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ENGLISH SUMMARY 

The conventional energy generation based on fossil fuels needs to be directed into a 

more secure and sustainable direction. Ever since the power electronics technology 

has been introduced, this paradigm has been changed substantially. The use of 

power electronics in renewable energy sources, such as photovoltaic cells and wind 

turbines, enables a full control and an efficient conversion of the electrical power. 

Thus, it facilitates the wide use of decentralized renewable energy generation all 

over the world.  

However, as more renewable energy sources interfaced with power electronics 

based power units are connected in the existing distribution network, it may lead to 

a place with a great concentration of power electronics units in a small area. Under 

certain situations, unexpected abnormal operations may occur and it may create 

interactions among the installed power electronics units, which may result in a 

devastating fault in the utility network. 

The interaction problem can be explained by the impedance relation at the point 

where the power electronics units are connected to. The impedance relation reveals 

the existence of the unstable poles and it can be investigated by the stability 

analysis tool, such as the Nyquist stability criterion. A case study shows several 

possible interaction problems that are created in locations with a high penetration of 

renewable energy generation. The resulted instabilities in the utility network are 

cleared out by changing the impedance of each power electronics unit, by adding 

passive damping, active damping or a specialized damping equipment. 

In nowadays complex utility networks, it is required to introduce a more 

straightforward design method that can prevent eventual instabilities. An emerging 

method is passivity, which can prevent this instability issue by limiting and shaping 

the individual component impedance within a passive range. This results in a 

conservative design guideline. Additionally, it is a self-disciplinary design method 

that can reveal the potentially risky frequency range and it helps to solve the 

interaction problem efficiently. A simple example on how to use the rule of 

passivity in stabilizing a small-scale power electronics based power system is given. 

Power losses in the system may be seen as a damping factor for stability analysis. 

Among many other losses in the system, the loss in the magnetic components that 

are present in harmonic filters may be significant and may create a mismatch 

between theory and practice. One of the most representative non-linearity exists in 

the filter inductor and is given by the magnetic hysteresis. By considering its 

behavior and the loss mechanism, it is investigated how the system damping 

changes and it reveals the limitation of the conventional linear model approach. 
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DANSK RESUME 
Den konventionelle energiproduktion, baseret på fossilt bræ ndsel, skal æ ndres til at 

blive mere sikker og bæ redygtig. Siden indførelsen af effektelektronik teknologier 

har dette paradigme æ ndret sig betydeligt. Brugen af effektelektronik, i forbindelse 

med vedvarende energikilder som solceller og vindturbiner, giver fuld kontrol og en 

mere effektiv konvertering til elektrisk energi. Derfor fremmer det den udbredte 

brug af decentraliseret vedvarende energiproduktion over hele verden.  

Men, når flere vedvarende energikilder med effektelektronik interface, bliver 

forbundet til det eksisterende distributionsnetvæ rk, kan der opstå zoner med en høj 

koncentration af effektelektronik enheder inden for et lille område. I nogle specielle 

situationer, kan der opstå uventede unormale events og det kan medføre utilsigtet 

interaktion mellem enhederne. Dette kan resultere i ødelæ ggende fejl i 

forsyningsnetvæ rket. 

Problemet med utilsigtet interaktion kan forklares ved impedansrelationen i det 

punkt hvor effektelektronik enhederne er forbundne. Impedansrelationen afslører 

eksistensen af ustabile poler og dette kan undersøges med stabilitetsanalyse 

værktøjer, som ’Nyquist stabilitets kriterium’. Et casestudy viser flere mulige 

interaktionsproblemer, der opstår i områder med høj koncentration af vedvarende 

energikilder. Den resulterende ustabilitet i forsyningsnetvæ rket, bliver afhjulpet ved 

at æ ndre impedansen på hver effektelektronik enhed, ved at tilføje passiv dæ mpning, 

aktiv dæ mpning eller et specialiseret dæ mpningsudstyr.  

Med nutidens komplekse forsyningsnetvæ rk, kræ ves det at der introduceres mere 

ligetil designmetoder, som kan forhindre eventuel ustabilitet. En nyfremkommet 

metode er ’passivitet’, som kan forhindre ustabilitet ved at begrænse og forme 

individuelle komponenters impedans indenfor et passivt område. Dette resulterer i 

en konservativ design guideline. Ydermere, er det en selvdisciplinerende metode, 

der kan afsløre det potentielt farlige frekvensområde. Dette hjæ lper med at afhjæ lpe 

interaktionsproblemet effektivt. Der gives et simpelt eksempel på, hvordan man 

bruger passivitetsmetodens regler, til at stabiliserer et mindre system, der anvender 

effektelektronik.  

Tab af effekt i systemerne kan ses som en begræ nsende faktor for brugen af 

stabilitets analyse. Blandt mange andre former for tab i systemerne, er tabet i de 

magnetiske komponenter, der findes i harmoniske filtre, betydeligt og kan give et 

misforhold mellem teori og praksis. En af de mest repræ sentative former for 

ulinearitet, findes i filterspoler og er givet ved den magnetiske hysterese.  Ved at 

overveje filterspolernes opførsel og mekanismen for tab, undersøges det hvordan 

systemets dæ mpning æ ndres. Dette afslører begræ nsningen i den konventionelle 

lineæ re model metode.
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CHAPTER 1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

From the actual increment of global energy consumption, it is expected that the total 

amount to be doubled in 20 years, mostly in the form of electrical energy [1]. The 

conventional fossil fuel based energy system has a huge problem in meeting the goal 

of cutting 40% of the global greenhouse gas emission  compared to 1990 level [2] 

and needs to be steered into a more secure and sustainable direction. An immediate 

alternative is to install renewable energy sources for increased sustainability of the 

energy sector. As it is targeted for 2030 by European Union (EU),  the renewable 

energy is believed to take, at least, 27% share of total energy consumption [2].  The 

amount of money which has been committed to the renewable energy within the 

institutional framework of EU , has been on a gradually record-breaking process, 

even the competitive position of fossil fuel generation is still solid from the low oil 

price [3]. As a result of this massive investment, many renewable resources have 

been developed and deployed through the existing electrical grid and even it is 

expected to be installed much more to meet the future consumption expectancy. 

Controller

PWM
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ig
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Power
Semi-conductor
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DC
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Fig. 1.1 Typical PE based renewable power generation system. 

Traditionally, there have been large power generation plants, which are located at 

places where the geographical and environmental requirements are favorable, such 

as thermal, hydro and nuclear power plants. The energy sources were centralized, in 

order for the electricity operator to have full controllability of the power quality and 

to control the entire process, such as energy generation, transportation and 

utilization. Since power electronics (PE) technology has been introduced, this 

paradigm has been being changed substantially. PE can be seen as a key technology, 

which converts electrical energy into usable electrical form by using power 

semiconductor devices and harmonic filters. Fig. 1.1 shows a typical simplified PE 

based renewable power generation system. The energy supplied from Renewable 

Energy Sources (RES) is modulated by the Power Semiconductor device and filtered 

out by the Harmonic Filter. The Harmonic Filter output current 𝑖𝑔  is adjusted by the 

Controller with its current reference 𝑖𝑔
∗  and is injected to utility Grid via the Point of  
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Fig. 1.2 European LV distribution network benchmark application example [4]. 

Common Coupling (PCC). Whenever the electrical energy is given in any form, the 

PE enables a full control and an efficient conversion of the electrical power, thus it 

facilitates the wide commercialization of renewable energy generation all over the 

world.  

With increased share of renewables in the power system, the importance of the 

conventional centralized generation is relatively decreased and the decentralized 

power generation concept is gaining more attention [4]. Instead of having 

unidirectional power flow, the decentralized operation of the power system leads to 

bidirectional power flow and it has to be managed actively in order to have 

sustainable operation, regardless of the power generation condition [5], [6]. 

Therefore, the decentralized electrical power system is expected to become more 

complex, which makes it more difficult to manage the overall operation of the 

network at the same time. As an example, a benchmark case of an European low-

voltage  distribution network for studying distribution network performance in a 

residential area is depicted in Fig. 1.2 [4]. It contains energy storage battery units, 

photovoltaics (PV), a wind turbine and residential loads, which are expected to be 

frequently present in the future grid system. At the same time, those energy sources, 

which are interfaced with PE based power units and are connected via distribution 

lines, may be located near each other and there may lead to a place with a great 

concentration of PE based power units. 
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Recent reports [2], [3] shows how unexpected and severe problems may arise in the 

power distribution system with renewable energy sources. For example, it was 

Dutch networks with high penetration of PV generation that had showed that PV 

inverters, under certain circumstances, switched off undesirably, or exceeded the 

harmonic regulations [7]. Even when all the PV inverters individually satisfy 

harmonic output regulations, the power quality standards at PCC might be exceeded 

[7]. In a wind power plant (WPP) in China (Shanxi province), problems appears 

with 17
th

 and 19
th

 order harmonics that broke some components in the grid-

connected inverters [8]. Also, large scale off-shore wind farms in Denmark and 

Germany have been experiencing unexpected automatic shutdowns from the 

underground power cable fault [9]–[12].  

These accidents may be explained by resonating behaviors of the newly installed PE 

based power system components. Unlike the conventional power system, the PE 

based power components use high-frequency switching converters to improve 

performance and to reduce losses. The PE based power unit must include power 

filters, such as Inductor (L) filter, Inductor-Capacitor (LC) filter or Inductor-

Capacitor-Inductor (LCL) filter, which are highly reasonable and may create 

potential resonance circuits in connection with the power system components. Since 

it has become very difficult to predict the potential problems [13], the influence of 

PE based power component in the existing power system has to be investigated 

thoroughly. 

The motivation of this PhD study is to predict and to find potential problems, which 

are not fully identified and discussed until now for the upcoming decentralized and 

complex PE based power systems. Specifically, it is mainly about the analysis of the 

instability caused by high frequency resonances or interactions between PE based 

units in a given test system. It is required to derive a more simple method to predict 

problems and to find solutions by using some of the conventional stabilizing 

techniques. 

This project is one of the sub-tasks of “HARMONY” project, which aim is to 

investigate the overall problem related to harmonics in power system of the future. It 

covers the full span of renewable power production, distribution and consumption, 

iterating towards a complete assessment and design methods for future power 

electronics based power systems. 

1.2. PROBLEM FORMULATION 

There has been a general agreement that those stability problems reported in some 

power systems, are closely related to the PE based power components which 

deployed in recent times. These include high frequency harmonic components, 

which may cause unpredictable behavior that makes even researchers to have very 

little progress towards understanding and preventing the stability issues associated 
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with PE based power components. Additionally, finding a more effective way to 

solve and prevent the problem during the design stage is also important. 

1.3. OBJECTIVES 

The main goal of this study is to answer the following questions.  

 Is it possible to find the unstable condition in a PE based power system 

caused by the interactions between the interconnected PE units? 

Firstly, the existence of the problem should be checked in the beginning. 

According to the practical parameter values in the European LV benchmark 

case [4], possible filter values and controller gains for PE units are investigated. 

From varying some of the parameters in the system, the unstable behavior may 

arise and can be found. 

 Is it possible to analyze and predict those interactions by using an 

analytical tool? 

According to the previous problematic cases, the problem may be reproduced 

by a mathematical model based tool. As the system is connected in the 

electrical domain, the only tool to model the overall system is its 

impedance/admittance based analysis method. Adopting a technique that 

enables the stability analysis based on impedance/admittance relation, the 

system stability can be investigated and can give us a design guide-line of the 

entire system. 

 How those instabilities associated with PE based units can be stabilized? 

There are several ways to stabilize the PE unit, by giving additional damping. 

The instability of the overall system also can be interpreted as some of the PE 

units in the network become unstable locally. By giving additional damping to 

the PE units or giving damping to the network may solve the instability issue 

and prevent the problem. 

 Can we find a more effective way to stabilize the system? Or can we find 

a more suitable place to stabilize the system? 

By adopting the impedance/admittance based stability analysis tool for a wide 

frequency range, the stability information of each node in the overall network 

can be obtained. Analyzing the distribution of the stability information, the 

optimal or the most effective location may be diagnosed.   

 Can we get more accurate result? 
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By including the extended model of the components in the PE unit, the system 

stability margin may be changed and become more accurate. 

1.4. LIMITATIONS 

In this thesis, all the PE units in the distribution system are assumed to be Voltage 

Source Converter (VSC) with LCL filter which is the most typical structure for 

nowadays renewable energy generation system. The network is three phase four 

wire system of low voltage range (0.4 kV) and with balanced load condition. Hence, 

the positive sequence impedance of the cable is considered for each phase of the 

network. As the frequency range of interest is closely related to the natural 

resonance frequency of the PE units, which is in kilo hertz range due to the LCL 

filter resonance frequency, this study only focuses on that frequency region. Since 

the low frequency instability problems appears near to the fundamental frequency 

[14] or even lower than the line frequency [15] and is at least several decays lower 

than the LCL filter resonance frequency, they can be decoupled each other. 

Therefore, the influences of the Phase Locked Loop (PLL), power and voltage 

control loops are not considered. 

1.5. THESIS OUTLINE 

This thesis discusses about the interaction problems which might appear in the 

decentralized power generation system with high penetration of renewable energy 

resources. The main focus is to find the high frequency instability issues for a given 

network and to build models based on the impedance relation in order to assess the 

system stability. From the obtained impedance model, we can identify the 

problematic PE devices for a given small scale power distribution. These units 

should be taken into account for achieving a stable network. By scanning all nodes’ 

damping margins, the stability map also can be found and effective nodes for 

solving the instability problem are found. All the procedures contain time domain 

simulation verification in PSCAD. Additionally, the effect of inductor hysteresis is 

addressed, since it can affect the stability of the system. 

In the introduction chapter, it is briefly mentioned about the growing trend of 

decentralized power generation system with high share of renewable energy sources. 

Some of the problems that have occurred recently in networks with high share of PE 

based sources can reveal the importance of this study. To assess this issue practically, 

detailed objectives and limitations are presented. 

In Chapter 2, constituent units of the distribution network for this study are 

explained. To focus more on the case and not to be confused by other reasons, the 

complexities of the model are investigated.  Basically, the transmission line, the PE 

units and the grid impedance are discussed in this chapter. 
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In Chapter 3, the tools for system stability analysis are explained. Time domain 

simulation model of the network for PSCAD is explained as well as the principle 

operation of the Electro Magnetic Transient Program (EMTP). Mathematical model 

for frequency analysis is explained in this section which is called the Impedance 

Based Stability Criterion (IBSC). By expanding the IBSC we can further reach to a 

new concept called Passivity which can give a design guide-line for PE based units, 

which can guarantee the stable operation. Some other issues in implementing the 

IBSC are also mentioned. 

In Chapter 4, the stability assessments for some case studies are given. Firstly, the 

unstable operations of the paralleled inverters are investigated and secondly, a more 

realistic benchmark case has been adopted and the analysis is performed. There are 

several ways to make the system stable by introducing damping in the system. 

Passive damping and active damping methods are discussed. If all nodes in the 

network are investigated, the most adequate location for the stabilization of the 

network can be found. This may show the risky index of the network. 

In Chapter 5, the stability effect of the non-linear model is investigated. One of the 

most representative non-linearity exists in the filter inductor associated with the  PE 

unit and is given by the magnetic hysteresis. By considering its behavior and the loss 

mechanism, we can investigate how the system damping changes and it can reveal 

the limitation of the conventional linear model.  

In Chapter 6, the summary and future works are given. It enumerates the main 

contributions and overall conclusion of this study. 
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CHAPTER 2. NETWORK MODELING 

FOR HARMONIC STUDIES 

In general, the power grid is divided in three parts given by the power generators 

that produce electricity, the transmission lines that transport the electricity to the 

distribution system and finally the loads, which may include residential, commercial 

or industrial areas. Recently, more renewable energy sources are integrated in the 

existing power grid, which makes the concept of generation and transmission 

changing. It is moving from unidirectional power flow to bidirectional power flow 

and from a centralized power generation to multiple distributed generations. In order 

to consider these changes in the stability analysis, a benchmark network of the 

power distribution system is adopted. Then, each of the network components that 

contributes to the system stability are briefly described individually. 

2.1. NETWORK COMPONENTS 

The electrical power grid is highly inductive due to the large generators and 

transmission lines. The power grid, in the simplest form, can be composed of a 

voltage source connected to a series RL impedance (Resistive and Inductive) and the 

load, which is shown in Fig 2.1 [16]. The functionality of the power grid can be 

described by the KVL given by the generator voltage vg, the voltage drop across the 

grid impedance vRL and PCC voltage vpcc. At the PCC, the load or the renewable 

energy source vrenew may be interfaced. By expanding this simple configuration, 

more complicated grid structure can be obtained. 

Lg Rg

vg

vrenew

L
o
a
d

ig

vpcc

vRL

 
Fig. 2.1 Simplified electrical AC power transmission system with renewable energy source 

[16]. 
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Fig. 2.2 Cigré benchmark case with balanced load condition [4]. 

Fig. 2.2 shows a Cigré benchmark network of a European LV distribution network 

with renewable energy sources. The LV distribution network is connected from a 

MV/LV transformer and is radial structured. It includes one or multiple line 

segments with the loads/generators connected along them radially. The test system 

for this study is a three-phase line to line 400 V with 50 Hz tied to the 20 kV feeder 

via a 500 kVA transformer. Originally, the benchmark network is aimed for 

microgrid operation [4]. As it is a residential area, the loads are mainly single phase, 

which may cause inherent load unbalance. Therefore, PE based battery energy 

storage units are used in order to diminish the load unbalance. Also, the distribution 

lines are underground cables, whose asymmetry may bring differences in the line 

impedances between the phases. Different from the original model, in this study, all 

unbalanced conditions are assumed to be balanced in order for the stability analysis 

not to be influenced by the unbalance condition. Hence, the stability analysis will 

focus only on the PE units and their controllers. 

2.2. UNDERGROUND DISTRIBUTION CABLES 

In order to show details of the underground cables that are used in the benchmark 

network, the geometry of the underground cables is depicted in Fig. 2.3. Their 

specifications and installation data are given in Table 2.1 and Table 2.2. 
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Fig. 2.3 Geometry of underground lines of European LV distribution network benchmark [4]. 

 

Table 2.1 Geometry of underground lines of European LV distribution network benchmark 
[4]. 

Conductor 

ID 
Type 

Cross- 

sectional  
Area [mm2] 

Number 

of  
strands 

R per 
phase 

[Ω/km] 

dc 

[cm] 

GMR* 

[cm] 

a 

[m] 

UG1 NA2XY 240 37 0.162 1.75 0.671 0.1 

UG2 NA2XY 150 37 0.265 1.38 0.531 0.1 

UG3 NA2XY 120 37 0.325 1.24 0.475 0.1 

UG4 NA2XY 25 1 1.54 0.564 0.22 0.1 

UG5 NA2XY 35 1 1.11 0.668 0.26 0.1 

UG6 NA2XY 70 1 0.568 0.944 0.368 0.1 

*GMR : Geometric mean radius 

Table 2.2 Line parameters of residential feeder of European LV distribution network 
benchmark [4]. 

