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Preface

This thesis is submitted to the Faculty of Engineering & Science at Aalborg University as
part of the requirements for the degree of Ph.D. The research in energy optimal control of
induction motors started for my part in August 1995. Thefirgt two years and three months with
aresearch project financed by The Danish Energy Agency, entitled “Energy Optimal Control
Strategies for Electro Motors - low-cost sensorless PWM-V S| based induction motor control”,
journal no. 1253/95-0001. The project was followed by Design Engineer Erik Just Petersen
from ABB Motors A/S, and by Manager of Control Engineering Paul Thagersen from Danfoss
Drives A/S. The results from this project, which focused on small drives, were in February
1998 published in a separate report. After that it was decided to extend the research with one
year to investigate medium-size drives and permanent magnet motor drives. The last year was
financed by the Danfoss Professor Program at Aalborg University and followed by Manager
of Control Engineering Paul Thagersen, Danfoss Drives A/S. The two research projects were
supervised by Professor Frede Blabjerg and Associate Professor John K. Pedersen, both from
Institute of Energy Technology at Aalborg University.

The main purpose with a project like this it to promote technologies with a more efficient
use of electrical energy. It is my hope that this thesis can be to help and inspiration for
engineers who work with research and development of electrical drives, and to people who
study efficient use of electrical energy in general.

Apart from this thesis and the report mentioned above, results from the project have been
published in a number of papers and articles listed in the end of the thesis.

| would like to thank the Danfoss Professor Program for the financial support that enabled
me to submit this thesis, and my supervisors Paul Thagersen, Frede Blabjerg and John K.
Pedersen for help and good advises. | also want to thank Trine Lendrup Jacobsen for helping
with the time-consuming efficiency measurements, and Pawet Grabowski for his assistance
with programming the motor drive. | am thankful to Jens Birk, Danfoss Drives A/S, for his
help during my stays at Danfoss Drives, and to Jukka Salonen, ABB Motors in Finland, for
providing me with motor data.

February 2000, Flemming Abrahamsen



Summary

This thesis deals with energy optima control of small and medium-size variable speed
induction motor drives for especialy Heating, Ventilation and Air-Condition (HVAC)
applications. Optimized efficiency is achieved by adapting the magnetization level in the
motor to the load, and the basic purpose is demonstrate how this can be done for low-cost
PWM-V S| drives without bringing the robustness of the drive below an acceptable level.

Four drives are investigated with respect to energy optimal control: 2.2 kW standard and
high-efficiency motor drives, 22 kW and 90 kW standard motor drives. The method has been
to make extensve efficiency measurements within the specified operating area with optimized
efficiency and with constant air-gap flux, and to establish reliable converter and motor loss
models based on those measurements. The loss models have been used to analyze energy
optimal control strategies by different steady-state calculations. Several control strategies were
implemented and tested on a 2.2 kW scalar drive, both with respect to steady-state efficiency,
convergence time in case of changing load, response to a large sudden load disturbance, and
energy consumption in a redlistic pump system. The dynamic performances were also
evaluated in a vector controlled drive for CT applications. Based on these tests, the
displacement power factor control and the direct air-gap flux control appeared to be best for
small HVAC applications.

Energy optimal control of medium-size drives was analyzed separately to investigate the
influence of converter losses. A new model-based control principle is proposed which can
include converter losses, which does not depend on an analytical solution and which does only
requires little computational power. A relation is established which can predict the efficiency
improvement by energy optimal control for any standard induction motor drive between 2.2
kW and 90 kW.

A simple method to evaluate the robustness against load disturbances was developed and
used to compare the robustness of different motor types and sizes. Calculation of the
oscillatory behavior of a motor demonstrated that energy optimal control will sometimes
improve and sometimes deteriorate the stability.

Comparison of small and medium-size induction motor drives with permanent magnet
motor drives indicated why, and in which applications, PM motors are especially good.
Cdlculations of economical aspects demonstrated the small difference in savings between the
different motor types in a variable speed drive, compared with the constant speed drive.



Resumeé

Denne Ph.D. rapport omhandler energioptimal styring af sma og mellemstore asynkronmo-
tordrev med variabel hastighed anvendt specielt i forbindelse med pumper, ventilatorer og
kompressorer (HVAC). Virkningsgraden er optimeret ved at tilpasse magnetiseringsniveauet
i motoren til lasten, og det grundlasggende formadl er at vise, hvordan dette kan geresi billige
PWM-VSI drev, uden at stabiliteten forringes ud over det acceptable.

Fire motor drev er undersagt med hensyn til energioptimal styring: 2.2 kW standard og
hgjvirkningsgrad motor drev samt 22 kW og 90 kW standard motor drev. Den anvendte
metode har vaget at udfare omfattende virkningsgradsmalinger indenfor hele det specificerede
arbgjdsomrade, med optimal virkningsgrad og med konstant luftgabsflux, og at opstille
pdidelige konverter og motor modeller baseret pa disse malinger. Tabsmodellerne har vaeret
anvendt til at analysere energioptimale styrestrategier ved hjadp af forskellige stationage
beregninger. Flere styrestrategier er blevet implementeret og afprevet eksperimentelt pa et
skaleat drev bade med hensyn til stationeer virkningsgrad, konvergenstid ndr lasten aandres,
respons i tilfadde af en pludselig lastaandring, og energiforbrug i et realistisk pumpesystem.
De dynamiske egenskaber blev ogsa afprevet i et flux-vektororienteret drev. Pa baggrund af
disse forsgg blev cos(p)-styring og direkte flux-styring anset for at vazre de bedste styrings-
principper i sma HVAC anvendelser.

Energioptimal styring af mellemstore drev blev analyseret separat med hensyn til
indvirkningen af konvertertab. Et nyt modelbaseret styringsprincip, som kan medtage
konvertertab, er foreslaet. Det kraever ikke en analytisk lasning af optimeringproblemet og
kraever kun meget lidt beregningskraft. Der er opstillet en sammenhaang, hvorved det er muligt
at forudsige hvor meget virkningsgraden for et standard asynkronmotordrev mellem 2.2 kW
0g 90 kW kan forbedres ved at anvende energioptimal styring.

Der er etableret en smpel metode til at beregne hvor robust en motor er mod pludselige
lastaandringer, og den er anvendt pa forskellige motortyper og motorsterrelser. Beregninger
af resonanser i en motor har vist, at energioptimal styring i nogle tilfadde vil forbedre
stabiliteten og i andre tilfadde forvaare den. En sammenligning af sma og mellemstore
asynkronmotordrev med permanent magnet synkron motor drev har vist hvorfor, og i hvilke
anvendelser, PM motorer er specielt gode. @konomiske beregninger har vist, at i forhold til
den store besparelse forbundet med indferelse af variabel hastighed, er der kun sma forskelle
I besparelserne mellem de forskellige motortyper i drev med variabel hastighed.



1. Introduction

11
12
13
14
15

Energy Efficient Control of HVAC Applications . ......................
Energy Savingsin HVAC Applications by Variable Speed Control . .........
Statisticson the Use of InductionMotors. . ............ ...,
Formulationof theProblem .. ... ... ... .. ... .. . ...
Structure of the Report . ...
REfEreNCeS . .. .

2. Induction Motor Drive Loss Minimization

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Lossesin an Adjustable Speed Induction Motor Drive . ..................
Energy Optimization by Motor Flux Reduction ........................
Energy Optimal Control of VVFFDrive. .......... .. ..
Energy Optimal Control of VVVFEDrive .......... ... .. ...
Simple State Control .. ...
Model-Based Control . . ...
Search Control . ... ...
SUMMAIY . et e e e e e e
REfEreNCeS . ...

3. Loss M odelsfor Motor and Converter

31
3.2
3.3
34
35

41
4.2
4.3
4.4

Fundamental Frequency Induction Motor LOosses . ..............covvvn...
Harmonic Induction Motor LOSSES . . . ... oot i e
CONVEEr LOSS . ..ttt
Simplified Inverter LOSSEXPressions ... ...ovit i i
SUMMEAIY . et e e e e e e e e e e
REfEreNCeS . .. .

. Experiments and Calculations on Drive with Optimal Efficiency

Efficiency Measurements on 2.2 kW Standard Motor Drive .. .............
Efficiency Measurements on 2.2 kW High-Efficiency Motor Drive .. ..... ...
Calculation of Optimal Drive Efficiency . ........ ... ... . ...
SUMMEAIY . . et e e e e e e e
ReferenCes . . ...

5. Development of Energy Optimal Control Strategies

5.1
5.2
5.3
5.4

Simple State Control .. ...
Modd-Based Control . . . ...
Search Control . . ... ..o

6. Test of Energy Optimal Control

6.1
6.2
6.3
6.4

Steady-State Test of Energy Optimal Control .. .......................
Dynamic Test of Energy Optimal Control .. .......... ... ... ... ......
Energy Measurement inaPump System . .. ... oo
SUMMAIY . .ottt e e e e e

45
45

52
58
61
61

62
62
68
72

85



7. Energy Optimal Control of Medium-Size Drive 122

7.1 Motor and Converter LOSSRatio . ... 122
7.2 Influence of Converter LossontheLoss Minimization.................. 126
7.3 Evauation of Energy Optimal Control Strategies. .. ................... 130
7.4 Experiments with Model-Based Control .. .......... ... ... ... .. .... 133
75 OVEr-SIZEd MOLOIS . ..ot e 135
7.6 Energy Optimal Control - Drive Size and Efficiency Improvement ......... 138
T SUMMAIY . oottt e e e e e e e e e e e 140
ReEfErenCesS . . . ..o 140

8. Motor Drive Stability 141
8.1 StabilityinCaseof aLoad Disturbance .............. ... ..., 141
8.2 OsCllaions . . ... 148
8.3 SUMMAY . .o 154
ReEferenCeS . . .. .o 154

9. Comparison of Permanent Magnet Motor and Induction Motor Drives 155
9.1 Conditionsforthe Comparison ..............c..iuiiiiiininennan... 155
9.2 Speed and Load Torque Characteristics . . . ... ..ot 157
9.3 Descriptionof theMotors ... 159
9.4 Result of Calculationsfor 2.2 kW Motor Drives ...................... 164
9.5 Result of Calculationsfor 90 kW Motor Drives . ... ................... 167
9.6 Profitability ........ ... 170
0.7  SUMMAIY . .ottt e e e e e 173
ReEfEerenCeS . . ... 174

10. Conclusion 175
Appendix A. Description of Laboratory Motor Drives 180
Al Mechanical Load . ....... ... 180
A.2 Motorsand CONVEIErS ... ...ttt 181
A.3 Digital Control System . ... 182
A4 Sensorsand Flters .. ... 184
ReEfErenCeS . . .. .o 184
Appendix B. Verification of Motor and Converter Loss M odels 185
B.1 2.2kW Standard Induction Motor Drive . ......... ... ... ... . ..., 186
B.2 22kW High-Efficiency Induction Motor . .......... ... ... ... .... 195
B.3 22 kW Standard Induction Motor Drive . ......... ... . ... ... ... 199
B.4 90 kW Standard Induction Motor Drive  .......... ... ... .. ... 207
B.5 3kW Standard InductionMotor .......... ... . .. ... 213

Appendix C. List of Publications 215






Chapter 1

Introduction

Many environmental experts see a connection between global changes in the climate and
the emission of CO, in the atmosphere. During the last many years the globa mean
temperature has slowly increased and it has caused the political goal in many industrialized
countries to reduce the emission of CO, in the future. The government in Denmark hasin its
plan “Energy21" committed itself to reduce the CO, emissions with 20 % by the year 2005
compared with the 1988 level. A UN panel of climate experts has estimated that to avoid
serious changes in the climate, the CO, emissions should be halved from the year 1990 to
2030, and this might be the future goal for many industrialized countries. One of the waysto
attain this goal is to reduce the electrical energy consumption, especialy in a country as
Denmark where most of the electrical energy is produced by coal fired power stations. These
environmental consderations are the most important factors in Danish energy politics and the
main reason to pursue reductions in energy consumption.

But there are other reason as well. The consumption of both thermal and electrical energy
IS growing, no matter the political intentions, so sooner and later very large investments in
transmissons lines and power stations are required. If the growth in energy consumption can
be reduced, then these investments can be postponed and a lot of money saved. For the end-
user there is of course the smple incentive that he can save money if he can get the same work
done with less energy by using more efficient energy conversion processes.

A large part of dectrical energy is consumed by induction motors. They are used in various
places including households, industry, commerce, public services, traction and agriculture. In
fact, electrical motors consume around 56% of the total consumed electrical energy, and of
this, induction motors account for 96% [1, p. 156]. This shows that around 53% of the total
electrical energy is consumed by induction motors. The very extensive use of induction motors
implies that if losses in induction motor drives can be reduced by just a few percent, it will
have a major impact on the total electrical energy consumption.

The reasons for the wide use of this motor-type are well known: it is cheap, rugged,
maintenance free, and has direct line start ability. Although the induction motor is inferior to
for example permanent magnet synchronous motors and brush-less dc motors in terms of
nominal efficiency, it is likely to remain the major electrical energy consumer for many years
because of its many advantages and its wide use.
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When the objective is to reduce the electrical energy consumed by induction motors, it is
particularly interesting to deal with a segment of the consumer market called HVAC
applications. HVAC, which stands for Heating, Ventilation and Air-Condition, is a group of
applications that is often used in connection with induction motors. The devices employed in
HVAC are typically ventilators, pumps, air-compressors and refrigerators. As will be shown
later in this chapter, these devices consume a large part of the total energy consumed by
induction motors. The reason why it isinteresting to deal with these HVAC applicationsis that
in many ingtallations today, the application is driven by a constant speed induction motor, and
the output of the process is being controlled by mechanical means, yielding a massive waste
of energy. If, on the other hand, the HVAC application can be speed controlled, the loss of
energy can be reduced dramatically.

Traditionally the induction motor has been operated directly from the grid, or possibly
through a soft-starter, with almost constant shaft speed. But since the development of the
power electronic converter in the early seventies, it is now also used in adjustable speed drives
(ASD). Thismeansthat by inserting a converter between the motor in an existing installation,
and the electrical grid, it is possible to obtain an adjustable speed motor drive and keeping all
the advantages of the induction motor listed in the beginning of this section. In a HVAC
application, by smply inserting a converter and leaving out the mechanical control (e.g. a
vave), it istherefore possble to reduce the energy consumption remarkably. Since the HVAC
applications account for a large proportion of electrical energy consumption variable speed
control will contribute considerably to reduce energy consumption.

The newest progresses are improvements made to the motor drive itself. The motor
efficiency isimproved for so-called high-efficiency motors or premium-efficiency motors by
improved construction and by use of more material in the motors. Furthermore the efficiency
of the total drive is optimized by on-line energy optimal control.

This project will concentrate especially on the last issue, and seek to develop low cost
control strategies for the converter and induction motor that minimize the energy lossesin all
load conditions. To do this in a rational manner the use of electrical motors in HVAC is
analyzed further, so that the project can focus on the area with the highest potentia for energy
savings. In this introduction the control of HVAC applications is first discussed. Thereafter
it is analyzed how much energy can be saved by speed control, in which applications and in
what motor power range the highest savings can be obtained. This analysis leads to a more
specific statement of the problem to be solved in this project.
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1.1 Energy Efficient Control of HVAC Applications.

Typical tasks for HVAC installations are to control pressure, flow, temperature or liquid
level, and which control method to choose is determined by severa factors, including required
control performance, installation cost and energy efficiency. A small comparison of control
methods is given hereafter, see [2] for detalils.

» On/off control. Isused when only afraction of full production is needed for long periods
of time. The motor is turned on when the controlled parameter goes below a minimum
limit, and the motor is turned off when the parameter exceeds a maximum limit. The
number of starts and stops, which stress the installation mechanically, can be reduced
by increasing a buffer size, for example a water tank for at water pump. If the plant is
operating at rated load when the motor is turned on, the on/off control has a good energy
efficiency, but otherwise the energy-efficiency will be degraded.

* Stepwise control. One large motor-drive-installation is divided into several smaller
installations, each of them with on/off control. Each single motor is turned on or off
depending on the production need. The advantage is that the motors and processes
operate near rated load and with good energy-efficiency all the time. The disadvantages
are increased installation costs and only stepwise control capability. It can, though, be
combined with variable speed on one of the motors.

* Mechanical process control. It is used in applications where the process output
parameter should be controlled continuously and the performance of or/off control and
Stepwise control are not satisfactory. The induction motor is connected directly to the
grid. The output parameter (e.g. pressure) is controlled mechanically, for example by a
valve, athrottle-valve or afeedback shunt. The main drawback with this principle is that
the mechanical control inevitably introduces high additional energy losses when full
production is not needed. To expressit ina popular way, it corresponds to running a car
with full power and controlling the speed with the brake.

» Variable speed control. The motor is fed by a power-electronic converter which only
consumes the amount of power that is required for the process. The process output is
controlled only by varying the speed. Although the installation cost is high, variable
speed may be chosen because of its control performance, possible energy saving or to
reduce acoustic noise from for example fans.

From this small comparison between HVAC application control strategies, it can be
concluded from an energy-economical point of view that the mechanical process control is not
acceptable because of the high energy losses at reduced load. The choice between on/off
control, stepwise control and variable speed control depends on the degree of loading and the
required control performance. Plants where low production is needed for long periods of time
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arein favor for the stepwise control and the variable speed control. On the other hand, when
the production need is high and the performance of the on/off control is acceptable, the on/off
control may be preferred because it is less expensive to install. A lot of energy can be saved
in HVAC applicationsif good engineering is practiced during the design of the whole system,
and in many cases on/off control or stepwise control will provide the best solution. There is
no doubt, however, that in installations where good control performance is required, variable
speed control makes up the only energy-effective alternative to mechanical control.

In general one should note that when designing the system it is important to consider the
LCC (Life Cycle Costs). This includes all costs related to the given installation during its
lifetime, including procurement, maintenance, repair, energy expense, environmental issues
and disposal.

Energy Savingsin HVAC Applications by Variable Speed Control.

The advantage of using variable speed control instead of mechanical control in HVAC
applications is analyzed closer, taking a pump as an example. It will be concluded in which
applications variable speed provides the highest potentia energy saving.

1.2.1 Control of a Pump.

Four versions of a pump system are shown on Figure 1.1 - Figure 1.4. The first two are with
constant speed and mechanical control, and the last two are with variable speed control. On
Figure 1.1 and Figure 1.3 the pump is without head, and on Figure 1.2 and Figure 1.4 the
pump is with head. The liquid flow is controlled so that in working point A the flow is 100%
of rated flow, and in point B the flow is 50% of rated flow. The figures show the pressure-
flow-curves of both the pump characteristic (PC) and of the tube-system, i.e. the system
characterigtic (SC). The operating point for the pump is defined by the intersection of the PC
and the SC.
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P Val n
P=0 ump pump ave Ptube q !
| =+
<—>
Pvaive

Constant speed Pualve

Motor

qulow)
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Figure 1.1: Mechanical control of a pump without head. SC: system characteristic, PC: pump
characterigtic.

p (pressure)
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:i : ppump %
~/ -—>
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@
\ __aflow)
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Figure 1.2: Mechanical control of a pump with head. SC: system characteristic, PC: pump
characteristic.

It is seen from Figure 1.1 and Figure 1.2 that for the constant speed drive, the flow is
reduced from A to B by using the valve to insert an extra resistance in the tube so that the
system characteristic is changed from SC, to SC,. In Figure 1.3 and Figure 1.4 the system
characterigtic is unchanged, but the change in speed changes the pump characteristic from PC,;
to PC,, thereby changing the flow from A to B.
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ppump Ptube q
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(=]

Variable speed

Motor

C
AC

Electrical grid

qm ax

Figure 1.3: Variable speed control of a pump without head. SC: system characteristic, PC:
pump characteristic.

qT p (pressure)
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| q (flow)
Electrical grid -
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Figure 1.4: Variable speed control of a pump with head. SC: system characteristic, PC: pump
characteristic.

Figure 1.5 showsthat at full load (point A) the constant speed drive has the best efficiency
because the power electronic converter in the variable speed drive causes additional lossesin
the motor and in the converter. At 50% flow (point B) the situation is opposite. At 50% flow
without head there is a remarkable improvement with variable speed, compare bar-graph 1.1
with 1.3. Most of the loss in the constant speed drive is dissipated in the valve. In the case with
head, compare bar 1.2 with 1.4, the difference is not that distinct. But still, the variable speed
drive has the best efficiency.
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Point A: 100% Point B: 50%

Efficiency 0,49 0,10 0,38 0,40 0,47

valve power loss
pump power loss motor power loss

- converter power loss

Figure 1.5: Relative power digtribution for the pump systemson Figure 1.1 - Figure 1.4. The
efficiencies for the motor and pump are written below the bars-graphs.

1.1: constant speed without head.

1.2: constant speed with head.

1.3: variable speed without head.

1.4: variable speed with head.

1.2.2 Applicationswith Potential for Energy Saving by Speed Control.

The previous analysis of a pump system made it clear that for a quadratic load type (in the
ideal case the load torque increases with square of speed, in practice the increase is less than
square), as a pump without head, variable speed control provides remarkable energy savings
at part load compared to mechanical control. In the case with head, the savings are smaller.
The results will now be extended to ventilators, air-compressors, and refrigerators. The
conclusions are based on [ 2, pp. 28 ff] and [3, pp. 23-42].

Ventilation: Theload is quadratic and is very well suited for speed control.

Pump: A pump without head is a quadratic load and very well suited for speed
control, an example is a domestic heat water pump. A pump with head
provides energy savings by speed control, but not as large, an example
IS a submersible pump.
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Air compression:  Speed control of an air-compressor corresponds somewhat to a pump
with head and gives a good energy saving by speed control.
Refrigeration: Same as for air-compression.

The results are summarized in Table 1.1.

Table 1.1: Energy saving potential by speed control for four HVAC applications.

Process Type Torque, assuming ideal process  Energy saving by
variable speed control
Ventilator centrifugal =K, =K, n? very good
Pump centrifugal without head t=K, =K, n? very good
centrifugal with head =K, F+K,=K;n*+K, good
Air-compressor  screw, turbo, piston Lightly increased with increased  good
speed
Refrigerator screw, turbo, piston Lightly increased with increased  good
speed

Statistics on the Use of Induction Motors.

In addition to the knowledge of which applications are especially well suited for variable
speed control, it is valuable to know how extensive the use of these applications is, and in
which motor power ranges they are primarily used. This knowledge shall be used to direct the
research towards the area that have the highest potential for energy savings.

The knowledge is obtained by an analysis based on statistical material on the use of electro
motors in Denmark [4]. The data is collected by energy-counselors in the period 1988-1992
in 1200 casesin the non-domestic sector. The 1200 cases comprise atotal energy consumption
of 900 GWh, equivalent to 750 MWh per case.

It can, of course, be discussed whether the data material is large enough to give areliable
result, but that is beyond the scope of this project. It just has to be kept in mind when
analyzing the data that there is some uncertainty in the data. However, it is estimated that
genera conclusions can be drawn. Investigations on the use of induction motors have also
been made in other countries, for example in the United States [1] and in Sweden [5], but they
are not commented here.
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production (11,50%)

motors (8,30%)

other (44,40%)
refrigeration (9,30%)

pumps (6,80%)

air-compressors (5,00%)

fans (14,70%)

Figure 1.6: Electrical energy consumption in Denmark in 1988-92 divided into applications
[4, p. 11]. The domestic sector is not included.

Figure 1.6 illustrates the electrical energy consumption divided into applications in the non-
domestic Denmark. Knowing that electrical motors are used for both fans, air-compressors,
pumps, refrigerators and production [4, p. 4], the pie-diagram shows that around 55.6% of the
electrical energy is consumed by eectrical motors, and that 35.8% of the total electrical energy
consumption isused in HVAC applications, involving ventilators, air-compressors, pumps and
refrigerators.

Not al electrical motors are induction motors. A small amount of the energy is consumed
by other motors, including synchronous motors, dc-motors and stepper motors. Based on
United States motor salesin 1989 it is estimated in [1, p. 156] that 96% of integral-horsepower
drive power goes to induction motors. Although the number might be dlightly different in
Europe, it is certain that a very large amount of motor drive power goes to induction motors.
It can be concluded that induction motors account for 53% (0.556x0.96=0.53) of the total
electrical energy consumption.

It is also investigated in which motor power range energy is consumed. In this analysis
focus is put on the four HVAC applications. ventilators, pumps, air-compressors and
refrigerators. It isinteresting to look at the total energy losses per year on Figure 1.7. At low
power ventilation and refrigeration are the most dominating applications, but in higher power
ranges, the difference is smaller. It is interesting to see that as the consumption by ventilation
goes down as the power range increases, the energy consumption of the other three application
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reaches a maximum in the medium power range. The total energy loss per year, on Figure 1.8,
which more or less decreases for all four applications for increasing power range, reflects the
fact that the higher the power range, the higher isthe energy efficiency. The total losses in the
range above 53 kW are not important compared to the losses at low power. The power range
Is divided into small drives (<10 kW), medium-size drives (10-1000 kW), and large drives
(>1000 kW).

1000 | @ "

800 | -

600 | -

549

400 - -

Total energy use per year [GWh/year]

200 -

10-52
Motor size [kW]

Figure 1.7: Energy consumed by induction motors for ventilators, pumps, air-compressors
and refrigerators in non-domestic Denmark in one year, divided into power classes|[6, p. 22].

The first conclusion that can be drawn with regard to the energy use in Denmark is that
because the total losses in ranges above 53 kW are small, it is less interesting to try to reduce
the motor lossesin that power range. As most of the losses are located from 0-9 kW thisisthe
most interesting power range to look at, but the medium power range can not be excluded
either. Ventilation and refrigeration are the dominating applications, ventilation primarily at
low power and refrigeration a medium power. Air-compressors and pumps are not important
at low power, but gain increasing importance at medium power.

The energy use outside Denmark has not been investigated. A EU SAV E-project entitled
“Penetration of Energy Efficient Motors and Drives’ investigates the use of energy in HVAC
applications in Europe, and the results will be published in year 2000. It is probable that the
share of medium and large drives is more important in Europe in general than in Denmark
alone.
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Figure 1.8: Energy loss in induction motors for ventilators, pumps, air compressors and
refrigerators in non-domestic Denmark in one year, divided into power classes[6, p. 24].

Formulation of the Problem.

The initial analysis showed that the induction motor is a large consumer of electrical
energy, and that alarge part of the consumption goesto HVAC applications. Asthisis an area
where variable speed control can offer several advantages, including good efficiency, it has
been chosen to focus the work with energy optimal control on HV AC applications run by the
standard PWM-V S| squirrel-cage induction motor drive on Figure 1.9.
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Figure 1.9: PWM-VS induction motor adjustable speed drive.
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The basic problem is to realize control of the induction motor drive which ensures that it
always operates with optimal efficiency, keeping in mind that it must not reduce the reliability
and other performance parameters of the drive below an acceptable level, and that the drive
can be realized with low cost. This general goa brings about a number of more specific
problems defined in the following, which are solved in this thesis.

1.4.1 Definition of the Problem.

The initial analysis showed that the main energy consumption and motor losses exist in
connection with small drives (< 10 kW), so this thesis initialy focuses on this size of drives.
But the medium-size drives (10-1000 kW) are studied as well, paying specia attention to the
special characteristics of this class of drives compared with the small drives. Asonly HVAC
applications are dealt with, the operating areais limited to O - 1 p.u. load torque and 0.2 - 1
p.u. speed, which istypical for such applications.

Small Drives.

For the energy optimal control of small drivesit is chosen to study a 2.2 kW motor drive
because it is typical for small drives, and because this drive size is easy to handle in the
laboratory. The following issues have to be considered for small drives:

»  What isthe maximal increasein efficiency that can be obtained with energy optimal control
compared with nominal air-gap flux control? This must be documented experimentally within
the specified operating area.

* How important are the harmonic motor losses, and how do they depend on the control of
the motor flux level? Should the harmonic losses be included in the energy optimal control
algorithms? This aso has to be documented by experiments.

» The above questions must be answered for both standard and high-efficiency induction
motors, so that it can be clarified whether there are differences in the benefits of energy
optimal control between the two motor types, and to see whether the type of motor influences
how the energy optimal control algorithms should be designed.

» How can energy optima control be realized, keeping in mind that the application isHVAC
and the drive cost must be low? The last criterion restricts the solution to use a limited number
of sensors, and a smple algorithm. The selection of proper control strategies should be
founded on the extensive work which is aready done within the field of energy optimal
control, and possibly improvements should be suggested.

» Theenergy optimal control should be tested experimentally on a 2.2 kW test-bench within
the whole operating area, both in steady-state and with regard to dynamic performance.
Additionally the drive should be tested in a more redlistic pump-system to see how much
energy can typicaly be saved by energy optimal control. These tests must result in a proposal
of which strategy is best suited for HVAC applications for small drives.
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Medium-Size Drives.

The medium-size drives differ from the small drives by having a more important converter
loss compared to the motor loss, and the following problems have to be solved with regard to
energy optimal control of medium-size drives:

» Does the increased converter loss in medium-size drives influence much the point of
optimal drive efficiency, compared with the small drives where the motor loss is dominating.
» Can energy optimal control algorithms for the small drives be used without problems in
medium-size drives as well? Does the converter loss have to be included in the energy optimal
control algorithm, and how can this possibly be done?

» The answers to the questions above must be based an experimental work, just as the
performance of an energy optimal control strategy must be tested in terms of efficiency on a
test-bench. 22 kW and 90 kW drives are selected for the experiments.

Energy Optimal Control in General.

The questions which must be answered to energy optimal control in genera are the following:
» Possible stability problems could be a major disadvantage with energy optimal control.
How serious is this problem, and how can it be overcome in drives for HVAC applications?
» Based on the work with the 2.2 kW, 22 kW and 90 kW drives, a relation should be
established from which it can be estimated how much energy optimal control can improve the
drive efficiency for any drive in the range of 2.2 - 90 kW compared with constant air-gap flux
control.

