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Chapter 1

Introduction

The beam has for many years been an important part of civil engineering structures. Suc-
cessful design of structures involving beam elements requires a well-developed description
of the beam behavior. This has been recognized by researchers and during the last century
great emphasis has been given towards the establishment of linear as well as nonlinear beam
theories. A review of some of the literature connected to beam theories is presented in
Section 1.1.

Driven by economic incentivities such as increasing relative cost for materials, by the de-
velopment of high-strength materials, and by the advancement in structural analysis and
design, the trend has been towards the design and construction of increasingly more slender
and flexible structures. An important component in this progress is the thin-walled beam.
The double symmetric thin-walled beam has been used for many years while the use of
thin-walled beams with arbitrary cross-sections is relatively recent.

Using more slender and more flexible structures makes the stability problem essential in the
design process. The stability behavior of symmetric beams, such as I- and H-profiles, has
been examined for many years and leading to a general solution procedure where the stability
failure is determined by considering an ideal structure. Possible precritical deformations are
hereby neglected. In case of beam and frame structures with non-symmetric cross-sections
the precritical deformations may be significant leading to a more complex behavior of the
structure. This implies that the critical behavior is more complicated as for the symmetric
structure. A rational utilization of these profiles therefore necessitates a detailed description
of the stability problem.

A theory is developed for beams of arbitrary shape, (Chapter 2). The beam is represented by
a curve with a local set of base vectors fixed to the cross-section at each point of the curve.
The generalized displacements are the translation vector for the curve and the rotation vec-
tor for the cross-sections. The equilibrium equations for the beam are reformulated as a
virtual work equation, and this defines three strain components and three curvature compo-
nents. The two shear strain components describe the difference between the tangent vector
of the curve and the normal vector to the cross-section. It is important for a systematic
derivation of the equations that all three rotation components are preserved as independent
displacement parameters. If desired the Bernoulli hypothesis concerning the normality of
the cross-sections can be introduced in the final equations. The warping effect, characteristic
of thin-walled beams, is treated separately in order to preserve the generality.
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The general theory is specialised to stability analysis by considering a prebuckled/initial
state, with prebuckling curvatures and stresses, and a neighbouring postbuckled state,
(Chapter 3). The effect of prebuckling deformation is considered consistently by using the
equilibrium equations of the initial state.

Specialising the theory to thin-walled beams requires the appropriate constitutive equations.
This is the subject of Chapter 4. A small strain deformation measure expressed by the ge-
neralized deformations is introduced and by energy principles the constitutive equations are
developed. A brief discussion of energy principles is presented in Chapter 5 where also the
transition from virtual work to potential energy or vice versa for the present formulation is
considered.

An example of the possibilities of the present formulation in a numerical context is given
by the development of a two node beam element, (Chapter 6). The strain deformations are
assumed negligible while the curvature contributions are retained in the formulation. This
leads to a formulation in terms of the rotation components only. A link between displace-
ments and rotations is obtained by introducing the zero strain condition via the Lagrange
Multiplier method. A mixed formulation is hereby obtained where linear shape functions
can be used. This chapter serves as an introduction to the development of the incremental
updated element considered in Chapter 8.

Analytical stability analysis can be performed in a manageable way by some minor modi-
fications of the general formulation, (Chapter 7). Neglecting strain deformations leads to a
formulation expressed entirely in terms of the three rotation components. An asymptotic
buckling- and postbuckling theory is developed by means of a perturbation method. The
asymptotic postbuckling behavior of a straight column in axial compression is considered
for arbitrary cross-section parameters. The theory is also illustrated by analysing buckling
and postbuckling of the beam in pure bending. The format of the results for this case are
used to discuss the relation of the present general theory to previously published theories for
simply curved beams. Further the governing parameters describing the initial postbuckling
behavior are determined.

Finally on the basis of the previous chapters a numerical formulation of the nonlinear stability
problem is obtained in Chapter 8. The performance of the incremental updated Lagrangian
two node hybrid element developed, is discussed by considering four canonical problems.
The results strongly indicate that initial deformations and non-symmetric properties are
essential for a proper determination of the critical load.

1.1 Review of Literature - Thin-Walled Beams

In this section a brief overview of the progress in beam analysis during the last thirty years is
given with reference to the literature presented in the Bibliography. The references used are
only a small part of the literature on this subject but they seem to give a good impression
of the developments and current status in beam analysis.

As a consequence of the frequent use of beam components in civil engineering structures
research regarding the behavior of the beamn has been intense for many years. The behavior
of a beam structure can be divided into two types of analysis. First the beam analysis where
the deformation as a direct consequence of the increase in loading is considered. Secondly,
the stability/buckling analysis where the beam structure at a certain load level suddenly
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changes the load-deflection relationship. Both types of analysis can be performed linearly as
well as nonlinearly.

Everyday problems are usually considered linear, and for good reasons. Materials and struc-
tures are commonly used in their linear elastic, small-deflection range. Slight nonlinearity
does not invalidate a linear design basis. In this review only geometric nonlinearity will be
considered.

The linear theory for the prismatic member as developed by Vlasov (1961) is well known and
has found its way into everyday engineering practice. Analytical analysis of the torsional-
flexural buckling have been performed by Vlasov and specialised examples have been in-
vestigated by Timoshenko & Gere (1961), Chajes & Winter (1965), Kollbrunner & Hajdin
(1972) and others. Even in a linear analysis closed form solutions are only obtainable in
a few specialised cases which requires alternative solution methods. Numerical techniques
such as the finite difference methods and numerical integration have been used, but these
are also limited in scope. There has been, therefore, strong motivation to formulate the
finite element method for the stability analysis of thin-walled open beams. The use of the
finite element method ensures that a wide range of loading and boundary configurations,
and cross-sectional shapes can be analysed. A finite element formulation was developed by
Barsoum & Gallagher (1970).

Most of the literature up to this point was mainly concerned with the straight beam. Due to
the flexible performance of the beam member the curved beam gained in interest. A detailed
analysis of the bending and buckling of the thin-walled open section ring was given by Cheney
(1963). Later the single-curved beam was considered by Yoo (1982), Yang & Kuo (1987) and
Papangelis & Trahair (1986) regarding the formulation of the linear stability equations. The
latter works were all specialised to the single-curved beam from the beginning, whereby the
possibility of a general theory with inclusion of initial/prebuckling curvatures is lost. In the
classical stability analysis, Timoshenko & Gere (1961) and Vlasov (1961), it is assumed that
the prebuckling deformations are small enough to be ignored. Attard (1986) derived a finite
element capable of handling the lateral buckling problem where prebuckling deformations in
the plane of the loading are present.

In case of a beam structure the deflections and stresses may influence the performance
significantly which indicates that a large-displacement (nonlinear) analysis is appropriate.
Especially for non-symmetric cross-sections the deformations prior to an eventually stability
failure plays an important role. Ghobarah & Tso (1971) formulated a nonlinear theory for the
thin-walled beam where special attention was given to twist because of the relatively small
torsional rigidity. Using linear displacement fields Connor et al. (1968) and Bazant & Nimeiri
(1973) obtained some numerical results by use of incremental equations and successively
updating. Later Bathe & Bolourchi (1979) presented a more general introduction for the
solution of large-displacement problems by means of the finite element method.

During the last twenty years many versions of how to solve the nonlinear behavior of the beam
member have been published. In a nonlinear analysis the geometric representation of the
beam is essential. In analysis of steel beams a common assumption is that the deformations
are small and the rotations are finite. This implies that the beam can be described by a curve
through a characteristic point of the cross-section, represented by a position vector, and a set
of local base vectors representing the orientation of the cross-section. The local unit vectors
are commonly related to a reference configuration by rotation of a set of base vectors in the
reference configuration. For the spatial beam the nonlinear analysis is complicated by the
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non-commutative nature of the rotation increments. Numerous alternative approaches are
available for the proper parametrisation of the rotation fields in the configuration space of the
beam model, see e.g. Argyris et al. (1978), Simo & VuQuoc (1985), Elias (1986), Cardona
& Geradin (1988) and Crisfield (1990). Classically, geometrically-derived measures such as
Euler angles were used, see e.g. Rosen & Friedmann (1979), but techniques which are more
suitable for finite element computations have been commonly used in recent applications.
This includes for example Rodrigues parameters, Kouhia (1991) and Saleeb et al. (1992),
semi-tangential rotations, Yang & McGuire (1986), and co-rotational formulation, Hsiao
(1987) and Crisfield (1990).

In general two approaches are used to develop a nonlinear theory. One type of formulation
consists in deriving directly the beam equation from a three-dimensional non-linear theory,
with a full account of finite rotations, and afterwards introducing the appropriate beam
kinematical assumptions, see e.g. Peterson & Petersson (1985), Yang & McGuire (1986),
Surana & Sorem (1989), Hong Chen & Blandford (1991), Kouhia (1991) and Gendy &
Saleeb (1992). The work of Peterson & Petersson considers the general three-dimensional
continuum, while the work of Surana & Sorem represents the general formulation for the
curved rod and finally Yang & McGuire , Hong Chen & Blandford, Kouhia and Gendy &
Saleeb specialise to the thin-walled beam.

A second approach is an equilibrium method where the basis is force and moment equili-
brium along a characteristic line and then by use of energy principles to derive the weak
form of the beam equation, see e.g. Dupuis (1969), Wempner (1973), Rosen & Friedmann
(1979), Simo & Vu-Quoc (1985,1991), Elias (1986), Cardona & Geradin (1988) and Reissner
(1989). The works of Dupuis, Simo & Vu-Quoc, Elias and Cardona & Geradin represents the
general formulation for the rod while Wempner, Rosen & Friedmann and Reissner considers
the thin-walled beam. Using a line approach some modifications have to be made in order to
obtain a complete formulation. Effects such as warping stiffness, deformations due to cross-
sectional forces and non-coincidence of cross-sectional centroid and shear center locations
can not be accounted for directly. If these effects are to be considered then the constitutive
equations have to be expressed accordingly.

Asonly a few problems can be solved analytically most of the literature is concerned with the
finite element formulation of the nonlinear problem. Finite element formulations typically
uses one of three techniques: Co-rotational, updated or total Lagrangian representation.
A co-rotational Lagrangian formulation refers to the provision of a reference frame that
continuously rotates with the element. Hsiao (1987) and Crisfield (1990), for example,
used co-rotational concepts in developing their three-dimensional elements, which include
large joint rotations. A total Lagrangian formulation involves using the initial, undeformed
element geometry to express the equilibrium equations of the deformed structure. Several
investigators, see e.g. Cardona & Geradin (1988) and Surana & Sorem (1989), have used total
Lagrangian schemes in their large-deformation analysis of space-frame structures. Recently,
updated Lagrangian schemes have been used with succes by for example Yang & McGuire
(1986), Meek & Loganathan (1989), Hong Chen & Blandford (1991) and Kouhia (1991).
Updated Lagrangian formulations involve expressing the nonlinear equilibrium equations in
incremental from, in terms of the geometry at the start of an incremental step. Further the
natural mode technique, i.e. a method where the rigid body motions are separated from
the displacements that produce strains, has been used by Gattass & Abel (1987) and Conci
& Gattass (1990) to examine the nonlinear behavior of beams in an incremental updated
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Lagrangian scheme.

In the finite element formulation a major problem has been the moment imbalances at corner
nodes for the spatial beam element. Solution strategies have been offered by Argyris et al.
(1979), Yang & McGuire (1986) and Elias (1986). Especially the strategy proposed by Elias,
using a modified rotation vector, seems to be recognized as a solution of the imbalance
problem.

In the stability analysis mentioned so far the main concern has been the bifurcation problem
and only a few numerical examples of the postbuckling behavior occurs in these works.
Postbuckling analysis plays an important role in the understanding of elastic structures
as a postbuckling analysis of a perfect system can be used to reveal information about
the behavior of real imperfect members, Chajes (1983). Koiter (1945) presented a general
theory of stability including postbuckling analysis. A general introduction to the buckling
and postbuckling behavior of elastic structures was given by Thompson & Hunt (1973),
Budiansky (1974) and Roorda (1980). The postbuckling analyses were performed by use
of the perturbation method. An intensive study of the lateral and postbuckling behavior
of a number of common thin-walled elastic beams was performed by Trahair & Woolcock
(1973) and Woolcock & Trahair (1974,1975). The buckling and initial postbuckling of the
thin-walled, simply supported column with arbitrary open cross-section has been examined
in a paper by Grimaldi & Pignataro (1979) and later by Szymczak (1980).



Chapter 2

Static Beam Theory

In order to investigate the stability behavior of nonsymmetric steel beams a satisfactory
beam theory has to be available. A complete small deformation theory for thin-walled
beams has been developed by Vlasov (1961) and it seems that this work is approved by
modern researchers as a fundamenthal basis for nonlinear beam theories. From this point
though the agreement is not overwhelming in the literature, see e.g. Wempner (1973), Simo
& Vu-Quoc (1985), Elias (1986), Cardona & Geradin (1988) and Hong Chen & Blandford
(1991). The fundamental ideas seems the same but along the developing process different
assumptions influence the final form.

Basically two approaches can be used in order to develop a beam theory. One can consider
the beam as a three-dimensional continuum where the beam theory is developed by consid-
ering various stress and displacement distributions over the cross-section of the beam. Such
a procedure has for example been used by Peterson & Petersson (1985) and Hong Chen &
Blandford (1991). In a preliminary fase this procedure was also used by the writer Mathiesen
(1990) but an unsatisfactory form was obtained as the beam theory was to be expanded into
a stability theory for thin-walled beams.

A beam can be defined as a structural member for which one dimension, the length, is con-
siderably larger than the other dimensions. This makes 1t natural to separate the description
of the deformation and stress in the beam into cross-sectional distribution and lengthwise
variation. The second kind of approach is to consider the beam as a one-dimensional struc-
ture, where the behavior of the beam is described by generalized displacements and forces.
Expressing equilibrium along a characteristic line of the beam cross-section leads to the gov-
erning equations. Such an approach has for example been used by Dupuis (1969) and Simo
& Vu-Quoc (1985) in the derivation of the nonlinear equilibrium equations for the rod. The
general form has been specialized to thin-walled structures by e.g. Wempner (1973) and
Rosen & Friedmann (1979).

In this chapter a general nonlinear beam theory is developed in a straight forward way by
static considerations along a for the beam characteristic curve.

In Section 2.1 a geometrical description of the beam is introduced and in Section 2.2 the
equilibrium equations and virtual work equation are presented. Using the virtual work
equation a set of generalized deformations are defined in Section 2.3. Finally the rotation
dependency of external loads is considered in Section 2.4.

A
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2.1 Geometrical Description

A slender beam as shown in Fig. 2.1 is described by a curve through a characteristic point of
the cross-section. The curve is described by the position vector ry(sq), where the subscript
refers to a characteristic point of the cross-section. The parameter sq indicates the arc-length
in a reference state and will be used as the independent variable in establishing a stability
theory for slender beams.

Fig. 2.1: Geometry of the beam.

At each point of the curve the orthogonal unit vectors e, = (e;, e3) describe the plane of the
cross-section, while e3 = e; X e, is the normal to the cross-section. The local unit vectors
are considered as generated by rotation of the base vectors &; = (&;,8,,€&;) of a global
rectangular Cartesian z; coordinate system. The rotation i1s expressed through the rotation
vector ¢(sg). This representation is non-singular and degenerates to a simple, intuitive form
in the case of infinitesimal rotations, Goldstein (1950). '

In the following a beam theory is developed in terms of the two generalized displacement

vectors r,(sp) and (sp).

2.2 Equilibrium and Virtual Work

Let N(so) be the internal force vector. Force equilibrium of the deformed beam clement,
shown in Fig. 2.2 is then expressed by

dN
— +p=20 (2.1)
dS()
where p(sg) 1s the density of the distributed force. M(sq) denotes the internal moment
vector, and moment equilibrium then takes the form

dM dr,
_.+_

— N + f -0
Cl‘SU ng & T *P (

[
[N
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where f(sp) = fae, indicates the location of the external force in the cross-section.

M+dM

N+dN

Fig. 2.2: Deformed beam element.

The equilibrium equations (2.1) and (2.2) are now reformulated as a virtual work equation,
thereby defining generalized strain measures corresponding to the internal forces and mo-
ments. Let ér, be the virtual translation and é¢ the virtual rotation. The virtual quantities
are considered as infinitesimal variations superimposed on the finite displacements. The
infinitesimal rigid body motion ée; of e; defines the variation of the rotation vector by (see
e.g. Goldstein (1950))

be; = dp xe; (2.3)

In general é¢ is not an exact differential, i.e.

0 # [ b0 (2.4)

An exception occurs in plane motion.

The virtual work equation corresponding to (2.1) and (2.2) then is

! dN dM  dr,
/ brg-|— +p) + b | — + - XN+ fxp] tdso = 0 (2.5)
0 d.Sg dS(] dSo

Integration by parts leads to
! dér, dr, dép
— 6 ‘N ‘M 3 d
/o { ( dsp e db‘o) * dso } %

[

- [6ra-N+5‘P'M] + fol(éra+6so><f)-pd50 (2.6)

0

In equation (2.6) the left side is the internal virtual work 6V}, while the right side represents
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the external virtual work 6V,. The contents of 6V;,: and 6V, is treated in detail in Sections
2.3 and 2.4 respectively.

2.2.1 Virtual Work Corresponding to Warping

In Section 2.2 the virtual work equation for a beam element identified by a curve is de-
veloped. This approach is general and can be used to investigate different kinds of beam
structures. The scope of this thesis includes thin-walled beams which necessiates treatment
of the warping effect characteristic for thin-walled beams. The contribution from warping is
treated separately in this section and is in the following not incorporated in the derivations
until the emphasizes are concentrated on thin-walled beams.

The warping contribution is expressed through the bimoment B(sy) and letting b(so) repre-
sent the distributed bimoment, equilibrium for the bimoment is given by

dB

dso

+b=0 (2.7)

The warping effect is hereby represented by a scalar equilibrium equation contrary to force
and moment equilibrium in Section 2.2. Introducing the scalar function f(sy) as the cor-
responding generalized displacement the virtual work equation for the bimoment can be
established. Multiplication with the virtual displacement 66 and integration along the beam
element leads to

t  (dB  dso Lo
-/ 59(55 + b) dso = [ = Bdso - [593]0 — [ 60bdso = 0 (2.8)

Comparing the second statement with (2.6) the resemblance is obvious which indicates that
considerations regarding the structure of (2.6) can be transmitted to (2.8).

2.3 Internal Virtual Work - Generalized Deformations

In equation (2.6) the principle of virtual work is written in vectorial form. A component
form is obtained by introducing a component representation of N(sp) and M(sg). Following
Dupuis (1969) the internal force and moment vectors are decomposed with respect to the
unit vectors e; = (eq, ez, e3), locked to the cross-section.

N(SD) = Naeo, -+ N3E3
a=1,2 ; summation (2.9)
M(sp) = Maen+ Mae;

Substitution of this representation reduces the internal virtual work of equation (2.6) to the
following form.

l
BV = /é { ealNo + BeaNs + 6xaMo + 5k3Ms }dso (2.10)
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Here é¢; and d6k; are the incremental generalized strain and curvature components, respec-
tively. Their definition follows from the substitution process. The incremental strain com-
ponents are given by

dér, i, .
de; = (dso —bp X dso)-ej s 9$=1923 (2.11)

ér, and dp are considered as variations of the position vector r, and the rotation vector ¢,
respectively. The unit vectors e; follow the cross-section, and their variation is given by the
infinitesimal rotation ée; = dp xe;, Goldstein (1950). Using this relation the incremental
strain formula (2.11) can be integrated to yield the total strain components

dr, ,
Ej = (dso = E3) ' ej y 7= 1,2,3 (212)

The validity can be confirmed by taking the first variation of (2.12) and making use of
the infinitesimal rotation relation (2.3). This definition of the strain components is a local
decomposition of the difference between the tangent vector dr,/dsy along the characteristic
curve and the current cross-section normal e;. This is expressed by the alternative form of
(2.12)

dr,
ng

- (2.13)

and is illustrated in Fig. 2.3.

¥

Fig. 2.3: Tangent vector and strain components.

The internal virtual work (2.10) also defines the components éx; of the incremental gener-
alized curvature.
dép

(SKZ[ = e

dS[)

. 1=1,23 (2.14)
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6k; is the variation of the total curvature component «;, defined by

de;
Ejkl KI = d_S} * € (215)
0

where e 1s the permutation symbol. This is demonstrated by substituting the increments
be; = dpxe; into the variation of (2.15). The components x; may not be the principal
curvatures and twist of the characteristic curve because they refer to the unit vectors e;
attached to the cross-section. A simple example is a straight pretwisted beam, for which
dk3 # 0. This interpretation of the generalized curvatures «; is also found in Wempner
(1973). The physical meaning of equation (2.15) is illustrated in Fig. 2.4.

ds,
et
———f— es
I /e
i /
I /
| /€ap %gdSo
[ 7
|/
|/
|/
Y

Fig. 2.4: Curvature and twist.

The components ¢; of the strain vector differ from the corresponding components in the La-
grangian strain tensor often used in solid mechanics Malvern (1969). The Lagrangian strain
components correspond to the non-orthogonal base vectors (eq, dr,/dsp). Decomposition of
N and M in this non-orthogonal basis would lead to an undesirable coupling between r, and
@ in the corresponding curvature £3.

2.4 External Virtual Work

From equation (2.6) it follows that the external virtual work

l l
§V, = [6ra-N+5ap-M] + (6ra+6<,o><f)-pdso (2.16)
. 0 0

consists of a boundary contribution, i.e. point loads, and distributed forces along the beam
element.

The contents of the integral in (2.16) follows from the definitions of f and p. It is stated
earlier that the point of attack f follows the rotations of the cross-sections which means that
the moment f x p is rotation dependent whether p is a conservative load or not.
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This rotation dependency is obvious in connection with the distributed force which isn’t the
case for the boundary term. The internal forces in the boundary terms can be associated
with external loads at the ends by static considerations. Introducing the external loads at
the boundaries as a set of n forces where P* is the force vector and F* is the point of attack of
the corresponding force vector, see e.g. Fig. 2.5. The point of attack F* follows the rotation
of the cross-section and is related to the corresponding vector Fi in the global coordinate
system via a transformation operator A(p) (see e.g. Appendix A) as indicated in Fig. 2.5.

pi
Fi

Fig. 2.5: Boundary loads.

Force equilibrium at the boundary then takes the form

N =% P (2.17)

1=1
and moment equilibrium
M =Y (FxP) =3 ((A(g) F) x PY) (2.18)

1=1 1=1

One should notice the difference in the way in which the boundary force and moment behave.
From (2.18) it follows that the moment contributes through the transformation operator A,
which implies that the contribution is rotation dependent.

Substitution of (2.17) and (2.18) into the boundary term of (2.6) leads to

5ra-N+6cp-M] - [m-

n n I

; P’ + &p-; (A(cp) : F*‘) X P*‘]O (2.19)

L

By this approach external moments can be generated by a pair of equal and opposite forces
acting on the ends of an arbitrarily-oriented rigid arm that follows the motion of the cross-
section. This representation of moments is commonly used in the literature and can be
used in different ways leading to e.g. quasitangential, pseudotangential and semitangential
moments, see e.g. Argyris et al. (1978) and Yang & McGuire (1985).
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2.5 Conclusions

A general nonlinear theory for the beam has been derived by considering the beam as repre-
sented by a curve with a local set of base vectors fixed to the cross-section at each point of the
curve. The orientation of the local base vectors is related to a set of global base vectors by
a rotation vector via an ortogonal transformation operator. The generalized displacements
are hereby the translation vector for the curve and the rotation vector for the cross-sections.
The equilibrium equations for the beam are reformulated as a virtual work equation, and this
defines three strain components and three curvature components. The strain components
describe the difference between the tangent vector of the curve and the normal vector to the
cross-section. The warping effect, characteristic of thin-walled beams, is treated separately
but can easily be added to the virtual work equation as a scalar component.

The rotational dependency of external point loads is incorporated by introducing the external
loads as a set of forces with a corresponding rigid arm.



Chapter 3

Static Stability Theory

Instability can occur when other forms of equilibrium, qualitatively different from the fun-
damental precritical shape (e.g. bifurcation), become possible. In order to obtain a stability
formulation one can use different approaches. One can for instance use a pure kinemati-
cal approach where the formulation is based entirely on a deformation measure developed
from a displacement field. Here the initial stresses have to be identified through the higher
order terms. Another possible approach is a statical one, where one through equilibrium
considerations establish the governing differential equations.

Using the results from Chapter 2 a static stability theory is presented in this chapter. The
governing equations are derived by considering the beam in two adjacent states, an initial
state (Section 3.1.1) and a buckled state (Section 3.1.2). A weak formulation of the stability
equation is obtained in Section 3.2 by subtracting the virtual work equation for the initial
state from that of the buckled state.

3.1 Variational Formulation

The virtual work as expressed in (2.6) is used to derive a weak formulation of the stability

M°+dm®

Fig. 3.1: Beam element in initial and buckled state.

14
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equation. This is accomplished by considering the beam in two adjacent states, an initial
state (critical), and a buckled state (postcritical).

In the present formulation of the stability equation the initial state may include deformation
imposed prior to buckling, so-called initial deformations. These terms are important e.g. in
connection with lateral buckling of thin-walled beams with non-symmetric cross-section.

3.1.1 Initial State

In the initial state it is assumed that all parameters describing the beam, including defor-
mation have been determined. No relationship is required between the geometry and statics
in this state. The parameters in the initial state are indicated by superscript (°). The char-
acteristic curve of the beam is described by ra(so) and the local unit vectors e? are obtained
from the global base vectors &; and the finite rotation

e} = A(e°)- & (3.1)

where A is an orthogonal transformation tensor and ¢°(sq) is the corresponding rotation
vector. Appendix A gives a detailed description of the finite rotation tensor A ().

The beam is in equilibrium which means that the virtual work equation according to (2.6)
is given by

L((dér, dr® ds
j o _spx e} No + 2% MoYds,
0 dSO dSo dSo

1
_ [6rﬂ-N° + - MO] + /0 (62 + 8 x £2) - p° dso (3.2)

l
0

The strain components in the initial state can be found from (2.12), which leads to

dr?
0o __ a 0 0
& = (dso - 63) &5 (3.3)
A geometric description of the beam is accomplished by introducing the curvatures 2 and

the twist £9 in the initial state. It follows from (2.15) that

de?
eip K = Egj'eg (3.4)

The internal forces are decomposed in the basis e, whereby N° = N?e? and M° = M?e?.

3.1.2 Buckled State

Equilibrium in the buckled state implies that

! dér, dr, dép
-6 -N M} d
/0 { ( d.‘)’g Lk dSo) 4y d.SD } =8
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' ! !
N [6ra-N+5<p-M] + [ (bra + 60 x 1) - p dso (3.5)
0 0

The position and rotation vectors are now expressed with reference to their value in the
critical state, i.e.

ro(so) = ro(so) + ri(so) (3.6)

and

@(s0) = ¢%(s0) + #'(s0) (3.7)

Thus r! and ¢! are the increments from the critical state.
The current local unit vectors e; are related to the global basis &; similarly to (3.1). Decom-
position of the increment of the rotation vector in the initial basis corresponding to ¢! =
@re? leads to the following relationship between the initial unit vectors e? and the current
unit vectors e;

ej = Alp) &) = Ayel (3.8)

The generalized deformations in the buckled state can be found directly from (2.12) and
(2.15). The total strain components €;(sg) are simply given by (2.12)

dr, dr} 0 drz]x £ it ol 0 1 0
= (dso - es) &= (dSO . dso \Ale )_I) -e3) Arils B

Decomposition of r} in the initial basis, i.e. r, = r;, e, and substitution of (3.4) and (3.8)
leads to the component form of the total strain

dr!
g = (s? + (—d-fi +Tik8kmﬂ3> s (Ala - 513)) Al (3.10)
0

Investigating (3.10) it follows that the strain components are nonlinear with respect to the
rotation components according to the presence of A;;. The influence from the initial state is
accounted for by the presence of both the initial strains and curvatures.

The curvatures x;(sp) in the buckled state are given by
dej _ dAnj

€kl Kl = —— €

ng N dSO

Ank + Enmr K;E A‘njAmk (311)

where equations (3.4) and (3.8) have been used to obtain the final form. It appears that
also the curvature components are nonlinear in the rotation components. Further one should
notice that only the initial curvatures represent the influence from the initial state.

The nonlinearity in the rotation components in the strain and curvatures is a consequence
of the representation of the cross-section by the orthogonal rotation tensor A.

The internal force and moment components IN; and M; refer to the current base vectors e;.
Let N} and M} be the increments of the components. Since the initial components N? and



Static dtability ‘L'heory dLif

M3} follow the cross-section the decomposition in the buckled state is

N(s)) = (N?+ N})e; = N° + [Nlej+(A(p!)—T) N
(.17
M(so)) = (M + M})e; = M° + [Mle;+(A(p!) - 1) M|

The terms inside the square brackets are the vector increments N! and M. It is evident
that the internal forces N° and M° from the initial state contribute through products with
the tensor

A(p') = A(e") -1 = Ay(pp)ele; (3.13)

The last term in (3.13) is the dyadic form of the tensor A when the rotation vector ¢! is
decomposed in the initial basis. Substitution of (3.13) leads to

N'(so) = [N} +e; (A(g")-N)]e; = [N} — A;NP|e;
- 3 (3.14)
Mi(s)) = [M}+e;-(A(p') -M)|e; = [M}— A;MP|e

Thus the vector increment in the internal forces N'(so) and M (sy) depends on the increment
of the components le and M; as well as a rotation contribution from the initial forces N°
and M°. The increments N; and MJ-1 have to be expressed by constitutive equations while
N and MP are given by the equilibrium equations for the initial state.

3.2 Weak Formulation of the Stability Equation

In Section 3.1 the initial state is from the beginning introduced as the critical state, i.e. the
beam is in equilibrium but different kinds of equlibrium forms exist. These other equilib-
rium forms are identified as the buckled state. The stability equation which describes this
phenomena can be obtained by subtracting the virtual work equation for the initial state
from that of the buckled state. If a solution to the hereby developed stability equation exists
which is different from the trivial one then the beam structure is in a critical state. This
implies that the initial state may not be the critical state at first, but then the initial state
can be used as a preliminary state which successively can be updated until it represents the
critical state.

The stability equation is found by subtracting the equation for the initial state from that of
the buckled state. In order to accomplish this some assumptions regarding the external load
has to be taken. Assuming that the beam structure initially is subjected to proportional
loading means that a given ratio between the external forces exists in the initial state. The
external load can then be represented by a single load parameter Ag. The initial stress terms
are then given by

N) = MNY , M) = XM , p) = Xp , P) = AP (3.15)

J

where the bar indicates the initial stress distribution.
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Then a certain combination of initial forces defines the critical load parameter Ay which
describes the point at which other forms of equilibrium become possible. When the beam
structure has reached the critical point the external load may still be increased, therefore the
load vector in the buckled state is expressed as (1 + A) times the value in the initial state
i.e. proportional loading. Subtracting (3.2) from (3.5) leads to weak form of the stability
equation

z dr,
]{ (drSram&pxdra)_Nl 4 GO e _ §p- 22 x N° — \6r, - p°
0

dsg dsg dsg dsg

i l
—dp - (A(gol)—!-)«A(c,ol))-foxpo}dso — [6ra-N1 + 5cp-Ml] = 0 (3186)

0

Equation (3.16) represents the vectorial form of the stability equation. Comparing with the
virtual work equation (2.6) the resemblance is obvious and ofcourse (2.6) can be obtained
from (3.16) by eliminating the initial stress terms. Recalling the definitions of the incre-
ments N'(sp) and M'(sp) from (3.14) one will notice that the initial stress terms indeed are
represented which makes it possible to perform stability analysis based on (3.16). The tran-
sition point from the initial to the buckled state is defined by A = 0 and the existence of a
nontrivial solution, i.e. ri(sp) # 0 or ¢! # 0. The vectorial form is not particularly suitable
as a method of calculating therefore a component form is introduced in the following.

