. Of the
methods reported it is only the one reported by Kellerhals et al.>> which is fast enough for

monitoring and control.

Table 7.1: Methods reported for octanoic acid determination.

Subject Method

Characterisation of moulds by HP 5890 series Gas Chromatograph with FID, capillary
measuring the fatty acids content column; fused silica (30 m x 0.25 mm x 0.25 um)

HP 5890 series Gas Chromatograph equipped with Finnigan
model 4023 mass spectrometer system

Method development for deter- Hitachi HPLC separating system including an L-6300
mination of carboxylic acids® intelligent pump, F-1080 fluorescent detector

Development of on-line GC, to Online determination of substrate concentration:

maintain continuously fed substrate at  fermenter equipped with recirculation loop containing a
a desired level, during the production ¢rossflow filtration module. The permeate was analysed at a
of mcl-PHAs" by Pseudomonas putida Hp 5890 Gas Chromatograph with FID, and Permabond
KT2442° FFAP-0.35 column

Synthesis and characterisation of Shimadzu 14A GC with FID
structured lipids in bench scale
reactor™

Investigation of the internal substrate Gas Chromatograph with FID, Capillary column; Supelcowax
concentration  during the  bio- (30 mx0.32 mm x 0.5um)

transformation of octanoic acid into 2-

heptanone by Penicillium roqueforti®

A new method, facilitating reliable monitoring of low concentrations of octanoic acid during
fed-batch production was needed. Based on the work by Creuly et al.”® who showed that an ion
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selective electrode works - but also taking into account the failure of this method reported by

1.°% it was decided for the current thesis work to investigate the feasibility of

Larroche et a
applying the electronic tongue (ET) for octanoic acid determination in fermentation broth

complete from a new beginning.

7.2 Experimental Design

Before carrying out the actual evaluation of the electronic tongue, a preliminary substrate and
process settings for the fermentation has to be defined. This substrate was mainly defined
contemplating the micro and macro nutritional requirements for the filamentous fungi, but also
the experiences reported by others were contemplated (see paper 5 for details). For definitions
of parameters settings the results reported in the literature with respect to pH and
temperature were contemplated. A pH of 6.5 was chosen as earlier work had determined that
optimum pH falls in the range from 5.5 to 7, the specific optimum being octanoic acid
concentration dependent®’. The temperature was fixed at 27°C based on work reported by
Lawrence®.

For investigating the feasibility of the electronic tongue at first an array consisting of 20 “most
suitable” electrodes (from general a priori ET experience) were tested for their response to
octanoic acid. From these six electrodes were selected with a cross sensitivity to octanoic acid.

The sensitivity of the electrodes was determined before hand, and as such the array should be
applicable for the intended purpose; monitoring of the octanoic acid concentration. A
fermentation broth consists of many constituents like sugar, proteins, and an amount of salt
ions, which may affect the sensor membrane. To test the actual array performance in a
fermentation broth and to incorporate the natural variation in to the model building phase the
broth from four fermentations were applied as the agueous matrix in the measurements.

After each fermentation run the substrate was heated and filtered to inactivate and remove
mycelium. The aqueous phase was subsequently spiked with nine different octanoic acid
volumes obtaining a calibration span from 0.65 to 20 mmol I"*. A total of 36 samples were used
in establishing the calibration relation. For detailed information regarding experimental
conditions see paper 5.

From these experiments four individual models and a global model, all with good prediction
abilities, were obtained, see Table 7.2.
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Table 7.2: ET models obtained applying broth from the four independent fermentations. Y-data were linearised by
taking the natural logarithm (In) to the octanoic acid concentration and additionally the data were centred and
scaled in the multivariate calibrations.

No Slope r? RMSEP % RMSEP RPD
1 0.92 0.96 0.13 5.5 5.1

2 0.95 0.98 0.10 4.2 6.7

3 0.89 0.96 0.15 6.3 4.3

4 0.84 0.90 0.21 8.8 3.1
Global 0.95 0.97 0.21 5.1 5.5

Besides the four fermentations a special fifth run was executed, to which octanoic acid was
spiked. From this fermentation samples were withdrawn and handled according to sampling
procedure outlined in Figure 7.2.

Sample extraction from

bioreactor PSS
(40 mL)

mass reduction
(3x2g)

Pretreatment Sss
sample

Figure 7.2: Illustration of the sampling extraction and handling from a 5L Applikon bioreactor.

Octanoic acid analysis

The primary sampling was carried out from a 5 L Applikon bioreactor. In practice the sample
must delimit a full-height column as the systems heterogeneity in the current system was
assessed as being caused mainly by a density difference between cells and substrate,
delineating a sample completely from top to bottom would be preferable. For the current
process, it was critical to keep the environment aseptic, and this procedure could thus not be
implemented. As a consequence it was chosen to apply the standard sampling equipment
available for Applikon bioreactors, see Figure 7.3.
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Figure 7.3: Primary sample extraction from 5 L Bioreactor. Shown to the right is the standard sampling equipment
supplied- fermentation broth is sucked from the fermentor into the glass bottle by the syringe.

Applying the commercially available equipment resulted in a stationary sampling extraction,
which was non-optimal, as it at the very least induced an incorrect sampling error IEE. As the
main purpose of sampling was to obtain samples with different concentrations of octanoic acid,
and not so much to relate the concentration to the process and the vessel at hand, this was
deemed acceptable. It should be noted that applying a stationary sampling extraction pointin a
bioreactor calls for a total homogenisation of the broth at all times, as this is the only way of
obtaining a representative sample, otherwise this standard sampling approach will simply yield
a grab sample. Given this stipulation, the experiments continued.

After sample extraction (secondary sampling), the sample was placed on a magnetic stirrer and
2 g sample (analytical mass) was extracted applying the recommendations of Holm-Nielsen et
al.*® and pretreated. The solution was filtered and the octanoic acid concentration measured
applying GC-FID. See paper 5 for details regarding the analytical procedure.

The samples withdrawn were used for testing the array on new, authentic samples. The
deviations (RMSEP) obtained for these samples were generally in the range 0.10 — 0.15 (except
one sample which had a value of 0.19), which was in the range of the RMSEP in Table 7.2. This
indicated that the models perform equally well on new samples. More details regarding models
are seen in paper 5.

7.3 Conclusion

The model obtained was characterised by a satisfactory prediction validation, although only
leave-one-concentration-level-out cross-validation was applied (the model was very strong
w.r.t. X-Y correlation, thus any validation would lead to approximately the same, satisfactory
validation results in this particular case). Only one PLS-component was needed to span a
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realistic compositional range with good validation characteristics. The global model was also
able to predict samples from an octanoic acid degradation matrix, a much more stringent,
realistic context.

The average future prediction error level, RMSEP% (test set validation), corresponded to 5.1%
(In-units). The RPD statistic was 5.5, also signifying a good prediction precision. The slope
(accuracy) of the global model was 0.96. These statistics signified a highly satisfactory
development result, allowing the conclusion that feasibility of an ET prediction model for
octanoic acid prediction in realistic cultivation broths for industrial 2-heptanone production has
been successfully demonstrated.

Establishing the feasibility of ET, the definition of the fermentation with respect to the optimal
substrate composition, parameters settings, and precursor concentration, can now begin. In
carrying out these investigations it would be beneficial to incorporate samples obtained during
the different conditions into the ET model, thereby obtaining a more robust model. Another
task is investigation of the on-line implementation of the method. It would be beneficial to be
able to implement the ET on-line or in-line. Before doing so important questions regarding the
maintenance of aseptic conditions of the process and sensor fouling should be resolved.

The sensors applied in the current study were made of plastic casing onto which the
membranes were glued. These could not be autoclaved, a problem that also has to be solved
before on-line implementation. A solution might be the implementation of a sterile barrier
allowing only exit of the broth from the fermenter. Furthermore, the sensors applied all needed
extensive washing after each measurement, to remove octanoic acid from the membrane; the
washing time being proportional to the octanoic acid concentration. In an industrial application,
this would evidently cause a delay. The consequence of such delay could be a fluctuation in the
octanoic acid concentration in the fermentation broth. Whether this would have any real effect
on the overall product performance would have to be evaluated for the industrial process
implementation scenario.
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ABSTRACT: A study of NIR as a tool for process monitoring
of thermophilic anaerobic digestion boosted by glycerol has
been carried out, aiming at developing simple and robust
Process Analytical Technology modalities for on-line sur-
veillance in full scale biogas plants. Three 5 L laboratory
fermenters equipped with on-line NIR sensor and special
sampling stations were used as a basis for chemometric
multivariate calibration. NIR characterisation using Trans-
flexive Embedded Near Infra-Red Sensor (TENIRS) equip-
ment integrated into an external recurrent loop on the
fermentation reactors, allows for representative sampling,
of the highly heterogeneous fermentation bio slurries.
Glycerol is an important by-product from the increasing
European bio-diesel production. Glycerol addition can
boost biogas yields, if not exceeding a limiting 57 gL ™"
concentration inside the fermenter—further increase can
cause strong imbalance in the anaerobic digestion process. A
secondary objective was to evaluate the effect of addition of
glycerol, in a spiking experiment which introduced increas-
ing organic overloading as monitored by volatile fatty acids
(VFA) levels. High correlation between on-line NIR deter-
minations of glycerol and VFA contents has been documen-
ted. Chemometric regression models (PLS) between glycerol
and NIR spectra needed no outlier removals and only one
PLS-component was required. Test set validation resulted in
excellent measures of prediction performance, precision:
?=0.96 and accuracy =1.04, slope of predicted versus
reference fitting. Similar prediction statistics for acetic acid,
iso-butanoic acid and total VFA proves that process NIR
spectroscopy is able to quantify all pertinent levels of both
volatile fatty acids and glycerol.
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© 2007 Wiley Periodicals, Inc.
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Introduction

Bioethanol and biodiesel are the main biofuels utilized in
the transportation sector world-wide, comprising of a total
volume of 23.3 million tonnes in 2003, of which 6.4% was
biodiesel (Mandil, 2004). The largest contributors of
biofuels Brazil and the US produce mainly bioethanol. In
Europe the production of biodiesel in the same vyear
comprised 78% of the total amount of biofuels produced,
resulting in 65% of the total world capacity. Further
significant increase is planned for biofuels in Europe. A
likely vision for year 2030 will be to exchange one fourth of
the EU transportation fossil fuels by biofuels according to
the Biofuels Research Advisory Council the predicted energy
demand for transport is estimated to be 440 million tonnes
of oil equivalents.

Biodiesel is produced by a direct trans-esterification of
vegetable oils: rapeseed, palm, soybean, sunflower and other
organic oil products or by-products. The main by-product
from biodiesel production is glycerol with varying purity.
When the conventional catalytic processes using caustic
soda or sodium methylate process, known as the Fatty Acid
Methyl Ester (FAME), is applied, purity falls between 80%
and 95%. When applying a new heterogeneous process,
consisting of mixtures of oxides of zinc and aluminium, a
purity of 98% can be reached (Bournay et al., 2005). The
glycerol helps to make the biodiesel production more
economically feasible as it is a valuable by-product used by
the cosmetic, medicine, and food industries. The industrial
glycerol market is limited, so when the biodiesel production
capacity is expanding glycerol ends up as a relatively low
value energy by-product raising the cost of the biodiesel
production (Mandil, 2004).
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Therefore, there is a potential need for a new application,
as an integrated biodiesel and biogas production in an
integrated biorefinery concept. The primary by-product
from anaerobic digestion, digested bioslurry, can be applied
as primary macro and micro nutrients for growing energy
crops needed for biodiesel production. At the same time the
by-product from the biodiesel plant, glycerol can be applied
as an extra C-source in co-fermentation with manure and
other organic by-products in the anaerobic digestion
process, thereby increasing the biogas yield. This paper is
studying one part of the biorefinery loop, the application of
glycerol for anaerobic co-fermentation with manure and
other organic by-product feedstocks.

The co-fermentation effect is well known, especially in
the Danish Biogas sector, which has been documenting
the effect since the 1990s, showing doubling or tripling of the
methane yield when quality guaranteed food waste and
similar types of organic waste were combined with cow and
pig slurries at biogas plants (Nielsen et al., 2002). From the
biogas plant documentations it was found that high biogas
production was positively correlated with addition of high
concentrate organic by-products like vegetable oils, fish oil,
animal lipids or similar compounds. However, at a certain
level organic overload was reached resulting in process
imbalances and inhibition conditions. In a few cases there
was a complete stop in the process that necessitated re-
inoculum addition and new feedstock supply. To avoid the
risk of inducing this type of imbalance well performing
biogas plants are today running with a medium biogas and
methane yield. The biogas plants are monitoring selected
control parameters to avoid organic overloading. Recent
experiments with co-fermentations applying glycerol with
mixtures of pig manure, maize silage, and rapeseed meal
have shown a significant increase in the methane yield. To
maintain a stable digestion process, the amount of glycerol
should not exceed 6% (Amon et al., 2006). From these
results it is evident that the glycerol can be advantageously
applied, but a strict control strategy of the intermediate
glycerol and fatty acid concentrations in the biogas reactor is
needed to avoid the risk of organic overloading.

The most common measurement techniques applied in
the biogas plant are simple on-line pH and temperature
monitoring, as well as biogas flow measurements combined
with off-line quantifications using high performance liquid
chromatography (HPLC), gas chromatography (GC), and flow
injection analysis (FIA). Different methods and equipment
available for anaerobic digestion are presented in (Boe, 2006;
Vanrolleghem and Lee, 2003). The simple on-line methods
are however not able to predict process imbalances, and the
off-line analyses are inefficient. Sample preparation is often
time consuming with the result not being reached within a
suitable timeframe and furthermore the analysis requires
expensive equipment and skilled laboratory technicians.
Hence the methods currently applied are inadequate for this
complex task.

As means of obtaining better control and also to improve
understanding of the process, process analytical technolo-

gies (PAT) may be invoked. PAT has been applied to a
variety of applications within refineries, the food processing
industries, and the pharmaceutical industries. It covers a
wide array of process analytical methods (Bakeev, 2005), for
example, on-line GC determination of volatile components
(Boe, 2006; Diamantis et al., 2006), spectroscopy coupled to
a flow system containing glycerol dehydrogenase for deter-
mining glycerol in wine (Fernandes et al., 2004) and near
infrared spectroscopy for monitoring of acetate, glycerol,
ammonium, and biomass in a recombinant E. coli produc-
tion (Macaloney et al., 1997). Of the established methods,
near infrared spectroscopy (NIR) seem to be the most
promising solution as it is rapid and non-invasive.
Furthermore, it requires no chemical addition and once
calibrated by the help of multivariate data analysis it needs
little maintenance except for system drift.

The main objective of this paper is to investigate the
possibility of measuring the amount of glycerol and volatile
fatty acids: acetic, propionic, iso-butanoic, butanoic, iso-
valeric, and valeric acid and total-volatile fatty acids (VFA)
in anaerobic fermentation bio slurry by on-line NIR. VFA
can accumulate during the anaerobic digestion process and
result in an increase that directly reflects the process
behaviour and/or imbalances. The VFA concentration has
been the intermediary compound suggested most often for
monitoring anaerobic digestion processes (Ahring et al.,
1995; Angelidaki et al., 2003; Hill and Holmberg, 1988).
Several studies have pointed out that in addition to
monitoring the total VFA behaviour, individual volatile
fatty acids will also contribute towards improved under-
standing of anaerobic digestion (AD). The ratio between
acetic acid and propanoic acid in the process can provide
valuable information as an early warning before a process
failure would occur (Boe, 2006; Hill and Holmberg, 1988).
VFA are excellent compounds for indicating organic
overload and the toxic condition where acid consumers
and methanogens are inhibited; however, the VFA response
is still unclear under toxic stress levels where acid producers
are also inhibited—as under a high concentration of long
chain fatty acids (Boe, 2006; Mladenovska et al., 2003).

A secondary objective is to obtain knowledge about the
effect of different imbalances in the anaerobic digestion
process, caused by the addition of glycerol. The concentra-
tion level of the added glycerol was studied, and how to
balance or manage the process when it includes glycerol
by-products from the biodiesel refinery processes.

Materials and Methods
Raw Materials

Manure and Digested Manure

The raw feedstock is mainly composed of manure and
organic food industrial waste. Together with the inoculum
needed for the AD process, both were collected from the
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Ribe biogas plant in Southern Denmark. The inoculum
biomass—the digested manure, was sampled at the main
pipeline outlet from the thermophilic AD process. The
digested manure was screened through a 3 mm sieve to
eliminate all larger solid particles, necessary to avoid
clogging in the on-line flow cell system in the trials reported
below. The digestate was transported in insulated containers
to avoid temperature decrease and microorganism dis-
turbances. It was immediately inserted in the fermenters
after delivery. The feedstock consisted of a typical substrate
mixture, which was divided into 1 L portions and kept in the
freezer before being fed into the bioreactors. It was defrosted
before application and then heated up to 53°C—the specific
thermophilic temperature level.

Glycerol

Pure glycerol, was produced for laboratory purpose (J.T.
Baker, purity: min. 99.5%), was injected regularly during the
fermentation trials. It was decided not to use glycerol from
biodiesel production plants with a varying content of water
and impurities, in order to keep these factors neutral.

Fermentation Trials

The anaerobic digestion process was carried out in three 5 L
bioreactors (Simax, Sazava, Czech Republic) each with a
working volume 4 L. Each of the fermenters could be
connected to the on-line recurrent loop system, thereby
enabling on-line analysis with the TENIRS measuring
system, described in section: on-line NIR. A schematic view
of the fermenter setup is shown in Figure 1. Stirring and
heating were monitored and maintained by a program
written in LabVIEW 8.0 (National Instruments, Austin, TX)
software. Agitation was set to 30 rpm and the process was
operated under stable thermophillic conditions, 53°C.

The trial lasted 33 days. The AD process worked initially
for 13 days with systematic addition of standard feedstock in
order to achieve a stable biogas production. The first
measurements were carried out after this period; day
number 1 thus corresponds to the first day of taking samples
from the reactor. The reactor was operated in a semi-
continuous mode — two times each day sampling and
feeding with standard feedstock was carried out. The
amount of substituted biomass was equal to 150 mL at each
feeding time. The hydraulic retention time (HRT) was at
13.5 days. After 20 days the first portion of glycerol, mixed
with the standard feedstock, was added. Table I shows the
planned amount of glycerol and the theoretical concentra-
tion development in the fermenters. The purpose of
increasing the addition of glycerol was first of all to increase
the methane production, and later to provoke organic
overloading in which the introduced amount of substrate
was greater than consumed by the microorganisms. This
would lead to a process imbalance and subsequently a final
collapse of the fermentation process.
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Figure 1. Fermentation setup: (1) holding frame; (2) stirring controller; (3) heating
jacket with water; (4) 5 L glass fermenter; (5) outlet to TENIRS system; (6) inlet from
TENIRS system; (7) feeding probe; (8) stirrer.

On-Line NIR

The Transflexive Embedded Near InfraRed Sensor (TENIRS)
system is a prospective at- and on-line measurement system
utilized in flowing heterogeneous bioslurry systems It was
used in this trial as a semi on-line system, as it was moved
from one fermenter to another during the trials. The TENIRS
facility was developed by the Institute of Agricultural
Process Engineering (ILV), at the University of Kiel for at-
line measurements of bio-slurry and manure applications
(Andree et al., 2005) to document that NIR spectroscopy can
be a highly valuable tool for at- or on-line analysis of
heterogeneous bioslurries such as pig and cattle slurry.

In this trial, the TENIRS loop was connected to each one
of the three simultaneously running fermenters by the time.
The loop was attached to the fermenter for approximately
30 min for each NIR measurements two times per day.
During each NIR measurements, representative sampling
of biomass were simultaneously performed for chemical
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Table I

Changes of glycerol concentration during conducted trials.

Amount of glycerol added

Day of trials to each fermenter (mL/day)

Theoretical change in concentration
level in the fermenter (V/V%)

1-7 0
8-12 50
13-15 114
16-19 188

0.0— 1.0
1.0—3.5
3.5—6.5

analysis. The semi on-line attachment was chosen because
only one prototype of the TENIRS equipment and the
sampling construction existed.