* Isit important with regard to efficiency not to over-dimension an induction in a variable
speed drive with energy optimal control?

» Findly it should be estimated how much energy can be saved with an induction motor drive
In comparison with a permanent magnet motor drive in HVAC applications. The result must
be presented in the form of energy saving, economical saving and pay-back time for the drives.
The comparison should be made for a small and a medium-size drive.

1.4.2 Delimitation of the Project.

When the control algorithms are implemented for tests, they employ motor and converter
parameters which are obtained by separate tests on the drive. For a possible industrial use it
Is assumed that these parameters are available, so methods of parameter estimation are not
considered.

The control strategies are verified experimentally using a floating-point DSP to control the
inverter. Such a DSP would be too expensive to use in most industrial drives, but it is very
flexible and easy to use. The floating-point DSP could later be replaced with a fixed-point
processor, but that is disregarded in this project.

Flux reduction has the advantage that is reduces the acoustic noise from both converter and
motor, but acoustic noise is not considered in this thesis.
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Structure of the Report.

Thethesisis divided into three parts.

Part one includes this chapter and chapter 2, which reports on how losses can be reduced
in motor drives, both in the construction phase and when the drive is operated.

Part two, which includes chapter 3 to chapter 6, provides a basic analysis and realization
of energy optimal control applied to a 2.2 kW drive. Chapter 3 presents the motor and
converter loss models which are used for analysis and experiments. A general steady-state
analysis of energy optimal control is made in chapter 4, based on extensive experiments with
2.2 kW standard and high-efficiency motor drives. This analysis forms the basis for
development of the control strategies which are selected and further analyzed in chapter 5. All
control strategies are tested in chapter 6, both with respect to steady-state efficiency, dynamic
performance and by energy consumption in arealistic circulating-water pump system.

Part three congsts of three studies related to energy optimal control. The first in chapter 7
investigates energy optimal control in medium-size drive, supported by experiments with 22
kW and 90 kW motor drives. An analysis of stability is given in chapter 8, including
robustness against load disturbances, and oscillations. Chapter 9 sets the energy optimally
controlled induction motor drive in perspective by comparing it with a permanent magnet
motor drive with respect to energy savings and economical issues.

Chapter 10 finally concludes on the whole thesis.
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Chapter 2

Induction Motor Drive Loss Minimization

This chapter describes various ways of optimizing the efficiency of an adjustable speed
induction motor drive. Thefirst part is devoted to give an overview of the lossesin the drive
and suggestion of how to improve efficiency by making changes in the construction of
converter, motor and transmission. The losses generated in the distribution system are briefly
discussed as well. The second part is areview of energy optimal control methods of induction
motor drives. The main emphasis is put on variable speed drives, but control of fixed
frequency converters, known as soft-starters, is briefly described as well.

Lossesin an Adjustable Speed Induction Motor Drive.

Figure 2.1 shows how the power flows through an electrical motor drive from the power
station to the process (ventilator, pump etc.). In every part of the chain there are losses
associated with transportation of energy. The chain consists of:

Distribution system:  Transmissions lines, distribution transformer and distribution line.

Converter:

Motor:
Transmission:

Power electronic unit which controls the motor stator voltage and
stator frequency, typically a PWM-VSI with a three phase diode
rectifier.

Three phase squirrel cage induction motor.

Could be for example a direct shaft, agear, abelt or achain.

power
delivered — >

from power

power

converter ( motor [ transmission ——>delivered
to process

distribution
system

station

loss ¢ loss loss loss

Figure 2.1: Overview of power flow through an electrical motor drive.

In this section the nature of losses in each of the four sectionsiis briefly described, and it is
explained, without going in details, how the losses can be reduced by optimization of the drive
construction. A detailed description of motor and converter lossesis given in chapter 3.
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2.1.1 Frequency Converter.

The Pulse Width Modulated Voltage Source Inverter (PWM-V SI) topology with diode
rectifier shown on Figure 2.2 istoday used in standard drives up to several hundred kW. If the
drive performs fast breaking or if it drives an active load, it can be necessary to dissipate
power in adc-link resistance or to use a thyristor rectifier in order to be able to regenerate
power into the electrical grid, but neither of these cases are considered here.

tt%m

—®

nE 5

Figure 2.2: Pulse Width Modulated Voltage Source Inverter (PWM-VS) with diode rectifier
commonly used in standard drives.

grid

The lossesin the converter consist mainly of semiconductor switching loss and conduction
loss, power supply for the control electronics, and choke conduction losses. The nominal
efficiency is typically 0.96-0.98, depending on kV A rating and on whether forced or natural
cooling is used.

The switching losses can be reduced by increasing the dv/dt of the switches, but on the
other hand EMI regulation should be respected as well. It can also be a problem with a high
dv/dt on the output, especidly if the motor is fed through along cable. In some convertersthe
dv/dt on the motor terminalsis limited with three output chokes. The choke copper losses can
be reduced by increasing the wire size, but it increases the cost of the converter. The lossin
the rectifier is not important.

The switching losses are also influenced by the inverter modulation strategy. It is possible
to use adrategy where an inverter leg does not switch for 60 electrical degrees, and there are
strategies with discontinuous modulating function where the switching losses are further
reduced [1]. The choice of modulation strategy, however, depends on the requirements from
the general motor control, and it is not commented further in this thesis.

2.1.2 Induction Motor.

Table 2.1 summarizes actions that can be taken to reduce losses in an induction motor given
a constant core volume. It is seen that it is quite unproblematic to increase the amount of
copper in the stator and to use thinner lamination steel with lower loss and with improved
processing, although it is of course more expensive. The choice of steel, however, is aso a
compromise between low losses and good magnetic permeability. Steel with very low core
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loss may have low permeability, whereby the saved core loss goes to stator copper losses
because of increased magnetization current.

For aline start motor it is problematic to reduce the rotor resistance because of increased
inrush current and decreased starting torque, but that is not a problem when the motor is fed
with a converter. Animproved, but unidirectional, fan for cooling the motor is only acceptable
in some applications and probably not a good idea for a standard motor. Better bearingsisa
possihbility. The actionsto reduce stray load losses are not unproblematic, due to unacceptable
adverse effects.

Table 2.1: Actions that can be taken to reduce induction motor losses[2].

Loss Possible design changes Positive effect on losses Adverse effects

Stator 1. Increase amount of copper |1. Decrease stator resistance. |1. Increased cost & difficult to

copper wirein sot. build.

loss 2. Increase stator dot size&  |2. Decrease stator resistance. |2. Increased cost & difficult to
amount of copper wirein sot. build.

3. Decrease length of cail 3. Decrease stator resistance. |3. Possible increase of inrush

extensions. current - difficult to build.

Core 1. Changeto lamination steel |1. Decrease hysteresisloss. | 1. Increased cost & reduced

loss: hys- |with lower loss. availability of materials.

teresis 2. Decrease lamination steel | 2. Decrease eddy current 2. Increased cost & availability

and eddy [thickness. loss. of materials.

current  |3. Improve coreplating / an- | 3. Decrease eddy current 3. Increased cost and use of
nealing processes. loss. energy.

Rotor 1. Increase flux density in air- | 1. Decreasein dip & result- |1. Increasein inrush current.

copper gap. ing rotor copper loss.

loss 2. Increaserotor bar size. 2. Decreasein rotor copper | 2. Maybe higher inrush current

loss. and decreased starting torque.

3. Increase end-ring size. 3. Sameasno. 2. 3. Sameasno. 2.

4. Increase rotor bar / end 4. Same asno. 2. 4. Same asno. 2.

ring conductivity

Windage |1. Optimize fan design. 1. Reduce operating 1. Can causeincreasein noise
and fric- temperatures. levels. May result in unidirec-
tion loss tional fans.

2. Optimize bearing selection. | 2. Reduced friction | oss. 2. May affect noise level or im-
pose speed or bearing loading
restriction.

Stray 1. Insulaterotor bars. 1. Reduced bar to lamination |1. Increased cost.
load loss currents.

2. Increased air-gap. 2. Reduce high frequency 2. Reduced power factor.

surface | osses.

3. Eliminate rotor skew. 3. Reduction in rotor Cu loss. | 3. May increase noise levels &
affect speed-torque curves.

4. Strand depth. 4. Reduced eddy currents. 4. Difficult to build, high cost.

5. Transposed turns. 5. Reduced eddy currents. 5. Difficult to build, high cost.
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If it is possible to increase the core volume, for example by increasing the stack length or
the stator back iron, the permeance of the magnetic circuit can be increased. Then the number
of stator windings can be reduced, giving room for thicker copper wires. The harmonic losses
can be reduced by redesigning the rotor slot geometry, see for example [3].

2.1.3 Transmission.

Characteristics for different transmission types are listed in Table 2.2. It is clear from the
table that there are quite large differences in efficiency between the transmission types.
Especidly the worm gear has very low efficiency, but there are aso large differences between
the different types of belts. There are mainly two types of belts: the synchronous belt with
teeth, and the asynchronous belt such as the V-belt, cogged V-belt and flat belts. The V-belts
are cheap and the maximd efficiency, which is not high for al types, is only reached if the belt
Is dimensioned, set up and maintained with care. The efficiency is also load dependent. If a
V-belt has an efficiency of 98 % at nominal load it is reduced to around 92 % at 25 % load [4].
An advantage is that it can withstand chock loads as when a line start motor is started directly
from the line. The flat and synchronous belts have higher efficiency but are more expensive.
The synchronous belt does not withstand chock loads, but as these do not appear in speed
controlled drivesit is not a problem to use synchronous belts.

The best transmission solution is the direct shaft coupling, and variable speed makes it
more often possible to select a direct shaft coupling than for a constant speed drive.

Table 2.2: Performances of motor drive transmissions [5, p. 86ff].

Type |[Type Losses Efficiency |Advantage Disadvantage
Shaft  |Shaft coupling Low 99-100 % |High efficiency Lower efficiency and
coupling wear on bearings
when misaligned.
Gear Helical (parald) |Friction between [90-98 %  |Remark: higher efficiency for higher rating
Bevel (right angle)|gears, in bearings and lower gear ratio.
Wiorm ™ and seals, wind- e g TG gear ragio, Cow efficiency
. age, lubricant
(right angle) ] depends on
churning. .
gear ratio
Bt V-belt flexing, dippage, [90-96 % |Withstands shock loads |Efficiency < 90 %
_____________________________ windage | ... ....Jaodmotorjam, chesp  |when not maintained
Cogged V-belt dlippage, windage, [1-3 % bet- |lessflexing loss. Takes |20-30% more expen-
flexing ter than V- [shock loads and motor  |sive than V-belt,
S NV belt ] M needs maintenance
Fat belt dippage, flexing [96-99 %  |high efficiency, good |Expensive
Poly-vbelt |l forhighspeed. |
Synchronous windage, flexing [96-99 %  [High efficiency, no Does not withstand
dippage, no mainte-  |shock loads and mo-
nance tor jam, expensive
Chain [Chain up to 98 % |Withstands shock |oads |[Needs maintenance
and high temperature
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2.1.4 Grid Losses with an Adjustable Speed Drive.

For theline start motor the input current is nearly snusoidal with a reactive component, and
cos(¢) depends on the load. The three phase diode rectifier has a cos(¢g) which is constantly
near unity, but on the other hand the input current has an important harmonic content. The loss
generated in the grid by the line start motor is:

2 P 2 1
Poewiq=3R I2.=38R | — " | =R _|_n (2.1)
I d I I I I .
oss,gri ine"line ine \/§VneCOS((p)) ine Vne) COS((P)2
where Ry : equivalent line series resistance.

line : RMS value of line current.

Vine - line voltage.

[0) : phase lag angle.

P, : motor input power.

The harmonic content is characterized by the Total Harmonic Distortion (THD), defined by:

i
THD = ! (2.2)

1

where | : RMS value of rectifier input current.
I, : RMSvaue of fundamental rectifier input current.

If the grid voltage is sinusoidal, the harmonic current does not carry power and just
generates losses in the grid. It can be shown that

12 = 12(1+THD?) (2.3)
so that the loss generated in the grid by the diode rectifier is

P

loss,grid line'line

= 3Ricline = 3Ripeline(1+THD?) = R, | —~| (1+THD?) (2.4)
line

The THD depends mainly on the size of the inductance in the dc-link filter and on the
strength of the electrical grid. If the filter inductance is low, the THD becomes high. In
commercia drives a THD on the input current of 40 % is common at nomina load. It is
assumed here that the THD varies linearly with the motor output power from 2 at no-load to
0.4 at rated load. Figure 2.3 shows a comparison of the line RMS current for a 2.2 kW
standard motor when it is connected directly to the grid and when it is fed through a frequency
converter, and it demonstrates that the converter generates lowest loss in the grid. In [6] and
[7] it is shown how the grid harmonics can be reduced by mixing single-phase and three-phase
loads.
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calculation on 2.2 kW standard induction motor drives

line RMS current [A]

- //converter fed motor. . i i : .

0.5~

00 02 04 06 08 10 12 14 16 18 20 22
motor output power [kKW]

Figure 2.3: Line RMS currents for a 2.2 kW induction motor when it is connected directly to
the grid and when it is fed through a converter.

Energy Optimization by Motor Flux Reduction.

Apart from improving the drive by changes in the construction, the losses can be reduced
by energy optimal control, which isfor agiven speed and load torque to apply the set of stator
voltage and frequency which minimize the drive losses [8, pp. 346-348]. The principle of
energy optimal control is hereafter explained with main focus on motor losses.

The electro-magnetic torque of an induction motor is approximately

1:em=K-Im-Ir (2.5

where K : constant.
|, : magnetizing current.
[, : rotor current.

For agiven load torque, the required electro-magnetic torque is therefore obtainable by an
infinite number of combinations of magnetizing current and torque producing rotor current.

If 1, islarge and I, is small, then the core loss and the stator copper loss are large and the
rotor copper lossis smal. Contrarily if |, gets smaller and I, gets larger, then the core loss and
the stator copper loss initially decrease and the rotor copper loss increases, but eventually the
stator copper loss startsto increase aso, so for a given load torque there is aratio between the
magnetizing current and the rotor current which generates a minimum of total losses. The
motor is normally designed so that it operates with an optimum near rated load. But at low
load there is an excess of magnetization, corresponding to alarge |, and asmal |,. The total
loss can then be reduced by reducing |, and increasing ..
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optimiséd efficienicy

constént air-gap: flux

motor efficiency [p.u.]

0 0.2 0.4 0.6 0.8 1
load torque [p.u.]

Figure 2.4: Curvesfor motor efficiencies at rated speed for a 2.2 kW motor with constant air-
gap flux and with optimized efficiency.

The improvement in motor efficiency with minimized losses compared to conventional
congtant air-gap flux control isillustrated on Figure 2.4. It is seen that the difference between
the energy optimized efficiency and the constant air-gap flux efficiency is largest in the low
load region.

Energy optimal control is interesting for HVAC because it is highly probable that a motor
in a HVAC installation will operate at reduced load for long periods of time. A HVAC
application plant is normally dimensioned to handle an extreme load situation. For example
a central heating warm-water circulating pump must be able to keep a house warm on the
coldest day of the year. This means that for most of the year the motor and pump are only
loaded with afraction of rated power. Furthermore, the motor is normally larger than it needs
to be in a given application, which is explained by the following two reasons [9, pp. 16f]:

» All motors from a motor manufacturer are not absolutely identical but lie inside the
tolerances of a production line. Hence, the motor designer has to use a security factor for
the rated power to insure that all motors fulfil the nameplate-data specifications.

» Because induction motors of the shelf are only available at certain power ratings, the
engineer, having calculated the required rated motor power, hasto choose the next motor
size above the calculated value. Small standard induction motors, for example, are only
availableat 1.1, 1.5, 2.2, 3, 4, 5.5and 7.5 kW.

Adding these factors, the result isthat even when a plant is operating at full production, the
induction motor is so large that the process (e.g. a pump) will never be able to subject the
motor to full load. The conclusion is that there is a potential for energy savings in variable
speed drivesin HVAC applications by adapting the motor flux to the load.
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The main disadvantage with energy optimal control is that flux reduction at low load makes
the motor drive more sensible to load disturbances and degrades the dynamic performance.

If the losses in the drive were known exactly, it would be possible to calculate the energy
optimal operating point and control the drive in accordance to that, but there are severa
reasons why thisis not possible in real life:

» Even though the energy optimal operating point could be calculated exactly, it is
probable that limitation in computation power in industrial drives would make this
impossible.

* A number of losses are difficult to predict, including stray load losses, core losses in
case of saturation changes and harmonic content, and copper losses because of
temperature changes.

» All the measurable signals can not be acquired due to limited production cost of the
drive. It means that certain quantities must be estimated, which naturally leads to an
error. And some quantities, such as converter output voltage and dc-link current, are
very difficult to measure precisely anyway.

Energy Optimal Control of VVFF Drive.

The use of a VVFF (Variable Voltage Fixed Frequency) converter (soft-starter) is in
principle just a special case of the general problem of energy optimal control. As the name
says, the stator voltage is variable and stator frequency is constant. But the harmonic content
of the stator voltages differ so much from the PWM voltages that atotal different performance
Is obtained because of the harmonic losses. That is the reason why the VVFF converter is
treated separately in this review.

Thefirst attempt to optimize the efficiency of an induction motor drive by converter control
was indeed realized by use of aVVFF converter by Nolain 1977 [10]. It was discovered that
by controlling the fire angle of a soft-starter converter, as seen on Figure 2.5 in a three-phase
verson, the fundamental stator voltage and thereby the efficiency can be controlled. The first
control principle was to keep a constant fire angle of the thyristors. After that followed a
number of articles and patents suggesting different control strategies for the same converter
type [11]-[35].
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Figure 2.5: Induction motor supplied by a VVFF converter (soft-starter).

All control strategies are based on an attempt to select one variable, and to keep it constant
or to minimize it. It could be a constant fire-angle, minimum or constant displacement power
factor angle, minimum stator current or minimum input power. A comparison by Rowan and
Lipo in 1983 [23] showed that minimum of power factor or minimum input power gives the
best efficiency. The disadvantage with the VVFF converter is that the harmonic losses in the
drive are so large, that the real improvement is questionable.

Rowan and Lipo [23] investigate the efficiency including harmonic losses of a VVFF
controlled motor drive and compares it to a motor connected directly to the grid. At loads
above 0.9 p.u. the VVFF converter is fully conducting so the thyristor conduction loss
degrades the efficiency of the VVFF motor drive with 1.5 % compared to the uncontrolled
motor. At loads below 0.45 p.u. the soft-starter-motor outperforms the uncontrolled motor.
The conclusion is that for loads above 0.45 p.u. the efficiency improvement is negative, and
therefore energy saving is only attainable in applications where the motor is operated with low
load for significant periods of time.

Asthe power transistors developed, the soft-starter was left in favor of the PWM-V SI for
energy optimization purposes, but the VV FF converter is still used as a soft-starter. The soft-
starter is widely used in industry today and most of them aso have an energy saving option.
Modern soft starters have been tested recently by Blaabjerg et a. in 1995 [35], but the
concluson isthat if the only purpose of the soft-starter is to save energy, thereis no pay back
on it. In addition, with energy optimization, stability problems can occur and harmonic grid
current are increased making it possibly difficult to fulfil the new regulations IEC-1000. The
conclusion is that the soft-starter is not a good solution to solve the energy efficiency
optimization problem.

The main disadvantage is that the softstarter can not provide a large speed variation,
whereby the primary source of energy savings in HVAC applications is lost. This converter
topology will not be treated further in this thesis.
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2.4 Energy Optimal Control of VVVF Drive.
Thebasic VVVF (Varidble Voltage Variable Frequency) topology is shown on Figure 2.6.

The output voltage is pulse-width-modulated. Today the pulse-amplitude-modulating inverter
isonly used in specia applications such as high speed or low voltage, and it is not treated here.

it%mgﬁﬁ?%i@
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Figure 2.6: A PWM-VS with diode rectifier used in most ASDs today.
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Figure 2.7: Control diagram for efficiency optimization of a motor drive. Many possible
feedback signals are indicated.

Figure 2.7 shows a control diagram for an ASD with energy optimal control. Many
measured feedback signal are indicated, but in most industrial drives only the dc-link voltage
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and two or three phase currents are measured. In servo drives the speed may be measured as
well. The diagram indicates that it is also possible to measure the dc-link current, and the
currents and voltages at the input to the rectifier. The purpose of doing that would be to the
measure in input power to the drive. Thisis, however, never done in industria drives because
of the extracogt. A solution for future drives could be to reconstruct the three stator currents
from measurement of the dc-link current as suggested by Blabjerg [102], which would also
make it possible to measure the input power to the inverter without extra cost.

The energy optimal control methods are in the following divided into three categories:
simple state control, model-based control and search control.

Simple State Control.

When an induction motor is operated with optimal efficiency it appears that some electrical
parameters behave in a smple way. The most obvious parameters to control are cos(¢) and
rotor dlip frequency.

One simple control scheme, which does not include any of these two, was proposed,
though, by Tomitain 1988 [45] and [46]. He suggests to control the motor in open-loop, and
to determine the stator voltage as a function of stator current and stator frequency, see equation
(2.6). Thisis bascaly asmple way of making the V/f-ratio load dependent by using the stator
current as load torque indicator. The K(f) compensates for the relatively larger voltage drop
in the stator at low frequency.

V

f—s = K(f)- I (2.6)

where K(f)  :non-linear stator frequency dependent gain.

2.5.1 cos(¢g) (Displacement Power Factor) Control.

The principle of cos(p) control of inverter fed induction motors was described by
Rosenberg et a. [36] in 1976, and it was mentioned in connection with energy optimal control
for thefirst time in the patent by Earle [37] in 1981. Power factor control had previously been
proposed by Nola[9] in 1977, but this was for a single phase motor fed by back-to-back
mounted thyristors.

Thereisalarge number of patents and papers on energy optimal cos(¢) control of induction
motors: [37] - [39], [44], [47] - [55], and the claims are on ways to measure cos(¢p) or to
implement the control, see an example in Figure 2.8. There are also special proposals of how
to generate the reference value.
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Figure 2.8: An example of cos(¢) control in a scalar drive.

The advantages of the cos(¢p) control are that it is so simple and that it does not require
speed information. One disadvantage is that the cos(¢p) reference is only valid for one specific
motor. For some motors it may be acceptable to keep a constant cos() reference, and for other
motors it may be an obligation to vary the reference as function of for example stator
frequency or load, Andersen and Pedersen[55]. A careful analysis of this matter for different
motor types and motor sizes has not been reported in literature.

2.5.2 Rotor Slip Frequency Control.

The first attempt to calculate energy optimal dip frequencies was done by Jian et al. [40]
in 1983 for a constant frequency drive. They also discussed the influence of saturation on the
reference values. Stanton et a. [57] suggested in 1983 to use a constant dip frequency
reference in the low torque (low flux) region, assuming a linear magnetic circuit. It will be
shown later in this report, however, that even when the magnetic circuit is linear, the influence
of the presence of core losses deteriorates the performance of the constant dlip frequency
control. The same year Park et a. [41] proposed an implementation of dlip frequency control
inacurrent source inverter drive, see also the work by Kim et al. in 1984 [43]. In 1984 Park
and Sul [42] proposed an energy optimal control strategy where the optimal rotor dlip
frequencies are put in a look-up table, see Figure 2.9. The values are based on off-line
measurements on the motor drive, and for that given motor drive, the optimal dlip frequency
values were made dependent on the speed only.
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Figure2.9: An example of a rotor dip frequency control, with reference valuesin a look-up
table[42].
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2.6 Moded-Based Control.

M oddl-basad control is a principle where the drive control contains equations which model
the drive or the drive losses, and uses the equations to calculate the point of optimal efficiency.
The motor parameters should be known beforehand. In a series production of drives with
specific motors and converters designed to operate together it can be realized by off-line
measurements. Otherwise automatic parameter estimation is required.

2.6.1 Scalar Drives.

Galler [56] proposed in 1980 to use the motor model to calculate an optimal stator
frequency and to control the speed with the voltage. The calculated optimal stator frequency
Is based on the steady-state motor model disregarding core loss and assuming a linear
magnetic circuit:

c_6on 1 RR’
Tz, 2m R(L +L)?*+RLA

r—m

@2.7)

where n : Speed.

z, :number of pole-pairs.
R, :stator resistance.

R,  :rotor resistance.

L, :magnetizing inductance.
L, :stator inductance.

L, :rotor inductance.

=

The method is aso described by Kusko and Galler [58] 1983, and it is proposed to
implement it as shown in Figure 2.10. The core losses can be included in the model, but then
the optimal stator frequency must be computed numerically as

o 60-n

s tan+b 2.8
2 (2.8

and the coefficients a and b will have to be calculated off-line. The last proposal is essentially
just alook-up table similar to the scheme in Figure 2.9. The drawbacks of the equations (2.7)
and (2.8) suggested by Kusko and Galler is that the model does not include saturation of the
magnetic circuit, which makes it impossible to obtain good results.
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Figure 2.10: Example of implementation of a model-based control in a scalar drive [58].

Bose [59] claimsin a patent the idea to optimize efficiency by use of aloss model. Stator
current and air-gap flux are detected and used to calculate the model loss, including
fundamental and harmonic copper losses, and core losses, taking also saturation into account.
By measurement of stator voltages and currents, the input power and thereafter efficiency are
calculated. The air-gap flux is varied in small steps until the optimal efficiency is found. The
slip frequency is calculated from air-gap flux and torque. The proposed implementation will
give agood result, but it is complex as it involves measurement of speed, air-gap flux, stator
currents and stator voltages. The idea of searching for minimum loss by use of a loss model
was also proposed by Kusko and Galler [58] in 1983.

Pedersen and Blaabjerg [63] proposed in 1992 for an electrical vehicle an expression where
the efficiency optimal magnetizing current reference is determined as function of a torque
reference and speed.

An ideawas patented by Y amakawa [66] in 1994 for a motor controlled in open loop. The
input power to the motor is measured, and the stator voltage is then calculated by

Vs - K'\/ I:)motor,in ) ?/i (29)

In [72] Kioskeridis and Margaris, 1996, uses the steady state motor model to calculate the
optimal air-gap flux as

G

lI‘[m,opt - Is s (2-10)

where ¢, . - efficiency optimal air-gap flux.
I, :stator current.
G, :motor specific constant which includes saturation.
w,, :shaft angular velocity.
T, : motor specific time constant.
T

s - Motor specific time constant.
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The argument for the structure of equation (2.10) is as follows: the air-gap flux should
increase with load, indicated by | The denominator expresses that above a certain speed the
flux should be reduced in order to limit the core losses, and the nominator expresses that at
another speed the flux should increase in order to limit stray load losses due to armature
reaction. The constants G, T;and T, are determined by three experiments.

2.6.2 Field Oriented Vector Controlled Drives.

It is obvious to use model-based control in field-vector oriented drives because good speed
information is available and some model parameters are already known. It should just be kept
in mind that accurate models of core losses and of magnetic saturation are needed to obtain
good loss minimization, and in most conventional field-vector controlled drives both core
losses and saturation are disregarded.
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Figure2.11: An example of a motor model-based efficiency optimized control implemented
in a field oriented reference frame.

Most proposals are based on a loss function which is differentiated with respect to a flux
related parameter to find minimum loss for a given load torque and a given speed. There are
differences in how the result is presented. This is due to differences in representation of for
example the core loss resistance and differences in implementation, but basically the idea is
the same. In some cases the optimal rotor-flux reference is calculated directly as by Takahashi
and Noguchi [60], Idam and Somuah [61], Mendes et al. [67], Baba et al. [73], Matsuse et al.
[76] and Chang and Kim [77]. In other cases the optimal efficiency point is expressed as a
ratio between field-current and torque-current, such as by Garciaet a. [65], Ashikaga et al.
[69] and [74]. In [70], by Burtea and Ghita, an optimal dip frequency is calculated, and in
[75], by Rasmussen and Thegersen, the optimal efficiency point is found by equalizing the loss
related to the torque producing current with the loss related with the field producing current
by help of a Pl-controller. Asit will be shown in section 5.2, it compromises the result that
saturation is not considered in any of the cases.

Mendes et a., [67] and [73], claim to minimize losses also in dynamic. This demands,
however, that load torque and speed are known in advance. It is true in a limited number of
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applications, for example in tool machines that work continuously in the same closed loop
cycle. See also Lorenz and Yang [62].

Fetz et d. [64] made in 1993 a different approach to efficiency optimization of a rotor-flux
oriented vector controlled drive. They used the maximum torque per ampere stator current as
acriterion. This enables to calculate optimal field-current and torque-current references from
atorque reference.

Search Control.

What hereis called search control, has by other authors been called testing control, adaptive
control or on-line optimization. It is the name for the control principle where a significant
parameter is minimized or maximized by trial and error. The criterion could be maximum
efficiency, minimum inverter input power, minimum dc-link power, minimum motor input
power, minimum motor loss, minimum drive loss, minimum stator current or minimum dc-
link current.

2.7.1 Traditional Search Control.

The principle was first mentioned in a patent by Geppert [78] in 1982 for an electrical
vehicle drive. It was proposed to start the drive with a nominal V/Hz ratio, and when a
constant torque demand is detected, to decrease the V/Hz ratio until a minimum of dc-link
current is found.

For agenerd purpose drive, the ideawas first mentioned by Kusko and Galler [58] in 1983.
Kirschen et a. [79] were in 1985 the first to do simulations. Experimental results were
reported in 1987 [80]. They implemented the search control in connection with a rotor-flux
oriented vector control scheme, and minimized the drive input power, keeping the motor
output constant by controlling the speed and assuming the load characteristic to be constant
[103, p. 388], see Figure 2.12. A similar system was investigated by Chen and Yeh in 1991
[88].
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Figure 2.12: Search control implemented with rotor-flux oriented motor control [80].
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The main advantage of the search control is that it does not depend on motor parameters
as other control strategies do, and it finds the true optimal efficiency. On the other hand, the
convergence time to reach the optimal efficiency islong (not less than 4 sec.), and there may
be continuous disturbances in torque and speed, depending on how the algorithm is designed.
The search adgorithm may be difficult to tune in order to assure correct convergence under all
circumstances. If a power is minimized, it needs extra and accurate sensors, unless the stator
current are reconstructed from the de-link current whereby the de-link power can be acquired
easily.