Line 

segment 

Node 

from 

Node 

to 

Conductor 

ID 

R'ph 

[Ω/km] 

X'ph 

[Ω/km] 

l 

[m] 
Installation 

1 R1 R2 UG1 0.163 0.136 35 UG 3-ph 

2 R2 R3 UG1 0.163 0.136 35 UG 3-ph 

3 R3 R4 UG1 0.163 0.136 35 UG 3-ph 

4 R4 R5 UG1 0.163 0.136 35 UG 3-ph 

5 R5 R6 UG1 0.163 0.136 35 UG 3-ph 

6 R6 R7 UG1 0.163 0.136 35 UG 3-ph 

7 R7 R8 UG1 0.163 0.136 35 UG 3-ph 

8 R8 R9 UG1 0.163 0.136 35 UG 3-ph 

9 R9 R10 UG1 0.163 0.136 35 UG 3-ph 

10 R3 R11 UG4 1.541 0.206 30 UG 3-ph 

11 R4 R12 UG2 0.266 0.151 35 UG 3-ph 

12 R12 R13 UG2 0.266 0.151 35 UG 3-ph 

13 R13 R14 UG2 0.266 0.151 35 UG 3-ph 

14 R14 R15 UG2 0.266 0.151 30 UG 3-ph 

15 R6 R16 UG6 0.569 0.174 30 UG 3-ph 

16 R9 R17 UG4 1.541 0.206 30 UG 3-ph 

17 R10 R18 UG5 1.111 0.195 30 UG 3-ph 
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Finally, the equivalent positive sequence impedances of the line segments are 

calculated according to their line length and installation type as shown in Table 2.3. 

Table 2.3 Line parameters of residential feeder [4]. 

Line 

segment 

Node 

from 

Node 

to 

Calculated phase 

conductor resistance 

[mΩ] 

Calculated phase 

conductor inductance 

[uH] 

1 R1 R2 2.85 7.58 

2 R2 R3 2.85 7.58 

3 R3 R4 2.85 7.58 

4 R4 R5 2.85 7.58 

5 R5 R6 2.85 7.58 

6 R6 R7 2.85 7.58 

7 R7 R8 2.85 7.58 

8 R8 R9 2.85 7.58 

9 R9 R10 2.85 7.58 

10 R3 R11 23.12 9.84 

11 R4 R12 4.66 8.41 

12 R12 R13 4.66 8.41 

13 R13 R14 4.66 8.41 

14 R14 R15 3.99 7.21 

11-14 R4 R15 17.96 32.44 

15 R6 R16 8.54 8.31 

16 R9 R17 23.12 9.84 

17 R10 R18 16.67 9.31 

 

The impedance of the MV/LV transformer is given in Table 2.4. 

Table 2.4 Transformer parameters of European LV distribution network benchmark [4]. 

Primary Voltage 

[kV, line to line] 

Secondary Voltage 

[kV, line to line] 
Connection 

Transformer impedance 

based on sec. side [Ω] 

Srated 

[kVA] 

20 0.4 3-ph Δ − Y ground 0.0032 + j0.0128 500 

 

In this study, only the positive sequence impedance of the cables is used for 

considering balanced load condition to reduce the complexity of the analysis. And 

the capacitive impedance of cable is neglected since the distance of the distribution 

line is short enough [17]; the capacitive impedance may bring unexpected resonance 

in the network [9]–[12], but in this case, the frequency of interest is significantly 

lower than the cable resonance frequency as shown in Fig. 2.4 which  is about the 

worst case resonance behavior of the cable UG1 [18]. The resonance appears around  
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Fig. 2.4 Full impedance magnitude of the underground cable UG1 [18]. 

75 kHz while the frequency of interest resides within the few kHz range and the 

resonance frequency is higher when the distance of cable is segmented into several 

pieces. 

2.3. LOADS 

In a residential area, there might be nonlinear loads [19], such as diode rectifiers 

with capacitive load, which makes the impedance of the network to be frequency 

dependent. This makes the stability analysis of the system more complicated. To 

focus more on the interactions of the power inverters, all the loads are assumed to be 

passive and they are characterized by their apparent power and power factor. The 

relations among the applied voltage 𝑉𝐿𝑜𝑎𝑑, apparent power 𝑆, power factor 𝑝𝑓, load 

resistance 𝑅𝐿𝑜𝑎𝑑 and load reactance 𝑋𝐿𝑜𝑎𝑑 are as follows. 

{
 
 

 
 𝑝𝑓 =

𝑅𝐿𝑜𝑎𝑑

√𝑅𝐿𝑜𝑎𝑑
2 +𝑋𝐿𝑜𝑎𝑑

2

𝑆 =
𝑉𝐿𝑜𝑎𝑑
2

√𝑅𝐿𝑜𝑎𝑑
2 +𝑋𝐿𝑜𝑎𝑑

2

                             (2.1) 
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By solving (2.1) with respect to {𝑋𝐿𝑜𝑎𝑑 , 𝑅𝐿𝑜𝑎𝑑} result in, 

{
 
 

 
 𝑅𝐿𝑜𝑎𝑑 =

𝑝𝑓 𝑉𝐿𝑜𝑎𝑑
2

𝑆

𝑋𝐿𝑜𝑎𝑑 = {

√1−𝑝𝑓2 𝑉𝐿𝑜𝑎𝑑
2

𝑆
 , 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 

−
√1−𝑝𝑓2 𝑉𝐿𝑜𝑎𝑑

2

𝑆
, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒

               (2.2) 

For the inductive load case,  𝐿𝐿𝑜𝑎𝑑  is calculated as follows: 

𝐿𝐿𝑜𝑎𝑑 =
𝑋𝐿𝑜𝑎𝑑

2𝜋 𝑓
                        (2.3) 

where f is the fundamental frequency of the network. 

All loads parameters that are used in the benchmark network are calculated and 

shown in Table 2.5. 

Table 2.5 Load Parameters. 

Loads  

[kVA] 

Power Factor 

[𝑝𝑓] 

𝑅𝐿𝑜𝑎𝑑 

[Ω] 

𝑋𝐿𝑜𝑎𝑑 

[Ω] 

𝐿𝐿𝑜𝑎𝑑 at 50Hz 

[mH] 

2.7 0.85 16.653 10.321 32.852 

5.7 0.85 7.888 4.888 15.561 

8.8 0.85 5.109 3.166 10.079 

19.2 0.85 2.341 1.451 4.619 

 

 

2.4. GRID-CONNECTED VSC 

Fig. 2.5 shows one simple example of a three-phase grid-connected VSC with LCL 

filter (single line diagram). The aim for this VSC is to convert DC voltage vdc from 

renewable energy sources to the AC grid voltage vPCC in order to deliver the 

generated power to the AC grid. It utilizes modulation techniques [20] via the 

switching semiconductors, which result in high frequency pulsation voltage vM that 

has to be filtered out by the harmonic filter, while maintaining the fundamental 

frequency information of the vPCC. The harmonic filter should also ensure that the 

grid current ig is within the permissible harmonics emission range [21]. 

By governing ig, the amount of active power P and reactive power Q generation can 

be controlled and it enables the 4-quadrant operation, which ensure the bidirectional 

control of the current  [22]. 
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Fig. 2.5 Simple structure of Grid-Connected VSC in Renewable Power Generation. 

 

There are three major parts of the VSC in respect to the stability analysis of the 

interconnected system. One is the Phase Locked Loop (PLL), which is used for 

synchronization of the VSC with the grid voltage. The second is the current control 

loop that enables the 4-quadrant operation of the VSC. Lastly, the impedance of the 

harmonic filters is another factor that contributes to the VSC stability. 

 

2.4.1. PHASE LOCKED LOOP (PLL) 

In order to transfer power in an AC system, the phase angle and the magnitude of 

voltage and currents at each node should be controlled accordingly to the node 

power demand. Fig. 2.6 shows three important vector diagrams for relating the 

power flow from the node voltages and the phase angles as shown in the simple 

power transmission system diagram illustrated in Fig. 2.1. 

ig VRg

VLg
VRL

ℜZ

ℑZ

φZ

Pg or ia

Qg or irSg or 
ig

ℜP

ℑP

φP

VPCC

Vg

V
R

L

θ 

(a) (b) (c)
 

Fig. 2.6 Power flow vector diagram for: (a) Voltage drop across the line impedance (Rg, Lg); 
(b) PQ demand at the generator side; (c) Voltage relation and phase angle between VPCC and 

Vg. 
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Fig. 2.7 A merged vector diagram for VPCC and θ calculation. 

These three relations can be merged into one unified vector diagram. Line current 𝑖𝑔 

can be synthesized by the active current 𝑖𝑎  and reactive current 𝑖𝑟 , which are 

calculated by the power demands 𝑃𝑔  and 𝑄𝑔  at the node voltage 𝑉𝑔 . By using the 

alternating angle 𝜑𝑃 and the line impedance angle 𝜑𝑍, the angle 𝛾 can be found in 

order for the required voltage VPCC and the phase angle θ to be calculated (2.4). 

{
𝑉𝑠 = √𝑉𝑔

2 + 𝑉𝑅𝐿
2 − 2𝑉𝑅𝐿𝑉𝑔 𝑐𝑜𝑠(𝛾)

𝜃 = asin (
𝑉𝑅𝐿

𝑉𝑠
sin(𝛾))

             (2.4) 

In order to deliver the active and reactive power accurately, the phase angle 𝜃 has to 

be accurately applied. The angle information is typically measured and extracted by 

PLL in the VSC controller and used to control output voltage to be synchronized 

with the PCC voltage. Fig. 2.8 shows a block diagram for the Stationary Reference 

Frame PLL(SRF-PLL) [23], which is widely used in the three phase AC system for 

its simplicity. 

ωff

abc

PIPLL

dq sin
cos

ω
1
s

abc

αβ
vb,PCC

vα,PCC vβ,PCC

va,PCC

vc,PCC

ω＇

vd,PCC

vq,PCC

vd,PCC* θ＇

 
Fig. 2.8 Stationary Reference Frame PLL (SRF-PLL). 
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As it is an inherently negative feedback system, which is designed for the 

fundamental frequency tracking (50 or 60 Hz), the bandwidth of the PLL should not 

be too fast in order not to be affected by noise from the grid or voltage transients 

such as line notching, frequency variation or harmonics. The closed loop transfer 

function and the PLL bandwidth can be calculated by the forward loop elements 

PIPLL and 1/s [24].  

PIPLL = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
)                            (2.5) 

The closed-loop phase transfer function is: 

𝜃′

𝑣𝑑,𝑃𝐶𝐶
∗ =

𝐾𝑝𝑠+
𝐾𝑝

𝑇𝑖

𝑠2+𝐾𝑝𝑠+
𝐾𝑝

𝑇𝑖

=
2𝜁𝜔𝑛𝑠+𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2             (2.6) 

where, 𝜔𝑛 = √
𝐾𝑝

𝐾𝑖
 is the natural frequency and 𝜁 =

√𝐾𝑝𝑇𝑖

2
 is the damping factor. 

The –3 dB bandwidth of the system becomes: 

ω−3dB = 𝜔𝑛(1 + 2𝜁
2 + √(1 + 2𝜁)2 + 1)

1

2                    (2.7) 

By applying the default value of the PI controller gain in the PLL block of PSCAD/ 

EMTDC, the bandwidth of the PLL can be calculated as:  
ω−3dB = 68.65 𝑟𝑎𝑑 𝑠𝑒𝑐⁄

 |

𝐾𝑝= 50

𝐾𝑝

𝑇𝑖
=900
  

=  10.92 𝐻𝑧

             (2.8) 

Generally, in this small scale residential power distribution system, the bandwidth of 

the PLL is several decades slower than harmonics caused by the harmonic 

interactions [25]. Therefore, in this study, the instability caused by the effect of the 

PLL is not considered [25], [26] and it only focuses on instabilities caused by the 

filter resonance together with its controller [27]. 

2.4.2. CURRENT CONTROL LOOP 

To control the current 𝑖𝑔  from a given outer loop active power reference 𝑃𝑔  and 

reactive power reference 𝑄𝑔, the closed loop current control routine is adopted. Fig. 

2.9 shows a small signal representation of the VSC control loop. There are two 

inputs, one is the current reference 𝑖𝑔
∗  from the higher lever controller such as the 

voltage control or power control and the other one is the disturbance input of the 

fluctuating voltage  𝑣𝑃𝐶𝐶 . By using the superposition principle and the linear 
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characteristic of the small signal modeling, the combined dual-input single-output 

system can be decoupled as shown in Fig. 2.9. 

Gc Gd YM

YO
vPCC

vM igi*
g

 
Fig. 2.9 A small signal representation of VSC control loop. 

Basically, in this case, the three phase VSC is controlled in the stationary reference 

frame with Proportional+Resonant (P+R) current controller 𝐺𝑐 , together with the 

time delay 𝐺𝑑, which can be written in an exponential form that takes into account 

the digital computation delay and its modulation effect [28]. The switching patterns 

are determined by the Sinusoidal Pulse Width Modulation (SPWM) method and the 

normalized gain 1/2𝑣𝑑𝑐  (modulation index) as was illustrated in Fig. 2.4. 𝐺𝑐 and 𝐺𝑑 

are given as: 

𝐺𝑐 = 𝐾𝑃 +
𝐾𝐼

𝑠2+𝜔0
2                             (2.9) 

𝐺𝑑 = 𝑒
−1.5 𝑇𝑠 𝑠                      (2.10) 

where, the 𝐾𝑃 and 𝐾𝐼   are the proportional and integral gains of PR controller; 𝜔0  is 

the grid synchronization frequency and 𝑇𝑠 is the sampling time of the VSC, which is 

the inverse of the switching frequency  𝑓𝑠. 

In Fig. 2.9, YM represents the transfer function from the modulated voltage 𝑣𝑀 to the 

filter output current 𝑖𝑔, while YO represents the transfer function from the voltage 

deviation in 𝑣𝑃𝐶𝐶  to the output current in a opposite direction −𝑖𝑔: 

𝑌𝑀 =
𝑖𝑔

𝑣𝑀
|
𝑣𝑃𝐶𝐶=0

=
𝑍𝐶𝑓

𝑍𝐶𝑓𝑍𝐿𝑓+𝑍𝐿𝑔𝑍𝐿𝑓+𝑍𝐶𝑓𝑍𝐿𝑔
                     (2.11) 

𝑌𝑂 =
−𝑖𝑔

𝑣𝑃𝐶𝐶
|
𝑣𝑀=0

=
𝑍𝐿𝑓+𝑍𝐶𝑓

𝑍𝐶𝑓𝑍𝐿𝑓+𝑍𝐿𝑔𝑍𝐿𝑓+𝑍𝐶𝑓𝑍𝐿𝑔
                      (2.12) 

where, the impedances 𝑍𝐶𝑓, 𝑍𝐿𝑓 and 𝑍𝐿𝑔 are defined as follows: 

𝑍𝐶𝑓 = 𝑟𝐶𝑓 +
1

𝑠𝐶𝑓
+ 𝑅𝑑, 𝑍𝐿𝑓 = 𝑟𝐿𝑓 + 𝑠𝐿𝑓, 𝑍𝐿𝑔 = 𝑟𝐿𝑔 + 𝑠𝐿𝑔 

The open loop transfer function 𝑇 of the VSC is determined as follows: 
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𝑇 = 𝐺𝑐𝐺𝑑𝑌𝑀                                                 (2.13) 

The control to output transfer function and 𝐺𝐶𝐿  and disturbance to output current 

transfer function 𝑌𝐶𝐿 , which is called the output admittance, are determined as: 

𝐺𝐶𝐿 =
𝑖𝑔

𝑖𝑔
∗ |
𝑣𝑃𝐶𝐶=0

=
𝑇

1+𝑇
                                         (2.14) 

𝑌𝐶𝐿 =
−𝑖𝑔

𝑣𝑃𝐶𝐶
|
𝑖𝑔
∗=0

=
𝑌𝑂

1+𝑇
                                         (2.15) 

where, the open loop gain T can be used for small-signal stability analysis of the 

VSC; the closed loop transfer function GCL can be used for designing the controller 

bandwidth and the output response of the VSC, while YCL can be used for analyzing 

the interaction problems of the grid-connected converter with the utility grid 

impedance [31], [32]. 

2.4.3. HARMONIC FILTERS 

Several types of harmonic filters exist in practice, from a simple filter inductor (L) 

to a more complicated high order filter such as the inductor-capacitor-inductor (LCL) 

filter. The effectiveness in harmonic attenuation by having low volume and lower 

cost in the passive components, enables the LCL filter to be the most used filter 

topology in nowadays power electronics based power system [16], [28], [29]. The 

passive components of the LCL filter can be categorized as: 

 Converter side inductor 

 Grid side inductor 

 Shunt capacitor 

 Damping circuit 

The base ratings of the VSC can be used to refer the ratings of the harmonic filter 

passive components to that of the VSC system, as given by: 

23 PCC
b

VSC

V
Z

S
     

1

b

b

Z
L


     

1

1
b

b

C
Z

    
3

VSC
b

PCC

S
I

V
                     (2.16) 

where Zb, Lb, Cb and Ib are the base impedance, base inductance, base capacitance 

and base current, respectively; VPCC is the rms line to neutral voltage at the PCC, 

SVSC is the apparent power of the VSC and ω1 is the fundamental frequency of the 

grid.  

The converter side inductor is the main design limitation of the LCL harmonic filter, 

since the inductor is excited with high frequency rectangular voltages from the 
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PWM [29], which may lead to significant losses in the core [30] depending on the 

magnetic material [31] and current ripple specifications [32]. In distribution 

networks, the VSC are of relatively low power, which implies the use of switching 

frequencies above 8 kHz. For these frequencies, the ratings of the harmonic filter 

inductances are within 5 % of the base inductance value of the VSC, while the filter 

capacitor should be limited in the same range [33]. For optimized low cost harmonic 

filters, is possible to decrease the filter inductances and increase the filter capacitors.  

The final selection of the harmonic filter parameters should ensure the proper 

attenuation of the switching harmonics, as indicated by the utility operator. The total 

harmonic distortion and individual harmonic distortion of the current and voltage at 

PCC should be used correspondingly in the filter design. The resonance of the 

harmonic filter may require the use of a damping resistor in series with the filter 

capacitor, whose ratings should be less than 30 % of the VSC base impedance. To 

limit the power losses associated with the dissipative elements, different 

combinations of  RLC components with significant lower ratings than that of the 

main filter components can be adopted [33]. 