The loop was connected to the centre part of the
fermenter by individual outlet and inlet pipes (see Figs. 1
and 2). From the outlet pipe the biomass was pumped
through the loop by an integrated impeller pump and
through the flow through cell for transflexive NIR spectro-
scopic measurements, then the loop continued passing
through a special sampling device, see section: sampling, and
finally back to the fermenter by the inlet pipe diametrically
opposite the outlet pipe. The total length of the external
piping loop was 230 cm with a pipe diameter of 2 cm. The
loop was kept thermophilic, at constant 53°C, throughout
the trial, by using insulation materials around the pipeline
in the loop. In the flow through cell the height was adjusted
to 3 mm, enabling NIR measurements where the cell width

expanded proportionally obtaining a constant pressure and
flow in the pipe loop system. NIR data handling was
organized with the software Aspect Plus, which allows
communicating with the near infrared spectrophotometer
Zeiss CORONA 45 NIR, with a scan range from 960 to
1,600 nm.

Sampling

To obtain primary samples in agreement with the TOS;
theory of sampling (Gy, 1998), a pilot device facilitating
sampling from the on-line stream flowing through the
TENIRS loop was developed and implemented directly after
the TENIRS measuring cell (Fig. 2). By applying this confi-
guration the samples were obtained from a one dimensional
pipeline flow of the biomass compared to the full three

=

Inlet to fermenter

Qutlet from fermenter

—>

<= Pressed Air

o

Figure 2. Recurrent measuring loop connected to fermenters: (1) outlet cleaning water; (2) inlet cleaning water; (3) multiway valve; (4) impeller pump; (5) frequency controller;
(6) air valve, for drying after cleaning; (7) NIR flow-through cell; (8) Zeiss Corona NIR instrument; (9) sampling device.
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dimensional section of the fermenter volume. The device
(Fig. 3) consisted of a 10 mL bottle placed so, when a
stainless steel disc was moved from side to side an incre-
mental sample from the loop was sampled. Ten incremental
samples were taken resulting in a primary 100 mL bio-slurry
sample, insuring a composite sample (Gy, 1998; Mortensen,
2006; Pitard, 1993; Petersen, 2005).

This configuration was not completely in accordance with
TOS as a total cross section of the flow in the pipeline was
not completely ensured. This can only be obtained from an
up-stream vertically flowing piping system. As a result
the samples were slightly biased. However, this is a step
in the direction for the development of a closed recurrent
fermenter loop system.

Chemical Analysis

Total Solids/Volatile Solids

Total solids are a fraction of the total wet weight of a sample
from which the water has been evaporated in an oven at
105°C for a period of 24 h. Total volatile solids were
determined as the difference between total solids and the
weight of the ashes from the sample kept in the oven for 2 h
at 550°C.

Glycerol Concentration

Glycerol concentration was determined using Ion Chromato-
graphy (Dionex Series 45001 with microinjection valve at
100-120 psi) with a CarboPac PA10 (4 x 250 mm) column.
All samples were diluted in order to ensure a concentration
in the area of 20-100 mg glycerol per litre and carefully
filtered before injecting the 0.2—-0.3 mL sample in the loop.
Two eluents with a concentration equal to 140 and 200 mM
NaOH were used.

Figure 3. Prototype sampling device, 10 increments each of 10 mL were sampled
during a period of 10 min. [Color figure can be seen in the online version of this article,
available at www.interscience. wiley.com.]
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Volatile Fatty Acids (VFA)

For all samples volatile fatty acids content was measured
employing a GC/Varian 3800 chromatograph with a Varian
25 m 0.32 mm ID (Cat. No. CP 7488 WCOP fused silica
coating FFAP-CB) column. The carrier gas had a constant
heat pressure of 6 p.s.i., 2 mL of each sample was centri-
fuged, 200 pL HCl 1 M and 2.0 mL Internal Standard
solution: 2,2-dimethylbutanoic were added. Samples were
separated in a Mediafuge at 5,000 rpm for 5-8 min. The
separated sample was filtered through a 45 pum acetate filter
and injected into the GC. This method determined the
individual concentrations of acetic, propanoic, isobutanoic,
butanoic, isovaleric and valeric acid, and thereby also the
accumulated total-VFA concentration.

Data Processing

Chemometric data analysis gives an overview of the state of
the chemical and/or biological processes based on analytical
measurements. The idea of chemometrics is to let the
process or the data structures unfold their relations them-
selves (Mortensen, 2006). From chemometric data analysis
it is possible to decrease the required number of variables in
order to describe the investigated phenomena.

In multivariate calibration and validation a large number
of X-variables are used to correlate to a given reference
(chemical or physical) variable (Y), for example, X: NIR
spectra; Y: chemical reference variables. Partial Least
Squares (PLS) regression was used with the scope to predict
future Y-data directly from X-data. PLS-Regression (PLS-R)
consists of three stages: model training— calibration, vali-
dation, and prediction (Esbensen, 2001; Martens and Nees,
1991).

A test set validation is a procedure for validation of a
model by a completely independent data set—the test set.
This is the strongest validation of any model, which was a
real advantage in this study where trials were performed in
three parallel independent fermenter systems. The results
from the test set validation are much more reliable than any
internally re-sampling of the training data set alone, such as
cross validation.

Data obtained from the TENIRS system were modelled
using the UNSCRAMBLER software (CAMO, ver. 9.5).
Multivariate calibrations using Partial Least Square regres-
sion (PLS-1) were performed for quantitative determination
of glycerol and total-VFA as well as for the individual acids
as acetic, propionic, iso-butyric, butyric, iso-valeric, and
valeric acids. For each chemical component a separate
model was set up. In all cases the models were evaluated by a
comprehensive test set validation applying fermentation No.
1 and 3 as the calibration set respectively and No. 2 as the test
set. The analysis includes best models obtained by the lowest
numbers of principal components (PC), and by carefully
removal of a minimum of outliers in the models (Esbensen,
2001).
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Results and Discussion

The anaerobic digestion trial was performed in triplicate,
lasting for 33 days; during the first 13 the process was
stabilized. These days were excluded from further analysis,
not included in the glycerol spiking trials. Sampling and
chemical analysis was performed twice a day for the rest of
the trial period (days 1-19). Each sample was analyzed for
glycerol, VFA, and TS/VS content. Additionally, NIR spectra
of the flowing biomass were acquired for the PLS-1 models
(X). All results are presented in the sections below.

Chemical Analysis

The changes in the glycerol concentration in the bioreactor
in the full experiment are presented in Figure 4. In the
beginning of the glycerol addition, no accumulation was
observed, which indicated that the microorganisms were
able to degrade it to biogas. The increase in the feeding level
at day 12 however, resulted in a slow accumulation, which
became more pronounced when the feeding level was
increased further at day 16. The overall accumulation of
glycerol from the 16th to the 19th day of the trial, was from
approximately 5 to more than 30 gL', indicating that a
severe organic overload might be taking place. The organic
overload was coursed by a bottleneck in the system, where
the slowest process in the degradation chain, was deter-
mining the overall speed of the process, consequently the
substrate was accumulated in the reactor.

The overall tendency in the VFA concentrations in the
fermenter increased simultaneously and even faster than the

increase in the glycerol concentration (Fig. 5), thus
indicating that the organic overload taking place was due
to an inhibition of the methanogenic step. A slow accu-
mulation of the VFAs was observed already at the 8th day.
After the 12th day the VFA-acids content grew rapidly
achieving the highest level: 36 gL' in fermenter no. 2. From
days 12 to 16 organic overloading occurred, and after day 16
the process was strongly imbalanced and no biogas produc-
tion was noticed. The acetic acid concentration, seen in
Figure 6, was the most important contributor to the total
VFA concentration, which means that exactly the same
tendencies were seen in the acetic acid concentration
behaviour during the trial (Fig. 6).

When VFA concentration significantly exceeds 5.0 gL',
the AD process is no longer stable and organic overloading is
likely (Amon et al., 2006). Due to medium to high daily
doses of glycerol since day 13, increasing VFA contents
continued to imbalance the process ending by complete
collapse. This can be seen when VFA concentration exceed
10-12 gL' (Fig. 5). Exactly the same tendencies can be seen
in the acetic acid concentration development (Fig. 6).

Contemplating both the glycerol and the VFA and acetic
acid results, it was seen that the VFA and acetic acid
concentration increased earlier, compared to the concen-
tration of glycerol, thus giving an early warning of the
coming process instabilities. For this reason the VFA can be
applied in the context of process monitoring and controlling.

According to Angelidaki et al. (2002) the VFA concen-
trations in biogas production do not necessarily have to be
directly toxic to the process, but it indicates imbalance of
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Figure 4, Glycerol development during the AD process trials, shown for each individual fermenter.
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Figure 5. Volatile fatty acids contents. Development for each fermenter.
the process. Therefore, the increase of VFA is usually the Glycerol is a very promising feedstock for increasing
result of process imbalances, not the reason, but can never-  biogas yields when the concentration does not exceed 5-7 g/L
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Figure 6. Acetic acid concentration changes during the investigated trial.
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lower rate or could even be stopped. A longer adaptation
period for the microorganisms may sometimes allow a
higher feeding rate of glycerol in the anaerobic digestion
process. In a full scale mesophilic biogas plant operation, the
Hashoej biogas plant in Denmark, up to 9 vol.% glycerol has
been registered for the feedstock blend, producing very high
biogas yields.

At thermophilic conditions at 53°C =+ 3 vol.% has been
registered as a glycerol concentration which is fairly easy to
manage. Above this concentration level a decrease in biogas
production can occur or other measures shows organic
overloading by increasing the VFA concentration during
the fermentation. Similar results have been documented by
Amon, (2006), indicating that a significant increase in the
methane yield can be achieved with the addition of up to 6%
of glycerol. However, further addition inhibits the process.
This study has indicated fully that such a feeding situation
can occur if no on-line process measures or proactive
feeding management plan has been set in operation.

Several volatile acids were monitored in the present study.
VFA changes constitute the most important indicators of
early warning of process imbalances. High concentration is a

sign of severe stress of the microorganisms and most likely
organic overloading. An indication of VFA imbalances
started between days 12 and 13 (Fig. 5). Severe organic
overloading occurred on the 16th day of the trial when the
concentration exceeded approximately 11.5 g/L and 18.0 g/L
of acetic acid and total VFA, respectively. In the present
study the organic overloading was however caused by
purpose in order to achieve as wide a span as possible of acid
concentrations allowing for PLS-1 models with high
validations in all relevant ranges of volatile fatty acid
concentrations.

Multivariate Calibration and Validation of
On-Line NIR spectra

A PLS-1 model of glycerol concentration in the fermentation
bio slurry, measured two times daily during the fermenta-
tion trial, showed very good performance (Fig. 7). The linear
regression relationship needed primarily two PLS compo-
nents to model the glycerol Y-variables measured at the Ion
Chromatography equipment from the X-variables (NIR).
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Figure 1. Glycerol PLS-1 model; number of required PLS components = 2; One outlier was removed; Test set validation was made from data obtained in fermenter No.2 and
tested against data from fermenter No.1 and No.3; Measures of precisions r?=0.96 and slope 1.04. [Color figure can be seen in the online version of this article, available at

www.interscience.wiley.com.]
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Table II.

Overview of PLS-1 models for volatile fatty acids; root square error of prediction (RMSEP).

Acetic Propanoic Iso-butanoic Butanoic Iso-valeric Valeric Total VFA
No. of PCs 3 1 4 5 6 3 4
Explained validation variance (%) 93.1 54.8 89.3 92.7 92.8 86.3 94.0
No. of outliers 2 1 4 4 2 4 2
RMSEP 1,476 1,364 26.46 271.9 55.83 24.31 2,095
RMSEP/mean measurement level (%) 14.8 32.2 12.1 22.2 19.2 13.1 12.9
Correlation () 0.98 0.37 0.95 0.74 0.97 0.93 0.98

Definitions according to Esbensen (2001): PCs—are composite variables, that is, linear functions of the original variables, estimated to contain, in
decreasing order, the main structured information in the data; Outlier—an observation (outlying sample) or variable (outlying variable) which is abnormal
compared to the major part of the data; RMSEP—root mean square error of prediction—a measurement of the average difference between predicted and
measured response values, at the prediction or validation stage; correlation—a unitless measure of the amount of linear relationship between two variables;
the correlation is computed as the square root of the covariance between the two variables divided by the product of their variances. It varies from —1 to +1.

All the fatty acids were modelled by PLS-1 analysis in
Unscrambler like the above model of glycerol. The results
are summarized in Table II. As examples two models are
shown below; acetic acid (Fig. 8), as a main contributor of
the total VFA, and iso-butanoic acid (Fig. 9) as a minor fatty
acid analogue, presumably more difficult to model due to
its very low concentration levels. Finally a model of total
VFA was shown (Fig. 10). This was done to document the

strength in the application possibilities of NIR measure-
ments.

The PLS-1 prediction model for acetic acid showed that
the validation fermenter No.2 provided a realistic validation
basis. The linear regression relationship needed 3 PLS
components to model the Y-variable: acetic acid concentra-
tion analysed at the HPLC, from the X-variables (NIR).
The overall model for acetic acid showed a very strong
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Figure 8. Acetic acid PLS-1 model; number of PLS-components required = 3; Two outliers were removed; Test set validation where data from the fermenter No.2 were tested
against calibration data from fermenter No.1 and No. 3; measures of precision: r?=0.95, and accuracy; slope = 1.09. [Color figure can be seen in the online version of this article,

available at www.interscience.wiley.com.]
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Figure 9. Iso-butanoic acid PLS-1 model; number of required PLS components = 6; Four outliers were removed; Test set validation of data from the fermenter no. 2; measures
of precision: r2=0.97 and accuracy; slope =0.97. [Color figure can be seen in the online version of this article, available at www.interscience.wiley.com.]

correlation between the HPLC measurements and the
on-line NIR measurements. As acetic acid was the main
contributor to the total VFA, the model obtained for total
VFA showed, not surprisingly, the same trends with respect
to the loading weight plot and the calibration and validation
variance as the model for acetic acid (Table II).

The PLS-1 prediction model for iso-butanoic acid in the
three bio-slurry fermenters spiked with glycerol showed
a good validation model. For fermenter No.2 test set
validation showed good statistic precisions; r*=0.97 and
the accuracy of predicting iso-butanoic acid by NIR had a
slope of 0.97.

The PLS-1 prediction model for total VFA in the three
bio-slurry fermenters spiked with glycerol provided a very
good validation model. Test set validation showed good
statistic precisions, see Figure 10. The on-line trials have
been useful to document the possibilities to measure total
VFA conditions during increased feeding of concentrated
feedstock’s like the glycerol in the anaerobic digestion
systems to optimize the biogas production.

Table II gives an overview of all PLS-1 models computed
for the main compounds of volatile fatty acids. The statistics
show that the weakest model was developed for propanoic

Holm-Nielsen et al.: On-Line Anaerobic Digestion Process Control by NIR Process Analytical Technologies

acid which was not acceptably, while all other VFA could be
statistically modelled, Y-variance modelled span 86—94%.

Biogas production yields in volume and quality will
always be some of the most important parameters to
indicate overall process and reactor performance, but one
weakness is that these parameters cannot give an early
warning and indication of the stress status of the fer-
mentation behaviour. The future combination with on-line
monitoring of the VFA and other important intermediates
like ammonium will provide extremely valuable informa-
tion for improved process control as is documented in this
study.

Conclusion

Due to high growth rates in the biodiesel production
capacities in Europe and world-wide, glycerol is increasing
in amounts year by year. The availability of glycerol for
many industrial purposes is increasing. One of the sectors
that have had increasing production and utilisation capacity
growth rates is the European biogas sector. The co-digestion

N
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against calibration data from fermenter No. 1 and No. 3; measures of precision: r>=0.98, and accuracy; slope = 1.03. [Color figure can be seen in the online version of this article,

available at www.interscience.wiley.com.]

of high yielding glycerol with a range of other feedstock’s like
manure and energy crops are rising in importance.

Spiking trials have shown that glycerol at concentration
levels of 3-5 g L' makes the anaerobic digestion process run
at continuously stable conditions. On-line measurement of
the fermentation process has documented that with low
concentrations of glycerol the VFA and the individual fatty
acids show no sign of organic overloading. However, when
rapidly increasing the content of glycerol, there are clear
tendencies of organic overloading.

The results concluded a good correlation between on-line
NIR measurement of glycerol and the VFA content in the
anaerobic digestion process and analytical laboratory
results. On-line process monitoring control is becoming
more and more important when anaerobic digestion
processes are spiked with concentrated feedstock, like
glycerol. Analytical tools as applied in these experiments will
bring forward the needed information of early warning
about process imbalances.

The investment in the fermenters was made possible by the Esbjerg
Seminarium Foundation and equal match funding by Aalborg
University.
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In this study, two process analytical technologies, near infrared spectroscopy and acoustic chemometrics,
were investigated as means of monitoring a maize silage spiked biogas process. A reactor recirculation
loop which enables sampling concomitant with on-line near infrared characterisation was applied. Near
infrared models resulted in multivariate models for total and volatile solids with ratio of standard error of
performance to standard deviation (RPD) values of 5 and 5.1, indicating good on-line monitoring pros-

pects. The volatile fatty acid models had slopes between 0.83 and 0.92 (good accuracy) and RPD between
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RPD of 2.6.

2.8 and 3.6 (acceptable precision). A second experiment employed at-line monitoring with both near
infrared spectroscopy and acoustic chemometrics. A larger calibration span was obtained for total solids
by spiking. Both process analytical modalities were validated with respect to the total solids prediction.
The near infrared model had an RPD equal to 5.7, while the acoustic chemometrics model resulted in a

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Biomass has been used as a local low-tech energy source (fire,
combustion) for thousands of years, but production of modern
industrially produced biomass energy will gain a significant impor-
tance both locally as well as regionally in the near future. This in-
crease can be facilitated because the cost of the conversion and
production technologies is constantly being reduced, but more
importantly because of increased societal and climate awareness
concerning global warming and the pressing need for CO, neutral
technologies. Several such predictions and calculations have been
presented in Yamamoto et al. (1999), Sims (2001), Bull (2001).
Hoogwijk et al. (2005) conducted a comprehensive simulation
study on the geographical global energy crop potential. It was cal-
culated that in the year 2050 the potential for abandoned agricul-
tural land will be between 130 and 410 EJ/yr, and 35 and 245 E]/yr
for partially available area such as savannahs, shrublands or grass-
lands, depending on the different scenarios employed.

To significantly increase the energy supply from biomass, so-
called advanced biofuels must be developed from dedicated energy
crops (Koonin, 2006). In the present study, maize crop in the form
of maize silage was used in a conventional biomass conversion
scheme. Maize silage is the result of anaerobic ensilation of the

* Corresponding author. Tel.: +45 99407702.
E-mail address: cjp@aaue.dk (C.J. Lomborg).

0960-8524/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.biortech.2008.09.043

whole maize crop (cob, stem, and leaves). The maize crop is har-
vested when the total solid (TS) content is around 30-33%. If the
TS is below 30%, the harvested crops can be air dried for a few days.
This low-technology pre-treatment usually increases the TS con-
tent between 30% and 35%. Afterwards, the whole maize crop is
cut into small pieces, and degraded naturally by lactic acid bacteria
under anaerobic conditions. The resulting silage has a very high
biogas potential, and can be stored all year long, which is an impor-
tant local logistic advantage.

The future energy market for biomass depends on different fac-
tors, such as biomass cost and availability, and the efficiency of the
adopted conversion technologies, but it also depends on the avail-
ability of comprehensive, reliable, non-invasive, real-time process
monitoring and control technologies. Even a slight variance in
the operating conditions during fermentation can decrease the bio-
gas production significantly. The parameters most commonly used
for on-line monitoring of fermentations today are also the simplest
to assess: acidity (pH), temperature, and headspace measurements
of different gases, specifically methane, hydrogen sulphide, and
ammonia. Application of these on-line analytical modalities will
not detect process failure early enough however, and neither can
they detect specific process imbalances. On the other hand, appli-
cation of traditional analytical off-line methods like liquid chroma-
tography (HPLC), gas chromatography (GC), and flow injection
analysis (FIA) are difficult, because sample preparation is time con-
suming; moreover expensive equipment, maintenance and the
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need for skilled technicians make them even less attractive in the
bulk processing regimen of biomass conversion.