Kirschen et a. discussin [79] and [80] the torque disturbance and damping of the drive.
They find that near the point of optimal efficiency the disturbances for a given step in flux
become larger and less damped, but that it can be compensated for by increasing the gain of
the speed controller by simple gain scheduling.

A problem in rotor-flux oriented vector controlled drives, not only with search control but
for al energy optimal control strategies, is the drive response when the flux is reduced and the
drive meets a sudden large torque demand. When the flux is low, and the stator current is
limited to the nominal current rating, the motor can not deliver full torque by just increasing
the torque current. If no precautions are made to the drive, it will react by increasing the torque
producing current until the current limit is met, but then the field current will not increase, so
the drive will not be able to deliver the demanded torque. In [79] it is proposed to put an
artificia limit on the torque current until the field has reached its nominal value, and thereafter
to increase the torque current. Thiswill only lead to a small decrease of the drive dynamics
compared with the drive operating with continuous rated field.

Sul and Park [81] proposed in 1988 a type of search control for a motor driving a pump. It
Isassumed that the load characteristic is not changing. The load torque vs. speed characteristic
Is divided into severa sections. During the start-up procedure, the motor drive runs through
the load curve from zero to nominal speed, and in each section of the load curve it uses a
search control agorithm to find energy optimal dip frequencies, and stores them in the
memory. Under norma operation the drive is then slip frequency controlled, using the energy
optimal dip frequencies as reference values. This results in a smple and fast drive control
scheme under normal operation, but the dip frequency references of course have to be retuned
if the load characteristic changes.

Moreraet a. [82] presented in 1989 and 1991 [85] search control for a scalar drive. The
main invention was that instead of measuring the speed, it was estimated from the stator
voltage third harmonic component. Additionaly, for systems with essential fixed torque-speed
characteristic, they proposed to disregard the speed measurement or estimation, and instead
estimate torque and use that as an indication for the motor output power. In both cases they
minimized the dc-link power. Parts of the control systems are patented in [86] and [87].
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Kim [83] claimed in 1990 a patent on minimisation of the stator current by search control
instead of minimisation of input power. But he demonstrates no actionsto control the output
power or speed, o it isnot certain that the described drive will work in practice.

Kioskeridis and Margaris [94] documents in 1996 the advantage of minimizing the stator
current instead of input power. The result is aimost the same in terms of efficiency, the stator
current has a more distinct minimum than the power, and it costs less sensors. Based on
calculations they state that this is especially advantageous in larger drives, where the input
power minimum is more difficult to detect.

Several authors have implemented search control with small variations in the application.
Famouri and Cathey [84] minimized in 1991 inverter input power to a scalar drive by adjusting

the rotor dip frequency. Blabjerg and Pedersen [89] minimized in 1993 the dc-link power by
adjusting the V/Hz ratio, see Figure 2.13.
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Figure 2.13: An example of an search efficiency optimization implemented in a scalar drive.

Cleland et a. [92] proposed in 1995 to implement search control in an open-loop controlled
drive where the load characteristic is known. They claim to be able to adjust the speed without
knowledge of motor parameters, by increasing the stator frequency each time the stator voltage
Is decreased. However, they have never proven this experimentally, and it is doubtful that it
can work.

2.7.2 Fuzzy Logic and Neural Network Search Control.

The latest investigations in search control have been to use fuzzy logic in the optimization
algorithm. Fuzzy control algorithms have an advantage over classical control methods when
the system is not very well-known or when it istoo complex to model. It therefore applies well
for energy optimal search control, where the algorithm is applied without knowledge of the
motor syssem model. In[97] it is stated that the main advantage of using fuzzy control instead
of classical search control algorithmsis that it makes the algorithm converge faster and that
it can better accept inaccurate signals corrupted with noise. The credibility of the last statement
IS doubtful.
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Fuzzy control wasfirst introduced with energy optimal control by Sousa et al. [90] in 1993,
and [93] in 1995, where they minimized the dc-link power of a rotor-flux oriented vector
controlled drive, see Figure 2.14. They also introduced a g-axis feed-forward path to out-
compensate the torque ripple when the field-current is stepped. In these two articles a
convergence time of 4 sec. isreported. Fuzzy search control is also described by Cleland et al.
[91] in 1995, by Wang and Liaw [96] in 1997, and by Bose [104, pp. 593-597].
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Figure 2.14: Energy optimal fuzzy control implemented with field-oriented motor control
[90].

Boseet d. [97] introduced in 1997 fuzzy logic search control implemented in a sensorless
stator-flux oriented vector control motor drive where they report a convergence time of 10 sec.
It is also described by Bose and Patel [100] in 1997. It was the first time that search control
was realized in a sensorless drive. They also proposed to reduce the flux following a ramp
instead of a step, in order to reduce torque ripple. Furthermore they use the fuzzy logic control
scheme to train a neural network that is used for the final implementation.

Also Choy et a. [95] in 1996 and Hasan et al. [101] in 1997 uses a neural network to
perform the search control. In both cases they set up a model of the motor drive, and used a
conventional search control algorithms to train the neural network in different operating
points. Theresfter the search control is done by the neural network alone. This method seems
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a bit awkward, because if they first have to set up a model to train the neural network, then
they loose the advantage of the search control, which isthat it should work without knowledge
of the motor drive model. They could, of course, choose to train the neural network
experimentally.

Moreno-Eguilaz et a., [98] and [99] both in 1997, carries out a comparison of different
search control algorithms. Their conclusion is that fuzzy control offers the best and fastest
convergence.

Summary.

On overview of the losses associated with an adjustable speed drive was initially presented,
and it was shortly explained how the drive loss can be reduced by improving the construction
and maintenance of converter, motor and transmission. The review of energy optimal control
of electrical drives treated the variable voltage fixed frequency (VVFF) drive as well as the
PWM-V S| based variable voltage variable frequency (VVVF) drive.

It is documented in literature that the VVFF drive is only able to save energy at very low
loads, and that in general it is not well suited for energy optimization of integral horse-power
electrical drives. And asis can not vary the speed very much, it is not interesting to use for
HVAC applications. The control strategies for the VVVF drive are divided into the three
categorieslisted in Table 2.3.

Table 2.3: Evaluation of induction motor drive energy optimal control methods.

Control Method Simple State M odel Based Search
Motor drive specific yes yes no
Parameter sensible yes yes no
Efficiency precision medium medium high
Efficiency convergence fast fast slow (4-10 sec.)
Complexity simple medium / complex medium
Speed measured or dip frequency: yes sometimes yes (not if load
identified cos(¢): no torgue is known)

The main disadvantage of the smple state control and the model based control isthat they
require knowledge of the motor parameters. But they are fast, and the simple state control can
be very cheap to implement, especially the power factor control which does not require a speed
sensor. The main disadvantage with the search control is that it requires a speed sensor and
that the convergence timeislong, but the advantage is that motor parameters are not required.
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After 20-25 years of intensive research in the field of energy optimal control of induction
motors, the general impression is that in some areas the research has reached a mature state,
and in other areas development of new control strategies are still going on.

With respect to dlip frequency control and displacement power factor control, the initial
research and patents were concerned with how to implement the control in analog circuitry in
asimpleway. Thisis history, so the basic control is very simple to implement now. The only
thing that can be discussed with respect to these methodsis how to generate the references and
possibly how to design the controller dynamics.

Research is il going on with search control, and it is especially important to develop ways
of smplifying the design of the algorithm, and to develop algorithms with faster convergence
time, for example by using fuzzy-logic control.

M odel-based control isthe field in which most research is going on. The proposed solutions
differ alot, depending on the drives they are designed for, and on how the losses are modeled.
A genera weakness with most solutionsis that they do not include saturation, so thereis still
a need for simple methods which include saturation, and possibly also converter losses.

Looking more generally on the publications, it is characteristic that only a few of them
compare different control strategies, and when it is done, it is only within one category of
control strategies, for example a comparison of search control strategies. Generally the
converter lossin not included in the controller design, which may come from the fact that most
papers investigate drives of a few kW rated power. The importance of converter losses is
barely untouched, asis aso an investigation of how the converter losses can be included in the
energy optimal control algorithms. Only one paper discusses a medium size drive, and the
analysis is then done without experimental verification. A general analysis of stability with
regard to energy optimal control has neither been seen in literature. So despite the many years
of research in development of energy optimal control algorithms, and the mature state within
some areas, there are till aspects of energy optimal control which are poorly covered, and
which hopefully, among other things, will be clarified through the work documented in this
thesis.
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Chapter 3

Loss Models for Motor and Converter

In this chapter the individual loss componentsin the drive are described. The motor losses
are separated into fundamental losses and harmonic losses, since the ways the two loss types
are described are very different from each other. The importance of each of the two parts with
respect to energy optimal control is evaluated. It is shown how the converter losses can be
calculated for use in the analysis of energy optimal control. At last an approximated and
simplified converter loss model is presented for use in real-time model-based energy optimal
control calculations.

Fundamental Frequency Induction M otor L 0sses.

The losses which appear at fundamental frequency are stator and rotor copper losses, core
losses (eddy current and hysteresis), stray load losses and mechanical losses (friction and
windage). For amain connected motor the stray load losses are normally set to around 1 % of
rated power at nominal load, but the number may vary at least between 0.5 % and 1.5 %
depending on the motor. It is more uncertain how the stray load losses depend on load and flux
level, and due to lack of generally accepted conventions of representing these losses, it is
chosen to include them in the stator copper loss. The verification in Appendix B shows
satisfactory results. The electrical losses are represented in the model shown on Figure 3.1 by
the stator, rotor and core resistances.
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Figure 3.1: A single phase stationary equivalent diagram for an induction motor.
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3.1.1 Stator Copper Loss.
The stator copper loss is calculated by:

2
PCu,s: 3RSIS (31)
where  Pg, : stator copper loss.
R, . stator resistance.
I : stator current.

Skin effect is not taken into account in the stator. The resistance is compensated for the
temperature drift of the winding by

RS = Rso (1 + OCCU (T_ To)) (32)
where R, : stator resistance at temperature T,,.
oy : temperature coefficient for copper.

3.1.2 Rotor Copper Loss.
The rotor copper lossis calculated by:

I:)Cu,r =3 Rr I r2 (33)

where P, . rotor copper loss.
R : rotor resistance.
I, . rotor current.

The resistance is compensated for the temperature drift of the winding by

Rr = Rro 1+ Oy (T- To)) (3.9
where R, . rotor resistance at temperature T,
oy : temperature coefficient for auminum.

Aluminum isthe most common rotor bar material in small motors, but copper may also be
used. The rotor resstance is measured with alocked-rotor test at 10 Hz to account for the skin
effect.

3.1.3 Core Losses.
The most common way of modeling the core losses in case of sinusoidal flux distribution
Is to use the following Steinmetz expressions of hysteresis and eddy current losses.

P.=k, ¥? 2 [W (3.5)
Ph:kh g f [W] (3.6)
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where P, . hysteresis|oss.
P, : eddy current loss.
\J - coefficient that depends on the magnetic material.
Ki, . hysteresis coefficient given by material and design of motor.
K, - eddy current coefficient given by material and design of motor.
1 : flux linkage.
f : fundamental frequency.

The total stator corelossis
v 2 2
Pcore,s: kh,S IIJm fS + ke,s lIJm fS (37)

where P, :stator coreloss.

U, : air-gap flux.
f, . stator frequency.

Thetotal rotor core lossis calculated by using the stator core loss expression (3.7) but with
dip frequency instead of stator frequency and by scaling with the ratio of the masses of rotor
and stator core material.

p_ - vosfo+ koo W (st )?
corer _T kh,s U S s T Kes U (S s) (38)
S
where P, :rotor coreloss.
S : dip
m, : mass of the stator core
m, : the mass of the rotor core.

The total fundamental corelossis

P =P 4P 1.5 v 1+ ) 42 g2
core core,s+ corer +SH kh,s lIjm s ¥ +S H es lIjm s (39)

S S

The equivalent per phase core loss resistance is
3v2  3@2n)2yl 2

R, = —= = (3.10)
© Pcore PCOI‘e(lIJm ! fS’ S)

where R : parallel equivalent core loss resistance.

Equation (3.10) shows that the core loss resistance depends on air-gap flux, stator frequency
and dip.
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3.1.4 M echanical Loss.
The friction and ventilation torques are given by

— B T _ T 2 2
Tric = Tdry+ % Ny Tuen = l&/ent % n (3-11)
where Tt : friction torque.
Ty > dry friction torque.
B : viscous constant.
n : mechanical speed.
Tyent > ventilator torque.
Kyent > ventilator constant.

The mechanical lossis
T T 2 T 3
PITBCh = le’y (%) n+B [%) n2+kvent [%) I’]3 (3.12)

where P.., :mechanica loss (friction + ventilation loss).

Harmonic Induction M otor L osses.

The aim of treating the harmonic motor losses here is not to give a profound and detailed
description of them, that is a task far too complicated with this little space. It is here just
interesting to know whether or not the harmonic losses should be taken into account in the
energy optimal control algorithms.

Firg it is shown briefly how the individual harmonic loss components depend on harmonic
frequency. This survey is based on the investigation of harmonic losses in [1]. Figure 3.2
illustrates the frequency dependence. The result is only qualitative, that is, it shows whether
theindividual losses increase or decrease with frequency. For a constant harmonic voltage, the
harmonic current is only determined by the stray inductance, and the copper loss dependence
of frequency is determined by how the stray inductance and the resistances depend on
frequency. The figure shows that the copper losses amost only decrease for increasing
frequency. The core loss decreases at low frequency, but the development at high frequencies
Is uncertain. The conclusion should be clear, however, that the total harmonic motor lossis
decreasing for increasing harmonic frequency.

On the first axis of Figure 3.2 are indicated frequency numbers. These are only very
approximate and they also depend on motor size, as for example skin effect starts at lower
frequency in large motors than in small motors.
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A No skin effect

Onset of stator conductor skin effect

Onset of rotor conductor skin effect
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Figure 3.2: lllustration of harmonic motor loss frequency dependence with constant harmonic
dator voltage [2]. Thefirst axisfrequencies are very approximate and motor dependent. The
high frequency core loss is not known exactly.

A second stage would be to quantify the losses theoretically, but that is very difficult, and
it seems like a lot research work still has to be done before the harmonic losses can be
predicted theoretically with decent accuracy.

The harmonic losses are here determined by experiments on standard and high-efficiency
2.2 kW induction motors controlled by space-vector modulation with centered pulses. The
total harmonic motor loss has been measured for different switching frequencies with a six-
phase Norma Power Analyzer D6100 taken as the difference between the total motor input
power and the fundamental motor input power. With this subtraction of two large numbers
giving a small result, it is evident that the accuracy is limited. The measurements are shown
on Figure 3.3 and Figure 3.4.

Figure 3.2 can not be compared directly with Figure 3.3, because Figure 3.2 shows losses
for a single frequency and Figure 3.3 shows the loss for a whole spectrum of harmonic
frequencies with different voltage amplitudes, but of course with the switching frequency as
the dominating. The measurements show that the harmonic motor loss initially decreases and
after 3-5 kHz switching frequency stays rather constant.

One conclusion which can be drawn from the experiment is that for a given motor drive
there exist a switching frequency where the total harmonic loss of converter and motor has a
minimum. For the tested 2.2 kW standard motor drive the minimum was found around 3-4
kHz, and this frequency should be chosen if energy efficiency was the only criterion. Similar
measurements on a 2.2 kW high-efficiency motor, Figure 3.4, show the same frequency
dependence, the losses are just smaller.
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experiments on 2.2 kW standard motor drive
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Figure 3.3: Measured harmonic losses as function of switching frequency for a 2.2 kW
standard induction motor drive.
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Figure 3.4: Measured harmonic losses as function of switching frequency for a 2.2 kW high-

efficiency induction motor drive.
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It isinteresting to know whether the harmonic motor losses are influenced by the flux level
in the motor in a way that they are obligatory to include in the energy optima control
algorithms. This question has been investigated experimentally by measurement of harmonic
loss on a 2.2 kW standard induction motor. The measurement are those presented in chapter
4, namely when the motor is operating at different speeds and load torques, with constant air-
gap flux and with optimized efficiency. The results on Figure 3.5 reflect the fact that it is very
difficult to measure the losses precisaly, which makes a conclusion unclear. It seems, however,
that the losses are smaller with reduced flux than with constant air-gap flux. But the reduction
Is so small compared with the total loss, and so unpredictable, that it is chosen here not to
include the harmonic motor losses in the energy optimal control algorithms.

measured harmonic motor loss

30 T T T 1 1
o5 |- - 300mm. .o T ——— constant flux .
20 b e o ——— energy optimal control |- . |

harmonic loss [W]

load torque [Nm]

Figure 3.5: Measured harmonic motor loss for a standard 2.2 kW induction motor operating
with constant air-gap flux and with optimized efficiency.

The conclusion with regard to harmonic drive losses is that they can be minimized by
choosing the proper switching frequency and modulation strategy. These issues will not be
further discussed in this thesis. A clear relation between harmonic motor loss and flux level
has not been found, so the harmonic motor losses will not be included in the energy optimal
control algorithms.
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3.3 Converter Loss.

Two converter loss models are developed in this section. One which is used in the analysis
of the motor drive in chapter 4, and one which is implemented in the drive to do real-time
calculations of the converter loss. The second model is a simplified and approximate version
of the first. The models apply to the converter topology on Figure 3.6, where the inverter is

T
AT | RALAKS
grid 41 L e
= L.
C T T 4 /W‘H 4@

Power
supply

Figure 3.6: Converter topology for which the loss models are devel oped.

The following losses are considered:

* Rectifier conduction loss.

» Power supply.

* dc-link choke conduction loss.

» Conduction and switching losses in the inverter transistor and diodes.

* Output choke conduction loss.
The losses in the dc-link capacitor and in the iron-cores of the dc-link and output chokes are
disregarded.

3.3.1 Rectifier Conduction L oss.
It is assumed that the rectifier diode voltage drop is constant. The loss of the three phase
diode rectifier is calculated knowing that two diodes are conducting at atime:

P
| e 2. VD rect,out (3.13)
dc

Ploss,rect = 2'VD'
where Vo . diode forward voltage.
Petos - diode rectifier output power.

Ve : de-link voltage.
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3.3.2 Electronics Power Supply.

The supply is modeled as a constant load. The load size is determined as the power input
to the converter when the inverter is switching, but without a motor connected to the output
terminals. The power consumption of the micro-controller, DSP and sensors is not included.

3.3.3 Choke Conduction L osses.
The conduction losses in the dc-link chokes are calculated as:

P 2
Plossdc—choke - Rdc—choke —= (3'14)
Vdc
where Ricooe - total de-resistance in the de-link chokes.
Pivin - rectifier output power.
Ve : de-link voltage.

In equation (3.14) it is assumed that the output current of the rectifier is a pure dc current.
Actudly the current is a pulsating de-current, so (3.14) is only approximate, but the small error
Is neglected. Also the core losses induced in the choke cores by the pulsations are ignored. In
the redl-time model the measured dc-link voltage is used. In the theoretical analysis a fixed dc-
link voltage of 565 V is used. This is a simplification because the dc-link voltage varies with
the load.

The conduction losses in each of the three output chokes are calculated as:
2
Ploss,out—choke = Rout—choke IS

(3.15)

where Rotaoke - dc-resistance of output choke.
I : stator current.

Also here the core losses of the output chokes are ignored.
3.34 Inverter Loss.

Inverter Conduction L oss.
Figure 3.7 shows typical on-state voltages for diodes and transistors of an inverter. The
diode respectively the transistor on-state voltages are modeled as:

. B B

T H ,.D
o Voo = Vop * Top'ip (3.16)

Vont = Vor T Torlv 0.D

on,T o,T

where Vg, Iyt Ber ¢ CcOnstants characterizing the transistor conduction loss.
Vops fops Benp - CONstants characterizing the diode conduction loss.
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Vontr Vonp : transistor and diode on-state voltages.
i, Ip : transistor and diode forward currents.
Toshiba MG15Q6ES40, diode and IGBT on-state voltage
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Figure 3.7: On-state voltages for a 15 A IGBT-module used in a 4 KVA converter.

The instantaneous diode and transistor power losses are then:

. Boony _ . Beonpy
Pont = Vor * Tor'it )it Pop = (Vop * Topin Dip (3.17)

Inverter Switching L oss.

The losses relating to the switching between on and off states of the power components are
difficult to calculate in a simple way, and in the data-sheets it is recommended not to use the
provided turn-on and turn-off times to calculate switching loss, as the result will be very
unreliable. It is therefore chosen here to measure the transistor turn-on loss, the transistors
turn-off loss and the diode turn-off loss in a dedicated laboratory facility [3]. The current
through the device and the voltage over it are measured, and by multiplication and integration,
the energy dissipated in one switching is measured. Thisis done for different currents, and the
result is shown in Figure 3.8 for a15 A IGBT module.
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measured switch energy, 15 A module
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Figure 3.8: Trandgtor turn-on, transistors turn-off and diode turn-off energy lossfor a 15 A
IGBT module used in a 4 kVA converter.

The switch energy for each case is approximated by respectively

_ i Bs/v,on,T
ESN,OI’],T N ASN,OI’],T I
. Bayoff,T
ESN,Off,T = ASN,Off,T- ITSWO (318)
- B ’D
ESN,D = ASN,D‘ IDSW

where Eg, o Eqvorr - transistor turn-on and turn-off energy loss.
Eavp : diode turn-off energy loss.
Agvont Bavonr - COnstants characterizing the transistor loss at turn-on.
AgvoitT Bavorrr - CcOnstants characterizing the transistor loss at turn-off.
Agip Bao : constants characterizing the diode loss at turn-off.

The dissipated switching power loss in each device is:
B,

_ . .7 swonT
PSN,OI’],T - fSN ASN,OI’],T T
Poworir = fou Asarr it (3.19)
sw,off T ~ ‘sw ASN,Off,T T :

H Bsw,D
PSN,D - fSN‘ASN,D‘ID

where P, ..t :turn-on power lossin one transistor.
woitT - turn-off power lossin one transistor.
: turn-off power lossin one diode.

. : switching frequency.

V)

gﬂ
[}

—h



3. Loss Models for Motor and Converter 57

Total Inverter Loss.

The way the total inverter loss is calculated is visualized on Figure 3.9, which shows two
switching periods of the half fundamental period in which the mean power dissipation is
calculated. This method was presented in [4].

Figure 3.9: Illustration of basis for inverter loss calculation showing the control signal for
a branch and the phase current for two switching periods. The ripple of the phase-current is
disregarded.

The conduction energy loss fromt,, , to t,, .., is calculated as

H BCOn H BCOn
=0.5{(Vor ' + (Vortrorl offnT offn)D Tou

Ot on,n on n
H con H Bcon
0.5 (VO,D 0.d'offn 9)i loffn ™ (VOD 0d'on, nj) lonn+1 ((1_Dn)+(1_Dn+1))O'5TSN
where E,,, :conductionlossinone branch during a period of Tg,.

D, : transistor dutycycle in switch period n.
D - transistor dutycycle in switch period n+1.

con n

(3.20)

n+l

The switching energy loss in the same time interval is calculated as:
H swon Hilne="Xe) -Bsw,
ESN - ASNOI’]T‘ on,n ! ASNOffT‘ offnfTT Aszv,D'Ion,nD (3-21)

where E,,, : Switching lossin one branch during a period of Ty,

The inverter module loss can be calculated by:

n=fJ(2fg,)
Ioss,mv =6 f Z ( con,n + ESN,I’]) (3-22)
where P, - Tota inverter power loss.
fs : fundamental frequency.

fyy : switching frequency.
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Simplified Inverter Loss Expressions.

For an energy optimal control strategy where the inverter loss is an integral part of the
algorithm, the method described above is too complex and time-consuming for real-time
control calculations. Therefore a smplified method is used, providing aimost the same
precision, but requiring less calculations, see [9].

3.4.1 Simple Calculation of Conduction L oss.
Two main amplifications are made. First, the on-state voltages are modeled by linear first-
order functionsin (3.23) which are also depicted on Figure 3.10.

Vcon,D,Iin = VO,D,Iin tr

v =V * Totiin’! (3.23)

0,D/lin ) D’ con, T lin 0,Tlin

Secondly, in order to simplify the loss expressions it is necessary to use the duty-cycle
pattern described by afundamental with a third-harmonic injection, instead of the space vector

modulation method which is used in experiments. The error is small because the switching
functions are almost equal.

Toshiba MG15Q6ES40, diode and IGBT on-state voltage
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Figure 3.10: Actual and linearized on-state voltages for a 15 A IGBT-module.

For the conduction loss calculation it is assumed that the inverter switches infinitely fast,
S0 the switches are ether blocked or conduction.. At a given instant the stator current is given
by:

i) = V21 sin(wt) (3.24)

where |, :stator RMS current.
w, :stator angular velocity.
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The duty cycle is expressed by the modulation function, which is leading the current by the
phase shift angle, as:

2sin(w t+@) sin(3(w.t+e))

D() = 05 + 0.5'm (3.25)
V3 3/3
where m : modulation index, varying from O to 1.
[0) : phase shift angle.
The transistor conduction energy loss for a period dt is then:
dEcon,T = is(t) Vcon,T,Iin(is(t)) D(t) dt (326)

where Vg rin - linearized transistor on-state voltage.

The power lossis found by integrating the infinitesimal energy losses over a half fundamental
period and dividing with the same time:

2 T42. 1 T
I:)con,T = ?fo slzls(t) Vcon,T,Iin(t) D(t) dt = ;fo Is(e) Vcon,T,Iin(e) D(e) do (3.27)
s

By inserting the above functions and performing the integration, the mean transistor
conduction power loss is obtained:

2
_ Vorl/2 . Vo rm cos(e) . Roxls

con,T T \/g 2
(3.28)
. Ryrlsm 4R, 1 mcos(3¢)
\/3cos(p) 67 45m,/3

Exactly the same procedure is followed for the diode conduction loss calculation. The only
difference is that the diode dutycycle must be used:

2sin(wt+p) sin(3(w.t+9))

D,(t) = 05 - 0.5-m (3.29)
D i \/§ 3\/§
The mean diode conduction power lossis:
2
= _ Vop!sv/2 1 Vopmcos(e) . Rools
con,D T \/g 2
(3.30)

_Ryplsm 4Ryl mcos(3¢)
\/3cos(p) 67 457,/3
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The mean conduction power loss for the whole inverter is:

P =3(P + P

con,inv con,T con,D) (331)

3.4.2 Simplified Switching L oss Calculation.
A very smple formula for the total switching loss follows from the fact that it turns out to
be nearly proportional to the switching frequency and proportional to the phase current. An

example of the proportionalitiesis given on Figure 3.11, which shows the total switch energy
as function of current.

measured and modelled total switch energy, 15 A module
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energy [mJ]
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Figure 3.11: Total smtching lossas function of phase current for an inverter branch with 15
A modules. The thick line is the approximated switching loss within the normal operating

area.
The total switching lossis then approximately given by
PSN,HI’] = KSN Is fSN (332)

where K, :empirically determined constant.

3.4.3 Simple Calculation of Total Inverter Loss.
The tota inverter loss can then be calculated by the simple analytical formulas (3.28),
(3.30), (3.31) and (3.32), and it depends on the following parameters:

I:)Ioss,inv - f(ls’ fSN’(P’mi) (333)

Hereby the inverter loss can be calculated easily and with a relatively good accuracy. The
formulas will be used in chapter 7, where the inverter loss calculations are integrated in real-
time in the model-based energy optimal control.
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3.5 Summary.

The motor losses are separated into fundamental and harmonic losses. The fundamental
losses are calculated with a conventional single phase model without separate representation
of stray load losses. The harmonic losses were measured as function of the switching
frequency for 2.2 kW standard motor and high-efficiency motor drives, and in both cases it
was found that the drives loss reached a minimum around 3-4 kHz.

It was not possible to define a clear relation between measured harmonic motor losses and
motor flux level. For that reason, and because these losses are not important, the harmonic
motor losses will not be included in the energy optimal control agorithms.

The converter loss models are designed in two versions, one for theoretical analyses, and
one simplified version for real-time converter loss calculations.
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Chapter 4

Experiments and Calculations on

Drive with Optimal Efficiency

It is investigated in this chapter what the maximal obtainable efficiency of a motor drive
Is, and what characterizes the drive when it is efficiency optimized. The analysis is based on
experiments on 2.2 kW standard and high-efficiency induction motor drives, on which
efficiencies are measured with optimized efficiency and with constant air-gap flux. The
measurements are used to validate the motor and converter loss models, and these are then
used to analyze the drive by performing steady-state calculations. The drive is analyzed by
steady-state calculations, both with optimized efficiency and with variations of flux around
the points of optimal efficiency. From that analysis it is possible to chose several possible
ways of implementing energy optimal control, and to evaluate how well they will perform.

4.1 Efficiency Measurementson 2.2 kW Standard Motor Drive.
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Figure 4.1: Experimental setup for measurement of the induction motor drive efficiency.
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4.1.1 Execution of Experiment.

The experimental setup is shown on Figure 4.1. The motor and converter efficiencies are
measured with a 12-channel Power Analyzer Norma 6100. The load is acquired by
measurements of load torque and speed. For each efficiency measurement, the stator dc-
resstance and the motor housing temperature are measured as well. Efficiency measurements
are made both with PWM voltages imposed directly on the motor and with filtered stator
voltages. When measurements in this way are made with both PWM and with sinusoidal
voltages, it is possible to separate the harmonic motor loss arising from the PWM. All
measurements are made insde the operating area: 0.2 - 1 p.u. speed and from 0.15 - 1 p.u. load
torque.

When the motor is loaded, the thermal stahility is reached within 2-3 hours. However, the
measurement are for practical reasons performed with atime interval of 10-15 min. between
two points. This alows the motor to accommodate its temperature to some degree. It is
assumed that the error by doing so is not important.