 

2.5. SUMMARY 

Before proceeding to the main instability issues, each element in the benchmark 

network was explained. The aim was to focus more on the instability issues related 

to the connection of multiple VSCs in the distribution network only, and not to be 

mixed or coupled with other factors, such as subharmonic oscillation or imbalanced 

loading condition. The three phase load is assumed to be balanced load and the only 

the positive sequence impedance of the transmission line (cable) is considered. The 

essential parts of the VSC are included in the model such as PLL, current controller 

and harmonic filters. 
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CHAPTER 3. ANALYZING TOOLS FOR 

STABILITY ASSESSMENT 

This chapter is based on publications [J.1], [C.4], [C.5]. 

 

The principle of time domain analysis in the PSCAD/EMTDC simulation tool is 

given in this chapter. The network solutions at each time step Δ𝑡 are revealed by the 

Nodal Admittance Matrix, which is calculated from the equivalent network 

equations obtained with the Dommel’s approach. The Laplace transformation 

technique, which contains all the frequency information is adopted for describing the 

complex dynamic behavior of the system, represented with concise algebraic 

fractional function called “transfer functions” with the variable ‘s’. Afterwards, the 

system stability is simply measured by finding the location of the roots in the 

transfer function, either by the impedance based stability criterion (IBSC) or by the 

passivity theorem. 

3.1. INTRODUCTION 

The time domain analysis describes all the measured variables and their status 

changes into mathematical functions as a function of the time t. It measures and 

stores the changes in the measured variables while increasing its time t [34]. 

The frequency domain analysis assumes a linear system with small variations in the 

input signal at their operating points. All the frequency information is revealed with 

the use of the Laplace transformation technique [35], where the complex dynamic 

behaviors of the system can be represented with concise algebraic fractional function, 

called “transfer functions” with the variable ‘s’. Then, the system stability is simply 

measured by finding the location of the roots in the transfer function. 

To understand the stability of the system, it must be obtained quantitative 

mathematical models of the system variables, such as the important physical 

quantities as voltages and currents. The relation between the voltage and current is 

called impedance or admittance, which is a mathematical model containing 

differential equations to model system dynamics. The impedance or admittance of 

respective parts of  the network could be written in simple algebraic equations that 

helps to investigate the system characteristics, where the interconnected impedance 

relation could be related to the stability criteria [36]. The stability of the system can 

be evaluated by the impedance based stability analysis of the interconnected 

impedance at a given node in the network [37]. Afterwards, the passivity criterion 
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[38] is an emerging method that can prevent this instability issue by shaping the 

impedance/admittance. However, it is required to introduce a more straightforward 

stability assessment method that can prevent eventual instabilities in complex 

networks, such as nowadays decentralized power system with high share of 

renewable energy sources. 

3.2. TIME DOMAIN ANALYSIS TOOL 

The main tool for solving the network solution in PSCAD/EMTDC is the Nodal 

Admittance Matrix, which makes use of the Dommel’s approach to model the 

equivalent network components. However, more advanced calculation methods like 

the Modified Nodal Analysis has the advantage of giving automated solutions [39]. 

3.2.1. DOMMEL’S APPROACH IN PSCAD/EMTDC 

The linear components of the network can be converted into a suitable form that can 

be used further for computation in computer programs such as the PSCAD/EMTDC. 

The equivalent models are obtained by the Dommel’s approach [34], which uses the 

trapezoidal rule to connect the differential equation and the difference equation for a 

given time step that addresses the digital computation. 

In Fig. 3.1 it is shown an example of the equivalent circuit of an inductor using the 

Dommel’s approach, that can be used further for the network solution calculation. 

For example, the voltage across the two components of the inductor (𝐿𝑥 and 𝑅𝑥) is 

𝑣𝑥(𝑡), while the current is 𝑖𝑥(𝑡). Then, the Dommel’s equivalent that is needed to 

obtain the network solution contains the equivalent conductance 𝐺𝑥 and the history 

term 𝐼𝑥(𝑡 − Δ𝑡). 

Gx

Ix(t-Δt)

ix(t)

vx(t)

Lx Rx

vx(t)

ix(t)

 
(a)                                                (b) 

Fig. 3.1 (a) Electrical circuit of an inductor with series resistor; (b) Its equivalent model 
using the Dommel’s approach [34]. 

The ordinary differential equation (ODE) of the inductor from Fig. 3.1(a) is: 

𝑣𝑥(𝑡) = 𝑅𝑥𝑖𝑥(𝑡) + 𝐿𝑥
𝑑𝑖𝑥(𝑡)

𝑑𝑡
                                     (3.1) 
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By applying the trapezoidal rule with the time step ∆𝑡 in (3.1), the voltage equation 

can be rearranged as function of the time instants (𝑡) and (𝑡 − ∆𝑡)  [34], [40] as: 

𝑣𝑥(𝑡)+𝑣𝑥(𝑡−∆𝑡)

2
= 𝑅𝑥

𝑖𝑥(𝑡)+𝑖𝑥(𝑡−∆𝑡)

2
+ 𝐿𝑥

𝑖𝑥(𝑡)−𝑖𝑥(𝑡−∆𝑡)

∆𝑡
                  (3.2) 

Then, the voltage equation as function of the lumped impedances 𝑍𝑥 and 𝑍𝑥1 can be 

written as: 

𝑣𝑥(𝑡) = 𝑍𝑥𝑖𝑥(𝑡) + 𝑍𝑥1𝑖𝑥(𝑡 − Δ𝑡) − 𝑣𝑥(𝑡 − Δ𝑡)                      (3.3) 

where, 𝑍𝑥 = 𝑅𝑥 +
2𝐿𝑥

Δ𝑡
, 𝑍𝑥1 = 𝑅𝑥 −

2𝐿𝑥

Δ𝑡
. 

From (3.3), the inductor current can be written as function of the conductance term 

𝐺𝑥 and the history term 𝐼𝑥(𝑡 − Δ𝑡) [40] as: 

𝑖𝑥(𝑡) =
1

𝑍𝑥
𝑣𝑥(𝑡) +

1

𝑍𝑥
𝑣𝑥(𝑡 − ∆𝑡) −

𝑍𝑥1
𝑍𝑥

𝑖𝑥(𝑡 − ∆𝑡) 

          = 𝐺𝑥𝑣𝑥(𝑡) + 𝐺𝑥𝑣𝑥(𝑡 − ∆𝑡) − 𝐺𝑥𝑍𝑥1𝑖𝑥(𝑡 − ∆𝑡) 
                                    = 𝐺𝑥𝑣𝑥(𝑡) + 𝐼𝑥(𝑡 − ∆𝑡)                                                           (3.4) 

where,  𝐺𝑥 =
1

𝑍𝑥
, 𝐼𝑥(𝑡 − ∆𝑡) = 𝐺𝑥𝑣𝑥(𝑡 − ∆𝑡) − 𝐺𝑥𝑍𝑥1𝑖𝑥(𝑡 − ∆𝑡). 

This Dommel’s representation can transform the ODE into a simple conductance 

and current source model, which enables the overall network to be represented only 

with conductances and current sources. 

 

3.2.2. NODAL ADMITTANCE MATRIX SOLUTION 

The network solution can be calculated with the conductance and history terms 

obtained in the previous chapter. For example, a more complex circuit is presented 

in Fig. 3.2. By converting all the voltage sources into Norton current sources and all 

network components into Dommel’s equivalents, the linear circuit from Fig. 3.2(a) 

can be converted into the Dommel model illustrated in Fig. 3.2(b). 
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VS GS

(1) (2) (3)

GS G20

G23

G30

G12

G13I12(t-Δt)

I13(t-Δt)

I30(t-Δt)(1)

(2) (3)

Z13

L12 R23RS

R20 C30
VS

(a)                                                               (b) 
Fig. 3.2 Exemplary circuits for obtaining network solution: (a) Voltage source based circuit; 

(b) Nodal admittance matrix with Dommel’s modeling. 

 

The nodal admittance can be formulated from the KCL of the respective node as: 

𝐾𝐶𝐿1: (𝐺𝑆 + 𝐺12 + 𝐺13)𝑉1 − 𝐺12𝑉2 − 𝐺13𝑉3 = 𝑉𝑆 𝐺𝑆 − 𝐼12(𝑡 − Δ𝑡) − 𝐼13(𝑡 − Δ𝑡) 

𝐾𝐶𝐿2 : − 𝐺12𝑉1 + (𝐺20 + 𝐺12 + 𝐺23)𝑉2 − 𝐺23𝑉3 = 𝐼12(𝑡 − Δ𝑡)  

𝐾𝐶𝐿3 : − 𝐺13𝑉1 − 𝐺23𝑉2 + (𝐺13 + 𝐺23 + 𝐺30)𝑉3 = 𝐼13(𝑡 − Δ𝑡) − 𝐼30(𝑡 − Δ𝑡) 

or in a matrix form: 

[𝑉(𝑡)] = [𝐺]−1[𝐼(𝑡)]                                                (3.5) 

𝑤ℎ𝑒𝑟𝑒, [𝐺] = [

𝐺𝑆 + 𝐺12 + 𝐺13 −𝐺12 −𝐺13
−𝐺12 𝐺20 + 𝐺12 + 𝐺23 −𝐺23
−𝐺13 −𝐺23 𝐺13 + 𝐺23 + 𝐺30

] , 

[𝑉(𝑡)] = [

𝑉1(𝑡)

𝑉2(𝑡)

𝑉3(𝑡)
] , [𝐼(𝑡)] = [

𝑉𝑆(𝑡)𝐺𝑆 − 𝐼12(𝑡 − ∆𝑡) − 𝐼13(𝑡 − ∆𝑡)

𝐼12(𝑡 − ∆𝑡)

𝐼13(𝑡 − ∆𝑡) − 𝐼30(𝑡 − ∆𝑡)
]. 

The node voltage vector [𝑉(𝑡)]  is calculated by solving [𝐺]−1[𝐼(𝑡)]  via the LU 

decomposition method [40]. At each time step, all the history terms and sources in 

[𝐼(𝑡)]  are updated before performing the LU decomposition. If there is no change in 

the conductance matrix [𝐺]−1, the previous results can be preserved for the next 

calculation, which it may drastically reduce the number of calculations. 
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3.3. FREQUENCY DOMAIN STABILITY ANALYSIS 

3.3.1. IMPEDANCE BASED STABILITY CRITERION 

In 1976, R. D. Middlebrook first used the impedance relation to design the input 

filter of a DC-DC converter [36] and he explained the role of the closed loop system 

(mainly of the minor loop), that influences the converter stability [37] [41]. For 

example, in Fig. 3.3 it is shown the admittance relation, which is adapted for an AC 

power distribution system, where 𝑌𝑆  is the source admittance and 𝑌𝐿  is the load 

admittance. 

The source admittance may be referred to, as a grid connected VSC with its 

corresponding current control structure and the load admittance may be referred to, 

as the grid impedance seen from the PCC. 

The relation between voltage and current can be written as: 

𝐼𝑆 = 𝑉𝑃𝐶𝐶(𝑌𝑠 + 𝑌𝐿)                                                (3.6) 

which can be converted into a series connected negative feedback block as shown in 

Fig. 3.3(b). The feedback loop gain, called the minor loop gain 𝑇𝑀 , becomes the 

loop gain of the closed loop transfer function, which can be obtained from the two 

admittances as: 

𝑇𝑀 =
YS

YL
                                                      (3.7) 

YS YLIS VPCC

+

Source Load

1

YL(s)
1

VPCC(s)

YS(s)

YL(s)

IS(s)

YLYS

PCC

 
(a)                                           (b) 

Fig. 3.3 Small-signal admittance representation of: (a) an interconnected system 
 with current source; (b) the minor loop gain representation [J.1]. 

By analyzing the loop gain of the system, the possible unstable poles of the system 

can be investigated by using some stability analysis tools, such as the Nyquist 

stability criterion or root locus [35]. Therefore, the inter-connected system stability 

can be evaluated. 
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3.3.2. PASSIVITY STABILITY CRITERION 

The concept of passivity was originated in the control theory field [42] and recently, 

it is gaining attention also in the power electronics and power system field [43]–[45]. 

It helps to mitigate the interaction problems between the grid connected VSC units 

[26]. The passivity can deal with large electrical systems, provided that the 

frequency response requirements for each individual subsystem do not affect the rest 

of the system. That means that the frequency response of a subsystem should be 

ranged within a certain phase angle margin given by [-90º, +90º], in order not to 

affect the other passive subsystems [26]. A necessary and sufficient condition that a 

linear network is passive if its impedance is a positive real function. More accurate 

formulation was followed thereafter; that is, Re (∫ 𝑣∗(𝜏)𝑖(𝜏)𝑑𝜏
𝑡

−∞
) ≥ 0 for all 

t > −∞, where 𝑣 , 𝑖  and * are the stimulus voltage, output current and complex 

conjugate respectively [46]. Because the total energy delivered to the network is 
1

𝜋
∫ 𝑅𝑒[𝑍(𝑗𝜔)]
+∞

0
‖𝐼(𝑗𝜔)‖2𝑑𝜔  and it greater than 0, this will impose that 

𝑅𝑒[𝑍(𝑗𝜔)] ≥ 0 at each frequency [47], which guarantees the phase angle of the 

impedance 𝑍(𝑠)  to be in a passive range, given by [-90º, +90º]. Since complex 

networks are composed by a large number of sub-systems, the stability of the overall 

system can be achieved by making each sub-system passive.  This means that the 

output admittance of grid-connected converters should be passive in order for the 

phase angle of the interconnected system to be in the [-180º, +180º] range. This will 

ensure that the (-1, j0) point in the Nyquist plot will never be encircled, resulting in a 

stable system in all conditions [48]. 

3.3.3. THE OUTPUT ADMITTANCE OF GRID-CONNECTED VSC 

Typical Bode diagrams of the output admittance of a grid current controlled inverter 

for two different possible designs of the LCL filter are shown in Fig. 3.4. The filter 

designs are made according to the placement of the LCL filter resonance frequency 

𝜔𝑟𝑒𝑠 as function of the dip (anti-resonance) frequency ωd of the output admittance, 

mainly given by: 

𝜔𝑟𝑒𝑠 = √
𝐿𝑓+𝐿𝑔

𝐿𝑓𝐿𝑔𝐶𝑔
                                                     (3.7) 

𝜔𝑑 = √𝐶𝑓𝐿𝑓
−1

                                                   (3.8) 

Additionally, the critical frequency of the inverter 𝜔𝑐 is defined as: 

𝜔𝑐 =
𝜋

3𝑇𝑠
                                                         (3.9) 
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Fig. 3.4 The inverter output admittance YCL for two different designs of the LCL filter [J.1]. 

 

The critical frequency of the inverter 𝜔𝑐  is one-sixth of the sampling frequency 

given by 𝑇𝑠, while the Nyquist frequency 𝜔𝑁𝑄 is defined as the half of the sampling 

frequency.  

The inverter does not need resonance damping for its stand-alone stable operation if 

𝜔𝑟𝑒𝑠 > 𝜔𝑐  is satisfied [49]. The locations of the anti-resonance frequency 𝜔𝑑  in 

respect to 𝜔𝑐 result in two distinctive ways of classifying the non-passive region in 

Fig. 3.4, given by 𝜔𝑑 > 𝜔𝑐  and 𝜔𝑑 < 𝜔𝑐. The phases of the two admittances exceed 

the passive range [−90°, +90°] in the interval of (𝜔𝑑 , 𝜔𝑐) or (𝜔𝑐 , 𝜔𝑑), respectively, 

even though the inverter is designed stable as stand-alone. The phase angle 

degradation is introduced by the time delay term 𝐺𝑑 until 𝜔𝑑, where the 180° phase 

jump occurs. It can be concluded that the time delay and the parallel resonance 

frequency 𝜔𝑑  are the main reason of passivity violation of the grid-connected 

converter. 

3.3.4. DEFINITION OF THE NON-PASSIVE RANGE OF THE 
CONVERTER OUTPUT ADMITTANCE 

The passivity violation can be identified by evaluation of the negative value of the 

output admittance real part [48], mainly given by: 

ℜ(𝑌𝐶(𝑗𝜔)) =
𝐾 cos(1.5𝑇𝑠𝜔) (1−𝜔

2𝐶𝑓𝐿𝑓)

(𝐾 sin(1.5𝑇𝑠𝜔)+𝜔(𝜔
2𝐶𝑓𝐿𝑓𝐿𝑔−𝐿𝑓−𝐿𝑔))

2
+(𝐾 cos(1.5𝑇𝑠𝜔))

2
        (3.10) 
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From (3.10) it can be noticed that the only functions which can be negative are the 

cosine function (that is resulted from the time delay 𝐺𝑑) and the anti- resonance term 

𝜔𝑑 [43]. Therefore, the non-passive region of the inverter is defined by these two 

terms, which are illustrated in Fig. 3.5 together with their combined polarities.  The 

polarity of the cosine term changes at 𝜔𝑐 and at the Nyquist frequency 𝜔𝑁𝑄 . The 

(1 − 𝜔2𝐶𝑓𝐿𝑓) term has three different ranges depending on the different values of 

𝜔𝑑 given by: 

 𝜔𝑑 is smaller than 𝜔𝑐, the non-passive region becomes [𝜔𝑑 , 𝜔𝑐]  
 𝜔𝑑 is larger than 𝜔𝑐, the non-passive region becomes [𝜔𝑐 , 𝜔𝑑] 
 𝜔𝑑  is equal to 𝜔𝑐 , the non-passive region disappears and the system 

becomes stable for all passive network admittance [50] 

In this work, the frequency range for harmonic analysis is limited to the Nyquist 

sampling frequency 𝜔𝑁𝑄 . Above the Nyquist frequency, there may be other issues, 

which needs to be investigated [51] and are omitted here. 
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Fig. 3.5 Non-passive region of grid inverter derived from the numerator of  CY  [J.1]. 

 

3.4. EXAMPLE OF STABILITY ANALYSIS OF GRID-CONNECTED 
VSC 

The stability regions of the converter output admittance 𝑌𝐶𝐿  with different grid 

admittance 𝑌𝐺  can be described by using the graphical interpretation of IBSC, while 

the non-passive region of the converter can provide possible forbidden regions for 

the passive grid admittances. It makes possible to find out the critical grid 

admittance that may trigger the power converter instability. Based on the minor loop 

gain definition 𝑇𝑀 in (3.7), the source admittance 𝑌𝐶𝐿  which is the output admittance 
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of the VSC and the load admittance which is in this case the grid admittances 𝑌𝐺  are 

used to find out the interconnected system stability as shown in Fig. 3.3 [36].            