The situation appears different for the emerging process analyt-
ical technologies (PAT). Several experiments employing diverse
sensors for anaerobic digestion process monitoring are currently
under investigation, e.g., on-line continuous determination of vol-
atile compounds by GC (Diamantis et al., 2006; Boe, 2006) or mul-
ti-wavelength fluorometry (Morel et al., 2004). A summary of the
different methods and equipment available for anaerobic digestion
is presented in Vanrolleghem and Lee (2003). Among all technolo-
gies, spectroscopic tools seem very favourable since these do not
require chemicals to be added to the samples. More importantly,
their assessment of the state of the process is non-invasive. The
maintenance need for the multivariate calibration models is also
less than other methods. The model however has to be updated
when new feeds that have an influence on the spectrum, are added
to the system. For on-line and in-line applications however a po-
tential problem regarding sensor fouling due to microbial growth
on the optics, is a disadvantage.

Of the spectroscopic methods, near infrared spectroscopy (NIR)
for rapid and non-invasive, quantitative and qualitative analysis
together with chemometric tools has shown a great potential for
biological process control in the food, chemical, and pharmaceuti-
cal industries (Tosi et al., 2003). Additionally, it has been found
applicable to monitor complex mixtures — one of which is fermen-
tation broth from anaerobic digestion processes (Spanjers et al.,
2006) and monitoring of the anaerobic digestion of a mixture of
cellulose, albumin, and minerals (Nordberg et al., 2000).

A method which is less investigated but which may also have a
great potential in monitoring these processes is acoustic chemo-
metrics (a.c.): on-line signal acquisition via an acoustic sensor (pie-
zoelectric accelerometer) placed strategically in the process,
followed by multivariate calibration. In the biogas process it is
optimal to run with as high an organic loading as possible, in pro-
cesses running with maize silage addition this can be obtained by
control of the total solids in the in-flow to the reactor. To be able to
control this optimally reliable on-line monitoring is needed. The
acoustic chemometrics could be such a method, as it is robust
and well documented to work in industrially environments. The
acoustic signal carries potential embedded information regarding
the chemical and physical properties relating to the process, e.g.,
particle size distribution, flow, density, fibre length, chemical com-
position a.o. (Esbensen et al., 1999; Halstensen and Esbensen,
2000; Halstensen et al., 2006). An earlier investigation of particu-
late slurries showed that the sensor was indeed influenced by
the hydrodynamics in the flow (Hou et al., 1999), which is closely
related to the dry matter content — implying that perhaps acoustic
signals could be easily calibrated for on-line monitoring of flow
characteristics using indirect multivariate calibration (Martens
and Naes, 1991, Esbensen, 2006).

The objective of the present study was to investigate the possi-
bility of applying NIR spectroscopy for on-line monitoring of total/
volatile solids and volatile fatty acids during co-fermentation of
maize silage and manure. Furthermore, at-line application of
acoustic chemometrics and NIR spectroscopy for total solids in
manure was investigated for the first time.

2. Methods

Two co-digestions based on manure and maize silage were con-
ducted. The first trial ran as an anaerobic digestion with addition of
feed twice a day and was monitored by NIR spectroscopy solely.
Based on the results obtained during this trial a second experiment
was designed in which the total solid content span was artificially
increased within an augmented range. This anaerobic digestion
(constant manure substratum) was monitored by both NIR and a.c.

2.1. Trial 1

An anaerobic digestion trial was carried out in a 5 L bioreactor
(Simax, CZ), with a working volume of 4 L. An external loop was
connected to the fermentor, enabling on-line measurements with
NIR (described in Section 2.3) and process sampling (Section 2.4).

The process was initially stabilised for a period of eight days
during which only standard manure feedstock was added. This
was followed by an addition of a feedstock containing two different
levels of maize silage. Level 1 contained 59.5 g dried maize silage
pr. 850.5 g manure and level 2, 119 g dried maize silage pr. 791 g
manure. The entire trial lasted 42 days.

Stirring (set point=30rpm) and heating (set point=53 °C)
were both controlled by a program written in LabVIEW 8.0 soft-
ware (National Instruments, TX, USA).

NIR spectra were acquired every hour, while every 12 h a repre-
sentative 130 mL sample for reference analysis was collected. After
each sampling operation the fermentor was fed 130 mL feedstock,
resulting in a hydraulic retention time of approximately 15.4 days.

2.2. Trial 2

The objective of the second trial was to obtain a model covering
a larger total solids (TS) calibration range than in trial 1, and specif-
ically to investigate the possibilities for acoustic chemometric (a.c.)
monitoring of this parameter. Therefore the second trial was carried
out as a spiking anaerobic digestion (inactive manure substratum),
where the total solid content was spanned artificially from 4.8% to
11.4% by adding maize silage to a constant matrix of manure and
food waste, see Table 1. For each of the 14 levels triplicates were
carried out, i.e., measuring on three separately prepared bottles.

The measurements were carried out applying a homemade
reactor loop enabling simultaneous NIR and a.c. measurements. A
bottle containing 1L sample was mounted on the loop, turned
up-side down, and the material circulated in the loop. Before each
measurement the material was circulated in the loop for 1 min,
after which NIR spectra and frequency spectra were collected every
minute over a 4 min interval.

2.3. Equipment set-up

The equipment used in both trials was a TENIRS (Transflexive
Embedded Near InfraRed Sensor) loop measurement system,
developed by the Institute of Agricultural Process Engineering
(ILV), University of Kiel for at-line measurements of bio-slurry
and manure (Andree et al., 2005; Holm-Nielsen et al., 2007).

During the first anaerobic digestion trial the loop was modified
to work in an on-line mode by connecting it directly to the

Table 1
Amount of added maize silage and manure to each level in the spiked anaerobic
digestion (trial 2)

Level Maize silage (g) Manure (g) TS obtained (%)
1 0 800 4.8
2 5 795 53
3 10 790 5.8
4 14 786 6.3
5 19 781 6.8
6 24 776 73
7 29 771 7.8
8 33 767 8.4
9 38 762 8.9
10 43 757 9.4
11 48 752 9.9
12 52 748 10.4
13 57 743 10.9
14 62 738 114
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mid-height level of the fermentor. Broth was pumped to the flow-
through cell for TENIRS measurements and immediately hereafter
through a special sampling device (see Section 2.4), returning the
broth to the fermentor via an impeller pump driving the entire
loop flux. The pump ran for the entire duration of the trial (contin-
uous loop circulation). The total length of the external loop was
2.30 m which was kept at thermophilic temperatures by appropri-
ate insulation measures. The circular loop diameter was 2 cm, ex-
cept the flow-through cell, which had a 6 mm planar parallel
clearing. To keep the flow/pressure constant in the system, the
geometry of the flow-through cell was designed commensurate
to this decrease in inner duct width.

In the second anaerobic digestion trial only concerning TS, the
TENIRS loop was applied in an at-line configuration by applying
primary samples in 1L bottles. The bottles were mounted on the
loop, turned up-side down and the broth was pumped through
the TENIRS loop measurement system for NIR spectroscopic mea-
surements and a.c. characterisation. The samples was circulated
in the loop for 4 min, at which time the bottle was turned down-
wards again, i.e., creating a sample flow back into the bottle. After
measuring each sample, the loop was flushed with water and dried
with compressed air to remove any material precipitated in the
loop. The TENIRS loop functioned exactly as in trial 1, with only
one difference namely that the broth was supplied directly from
the reactor in trial 1 but from individual 1 L sampling bottles in
trial 2. Great care was employed to ensure that the circulating flow
rate was constant for the duration of each measurement.

2.3.1. NIR measurements

NIR data handling was done with the Aspect Plus software (Carl
Zeiss Jena GmbH, Germany), allowing communication with the
spectrophotometer CORONA (Carl Zeiss Jena GmbH, Germany).
Measurements were carried out in the range from 947 to
1533 nm with a resolution of 6 nm.

2.3.2. Acoustic signal measurements

The acoustic signal was obtained via an uniaxial piezoelectric
accelerometer Deltatron® 4396 (Briiel & Kjaer A/S, Copenhagen,
Denmark). The accelerometer was affixed (clamp-on) to a pipe sec-
tion, specifically designed for a.c. measurements. This device was
designed so as to facilitate a decrease of the inner diameter of
the loop from 20 to 6 mm, resulting in a turbulent downstream
flow pattern. From general acoustic chemometric experience, the
acoustic signal is significantly influencing the hydrodynamics of
the slurry; thus a change in solid content will show up as changes
in the effective slurry density, and viscosity, thereby allowing for
indirect multivariate calibration and parameter prediction (Esben-
sen et al., 1999; Halstensen et al., 2006).

The accelerometer was connected to a signal amplifying module
that delivered a constant current to the accelerometer while also
taking care of the signal adaption by amplifying and filtering the
signal before it entered the computer. The module was a PSA 100i
instrument (Detect, Porsgrunn, Norway). The recorded signal,
which originally was in the time domain, was transformed via a fast
Fourier transform to the frequency domain. Only the transformed
FFT power spectra were stored for chemometric data treatment.

For each sample container, four a.c. spectra consisting of 1024
time series samples (corresponding to a frequency of 0-186 kHz)
were recorded. Each spectrum was represented by an average of
one hundred individual scans of 4 ms duration.

2.4. Sampling
During the fermentation monitoring trial a 130 mL sample (pri-

mary sample) was collected from the bioreactor for reference anal-
ysis twice a day.

A bioreactor is physically a three-dimensional lot, which means
that special attention has to be paid to sample delineation and
extraction to ensure a representative sampling process. For this to
hold every part of the reactor volume has to have an identical,
non-zero probability of ending up in the sample. In practice this
either means that the sample must delimit a full cross section of
the entire reactor or pipeline, or be produced as a full-height col-
umn (Pitard, 1993; Gy, 1998; Esbensen and Minkkinen, 2004).
For physical three-dimensional bodies this is obviously not easily
realisable in the general case, e.g., Holm-Nielsen et al. (2007). In-
stead of this impasse, TOS prescribes the regimen of one-dimen-
sional sampling (process sampling), in which context it is
relatively easy to employ representative sampling of increments
and/or samples, see (Petersen et al., 2004; Petersen and Esbensen,
2005) for full details. Especially TOS is adamant that composite
sampling (using as many increments as possible, together making
up the sample) must be used for all two- and three-phase systems,
which by their nature are significantly heterogeneous (Petersen
et al., 2005; Petersen and Esbensen, 2005).

In this study, a device facilitating one-dimensional process sam-
pling from the re-circulating flow-through the TENIRS loop was
developed and placed immediately after the TENIRS measuring
cell. For sampling to be “structurally correct” (a TOS term used in
context to signify that all structural requirements for the physical
sampling to be representative have been fully verified and docu-
mented), the sampling device, has to be implemented in an up-
wardly flowing stream, to avoid flow segregation (Holm-Nielsen
et al., 2006). This could not be implemented in the current loop
configuration however, where it had to be placed in the horizon-
tally stream. To carry out effective composite sampling, the de-
vice’s 10 mL increment bottle was effectuated 13 times for each
composite sample. This also ensured that samples measured by
the TENIRS and the volume withdrawn for reference analysis were
pair-wise comparable, thereby allowing multivariate calibration
with an absolute minimum of sample-spectrum mismatch. Re-
cently this particular sampling device has been further character-
ized by Boland (2008), who showed that highly significant
sampling bias will develop if circulation speed and solids load
are unbalanced. More information regarding implementation of
TOS’ requirements for representative sampling in bio-slurry sys-
tems can be found in Mortensen (2006), Holm-Nielsen et al.
(2006), Esbensen and Mortensen (in press).

The composite primary samples were thoroughly mixed before
being subdivided into secondary samples having volumes suitable
for reference analysis in the laboratory. Subsampling was achieved
by vigorous shaking followed by fast pouring the amount needed
for reference analysis, into a beaker. This technique was employed
based on slurry sampling development work by Holm-Nielsen et al.
(2006), who demonstrated that this particular procedure produced
minimum contributions to the overall sampling error.

2.5. Raw materials

2.5.1. Manure

The raw material applied for starting up the anaerobic digestion
was a substrate mixture obtained from the daily running anaerobic
fermentors at Ribe centralised biogas plant (Ribe, Denmark), i.e.,
cattle and pig manure co-fermented with food waste, see Holm-
Nielsen et al. (2007). Before transport to the laboratory, the mate-
rial was screened through a 4 mm sieve and subsequently stored in
thermally isolated containers to avoid any adverse decrease in
temperature that might affect the microbial processes. The mate-
rial was placed in the experimental fermentors immediately after
delivery and the fermentation process was continued.

The raw material applied in trial 2 had the same origin as the
material used in trial 1. After delivery of the material, 3 x 14 spiked
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bottles were prepared containing the amounts of manure listed in
Table 1. Maize silage was added and the solution was stored in the
refrigerator until trial start-up. Before measuring, the bio-slurry
was heated to 53 °C to fully simulate the exact same conditions
as those pertaining to material coming directly from a thermo-
philic process.

2.5.2. Maize silage

The maize silage applied throughout both the active fermenta-
tion trial and the second experiment was obtained from a local
farmer (Niels Tobiasen, Ribe, Denmark). For trial 1 it was ground
into a particle size of 3 mm before being added to the manure. This
mixture was stored in the freezer until approximately 24 h before
usage, at which time it was defrosted and heated to the fermenting
operating temperature (53 °C). For trial 2, the maize silage was first
dried, obtaining a TS content of ca. 90%, and then ground into a uni-
form particle size of 2 mm before being added/spiked to the
manure.

2.6. Chemical analysis
The following chemical analyses were applied in trial 1.

2.6.1. Volatile fatty acids (VFA)

The volatile fatty acids content was measured using a GC Varian
3800 gas chromatograph (Analytical Instruments, Denmark) with a
Varian 25 m 0.32 mm ID column (Cat. No. CP 7488 WCOP fused sil-
ica coating FFAP-CB). The carrier gas was He at constant pressure:
6 psi. The temperature step-program was: 120 °C for 2 min, rate 20
until 165 °C, hold for 15 min followed by rate 20-200 °C and hold
for 3 min.

Two milliliters of each sample was mixed with 250 pl HCl
4 M and 2.0 mL Internal Standard solution (2,2-dimethylbutanoic
acid) and the mixture was centrifuged in a Medifuge (VWR & Bie
& Berntsen, Denmark) at 5000 rpm for 5-8 min. The supernatent
was withdrawn and filtered through a 0.45 pum acetate filter and
injected to the GC. The concentrations of acetic, propanoic,
iso-butanoic, butanoic, iso-valeric, and valeric acid were deter-
mined. Mass-reduction down to 2 mL can be considered repre-
sentative following the procedures described in Holm-Nielsen
et al. (2006).

2.6.2. Total solids/volatile solids

Total solids are the fraction of the sample total wet weight from
which water has been evaporated in an oven at 105 °C until stable
rest mass. The total volatile solids were determined as the differ-
ence between total solids and the weight of the ashes from the
sample fully oxidised in a muffled furnace at 550 °C for 2 h.

2.7. Data processing

For both experimental trials, chemometric multivariate calibra-
tions using partial least square regression (PLS-1) were performed
for quantitative determination (prediction) of the relevant
components.

In a PLS-1 model the goal is to obtain a multivariate model,
where the structural part relevant for the X-Y regression relation
and the “noise” part are separated. By doing this the effective
dimension is often severely reduced (due to redundancies and cor-
relations); the regression relationship is built between the inde-
pendent X-matrix and the dependent Y-vector, based on this
reduced number of latent variables (PLS components). In this case,
the NIR spectra or a.c. frequencies formed the independent data
matrixes (X) which were to be calibrated against the dependent
reference analysis (y): the concentration levels for TS, VS, or VFA,
respectively.

The PLS-1 algorithm projects the X-spectra onto the direction
with the largest [X,Y] covariance, obtaining a vector containing
so-called loading-weights, w, which represent this dominant PLS
component directions in the X space. The original samples (objects)
are projected on to this new set of axes thereby obtaining object
scores T and U and variable loadings W and Q. The scores represent
the original measurement data in the new PLS coordinate system,
while the loadings-weights can be viewed as a transformation be-
tween the old and the new coordinate systems. After determina-
tion of the first PLS component, the second is calculated from
updated version of the [X,Y] data, obtained after elimination of
the first component. The second PLS component direction repre-
senting the direction of second largest covariance [X,Y] and simi-
larly for the third. Full chemometric details of the PLS approach
can be found in Martens and Naes (1991), Esbensen (2006).

For evaluating the prediction ability of the resulting regres-
sion models different validation methods were applied, test-set
and leave-one-level-out segment cross validation following the
paradigm delineated in Esbensen (2006). Test-set validation
was carried out by building the model on a training data-set fol-
lowed by validation on a completely new independent test-set,
thereby obtaining the most realistic measure of the model’s fu-
ture prediction abilities. In the case, where a limited number
of samples did not allow for separate calibration and validation
data-sets, leave-one-level-out cross validation was applied, i.e.,
a complete concentration level was removed from the calibration
set at a time and a model was created based on the remaining
samples; subsequently this model was used to predict the con-
centrations of the left-out samples. This procedure was repeated
for all of the available concentration levels; for the small sample
case, leave-one-level-out cross validation is an acceptable,
though not perfect approximation to the optimal test-set valida-
tion procedure, Esbensen (2006).

As a means of evaluating prediction performance, and simulta-
neously finding the optimal number of effective PLS components, a
measure of the average prediction error; the root mean square er-
ror of prediction (RMSEP) is calculated

RMSEP — E(ypredicted - yreference)2
n

where y is the dependent variable and n is the number of samples.
Test-set RMSEP is a very reliable measure of the average error
encountered when using the model for prediction of future, similar
samples. The RMSEP statistic must be as small as possible for a
model to be performing “optimally”.

For model evaluation, also the “ratio of standard error of perfor-
mance to standard deviation” (RPD) statistic was applied, which
compares the RMSEP with the range of the calibrated parameter
measured as, the standard deviation (SD) of the values obtained
in the reference analysis

SD
RMSEP

Generally, models with RPD above 2.5 are considered accept-
able, while an RPD of 10 is excellent (Williams and Norris, 2001).
These statistics are particularly useful in comparing the prediction
abilities between alternative models.

In trial 1, total and volatile solids, total volatile fatty acids and
the individual volatile fatty acids: acetic, propionic, iso-butyric, bu-
tyric, iso-valeric, valeric acid were calibrated for. The first model
consisted of triplicate reference analysis for each spectrum and
was used for the purpose of outlier detection only. After outlier
exclusion the data were averaged, thereby creating a new data ma-
trix for the final model containing only one spectrum per sample.
For evaluating the model, test-set validation was applied, i.e., using

RPD =
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an independent second data-set: the samples of which were taken
12 h after each training data-set sample.

In trial 2, models for total solids based on the NIR and a.c. mea-
surements were carried out. For each sample four spectra were re-
corded, which were averaged before modelling. For the NIR model
no pre-processing was necessary, whereas a full (combined offset
and amplification) multiple scatter correction (MSC) of the a.c.
spectra (X) and logarithmic (In) transformation was necessary to
linearize the y data. MSC is applied to spectra to compensate for
generic multiplicative and additive effects, for example caused by
interference in solid-liquid mixtures and similar (Martens and
Naes, 1991; Esbensen, 2006). In both cases in trial 2 leave-one-le-
vel-out segment cross validation was applied.

Data processing was carried out using the UNSCRAMBLER soft-
ware version 9.7 (Camo, Oslo, Norway).

3. Results and discussion
3.1. Anaerobic digestion

The anaerobic digestion (trial 1) lasted for 42 days during which
samples for reference analysis were collected twice a day. During
the first 9 days the process was stabilised by feeding with manure
only, after which a bio-slurry consisting of manure and maize si-
lage was applied.

During this anaerobic digestion a gradual build up of a maize
silage layer on the top of the liquid layer was observed. As the
sample extraction took place only from the liquid layer at reactor
mid-height, this resulted in a significant total sampling error with
respect to the full bioreactor because these samples were not a
measure of the complete system. Ordinarily this would disqualify
this type of sampling, but because both the TENIRS and the sam-
pling device were placed on the recirculation loop, the material
measured on-line and the sampled reference material were in fact
pair-wise strictly matched up and thus full comparable. For this
reason these sample-pairs will thus facilitate multivariate calibra-
tion in a fashion acceptable for the present feasibility study. Mor-
tensen and Bro (2006) discuss this situation in detail with a
broad carrying over potential for all bio-conversion PAT monitor-
ing scenarios.