The frequency converter is commanded by simple scalar control with compensation of the
inverter non-linearities. dead-time, diode and transistor voltage drop, and dc-link ripple.
During the measurements the speed is controlled in closed loop by adjusting the stator
frequency. For the measurements with optimal efficiency, the stator voltage is adjusted until
the drive input power read on the power analyzer has reached a minimum. For the constant air-
gap flux control, the stator voltage is calculated in the following way:

V, = abs(lpom @5 + (Ry+j oL, (cosp - jsing)) (4.1)

where Vg : stator phase voltage.

Ynnom - NOmMina air-gap flux.

W, . stator angular velocity.

R, . stator resistance.

L, : stator leakage inductance.

l : stator current.

[0) : phase shift angle.

4.1.2 Reaults.
The results are presented graphically on the next pages. All measurement data are provided
in[1, pp. 215ff].
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experiments on standard motor, 5 kHz PWM
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Figure 4.2: Measured motor loss of a PWWM inverter fed 4-pole 2.2 KW standard induction
motor drive, and with both efficiency optimized and constant nominal air-gap flux control.
Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Figure4.3: Measured converter loss of a PWWM inverter fed 4-pole 2.2 kW standard induction
motor drive, and with both efficiency optimized and constant nominal air-gap flux control.
Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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experiments on standard motor, 5 kHz PWM voltages
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Figure4.4: Measured efficiencies of a 4-pole 2.2 kW standard induction motor supplied with
PWM voltages and with both efficiency optimized and constant nominal air-gap flux control.
Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Figure4.5: Measured efficiencies of a 4-pole 2.2 kW standard induction motor supplied with
sinusoidal voltages and with both efficiency optimized and constant nominal air-gap flux
control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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experiments on standard motor, 5 kHz PWM voltages
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Figure 4.6: Measured efficiencies of a converter supplying a 4-pole 2.2 kW standard
induction motor with PWWM voltages, and with both efficiency optimized and constant nominal
air-gap flux control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Figure 4.7: Measured total drive efficiency of a PWWM inverter fed 4-pole 2.2 KW standard
induction motor, and with both efficiency optimized and constant nominal air-gap flux control.
Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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4.1.2 Discussion.

The reduction in motor loss with optimized efficiency is seen clearly from Figure 4.2, and
it is present below around 10-12 Nm load torque (below around 0.6-0.7 p.u. load torque). By
extrapolating the motor loss curves towards zero load torque it is seen that with optimized
efficiency the motor losses go towards zero, and with constant flux the motor losses go
towardsfina vaues. These are the no load losses consisting of core losses, and copper losses
from the magnetizing current. At 300 rpm. the efficiency optimized motor lossis at high load
higher than the constant flux motor loss, see Figure 4.2. This error can be caused by
measurement inaccuracies or changed motor temperature.

For the converter losses on Figure 4.3 the improvements are only clear at loads below 4 Nm
(0.3 p.u.). Extrapolation of the efficiency optimized curves towards zero load shows that the
converter has a no-load loss around 30 W.

Although the stator current isamost constant for a given load torque irrespective of speed,
the converter loss is higher at high speed. The reason is that at high speed the modulation
index ishigh, so the transistors conduct for longer periods than the diodes. At low speed it is
primarily the diodes that conduct, which leads to alower loss.

The reduction seen on the motor losses are of course reflected into the motor efficiency
curves on Figure 4.4 and Figure 4.5 aso. The efficiency improvement at 0.25 p.u. load torque
(3.5 Nm) is 8-10 % points at 1500 rpm. and 14 % points at 300 rpm. At first sight it may
surprise that the optimized efficiency at low speed decreases as the load increases. The reason
Is that a high stator copper loss is generated at high load, where the core is saturated. It
happens also at high speed, but to alesser extent.

By comparing Figure 4.4 with Figure 4.5 it is seen that the motor efficiency is lowest with
PWM voltages because of the harmonic motor loss with PWM voltages. The measured
harmonic losses were discussed in chapter 3.2 and are not commented further here.

At this 2.2 kW motor power level the motor lossis approximately a factor three higher than
the converter loss, see Figure 4.2 and Figure 4.3. So when the motor has a nominal efficiency
of 0.82 (Figure 4.4), the converter has anomina efficiency of 0.96 (Figure 4.6). The converter
efficiency decreases with both load and speed, but not as much as for the motor.

The curves for the total drive efficiency (Figure 4.7), are the most interesting regarding
efficiency optimization, because it is the input energy to the converter and not to the motor,
which is paid for. An efficiency improvement is present up to 10 Nm (0.7 p.u.), and for 0.25
p.u. load (3.5 Nm) it is 8 % points at 1500 rpm. and 10 % points at 300 rpm. While the
nominal efficiency for the motor alone is 0.82, the nominal system efficiency is reduced to
0.78.
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Efficiency M easurementson 2.2 kW High-Efficiency Motor Drive.

The used high-efficiency motor is constructed with the same steel sheet geometry as the
standard motor. The core losses are reduced by use of steel sheet which is both thinner and has
lower specific losses. The stack-length is increased so the number of turns in the stator
winding could be reduced and the cross section of the copper wire increased. The measure-
ments are executed as for the standard motor drive in the previous section, and the results are
shown on Figure 4.9 - Figure 4.14 in terms of losses and efficiency.

Figure 4.9 shows that the motor losses are reduced by energy optimal control below 9-14
Nm. The reduction of converter lossesis small, Figure 4.10. The converter losses are dightly
smaler with the high-efficiency motor than with the standard motor because the stator current
is smaller for the high-efficiency motor.

The advantages of energy optimal control for the standard motor and for the high-efficiency
motor are compared on Figure 4.8. The reduction of the drive loss is evaluated at 25% of
nominal load torque (3.5 Nm) at the five different speeds. Although the illustration is distorted
by the measurement inaccuracy, it is clear that the reduction is smaller for the high-efficiency
motor than for the standard motor.

experiments on motor drives, 5 kHz PWM
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Figure 4.8: Reduction of total drivelossat 25% load torque (3.5 Nm) for the standard motor
and the high-efficiency motor.

The high-efficiency motor efficiency, converter efficiency and drive efficiency are shown
on Figure 4.11 - Figure 4.14.
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experiments on high-efficiency motor, 5 kHz PWM
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Figure 4.9: Measured motor loss of a PWWM inverter fed 4-pole 2.2 kW high-efficiency
induction motor drive, and with both efficiency optimized and constant nominal air-gap flux
control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Figure 4.10: Measured converter loss of a PWM inverter fed 4-pole 2.2 kW high-efficiency
induction motor drive, and with both efficiency optimized and constant nominal air-gap flux
control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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experiments on high-efficiency motor, 5 kHz PWM voltages
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Figure4.11: Measured efficiency of a high-efficiency 4-pole 2.2 kW induction motor supplied
with PWM voltages and with both efficiency optimized and constant nominal air-gap flux
control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Figure 4.12: Measured efficiencies of a high-efficiency 4-pole 2.2 kW induction motor
supplied with sinusoidal voltages and with both efficiency optimized and constant nominal air-
gap flux control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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experiments on high-efficiency motor, 5 kHz PWM voltages
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Figure 4.13: Measured efficiency of a converter supplying a high-efficiency 4-pole 2.2 kW
induction motor with PWM voltages, and with both efficiency optimized and constant nominal
air-gap flux control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.

experiments on high-efficiency motor, 5 kHz PWM voltages

$ 1500 rpm:
08 : 1200 rDmE
: 900 rpm :
0.7 : e d : %600.1pm-;
-
20.6 ¥ v ;
o A : :
2."% + 7 t 300 rpm
[ s .
205 74
5 */ — efficiency optimised
= : F e constant air-gap flux
o . . B
0.4 :
i
0.3 :
02 ; ; ; ; ; ; ; ;
0 2 4 6 8 10 12 14 16

load torque [Nm]

Figure4.14: Measured total drive efficiency of a PWM inverter fed high-efficiency 4-pole 2.2
kKW induction motor, and with both efficiency optimized and constant nominal air-gap flux
control. Rotor speed is kept constant at 300, 600, 900, 1200 and 1500 rpm.
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Calculation of Optimal Drive Efficiency.

The figures shown on the following pages present the result of two different analyses.

The first analysis which is referred to as optimized efficiency, for example Figure 4.15, is
performed by calculationsin a number of points given by a speed and load torque, and in each
point the stator frequency and stator voltage are varied so as to minimize the drive input
power. The calculations are done at five different speeds inside the nominal load range. The
purpose of these calculationsisto see the values of for example cos(¢), stator current and dlip
frequency, and whether these quantities can be used for an energy optimal control algorithm.

The second analysis is only done at 900 rpm., and four load points are selected for closer
andyss. 2, 6, 10 and 14 Nm, see for example Figure 4.16. For each of the four load cases the
air-gap flux is varied inside its nominal range. The points of optimal efficiency are denoted
by afilled dot, and the corresponding operating points are also shown on the curves of the first
analysis, compare for example the dots of Figure 4.15 and Figure 4.16. Because of limited
space, caculations are only done at 900 rpm. here. In [1] they are made at 300 rpm. and 1500
rpm. as well, but they do not provide much extra information. The purpose of these
calculations is to see, for example, how sensitive the efficiency is to changes in air-gap flux
near optimal efficiency, and to get an idea of how an energy optimal control strategy will react
to inaccurate and noisy feed-back signals.

4.2.1 Motor and Converter M odels.

The models which are used to do calculations on the motor drive are those presented in
chapter 3. The calculations are only done in steady-state, and as it is the energy efficiency of
the drive which is of primary interest, it is sufficient to use the single phase motor equivalent
circuit, but with accurate modeling of the losses in the motor and converter. The motor and
converter losses are modeled as described in section 3.1 and section 3.3 respectively. It means
that the harmonic losses are not included in the following analyss, but as it was stated in
section 3.2, that is of no concern here because the harmonic losses have no influence of how
the drive should be controlled.

The motor model parameters are measured by standard tests, see [1, pp. 83ff] for detailed
information. The motor and converter loss models are validated by comparing them with the
measurements with sinusoidal voltages in the previous section, and documentation for that is
provided in gppendix B. The only motor parameters which are adjusted to make the mode! fit
the measurements are the ratio between the leakage inductances, and stator and rotor
resistances which are made dependent on motor temperature. A linear dependence is
established between motor temperature, and load torque and speed, based on measured values.
So the motor ismodeled in arelatively simple way but is has appeared to be sufficient for this
purpose.
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If a motor model on a more detailed level was to be used, for example the Magnetic
Equivalent Circuit (MEC) model, the analysis would be much more complicated to carry out,
and it is not even certain that the loss modeling would be much better than with the present
simple model. For example, it is still a serious problem in MEC models to model the core
losses accurately.

4.2.2 Result of Calculations.
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Figure 4.15: Calculated system efficiency as function of load torque in case of optimal system
efficiency. The dots denote operating points which are analyzed further in Figure 4.16.
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Figure4.16: Calculated system efficiency as function of air-gap flux, for the four operating
pointsin Figure 4.15. The dots denote the points of optimal system efficiency.
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Figure 4.15 shows the maximal attainable system efficiency, and Figure 4.17 and Figure
18 the corresponding motor and converter efficiencies. For validation of the model with
experiments, Figure 4.17 can be compared with Figure 4.5, and Figure 4.18 with Figure 4.6.

Figure 4.16 shows that at nominal load, the optimal efficiency is reached around the
nominal air-gap flux of 0.658 Wh. The system efficiency curves are relatively flat on the top,
indicating that it is not so important to hit exactly the air-gap flux of optimal efficiency. Figure
4.16 can be used to show that with a variation of +/- 0.02 Wb around the points of optimal
efficiency, the maximal change in system efficiency appears at 14 Nm and is 0.13 % points.
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Figure 4.17: Calculated motor efficiency asfunction of load torque in case of optimal system
efficiency.
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Figure 4.18: Calculated converter efficiency in case of optimal system efficiency.
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Figure 4.20: Calculated converter loss as function of load torque in case of optimal system
efficiency. The dots denote operating points which are analyzed further in Figure 4.21 and

As shown on Figure 4.19 the copper losses are aimost independent of speed, and at low
speed the copper losses are by far dominating the motor loss. The motor loss is in genera
larger than the converter loss, see Figure 4.20, and especidly at high load. It must be noticed,
however, that in the low load area, where the energy optimal control is useful, the difference

Isnot so large.
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calculation on 2.2 kW standard motor, 900 rpm.
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Figure 4.21: Calculated motor loss as function of air-gap flux, for the four operating points
in Figure 4.20. The dots denote the points of optimal system efficiency.
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Figure 4.22: Calculated converter loss as function of air-gap flux, for the four operating
pointsin Figure 4.20. The dots denote the points of optimal system efficiency.

The way the motor and converter losses depend on air-gap flux is almost identical, compare
Figure 4.21 and Figure 4.22. The difference is the size of the loss. In both cases the loss
minima are amost coincident with the system loss minima. This means that both minimum
motor loss and minimum converter loss can possibly be used as indicator for optimal
efficiency, and when one is used as indicator, the other can be disregarded.
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calculation on 2.2 kW standard motor, 900 rpm.
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Figure 4.23: Calculated distribution of motor losses as function of air-gap flux, for the four
operating pointsin Figure 4.20.
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Figure 4.24: Calculated input power as function of air-gap flux, in four operating points. The
dots denote the points of optimal system efficiency.
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The distribution of motor losses are shown on Figure 4.23. From the 2 Nm load case it is
seen that efficiency optimization by flux reduction is realized by reduction of core losses to
30 % and stator copper losses to 40 % of their nominal values (at 0.658 Wh). When looking
on the losses, the minima are relatively well defined, but when it comes to the drive input
power on Figure 4.24, the curves at low load are so flat that if the minimum must be detected
precisely, by for example search control, a very precise power measurement is required, and
it is obvioudly sensitive to noise on the measured signal.

The ar-gap flux with optimal efficiency is shown on Figure 4.25. If speed and load torque
(or stator current) are known, optimal efficiency is assured by setting an air-gap flux reference
equal to the curves on the figure.
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Figure 4.25: Calculation on 2.2 KW standard motor with optimized drive efficiency. Left:
air-gap flux as function of load torque for optimized efficiency, right: air-gap flux as function
of stator current for optimized efficiency.

The stator current with optimal efficiency is amost independent of speed, see Figure 4.26.
One could be tempted to realize energy optimal control by setting a current reference which
isalinear function of load. But there are two problems by doing that. First, just a small error
in current would give a large deviation in flux and efficiency from the desired value, as can
be observed from Figure 4.27. Next, if the control isimplemented in a current controlled scalar
drive, then the motor will pull out if the current reference for a given load is set below the
curves shown on Figure 4.27. That can easilly happen when the motor is operated near the
point of optimal efficiency.



4. Experiments and Calculations on Drive with Optimal Efficiency 79

On the other hand, the current minima on Figure 4.27 are more well defined than the input
power minima from Figure 4.24, and as the current minima are amost coincident with the

point of optimal efficiency, it is better to use stator current than input power as search variable
in search control.
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Figure 4.26: Sator current as function of load torque in case of optimal system efficiency. The
dots denote operating points which are analyzed further in Figure 4.27.
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Figure 4.27: Sator current as function of air-gap flux, for the four operating pointsin Figure
4.26. The dots denote the points of optimal system efficiency.
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calculation on 2.2 kW standard motor - energy optimized
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Figure 4.28: Calculated cog(¢) as function of load torque in case of optimal system efficiency.
The dots denote operating points which are analyzed further in Figure 4.29.
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Figure 4.29: Calculated cos(¢) as function of air-gap flux, for the four operating pointsin
Figure 4.28. The dots denote the points of optimal system efficiency.

The displacement power factor, cos(q), is kept rather constant in case of optimized
efficiency, Figure 4.28, athough there are some deviations. But when these deviations are
combined with Figure 4.29, it is obvious that the steepness of cos(¢p) as function of air-gap
flux means that the deviation in cos(¢) from a constant value has only little effect on the air-
gap flux and efficiency. It is probably not worth trying to model the optimal cos(¢p)-reference
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as function of speed and load, partly because the improvement would be small and partly

because it would complicate the control compared with constant displacement power factor
control.
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Figure 4.30: Calculated stator voltage as function of load torque in case of optimal system
efficiency. The dots denote operating points which are analyzed further in Figure 4.31.
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Figure 4.31: Calculated stator voltage as function of air-gap flux, for the four operating
pointsin Figure 4.30. The dots denote the points of optimal system efficiency.

The curves on Figure 4.30 and Figure 4.31 show that flux reduction at low load, of course,
Is done by reduction the stator voltage. But it is not obviousto use the stator voltage as a direct
parameter to control in energy optimal control.
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5 calculation on 2.2 kW standard motor - energy optimized
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Figure 4.32: Calculated dip frequency as function of load torque in case of optimal system
efficiency. The dots denote operating points which are analyzed further in Figure 4.33.
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Figure 4.33: Calculated dip frequency as function of air-gap flux, for the four operating
pointsin Figure 4.32. The dots denote the points of optimal system efficiency.

The value of dlip frequency with optimal efficiency on Figure 4.32 varies with both speed
and load, and when it is combined with Figure 4.33 it is seen that energy optimal control
redlized by setting a constant dip frequency reference does not yield a satisfactory performance
in terms of efficiency. The reference value would have to be both speed and load dependent.
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calculation on 2.2 kW standard motor - energy optimized
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Figure 4.34: Calculated torque reserve as function of load torque in case of optimal system
efficiency. The dots denote operating points which are analyzed further in Figure 4.35.
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Figure 4.35: Calculated torque reserve as function of air-gap flux, for the four operating
pointsin Figure 4.34. The dots denote the points of optimal system efficiency.

By the torque reserve on Figure 4.34 and Figure 4.35 is meant the difference between pull-
out torque and developed electro-magnetic torque in a given operating point. When the torque
reserve is zero the motor is on the edge of pulling out. When the flux is reduced, the torque
reserve is diminished as well, making the drive more sensitive to load disturbances. The
problem is most serious at low speed. For example at 300 rpm. and at 4 Nm load torque the
reserve is 5 Nm, which means that the motor can not withstand nominal load if stator voltage
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and stator frequency are kept unchanged. This emphasizes the need for load monitoring and
fast reaction in case of sudden load disturbances.
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Figure 4.36: Sip as function of load torque in case of optimal system efficiency. The dots
denote the points of optimal system efficiency.

Figure 4.36 illustrates, in a given load point, how far the motor is from pulling out, namely
when the dip equals the dip at pull-out. 1t is seen that at optimal efficiency the motor does not
come near that point, so if theload torque is remaining constant, the motor is not in danger of
pulling out with optimized efficiency. Stability is investigated more closely in Chapter 8.

Summary.

It is quantified by measurement on 2.2 kW standard and high-efficiency motor drives how
much energy optimal control can improve the system efficiency compared with constant air-
gap flux control. For the standard motor drive the loss was reduced with 26-36 % at 0.25 p.u.
load torque. This is mainly due to reduction of motor losses, and to a much lesser extent
reduction of converter losses. For the high-efficiency motor drive the loss was correspondingly
reduced with 23-31 %, so energy optimal control has a more positive effect on standard motors
than on high-efficiency motors.

With steady-state converter and motor models verified by the experiments, calculations
were done on the motor drive under optimized efficiency conditions. The following general
observations were made for a 2.2 kW drive:
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As the efficiency vs. air-gap flux curves are quite flat near optimal efficiency, it is not
important in energy optimal control to hit the commanded air-gap flux with high
precision.

When the system loss is minimized, both motor and converter losses are nearly
minimized individually as well.

With flux reduction at low load the motor becomes more sensitive to load disturbances,
especidly at low speed. The energy optimal controlled drive must have load monitoring
and fast reaction on load disturbances in order to avoid instability.

If the load remains constant, there is no risk that the energy optimally controlled motor
should pull out.

The following observations were made with regard to development of energy optimal control
strategies:

It is easier to use stator current than input power as minimized variable for search
control, and the results are amost identical in terms of efficiency.

Displacement power factor control seems to be a good and simple energy optimal
control method.

Energy optimal control by setting a stator current reference value, for example being
linearly dependent on load torque, may give problems, although simple at first sight.
Energy optimal control by setting a constant dip frequency value does not seem
promising in terms of efficiency. The reference value must be made a function of speed
and load torque.

If the drive losses are known throughly, a simple method is to set the air-gap flux
directly, being a function of speed, and load torque or stator current.

These possibilities and other are analyzed further in the next chapter.
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Chapter 5

Development of
Energy Optimal Control Strategies

The review in chapter 2 listed a number of energy optimal control strategies, and the
analysis in chapter 4 revealed both possibilities and problems regarding some of these. This
chapter contains a deeper analysis and discussion of different possibilities for realizing energy
optimal control.

Asdated in chapter 1, the requirement is that energy optimal control is made for low-cost
drives, which implies that a minimum of extra sensors should be used. Measurement of speed
and load torque is definitely not possible, and measurement of input power is not wished
ether. But in for example pump applications the pump pressure may be fed back and used in
closed loop pressure control. In such a case the measured pressure provides information of the
load that enables to use the search control agorithms. Search control is therefore aso
investigated here.

One energy optimal control strategy can be implemented in varius ways, depending on how
the motor is controlled. The possibilities include scalar voltage control, scalar current control
and field-vector oriented current control. As the main application here is HVAC, where
dynamic performance is not important, it is chosen to use a simple scalar voltage controlled
drive, see Figure 5.1. The air-gap flux loop on the figure is not strictly necessary, but it eases
the upper and lower limitation of the air-gap flux, on the other hand it sows down the
response time for the stator voltage.

A: search control

£ B B: all other
e lp g f :
s v
y A v L’1 v,

air-gap flux
calculation

Figure5.1: Structure for the scalar drive control used to control the motor.
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The energy optimal strategies can be combined with either of the motor control principles,
such asin chapter 6 where they are aso implemented and tested in a rotor-flux oriented vector
controlled drive. Only combination with a scalar current controlled drive may be problematic.
The reason is that in the point of optimal efficiency the stator current is close to a minimum,
and as the motor is current controlled, the current is commanded by a current reference set by
the energy optimal control. If the reference in that caseis set just dightly too low, the motor
will not be able to produce the required torque and will pull out. A scalar current controlled
drive is never used without a voltage or a speed feedback control loop [1, p. 68].

The following investigation is divided into three categories. simple state control, model-
based control and search control.

Simple State Control.

Several methods of simple state control are already mentioned in chapter 2 and chapter 4:
» Slip frequency control.
» Direct control of air-gap flux as function speed, and of load torque or stator current.
» Displacement power factor control.

The problem with the dip frequency control is primarily that it is only simple in the absence
of magnetic saturation and of core losses. Otherwise the slip frequency reference should be
speed and load torque dependent, as shown in Figure 4.32.
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Figure 5.2: Calculated system efficiency with slip frequency control (thick lines). The dip
frequency referenceis 1.4 Hz. The thin lines are the true optimized system efficiency.
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As an example of how poor aperformanceis obtained when a constant dip frequency is set
as reference, the efficiency curves are shown on Figure 5.2 for a saturated motor. The dlip
frequency reference is set to 1.4 Hz, which is an approximate mean value of the curves on
Figure 4.32. At high load, where the motor saturates, the efficiency is degraded to a degree
which is not acceptable.

There are basically two categories of smple state control: those which require speed and
load information, and those which do not. The dip frequency control clearly belongsto the last
category, as the system efficiency could be improved by making the slip frequency reference
a function of speed and load. The direct air-gap flux control aso requires speed and load
information for calculation of the air-gap flux reference. For both of these energy optimal
control methods the speed and load do not have to be calculated very precisely, because the
efficiency is not very sensitive to small variations in air-gap flux near optimal efficiency. In
fact, a simple estimation of load and speed is sufficient for that purpose. But for the slip
frequency controlled drive, a precise speed measurement is necessary to control the slip in
closed loop, so this method is not advantageous and not investigated further here.

Displacement power factor control belongs to the category of simple state controls which
Is in the fortunate situation of not requiring neither speed nor load information. Analysis in
chapter 4 showed that constant cos(¢) control will give a good efficiency performance, and
is therefore also chosen for further investigation.

5.1.1 Direct Air-Gap Flux Controal.

Air-gap flux references which yields optimal system efficiency are calculated off-line as
function for speed and load torque, see Figure 4.25 and Figure 5.3 (thin lines). The control
strategy where the air-gap flux is a function of stator current instead of load torque is not
treated here, but it provides smilar results. For on-line operation the approximate values,
caculated by equation (5.1) and shown on Figure 5.3 with thick lines, are used as references.

= -0.001835004- 12, +0.060535183-T_ +0.159041338
+ 19.44-10°5- (1500-n,,) (4.5-0.35- |1, ~4.5|)

lIJm,1500 (5 1)

lI’m,opt = W 1500
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calculation on 2.2 kW standard motor
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Figure 5.3: Thin lines: air-gap flux values which optimizes system efficiency. Thick lines:
approximated values calculated by equation (5.1). Speeds: 300, 600, 900, 1200, 1500 rpm.

A schematic overview of the implementation is shown on Figure 5.4. The estimated torque
and speed are calculated by use of the motor model. In order to ensure a smooth air-gap flux
reference signal in case of transients, the calculated optimal air-gap flux needs to be filtered.
The stator currents are filtered with a5 Hz digital 1t order filter, and the air-gap flux reference
isfiltered with a1 Hz 1st order digitd filter.

f,
%‘
. motor
min/max control converter p
limitation * ~
v,
f.V
wm,opt,ﬁlt 5 s> P
w - nest )
filt o 0Pt | equ. motor I
Hiet (5.1) | Fest model <5

Figure 5.4: Scheme for energy optimal direct air-gap flux control.

The resulting system efficiency is shown on Figure 5.5, from which it is seen that there is

amost no difference between the optimal efficiency and the efficiency obtained by energy
optimal control.
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calculation on 2.2 kW standard motor
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Figure5.5: Calculated system efficiency with direct air-gap flux control (thick lines). The thin
lines are the true optimized system efficiencies.

5.1.2 Displacement Power Factor Control.

The scheme for this very smple energy optimal control strategy is shown on Figure 5.1 for
a scalar drive. The phase shift angle is calculated in each sampling period in the two-axis
domain as the angle between the stator voltage reference and the measured stator currents. The
error between the measured displacement power factor and the reference is eliminated with
a Pl controller.

It isnot easy to set up atransfer function for the motor with air-gap flux as input and cos(¢p)
as output, so the cos(¢p) controller is tuned in a simplified way. As the stator currents are
filtered with a 5 Hz filter, the dynamics of the whole system is dominated by the slow filter.
The cos(¢p) controller istherefore dimensioned by ignoring the time constants in the motor and
congdering only the current filter. Afterwards the controller is fine-tuned by trial and error in
order to optimize the dynamic performance. The calculated motor efficiencies with cos(¢p)
control are shown on Figure 5.7. The nominal cos(¢)=0.81 is set as reference in the whole
operating area. It could be chosen to set the value a bit lower, for example to 0.78, which
would assure a dlightly higher flux at low load and less sensitivity to load disturbances,
without changing the efficiency much. The air-gap flux should then be limited to the nominal
value in order to avoid a stator current higher than the nominal value at nominal load.
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Figure 5.6: Scheme for energy optimal cos(¢) control in a scalar drive.

A load disturbance is detected by observing the measured air-gap flux and its reference
value. If the air-gap flux is more than 0.02 Wb below its reference value, it is interpreted as
alarge load disturbance, and then the air-gap flux is reset to its nominal value.

calculation on 2.2 kW standard motor
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Figure5.7: Calculation of system efficiency with cos(¢)=0.81 control (thick lines), compared
with the optimized system efficiency (thin lines).

5.2 Modd-Based Control.

It is assumed that motor and converter model constants are known beforehand, including
saturation of the magnetizing inductance, and the flux and frequency dependence of the core
loss resistance. It was shown in chapter 4 that converter losses are not important in small
drives compared with motor losses. Therefore motor losses are only considered here. In
chapter 7 where medium-size drives are treated, the converter losses are included in the model-
based energy optimal control.
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Many of the model-based control strategies quoted in the state-of-the-art were not found
useful for the application in thiswork. Those which were, are based on the rotor-flux oriented
motor model, and the one which it is chosen to test here, has the advantage that it includes core
losses, that is applies to both scalar drives and rotor-flux oriented drives, and that solution to
the optimization problem is done by a PI-controller which may reduce calculations a bit. The
method was presented in [2].

5.2.1 Derivation of the Optimal Solution.

The motor model which is used is shown on Figure 5.8. The mode! is the steady-state case
of the transent rotor-flux oriented motor model, so the model includes all three phases of the
motor. Core losses are represented in the model with a resistance in parallel with the rotor
inductance. Except for a scaling factor, thismode is equivalent to the single phase steady-state
Inverse-gamma motor model.

RR
s

Figure 5.8: Seady-state rotor-flux oriented model of the induction motor including core
losses.

Examining the rotor-flux oriented motor mode on Figure 5.8 and using the power-invariant
3-to-2 axis transformation, it can be shown that the motor loss in steady state is equal to the
sum of the following three components:

w L ) )
P ( +R_ +(wL [ 5.2
lossd ~ R|:e ( ) R,:ez sd ( )
Plossa= R +RS) (5.3

P 2w L R
lossdg ~ ¢ @Pstmg e (5.4)
oss,dq S RFe sq
where  w, : stator angular velocity.

Ly : rotor-flux magnetizing inductance (equal to rotor inductance).
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Re. : core lossresistance in parallel to rotor inductance.

R, . stator resistance.

Rs : rotor resistance in the rotor-flux oriented model.

I : d-axis stator current (field-producing in steady-state).

[ . g-axis stator current (torque-producing in steady-state).