The products in (3.16) are now expressed in terms of components. The variations of the
displacement parameters are decomposed in the initial basis whereby ¢ = ;e and ér,
= érq;e}. Using (3.8) and (3.14) together with the expressions (2.11) and (2.14) for the
variation of the generalized deformation components leads to

/Ol {6€j (N; - Ny j‘?{fj) + 0K; (Mjl - M ANIj) — 01 Eink (/;‘In.?; + Bjdlas — 62) Ny

— Moo, pp — 81 e (ﬁna .1 /\Am) fgpg} dso

(VP + Bpnenn 3 (P + 2 40) )] = 0 @.17)

n
=1 i=1 0

- |6,

1

The virtual work as expressed in (3.16) and (3.17) is for convenience referred to as §V. The
first term in the integrand is the contribution from the axial and shear deformations. The
second term arising from the bending and torsion action is often the most significant in beam
problems. The next term is the contribution from rotation of N° and finally the last terms
give the work produced by increasing the distributed force p° and the rotation of the point

of load application f2e®. The boundary terms express the increase of the endloads in the

o ot
buckled state. The endforce contribution may easily be identified as the difference of the
buckling load and the initial endforce, but in case of endmoments the contributions is more

complex.

The equations in (3.16) and (3.17) represent the general form of the stability equation and can
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be used for different kinds of beam problems, since no assumptions regarding the condition
of the beam element in the initial state have been made.

3.3 Conclusions

A weak form of the nonlinear stability equation for the beam has been derived. The initial
stress terms as well as the initial displacements are incorporated in a general and consistent
way. The initial deformations are accounted for indirectly via the generalized strains and
curvatures while the initial stress terms appear directly in the stability equation.

The stability equation has been derived by use of a line approach. As a beam possesses a
finite extent in the plane of the cross-sections a direct use may suffer in consistens because
of effects such as e.g. twisting and initial curvature. This insuffiency can be removed by a
proper choice of constitutive equations as it is shown in Chapter 4.



Chapter 4

Constitutive Equations

Whether one uses a kinematical or statical approach in the derivation of a stability theory
constitutive equations are required, as stated in Chapter 3. The object of the constitutive
equations is to express an unambiguous relation between a deformation measure, strains,
and a set of internal forces, stresses. The deformation measure is commonly developed by
kinematical considerations, i.e. a displacement field is used to express a set of strains. The
governing parameter in the relation is the deformation measure which is used to derive the
internal forces by either direct integration over the cross-section or by an energy approach.
In the present formulation it is the aim to develop the stability equations by mixing the
statical line approach with a kinematical derivation of the constitutive equations. This
means that part of the influence from the initial state is accounted for by the line approach
given in Section 3.2 and the rest, which arises when the beam is given a finite extent in
the plane of the cross-section, is accounted for through constitutive equations based on a
kinematical viewpoint.

In this chapter different ways of establishing constitutive equations for beam structures is
discussed with respect to their influence on the stability equations. In addition a strain
measure is developed which in a simple but consistent way incorporates effects from initial
curvatures. This strain measure 1s expanded in order to incorporate the warping effect
whereby constitutive equations for thin-walled beams are derived.

4.1 Constitutive Equations for Beam Structures

Constitutive equations may be linear as well as nonlinear depending on the choice of dis-
placement field and strain measure. The nonlinear form could, for instance, be developed
by use of a linear displacement field in a nonlinear strain field or vice versa. Naturally, these
different approaches implies the possibility of deviations in higher order terms.

Depending on the problem to be solved, e.g.

e beam analysis

e stability analysis (bifurcation)
- buckling
- postbuckling

20
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the choice may influence the overall result. As the object of this project is to establish a
stability theory, it is essential to obtain relations that incorporate initial stresses as well as
initial curvatures consistently.

The constitutive equations express the change relative to a previous state of the internal
forces due to deformation. Therefore the constitutive equations depend on the condition of
the beam element in this previous state, i.e. if initial stresses or initial deformations are
present.

A theory for the straight prismatic beam with initial stresses and small deformations has
been given a complete treatment by Vlasov (1961) and Timoshenko & Gere (1961). The
influence from the initial stresses was there found by equilibrium considerations of the de-
formed beam element. They found that in the presence of initial stresses only a contribution
to the St. Venant torsional stiffness arises, i.e. the uncoupled linear constitutive equations
derived through beam analysis need only to be modified for the torsional stiffness in order
to be usable in a buckling analysis.

In case of both initial deformations and stresses the agreement in the literature is not over-
whelming regarding how to express the constitutive equations and thereby how to develop
a stability theory. Especially the single curved beam has been studied intensively see e.g.
Yoo (1982) and Yang & Kuo (1987). In the approach of Yang & Kuo it is a main point to
account for the initial curvature in a linear displacement field as well as in the derivatives
with respect to the axial coordinate. In a nonlinear strain measure these effects of curvature
are incorporated in the development of the constitutive equations. By this approach cou-
pling between extension and bending is included not only in the generalized displacements
but also in the generalized deformations. Vlasov and Timoshenko & Gere discussed this
special case only briefly. Vlasov did only consider the effect of curvature in a set of modified
generalized deformations and ended up with constitutive equations analog to those for the
straight beam where only the generalized deformations were influenced by the curvature.
The works mentioned above have all been concerned with the buckling problem and in all
cases a linear displacement field was used. The approach with a linear displacement field in
a nonlinear strain measure was also applied by Grimaldi & Pignataro (1979) who analysed
the postbuckling behavior of the simply supported column. Performing a postbuckling anal-
ysis, which indicates finite displacements, in such a way seems to lack in consistency when
deformations prior to buckling have to be accounted for. This is also pointed out by Kouhia
(1991) who used a nonlinear displacement field in a nonlinear strain measure to develop a
stability theory.

In the present paper it is the object, along with the line approach and the nonlinear dis-
placement field, to develop a strain measure which in a consistent way at least incorporates
the effect of twist on the torsional rigidity in the constitutive equations. The influence from
initial curvatures is consistently included via the generalized deformations ¢; and «;, ne-
glecting the effect of curvature on the derivatives with respect to the axial coordinate. The
accuracy of this assumption is studied in an example in Section 7.5.3 where the beam in pure
bending is examined.
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4.2 Constitutive Equations - Energy Approach

In order to discuss different strain measures with respect to their influence on the constitutive
equations a general introduction to the derivation of constitutive equations via an energy
approach 1s given in this. section.

If a suitable strain distribution has been determined the internal forces can for example be
found directly by integration over the cross-section or indirectly by use of an energy approach.
The integration process has its weakness in connection with the torsional moment which has
to be found by alternative methods if warping and initial stress effects are to be incorporated.
The energy approach on the other hand avoids this problem and leads to a form where the
internal work can be integrated to yield the elastic energy. Therefore a method to derive the
constitutive equations by an energy approach is presented in this section.

The material is assumed to be linear elastic with an axial modulus of elasticity £ and shear
modulus G. For elastic materials the elastic energy is a function of the strains. For the elastic
beam this means that the elastic energy pr. length is a function of the strain components
€;(Zw, S0). The elastic energy pr. length W is defined by

W(e) = /Au(ej) dA

/|
—] /_;li {EGGEQ + 63E63}dA (41)

where u 1s the elastic energy pr. volume. In the general case the actual stress components
0;(z~,s0) and the actual strain.components are related through the elastic energy by

Ju

The actual stress state o;(z,,80) may in general consist of an initial stress contribution

03(4, o) and an increment corresponding to the increments in the strain components. For

linear elasticity this leads to
_ 0 0 _ _ 0 0
0u(Ty,8) = o, + G(ea—ea) , 03(z+, %) = 05 + E(63—63) (4.3)

By this introduction of the initial stresses, no direct relationship is assumed between statics
and geometry in the initial state. The stress components in the initial state a? are expressed
by the initial internal forces.

The change 1n elastic energy pr. volume from the initial state to the actual state is given by

0 “
u—u = ] o; de;
0
€

= (ej—e?) + —;—G(eamcg)z + %E(e;g—eg)z (4.4)

The strain components ¢; may be expressed hy a set of generalized deformations, e.g. &; and
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ki, which can be associated with a set of internal forces N; and M;. Substituting (4.4) into
the expression for the elastic energy pr. length (4.1) and performing the integrations leads
to a functional in terms of the generalized deformations.

By standard variational procedures this functional can be used to establish the constitutive
equations. In general this implies that

oW (e, x; aw (&5, ;
sz——(gzﬂ , Mj=%j'€fl (4.5)

The internal forces are hereby expressed by the derivatives of the elastic energy with respect
to their corresponding deformations.

4.3 Kinematics - Strain Measure

As pointed out a main point in the development of constitutive equations is to define a
strain measure. For beam structures the behavior of a beam element is well-described by
three strain components, a normal strain and two shear strains. The normal strain can
be developed in a satisfactory form by a pure kinematical approach while the shear strain
distribution suffers by such an approach. The discussion in this section is therefore mainly
concerned with the normal strain while the shear strains are discussed in detail in Section
4.4.

The discussion in this section is concerned with a Lagrangian description of the beam. In the
Lagrangian description attention is focused on what is happening at or in the neighbourhood
of a particular material point, Malvern (1969). The actual position of a material point is
described by the position vector r(x) in a Cartesian z; coordinate system. Using the position
vector r,(z3) and o(z3) as generalized displacements, it follows that

r(z;) = ra(z3) + (o — o) €a (4.6)

where the unit vectors e, are related to the global unit vectors by the rotation tensor A(¢p).
e; are the actual unit vectors where e, represent the plane of the cross-section in the actual
state. The point identified by e, lies on the axis of rotation. This point, which may be a
characteristic point of the cross-section, can be chosen in an arbitrary way. A possible choice
of this point is given in Section 4.4.

The position vector in (4.6) is linear in the variable z, and the translation vector r,, but it
is in general nonlinear in the rotation vector ¢. The dependency on the rotation vector is a
consequence of the rotation operator A which may be the infinitesimal or the finite rotation
tensor, see Appendix A.

In a three-dimensional approach the Green-Lagrange strain tensor is the main choice in order
to determine the strain components. The Green-Lagrange strain tensor E is defined by (see
e.g. Malvern (1969))

1/0r Or
B = gl 5 =T )

The Green-Lagrange tensor is as it appears in general nonlinear regardless of the choice of
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displacement field. The term nonlinear is used according to the distribution over the cross-
section as well as in the generalized displacements. In the following the Green-Lagrange
tensor is used to develop a suitable strain measure by mixing a finite strain measure with a
small strain measure.

4.3.1 Normal Strain

The normal strain of the Green-Lagrange tensor is defined by

1/ 0r or
— =T e . 4.
Eag 2 (8:1:3 0z3 e es) (48)

Reformulating leads to

1/ 0r or
B = (mte) ) i

It appears that the normal strain depends on the tangent vector dr/dz3 . Using (4.6) it
follows that |

Or ar, deq
= + (xa e aa) a_
T3

— 4.1
61‘3 a:Eg ( 0)

For small strains the tangent vector dr/0z3 is assumed to be comparable to the normal vector
of the cross-section ez as indicated by the relation in (2.13), i.e. a small strain measure for
the normal strain €(z;) is given by

Blzy) = (% — e3> - €3 (4.11)

Note that this formulation of the normal strain leads to a linear distribution over the cross-
section but may include nonlinear terms in the generalized displacements, depending on the
definition of the rotation tensor A. Further for zz = sy one notice the resemblance with the
strain measure in (2.12) defined by the virtual work approach.

Discussion of Strain Measures

The strain measures may be expressed directly by the generalized displacements r,(sy) and
©(so) or indirectly through the generalized deformations, €; and «k; defined by (2.12) and
(2.15), respectively. This means that a comparison between the two normal strains can
be carried out on two levels, corresponding to a discussion with respect to generalized de-
formations or generalized displacements. Comparing with respect to deformations leads to
identification of similarities as well as terms which with confidence may be neglected while
comparing with respect to displacements leads to identification of the different possibilities
in connection with nonlinear stability analysis.

First the two definitions of the normal strain are reformulated by use of the generalized
deformations €; and k; derived in Section 3.2 which are associated with the internal forces
N; and M; respectively.
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Using the generalized deformations the tangent vector can be expressed by

or

=— = €3 + &; € + (Ta — Ga) Cakik; €k (4.12)
a$3

Inserting (4.12) in the expression for the Green-Lagrange normal strain (4.9) leads to
E33 = €&3 — (32,3 o aﬁ) €8a Ka

+3€5€ + (25— ap) epaa ks — (Tp — ap) €pa Ko €3

— 3 Kiytra(Ta — aa)(p — ap)egaky + 3 (25 — ap)(zp — ap)kaka (4.13)

and for the linearized small strain component (4.11) it follows that
€ = €3 — (25— ap)ega Ka (4.14)

The small strain component is linear while the Green-Lagrange component contains a qua-
dratic distribution over the cross-section as well as a quadratic dependency of the generalized
deformations.

Observing expression (4.13) it is evident that it contains coupling between all kinds of defor-
mation modes shear-extension-bending-torsion, even if the point a, is chosen in a favorable
way. The majority of these coupling terms are negligible and may therefore be omitted ac-
cording to the discussion performed in the following. Strain deformations are in general small
compared with curvature deformations for beam problems. This implies that the quadratic
term of strain deformations is negligible. Likewise the coupling term between shear and twist
in the second line can be neglected. The normalstrain €3 is considered as small compared
to 1 implying that the linear bending contribution is much greater than coupling between
extension and bending. This coupling term can therefore be neglected.

Ae,

—<1

/\“‘\.,

€1

Fig. 4.1: a) Radius of curvature and cross-section dimensions. b) Twist of cruciform
column.
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The first term in the third line is a nonlinear bending contribution which can be considered
as an effect from the radius of curvature. This term does not represent the total effect as
1t may appear from Fig. 4.1a where it is indicated that the radius of curvature depends on
the position in the cross-section plane. In this context it is assumed that the cross-section
dimensions are small compared with the radius of curvature. Therefore the effect of curvature
is not accounted for in the following. Finally if a beam is twisted a longitudinal strain arises
as a second order effect as indicated in Fig. 4.1b. This effect is described by the last term
and may be important for the torsional rigidity and can therefore not be ignored, especially
not for beams with non-symmetric cross-sections, see e.g. Vlasov (1961) and Timoshenko &
Gere (1961).

The small strain component in (4.14) does not contain any of the second order terms, which
indicates that the strain measure in this form is uncapable of handling several stability
problems. On the other hand the Green-Lagrange strain measure contains many terms
which complicates the problem and do not improve the overall result significant. This leads
to the idea that mixing the two strain measures would be a good approximation in order to
establish a strain measure which in a simple way can incorporate the necessary effects in the
constitutive equations.

The previos discussion was concentrated on the generalized deformations. Continuing the
discussion with respect to the generalized displacements adds some impressions. The two
definitions for the normal strain, (4.9) and (4.11), together with the possibility of chosing
a linear or a nonlinear displacement field leaves us with four levels for the normal strain
distribution as indicated in Table 4.1.

Table 4.1: Generalized displacements and normal strain distribution.

Small strain Green-Lagrange
Displacement | distribution generalized distribution generalized
Field over cross-section | displacements | over cross-section | displacements
linear linear linear quadratic quadratic
nonlinear linear nonlinear quadratic nonlinear

It 1s obvious that the linear displacement field together with the small strain formulation
can’t be used in a buckling analysis unless the initial stress terms are incorporated via
alternative methods, e.g. the statical line approach in Section 3.2. For this kind of analysis
the linear strain apart from a few cases is qualified to enter such an analysis because it except
for the quadratic distribution over the cross-section contains all the elastic terms to appear
in such an analysis. If the linear strain measure should be able to handle any problem the
torsional moment has to be modified for an influence from the initial stresses.

The small strain in connection with a nonlinear displacement field may be a good choice
for a stability analysis via the principle of virtual work or minimum potential energy. It is
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possible to investigate the buckling as well as postbuckling behavior because of the nonlinear
terms in the generalized displacements. But still one misses the influence from initial stresses
on the torsional stiffness. )
The Green-Lagrange strain in connection with the linear displacement field is well-suited for
a buckling analysis because it would contain all the possible combinations of second order
terms in an energy formulation. On the other hand a postbuckling analysis would suffer
because the quadratic terms of the normal strain are not complete.

Finally the fully nonlinear Lagrangian normal strain would be the one to use for a buckling
and postbuckling analysis. This strain formulation contains all the terms which can lead to
a sufficiently good description of the instability phenomen. A weakness of this normal strain
is the amount of terms and thereby adding an undesirable difficulty in the formulation.
According to these observations it would be preferable to develop a strain measure which in
a simple but consistent way leads to a stability formulation which is usable for buckling as
well as postbuckling analysis.

The preliminary investigations and considerations are now used to establish a strain measure
which contains the necessary terms in order to establish a consistent stability theory. The
strain measure 1s formulated by use of a mixing between the two definitions of the normal
strain given in (4.13) and (4.14). The small strain definition in (4.14) is extended in order
to incorporate the effect of twist, 1.e. it is assumed that the normal strain distribution can
be expressed by

1
€(zy,8) = €. — (zpg — ap)ega ko + 5 (2o — @) (To — @a) K3 K3 (4.15)
A similar normal strain has also been suggested by Hong Chen & Blandford (1991) who by
presuming small strains developed a large-displacement theory for beams.

By use of this normal strain it is the aim to establish the constitutive equations for thin-
walled beams where the initial geometrical quantities €7 and $ as well as the initial internal
forces NJ“3 and M} are accounted for in a consistent way.

4.3.2 Shear Strain

In case of a kinematical approach for the shear strain the Green-Lagrange tensor and the
small strain lead to identical expressions. The shear strain €,(so) is defined by

dr or or
“ = BatBes g T (416

Using this definition directly would lead to an unsatisfactory distribution. Therefore the
shear strain is not discussed further in this section, but instead a detailed discription, where
a statical approach is used, is given in the next section.

4.4 Constitutive Equations for Thin-Walled Beams

In this section the constitutive equations for thin-walled beams are formulated by use of the
normal strain given by (4.15) and the energy approach described in Section 4.2.
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The definition of the normal strain in (4.15) is extended in order to incorporate the warping
effect, characteristic of thin-walled beams. Warping of the cross-section is described by the
St. Venant warping function w(z,) Vlasov (1961) and leads to both axial and shear strains.
The intensity of warping is described by the generalized displacement 6(so) introduced in
Section 2.2.1 and the corresponding generalized deformation is df/dsy. In the coupling
coeflicient between extension and torsion the warping effect is not incorporated. This is in
accordance with the literature on this subject where it is found that the warping contribution
is negligible for thin-walled cross-sections, Krenk (1983).

According to this it is assumed that the normal strain distribution can be expressed by

df

1
e b 5(:ca—aa)(ma—aa)n3 K3 (4.17)

€(zy,8) = € — (zp — cp)epa ka —
where the generalized strain in the elastic center .(sp) is given by

EC(SU) = €3 — (Cﬁ = ag) €Ba Ko (4.18)

The elastic center is determined by demanding that extension and bending uncouples in
energy sense, 1.e.

f e E (25 — c5) epo ko dA = 0 (4.19)
A
leading to a condition concerning the weighted static moment

/AE(%—CQ)CJA — 0 (4.20)

Before proceeding with the shear strain e,(z4, o), it is important to define the warping
function w(z,) precisely. In the straight beam theory the St. Venant problem of uniform
torsion defines a unique shear strain distribution J,(zs) over the cross-section. Setting the
warping displacement 8 equal to the twist k3, i.e

k3 — 0 = 0 (4.21)

corresponds to homogeneous torsion, see e.g. Vlasov (1961). Within infinitesimal strain
theory this is expressed by the normalized St. Venant shear strain by

% 0
Fa(zg) = =5 — eap (w5 — ap) (4:22)

It follows that a unique determination of 4,(zs) requires specification of a, and an additive
constant. These constants can be determined by the condition that w(z.,) is orthogonal to
the two remaining linear terms of (4.17) in energy sense, i.e.

/A (EC — (zp — cp)epa fco,) FwdA =0 (4.23)
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leading to the two conditions
/AEw dA =0 /AE(a:o,naa)wdA = (4.24)

Note that, by these energy approaches, the integrations are weighted with the modulus of
elasticity as the integration in (4.20). This means that an nonhomogeneous axial modulus
is incorporated in the determination of the characteristic points. These conditions define
the point a, as a characteristic of the cross-section. In the following, a, will be referred to
as the shear center of the cross-section. The reason for this terminology is that the shear
stress distribution G'9, from torsion must be supplemented with a shear stress distribution
corresponding to a resulting shear force, and their contributions to the strain energy become
additive when the shear resultant acts through the point a,. The present definition of the
shear center is a restatement of the least energy definition of Trefftz (1935).

The shear strain measure briefly mentioned in Section 4.2.2 is now extended in order to incor-
porate the warping effect. The shear strain €,(z., s) is initially assumed to be proportional
to e4(so) and the St. Venant shear strain J,(z-)r3(s0)

El By 8) = 8y + Fo K (4.25)

The two terms on the right side can each be associated with a characteristic type of loading.
The first term corresponds to a transverse force on the cross-section and the second one
represents the St. Venant solution of a homogeneous torsion problem. While the second
term represents an exact solution to a problem of three-dimensional elasticity the first one
is an approximation. However the contribution from the tranverse force can be improved by
demanding that the corresponding part of the shear strain is proportional to a shear force
Ng.

Fig. 4.2: Transverse endforce N, on cantilever beam.

The shear force problem then consists in finding the shear stress distribution and the shear
flexibility for an elastic beam loaded by a transverse force N, at one end as indicated in Fig.
4.2. When the shear stress distribution is required to be independent of the axial coordinate
the solution is unique, see e.g. Love (1944). This unique shear stress distribution can be
written in the form

N
Oa(zy) = of(zs) = (4.26)

in which the shear stress distribution functions ¢(z.) depend on the cross-section geometry
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and material parameters. Returning for a moment to the constant part of the shear strain
in (4.25) €4, this part must be proportional to the shear force, thus implying a relation of
the form

En = Daﬁ Nﬁ (427)

where D,pg is the shear flexibility tensor which incorporates the actual stress distribution
over the cross-section. The corresponding shear strain energy as defined in (4.1) is then
given by

1 1

=NoDoplNp = [ ==0u0,dA 128

5 oNe = | 5500 (4.28)
and substitution of (4.26) leads to an expression for the shear flexibility tensor

Dop = .Al.i /. écr,y of dA (4.29)
This definition of the shear flexibility consistently accounts for tensor properties and a nonho-
mogeneous shear modulus. The full boundary value problem for the shear stress distribution
functions o (z,) can only be solved explicit in a few simple cases. An approximate solution
is given by Krenk (1985) and in another paper Krenk (1989) the relation between the typical
shear stiffness GA and the matrix D;é 1s compared.

Table 4.2: Cross-section parameters.

F = /A E dA weighted area

Iy = / Cary(Ty — Cy)epn(2n — cn) E dA weighted moment of inertia
K = / el 24) Yalzy) G dA weighted torsional stiffness
Ly = / z,) E dA weighted warping stiffness
re = F / — a4)(Ta —aq) E dA radius of gyration

Rt = F- / « — a0)(wp—ag)) B dA

| S /A w(2,)(a — Ge)(za — 6a) E dA

1 _
Bo = ila,(% fA epn(Tn — ¢5)(2y — a,)° E dA
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The strain energy can now be expressed by the generalized deformations by inserting the
normal strain (4.15) and the shear strain in (4.1). The shear strain contribution is split
into a contribution from the homogeneous torsion and one from the shear force determined
directly from (4.27) and (4.28). It follows that

1 P o e 1
W = 550 ;éﬁg + /A{ifc;g%G'yang%—§E(Ec—($g—cﬁ)eﬁana

—w(z,) -gf—o 4 %(ma — aa)(Zo — aa)K3 n;;)z } dA (4.30)

Performing the area integrations means that the strain energy can be expressed in terms of
the cross-section parameters of Table 4.2.

1 , dé do
W = §(EQD;§5J@+ECFEC+KQIQ,QE,3+K3IX!€3+Elw&g‘(}-)
1 1 df ¥ 2
+ ‘2' (Ec?"zF + Qnalanﬂn) K3 Kz — 5 Iwri K3 K3 EED— + §R:F(%f§3 1“;3) (431)

In the present the first variation of (4.31) corresponds to the integrand in (2.10) expanded
by the warping contribution, 1.e.

ow ow ow

= be;=— + bKkj 77— + 60 ——— .
W = 8 e T g, (do) (4.32)
ol —
dSo
and it follows in accordance with (4.5) that
ow ow ow
i e e M —_— —_— T et .
NJ (9Ej ’ d a.‘cj ’ o ( de ) (4 33)
8| =—
dSo

where B is the bimoment.

The internal forces are hereby expressed by the derivatives of the elastic energy with respect
to their corresponding deformations. The increments of the internal forces (N, M;, B) can
now be expressed in terms of the generalized deformations (g, k;,d0/dso) by use of (4.31)
and (4.33). It should be noticed that the generalized strain ¢, is used instead of €3 which
means that derivatives with respect to e, and &, lead to the normal force and the bending
moments corresponding to the elastic center respectively.

The shear force is given by

Na(so) = Diheg (4.34)
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and the normal force

N3(s0) = Fe, + r2F k3ks (4.35)
The bending moments corresponding to axes through the elastic center (¢, ¢;)

M3(s0) = lagkp + Bplpaksks (4.36)

The generalized St. Venant torsional moment is given by

db
Ms(So) = 1{53 + ’r‘gFEc K3 + Eﬂnfmrca K3 — Iw,-z K3 Zs'" + %RiF&g K3 K3 (437)
0
and finally the bimoment
df
B(So) = ]w = aa %Iw.,.z K3 K3 (438)
ng

Observing equations (4.34-4.38) it follows that if the generalized deformations approach zero
the internal forces likewise approach zero. This means fulfilment of a requirement stating
that a rigid body motion does not create a change in the internal forces. Further notice that
the two relatively unknown cross-sectional parameters 1,2 and R} appears in the equations
for the torsional moment and the bimoment. Both parameters are also found in Krenk (1983)
where a pretwisted elastic beam is considered. As it appears these new parameters arise as
a consequence of the nonlinear contribution from the twist.

The relation in (4.21) which connects the warping displacement  to the rotation vector can
be used to derive an alternative expression for the torsional moment, which incorporates the
effect from warping. This is of particular interest because in Chapter 8 an analytical analysis
of the buckling and initial postbuckling behavior is performed using only the rotation vector
as displacement function.

Substitution of (4.21) into the elastic energy (4.31) and taking the first variation with respect
to 3 leads to the torsional moment Mj(so)

d d
Mi(so) = Kks — d—so("“ d—:g) + r2Fe kg + 2Bylpaka ks + L R FksRs ks (4.39)
whereby it follows that
) dB

It appears that the torsional moment is made up by a contribution from a generalized St.
Venant moment and one from nonhomogeneous warping. The analysis of M is not taken
further in this chapter and M3 will first be used in Chapter 7.

The internal forces related to the elastic center and the shear center, respectively, are shown
in Fig. 4.3.
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Fig. 4.3: Cross-section with internal forces and moments.

The constitutive equations can be split into three contributions corresponding to a linear,
quadratic and a third order dependency on the generalized displacements.

"Na] [Dag O 0 0 0 7| °
Ns 0 F 0 312F k3 0 €c
M | = 0 0 I.p Bolnaks 0 kg (4.41)
M3 0 riFk3 2B,Lpk3 K+ %RiFﬁ% —1,2K3 K3
B 0 0 0 L] I ae
L . L —g5 dwr2k3 w ~ L iley o

The quadratic terms in (4.41) represent the coupling while the linear and third order terms
represent the diagonal terms. The linear terms in the constitutive equations are recognized
from the infinitesimal strain theory, Vlasov (1961). The coupling between extension and tor-
sion is expressed by the nonlinear terms in the respective constitutive equations. It follows
from (4.35) and (4.36) that the coupling between pure extension and torsion is expressed by
the radius of gyration while the coupling between bending and torsion is expressed by the ge-
ometric parameter f,. B, arises for non-symmetric cross-sections and defines a characteristic
length in the plane of the cross-section.

Expressing the constitutive equations 1n an incremental form leads to

rdN,1  [Dj 0 0 0 0o 7 [ des ]
dN, F 0 r2Fry 0 de.
dMg | Log 2By Iaks 0 dg
dMs, SYM K +12Fe.+ 2B Iopks  —Ior2ks dr
— wzfs% + %RZF&%
do
L dB | | L, | |d—
L dSO J

(4.42)
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Note that the incremental form is symmetric which insures that internal virtual work can
be integrated to yield the elastic part of the potential energy.

4.5 Updated Constitutive Equations

It is pointed out in Section 4.3 that initial deformations and stresses influence the constitutive
equations. In this section an updated form of the constitutive equations for thin-walled
beams is presented which in a consistent way incorporates effects from the initial state.
Due to the transition from the initial state into a buckled state changes in the generalized
deformations arise. The increments in the strain €}(so), curvature &}(so) and the warping
deformations df'/dso components are defined by

dé* (so) df de°
1 = K - K = ~ 4.43
K:J (SU) i K'? ; dSO dSo dSo ( )

ei(s0) = & — €

d 3

The influence from initial curvatures and stresses on the constitutive equations for the pris-
matic beam has only been discussed briefly in Section 4.1. The warping contribution is also
influenced by initial curvatures and therefore some considerations regarding this part have
to be performed. At this point it is assumed that only the influence from a pretwist «3 # 0
is significant. This assumption corresponds to neglecting coupling between bending and tor-
sion caused by warping. When a beam is pretwisted the strain measure has to be modified
because the warping function w rotates with the section, Krenk (1982,1983). The normal
strain in (4.17) has to be modified according to this dependency of the warping function on
the axial coordinate, i.e

df
€(zy,8) = €. — (z5— cp)epa ke _8(?:_09 - wd—so
1
4 3 (2o — o) (o — Qo) K3 K3 (4.44)

Accounting for the pretwist 3 means that the change of w(z.,, so) with sg is determined by
the partial derivative

Ow 0 Ow
s = 8.t (zy — ay) (4.45)

Substitution of dw/dz, from (4.22) leads to

ow N

S = o can (5 = 0a) K3 + (5 = )20 — 00) 3 (1.46)
The change in distribution of the shear strains and the normal strain can be expressed
by the increments of the generalized deformations by inserting (4.43) in (4.25) and (4.44),
respectively . It follows that the increment in the shear strain distribution is given by

€a — €2 = EL + Fu Ky (4.47)
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where the same considerations as in section 4.4, regarding the first part of the right side, are
in place. By substitution of (4.46) into (4.44) the increment in the normal strain is given by

0 1 1 o’ 1 1.1
€3—€ = €, — (Tg—cp)egaky, — W d—% 4 5 (Za — @a)(To — Qo) K3K3
+ 63 (Ta — 60)(Ta — o) (K3 — 0') — £3Ta €ay (24 — ay) O (4.48)

The last term of (4.48) which is proportional to &3 is for simplicity assumed to be negligible
compared to the other terms. Recalling the identity x3 = 8 from (4.21) it follows that the
first term in second line of (4.48) vanishes which means that (4.48) can be simplified into

1
€3—€g = €r — (zg—Cp)epa Ky — W g—q— + l(&,"o, — 0 )(To — Qo) K3K3 (4.49)
Sp 2

The incremental strain measure is identical to the strain measure if the initial deformations
are zero, meaning that requirement regarding rigid body motions is fulfilled. This was accom-
plished by the modification of the warping contribution. From (4.48) it follows that initial
curvatures only appear indirectly through the increments in the generalized deformations,

as indicated by the relations in (3.10) and (3.11).