For all samples the total and volatile solid and the fatty acid
content was determined as described.

3.1.1. Total and volatile solids

The TS span obtained in the liquid phase during trial 1 was
approximately 2.2%; from 4.4% to 6.6%. From Fig. 1 it is seen that
the trial could be divided in three different intervals. From day 0
to 13 there was a steady increase followed by a constant level
from day 13.5 to 24, after which an increase was observed again.
On day 13.5, due to an overall decrease in pH from 8.5 to 7.4, it
was decided to stop the maize silage feed, thereby trying to sta-
bilise the process by feeding with manure only. This was done
until day 15.5, where the normal feeding level was resumed,
making this a possible explanation for the constant level. The
constant level was maintained only until day 24, indicating that
the maize silage added after day 15 was either degraded to biogas
or did not stay in the liquid phase (swim layer). The steep in-
crease in the total solid content from day 24 can likely be ex-
plained by the fact that the impeller and the swim layer were
approaching each other, gradually releasing more solids into the
liquid phase again.

In any event the sole purpose for the digestion experiment was
to facilitate as wide a span in the concentrations of the target
parameters (y) as possible in order to evaluate the potential for
NIR monitoring.
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Fig. 1. Trend in total and volatile solid in trial 1.

The overall trend in the volatile solids (VS) followed the same
trend as that of the total solids.

3.1.1.1. Multivariate calibration. For both the TS and VS in trial 1
multivariate calibrations with test-set validation were carried
out. For calibration, the samples collected in the morning were ap-
plied, while samples collected in the evening constituted the test-
set. Applying only one PLS component, good models (RPDts = 5.0
and RPDys = 5.1) were obtained for both TS and VS, see Fig. 2. For
the TS model it was decided to exclude one sample from the
test-set, as it was situated outside the calibration range. In the
VS model two samples were excluded for the same reason. One
of the samples excluded was the same as the one excluded from
the TS model, due to a too low TS%, thus indicating an analytical
error in the y-reference.

From these models it is evident that it is possible to monitor the
TS content in a matrix as complex as manure and food waste with-
in the range 4.6-6.5% TS and 3.2-4.5% VS, respectively. From Fig. 2
it is conspicuous that the VS model is almost gliding into the TS
model, thus indicating that a global model spanning from 3.2% to
6.5% would be possible. The normal operating range in typical Dan-
ish biogas plants span 6-10% TS. The measurements therefore need
to be extended to these higher levels and incorporated, to be able
to use the model for future full-scale on-line monitoring. For a new
TS model covering the entire range see the models obtained from
trial 2.
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Fig. 2. PLS models (trial 1) applying one component: (O) total solids model and (1)
volatile solids model. The line is the target line. In both models no pre-processing of
the data was necessary.
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3.1.2. Volatile fatty acids (VFA)

It has been debated which VFAs are the most important to mon-
itor during the anaerobic digestion, and which is the best measure
of process instabilities (Boe, 2006). In this anaerobic digestion (trial
1) it was decided to measure the largest contributors to the total
VFA concentration; acetic and propionic acid as well as some smal-
ler contributors; butanoic, iso-butanoic, valeric, and iso-valeric
acid. The results are seen in Fig. 3.

In Fig. 3 one observes the significant large individual contribu-
tions to the analytical results from the total sampling errors, de-
spite the care invested in the experimental sampling (cf. Section
2.4). It this context, it is gratifying how it is fully possible to delin-
eate coherent overall trajectories for the individual process param-
eters (smoothed curves). Many biotechnological systems that do
not address the inherent sampling issues in a similar strict fashion
exhibit analogous, though much larger sampling errors still; for a
comparison see e.g., Holm-Nielsen et al. (2006 and references
herein).

From the beginning to the end of the anaerobic digestion an in-
crease from 1.3 to 22.3 g L~ in the total VFA was observed, Fig. 3A,
indicating process instabilities due to uncoupling between the
hydrolytic and fermentative step on one side and the acetogenic
and methanogenic step on the other.

For the first 13 days the tendency in the total VFA concentration
could be split in two. The first 8 days a logarithmic increase was
observed followed by a linear increase until day 13. Looking at
the individual fatty acids, this corresponds to the trend seen in
the acetic acid concentration (Fig. 3B). The smaller increase in
the total VFA after day 13 was a result of the complementary fatty
acids that increased in concentration (see Fig. 3B and C) until day
21, where fluctuation around a stabilised level was observed. How-
ever, for the butanoic acid this stabilisation lasted until day 28
when an increase was observed.

Throughout the process the VFA levels observed were high for
a biogas process. The normal operating concentration in Danish
biogas plants for a normally functioning process is from 5 to
7 gL '. Above 7 g L! instabilities very soon start occurring. Else-
where a limit as low as 1.5gL~! has also been found as an
approximate limit above which instabilities occur (Angelidaki et
al,, 2005). In the present case, however, a gas production was ob-
served throughout the experiment indicating that no process fail-
ure occurred (gas yield data only available for less frequent
intervals during the trial, not shown). This was supported by
the evaluation of the propanoic acid concentration, as this is
known to be the most thermodynamically unfavourable process
parameter, being affected by the hydrogen level before any other
VFA, i.e., any process instability would be seen for this parameter
first (Pauss and Guiot, 1993). Looking at the present curve, the
concentration increased steadily during the complete trial, there-
by not supporting any induction of an organic overload. This
deviation from earlier experimental and published data indicates
that the VFA level, where inhibition and process collapse occur,
might be process dependent. In the present process no large
addition of ammonium-containing material occurred, which re-
sulted in a favourable C/N relationship throughout the entire
process, thus allowing a gas production even under high VFA
conditions.

3.1.2.1. Multivariate calibration. For all VFA models in trial 1 differ-
ent pre-processing techniques of the NIR data matrix, see Fig. 4 for
raw spectra, were tried out. A Savitzky-Golay with first order deriv-
atives, employing a three-point smoothing window of a second or-
der polynomial was found to give the best models.

In Table 2 the results of all VFA models are summarized. For
these results, outlier exclusion from both the calibration and the
validation set (test-set) was employed where necessary. Outliers
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Fig. 3. Trial 1 biomass conversion process parameters: (A) overall VFA concentra-
tion, (B) acetic, propionic, and butyric acids and, (C) iso-butanoic, iso-valeric, and
valeric acid.

excluded from the test-set were all values outside the limits of
the calibration range, making their exclusion both necessary and
acceptable. Calibration set outliers most likely represent samples
with excessive total sampling errors, cf. Boland (2008). All outlier
deletions represent only very low fractions of all available samples,
Table 2.

The models obtained had slopes between 0.83 and 0.92, i.e., a
fair to good prediction accuracy was obtained, thus indicating that
these important parameters can be satisfactorily predicted by
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Fig. 4. Raw NIR spectra from trial 1.

on-line NIR spectroscopy. This was further substantiated by calcu-
lation of the RPD value (all RPD values are >2.5).

3.1.2.2. Discussion - future prediction possibilities. During anaerobic
digestion in trial 1, NIR spectra were collected every hour, of which
only two per 24 h were used in the modelling and validation. To
illustrate the strength and possibility of future prediction applica-
tions of the models, as an example the acetic acid model was used
for prediction of the acetic acid concentration in the broth for the
remaining NIR spectra. The results are seen in Fig. 5.

From this illustration it can be seen that the dominant contribu-
tion to the total sampling error is associated with the Y (reference
data). The obtained model was unable to estimate the concentra-
tion of acetic acid in the first four samples, i.e., samples with
concentrations below approximately 4.2 ¢ L~*. This is fully under-
standable, however, as these were in fact excluded as outliers in
the model, and thus situated outside the models validation range.

For the higher concentrations - on statistical average - the
smoothed curve follows the expected process trend completely.
Around day 27-28.5 a sharp decreasing tendency in the predicted
curve was observed, which was not clearly observed from the sam-
ples collected. However, this cannot be explained by a failure in the
model as the trend both before and after this excursion is correct,
i.e., it is likely that a decrease in acetic acid actually took place. This
illustrates the strength of NIR for monitoring and control purposes;
as such a tendency would not have been noticed as quickly apply-
ing physical samples only.

The purpose of the present model feasibility studies is to mon-
itor the overall process trend as accurately and precisely as possi-
ble. This has been amply demonstrated. To obtain stronger
models, broadening the calibration range of the model by including
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Fig. 5. Acetic acid trend during trial 1 predicted by the model (-) and the
concentration measured by reference analysis (O). Predicted curvature breakage
due to a computer malfunction.

more samples with the levels needed, will undoubtedly lead to im-
proved results. It is also essential to improve on the sampling de-
vices employed so as to reduce the prediction imprecision
observed. While in many earlier studies such sampling errors were
predominant, all necessary principles and experience needed are
now available, Boland (2008), Petersen and Esbensen (2005),
Holm-Nielsen (2008), Esbensen and Mortensen (in press).

3.2. Spiked anaerobic digestion

The spiked anaerobic digestion trial (trial 2) consisted of an at-
line experiment containing 14 concentration levels spanning an
augmented solid matter (TS) concentration range from 4.8% to
11.4%. For each level, three dilutions containing the same nominal
solid content were prepared, totalling 42 dilutions, measured in a
randomized order. For each sample container four a.c. and NIR
spectra were recorded.

3.2.1. NIR model

For NIR measurements in trial 2, a PLS-1 model with segmented
cross validation, leaving one concentration level out at a time was
applied. For this model no pre-treatment of the data was neces-
sary. The optimal number of PLS components for describing the
relation between the NIR and the total solid was found to be one,
where 100% of the information recorded by the NIR was describing
98% of the variation in the total solid, i.e., the total spectra from
947 to 1533 nm contained no noise and was important for model-
ling the total solids in the manure samples. A description of the
model is seen in Table 3.

During data analysis a parallel displacement was observed in
the spectra, which was originally reduced by a full MSC. This

Table 2
PLS-1 models for volatile fatty acids in trial 1
Components Outeaip Outese Slope i RMSEP RPD

Acetic acid 3 (92% X, 89% Y) 2 (6%) 5 (15%) 0.89 0.89 913 3.1
Propionic acid 3 (92% X, 91% Y) 1(3%) 3 (9%) 0.89 0.91 206 34
Butanoic acid 3 (92% X, 92% Y) 0 3 (9%) 0.87 0.92 400 3.6
Iso-butanoic acid 3(93% X, 88% Y) 3 (9%) 6 (18%) 0.83 0.89 43.8 2.8
Valeric acid 3(93% X, 90% Y) 2 (6%) 3 (9%) 0.92 0.92 434 3.5
Iso-valeric acid 3 (92% X, 89% Y) 2 (6%) 2 (6%) 0.86 0.89 76.4 3.1
Total 3 (92% X, 90% Y) 2 (6%) 3 (9%) 0.87 0.90 1594 33

“Components”: number of PLS components applied in the model, numbers in brackets are the explained calibration and the residual validation variance; “Outc,;,": number of
outliers excluded from the calibration set, numbers in brackets are the corresponding percentage; “Outs": number of outliers excluded from the test-set, numbers in
brackets are the corresponding percentage; “RMSEP”: root mean square error of prediction; and RPD: ratio of standard error of performance to standard deviation.
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Table 3
PLS-1 models for total solids for NIR and a.c. in trial 2

Components Out Slope i RMSEP RPD
NIR 1 (100% X, 98% Y) 0 0.98 0.97 0.36 5.7
ac 3 (79% X, 93% Y) 7(17%) 085 085  0.077 26

“Components”: number of PLS components applied in the model, numbers in
brackets are the explained calibration and the residual validation variance; “Out”:
number of outliers excluded, numbers in brackets are the corresponding percent-
age; “RMSEP”: root mean square error of prediction; and RPD: ratio of standard
error of performance to standard deviation.

pre-treatment, however, only resulted in a less good model, i.e., it
was evident that the original model (RPD =5.7) was partially
caused by the parallel displacement in the spectra that could be ex-
plained by the decreased transparency of the samples as a function
of increasing total solid concentration.

3.2.2. Acoustic chemometric model

The a.c. spectra obtained during trial 2 were pre-processed by a
full-spectrum MSC (both additive and multiplicative corrections
were employed) and the y-variable (% TS) was In-transformed be-
fore the model was obtained. Several other pre-treatments were
tried, none of which resulted in better models.

Calibrating this model, 7 of the original 42 individual measure-
ments had to be excluded as outliers. Two of the seven outliers can
be explained by sample preparation deficiencies at the beginning
of the experimental series. Of the remaining five, four belonged
to high concentration levels which progressively showed more
serious problems regarding a stable flow situation as the TS in
the samples increased to well-nigh extreme levels. None of these
outlier measurements represent a full concentration level, how-
ever, for which reason the total concentration range still spanned
all 14 experimental levels; thus there was no significant impair-
ment of the possibilities for multivariate calibration.

For describing the relation between the a.c. and the total solid a
three component model applied 79% of the X-variance for explain-
ing 92% of the total Y-variance, i.e., 21% acoustic vibration variance
over 14 concentration levels was not correlated with the % TS range.
From the loading-weights (not shown) it was evident that fre-
quency range from 0 to 109 kHz was the most influential. The mod-
el obtained had reasonable good accuracy and precision results, see
Table 3. The RPD, however, was only marginally on the acceptable
side, indicating that the prediction ability must be improved before
applying the model for real-world system predictions.

There are many optimisation options for acoustic chemometrics
that could not be evaluated in this first pilot study, first and fore-
most a sub-optimal sensor deployment location (Esbensen et al.,
1999). As a means of searching for improved results different sen-
sor locations should be tried out. The most obvious alternative
locations would be placing the sensor directly on the NIR measure-
ment cell itself, as the associated complex cross section compensa-
tions between pipe and measurement cell, necessary for NIR to
work, is bound to affect the flow regime of the liquid. Different
locations along the pipe line, both before and after the NIR cell,
should also be tested following Halstensen (2001). Furthermore
the acoustic signal might also benefit from advanced designed
changes in pumping speed. Kupyna (2008), in a recent thesis, ex-
plores many advanced options for zooming in on effective, opera-
tive X-signal characteristics related to peak-shifts as a function of
the solids load in the slurry being forced through the acoustic
chemometrics orifice.

4. Conclusions

To significantly increase energy supply from local biomass con-
version facilities in the near future, so-called advanced biofuels

applying dedicated energy crops are currently being developed.
The addition of maize silage to conventional anaerobic digestion
of cow and pig manure constitutes one of these new options. From
the feasibility results obtained in this study it is evident that by
spiking the anaerobic digestion with maize silage, a favourable C/
N ratio can be obtained, allowing biogas production under unusual
high fatty acid concentrations. Production under these circum-
stances is desirable, as it causes a high gas yield. However, this is
very much a balancing act, where addition of maize silage has to
be strictly monitored, as a too high concentration may result in
process instabilities and system breakdowns if no countermea-
sures are taken immediately. As part of ongoing developments,
the focus is therefore on optimisation via introduction of reliable
process monitoring, especially the concept of process analytical
technologies, PAT.

A spiking trial showed that NIR can be satisfactorily applied for
chemical concentration monitoring of VFAs: acetic, propionic,
butanoic, iso-butanoic, valeric, and iso-valeric acids in the complex
matrix associated with conventional anaerobic digestion of bio-
mass. This trial also showed a clear potential for effective monitor-
ing of TS, a key physical process parameter.

A second trial, where both NIR and acoustic chemometrics were
investigated confirmed that both methods can in fact be applied for
TS monitoring in manure-based biomass conversion. Looking at the
RPD values, the model obtained by NIR was clearly better predict-
ing future samples than the current a.c. model. This pilot study
outcome is likely to be altered by a change in the a.c. sensor loca-
tion however. Only one location was included here, while from
general acoustic chemometrics experience it is seldom the case
that an optimized sensor location is to be found already in the pilot
study stage. We were here restricted to report only the very first
results within an acceptable range, while the work of optimizing
acoustic chemometrics as a routine PAT modality in the bio-con-
version industry has only begun. Much challenging work remains
following these first positive forays.

These findings have recently been substantiated by subsequent
studies a.o. regarding NIR and acoustic chemometrics monitoring
from laboratory-, over pilot- to full-scale bioreactor systems,
Holm-Nielsen (2008).
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Abstract

Fast, reliable field or intake estimates of carbohydrate and lignin compositions are necessary for
optimal straw characterization at the first stage of 2G bioethanol production. Near Infrared
spectroscopy was applied for quantifying the concentration of cellulose (glucan), hemicelluloses
(xylan, arabinan) and lignin in chopped wheat straw. Field samples were collected from sites in
Denmark, from which 44 were selected. Alternative pre-processing’s were evaluated; 1% and 2™
order derivative spectra (Savitzky-Golay) and Multiplicative Scatter Correction (MSC) was
found optimal for the carbohydrates and lignin respectively. Full spectrum PLS-1 regression
models resulted in less good prediction abilities, than the models based on wavenumber variable
selection applying a Jack-knife approach. The present first foray models were validated using 4-
segment cross validation leading to fair to good accuracies (slope 0.76-0.90) and fair precisions
(r* 0.77-0.83) for the carbohydrates. The lignin model also showed a fair accuracy (0.84) but a
distinctly less good precision (0.72). The carbohydrate models were furthermore test-set
validated, resulting in an accuracy of 0.85-0.94 and precision estimates 0.86-0.87. This
corresponded to a relative RMSEP in the interval 8 -10 % which is satisfactory for a feasibility
study, but the models should be optimized further before application in a routine monitoring
context.

Key-words Near infrared spectroscopy, multivariate analysis, wheat straw, 2™ generation
bioethanol




Introduction

Due to increasing fuel demands and a need to decrease dependence on fossil fuels and green-
house gas emissions, there is an increasing attention on biofuels and other renewable energies
(solar, wind power etc.). As a case in point the target for incorporation of biofuels to replace
fossil fuels in EU has recently been set to 10% by 2020." Current bioethanol production facilities
are therefore in need of both increased efficiency as well as significant quantitative growth. The
plants that are mostly used are for 1% generation bioethanol, where biofuel is produced directly
from sucrose or starch in cereal and tubers. However, the reduction of green-house gas emissions
from 1% generation bioethanol is limited compared to the reduction from 2™ generation
bioethanol. By producing 2™ generation bioethanol i.e., using lignocellulosic biomass for biofuel
production it is also avoided to use biomass which can be use for food.” Agricultural residues are
abundant around the world and are becoming important as raw materials for bioenergy
production. Wheat straw, rice straw, and bagasse are the most well known examples.’

In Denmark wheat straw is mostly combusted in coal-fired Combined Heat and Power plants
(CHP). However it is also suitable as a raw material for the 2™ generation bioethanol production.
In a process called the Integrated Biomass Utilization System (IBUS), a combination of CHP and
production of bioethanol, is currently being investigating. In this process the raw material is first
converted to a fermentable substrate by applying steam and by adding selected enzymes. The C6
sugars from cellulose are now fermented to bioethanol, the C5 sugars from the hemicelluloses
are used as a feed molasses, and the lignin residue is applied as a solid biofuel and used for
generating process energy and a surplus of heat and power. The IBUS process is at present close
to commercial reality.’

A way of optimizing this process is by a more comprehensive characterization at the CHP intake,
as the efficiency and quality is very much raw material dependent. One promising way to
optimize this process is thus by optimal control of the feedstock. Typically at a CHP the moisture
content is being measured only, this however tells nothing about the content of fermentable
sugars, and thus the real quality of the bales.

Different classical methods for carbohydrate determinations, for example high liquid
performance chromatography (HPLC), have been reported.4 HPLC analysis on wheat straw is
laborious and slow, and therefore not a real solution for on-line monitoring of an industrial
processes.

In the literature different methods that are principally applicable as at- or on-line monitoring
modalities have been investigated for other types of biomasses, e.g. barley, foliar, flax. One of
these modalities is near infrared spectroscopy (NIR). A selection of the raw material upon which
NIR have been applied are listed in Table 1. For foliar and “forages and byproducts” a
comparison between NIR and mid infrared spectroscopy was done. As seen in Table 1 the
potential of applying NIR have been investigated for a number of different constituents in




lignocellulosic materials, amongst others cellulose, hemicellulose, and lignin. This implies that it
may also be applicable for wheat straw characterization.