The developed electro-magnetic torqueis:

Tem=Zpbm s I (5.5
where  z, . pole-pair number.
With the definition of A as
A- :i (56

and combination with equation (5.5), the following is obtained:

g = A v g = — lalsg = (57)
= z Ly Azl Tz,
Using equations (5.2)-(5.4) and (5.7) the total motor loss becomes
Ploss:PIossd + Ploss,q * PIosadq
T w.L 1 5.8
- e O] o p T RARYA - 20, B9
ZpLM I:\)Fe RFe A I:\)Fe

For acongtant torque, the loss minimum is found by differentiating the loss expression with
respect to A, and assuming that the model parameters are independent of A. Thisis not entirely
true, because the magnetizing inductance and the core loss resistance depend on the flux level,
which is contained in A. However, it is assumed initially that these errors can be ignored.

P _9
JA
1 Rel1 0 (5.9)
_(‘”SLM>2=+R5+(‘”5LM)2=2 2+(RR+R5)_ .
RFe Fe A
i
Plosad = Ploss,q

The motor losses thus reach a minimum when the motor loss depending on the current
direct with the rotor flux is equal to the loss depending on the current in quadrature to the rotor
flux. In [2] it is proposed to solve this equation with a Pl-controller, as shown in Figure 5.9.
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Figure 5.9: Scheme for energy optimal model-based control.

Inascaar drivethereis not direct access to the rotor-flux oriented magnetizing and torque
producing currents. The two loss components are then found by doing calculations on the
single phase inverse-gamma motor model, see Figure 5.10.

R X,

s

o——1{ 0000
Ly

V_v.r XM RF T

[
Figure 5.10: Steady-state inverse-gamma single phase model of an induction motor.

The relations between the inverse-gamma model parameters and the T-model parameters are:
Ry = R(X,/X,)?

X = X - X2IX (5.10)
X, = XA/
where X, . magnetizing reactance of the T-model.
s : stator reactance of the T-model.

; : rotor reactance of the T-model.

: magnetizing reactance of the inverse-gamma model.
: stator reactance of the inverse-gamma model.

: rotor reactance of the inverse-gamma model.

: rotor resistance of the T-model.

R . rotor resistance of the inverse-gamma model.

<
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The magnetizing voltage is

Y \—/s - (RS M jX'—)I‘s

The core loss resistance is

where P, : core loss.

The field producing current and the torque producing current are:

P = 3(RS+RR)IF\2’

loss,q

P =3 ﬂI |
loss,dg ZpRRRF M'R
e

95

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

The calculated motor efficiencies with the model-based control are shown on Figure 5.11.
It is seen clearly that the result in not very good at high load and especially at low speed.
Figure 5.12 shows that the calculated air-gap flux values are too high at high load. The reason
isthat at high load with saturation the differentiation in equations (5.9) does not hold because
L,, and R, do depend on A. It has not been possible to solve the differentiation analyticaly
including saturation and core losses. In chapter 7 it is shown how the problem can be solved

numerically.

One could argument, however, that the model-based control is acceptable for HVAC
applications. The squares on the curves of Figure 5.11 indicate the operating points with a
quadratic load, for example a ventilator. It is seen that in the region where it operates, the

efficiency is near the optimal efficiency.
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calculation on 2.2 kW standard motor
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Figure5.11: Calculation of air-gap flux with model-based control without limit the air-gap
flux. Thisis compared with the optimal motor efficiency air-gap flux. The squares denote load

points of a HVAC application with

a square load torque profile.
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Figure5.12: Calculation of motor efficiency with model-based control without limit the air-

gap flux. Thisis compared with the

optimal motor efficiency.

An easy way to compensate for the unacceptable error at high load could be to limit the air-
gap flux to its nominal value. When doing that the results on Figure 5.13 and Figure 5.14 are
obtained. The result is still not optimal, but clearly better than before.
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calculation on 2.2 kW standard motor
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Figure5.13: Calculation of motor efficiency with model-based control, where the air-gap flux

Islimited to its nominal value. Thisis compared with the optimal motor efficiency.

It isnot straightforward to design the controller which equalizes the two loss components
for a certain response-time. The reason is that as the loss changes heavily with load, the
effective transfer function from air-gap flux to (Pus-Pioss ) Changes likewise. A fast response-
time is not a primary concern for energy optimal control, so therefore the controller is just
tuned by trial and error and with a primitive gain-scheduling. The integration time of the PI-
controller is constant while the gain of the Pl-controller is made a linear function of stator
frequency so the gain is high when the stator frequency is low.
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| | — optimal efficiency
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Figure 5.14: Calculation of air-gap flux with model-based control, where the air-gap flux is
limited to itsnominal value. This is compared with the optimal motor efficiency air-gap flux.
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Search Control.

The search method only applies to systems with precise load information, in most cases
obtained with a speed feed-back by assuming a constant load torque. This is of course not
useful in most HVAC-applications where speed is not measured. But in some special
application there is load information also in HVAC. In chapter 6 is an example with a pump-
system, where the differential pressure over the pump is used a feed-back whereby search
control isimplemented without speed-feedback. Therefore search control is investigated here.

The principle of the search control isto keep the output power of the motor constant and
to find the operating point where the input power has a minimum. This minimum is found by
measuring the input power, and iteratively changing the flux level in small steps until the input
power minimum is detected. The output power is normally kept constant by keeping the speed
constant and assuming a constant load torque, see Figure 5.15.

Two search control schemes were reported in literature, as mentioned in Chapter 2:
minimization on input power and minimization of stator current. The analysis in chapter 4
made it clear that current minimization is easier and costs less sensors, yet giving amost the
same result as input power minimization.

The calculations in this chapter show the steady-state efficiency performances. The dynamic
experimenta performances are shown in chapter 6. The fuzzy-logic approaches which have
been reported recently are not considered here.

«| motor -
PI ™ Lontrol "1 converter ———¢
. — N 0
¥ om

Figure5.15: Scheme for energy optimal search control with stator current minimization.

The main advantage of the search method is that the point of optimal efficiency is found
without knowledge of motor or converter parameters. The mgjor disadvantage is that the speed
should be measured. Typically the convergence time to find the point with minimal losses is
not less than 4 s, so the method is unusable if the load is changing more often than that. A
problem is that the input power as a function of air-gap flux is very flat near the point of
optimal efficiency, so the power measurement must be very precise and noiseless.
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Inthis project it is chosen to implement the search control in the following way. The air-gap
flux isinitially stepped with afixed step. Once a minimum is detected and the air-gap flux is
increased again, the air-gap flux step size is reduced with 25%, and every time the direction
of the step is changes, the step size is reduced. The minimum step size is 25% of the initia
step size. The parameters which have to be tuned by trial and error are:

* initial step size.

* time period between each step.

» Tolerances in speed for detection of load disturbances.

» Bandwidth and order of filters for input power and stator current.

Figure 5.16 and Figure 5.17 show the calculated system efficiencies for minimized stator
current and minimized inverter input power, respectively. In the first case there is a difference
between the optimized and obtained efficiency alow load and high speed. In the rest of the
area, and also in the second case, the steady-state performance is very good.
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Figure 5.16: Calculation of system efficiency with minimum stator current search control,
compared with the optimized system efficiency.
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calculation on 2.2 kW standard motor
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Figure 5.17: Calculation of system efficiency with minimum inverter input power search
control, compared with the optimized system efficiency.

Summary.

As this thesis focuses on drives for HVAC applications, it is chosen to implement the
energy optimal control in a scalar drive without speed measurement. When search control is
considered anyway it is because there are special applications where the required speed
measurement can be replaced by for example an existing pressure measurement for a pump
applications, see section 6.3.

With regard to simple state control it was found that constant dip frequency control,
contrary to what has been reported in many papers, does not give a satisfactory result. In fact,
constant dip frequency does only guarantee minimized losses when neither magnetic
saturation nor core losses exist, and neither is true for commercial motors. The method of
setting the air-gap flux directly, being a function of speed, and torque or stator current, is
simple and provides good result. But, of course, it requires good knowledge of the motor
parameters. The displacement power factor control was analyzed by setting the reference value
to the nominal value, and calculations showed good resullts.

A model-based control method in which the losses associated with the torque producing
current are equalized with the losses associated with the field producing current was analyzed.
The derivation of the analytical solution to the optimization problem was solved by
disregarding the magnetic saturation, like it has been reported in literature. This, however,
appeared to give a solution which is not satisfactory, as it produces an air-gap flux at high load
which is well above the optimal air-gap flux value. The problem is here solved smply by
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limiting the air-gap flux to its nominal value, and the result is, if not satisfactory, then
acceptable.

Both input power minimizing and stator current minimizing search control show good
results with regard to steady-state efficiency.

It is chosen to implement and test the direct air-gap flux control, displacement power factor
control, model-based control with limitation of air-gap flux, stator current and input power
minimizing search control. Especidly it isimportant to test the dynamical performances which
were not investigated in this chapter.
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[1] M. P. Kazmierkowski, H. Tunia, “Automatic Control of Converter-Fed Drives’,
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Chapter 6

Test of Energy Optimal Control Strategies

The energy optimal control strategies which were treated in the previous chapter are now
tested experimentally. The control strategies are:

 Direct air-gap flux control.

» Displacement power factor control, cos(¢)=0.81.

* Model-based control with limitation of the air-gap flux to the nominal value.
» Stator current minimizing search control.

* Inverter input power minimizing search control.

Thefirst test is steady-state measurement of efficiencies in the whole operating area. Next
the dynamic performances are tested, both when implemented in a scalar drive and when
implemented in arotor-flux oriented vector controlled drive. At last the energy optimal control
strategies are tested in arealistic pump system.

Steady-State Test of Energy Optimal Control.

6.1.1 Experimental Setup.

The tests are made with the setup on Figure 6.1. The motor drive istested at three speeds:
300, 900, 1500 rpm., and at seven different load torques:. 2, 4, 6, 8, 10, 12, 14 Nm. The speed
Is during the tests controlled by the induction motor drive. The speed is measured, and with
a closed speed loop, the speed is controlled by adjusting the stator frequency. The induction
motor is loaded with a permanent-magnet synchronous machine, and the load torque is
controlled in closed loop by the computer PC2 on Figure 6.1.

PC2 is connected to the Norma Power Analyzer and acquires al measured values. speed,
torque, Sator voltage, stator current, power factor, and power at the input and at the output of
the converter. The input to the converter is measured with a 2-watt-meter method, and the
output of the converter is measured with a 3-wattmeter method, using the motor neutral asthe
fourth wire.
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Figure 6.1: Experimental setup for measurement of the motor drive efficiency.

The measurement procedure is the following: the motor runs for an hour at 300 rpm. and
14 Nm until it is warm. The first measurements are made at 14 Nm, and with first 300 rpm.,
then 900 rpm. and at last 1500 rpm. Then the load is reduced to 12 Nm, the measurements are
made at the same three speeds. The procedure is followed down to 2 Nm. Making the
measurements in this way, the first measurement is made where the motor is warmest and the
last one is made when it is coldest. As the measurement in each operating points lasts around
10 min., it is reasonable to make all the measurements continuously without waiting for the
temperature to stabilize.

The induction motor is controlled with scalar control according to the schemes shown
previougly in chapter 5, and the switching frequency is 5 kHz. The measurements can not be
compared directly with the measurements in chapter 4. One reason is that the motor is not the
same, athough it is the same motor type. But as there may be a small difference from motor
to motor due to tolerances in manufacturing, the measurements are not exactly comparable.
Another reason is that the measurements in chapter 4 were made with an inverter with filter
chokes at the output, and the measurements in this chapter are made with the filter chokes
taken out of the inverter. This means that filter choke lossesin the inverter are eliminated and
that the output voltages contain a higher content of harmonics which will generate additional
lossesin the motor. It is, however, probable that the additional motor losses are so small that
they are not measurable.
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6.1.2 Measured Motor and Converter L osses.
The measured motor losses are shown on Figure 6.2 for dl six control strategies. The motor
loss highly depends on both speed and load torque. There are only small differences between

the losses for the five energy optimal control strategies, whereas the difference for the constant
flux control is clear at low load.
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Figure 6.2: Experiments on standard motor at 300, 900 and 1500 rpm. Measured motor 10ss
with all the five energy optimal control strategies and with constant air-gap flux control.
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Figure 6.3: Experiments on standard motor at 300 rpm. Measured converter losswith all the
five energy optimal control strategies and with constant air-gap flux control.
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experiment on standard motor - 900 rpm.
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Figure 6.4: Experiments on standard motor at 900 rpm. Measured converter losswith all the
five energy optimal control strategies and with constant air-gap flux control.
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Figure 6.5: Experiments on standard motor at 1500 rpm. Measured converter losswith all
the five energy optimal control strategies and with constant air-gap flux control.

The converter losses are shown on Figure 6.3 - Figure 6.5 for al six control strategies. The
converter loss mostly depends on load torque and to asmaller degree on the speed. Comparing
these figures with Figure 6.2 it is seen that the converter loss is 3-5 times smaller than the
motor loss. The converter losses are dightly reduced at light load with energy optimal control.

There is no remarkable difference between the losses for the five energy optimal control
strategies.
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6.1.3 Measured Motor Drive Efficiency.

The measurements for ale control strategies are shown in terms of system efficiency on
Figure 6.6. The efficiency curves for the individua control strategies are shown on Figure 6.7 -
Figure 6.11.
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Figure 6.6: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencieswith all the five energy optimal control strategies and with constant air-gap flux
control.
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Figure 6.7: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencies with model-based control and with constant air-gap flux control.
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experiment on 2.2 kW standard motor drive
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Figure 6.8: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencies with cos(¢) control and with constant air-gap flux control.
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Figure 6.9: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencies with direct air-gap flux control and with constant air-gap flux control.
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experiment on 2.2 kW standard motor drive
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Figure 6.10: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencies with stator current minimizing search control and with constant air-gap flux
control.
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Figure 6.11: Experiments on standard motor at 300, 900 and 1500 rpm. Measured drive
efficiencies with input power minimizing search control and with constant air-gap flux
control.
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Unfortunately, the measured efficiencies can not be compared with the efficiencies
calculated previoudly in this chapter, because the calculated efficiencies do not include
harmonic motor losses. It is, however, interesting to see whether the tendencies of the
calculated efficiencies can be identified on the measurements. For example, Figure 5.16
showed that the motor efficiency for the stator current minimizing search control is degraded
at high speed and low load. The same should be seen on the measurements compared to the
other energy optimal control strategies. After investigating this, the conclusion is, however,
that these minor differences between the energy optimal control strategies are not noticeable
on the measurements. The differences may either not be present, or they are to some degree
hidden in measurement inaccuracies.

The experimental results confirm that an efficiency improvement is obtainable below 8 Nm
(approximately 0.6 p.u. load torque) by energy optimal control. The nominal efficiency is
reduced to 0.78, from the 0.82 of the nominally loaded motor which is connected directly to
the electrical grid.

Dynamic Test of Energy Optimal Control.

In this section the dynamic properties of the different energy optimal control strategies are
investigated experimentally. Although the scalar drive has most importance in this thesis
because it focuses on HVAC applications, the experiments are also made with an indirect
rotor-flux oriented current controlled drive in order to give areference for comparison.

6.2.1 Experimental Execution.
The experiments on the induction motor drive are made with a dc-generator as aload. The
dc-generator has acongant field excitation and a variable resistance connected to the armature.

What is important for a drive in an industrial installation is how fast the energy optimal
control can adapt to the point of optimal efficiency in case of changesin load or changesin
speed. With the available laboratory setup it is not possible to vary the load quickly from, for
example, 14 Nmto 2 Nm. It is therefore chosen to test the dynamic performance by initially
running the drive with nominal magnetization, then turning the energy optimal control on, and
see how fast it converges. The energy optimal controllers are tuned as described in chapter 5
for the scalar control.
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6.2.2 Experimental Resultswith Turn-On of Energy Optimal Control.

The results of the tests are shown on Figure 6.12 - Figure 6.14. Each figure shows the
trangent at turn-on of the energy optimal control with both the scalar drive and with the vector
drive. The tests are made 300, 900 and 1500 rpm., and with 2 Nm load torque in the point of
optimal efficiency.

A summary of the response timesislisted in Table 6.1.
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Figure 6.12: Experiments with turn-on of the cos(¢) control, for both the scalar drive and the
vector drive. cog(¢) =0.81. The load torque is 2 Nm. cos(¢) is filtered with following filters;
scalar drive: 5 Hzfilter, vector drive: 10 Hzfilter.
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Figure 6.13: Experiments with turn-on of the model-based control, for both the scalar drive
and the vector drive. The load torque is 2 Nm. The powers are filtered with following filters;

scalar drive: 5

Hz filter, vector drive: 10 Hzfilter.
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Figure 6.14: Experimentswith turn-on of the off-line calculated air-gap flux control, for both
the scalar drive and the vector drive. Theload torqueis2 Nm. The air-gap flux isfiltered with

a5 Hzfilter.
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Figure 6.15: Experiments with turn-on of the stator current minimizing search control, for
both the scalar drive and the vector drive. The load torque is 2 Nm. The stator current is
filtered with following filters; scalar drive: 5 Hzfilter, vector drive: 10 Hzfilter.
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Figure 6.16: Experiments with turn-on of the dc-link power minimizing search control, for
both the scalar drive and the vector drive. The load torque is 2 Nm. The dc-link power is
filtered with a 3 Hz filter.
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Table 6.1: Response times by turn-on of energy optimal control.

Energy optimal control strategy. Scalar Drive Vector Drive
cos(¢) 7s ls
Model-based 2-3s 0.5-2s
Off-line calculated air-gap flux 1s 2s
Stator current minimizing search control 7-8s 3s
dc-link power minimizing search control 9s 4s

The summary in Table 6.1 makes it clear that the model-based control and the off-line
caculated air-gap flux control are fastest. The scalar drive cos(¢) control response time is very
dow. Thereason is that the air-gap flux control loop has a slow response time of 1 s. For the
vector drive, however, the response of the cos(¢p) control is fast. The slow scalar drive air-gap
flux control does not seem to have any mgjor retarding effect on the model-based control. The
response time for the scdar drive off-line calc. control is equal to the response time of the air-
gap flux control loop. For both the scalar drive and the vector drive, the search control
algorithms have the largest response times.

For thefirst three energy optimal control strategies, the controlled parameters are smooth
in both transient and steady-state. For the search control strategies, on the other hand, the stator
current and dc-link power are distorted in both transient and steady-state. Therefore it must be
concluded that although the search control strategies find the points of optimal efficiency, the
dynamic quality of these strategies are poorer than the dynamic quality of the three first
strategies.

Until now there has not been made any distinction between the terms energy optimization
and efficiency optimization, but the dynamical tests indicate that there is a difference. While
all control strategies provide almost the same optimized efficiency in steady-state, the testsin
the next section will show that the search control, due to its poor dynamical properties, does
not provide a good energy optimization in aredlistic test.
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Energy M easurement in a Pump System.

Asafina examination of the developed energy optimal control strategies for small motors,
the strategies are applied in an ASD for a water pump system. The purpose is to do
experiments in the laboratory which are as close to a real life application as possible. The
strategies are compared by measuring the motor energy consumption when running through
a predefined test-cycle with a duration of 6 min.

6.3.1 Description of the Pump-System.

A schematic diagram of the pump system, together with the ASD, is shown on Figure 6.17.
The PC, the control unit, the AD-converter and the VS| are the same as used with the load
system previoudly in this thesis. An impression of the physical dimensions of the system is
gained from the picture on Figure 6.18.

PC

control
unit

ADC
AA AT

flow

Figure 6.17: Pump-system to test HVAC applications.

The pump is of the type: Grundfos, LM 65-200/202

rated speed: 1400-1420 rpm.
max. lifting height: 14 m=1.37 bar.
max flow rate: 46 m’h=12.8I/s.

internal tube diameter: 65 mm.
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Figure 6.18: Picture of the pump-system.

6.3.2 Pump System Control

Because a pump system is a low-dynamic system, it isirrelevant to use vector control of
the motor. The scalar control which is seen on Figure 6.19 is therefore used. The water
pressure is measured before and after the pump, and the difference between them is the input
to the control loop. The pressure is controlled by adjusting the stator frequency, and thereby
the speed. The air-gap flux reference is set by the energy optimal control.

Ap’ f

> Pl > fy v,
O] v L
>
0 3 Vs y
me.nom ﬁ m X Vs
energy Wm | air-gap flux
optimal calculation
control Ap

Figure 6.19: Diagram showing the control of the pump system. The difference (4p) between
the pressure after the pump and the pressure before the pump is controlled in closed loop.

The load cycle which is used for testing the energy consumption with different energy
optimal control strategies is shown on Figure 6.20. Initially the pressure reference is 0.2 bar
and the valve is half-closed. After 40 s the pressure slowly increases up to 1.2 bar and then
downto 0.2 bar. At 140 sthe pressure reference suddenly increasesto 1.2 bar and at 170 sit
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suddenly goes down to 0.2 bar again. After 200 s the valve is suddenly opened, half-closed
again at 230 s and then opened at 260 s. At 290 s the pressure reference is set to 0.85 bar,
which correspondsto full load of the pump. At 320 s the pressure reference is set back to 0.2
bar. The resulting flow is shown on the lowest graph on Figure 6.20.

load cycle experiment on pump-system
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Figure 6.20: Load cyclefor test of energy optimal control strategies with a pump-system. The
figure shows the differential pressure over the pump, the valve opening and the water flow.

Six motor control strategies are tested with the mentioned load cycle:
* Nomina magnetization.
» cog(¢p) control. cos(¢) = 0.81.
* Model-based control.
* Direct air-gap flux control.
» Stator current minimizing search control.
* dc-link power minimizing search control.
The control strategies are identical to those described in chapter 5.

Before the test, the system has run for several hours so that it is thermally stable. Each of
the control strategies are first tested once, one after the other, and then they are smilarly all
tested a second time. For every test, air-gap flux reference, pump pressure, flow and calculated
motor input power are recorded with a sampling time of 0.2 s, which corresponds to 1800
pointsin 360 s. The energy consumption is measured with a power analyzer (Voltech 3000 A),
which isinserted between the VS| and the motor.

6.3.3 Measured Energy Savingsfor a Prespecified Test-Cycle
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Figure 6.21: Air-gap flux and motor input power for the load cycle with nominal
magnetization for test 2.
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Figure 6.22: Air-gap flux and motor input power for the load cycle with cos(¢) control for test
2. cog(¢)=0.81.
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model-based control
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Figure 6.23: Air-gap flux and motor input power for the load cycle with model-based control
for test 2.
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Figure 6.24: Air-gap flux and motor input power for the load cycle with off-line cal culated
air-gap flux control for test 2.
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current minimising search control
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Figure 6.25: Air-gap flux and motor input power for the load cycle with stator current
minimizing search control for test 2.

dc-link power minimising search control
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Figure 6.26: Air-gap flux and motor input power for the load cycle with dc-link power
minimizing search control for test 2.
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The measured energy consumption is listed in Table 6.2. The right column shows the
energy consumption as aratio of the energy consumption with rated air-gap flux. The averaged
vaues are used to calculate these percentages. There are observed some differences between
test 1 and test 2, which indicate that there is some inaccuracy related to the measurements.
Differencesin motor and water temperature for the two tests may be one explanation. For the
search control, the reason may be that even if the same test is made two times, one right after
the other, the control does not behave in exactly the same way in the two tests.

Table 6.2: Measured energy consumption for the two runs of the test-cycle.
Theresult is calculated from the averaged values of the two tests.

Energy Energy Energy % of case with
consumption consumption consumption nomind air-
test 1 [KWs] test 2 [kWs] average [KWs] gap flux

Nomina air-gap flux 209.1 207 208.1 100%
cos(¢p) control 186.5 185.9 186.2 89.5%
model-based control 185.8 189.4 187.6 90.1%
off-line calc. air-gap flux control 181.6 182.1 181.9 87.4%
stator current min. search control 183 188 185.5 89.1%
dc-link power min. search control 188.7 193 190.8 91.7%

The control method based on off-line calculations has the lowest energy consumption,
whereas cos(¢) control, model-based control and stator current minimizing control are quite
equal. The dc-link power minimizing control has the highest energy consumption of the energy
optimal control strategies.

Figure 6.21 - Figure 6.24 show that the first four control strategies have nice and quiet
courses. Thisis, however, not true for the two last search control algorithms, see Figure 6.25
and Figure 6.26. They have both a problem to find the correct magnetization when the pressure
referenceis varying dowly (between 40 sand 100 s). Also when the valve is changed (between
200 sand 260 s) the search algorithms are very slow because the steps in the air-gap flux are
very small. So although the power minimizing search control theoretically should be the best
method in steady-state, these tests illustrate the difficulties for the search control under non-
ideal conditions.

It can be concluded that the cos(p) control, the model-based control and the off-line
caculated air-gap flux control al give good energy savings and show good behavior, no matter
which disturbances occur. The search control algorithms give relatively good energy savings,
but the dynamic properties are not satisfactory.
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6.4 Summary.

Steady-state measurements confirmed what was already found from calculations, namely
that by energy optimal control of a 2.2 kW standard motor drive it is possible to improve the
efficiency below 8 Nm (approximately 0.6 p.u. load torque). It is from measurements not
possible to distinguish clearly between the efficiencies of the individual control strategies as
Iswas the case for the calculations. It is most probable that the differences are smaller than or
equal to the measurement inaccuracies. This confirms the already indicated statement that it
IS not important to hit exactly the optimal magnetization level.

On the other hand there are large differences in the dynamic responses. Tests of how fast
the energy optimal control can adapt the flux level when the energy optimal control is enabled
showed fast and smooth transition of the direct air-gap flux control and the model-based
control. Theresponse of the displacement power factor control is slowed by the slow air-gap
flux loop. Likewise the search control is Slow and has a very distorted response. Testswith a
rotor flux oriented vector controlled drive showed that the transition time for search control
can be brought down below 4 seconds, and for the other control strategies below 2 seconds.

The problem with search control is illustrated very well when applied in a pump system.
Although the energy saving with search control is only a little smaller than for the other
control strategies, the courses of the air-gap flux shows that errors occur when the load and
references change slowly. It may in some cases be seen as a problem that the search control
Isnot deterministic, understood in the way that for a given load and speed it is not possible to
say at what flux level the motor operates.

It should be emphasized that the transient behavior measured here can not be generalized,
as it depends on the type of drive control, how the measured signals are filtered and on how
the controllers are tuned. In this case the controllers are coarsely tuned from simple
consideration and then fine-tuned by trial and error using simple gain scheduling to optimize
the dynamics. The problem with the scalar drive isthat the transfer function of the controlled
system is very complex, and further work needs to be done for the controllersto be tuned in
a systematic way. However, once the controllers are tuned, they are independent of the
application. The main problem with the search control is that several constants have to be
tuned by trial and error in every new application. It is obvious that work has to be done that
can automate this process, before one can start to discuss using search control industrially.

Measurements of energy consumption for a six-minute test-cycle in the pump-system
showed a reduction of the energy consumption with up to 12.6 % with energy optimal control
compared with congtant air-gap flux control. The average load of the motor was approximately
20 % of rated power.

A final conclusion is that search control is not a good solution for energy optimal control
in HVAC applications. The three other strategies al perform well, and which one to choose
may depend on the existing drive control and on processor performance available.



Chapter 7

Energy Optimal Control of
Medium-Size Motor Drive

The induction motor drives which have been investigated so far can be categorized as small
drives. Medium-size drives then refers to drives in the range of 10-1000 kW. For the 2.2 kW
drives the converter losses were disregarded in the energy optimal control algorithms. For
larger drives the converter losses are more important, and it is the purpose here to analyze how
this influences the energy optimal control algorithms.

Only one paper has been found which analyzes the difference between small and medium-
size motor drives with regard to energy optimal control [1], and it concentrates on search
control. They do calculations on 1 kW and 75 kW motors with search control and find that
because of the relatively small drive loss in medium-size drives it is easier to minimize the
stator current than to minimize the input power. But although this takes away the need for
sensors to measure the input power, the method is still not good in industrial HVAC drives for
the same reasons asfor the small drives: continuos disturbances, difficultiesto tune algorithm
parameters, and need for precise output power indication, for example by a speed sensor.
Search control isnot investigated in this chapter as it is not considered relevant in HVAC and
especially not in medium-size and large drives.

It order to make an analysis of energy optimal control it is essential to have reliable and
experimentaly verified motor and converter models, otherwise one can easily reach false
conclusions. The anadysisis here done on a 90 kW drive, and for that purpose the loss models
from Chapter 3 have been verified against extensive loss measurements. Next, the influence
of the converter loss in energy optimal control is calculated, and a proposed energy optimal
control agorithm is tested on a 22 kW drive. At last, aspects of over-sized motors are
described and relations between drive size and efficiency improvement by energy optimal
control are established. The unique contributions of this chapter are a general analysis of
energy optimal control in medium-size drives based on experiments, a proposal for a new way
of implementing model-based control, and a means to determine the benefits of energy optimal
control at different drive sizes.
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7.1 Motor and Converter Loss Ratio.

The ratio between motor and converter loss depends on the size of the drive and on how it
Is operated. The ratio is first illustrated from Figure 7.1 which shows nominal motor and
converter efficiencies for drives between 2.2 kW and 250 kW. While the motor efficiencies
increase rapidly with size, especially at low power, the converter efficiency only increases
slowly. The ratio between the motor loss and converter loss approaches, but does not reach
unity, and the ratio is lowest for the high-efficiency motors.

In the following the motor/converter loss ratio is calculated with loss models of the four
investigated drives: 2.2 kW standard and high-efficiency motor drives, 22 kW and 90 kW
motor drives. The structure of the loss models for the 22 kW and the 90 kW drives are the
same as for the small drives, see chapter 3 for details. The loss models are verified in the
whole operating area, see Appendix B. It should be noted that the 2.2 kW motor models do
not include harmonic losses. The 22 kW and 90 kW motor models do include harmonic losses
because there were no output filters available for the experiments with these two drives. The
harmonic losses of the 2.2 kW motors range between 10-30 W, see also section 3.2.