𝑇𝑀 =
𝑌𝐶𝐿

𝑌𝐺
                                                  (3.11) 

According to the passivity theorem, the VSC stability is satisfied if |𝑌𝐶𝐿| > |𝑌𝐺| and 

∠𝑌𝐶𝐿 − ∠𝑌𝐺 = −𝜋 ± 2𝜋𝑁 [35]. 

 

3.4.1. INFLUENCE OF PURE INDUCTIVE GRID IMPEDANCE 

The graphical interpretation of IBSC requires knowledge of both 𝑌𝐶𝐿  and 𝑌𝐺 . For a 

pure inductive grid, 𝑌𝐺  is: 

𝑌𝐺(𝑗𝜔) =
1

𝑗𝜔𝐿𝑔
                                                  (3.12) 

Then, the grid and output converter admittances are illustrated in Fig. 3.6 for two 

designs of the LCL filter. Since the grid impedance is passive, the frequency range 

of concern is limited to the non-passive range of the inverter given by a phase 

difference larger than 180 ° , which occurs between 𝜔𝑑  and 𝜔𝑐 . Therefore, the 

magnitude condition has to be evaluated in order to calculate the critical grid 

impedance that may lead to instability as follows: 

 𝜔𝑑 < 𝜔𝑐: the increase in the grid impedance |𝑌𝐺| (color line) makes the 

magnitude condition area |𝑌𝐶𝐿| > |𝑌𝐺|  to be broadened. Then, the 

frequency where the negative crossover takes place is 𝜔𝑐 and is given by 

(∠𝑌𝐶𝐿 − ∠𝑌𝐺 = −𝜋 ± 2𝜋𝑁). The critical inductance value of the grid 𝐿𝐺 

can be calculated by equating the grid admittance (3.12) to the output 

admittance of the converter 𝑌𝐶𝐿  at the critical frequency 𝜔𝑐, which results 

in: 

 𝐿𝐺 =
√𝐾2 𝑐𝑜𝑠(1.5𝑇𝑠𝜔𝑐)

2+(𝐾 sin(1.5𝑇𝑠𝜔𝑐)+𝜔𝑐(𝜔
2𝐶𝑓𝐿𝑓𝐿𝑔−𝐿𝑓−𝐿𝑔))

2

𝜔𝑐|1−𝜔𝑐
2𝐶𝑓𝐿𝑓|

               (3.13) 

 𝜔𝑑 > 𝜔𝑐: the converter is stable since the phase difference is less than 

180° 
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Fig. 3.6 Stable and unstable region of grid inverter in pure inductive grid case: (a) 𝜔𝑑 < 𝜔𝑐 , 

(b) 𝜔𝑑 > 𝜔𝑐 [J.1]. 

 

3.4.2. INFLUENCE OF PURE CAPACITIVE GRID IMPEDANCE 

Similarly, the critical frequency is evaluated for the capacitive grid, which may 

occur if the converter is connected with the grid through long underground cables. 

The stability analysis for variable grid capacitance 𝐶𝐺 is opposite to that of the 𝐿𝐺 as 

it is illustrated in Fig. 3.7. The frequency dependent pure capacitive grid can be 

characterized by: 

𝑌𝐺(𝑗𝜔) = 𝑗𝜔𝐶𝑔                                            (3.14) 

The magnitude condition evaluation reveals the following: 

 𝜔𝑑 < 𝜔𝑐: the converter is stable since the phase difference is less than 

180° 
 𝜔𝑑 > 𝜔𝑐: the decrease in the grid impedance |𝑌𝐺| (color line) makes the 

magnitude condition area |𝑌𝐶𝐿| > |𝑌𝐺|  to be broadened. Then, the 

frequency where the negative crossover takes place is 𝜔𝑐. A capacitance 

value smaller than the critical capacitance value of the grid 𝐶𝐺  would 

make the converter unstable as given by: 

𝐶𝐺 =
|1−𝜔𝑐

2𝐶𝑓𝐿𝑓|

𝜔𝑐√𝐾
2 𝑐𝑜𝑠(1.5𝑇𝑠𝜔𝑐)

2+(𝐾 sin(1.5𝑇𝑠𝜔𝑐)+𝜔𝑐(𝜔
2𝐶𝑓𝐿𝑓𝐿𝑔−𝐿𝑓−𝐿𝑔))

2
           (3.15) 
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Fig. 3.7 Stable and unstable region of grid inverter in pure capacitive grid case: (a) 𝜔𝑑 <

𝜔𝑐  , (b) 𝜔𝑑 > 𝜔𝑐 [J.1]. 

 

3.5. PROPOSED IBSC METHOD FOR A DISTRIBUTION 
NETWORK WITH MULTIPLE CONNECTED VSC 

In a practical situation, there are multiple converters connected to the distribution 

network as illustrated in Fig. 3.8. For this scenario, the source admittance is given by 

the converter admittance of the analyzed converter. However, the load admittance 𝑌𝐿 

will contain all the other converter admittances 𝑌𝑆𝑥 connected to the network and the 

impedances in the network given by the passive components such as resistors, 

inductors and capacitors (from the distribution lines and transformers). Additionally, 
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Fig. 3.8 Small-signal admittance representation of a small scale inverter-based power system 

[C.4]. 
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the grid admittance 𝑌𝑔𝑟𝑖𝑑 from the upper level network, such as medium-voltage 

network, also needs to be taken into account. 

However, the problem may appear in the load admittance  𝑌𝐿 . Even all of the 

converters which make up  𝑌𝐿  are stable stand-alone and they only have LHP poles 

in their output admittance, the resulted impedance  1/𝑌𝐿 can turn into unstable state, 

i.e. caused by non passive behavior of each converter output admittance 𝑌𝑆𝑥, as a 

result of the interaction between the converters. All the individual converter 

admittances are aggregated and hidden into the transfer function  𝑌𝐿, the use of the 

IBSC is still not intuitive. Even all of the converters present in the load admittance 

are planned to be operated stable, the stability of the combined load admittance still 

remains unknown [7], [52]. 

3.5.1. CONDITIONS FOR STABILITY 

In order to apply the Nyquist stability criterion to the minor loop gain given by the 

admittance ratio, the stability of the current source 𝐼𝑆 and of the load admittance 𝑌𝐿 

needs to be procured individually. For example, the stability at node A can be 

analyzed by the admittance ratio 𝑇𝑀𝐴 given by: 

𝑇𝑀𝐴 =
𝑌𝑆𝐴

𝑌𝐿𝐴
                                                 (3.16) 

Let’s assume first that there is only one connected converter to the Passive 

Component Network (PCN), while detaching all the other active PE units from the 

network as shown in Fig. 3.9. In this case, the load admittance 𝑌𝐿𝐴 contains only 

passive components without having negative real parts , so there is no way to induce 

right half plane poles (RHP) and zeros (RHZ) into the PCN. If the current source 𝐼𝑆𝐴 

is stable from the beginning and the inverse of the load admittance 1/𝑌𝐿𝐴  has no 

RHP pole, then the IBSC requirements are satisfied. This means that (3.16) satisfies 

the Nyquist stability criterion and the voltage on node 𝐴 is stable with respect to the 

current source 𝐼𝑆𝐴 [C.4]. 

YSA

ISA YSA

PCN

YLA

A

 
Fig. 3.9 Passive component network (PCN) [C.4]. 
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If the stable operation is achieved on the node 𝐴, all the nodes which are in PCN is 

stable and the other inverters can be connected sequentially to inspect further. 

At this point, it needs to be defined a set of statements which will be used when it 

comes to extending this stability evaluation procedure for the entire distribution 

network such as: 

“   1. The network with only passive components is always stable 

2. The arbitrary node in the PCN is stable when all active components  

connected nodes are stable  ” [C.4] 

Statement 2 gives an essential condition that enables to extend the IBSC analysis for 

all nodes in the distribution network sequentially. But, still the contribution of each 

active component on the system stability is not straightforward, as the load system 

stability is determined by how 𝑌𝐿𝐴 is grouped in the beginning: the participation of 

the network components also decides the system stability [C.1], [25]. 

3.5.2. PROPOSED SEQUENTIAL STABILIZING PROCEDURE 

The proposed sequential stabilizing method collects all the stable load admittances 

that contain all the converters in the network as illustrated in Fig. 3.10 (a) and (b). 

An absolutely stable load admittance of the PCN is expanded sequentially to include 

the whole network by adding each of the converters one by one. The system stability 

is evaluated by the Nyquist stability criterion at each iteration. If the connection of 

one of the converters turns out to be unstable, then stabilizing functions such as 

damping resistors or active damping methods should be considered. The procedure 

ends when the networks with all connected converters are evaluated and the network 

is stabilized if necessary. The flowchart of the proposed sequential stabilizing 

procedure for networks with multiple connected converters is shown in Fig. 3.10 (c). 

The Nyquist stability criteria can be adopted with any of the converters output 

admittance 𝑌𝑆1  and its corresponding PCN admittance 𝑌𝐿1  seen from the arbitrary  

node 𝐴, as shown in Fig. 3.10 (a). The terminology chosen here is arbitrary and the 

equivalent admittance 𝑌𝑃𝐶𝑁 is determined by the location where it is measured as it 

will have a different value for each node. If the stability between the connected 

system 𝑌𝑆1 and 𝑌𝐿1 is guaranteed on the node 𝐴, it can be extended to the next node 

𝐵 as shown in Fig. 3.10 (b). The new stable load admittance 𝑌𝐿2 seen from the node 

𝐵  will contain also 𝑌𝑆1 . Then, the stability can be evaluated on node B for the 

unidentified source admittance 𝑌𝑆2with respect to the new stable load admittance 

𝑌𝐿2 obtained from the previous step [C.1]. 
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(c) 

Fig. 3.10 The sequential stabilizing procedure: a) An inverter with passive component 
network; b) The second inverter with a stable admittance network; c) The proposed 

sequential stabilizing procedure [C.4]. 

 

3.5.3. PRACTICAL EXAMPLE OF STABILITY ANALYSIS 

To application of the proposed sequential stabilizing procedure for the small-scale 

distribution system shown in Fig. 2.2 is presented in the following. The ratings of 

the system are given in Table 3.1. 
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Table 3.1 The Ratings of the Grid-Connected Converters [C.4]. 

 
Converter name 

Inv. 1 

(Inv. A) 

Inv. 2 

(Inv. B) 

Inv. 3 

(Inv. C) 

Inv. 4 

(Inv. D) 

Inv. 5 

(Inv. E) 

Power rating [kVA] 35 25 3 4 5.5 

Base Frequency, f0 [Hz] 50 

Switching Frequency, fs [kHz] 

(Sampling Frequency) 
10 16 

DC-link voltage, vdc [kV] 0.75 

Harmonic regulations 

for LCL filters 
IEEE519-1992 

Filter 
values 

  Lf [mH] 

  Cf [uF]/Rd [Ω] 
  Lg [mH] 

0.87 

22/0 
0.22 

1.2 

15/1 
0.3 

5.1 

2/7 
1.7 

3.8 

3/4.2 
1.3 

2.8 

4/3.5 
0.9 

Parasitics 
values 

  rLf [mΩ] 

  rCf [mΩ] 

  rLg [mΩ] 

11.4 

7.5 

2.9 

15.7 

11 

3.9 

66.8 

21.5 

22.3 

49.7 

14.5 

17 

36.7 

11 

11.8 

Controller  

gain 

      KP 

      KI 

5.6 

1000 

8.05 

1000 

28.8 

1500 

16.6 

1500 

14.4 

1500 

Considering the sequential stabilizing procedure given in Fig. 3.10 (c), the iterative 

stability assessment is performed as follows: 

Step 1: The output admittance of the Inv.1 at node R6 given by 𝑌𝑆1 is obtained from 

(2.15). The load admittance 𝑌𝐿1  at node R6 containing only the passive component 

network without any converters is calculated. The minor loop gain for the node R6 

can be written as: 

𝑇𝑀1 =
𝑌𝑆1

𝑌𝐿1
                                             (3.17) 
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Fig. 3.11 Nyquist diagram of the system at Step 1 for the initial condition (blue) and for the 

stabilized system with additional damping resistor Rd (green) [C.4]. 

In Fig. 3.11 is shown the Nyquist plot of the minor loop gain from (3.17). It reveals 

that the Inv. 1 connected to the network is unstable (blue) as it encircles (−1,0𝑗). 
Since 𝑌𝐿1  is always stable from statement 1, then 𝑌𝑆1 can be modified to suffice the 

stability condition. A damping resistor 𝑅𝑑 is added in the harmonic filter of the Inv.1, 
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which can reshape the output admittance 𝑌𝑆1 in order to stabilize the system.  The 

time domain results are shown in Fig. 3.12(a) and Fig. 3.12(b). 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [sec]

 

 

Inv.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
 

 

Phase a

Phase b

Phase c

Step 1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
u
rr

en
t[

kA
]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
o
lt

a
g
e 

[k
V

]

 
(a) 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
 

 

Phase a

Phase b

Phase c

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time [sec]

 

 

Inv.1

Step 1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

C
u

rr
en

t[
kA

]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
o

lt
a

g
e 

[k
V

]

 
(b) 

Fig. 3.12 Time domain simulation of the converter voltages (upper) and currents (lower) at 
node R4 for Step 1: (a) Unstable case; (b) Stabilized case [C.4]. 
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Fig. 3.13 Nyquist diagram of the system at Step 2 for the initial condition (blue) and for the 

stabilized system with increased damping resistor Rd (green) [C.4]. 
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(b) 

Fig. 3.14 Time domain simulation of the converter voltages (upper) and currents (lower) at 
node R4 for Step 2: (a) Unstable case; (b) Stabilized case [C.4]. 



CHAPTER 3. ANALYZING TOOLS FOR STABILITY ASSESSMENT 

49 

 

Step 2:  The new stabilizing procedure start with other nodes in the network based 

on statement 2. The Inv.2 connected at node R10 is added to the stable network 

obtained from the previous step. Then, the minor loop gain for stability evaluation at 

node R10 is: 

𝑇𝑀2 =
𝑌𝑆2

𝑌𝐿2
                                              (3.18) 

In Fig. 3.13 is shown the Nyquist plot of the minor loop gain from (3.18). It reveals 

that the Inv. 2 connected to the network is again unstable (blue) as it encircles 

(−1,0𝑗). The value of the damping resistor 𝑅𝑑 is increased from 1 Ω to 1.4 Ω in 

order to stabilize the system.  The time domain results are shown in Fig. 3.14(a) and 

Fig. 3.14(b). 

 

Step 3 ~ 5:  The other converters are added to the stable network step by step. Since 

for these cases the initial conditions are enough to make the system stable, there is 

no need for additional action for stabilization. The corresponding Nyquist diagrams 

and time domain waveforms are shown in Fig. 3.15 and Fig. 3.16, respectively. 

This example demonstrates that the method can obtain a stable network by using the 

IBSC for multiple connected converters to the same network. However, it shows 

only one of the many different sequential stabilizing pathways, which may not be 

the optimal solution. Still, the load admittance can be expanded step by step and the 

connected converter can be evaluated individually. 
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Fig. 3.15 Nyquist diagram of the system at Steps 3 ~ 5 (only the initial condition) [C.4]. 
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(b) 

Fig. 3.16 Time domain simulation of the converter voltages (upper) and currents (lower) at 
node R4 for: (a) Step 3; (b) Step 4 ~ 5 [C.4]. 

 

 

 



CHAPTER 3. ANALYZING TOOLS FOR STABILITY ASSESSMENT 

51 

3.6. IMPROVED STABILITY ANALYSIS METHOD TO DEAL WITH 
COMPLEX DISTRIBUTION SYSTEMS 

The sequential stabilizing procedure may become tedious for distribution networks 

with high share of power electronics based loads/sources. In order to have the node 

input impedance, the equivalent impedance matrix of the whole network has to be 

calculated at each procedure, which increases the computational effort. Additionally, 

the lumped stable network impedance, which contains other converters, maynot 

provide clear information for the coming unstable event. The reason is that all the 

meaningful nodes are unified and represented as one bulky transfer-function.  

Another way of analyzing the stability is to divide the power system in small 

subsections depending on the geographical constraints of the network. A minimum 

stability analysis entity can be defined, which can point out the critical nodes where 

stabilizing efforts are necessary. After the stability of the first entity is obtained, this 

entity become part of the second(upper) entity’s elements. By expanding these 

entities, it will reach to the distribution feeder and the overall stability analysis will 

be performed. This method can provide the following advantages: 

“   ► Less computational effort 

► Clear about where to start the stability analysis 

► Clear about which node has to be modified to stabilize the system 

► Less susceptible from changes in the network configuration     ” [C.50] 

 

3.6.1. THE MINIMAL ENTITY CONCEPT 

The connection of the power converters to the distribution network can be achieved 

by two typical connections as it is illustrated in Fig. 3.17. One way is when the grid 

is an ideal voltage source 𝑉𝑠  directly connected to the network power converters 

inverters 𝑌1 ~ 𝑌𝑛 as it is modeled by (3.19). The other way is when a line impedance 

𝑍 is placed between the ideal voltage source and the paralleled converters as it is 

modeled by (3.20). 

{
𝑣𝑎 = 𝑉𝑠                                                      

𝑖𝑎 = 𝑣𝑎(𝑌1 +⋯𝑌𝑛) = 𝑉𝑠𝑌1 +⋯𝑉𝑠𝑌𝑛
                             (3.19) 

{
 

 𝑣𝑏 = 𝑉𝑠

1

𝑌
 

𝑍+
1

𝑌

             

𝑖𝑏 = 𝑣𝑏𝑌 = 𝑉𝑠
1

𝑍+
1

𝑌

                                                            (3.20) 

where, 𝑌 = 𝑌1 +⋯+ 𝑌𝑛. 
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(a)                                       (b) 

Fig. 3.17 Simple model of the network: (a) Ideal grid with parallel admittance; (b) Ideal grid 
with series impedance and parallel admittance [C.5]. 
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Fig. 3.18 Meaningless parallel compensation from the outside of the unstable node: (a) Full 
diagram (b) Equivalent diagram [C.5]. 

The common node voltage across the parallel converters is noted by " 𝑣 " while the 

current corresponding to the input voltage 𝑉𝑠  is " 𝑖 " . All the converters are 

represented by their equivalent output admittance [25]. 

The stability of the system with an ideal voltage source and paralleled converters is 

determined by the individual output admittances of the converters 𝑌1~𝑌𝑛 as shown 

in Fig.3.17 (a). If there is any RHP pole in any of the converter’s output admittances, 

the source current 𝑖𝑎  will diverge. The stability depends on each of the inverter 

characteristic. 