Table 1: Different application fields of NIR on various biomasses reported in the literature.
DTG: Derivative thermogravimetric analysis, ADF: Acid detergent fibre, NDF natural detergent

fibre.

Raw material Application

Components

Rice straw® Quantitative determination

Ground barley’ Analysis for fuel ethanol
production

Foliar'® Alternative to wet lab
analysis

Cornstover''  Alternative to wet lab
analysis

Flax Fibres' Assessing  physical and

chemical characteristics

Cellulose, hemicellulose, lignin, moisture,
total ash, and acid insoluble ash

Moisture, starch, B-Glucan, protein, oil and
ash

Mineral nutrients, carbon, fibre constituents
(ADF, NDF, cellulose and lignin)

Glucan, xylan, arabinan, lignin, protein,
acetyl

AlRflow, DTG, fibre strength, NDF, ADF
and hemicelluloses

Forages and Quantitative determination Fibres and protein, nitrobenzene oxidation
byproducts' products of lignin, six measures for lignin
content
Silage'* Analysis  of  different Dry matter, crude protein, different acids, pH
components

The present work assesses the feasibility of developing multivariate models from NIR spectra to
be applied for quantification of cellulose (glucan), hemicelluloses (xylan, arabinan) and lignin in
wheat straw. Several alternative spectral pre-processing combined with multivariate calibration
are investigated, together with the possible merits of variable selection®, while taking careful aim
at proper validation of the feasible models.’

Material and Methods
Raw materials

A total of 95 samples were collected all over Denmark in 2006; 65 originated from south
east/west Jutland and Funen while 30 originated from the island of Zealand.

The 65 sample set were from the harvesting period 2003 — 2006, with the 2006 samples
constituted the majority. These samples were collected from fields and barns and hence called
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field samples. All samples were accepted independently of the straw quality, resulting in freshly
cut straw of the fields to almost spoiled straw that had been stored while it was still wet and thus
subject to microbial degradation. This range in quality was deliberately accepted, as the straw
quality is different from year to year. Furthermore it was hypothesized that samples subjected to
microbial degradation may have lower sugar content, thus producing a potentially larger
calibration span for the sugar concentrations. The overall straw size ranged from a few cm to
approximately 25 to 30 cm.

The 30 Zealand samples were obtained from Kege Bio pellets factory (Denmark). They were
sampled from the bio pellets production line over a 30 day period, hence called industrial
samples. The material in the production line was from regional farmers, all harvested in 2006.
The composition of these samples constituted a mix of wheat and barley straw; the more precise
compositional distribution is unknown. Of the 30 samples eight distributed randomly over the
time period were selected and further processed. The overall cut straw size was here 0.5 to 2 cm.

In all cases it was decided to apply the whole straw (stem and leaves)
Sampling

The overall sampling procedure applied, can be divided in four steps, see figure 1.

Field sample Industrial sample

| Pss

Size reduction
(2-5 em)

i
1* long pile reduction step

4 - & increments per composite sample

l

Sample Sample
555

FRandom selection

size reduction to 1 mm particles

1

1

2" long pile reduction step 755

5 increments per composite sample

+ T

I vial packing | [massreduclionl

Strong acid
% hydrolysis ass

Reference analysis

Figure 1. Sampling procedures as applied for mass reduction of samples. PSS: primary sampling
step, SSS: secondary sampling step, TSS: tertiary sampling step, QSS: quaternary sampling step.




For the feasibility purpose a grab sampling approach was found acceptable at the primary
sampling step, as maximal variation between samples was of prime interest (the primary goal
being a maximally spanning multivariate calibration database). However all subsequent mass
reduction and sample preparation steps were carried out in full compliance with the Theory of
Sampling (TOS)"*'*!" to ensure representative sub-samples for the different analytical steps
delineated.

The first size-reduction step was only applied to the field samples, as it was carried out to obtain
a uniform straw size of 2 cm. The industrial samples were already cut at the production line. The
size reduction was done by a garden shredder (Bosch AXT 1600 HP). Between each sample the
garden shredder was vacuum-cleaned and rinsed with compressed air, to avoid cross
contamination.

The second sampling step applied the so-called long pile method. Due to the physical properties
of the material (static electricity) special care had to be taken to avoid loss of material (Incorrect
Preparation Error, IPE). Therefore a right-angle gutter with a length of 1 m was fabricated, figure
2. The material to be sub-sampled was placed into the gutter, while it was in an up-right position,
by moving the delivering implement from one end to the other several times. This method is
known as “bed-blending” and used by the industry in need of efficient pre-mixing.'>'® The gutter
was then tilted 90 degrees and a sub-sample was withdrawn with a specially designed scoop
ensuring the withdrawal of a total, planar-parallel cross section of the pile. The length of the
scoop is 13 cm and the width 15 cm, the latter corresponding to 15% of pile length. The material
was poured back into the original storage container, and the procedure was repeated until the
primary sample was split in two approximately uniform sub-samples; an A and a B sample
respectively. For further analysis sample A or B was chosen at random.




Figure 2. The gutter fabricated for mass reduction of primary field samples. A) Schematic view.
B) Increment extraction from the gutter during secondary sampling step.

The resulting sub-sample was now further size reduced to a particle size of 1 mm, in a mill; Foss
Cyclotec™ 1093 (Foss, Denmark).

Finally the material for NIR and strong acid hydrolysis was further sub sampled by applying the
long pile method once again, but this time at a distinctly smaller scale with a 50 % reduced gutter
length. The scoop applied had a length of 13 cm and a width of 0.5 cm, the latter corresponding
to 1 % of the total pile length.

For NIR approximately 2 x 5 g wheat straw was extracted as composite samples and packed
directly in the NIR vials. For reference analysis 2 g samples was withdrawn, also applying
composite sampling and packed in plastic bags. From these bags 4 x 0.16 g of material was
extracted for reference analysis. Intentionally the material should have been poured out of the
bags for further “long-pile” reduction, thereby obtaining the 0.16 g pr analysis. The material was
however static electric and it was not possible to pour everything from the bag. Furthermore a
fraction of the material poured out was lost. It was therefore decided to extract the 0.16 g of
material directly from the bag, acknowledging that this procedure was not in complete
compliance with TOS. However these 0.16 g increments were obtained by composite sampling,
with thoroughly mixing between each increment. Any residual sampling error from this
procedure will show up as an inflation of RMSEP in the final calibration models and will thus be
fully accessible for quantitative assessment.




Dry matter and ash

The dry matter content was determined by weighing and drying in a Mettler Toledo moisture
Analyzer HR83, Halogen (Mettler Toledo, Denmark).

For ash determination 0.5 g of material was weighed directly in a pre-weighed crucible and
incinerated at 550°C for 3 hours. Doublet determinations were carried out.

Carbohydrate analysis

To quantify sugar polymers in wheat straw, a two step acid hydrolysis was carried out. In the
first step 1.5 mL 72% (w/w) H,SO4 was added to 160 mg dry matter and incubated at 30°C for 1
hour. In the second step the samples were diluted with 42 mL milipore water and autoclaved at
121°C for 1 hour. The hydrolysates was filtered and analysed for sugars on HPLC. The Klason
lignin content was determined as the weight of the dried filter cake subtracted the ash content.
The concentration of sugar monomers were measured by HPLC.

The recovery of D-glucose, D-xylose, and L-arabinose was determined by standard addition of
sugars to samples before autoclavation.

HPLC analysis

The amount of sugar monomers; glucose, xylose, and arabionse were determined after separation
on a HPLC-system (Shimadzu) with a Rezex ROA column (Phenomenex) at 63°C with a flow
rate of 0.6 mL'min™". As an eluent 4 mM H,SO,4 was applied. The detector used was a refractive
index detector (Shimadzu Corp., Kyoto, Japan)

Near infrared spectroscopy

NIR spectroscopy was based on, a Quant FT-NIR instrument with an InAs detector (ABB, Q-
interline, Denmark). The instrument was fitted with a powder sample holder, rotating the vial
while collecting 128 scans, which was averaged as the final spectrum recording/storage for each
sample. By this approach an average of the material placed peripherally in the vial was obtained.
For each primary sample approximately 2 x 5 g of the 1 mm particles was packed, thereby basing
the final analytical results on duplicate measurements. Alternative resolutions of 8 cm™ and 32
cm” were investigated in this study based on previous experience. NIR spectroscopy was carried
out in the range 4,000 — 10,000 cm™. Before measuring a background spectrum was recorded on
a blank PTFe vial.

Data Processing

For quantifying concentrations of glucan, xylan, arabinan, and lignin from the NIR spectra,
chemometric multivariate calibrations using Partial Least Square regression (PLS-1) were
performed.




In PLS-1 modeling the goal is to separate the structural part of the spectral information which is
relevant for describing the X-Y regression relation from the “noise” part. As the regression
relationship is built directly between the independent X-matrix and the dependent Y-vector, the
effective model dimension is often severely reduced compared to the initial number of
wavelengths recorded, i.e., a model applying only a few latent variables (PLS components) is
usually obtained. In the present study the NIR spectra formed the independent data matrix (X)
which was calibrated against the dependent reference analysis (y): the concentration of the
analytes. Full chemometric description of this method can be found in elsewhere.”’”'*%°

In the first modeling step the effect of alternative pre-processing techniques on the X matrix
were investigated for all analytes:

Multiplicative Signal Correction (MSC)
- Full correction (both alfa and beta correction)
- Alfa correction
- Beta correction

Savitzky — Golay

- 1" derivative

- 2™ derivative
Description of these techniques can be found elsewhere. >62"2%%
Esbensen 2006, recommends that for this type of restricted comparative purpose, cross-
validation may be used; in fact, for this specific purpose (only), cross-validation is optimal. Due
to the relative small number of samples in the feasibility study, full cross-validation was used in
this context.

For each analyte a Jack-knife approach was applied for variable selection in the X-data, thereby
estimating the wavenumbers relevant for optimizing the X spectral interval w.r.t. maximal
correlation to the variation in the Y-vectors. ***°

For evaluating the prediction ability of the resulting regression models, different validation
methods were compared; 4-segment cross validation vs “test-set” validation. Cross validation
was applied both in model training and calibration, while the “test-set” was used in the final
validations exclusively. The test-set, strictly speaking, was not a true test-set as the samples had
also been applied in the X-variable selection step. It however served the purpose of the most
stringent testing of the prediction ability of the final NIR models in a similar sense, and was the
best possible approximation to a real test-set validation procedure. A true test set should have
been based on new field and industrial samples exclusively.




For evaluating the models prediction performance and simultaneously finding the optimal
number of effective PLS components, a measure of the average prediction error; the Root Mean
Square Error of Prediction (RMSEP) was calculated:

n
Z (Yi_ predicted Yi_ reference )2
RMSEP = |-=

n

where y is the dependent variable and n is the number of samples. Test set RMSEP is a reliable
measure of the average error encountered when using the model for prediction of future, similar
samples, Esbensen 2006. The RMSEP statistic must be as small as possible for a model to be
performing “optimally”.

Furthermore a relative % RMSEP measure was calculated allowing comparison of RMSEP to
the calibration interval for the given analytes;

RMSEP
ymax - ymin

% RMSEP =

For all samples, duplicate measurements NIR were carried out. Before building the calibration
models these were assessed in a Principal Component Analysis (PCA) and spectral outliers in the
X-space deleted. In the calibration and validation model, all non-deleted duplicates were
subsequently averaged.

Data processing was carried out using the UNSCRAMBLER software ver. 9.7 (Camo, Norway).
Results and discussion
Sample Selection

Based on a working hypothesis that straw sugar concentration to some extent may be correlated
to colour (significant field and plant variations), the samples for reference analysis were selected
via a PLS-1 model applying colour as a semi-quantitative y-variable. This hypothesis follows the
rationale that when a straw sample lies on a field during a rainy period of increasing duration, the
colour of the straw shifts from yellow to greyish brown. During this period a part of the water
soluble fraction (hemicelluloses) may be washed out and the sample in general will become
subject to microbial degradation, both resulting in a decrease in sugar concentration. If this
hypothesis has merit, the set of reference samples selected will allow an approximate maximized
span in sugar concentration (lignin following suit as per closed-array correlations).

The colour of each sample was evaluated visually and assigned a single digit value. This resulted
in a range from 1 to 11, 1 being the darkest colour (grey/brown), and 11 the lightest (yellow), see
Figure 3. From this PLS model, initially 18 samples were chosen for first foray reference




analysis. The samples chosen were the ones that had the largest contribution to the span of the
first and second X — space scores.

SEN v ST ST ST ST SR e ;E.."':ﬂ
—l.. If: E ]

Figure 3. The colour classification of the wheat straw samples. From left to right: grey to yellow

From these 18 samples a tentative first PLS-1 model for glucan was built and compared to the
PLS-1 colour model. The two models were found to have very similar model features (loading
weights), indicating that the information in the NIR spectra was indeed relevant for modelling
the sugar concentration in the sample. Subsequently, a multi-step procedure was employed to
pick out 5 to 6 additional samples at a time for reference analysis, with the objective of
augmenting the relevant calibration concentration span as much as possible. This resulted in a
final training set with a total of 44 samples for the carbohydrate and lignin models. The
concentration intervals and average values for each analyte are shown in table 2. As seen, a
relatively narrow spread in the analyte concentrations is on record, fully as expected however.
The composition of wheat straw documented in the literature is 30-40 % cellulose, 20-50%
hemicelluloses, and 10-20% lignin on ;alverage.26’27’28 50% as the upper limit was only reported
by Nag 2008, and seems high compared to the levels else reported; 20-30% and 26.4%.

Table 2. Minimum, maximum, average concentration, and coefficient of variation for each
analyte in the 44 feasibility study samples.

Composition of straw Coefficient of
[9-(100 g DM™)] variation
min max average
Cellulose (Glucan) 349 40.3 37.6 0.036
Hemicellulose 21.0 259 23.8 0.048
Xylan 18.9 22.8 21.2 0.047
Arabinan 2.1 3.1 2.6 0.093
Klason lignin 18.8 24.6 20.5 0.060
Ash 1.6 6.9 3.9 0.31
Residual 7.7 17.5 14.2 -
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Before assessing the effect of alternative pre-processings, a PCA model on NIR spectra alone
and PLS-1 regression models for each analyte: glucan, xylan, arabinan, and lignin were built for
both 8 cm™ and 32 cm™ spectra. The sole purpose of these was to identify and delete any
possible strong outliers in the data set (e.g. as possibly due to excessive microbial degradation, or
due to unrecognized components of non-wheat straw, e.g. barley). This analysis was carried out
on data that had not been pretreated.

From this PCA analysis no such spectra were identified. From the accompanying initial PLS-
regression analysis however, a few outlying samples were indeed identified by applying
modeling T-U plots and predicted vs. measured plot (no 49 for glucan and 14 for lignin).
Including these led to a highly significant direction shift in the models; only these two samples
were excluded from the data prior to investigating the effect of the different pre-processing
techniques.

Pre-processing

NIR spectra obtained after applying the different pre-processing techniques on the X-data for 32
cm’™ are seen in Figure 4.

While the overall trend investigated was the same for all analytes, the detailed effect of pre-
treatment was to some extent associated with the specific Y-variable, therefore it was evaluated
separately for each analyte. Before investigating the effect of the pre-treatment, the duplicate
measurements were averaged, reducing the total no. of samples to 42-44 depending on the
analyte. Furthermore the spectral wavenumber intervals were reduced, spanning only the
intervals from 4000 — 7180 cm™ for 8 cm™ and 4000 — 10000 cm™ for 32 cm™. This reduction
was carried out based on a visible judgement of the spectra alone, excluding severely degraded
marginal spectral regions only.
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Figure 4. NIR spectra after applying all alternative pre-treatments on the X-data (32cm’
resolution). A) No pre-treatment, B) MSC full, C) MSC alfa, D) MSC Beta, E) 1* derivative, and
F) 2™ derivative.

The models for testing the pre-treatments were all validated with full cross validation. Outlier
identification was carried out based on relevant T-U plots and the predicted vs. measured plots.

The optimal results for both 8 and 32 cm™ are seen in Table 3.
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Table 3. Optimal calibration/pre-treatment assessment obtained for all four analytes. Validation:
full cross validation. “predicted vs. measured” statistics: slope, correlation (r*), RMSEP: root
mean square error of prediction, no of PLS components, and fraction of outliers excluded. 1.der:
S. Golay 1* derivative 2™ order polynomial, 2.der: S. Golay 2™ derivative 2" order polynomial.
Bold: Best of 1* order or 2™ order derived spectra.

2

Pre- slope r RMSEP Components Outliers
treatment
8 cm™
Glucan 1. der 0.67 0.57 0.91 7 5(11%)
2. der 0.41 046 1.01 6 5 (11%)
Xylan 1. der 0.80 0.69 0.53 10 1 (2%)
2. der 0.56 0.58 0.61 5 3 (7%)
Arabinan 1. der 0.73  0.69 0.14 3 5 (11%)
2. der 0.64 0.66 0.15 5 8 (18%)
Lignin MSC full 0.75 0.61 0.46 10 9 (20%)
32 cm’
Glucan 1. der 0.73  0.63 0.89 7 6 (14%)
2. der 0.73  0.68 0.82 9 6 (14%)
Xylan 1. der 0.78 0.70 0.52 8 1 (2%)
2. der 0.71  0.63 0.58 3 3 (7%)
Arabinan 1. der 0.74 0.71 0.13 3 5 (11%)
2. der 0.77 0.73 0.12 4 8 (18%)
Lignin MSC full 0.74 049 0.56 11 7 (16%)

In this first modelling step all outliers identified were excluded, in an attempt to obtain the best
possible model. For all other analytes than xylan this resulted in a comparatively high outlier
fraction. The different outlier types found were assessed as follows.

For xylan outliers were probably due to an analytical error, as a high relative difference between
the duplicate measurements was observed for all. For glucan, arabinan, and lignin this was the
case with only 30-40 % of the outliers found.

Different explanations for the remaining high outlier fractions were contemplated: 1. an error in
the NIR spectra (X-data), 2. The error is raw material dependent, 3. A sampling error. The first
two possible causes would expectably result in identical outlier identification for the different
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analytes, which was not the case - making a physical sampling (TOS) error seem most likely. An
error in the quaternary sampling stage in the procedure described in Figure 1 would lead to
exactly this kind of deviation between the NIR spectra and corresponding reference values.
23031 During increment delineation, special care was on the sampling, but due to the effects
stemming from the static electric nature of the plastic material making up the sample bags, not
all material had a uniform probability of ending up in the sample .i.e., the material handling of
the reference sample was not in total compliance with the mass reduction principles in Theory of
Sampling. This small deviation from TOS might have induced this particular error, thus
emphasizing the importance of applying a correct TOS procedure from the beginning to the end.

Prediction evaluations were carried out employing the following “predicted vs. measured”
statistics: slope, correlation (r*), RMSEP, no of PLS components, and fraction of outliers
excluded. In the case of Arabinan (32cm™) a model with a slope (0.76), correlation (0.68), and
RMSEP (0.14) was obtained by applying full MSC. This was similar to the model obtained by
applying a Savitzky-Golay 1% order derivative. The MSC model however applied three extra
components and thus a Savitzky-Golay 1* order derivative was assessed as the best pre-treatment
for arabinan. Similar reasoning was applied to the other analytes as well.

For all carbohydrates, the best models, on average, corresponded to applying a Savitzky-Golay
pre-treatment. Based on the statistics and the number of components needed, applying a 1%
derivative yield the best model for glucan and arabinan. This was also the case for xylan (8cm™),
but here the 1% derivative model needed an extra five components, which may therefore very
likely be the explanation for the improved prediction ability. Comparing models applying
different resolutions (8 and 32 cm™); no effect was seen for xylan and arabinan. For glucan and
lignin 32 cm™ and 8 cm™ spectra, yielded the best models respectively. Since no uniform trend is
established both resolutions were further investigated.

Variable selection

As a means of optimising these models, an algorithmic variable selection approach applying the
so-called Jack-knife approach (“Martens uncertainty test”) was carried out.** This variable
selection is expected to have a positive effect on the models in general. For completeness sake it
was decided to investigate both the 1¥ and 2™ order derivative models.

The variable-reduced models were validated by a 4 segment cross validation. The outlier
exclusion was done solely from the T-U plot of the components relevant for explaining Y. The
best models obtained for each component are seen in table 4.
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Table 4: Variable-reduced models for glucan, xylan, arabinan, and lignin by applying a 4
segment cross validation and Jack-knife pertubation. 1.Der: S. Golay 1% derivative 2" order
polynomial, 2.Der: S. Golay 2" derivative 2™ order polynomial.