The measured losses for the 22 kW and 90 kW drives at 900 rpm. are shown on Figure 7.3
together with the measured losses for the small drives on Figure 7.2. The measurements are
only shown here for 900 rpm. while the corresponding measurements for 300, 1400 and 1500
rpm. are shown in Appendix B. It is seen that the converter losses are relatively larger for the

larger drives.
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Figure 7.1: Nominal efficiencies for 400 V converters and motors. The converters are with
diode rectifier and PWM inverter. The motors are catalogue data for AAB 4-pole, 50 Hz
motors. The thick lines indicate the limits between the European Commission motor classes.
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Figure 7.2: Measured losses in 2.2 KW standard motor and high-efficiency motor drives.
Crosses: constant nominal air-gap flux. Circles: energy optimal control.
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Figure 7.3: Measured losses in 22 kW and 90 kW motor drives. Crosses: constant nominal
air-gap flux. Circles: energy optimal control.
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The per-unit motor constants and loss components of the four investigated drives are
compared in Table 7.1. It is characteristic that the largest motor has better efficiency because
the stator and rotor resistances are smaller, and the magnetizing reactance and the core loss
resistance are larger. While the nominal converter loss is amost the same for al motors, the
nominal motor losses (copper and core losses) are reduced for the large motors, so that the
ratio between the motor loss and the converter loss goes from 3.9 in the standard 2.2 kW
motor drive to 1.8 for the 90 kW motor drive.

Table 7.1; Nominal Induction Motor Drive Constants and Losses in Per-Unit.

2.2 kW standard | 2.2 kW high-eff. | 22 kW standard | 90 kW standard

stator resistance 0.061 0.048 0.019 0.014
rotor resistance 0.040 0.037 0.021 0.010
stator leakage reactance 0.083 0.074 0.072 0.077
rotor leakage reactance 0.11 0.10 0.11 0.16
magnetizing reactance 1.82 1.80 1.66 2.98
core loss resistance 229 44.0 35.6 110.8
copper losses 0.10 0.070 0.033 0.022
core losses 0.035 0.019 0.025 0.0081
converter |osses 0.028 0.028 0.035 0.030
Pmotor/Pconverter 39 27 2.6 1.8

Influence of Converter Loss on the L oss M inimization.

The importance of including the converter loss in the energy optimal control is investigated
by performing calculations on the motor and converter loss models. These are only done on
the 90 kW drive, which is the case with the highest relative converter loss of the investigated
drives. Calculations of the drive loss (motor and converter loss) are done at 300, 900 and 1500
rpm. with varying air-gap flux, and from low to nominal load torque.

7.2.1 Calculations with a Fixed Switching Frequency.

The calculations are first made with 4 kHz switching frequency, see Figure 7.4 - Figure 7.6,
which corresponds to the experiments made on the 90 kW drive. The circles denote the points
of minimum drive loss and the stars denote the points of minimum motor loss. Figure 7.4
shows that at 300 rpm. there is amost no difference between these two criteria. The
differences increase at higher speed, see Figure 7.5 and Figure 7.6. In terms of drive loss,
however, the flat bottom shape curves lead to that even a noticeable difference in air-gap flux
has almost no effect on the drive loss. So from the point of view of drive loss minimization
the minimum motor loss criterion is just as good as the minimum drive loss criterion.
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Figure 7.4: Calculation of thelossfor a 90 kwinduction motor drive at 300 rpm. The circles
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calculation on 90 kW drive, 1500 rpm.
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Figure 7.6: Calculation of thelossfor a 90 kW induction motor drive at 1500 rpm. The circles

denote minimized drive loss and the stars denote minimized motor |oss.

7.2.2 Influence of Increased Switching Frequency.

The drive is now analyzed for increased switching frequency: 5 kHz, 10 kHz and 15 kHz,
see Figure 7.7 - Figure 7.9.
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Figure 7.7: Calculation of theloss for a 90 kwinduction motor drive at 300 rpm. The circles
denote minimized drive loss and the stars denote minimized motor |oss.
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The reault isthe same as before, with the only change that the differences between the two
loss minimization criteria become more important the higher the switching frequency is.
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7.3 Evaluation of Energy Optimal Control Strategies.

Two energy optimizing control strategies are evaluated by doing calculations with the 90
kKW drive model: displacement power factor control (cos(¢) control) and model-based control.

7.3.1 Cos(¢g) Control.

The cos(¢p) control was described in section 5.1. Figure 7.10 shows calculation of cos(¢)
as function of air-gap flux at several speeds and load torques. The points of optimal drive
efficiency, which are indicated on the figure vary between 0.70 and 0.82. It is chosen here to
use a constant cos(p) reference value, and it is determined as the average of the indicated
optimal points. In this case the reference value is 0.76.

The calculated drive loss with cos(¢g) control is shown on Figure 7.11 at 300, 900 and 1500
rpm. The figure shows that the drive loss with cos(¢) control is very close to the minimized
loss.

0.3}y =- 900 rpm.
—e— 1500 rpm.

0.2 SR

0.1 E E E ; 5 5 ;
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
air-gap flux [Wb]

Figure 7.10: Calculated cos(¢) for 90 kW drive at 300, 900, 1500 rpm. The points of optimal
drive efficiency are denoted by individual markers. Smtching frequency: 4 kHz.
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Figure7.11: Calculated drive loss (motor and converter) for 90 kW drive. Lines: optimized
efficiency. Crosses. cos(¢) control, cos(¢)” = 0.76.

7.3.2 Model-Based Control.

Assuming that the motor and converter models are known, it is possible to find the point
of optimal efficiency in every operating point defined by aload torque and speed. The major
problemisto determine an estimate of the load torque. There are several possibilities, ranging
from advanced dynamic estimation techniques to simple techniques such as measuring the air-
gap power and dividing with the stator angular velocity. It is done here by simply using the
relation between stator current and load torque with optimized efficiency, see Figure 7.12. The
relation is aimost independent of the speed, and it is approximated here with a piece-wise
linear function which is shown with a thick line on Figure 7.12. The calculated drive loss
which is obtained with model-based control and the simple load torque estimation is shown
on Figure 7.13. It gives the same good result as with the cos(¢p) control. In practice the result
will, of course, be worse than that because of inaccuracies in the loss model, and because the
real motor constants vary with time and only settles with temperature after several hours. The
temperature variations can be taken into account with a time-domain therma model of the
motor and converter.
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calculation on 90 kW standard motor drive - energy optimized
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Figure 7.12: Calculation on 90 kW standard motor drive. Thin lines: stator current with
optimized drive efficiency. Thick line: stator current used to estimate load torque.
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7.4 Experimentswith Model-Based Control.

One energy optimal control strategy is tested experimentally. The model-based control is
chosen for that purpose, while the cos(¢p) controller could have been tested without problems
as0. The tests should have been made on the 90 kW drive, but because it was no available the
tests had to be carried out on the 22 kW drive.

As it is very difficult to find an analytical solution to the minimum drive loss problem, it
IS proposed to solve the minimization-problem numerically. The concept was proposed in [2]
for adc-motor drive. Given an operating point defined by an estimated load torque and speed,
loss calculations are performed, including both motor and converter losses, and by a numerical
minimization algorithm the stator voltage and stator frequency are found which minimize the
total drive loss, and they are set as references.

7.4.1 Experimentson a 22 kW Drive.

The model-based control principle was implemented and tested, see Figure 7.14 - Figure
7.16. Two curves are shown on each graph, with energy optimization and with model-based
energy optimal control. The model-based control is done as described above. The measure-
ments with energy optimization are in practice done with calculations on loss models also, but
with measured speed and load torque as input to the models.

22 kW standard motor drive, 1500 rpm. 22 kW standard motor drive, 1400 rpm.
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Figure 7.14: Measured drive loss for 22 KW drive. Circle: energy optimal control, stars:
model-based control with estimated load torque.
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voltage and current. Circle: energy optimized, stars. model-based control.
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Figure 7.14 shows that the model-based control provides good loss minimization. The only
major differences between the curves occur at 1400 and 1500 rpm. at high load, where the
drive loss with model-based control is actually lower than the loss which was supposed to be
the minimized drive loss. The error occurs because at high speed and high load the inverter
modulation index is forced into saturation by the low dc-link voltage, and the phenomenon is
not included in the converter loss model. From Figure 7.15 and Figure 7.16 it is seen that the
model-based control achieved the lower loss compared with the energy optimized case by
commanding a higher air-gap flux and which gave alower stator current.

7.4.2 Practical Implementation of M odel-Based Contral.

In the beginning of this section it was briefly described how the model-based energy
optimal control can be solved numerically. The different ways of practical implementation are
discussed here.

For the experiments here, it was chosen to run the energy optimal control algorithms as a
background process in the DSP. This means that the basic drive control and PWM calculations
are put in an interrupt routine which is launched once every sampling period, see Appendix
A.3. Inthe time between two interrupt routines the DSP then has time to perform the energy
optimization algorithm. This means that the air-gap flux reference is not updated every
sampling period, but on the other hand it is not necessary with a very powerful processor, and
the loss models are not limited in complexity to the same degree as if al the loss model
caculations should be carried out every sampling period. Of course, the processor must have
acertain amount of overhead time, so the reference value updating does not become too slow.
What this means in practice depends on the dynamics of the outer process which is operated
by the drive. One rule of thumb could be that the reference updating should be at least ten
times faster than the dynamics of the process. When this principle is used, where the loss
model caculations are carried out continuoudly, it is aso possible to let the model parameters
vary with for example temperature.

Another way of implementation could be to do all the loss model calculations once and for
all at commissioning or at start-up. The calculations would then determine the energy
optimized relation between air-gap flux, speed and stator current, or between stator voltage,
stator frequency and stator current. The relation could be stored in atwo-dimensional table,
and during operation the drive would smply have to be controlled according to thistable. This
Is a solution with very little demands to the processor performance.

Over-sized Motors.

Induction motors in HVAC applications are frequently severely over-sized, and it was
explained in section 2.2 why it is 0. The result of over-sizing is that the motors most of the
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time operate with very low load. For mains connected motors low load is equivalent to poor
efficiency, so it isimportant to select a main-connected motor carefully. Indeed, campaigns
have been made in Danmark, encouraging engineers not to over-dimension induction motors.
Inthissection it isinvestigated whether proper motor dimensioning has the same importance
in energy optimized variable speed drives.

The question is examined by comparing the 2.2 kW standard motor with a 3 kW standard
motor with the same shaft height. The only differences between the motors are that the 3 kW
motor has alonger stack, windings with less turns, and thicker stator wire. The comparison
Is based on calculations, and the model of the 3 kW motor is established by making few
modifications to the 2.2 kW motor model. It is shown in Appendix B how the modifications
are done. The 2.2 kW motor has a nominal efficiency of 0.820 and a maximal efficiency of
0.823. The 3 kW motor has a nominal efficiency of 0.833 and a maximal efficiency of 0.837.
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Figure7.17: Calculated efficiency of 2.2 kW and 3 kW standard induction motors connected
directly to the mains (400 V, 50 Hz). 14 Nmisnominal load for the 2.2 KW motor.

An illustration of the above mentioned problem is shown on Figure 7.17, where the
efficiencies of a 2.2 kw motor and a 3 kW are depicted when they are connected to the mains
and are loaded from zero to nominal load for the 2.2 kW motor. The problem of using the 3
kW motor appears below 10 Nm where its efficiency is up to 4.9 % point lower than the 2.2
kW motor efficiency. The reason why it is better to use the 2.2 kW motor is that the core
losses are larger in the 3 kW motor, and at low load also the stator copper lossis larger than
in the 2.2 kW motor.
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Figure 7.18: Calculated efficiency of 2.2 kw and 3 kW standard induction motors fed by a
converter and with optimized motor efficiency. 14 Nmisnominal load for the 2.2 kW motor.

The motor efficiencies are now calculated when the motors are fed by converters and with
minimized motor loss. Harmonic losses are not taken into account. The results are shown on
Figure 7.18 at 300, 900 and 1500 rpm.

The result is that when it is possible to adapt the flux level to the load torque, it is not a
disadvantage to use a motor which istoo large for the load, indeed the opposite istrue. In the
whole operating area the 3 kW motor has higher efficiency than the 2.2 kW motor, and
especialy at low speed. The reason why it is better to use the 3 kW motor in the variable speed
driveisthat the core losses are dmost equal in the two motors, but the stator copper losses are
much smaller in the 3 kW motor because of the lower winding resistance.

In the case investigated here, the maximal stator current of the 3 kW motor is 10 % higher
than of the 2.2 kW motor, so it would probably be possible to use the same converter with both
motors.

The immediate conclusion would be that in variable speed drives it is good to use a motor
which is larger than necessary. It should be kept in mind, however, that if the building sizes
are not equa as it was the case here, the mechanical losses may be more important in the larger
motor. So the result of Figure 7.18 may not be true in a general sense, but anyway it is clear
that the problem with over-sized motors does not exist in variable speed drives with energy
optimization.



7.6

138 7. Energy Optimal Control of Medium-Size Motor Drive

Energy Optimal Control - Drive Size and Efficiency | mprovement.

Asthree standard induction motor drives (2.2 kW, 22 kW, 90 kW) have been investigated
in relation to energy optimal control, both experimentally and with derived loss models, it is
possible to set up approximated relations between motor drive size and how much the drive
efficiency can be improved by energy optimal control compared with constant air-gap flux
control, both as function of speed and as function of load torque.

The relations are illustrated on Figure 7.19 - Figure 7.21 at 300, 900 and 1500 rpm.
respectively. These figures show the difference in drive efficiency with and without energy
optimal control (drive efficiency improvement in % point). The points between the three motor
drives are connected with spline interpolations.

The general tendency is, as expected, that the improvement get smaller the larger the motor
drive is, and the higher the load torque is. But the figures also show that in some cases the
improvement for the 22 kW is higher than for the 2.2 kW drive. It is believed that this occurs
because the 22 kW motor is relatively poor in respect to energy efficiency. Table 7.1 shows,
for example, that the per-unit magnetizing inductance of the 22 kW motor is lower than for
the 2.2 kW motor. Equally, the core losses and the converter losses for the 22 kW drive are
relatively high. Thisis seen asthe reason why the 22 kW motor drive takes so good advantage
of the energy optimal control. Despite this fact, the curves may be useful for a genera
investigation of energy efficiency of induction motor drives.
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Figure 7.21: Difference between drive efficiency with constant air-gap flux and drive
efficiency with optimized drive efficiency. Sandard induction motors at 1500 rpm.
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Summary.

Motor and converter loss models have been established and verified against extensive
measurements in 22 kW and 90 kW standard induction motor drives. Further analysis with
these models have shown that it has only very little influence on the drive loss which
minimization criterion is used: minimum motor loss or minimum drive loss. So with respect
to efficiency, the converter losses do not need to be taken into account in the control algorithm.
The only reason to include the converter lossesis that it guarantees a higher robustness against
load disturbances.

Calculations were done with cos(¢) control and model-based control, both giving very good
results. The conclusion isthat in medium-size drives it is most important to use an efficiency
optimizing control strategy which is simple and provides good quality operation. This is the
case with the two investigated strategies, but is for example not the case with search control.

A model-based control with simple load torque estimation was tested on a 22 kW drive
with a very satisfactory result, where the losses are significantly reduced at low load for all
Speeds.

A new energy optimal control strategy is proposed which is based on model-based control,
but which converts the control principle into simple state control, according to the terms used
in this thesis. The method can be used in drives where motor and possibly converter loss
models are known. Instead of doing on-line calculations on the loss-models, all the time-
consuming model calculations are done off-line or as a back-ground process, and the drive is
controlled according to asimple relation between for example stator voltage, stator frequency
and stator current.

Relations have been set up between drive power rating and drive efficiency improvement
by energy optimal control in the power range 2.2 - 90 kW. So for a given motor drive in this
power range it is possible to estimate the advantage of energy optimal control compared with
constant air-gap flux control. One should just keep in mind that the relation is approximate,
as the improvement depends on how well the motor drive construction is optimized.

Findly it is proven that the problem of degraded efficiency for over-sized mains-connected
motors does not exist in variable speed drives with energy optimal control.
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Chapter 8

Motor Drive Stability

As stability could be a critical issue when the motor flux is reduced at low load, it is
important to analyze this problem. There are two different aspects included in motor stability.
The first is related to the risk of stalling the motor in case of a load disturbance, and it is
analyzed by smulation and experimentation. The second has to do with oscillation, and it is
analyzed by analytical calculation of resonance frequencies and damping.

Stability in Case of a Load Disturbance.

The problem with stability towards stalling isillustrated by Figure 8.1, where the motor is
operating with the load torque and the speed in point OP. Point A is the pull-out torque with
nomind air-gap flux. Point B is the pull-out torque with energy optimal control where the air-
gap flux is reduced and the stator frequency is increased.

torque A with nominal air-gap flux

load characteristic

/ with reduced air-gap flux

> speed
Figure 8.1: Torque-speed curves with the motor operating in OP. A is the pull-out torque with
nominal flux and B isthe pull-out torque with reduced flux.

It isobserved that as a result of energy optimal control, the pull-out torque of the motor is
reduced. In case of aload disturbance, the motor therefore has an increased risk of pulling out
if the stator frequency and the stator voltage are kept unchanged. In a drive with speed
feedback the problem is not serious because the speed controller will make sure to increase
the produced torque. In fact, a field-oriented vector controlled drive can not pull out, but will
just loose speed. The critical case is the open loop controlled drive.

The load disturbance problem is analyzed in two ways. The first is to simulate a sudden
load step on a motor with constant voltage and frequency supply using a transient motor
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mode. The second is do experiments with a sudden load step and compare the responses for
different control strategies.

8.1.1 Simulations of a Load Step.

The purpose of simulating a motor exposed to a load step while it is supplied with a
congtant stator voltage and frequency, is to analyze whether the risk for the motor to pull out
depends on how the load step is applied. The two cases which are compared here are a
suddenly applied load step and aload which is constant. In case of the constant load, the motor
pulls out when the load exceeds the pull-out torque of the motor, which is calculated with the
stationary motor model. Figure 8.2 shows the static torque-speed curves is case of nominal
gator voltage and in cases where the motor is on the limit of pulling out. Simulations are then
made of the motor with the same voltage supplies, but when the load is applied as a step from
zero load. These smulations are also shown on Figure 8.2. 1t can be observed that if the motor
can withstand aload applied as a static load, it can withstand the same load even if it is applied
as a sudden load step. Thisis also true even if the speed momentarily goes below the speed
of static pull-out. Thisindicates that the limit of pull-out does not have any relation to how the
load is applied, and the problem can be analyzed from purely stationary considerations, for
example asit was done on Figure 4.34.

Figure 8.3 and Figure 8.4 show calculated torque reserve for 2.2 kW motors with energy
optimization. Torque reserve is here defined as pull-out torque minus developed torque. It is
seen, for example, from Figure 8.3 that at 900 rpm. and 30 % of rated torque, the torque
reserveis 70 % of rated torque. This meansthat at this load the motor can remain stable if the
load isincreased to rated load and the stator voltage and frequency remain unchanged. For the
high-efficiency motor at the same load, Figure 8.4, the torque reserve is 90 % of rated load,
so the high-efficiency motor is more robust against load disturbances.

The same caculations for the 22 kW motor and 90 kW motor are shown on Figure 8.5 and
Figure 8.6. These show that the 22 kW motor is more robust at low speed, but at high speed
it is not much better than the high-efficiency motor. The 90 kW motor has generally the best
robustness.

The pull-out torque is calculated from equation (8.1) by disregarding core losses. The
equation showsthat it is especially a high magnetizing inductance which gives a high pull-out
torque, asit is also learned from the previous comparisons of different motors.

R [ (XX XDP+RX) )2
SpuII -out R32+X32
- Sxev? il ( (R, R ~(X X=X H(RX +X, R
(")s SpuII —outL SpuII -out SpuII -out

(8.1)
)2

Tpull—out
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Figure 8.2: Smulation of 2.2 kW standard motor with reduced stator voltage (left column)
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8.1.2 Experimentswith Load Step.

The experiments with a load step are dlightly different from the smulations. The
simulations were carried out with fixed stator frequency and fixed stator voltage. The
experiments are made with a control strategy that forces the air-gap flux to the nominal value
if alarge load disturbance is detected. By doing that, pull-out is avoided even with alarge load
step.

During the experiments the motor drive is initialy run with energy optimal control a no-
load and then the load is suddenly increased to 14 Nm. The induction motor is loaded with a
separately magnetized dc-generator, and the load change is realized by switching in an
armature load resistance. By redlization of the load step in this way it is not certain exactly
how the torque is stepped from low to full load, only that it is done rapidly compared with the
dynamics of the energy optimal control. Two experiments are shown on Figure 8.7 for the
scalar controlled drive operating at 30 Hz stator frequency, and on Figure 8.8 for a rotor-flux
oriented vector controlled drive operating a 900 rpm. As mentioned, the air-gap flux is forced
to its nominal value when a large load disturbance is detected, and the detection is done by
observing the air-gap flux. If the air-gap flux decreases below 98% of the reference air-gap
flux, the air-gap flux is forced to its nominal value. In the scalar controlled drive thisis done
by turning to smple V/f control and applying a voltage which is 10 % above rated voltage for
the given stator frequency. In the vector controlled drive the flux is reset to its nominal value
by setting the magnetizing current reference to its nominal value. For both drives the energy
optimal control isturned on again after 0.5 seconds.

The speed reduction with the scalar drive on Figure 8.7 shows clearly that the nominally
excited motor is much more stiff than when the flux is reduced. The difference is smaller for
the vector drive, Figure 8.8. The experiments show that it is possible to prevent an energy
optimally controlled motor drive from pulling out in case of aload disturbance from low to
nominal load. Apart from that, it is difficult to make a general conclusion because the
responses depend to a great extent on the way the energy optimal control is programmed to
react on load disturbances, and on the dynamic performance of the drive.

The way the motor responds to a load disturbance depends both on the speed and on the
flux level. This was seen clearly from the simulations on Figure 8.2, as the responses in some
cases are very undamped and in other cases well damped. This leads to the next stability issue,
which is an analysis of the resonance frequencies and damping of the motor.
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Oscillations.
In an inverter driven motor, oscillations can be excited by three sources:
Load disturbances: When the load itself can not provide sufficient mechanical

damping, as for fan blowers, or when the load torque contains a
periodic component, as for a piston compressor.

Motor Construction: Eccentricity.
Asymmetry of windings.
Slotting.

Inverter non-linearities: dc-link ripple.
Dead-time.
Switching time and component voltage drop.

8.2.1 Methods of Analysis.

There are two different approaches to the analysis of motor oscillations. One method,
suggested in [1], isto use alinearized motor model. The motor is described as a fifth order
system, with five poles and five zeros. The damping of the motor is expressed by the damping
of the dominating poles. Evaluating the dominating poles in the whole operating area, the
worst case isfound in the point where the damping is smallest. One difficulty is that in certain
areas it is not well defined which poles are the dominating ones, and then it is difficult the
define the motor damping factor. Another inconvenience is that the damping factor comes out
as anumerical value so there is no information of how it related to the motor parameters.

Another method, which is less time consuming and more informative, is suggested in [2]
and [3]. It utilizes the fact that there are two modes of resonance in the motor: parallel
resonance and series resonance. The nature of the two modesis illustrated on Figure 8.9. In
the series resonance mode the angle between the stator flux and the rotor flux oscillates, the
amplitudes being constant and the leakage inductance acting as a spring. In the parallel
resonance mode the angle is constant and the flux amplitudes oscillate.
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b)

<<
Figure 8.9: Illustration of a) series resonance and b) parallel resonance in an induction
motor.

The calculation of the resonance frequencies is based on the I'-model of the motor, see
Figure 8.10.
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Figure 8.10: Transient T-model and /*model of an induction motor.

There are the following relations between the T-model and the I'-model parameters:
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Four simple equations, which are derived in [2], express the resonance frequency and the
corresponding damping for each of the two resonance modes, using the I"-model parameters
In per-unit, see equation (8.3).

The series resonance frequency and damping are calculated under the assumption that the
magnetizing inductance is infinite, so the stator current equals the rotor current with opposite
sign, but this approximation does not distort the result very much.
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The pardlel resonanceis calculated under several assumptions, for example that the leakage
inductance is zero and the flux amplitudes are constant. Therefore the calculated parallel
resonance values are not as exact asfor the series resonance. However, they still describe how
the different motor parameters influence the resonance properties.

_ lIJs,p.u. _ I:\)\ap.u. * RrF,p.u. ‘]p.u.
('Oser,p.u. N ! Cser N 2 L
1/‘]p.u. LoF,p.u. lI‘[s,p.u. ol',p.u.

W — lIJS,p.u. C — lIJs,p.u. I‘mI‘,p.u.
par,p.u. ! par
N E— 2R J Jou

where g, w,, : seriesand parallel resonance angular velocity.

(8.3)

Cer Cpr - Seriesand parallel resonance damping factor.
U, : stator flux.

J : moment of inertia.

R : rotor resistance of the I'-model.

L.p - leakage inductance of the I'-model.

Lo : magnetizing inductance of the I*-model.

From the analytical expressions in equation (8.3) it is seen that the damping of the series
resonance is increased with increasing stator resistance while it is opposite for the parallel
resonance. This indicates that parallel resonance is a problem in small machines and series
resonance is a problem in large machines. Flux reduction decreases the parallel resonance
damping and increases the series resonance damping. A small leakage inductance and a large
magnetizing inductance always increase the damping.

Expressed in absolute values, equation (8.3) becomes:
f _ ; i IIJSZD C _ RSF+R|‘F 3 J
s 27\ 2 JIL,: S 29z \ 3L,
_ 1 3 IIJSZp _ lljszp 3 LmF
f ar — 5 Al —— Car h CYER
SP 21\ 2 m P 2R\ 2 J

These equations are now used to calculate the resonance frequencies and damping of
different induction motors.

(8.4)
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8.2.2 Calculation of Oscillations.

The resonance frequency and damping are evaluated with constant air-gap flux and with
optimized efficiency, both for the 2.2 kW motors, the 22 kW motor and the 90 kW motor, see
Figure 8.11 - Figure 8.14.

The influence of energy optimization can be seen from for example Figure 8.11. Asthe flux
Is reduced at low load, both the series and the parallel resonance frequencies decrease. But
while the flux reduction increases the series resonance damping, the parallel resonance
becomes more undamped.

The series resonance of the high-efficiency motor can be expected to be less damped asiits
resistances are smaller, and thisis also seen by comparing the series damping of the two 2.2
kW motors, Figure 8.11 and Figure 8.12, but in both cases the damping factor is above one.
The series resonance is more likely to cause problems for the larger motors, as the damping
factor then goes below one. At low load the problem can be reduced by flux reduction, so in
that case the pardlel resonance is not likely to cause any problems. But the parallel resonance
can cause problemsin Stuations when it is not possible to reduce the flux, like during start-up.
The 90 kW motor, for example, has a resonance frequency around 5 Hz where the damping
factor isonly 0.6.

Another risk isif the motor is loaded with a large inertia with little damping, e.g. a fan,
because the parallel resonance damping is then brought down by the inertia-factor, see
equation (8.4). Thisis especially dangerous during start-up because the poor damping is then
combined with along starting time.

One approach to reduce the oscillations is to diminate the exciting sources, that is changing
to a less perturbating load, improving the motor design, and linearizing the inverter by
compensating for its non-linearities.

Another approach is to increase the damping by control means, which is proposed in [3].
If the stator flux is controlled, it corresponds to having a zero stator resistance, whereby the
parallel resonance is infinitely damped, but the series resonance becomes less damped. By
correcting the voltage in the g-axis of the stator flux oriented drive, the stator resistance can
be virtually increased and the series resonance be more damped.
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Summary.

A systematic analysis of stahility is made for open-loop controlled motors, a topic which
Isnot seen before is relation to energy optimal control. Two instability phenomena have been
investigated: robustness against load disturbances, and oscillations. The robustness against
load disturbances was first analyzed by simulating sudden load steps in cases with nominal
magnetization and in cases with flux reduced to the limit of static pull-out. The result was that
the limit of pull-out is independent of how the load disturbance is applied. This finding
simplifies robustness analysis considerably, because it can then be made from simple steady-
state considerations. Comparison of the robustness towards load disturbances for different
motors showed that a high-efficiency motor is more robust than a standard motor, and
similarly medium-size motors are more robust than small motors. The reason is primarily the
relatively higher magnetizing inductance of the high-efficiency and medium-size motors.

The oscillations were analyzed by use of analytical expressions instead of the usual method
of linearization and calculation of Eigen-values. The strength of the analytical method, which
gives serial and parallel resonance frequencies and damping factors, is that it defines a link
from the physical motor parameters to the resonance properties. The finding with respect to
energy optimization is that both series and parallel resonance frequencies are reduced by flux
reduction. The influence on damping goes either way when the flux is reduced, because the
series resonance damping is increased and the parallel resonance damping is decreased. It can
not be said beforehand which resonance phenomenon will possibly cause trouble, as this
depends on motor size and inertia, SO in Some cases energy optimization will cause trouble,
and in other casesit will reduce the oscillations. But anyway, during start-up where the motor
is nominaly magnetized, a drive may have to be operated with special control in order to avoid
problems with oscillations.
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Chapter 9

Comparison of Induction Motor Drive
and PM Motor Drive Efficiency

Integral horse-power permanent magnet motors have been used for severa years as a
replacement for dc-motors in applications demanding high dynamics or accurate servo
performance. Energy consumption has not been a determining factor here, rather high
reliability, high performance and low maintenance. Permanent magnet motors are also used
in submersible pumps combining good efficiency with a compact design. An application
where the permanent magnet motor has replaced an induction motor for efficiency reasonsis
refrigerators, but thisis only for some hundred watt output power motors. However, as the
price of permanent magnets goes down it becomes more and more interesting to use PM motor
drives as replacement for induction motor drives. For example, Y askawa Motors has recently
started a production of interior permanent magnet motors in the range 0.4-75 kW as a
replacement for variable speed standard induction motor drives, presumably offering a better
efficiency. The objective with this chapter isto put the induction motor drive in perspective
by evaluating the energy consumption and economical aspects of using a permanent magnet
motor drive instead of an induction motor drive in HVAC applications. Focus is put on 2.2 kW
and 90 kW drives.