However, when there is a series impedance  𝑍  given by the distribution line that 

exists in between the ideal voltage source 𝑉𝑠  and the parallel admittance of the 

converters  𝑌1~𝑌𝑛 , the stability of the system is determined by the characteristic 

equation (𝑍 + 1/𝑌)  in (3.20). RHZ of (𝑍 + 1/𝑌) , which becomes RHP of the 

closed loop transfer function, can be created by the algebraic summation of 𝑍 and 

1/𝑌 [53]. Since the line impedance 𝑍 is fixed as it is given by the geometry of 

transmission line, the only way to have access to the system transfer-function is to 

change Y. The lumped admittance 𝑌  needs to be changed by modifying each of 

output admittance of the converters 𝑌1 ~ 𝑌𝑛  or by adding additional stabilizing 

impedance 𝑍𝑃  as it is illustrated in Fig. 3.18 [54]. This stabilizing impedance is 

commonly connected either in parallel with the ideal voltage source or with the 

power converter. However, the system instability cannot be solved by the parallel 

impedance 𝑍𝑃 connected across the ideal voltage source terminal as shown in Fig. 

3.18. As result, the stabilizing feature has to be placed in parallel with the power 
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converter or can be part of the converter itself. This brings the basic concept of the 

proposed analysis method. 

3.6.2. PROPOSED STABILITY ANALYSIS OF THE COMPLEX 
DISTRIBUTION SYSTEM 

[C.5]
 

The stability of complex distribution networks can be evaluated by keeping the 

instability inside the one of the entities shown in Fig. 3.19. The entities are grouped 

from bottom to upper feeder as follows. The equivalent load admittances connected 

to the end bus of the radial network together with the corresponding cable 

impedance will define the first entity, which is the minimal entity. It should be 

mentioned that the minimal entity only provides local stability. Therefore, in order 

to obtain entire system stability, the minimal entity should be expanded to cover the 

overall network in the same manner as it was previously described. 

“However, this method is limited to a very simple case with a line impedance 

located in series. When the network has multiple series impedances that make 

several series nodes and each node may contain several branches, the stability 

analysis becomes more complex. Due to the concept of minimal entity, the stability 

analysis can be much simpler than the conventional method [C.4]. It groups all the 

instability problems inside of one entity and there is no need to consider the overall 

network impedance. All the small regions (entities) can be analyzed separately and 

the instability of the regional areas becomes clearer to investigate. ” [C.5] 

 

 

Fig. 3.19 Proposed stability analysis method for a radial grid [C.5]. 
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The stability analysis can be started from the outermost entity (entity number 1) in 

the network, i.e. the farthest nodes from the feeder, such as 𝑌1 + 𝑌2 + 𝑌3 or 𝑌4 + 𝑌5,  

as shown in Fig. 3.19 (a). The stability analysis has to be performed for each of the 

entity group. For example, 𝑌1 + 𝑌2 + 𝑌3  is selected for the first entity and the 

characteristic equation is derived for stability analysis as: 

𝑍1 +
1

𝑌
=

𝑍1𝑌+1

𝑌
                                                 (3.21) 

where, 𝑌 = 𝑌1 + 𝑌2 + 𝑌3. 

 

According to the Cauchy’s argument principle [35], the unstable poles in the first 

entity can be found. The number of the unstable poles given by the RHZ(𝑍1𝑌 + 1) 
can be identified by counting the number of  𝑁 encirclements of the point (0, 𝑗0) in 

the Nyquist plot  [53], which can be written as: 

𝑁 = 𝑅𝐻𝑍 (
𝑍1𝑌 + 1

𝑌
) − 𝑅𝐻𝑃 (

𝑍1𝑌 + 1

𝑌
) 

                                             = 𝑅𝐻𝑍(𝑍1𝑌 + 1) + 𝑅𝐻𝑃(𝑌) − 𝑅𝐻𝑃(𝑍1𝑌 + 1) − 𝑅𝐻𝑍(𝑌) 
                                             = 𝑅𝐻𝑍(𝑍1𝑌 + 1) − 𝑅𝐻𝑍(𝑌) 

 = 𝑅𝐻𝑍(𝑍1𝑌 + 1) − 𝑅𝐻𝑍(𝑌1 + 𝑌2 + 𝑌3)                      (3.22) 

The number of RHZ in the total admittance (𝑌1 + 𝑌2 + 𝑌3) should be known. If the 

inverters are stable separately and there is no RHZ in the total admittance, the 

number of unstable poles for the chosen entity becomes the number of the 𝑁 

encirclements given by: 

𝑅𝐻𝑍(𝑍1𝑌 + 1) = 𝑁 + 𝑅𝐻𝑍(𝑌1 + 𝑌2 + 𝑌3)                   (3.23) 

“After each of the first entities have been evaluated, the second entity is analyzed as 

shown in the Fig. 3.19 (b). The result of the first entity such as Ye1 and Ye2 will be 

part of the elements that form the second entities. They can be seen as parallel 

admittances for the second entity. Therefore, the overall system stability can be 

analyzed by expending it upwards to include the network as shown in Fig. 3.19 (c) ~ 

(d). Therefore, each stability analysis does not need the information about the whole 

network, which is different from the conventional method. This is why this method 

can be faster than the conventional method. Also, by dividing the stability problems 

into separated small networks, the cause of instability can be more intuitive than the 

large transfer function of the conventional method. Additionally, the use of different 

entities can give an advantage that the stability analysis is more independent from 

changes in the network topology. In such situations, the model only needs to be 

checked where the change occurs, while the other entities do not need to be analyzed 

again. ”[C.5] 
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3.7. SUMMARY 

Two essential methods to analyze and evaluate the instability problems between 

multiple connected VSCs were addressed. The time domain simulation model of the 

network in PSCAD was explained together with the principle operation of the 

Electro Magnetic Transient Program (EMTP). The frequency domain model for 

stability analysis was explained in this section by means of the Impedance Based 

Stability Criterion (IBSC). By expanding the IBSC it is possible further to reach the 

new concept of Passivity, which can give a design guide-line for PE based units that 

can guarantee the stable operation. Some other issues in implementing the IBSC are 

also mentioned. 
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CHAPTER 4. STABILIZATION OF 

SMALL SCALE POWER SYSTEMS 

This chapter is based on publications [C.1], [C.2], [C.3]. 

This chapter discusses about frequency domain analysis and time domain 

verification in PSCAD/EMTDC of a small scale PE based power distribution system. 

As it was previously discussed, the accurate IBSC can predict the stability in power 

systems, while the corresponding response of the power system can be observed in 

time domain. Four stability assessment studies about a PE based power distribution 

system will be addressed in the following. One interesting case is investigation of 

the grid impedance variation and its influence in a PE based power system, where 

several converters are connected in parallel. They are also shown some scenarios 

where the configuration of several paralleled connected PE units are changed. 

Afterwards, several methods to deal with the harmonic instability are described. One 

of the possible solutions is to implement active damping in the PE units in order to 

stabilize the network. It is also possible to connect a specialized unit for stabilizing 

harmonic instabilities, such as an active damper, which becomes more popularly in 

recent times. For the latter case, it is important to find the most effective location for 

placing the active damper in the distribution system, fact that is revealed by 

measuring the required damping resistance of the network by using the IBSC tool. 

4.1. STABILITY EVALUATION OF MULTIPLE PARALLELED-
CONNECTED CONVERTERS 

A PE based distribution system that contains five paralleled-connected three-phase 

VSCs of different ratings are shown in Fig. 4.1. The converters are operated in grid-

connected mode, e.g. are able to inject active or reactive power to the grid. On the 

DC side of the converters there are connected distributed energy sources, which are 

modelled as constant DC voltage sources [C.1]. 
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CPFC

RS

LS

VG

PCC

Inv. A
vdc

 
Fig. 4.1 Single line diagram of 3-phase distribution power system with five inverters in 

parallel [C.1]. 
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There is a three-phase capacitor CPFC connected to the PCC in parallel, which can be 

used for Power Factor Correction (PFC) for an existing load system like Direct-On-

Line (DOL) startup motor application and the default value of the PFC capacitor in 

this test is 12 uF [C.1]. The other system ratings are the same as those given in the 

previous chapter by the Table 3.1. The grid impedance consists of a 400 uH 

inductance and a series connected 0.1 Ω resistor [C.1]. 

4.1.1. IMPACT OF THE GRID IMPEDANCE VARIATION 

To investigate the impact of the varying grid impedance 𝐿𝑆 on the system stability, 

the equivalent admittance of the grid 𝑌𝑆𝐺  and the equivalent admittance of the 

multiple paralleled-connected converters 𝑌𝐿𝐺  are defined as: 

𝑌𝑆𝐺 = 𝑌𝐺 =
1

𝑅𝑆+𝑠𝐿𝑆
                                                 (4.1) 

𝑌𝐿𝐺 = 𝑌𝐶𝑃𝐹𝐶 + ∑ 𝑌𝐶𝐿𝑥
𝐸
𝑥=𝐴  = 𝑠 𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐴 + 𝑌𝐶𝐿𝐵 + 𝑌𝐶𝐿𝐶 + 𝑌𝐶𝐿𝐷 + 𝑌𝐶𝐿𝐸    (4.2) 

where, 𝑌𝐶𝑃𝐹𝐶  denotes the capacitor admittance of 𝐶𝑃𝐹𝐶. 

The minor loop gain 𝑇𝑀𝐺  used for stability analysis is made as: 

𝑇𝑀𝐺 =
𝑌𝑆𝐺

𝑌𝐿𝐺
                                              (4.3) 

The equivalent inductance of the grid impedance is varied from 100uH to 400uH 

and the trajectory of the minor loop gain in the Nyquist plot is represented with red 

arrows and dotted lines in Fig. 4.2 [C.1]. Since the two trajectories are not encircling 

the (−1, 𝑗0)  point, the power system with both the grid inductances are stable [C.1]. 
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Fig. 4.2 The Nyquist plots of the minor loop gain 𝑇𝑀𝐺 with the different grid inductance 𝐿𝑆 

and its moving trajectory as 𝐿𝑆 increases [C.1]. 
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Fig. 4.3 The Nyquist plots for the marginally stable values of 𝐿𝑆 [C.1]. 

However, there is a range of grid inductance values that can make the Nyquist plot 

of 𝑇𝑀𝐺  to encircle the (−1, 𝑗0)  point, as it is illustrated in Fig. 4.3 [C.1]. Some 

minor loop trajectories are enlarged around the (−1, 𝑗0) point to so show the range 

of the grid inductance that lead to instability. It is found that values of (𝐿𝑆 =
165 ~260 𝑢𝐻) makes the power system unstable. Outside this range the stability is 

ensured. 

To demonstrate the validity of the Nyquist plots, time domain simulations are made 

for the previous parameters of 𝐿𝑆 and are illustrated in Fig. 4.4. All the inverters are 

connected to the PCC and their output current references are set to zero in order to 

show clearly the effect of instability [C.1]. The parameter values used for the 

simulation are illustrated in Table 3.1, Section 3.5.3. 

When the Nyquist plot shows stable conditions in Fig. 4.2, the voltage waveforms at 

the PCC does not contain distorted waveforms and the output current of the inverter 

reaches steady state quickly as it is illustrated in Fig. 4.4 (f) [C.1]. However, when 

the Nyquist plot moves in the vicinity of (−1, 𝑗0) point and there is no encirclement 

(for example when 𝐿𝑆 = 155 𝑢𝐻), the time domain simulations reveals a slightly 

longer time to reach the steady state of the current as shown in Fig. 4.4 (a) [C.1]. 

When the (−1, 𝑗0) point is encircled, the system becomes unstable as it is illustrated 

in Fig. 4.4 (b). It turns into even worse when it goes near to the middle of the 

unstable region of the grid inductance, e.g. for the 200 uH grid inductance shown in 

Fig. 4.3, whose time domain waveforms corresponds to Fig. 4.4 (c). 

The Nyquist plot approaches another interception point given by the 260 uH grid 

inductance. For this case, the oscillations in the PCC voltage and the inverter 

currents are more reduced [C.1]. A further increment in the inductance value (from 

275 uH until 400 uH) makes the system stable again as shown in Fig. 4.4 (f) [C.1]. 
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Fig. 4.4 Time-domain simulation for different values of 𝐿𝑆 at no-load condition of the PCC 
voltage (upper) and inverter currents (lower): (a) 155uH; (b) 165uH; (c) 200uH; (d) 260uH; 

(e) 275uH; (f) 400uH [C.1]. 
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4.1.2. INFLUENCE OF THE CONVERTERS ON STABILITY 
ANALYSIS 

The unstable conditions may also be created when the converters are connected or 

disconnected in the power system. The reason is that when one or more converters 

operate in the power system, the load admittance 𝑌𝐿 is changed and the stability of 

the power system is affected [C.1]. To give an example of such stability analysis, a 

stable system with  𝐿𝑆 = 400𝑢𝐻  is selected as reference. At first, the stability is 

evaluated at the output of the inv. A terminals. The source admittance 𝑌𝑆𝐴of the inv. 

A can be written as: 

𝑌𝑆𝐴 = 𝑌𝐶𝐿𝐴                                                    (4.4) 

The load admittance, which is seen from the inv. A it will include the equivalent 

admittances of all the other inverters in the power system and the grid admittance as 

given by: 

Case1: YLA = 𝑌𝐺 + 𝑌𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐵 + 𝑌𝐶𝐿𝐶 + 𝑌𝐶𝐿𝐷 + 𝑌𝐶𝐿𝐸                  (4.5) 

It is worth to consider the influence of some of the connected converters to stability 

by consequently eliminating some of them from 𝑌𝐿𝐴. This will illustrate different 

operating scenarios of the network where some different converters are disconnected 

in the power system. These scenarios are reflected in the equivalent admittance seen 

from inv. A given by: 

Case2: YLA = 𝑌𝐺 + 𝑌𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐵 + 𝑌𝐶𝐿𝐶 + 𝑌𝐶𝐿𝐷                            (4.6) 
Case3: YLA = 𝑌𝐺 + 𝑌𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐶 + 𝑌𝐶𝐿𝐷 + 𝑌𝐶𝐿𝐸                             (4.7) 
Case4: YLA = 𝑌𝐺 + 𝑌𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐵 + 𝑌𝐶𝐿𝐷 + 𝑌𝐶𝐿𝐸                             (4.8) 
Case5: YLA = 𝑌𝐺 + 𝑌𝐶𝑃𝐹𝐶 + 𝑌𝐶𝐿𝐵 + 𝑌𝐶𝐿𝐸                                         (4.9) 

Once the source admittance is known and the scenarios with different load 

admittances are defined, the stability can be analyzed by the minor loop given by: 

𝑇𝑀𝐴 =
𝑌𝑆𝐴

𝑌𝐿𝐴
                                                      (4.10) 

The results are illustrated in Fig. 4.5 and reveals that there are two unstable 

scenarios which encircle the (−1, 𝑗0) point, which are given by the Case 2 (Inv. E is 

disconnected) and Case 3 (Inv. B is disconnected). As it is shown in the previous 

section, the Case 2 is more unstable than the Case 3, since the Nyquist plot of the 

minor loop gain is encircling farther from the (−1, 𝑗0) point. 
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Fig. 4.5 The Nyquist plot of the minor loop gain 𝑇𝑀𝐴 for different scenarios 

 of the load admittances 𝑌𝐿𝐴 [C.1]. 

In order to verify the Nyquist plots, the time domain analysis is performed and 

illustrated in Fig. 4.6. The current references are set to the rated value of each 

converter according to Table 3.1. All the five scenarios are obtained by adjusting the 

Circuit Breaker (CB) included in each of the converter. In Case 1 with all converters 

connected, the system is stable. However, when the inv. B or inv. E are disconnected 

from the network, the system becomes unstable as shown in the Case 2 and Case 3. 

 Fig. 4.6 Time-domain simulation with full load condition of the converter showing the 
inverter phase currents (upper) and the PCC voltage (lower) [C.1]. 
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The inv. C and inv. D don’t have significant effect on the system stability, which are 

related to Case 4 and Case 5.  

The presented scenarios illustrate some of the unstable/stable combinations of the 

power system components. The instabilities are caused by interactions among the 

controllers and the filter parameters in each inverter. 

4.2. NETWORK STABILIZATION WITH ACTIVE DAMPING 

Recent research describe the stability of converters mainly by the relation between 

the LCL filter resonance frequency and the unavoidable time delay from the digital 

implementation of the controllers [49]. Precise boundaries are defined for the stable 

region of the LCL-filtered converter without any damping method. It means that the 

converter can be stable even it has high resonance peak as result of the harmonic 

filter structure. However, it is valid only for the single converter operation. When 

the converter is placed somewhere in the distribution network and connected 

together with other devices, it may not be always stable as result of the equivalent 

node impedance [25], [37], [54]. Therefore, the resonance peak of the filter may 

need to be damped in order not to be vulnerable from varying impedances in the 

network. It is worth to mention that adding a damping for one converter can be 

useful also to the nearby inverters. One consequence is that not all of the converters 

in the network are required to have a damping function. To evaluate the benefits of 

adopting one of the most used damping methods, the Cigré benchmark of a small-

scale network with five different converters is adopted as it is illustrated in Fig. 2.2, 

Section 2.1 [4]. 

4.2.1. ACTIVE AND PASSIVE DAMPING METHODS 

By adopting a damping function, the impedance of the network is changed and it 

may help the network nearby or other converters to achieve stability. There are 

mainly two types of damping approaches, one is the passive damping method, which 

inserts physical resistors in the harmonic filter corresponding to the power converter 

and may dissipate excessive energy from the resonance [55], [56]. The other 

approach is to adopt active damping by adding additional control loops and/or 

feedback signals that emulates the behavior of the physical resistor [57]–[59]. While 

passive damping methods are simple to be implemented and inexpensive, it may 

reduce the overall system efficiency, which limits its usage in applications where the 

emphasis is put on the efficiency, such in the case of PV systems. On the other side, 

additional sensors for the feedback signal or state estimators may be required to 

perform active damping. This complicates the overall control structure of the 

converter and it is also sensitive to the variation in the filter parameters or in the grid 

impedance. In the following, the active damping method is adopted and its influence 

for stabilization of the network is explored. 
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4.2.2. CONVERTER MODEL WITH ACTIVE DAMPING 

The source admittance used for stability analysis is given by the output admittance 

of the converter, which can be found considering the averaged switched model of 

the grid converter with active damping illustrated in Fig. 4.7. The output admittance 

of the converter YSx can be obtained by rearranging the block diagram [60], which 

result in: 

𝑌𝑆𝑥 =
𝑣𝑃𝐶𝐶

𝑖𝑔
|
𝑖𝑔
∗=0

=
𝑍𝐿𝑓+𝑍𝐶𝑓+𝐾𝐴𝐷𝐺𝑑

𝑍𝐿𝑓𝑍𝐿𝑔+(𝑍𝐿𝑓+𝑍𝐿𝑔)𝑍𝐶𝑓+𝐾𝐴𝐷𝐺𝑑𝑍𝐿𝑓+𝐺𝑐𝐺𝑑𝑍𝐶𝑓
              (4.11) 

where, 𝐾𝐴𝐷  is the active damping gain. 