In order to incorporate the initial stress terms some assumptions are made regarding the
initial stress distribution 69(z4,50). Assuming that the initial deformations and the initial
internal forces are related only through the linear terms of (4.41) means that the shear stress
ol is given by

N3 M3
0 o =BT = 3
0o = O t+ Ta G 7o (4.50)
In case of the normal stress ¢ the contribution from an initial bimoment is neglected which
leads to
Ny 1 D
O‘g = N (73 - (:Eg - Cg) €8a Ia,.: M,), ) (4.51)

The change in elastic energy can now be expressed in terms of the generalized deformations
by integration of (4.4).

W—W° = N%. + NO& + Mkl + M3k}

|
5[5;9;;,5; + €Fe! + KL Iprl + LK +r2NO + 26, M)k}

dg* do* de* 2
+ Efwd—sf) (EEFT?L e 25}3,]0,1,67, - d—sofw,.z) i‘&éﬁé + R:F(%ﬂéné) ]
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(4.52)

Comparing (4.52) with the corresponding expression without initial stresses (4.31) shows, as
expected, that the only change appears in a modified torsional rigidity.

The increments of the internal forces N}, M} and B' can now be expressed by the increments
of the generalized deformations by use of the relations in (4.33) together with (4.52).

- ND D0 0 0 0o 7 [e]
N} 0 F 0 Lr2pkl 0 £
M| _ |0 0 Ls By Lk 0 Kp
M} 0 r2Fkl 28,1k} K +r2NQ+2B8,M° —I 2k} K3

+1REFRY

. B' | 0 0 0 —112K} L, | _%J

(4.53)

The only direct change caused by initial stresses is concerned with the torsional moment.
This additional term is the well-known modification in the torsional rigidity according to
coupling between tension and torsion. This means that the constitutive equations from
section 4.4 only have to be modified in the torsional stiffness in order to incorporate initial
stresses. From (4.53) it is evident that the linear part is symmetric in the total formulation
while the nonlinear part adopts the symmetri only in the incremental form as in Section 4.4.

4.6 Conclusions

As it may appear from the previous sections the subject constitutive equations for beam
structures is a very delicate area if a nonlinear formulation is to be obtained.

It has been shown that by a procedure where a small strain deformation measure and the
corresponding Lagrangian strain components are compared a satisfactory deformation mea-
sure is obtained by a mixing of those two, whereby a consistent set of constitutive equations
for thin-walled beams are derived. The developed constitutive equations are appropriate for
the initially straight beam as well as the initially curved beam. In a updated version of the
constitutive equations it is found that the torsional stiffness is influenced by the presence of
axial stresses.

The updated constitutive equations together with the weak formulation of the stability
equation from Section 3.2 form a complete and consistent stability theory usable for thin-
walled beams with arbitrary cross-sections.
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Potential Energy

In Section 2.2 the vectorial equilibrium equations were reformulated into a scalar function by
the principles of the virtual work. The virtual work equation corresponds to the first variation
of the potential energy, i.e. demanding stationarity of the potential energy corresponds to
the virtual work, Washizu (1974). This relationship indicates that the potential energy can
be found by integration of the virtual work equation.

In the present formulation the integration process from virtual work into potential energy
is impeded because in general the virtual rotation d¢ does not correspond to an exact
differential, as mentioned in Chapter 2. It turns out that the integration in case of the beam
problem, i.e. no initial stress terms, can be performed in a straight-forward way while in
case of the stability problem the integration is more complex. In the stability problem the
integration can only be performed consistently by fulfilment of the conditions associated
with the definition of the rotation tensor.

The subject of Section 5.2 is to identify the necessary relations in order to perform the
integration in a consistent way. Finally in Section 5.3 the potential energy is given according
to the conditions stated in Section 5.2.

5.1 Energy Principles

Energy principles were briefly touched in Section 4.3 by introducing the strain energy func-
tion. The term energy method is often used in connections where an energy functional, i.e
a scalar function, is used to derive vector equations expressing some kind of equilibrium
condition. This relationship is a restatement of a criterion where a stationary value of the
potential energy with respect to a set of generalized coordinates is necessary and sufficient
for the equilibrium of the system, Budiansky (1974).

In general using the energy methods in structural analysis an assumption is that the po-
tential energy of the structural system is defined by a strain energy potential and a load
potential. The strain components appearing in the strain energy are commonly expressed
by a set of generalized displacements which means that the state variables to be used in an
energy approach are these generalized displacements. The potential energy of the structural
system is then considered to be a functional of the generalized displacements, but it is also
presumed dependent of the load scalar variable A, which defines the magnitude of prescribed
external loads on the system. By variational principles the equilibrium equations for the sys-
tem can then be found by demanding stationarity of the potential energy, Washizu (1974).

37
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This procedure gives the possibility of using different displacement fields and strain measures
in the energy functional, as mentioned in Section 4.1. In some cases blind use of the energy
method may therefore be inconsistent. This is not only because of the different possibilities
in kinematical behavior, but also because symmetry assumptions used in the establishment
of the energy functional may only be fulfilled in special cases. An example of this is given
in Section 5.2 where the necessary conditions allowing integration of the virtual work are
examined. Therefore the energy method has to be used in a way which suites the problem
at hand in the best possible way.

5.2 Virtual Work/Potential Energy

The virtual work equation (3.17) consists of terms which are associated with internal de-
formations shear-extension-bending-torsion and terms arising from initial stresses and loads.
Integration of the first part leads to identification of the elastic energy potential W as already
mentioned in Section 4.3 and integration of the stress terms leads to the load potential II,.
Adding the warping contribution, developed in Section 2.2.1 to (3.17) and substitution of
the constitutive equations from Section 4.5 leads to the virtual work equation for thin-walled
beams.

l
[ { 6caDzheh + e el + SnaTugrl + s (K + NS + 26.M2°) )
0

déd . de? 1
E L, ;- -+ 3 o, riF Kyky + 6ka riFEi K3 + 0Ko Bplpe K3Ky

(0 1d60 .

1
+ 0K3 2B, a kLl k) — bKk3l,p st_so = d—so L2 K3ks + 5653;%; R:F k3K

— 6e; NY Av[j — bk; M} /zijj — 61 eink (A~n3 + € An; — 5?1.) Ny

— Xbra,p = 81 cink (Ana+ A Ana) SO — X8O B } i,

- [aral E (AP + Sk extn Z (P (A1 + AA,Q)Fgf)}I =0 (5.1)
=1

i=1 0
The virtual work equation (5.1) can be used to examen two kinds of problems, namely
the beam problem and the stability problem. The beam problem arises when the initial
stress terms are eliminated and the external load is associated with the terms containing A.
Equation (5.1) has been established by introducing a set of virtual displacements ér,, §¢ and
66. In order to perform an integration of (5.1) a relation between the virtual displacements
and the increments in the state variables rl, ¢! and 6! has to be established.

Recalling the definitions of the generalized deformations it is obvious that the nonlinearity
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in (5.1) mainly originates from the finite rotation tensor A. The necessary integration con-
ditions must therefore be closely related to the definition of this operator. In the derivation
process leading to the generalized displacements the infinitesimal rotation

(58_,‘ = 5g0 X € (52)

is used. The relation in (5.2) is also used to derive the orthogonal transformation operator
A, see e.g. Appendix A, by assuming the direction of the rotation vector ¢ to be fixed as
illustrated in Fig. 5.1a.

/“s
Oy de /
p+dp +d
9 pTayp
Fig. 5.1: (a) Virtual variation. (b) Increment.

The equivalent change in ¢ without assumption regarding the direction of the change dy is
illustrated in Fig. 5.1b. The difference is obvious and it follows that a conversion from d¢
to de can in general not be performed directly. Only in the special case where the rotation
vector indeed is fixed in direction the two variations are similar.

In case of the virtual translation ér, and the virtual warping displacement 66 no condition
was imposed meaning that relations stating that

o = érl ;80 = 66" (5.3)

are consistent.

A relation between é¢ and §¢' can be obtained by a reformulation of the infinitesimal
rotation in (5.2). The orientation of the beam cross-section is described by the unit vectors
85, 1.8,

e; = A(p') €]

J

= Aj(pled) el (5.4)
Substitution of (5.4) into (5.2) leads to

5k eknt Anj(men,) = 8A;(ereh) (5.5)

where the initial unit vectors ef are considered as known functions and therefore not sensitive
to variations. Introducing a new second order tensor B(¢) which is closely related to the
finite rotation tensor (see e.g. in Appendix A) and rewriting leads to

. 0Aim .
Sor = 60} Bij(phen) ; Bii(phed) = eknza—;Anm (5.6)
i/
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Equation (5.6) contains the relation between the virtual rotations épx and the variations of
the rotation increments ;. The tensor B represents the dependency of the higher order
terms in the rotation components.

The relations (5.3), (5.5) and (5.6) are in the following used to perform the integration of

the virtual work equation. The elastic energy part and the load potential part are treated
separately in the following subsections in order to preserve clearness.

5.2.1 Displacement and Deformation Relations

The internal virtual work corresponds to the first variation of the elastic energy. In Section
4.3 the elastic energy is used to obtain constitutive equations by use of energy principles. The
derivation is carried out by assuming that the generalized deformations ¢;, «; and df/dso
are the independent variables. In fact the generalized deformations are functions of the
generalized displacements rl, ¢! and 6.

Extracting the internal virtual work 6W from (5.1) leads to

déf _ db’
L,

!
§W = /0 {580D;5€:3-{—6ECF5i+5!€0,]a}3f£,13+TSO ;.

1
+ Ok3 (K + 2Ny + ZﬁaMgo) ki + §6ec rlF iy + 6kar’F el &}

d 1
+ 6k Bl KAEL + 86328y e L KL — 613 Ly H;E‘.’L
So

1 déf 1
— 350 L e + g ek RAF sl } (57)

Notice that the St. Venant stiffness is modified with the initial stress terms. According to
the definitions of the generalized deformations the internal virtual work is nonlinear in the
rotation components. Therefore, in order to obtain the potential energy by integration of
the virtual work equation the differentability of the generalized deformations expressed by
the generalized displacements will be examined in this section.

Strain Increments and Variations :
The strain increment &}(so) is given by (4.43) and (3.10), i.e.

d?‘l =
5} = 2B of 'r‘}” Elkn K.?L Akj(Lp}n) + (63k i 52) Aki(‘roql-n) (5'8)
dSo

From (2.11) it follows that if the virtual displacements are decomposed in the initial basis
the variation of the strain components can be written in component form as
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dér,
be; = ( dsok + 6ra, Ctin fsﬂ) Axi(m)

dr!
+ ( d;k + ’"a,g Elkn "'" + (6ax + Ek)) ekmp 6Pm Apj(%) (5.9)

Using the relations (5.5) and (5.3) it follows that
Se; = 8e; (5.10)

which confirms the relation between virtual and finite variations of the strain components.

Curvature Increments and Variations :
The curvature increment x}(so) can be found from (3.11) and (4.43). Using the operator
B(¢) means that

d
k;(s0) = ( 9:: + @y, Enkm K )Bkj(ipzl) (5.11)

From (2.14) it follows that the variation of the curvature components is given by

dé
6Kj == ( d:zk - 5@71’ Enkm K )Akj(tp,) (512)

By substitution of (5.6) and some rearranging it can be shown that
6,l§j = 6;{; (513)

Equation (5.13) expresses the relation between virtual and finite variations of the curvature
components.

Using the considerations and investigations performed above it is now possible to reformulate
the internal virtual work (5.7) which allows a direct integration. Substitution of (5.10) and
(5.13) leads to

| 3 s g 1 . dot 4
oW = 6(]0 2{5 Daﬁsﬁ+5cFac+fzaIaﬁnﬁ+d—SOde—SO

+ 3 (K + 12N + 2B, M) k3 + elr2F k3l + K326, Lo k)

dg* i i o d i
- d—sonr? Kaks + ) U e F&3n3} dso (5.14)

Equation (5.14) expresses the relation between virtual variations and finite variations which
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enables integration of the internal virtual work to yield the elastic energy.

5.2.2 Initial Stress Terms and Displacement Increments

The remaining part to be examined in order to be able to perform the integration of the
virtual work equation are load increments and the initial stress terms. Identifying the terms
of (5.1) consisting of load increments II) and initial stresses Il, as 8Ilp leads to

§Tlp = 61, + 611, (5.15)
where
I
6, = — (/ {61288 + St 1ok Aua S35 + 8010 } dso
0
n : n P l
s [57‘a, Y. P + bk ekin Aia ) (F,S B ) ]0) (5.16)
i=1 i=1

and
! - ,, ~
61, = / { — be; NP Aj; — 6k, MY Ai; — 61 etk (An3+5jAnj _5?;) Ni
0

n

= iz cein ]
— by elnkAnafgpg} dso — [59% €kin ) (P,? A F )] (5.17)
: Q0

i=1

From (5.16) it follows that II, is proportional to the load increment factor A\. The dependency
of Iy on the generalized displacement increments can be analysed by use of (5.5) and (5.3).
It follows that

{
ST, = —,\5(/0 {r;,p?+p2Akaf3+b°91}dSO

n ; n ] Wt ; )
_ [r;l z Py (PEEAkaFcS )]O) (5.18)
=1 1=1

The relation in (5.18) implies that Il is linear in 7, and nonlinear in . Further it follows

that the integration of Il can be performed in a direct way.

The potential I, is proportional to the initial stresses and it follows that its dependency on
rq; is kept in the strain components while the rotation components ¢ appear in different
connections. The dependency on the generalized displacements can be given a closer analysis

by substitution of (5.5), (5.3), (5.10) and (5.13).

l s - i
8. = ]0 { — 6(el NP Ay) + 64kn Ajn (N2(S3 + €0) + 10 60 f2)
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" . .n Al
—55; M} Alj} dso + [5Akn >, (Pj,iJ1 Fam) Aan] (5.19)

i=1 0

A closer analysis of (5.19) indicates that the term associated with the strain components
can be integrated directly while integration of the remaining part is more complex. Several
attempts have been tried but it has not been possible to perform a direct integration of the
last term in (5.19). Instead an alternative integration process has to be used where direct
integration of the quadratic terms is carried out and integration of higher-order terms is
performed by assuming the rotation vector to be fixed in direction.

Introducing the linearized generalized deformations &} and K} by

drl.
0
and
. d;
Ry = 33—(“;‘ + Pn Enjm K (5.21)

The linear form in (5.20) arises when the infinitesimal rotation tensor §2(¢') is used instead
of the finite rotation tensor A(¢').

Extracting the linear part of (5.17) leads to the first variation of the linear load potential
Ly |

] {
oyt = | {‘5(5} eint NP @) + 6% ejoi M7 @),

+80] ek (NP (853 + €5) + DR £2 6a5) €imn <P3"n} dso

n . s l
pr [699]]; €kin Z (P??‘ Fg‘) €laj ‘P;] (522)

=1 0
Introducing the permutation rule
-DI €lnk (Ak Bm €mnj OJ + Ck Am €mnj Bj + Bk Cm €mnj AJ) = 0 (523)

and making use of the initial equilibrium equation, i.e. a component form of (2.2),

dMP

T T e (N9 (635 + €3) + 850 f2PY) + MY exinrl = 0 (5.24)
0

it can be proved that the linear part of the load potential can be written as

a l]_ _ N
" = fo 5{25} ejnt NU ), + j e M7 oy,
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+ ¢} ek N} (853 +€5) + PR £ 6a5) €3mn 99:”} dso

n

1  igh ‘
- -é- l:gp}c €kin Z (PS Fg )e;aj (p;] (5.25)

=1 0

The validity of (5.25) can be proved by taking the first variation of 11"

Returning to the nonlinear form of the potential II, given by (5.17) some assumptions regard-
ing the nonlinear terms have to be made in order to perform an integration. Investigating
(5.17) leads to the idea that if the rotation vector is fixed in direction then direct integration
1s possible. .

Introducing a new independent variable £ means that the rotation vector is fixed when

©'(s0,€) = @'(s0)é ,  6@'(s0) = @'(s0) ¢ (5.26)

The scalar ¢ may be regarded as the amplitude of the rotation vector.
Assuming as in Section 5.2.1 that the rotation vector ¢! is fixed means according to Appendix
A that the following relations can be established

e} Ay = 8(k}By) 3 6AwmAj = 6(AwmBjn) (5.27)

when variations are taken with respect to €.
Making use of (5.27) means that for a fixed rotation vector the load potential II/** can be
written as

5 ! 4 A B
Him = /0 { B E; NIOAZJ' + Akn (N!?(633 + E?) o pzfgéaj)Bjn} dSO

_ . n N T
— k! MP By — [A,m > (PYF) Bm] (5.28)

1=1 0

The validity of (5.28) can be proved by taking the first variation with respect to £ and then
comparing it to (5.17).

The investigations performed in this section concerning the load potential IIp indicate that
a consistent and direct integration of the initial stress terms is only possible if the rotation
vector is fixed in direction. Existence of a direct integration may still not be denied, but
in the present work it has not been possible to prove the existence. The reason for the
difficulties in the higher-order terms are meant to be connected to the derivation of the
rotation tensor and the partiel integration necessary for the establishment of the stability
formulation. '

5.3 Virtual Work and Potential Energy

In this section the integration from virtual work to the potential energy is performed ac-
cording to the conditions and results obtained in Section 5.2. According to the analysis in
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Section 5.2 this integration can be performed directly if only the beam problem is considered
while in the stability problem the integration has to be performed in accordance with the
derivation of the finite rotation tensor, i.e. for the higher-order terms the direction of the ro-
tation vector has to be fixed. This leads to the idea that two versions of the potential energy
in the stability formulation are in place. The first is a linearized version, i.e linearized de-
formations, where no assumptions regarding the generalized displacements are made, and a
second one where the direction of the rotation vector has been determined. The connections
and possibilities of those two versions are further examined in Chapter 7.

5.3.1 Potential Energy for Beam Problem

The preliminary investigations performed in Section 5.2 enables direct integration of the
virtual work equation (5.1) if no initial stress terms are present. Using (5.14) and (5.18) the
potential energy describing the beam problem V is given by

Y L B G N 151 1 4ot df
¥ = /0 2{60Daﬁeﬁ+echsc+&alaﬁrcﬁ+dsondSO

+ K3 (K + r2NJ + 2ﬁO,M;0) ks 4 e riF sy + 15520, wLK

do? 1 ~
- ;i_lmz Kaky + chéné RIF wind = /\7"(11;19? — Apd Ars - Aboﬂl} dso
S0

n ) n 5 s ; {
- [AT;I R 1Y i, Fg*)] (5.29)

1=1 i=1 0

Equation (5.29) is a nonlinear version of the potential energy for a thin-walled beam element.

5.3.2 Linearized Potential Energy - Stability Problem

In Section 5.2 it is stated that a linear form of the potential energy for an initial stress
problem can be achieved from the virtual work (5.1) by direct integration.

The reason for the interest in a linear version of the potential energy arise from the fact that
the linear version is sufficient to determine the critical load. In Chapter 7 a brief description
of stability theory will be presented.

The linearized form is developed by assuming infinitesimal rotations and thereby achieving
linearized deformations. Extracting the quadratic terms of (5.29) and by use of the linear
potential Hf,‘” leads to the lincarized potential energy Vii,

| 1 1 1dot  do?
_— Sl pedat g Nat gl o At g oot g 2 BE g G0
Viin /0 {250 &ﬁ£ﬁ+zec 63+2/~ca ﬁﬁﬁ+2d$0]-wd30
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1. O\ ~ . _
+ B (K NS+ 28 M) By + 28] eull @, + R} el 0y, = Ari,

1
— 5% ek (NP (83 + €2) + PR 12 8ai) €jnm P — A Dheja f2 10} — A6 } dso

_ [Ti; n (A\PY) + %(P;c Exin i (P2 F2 (era 0} + 22 5@))}; (5.30)
=1 =1

The form given in (5.30) possesses the symmetric properties which insures that a linearized
version of the virtual work can be achieved by claiming stationarity of the potential energy.

5.3.3 Potential Energy for Fixed Rotation Vector - Stability Prob-
lem |

In Section 5.2 it is stated that the nonlinear form of the initial stress terms only can be
integrated if the rotation vector is fized.

Interest in a potential energy with such a kinematic constraint arises from the ideas behind
an asymptotic postbuckling analysis. The asymptotic postbuckling analysis is mentioned in
detail in Chapter 7. The main idea is to determine a buckling form by solving the linear
stability problem and then by use of this form to examine the initial postbuckling behavior
by inserting the buckling form in the nonlinear potential energy.

The potential energy can be found direct from (5.1) when the rotation vector ¢'(sg) is
fixed in direction as given by (5.26). The potential energy then simplifies into a functional
determined by six state variables

T.l ] b 91 ) A ? 6

Integration of (5.1) to yield the potential energy Vj,, leads to

NS U S B (LN
Vfw = >/0 {*Q*EQDQ'@E,Q‘I‘EE:CFEC-}'5&(}]0"6&’3—‘_53;;[“)3;’;

1 | 1
+ 5 K3 (K 4+ rINJ + QﬁaMcg) K+ 562 reF kiky + Kn Boloa K3K3

1 do* 1 ~
~ 5 gs; Lo K3ky + 3 K363 RAF k365 — @k eknt (N (635 + €2) + 1Y fo 8i) Brs

— N A+ LMY By = A + o0 B 12— 08) g

_ [r;l 3 (AP") + A zﬂ; (PO Ano FY') + A Z (P FY) E’,C,]l (5.31)

i=1 ' =1 1=l 0



Potential KEnergy 47

The potential energy functional in (5.31) contains the influence from the initial condition of
the beam element in a general way. The initial geometry appears indirect through the incre-
ments of the strain and curvature components while the initial stresses appears directly in
the functional. The constraint concerning the rotation vector of course in general reduces the
applicability of this version of the potential energy, but in buckling and initial postbuckling
analysis this is not a major problem. This is further explored in Chapter 7.

5.4 Conclusions

The object of this chapter was to prove that the virtual work equation is the first variation
of the potential energy. It was found that this could be achieved for the beam problem
while in the stability problem the rotation vector is closely attached to the way in which the
finite rotation tensor is developed. This indicates that if a nonlinear stability theory is to be
developed from the potential energy the governing equations are limitted to the properties
of the displacement field and the validity of the strain measure.

By the virtual work approach performed in this thesis it is insured that the statics is well-
described and further by use of the finite rotation tensor enables to account for initial stresses
and deformations in a straight forward way. In the present work it is the conviction that
an approach where finite rotations are included a nonlinear beam theory as well as stability
theory can be developed consistently using the virtual work equation directly.



Chapter 6

Numerical Formulation of the Beam

Problem

A static beam theory including finite rotations is presented in Chapter 2 where the nonlinear
differential equations as well as the virtual work equation are developed. The warping effect
is incorporated in the governing equations in Chapter 5. Only in a few simple cases the
differential equations can be solved analytically which immediately demands for an approx-
imative solution method, as e.g. the Finite Element Method. The virtual work equation
(5.1) together with the constitutive equations in Chapter 4 are in the present chapter used
to develop a numerical model by the principles of the Finite Element Method.

In a finite element analysis the beam structure is replaced with a discrete model consisting
of an assembly of finite elements. Within each element a set of shape/trial functions are
assumed to model the unknown functions describing the behavior of the beam element. The
most popular method of establishing a beam element is the principle of minimum potential
energy which is based on the kinematics of the beam. The kinematic derivation makes use of
a number of shape functions corresponding to the number of kinematic degrees of freedom.
By this approach the primary gain is a well-described kinematical behavior.

The counterpart of minimum potential energy is the principle of stationarity in complemen-
tary energy, Washizu (1974). In this method stress-strain relations and equilibrium equations
are used to obtain a formulation in terms of the statical functions. Hereby the primary gain
is a well-described statical behavior.

Both methods have advantages as well as disadvantages which has led to a mixed formula-
tion, as e.g. the Hellinger-Reissner principle, Washizu (1974). Here the energy functional
1s constructed by treating all the dependent variables as independent of each other. This
means that the number of shape functions corresponds to both the kinematical as well as
the statical degrees of freedom. The Hellinger-Reissner principle forms the basis of finite
element models, known as the mixed and hybrid models, that are believed to yield better
accuracies for stresses than the displacement finite-element models based on the minimum
potential energy, Reddy (1984).

Three-dimensional beam elements have been proposed by a number of authors, see e.g. Ep-
stein & Murray (1976), Bathe & Bolourchi (1979), Simo (1985), Elias (1986), Cardona &
Geradin (1988), Crisfield (1990) and Hong Chen & Blandford (1991). In the non-linear
context, as considered here, the formulation is complicated by the non-vectorial nature of
rotational variables, and as a consequence a variety of different formulations exist. For

A8
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displacement-based finite elements a usual approach is to represent bending rotational dis-
placements by the derivatives of the transverse displacements thereby achieving a lower
number of independent variables. Elias (1986) shows that an inconsistency exists in using
the standard bending rotational displacements for geometric, nonlinear, three-dimensional
frame analysis. This inconsistency is the basis for the moment imbalance at the corner nodes
of frame structures. Elias selected a modified rotation, or Rodriguez vector, as the finite ele-
ment rotational displacement field. This rotational displacement field maintains corner-node
continuity, which eliminates the unbalanced moment problem.

A common method to solve a nonlinear problem by the finite element method is to use an
updated Lagrangian formulation. Updated Lagrangian formulations involve expressing the
nonlinear equilibrium equations in an incremental form, in terms of the geometry at the
start of the incremental step. Such a representation of large-deformation beam response has
been shown by Bathe & Bolourchi (1979) to be computationally efficient.

In the present formulation large-deformation behavior is modeled by coupling the small-
strain member behavior with finite rotations with-in the framework of an updated Lagrangian
scheme. Considering the rotations to be the important displacements in a large-deformation
analysis of thin-walled beam structures emphasis is placed on retaining the rotation com-
ponents as independent variables. In.this chapter the development of a numerical beam
element is based on a linearized version of the virtual work equation.

The considerations and results of this chapter are in Chapter 8 used to develop an incremental
updated Lagrangian beam element where both initial curvatures and initial stresses are
incorporated.

6.1 Virtual Work Equation without Initial Stresses

The general expanded form of the virtual work equation is given by (5.1). This form contains
the initial stress terms as well as the incremental contributions from three types of generalized
deformations corresponding to strain, curvature and warping deformations. In the present
chapter a beam element without initial stresses is developed and examined in order to give
an impression of the ideas behind the numerical formulation.

For an initially stress free beam element the virtual work (5.1) may be written as

l déo
/ {6@ N]-1 + bk, M; + TBI — 8ok Pk — 61 €k Ana fapr — 69b} dsg
0 So
l
- [&E-Ni + 6o -M! 4 60B) =0 (6.1)
0

where no upper index is used for the external distributed loads because they identify the
current loads. The form given in (6.1) is a mixed formulation according to the presence
of both kinematical as well as statical variables. A pure kinematical formulation can be
obtained by inserting the constitutive equations from Section 4.4, whereby integration, as
discussed in Section 5.5, leads to the potential energy for the initially stress free beam
element.

Before continuing the development of a finite element modifications of (6.1) are carried out
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in order to obtain some simplifications.

6.1.1 Discretisation - Omission of Strain Deformations

A simplified version of the general equation (6.1) is developed by assuming the strain de-
formations to be insignificant compared to the curvature and warping deformations. Using
this assumption leads to a modified virtual work equation given by

! déb
/0 {5Kj M; + ?Bl — brappr — O emi Ana fobr — 595}d50
0

I
- [&a-Nl + 6o M + 5931] e 1 (6.2)

0

and a condition stating that

dér, dr,
de; = (dso — b X dso) vy = (6.3)

Recalling the constitutive equations from Section 4.4 and examing (6.2) it follows that this
form of the virtual work contains no coupling between the three generalized displacements
rl, ¢! and #'. Such a formulation is incomplete because e.g. the rotations of the beam
sections have to be related to a position. Further the omission of the generalized axial
strain implies that the straight beam element is axial incompressible leading to an internal
statical indefiniteness. This lack in completeness can be removed by incorporating the strain
condition in (6.2) which states a relationship between translations and rotations. Further
the condition (4.21), stating that the warping displacement is equal to the twist, can be used
to incorporate a relationship between the warping displacement and the rotations.

The above mentioned conditions can be incorporated in a FE-formulation by use of the
Lagrange Multiplier method, see e.g. Reddy (1984). The Lagrange Multiplier method
consists of multiplying an appropriate condition, e.g. (6.3), with an arbitrary parameter
), integrating over the element, and adding the result to the functional in (6.2). A direct
use of the condition in (6.3) leads to a similar form as given in (6.1) therefore the condition
in (6.3) is converted to a condition in the strain increments €}, whereby

g = 0 (6.4)

Introducing four additional variables A; and A, the strain and warping conditions are incor-
porated in the following way

: déo &
1 1,1
/0 {6(/\,,' EJ-) + 6k; M; + 5(/\w (0 —-Kia)) + d_soBl — 601 Cink Ana foDk
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— OTur Pk — 601)}([50 - [61'&»1\?1 + ép-M' + 6B =0 (6.5)
: 0
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It appears from (6.5) that the Lagrange Multipliers ); are a replacement for the internal
forces while A, represents the torsional moment corresponding to nonhomogeneous torsion.
According to this relationship the multipliers inherit the vectorial nature of the internal
forces and must therefore be treated accordingly. Equation (6.5) is a mixed formulation
where the kinematical variables r!, ¢! and 8' can be treated independently of the statical
variables A; and A,. Using a simple example may underline the physical meaning of the
multipliers in (6.5).