No oneisin doubt that PM motors have substantially lower losses than the induction motor
at nominal load as there are no rotor core and copper losses, and no magnetizing current to
generate stator copper losses. It is, however, interesting to analyze the situation also at light
load, where it is possible to reduce the flux in the induction motor, and to see whether the
induction motor drive can compete with the permanent magnet motor drive, for which flux-
weakening is not feasible.

Conditionsfor the Comparison.
Similar comparative studies of this subject have previously been done, of which three are

mentioned here. Andersen et al. [1] made a comparison, and constructed an induction motor
and several surface mounted PM motors and brush-less dc motors with optimized efficiency
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asakey god. But asthe power ratings were very low (100 W), the results can not be extended
directly up to the power levels examined here. Slemon [2] compared induction motor and PM
motor efficiencies. However, his considerations were purely theoretical and only for nominal
load. So he did not consider the most predominant load situation in HVAC, namely light load,
and hisresults are not useable for the cases studied here. A comparison of 0.75 kW permanent
magnet and induction motor drives was reported by Hansen [3]. The comparison was done
between a PM motor with a nominal efficiency of 0.87, and an induction motor with energy
optimal control having a nominal efficiency of 0.78. At quarter load and half speed the
efficiencies were 0.82 and 0.63 respectively. It was estimated that for a heat-water pump in
house-holds the annual energy consumption can typically be reduced with 14 % by using the
PM motor drive instead of the induction motor drive. This gives a good idea of the attainable
difference between the two motor types, athough a smaller difference can be expected at
power levels higher than 0.75 kW.

It is a very difficult task to compare two different motor types in a fair way, and the
comparison can be designed in different ways. This comparison is restricted to 4-pole, 50 Hz
motors with sinusoidal 400 V supply, although there may be other combinations of these three
gpecifications for which the permanent magnet motor is especially well suited. Then one could
set up severa different specifications from which the motor drives should be designed,
including volume, weight, material cost and manufacturing cost. It should also be specified
how the motor drives are tested, for example to know whether the motors should be optimized
for low load or high load. Having defined all this, experts should design the two motors, and
then an absolute comparison of the two motor drives could be carried out.

This procedure probably formed the basis of the results reported in [3], but it is very time-
consuming, and given the limited resources in this project an easier method has been chosen,
and the strength of the result is, of course, proportionally weak. It is believed, however, that
it is possible to reach some conclusions regarding the performances of the two types of drives.

The methodology used here is to compare the drives in two different pump applications.
The induction motor drives are those analyzed in the preceding chapters, the 2.2 kW standard
and high-efficiency motor drives, and the 90 kW standard motor drive. The sine-wave
permanent magnet synchronous motors (PMSM) are designed with the same stator geometry
and core materia astheir corresponding standard induction motors, and the windings are also
the same. Therotors are equipped with surface-mounted radially magnetized sintered NdFeB
permanent magnets. Neither brush-less dc-motors nor interior permanent magnet motor are
considered. The permanent magnet motors are, of course, not optimized to the same degree
asthe induction motors, so a comparison of the absolute performancesis not possible. But it
Is possible to answer what the relation is between the performances at high load and at low
load, similarly at different speeds, and to get an idea of the converter loss with the different
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motors. Findly it will be possible get an idea of the advantage of using permanent magnet
motors related to the motor power size, partly with respect to energy consumption and partly
with respect to pay-back times.

The pump load and the motors are first described. Then the induction motor losses are
caculated with the aready established models. For the permanent magnet motors, which are
not constructed in practice, the loss calculations are based on experience with the induction
motors and on calculations done with a commercial motor designer software. The results are
presented both in terms of losses, typical energy consumption and pay-back time. For the rest
of the chapter a permanent magnet synchronous motor is referred to asa PMSM.

Speed and Load Torque Characteristics.

The motors drive water circulating pumps without head, and they are examined in two
Situations: pressure control and flow control. In both cases the motor speed and load torque
are calculated as function of flow. It is first done for the 2.2 kW motor drives. The
characterigtic curves for a pump equipped with a 2.2 kW mains-connected induction motor are
shown on Figure 9.1.
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Figure9.1: Characteridtic curves for a centrifugal pump, Grundfos LM65-200/202, fed by a
2.2 KW induction motor connected directly to the 50 Hz grid.
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9.2.1 Pressure Control.

This control strategy is often used in hot-water distribution installations with variable
system characteristic [4]. The pressure is for a given flow controlled according to the linear
pressure-flow curve marked with a thick line on Figure 9.2 by varying the speed. If, for
example, the system characteristic is equal to the broken line on Figure 9.2, the pump is
operating in point A. Increasing the speed to the nominal value would change the operating
point to B. The speed in point A isacalculated as

Na = Ng M (9.1)
A qB .
where Ny, ng : speed in point A and B.
Oas Os : flow in point A and B.

Thisleads to the speed curve marked with thick line on Figure 9.2. The pump output power
Is the product of pump pressure and flow, and the pump input power is then calculated by
dividing with the pump efficiency. The pump efficiency is approximated by equation (9.2) [5,
p. 121], which defines the efficiency in point A from knowledge of the efficiency in point B.
Having calculated the pump input power, which isequal to the motor output power, the motor
load torque, which is marked with athick line on Figure 9.2, can easily be calculated.

0.1
rlB
T]A :1 - (1_npump,B) n— (92)
A
where  Moumpa Mpumps - PUMP fficiency in point A and B.
1 calculatlon on 2.2 kW motor drive calculatlon on 2.2 kW motor drlve
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Figure9.2: llludtration of the calculated motor load torque and speed with pressure control
and flow control for a 2.2 kW motor driving a Grundfos LM65-200/202 pump with variable
speed. Left: pressure-flow curves, right: load and speed characteristics.
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9.2.2 Flow control.

In installations where the system characteristic is constant, the flow can be controlled
directly with the speed. The pressure-flow curve is marked with athin line on Figure 9.2. The
gpeed is considered proportional to the flow, and the speed and load torque are calculated by
following the same procedure as for the pressure control. The results are shown with thin lines
on Figure 9.2 to the right.

9.2.3 Load of 90 kW Drive.
The pump characteristics for the 90 kW drives are obtained by upscaling the curves for the

small pump, see Figure 9.3. The p.u. speed and load torque curves are aimost equal to those
for the 2.2 kW drives.

calculation on 90 kW motor drive
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Figure 9.3: Calculated motor load torgue and speed with pressure control and flow control
for a 90 KW motor driving a pump with variable speed. Left: pressure-flow curves, right: load
and speed characteristics.

The calculations of the load torque for the 2.2 kW and 90 kW motors show that the motors
are never loaded to more than 55 % of rated torque. The situation is not rare in real
applications, although is seem obvious to use a smaller motor.

Description of the Motors.

Cross-sections of the 2.2 kW motors are shown on Figure 9.4, and of the 90 kW motors on
Figure 9.5. As may be seen from the figures, the induction motors and the PMSMs use the
same stator frame geometries, while the rotors of the PMSMs are equipped with surface
mounted permanent magnets. The PMSMs are not constructed physically.
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cross-section view of 2.2 kW induction motor
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Figure 9.4: Cross-sections of the investigated 2.2 kW motors. Left: standard and high-

efficiency induction motor. Right: Sne-wave permanent magnet synchronous motor. Measures
aregivenin[mm).
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Figure 9.5: Cross-sections of the investigated 90 KW motors. Left: standard induction motor.
Right: sine-wave permanent magnet synchronous motor. Measures are given in [mm].

9.3.1 Induction Motor Loss Calculation.

The induction motor losses are calculated according to the method in chapter three, and the
model constants for the 2.2 kW standard and high-efficiency motors and for the 90 kW
standard motor are listed in appendix B. The only difference is that the stator resistances are

all calculated with a 80°C winding temperature, and the resistance values are listed in Table
9.1
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9.3.2PMSM Construction.

The PMSMs which are used for the comparison are not constructed, so the derivation of
their efficiencies is based on calculation and on induction motor data. The PMSMs are made
with the same stator geometry and core material as their respective standard induction motors,
and the rotors are provided with surface mounted permanent magnets of sintered NdFeB. It
Is assumed that the magnet temperature is 80 °C, so the remnant flux density is1.07 T and the
relative recoil permeability is 1.06, see Figure 9.6.

The PM arc angle of the 2.2 kW PMSM is adjusted to minimize torque ripple. The PM arc
angle of the 90 kW PMSM s adjusted to reduce the circulating currents in the delta-connected
gator winding to zero. For both motors a skew of one stator slot is applied to reduce torque
ripple, and the core stack length is reduced in order to reduce the back-emf, so that the
converter can shape a sinusoidal current at full speed. The thickness of the magnets is
dimensioned so that they can withstand a fault current which is three times the nominal peak
stator current without being demagnetized. Table 9.1 gives a summary of the motor designs.

Blug-H — -10 —-15 -20 ~40 G T
\ \ \ 14 7 14
12 4 1.2
o
-
-05 10 410
@’c gooc  fiooec f1200C | fisoec
- 8 408
VACODYM 370 WZ /
/L // £ o
Zl .
4 04
I ) 74
74 2 {02
. . . . Va , . . . 0
kOe —18 -16  —14 —12 - 10 -8 -6 -4 )
kAIm  —1400 - 1200 —1000, —800 —~600 — 400 —200
-— ,l 2 4-02
/ 4 4-04
L ]
// 6 1-06
/ I

Figure 9.6: Data sheet for the NdFeB permanent magnet material.
Table 9.1: Summary of Induction motor and PMSM motor design.

2.2 KW 2.2 KW 2.2 KW 90 kW 90 kW

standard IM  high-€ff. IM PMSM standard IM PMSM
Stator resistance [Q] 3.57 2.89 3.38 0.0207 0.0190
Stack length [mm] 20 110 80 250 215
Skew lrotordlot  lrotor ot 1stator slot  notknown 1 stator slot
Magnet arc [eec. °] - - 150 - 120
Magnet thickness [mm] - - 16 - 4
Total PM weight [kg] - - 0.62 - 14.8

Air-gap [mm] 0.3 0.3 0.6 12 2.4
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9.3.3 PMSM Loss Calculation.

All motors are investigated under operating conditions of optimal motor efficiency. For the
induction motorsthisis assured by impressing aset agtator frequency and stator voltage which
minimizes motor input power for a given load torque and speed. The permanent magnet in a
PMSM with arecoil permeability of 1.06 equal alarge equivalent air-gap seen from the stator
winding, so the armature reaction from the stator current will not change the air-gap flux level
worth mentioning. Hence, the air-gap flux can be regarded as constant and equal to the flux
from the permanent magnets with the stator windings open-circuited. The optimal efficiency
Istherefore defined by maximum torque per ampere stator current, where the copper loss has
a minimum. Figure 9.6 shows a vector diagram of the PMSM with maximum torque per

ampere. The stator current is in phase with the induced voltage.

Xsls 4 Rsls
\'
AE

> Wy

Figure 9.7: Vector diagram for a PMSM with maximum torque per ampere.

The produced electromagnetic torque is

3z,El,
T =
em ws
where Ty, . €lectromagnetic torque.
z, :pole-par number.
E :phaseemf.
|, :stator current.
w,  stator angular velocity.
The phase emf is:
E = bpy

where Yoy > permanent magnet flux.

(9.3)

(9.9
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For a given torque, the stator current can be determined by combining (9.3) and (9.4):
I Fem

 3%,¥p,

S

(9.5)

This enables to calculate the PMSM losses for a given load torque and speed. The stator
copper loss and the mechanical losses are calculated as for the induction motors. The core
losses are calculated with the same formula as for the induction motor, but as there are no rotor
losses, the formulais reduced to (9.6).

Pore = Ky lW, + Lol [V fo+ ko, L2 625 kpy o + KUpy fo (9.6)

Equation (9.6) assumes a sinusoidal air-gap flux density waveform. As seen on Figure 9.8
the air-gap flux density is flat on the top, so the factors 0.87 and 0.89 are introduced in
equation (9.7) and (9.8) to take that into account. The coefficients of the core loss expressions
are determined so that the derived core losses correspond with those calculated with the
SPEED motor designer software package. The core loss of the 2.2 kW PMSM is:

Poye = 22(0.87-p, )" f, + 0.075(0.87- )% f2 (9.7)

The core loss of the 90 kW PMSM is:
P_. = 21.2(0.89 U, )8 f. + 0.239(0.89-y,,,)? 2 (9.8)

air-gap flux density in PMSM calculated with SPEED
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Figure 9.8: Air-gap flux density from the permanent magnets calculated with the SPEED

motor designer software.
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Result of Calculations for 2.2 kW Motor Drives.

The result of caculations on the 2.2 kW drives are now presented. Two parallel calculations
are made for each drive: pressure control and flow control. The speed and torque curves from

Figure 9.2 are used.
35 calculation on 2.2 kW motor drive 35 calculation on 2.2 kW motor drive
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Figure 9.9: Calculated 2.2 kW motor stator currents.

Figure 9.9 shows the stator currents for the standard induction motor and the PMSM in the
two control cases. The currents for flow control are smallest because the motorsin that case
are loaded with the lowest torque. The current in the PMSM is lower than in the induction
motor because it has no magnetization current and because the NdFeB permanent magnets are
quite strong. Figure 9.10 shows the efficiencies.

calculation on 2.2 kW motor drive calculation on 2. 2 kw motor drive

1 :

. |pressure control |: X X . i flowcontrol

motor eff|0|ency
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Figure 9.10: Calculated efficiency for 2.2 kw motor driveswith pressure and flow control.

The calculated drive losses with pressure control are shown on Figure 9.11. At full load the
PMSM drive loss is smaller than the induction motor drive loss. The main reason is that the
stator copper lossis reduced alot and the rotor loss is not present. The inverter lossis reduced
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alittle, while the core loss has increased because of the high permanent magnet flux density.
At low flow (low load torque, medium speed) the drive losses are of equal size because the
PMSM can not reduce its flux as the induction motor can. Figure 9.11 indicates that the
PMSM construction is far from optimal because the core loss is too large compared with the
stator copper loss.

calculation on 2.2 kW motor drive calculation on 2.2 kW motor drive
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Figure 9.11: Loss distribution in 2.2 KW motor driveswith pressure control. Left: standard
induction motor drive, right: PMSM drive.

Figure 9.12 shows the drive input power. Besides the two drives from Figure 9.10 are also
shown the input power for a high-efficiency induction motor drive, for a drive with no losses,

and for a mains-connected standard induction motor with throttling valve control.

calculation on 2.2 kW motor drive
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Figure 9.12: Calculated input power to the 2.2 kW motor driveswith pressure control.
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calculation on 2.2 kW motor drive
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Figure 9.13: Loss distribution in 2.2 kW motor drives with flow control. Left: standard
induction motor drive, right: PMSM drive.

The difference with a flow controlled drive is, as seen on Figure 9.2, that the speed is low
a low flow. This means that the PMSM does not have a large core loss at low flow, and the
PMSM has the same low copper losses as with pressure control, see Figure 9.13 and compare
with Figure 9.11. The PMSM therefore performs better with flow control than with pressure
control compared with the induction motor, which is also seen by comparison of the drive
efficiency curves on Figure 9.10. The drive input power with flow control is shown on Figure
9.14.
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Figure 9.14: Calculated input power to the 2.2 kW motor driveswith flow control.
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Result of Calculations for 90 kW Motor Drives.

167

The next three pages present the same calculations as before, but made on the 90 kW
drives. The calculations are done using the speed and load torgque curves on Figure 9.3. The
gator currents are shown on Figure 9.15, and they are similar in shape to the currents for the

small drives.
calculation on 90 kW motor drive calculation on 90 kW motor drive
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Figure 9.15: Calculated 90 kW motor stator currents.

From Figure 9.16 it isseen, as for the small drives, that as the drive efficiency curves cross
each other at low flow with pressure control. The PMSM has the highest efficiency at all flows
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Figure 9.16: Calculated efficiency of 90 kW motor drives with pressure control and flow
control.
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The difference with the loss distribution for the medium-size drive is that while the main
loss reduction for the small PMSM compared with the induction motor was reduced copper
losses, then the 90 kW PMSM benefits mainly from both reduced copper losses and reduced
inverter loss, see Figure 9.17 and Figure 9.19.
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Figure 9.17: Loss distribution in 2.2 KW motor driveswith pressure control. Left: standard
induction motor drive, right: PMSM drive.
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Figure9.18: Calculated input power to the 90 kW motor drives with pressure control.
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As the relative loss in the 90 kW drives are smaller than in the 2.2 kW drives, the
differencesin input power between the two investigated drives becomes even more marginal
than it was the case for the small drives, see Figure 9.18 and Figure 9.20.
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Figure 9.19: Loss distribution in 2.2 kW motor drives with flow control. Left: standard
induction motor drive, right: PMSM drive.
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Figure 9.20: Calculated input power to the 90 kW motor drives with flow control.
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Profitability.

Given the input power curves as function of flow on Figure 9.12, Figure 9.14, Figure 9.18
and Figure 9.20, the energy consumption and energy cost can be calculated. Thisis used to
calculate typical annual energy cost and to estimate the pay-back times for the drives.

9.6.1 Annual Energy Cost.

The drive input power curves from the preceding sections are now used to calculate the
annual energy cost in three load cases which are considered typical. The load profiles are
shown on Figure 9.21, and it is seen that the average motor output for pressure control varies
between 21-43 % of the rated motor output power, and for flow control between 14-41 % of
rated output power.
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Figure 9.21: Threeload profiles used to calculated annual energy consumption. The average
motor output power loadings are indicated in each case.

The calculated annual energy cost is shown on Figure 9.22 for the 2.2 kW drive and on
Figure 9.23 for the 90 kW drive. The electricity price is 0.0705 €/kWh, which is the average
industry electricity price in Europe.

The figures show that the lower the load is (case 1), the large is the difference between the
constant speed drive and the variable speed drives. Comparing the variable speed drives, the
PMSM isin al cases better than the standard induction motor drive, and the difference is



9. Comparison of Induction Motor Drive and PM Motor Drive Efficiency 171

largest for the small drives. At low load the high-efficiency induction motor drive is better than
the PMSM drive, but thisis because the PMSM construction is not optimized.

calculation on 2.2 kW motor drive calculation on 2.2 kW motor drive
900 ! : T 900 T ’ T
800/~ [pressure control | <+ =N ST SR T
: L : . | flow control | . .
Q700 -t R B R FIEH - 111 SRR [ SRR
— . . . 1
& : ] . . ] .
§ 600~ T T 8600 -
> : — : '
R /R MR & 1 A R S S
$ 400 = s |12 s S s (1=
> 2 NIk o > 3 B R
® 3007 - r : o Erdie IS 'g' ki § 12 Qll« R
2 EREEEEENEE SR 3 3 5 €33
® 200/ - S SR ERRENEEE (=N == SIS
5 8555 2 E EEpE
100( - 2 il S £ 2 EERRE R
S B8 o 9 9| 3 8 J1=3 9
0 Ol Rs|(Z](S] O Ol |9 || T[»]|O
2 2 3
load case load case
Figure 9.22: Annual energy cost for the 2.2 kW drivesis three cases of |oad profiles.
30 calculation on 90 kW motor drive calculation on 90 kW motor drive
K f f 30 K f f
i - [flow control| e
25 A RRRREE - 177 25F AETEETEETREPEE b SRR ER BN
& : & — ]
3 - : =3 :
207 B e i T 7 ®20r e - I 7
@ M | ® . !
B M " t- . |
> . . . .
o | | o = |
Ql5r - e o e Q15f------a-- =T A 11
3 : = ; = ; = § N 1= RIS
S = 0 3 L I3 e 3
L0153 H<ll @ 12 Nl 8 - 2 <l ® 107"~ N I R -~ I e T T = T<|] ©
SRR E 5015 1Fa |3 ;§ & 5 mEEEREREEEREREE
< ol (1Bl IERS ol (1B ISR ol (18 o |IB|E
SsrfisislsEisisls - {Bsiais - ool S 1 Bsl BIE 385 -
al o S| 2 a0l 5| 2 a0 || 2 ull =|| @ @l ol || @ %ol || 2
alsl gl s sl gl s alls|| 8| s SRS 9=/ s|| § 9= gl §
3| 2ll&)|o Nz 3|25 o oo N |ls Nzl IS
0 0
1 2 3 1 2 3
load case load case

Figure 9.23: Annual energy cost for the 90 kW drives is three cases of load profiles.

9.6.2 Pay-Back Time.

The pay-back times are calculated from load case 2 on Figure 9.22 and Figure 9.23, which
Isthe medium load case. Table 9.2 lists the precise annual costs. Listed are aso the prices for
motors and converters. The induction motor and converter prices are without any reduction.
The prices of the converters for the PMSMs are cheaper than the converters for induction
motors because they can use smdler converters. The prices of the PMSMs are calculated from
the stlandard induction motor price and adding the price of the permanent magnets. The price

for NdFeB magnets is 104 Euro/kg, and it is multiplied with a factor 3.5 to take into account
the increased value of the magnets in the final product.
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Table 9.2: Prices (in €) used to caculate pay-back times.

22KkW 22KkW 22kW 22kW 90kW 90kw 90 kw
cst. speed standard high-eff. PMSM  cst. speed standard PMSM

motor price 350 350 428 576 7903 7903 13290
converter price 0 937 937 831 0 12773 10754
annual energy cost, pressure 739 565 534 535 24320 19013 18699
annual energy cost, flow 739 468 443 441 24320 15708 15437

The pay-back times are calculated for two cases. The first case is a new installation where
both a constant speed drive and a variable speed drive can be used. The pay-back times for the
variable speed drives are calculated as:

_ (motor + converter - motor )
pay-back time = (9.9)
energy cost., - energy cost
where  motor . price of induction motor or PMSM.
converter . price of converter for an induction motor or for aPMSM.
motorg,, . price of standard induction motor.
energy cost : annual energy cost with variable speed drive.

energy costy,, : annual energy cost with constant speed drive.

The results are listed in Table 9.3. They show that the motor type has only little influence
on the pay-back time of a variable speed drive. It is slightly better to use a high-efficiency
motor than a standard motor. The PMSM drive benefits from the fact that it can use a smaller
converter than the induction motors. But the pay-back times are generally determined by the
difference between the energy constant speed drive and the variable speed drives, and how the
plant isloaded and controlled. A medium-size drive isin general paid back faster than a small
drive.

Table 9.3: Pay-back time in years for a variable speed drive.

drivesize  control type Standard motor drive High-€ff. motor drive PMSM drive
2.2 KW pressure/ flow 54/35 5.0/3.4 5.2/3.5
90 kw pressure/ flow 24115 -/ - 29/1.8

The second case is a new installation where only variable speed drives can be used, and
where the pay-back times for buying a high-efficiency motor or a PMSM drive instead of a
standard motor drive are calculated. The pay-back times are calculated as:
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(motor + converter) - (motor  + converter )

stan

pay-back time = energy costy, . - energy cost (9.10)
where  motor : price of the high-efficiency motor or the PMSM.
converter : price of converter for the high-efficiency motor or the PMSM.
motorg,, . price of standard induction motor.
convertery,, . price of converter for the standard induction motor.
energy cost : annual energy cost for high-efficiency motor or PMSM.

energy costy,, : annual energy cost for variable speed standard induction motor.

The results are shown in Table 9.4. They show that the best investment is a small high-
efficiency motor, and that a small PMSM is amost just as good. Again, the expensive PMSM
benefits from asmdler converter. But the PMSM istoo expensive at the 90 kW level. It is not
so important whether the plant is pressure controlled or flow controlled.

Table 9.4: Pay-back time in years for using a better motor in a variable speed drive.

motor drive size control type High-efficiency motor PMSM

2.2 KW pressure/flow 25/3.1 40/4.4

90 kw pressure/flow -/- 10.7/12.4
9.7 Summary.

The aim with this chapter is to set the induction motor drive in perspective by comparing
its energy efficiency with that of a PMSM drive in HVAC applications. The chosen method
Is to compare an induction motor with a PMSM made from an induction motor but with
permanent magnets on the rotor surface. This smple method was chosen because of the
limited resources, but it isredlized that the analysis does not provide results for the two drives
which are directly comparable. So it is not possible to fulfil the main purpose of the
comparison. The reason for this is that constructing a PMSM from an induction motor results
in a PMSM which is far from optimal with respect to efficiency. An absolute comparison
requires much more work, for example, the research project which [3] referred to represents
14 years of manpower. When it is chosen to include this comparative anayss in the thesis
anyway it is from the point of view that it is better to say something, although formulated in
vague terms, than to say nothing.

From the calculation of loss distribution in the drives it is possible to conclude that the
PMSM lossis reduced because of reduced copper losses, and especialy in the 90 kW drive
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at low load also because of lower inverter loss. The induction motor can benefit from flux
reduction a low load, but it is only an advantage compared with the PMSM if the speed at the
sametimeis relatively high, because at low speed the core loss is small anyway. In what here
is referred to as flow control (speed changes linearly with speed) the induction motor has no
advantage of flux reduction compared with the PMSM.

A graphic presentation of the drive input power illustrates that the difference between the
investigated variable speed drives is small compared with the constant speed drive, especially
for the 90 kW drive.

Calculation of pay-back timesindicated that when a variable speed drive isinstalled instead
of amain connected induction motor, the motor type has only a minor influence on the pay-
back time of the drive.

When only a variable speed drive can be used, and it is considered to choose a high-
efficiency motor or aPMSM instead of a standard motor, it isin asmall drive agood idea to
change to a high-efficiency motor and possibly also to a PMSM. But a 90 kW PMSM istoo
expensive.
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Chapter 10

Conclusion

A large part of the electrical energy consumption goes to Heating, Ventilation and Air-
Condition (HVAC) applications and it is well known that in some of these cases the energy
consumption can be drastically reduced by using variable speed drives instead of constant
speed drives controlled by, for example, throttling valves. A smaller, but still important,
improvement in the induction motor drive efficiency can be obtained by adapting the
magnetizing level in the motor to the load condition. The basic purpose with thisthesisisto
demonstrate how energy optimal control can be made for small and medium-size low-cost
PWM-V S| drives for HVAC application, without bringing the robustness of the drive below
an acceptable level. Thelow-cost criterion implies a minimum of sensors and relatively simple
control algorithms. A number of more specific purposes with the thesis were mentioned in the
definition of the problem in Chapter 1, and a summary of the resultsis presented here.

M easurement of Drive Efficiency and Harmonic L 0sses.

In order to gain agood comprehension of the losses in electrical drives, extensive efficiency
measurements were made on 2.2 kW standard and high-efficiency motor drives, with and
without filtered converter output voltages. Similar measurements without filtered converter
output voltages were made on 22 kW and 90 kW standard motor drives. The measurements
were made within the whole specified operating area (0-1 p.u. load torque and 0.2-1 p.u.
speed) in order to discover al possible phenomena.

The experiments on small drives with optimized efficiency and with constant air-gap flux
showed that at 0.25 p.u. load torque the drive losses were reduced with 26-36 % for the
standard motor drive and with 23-31 % for the high-efficiency motor drive. Thisindicates that
the better the motor congtruction is, the smaller is the relative improvement by energy optimal
control. In both drives the drive efficiency was improved in the operating area below
approximately 70 % of rated load torque.

It was found that in small drives the improvement appears mainly due to reduced motor
losses, so in that drive size the energy optimal control algorithms do not have to include
converter losses. Neither is it necessary to consider harmonic motor losses in the energy
optimal control. Experiments with variable switching frequency on a 2.2 kW drive showed a
minimum in drive loss around 3-4 kHz.
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Analysis of Optimized Drive Efficiency.

Motor and converter models were established with special attention to precise representa-
tion of losses and verified against the measurements. The experience was that the motor losses
can be modeled satisfactorily with atraditional single phase model with losses represented by
stator, rotor and core resistances. The copper resistances take into account the temperature
changes in the motor. No attempt has been made to quantify stray load losses, but they are
represented inherently through the stator resistance. The inverter losses were modeled by help
of off-line measurements of transstor and diode switching energies and of on-state conduction
voltages. The losses in the chokes were calculated from their dc-resistances, while the loss in
the dc-link capacitor wasignored. The rectifier loss was calculated assuming a constant diode
on-state voltage.

The established drive models were used to analyze the drives when operating with and near
optimized efficiency. It was demonstrated that around the point of optimal efficiency thereis
a wide region of air-gap flux, inside which the efficiency is almost constant, so with respect
to efficiency it is not important to hit exactly the optimal point. Rather is it a good idea to
select an air-gap flux dightly higher than the optimal value in order to ensure a more stable
motor. On the other hand, it was shown that the motor will not pull out with optimized
efficiency aslong as there are no large load disturbances.

Evaluation of Energy Optimal Control Methods.

A review of energy optimal control strategies was presented, and five strategies were
selected for further analysis. Based on calculations and tests, the following conclusions can
be made concerning the strategies for small drives:

» The displacement power factor control is simple and gives good results, which makesit a
good choice for HVAC applications. It was chosen to use a constant reference value for the
displacement power factor, and the investigations have not revealed any reason to make the
reference variable.

It gppeared that the reference for the constant dip frequency controller has to vary with both
speed and load, and as the method furthermore requires a speed sensor, it was disregarded.

» A direct air-gap flux control was tested. The reference was made a function of estimated
load and speed, but it could adso be made a function of stator frequency and stator current. The
result was very good, but the method requires good knowledge of the motor.

* It was demonstrated that the analytical solutions to model-based control proposed in
literature do not give satisfactory results as they ignore magnetic saturation. In the tests the
problem was solved in a smple and acceptable, but not satisfactory, way.

» Thegator current and input power minimizing search controllers, although providing good
steady state performance, appeared to have problems in a realistic pump system test with
dowly varying load. In the choice between the two strategies, the experience isthat it is best
to use minimized stator current.
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Test of Energy Control Strategies.

In general it is found that the search control is ow, while the other control algorithms
converge faster. Comparison with tests of the dynamic properties in a vector controlled drive
for CT applications showed that the convergence times could generally be reduced with 50 %
in vector controlled drive. It is clear, however, that the dynamics greatly depend on how the
drive control is designed.