The open loop gain 𝑇𝑂𝐿  of the converter is calculated as: 

𝑇𝑂𝐿 =
𝐺𝑐𝐺𝑑𝑍𝐶𝑓

𝑍𝐿𝑓𝑍𝐿𝑔+(𝑍𝐿𝑓+𝑍𝐿𝑔)𝑍𝐶𝑓+𝐾𝐴𝐷𝐺𝑑𝑍𝐿𝑓+𝐺𝑐𝐺𝑑𝑍𝐶𝑓
                    (4.12) 
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Fig. 4.7 Averaged switching model of an inverter with active damping  [C.2]. 

The implemented time-domain model for the PSCAD/ EMTDC simulation of the 

grid-connected converter is illustrated in Fig. 4.8. 
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Fig. 4.8 PSCAD implementation of an inverter with active damping [C.2]. 
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In order to implement the digital controller in PSCAD/EMTDC, the sample and hold 

function is build and the digital resonance controller Gc(z) from (2.9) is used 

together with the Tustin discretizing method, which results in: 

𝐺𝑐 = 𝐾𝑃 +
𝐾𝐼 𝑠𝑖𝑛(2𝜋𝑓0𝑇𝑠)

2∗2𝜋𝑓0

𝑧2−1

𝑧2−2 𝑐𝑜𝑠(2𝜋𝑓0𝑇𝑠)𝑧+1
                       (4.13) 

This controller operates in the stationary reference frame and is driven by an 

external triggering signal for the sample and hold function. 

4.2.3. NETWORK MODEL FOR THE LOAD ADMITTANCE 

The source admittance of the converter was obtained in a straightforward manner as 

given by (4.11). However, the load admittance given by the network impedance 

needs to be calculated. The problem is that it will include all the other converters 

connected to that node together with their corresponding line impedances. Therefore, 

the Kirchhoff’s Current Law (KCL) admittance matrix is used to solve the 

admittance relation [54]. The voltage of the reference nodes (the nodes which are to 

be investigated in the network) are grouped in a voltage vector [𝑽] while the current 

sources (grid converters) attached to the nodes are grouped in a current vector [𝑰]. 
Afterwards, the relation between the reference node voltages and currents are 

derived as follows: 

[𝒀] [𝑽] = [𝑰]

[
𝑌11 ⋯ 𝑌18
⋮ ⋱ ⋮
𝑌81 ⋯ 𝑌88

]

[
 
 
 
 
 
 
 
𝑉𝑅6
𝑉𝑅10
𝑉𝑅18
𝑉𝑅16
𝑉𝑅15
𝑉𝑅3
𝑉𝑅4
𝑉𝑅9 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐼𝑖𝑛𝑣.1
𝐼𝑖𝑛𝑣.2
𝐼𝑖𝑛𝑣.3
𝐼𝑖𝑛𝑣.4
𝐼𝑖𝑛𝑣.5
𝐼𝑅3
0
0 ]
 
 
 
 
 
 
 

                           (4.14) 

All the admittances connected to the reference node are included in the admittance 

matrix [𝑌]. In order to obtain the node voltages created by the corresponding node 

currents, the left and right side of (4.14) are multiplied with [𝑌]−1, which results in 

the impedance matrix [𝑍]: 
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[𝑉] = [𝑍] [𝐼]

[
 
 
 
 
 
 
 
𝑉𝑅6
𝑉𝑅10
𝑉𝑅18
𝑉𝑅16
𝑉𝑅15
𝑉𝑅3
𝑉𝑅4
𝑉𝑅9 ]

 
 
 
 
 
 
 

= [
𝑍11 ⋯ 𝑍18
⋮ ⋱ ⋮
𝑍81 ⋯ 𝑍88

]

[
 
 
 
 
 
 
 
𝐼𝑖𝑛𝑣.1
𝐼𝑖𝑛𝑣.2
𝐼𝑖𝑛𝑣.3
𝐼𝑖𝑛𝑣.4
𝐼𝑖𝑛𝑣.5
𝐼𝑅3
0
0 ]
 
 
 
 
 
 
 

                            (4.15) 

The diagonal elements in [𝒁] are represented by the equivalent impedances of the 

references nodes, which is produced the node voltage and the current of the 

connected converters. However, these diagonal elements include the output 

impedance of the converters, which are not identified. Therefore, the stable load 

admittance can be obtained by subtracting the unidentified source admittance from 

the inverse of diagonal impedances, which is resulting in: 

𝑌𝐿𝑥 =
1

𝑍𝑥𝑥
− 𝑌𝑆𝑥                                             (4.16) 

where, ‘x’ indicates the inverter numbering. 

4.2.4. CHARACTERIZATION OF THE INDIVIDUAL VSC 

As explained in [49], the stable region of the converter with LCL filter is determined 

by the ratio between the resonance frequency of the LCL filter and the sampling 

frequency of the converter. If the ratio is higher than 1/6, then the converter is stable 

without any damping method. For this reason, the harmonic filters are designed 

according to this stability region as given by the parameters shown in Table 3.1. 

Taking into considerations the parameters shown in Table 3.1, the open loop 

characteristics of each individual converter given by (4.12) is shown in Fig. 4.9. 
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Fig. 4.9 Characteristics of the converters with the parameters given in Table 3.1 [C.2]. 
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Fig. 4.10 Operation of the converters connected to an ideal grid voltage [C.2]. 

Since the – 180° degrees crossing occurs for negative magnitude, all the converters 

are designed individually stable. This fact is demonstrated by the time-domain 

simulation of the converter grid currents under ideal grid voltage (negligible grid 

impedance), which are illustrated in Fig. 4.10. 

4.2.5. STABILITY ANALYSIS OF THE CIGRÉ  DISTRIBUTION 
SYSTEM 

In the following, the ideal grid voltage is replaced with the actual Cigré distribution 

system shown in Fig. 2.2, Section 2.1. The system will be stable if the minor loop 

gain 𝑇𝑚𝑥 satisfies the Nyquist stability criterion. 𝑇𝑚𝑥 is defined as: 

𝑇𝑚𝑥 =
𝑌𝑆𝑥

𝑌𝐿𝑥
                                         (4.17) 

As result of the additional impedance at each node in the Cigré network, the stable 

operation of the converters cannot be assured. Each node in the test system have its 

own minor loop gain given by (4.17). The stability of the converters is assessed by 

the Nyquist stability criterion of the minor loop trajectories illustrated in Fig. 4.11. 

It is worth to mention that the minor loops shown in Fig. 4.11 are drawn considering 

the connection of only one converter at a time in order not to include the effect of 

the other converters. The interactions between the converters in the Cigré network 

are presented in the next section. Inv. 5 is the only stable converter when the grid 

impedance changes, and the rest of them are unstable. That means that all the 

converters except the Inv. 5 may need active damping in order to be stabilized. 
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Fig. 4.11 Stability evaluation of the converters without damping [C.2]. 

 

4.2.6. STABILIZATION OF THE NETWORK WITH ACTIVE 
DAMPING 

Fig. 4.12 shows the stabilization effect by adding active damping for each of the 

unstable converters. A comparison between the output currents of the respective 

unstable and stabilized converters are illustrated in Fig. 4.13. 
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Fig. 4.12 Individually stabilized inverters with active damping[C.2]. 
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Fig. 4.13 Unstable converter w/o damping and stabilized w/ damping 

(KAD,Inv.1 = 1, KAD,Inv.2 = 1, KAD,Inv.3 = 4, KAD,Inv.4 = 5) [C.2]. 

 

4.2.7. INTERACTIONS BETWEEN CONVERTERS 

Even if the converters are stable when they operate alone, they may easily become 

unstable when other converters are connected in the network. For example, the Inv. 

1 and Inv. 2 are becoming unstable when they operate together in the same time as it 

is illustrated in Fig. 4.14 and Fig. 4.15. 
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Fig. 4.14 Unstable converters in the network without active damping  [C.2]. 
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Fig. 4.15 Output current of the converters in case of instability due to interaction between the 

converters [C.2]. 

There are several possibilities to stabilize the networks. For this scenario, the active 

damping gains in the Inv. 3 and Inv. 4 are increased in order to stabilize the overall 

network. The results are shown in Fig. 4.16 together with the adopted values of the 

active damping gains. 

Inv.1
Inv.2
Inv.3
Inv.4
Inv.5

C
u

rr
en

t 
(A

)

0 0.02 0.04 0.06 0.08 0.1

-20

0

20

Time  (sec)  
Fig. 4.16 Stabilized converters with increased active damping gains (KAD,Inv.1 = 1, KAD,Inv.2 = 1, 

KAD,Inv.3 = 10, KAD,Inv.4 = 12) [C.2]. 

 

4.2.8. STABILIZATION OF THE NETWORK WITH REDUCED 
ACTIVE DAMPING CAPABILITY 

Furthermore, the system stability can be obtained by reduced efforts, if the active 

damping gains are properly chosen. For example, it is possible to achieve the overall 
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stability only by having active damping functions in the Inv. 1 and Inv. 2. In Fig. 

4.17 are shown the stabilized waveforms of converter currents. In comparison with 

Fig. 4.16, the high frequency transient oscillations are significantly reduced by the 

proper selection of the active damping gains. 
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Fig. 4.17 Stabilized network by Inv.1 and Inv. 2 with active damping functions (KAD,Inv.1 = 2, 

KAD,Inv.2 = 3) [C.2]. 

 

The result is revealed also by the Nyquist plot of each of the converter minor loop 

gain illustrated in Fig. 4.18. 
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Fig. 4.18 Minor loop gain of the stabilized converters with two active damping functions in 

the Inv. 1 and Inv. 2 [C.2]. 
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4.3. SITE SELECTION OF ACTIVE DAMPER 

Another approach to address the network instabilities is to add a specialized 

damping equipment like an active damper, close to the problematic area [54], [61]. 

“The active damper, which is a high bandwidth power-electronics based power 

converter is exclusively designed for harmonic resonance damping has been 

proposed recently. The active damper is capable of reshaping the equivalent node 

impedance at the location where it is connected. Therefore, the active damper can be 

seen as an adjustable frequency dependent resistor. The problem is that complex 

systems like a distribution power system have many nodes and each node can be a 

candidate for the placement of the active damper.” [C.3] 

In the past, power quality issues in the power system have been addressed with 

shunt active filters and their placement was shown to be the best at the end terminal 

of the feeder in a radial distribution system [62]. However, for high frequency 

harmonic instabilities, this may not lead to the same results, when is to be decided 

about the active damper placement. the previous research, such as the best place is 

the end of the radial structure. The optimum place can be found by analyzing the 

boundary value of the active damper gain or the equivalent resistance at each node 

in the network needed to ensure the stable network operation. 

4.3.1. ACTIVE DAMPER AS A STABILIZER 

“The active damper provides a high frequency stabilizing function for the harmonic 

instabilities by means of adding a frequency dependent dynamic resistive behavior. 

Its parallel connection makes a plug-and-play capability, which can be placed 

anywhere in the distribution system. ” [C.3] 

“Its resistive behavior can be represented as a voltage-controlled current source as 

shown in Fig. 4.19 (a). In order to avoid the heavy loading from the fundamental 

frequency, the equivalent resistance of the active damper should not have the same 

resistance for all frequencies. Therefore, a notch filter 𝐻(𝑠)  is inserted in the 

feedback loop of the active damper in order to increase the fundamental frequency 

resistance, as defined by: 

𝐻(𝑠) =
𝑠2+𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2                                           (4.18) 

where, s is the Laplace operator, 𝜔𝑛  is the notch frequency [rad/sec] and 𝜁 is the 

damping ratio. ” [C.3] 
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Fig. 4.19  Active damper of distribution line (a) Single-line diagram of the active damper 
model; (b) Frequency dependent resistor [C.3]. 

The frequency dependent resistor 𝑅𝐴𝐷 can be made as follows: 

𝑅𝐴𝐷 =
1

𝐾∙𝐻(𝑠)
                                              (4.19) 

Because, the rated power of the active damper should be in a reasonable range. 

Therefore, a current limiter is inserted to limit its power rating. 

4.3.2. NOTCH FILTER DESIGN FOR AN ACTIVE DAMPER 

A notch filter is needed to get rid of the needless low frequency harmonics plus the 

fundamental frequency. Based on (4.18), the design parameters of the notch filter is 

as follows: 

 Notch frequency: 50 [Hz] 

 Damping ratio: 0.707 

 Bandwidth (-3dB): 70.7 [Hz] 

The dynamics of the designed notch filter is demonstrated in the frequency domain 

with its bode diagram in Fig. 4.20 (a). The filter gain at the stop frequencies moves 

towards zero, while the desired bandwidth (at –3 dB) of the filter satisfies with the 

design parameter. In order to see the capability of the notch filter, one exemplary 

unstable node voltage of the network is used as shown in Fig. 4.20 (b). Therefore, 

the fundamental frequency waveform is filtered out and the high frequency 

oscillation is remained only as shown in Fig. 4.20 (b) top figure. The result is also 

compared in the frequency domain to illustrate the filtering effect as shown in Fig. 

4.20 (b) bottom figure. 
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Fig. 4.20 The response of the notch filter: (a) Bode plot; (b) Time domain response (upper) 
and its FFT (lower) [C.3]. 

 

4.3.3. STABILITY ANALYSIS OF THE CIGRÉ  DISTRIBUTION 
NETWORK WITH VARYING GRID IMPEDANCE 

In order to verify the stabilizing effects of the active damper, the grid impedance of 

the Cigré distribution network is increased by three times, which leads to instability. 

The time-domain simulation of each of the converter output voltage and current are 

illustrated in Fig. 4.21 for the rated and increased grid impedance. In rated 
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conditions, each of the converter starts with the oscillations as result of the start-up 

transients, but they are dampening out within few periods. When the grid impedance 

is three times larger (weak grid condition), the converters becomes unstable. In this 

case, the oscillations are maintained during the whole operation of the converters. 
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(b)  
Fig. 4.21 Stable and destabilized distribution system with varying grid impedance: 

 (a) Rated grid impedance; (b) Three times higher grid impedance [C.3]. 

In order to deal with the weak grid condition, the stability analysis should be 

performed sequentially in order not to be influenced by an unidentified or an 

potentially risky system [C.4]. This sequential procedure is should be used, if there 

is more than one non-passive subsystem. The sequential procedure used for the 

stability analysis of a weak grid condition is illustrated in Fig. 4.22 and explained as 

follows. From the Inv. A to the Inv. E, all the converters are investigated using the 
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Z+Z stability criterion which is another example of the IBSC [63]. With this 

criterion, the (0, 𝑗0) point is considered for the point which determines the stability, 

instead of the (−1, 𝑗0) point as used in the conventional approach. If the trajectories 

in the Nyquist plot encircle the (0, 𝑗0) point, then the existence of the possible RHP 

in the system is found [C.3]. From Fig. 4.22 there is no encirclement in the Nyquist 

plot. Then, the overall system with the rated grid impedance is stable. However, 

when the grid impedance gets larger, the system may become unstable [C.3]. 
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Fig. 4.22 Step by step procedure for analyzing the system stability in the weak grid condition 

[C.3]. 

The weak and strong grid conditions are compared by the Nyquist plot in Fig. 4.23. 
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Fig. 4.23 Stability assessment with different grid impedances (step 5) [C.3]. 
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The plot shows that in stiff grid conditions, the Nyquist plot does not encircle the 

(0, 𝑗0) point. Conversely, there is an interaction between the converters when the 

grid is in a weak condition. There are two stable converters in spite of the change in 

the grid impedance variation, which are the Inv. A and the Inv. B as illustrated in 

Fig. 4.24. The other converters in the network (Inv. C, Inv. D and Inv. E) become 

unstable when the grid impedance is increased. As all are designed stable stand-

alone, the converters are stable when they are operated individually, but when 

converters join together, the system may become unstable. It is caused by the non-

passive output admittance of the converters and the effect can be seen in different 

cases. 
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Fig. 4.24 Stability assessment with different grid impedances for individual converters [C.3]. 

Time domain simulations are illustrated in Fig. 4.25, which demonstrate the 

instability phenomena shown in the Nyquist plots. 

However, up to this point, only the combination of the Inv. A and Inv. B has been 

shown that may trigger instability with increasing the grid impedance. The other 

converters are unstable alone when the grid impedance is increased. There may be 

another unstable or stable conditions, which can result from the different 

combinations of the converters. All the possible scenarios when there are five 

different converters in the network is calculated and represented as a summation of 

the combinational numbers as given by: 

𝐶5 1 + 𝐶5 2 + 𝐶5 3 + 𝐶5 4 + 𝐶5 5 = 31                             (4.20) 

All the combinations should be taken into account for a complete evaluation of the 

network. Afterwards, it is possible to find proper solutions to mitigate the 

interactions that may lead to instability. 
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Fig. 4.25 Simulated waveforms of the individual converters output current with increased grid 

impedances [C.3]. 

 

4.3.4. ACTIVE DAMPER PLACEMENT 

The active damper can be located at any points in the power system due to its 

parallel structure. This brings a high degree of freedom when deciding about its 

location to mitigate the network instabilities. However, it may bring confusions to us 

about its location from many possibilities. For an active damper, the best location 

may be a place where the least effort is required to cover all the instabilities. The 

effort or the capacity of the active damper will be the amount of injected or absorbed 

current needed to obtain the stable operation of the network. 

In order to decide the place where the minimum damping is required, the parameter 

sweep method is used. By varying the damping resistor in the active damper, the 
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boundary values needed for stabilizing the network can be obtained at each node. In 

Fig. 4.26, the resistance is increased from 1 Ω to 30 Ω at node R4. The stability 

measurement point is the node R4 while the active damper is placed at node R16. 

The system becomes unstable when the resistance becomes larger. 
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Fig. 4.26 Stability at node R4, when the active damper is placed at node R16 with different 

values of the resistance (from 1 Ω to 30 Ω) [C.3]. 

All of the nodes and various converter operating conditions are considered at the 

same time. Therefore, some of the representative cases are illustrated in Table 4.1. 

Table 4.1 Required damping resistance [Ω] for unstable network [C.3]. 