6.1.2 Plane Example of the Lagrange Multiplier Method

Considering a straight prismatic beam element, see Fig. 6.1, in-plane force and moment
equilibrium can be expressed by

fTTTi}Pz

§2 ( 1 i\rz'f'sz
b )
sy : M,+dM,
I SO

Fig. 6.1: Straight beam element.

dN, dM,
dSo

- N2 = 0 (66)

The corresponding generalized displacements are r, and ¢; whereby the virtual work can be
expressed by

! dN dM
/ Srs (_2 ) pg) n 5(,01( . Ng) Jis = 0 (6.7)
0 dsg dsg

Integration by parts leads to

L ( /d6 dé f
/0 {( L3 5991) Ny + B¥ 5r2pg}d.50 = [6r2N2 + 5¢1M1] — 0(6.8)

dSo dSo 0

Assuming that the shear strain ée; is insignificant, i.e.

d5T2
ng

beg. = i B =0 (6.9)
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means that (6.8) simplifies to

l 1
/ { d&,@l M] - 57‘2 D2 } dSO =5 [57‘2 Ng + 5(,.91 M1 = {} (610)
0 dSo 0

For linear constitutive equations

M1 - IUT (611)
S0

it is obvious from (6.10) that translations and rotations are uncoupled. Introducing the
strain condition back into the virtual work equation via the Lagrange Multiplier Method
leads to

! d dé d
f 5A2(—r-2- % sol) + )\2( 2 4 &p]) + SEL My — Grapy §da
0 dsg dsg dsg

[
= [57"2 N2 -+ 6(,01 M]] =5 i) (612)

0

Integration by parts leads to

l d d\ dM
L3 = 60a(G2 +0) +6na( 52+ m) + 0 (522 - %) fse
0 dsg dsg dsg

{

- [&2 (X —Nz)] =0 (6.13)

0

Comparing (6.7) and (6.13) it is evident that A, appears instead of N, in the corresponding
terms. The Euler Lagrange equations, i.e. the equilibrium equations, derived from (6.13)
are given by

d/\g dM1 d'rz
i~ - e X = 2
ng T P2 4 ’ dSO * 0 ’ dS[)

+@1 =0 (6.14)

This means that using the Lagrange Multiplier leads to an extra differential equation cor-
responding to the new variable A;. The number of independent variables may be connected
with the difficulty in solving the problem. This however is not the case in the present for-
mulation because the Lagrange Multiplier can be treated in the same way as the generalized
displacements, giving that the state variables ry, ¢; and A, can be approximated by simple
shape functions. Hereby a consistent beam element is obtained.

6.1.3 Linear Beam Analysis

The linear problem, which occurs when the infinitesimal rotation operator £ is used in the
derivation of the virtual work equation, is considered in the present section. The present
analysis serves as an introduction to an incremental formulation carried out in Chapter 8.
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In Section 6.2 a linear formulation of the straight beam in the plane is presented. Later,
in Sections 6.3-4, the element is expanded in order to incorporate initial curvatures and a
spatial behavior.

The linear form of the virtual work equation can be obtained by substituting the linearized
constitutive equations into the discretized equation (6.5) and further use the linearized form
of the generalized deformations (5.20) and (5.21). Performing this and making use of the
symmetry properties stated in Section 5.2 leads to

d
(Gt o) 420 28+ )

1 d 0 d(p 0 1 dgl dg]
Py m IQ = Iw i
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¢ [T“J'NJ’ My + 8 ]0 = 0 (6.15)

Equation (6.15) is the linear form of the virtual work expressed in terms of the general-
1ized displacements. The initial curvatures are incorporated in a way which preserves the
generality in the formulation and thereby the possibility of examing arbitrary curved beams.

In order to develop the FEM-element a three fased procedure is used. First the plane straight
element is developed in detail and second an initial curvature is incorporated in this element.
Finally the spatial element is derived by use of the same precedures as for the plane element.

6.2 Straight Beam - Plane Formulation

In the plane case only three generalized displacement components occur, namely two trans-
lations and one rotation. The plane used in this section is decribed by the two base vectors
ég and ég.

€
A , g

Fig. 6.2: Plane frame structure.
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The further development of the beam element is performed in two fases. First the element
is analysed in a local coordinate system and at the end the local elements are assembled in
a global system.

A Local element B: Global element

Fig. 6.3: Local and global generalized displacements.

This is indicated in Fig. 6.3 where the generalized displacements in the two fases are shown.

6.2.1 Local Analysis for Straight Beam Element

In case of a straight beam, 1.e. ﬁ:? = 0 the virtual work equation describing the plane element
in the local coordinate system is expressed by, see e.g. Fig. 6.3

! drl drl 1 d(pl d(pl
a2 1 A 03 % Y1 g | d
6 /U {/\2 ( d.So + {191) + 3 dS[) T 2 ng 1 dSD Tagp? TQB P3 0

{
. § [T;QN; b LN 4 @}M}]O = (6.16)

In equation (6.16) five state variables appear indicating that the plane straight beam element
has five degrees of freedom.

The statical indefiniteness associated with the axial behavior, as mentioned in Section 6.1,
is obvious in case of the straight beam element. Analyzing equation (6.16) it follows that
the two variables 7}, and A3 describing the axial behavior are uncoupled with the remaining
variables in the local analysis. When the beam structure is identified by a straight line
the internal relationship between r;, and A3 then leads to incompleteness in the governing
equations. This incompleteness only occurs in this particular case and can be removed by
either a static condensation where the degrees of freedom related to r;, and A3 are modified,
or by use of the original linear contribution from axial deformations

a3 F a3

1.drk, . dr} ) (6.17
2 dSQ ng ' )

6€3N3} = 6(
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Forcing the static condensation means that axial displacements can not be analysed directly
in straight beam structures. This is of minor importance because axial displacements are
commonly negligible and the statics of the beam structure is preserved. Therefore in order
not to loose the generality in the formulation the static condensation is used in the Finite
Element Formulation.

In equation (6.16) five unknown functions appear. Therefore in order to achieve a FE-
formulation from (6.16), certain choices have to be made. Observing (6.16) it appears that
only first-order derivatives occurs which implies that as approximate functions one could use
linear functions and still achieve continuity over the element boundaries. Further the linear
functions fulfil the so-called completeness requirements, which states that the approzimation
must be able to represent an arbitrary constant rigid-body motion and the approzimation
must be able to represent an arbitrary constant strain state.

Approximate Functions - Shape Functions

In order to achieve a simple and consistent element the shape functions for the state variables
are chosen to be linear, i.e. a two node element 1s used.

Fig. 6.4: Linear shape functions.

Indicating the two nodes representing the element by upper indices (*) and (?) respectively
it follows from Fig. 6.4 that

rap(€) = (L= &y +€rd g6 = (1= &)y + €
P1(6) = (1= )¢ + £ (6.18)
M) = L =ON+EX , M) = (1-OXN+EX

The dimensionless coefficient ¢ is defined by the ratio

¢= 7 . dso= Lede (6.19)
where L. 1s the length of the beam element.

This choice in shape functions is in contrast with usual FE-formulations for beam elements
where in general cubic functions are used to represent the displacement field. The possibility
of using only linear functions arise from keeping the rotation components as a state variable
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in the final formulation. The usual method is to eliminate the rotation components via
a strain condition which leads to higher order derivatives and thereby demands for cubic
functions in order to achieve continuity over the element boundaries.

As the transverse displacement only occurs as a first order differential the convergence of r;,
is expected to be worse than for the rotational field ] which occurs as a zero as well as first
order differential.

Finite Element Equation

The FE-equation can be developed by introducing the nodal vector u® containing the element
degrees of freedom

eT T S SR SRS S BN IR SR
u = [hehewl X My rdarda ol A5 A (6.20)
The virtual work equation (6.16) can now be expressed in matrix-form, i.e

sut’ - [K*ut — 1) =0 (6.21)

where K¢ represents the element stiffness matrix and f¢ is the element force vector. The
equation (6.21) has to be fulfilled for any variation in u® which implies the well-known
FE-equation

K¢ u* -1 =0 (6.22)
which expresses the equilibrium equations for the beam element. The containments of K¢
and f¢ are discussed in detail in the following.

Stiffness Matrix for Straight Beam Element

Performing the integrations along the element means that for constant cross-sections param-
eters the element stiffness matrix is given by

K: K
K¢ = iz (6.23)
K3 K
where
0 0 0 -3L. 0 7
0 0 0 0 —3L.
1
K;- = 6Le 0 0 6]]1 ZLg 0
—3L. 0 2L?2 0 0
. 0 -3L. O 0 0 |
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"0 0 0 —3L. 0 ]
0 0 0 0 -3L,
K& =~ |0 o0 —6h I? 0 KL= KT
YT 6L, ¢ g ”
3L. 0 L2 0 0
0 3L, 0 0 0 |
"0 0 0 3L 0]
0 0 0 0 3L
KS, = 61Le 0 0 6, 2I* 0 (6.24)
3L, 0 22 0 0
0 3. 0 0 0]

One will notice that the stiffness matrix contains several diagonal elements which are zero,
in fact only the diagonal elements corresponding to the bending contribution are nonzero.

Comparing K§; and K¢, for « # j one major difference appears, namely the sign of the terms

]

representing coupling between the translations and the Lagrange Multipliers corresponding
to the vectorial properties of A;.

Load Vector

The load vector is divided into a contribution from distributed forces along the element
and one from nodal forces, see Fig. 6.5. Only the distributed forces are discussed in detail
because the nodal forces can be accounted for in a simple way directly in the global analysis.

Pl P2
S EERDEEN Y
M o pI\M
- 2 = —
Py “BRP

Fig. 6.5: Forces on beam element.

The distributed force is represented by linear interpolation, i.e.

pa(€) = 1=+ €0 , pa(é) = (1 - OB + €74 (6.25)

This representation of the distributed force necessiates an appropriate number of elements
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as the distributed force only gets represented by a set of node forces.
Substitution of (6.25) in the last term of (6.16) and finally performing the integrations leads
to the load vector f; representing the distributed forces

o (o o 4 ot o
. fSI fi::l = ?[2p2+p%!2p3+p%)0:0)0]
g=| , Seo (6.26)
£ f, = = |ph+2ph, 5 +24,0,0,0]

This completes the investigations of the beam element in the local coordinate system.

6.2.2 Global Analysis for Straight Beam Element

In order to assemble a set of local beam elements a common reference system has to be used.
Using the coordinate system described by €, and €3 as a reference state means that the local
components can be related to the global ones via the transformation operator A defined in
Appendix A.

Transformation of Local Components

Observing Fig. 6.3 it is obvious that the rotation component ¢} is independent of the
coordinate systems while the two translations r}m and rés highly depend on the corresponding
coordinate system. Finally A; and A3 behave in a similar way as r;, and r;, respectively
according to the vector property of A.

Letting (Y represent the angle between the unit vector é; and the local beam axis, as shown
in Fig. 6.3, it follows from Appendix A that the transformation operator in the e,, &;3-plane
1s given by

1 0 i .
A(p%8) = |0 cosp? —sing? (6.27)
L0 sing?  cose? |

Introducing a reduced form of the transformation operator, 1.e.

' coscpoi —Simpoi
Ry 0ix = B R oRT
B, (p. €1) = , ) B -B;" =0 (6.28)

. 1 1
sing?  cose?
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where the index ¢ indicates a particular node, means that the transformation for the nodal
values of a beam element can be expressed by

- BR .
uj B¢ ﬁf
_ , where B¢ = 1 (6.29)
ue B¢ e
1 i) 2
i BE

For the straight beam element (p‘gi = cpgj.

A similar relation is of course valid for the force vector, i.e.

6] [B £
_ o (6.30)
f;; B; fig_?

where f'pJ constitutes the force vector in global coordinates.

Global Element Stiffness Matrix

Substitution of (6.29) and (6.30) into the equilibrium equations (6.22) and further multipli-
cation with the full transformation operator leads to the equilibrium equations in the global
coordinate system.

K-a =1, +fp (6.31)
The global element stiffness matrix K is defined by

. [B 7" [X: Ky [B

K = : - (6.32)
B ] K K B;

The transformation in equation (6.32) constitutes the global form of the element stiffness

matrix.

Assembling

Assembling the contributions from the elements to the equilibrium equations in each node
means that global equilibrium can be expressed by

K, u = { (6.33)

Equation (6.33) is the final form of the equilibrium equations where the only unknown terms
are the components of the global displacement vector u,. K, constitutes the reduced global
stiffness matrix and finally f; is the global nodal force vector.
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6.2.3 Implementation and Examples

Chapter 6

The implementation of the foregoing analysis on a computer has been carried out in order
to analyse the performance of the developed beam element. The principles of the developed
program are illustrated in Fig. 6.6.

Beam Analysis

PreProcess

Process

e Stiffness Matrix K¢
¢ Load Vector f°

e Assembling K, f,
e Solving K, -u, =1

Input/Configuration

e NodePosition

° Topologly

e Material Properties
e Boundary Conditions
e Loads

f

PostProcess

¢ Displacements
¢ Reactions
e Internal Forces

Fig. 6.6: Diagram for a linear beam analysis.

The diagram shown in Fig. 6.6 is the basement for any numerical beam analysis whether it
is a linear beam analysis, a linear stability analysis or an incremental beam analysis.

Three examples have been investigated in order to illustrate the performance of the beam
element. The numerical results are compared with those of an analysis via the Bernoulli-

Euler theory.

Example 1 - Pure Bending

The simply supported beam shown in Fig. 6.7 is investigated.

Fig. 6.7: Straight beam in pure bending.
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In this example emphasis is placed on the performance of the transverse displacement field.
The rotational displacement and the statics are not discussed in detail because of their simple
form which can be reproduced at two elements.

The Bernoulli-Euler theory states that the transverse displacement 7}, is given by

e = 541§ (634

In Fig. 6.8 the results from a numerical analysis with 4 and 5 elements are illustrated
together with (6.34).

¢ §
0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0
_0 0 4 L L 1 1 & _00 L 1 1
1
=0.2 4 Bern.—Eul. -0.2
ooooo § Elem. oocoo §  Elem.

_E 00000 4 Elem. —g 00000 4 Elem.
E:“- -0.4 l-'l‘ -0.4
E (a) = (b)
2 2

-0.6 —-0.6

-0.8 B 5 -0.8

-1.0 - -1.0

Fig. 6.8: Transverse displacement for beam in pure bending. (a) Node values. (b) Midtpoint
values.

As to be expected from a hybrid element with simple shape functions the agreement is not
overwhelming at 4-5 elements, as 1t appears from Fig. 6.8a. Important for this example is to
show that the element converges towards the analytical displacement field. It appears from
Fig. 6.8b, where the midpoint values are illustrated, that the numerical results are very close
to the analytical solution which implies that the element converges.

Example 2 - Midpoint Load

For the simply supported beam with midpoint load, as shown in Fig. 6.9, the kinematical
as well as the statical behavior has been examined for different numbers of elements.

1

2, and the rotational

The Bernoulli-Euler theory states that the transverse displacement r
displacement 3] are given by

) 1 PL? 4,
Fa ) = 6 I, 5(1—55)

INA
B | —

for ¢ (6.35)

2
O = 5 (1-18)
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Fig. 6.9: Straight beam with midpoint load.

and the bending moment M, by

Mi(£)

~PL
5 PLE

g
for 6_2

Chapter 6

(6.36)

In Fig. 6.10 selected results from numerical analysis for 2, 4 and 6 elements are given together

with the analytical results (6.36) and (6.36).

T2/ 1T 2,maz!

1.2

1.0

0.8

0.8

0.4

0.2 4

0.0

(a) 1.0 -
o
a
i 0.8 4
k
S
~ 0.2 9
S
-0.2
Bern.—Eul.

ooooo 8§ Elem.
ococco 4 Elem.

-0.6 1

‘04 068 08 1.0 0.0

oocoo 8 Elem.
©0000e 4 Elem.

Fig. 6.10: Straight beam with midpoint load. (a) Transverse displacement. (b) Rotational

displacement.

From Fig. 6.10 it follows that the rotational field converges faster and better than the
transverse displacement, as to be expected from the difference of differential order in the
strain condition. Fig. 6.11 illustrates that the bending moment is well-described already at
2 elements. Even though the example is simple the results imply, as it was intended, that
for the relatively simple element a satisfacory representation of the rotational field and the

statics is obtained for some neglection of the transverse displacement.
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1.0 -
"a 0.8 4
5 ]
]
~ 0.8 A
i
0.4 A
Bern.—Eul.
1 00000 4 Elem.
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13

Fig. 6.11: Straight beam with midpoint load. Bending moment.

Example 3 - Clamped Beam with Distributed Load

In this example the clamped beam with transverse load shown in Fig. 6.12 is examined. The
Bernoulli-Euler theory states that

’ 1 p L*
LD = ge e L=al40)
I3
O = -5 B (1-3¢+2¢) (6:37)

and the internal forces Ny and M; by

2 L
Ni(e) = -B=(1-2%)

My(6) = p"’IQL (1-6¢+6¢%) (6.38)

Fig. 6.12: Clamped beam with distributed load.

Numerical models with different numbers of elements have been used and selected results
are illustrated together with (6.37) and (6.38) in Fig. 6.13.
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Fig. 6.13: Clamped beam with distributed load. (a) Transverse displacement. (b) Rota-
tional displacement.
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Fig. 6.14: Clamped beam with distributed load. (c) Shear force. (d) Bending moment.

For the kinematical behavior (see Fig. 6.13) the influence from the boundary conditions is
obvious for the transverse displacement, while for the rotational degree of freedom the con-
vergence is indeed satisfactory. The results show that the statical behavior is well-described
by the developed element. Fig. 6.14 indicate that the statical behavior is well-described
for an even number of elements while for an odd number the bending moment shows small
discrepancies arising from the simple modelling of the distributed force.

6.2.4 Concluding Remarks for Straight Beam Element

The performance of the in Sections 6.2.1-2 developed two node hybrid element has been
examined by analysing three different beam structures. The results show that the element
to some extent neglects the kinematical behavior in favour of the statical behavior. This
is noticeable for the transverse displacement where a high number of elements is necessary
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is noticeable for the transverse displacement where a high number of elements is necessary
in order to approximate the analytical solution. The influence on the rotational field is
not significantly corresponding to the presence of lower order differentials of the rotational
components. Despite some discrepancies 1t i1s obvious that the element converges as the
midtpoint values are very close to the analytical ones. The rate of convergence is not im-
pressing but one will notice that for different kinds of problems the necessary number of
elements in order to obtain a satisfactory rotational field is nearly the same.

The investigations of the statical behavior show that if the numerical model is chosen ap-
propriate the statics are indeed well-described. The necessary number of elements is lower
than the corresponding number for the kinematics as to be expected for a hybrid element.
Concludingly the hybrid element is suitable for problems where the important parameters
are the rotational field and the statics of the beam element.

6.3 Curved Beam - Plane Formulation

The development of a curved beam element is necessary in order to establish an incremental
updated Lagrangian element as the curvature represents the initial deformations. The plane
formulation of the straight beam element in Section 6.2 is therefore expanded in order to
incorporate an initial curvature of the beam. Continuing the analysis in the (&;,&3)-plane
means that the curvature accepted as nonzero is &9, as illustrated in Fig. 6.15.

Fig. 6.15: Curved beam element in local and global coordinate system.

The working process is still carried out in two coordinate systems as indicated in Fig. 6.15.
In the local system r}, and r;, of course still correspond to a transverse and an axial dis-
placement respectively, but now the directions of the local axes changes along the beam axis.
This implies that the beam element is influenced by the curvature in the local as well as the
global analysis. These new effects are examined in the following and the considerations serve
as a starting point for the spatial element which is a general version of the plane element.
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6.3.1 Local Analysis

The virtual work equation for the single curved beam element is given by

! drl dr} 1dpl | dl
a2 0.1 1 GTag 0.1 + O p O
¢ ), {’\2 ( dsg e T o) + s ( Ay '“”'“Z) T3 a5 de

!
~rhapn =l oo = 8[| = 0 (6.39)

New terms caused by the initial curvature only arise in the strain terms and it follows from
(6.39) that the strain conditions are coupled in case of a curved beam. Further still no higher
than first order derivatives occur which allows one to use the linear shape functions.

Shape Functions

Using the linear shape functions from (6.19) to model (r},, 7., ®1, A2, As) the only function
which remains to be given is one which approximates the initial curvature Y. The initial
curvature is defined by (3.4) which for the plane case leads to

d 0
Ky = % (6.40)

Approximating the initial rotation component ¢ by linear interpolation, i.e.

@36 = (1 — Oy + oY (6.41)
and substitution of (6.41) leads to

Ky = -L%(@?j — ¥ (6.42)

which means that the initial curvature is assumed to be constant within an element.

FE-Equation

Using the nodal vector u® from (6.20) means that the virtual work equation (6.39) can be
expressed in matrix-form by

5ut [(K + B uf - fe] = 0 (6.43)

where K* constitutes the stiffness contribution from an initial curvature. K¢ and f¢ are
defined in Section 6.2 which implies that only the initial curvature matrix K* needs to be
examined.



Numerical Formulation of the Beam Problem 67

Initial Curvature Matrix K*

Performing the integrations of (6.39) for the terms containing &9 along the element leads to
the initial curvature matrices K; constituting K~

K5 Kf
K" = (6.44)
K% KJ
where
0 0 0 0 2
0 0 0 -2 0
0
K = ZM g o 0 0 o
- 6
0 -2 0 0 0
2 0 0 0 0
K 1 K K K ® K
K3 - EKii ] Kji = Kz’j ) ij = K (6.45)

It follows from (6.45) that K* has a simple form and it can therefore easily be incorporated
in the analysis.

6.3.2 Global Analysis

The transformations of the local equations (6.43) into the global form is performed similar
as in Section 6.2.

Orientation of Local Unit Vectors

The orientation of the local unit vectors e? 1s determined by

e = A(W&:)- ¢; (6.46)
where 9 depends on the position along the beam axis. Some modification has to be carried
out according to the change in ). The two sets of nodal values transform according to the
initial rotation component which corresponds to the nodal set in question. From Fig. 6.16
it follows that the node values of ¢ are given by

ot

(= K . {4 K ®x ﬁ
Pl = @i+l . W = e o=
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sing} = e (6.47)

The last relation in (6.47) is only an approximation and the validity depends on the factor
0
Ky Le.

(k2<0)

Fig. 6.16: Initial rotation components.

Global Element Stiffness Matrix

The modified global element stiffness matrix K is then given by

- i T
) B: (¢} 1)

K = _
Bj‘(‘P?Jél)

[ K&+ KE K§ + K Bi(i) 1)
: (6.48)

K5+ K K+ KR B:(97&1)

Comparing with (6.32) the only change is the additional term in the element stiffness matrix.

Assembling

The assembling of the elements is performed in the same way as for the straight beam element
leading to the governing equations given in (6.33).

6.3.3 Implementation and Examples

The implementation of the curved beam element has been carried out by expanding the
straight beam element with the modifications described in the foregoing.
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The principles of the expanded version are illustrated in Fig. 6.17.

Beam Analysis with Curved Elements

PreProcess » Input/Configuration
¥ e NodePosition
° T0pologrv
Process e Material Properties
o Stiffness Matrix K¢. K* e Boundary Conditions
e Load Vector f* * Loads

e Assembling K, f,
e Solving K, -u, =1,

i

PostProcess

e Displacements
e Reactions
e Internal Forces

Fig. 6.17: Diagram for linear beam analysis with curved elements.

Comparing with Fig. 6.6 it is evident that only a few modifications of the basement program
were necessary.

The performance of the curved beam element is investigated by examing a semi-circle with
two endmoments. The results from the present element are compared with an analysis

performed with the FEM-program ABAQUS.

Tl

&

Fig. 6.18: Semi-circular beam with two endmoments.

A FEM-model for the semi-circle can be developed from the entire semi-circle or by symmetry
considerations only half of the structure has to be modelled. Both models are considered in
the following because of the difference in the boundary conditions.
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Fig. 6.19: Modified model.

The ABAQUS-model used is illustrated in Fig. 6.20. The model consists of 10 quadratic
beam elements B32 where the single element consists of three equally spaced internal nodes,
as illustrated in Fig. 6.20.

Fig. 6.20: ABAQUS-model for semi-circle.

Both a statical and a geometrical comparison between the ABAQUS-results and the anal-
ysis performed with the developed element are presented and discussed in the following.
The kinematical results from ABAQUS are given in the nodepoints while the statics are
represented by the values of the Gaussian integration points, see e.g Fig. 6.20.
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Full Model

Three different meshes for the full model have been analysed by the developed program.

Fig. 6.21: Meshes for full-model.

Kinematics :

The three generalized global displacements (7},, 755, ¢]) are illustrated in Fig. 6.22-6.23.
A« is the angle between the diameter joining the ends and the actual position along the
beam axis while @ = 7 corresponding to a semi-circle, as illustrated in Fig. 6.18.

T2/ |T2.ma.=|

Fig. 6.22: Generalized displacements for semi-circle.  (a) Displacement 7;,.  (b) Dis-
placement 7.

From Fig. 6.22 it follows that the translations 7, and 7.., as #._ for the straight beam, only
g a9 a3 ag g )

converge slowly towards the reference values. Nevertheless the convergence of the element
is obvious as the midtpoint values are close to the reference values.
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The rotational component (3] in Fig. 6.23 is seen to be close to those from ABAQUS at
five elements which is considered as a satisfactory result for the present element, as the
semi-circle is a relative complex beam structure.

#1/ 11,maxl

ABAQUS
ooopoo B
Qo000 A
00000 C

1 T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
200/ a

Fig. 6.23: Generalized displacements for semi-circle.  (c) Rotation ¢].

Comparing the results from meshes A and B with C it follows that some improvements can
be obtained by use of smaller elements locally.

Statics :
In Fig. 6.24-6.25 the shearforce Nj, normalforce N3 and bending moment M} are illustrated.
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~ _ (b)
a
-0.2
S § oo -
L Z
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-0.8 1
0.4
-0.8 | gBAQUS
ooooo
ooooa gBAQUS 0.2 4 Soagn &
—1.0 € Q0600 A ! 00000 C
00000 C
-1.2 T T T T T T T T ™ 1 0.0 T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
20a /& 200/ o

Fig. 6.24: Internal forces for semi-circle.  (a) Shear force. (b) Normal force.
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Fig. 6.25: Internal forces for semi-circle.  (¢) Bending moment.

As for the straight beam the statical behavior of the present element approximates the
reference values better than the kinematical. The convergence is satisfactory at 10 elements
which is remarkable good for a two node element with linear shape functions even though

the element is hybrid.

Modified Model

Using the modified model means that the same number elements can be used to model only
half the semi-circle.

.

>
N

Fig. 6.26: Meshes for modified-model.

Two different meshes for the modified model have been analysed by the developed program.
In Fig. 6.27 the two displacements 7}, and 7, are illustrated for the two meshes along with

the results from ABAQUS.
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Fig. 6.27: Generalized displacements for semi-circle.  (a) Displacement 7},.  (b) Dis-
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The results in Fig. 6.27 show that the geometric boundary conditions influence, as to be
expected, the kinematical behavior, as the agreement with ABAQUS has been 1mproved.

In Fig. 6.28 the internal bending moment 1s illustrated,
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Fig. 6.28: Bending moment for modified-model.

Comparing Fig. 6.28 with Fig. 6.25 the results indicate that no significant improvement or
change 1s obtained by modification of the boundary conditions.

6.3.4 Concluding Remarks for Curved Element

The investigations performed for the semi-circle underlines the results obtained for the
straight beam element, i.e. the two node hybrid element reproduces the statics and the
rotational field on the expense of the translation field. The presence of an initial curvature is
consistently incorporated in the stiffness matrix and the examples show that even though the
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semi-circle is a geometric complex structure the necessary number of elements is acceptable.
The agreement with results obtained from ABAQUS is very promising towards the develop-
ment of an incremental element usable for nonlinear analysis.

6.4 Spatial Beam Element

The behavior of thin-walled beams is highly influenced by the possibility of torsion induced
by in-plane loads as well as out-of-plane loads. Especially for non-symmetric cross-sections
torsion arise. For non-symmetric sections not only torsion may occur but also out-of-plane
bending for in-plane loads can occur, e.g. the Z-profile. Therefore in order to describe
the behavior of thin-walled beams in general the in-plane behavior has to be expanded to
incorporate out-of-plane displacements.

In the present section a spatial element is introduced according to the results and observations
from Sections 6.2-3.

6.4.1 Local Analysis for Spatial Element

The virtual work equation in (6.15) constitutes the weak form of the linear equilibrium
equations for the spatial element in the local coordinate system described by e9. Investigating
(6.15) and recalling the observations from Sections 6.2-3, it appears that only the number
of state variables is changed and not the overall form of the weak equation. The spatial
element can therefore be developed by expanding the numbers of shape functions according
to (7‘;!,99,1,91, Al )\w) and thereby the dimensions of the connected vectors and matrices.

i
’\2
: J
2 i |2
i ¢ Al ;
i - J
i - .
¥ Ay i %:- o 1”2J r}i’ﬁb/
3 e
""JT‘-.
«ra J \.’-““.“
Y —~
) /\.:I! ;\3’

Fig. 6.29: Spatial beam element.

In Fig. 6.29 the two node spatial element is illustrated.

Shape Functions

Indicating the two nodes representing the element by upper indices (*) and (?) the linear
shape functions representing the eleven variables, see I'ig. 6.29, are given by (6.19) leading
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to
@) = (1-&ri+éd ,  1=123
wi(€) = 1 -8 + €] 0'(6) = 1 -6 + ¢ (6.49)
ME) = (1 - N + €N Xo(f) = (L= X, +&X,

The dimensionless coefficient ¢ is defined in (6.19) and expresses the ratio so/Le.

Finite Element Equation

The finite element equation is again achieved by introducing a displacement vector, now
containing the 2 x 11 degrees of freedom corresponding to an element

ut = [u’,u”] (6.50)
where

' = [rl,rd, el eh, eh, 0 0, 08, 08, 0 (6.51)
The virtual work equation (6.15) can then be expressed in matrix form by

fat® - [(K $ Bt fe] ~ 0 | (6.52)

which is similar to (6.43) except that now the dimension of the matrices is 22x22.

The stiffness matrices and the load vector are achieved by adding the out-of-plane terms to
the matrices given by (6.24) and (6.45). K¢ and K" for the spatial element are given in
Appendix E.

6.4.2 Global Analysis for Spatial Element

In the global analysis the local form of the finite element equation in (6.52) has to be
transformed in order to assemble a set of elements to constitute the beam structure. The
procedure for this is the same as for the plane element.

Orientation of Local Unit Vectors

In case of a spatial beam structure all local components except #' and A\, have to be trans-
formed according to a global reference.

In the present formulation the position in space relative to the global reference is related to
the direction of the beam axis, i.e. the tangent vector is equal to €J. This means that the
rotation of the global unit vector é; into €] determines the rotation vector °.
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Using the orthogonal transformation operator A, eJ is connected to &z by
e = A(¢") & (6.53)

Using Appendix A means that the following identities can be established

o 0
sing~ o 1 —cosp” 4 4

e3-& = Aw(‘#?éj) = 0 ¥y T T%@s
i . sing® 1 — cose®
€& = An(ple) = — ¢} + 3] (6.54)

0 @V

B l—cosgoo( 02 n 02)

e3-& = Aun(pje) = 1 Tt

The initial rotation components have to be determined by an iteration procedure. The iter-
ation procedure which can be established from (6.54), with (6.54c) as convergence measure,
is only convergent for e -&; > 0. This means that for €3 < 0 the rotation vector determined
via (6.54) has to be expanded by converting the right-hand coordinate system into a left
handed system as it is illustrated in Fig. 6.30.
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Global Element Stiffness Matrix
Expanding the transformation matrix A® from (6.29) into
[ Aee)
A(pf'e)
B(¢%8) = 1 (6.55)

Ae)'e)

L]

means that the transformation of the local stiffness matrix into the global is expressed similar
to (6.32), 1.e

r s T

. B: (ol &)

K = _
I BS ()" &)
(K; + Ki Kj + K5 [ Bi(e)'a)

: | (6.56)
| K5 + K5 K5 + Kj HE Y
Assembling

The assembling of the elements is performed in the same way as for the straight beam element
leading to the governing equations given in (6.31).