2

Pre- Smooth  slope r RMSEP Components No

treatment outliers
8 cm™
Glucan 2 der 5 0.88 0.83 0.60 5 5 (11%)
Xylan 2 der 5 090 0.82 0.43 5 1 (2%)
Arabinan 2 der 3 0.76  0.77 0.12 4 6 (14%)
Lignin MSC full - 0.84 0.72 0.38 7 8 (18%)
32 cm’
Glucan 2 der 5 0.85 0.80 0.61 8 8 (18%)
Xylan 2 der 3 0.76  0.77 0.50 5 1 (2%)
Arabinan 2 der 7 0.75 0.75 0.13 4 6 (14%)
Lignin MSC full - 0.72  0.69 0.36 5 9 (20%)

Evaluating the accuracy (slope) and precision (1, RMSEP) for the carbohydrate models after
variable selection, the best models were obtained with the high resolution spectra (8 cm™). The
improvement seen in the glucan and arabinan models were only marginal however. A S. Golay
2™ order derivative with a three or five point smoothing window was optimal. For the glucan and
arabinan model the number of outliers was high which might indicate overfitting and thus an
unstable model.

The models obtained for glucan and xylan had good accuracies (0.88 and 0.90) and precisions
(0.83 and 0.82). For arabinan the model accuracy and precision was in the lower end 0.76 and
0.77.

Comparing these results to the ones obtained prior to variable selection (Table 3), it is seen that
for glucan and xylan the predicted vs. measured statistics was significantly improved applying
less components even though the validation method here applied was less optimistic. For
arabinan the model was only marginally improved applying an extra component. Furthermore it
is seen that now a 2™ derivative is preferred over the 1 order derivative. Generally the 2" order
derivative is known to be more sensitive to noise and generate more artefacts>, which without
variable selection to some extend may be implemented in the model, thus yielding the worsened
prediction ability recorded a prior to variable selection.
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For glucan, xylan, and arabinan 5, 7, and 10 % of the original variable interval was selected
respectively. The identified relevant wavenumbers were mainly placed in the following five
regions:

4000-4500 cm™': Combination band region (CHs, CH,, CH)

4800-5000 cm™: OH combination band region

5200-5500 cm™: C=0 stretch 2™ overtone region

5700-6300 cm™: CH 1* overtone region

6800-7200 cm™: 1% OH overtone and CH 1™ overtone combination region

o a0 oW

These regions are depicted in the spectra seen in Figure 5.
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Figure 5. Relevant wavenumber bonds identified for xylan. A) Combination band region, B) OH
combination band region, C) C=0 stretch 2™ overtone region, D) CH 1% overtone region, and E)
1¥ OH overtone and CH 1% overtone combination region.

Besides these regions there were sporadically distributed wavenumbers identified for all
carbohydrates. These may be artefacts generated by the 2™ order derivative and thus not
essential for the model performance. Furthermore contemplating the 32cm™ regression
coefficients the same overall regions were identified but almost no sporadically distributed
wavenumbers were identified, thus emphasising that these wavenumbers were indeed artefacts
arisen from the combination of applying a high resolution and 2™ order derivative. This was
tested by removal, and found to be true. In the model reported in Table 4 the sporadically
distributed wavenumbers have been removed.

For lignin the precision obtained were broadly comparable applying both resolutions, but the
highest accuracy was obtained applying 8 cm™ spectra. This furthermore reduced the number of
outliers by one, though two extra PLS components were needed. Overall it was concluded that
applying the spectra with a resolution of 8 cm™ yielded the best model. In this model 15% of the
original dataset was applied, where the important wavenumbers identified were: 4250-4650,
4900-5000, 5640-6000, and 6100-6200 cm.
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For lignin the best model obtained only had a fair accuracy of 0.84 and a distinctly low precision
of 0.72. The relative RMSEP for this model was 12%. Together with a high fraction of outliers,
18% lead to the overall conclusion; the risk of over-fitting is high for lignin. It might be possible
to apply NIR for lignin monitoring, but with the current calibration sample set it is not possible
to reach a stronger conclusion.

Validation of carbohydrate models

The final carbohydrate models were further evaluated by test-set validation. Having only 37-43
samples at disposal makes a test-set selection difficult, as the risk involved in reducing the data-
set is critically high. Therefore the smallest test-set possible, still being realistic was decided on.
Approximately 25% of the total data-sets were uniformly selected, obtaining test-sets that
spanned the complete concentration intervals for each analyte. For evaluating the models,
explained X-calibration variance, residual Y- validation variance, and predicted vs. measured
plot were contemplated, see figure 6.
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Figure 6. A) Explained X- calibration variance (--), residual Y-validation variance (-) and B)
predicted Y vs measured Y, for models depicted in table 4 after applying a 25% test-set.
RMSEP: Root mean square of prediction.
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Contemplating the variance plot in Figure 6 between 80-97 % of the variable screened X-data
could be used explaining 84%, 88%, and 86 % of the variation in glucan, xylan, and arabinan
respectively. This strongly supports that Jack-knife variable selection did in fact select
wavenumbers most relevant for modeling/predicting the different analytes.

Comparing to the cross validations, the accuracy for glucan decreased a bit, whereas for xylan
and arabinan it increased. The increase for xylan was only minor however. For all models the
precision increased, and the RMSEP decreased. This was obtained by applying the same number
of components as for the cross validated models. For glucan and xylan the improvements in the
models were only minor. For arabinan however the prediction ability improved much, which was
unexpected. It may however be an overoptimistic result, that to some extend may be coursed by
the presence of one extreme test-set sample. The sample was selected from one out of four
samples in the region, thus representing 25% of the overall dataset and it was therefore chosen
not to exclude it from the test-set. To avoid this, samples in the upper concentration range should
be added.

The RMSEP for the model looked fair, comparing it to the calibration interval these
corresponded to a relative % RMSEP of 8, 9, and 10 % for glucan, xylan, and arabinan
respectively. These prediction errors are not fatally high, but the models do need further work
before routine implementation.

In the literature no models have been found for wheat straw but similar models have been
reported for corn stower.'' In these models a SECV (which may be compared to our cross-
validastion RMSEP) at 1.4, 0.95, and 0,20 wt% have been reported for glucan, xylan, and
arabinan respectively. For comparative purposes these where converted into relative SECV%
applying the min/max range also printed in the publication. The relative SECV % obtained were
now 7, 9, and 5 % for glucan, xylan, and arabinan respectively. For glucan and xylan it is the
same range as the one reported here, but for arabinan the results for corn stower was clearly
better. The better result may be explained by a calibration range that was four times larger than
the present one. For arabinan especially the concentration interval is very narrow 0.9 g-(100g
DM) ", and thus increasing the current calibration range would be beneficial. This demands
positive identification of samples with a lower or high concentration of arabinan. A solution for
this applied on corn stower'' was to manually add or remove specific plant tissues such as leaves
and nodes, thereby changing the content of the different sugars in the sample. Whether this
would be possible for wheat straw has not been investigated in the present study.

Another solution may be to harvest the straw at different times during the ripening period as the
carbohydrate content is changing as a function of ripening. This has also not been investigated
here.
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Conclusion

The objective of this work was to assess the feasibility of applying NIR spectroscopy for
quantification of cellulose, hemicelluloses, and lignin in cut wheat straw. For this purpose wheat
straw samples were collected all over Denmark and 44 samples were selected that gave a
realistic span of the concentration intervals as can reasonably be expected in future samples.
Alternative pre-treatment methods were investigate; applying the one found optimal for each
analyte, test-set validated models with fair prediction abilities for glucan, xylan, and arabinan
were obtained.

For lignin the number of outliers that had to be excluded to obtain a model was assessed as very
high (18%) however and the % RMSEP was also relatively high (12%). From the present work it
could thus not be concluded that the lignin content in the sample could be satisfactory quantified
applying the reported method.

The models obtained for the carbohydrates all had intermediately high predictions errors (8-10
%), which however are in the same range as reported on corn stower. As a feasibility study these
results are deemed fully acceptable. To our knowledge this is the first study dealing with NIR
analysis on wheat straw.
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Abstract

Optimization of 2" generation bioethanol production from wheat straw requires comprehensive
knowledge of plant intake feedstock composition. Near infrared spectroscopy is evaluated as a
potential method for instantaneous quantification of the salient fermentation wheat straw
components: cellulose (glucan), hemicelluloses (xylan, arabinan) and lignin. Aiming at
chemometric multivariate calibration, 44 pre-selected samples were subjected to spectroscopy
and reference analysis. For glucan and xylan prediction accuracies (slope: 0.89, 0.94) and
precisions (r*: 0.87) were obtained, corresponding to error of prediction levels at 8-9 %. Models
for arabinan and lignin were marginally less good, and especially for lignin a further expansion
of the feasibility dataset was deemed necessary. The results are related to significant influences
from sub-sampling/mass reduction errors in the laboratory regimen. A relative high proportion of
outliers excluded from the present models (10-20%) may indicate that comminution sample
preparation is most likely always needed. Different solutions to these issues are suggested.

Key words: Wheat straw, 2™ generation bioethanol, near infrared spectroscopy, sugar analysis,
theory of sampling




1. Introduction

A resolution set by the European Union for 2020 is that 20 % of the EU energy consumption
must originate from renewable energy sources (biomass, wind power etc.) and furthermore that
biofuels should account for 10% of the total fuel consumption (EU resolution). To obtain the
latter, both a quantitative growth and an increased efficiency of the existing biofuel production
plants are needed. As a feed stock for bioethanol, agricultural lignocellulosic biomass such as
wheat straw, rice straw, and bagasse may be used as feed stock in the 2" generation context, as
these are abundant around the world. (Oliveira et al. 2008)

In Denmark 25.6 % of the total agricultural area is cultivated with wheat. The average
composition of wheat straw is 30-40 % cellulose, 20-50% hemicelluloses, and 10-20% lignin on
average (Thomsen et al., 2006; Taherzadeh & Karimi 2008; Drapcho et al., 2008). Currently it
is mostly combusted in coal-fired Combined Heat and Power plants (CHP), but research is
carried out on combination of CHP and production of bioethanol from wheat straw, the so-called
Integrated Biomass Utilization System (IBUS). According to Larsen et al. (2008) this is now
close to commercial reality. As a mean of further optimizing this process, gaining more detailed
process knowledge is highly valuable. It is of particular interest to be able to furnish bioreactor
operators with a reliable feedstock composition already at the intake stage.

In a classical process technology context this could be done by extracting samples (at each point
of interest in the process) which are sent for analysis at a centralized laboratory. This poses
several problems; notably many samples, and a delay time of hours to days.

A much more desirable solution is implementation of the analytical facilities directly in the
process, Process Analytical Technologies (PAT). This could either be done by placing the
process analyses next to the production line (at-line) or in the process (on-line). With this
approach it would be possible to monitor the production line from feed stock to the end product,
with a much reduced delay time, effectively down to minutes — seconds. This allows obtaining
knowledge of the chemical composition at different process stages in real-time, thus facilitating
feed- forward improved regulation opportunities.

This is to some extent already seen at CHP facilities, where the feedstock quality is estimated
from the moisture content in incomming straw bales. For straw to be used for bioethanol
production this seems inadequate as this says nothing about the content of the fermentable sugars
and lignin i.e., the relevant quality of the straw in this process context. Obtaining such
knowledge has several advantages. For the feedstock on-line knowledge means that prices can be
regulated according to sugar content and furthermore it can be used for feed-forward regulation
of the pre-treatment processes and fermentation, thus improving both process efficiency as well
as economics.

Several methods that are principally applicable as at- or on-line monitoring modalities have been
investigated, one of which is Near InfraRed Spectroscopy (NIR). NIR spectroscopy is an
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analytical technique that measures optic absorption spectral properties in organic molecules
caused by combination bands and overtones in the region 12500 — 4000 cm™ (800-2500 nm).
The advantage of NIR is that the measurements are carried out in a fast non-destructive way. In
the literature NIR has been applied on similar types of biomasses, e.g. barley, corn stover, foliar,
and flax, (Jin & Chen 2007; Sohn M., 2007; Richardson A.D. and Reeves Ill J.B., 2005;
Fauughey G.J. and Sharma H.S.S. 2000; Reeves Il J.B. et al, 1991) thus it may also be
applicable for direct wheat straw characterization.

Ultimately what is of highest interest to the bioethanol industry would be instantaneous
compositional characterisation directly on the feedstock (straw bales and similar) for example by
applying a handheld NIR spectrophotometer or a more permanent facility, see Fig.1. It would be
only prudent to elucidate the limiting factors before such an undertaking, e.g.; how to
compensate the field heterogeneity displayed by raw straw loads, bales or samples? How to
assure a sufficiently robust sample illumination in the field?

Fig. 1. Handheld NIR on straw - the ultimate solution for compositional characterization of
straw.

Before taking on this challenge, the present task is to carry out a feasibility study of the potential
of NIR in this context. This study therefore investigates the potential of compositional analysis
of cut-wheat straw by NIR spectroscopy, with respect to cellulose (glucan), hemicelluloses
(xylan and arabinan) and lignin. As such the present study involves a brief focus on sampling
(Theory of Sampling), representative mass reduction and analysis in the laboratory in order to
simulate the procedures and intervention(s) necessary in order to reap the fullest benefit of field
or on-line NIR analysis. Full technical details as to the many potential alternative spectral pre-
processings, model optimization and validation has been described elsewhere (Lomborg et al.
2009). These are not addressed further here; below only the final optimized models are
presented.




2. Methods

2.1. Samples

The first step was to collect samples as representative as possible with respect to the sugar and
lignin concentration for the type of wheat straw on which the model has to be applied in the
future. A minimum of 30 samples is needed for initial model evaluations; while as many as 100-
300 are needed for calibration of robust methods for industrial use (Hames et al., 2003). The
present feasibility study strikes a practical intermediate level.

In this case a total of 95 samples were collected in 2006 in Denmark; 65 originated from south
east and west Jutland and Funen (field samples) while 30 originated from the island of Zealand
(industrial samples). All material was harvested in the period from 2003 — 2006, the 2006
samples constituting the majority.

The 65 field sample set was collected in barns and on fields, whereas the 30 Zealand samples
were sampled at the production line at Kgge Bio pellets factory over a 30 day period. This was
done in order to try to capture as large a compositional span as possible in the interest of securing
the best possible calibration dataset. During field sampling, special effort was made to obtain
samples of maximally different quality: from fresh straw directly as harvested in the field to
spoiled straw that had been left on the field for an extended period of time or sometimes stored
while it was still wet. This was considered an important experimental factor, as this could also be
expected for a fraction of future feedstock samples. Furthermore it was hypothesized that
samples that were almost totally spoiled would have become subject to microbial degradation
and wash out of the water soluble fractions, thus producing a potentially enlarged span in sugar
and lignin concentration. In all cases it was decided to apply the whole untreated straw (stem and
leaves).

The industrial plant intake samples were a mix of wheat and barley straw; the compositional
distribution was unknown. This choice was also a deliberate anticipation of possible future
sampling settings (unavoidable mixtures of straw types, perhaps minor fraudulent feedstock
declarations, other).

The overall original straw lengths ranged from 0.5 cm to approximately 25 to 30 cm, while all
industrial samples were in the interval from 0.5 to 2 cm.

2.1.1. Sampling

In order to assess the feasibility of NIR-characterization vs. reference methods, the ultimate issue
of representativeness with respect to starting material (the lot) can sometimes be left to be solved
independently i.e., for this specific purpose it is only necessary to obtain representative splits
from the field samples down to the sample being measured. Therefore the overall sampling
procedure covered only the laboratory regime. As an efficient way of reducing the overall total




sampling error a procedure involving comminution, incremental sampling, mass reduction, and
homogenization was designed, resulting in four steps from field sample to analysis:

1. Size reduction of primary field samples; stem and leaves were cut to approximately 2 cm

2. Long pile mass reduction of both field and industrial samples and subsequent size
reduction to 1 mm, see Fig. 2.

3. Long Pile mass reduction of 1 mm comminute samples

4. Packing of vials for NIR analysis and plastic bags for reference analysis. Subsequent
mass reduction for reference analysis

The procedures applied through all four steps were carried out in as full compliance with the
Theory of Sampling (TOS) as possible to ensure representative sub-samples for the different
analytical steps. In-depth treatment of the systematic of representative sampling can be found in
Gy (1998), Petersen et al. (2004), Petersen et al. (2005), Esbensen et al. (2006).

Field samples had a harvesting cut size ranging from a few cm to 25 — 30 ¢cm. In order to
counteract heterogeneity mismatches between samples, they were in the first step chopped down
to an equal particle size (approximately 2 cm) before being mass reduced (2" step). This was
done applying a commercial shredder of the type Bosch AXT 1600 HP. Between each sample
the shredder was vacuum-cleaned and rinsed with compressed air, to avoid cross contamination.

For the second and tertiary sampling step incremental, composite sampling was applied. For this
a right-angle gutter with a length of 1 m was fabricated. The sample was poured into this in a
snake-like motion making sure to cover as many lengths as possible, thus ensuring maximal
mixing while laying up the entire (comminuted) sample, see Fig 2. This procedure is known in
bulk materials handling as “bed-blending” (Gy, 2004). Without going into further details, the
long pile approach allows problem-specific, representative mass reduction, by fast manufacturing
of fit-for-purpose implements as the one illustrated here. The long pile mass reduction principle
is completely scale-invariant; it has been used on lot masses ranging from 1+ ton to 1 gram with
commensurate differences in instrument size etc.

Fig. 2. Right angle gutter applied for long pile mass reduction of cut and particulate wheat straw.
The gutter had two working positions: an upright (the one seen), applied when pouring the
sample and a tilted (90°), applied for sample extraction.




After bed-blending, a complete, planar-parallel cross section (increment) of the pile was
extracted with a scoop designed for the purpose. In the secondary sampling step the length of the
scoop applied is 13 cm and the width 15 cm, the latter corresponding to 15% of pile length. After
each increment withdrawal, the material was poured back into the container, and the procedure
was repeated aiming at maximum further mixing before sub-sampling. This was carried out in
repeated steps until the entire primary sample was split in two equal sizes; an A and a B sample.
One of these samples (A or B) was selected at random. The particle size was now reduced to 1
mm in a comminution mill; Foss Cyclotec™ 1093 (Foss, Denmark).

In the tertiary sampling step only 50 % of the gutter length was applied, the scoop length now 13
cm and the width 0.5 cm, the latter corresponding to 1 % of the total pile length. Of the material
extracted approximately 2 x 5 g wheat straw was packed directly in the NIR vials. For reference
analysis a further 2 g sample was obtained and packed in a plastic bag. From the homogenized
bag, the final 4 x 0.16 g material needed for reference analysis was extracted also by incremental
sampling. The full procedure is outlined in Lomborg et al. (2009).

2.2. Dry matter and ash

The dry matter content was determined applying a Mettler Toledo moisture Analyzer HR83,
Halogen (Mettler Toledo, Denmark). Double determinations were carried out.

Ash determination was carried out by weighing 0.5 g of the 1 mm material directly in a pre-
weighed crucible and incinerated at 550°C for 3 hours. Doublet determinations were carried out.

2.3. Analysis of carbohydrates

A two-step acid hydrolysis was carried out to quantify the sugar polymers in the wheat straw. In
the first step 1.5 mL 72% (w/w) H,SO, was added to 160 mg dry matter and incubated at 30°C
for 1 hour. In the second step the samples were diluted with 42 mL milipore water and
autoclaved at 121°C for 1 hour. Subsequently the hydrolysates were filtered and the sugar
monomer concentration determined applying High Liquid Performance Chromatography
(HPLC). The HPLC system applied was a Shimadzu with a Rezex ROA column (Phenomenex)
at 63°C with a flow rate of 0.6 mL-min™. As an eluent 4 mM H,SO, was applied. The detector
used was a refractive index detector (Shimadzu Corp., Japan)

The recovery of D-glucose, D-xylose, and L-arabinose was determined by standard addition of
sugars to two of the four samples before autoclavation.

Klason lignin content was determined as the weight of the dried filter cake subtracted the ash
content.