Thereis ageneral need for methods to design the PI-controllers in the cos(¢) control, the
direct air-gap flux control and the model-based control. It was in this project done from simple
consideration and further fine-tuning with gain-scheduling by trial and error. The search
control has the disadvantage that every new application demands a time consuming job of
trimming a number of constants in the algorithm.

Testswith a2.2 kW standard induction motor drive on a pump system demonstrated a 12.6
% reduction in energy consumption by energy optimal control compared with constant air-gap
flux control. The average load of the motor during the test was approximately 20 % of rated
power. Thistest revealed that the search control had difficulties to follow the minimum loss
operating point in case of slowly varying load and speed.

Energy Optimal Control of Medium-size Drive.

Reliable motor and converter loss models for a 90 kW drive were established on the basis
of extensive measurements. An analysis with these models showed that it has virtualy no
influence on the drive efficiency whether it is the drive efficiency or only the motor efficiency
that is optimized. The only reason to include the converter loss in the energy optimal control
algorithm should be that it makes the drive more robust against load disturbances because it
dictates a higher flux level than if only the motor efficiency is optimized. This phenomenon
Is more distinct the higher the switching frequency is.

It was found that it is even more troublesome to use the search control in medium-size
drives than in small drives because of the relatively smaller losses. But the other energy
optimal control strategies which were tested on the 2.2 kW drive can be used on the medium-
size drive without problems.

Calculations with constant displacement power factor control and with model-based control
showed good results in terms of efficiency. The model-based control was tested on a 22 kW
drive with good results.

Instead of seeking an analytical solution to the model-based control it is proposed to solve
the optimization numerically off-line, and turn the real-time drive control into a smple
principle of controlling, for example, the air-gap flux as function or stator frequency and stator
current. With this new method the loss model can include converter losses and a complex
motor model with little demand for real-time computational power.
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From the experiments with the standard induction motor drives at 2.2 kW, 22 kW and 90
kW graphical relations were formed, which for any motor within that power range show how
much the drive efficiency can be improved with energy optimal control, compared with
constant air-gap flux control. It should just be kept in mind that the improvement may vary,
depending on how well the motor congtruction is optimized itself. The general tendency is that
the improvement gets smaller, the larger the driveis.

If a mains-connected induction motor is over-sized, it results in a degraded efficiency. A
small study showed, on the contrary, that in variable speed drives with energy optimal control
it is not a disadvantage to use over-sized induction motors, because with flux reduction the
core losses are of equal size, but the copper losses are smaller in the over-sized motor. The
result may differ if thereis large difference between the shaft height of the motors.

Stability.

It is shown that robustness against sudden load disturbances for an open loop controlled
motor can be studied from simple steady-state considerations. A comparison of the
investigated motors shows that a high-efficiency motor is more robust than a standard motor,
and amedium-sze motor is more robust than a small motor. If the drive should be able at any
time to withstand a sudden increase to nominal load torque it is necessary continuously to
monitor the load torque and to increase the motor flux rapidly when alarge load disturbance
Is detected. Experiments showed that this can easily be realized, for example by forcing the
flux to its nominal value when a large difference between the flux reference and the calculated
flux is detected.

Motor oscillations were studied with respect to flux reduction. There are two resonance
phenomena in a motor, and when the flux is reduced, the damping of the first is increased
while the damping of the second is decreased. It can not be said beforehand which one will
possibly cause trouble, as it depends on the motor and on the load, so flux reduction can both
degrade and improve a resonance problem.

Comparison of Induction Motor and PM SM Drives.

Comparisons of energy efficiency were made between induction motor drives, and drives
of permanent magnet synchronous motor (PMSM) made from induction motor frames. The
conditions of the comparison appeared to be too simplified to make an absolute comparison
between the different drives. It was demonstrated, however, that the advantage of flux
reduction for the induction motor compared with the PMSM only appears in applications
where the speed is relatively high at low load torque, such as the pressure-controlled pump.
But in any case, the PMSM benefits from reduced copper and inverter losses. So the induction
motor can not compete with the PMSM with regard to energy efficiency.
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Economical considerations indicate that when a variable speed drive is installed instead of
acongtant speed drive, the pay-back time is almost independent of the motor type. When only
a variable speed drive can be used, and it is considered to choose a high-efficiency motor or
aPMSM instead of a standard motor, it isin a small drive a good idea to change to a high-
efficiency motor and possibly also to a PMSM. But a 90 kW PMSM istoo expensive.

Unique Contributionsin the Thess.

The unique contributions in this thesis to the field of energy optimal control of induction
motors are believed to include a demonstration of the importance of including magnetic
saturation and converter loss in the control algorithms, a genera comparison of different
control strategies with respect to stationary and dynamic performances, analysis of energy
optimal control in medium-size drives, proposa of a new implementation of model-based
control, a means to determine the expected efficiency improvement with energy optimal
control for any drive between 2.2 kW and 90 kW, and a general analysis of stability with
respect to flux reduction.

Future Work.

Concerning the future work in the field of energy optimal control, this project revealed that
thereisaneed for methods to design the energy optimizing controllersin a systematic way so
that the convergence time for varying load can be minimized. In some applications it might
even be relevant to minimize energy consumption during transitions. An automatic routine for
determining the many parameters in the search control algorithmsis aso needed. Furthermore,
it might, at least from an academic point of view, be interesting to get an analytical solution
to model-based efficiency optimization with inclusion of magnetic saturation and possibly
converter losses.
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Appendix A

Description of Laboratory Motor Drives

This chapter describes the physical 2.2 kW, 22 kW and 90 kW motor drive systems which
are used for experiments in this project. It includes induction motor, mechanical load,
converter, digital control system and acquired signals, see Figure A.1.
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Figure A.1: Overview of laboratory motor drive system.

M echanical Load.

The 2.2 kW and 22 kW induction motors are loaded with separately excited dc-generators,
see Figure A.2. The load torque at a given speed is adjusted by varying the field current and
the resstance connected to the armature. It is possible to make a sudden load step by closing
or opening the armature circuit with the switch.

e

Figure A.2: Connection of the dc-generator load machine for 2.2 kW and 22 kW drives.

The 90 kW drive is loaded with atorque controlled permanent magnet synchronous generator
drive.
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Motorsand Converters.

A diagram of the power electronic converters is shown on Figure A.3. The basic converter
Is similar for both the 2.2 kW, 22 kW and 90 kW drives. The 2.2 kW drive is additionaly
equipped with a brake module, and an output filter which can be applied when desired. The
2.2 KW drive converter is connected to the grid through a vario-transformer so that the input
voltage to the diode bridge can be varied between 0 and 450 V. This enables to adjust the dc-
link voltage from OV to 640 V. The 22 kW and 90 kW drive converters are connected directly
to the grid.

e EEETT L

grid

gate-pulse 1 —07 dead-time

gate-pulse 2 ——————— short-circuit protection
gate-pulse 3 — ¢
square pulse —e——————————
on/off —

over-current protection

Figure A.3: Diagram with main components of the power electronic converters. Control
electronics, and high frequency components, such as snubbers and RFI-filters, are not shown.
Vario-transformer, brake-module and output filter are only used with the 2.2 kW drive.

The control circuit is taken out of the converter, so the control input to the converter
congdgs of three gate sgnals, one for each branch, a square-wave signal for awatch-dog timer
and an orn/off-signal. As shown on Figure A.3, the converter contains a dead-time circuit, as
well as short-circuit and over-current protection.

The induction motors used in this project (2.2 kW, 22 kW and 90 kW standard motors, and
2.2 KW high-efficiency motor) are all squirrel-cage norm motors. The motor and converter
type specifications are listed in Table A.1, and the model parameters are shown in Appendix
B.
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Table A.1: Motor and converter type specifications.

Drive Motor Type Converter Type
2.2kwW | Sandard motor Danfoss VLT 3004 Danfoss Brake Module
ABB Motor 3~ CI.F IP55 IEC34 175H7246 380-415 V 175H6199
MTM100LA28-4 MK110022-S 160013G026 380/500 V, 125 A
807302G197
High-efficiency motor
ABB Motor 3~ CI.F IP55 IEC34 Danfoss RFI/LC filter
MTM100LB28-4 VV290-50A 17500253
3x380/500 V, 7.3 A
592902G515

22 kW | ABB Motor 3~ CI.F IP55 IEC34 Danfoss VLT 3032
ABB 400/50Hz, Motor MBT 180L 175H1671 380-415 V
030609G344

90 kW | ASEA Motor 3~ CI.F IP55 IEC34 Danfoss VLT 3132
400/50Hz, Type 280SMB 380-415V

A.3 Digital Control System.

A diagram of the digital control system is shown on Figure A.4. It consists of an analog-to-
digital converter, adigital signal processor, a PC, a dua-port-ram, a micro-controller and an
interface with galvanic isolation to the converter. Circuit diagrams are shownin [1].

PC
sensor 8 12 16 dual 16 5 galv. 5
output —7—> ADC » DSP € > port < > uc > is.ola- ——>
ram tion
to con-
y verter
T interrupt

S/H

Figure A.4: Diagram of digital motor drive control system.

A/D-converter.

The eight input channels are sampled simultaneously by two sample-hold circuits (AD684
from Analog Devices) when a signa is given from the micro-controller. The input voltages
are converted with 12-bit resolution by the AD7891 chip from Analog Devices. The
conversion time for each channel is 2.3 ps and the conversion is controlled by the DSP. The
tota conversion time of eight channelsis 27 ps, including transmission of results to the DSP.



Appendix A. Description of Laboratory Motor Drives 183

Digital Signal Processor (DSP).

Most calculations are made the in floating point DSP from Analog Devices: SHARC
ADSP-21062, 33.3 MHZ clock frequency. It performs floating point calculation with 32 or 40
bit resolution. The DSP is mounted on the EZ-lab development system (hardware ver. 3) by
BittWare Research Systems. The board is placed physically in the PC, which enables exchange
of data between the DSP, and the screen and hard-disc. The DSP is programmed in ANSI-C.

The interrupt procedure in the DSP is executed at the beginning of each sampling period
when a signal from the micro-controller is given. The output of the DSP are three duty-cycles,
one for each inverter-branch. The duty-cycles are written in 16-bit format to the dual-port ram.

Dual-Port Ram.
The dual-port ram consists of two parallelled 8-bit memory-circuits. This gives a total of
128 16-bit memory addresses, accessible from two sides.

Micro-Controller.

The micro-controller is from Siemens, SAB80C167, with 20 MHz clock frequency. It
performs calculations in 16-bit fixed point format. The input to the micro-controller are the
three duty-cycles which are read from the dual-port ram, and the output are three PWM gate
sgnas, asquare-wave and an on/off signal. The PWM signals are generated with a resolution
of 50 ns. The micro-controller also generates an interrupt signal for the DSP and a hold-signal
of the A/D-converter in the beginning of each sampling period.

Galvanic I solation.

The galvanic isolation circuit simply passes the PWM, square-wave and orn/off signals on
to the inverter. The galvanic isolation is provided by fibre-optic cables. The circuit also
contains a switch by which it is possible to block the gate-signals manually.

Timing of Communication.

Thetiming between the individual part of the digital control systemisillustrated with two
sampling periods on Figure A.5. The figure only shows the actions that are related to the
sampling at time t,.

At time t, the micro-controller gives a hold signal to the A/D-converter and an interrupt
signal to the DSP. The DSP immediately starts to read to converted values. Thereafter the
control algorithms are executed in the DSP. The output of the control part, three duty-cycles,
are written into the dual-port ram. At the beginning of the next sampling period, at timet,+T,
the duty-cycles are read by the micro-controller, the PWM timer values are calculated and
written to the timer buffer registers. These values are automatically loaded into the timer
compareregistersat time t,+2T,. Thismeansthat there is a delay of two sampling periods from
analog values are sampled, until the output voltage of the converter are applied.
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Figure A.5: Timing of communication between micro-controller, dual-port ram, DSP and
A/D-converter.

Sensorsand Filters.

The currents are measured with Hall-effect sensors, and the dc-link voltage with a voltage
divider. The speed is measured with an encoder, and the pulses are both counted in the micro-
controller and converted to an analogue voltage. For the 2.2 kW and 22 kW drives the
resolution is 2500 pulses/revolution, and for the 90 kW drive the resolution is 1200
pulses/revolution. The bandwidth of the analogue signals are listed in table A.1.

Table A.2: Bandwidth of measured analogue signals.

Measured parameter  Effective bandwidth

Stator currents 10.6 kHz
dc-link current 58 Hz
dc-link voltage 10.6 kHz
Speed 723 Hz
load torque approx. 800 Hz

References.
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Appendix B

Verification of Motor and
Converter Loss Models

The gtructure of the motor and converter models are described generally in chapter 3. It is
the same models that are used for both the 2.2 kW, 22 kW and 90 kW standard induction
motors, and the 2.2 kW high-efficiency induction motor. The models are all verified
experimentally and the results of the experiments and the determined constants are reported
in this appendix.

The models are verified within the specified operating area which is found relevant for
HVAC applications, namely 0-1 p.u. load torque and 0.2-1 p.u. speed. The main objective is
to model the losses as precisely as possible, using a model which is not unnecessarily complex.

Inall casesthe losses are determined by the input-output method measuring the input and
output powers of the converter with a 12 channe Norma power analyzer and the motor output
power from measurement of torque and speed. A scheme of the measuring principle is shown
on Figure 4.1.

The generd procedure for determination of the model constants is the following, although
there are small variations from drive to drive. The motor model constants are initially
determined by traditionally tests. The main inductance and possibly the core losses are
determined from no-load tests at different stator frequencies. The stray inductance and rotor
frequency are determined from a locked-rotor test at 10 Hz stator frequency. The stator
resistance is determined by a dc-measurement. No further changes are made to the
inductances. Because the resistances depend on temperature, and thereby on the operating
point, the rotor resistance is initialy adjusted within a reasonable range to make the dip
frequency of the loss measurements correspond with the calculated dlip frequency. Thereafter
the motor losses are adjusted to the measured motor loss by changing primarily the stator
resistance keeping in mind its variation with temperature. Concerning the converter loss, small
corrections are made to the output filter resistance value, to the dc-filter resistance values and
to the diode rectifier conduction voltage.
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2.2 kW Standard Induction Motor Drive.

L oss measurements are made both with and without a converter output filter. The complete
data set is provided in [1]. The motor constants are determined from measurements with
filtered stator voltages, so the model does no include harmonic losses. These are, however,
quite constant, see section 3.2, so this does not influence the development of energy optimal
control strategies. The result is shown in Figure B.1 - Figure B.6. The converter losses are
verified with the measurements without output filter, see Figure B.7 - Figure B.11.

Table B.1: 2.2 standard motor name-plate.

ABB Motors
Motor 3~ CI.F IP55 IEC34 CE
MTM100LA28-4 MK110022-S
\% Hz min™* kw A Cosp
380-420 Y/220-240 D 50 1430 2.2 4.9/8.5 0.81
440-480 Y/250-280 D 60 1720 2.5 4.9/8.5 0.79

Derived nominal data for 2.2 standard motor in star connection.

Number of poles: 4

Output power: 2.2 kW
Stator voltage: 400 V
Stator current: 49 A
cos(¢): 0.81
Speed: 1430 rpm

Rated torque at 1430 rpm.:  14.7 Nm
Rated torque at 1500 rpm.:  14.0 Nm
Air-gap flux: 0.66 Wb

The following measurements are made with a LC-filter on the output of the converter. The
filter cut-off frequency is 2.5 kHz, and it has the following component values:

L = 1.35mH
R = 1.17Q
C.c = 3UF
where L, . : LCfilter inductance.
R.c : equivalent series resistance of LC-filter inductance.

Cc . LC-filter capacitance.
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500 2.2 kW standard motor, filtered supply
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Figure B.1: Measured and calculated motor power loss for a 2.2 kW standard induction
motor fed by an inverter with an outpuit filter.
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Figure B.2: Measured and calculated efficiency of a 2.2 kW standard induction motor fed by

an inverter with an output filter.
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2.2 kW standard motor, filtered supply
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Figure B.3: Measured and calculated stator current of a 2.2 KW standard induction motor fed
by an inverter with an output filter.
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Figure B.4: Measured and calculated line-to-line voltage for a 2.2 kW standard induction
motor fed by an inverter with an outpuit filter.
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2.2 kW standard motor, filtered supply
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Figure B.5: Measured and calculated displacement power factor for a 2.2 kW standard
induction motor fed by an inverter with an output filter.
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Figure B.6: Measured and calculated dip frequency for a 2.2 kW standard induction motor
fed by an inverter with an output filter.
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Figure B.8: Measured and calculated converter loss of a 4 kKVA converter feeding a 2.2 kW
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2.2 kW standard motor drive, 1500 rpm.
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Figure B.7: Measured and cal culated motor loss of a 2.2 kW standard induction motor fed
by an inverter.

2.2 kW standard motor drive, 1200 rpm.

T
+ measured constant qux
120t--| o measured, energy optimal
— calculated
= - :
2
@
@
L2
]
b
o
>
<
8
A0 - e
0 S S P S S
o ; ; ; ; ; ; ;
0 2 4 6 8 10 12 14
load torque [Nm]
2.2 kw standard motor drive, 300 rpm.
T
+ measured constant qux
120}

O measured, energy optimal
— calculated

60}---

converter loss [W]
©
o

N
o

N
o

(=)

(=)
N

6 8 10 12 14
load torque [Nm]

Appendix B



Appendix B
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2.2 kW standard motor drive, 1200 rpm.
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FigureB.9: Measured and calculated stator current for a 2.2 kW standard induction motor
fed by an inverter.
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Figure B.10: Measured and calculated dip frequency of a 2.2 kW standard induction motor
fed by an inverter.
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2.2 kW standard motor drive, 1500 rpm.
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Figure B.11: Measured and calculated air-gap flux of a 2.2 kW standard induction motor fed

by an inverter.
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2.2 kW Standard Motor Mode Constants.

All constants are expressed in Sl-units.
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Toove = 28+40-¢ +258-7 . [°C]
R, = 2.89 (1+0.00393(T,,,[°C] + T, [°C] - 20))
Trover = 375°Y +167-7.,-146 [°C]
R = 1.88(1+0.0043(T,,,[°C] + T, ,,,[°C] -20))
L, = 0.029H
L., = 0.013H
L,, = 0.016H
LG [HI]:
io<itL.o=L,
iml < im < im2: I‘m - al'ini+a2'in21+a3'im+a4
o < i <ig L. =Db:-i+b
g < it Ly = C*Gfi
i 1= 0.8 0.34 2.2 kW standard motor model
m ' : T ! ! !
o =2
im3 — 3 0.32r
L., = 0328 . 03
Ry
a, = -0.0108796 2
a, = -0.0070833 i
a; = 0 Eo.zm
a, = 0.328 S
b, = -0.064 g
b, = 0.427 0.22F
c, = 0.043
c, = 0.576 >
O'180 OE.S [1 1E.5 é 4
magnetizing current [A]
FigureB.12: 2.2 KW standard induction motor magnetiz-
ing inductance model.
P_. = 3.10(1+0.69-5) Y f_ + 0.040(1+0.69-s?) ¢2-f [W]
Ty = 0.095+1.18:10°-n+1.6-10%-n? [Nm]

J = 0.007 kg:m?
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4 kVA Converter Modea Constants.

Vor = 1.330 Aot = 0.180-10° Vg, = 19365
Ry = 0.320 By = 1 Romin = 01123
Boonr = 0550 A = 0175:10° Vopin = 05977
Vop = 0550 g 1 Rypyi, = 0.0492
ROD = 0.096 A — 02601073 o = 508351074
B, = 0700 *° _
conD BSND = 0.670
RdCl = 0.014 Q, at 20°C ) Rac - 0.075 Q, at ZOOC Pmppw =17 W
RdCZ = 0.074+1.9 Q, at 20 C VD = 0.8V
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Figure B.14: Saitch energies for 4 KVA  Figure B.13: Total inverter switch energy.
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Figure B.15: Transistor and diode conduction volt-
agesfor a 15 A module.
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2.2 kW High-Efficiency Motor.

The congtants for the 2.2 kW high-efficiency motor model are determined in the same way
asfor the 2.2 kW standard motor. The comparison of measurements and calculations is shown

on Figure B.12 - Figure B.17.

Table B.2: 2.2 kW high-efficiency motor name-plate.

Verification of Motor and Converter Loss Models

ABB Motors
Motor 3~ CI.F IP55 IEC34 CE
MTM100LB28-4 V 290-50A
\% Hz min™* kw A Cosp
400Y/230 D 50 1450 2.2 4.7/8.1 0.8

Derived nominal data for 2.2 kW high-efficiency motor in star connection.

Number of poles: 4

Output power: 2.2 kW
Stator voltage: 400 V
Stator current: 47 A
cos(¢): 0.80
Speed: 1450 rpm

Rated torque at 1430 rpm.:  14.5Nm
Rated torque at 1500 rpm.:  14.0 Nm
Air-gap flux 0.67 Wb
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2.2 kW high-efficiency motor, filtered supply
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Figure B.16: Measured and calculated power loss for a 2.2 KW high-efficiency induction
motor fed by an inverter with an outpuit filter.
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Figure B.17: Measured and calculated efficiency of a 2.2 kW high-efficiency induction motor
fed by an inverter with an output filter.
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5 2.2 kW high-efficiency motor, filtered supply
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Figure B.18: Measured and calculated stator current of a 2.2 kW high-efficiency induction
motor fed by an inverter with an outpuit filter.
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Figure B.19: Measured and cal culated displacement power factor for a 2.2 KW high-efficiency
induction motor fed by an inverter with an output filter.



198 Verification of Motor and Converter Loss Models Appendix B

2.2 kW high-efficiency motor, filtered supply
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Figure B.20: Measured and calculated dlip frequency for a 2.2 kW high-efficiency induction
motor fed by an inverter with an output filter.
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2.2 kW High-Efficiency Motor M odel Constants.

All constants are expressed in Sl-units.
T = 1250-¢,,+2.083'1, 4 -29 [°C]

s,over

R = 2.34 (1+0.00393(T, [°C] +T.

Trovr = 10°C R = 18(1+0.0043(T, [°C] +T

L, = 0.027H
= 0.012H

LS)
L,, = 0.015H

LG [HI]:

[°C]-20.0)) [Q]

,over

[°CI-20)) [Q]

r,over

I, <ia L, =Ly
iml < im < im2: I‘m = al'ini+a2'in21+a3'im+a4
o< i <i L. =Db-i-+h
g < It Ly = C*Gfi
iml =05 038 i {2.2 kw l?igh—effici?ncy moto:[r modelE ‘
II’T]2 - 17 .36 frovrrremrmmmreder e T g b e e -------------------------------
s =3
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a, = 0.0069444 YR S N SN JUUS TS N B
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Figure B.21: 2.2 KW high-efficiency motor magnetizing
inductance model.
P_.= (1+0.69-9)-1.83-¢2%-f + (1+0.69-5%)-0.018-y2-f> [W]

t . = 0065+1.013-10°-n+1.1-108n? [Nm]

mech

J = 0.0086 kg'm?
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B.1 22 kW Standard Induction Motor Drive.

Table B.3: 22 kW standard motor name-plate.

ASEA Made in Sweden
Motor MBT 180L
3~ | 50 Hz No.
22 kW 1470 o/min.
Cl.F cosp = 0.84

prim. 381V prim. 220V

Y 435A A 75 A
Sec. V A

Cat. no. MK 171 007-AA IP 54 | 145 kg.
SEN. 2601 IEC 34-1
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22 kW standard motor drive, 1500 rpm.
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Figure B.22: Measured and calc. loss of a 22 kW standard induction motor fed by an inverter.
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Figure B.23: Measured and calculated loss of a 32 kVA converter when feeding a 22 kW
standard induction motor.
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22 kW standard motor drive, 1500 rpm.
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Figure B.24: Measured and calc. eff. of a 22 KW standard induction motor fed by an inverter.
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Figure B.25: Measured and calculated efficiency of a 32 KVA converter feeding a 22 kW

standard induction motor.
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22 kW standard motor drive, 1500 rpm. 22 kW standard motor drive, 1400 rpm.
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Figure B.26: Measured and calculated efficiency (motor and converter) of a 22 kW standard
induction motor fed by a converter.
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FigureB.27: Meas. and calc. stator current for a 22 kW standard ind. motor fed by a conv.
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22 kW standard motor drive, 1500 rpm.
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22 kW standard motor drive, 1400 rpm.
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Figure B.28: Meas. and calc. dip freq. for a 22 kW standard ind. motor fed by an inverter.
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FigureB.29: Air-gap flux ref. and calc. air-gap flux for a 22 kW standard induction motor.
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22 kW Standard Motor M odel Constants.

R, = (0.13+0.0145/1407) (1+(n-300)/10000) Q
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Figure B.30: 22 kW standard induction motor magnetizing
inductance model.
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32 kVA Converter Modd Constants.

Appendix B

Vyr = 0.6000 Ayont = 7.5588:10°  Vypy, = 0.9707

Ry = 0.1636 Byor = 1.2209 Romin = 0.0228
BconT = 05711 vaoff‘l’ = 2.5786-10* VODIin = 0.7114

Vor = 04500 g - 08381 Ropiin = 00125

ROT = 0.1237 A — 2219310*4 o = 358831074
B, = 05066 *°

conD . BSND = 05711
Ry, = 0.040 Q, at 20°C R, = 0003 Q, at 20°C P, = 120 W
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Figure B.31: Measured and modeled inverter

switch energies.
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Figure B.33: Measured inverter transistor and diode
conduction voltages.
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Figure B.32: Total inverter samtch energy.
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B.3 90 kW Standard Induction Motor Drive.

Table B.4: 90 kW standard motor name-plate.

Verification of Motor and Converter Loss Models
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ABB Motors
Motor 3~ CI.F IP55 IEC34 CE
ABB 400/50Hz, Type 280SMB
\% Hz min™* kw A Cosp
380-420 D 50 1483 90 158 0.86
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90 kW standard motor drive, 1500 rpm.
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Figure B.34: Meas. and calc. loss of a 90 kW standard induction motor fed by an inverter.
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Figure B.35: Meas. and calc. |oss of a converter feeding a 90 kW standard induction motor.



Appendix B

90 kW standard motor drive, 1500 rpm.
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Figure B.36: Meas. and calc. efficiency of a 90 kW standard ind. motor fed by an inverter.
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Figure B.37: Measured and calculated efficiency of a converter feeding a 90 kW standard

induction motor.
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90 kW standard motor drive, 1500 rpm.
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90 kW standard motor drive, 1400 rpm.
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Figure B.38: Meas. and calc. drive eff. of a 90 kW standard ind. motor fed by a converter.
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Figure B.39: Measured and calculated stator current for a 90 kW standard induction motor

fed by a converter.
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90 kW Standard Motor M odel Constants.

All constants are expressed in Sl-units.
R, = 0.020 + (0.025-0.020)t/580 €

R = 0016 Q
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Figure B.40: 90 kW standard induction motor magnetizing
inductance model.
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Converter Model Constants.

R,. = 0.0013 Q, at converter operating temperature

V,; = 06000 V., = 1.0684
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Figure B.41: Measured inverter transistor and diode
conduction voltages.

Appendix B



B.5

Appendix B Verification of Motor and Converter Loss Models 213

3 kW Standard Induction M otor.

A 3 kW standard induction motor is used in chapter 7 in an analysis of oversized motors.
The modd of the motor is developed from the 2.2 kW standard induction motor model, asthe
only difference between the two motors is that the 3 kW motor has a longer stack, fewer
windings and a thicker stator copper wire. It is shown here how the model is developed.

Stator Resistance.
It isassumed that the length of the end-winding is equal in the two motors. The length of the
stator copper wire is then only increased by the increased stack length:

I

= | 3 |
wire,3 wire,stk,2.2 |

endwind
stk,2.2

where  lieo lwies - length of stator copper wire per phase in 2.2 kW and 3 kW motors
s 220 Lt s : stack length of 2.2 kW and 3 kW motors
| enciwing - length of end windings

The stator resistance per phase is:

l,,
R, = p—2 = 1.79Q , 20°C

ire3

where R, . stator resistance per phase.
P . copper resistivity.
Aies - Stator copper wire cross-section areain 3 kW motor

Rotor Resistance.
The rotor resstance is scaled for theincreased stack length and for the changed stator winding
number as:

2
lstk3 N3
Rs= Rr,z.zl_’ N
stk,2.2 22
where R.,, R ; :rotor resistancein 2.2 kW and 3 kW motors, referred to stator.

The stator and rotor resistances are corrected for temperature increase in the same way as for
the 2.2 kW motor.
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Coreloss.
The corelossis caculated by using the formula for the core loss in the 2.2 kW motor, and by
scaling the air-gap flux and the calculated core loss in the following way:

lstk,3 Istk2.2 N2.2
Pcore,3 - |= Pcore,2.2(¢2.2 ’fs’s) ! lIJ2.2 - ¢3|=T
stk,2.2 stk,3 3
where Py es2 Pees - COrelossin 2.2 kW and 3 kW motors
Uy, Uy > air-gap flux linkage in 2.2 kW and 3 kW motors
N, Nj : number of windingsin 2.2 kW and 3 kW motors

M agnetizing Inductance.

The magnetizing inductance is calculated by using the formula for the magnetizing inductance
inthe 2.2 kW motor, and by scaling the magnetizing current and the calculated inductance in
the following way:

2
I N N
Lons = | e N : I-m,z.z(i m,2.2> » Ipp = is[_N : ]
stk22\ N22 2.2

where L., L3 : magnetizing inductance in 2.2 kW and 3 kW motors
iy g - magnetizing current in 2.2 kW and 3 kW motors

2 ) ) N, 2
J 03~ Frez2| T
r r N22

where L., L5 @ stator stray inductance in 2.2 kW and 3 kW motors
L;22 Ligs :rotor stray inductance in 2.2 kW and 3 kW motors

Stray Inductance.
The stray inductances are scaled as:

N,
Lso,3 = Lso,2.2 N
22
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