6.5 Conclusions

The purpose of this chapter has been to introduce numerical beam element suitable for an
incremental formulation of the stability problem. Based on the linearized version of the
virtual work equation a simple but consistent element has been developed. In the develop-
ment of the beam element the rotation vector is treated as the main variable whereby the
differential order is reduced compared with a translation based element.

Assuming the strain deformations to be negligible compared to curvature and warping de-
formations leads to a simplified formulation where the main variable is the rotation vector.
In order to ensure convergence of the element a relationship between rotations and trans-
lations has to be incorporated. This is accomplished by incorporating the strain condition
e; = 0, using the Hellinger-Reissner principle, thereby achieving a mixed formulation. The
mixed formulation reduces the quality of the kinematical description but instead the statical
behavior is improved which is important in connection with stability analysis. Using this
approach, where the rotations are kept in the formulation, linear shape functions can be
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used for all involved functions leading to a simple formulation.
The examples performed for the straight and the curved plane element are very promising
for especially the statical behavior which means that the element is suitable for stability

formulation.
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Analytical Stability Analysis
Omitting Strain Deformations

Stability analysis performed in an analytical way is in general very cumbersome and only
in a few simple special cases a closed form solution can be obtained. Vlasov (1961) and
Timoshenko & Gere (1961) obtained closed form solutions of the critical load for the static
determinante beam. Their analyses are only concerned with the determination of the critical
load which can be performed by a linear analysis.

The postbuckling behavior of elastic structures has been the subject of research for many
years, Koiter (1945). A general theory for buckling and postbuckling behavior of elastic
structures was presented by Koiter. The general theory was later developed by for example
Thompson & Hunt (1973) and Budiansky (1974). Both obtained an analytical solution for
the initial postbuckling behavior of the simply supported column by a perturbation method.
During the last twenty years the simply supported column (Euler column) and the cantilever
beam have been the subject for postbuckling analysis, see e.g Woolcock & Trahair (1974),
Grimaldi & Pignataro (1979) and Szymczak (1980). Further a general treatment giving both
theoretical results and experimental verification has been given by Roorda (1980). Despite
the difficulties the need for analytical results is obvious because they serve as guidelines for
the analysis of more complex structures.

The subject of this chapter is to study the postbuckling behavior of thin-walled beams in
analytical sense in order to identify the important parameters and the principal behavior. In
order to perform an analytical analysis of some canonical problems in a manageable way some
modifications of the general theory presented here have to be made. The general stability
equation contains 7 generalized displacements. By assuming negligible strain deformations
the stability equation is simplified to be expressed entirely in terms of the rotation vector
in Section 7.1. In Section 7.2 the perturbation method is used to describe the bifurcation
and initial postbuckling problem in an asymptotic way. Finally examples are given which
underline the agreement with the literature and adds new results to the initial postbuckling
behavior of thin-walled beams.
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7.1 Stability Formulation Neglecting Strain Deforma-
tions

The following is used to outline some of the possibilities of the general stability theory
developed in the present thesis. It is possible to solve some special problems in an analytical
way when some minor assumptions are made. To shown this the starting point is taken
in the virtual work equation (3.16). It represents the general formulation, i.e. both strain,
bending and torsion deformations are included.

! 1
f (dara—cftpxdra)-Nl—+—d——&p-M1—6<p-ir—“xN0
0 dsg dsg

_ [m-Nl + 5@.1\41] = g (7.1)

Notice that the warping contribution is not incorporated directly in (7.1). Instead it is the
aim to incorporate warping by introducing a warping contribution in the torsional moment
M} . This can be accomplished by using the relation between £} and 6* given in (4.21), which
expresses #' in terms of the rotation vector. The reformulation of the torsional moment is
carried out because of the simplifications which can be achieved and no major generality is
lost.

Solving a stability problem by use of (7.1) in an analytical way is very cumbersome as the
general formulation includes 7 state variables (r;, o' and A). Instead the virtual work
equation can be refomulated by assuming that strain deformations are negligible whereby an
unambiguous relation between the translation increment r} and the rotation increment '
can be obtained. Assuming that the rotation vector ¢! is the main variable in the stability
problem the form given in (7.1) is in the following reformulated consistently in order to
obtain a formulation which only contains the rotation vector, while the translation vector r}
only appears in connection with the rotation vector in a boundary condition. This procedure
leads to a formulation with a reduced order of differentation compared with usual strategies
where a strain condition is used to eliminate the bending rotation components.

Force equilibrium in the initial state implies using (2.1) that

g O
P = dSo

Inserting this relation for Adr, - p° in (7.1) and integration by parts leads to

1

! / d
/{(d(sr“_ggoxdr“).l\]l + @.Ml - 5@._}:&XN0
0

dSO dSo ng
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dér,
dSO

— b - (K((pl) 4 /\A(cpl)) 0 xp® - A -NO} dso

- [5ra-(N1—AN°) + &p-er = ] | (7.3)

0

The increment in the external load is identified through the load factor A. From (3.17) it
follows that also the boundary term is a function of A. Considering the force contribution in
the boundary term , i.e. the difference between the increment in the internal force N' and the
increment in the external force A N? it follows by static considerations that a change in the
external force A N results in an equivalent change in N as the external force is displacement
independent. This means that the force contribution in the boundary term vanishes leaving
only the moment contribution. According to this it follows from observing (7.3) that the
translation vector only appears as a derivative which implies that a formulation in terms of
only the rotation vector is possible.

Often strain deformations are negligible compared to bending and torsional deformations.
In the following strain increments are therefore neglected which according to (2.11) implies
that

dér, dr, §

~ S 7.4
dSO 6‘P x dS(] b 6 0 ( )

L)

In addition it follows from Section 4.2 that the relations in (7.4) express an unambiguous
relation between the rotation and translation components.

The tangent vectors dr,/dso and drJ/ds, are related to the unit vectors e; and e}, respec-
tively by (2.13) which by neglecting strain deformations simplifies to

dr, dr}
dSo

~ es=A(p')-e) and doe ~ e;—el = A(p!)- e (7.5)

Using these considerations means that the virtual work equation (7.3) now can be expressed
solely in terms of the rotation components.

fol{% - (Mle; + A(p") - M°) — 6 (A(p") + AA(p")) - €5 x N°
s, I
—bp- (A(p") + AA(p")) - £° po}dso - [&;:-Ml]n =0 (7.6)

Through the constitutive equations in Section 4.5 the increments M] are expressed by the
rotation vector ¢! whereby the virtual work equation is formulated entirely in terms of the
increment in the rotation vector.

The form of the virtual work equation in (7.6) can be regarded as an energy formulation as
the virtual rotation can be related to the rotation increment via (5.6) as shown in Chapter
de!

o ej) M; corresponding to a deformation

5. Hereby the internal work is expressed by (
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times the conjugated internal force. Using this approach corresponds to the Galerkin Method
and the symmetric properties contained in this formulation makes it in particularly suitable
for numerical analysis. Equation (7.6) corresponds to a modification of the weak formulation
used in Chapter 6 to develop a numerical beam element.

An alternative form of (7.6), obtainable using integration by parts, would on the other hand
be more straight forward for an analytical analysis. The virtual work equation (7.6) contains
a term with the derivative of the virtual rotation ¢ and further a boundary term containing
dp. Using integration by parts for these terms a differential formulation can be obtained.

foz{ dio(MleJ + A(p') M) — (A(p") + NA(p")) -€§ x N

— (A(e") + 2A(eY) £ ><p°}'5so dso = 0 (7.7)

The form of (7.7) offers the possibility of a straight forward formulation of the nonlinear dif-
ferential equations as the integrand consists of a scalar product between the virtual rotation
d¢ and the modified moment equilibrium equation. The condition 6V = 0 has to be fulfilled
for any variation é¢ which means that the term inside the big brackets of the integrand has
to vanish identically which leads to a set of differential equations.

In the following a component form of the virtual work equation is presented in two versions
corresponding to (7.7) and (7.6) where the first is the weighted form of the differential
equations while the second is the energy formulation.

7.1.1 Virtual Work Equation - Differential Formulation

The differential form of the virtual work equation (7.7) can be expressed in terms of com-
ponents by decomposing the virtual rotation increment in the initial basis, i.e. dp = bp; 2.
It follows that

_ / | { d‘jo (AM} + AMD) + eimnkl (AnsM} + AnMY)

+ €nkl (/Zinm + A Aﬂm) (6m3NE + 5mﬂf3p2)}5901 d30 =0 (78)

In order to analyse equation (7.8) regarding the components of the rotation vector the
expressions for M} have to be inserted. Substitution of the constitutive equations from
Section 4.5 leads to

/l {dfo (Ala( omK' + ﬁn naﬁ3ﬂ3) T Ala Mo)

+ %& (Aza ((K +ENG + 26u M) 5 — dSO( ZEZ)
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d dk}
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+ 2Bylharl k) + LRAFRERL ) + Aus Mg)

-+ Cnki (gnm + A Anm) (5m3N]? + 6maf2pg)} bprdsg = 0 (7.9)

As §V = 0 has to be fulfilled for any variation §¢; equation (7.9) leads to three differen-
tial equations corresponding to bending equilibrium (8¢4) and equilibrium for twisting and
warping (6p3). Recalling that ¢} appears indirectly through the orthogonal transforma-
tion operator Aj(¢}) and the definition of &}(i}) in (5.11) the term inside the big brackets
express a set of non-linear differential equations in terms of ¢}.

7.1.2 Virtual Work Equation - Energy Formulation

The energy formulation of the virtual work equation (7.6) can also be written in terms of
components if ¢ = 6¢p; ef, whereby

! dbpy -
/0 {6@; Jl/IJ1 + (m&;-o—-i—égan B RER)AU MJQ

+ €ink O¢py, (ﬁlm + A Alm) (6m3Ni8 + Oma 2}?2) } dsp

n l

n " 4 3 ;
— [/\ Z (&pn Enlk Pfi A[o, ng) + Z (550n enlkpfi ﬁga Fam)] 2= U (710)
i=1 1=1 0

Notice that the boundary term is expressed by a set of external forces as introduced in Section
2.4. The weak form in (7.10) contains a mixing between virtual variations §¢; and increments
¢}, and it follows that the virtual quantities can not be extracted in a straight forward way
as in (7.9). Instead the relations (5.6) and (5.13) are used to obtain a formulation in terms
of ¢} solely. Inserting the constitutive equations and by use of the results from Chapter 5 it
follows that

R 1 1 1 {7 2 A70 c0\ 1  d d"fé
/0 {ié(nafaﬁh‘ﬁ - Kq (IX -i'.T'aN‘-_a) +260,Ma )K3 = Kaa(fwd—so)
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1 1.1 5 Lol lpip 1.
+ k328,100 ko k3 + 3 k383 R F Ky "3)

— k3 MP Aty + 6 Arn (603N} + Smaf2PY) (A6jn + Ajn) } dso

n ) . - !
= [Mkn S (PEFS) (A 5m+AM)J = 0 (7.11)
#=1 0

As well as for equation (7.9) in Section 7.1.1 the energy formulation likewise contains a
nonlinear problem. The subject of the next section is therefore to introduce a method of
solution for this kind of nonlinear problems.

7.2 Perturbation Method

The non-linear problem of the equations (7.9) and (7.11) can be solved by use of a perturba-
tion method. The main idea behind a perturbation method in this connection is to reduce
the non-linear differential equations using an expansion technique to a set of sequentially
solvable linear differential equations. The asymptotic non-linear solution is then synthesized
from the linear ones. This method for postbuckling analysis has been introduced by Koiter
(1945) and developed by e.g. Budiansky (1974) with application to continua and finite-
dimensional systems in general. In this section the perturbation method is used to derive
the governing equations for a postbuckling analysis of thin-walled beams.

Using the expansion technique it is convenient to introduce a small perturbation parameter £
which is used to represent a measure of progress along the equilibrium curve, i.e. the solution.
Thus, it is assumed that the solution can be represented by the following expansions of the
rotation vector ¢! and the load parameter A

—t

of = Fie+ @
(7.12)

A o= Mf + bt

The expansions means that the unknown functions ¢} and X are expressed by a set of shape
functions @} and A;, respectively and a new state variable {. The order of the perturbation
parameter £ is used as a measure in analysis of the terms contained in the stability equations

(7.9) and (7.11).

Arranging the operators of (7.9) and (7.11) according to the order of the new variable ¢
is necessary for a closer analysis to be performed. The component form of the orthogonal
transformation operator is given by (see e.g. Appendix A)

A(@4,6) =~ 8 + |ewi Bh) € + |owm; P2+ Setmm @;@iemkj] ¢
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+ [emi (B2 — 3 @1 @1 Bh) + § €tom (B2 81+ Br P)emes |6 - - (7.13)
Using (5.11) it follows from Appendix A that the curvature components are given by
KU Pe€) ~ RLE + [R2+ lewniRroh] €7
+ [ B2+ Lewn; (R2GL + Kr@2) + & Fk kom @ @] emii | € ... (1.14)
where
L

by = dso T (;Eizenjmn?n (715)

which is consistent with (5.11).

Finally the expanded version of the relation between virtual variations and finite variations
of the rotation components is given by (5.6), 1.e.

§p; = i Bik
= 0p; + 560k €ini Pn + 3760k €hmn PRI Ejlm - (7.16)

Using these expressions in (7.9) and (7.11) it is now possible to solve the non-linear problem
in an asymptotic way. The idea is that as long as @} are unknown functions then ¢ is a
scaling factor, but if @} have been determined then £ represents the state variable. This
is the subject of the sections 7.2.1 and 7.2.2. Even though the differential (7.9) and the
energy (7.11) formulations of the virtual work are identical expressions both formulations
are analysed by the perturbation method. This is carried out in order to achieve a complete
formulation which in straight forward way enables one to analyse the initial postbuckling
behavior of a beam structure.

7.2.1 Stability Analysis by Perturbation - Differential Formula-
tion

Using the expansions of ' and X it is now possible to investigate the first version of the
virtual work equation in detail. The term inside the big brackets of the integrand in (7.9)
can be arranged according to the order of the generalized coordinate £

[ [0 + R €56

+ (@, 20) + R, o) = BB, Do, )| € 6
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Fl(‘f;_?v'ko) I Ff(/\ﬂ:)‘o) Rn(~n l>¢? 2’ K. ﬁAﬂ—l)] én 6(101} dso = 0 (717)

In (7.17) it has been used that the initial stress terms N7, M? and p? can be expressed by
the single load parameter Ao by the identities in (3.15). In each coefficient of £, £2, . . , £
in the integrand F; indicates the part which contains the displacement functions @ and the
initial stresses while F} contains the load factor \;. Finally R} is the remaining part which
is expressed by lower order terms in @} and ); than the remaining functions constituting the
particular coefficient. It has been indicated that F; and F} preserves a general format which
then remains to be shown.

Inserting the expanded versions of Aj;(}) and kj(¢}) in (7.9) and rearranging by use of the
equilibrium equations for the initial state leads to the following form of F

d o d dry
Fa ((P]’AO) - d_s(l_(faﬁﬁﬁ) + dsg (eaﬁxﬁ] dsg )

— eapr (K + r2NS + 28,M) & + KSeay o

+eaﬁM,gEg a M.’?eaﬁ%,iﬁ + N:?@fx - NS‘E; + eaﬁfgpgewnﬁi; (7.18)

~ d 3
Fa(#%0) = —Reralagiy — d—%((h + NS + 28,MS) & )
d’ d"a 0, ~i 070~ 0~
+E—(] dso) + M ﬁaﬁ"ﬁ P3fa ‘Pa + Paf (7.19)

The process leading to the form of (7.18) and (7.19) is further described in Appendix B. It
follows that F, and Fj3 are linear functions of the rotation components t,Z; The function F,
may be regarded as the governing differential equations for bending while Fj is the one for
twisting and warping.
The part containing the load factor Fj is given by

Fi(X20) = Xiemt (6ns NS + 6o £253) (7.20)
Splitting (7.20) into

Fa()\i; /\0) = Aj€ug (fBPg b NS) ) Fs()\i, )\0) = X fgﬁaﬁpg (7.21)

reveals that for lateral loading or if the distributed force acts nonsymmetrically (see e.g. Fig.
7.1) then a direct coupling between A; and @] exists.
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Fig. 7.1: a) Lateral loading. b) Nonsymmetric loading.

This means that for these special loading cases no well-defined eigenvalue problem arises a
priori.

Observing (7.18), (7.19) and (7.20) it is obvious that the coefficients of (7.17) preserve a
general format, meaning that only the term R} which in each step indicates an effect from a
previous state has to be determined for each step in :. The functions R} are further examined
in Appendix C.

From (7.17) it follows that the coefficients of ¢, £2,.., £* in the integrand must vanish sepa-
rately, for all admissible variations in ég;. This leaves a set of linear differential equations
which can be used successively to determine 7.

F(F %) = B(E787%.,00) — B, ) (7.22)

Observing equation (7.22) it appears that for ¢ = 1 and F} = 0 an eigenvalue problem arises
which determines Ao and @} while for ¢ > 2 (7.22) leads to a set of nonhomogeneous linear
differential equations. In most problems the term F; is not coupled with the critical load
but in the particular case where F; # 0 (see e.g. Fig. 7.1) the strategy is to determine the
critical load Ay by omitting F} leading to an eigenvalue problem and then to use the critical
load as an input to the complete expressions in (7.22). From these equations L,Bj— may then be
determined direct or as a function of A;. In case of symmetric lateral loading the effect from
F) is only connected with the plane of the loading which leaves the critical load unaffected.
None of these problems are considered in a particular example, but their contribution is
nevertheless accounted for throughout this chapter.

As indicated above the left-hand side preserves a general format meaning that except for the
right-hand side the differential equations (7.22) are self-similar which in general means that
the left-hand side corresponds to an eigenvalue problem. In order to obtain an expansion
of ¢} which is uniformly convergent the vectors @' and @’ (i # j) have to be chosen as
ortogonal whereby the possibility of secular terms can be eliminated, see e.g. Thomson &
Hunt (1973). This leads to an orthonormality condition stating that

/Olﬂ(@j,.,,\o) £6(pher) dso = 0 for  i#k (7.23)

Equation (7.23) implies that the rotation vector ¢! is constituted by a set of orthogonal
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vectors '.

Following this procedure leaves a set of equations which can be used to determine the load
factor coefficients A;. Using the orthonormality condition it follows from (7.17) that

/ R, . At ) € 6(3F€F) dso = 0 (7.24)

can be used successively to determine A;_;. Inserting the expressions for gb';_l determined
from (7.22) means that the integrations in (7.24) can be performed leading to a functional
in £. This implies that £ then represents the state variable meaning that variations in (7.24)
are to be taken with respect £. This leads to a stepwise solution process where

o — @ — M — @ — XA  andsoon (7.25)
where Ay is determined by solving an eigenvalue problem whereby the following terms can

be found by successively use of (7.22) and (7.24).

7.2.2 Stability Analysis by Perturbation - Energy Formulation

In the previos section it was stated that for problems concerning only distributed forces the
initial postbuckling behavior can be determined by use of (7.22) and (7.24). In order to
handle problems involving concentrated loads in a direct way an alternative to especially
(7.24) is derived from (7.11). Inserting the expanded versions of ¢; means that (7.11) can
be arranged according to the order of the parameter .
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+ G!-'M)((I‘Q:,H!A ) + G31((;63)(PJ?A0) + G20({1‘9]! ) +

i+ G‘le((r;?;@'},/\o,)\l) + ng(éﬁaéfa/\ﬂ) + GTO(@J:’\S) +

+ Gll((fojl(ng)A(]?)‘l)Az) + GIZ(‘I‘C’F‘PJ’AW ) + G]3(@J)S‘033A0)]€

) (7.26)
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In each set of square brackets the terms represent a particular order in ¢, ie. &2, £3,...,
£™ which implies that each set represents an equation which has to be identical zero. The
functions K and G represent the elastic energy and the load potential, respectively. The
splitting into different subterms is performed because of the amount of terms connected to
the higher order coefficients in (7.26) and by the decomposition a general format in the
functions is partially achieved.

The function Kffj is defined by

TS oo 11 (L - dRkL dR
4] ~i, ~] _ S e g TG s R
1{13 (9017991) — /(; ) {K‘cx Iﬂfﬁ K:ﬁ + dSo deS[)

+ & (K + 12N + 28, M2 B } dso (7.27)

The function G’;O which contains the load increment factors is given by

;o(ﬁz}li)‘iv—j) = Airj (/0’ {@; Enkm (6m3NE i 6maf2p2)} dso

- { 3 (P& e )]; ) (7.28)

1=1 0
The function Gij'j is defined by
i 3 i St
6G (7@, 00) = [ {6RLem MP,
-+ 58’5; Emnk (Nj?((SBg - 52) + nggéaj) €ipn L;D'; } dSO

. L : : T
— 6% emur Y- (PO FY') ejpngo";]o (7.29)

=1

Notice that in case of the load terms the finite variation is connected to a particular rotation
component while for the elastic terms the symmetry properties are used to avoid this. This
is in agreement with the results obtained in Chapter 5 regarding the relation between virtual
work and potential energy. The remaining functions are given in Appendix D.

The virtual work equation in (7.26) can be used in two stages. The terms inside each set of
square brackets represents a particular order in £ and therefore they have to be identically
zero. This requirement can be used to obtain the energy formulation of (7.22) and (7.24).
The displacement functions @} can be determined due to the assumption that only this
particular set is sensitive to variations. This leads to the general form
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SKZ (7581 + 6KZ (81 @) + G (38 do) + 6GE(85@,.,4) = 0
J= (11“17’-"1) (730)

from which @} can be determined. It follows from (7.30), as also mentioned in Section 7.2.1,
that for some special loading cases no well-defined eigenvalue problem arises directly.
The energy form of the orthonormality condition in (7.23) is given by

SKF (5 @1) + 6G (3@, %) = 0 i#k (7.31)

If the displacement functions @}, . . . , @} have been determined from (7.30) means that
the conditions of (7.26) render a set of functionals in £ which can be used to determine
Ai—1. Further using the condition (7.31) in a particular coefficient of (7.26) means that the
remaining terms associated with shape functions @] where j < ¢ can be used to determine
the load increment factors A; as each coefficient has to vanish identically. A general form of
these equations is not obtainable from (7.26), but in Section 7.4 the equations necessary for
determination of A; and ), are presented.

7.3 Bifurcation Analysis

The buckling load or critical load Ag determines the transition point corresponding to the
beginning of an instability phenomen. Therefore the buckling load A¢ has to be found
corresponding to A = 0. The bifurcation problem is then described by

l
/0 F (3}, %) 631 dso = 0 (7.32)

This problem can be solved in two different ways either by solving the linear differential
equations given by F; = 0 directly or by use of numerical methods where the symmetric
form given in (7.30) is preferable. The first is referred to as the strong form while the second
is the weak form. Only the strong form is analysed in detail in this section dealing with

the analytical approach. The weak form for a bifurcation analysis is treated separately in
Chapter 8.

7.3.1 Linear Differential Equations

The condition stating that 6V = 0 has to be fulfilled for any variation in ;. Using the first
set of differential equations in (7.22) and assuming that Fj(A;,A\o) = 0 means that X\ can
be found from a homogeneous set of differential equations expressed by the identity

F(@), %) = 0 (7.33)
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Using the identity of (3.15) the governing differential equation for flexure can be found from
(7.18) as

d . d( OIdE;

——IEI)—G KR 4 —{ ek —)—}—&OBIEl
dso(ab’ﬁ affg 3 dso affp dso 3Cayiy0ig

& % [eaﬁmgz; _ MPensRh + NOG. — WO

i - - 0 ~
+ eap oD €y Py — eo,gn%(rgNg + 28, M; )né] = {) (7.34)
The governing equation for torsion and warping is given by (7.19), i.e.
d d? dk}
R T
Roalalfiy = FA R 8) T gEl G
_ d = N _ _ i
+ 2o [MOeasRh — ——((2N3 +26,M°)R) — L1088 + AR =0 (739
0

Even if the cross-sectional parameters are constant the coefficients in (7.34) and (7.35) may
depend on the arc-length coordinate so through the loads and internal forces. This implies
that closed form solutions only can be obtained in special cases.

7.4 Asymptotic Postbuckling Analysis
If the critical load Xp and the buckling form @} have been determined from (7.22) the
postbuckling behavior can be examined in an asymptotic way. An asymptotic postbuckling

analysis can be performed by inserting the buckled form and demanding stationarity in the
higher-order terms.

Differential Formulation

It follows from Section 7.2.1 that if Ao and @} have been determined then A; can be deter-
mined from (7.24), i.e.

[
/DR,?(@;,AO,/\I) F dsy = 0 (7.36)

Continuing the solution process ¢ can now be determined from the next set of linear differ-
ential equations given by (7.22), i.e.

Fi(3,%) = R} A0 M) — Fi(X2, ) (7.37)

From (7.37) it follows that @? in some cases may not be determined direct but as a function
of X;. Inserting the expressions for @? in the next term of (7.24) means that A; can be
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determined from

/ RS(@J,%,)\D,/\I,)\Q) @rdso = 0 (7.38)

This completes the postbuckling analysis as Ay and A, indicates the initial postbuckling
behavior.

Energy Formulation

In general a solution by the energy method follows the same stages as for differential formu-
lation. If Ag and @; have been determined from (7.30) it is possible to determine A; from the
third order coefficient in (7.26). Using (7.30) and (7.31) means that A; can be found from

6K3 (8431) + 863 (35:% do, M) + 6G3(35 M) = 0 (7.39)

where variations are performed with respect to ¢ and 5.92 has to be determined from (7.37).
Equation (7.39) contains the remaining terms of the third order coeflicient in (7.26) which
have to be zero in order to make this coefficient identical zero.

Finally A; can be found from the remaining terms of the fourth order coefficient in (7.26)
leading to the identity

§K3, (9’531:95;) 51‘12(%:%) + 5G12(‘;53:‘PJ:A0:)\ )

+6G1; (81585, dos Aty d2) + 8G3(@502) = 0 (7.40)

where @}, @7 and ); are supposed to be known. This means that (7.40) is a functional in
terms of €.

This completes the set of equations which is necessary in order to perform an asymptotic
analysis of the initial postbuckling behavior.

7.5 Examples - Simply Supported Beam

In order to give an impression on the possibilities of the present theory some specialised
examples are given. These examples represent some of the most popular subjects of the

Fig. 7.2: Specialised examples.
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buckling and postbuckling studies.
The simply supported beam is a special example where it is possible to solve some simple
cases in an analytical way. In Fig. 7.2 two examples are given where the statics makes it
possible to outline some generalities in a buckling and postbuckling analysis. The first is
the simply supported beam subjected to eccentric axial concentrated endloads, sometimes
referred to as the Euler column. The second is the curved beam subjected to in-plane pure
bending.
Special for the examples shown in Fig. 7.2 is that

Nl =M =nx3 =0 , NJ= comst., M;O = const., k. =~ const. (7.41)
The approximation for 2 is only valid for small deflections. The internal forces N3 and M;O
can be determined by simple statics while the initial curvature may partly be caused by the
external loads and partly as an initial imperfection.

7.5.1 Buckling Analysis

The buckling analysis of the simply supported beam is performed by use of the strong form
given in Section 7.3.1.

Linear Differential Equations for the Specialised Examples

In the determination of the critical load it is assumed that the initial curvature is constant.
Inserting the relations of (7.41) in (7.34) leads to the linear differential equations for bending

: K : 0 ~ d dr}
- E(I"BE}’) - e“ﬁ'{%(h + meNg + 28,M; )’“é + ea,@ﬂ%d_‘SO(de_sj>

+ N3BL + eap(esy (y — ar)NS + M5 )R + eapfoplem®y = 0 (7.42)

Further inserting in (7.35) leads to the governing equation for torsion and warping

o d , 0 d? drl
~ Renlos®y — (K + 2N + 28,M°) &) + g (L 52)
+ (eap (s — ag)N® + MZ°)earil + P07 = 0 (7.43)

The governing differential equations in (7.42) and (7.43) are derived according to the as-
sumptions in (7.41) which means that the coefficients are constant and therefore closed form
solutions are obtainable.

Determinant Equation

Assuming that the beam has simple supports, so that the ends are free to warp and to rotate
about the e2-axes but can’t rotate about the e3-axis or deflect in the e-directions. In this
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case it can easily be verified that the buckling mode is given by

- . mn
Pr = ¢q cO8QSy ; @3 = ¢3sinasy . & = —= (7.44)

l

where the amplitudes ¢, and ¢3 are constant with respect to so. Inserting the general
solution (7.44) in the expressions for the linearized curvatures (7.15) leads to

P 0

sinasg 0 —abep eayk, | | Ps C, sinasg
= - (7.45)
% 0 cosaSo K9 eyg o b3 C'5 cosasg

Qh—l

The last relation in (7.45) is introduced as a convenient notation where the combinations of
the coefficients «, «?, ¢, and ¢35 are kept in C; and Cj.

The coupling between the curvature components &} arising from the initial curvatures &9 is
expressed by the off-diagonal elements in the non-symmetric matrix

0

. K
— bap €ay ('l)
K = & (7.46)

0
.

— 1

(&)

The matrix K may be regarded as a transformation operator, indicating a transformation
from a reference state to a deformed state.

Inserting (7.45) in the differential equations and assuming that the cross-section is constant
leads to a determinant equation of the form

K + MKo]-6 =0 , 67 = [d1, 62, 5] (7.47)

Equation (7.47) is the standard formulation of a linear eigenvalue problem with constant
coefficients. K may be identified as the stiffness matrix while K¢ is the geometrical stiffness
matrix. Kg is given by

Ke = N°Ky + MKy, + 2K, (7.48)
The stiffness matrix is given by

P Ly —~ Earbo (K 40t ) 6len orlem (Lay + foy (K 40P L))
K = (7.49)
ekl ey (Igy + 6pn (K +0°L,))  o(K +021,) — £Dey,leeeqny

Equation (7.49) expresses the stiffness matrix K in terms of both the global and the lo-
cal geometrical parameters. It is possible to separate the two contributions by use of the
transformation operator KC. Introducing the fundamental stiffness matrix K,

I 0
2. (7.50)
0 K+a?l,
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means that K alternatively can be expressed by
K = ?KTK. K (7.51)

The three tensors containing the initial stress contribution are given by

[ bap — €ayk (rgngeng — (eg — ag)) — CaqkTE0 — (Ca— Qs)0H
Ky = (7.52)
L - eﬁw'ﬁg?‘ia ~ Litp ~— ag)a (127'2 + ng'm(cn - an)

[ Bl (ew - mgepﬁZﬁw) Oy — Cankin2fy
K, = (7.53)

cepy — ey ko2, © =K+ a?20,

—6Ofnf1?e'vﬁ 0

K, = (7.54)
o g

The four tensors are symmetric and thus the eigenvalue problem can be solved by use of
standard methods.

7.5.2 Straight Beam with Eccentric Axial Load

An important special case of the general stability equations is that of an axially loaded beam.
The beam is loaded by 2 endforces as indicated in Fig. 7.3. In this case the beam mainly acts
as a column. The simply supported column is the most popular example in case of buckling
and postbuckling analysis because it is possible to perform a complete investigation of the
initial postbuckling behavior, see e.g. Thomson & Hunt (1973), Budiansky (1974), Grimaldi
& Pignataro (1979), Roorda (1980) and Naschie (1990). In the general stability analysis of
Thomson, Budiansky and Roorda the double symmetric column is investigated by use of a
nonlinear curvature expression, while the theory of Grimaldi & Pignataro is specialised into
the nonlinear problem of the central loaded column by use of a linear displacement field in
a nonlinear strain measure.