2.4. Near Infrared spectroscopy

For Near Infrared Spectroscopy (NIR) spectroscopy, a Quant FT-NIR instrument with an InAs
detector was applied (ABB, Q-interline, Denmark). For this purpose the instrument was fitted
with a powder sample holder, rotating each sample while measuring, thereby obtaining an
average of the material placed peripherally in the vial. For each sample a total of 128 scans were
collected and averaged for the final spectrum recording/storage. For each primary sample, double
determinations were carried out. Alternative resolutions of 8 cm™ and 32 cm™ were tested
throughout all calibrations reported here. The 8 cm™ spectra were found to be optimal.
Spectroscopy was carried out in the range 4,000 — 10,000 cm™. Before measuring a background
spectrum was recorded applying a PTFe vial.

2.5. Data analysis

For quantifying concentration of glucan, xylan, arabinan, and lignin from the NIR spectra,
chemometric multivariate calibrations using Partial Least Square regression (PLS-1) were
performed. In a PLS-1 model the regression relation is built directly between the independent X-
matrix (NIR spectra) and the dependent y-vector (concentration of sugar or lignin), thereby
splitting the spectral information in a part relevant for describing the sought for X-Y regression
relation and a “noise” part (uncorrelated to concentration). As a consequence, the effective
model dimension is often severely reduced compared to the original number of wavenumbers
recorded, yielding a model applying only few latent variables (PLS components). Full
chemometric description can be found in e.g. Martens & Nas (1991), Esbensen (2002), Miller
(2005), Bjgrsvik & Martens (2008).

To maximize correlations between the absorption NIR spectra and the concentration of glucan,
xylan, arabinan, and lignin, different pre-processing techniques were tested: Multiplicative
scatter correction and 1% and 2™ derivative (Savitzky — Golay). Description of these techniques
can be found in Savitzky & Golay (1964), Martens & Nas (1991), Beebe et al. (1998), Hruschka
(2001), Zeaiter et al. (2005). Furthermore a variable selection guided by a Jack-knife was
applied. Description of this technique may be found in Martens & Martens (2000), Westad &
Martens (2000).

For comparing these alternative pre-processing techniques only, a full cross validation was
applied. Further model validation was carried out applying a four segment cross validation. The
final models were evaluated applying a test-set, following the recommendations by Esbensen
2002.

Prediction evaluations were carried out employing “predicted vs. measured” statistics: slope,
correlation (r?), Root Mean Square Error of Prediction (RMSEP), % RMSEP, no of PLS
components, and fraction of outliers excluded.




RMSEP evaluation was used for finding the optimal number of PLS components in the model
and for evaluating the model’s prediction performance (minimum RMSEP):

2

n
Z (yipredicted - yireference)
RMSEP = || -2

n

where y is the dependent variable and n is the number of samples. The RMSEP statistic must be
as small as possible for a model to be performing “optimally”.

To enable a fair comparison of the RMSEP to the calibration interval for the specific analyte
across models, the relative RMSEP [%] was used, calculated as:

RMSEP
ymax ~ Ymin

% RMSEP =

Data processing was carried out using the UNSCRAMBLER software ver. 9.7 (Camo, Norway)
3. Results & discussion

Of the original 95 samples collected, 44 were selected for training the multivariate calibration
model a.o. using appropriate score plots from a principal component analysis (PCA). It was
important to obtain samples displaying the largest possible span in the different concentrations,
and which were simultaneously representative for future samples. All original samples were
screened and selected by evaluating the color of the sample, as it was hypothesized that color is
correlated to the leaching caused by either biodegradation or of washing the samples and
therefore also to the sugar concentration in the samples. Yellow samples should thus have a
higher concentration of xylan and arabinan than variously degraded grayish-brown samples.
Furthermore, other types of information about each samples obtained during sample collecting
was taken into account.

The span obtained for the different analytes is seen in table 1. The rather low compositional
variability results from the fact that straw displays a very restricted biological variability at
harvest time.




Table 1. Minimum, maximum, and coefficient of variation (C.V.) for each analyte in the 44
samples.

Composition of C.v.
straw
[g+(100 g DM) "] [%]
Min Max

Glucan 34.9 40.3 3.6
Xylan 18.9 22.8 4.7
Arabinan 2.1 3.1 9.3
Lignin 18.8 24.6 6.0

After carrying out reference analysis, this working hypothesis (sugar concentration is correlated
to overall straw color) was tested by plotting the average sugar concentration on each color level
against the color assigned. It turned out that the samples situated in the high concentration range,
were all samples collected right after harvest, whereas the lowest level all had been left on the
field in a rainy period, i.e., the water soluble compounds was washed out. The overall correlation
(r?) obtained was 0.97, indicating that straw color may indeed be applied as a rough guide, a fact
which will be useful in the field for selecting samples in the upper, intermediate and lower
concentration ranges in the future.

3.1. Multivariate models

For obtaining multivariate models with optimal prediction abilities, different pre-treatments for
the NIR spectra were evaluated, followed by an algorithmic variable selection approach (Jack-
knife) to select the most influential wavenumbers (wavelengths). For sugar components a 2"
order derivative (employing a tree - five point smoothing window of a second order polynomial)
was found to give the best model. For lignin a full MSC gave the best model. In Table 2 the
models obtained applying a four-segment cross validation are summarized together with other
relevant prediction model statistics.




Table 2: PLS-1 models for sugar components and lignin. “Components”: Number of PLS
components applied in the model, numbers in brackets are the explained calibration and the
residual validation variance, “Outliers”: Number of outliers excluded from the set during
calibration, numbers in brackets are the corresponding percentages, “RMSEP”: Root Mean
Square Error of Prediction.

2

Components Outliers slope r RMSEP %

RMSEP
Glucan  5(80% X,83% Y) 5 (11%) 0.88 0.83 0.60 11
Xylan 5(92% X, 83%Y) 1 (2%) 090  0.82 0.43 11
Arabinan 4 (97% X, 77%Y) 6 (14%) 0.76  0.77 0.12 13
Lignin  7(100% X, 72% Y) g (18%) 0.84  0.72 0.38 12

The models seen in Table 2 applied only 5, 7, 10 and 15 % of the original full-spectrum
wavelengths regions for glucan, xylan, arabinan, and lignin respectively. The regions identified
as most influential corresponded to expectations from general NIR experience and the chemical
structure of the different analytes. For all models, except xylan, a relatively high outlier fraction
(11-18%) had to be excluded from the models. Different explanations for these were
contemplated and it was concluded that 30-40 % of these outliers could be explained by a
reference analytical error. For the rest it was hypothesized that they were due to incorrect
sampling errors during the complete procedure from field down to the final mass reduction step -
from the field plastic bagging to the analytical determination.

The models obtained for glucan and xylan display slopes of 0.88 and 0.90, and correlations at
0.83 and 0.82 i.e., a good prediction accuracy and precision was obtained all applying five PLS
components. For these models the relative RMSEP was 11%, fully acceptable for first model
predictions in the present feasibility context.

For arabinan and lignin both the prediction accuracy (slopes of 0.76 and 0.84) and the precision
(r: 0.77 and 0.72) were slightly lower. In the arabinan model 97% of the spectra total variance
explained 83 % of the compositional variation applying only four PLS components.
Contemplating the y-validation variance plot, Fig 3., it can be concluded that the model is quite
acceptable. The prediction and accuracy statistics must be viewed in the light of the narrow
calibration span for arabinan. Widening the span would very likely lead to improved prediction
ability.
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Fig.3. Residual Y validation variance plot for arabinan.

For lignin 100% X explained 72% of y using 7 components, indicating a significantly more
complex model. Combined with the highest outlier fraction (18%), lead to the conclusion that
the lignin model obtained is not fully acceptable yet, and that more samples spanning a wider
compositional range must be included into the model before concluding more firmly as to the
possibilities of routine lignin prediction by NIR in wheat straw.

3.2. Realistic validation

Employing only a fraction of the spectra (5, 7, and 10 %) always poses a risk of model
overfitting, especially if based on cross-validation (Esbensen, 2002), and it was therefore decide
to cary out a fully realistic validation of the prediction abilities of the best models obtained,;
glucan and xylan. This was done applying “test-set” procedure, ibid. Normally a test-set is
obtained by collecting and analysing completely new samples. Because of the logistics of the
present feasibility study, a slightly modified procedure was applied, in which approximately 25
% of the data set was extracted, and used in testing the new model which was established on the
remaining 75%. While in the strictest sense this is not a true “test-set”, as it has been involved in
the pre-treatment evaluation and the variable selection step, in the current context it is fully
acceptable. The test-set was selected so as to completely span the concentration interval of the
given analytes. This ensures the fullest, most realistic validation. Predicted vs. measured plots for
the test-set validated sugar models are seen in Fig. 4.
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Fig 4. Predicted vs. measured plot for test-set validated models. A) Glucan, B) Xylan

These test-set validations for glucan and xylan showed good accuracies and precisions, indeed
slightly better than what was assessed by the cross validated model (the differences reflecting a
minor sub-setting sampling variability). Also an improvement in the relative % RMSEP was
seen, which dropped to 8 and 9 % for glucan and xylan respectively. This indicates that the
models obtained are stable, and can be employed for predicting the concentration in “new”
samples. The models thus demonstrated the feasibility of NIR-characterization of glucan, xylan
and to some extend arabinan in cut wheat straw. But all models reported here are only first foray
attempts, and in no means ready for implementation in a real at-line monitoring context. For such
a purpose the % RMSEP is still high.
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Incorporating more samples in the entire concentration range in the training data-set is highly
likely to contribute towards a further reduction. One should be prepared that it may not be
enough for all analytes however, as especially for arabinan an extensive broadening of the
calibration interval is necessary, but the feasibility of this undertaking appears strongly indicated.
There may well also be further benefits associated with even more diligence in the various
sampling steps, even though this was part of the experimental scope.

3.4. Obtaining new samples

As a guiding line for obtaining more samples in the upper and lower concentration interval of the
C-5 sugars, the color of the samples can again be employed. For obtaining samples outside the
calibration range this may not be enough, as the range that can be obtained in natural samples is
limited. Therefore other solution needs also to be contemplated, three are suggested here:

1. New primary sampling strategy
2. Physical manipulation of primary samples
3. “Designed samples”

1) A new primary strategy may be employed. One solution could be setting-up an experiment
where samples are collected in a predefined interval from the early reproductive state to well
after the normal harvesting period. This is expected to influence the sugar composition and
concentrations in the straw significantly, as sugars are remobilized from vegetative to
reproductive organs during the ripening period (Yang et al. 2000). All that is needed for this to
be successful is careful logistical planning. Whether this would in fact have a positive effect on
the model is not certain, as the concurrent structural changes in the straw samples might be
picked up in the NIR spectra as well, perhaps leading to other types of extreme samples (outliers)
that cannot be fitted into the model, as they are too different. Only further experimentation can
tell.

2) Physical manipulation of the sample may be beneficial for modeling. The positive correlation
between the color of the straw and the C-5 sugar concentration showed that C-5 sugars are
washed out of the samples. To obtain a lower concentration of xylan and arabinan, the solution
might simply be to wash the straw with hot water. If successful this would yield the desired
higher concentration of glucan and lignin, due to closed array correlation.

3) Finally it might also be possible to “design” calibration samples from collected wheat straw
with the concentrations needed as suggested by Hames et al. (2003). In this experiment the entire
straw including stem, leaves and nodes was applied, thus giving an average sugar content of the
straw. By separating the component parts and mixing these in different proportions like done by
Hames et al. (2003) with corn stover, it is expected to be able to obtain samples spanning an even
broader calibration range.
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None of the three suggested solution could be investigated as a part of the present feasibility
study however. We here focused only on assessing the analytical possibility for measuring the
relevant sugar concentration in cut wheat straw by NIR spectroscopy.

3.5. Direct on-line NIR analysis of untreated samples?

All models presented here are based on NIR measurements on materials comminuted to an
average 1 mm particle size. This means that the present method can at best be incorporated at-
line, where samples are collected and can be cut down before measuring. This would give a
small delay in obtaining the desired results, but in no way comparable to the delay caused by e.g.
wet chemical analysis or similar. Such a minor logistical infraction is likely still acceptable in
most situations, but has to be evaluated for each specific process setting in question. This study
did not address the issue of NIR analysis of completely untreated straw samples. After the
present results, further experimentation on this issue would appear well justified however.

Together with broadening the interval of the existing data-set, the next step on the road to
obtaining a model that can be fully implemented as an at- or on-line production facility is
therefore to ensure new samples are covering the full compositional range met in nature, and to
start elucidating the somewhat daunting issues regarding “as is” field samples vs. robust,
reproducible NIR illumination and spectral acquisition.

4. Conclusions

From the results delineated above it is concluded that NIR spectroscopy is a viable modality for
quantification of the selected bioethanol-related sugars in comminuted wheat straw. The models
obtained for three carbohydrates have relative % RMSEP at the level of 10%. While broadly
satisfactory for a feasibility study, this level also signifies that the models are not implementable
in a professional monitoring context. This is not surprising considering the restricted number of
available samples. In order to improve model performances, it would be beneficial to obtain
more samples in the peripheral concentration intervals, as especially the arabinan model suffered
from a very narrow calibration range. Unfortunately the compositional span is not a directly
observable feature in the field, although this study demonstrated a useful indirect correlation
between straw color and sugar content.

This study also reflected upon the critical success factor of representative sampling and mass
reduction, which must be considered in all calibrations of multi-channel instrumental analytical
techniques, NIR no exception. This issue does not always receive its proper attention.
Interestingly were it possible to apply NIR-analysis on completely untreated materials
(completely untreated wheat straw in the present case) the sample preparation issues encountered
would all be eliminated. The primary field issues were kept out of the present study, and will
pursued elsewhere.
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Perhaps the relative high proportion of outliers excluded from the present models indicates that
a minimum of comminution sample preparation is most likely always needed.
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Abstract

Production monitoring of “natural” 2-heptanone from octanoic acid in an industrial fed-batch cultivation based on Penicillium roqueforti
requires development of a method for determination of octanoic acid dissolved in the water phase. An electronic tongue array using six non-specific
potentiometric sensors with solid inner contact, and a pH electrode, has been introduced by spiking octanoic acid to a substrate obtained from
four different cultivations, representing variations in the relevant industrial matrix. Multivariate calibration was performed on acid concentrations
spanning 0.65-20 mmol I~'. Excluding the lowest concentration a global Partial Least Square regression model with a predicted versus measured
correlation of 0.98 and a relative root mean square error of prediction of 5.1% (In units) (RPD =5.5) signifies a highly acceptable prediction facility.
This model was further tested by subjecting it to undiluted as well as diluted samples obtained from a cultivation process in which octanoic acid
was catabolized; this led to acceptable prediction errors within the same range as for the global model. It is concluded that the ET sensor array can
be applied for determination of octanoic acid in cultivation systems of the general P. roqueforti type.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Electronic tongue; Potentiometric sensors; Penicillium roqueforti; At-line monitoring; Cultivation broth; Multivariate calibration

1. Introduction

Octanoic acid can be used for production of the “natural”
aroma 2-heptanone by addition to a cultivation broth contain-
ing the filamentous fungi Penicillium roqueforti. 2-Heptanone
is a known important aroma constituent in Roquefort cheeses
and is therefore used in products like salad dressings, soups
and crackers to simulate blue cheese flavour. Different meth-
ods have been reported for production of this aroma (Creuly et
al., 1992; Larroche et al., 1989; Park et al., 2000), one being a
fed-batch technique, where octanoic acid is added in the feed
(Creuly et al., 1990). When added to the broth, octanoic acid
is catabolized in the beta oxidation pathway by P. roqueforti
(McSweeney and Sousa, 2000). If concentrations are too low,

Abbreviations: ET, electronic tongue; PDA, potato dextrose agar; PLS,
partial least square; RPD, ratio of standard error of performance to standard
deviation; RMSEP, root mean square error of prediction; TSB, tryptic soy broth.
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0168-1656/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
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the octanoic acid is utilized solely as a carbon source i.e. turned
into carbon dioxide only at the expense of the desired prod-
uct: 2-heptanone. According to (Gehrig and Knight, 1963) a
concentration of 1 wM leads only to carbon dioxide, whereas 2-
heptanone production is registered based on an initial octanoic
acid concentration at 20 wM. For high concentrations different
results have been reported, e.g. inhibition of the microorganism
(lag phase) followed by a degradation of the acid according to
(Lawrence, 1966), whereas (Larroche et al., 1994) have reported
total inhibition of the microorganism at concentrations above
5 mM. These variations and conflicting results may be due to
interacting factors, e.g. different treatments of the spores applied
during cultivation, as storage time and temperature is known
to effect the subsequent methyl ketone formation (Gehrig and
Knight, 1963), or they may be due to small differences in the
strain applied (Larroche et al., 1989).

Even though production at high concentrations may be pos-
sible, it is severely disadvantaged by a prolonged lag phase;
therefore a production at an intermediate concentration in the
proximity of 5-10 mM is desirable from an industrial point of



C.J. Lomborg et al. / Journal of Biotechnology 133 (2008) 162—169 163

view. To enable this, an on-line or at-line analytical method that
is sensitive to the octanoic acid concentration in the water phase
within a relevant range, say from 2.5 to 20 mM is required.

A method suggested by (Creuly et al., 1990) is a pH state,
which counteracts the decrease in H* concentration, as octanoic
acid is degraded, by adding the octanoic acid as the feed, thereby
enabling control of the fed-batch. In a later paper by (Larroche et
al., 1994) this method fails however, due to a parallel H* gener-
ating reaction taking place, making complex processes difficult
to monitor using this method.

Other methods reported in the literature are determination
of octanoic acid by applying a chromatographic method; either
GC with different detectors or HPLC, see Table 1. GC and
HPLC are both two-step procedures, involving a sample pre-
treatment before analysis. This particular pre-treatment is crucial
for the analysis to work: the pre-treatment is finely adjusted to
the specific sample and chromatographic equipment, thereby
minimizing the analytical error on the result. In the methods
reported in Table 1, derivatization and extraction are applied in
all instances, except from the method by Kellerhals et al. (1999),
where a filtration through a specific membrane was reported. The
pre-treatment time for a derivatization or an extraction was typ-
ically in the range from 30 min to 12h and the filtration was
momentary. All these methods are commonly used in the lab-
oratory as they are robust and precise, but for monitoring and
control of a cultivation, only the method reported by Kellerhals
et al. (1999) is fast enough.

From this ambiguous state of affairs a new process analytical
method, facilitating reliable monitoring of low concentrations of
octanoic acid during fed-batch production was needed. Based on
the work by (Creuly et al., 1990) who showed that an ion selec-
tive electrode works—but also taking into account the failure
of this method reported by (Larroche et al., 1994), a feasibility
study of the electronic tongue (ET) used in an at-line configura-
tion was carried out in the present study. The ET uses the basic
principle of the ion selective electrode, but expands the number
of sensors, solving the issue presented by (Larroche et al., 1994).

Table 1
Reported analytical methods for determination of octanoic acid

The Electronic Tongue consists of an array of non-specific
electrodes which are applied directly to the sample. No pre-
treatment is necessary, hence the method is fast, but often a
simple filtration of the sample is recommended however, as this
prolongs the life time of the electrodes significantly without
any loss of analysis time. A large number of potential ET elec-
trodes exist. Typically electrodes for an ET array are selected in
a screening experiment, where the sensitivity of the electrodes
towards a given compound in a specific matrix is determined.
After selecting the electrodes with the largest cross-sensitivity,
the array is calibrated. As the electrodes are non-specific, they
are sensitive to both the relevant compound (octanoic acid) and
the matrix. It is therefore necessary that chemometric multivari-
ate calibration is carried out on samples that are as close to real
samples as possible.

The advantages of applying the electronic tongue instead of
HPLC or GC would be, once the electrode array is calibrated
and properly validated, the determination of octanoic acid in a
sample can be done within few minutes. In the industrial process
monitoring scheme a short analysis time is a premium, as only
then it is possible to keep the octanoic acid concentration in the
process constant.

From earlier work reported on a different cultivation (Turner
et al., 2003), it is further speculated that in addition to allow
process monitoring the ET electrodes will also be able to monitor
the catabolism of the octanoic acid.