Maximum  

 R [Ω] 

Node name 

R3 R4 R6 R9 R10 R15 R16 R18 

C
o

n
v
e
r
te

r
s 

co
m

b
in

a
ti

o
n

 {E} 5.0 7.2 7.2 7.2 7.2 21.0 7.2 7.2 

{D} 5.0 8.6 14.7 12.3 12.3 7.2 25.0 12.3 

{C} 2.9 6.0 8.6 17.5 20.9 4.2 8.6 30.0 

{A,B} 5.0 7.2 14.7 21.0 25.1 7.2 14.7 25.1 

{C, D, E} 3.5 5.1 7.2 10.3 10.3 8.6 10.3 12.3 

{A, B, C, D, 
E} 

4.2 7.2 12.3 17.5 21.0 7.2 12.3 21.0 

{A} Stable 

{B} Stable 

Ranking 8 7 5 3 2 6 4 1 
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In Table 4.1, the rows show the combinations of joining converters in the test grid 

and the columns show the active damper place. The numbers in the table represent 

the maximum value of the resistance that is necessary to ensure the overall system 

stability. For example, when only the Inv. E is seen in the system, the node R15 

needs the minimum effort for stabilizing them. Instead, the node R3 is required the 

most effort. In order to give comparisons, all the data are grouped and sorted based 

on the effectiveness of the damping efforts [C.3]. Each row is ranked separately and 

their rankings are summed up and represented in the bottom row. The results show 

that the active damper connected on the node R18 has the lowest effort. An 

equivalent damping resistance value of 7.2 Ω or less is needed to ensure a stable 

network for all operating conditions. 

In general, it may be expected that the best place for placement of the active damper 

is the node where the interacting converter is located or the closest location from the 

unstable converter; e.g., the node R15 for Inv. E, the node R16 for Inv. D or the 

node R18 for Inv. C. Moreover, there is a trend that the stabilizing effort become 

effective when the active damper location is getting far from the feeder. It is 

becoming more effective when it moves towards the terminal of the distribution 

network. This might be reasonable since the aforementioned nodes are located in 

between the interacting converters. Therefore, it may easily dampen the oscillations 

in between them. Fig. 4.27 shows the time domain simulation results that 

corresponds to the scenarios defined in Table 4.1. At first, the simulations are made 

with and without the active damper connected to the node R18. The corresponding 

damping resistor value for the damper is set to 7.2 Ω and the output current 

waveforms are shown in correspondence with the analyzed results. As it is expected 

in the table 4.1, only the individual operations of the Inv. A and Inv. B are stable 

without the active damper as shown in the upper plot. Also, the entire system 

becomes stable with an active damper with 7.2 Ω equivalent resistance. 

 
Fig. 4.27 Time domain simulations of the converters output current when: No active damper 

is connected (upper); The active damper is placed at node R18 (lower) [C.3]. 
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Fig. 4.28 Time domain simulations of the converters output current when the active damper is 
placed at node R9 with the damping resistance value set to 17.5Ω [C.3]. 

 

In order to verify the validity of the simulation, the effect of an active damper at 

node R9 is simulated also. In this case, the selected damping resistance for the active 

damper is 17.5 Ω. As shown Table 4.1, there exist three unstable cases of the 

converters, which are {D}, {E} and {C, D, E}. The respective stable and unstable 

operating conditions are depicted in Fig. 4.28. 

The parameter sweep method for analyzing the required equivalent damping 

resistance of active damper used to stabilize the power distribution system shows a 

reasonable accuracy and can find out the effective location for the active damper 

placement. However, the computation burden on the sweeping method will become 

heavy when the complexity of the network is increased largely. Therefore, a method 

to reduce the calculation efforts needs to be taken into consideration. 

4.4. SUMMARY 

The stability assessments for some case studies are given. Firstly, the unstable 

operations of the paralleled converters are investigated and secondly, a more 

realistic benchmark case has been adopted and the stability analysis is performed. 

There are several ways to stabilize the unstable system by introducing additional 

damping into the system such as passive damping, active damping methods and/or a 

specialized harmonic frequency damping unit, such as the active damper are 

discussed. The relative stability of the network is investigated by measuring the 

required damping for all nodes in the network. The most adequate location in the 

network for the placement of the stabilization unit, which is the most unstable point 

in the network, is found. This shows the stability risky indexes of the network, 

which can be used to avoid the resonance condition in the network, by adding 

necessary damping function. 
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CHAPTER 5. EXTENDED MODEL FOR 

HARMONIC STABILITY STUDY 

This chapter is based on publication [J.2]. 

The influence of the harmonic filter model in stability analysis is shown in this 

chapter. First, the control interaction of the power converters with harmonic filter is 

given. A hypothesis is drawn, such as the converter side inductance in the harmonic 

filter can be the main cause for mismatch in stability analysis, fact that is supported 

by the high loss characteristic of the converter side inductance, which account for 

the majority of loss in the harmonic filter. This makes the equivalent damping of the 

inductor unknown. A Jiles-Atherton hysteresis model is investigated and 

implemented in order to overcome the drawbacks of the more simplified inductor 

models, which are given mainly by a pure inductance in series with a resistor. This 

reveals a very different behavior of the harmonic filter than otherwise expected and 

which cannot be revealed by the conventional modeling approach. The stability 

analysis of the grid-connected converter with improved harmonic filter model 

conclude this chapter. 

5.1. INTRODUCTION 

Power electronics based sources raises new challenges to the power system stability, 

given by the closed loop response of the converter with the interfaced harmonic 

filter [64]. The main cause of instability is a reduced phase and gain margin of the 

closed loop system due to the resonant behavior of the filter [65]. Methods that 

addresses resonance damping of the filter with the view to improve stability are well 

documented in literature and may include among others, active damping [66]–[68] 

and/or passive damping methods [33], [69]. There is also the possibility to avoid 

passive or active damping methods by a proper placement of the resonance 

frequency of the filter depending on the position of the current sensor used for the 

current reference signal [C.6]. 

To illustrate the stability phenomena in practical applications, a 10 kW power 

converter connected to the utility grid is illustrated in Fig. 5.1 together with the 

measured grid current waveforms, which approaches the instability of the power 

converter. The unstable condition is obtained by increasing deliberately the 

proportional gain of the current regulator until the resonance of the whole system is 

excited [70]. Therefore, the lack of damping around the resonance frequency of the 

filter may trigger instability. It can be summarized that the stability of a power 

electronics based system depends on the impedance of the filter, impedance of the 

network at PCC and the current controller parameters. From the three factors, the 
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design of the current controllers and the impedance of the network are relatively 

well addressed in literature [71]–[73]. 
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Fig. 5.1 Stability phenomena in power electronics based power system: (a) Circuit diagram of 
a power converter connected to the AC grid through an LCL filter, where L1 and L2 are the 

filter inductors on the converter and grid side, respectively and C accounts for the filter 
capacitance. The measured variables can be the converter and grid current (i1 and i2), 

converter modulated voltage (vM), capacitor voltage (vC) and the voltage at PCC (vPCC); (b) 
Grid current waveforms (i2) approaching instability [J.2]. 

 

The only thing, which is not completely understood is the impedance of the 

harmonic filter. For example, the converter side inductor of the harmonic filter (LCL 

filter) is excited with high-frequency rectangular voltages, which leads to significant 

losses as a result of the skin effect and dynamic hysteresis minor loops given by the 

high switching frequency ripple [29]. It means that the main losses of the harmonic 

filter are distributed in the converter side inductor and these losses are changing with 

the operating condition of the converter [30], [74]. 
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5.2. DESCRIPTION OF HARMONIC INSTABILITY 

The influence of the harmonic filter impedance on the harmonic stability is explored 

in the following. 

5.2.1. FILTER MODEL 

There are different methods of modeling the filter impedances, given by 𝑍1, 𝑍2 and 

𝑍3 . The simplest method is to consider the pure parameter values alone, which 

disregards the parasitic components. This is useful for the worst case evaluation of 

the system and it helps to find simple useful analytical solutions for filter and the 

controller design [75]. However, it neglects the existing damping of the passive 

components, which improve the stability of the interconnected system. 

Another modeling method is to use serial or parallel resistors to mimic the average 

power loss in the component, which are used further to emulate the damping effect 

(for a given power loss in the component). A series resistor representation, which 

accounts for the loss in passive components is illustrated in Fig. 5.2. Then, the 

corresponding filter impedances result as follows: 

𝑍1 = 𝑅1 + 𝑠𝐿1                                             (5.1) 

𝑍2 = 𝑅2 + 𝑠𝐿2                                            (5.2) 

𝑍3 = 𝑅3 +
1

𝑠𝐶
                                                (5.3) 

where, 𝑅1 , 𝑅2  and 𝑅3  are the equivalent lumped resistors, which account for the 

average losses in the passive components. 

L1

C

R1 L2 R2

vM vPCC
R3

 

Fig. 5.2  Single-phase small signal model of the grid inverter with LCL filter including its 
parasitic resistances [J.2]. 

However, the effect of the damping may not be represented as a constant for all the 

operating condition if we consider how the loss in the magnetic inductor is created, 

e.g. it is dependent on the excitation voltage, its frequency and the current bias [29]. 
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Therefore, the lumped parameter may not be able to model properly the damping 

behavior of the filter, which may still lead to have a mismatch in practice. 

 

5.2.2. CONTROLLER DESIGN 

The current controller can be deterministically designed optimally according to [76], 

assuming that the harmonic filter parameters are known. Then, the main controller 

parameters are as follows [76]: 

𝜔𝑐 ≈
𝜋

2
−𝜃𝑚

𝑇𝑑
                                                 (5.4) 

𝑘𝑝 ≈
𝜔𝑐(𝐿1+𝐿2)

𝑉𝑑𝑐
                                         (5.5) 

𝑘𝑖 ≈ 𝑘𝑝
𝜔𝑐

10
                                        (5.6) 

where, the current controller proportional and integral gains are selected as a 

function of the desired crossover frequency ωc and phase margin 𝜃m. The resulting 

designed system parameters are given in Table 5.1, which are derived considering 

the ratings of the Inv. A connected in the Cigré distribution network illustrated in Fig. 

2.2, Section 2.1. 

Table 5.1  System parameters for stability studies. 

Symbol Electrical Constant Value 

Vg Grid voltage 400 V 

f1 Grid fundamental frequency 50 Hz 

fs Switching/sampling frequency 10 kHz 

Vdc Converter dc-link voltage 700 V 

S Converter power rating 35 kVA 

Δimax Converter current ripple 15% 

L1 LCL filter - converter-side inductance 0.71 mH 

R1 Parasitic resistance of L1 0.2035 Ω 

L2 LCL filter - grid-side inductance 0.22 mH 

R2 Parasitic resistance of L2 0.15 Ω 

C LCL filter - capacitance 22 μF 

R3 Parasitic resistance of C 1 Ω 

kp Proportional gain 5 

ki Integral gain 1000 
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5.2.3. EVALUATION OF STABILITY MARGIN BY ROOT LOCUS 

For stability analysis, it is suitable to consider only the proportional gain of the 

current controller [C.6]. Then, it is easy to be followed from (5.5) that the system 

stability is mainly influenced by the total inductance in the system. To illustrate this, 

the open loop gain root locus T(s) of the grid-connected converter with LCL filter 

using  Zero-Order Hold (ZOH) discretization is shown in Fig. 5.3. 
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Fig. 5.3 Root locus of the discretized T(s) in z-domain showing the stability margin of the 
power converter [J.2]. 

 

The proportional gain that leads to marginal instability is also illustrated (the 

proportional gain is placed at the unity circle). Recalling Fig. 5.1, a proportional 

gain above this value will cause the excitation of the filter resonant poles, which 

lead to instability. Even for a stable proportional gain, such as illustrated in Table 

5.1, the system could approach instability if the total inductance (L1 + L2) in the 

system is changing. 

The problem of the aforementioned stability analysis approach is that it assumes that 

the harmonic filter parameters are known. However, the impedance of the filter 

inductances given in (5.1) – (5.2) does not consider the inductor nonlinearity given 

by the magnetic hysteresis phenomena. This aspect is subject of discussion in the 

next sections. 
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5.3. INDUCTOR CHARACTERIZATION 

5.3.1. LOSS IN THE FILTER INDUCTORS 

In general, the inductor loss can be grouped into winding loss and core loss. The 

winding loss is created by the electrical resistance of the winding with the current 

flowing inside. As the frequency of the current increases, it causes a reduction in the 

effective conduction area of the winding, also called skin effect, which is highly 

dependent on the frequency [77], [78]. 

The core loss is composed of two major parts: one is the hysteresis loss and the other 

is the eddy current loss. Both are caused by the changing magnetic flux in the 

magnetic core. The hysteresis loss is known to be created by the magnetic domain 

wall movement in a core during the magnetizing and demagnetizing processes [79]. 

The eddy current loss is created by the induced voltage from the magnetic flux 

variation and it is frequency dependent as well, similar to the winding loss [77]. The 

consequence is that there are many factors combined together that makes it unclear 

which losses are related to the system damping and how it finally contributes to the 

converter stability. Therefore, only the influence of the hysteresis loss is considered 

in the following in order to decouple the effect of different loss mechanism that 

exists in the magnetic components and thereby the winding loss is neglected. 

5.3.2. JILES-ATHERTON MODEL (JAH) FOR THE MAGNETIC 
HYSTERESIS 

There are several implementation models of the magnetic hysteresis in the literature 

[80]–[83]. Unfortunately, there is no ready available model which can be used in 

common simulation platforms. The Jiles-Atherton hysteresis model (JAH) has 

gained more and more acceptance, because it includes the behavior of the 

magnetization process in a mathematical form [79]. Its accuracy have been 

demonstrated for several magnetics materials [84]–[86]. 

Since the existence of magnetic hysteresis behavior was discussed in [87], there 

have been various attempts to explain and explore the understanding of the 

hysteresis phenomena [80]–[83]. An idea about a frictional resistance to the spin of 

the magnetic domain (as the material is magnetized or demagnetized), is accepted as 

a possible reason of the hysteresis and it became the theoretical basis of JAH model 

[79]. It assumes there exist two different ways of magnetization; one is the 

reversible magnetization, which does not create loss and it is caused by the domain 

wall bulging; the other is the irreversible magnetization caused by displacements in 

the magnetic domain, resulting from their pinning sites and which exhibit loss that 

gives the well-known hysteresis characteristic. 
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There is an ideal magnetization characteristic called anhysteresis, which shows only 

the status of saturation under the magnetic field equivalent to a lossless hysteresis. It 

has a zero value when the magnetic field is zero and reach the saturation value as the 

magnetic field tends to infinity. In the following, a typical example of the 

anhysteresis magnetization 𝑀𝑎𝑛 characteristic as a function of the effective magnetic 

field 𝐻𝑒  is given, which shows the actual magnetic field experienced by the 

magnetic domain in the medium [79]. 

𝑀𝑎𝑛(𝐻𝑒) = 𝑀𝑠 (coth (
𝐻𝑒

𝑎
) −

𝑎

𝐻𝑒
)                               (5.7) 

where, 𝐻𝑒 = 𝐻 + 𝛼𝑀; 𝑀𝑠 is the saturation magnetization; 𝐻 is the applied magnetic 

field;  𝑎 is a saturation slope factor; 𝑀 is the magnetization of the medium and 𝛼 a 

parameter for the inter-domain coupling [79].  

This anhysteresis magnetization plays an important role in the JAH model. At each 

state of magnetization 𝑀  and effective magnetic field  𝐻𝑒 , the anhysteresis 

magnetization 𝑀𝑎𝑛  becomes a reference point for the rate of change in 𝑀  in the 

medium, which determines the trajectory of the B-H curve. It works for both 

irreversible magnetization 𝑀𝑖𝑟𝑟  and reversible magnetization 𝑀𝑟𝑒𝑣  in a differential 

form as follows: 

𝑑𝑀𝑖𝑟𝑟

𝑑𝐻
=

1
𝛿𝑘

𝜇0
−𝛼(𝑀𝑎𝑛−𝑀)

(𝑀𝑎𝑛 −𝑀)                                        (5.8) 

where, k is the irreversible magnetization coefficient. The coefficient δ takes the 

value 1 when H increases in the positive direction (dH/dt > 0), and -1 when H 

increases in the negative direction (dH/dt < 0), ensuring that the pinning oppose 

changes in the magnetization. 

𝑑𝑀𝑟𝑒𝑣

𝑑𝐻
= 𝑐 (

𝑑𝑀𝑎𝑛

𝑑𝐻
−

𝑑𝑀

𝑑𝐻
)                                             (5.9) 

where, c is the magnetization coefficient and it is smaller than 1. 

By summing (5.8) and (5.9), it leads to: 

𝑑𝑀

𝑑𝐻
=

1

(1+𝑐)

1
𝛿𝑘

𝜇0
−𝛼(𝑀𝑎𝑛−𝑀)

(𝑀𝑎𝑛 −𝑀) +
𝑐

(1+𝑐)

𝑑𝑀𝑎𝑛

𝑑𝐻
                        (5.10) 

By replacing the above equation variables with the geometrical information of the 

core, such as the core cross-sectional area 𝐴𝑐, the mean magnetic field length 𝑙 and 

the number of turns 𝑁, the terms in (5.10) can be related to the electrical quantities. 

𝐵 = 𝜇0 (𝐻 + 𝑀)                                              (5.11) 
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𝐻 𝑙 = 𝑁 𝑖                                                     (5.12) 

𝑣 = 𝑁
𝑑𝜙

𝑑𝑡
= 𝑁𝐴𝑐

𝑑𝐵

𝑑𝑡
                                             (5.13) 

where, 𝑖  is the current passing the inductor winding, 𝑣  is the voltage across the 

winding terminals, 𝜙 is the magnetic flux and B is the magnetic flux density. 

5.3.3. IMPLEMENTATION OF THE INDUCTOR HYSTERESIS IN 
PSCAD/EMTDC 

The Dommel’s inductor model is illustrated in Fig. 5.4. Here, 𝑔𝐿 is the equivalent 

conductance term and 𝐼𝐿(𝑡 − ∆𝑡) is the history term containing the previous voltage 

𝑣𝐿(𝑡 − ∆𝑡) and 𝑖𝐿(𝑡 − ∆𝑡).  

L

iL(t)
vL(t)

 

gL

iL(t)
vL(t)

IL(t-Δt)
 

(a)                                                (b) 
Fig. 5.4 Dommel’s equivalence of an inductor: (a) Ideal inductor; (b) Practical inductor [J.2]. 

 

The inductor current relation can be derived as follows:  

𝑖𝐿(𝑡) = 𝑔𝐿 𝑣𝐿(𝑡) + 𝐼𝐿(𝑡 − ∆𝑡)                                   (5.14) 

where, 𝑔𝐿 =
∆𝑡

2𝐿
 and 𝐼𝐿 = 𝑖𝐿(𝑡 − ∆𝑡) + 𝑔𝐿 𝑣𝐿(𝑡 − ∆𝑡) 

The nonlinear term can be included by adding an additional current source in 

parallel with the component as a compensation source [40]. 