Fig. 7.3: Column with eccentric axial load.

In the present thesis the axially loaded beam is initially considered in a general way and
subsequently the specialised examples where the compressive force acts in the shear and
elastic centers are considered. Comparisions with some of the above mentioned works are
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made. Often the stability equations are of main interest in connection with compressional
loads, and it is therefore convenient for the statics in the initial state to introduce the notation

Ng = ‘—PO - -/\0
M = —eap(ds — c5) ho (7.55)

where d,, is the location of the compressive force.

For the straight column the governing differential equations can now be found from (7.42)
and (7.43), i.e.

d o i ~1 1
" dso (eo®h) = P°@, — (d = aa) PR = R, (%986)
& (g )7+ (1,5
i - — ¢a) P°) k! o b
dso ((K ro P+ 2Brena(da — ca) )&3 * dsi \'* dso
+ P°(dy — a0) Ky, = Rj (7:57)

This standard form is in the following used to examine the buckling and postbuckling be-
havior of the straight column.

Critical Load

The critical load can be found from the eigenvalue problem given in equation (7.47). Using
(7.55) it follows from (7.49) and (7.52) that in this particular case

(K + Xo (K + €ap(ds — co)Knr, )| -6 = 0 (7.58)

where the tensors appearing are defined in Section 7.5.1.

In case of a straight beam, i.e. K,? = 0, it follows that Ay can be determined from the following
determinant equation

L 0
a?
0 K + o?l,

8o —a(dy — aq)
ez ) (7.59)
—a(dg —ag) azrg + o’ 2Bn€n, (dyp — ;)

It is seen that if the point of attack does not coincide with the shear center, d, # a,, the
equations for bending and torsion are coupled. Equation (7.59) is the general form of the
determinant equation which determines the critical load for the simply supported column.



98 Chapter 7

In the following examples are given where the load is applied at the shear center and at the
elastic center, respectively.

Axial Load Applied at the Shear Center

For an axial load applied at the shear center, d, = a,, bending and torsion uncouple. Letting
e represent the direction of the principal axes, i.e. I3 = Ip; = 0, the critical loads follow
from the determinant equation as

. a? I]_]_
2
Pcr = PO = = 122 (760)
K + o?1,
U 12 + 28,00 (G0 — Co)

The critical load is then given by the lowest of the 3 eigenvalues. Note that the ratio expres-
sion which corresponds to a torsional buckling load for cross-sections with non coincident
shear and elastic centers is influenced by the geometrical parameter f,. This implies that
for an axial load applied at the shear center only the torsional buckling load is influenced by
possible unsymmetry of the cross-section.

The buckling modes corresponding to the buckling loads are given by either a bending mode

@' = ¢qcosasg el (bending mode) no a summation (7.61)
or a torsional mode
@' = é3sinasy el (torsion mode) (7.62)

The one to occur is determined by the lowest value of P° in (7.60).

Postbuckling for Axial Load at the Shear Center

The analysis of the postbuckling behavior is performed by use of the strong formulation
presented in the previous sections.

In the following the postbuckling behavior is examined by assuming that the column buckles
in a bending mode. The buckling form is given by

[ ¢ cosasg ]

TR L & 0
o = 901,%,903] = ¢1cosaspe; = 0 (7.63)
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Fig. 7.4: Bending mode.

The load increment factor A; can now be found from equation (7.36). From Appendix C it
follows that the right-hand sides of the differential equations determining @? are given by

R = Mg P | BE=8=10 (7.64)

Inserting this in (7.36) leads to the identity
!
/ MBEFEP Ay, =0 , A =0 (7.65)
0

This means that when the axial load is placed at the shear center then the initial postbuckling
behavior is symmetric for all types of cross-sections.

The next step in the postbuckling analysis is to determine @? from equation (7.56) and
(7.57). From (7.64) and (7.65) it follows that R} = 0 which means that the homogeneous
linear differential equations in (7.42) and (7.43) are recovered, but now in terms of @?.
The boundary condtions still have to be fulfilled which together with the orthonormality
condition implies that @% represents the trivial solution, i.e.

g =10 (7.66)

Finally A; can now be found from (7.38). Using Appendix C it follows that

~13

R = PD(%— - /\za;a%) . R = R =0 (7.67)

Inserting (7.63) and (7.67) in the functional (7.38) means that

]Ul PO(% ¢ cos®asy — Ay f3 COSQOESO) dsg = 0 (7.68)
and performing the integrations means that A, is given by

Ay = — @2 (7.69)

This completes the determination of the parameters describing the initial postbuckling be-
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havior, which is described by the first two terms of the expansion in (7.12). The external
load P may approximatively be written as

P=pP(1+ %gﬁg?) , P = all (7.70)

Equation (7.70) corresponds to the formula for the postbuckling behavior for the Euler
column found by Budiansky (1974) and Naschie (1990).

The change in P is more illustrative if the relation in (7.70) is reformulated in terms of the
midpoint deflection. Using the linearized part of £} means that the relation between the
displacement component riz and the rotation component ¢} is expressed by

dr!
a? 1 =8 0 !
o + ) [7.71)

Using (7.71) the amplitude ¢;£ can be expressed by the midpoint deflection é;. It follows
that approximately

b2
Qi =-mp (7.72)
2.0
] p/P°
1.8
1.8 —
147 q ®
4 & p
. S =
1:0: =
0.8
o
0.6 -
0.4 : Asymptotic second order
o ©eooo Timoshenko
0.2 A
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Fig. 7.5: Initial-postbuckling for the straight column.

Substitution of (7.72) into (7.70) leads to

P 2 SN\ 2
ﬁ = 1 + %‘(z) 3 PO = C)fz.[u (773)

which expresses the asymptotic second-order initial postbuckling behavior of the double
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symmetric simply supported column. In Fig. 7.5 the load-deflection relation is illustrated
together with the complete solution obtained by Timoshenko & Gere (1961). By use of
finite rotations thereby achieving the exact expression for the curvature in the buckled state
Timoshenko & Gere obtained a closed form solution of the postbuckling behavior.

Fig. 7.5 indicates that the postbuckling curve initially is very flat meaning that the column
with axial load applied at the shear center is not sensitive to initial deformations. For most
actual columns, as bending increases, the combined axial and bending stress will exceed the
proportional limit of the material long before the deviation of the critical load determined by
the linearized equations from the nonlinear theory becomes significant. Consequently, within
the range of elastic behavior the results obtained from the finite roation analysis show that
no significant postbuckling strength exist for the simply supported column.

Buckling for Axial Load at the Elastic Center

The buckling as well as the postbuckling behavior for different types of cross-sections of the
central loaded column is analysed in the following. In the postbuckling analysis focus is
placed on determination of whether the initial behavior is symmetric or nonsymmetric.

Critical Load :

If the axial load is applied at the elastic center, d, = ¢,, bending and torsion may couple
if the cross-section is nonsymmetric. The critical load P, can be determined from (7.59)
leading to

[ a2]1]_P0 0 a(cl—al)PO 1

0 o’ I — P° a(c2 — ap) P° = 0 (7.74)

5

1
a(e; —a;)) P° afc;—ay) P° or? (—2 (K + &*1,) — PO) _

Notice that the effects from a nonsymmetric form now are represented by the difference
between the location of the elastic and the shear center, while previously 8, occured in the
determinant equation.

Double Symmetric Cross-section :
In case of a double symmetric cross-section, i.e. ¢, = aq, the bending and torsion problems
uncouple. The critical load then follows directly from (7.74)

( P =y

P o= P P, = o I (7.75)

L 2
h Py = E(I& + o [w)
The critical load is then given by the lowest of the 3 eigenvalues. As bending and torsion
uncouples the buckling modes are similar to those found in the example where the load is
applied at the shear center. According to this the postbuckling behavior is also similar and
therefore no further analysis is necessary.
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Monosymmetric Cross-section :
Examples of monosymmetric cross-sections are the T- and C-profiles. Letting ¢; = a; and
¢y # ay then the critical load P, can be determined from

052 Ill

o= Pl PPe= (7.76)

_ 2
2 (1— (C"’ “2) ) P? — (Py+ P)P° + PPy = 0

Ta

where P, and P; are defined in (7.75). The buckling load is given by the lowest of the three
eigenvalues given in (7.76).

The buckling modes corresponding to the buckling loads are given by either a bending mode

ey

@' = ¢y cosasg e’ (bending mode) (7.77)

or a combined bending and torsion mode

@' = ¢ycosaspe) + ¢asinasge] (bending/torsion mode) (7.78)

The bending mode corresponds to the results for the double symmetric cross-section, there-
fore emphasis is placed on the combined mode in the investigation of the initial postbuckling
behavior.

" 0

- - » o Tl
' = [§1, 5,85 = | dacosaso (7.79)

| ¢3sinasg

Using the combined buckling mode (7.79) in (7.36) the first order load increment factor A,
can be determined. If ¢; = a; and ¢; # a; and it {ollows from Table 4.2 that 4, # 0 and
B, = 0. From Appendix C it follows that the functions R? necessary for the determination
of the first order load increment factor A; are now given by

d e ool i e —
Rf = a—( = 1221{;99;13 %+ %]11 (K%‘P:l; - '{:1599;) ¥ ‘F’%B K:113
S0
i dk. e ol ¢ e
= @éa(fw Ez) + )61]11“;,"é v %(‘P;@; + ‘10.3599;)(02 . aZ)P(])
R = M@,P° (7.80)
R = 0

It follows that the right-hand side of the bending equation in (7.56) which determines @? is
nonzero. The second order components of @? are not explored further. Inserting (7.80) in
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(7.36) together with (7.79) leads to the identity

I
/ A1 62 cos?(asp)dsg = 0 (7.81)
0

whereby it follows that A; = 0. This means that if the axial load is placed at the elastic
center the initial postbuckling behavior is symmetric for monosymmetric cross-sections.

Cross-sections with no Axis of Symmetry :

The Z- and L-profiles are examples of cross-sections with no axis of symmetry. In case of
the Z-profile the elastic and shear center are coincident, i.e. ¢, = a, and S, = 0, whereby
it from (7.74)follows that no coupling occurs. This means that for the Z-profile the initial
postbuckling behavior is similar to that of the double symmetric cross-section.

For the L-profile the elastic and shear center are noncoincident, i.e. ¢, # ay and B, # 0. It
follows from (7.74) that linearly independent buckling modes do not occur, i.e ¢} # 0. Based
on the experience from the investigations of the double and the monosymmetric cross-section
it is evident that A; # 0 whereby it can be concluded that the initial postbuckling behavior
is nonsymmetric as it also was found by Grimaldi & Pignataro (1979).

The analysis is not performed in detail because a closed form expression for A\; can not be
obtained without several rewritings.

7.5.3 Curved Beam in Pure Bending

The stability behavior of a beam in pure bending has been investigated for many years,
see e.g. Vlasov (1961) and Timoshenko (1961). During the last decade the interest in the
stability behavior of the curved thin-walled beam has been significant see e.g. Yoo (1982),
Yang & Kuo (1987) and Papangelis & Trahair (1986). Some differencies occured in the
results but the majority seems to agree with the formulations obtained by Vlasov as the
beam in pure bending was considered. The analysis performed by the above mentioned
authors are all limitted to the buckling behavior.

In this section the buckling as well as initial postbuckling behavior is investigated in order
to identify the governing parameters for the thin-walled beam element.

Fig. 7.6: Curved beam with in-plane moment.

The problem beam in pure bending is illustrated via the example shown in Fig. 7.6. It follows
that the quantities which may differ from zero are

Mi(0) = Mi(L) = MP(1+)) and k) = MY/Iu + 1/R (7.82)
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where 1/R indicates the possibility of an initial curvature which is present before loading.
In the following «? is assumed constant and «{ is considered to be the total curvature at the
critical point.

Critical Load

The critical moment M} can be determined by solving the standard problem
K + MKy ¢ = 0 (7.83)

where K and Ky, are defined in Section 7.5.1. First the beam bends in plane of the applied
moment, i.e. ¢? # 0 and &} # 0. The stability problem then arises when the applied moment
reaches the critical value which courses the beam to buckle out of the plane, i.e ! # 0 and
@i # 0. In the following €2 indicates the direction of the principal axes, i.e. Iy, = I = 0.
The eigenvalue problem (7.83) can now be expressed by

0

Ins + (%)2 (K +o1,) (f&g) (B2 + (K + L))

2

0 0\ 2
(Hq) (-722 + (K + szfu)) K + o*1, + (ﬂ) ey
o o

[-(F)0-s08) - (1 nten) H
| -(-w28) a2 - (E) é3

The form of the eigenvalue problem in (7.84) is symmetric and can therefore be solved by use
of standard methods. It follows that the critical moment can be found from the quadratic
equation

AM® + BM? 4+ C = 0 (7.85)

where the coefficients A, B, and C are given by

A = (1-s328)
B = - (a2 — K‘I )261[22 — Ky (]22 + (]‘ + I ))
C = —(a® — &) Inn (K + 0’L,) (7.86)

The expressions for the coefficients of (7.85) contains the influence from an initial curvature
as well as a possible unsymmetry of the cross-section. These effects are in the following
analysed separately.
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Straight Beam in Pure Bending :
For the straight beam, i.e. k§ = 0, it follows that the coefficients in (7.86) simplifies to

A = ] ’ 2 — —20.’2ﬁ1]22 3 G = —a2]22(1{+a21w) (787)

Substitution of (7.87) into (7.85) means that the critical moment for the straight beam with
arbitrary cross-section can be determined from

M? = By In £ \/a? Inn(K + 02L,) + (a2 fy Inp)? (7.88)

For the double symmetric cross-section 5, = 0 which leads to the introduction of a reference
moment Mg, given by

Mo = i \/122 (K +o?1,) (7.89)
Equation (7.89) is the well-known formula for the critical moment of a double symmetric

straight beam in pure bending, see e.g. Timoshenko & Gere (1961).

The influence from a possible unsymmetry of the cross-section can be investigated by use of
the reference load M, . It follows that (7.88) can be rewritten to yield

M} = 7 My, (7.90)
where the coeflicient 4 is defined by

0y
K + o1,

v = Vbt Vith b:(”ﬂl) (7.91)

L

It follows that the influence from an unsymmetry 75 is closely connected to the bend-
ing/torsion ratio as well as it depends on the beam length. From (7.91) it appears that
for cross-sections which are nonsymmetric in the plane of the applied moment a significant
difference between the positive and negative critical moment can occur. This is for example
the case for a T-beam with ordinary proportions loaded in the plane of the web.

Double Symmetric Curved Beam :

The influence from an initial curvature on the critical moment can be examined by intro-
ducing % = M?/I;; and assuming that 8, = 0.

From (7.86) it follows that

0

M
A=1 , H= ——1(]22+(I‘f+a21w))
Iy

C = — | - M\’ I (K+a21) (7.92)
2= 11] 22 w .
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which by substitution into (7.85) leads to
M10 = Tk M.str (793)

where

2 1
T = (1 B 52_2) (1_I{+a21w)
I I

A corresponding expression was found by Vacharajittiphan ef. al. (1974) who analysed the
effect of in-plane deformation on lateral buckling for double symmetric cross-sections. As
the in-plane bending stiffness in general is significantly larger than the torsional stiffness for
cross-sections with ordinary properties (7.94) indicates that . is independent of the beam
length, i.e. only the cross-sectional parameters influence 7.. From (7.94) it follows that for
a high beam the influence from an initial curvature is insignificant while for stocky beams

(7.94)

the influence may become significant.

Examples :
The general expression contained in (7.85)-(7.86) is first used to make some comparisons
with the literature. An IPE330 (see e.g. Fig. 7.7) beam with length L = 6000mm has been

analysed for different values of a prescribed initial curvature, i.e. k9 = ©/L.

160 F/E = 6260mm?

11.8 te=——>

In/E = 117.7-10°mm*
I/E = 7.88 10°nm?
K/G = 0.283-10°nm?
ILJE = 199 10°mm?°

75 |

330

Fig. 7.7: IPE330 - Cross-section.

In Fig. 7.8 the critical moment for a double symmetric cross-section determined by (7.85) is
illustrated together with results obtained by Vlasov (1961) and Yang & Kuo (1987). These
authors developed their formulations by considering the single curved beam directly, thereby
loosing the generality achieved in the present formulation. The method of solution for Vlasov
was to substitute the generalized deformations of the straight beam with the corresponding
for a curved beam in the governing differential equations. Yoo develops the governing dif-
ferential equations from the potential energy by variational principles. The potential energy
for a curved beam is obtained by replacing the straight beam terms with those of a single
curved beam. Yang used a linear displacement field in a nonlinear strain measure and iden-
tified the initial stress terms through the higher order terms. In his developing process Yang
underlines the importance of including special effects as for instance coupled stress/strain
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relations and radial stresses.

il Vlasov & Present g 0 n““}}]asov & Present
ooooo Yan, 08 L] ang
6.0 4 ooooo'{oog ' SMHY“
] 0.8
_25.0 “ ;0.7
2 ] 0.6
.;;4.0 4 g
4 = 05
3.0 1 0.4
2.0 4 0.3
1 0.2

1.0 #0000 0 ¢ ¢
] e ENy, 0.1
¢
0
3
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Fig. 7.8: Critical moment for pure bending.  a) Positive moment. b) Negative moment.

For the special case of a semicircular beam (® = 7), only the negative critical moment will
reduce to zero. Such a result corresponds to the freedom of a pinned semicircular beam to
rotate about the diameter joining the ends. In an eigenvalue test each zero root is associated
with one rigid body mode. For a pinned semicircular beam, there exists a single rigid body
mode, i.e., rotation about the diameter joining the two ends. Therefore, only the applied
loads that may result in a buckling deformation involving the rigid body motion will reach the
critical value of zero. From Fig. 7.8 it appears that besides of Yoo the different approaches
lead to the same critical moment. As Yoo’s expressions deviates significantly from the others
it seems that an error must have occured in his rewritting of the potential energy from the
straight beam case into that of a curved beam. It is believed that the error is associated
with the initial stress terms as the elastic terms are in agreement with those of Vlasov and
the present formulation. Further Fig. 7.8 indicates that no further information is obtained
by Yangs approach which questions the need for additional terms as introduced by Yang.

The last example is a comparison between three different types of cross-sections for a pre-
scribed initial curvature. The cross-sections used are an IPE100, a CNP100 and finally a
T(h=100,b=>50,t=11) and the length of the beam is L = 2400mm. In all three cases the

moment is applied in the plane of the largest bending stiffness. The dimensionless cross-

Table 7.1: Cross-sectional parameters for I-, C- and T-profiles.

In I3 B B % =

s K+ofl, L L B T8
IPE100 10.8  28.8  0.000 0.000 1.00 -1.00 1.054
CNP100 70 248  0.000 -0.036 1.00 -1.00 1.082

T(100,50,11) 15.9 4.5 0.026 0.000 1.15 -0.87 1.039
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sectional parameters are illustrated in Table 7.1 together with 75 and 7.. The results in
Table 7.1 and Fig. 7.9 illustrate that even for standard profiles as the IPE100 and CNP100
the initial curvature influences the critical moment at small values of ©. For the T(100,50,11)
beam the influence from the unsymmetry is more significant than that of the initial curvature
for small values of ©.

12.0 - 1.0
(a) | (b)
10.0 b |\
8 weesa I—profile 408 14 neses [—profile
= 1 ¢eee¢ C—protile = b 5 0600 C—profile
;\50 ] &eaea T—profile c\ ] " satrtes T—profile
= =08
8.0 "I
0.4 A
4.0 4
2.0 A %2
0.0 +——r—rrrrrrrTrrrrrr— 0.0 A i
0 20 40 80 806100 120 140 180 180 0 20 40 60 806100 120 140 180 180

Fig. 7.9: Critical moment for pure bending. a) Positive moment. b) Negative moment.

The results obtained here demands a method which accounts for initial deformations in
a buckling analysis. The formulation in the present work enables to perform an analysis
where the geometry and statics of the beam structure is updated continuously. A numerical
formulation of this is presented in Chapter 8.

Buckling Mode for Straight Beam

If the critical moment M° has been determined from (7.85) then the first order term @' of
the buckling mode can be determined. The buckling mode @' is described by

= ¢ cosasg ey + ¢ssinasg el (7.95)

where the coefficients ¢ and ¢} describe the eigenvector of the eigenvalueproblem in (7.84).
The buckling modes may be illustrated by neglecting the initial deformations, i.e. k9 = 0,
and concentrating on cross-sections where #; = 0. The critical moment for the straight beam
My, is given by (7.89) and it follows from (7.84) that the corresponding buckling mode is
given by

b5 K + a*l,
Iz
P3 =5

; My, = —ap¢slsn (7.96)

Il

Using an [-beam with web height A to illustrate the buckling modes it follows that

h2
Iw == ’4—]22 (797)
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which leads to

m [V 0 G 98

bs L

For a high I-beam the bending component ¢, is predominant which means that the bending
mode is dominant. In the case of a slender rectangular cross-section I, ~ 0 and the ratio
K/I,; equals 4G/E. This means that the buckling mode is given by an equal combination
of bending and torsion.

Postbuckling for beam in pure bending

The postbuckling behavior is now examined by use of the buckling mode given in (7.95).
The analysis consist of the determination of the postbuckling displacements and the corre-
sponding load increment factors. In this example the second order displacement vector @*
has to be determined before the load increment factors can be found.

Postbuckling Displacements :

The second order term of the rotation vector, @*, can be determined from (7.37) where only
the right-hand side is different from the equations used to determine \g. From (7.42)-(7.43)
it follows that the linear differential equations determining g'Eff are given by

In-plane bending :

d

B E(Illﬁf) = B2(F, 00, 01) (7.99)

Out-of-plane bending :

d [ ) o d [ di2 y
_ E(Igzng) + (K + 28 M0)R2 — &?EO( wﬁ) - M = RE (7.100)
“Torsion and Warping :
d 3 &/ dg2 .
— k3IR2 — E@((K +2ﬁ1M{))n§) + E(Lﬁz) + MJ%2 = R? (7.101)

From Appendix C it follows that the right-hand sides of the differential equations are given
by

d oy et e 2 s
R = E(_ In%3@; + 3 In (R385 — Ragy) + @3 (K + 28:M0)R)
., d (I dk}

- P (L 52) + BLuRE - & (Fheh + i) )

d
B = (BLRR) + K28 hRiR (7.102)
0
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d
R% = g(?ﬁg]ggzégé> — &?62122%%2‘,;
0

Using (7.45) means that R} can be expressed by the trigonometric functions

d
R = - C—i?(%afu%dh — P1111C5C5 cos® (aso)
0

+(~;~fu k36202 — ¢o(K + o?L, + 26:M7)Cs + %@@M{’) cos®(aso)

+(12202¢3 + LN k)33 + § bada M?) sin2(aso)) _ (7.103)

where C, and Cj are defined in (7.45). The splitting of R? which is associated with in-plane
bending into three groups is performed because the first term is dominant compared with
the others. This can be shown by numerical analysis, but such analysis is omitted here.
Rewritting using (7.82) leads to

R = - d;;lo(%aln babs — B1111C3C3 cos®(aso)

- (%(K + &L, + zﬂlM{J)Cg — &y ¢2¢2) cos®(as)

+ (02 Featis b 12 B ¢3¢3>sin2(aso)) (7.104)
R = — Buoly (aC;gCa + &% Czcg) sin(2asp) (7.105)
R = % B2l (K?C;;Cg + (4&0203 + &Y 0303) 008(2050)) (7.106)

It appears that the right-hand side in general preserves a simple form but for nonsymmetric
sections a set of non-homogeneous linear differential equations arise. In order to determine
the load increments A; and A, the components @* are investigated in the following.

In-plane bending :

The differential equation for in-plane bending (7.99) is of course still uncoupled from the
others. The next term in the expansion of @1, i.e. ¢%, can then be determined directly from
from

d [ d [, dp?
"*d—('[”’“?) : __(Jnﬁ) - R? (7.107)

So

where R? is given by (7.104).
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Integration leads to the curvature component &2

Ri = adads — P CsCscos’(aso)

K +a?I, + 26,M
= (¢52

0
7 L (O3 — K?¢2¢2) cos?(aso)
11

I :
+ (Cz I—”~ ¢a + x?qbagba) sin’ (aso) (7.108)
11

It is now possible to examinen the expansion of k] from (7.14) in detail. Substitution of
(7.95) and (7.108) leads to

K+ oI, + 2, M?
Iy

B = — (¢2 Cs + B1C3C3 — n?cézcﬁz) cos?(asp)

+ (02 %E 93 + K?¢3¢53) sin’ (aso) (7.109)
11

Notice that the term which is dominating in (7.108) vanishes in the expression for the in-
plane curvature component ;. This indicates that most of the in-plane displacement is

converted into internal forces connected to the out-of-plane problem.

Finally the identity k2 = d@?/dso can be used to obtain an expression for the second order
rotation component @7. Integration of (7.108) leads to

¥ 1 L
sof = = 5&(752(;53(30 = 5)
[, K +a%l,+ 26, M2 L :
+ [6 T 0 4 10405 ~ Kt (7~ %0+ sin2as |
i 11
r 1 L .
= Czj—m¢3 + K?¢3¢3] (—é— — S0 — stasD) (7.110)
! 11

where L is the length of the beam.

In the integration process the symmetri of the problem at hand has been used to obtain the
form given in (7.110). From (7.110) it follows that the beam continues the deformation in
the plane of the applied moment after reaching the critical load.

Out-of-plane Bending and Torsion/Warping:

The differential equations concerned with out-of-plane bending and (7.100) and torsion-
warping (7.101) are still coupled. In case of nonsymmetric cross-sections the right-hand
sides of (7.100)-(7.101) may differ from zero. The two missing components of the second
order rotation vector @* can then be determined from the linear differential equations

d 4 7 i
= —~(Iggﬁ§) + (K + 26:MY)R — (I i

K PE—
d.SQ . dSo “ dSO

) - Mo
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= — ﬁz]zz (0{0303 + K{l) 0203) sin(2aso) (7111)

- d , W dk
= i EiE — d—s-((ﬁ +2ﬁ1M1°)m§) t (1 d’;‘?’) + M%2
0 0

1 .
= 5)62]22 (5?0303 + (4a0203 + &J 0303) COS(ZOSQ)) (7.112)

The linear differential equations are nonhomogeneous if 8, # 0, which may occur for
monosymmetric and nonsymmetric cross-sections. If f, # 0 then @5 = @5 = 0 accord-
ing to the orthogonality condition of the eigenforms @* (7.24).

In Fig. 7.10 an illustration of the load versus displacement of the beam in pure bending is
presented.

Fig. 7.10: Load-Displacements for beam in pure bending.

The process consists of an initial state where only in-plane deformations occurs followed by
deformations out of the plane corresponding to a buckled state.

Load Increment Factors :

In order to determine the load increment A the alternative version has to be used. The
change in the external moment M; in the vicinity of the critical point is described by the
load increment factors A; and A;. A; can be found from (7.39). This means that @2 has to
be determined.

In this example A; can be determined from (7.39)

K3 (84:85) + 6G3(8%5 M) + 663, (3485, 00, M) = 0 (7.113)

where it follows from Appendix D that in this particular example

= 3 : i sl s
63 (755 B do M) = S&%6¢ [ 2BInBRLRS dso (7.114)
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and
6G31 (3531 dos M) = 0 (7.115)
From (7.29) it follows that

6G3 (7% M) = —x [#2 M0, ese? (7.116)

Notice that if the external moment is applied in the direction of one of the principal axes
the coefficient \; is only nonzero if 3; # 0, i.e. the cross-section has to be non-symmetric in
the plane ortogonal to the plane of the applied moment. An example where the parameter
B3, is nonzero is the C-profile if the moment is applied in the plane of the web.

A2 can be determined from (7.40)
K3 (853)) + 5 51112(@],@,) + 66 (%82, 2o, 1)
+8G1; (B3 83, d0, M, Ae) + 8Gao (@2 02) = 0 (7.117)
From Appendix D it follows that
6]111(45;,45; = ﬁf 6€ / {%Eé 3In —4122)%95;

— K3 Py (6]11 —4(lpn+ K +26iM )) Es@:l’, + &3 dd (I do (EZ@é@g))

+ G353 (3I — 4K — 26, M7 )R3R; — E%dio (% dd (7i71R3))
+ 6726, 11, (R)p5 — Ry@h) R + 3RARS REF R3R) } dso (7.118)
and
6K (7 8%) = 208 [ | { In (B3¢ — F33)
+7; I (RA52 — B103) + B3 (K + 28M7 ) (Rig) — R332

dk3 A f gl el
i § (Kjftpé - ﬂ:égof) + K326 11 R3%S + dsg (7.119)
dSQ d S0

The functions containing the initial stresses and the load increments can be found from
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Appendix D, leading to

6G£111 ((15; ) 99;'1 )\U; )\1: /\2) =

1 D Pt mdis il s
586 /0 MY (B33 — K3y @5 + Ks@y@h. — Ka@h ) dso (7.120)
6G$2(9’53 ) (to_ys ACH Ala) = _63 56 / MO 2(,02 + (103@3) E% dSo
1 I [
+ €8¢ AR et M) (1.121)

From (7.29) it follows that

{
Gl (2 3a) = —ha B M) eeg? (7.122)

In the following the initial postbuckling behavior is analysed in detail for different types of
cross-sections.

Double Symmetric Cross-Sections :

In case of a double symmetric cross-section, e.g. I- or H-profiles, the postbuckling rotations
are described by

i 0 7 " adads (so — L/2) ... see (7.110) T

~1 ~2 1

¢ = | dcosaso | , @ = 5 0 (7.123)
| ¢z sinasg 1 0 i

In the expression for @? only the dominant part is written. Nevertheless the remaining part
is included in the further investigations, as this contribution is essential for an accurate
derivation of the initial postbuckling behavior.

The load increment factor A; was previously found to be zero for double symmetric cross-
sections, therefore emphasis can be placed on the determination of A,.

Inserting (7.123) in (7.118) and (7.122) and performing the integrations leads to the identity

L

Magrds MY L = T

[302(3111 410) 8% + 362 (3111 — (K + a?L,))C?
— $2C2 (6111 — 4(Ia + K + 0*1,,)) $5C5 + C3 RAF C3
+ 1206265 It (Cags — Cs8a) + 6(¢3 + ¢3)x30n (3C28s — C3ga)

6(Calnds — (K + 0’1,)d5) (3Cas — Cady — 206265)
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6 0 3
+—~Cy (I — (K + al,))Csabsds + 12M7 agiés

+ MP(363Ca - ¢1Cada + 263Ca — 3C283 + 6a dudu(@ + D)) | (1.128)

where the effect from the initial curvature 9 is contained in the coefficients C;, and Cj

determined by (7.45). The term associated with the fourth-order moment R? which only
depends on the twist k3 is also a term which does not possess the same structure as the
remaining terms.

If the initial curvature is neglected in (7.124) C; = —a¢, and C3 = a¢z. Performing such
an analysis leads to an impression of whether the postbuckling behavior is stable or not.
Letting h represent a characteristic length inside the cross-section then the term containing
R? hereby becomes proportional to (h/L)* compared to the other terms. This indicates
that for beams with ordinary proportions the contribution is negligible. Substitution of the
expression for the critical moment M? in terms of the buckling form (¢, ¢3) from (7.96)
leads to

5 K 4+ %1,
dg  — |1 4 —= 7.125
2716 ( * " I ) (7.125)

This means that for the double symmetric beam in pure bending the initial postbuckling
behavior is always stable.