2. Material and methods
2.1. Chemicals

All chemicals were of analytical grade. Ammonium nitrate,
calcium chloride dehydrate, carbamide diamine, copper dichlo-
ride dihydrate, D-glucose, dipotassium dihydrogen phosphate,
manganese dichloride tetrahydrate, octanoic acid, and zinc
sulfate heptahydrate were obtained from Merck (Darmstadt,
Germany). Polyethylene sorbitan monoorleate (Tween 80) was

Ref Subject

Method

Blomquist et al. (1992)

Huang et al. (2002)

Kellerhals et al. (1999)
Pseudomonas putida KT2442

Lai et al. (2004)
reactor.

Larroche (1996)

roqueforti

Characterisation of moulds by measuring the fatty acids content

Method development for determination of carboxylic acids

Development of on-line GC, to maintain continuously fed substrate
at a desired level, during the production of mcl-PHAs by

Synthesis and characterisation of structured lipids in bench scale

Investigation of the internal substrate concentration during the
biotransformation of octanoic acid into 2-heptanone by Penicillium

HP 5890 series Gas Chromatograph with FID, capillary
column; fused silica (30 m x 0.25 mm x 0.25 pm)

HP 5890 series Gas Chromatograph equipped with Finnigan
model 4023 mass spectrometer system

Hitachi HPLC separating system including an L-6300
intelligent pump, F-1080 fluorescent detector

Online determination of substrate concentration: Fermenter
equipped with recirculation loop containing a crossflow
filtration module. The permeate was analysed at a HP 5890
Gas Chromatograph with FID, and Permabond FFAP-0.35
column

Shimadzu 14A GC with FID

Gas Chromatograph with FID, Capillary column;
Supelcowax (30 m x 0.32 mm x 0.5 wm)
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obtained from Struers (Denmark). Ammonium heptamolyb-
date tetrahydrate and 5-methyl-2-hexanole were obtained from
Sigma-Aldrich (Denmark). Acetone, hydrochloric acid and
sodium hydroxide were obtained from Bie and Berntsen (Den-
mark). Potato Dextrose Agar (Difco™) was obtained from
Becton, Dickinson and Company while Tryptic Soy broth for
microbiology was obtained from Merck (Darmstadt, Germany).
Soy flour and parboiled rice was of food quality and obtained
from the local supermarket.

Filters were 0.45 wm nylon filters from MicroLab (Aarhus,
Denmark). Filter paper (diameter of 240 mm), was of the type
Schleicher and Schuell MicroScience Ref No. 10311651.

A strain of Penicillium roqueforti used in industrial produc-
tion of natural methyl ketones at Danisco, Denmark was used
in this study. Spores were stored on silica-gel.

2.2. Culturing conditions

The pre-culture was prepared in three steps. In the first step
a small amount of silica-gel containing spores was incubated
at PDA-plates for 7 days at 25 °C. In the second step spores
from the first incubation was transferred to new PDA plates and
incubated again for 7 days at 25 °C. In the third step the spores
were transferred from the PDA plate with a sterile spatula to
a 11 conical flask containing 225 g rice, 6.75 g soy flour, and
75 ml demineralized water, which had been sterilized at 121 °C
for 60 min prior to inoculation.

After an incubation period of 5 days at 25 °C, 250 ml sterile
0.01% Tween 80 solution were added to the rice, followed by
soaking and gently shaking to separate the spores from the rice
grains. Thirty minute later the suspension was filtered through a
piece of gaze, which after the filtration was washed with 100 ml
0.01% Tween 80.

After harvesting, 2 ml of the spore suspension was added to
25 ml TSB, which was incubated for 12 h in an environmental
shaker at 30 °C and 200 rpm. This solution was investigated for
contaminations, under a microscope before inoculation of the
bioreactor. The spore solution was stored at 5 °C for no more
than 24 h before use, to avoid a loss in spore activity.

2.3. Substrate

It was decided to apply a carbon source beside the octanoic
acid in the substrate thereby enabling a batch without the pres-
ence of octanoic acid and subsequently directing as much of
the octanoic acid towards product formation. The effect of dif-
ferent carbon sources has been reported, where D-glucose was
shown also to facilitate the production of 2-heptanone (Lawrence
and Bailey, 1970). Different inorganic and organic compounds
have been investigated as nitrogen sources, where the organic
ones were found to have the best effect on methyl ketone pro-
duction (Meyers and Knight, 1958). Carbamide diamine was
selected here, as it was reported to induce sporulation. The
buffer applied was dipotassium dihydrogen phosphate, because
phosphate is known to enhance the octanoic acid degradation
ability (Lawrence and Hawke, 1968). In total the substrate
contained: 100g1~! glucose, 2.16g1~! carbamide diamine,

7.17g17! dipotassium dihydrogen phosphate and 2ml of a
trace element solution. 100 ml trace element solution contained:
15.5mg CuCly, 175.6 mg ZnSO4-7H,0, 36 mg MnCl,-4H,0,
183.4 mg CaCl,-2H,0, and 10.2 mg (NH4)sMo07024-4H, 0 dis-
solved in HCI and diluted with water, and was based on the
results of (Meyers and Knight, 1958).

2.4. Cultivation

Five liter substrate was added to a 7.51 bioreactor and heat
treated at 100 °C for 60 min prior to inoculation. After heat treat-
ment, the pH was adjusted to 6.5 applying 0.5 M HCI. The pH
was kept constant throughout the cultivation, by adding 0.5M
HCl or 4 M NaOH. This pH value was chosen as earlier work had
determined that optimum pH falls in the range from 5.5 to 7, the
specific optimum being dependent on the octanoic acid concen-
tration (Gehrig and Knight, 1963). The fermenter was inoculated
with 3.6 x 10 spores1~! and the process ran from two to six
days under the following conditions: 0.042 vvm air, 200 rpm (tip
speed: 0.63ms~!), and 27 °C. This temperature was fixed based
on work reported in (Lawrence, 1966). The spore amount in the
inoculum was counted by applying a counting chamber and a
microscope. During the cultivation pH and O, tension were mea-
sured on-line. Atthe end of each cultivation, the broth was heated
to inactivate the fungus, followed by filtration through a paper
filter, thereby separating the hypha and spores from the aque-
ous phase. Subsequently the aqueous phase was applied in the
electronic tongue measurements, thereby obtaining a realistic
background matrix.

Finally a fifth cultivation was carried out under identical
operating conditions, to which octanoic acid was added 15h
after oxygen limitation was reached. From this samples were
withdrawn and analyzed at GC-FID.

The bioreactor applied was an Applikon Microbial Biobundle
system with electrodes AppliSens pH* and AppliSens Dis Ox.
Data collection was facilitated via a RS 232 connection in the
BioBundle and a dedicated program written, for the purpose, in
LabView.

2.5. Electronic tongue measurements

The electronic tongue (ET) consist of six non-specific poten-
tiometric sensors that were obtained from the Laboratory of
Chemical Sensors at St. Petersburg University and a standard pH
electrode (Radiometer Analytical, DK). Prior to development of
the present analytical procedure, an extensive pilot experiment
applying 20 different electrodes was carried out to determine
the minimum number of electrodes needed in the array for reli-
able determination of octanoic acid (results not shown). From
these experiments it was concluded, that an array of six specific
anion selective electrodes had an enhanced cross-sensitivity to
octanoic acid in the applied substrate and was adequate. Each
anion sensor consisted of an active material (transition metal
doping) incorporated in a PVC membrane with a solid inner state
contact. Technical details regarding these sensors may be found
in (Leginetal., 1999; Legin et al., 2003). All measurements were
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Fig. 1. Experimental set-up for the electronic tongue measurements.

made against a double junction electrode (Radiometer analyti-
cal, DK), with an inner reservoir of saturated potassium chloride
and an outer of ammonium nitrate using a custom-made multi-
channel digital voltmeter with high input impedance. See Fig. 1
for experimental set-up.

For each of four cultivation broths, triplicate determination
of nine different concentration levels: 0.65, 2.5, 5.0, 7.0, 8.5,
10, 12.5, 16, and 20 mmol 1~! were carried out. In addition, 13
samples with a concentration within this concentration range
were obtained by dilution of samples from the fifth cultivation
with broth from cultivation no. 2.

Each measurement had a 14 min equilibration period fol-
lowed by electrode response recording for 1 min. Between
measurements the sensors were washed thoroughly with distilled
water.

2.6. Gas chromatography

For determination of the octanoic acid concentration, 2.00 g
broth (analytical mass) was weighted directly into a 10 ml cal-
ibrated flask, diluted with 7 ml acetone and left for 5 min, after
which 100 wl internal standard solution and acetone were added.
The internal standard was 5-methyl-2-hexanole. The sample was
filtered through a 0.45 pm filter directly into a vial and analyzed
using a GC-FID with a Varian CP7485 WCOT Fused Silica col-
umn (25 m x 0.32 mm i.d., film thickness 0.30 pm) designed for
free fatty acids. The temperature program applied was 115°C
for 2 min, 30°C min~—! to 220°C, and hold for 1.5 min.

2.7. Data processing

Processing of the electronic tongue data was carried out
using the UNSCRAMBLER software (version 9.5). Multivari-
ate calibrations using Partial Least Square regression (PLS)
were performed for quantitative determination of octanoic acid,
following the chemometric procedures outlined in (Esbensen,
2001). For each of the four cultivations a separate PLS model was
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Fig. 2. Examples of electrode response curves for the six electrodes applied.
Each response is based on triplicate determination of octanoic acid in broth no.
1. The bars indicated 1x standard deviation.

made, from which a few outliers were detected and excluded.
After outlier exclusion the data were agglomerated, triplicate
measurements were averaged and a global model containing
data from all four cultivations was also calibrated. All mod-
els were evaluated by segmented cross-validation, leaving an
entire concentration level out, one at a time. A random leave-one-
measurement-out-at-the-time cross-validation would not test the
model sufficiently, as the model would still contain measure-
ments pertaining to the concentration level left out. Esbensen
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Fig. 3. Cultivation chart for test cultivation. Addition of octanoic acid is indi-
cated by a sharp decrease in the pH and a concomitant increase in oxygen
tension.
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(2001) details the appropriate strategies for cross-validation, a.o.
that this approach is mostly acceptable for internal comparison
purposes only, e.g. between the models for the four cultivars
employed in the present study.

The final global model was tested by prediction of octanoic
acid concentration in samples originating from an independent
degradation of octanoic acid i.e., in a proper test set validation
context.

3. Results and discussion

To obtain a realistic evaluation of the electronic tongue per-
formance, the measurements were carried out in real broth
originating from an industrial cultivation analogue, to which
known concentrations of octanoic acid was spiked. In total it
was decided to apply four batch cultivations, with an average
maximum specific growth rate (1) of 0.15h~!. This was done
in an attempt to catch and incorporate the natural variation that
may exist between cultivations, into the model building phase,
hence making the model i.e., electronic tongue more robust and
capable of predicting the octanoic acid concentration in future
samples. To facilitate an even broader, but also realistic varia-
tion, it was furthermore decided to terminate the cultivations at
different times relative to the on-set of the oxygen limitation,
see Table 2.

To 50 mL of each of these four cultivation broths different
amounts of octanoic acid were added, hence a span in the con-
centration range from 0.65 to 20 mmol1~! was obtained. For
each concentration triplicate determinations were carried out
with the electronic tongue.

InFig. 2 an example of results obtained from measuring on the
broth originating from cultivation 1 is seen. As seen the voltage
was increasing as a function of log(octanoic acid) i.e. increasing
as a function of an increasing octanoic acid concentration for
all electrode applied. This was due to the nature of the sensors,
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Table 2

Specific growth rate, duration of the cultivation before oxygen limitation, and
time elapsed after on-set of oxygen limitation before the cultivation was ended
for cultivation 1-4

Cultivation wh™h O limitation (h) Stop relative to Oy
limitation (h)

1 0.15 40 80

2 0.15 44 72

3 0.13 44 0

4 0.17 36 36

as they were all anion selective. In general the electrodes had a
linear response to the octanoic acid concentration in the interval
from approximately 2.5-20 mmol1~! (—2.3 to —1.7 log unites)
i.e. they had a Nernstian behavior. At the lowest concentration;
0.65mmol1~! the slope of the curves were decreasing, which
can be explained by the uncertainties encountered when mea-
suring at low concentrations i.e. other ions in the solution effects
the electrodes.

As a mean of evaluating the model obtained, a fifth cultiva-
tion (1 =0.17h~1) was carried out under the same conditions,
see Fig. 3, to which 30 mmol 17! octanoic acid was added. The
fifth cultivation had a lag period of about 24 h after which the
exponential growth of the organism started, which lasted 16 h.
After additional 15 h of oxygen limitation, the octanoic acid was
added, which resulted in a sharp increase in the oxygen tension
curve and a decrease in the pH curve. The pH was adjusted back
to 6.5 again manually, whereas the oxygen tension decreased
after an adaption period. Simultaneously with the oxygen con-
sumption, octanoic acid catabolisation was initiated and the total
concentration in the substrate was decreased from approximately
32 to 20 mmol 17!

During the catabolisation of octanoic acid samples were
collected, with the purpose of electronic tongue model evalu-
ation. Of the samples collected it was however only the last
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Fig. 4. Global model for octanoic acid measured by ET.
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Table 3
Modeling and prediction statistics for the four individual models
No Total Component # objects Slope ? RMSEP 9%RMSEP RPD
2 21 1 8 0.92 0.96 0.13 55 5.1
24 1 8 0.95 0.98 0.10 42 6.7
22 1 8 0.89 0.96 0.15 6.3 43
24 1 8 0.84 0.90 0.21 8.8 3.1

The data was centered and scaled. “Total” refers to the number of determinations upon which the average for each model was based. “Component” is the number of
PLS components applied in the model. “# objects” correspond to the number of concentration levels in the model.

two samples, that were situated within the calibration range of
the model developed. Hence to test the prediction ability of
the model in the lower concentrations interval as well, it was
decided to dilute the true samples with broth from cultivation
no. 2. Cultivation no. 2 was chosen, due to the high degree
of similarity between the oxygen tension curves of the sec-
ond and fifth cultivation. This compound set forms a relevant
independent test set, which can be used for realistic prediction
validation.

3.1. Individual models

From the non-linear tendencies observed in the electrode
response plot, it was decided to linearise the Y-data, by taking
In to the octanoic acid concentration. In addition the data were
centered and scaled. In Table 3 the pertinent statistics for the
four individual PLS-1 models are given. Each model was based
on averages over triplicate measurements after outlier exclusion.

From these it is seen that the best model obtained was for cul-
tivation no. 2 which was characterized by growth at the average
maximum specific growth rate followed by a somewhat slow
death phase. During the death phase, lysis of the cells may
occur; thereby releasing proteins into the environment, which
caninterfere with the membrane of the electronic tongue sensors.
This may explain the better model obtained for this cultivation.
This hypothesis is consistent with the somewhat poorer mod-
els obtained for cultivation no. 1 and 4, which both had a faster
death phase. It is not consistent with obtaining the poorest model
for cultivation no. 3 on the other hand, as this was stopped even
before the death phase started. However other factors may also
have influenced the latter cultivation, as the maximum specific
growth rate here was lower than the average.

Eight of the full set of nine concentration levels were included
in the models, as the lowest concentration 0.65 mmol1~! con-
sistently showed outlier tendencies (inclusion in the model was
possible, but required two extra PLS-components, as compared
to only one in the global model, see below). From the electrode
response plots this was not totally unexpected, and it was decided
to leave out this concentration level in the feasibility study. This
could be done without loss of generality.

In general the individual PLS prediction models were char-
acterized by satisfactory accuracy (as evidenced by the slope of
a fitted regression line between predicted and reference values)
between 0.84 and 0.95.

As a means of assessing the prediction performance of the
model further, the relative RMSEP%, which is the average error

associated with octanoic acid prediction, for all future samples
with a similar compositional range (Esbensen, 2001), and the
RPD which is a dimensionless ratio relating the reference span
to the RMSEP (Fearn, 2002) were evaluated. In general it is
the experience that an RPD in the interval 3.1-4.9 is fair, in the
interval 5.0-6.4 is good and from 6.5 to 8 is very good. The prior
may be applied for screening purposes whereas a model with an
RPD in the interval above 6.5-8 may be applied in the process
control (Williams and Norris, 2001).

For the models built, the relative prediction errors (precision)
were of the order 4.2-8.8%. All acceptable as first attempts at
evaluating the feasibility of octanoic prediction although the ET
model 4 was marginal only. This was substantiated from the
pertinent RPD values, which were in the interval 3.1-6.7. In
the evaluation of the results it was further concluded that the
total variation seen in the four cultivations, was relevant in the
industrial cultivation context, as they all reflect a realistic matrix
composition. Therefore general octanoic acid prediction model
development would be based on aggregating all four cultivation
runs.

3.2. Global model

The resulting global model, which was first evaluated by
an 8-segmented cross-validation, again leaving out one whole
concentration level at a time, is presented in Fig. 4.

Fig. 4 confirmed the results obtained from the individual
models i.e., one PLS-component was statistically significant—no
extra explanation of Y is obtained by adding an additional com-
ponent. Therefore 86% of the variance in X was relevant and
applied for explaining 98% of the Y-variance (octanoic acid
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Fig. 5. Predicted levels of octanoic acid for samples from test set validation (run
no. 5).
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Table 4
Individual octanoic acid concentration predictions and deviation

Sample number

6 5 6.4 6.1 53 4.1 33 2.3 2.1 1.1
Octanoic acid (mmol1~1) 20.3 19.7 2.5 10.1 4.92 11.2 5.85 6.7 13.4 15.1

—3.90 —3.93 —5.99 —4.59 —5.31 —4.49 —5.14 —5.01 —4.31 —4.19
Predicted —4.22 —4.04 —6.03 —4.97 —5.44 —4.90 —5.54 5.31 451 4.56
Deviation 0.10 0.13 0.13 0.15 0.19 0.13 0.15 0.15 0.13 0.13

Italics correspond to the linearized In octanoic concentrations.

span). This signifies highly satisfactory prediction ability over
the entire calibration range.

The standard measure RPD was found to be 5.5 and the
RMSEP% level of 5.1% (In units). If so desired the predic-
tion precision can also be expressed by the asymmetric interval
+12.7/—11.4% derived by the inverse In-transform. For evaluat-
ing the performance of each electrode, the X-loading-weight w
can be evaluated. Here the X-loading weight shows how much
each electrode contributes to explaining the response variation
along each model component, hence a possibility to evaluate
all six electrodes in the array. As each electrode shows nearly
identical, high X loading-weight for PLS component number 1,
they are equally important in building the octanoic acid model,
and hence there will be no improvement of the model by any
stepwise optimization approaches or similar. This observation
is also evidenced by the pilot experiment, where the particular
set of six electrodes were singled out simultaneously as being
the optimal set of electrodes.

The global model broth was spiked with octanoic acid thereby
obtaining realistic fed-batch composition of both matrix as well
as analyte. This makes it likely that the model will also perform
on real samples from catabolization of octanoic acid. To test this,
the fifth cultivation described above was applied. The prediction
results obtained are presented in Fig. 5; and individual prediction
deviations are listed in Table 4.

Overall the prediction deviations in Table 4 were comparable
with those from the calibration model RMSEP, 0.12 (In units),
except for sample no. 5.3, which means that the model performed
equally well on completely new samples.

4. Conclusions and perspectives

The final global model was based on averaged triplicate
ET recordings. It was characterized by a highly satisfactory
prediction validation (leave-one-concentration level out cross-
validation) which pointed to only one PLS-component needed
to span a realistic compositional range. The global model was
also able to predict samples from an octanoic acid degradation
matrix.

The average future prediction error level, RMSEP% from test
set validation, corresponded to 5.1% (In-units). The RPD statis-
tic was 5.5, also signifying a good prediction precision. The slope
(accuracy) of the global model was 0.96. These statistics signi-
fied a satisfactory development result, allowing the conclusion
that feasibility of an ET prediction model for octanoic acid pre-

diction in realistic cultivation broths for industrial 2-heptanone
production has been successfully demonstrated.

The present successful development of an Electronic Tongue
analytical procedure for low concentration of an organic acid
(octanoic acid) has a wide carrying-over potential for similar
industrial on-line/at-line monitoring scenarios with comparable
demands, i.e. a critical sensitivity for the analyte and a need
for fast (minutes), reliable analytical result. There are numerous
potential application areas in the general industrial fermentation-
based process industries, aerobic as well as anaerobic.
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