The relation between the magnetization and the magnetic field intensity is 

established in a differential equation form in (5.10) and the connections between the 

electrical quantities are listed (5.11) - (5.13). In order to implement the JAH model 

in PSCAD/EMTDC, the nonlinear differential equation has to be simplified in the 

form of a difference equation and it has to be updated for each simulation time step 

∆𝑡 . The underlying idea for this method, called the initial value problem, is to 

rewrite the variables, 𝑑𝑦  and 𝑑𝑥  into a differential equation 
dy(𝑥)

𝑑𝑥
= f(𝑥, 𝑦) , with 

finite steps ∆𝑦 and ∆𝑥. This gives algebraic formulas for the change in the functions 

when the independent variable x is “stepped” by one “stepsize” ∆𝑥 . A good 
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approximation can be obtained by decreasing the step size to a very small value and 

by adding a small increment to the function at each step [88]. Therefore, (5.10) can 

be treated as a constant parameter 𝛽, which is determined at the time (𝑡 − ∆𝑡) and 

the relations (5.11) - (5.13) are converted into difference equations and by applying 

the trapezoidal rule, they can be calculated iteratively [89]. 

𝛽(𝑡 − ∆𝑡) =
∆M

∆H
=

1

(1+𝑐)

1

𝛿𝑘/𝜇0−𝛼(𝑀𝑎𝑛−𝑀)
(𝑀𝑎𝑛 −𝑀) + (

𝑐

1+𝑐
)
𝑑𝑀𝑎𝑛

𝑑𝐻
      (5.15) 

∆𝐻 𝑙 = 𝑁 ∆𝑖 = 𝑁(𝑖(𝑡) − 𝑖(𝑡 − ∆𝑡))                             (5.16) 

𝑣(𝑡)+𝑣(𝑡−∆𝑡)

2
= 𝑁𝐴𝑐

∆𝐵

∆𝑡
                                            (5.17) 

∆𝐵

∆𝐻
= 𝜇0 (1 +

∆𝑀

∆𝐻
)                                               (5.18) 

By substituting (5.15) - (5.17) to (5.18) and isolate for 𝑖(𝑡) leads to, 

𝑖(𝑡) = 𝑄(𝑡 − ∆𝑡) 𝑣(𝑡) + 𝑄(𝑡 − ∆𝑡) 𝑣(𝑡 − ∆𝑡) + 𝑖(𝑡 − ∆𝑡)            (5.19) 

where,  𝑄(𝑡 − ∆𝑡) =
1

2

∆𝑡 𝑙

𝜇0 𝐴𝑐 𝑁
2 (𝛽(𝑡−∆𝑡)+1)

 

Therefore, the history term and the equivalent conductance term 𝑄(𝑡 − ∆𝑡) for the 

JAH inductor model are determined. 

5.4. HARMONIC STABILITY SCENARIO WITH IMPROVED 
INDUCTOR MODEL 

The improved version of the JAH is adopted and implemented in PSCAD/EMTDC. 

The developed model allows evaluating the actual behavior of the closed loop 

response of the power converters, which include the harmonic filter and its 

equivalent damping as result of the filter losses. 

5.4.1. INDUCTOR HYSTERESIS MODEL SPECIFICATIONS 

An arbitrary nonlinear inductor based on the JAH model is implemented in 

PSCAD/EMTDC with the main parameters given in Table 5.2. The coefficients of 

the JAH model can be found based on the considerations discussed in [84], [85]. The 

dimensions of the magnetic core and the number of turns are calculated in such a 

way to obtain a 0.71 mH inductance at rated current, as indicated in Table 5.1 (for 

the LCL filter converter side inductance). The resulting B-H dependencies of the 

implemented inductor hysteresis model are illustrated in Fig. 5.5 for sinusoidal and 

PWM voltage excitation. 
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The presence of the small dynamic minor hysteresis loops, which are superimposed 

to the main hysteresis loop (in the case of pulse excitation), leads to significant 

losses in the core compared with sinusoidal excitation [30], [74]. These core losses 

can be used to find a lumped resistance of the core, which accounts for the average 

core losses in the filter inductor, given by: 

𝑅𝑐 =
2𝑃𝑐

𝐼0
2 = 2𝑃𝑐 (

𝑁

𝐻0𝑙
)
2

                                           (5.20) 

where, 𝑅𝑐 is the core resistance, 𝑃𝑐  is the average core loss, and 𝐼0 and 𝐻0  are the 

rms output current and magnetic field strength, respectively. For the considered 

operating conditions of the power converter, the average core losses in the converter 

side inductance are around 112 W, which it translates into a 0.2035 Ω lumped core 

resistance. 

Table 5.2  Inductor hysteresis model parameters for inductor L1 [J.2]. 

Symbol Meaning Value 

Ms Saturated magnetization 1.6 E+6 

a JAH coefficient 1 5676.9 

k JAH coefficient 2 0.02 

α JAH coefficient 3 1 E-5 

c JAH coefficient 4 0.79 

N Number of turns 61 

Ac Cross-section area of the core 0.0018 m2 

l Mean magnetic flux path length 0.2742 m 
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     (b) 

Fig. 5.5 B-H characteristics of the implemented inductor under: (a) Sinusoidal voltage 
excitation; (b) PWM voltage excitation [J.2]. 
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5.4.2. INFLUENCE OF THE INDUCTOR HYSTERESIS MODEL ON 
THE STABILITY ANALYSIS 

To investigate the differences between the hysteresis inductor model and the lumped 

inductor model, the calculated lumped core resistance can be used to ensure that the 

two inductor models have the same average power loss. Then, the stability analysis 

of the grid-connected power converter using the hysteresis and lumped model of the 

inductors are illustrated in Fig. 5.6. 

The proportional gain of the current controller is increased to be marginal stable 

according to the analysis given in Section II. The results illustrated in Fig. 5.6 show 

that the power converter is unstable with the lumped inductor, which match the 

previous analysis. 
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Fig. 5.6 Actual damping effect of the inductor hysteresis on the grid current waveforms for 

the hysteresis and lumped model of the converter side inductor (kp = 6.2) [J.2]. 

However, the power converter is stable with the hysteresis inductor model, which 

shows how the actual core resistance has a frequency dependent damping behavior, 

which cannot be described with the lumped inductor model. Therefore, the stability 

analysis previously given in Section 5.2.3 cannot accurately describe the resonance 

interactions between the power converter and the utility grid, because the loss 

caused by the nonlinearity of the harmonic filter is not completely known. In short, 

even if the inductor hysteresis model and the lumped model have the same average 

power loss, the loss distribution is different, which leads to an increased damping 

effect from the inductor hysteresis model. 
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5.4.3. TRANSIENT RESPONSE OF THE VSC WITH HYSTERESIS 
MODEL OF THE FILTER INDUCTOR 

The previous result considers the scenario where the proportional gain, which leads 

to marginal stability, was adopted in order to show that there is a better stability 

margin from the VSC with a hysteresis inductor model. However, when the system 

uses the designed proportional gain according to Table 5.1, both the inductor 

hysteresis and inductor lumped models will lead to stable output current waveforms 

at the PCC. 

To illustrate the difference between the two models, the dynamic response of the 

VSC with hysteresis and lumped inductor models is illustrated in Fig. 5.7 with a 

load-step in the current. It shows that even the two models are stable, the overshoot 

during a load-step in the current is much higher for the lumped inductor model, 

which reveals again that the loss caused by the nonlinearity of the passive filter is 

not known and different results can be obtained compared to what is expected. The 

reason is that the small dynamic minor hysteresis loops, which cause significant 

losses cannot be modeled with a lumped resistance. 
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Fig. 5.7 Dynamic response of the grid-connected converter with hysteresis and lumped model 

of the converter side inductor (kp = 5) [J.2]. 

 

5.5. SUMMARY 

The importance of a more detailed representation of the converter side inductance in 

harmonic filters like the LCL filter was addressed in this chapter. It provides a more 

accurate stability evaluation for connection of modern power electronics based 

converters to the utility grid. The reason is that the converter side inductance is 
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excited with rectangular voltages, which result in small dynamic minor hysteresis 

loops of significant losses. To illustrate and describe the phenomena, a Jiles-

Atherton hysteresis inductor model has been implemented in PSCAD/EMTDC to 

show the importance of the magnetic hysteresis. It reveals that the core loss in the 

converter side inductance provides more damping and therefore, increased stability 

margin for the power converter, compared with the conventional lumped resistor 

representation, which accounts for the same average power loss. Additionally, the 

dynamic response of the power converter with inductor hysteresis model and 

lumped inductor model reveals that the plant of the system given by the harmonic 

filter is not completely known during the design process of the current controllers. 

However, only the influence of the core loss given by the magnetic hysteresis has 

been under investigation. Since the JAH model has previously proved to model and 

describe the hysteresis accurately, the results presented here should be valid. For 

complete validation is required in the future to model also the frequency dependent 

winding loss and eddy current losses created by the induced voltage from the 

magnetic flux variation in order to have a full inductor model. 
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CHAPTER 6. CONCLUSIONS 

The main conclusions of this work are given in this chapter. The purpose of this 

study was to find out the possible interaction problems among the interconnected 

VSCs in nowadays’ power distribution system. Then, several contributions in this 

field are given. 

6.1. SUMMARY 

Possible instability scenarios, which are caused by the non-passive region of the 

VSCs, are investigated in this work and several solutions are discussed. Further, the 

optimal point for addressing the instability problem in the network is also found. In 

the end, a detailed model of the filter inductor in the VSC shows that the inherent 

damping in the inductor can diminish the interaction problem drastically. 

In Chapter 1, the background, motivation and the objectives of this study are shown 

for given limitations of the system. 

In Chapter 2, each element in the benchmark network is explained before proceeding 

to the main instability issues. The aim for this chapter is to focus more on the 

instability issues related among VSCs in the distribution network only and not to be 

mixed or coupled with other factors, such as the subharmonic oscillations or 

imbalanced loading condition. The three phase load is assumed to be balanced load 

and the positive sequence impedance of the transmission line (cable) is considered. 

The essential parts of the VSC are included in the model such as the PLL, current 

controller and harmonic filters. 

In Chapter 3, two essential methods to analyze and evaluate the instability problem 

among multiple VSCs are addressed. The time domain simulation model of the 

network is explained in PSCAD as well as the principle operation of the Electro 

Magnetic Transient Program (EMTP). The frequency domain model for stability 

analysis is explained in this section by means of the Impedance Based Stability 

Criterion (IBSC). By expanding the IBSC it is possible further to approach the 

concept of Passivity, which can give a design guide-line for PE based units that can 

guarantee the stable operation of the network. Several other issues in implementing 

the IBSC are also mentioned.  

In Chapter 4, the stability assessments for several scenarios are given. Firstly, the 

unstable operations of the paralleled converters are investigated and secondly, a 

more realistic benchmark network has been adopted and the stability analysis is 

performed. There are several ways to stabilize the unstable system by introducing 

additional damping into the system such as passive damping and active damping 

methods, and/or a specialized harmonic frequency damping unit called the active 
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damper. Also, the relative stability of the network is investigated by measuring the 

required damping at all nodes. The most adequate location for the stabilization of the 

network, which is the most unstable point in the network, can be found. This may 

show the risky index of the network. 

In Chapter 5, the importance of a more detailed representation of the converter side 

inductance in harmonic filters like the LCL filter was addressed. It provides a more 

accurate stability evaluation for connection of modern power electronics based 

converters to the utility grid. The reason is that the converter side inductance is 

excited with rectangular voltages, which result in small dynamic minor hysteresis 

loops of significant losses. To illustrate and describe the phenomena, a Jiles-

Atherton hysteresis inductor model has been implemented in PSCAD/EMTDC to 

show the importance of the magnetic hysteresis. It reveals that the core loss in the 

converter side inductance provides more damping and therefore, increased stability 

margin for the power converter, compared with the conventional lumped resistor 

representation, which accounts for the same average power loss. Additionally, the 

dynamic response of the power converter with inductor hysteresis model and 

lumped inductor model reveals that the plant of the system given by the harmonic 

filter is not completely known during the design process of the current controllers. 

In Chapter 6, the main conclusions and contributions of the work are highlighted. 

6.2. CONTRIBUTIONS 

The contributions of this study can be summarized as follows. 

 Identification of the unstable conditions among the multi-paralleled VSCs 

in the power system: interaction problem caused by the parallel VSCs with 

LCL filters are found in time domain simulation. The reasonable behavior 

of the LCL filter in the VSC may bring other VSCs connected to the same 

network to be unstable. Resonances in the grid impedance can also bring 

the VSC to become unstable. 

 

 Modeling and investigation of the harmonic interaction problems of power 

electronics based power systems: by using the IBSC approach, those 

unstable cases among the parallel VSCs are identified in the frequency 

domain. The Nyquist stability criterion can help us to find a possible cause 

of the unstable closed loop poles based on the impedance relations in the 

system. 

 

 Stabilization methods to deal with the high frequency resonance 

interactions at system level: the effect of existing damping solutions in the 

test system are evaluated and include passive or active damping methods 

of the VSC, and/or the use of an external damping unit, called active 
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damper. 

 

 A stability map of the network for a more effective stabilization: by 

adopting the IBSC for all nodes in the network, the relative stability of the 

individual node is compared. By introducing one of the damping solutions 

to the most unstable node, the unstable system can be effectively stabilized. 

 

 Influence of the filter inductor hysteresis on stability analysis: the damping 

effect on system stability from the loss of the magnetic hysteresis in the 

filter inductor is discussed. Time domain simulation based on the Jiles-

Atherton hysteresis model is performed and a comparison with the 

conventional lumped loss model has been made. 

 

6.3. FUTURE WORKS 

Newly obtained research questions in relation to this study can be: 

 In stability analysis of a small scale power distribution system, the the 

IBSC may not be able to predict the harmonic instabilities unless a full 

degree of inherent system damping is considered.  

 

 Generalized hysteresis modeling for anisotropic materials is needed. 

There are many anisotropic magnetic materials which are widely 

used in PE application. In order to include those hysteresis 

characteristics into the stability analysis, a generalized model of JAH 

should be adopted. 

 

 Copper loss is also an important damping element of the system. 

Losses created inside of the conductor also have a significant effect 

in the stability analysis. The main reasons are the proximity effect 

and the skin effect of the conductor. 

 

 Load is also an important part of the power system stability analysis as it 

is also a PE based power unit. Many of them are having the constant 

power load characteristic which violates the passivity theorem inherently 

and it may also be the reason of instability in the system as well.  
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Appendix A. Code for JAH model 

The source code of the implemented subroutine of the JAH model in the 

PSCAD/EMTDC is given in the following. 

!=========================================================== 

SUBROUTINE MYSUB_CFG_DEBUG(SS,NBR) 

 

      INTEGER SS   ! Subsystem number 

      INTEGER NBR  ! Branch number 

 

      CALL CURRENT_SOURCE2_CFG(NBR,SS)! Sets DEFRDBR to TRUE and 

GEQ to 0.0 

END 

!=========================================================== 

SUBROUTINE MYSUB_EXE_DEBUG(SS,NBR,D1,D2,D3,D4,D5) 

! 

INCLUDE 'nd.h' 

INCLUDE 's0.h' 

INCLUDE 's1.h' 

INCLUDE 'branches.h' 

INCLUDE 'rtconfig.h' 

INCLUDE 'emtstor.h' 

INCLUDE 'warn.h' 

INCLUDE 'emtconst.h'    

 

!!!!!!!!!!!!!!!!!!!!!LOCAL VARIABLES!!!!!!!!!!!!!!!!!!!! 

REAL c,k,mu0,alfa,Ms,a,N,Ac,l 

REAL V0,I0,dMdH0,H0,M0,He0,Hea0,Man0,dMandH0,Q0,G0,V_1 

REAL dMdH_1,H_1,M_1,delM,del,INEW 

REAL D1,D2,D3,D4,D5 

  

INTEGER SS   ! Subsystem number 

INTEGER NBR  ! Branch number 

 

INTEGER MYSTORF 

 

MYSTORF = NSTORF 

NSTORF = NSTORF + 4 

 

!!!!!!!!!!!!!!!!!!!!!!!Constants!!!!!!!!!!!!!!!!!!!!!!!! 

c = 0.15    

k = 0.5    

mu0 = 4.0*PI_*1.0E-7 
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alfa = 3.0E-2 

Ms = 1.6E6 

a = 1100.0 

N = 100.0 

Ac = 0.0005 

l = 0.25 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

IF (TIMEZERO) THEN 

STORF(MYSTORF) = 0.0 

STORF(MYSTORF+1) = 0.0 

STORF(MYSTORF+2) = 0.0 

STORF(MYSTORF+3) = 0.0 

STORF(MYSTORF+4) = 0.0 

ENDIF 

    

H_1 = STORF(MYSTORF) 

M_1 = STORF(MYSTORF+1) 

B_1 = STORF(MYSTORF+2) 

V_1 = STORF(MYSTORF+3) 

  

V0 = VBRANCH(SS,NBR) 

I0 = CBR(NBR,SS) 

 

B0 = (V0+V_1)/(2.0*Ac*N)*DELT+B_1   !Trapozoidal method 

H0 = N/l*I0 

M0 = B0/mu0-H0 

 

He0 = M0*alfa+H0 

Hea0 = He0/a 

  

xrng = 0.002236068865 ! For tolerance range := 0.1e-5 

 

IF ((Hea0.LT.-xrng).OR.(Hea0.GT.xrng)) THEN 

Man0 = Ms * (1.0/TANH(Hea0)-1.0/Hea0) 

dMandH0 = Ms/a*(1.0 - 1.0/(TANH(Hea0)**2.0)+ 1.0/Hea0**2.0) 

ELSE  

Man0 = 0.0 

dMandH0 = Ms/a/3.0 !!! dManH0 can be approximated as one value for limiting its 

range. 

ENDIF 

  

IF (((Man0.GT.M0).AND.(H0.LT.H_1)).OR.((Man0.LT.M0).AND.(H0.GE.H_1))) 

THEN 
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delM = 0.0 

ELSE 

delM = 1.0 

ENDIF 

 

IF (H0 .LT. H_1) THEN 

del = -1.0 

ELSE 

del = 1.0 

ENDIF 

dMdH0=delM*(Man0-M0)/((1.0+c)*(del*k/mu0-alfa*(Man0-

M0)))+c*dMandH0/(1.0+c) 

Q0 = mu0*(dMdH0+1.0) 

  

G0 = DELT*l/(Q0*N**2.0*Ac)*0.5 

INEW = G0*V0 + I0 

 

STORF(MYSTORF) = H0  

STORF(MYSTORF+1) = M0 

STORF(MYSTORF+2) = B0 

STORF(MYSTORF+3) = V0 

 

D1 = G0  

D2 = Man0 

D3 = dMdH0 

D4 = B0 

D5 = H0 

!     

CALL CURRENT_SOURCE2_EXE(NBR,SS,G0,INEW) 

RETURN 

END  
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