The external moment M; in the vicinity of the critical point is expressed by
My = MP(1+ M) (7.126)

where A is given by (7.125). Using a relation between rotation ¢; and translation r,, similar
to (7.71) the scale factor £ can be related to the deflection out-of- plane of the elastlc center
at the middle of the beam

§
E¢2 = 1 (7.127)

Using the eigenform (7.96) and substitution of (7.127) leads to

M, b I (51)2
= L g (1 + K+a21w) - (7.128)

Notice that in the vicinity of the critical point the curvature of the initial postbuckling
curve depends on the ratio between the out-of-plane bending stiffness and the torsional
stiffness. This means that the postbuckling strength is closely related to the tendency of
the beam to twist instead of to bend out of the plane as it could be expected. In Fig.
7.11 the initial postbuckling curves are illustrated for IPE100 and HB10 (rectangular profile
where the height /depth ratio is 10) profiles with L = 2400mm. The important cross-section
parameters are for the I-beam Iy1/15; = 10.75 and Iy /(K +a?1,) = 28.8 whereby A, = 0.323
while for the HB-beam I1;/15; = 100, I3/ K = 0.655 and Ay, = 0.790.
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Fig. 7.11: Asymptotic 2nd order postbuckling curve for double symmetric cross-section.
a) Out-of-plane deflection. b) Twist.

From Fig. 7.11a it is evident that for a beam with standard proportions some deflection has
to occur before the beam regains some strength out-of-plane. An important aspect in the
investigation of the postbuckling strength i1s the twist w3 of the cross-section plane at the
midpoint of the beam developing during the buckling process, see e.g. Fig. 7.11b. Using
(7.127) and (7.96) it follows that approximately

51 I22

which indicates that a significant twist has to occur before the beam regains strength. A
deflection of 8;/L = 0.05 means for the IPE100 that @3 ~ w/4 while 3 ~ /80 for HB10.
Finally Fig. 7.11 indicates that slender beams have more reserve strength after buckling
commences than do stocky beams.

The asymptotic postbuckling analysis performed for the IPE-profile and the rectangular
profile have shown that only an insignificant postbuckling strength is available.

Monosymmetric Cross-Sections - §; #0 :

A cross-section where f; # 0 is e.g. a T-profile if the moment is applied in the plane of the
web. The postbuckling rotations are now given by

[ 0 i [ (2adags +28:C3Cs)(s0 — L)2) ]
+ 1C5C3sin2asy . .. (see (7.110))
2 - o 2 (7.130)
¢acosasg | 4 0 '
| ¢3sinasg | i 0 |

From (7.130) it follows that the sign of the second order term @? depends on the influence
from the term containing the parameter 3;. It can easily be shown that the first term is
dominant meaning that the sign of this term prescribes the sign of 3. From the investigations
concerned with the double symmetric cross-section it was obvios that the amount of terms
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makes it almost impossible to include everything. In the following the author has given his
best to obtain a reasonable description for the monosymmetric cross-section.

The load increment factor A; is again found to be zero. Inserting (7.130) in (7.118-7.122)
and performing the integrations means that Ay can be determined from

Mo [adads + Pr0sCa| MY L =
- %[30& (3811 — 45n) 6% + 3% (3111 — (K + oL, + 2B M7)) C2
— $:C5(6In — 4(Ins + K + &’ L, + 28: MY) ) $3C5 + C} RAF C3
120263 1 (Cags — Csda) + 6(82 + 62) k311 (3C2ds — Cady)

6(Calngs — $o(K + o*L, + 26 M) s ) (3C28s — Cag — 2a6263)

6
+-Cs (I — (K + ol + 28: MY)) Csad s

- iy [(3 +12/7) C3Cs (122 — (K4 o*L,+ 2ﬂ1M1°)) = 128 Tt

+24Oi¢2¢53]11 + 6(302122@53 - ¢’2(I{ + azlw s ZﬂlM{))) 03]
+6(Cats — 362C5) 261111 C3 + 12M adids + 24626281C5Cs

+ M7 (3¢'303 — ¢2C203 + d2¢3Cs — 3C¢3 + 6 hogha(da + ¢’§))] (7.131)

A simple expression for A;, as obtained for the double symmetric, can not be achieved for
the monosymmetric cross-section because of the influence from f; on M;. The sign of A,
therefore has to be examined by analysing specific examples. This has not been carried out
at this point.

Monosymmetric Cross-Sections - 3 # 0 :

An example of a monosymmetric cross-section where 8, # 0 is the C-profile if the moment
is applied in the plane of the web. The postbuckling rotations can be written as

[ 0 ' [ agaps(2s0 — L) ] [ agaps(2s0 — L) ]
- 1 . 1
»' = | dycosase | , P2 = % HED ~ 7 0 (7.132)
L C}Sg SinO{So J L @3(30) i L 0 .

Notice that the second and third component of $? are assumed to be negligible.
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The load increment factor A; can be found from (7.114) and (7.116) by substitution of
(7.132). Performing the integrations it follows that

1
Al angng M-?L = 52,82 Igz Ogcg (7133)

whereby

Zﬁg Q’Igg CQC:,?
L M{) 013¢’2¢3

A = (7.134)

Equation (7.134) implies that the slope of the postbuckling curve is proportional to the ratio
between the cross-sectional parameter 8, and the length of the beam L.

Analysing the dependency of A; on the the cross-section dimensions can be performed by
neglecting the initial curvature 9. Using the relations obtained for the straight beam case
leads to

2162 122
~ - A
A L VK 12, (7.135)

Notice that the slope also depends on the ratio between the out-of-plane bending stiffness
and the torsional stiffness. Comparing with 4 in (7.91) it appears that the influence from
an unsymmetry on the buckling behavior indeed is decribed by the dimensionless factor vg.

Recalling that f; doesn’t appear in the relation (7.117) which determines A, it follows that
A2 equals the one found for the double symmetric cross-section in (7.125). The external
moment can then be expressed by

My = MP (14 M€+ X8?) (7.136)

Using the identity of (7.127) equation (7.136) can be rewritten to yield

M, Ba I 61) 3 ., ( Iy, ) (51 2
i A R W0 . T oo I A QR ! .
MP "L K +a?l, (L BT Y Fran L) e,

It follows from (7.137) that the ratio between the bending stiffnesses and the torsional
stiffness is essential for the postbuckling strength of the beam element in pure bending. The
initial postbuckling curve for an CNP100 beam (see e.g. Table 7.1) with length L = 2400mm
loaded in the plane of the web is illustrated in Fig. 7.12. The result illustrated in Fig. 7.12
is one example of how skew the bifurcation problem can be. It follows from Fig. 7.12 that
the minimum value of the critical moment M, is about 10 procent smaller than the critical
moment determined from (7.93), i.e. a perfect beam (6;/! = 0) and further that this point
is displaced by é;/L ~ —0.035. From (7.129) and Table 7.1 it follows that an deflection
corresponding to 6;/L = —0.035 leads to a significant twist. From a practical point of view
this means that no postbuckling strength is available in this particular example for a negative
imperfection.
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6,/L

Fig. 7.12: Asymptotic 2nd order postbuckling curve for monosymmetric cross-section.

(CNP100)

All this indicates that for the CNP-profile a significant influence from the unsymmetry in
the loading plane occurs. The asymptotic analysis has revealed that cross-section which are
nonsymmetric in the loading plane are sensitive to imperfections and further it has identified
the governing parameters which are describing how sensitive a particular beam is.

7.6 Conclusions

An asymptotic buckling and postbuckling theory has been developed from the virtual work
equation (3.16) by use of a perturbation method. The general stability equation which
contains seven generalized displacements is, by omitting strain deformations, simplified to
be expressed entirely in terms of the rotational components. Both a differential as well as
an energy formulation of the asymptotic buckling and postbuckling problem are presented.
The solution procedure is to determine a buckling mode from the linearized problem, i.e.
bifurcation problem, and then by reinserting the buckling mode in the expanded version of
the virtual work equation to identify the first order load increment factor. A successive use
of the differential equations where the influence from a previos step are accounted for and
the virtual work equation then leads to identification of the load-displacement relation in
asymptotic sense.

The simply supported column with arbitrary cross-section and the beam in pure bending
have been investigated by use of the developed theory which has led to identification of the
governing parameters in the stability problem. The investigations have not revealed any new
geometric quantities, as it was expected, but they have identified the relations between the
cross-section parameters which determines the postbuckling behavior.



Chapter 8

Numerical Formulation of the
Stability Problem

In linear problems the solution is always unique which is no longer the case in many non-
linear situations. Thus, if ”a solution” is achieved it may not necessarily be "the solution”
sought. Physical insight into the nature of the problem and, usually, small-step incremental
approaches are essential to obtain physically significant answers. Nonlinear problems are
usually solved by taking a series of linear steps. In a structural analysis the process is to ex-
press the equilibrium equations in incremental form K - Au = Af. Here the stiffness matrix
K is a function of the displacements u because the problem is nonlinear. The current K,
often referred to as the tangent stiffness, is used to compute the next step in Au. Then u
and K are updated thereby being ready to take another step.

The nonlinear stability problem, as considered in this context, can be solved by use of an
updated Lagrangian solution procedure. Updated Lagrangian schemes have been used suc-
cessfully for the displacement-based finite element beam formulation by Yang & McGuire
(1986), Conci & Gattass (1990) and Kouhia (1991). A partially updated Lagrangian formu-
lation has been used by Peterson & Petersson (1985).

The weak formulation derived in Chapter 4 is obtained by considering the beam element in
two adjacent states. An updated Lagrangian formulation is therefore the obvious choice as
the initial state represents the history of the loading-displacement process and an incremental
step can be taken from this state. In this chapter an incremental updated Lagrangian two
node hybrid element is developed using the results obtained for the beam element in Chapter
6. Assuming small displacements but finite rotations the updating procedure is focused on
the rotation components. The performance of the hybrid element in a nonlinear context is
finally tested by analysing canonical problems. Comparisons are made with the literature
as well as the asymptotic analysis performed in Chapter 7.

8.1 Incremental Virtual Work Equation

In the general form presented in Chapter 5 the nonlinear stability equation (5.1) contains 7
unknown displacement functions and the load increment factor A. In both Chapters 6 and 7
the general form was reformulated by neglecting the strain deformations in order to obtain
simple but consistent formulations. In the numerical formulation in Chapter 6 the number

120
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of degrees of freedom was raised from 7 to 11 using a mixed formulation. The simple for-
mulation and the statical performance of the element developed from the mixed formulation
compensates for the high number of degrees of freedom. In the analytical analysis in Chap-
ter 7 the stability equation was formulated entirely in terms of the rotation components,
i.e. 3 displacement degrees of freedom and a load increment factor, which could be used to
investigate some canonical problems in an asymptotic way. Based on the experience from
both chapters emphasis is placed on developing a two node hybrid element in agreement
with the beam element in Chapter 6.

By a mixing of the element formulation in Chapter 6, i.e. (6.5), and the weak formulation
in Chapter 8, i.e. (7.11), the weak form describing the stability problem can be obtained.

‘1 1 1 1 1 2 A70 c0) 1 d6’ dg’
/0 {55(2,\3-;3- + kb Lop i + w3 (K + 12N + 2B M2 ) k3 + g

+ Ao (0" — £3) + &32B8n10a Kl Ky 4 %I{g o F K,é) — )\61"[11! py

— 6k} MP A + 6 Ak £2pY (Nban + Aan) + 6Akn NY Asy — A 66" 1° } dso

kA 3 n . . l
Aoy D0 PP+ 64k Y (P FS) (A ban + ﬁan)] =0 (8.1)
=1

1=1 0

The functions A; and A, are the Lagrange Multipliers as introduced in Chapter 6. Notice
that the load increment associated with the internal force N, i.e. point loads, is accounted
for in the boundary term in contrast to the weak formulation in (7.11).

In order to obtain a formulation suitable for the Finite Element method the linearized version
of (8.1) is introduced similar to (6.15) but now expanded with the initial stress terms. Using
the symmetry obtained in the linearized potential energy Vi, given in (5.30) means that the
linearized version of (8.1) is given by

1 1
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/D ol A; (ds + ra[e;mn -+ eJ3ntpn) + A (8 qu + L,D,Ye..mfin)

1 /dpl 0) (dcp ) 1de*  det
- . nom Ioz 7 =
* 2 (dSo ¥ 99“6 & p ds + (Pkekﬁj ¥ 2 dSO I dSD
1 /dp; " -0\ [ 43
+5 (G0 — wheassh) (K 472N + 26 M) (52 — ehen))

dp!
! (_—si + ‘P}cekjm'f%) eitMP 0% — @} eink (V] (835 + €2) + P2 £2 6a;) €jom ©1,



4 Chapter 8

—/\r;kpg - A}'92“3kjor fg ‘,9} — /\5091) }dso

LY P 1 n {

_6[1";1 > (ARY) + sohenn o (PO (e} + zxa,a))] 0 (82

i=1 i=1 0

Equation (8.1) is a mixed formulation of the stability problem as both kinematical as well as
statical functions are present and it follows that the only deviation from (6.5) is the presence
of the initial stress terms. The mixed formulation of the incremental equilibrium equations
is in the following used to introduce the tangent stiffness.

8.2 Incremental Updated Lagrangian Two Node Hy-
brid Element

The development of an updated Lagrangian element i1s performed similar to the development
of the static beam element in Chapter 6. This means that linear shape functions are used
for all involved functions.

A deviation from Chapter 6 is the presence of the initial forces. Using linear interpolation
1t follows that

NYE) = (1 — NS + eNY | MYE) = (1 — &MY + EMY (8.3)

FEquation (8.2) expresses the incremental form of the equilibrium equations at the beginning
of an incremental step. This means that the initial terms have to be updated before pro-
ceeding with the next load increment. Assuming small displacements but finite rotations it
follows from Chapter 3 that updating has to be performed corresponding to

W) ="+, No = (N)+Ne; , MY = (M + M)e, (8.4)

1.e. the increments in the rotation vector are added in a vector relation while the internal
force components are updated according to the convected basis described by e;.

The Finite Element formulation can be obtained by assembling the degrees of freedom in a
node vector u. For an assembly of elements the equilibrium equation then takes the form

§uT [(K + B® 4 4pR") m — ,\f] ~ 0 (8.5)

where the conventional stiffness matrix K, the initial displacement matrix K* and the load
increment vector f are developed in Chapter 6 and the complete form of the matrices is
given in Appendix E. The initial stress matrix K¢ is developed in a similar way as K and
1s also given in Appendix I&. The investigations performed in Chapter 6 indicated a very
simple formulation of K and K*. Further it follows from (8.2) and Appendix E that K7
may only have nonzero elements in connection with the rotation components indicating a
simple and compact form. A is the proportional constant of the initial stress distribution
and the matrix inside the parenthesis is the tangent stiffness for an incremental load step.
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Equation (8.5) has to be fulfilled for any variation in u which leads to
(K + K"+ %K) -u — AMf =0 (8.6)
The transition point from the initial state into the buckled state is identified by A = 0 and
det |[K + K + K| =0 (8.7)
As both K* and K° depend on the precritical displacements u® (8.7) is not to be solved
directly as a generalized eigenvalue problem instead the matrices and Aq are updated suc-

cessively until (8.7) is fulfilled, i.e. Ay = A;;. The solution procedure is illustrated in Fig.
8.1.

Stability Analysis

LY

Yes Load Increment Geo. Imperfection
I I
No : :
PreProcess :
Process Determination of
Convergence - A — " "] Buckling Mode

—— Pre- and Postbuckling Analysis
— — - Buckling Analysis

Fig. 8.1: Principles of a stability analysis.

During each load step a Newton-Raphson procedure is used to obtain the solution. In a
stability analysis where both the pre- and post-buckling load-displacement are sought an
iterative procedure as the Newton-Raphson method may fail to give a satisfactory solution
for the postbuckling problem. This is due to that reaching the critical point may imply
that the structural system has only insignificant stiffness in a plane ortogonal to the loading
plane. The continuation of the loading process therefore becomes very sensitive and the
possibility of different equilibrium paths, i.e. a bifurcation point, may force a nonconvergent
solution. In this context this problem is avoided by introducing an imperfection which forces
the beam structure to begin a deformation according to the buckling form corresponding
to the critical load. Determination of how to impose the imperfection can be performed by
solving the generalized eigenvalue problem in (8.7). If M., has been determined the buckling
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mode Uy, can be found from
(K + K" + /\cr KJ) “Upyek = 0 (88)

Restarting the stability analysis with an imperfection corresponding to (8.8) means that the
pre- and post-buckling behavior can be examined by successive use of (8.6).

8.3 Numerical Examples

Four examples have been analysed with the developed element in order to test the per-
formance compared with the literature and further to investigate some canonical problems
thereby achieving general information about the buckling and postbuckling behavior of thin-
walled beams.

8.3.1 Cantilever Subjected to an End-Moment

The first example does not test the full three-dimensional behavior but, in two-dimensions, it
is a severe test of the performance of the two node hybrid element exposed to large rotations.
This example has been used by a number of authors, see e.g. Surana & Sorem (1987) and
Crisfield (1990), to illustrate the nonlinear performance.

a

Fig. 8.2: Cantilever subjected to an end-moment.

An initially-straight cantilever is subjected to an end-moment, as shown in Fig. 8.2 whereby

0 27
M = 1= My = I — .
Fig. 8.3a illustrates the deformation of the cantilever, using the curved two node hybrid
element, during the loading process. Increasing the moment until M; = M,.; forces the beam
to curl into a complete circular ring as shown in Fig. 8.3a. The deformed configurations are
in Fig. 8.3 illustrated with straight lines between the element nodes.
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(a) (b)

M=0.33 M=0.20

Fig. 8.3: Initial and deformed geometries for cantilever subjected to an end-moment (10
elements). a) curved elements.  b) straight elements.

The analytical position of the endpoint during the loading process is given by

Ty 1 — cosf
L
— (8.10)

T3 o sinf

Using ten identical elements the numerical results for the two node hybrid element using
straight as well as curved elements are illustrated together with (8.10) in Fig. 8.4.

1.0 5
— — Analytical
r2/ L esesse Element curvature
eeeoo Straight elements
0.8 H
0.6
0.4
0.2 +
0.0 P T T T 1
-0.25 0.00 0.25 0.60 0.75 1.00

ra/'L
Fig. 8.4: Endpoint position for cantilever (10 elements).

Fig. 8.4 shows that using straight beam elements leads to a totally different load-displacement
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path already at small values of M while the curved element is close to the analytical during
all the loading process. The behavior of the straight elements are also shown in Fig. 8.3b
and it strongly indicates the lack of validity for large displacements. This result indicates
that using straight beam elements in a large-rotation analysis may lead to a qualitatively
wrong behavior of the beam structure.

8.3.2 Simply Supported Column

The next example is presented in order to illustrate the performance of the developed element
in a pre- and post-buckling analysis. The postbuckling behavior of the simply supported
column has been known for many years Koiter (1945) and the example serves as a guideline
for the possibilities of tracing the equilibrium path in a postbuckling analysis with the
developed element.

In Fig. 8.5 the numerical results using 6 identical elements are shown together with the
analytical solution from Timoshenko & Gere (1961) and the asymptotic fourth-order solution
taken from Thompson & Hunt (1973). The postbuckling curve has been initiated by a small
imperfection € = ro/L = 4.17 - 107° at the midpoint of the beam.

o4 4 0 mmm== 4th order asymptotic
eeee® Numerical
7 Timoshenko
0.2
0.0 T T T T T T T T T |
0.00 0.10 0.20 0.30 0.40 0.50
r'z/L

Fig. 8.5: Midpoint deflection for simply supported column.

The results indicate that the two node hybrid element is capable of reproducing the nonlinear
behavior of the simply supported column as given by Timoshenko & Gere (1961). The
numerical postbuckling curve lies a small part above the analytical ones which indicates as
to be expected that the numerical model in a small degree is to stiff. The error is insignificant
and the results for this plane problem are regarded as very promising for the spatial behavior
as to be considered in the following examples.
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8.3.3 Beam in Pure Bending

The next example which has been considered is lateral buckling of the beam in pure bending.
This example has been analysed in order to make some comparisons with the asymptotic
solution for the initial postbuckling behavior obtained in Chapter 7.

Assuming that the ends are free to warp the critical moment for the straight beam case is
given by (7.89), i.e.

M::T = O!\/Izg(l\’ + o? Iw) § a = 1 (811)

In Fig. 8.6-8.8 the out-of-plane deflection at the midpoint for a rectangular-, IPE20-
and CNP100-section is illustrated together with the asymptotic second-order solution from
(7.125). The asymptotic solutions are weighted with +. from (7.94) in order to incorporate
the influence from an initial curvature. For the rectangular section a ratio height/depth of
h/b = 10 has been used. The dimensionless section properties for the IPE20-section are
Li1/1Ia = 13.7, I3/ (K + o?1,) = 28.4. For the rectangular- and the IPE- beams the length
of the beam is L = 240mm. The properties of the CNP100 beam are those given in Section
7.5.3, i.e I1/I3 = 7.0, I/(K + o*1,) = 24.8 and L = 2400mm. The numerical mod-
els consists of ten identical elements and the postbuckling curves are initiated by a small
imperfection ¢ = 4 - 107* at the midpoint of the beam.
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Fig. 8.6: Postbuckling curve for rectangular beam in pure bending,.

From Fig. 8.6 it appears that the critical load for a rectangular section is well-determined by
(7.128). For the rectangular section the postbuckling curve is very flat corresponding to that
the torsional stiffness is comparable with the out-of-plane stiffness (see Tab. 8.1) whereby
it follows from (7.96) that the buckling mode becomes an equal distribution of twist and
deflection. Notice that a significant deflection has to arise before the beam regains some
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strength. The numerical and the asymptotic solutions are close in the vicinity of the critical
point implying that for a rectangular section (7.128) reveals the initial postbuckling behavior
for a beam in pure bending.

In Fig. 8.7 the numerical result for the IPE20 section is illustrated together with the asymp-
totic result from Section 7.5.3.

1.6
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Fig. 8.7: Postbuckling curve for IPE-beam in pure bending.

Continuing with the I-section it is evident from Fig. 8.7 that prebuckling deformation in-
fluences the value of the critical load as it also 1s found in Chapter 7. Analysing Fig. 8.7
in detail it follows that the numerical solution possesses a curvature in the vicinity of the
critical point which is close to the one given by (7.128). As the load increases and thereby
the deformations the difference between the asymptotic and the numerical solution becomes
conspicuous implying that the actual configuration of the beam influences the postbuckling
behavior. Further one should notice that the [PE-beam regains strength at a relative small
out-of-plane deflection compared with the rectangular section. This is because the small
torsional stiffness forces the IPE-beam to twist whereby the in-plane bending stiffness con-
tribute to the out-of-plane stiffness.

The IPE-profile is a standard profile where the dimensionless cross-sectional ratios are nearly
constant. It can therefore be concluded from Fig. 8.7 that only a small postbuckling strength
is available for the standard version.

A concluding remark is that for double symmetric cross-sections the initial postbuckling
behavior is stable but the gain in strength is insignificant for practical purpose.

The numerical results for the CNP100 section are illustrated in Fig. 8.8 together with the
asymptotic result (7.125). Two different ratios of 8,/L have been used because the CNP-
profile twists significant implying that the effect from the unsymmetry may be erased in the
postbuckling behavior as the deformation increases.
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Fig. 8.8: Postbuckling curve for a CNP-beam in pure bending.

The numerical results obtained by the hybrid element confirms that a skew symmetric bi-
furcation behavior occurs as found by the asymptotic approach in Section 7.5.3. The two
solutions are not as close as for the double symmetric cross-section. This is surely caused
by the significant twist which was found to be present allready at small lateral deflections,
see e.g. 7.5.3. Nevertheless it seems that the asymptotic result can be used as a guideline
for the postbuckling behavior.

Concludingly the numerical analysis confirms that beams with cross-sections which are non-
symmetric in the loading plane are sensitive to imperfections.

8.3.4 Lateral Buckling of Cantilever Beam

The lateral buckling behavior of a cantilever beam is a three-dimensional problem which
has been given some interest by modern researchers (see e.g. Fig. 8.9). Especially the
rectangular cantilever has been studied intensively, see e.g. Timoshenko & Gere (1961),
Zamost & Johnston (1971) and Woolcock & Trahair (1974). Timoshenko analysed the effect
of in-plane displacements on the critical load and found a severe influence if the height/depth
ratio h/b (see e.g. Fig. 8.9) is a small quantity. Both Zamost and Woolcock analysed
the post lateral behavior by solving a set of nonlinear differential equations and further
Woolcock gave some experimental data. Woolcock extended the analysis with the post lateral
buckling behavior of an I-beam. For small values of h/b Zamost found that the influence
from precritical deformations are significantly different from those found by Timoshenko.
Regarding the postbuckling behavior it was found that the out-of-plane deflection, see e.g.
Fig. 8.9, rise as slowly as column buckling.

Later Attard (1986) performed lateral buckling analysis of the cantilever by the finite element
method and found similar to Zamost that in-plane displacements are insignificant for slender
beams. Recently Kouhia (1991) published a numerical study of the large elastic deformations
of buckled rectangular cantilevers. In his approach he used a displacement based two node
straight beam element in an updated Lagrangian formulation. He found an influence from
precritical deformations similar to the one found by Timoshenko and further he also found
that the postbuckling curves rise slowly.
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Based on the disagreements of the literature the analysis of the lateral buckling of a cantilever
is an obvios example in order to illustrate the performance of the developed two node hybrid
element in a pre- as well as post-buckling analysis. The purpose of this section is to make
some comparisons with the literature and further to add some new results for the lateral
buckling behavior of a rectangular and I-beam cantilever regarding the governing parameters.

The cantilever beam is initially straight and is subjected to a single load P at the elastic
center at its free end as shown in Fig. 8.9.

Fig. 8.9: Cantilever beam with end load. a) Undeformed beam. b) Deformed beam.

The critical load found by solving the linearized problem is given by (see e.g. Timoshenko

& Gere (1961))
Py = 7P'ref (812)
where the reference load P,.; is defined by

ST
Lo (8.13)

-P'ref = JE

and the factor v is for large values of the ratio L? K/I, approximatively given by (sece e.g.
Timoshenko & Gere (1961))

4.013 K
= ko= — (8.14)

7 z
(1) -

The rectangular and the I-beam cantilevers are analysed separately in the following.

Rectangular Cantilever :
For a rectangular cross-section the warping stiffness is negligible, i.e. I, ~ 0, which means
that v = 4.013 whereby the critical load P, is given by

I ].’
e (8.15)

L2

P = 4.013
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Different proportions (A /b) of the cross-section have been examined. In all cases the moment
of inertia in the primary bending plane I;; has been constant. The length of the beam L is
240mm and the material constants are £ = 71.24G Pa and G = 27.19GPa. In Tab. 8.1 the
reference loads P,.s, as given by (8.13), the cross-section dimensions, the principal moments
of inertia and the torsion constants are given. A similar example has been investigated by
Kouhia (1991) and some comparisons are made.

Table 8.1: Cross-section properties and the reference loads

I o 122 P 4
7 h (mm) b (mm) I (mm®) I (mm®) e (mm?®) Py (N)
50 30.000  0.600 1350 0.540 2.133 0.82
5 16.870  3.374 1350 54.000 188.895 TL1T
3 14.848  4.949 1350 150.000 474.538 203.86

The ratio between the out-of-plane stiffness Iy, and the torsional stiffness K is almost con-
stant for a rectangular profile which implies that neither twist nor deflection is dominant in
the buckling mode. In contrast the ratio between the bending stiffnesses varies significantly,
but it should be noticed that the in-plane stiffness is much higher than the one out-of-
plane. All this implies that the in-plane deformations, prebuckling curvatures, are expected
to influence the critical load similar as for the beam in pure bending. Further no significant
differences are to be expected in the overall buckling behavior corresponding to the constant
ratio between the out-of-plane stiffnesses.

In Fig. 8.10-8.12 the pre- and postbuckling behavior is illustrated via the deflection and
twist at the endpoint for the 3 different ratios. The numerical models consist of ten identical
elements and the postbuckling curves have been initiated by introducing a small lateral
imperfection (¢ = /L = 2.083 - 10™*) at the free end.

Fig. 8.10 which illustrates the in-plane deflection reveals that a sudden change in the in-
plane stiffness occurs as the critical point is reached indicating that the beam redistributes
the action as expected.
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Fig. 8.10: In-plane deflection of elastic center at endpoint of rectangular cantilever.
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Fig. 8.11: Out-of-plane deflection of elastic center at endpoint of rectangular cantilever.

From Fig. 8.11 it appears that a significant out-of-plane deflection is necessary for a rect-
angular beam to obtain some postbuckling strength. This implies that for a rectangular
cantilever with ordinary proportions the postbuckling strength is insignificant and may be
neglected.



ivumerical Formulation ot the Stability Problem 133

The twist at the endpoint can only be related directly to 3 as carried out here as long as ¢,
or ¢y are small. The twist of the cross-section plane as illustrated in Fig. 8.12 is therefore
to be used with care.
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Fig. 8.12: Twist of cross-section plane at endpoint of rectangular cantilever.

Comparing Fig. 8.11 and Fig. 8.12 it is obvious that the out-of-plane displacement is
dominant compared with twisting. This was also found for the beam in pure bending and
1s a consequence of the relative large torsional stiffness. The postbuckling behavior for the
three different ratios is similar implying that the postbuckling behavior is closely related to
the ratio between the out-of-plane stiffnesses. Further Fig. 8.10-8.12 shows that the in-plane
displacements increases the buckling load as the ratio is changed from h/b = 50 downto
h/b = 3. This reveals that (8.15) is a minimum value and further it confirms the results
obtained by Timoshenko & Gere (1961).

In a similar example Kouhia (1991) investigated the pre- and postbuckling behavior using
straight linear beam elements and found likewise that despite the differences in the bending
ratios the postbuckling curves were similar while 4 was highly influenced by in-plane de-
flections. In order to compare the present formulation with the one performed by Kouhia
analysis with straight and curved elements have been performed for A/b = 3. The results
for the out-of-plane deflection are illustrated in Fig. 8.13 together with the corresponding
results from Kouhia (1991).
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Fig. 8.13: Out-of-plane deflection of elastic center at endpoint of rectangular cantilever

(h/b = 3).

As shown in Fig. 8.13 the critical load remains almost unaffected by the two kinds of
elements, but the postbuckling behavior is influenced as the displacements become large. It
appears that using straight elements locks the out-of-plane displacement at a certain level,
meaning that no change occurs even though the load is increased. The form of the curve for
straight elements is almost similar to the one found by Kouhia. Based on the experiences
from Cantilever subjected to an endmoment in Section 8.3.1. and the results in Fig. 8.13
implies that straight beam elements are to be used with care in a large displacement analysis.

I-Section Cantilever :

The influence from warping has been studied by numerical analysis of an I-section cantilever
with different lengths. As a reference profile an IPE20 has been used, i.e. I1;/FE = 1940mm*,
I52/E = 142mm*, K/G = 7.2mm* and I,/E = 13000mm®. The material constants used
in this example are £ = 210kN/mm? and G = 81kN/mm?. Restraining the beam from
warping at the clamped end the critical load can be found from (8.14) and (8.12).

In Table 8.2 the reference loads for different beam lengths are presented together with the
values of v obtained from (8.14). Comparing with the rectangular cantilever differencies
are to be expected as the out-of-plane bending stiffness is significantly larger than the tor-
sional stiffness, which implies that the I-section cantilever tends to twist significantly in the
postbuckling fase.
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Table 8.2: Cross-section properties and the reference loads.

L (mm) (kL)® Py (N) Py(N) I s

180 6.90 128.5 1344 10.46 B8.77 0.84
240 12.27 72.3 568 7.86 T7.66  0.97
300 19.17 46.3 312 6.74 6.98 1.04

In Fig. 8.14-8.16 the pre- and postbuckling behavior is illustrated via the endpoint deflection
and the twist of the cross-section plane. The numerical models consist of ten identical
elements and the postbuckling curves have been initiated by introducing a small lateral
imperfection (¢ = r;/L = 2.083 - 10*) at the free end.
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Fig. 8.14: In-plane deflection of elastic center at endpoint of Isection cantilever.

It appears that for the I-section cantilever the postbuckling behavior is similar for different
lengths which was to be expected as the out-of-plane bending stiffness is dominant. Further
the dependency of v on L is evident from the displaced form of the curves. In Table 8.2 the
values of v obtained in the numerical analysis are given. These values have been determined
by use of a best fit line (quadratic function) of the out-of-plane displacement in the vicinity
of the critical point. As to be expected a great difference between the analytical values of v
is obtained for (kL)? — 0 while a small deviation occurs as the length of the beam increases
beyond 300mm. The latter implies that the critical load is influenced as it also was found
for the rectangular cantilever.
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Fig. 8.16: Twist of cross-section plane at endpoint of I-section cantilever.

Comparing Fig. 8.10-8.12 with Fig. 8.14-8.16 it is evident that the postbuckling deflections
are significantly smaller for the I-section as for the rectangular section while the opposite

occurs for the twist.

In order to analyse the initial postbuckling behavior of an I-section in detail additional
information has been obtained by investigating the influence from changing Iy, I5; and K.
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A parameter identification has been carried out by assuming that the initial postbuckling
behavior, as a function of the out-of-plane displacement, is approximatively given by

T

[ o (1 + f[]u,fzzgfi’,az]w] (f)z) (8.16)

Pref

The cross-section parameters used are given in Table 8.3 together with the coefficients of the
second-order polynomial (g(:c) =a+ cx2) obtained by a best fit method in the vicinity of
the critical point, see e.g. Fig. 8.17.

Observing Table 8.3 it is evident that the initial postbuckling behavior of the I-section is
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Fig. 8.17: Postbuckling curves of I-section cantilever for different cross-section parameters.

influenced by the ratio between the out-of-plane bending stiffness and the torsional rigidity.

Table 8.3: Cross-section properties and coefficients.

]11 [22 ]{ + azju
L L)? 4y 122 4 4
(kL) = (mm?) 5 (mm?) —% (mm?*) a c
6.90 1940 142 3.15 8.75 478
6.90 3880 142 3.15 8.54 502
6.90 1940 284 3.75 9.00 1091

69.00 1940 142 28.50 5.71 43
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Based on the values of Table 8.3 it is found that (8.16) approximately can be written as

P ™ _[22 ) (Tl )2
_ T f2 ) (1 17
P'ref ! (1 F 2 ( L+ K + CY?]W L (8 )

where the effective length in the expression for (K + o?l,) is 2 L. In the determination
of the bending/torsional relation in (8.17) the author has been guided by the asymptotic
analysis of the beam in pure bending performed in Section 7.5.3. The relation in (8.17) is an
approximation and therefore additional computations would be necessary in order to check
the validity. Nevertheless it is evident from the results obtained for the I-section as well as
for the rectangular cantilever that the initial postbuckling behavior is closely related to the
ratio between the out-of-plane bending stiffness and the torsional stiffness.

Based on the results obtained with the present theory a concluding remark for the cantilever
beam is that for slender beams in-plane deflections are insignificant for the critical load
P, and further that the post lateral deflection rise as slowly as for column buckling. The
coefficients in (8.17) are related to the I-section profile IPE20 and might therefore lead to
totally wrong results if it is used for analysing other types of cross-sections. Equation (8.17)
should therefore only be used as a guideline for the important parameters regarding an
estimation of an eventual postbuckling strength for the cantilever beam.

8.4 Conclusions

An incremental updated Lagrangian two node element has been developed by expanding the
beam element developed in Chapter 6 with the initial stress terms. The updating procedure
accounts for both initial deformations and initial stresses. Impossing a small imperfection
and thereby forcing a deformation process ortogonal to the deformation which develops as
a direct consequence of the loading means that the equilibrium path can be traced in the
prebuckling as well as in the postbuckling fase.

The performance of the hybrid element in a large displacement context is verified by analyses
of the cantilever subjected to an endmoment which forces the beam to bend into a complete
circular ring. Further this example indicates that using straight elements in large displace-
ment analysis may lead to qualitatively wrong results. Comparing the present element with
results from the literature where straight elements have been used confirms this and under-
lines that straight elements should be avoided in large displacement analysis.

The buckling behavior of the beam in pure bending has been analysed in detail and the nu-
merical results have confirmed that the asymptotic analysis of the perfect structure reveals
the postbuckling behavior in the vicinity of the critical point. The results are very close if
the asymptotic solution is weighted according to the influence from in-plane deformations
as found n Section 7.5.3.

The investigation of the monosymmetric beam in pure bending has revealed the information
regarding the influence from a possible imperfection ortogonal to the loading deformation.
The particular example which has been analysed indicates that the critical load determined
for a real structure may differ significant from the critical load determined for the perfect
structure.

A concluding remark is that a simple numerical formulation has been obtained whereby a
wide range of stability problems can be analysed.
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Summary and Conclusions

A general stability theory for beams with arbitrary shape has been developed. A basic
assumption in the derivation is that a beam can be regarded as a one-dimensional structure
described in terms of cross-sections and a length coordinate. The beam is then represented
by a curve with a local set of base vectors fixed to the beam cross-section at each point of
the curve. A main point is to describe the rotation of the cross-section in a consistent way.
This has been accomplished by describing the current unit vectors by a finite rotation vector
via an ortogonal transformation of a set of reference vectors. The governing generalized
displacements are hereby the position vector for the curve and the rotation vector for the
cross-sections.

Introducing the internal force and moment vectors means that expressing equilibrium along
the characteristic line leads to the governing equations. The equilibrium equations are refor-
mulated as a virtual work equation, and this defines three generalized strain components and
three generalized curvature components. The strain components are functions of both the
position and rotation vector while the curvature components are expressed entirely in terms
of the rotation vector. All three rotation components are kept as independent displacement
parameters in order to preserve a formulation where the ortogonal transformation operator
can be retained in the nonlinear equations leading to a compact formulation. If desired the
Bernoulli hypothesis concerning the normality of the cross-sections can be introduced in the
final equations. Treating the warping effect, characteristic of thin-walled beams, in a similar
way means that the warping contribution easily can be superimposed into the virtual work
equation.

The beam is considered in two adjacent states, an initial/prebuckled state with prebuck-
ling curvatures and stresses, and a neighbouring buckled state. Subtracting the equilibrium
equations for these two states means that the nonlinear beam theory specialises to a stability
formulation. Using the equilibrium equations for the initial state means that the effect of pre-
buckling deformations is considered consistently via the generalized strains and curvatures.
A weakness of the line approach in the establishment of a stability theory is the omission
of a finite extent in the plane of the cross-section which means that additional initial stress
terms occurs. This weakness is removed by a proper choice of the constitutive equations.
In nonlinear formulations of beam equations different constitutive equations for the internal
forces in terms of the generalized strains have been used. It is found that if the small strain
deformation measure is expanded with the effect of twist a set of constitutive equations is
obtained which is consistent for the thin-walled beam in a nonlinear formulation. This is
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confirmed in an example where the critical load for a single curved beam is investigated
using the present formulation and then comparing with some of the literature where a main
point i1s to include additional new terms in the constitutive equations. No differencies were
found which indicates that there is no need for complex constitutive equations.

The nonlinear stability formulation is obtained via the principle of virtual work. The virtual
work equation for the beam problem corresponds to the first variation of the potential
energy. In the stability formulation this connection can not be established directly because
the variation of the initial stress term is not always an exact differential.

A numerical formulation is obtained by use of an updated Lagrangian procedure correspond-
ing to the formulation with two adjacent states. This means that the current state is found
by small increments from the initial state. The rotational components are considered as the
main variables and are therefore retained as independent variables in the formulation. When
invoking the Bernoulli hypothesis the weak formulation simplifies to a formulation entirely
in terms of the rotation components. As the rotation components have to be connected with
a position relative to the beam a relation between rotations and translations has to be rein-
corporated in order to achieve convergence. This is accomplished by incorporating the strain
condition via the principle of Lagrange Multipliers. This leads to a mixed/hybrid formula-
tion where linear shape functions can be used for all involved functions thereby achieving a
simple formulation. Examples indicate that the developed element to some extent favours
the statical behavior on the expense of the kinematical behavior. No significant influence on
the rotational field is found corresponding to the presence of lower order differentials of the
rotational components.

By means of a perturbation method the general nonlinear formulation is reformulated into
an asymptotic buckling and postbuckling theory. Using the rotation components as the
governing state variables a set of differential equations is developed from a corresponding
functional (the virtual work equation). A successive use of the differential equations and the
functional leads to identification of the asymptotic buckling and postbuckling behavior in a
mangeable way. Analyses of the simply supported column reveals that the buckling behavior
is stable for arbitrary cross-sections if the axial force is placed at the shear center. If the
load is placed at the elastic center a nonsymmetric bifurcation arises if the cross-section has
no axis of symmetry. Further the analysis of the beam in pure bending indicates that the
initial postbuckling behavior is closely related to a possible unsymmetry of the cross-section.

Finally the two node hybrid beam element is expanded with the initial stress terms thereby
leading to a numerical element suitable for stability analysis. A finite element program
has been developed which is capable of tracing the equilibrium path in a buckling as well
as postbuckling fase for arbitrary cross-sections and large displacements. The element has
been compared with the literature and the agreement is satisfactory. Investigations of the
successive bending of a cantilever beam into a circular ring has illustrated that significant
errors occurs if straight elements are used in a large displacement analysis. This has been
confirmed by analysing the post lateral buckling of a rectangular cantilever and comparing
with the literature where straight elements have been used. The postbuckling analyses of the
beam in pure bending confirms that the asymptotic results obtained for the perfect structure
illustrate the postbuckling behavior in the vicinty of the critical point. The influence from in-
plane deformations is found to be contained in a scaling factor expressing the slenderness of
the cross-section. Finally investigations of the monosymmetric beam has led to identification
of the effect from a possible unsymmetry of the cross-section in the loading plane. The results
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underlines that in case of imperfections the critical load for a nonsymmetric cross-section
may deviate significant from the one which is found for the perfect structure. Some of the
influence is described by the dimensionless parameters derived in Chapter 7, but additional
tests are necessary in order to obtain a complete description.

It can be concluded that a fundamental basis for the stability analysis of the thin-walled
beam has been obtained. The validity of the formulation is verified by analyses of canonical
problems.

Future Perspectives
The future perspectives are

e Development and optimizing of program.
e Additional examples.

1. distributed load
2. frame structures

3.

e Design criterias for practice.
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Appendix A

Orthogonal Transformation Operator

The orientation of the beam cross-section is described by a set of unit vectors rotating with
the beam. The current unit vectors e; are described by an orthogonal transformation of a
set of reference vectors €;. A finite rotation tensor A(¢g), i.e. an orthogonal transformation
operator, can be regarded as the integrated version of the infinitesimal rotation operator
dpx.

Considering the increment of a vector e; corresponding to an infinitesimal rotation dy
de; = dp x e; = Q(dp)-e; (A.1)

In (A.1) the second order tensor £ is used to obtain an alternative form of writing the vector
product. A decomposition of dy in the basis of {e,} indicates that £I is a skew symmetric
matrix

-0 —ipn A ]

Q(Cp) = ¥3 0 =1 ) ij = €njPn (AQ)

L —2 ¥1 0 J

If ¢ is the length of the rotation vector ¢ then (A.1) can be formulated as an ordinary
differential equation

dej . d(p
% - o(3) .

The unit vector dy/dyp indicates the direction of the rotation vector. Retaining this direction,
(A.3) can be integrated leading to an expression for the finite rotation of a vector. It follows
that a unit vector e; can be expressed by the rotation of a global unit vector €, in the
following way

e = e"WPl.g = Alp)-§ (A4)

From (A.4) it follows that the orthogonal transformation operator is the exponential of a
skew symmetric matrix. This transformation is often referred to as the ezponential mapping
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or the Rodrigues formula, Argyris et. al. (1978).
The exponential function in (A.4) may be regarded as defined by its Taylor series expansion,
l.e.

Alp) = gj ;Ll—. [Q(‘P)r (A.5)

0

A reformulation of (A.5) can be performed by a closer analysis of the quadratic term in the
Taylor series expansion

p) Qp) & = ¢ x (p x &) (A.6)

The triple vector product in (A.6) can be decomposed into a vector parallell to the plane
described by €; and ¢, as shown in Fig. A.l.

Fig. A.1: Triple vector product.

It follows that

px(pxe) = (p-&)e—(pv)e; = (v&)p — o8 (A7)
Equation (A.7) implies that the transformation in (A.4) is described in a vector space cor-
responding to the three vectors

& p P xE

The Taylor series expansion in (A.5) can then be expressed by a combination of the three
first terms of the expansion. Substitution of (A.7) into (A.5) leads to

% 4

Aw) & = (T+060) + j06) a60) - (31 [ae)] 7)) & (ag)

n=g

The term inside the big parenthesis corresponds to the transformation operator. Decompos-
ing the summation further by use of (A.7) and making use of trigonometric functions the
expansions in (A.8) can be reformulated to yield

sine
@

1 — cosp

Alp) = T+ > Q) - Qo) (A.9)

2p) +
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A closed form expression for the orthogonal transformation operator is hereby obtained.

A decomposition of the rotation vector in a basis described by €;, whereby ¢ = ;€; leads
to the vector relation

ej = Ailpm) & (A.10)

where

sin 1 — cos
Aiilpm) = 6 + _'{;Eﬂlj + -—;;ﬁﬂtnﬂnj

]

W .+ 0N (A.11)

1
= by + U + Eﬂlnﬂnj =

The finite rotation tensor is derived according to the assumption that the direction of the
rotation vector is fixed. In the establishment of the deformation measures the relative change
between two cross-sections are considered. A convenient notation can be obtained for the
expansion of the curvature components in Chapter 5 by introducing the second order tensor
B defined by relation

L= 0(p) + 225 (g) - 0(p) (A.12)

B(p) = I +
() " "

The tensor B is connected to the orthogonal transformation operator A by the following
relation

ag)-1= 3 = o) 26e) = Ble) (o) (A.13)

A component form of B is obtained by decomposing ¢ in the basis €;, i.e.

1 — cosyp p — Sing
Bij(om) = b; + TQH *+ Tnin Qnj

1

1
S!Q[n Qﬂj — EQU (,92 + 0((,0”) (A14)

1
= &y + EQU +

Notice the resemblance with (A.11), where the only difference is the shifting of the scalar
factors.
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Linear Differential Equations

In this appendix the differential equations from (7.22) are reformulated to a more informative
form. From [7.9) it follows that the virtual work equation in terms of components is given
by (multiplication with -1)

fol { di%(Aij; + AyM) + eumnsi, (An M + Ang M7)

+ enst (Anm + A A ) (8N +6mf3p2)} Sprdso = 0 (B.1)

Expanding the rotation vector ¢! in terms of a generalized perturbation parameter ¢, i.e.

e = Gt + @8 ... (B.2)

Setting A = 0 and observing only the first-order terms in L;’j; of the part in-side the big
brackets leads to

l ~i t d 1 ~i p g0 0 1 o kel
/O Fi(}) b1 dso = /0 {E:;O(M; + €in; S'QnMj) + ezmnnm(Mn + enk;j %Mj)
+ enjm 35 (8ms Vg + Sma fOPY) n } Sprdsg = 0 (B.3)

Inserting the constitutive equations from section 4.1, making use of (7.15) and rearranging
according to d¢, and d; leads to

[ . i
[ { P 600 + R B} i =

20

[ [ ) — ey — s ()
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+ eapiQ( K +T2NS + 28 ME°) RS

o~y

dg i 0 4@k 5 dM?
+6aﬂM§(dsf —’igeﬁw%) — eapMy dtp + eapPp T,

. M2
+€cxﬁn%e'yn90ryM7? - eOfﬁ‘PS( dSo - ngﬁTM'? + eﬁ"n’ffgpg)

_GLNS — eaﬁewaf;fspg] bz,

d d? di:
o (4 2 28,M2%) ) - 2 (1(52))

0

+K306 Fi ~1 i ~1 dMﬂ . ND MO 0
e e 1] afkp CafPo dSo €8~ o + 3576‘)‘.3

@, 2
+€aﬁMa( dw: ‘Psﬂgem) - Pﬁlffﬂtpa] b } dso (B.4)

The expressions for Fy (@) and F3(¢%) can be reformulated by use of the equilibrium equa-
tions for the initial state.

{ " 2
[/ (Pl 00+ Fi@) 500} doo -

T d N o o o d [ (d&
,/0 {[d—sg(fagﬁﬂ) = riaea.),f.y,@fc‘@ - eaﬁﬂﬁag(]w(g‘;))

d“

+ eapkp (I& +r2N3 + QﬁaMco) + ea5M0< ™ ﬂgegw(ﬁi)

0 4%} o
eaﬁMﬁ'J*; — €ap eﬂ'v(Nr? - M??K:g)‘v% e LPQN??

+ €ap (K%M-;? - ng,?)@iew + eaﬁ@’fg (fgpg ;i KSM’?) e'm} 0pq

d & [ dR
{d% ((A +12NS + 2. ME") ) - E;g(Iw(a,-';-(:?-))

0 =4 ~f 0.0 0,0
. Kvefyojaﬁn;} ¥ @;Gaﬁt",ﬂ»y (M'y Kz — ffyPS)
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gt _. o
i eaﬂMs(% - Ginlera ) - pﬂfﬁwé} S } dso (B.5)
Investigating the coeflicient of ¢, it appears that making use of the permutation rule

eap Ag Byeyn Cn + €apBaCyeyg An + €apCpAyeyy By = 0 (B.6)

leads to a simple form of the initial stress terms.

l g :
](; {Fa(@)fss‘% * Fs(@')&f)a} dsp =

: d ~i 0 ~i
/0 {[d—so(faﬁnﬁ) — Kaaylypky

d dr: ;
(O 2 770 c0 3 ~1
—i~eagnﬁ(h -|-T‘aN3 +2,80,MG = d—SO(Iw(d_SO)))KS

J"Mgeaﬁzjj‘ N eaﬁMgEg 3 N‘S@g - Ng‘;if + eorﬁfgpge'm(i;i;] 0P

+ [i((h +riNS + 2ﬁaM§U)E§) a (Iw(dgg))

dS(] B d—Sé dSo
4 Rernlonl + eapMR, — PRI9F + pgf;:@;] bor | d (B.7)

This completes the reformulation of the differential equation as it follows that Fa(éj) and
F3(@}) corresponds to the coefficients in (B.7) and are thereby defined by respectively (7.18)
and (7.19).
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Higher Order Terms - Differential
Formulation

R0, M) = [d—d—(cz[(%, 0)) + etmnrh, QA ho) + P,(%,Al)]

where

~ ~1~1 ~1~1 _ ~1-~1 ~1~1
Qi(‘ro;':’\l) = —eaplpykpp3 + %Iaﬁeﬁn(”n‘ros - "33‘7%) + BalyaksRy

& eaﬁ@b ((K + TiN;? + 2HTM‘$O) dd (I 35—0))

+ %60:5(@}1@]18??1—]‘41? + e,g,yM,?@é(;éé - eﬁw@i@éMg)

Q3(73:01) = Breralupiy - df (f dd (Kéeﬁw%))

+ LK +r2NG + 28, M) Rhep, @, + 28, IR LR

S (eamMs - LpLns)

Q"'Sl.

+3

and

}312((1'5}1/\1) = enkl( enprtpp(fosersm “ Alenpmﬁop) (6m3N]? + 6maf2p2)
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Higher Order Terms - Energy
Formulation

il ey = ll g 15 g ~1~1  ~1~1
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Appendix E

Matrices for Nonlinear Numerical
Stability Analysis

Elastic Stiffness Matrix K :

[ 0 K.\
Ko, Koy ke,
K;; = Ko Koy,
sym 0
0
0 K.\ 1
K 2 Kor ko,
Kz = — Ko LK | = Kpn”
-K.n 1Ko 0
—~kor, 3K 0
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160
( 0 _KT)\ i
KWP KW\ _klﬂ)\u
Kiz = v K,
sym 0
0 |
T L i
1 1 , L
Ky = ==L Ky = T Iy Iy Kog = I
" K |
r 0 1 i C 0 7
L. 1 9 L.
Kq;,\ = ? -1 0 kg,,\w = 5 0 IX@Aw = -—3—
0 J =i
Initial Displacement Matrix :
0 Ko i
KT ki
K:l — O = K22
sym 0
| U
F 0 K;c,z'r}\
RLe iy
K w T
Ki, = 0 = Kj
sym 0
L 0




Matrices tor Nonlinear Numerical Stability Analysis

0 K'g(lll — .[22) '_K'g(]ll = I()-
1
Ky = 2 0 K12 — K) | = —K3
| sym 0 |
i 0 K'g(jll + 122) —Iﬂg(lll + I{)-
i 1 ,
Kl'zw'o = 5 —-Kg (111 +122) 0 3&?(]22+]X)
L &S(In+ K) =K1+ K) 0 J
1 L.
K> = Ki* = - Kij* = == Q(x°)
2 3
~ Kg =
K 5 w 1 K, Aw Le
k]iw\w = kzéw\ =5 k22“°'\ =3 — K3
| O
Initial Stress Matrix :
-0 .
K§1 = Kgl,N + K(Irl,M * Kgl,p
L 0 J
[ 3N] + N? 0 0
o _ L 0 3N} + N2 0
1N < g
2
-3NI 4N NP4 NG 6 (1) (ME+ VD)
i 0 —2M3 — M? 2M; + M; ]
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T
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T NI+ 3N2 0 0 y
o L. 0 NI + 3N2 0
22N — 12
2
_N!—3NZ —N!—3N2 6 G—) (N1 + N2)
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Coupling of Initial Stresses and Displacements :
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KO __ Ko
Kzz = 22 M
;q,M = Factor
;;M = PFactor
K;gM = Factor
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Appendix F

Resumé

Formélet med den foreliggende athandling ”Stabilitet af tyndveeggede usymmetriske stal-
bjeelker” har veaeret at opstille en generel ulineeer stabilitetsteori. Baggrunden for dette er,
at der i de senere ar har der varet en udvikling hen imod slankere stalkonstruktioner og gget
brug af koldvalsede profiler. Dette har fgrt til, at stabilitetsproblemer indtager en stadig mere
central plads ved projektering af stalkonstruktioner. De mest benyttede klassiske stélprofiler
til bjeelke- og rammekonstruktioner er symmetriske. Dette indebeerer, at stabilitetssvigt kan
vurderes ved at betragte en ideel konstruktion, der ved et vist lastniveau kan blive ustabil,
uden at der forinden er indtradt neevneveerdige deformationer. Dette forenkler stabilitets-
beregningerne betydeligt, da de kan baseres pd den udeformerede konstruktions geometri.
I modsatning hertil er koldvalsede profiler oftest usymmetriske. Dette skyldes dels hensyn
til transport og samlingsdetailler, men har ogsa forbindelse med fremstillingsteknikken. For
bjeelker og rammer af sddanne profiler vil stabilitetsproblemet ofte have en anden karakter,
idet selv en ideel konstruktion gradvis vil deformeres mere og mere. Der er saledes ikke
tale om en enkelt veldefineret stabilitetslast, men snarere om en stgrre og stgrre fleksibilitet
af konstruktionen med voksende last. En rationel udnyttelse af de koldvalsede profiler, der
gradvis overtager en stadig stgrre del af markedet, forudseetter derfor en mere detailleret
behandling af stabilitetsproblemet.

Projektets formal er gennem en detailleret analyse af den gradvise instabilitet af tyndveeggede
usymmetriske stalbjelker at fremskaffe en forbedret beskrivelse af stabilitetsproblemet, samt
at opstille en simplificeret beskrivelse med henblik pa dimensioneringsberegninger i praksis.
Da der findes et stort antal profiltyper og der valses specialprofiler til stgrre opgaver, er det
vigtigt at projektet sigter mod en betydelig generalitet. En forudsetning for at denne gene-
ralitet kan bibeholdes er, at der foreligger en ulinear bjelketeori, som pé en konsistent made
inkluderer forhdndsdeformationer og initialspaendinger for bjeelker med vilkarlig tversnit.

I kapitel 2 formuleres en generel bjaelketeori ved at betragte bjeelken som et en-dimensionalt
legeme som beskrives ved tversnittene og en leengdekoordinat. Bjeelken kan herved repraesen-
teres ved en kurve og et st af lokale basisvektorer som fastholdes i tvaersnittet. Orientering
af de lokale basisvektorer beskrives via en endelig rotationsvektor gennem en orthogonal
transformation (leengdebevarende drejning) af et set referencevektorer. De generaliserede
flytningsstgrrelser er saledes en stedvektor for kurven og en rotationsvektor for tvarsnittene.

Ved at udtrykke ligeveegt for et deformeret bjalkeelement gennem snitkrafterne opstilles
de ulinezre ligevaegtsligninger. Disse ligevagtsligninger optraeder pd vektorform og omfor-
muleres til det virtuelle arbejde, hvorved de generaliserede deformationsmal, henholdsvis 3
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tgjninger og 3 krumninger, kan fastleegges. De generaliserede tgjninger indeholder en kobling
imellem stedvektoren og rotationsvektoren mens krumningerne udelukkende udtrykkes ved
rotationskomponenterne. Det er vigtigt for systematikken at bibeholde de tre rotationskom-
ponenter saledes, at den orthogonale transformationsoperator kan udnyttes til at opna en
kompakt formulering. Hvealvningsbidraget, som er karakteristisk for tyndvaeggede bjealker,
behandles tilsvarende, hvilket betyder, at dette bidrag direkte kan adderes til det oprindelige
virtuelle arbejde.

En stabilitetsformulering udledes i kapitel 3 ved at betragte bjeelkeelementet i to teetliggende
tilstande svarende til en initial- og en sluttilstand. Initialtilstanden indeholder forhandsde-
formationer og initialspaendinger, og udtrykker at bjelken er i ligeveegt 1 denne tilstand.
Sluttilstanden fremkommer ved at betragte smaaendringer fra initialtilstanden. Ved at sub-
trahere den initialle tilstand fra sluttilstanden fremkommer stabilitetsligningerne. Gennem
denne fremgangsméade opnas det, at forhandsdeformationer medtages pa en konsistent made.
I en fremstilling, hvor bjaken betragtes som en kurve med tilhgrende basisvektorer skal der
i en stabilitetsformulering tages hgjde for, at en endelig udstraekning af tveersnittet medfgrer
at aksielle spendinger influerer pa vridningsstivheden. Dette opnas i kapitel 4 gennem de
konstitutive ligninger for sammenhengen mellem snitkrefter og de generaliserede deforma-
tioner. Ved at indfgre denne vridningseffekt i deformationsmalet svarende til sma tgjninger
fremkommer et sat konsistente konstitutive ligninger, som ogsa er velegnet ved ulinezre
formuleringer. Det vises i en sammenligning med en del af litteraturen, hvor komplekse
konstitutive ligninger benyttes, at der ikke er behov for yderligere bidrag udover de her
anvendte.

[ kapitel 5 diskuteres sammenhangen mellem det virtuelle arbejde og den potentielle energi.
Den velkendte sammenheang som udtrykker, at det virtuelle arbejde er den fgrste variation af
den potentielle energi genfindes for den initielt spaeendingsfri bjeelke, mens den kun genfindes
1 de kvadratiske led for en bjelke med initialspendinger. Dette indikerer, at en undersggelse
med hgjere ordens led bgr gennemfgres med passende forsigtighed.

En grundleeggende analyse vedrgrende muligheden for at etablere en numerisk model, som
muligggr en inkremental formulering af det generelle ulinezre stabilitetsproblem, gennem-
fgres i kapitel 6 ved at betragte et initielt speendingsfrit element. Med udgangspunkt i
den ulinezre formulering af det virtuelle arbejde og en negligering af tgjningsdeformation-
erne fremkommer en inkremental formulering, hvor rotationsvektoren fremhaves som den
primere variabel. En konsistent formulering opnés ved at inddrage stedvektoren gennem
tgjningsbetingelsen via Lagrange Multiplier metoden. Dette fgrer til en blandet formule-
ring, hvor bade kinematiske som statiske stgrrelser indgar som uafheengige variable. Frem-
gangsmaden betyder, at der kan benyttes linezere formfunktioner for alle implicerede variable
hvilket fgrer til en simpel formulering. Eksempler viser, at specielt flytningsbestemmelsen
markes af det simple funktionsvalg, mens de statiske stgrrelser derimod opndr en meget
tilfredsstillende beskrivelse.

Ved anvendelse af perturbationsmetoden opstilles 1 kapitel 7 en asymptotisk bifurkations-
og efterbulings-teori udfra det ulineare virtuelle arbejde. I formuleringen betragtes rota-
tionsvektoren igen som den primere variabel, hvilket fgrer til at differentationsordenen holdes
nede. Et szt differentialligninger benyttes til at bestemme udviklingen 1 rotationsvektoren
mens et tilhgrende funktional (det virtuelle arbejde) benyttes til at fastleegge eendringen i
den ydre last. Analyser af enkelte grundtilfeelde har fgrt til bestemmelse af de parametre,
som har afggrende indflydelse pa stabilitetsproblemets karakter.
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Afslutningsvis er der med udgangspunkt i bjalkeelementet fra kapitel 6 udviklet et inkre-
mentalt opdateret Lagrange element i kapitel 8. Dette element indeholder en opdatering
af forhdndsdeformationer og initialspeendinger, hvilket ggr det anvendeligt i stabilitetsana-
lyser. Ved at pafgre imperfektioner pa de undersggte konstruktioner er det muligt at fglge
ligeveegtskurven i pre-bulingsfasen savel som 1 post-bulingsfasen. Ved sammenligninger med
litteraturen er det verificeret, at det udviklede element er brugbart ved analyser af problemer
indeholdende store flytninger. En sammenligning med de asymptotiske lgsninger indikerer,
at de rigtige parametre er identificeret, og endvidere at den asymptotiske lgsning er an-
vendelig for begyndende efterbuling. En analyse af det enkeltsymmetriske profil viser, at
imperfektioner har en betydelig indflydelse pa den kritiske last. Denne indflydelse findes at
kunne identificeres gennem de i1 kapitel 7 udledte faktorer. De gennemfgrte analyser under-
streger saledes ngdvendigheden af faktorer, som tager hensyn til at den kritiske last bestemt
for en ideel retlinet konstruktion, influeres af imperfektioner i den praktiske anvendelse.
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