

Aalborg Universitet

Quantities in Games and Modal Transition Systems

Juhl, Line

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Juhl, L. (2013). Quantities in Games and Modal Transition Systems. Department of Computer Science, Aalborg
University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://vbn.aau.dk/en/publications/020c8aad-60b1-407c-8e36-c9d6fe1e098e

PhD Dissertation

Quantities in Games and Modal
Transition Systems

Line Juhl

Aalborg University
Department of Computer Science

Abstract

As embedded software becomes an increasing part of our daily lives, modelling and
verification of embedded systems is highly relevant. Common for many embedded soft-
ware systems is the restricted use of and access to resources. Thus modelling and veri-
fication of embedded systems must not only rely on functional requirements, but also
extra-functional requirements such as fuel consumption or bandwidth usage. This the-
sis presents formalisms for modelling such quantitative systems and focuses on both
the inherent reactive characteristic of embedded systems, implied by the surrounding
environment, as well as on the need for compositional reasoning.

The thesis consists of two parts. The first part is an introduction that motivates
the need for formal methods, and model checking in particular, when developing re-
active systems with quantitative resource constraints. Then the formalisms for weighted
reasoning are defined, and the challenges of embedded systems are discussed in order
to identify useful methods and theories for dealing with the quantitative aspects of
reactive systems. This includes game theory for modelling the reactive aspects and
modal transition system as the basis for a compositional specification theory allowing a
stepwise refinement.

The second part of the thesis contains five papers. The first two papers are on the
recently emerged notion of energy games, where we study the existence of infinite runs
in multiweighed games subject to boundary constraints on the accumulated weights.
The boundary constraints considered are both lower and upper bounds. We give tight
complexity bounds for deciding the problem in a number of different settings and show
undecidability in two other cases. In the case of unknown upper bounds we provide
a method for constructing the exact set of upper bounds yielding such infinite runs.
The remaining three papers study and define weighted modal transition systems. We
present an algorithm running in polynomial space for finding the most general common
refinement for deterministic specifications and a sound quantitative extension of CTL
reasoning on weighted modal transition systems. Two extensions to a multiweighed set-
ting are given in the two succeeding papers. The first extension allows for refinable labels
and we prove that the key notions of modal and thorough refinement and determinisa-
tion behave as expected as well as the operators for structural and logical composition
and the quotient operator. The second extension presents a logic for reasoning on the
accumulated weight along the runs. The semantics of the logic is game-based and is
thereby proven to be both sound and complete. The logic is proven undecidable in
general, however useful decidable fragments are identified.

iii

Dansk sammenfatning

Da brugen af indlejret software i vores dagligdag bliver mere og mere udbredt, er model-
lering og verifikation af indlejrede softwaresystemer særdeles relevant. Fælles for mange
indlejrede systemer er den begrænsede brug af og adgang til ressourcer. Derfor m̊a
modellering og verifikation af indlejrede systemer ikke kun bero p̊a rent funktionelle
egenskaber, men ogs̊a kvantitative egenskaber s̊a som energi- eller b̊andbreddeforbrug.
Denne afhandling præsenterer formalismer til modellering af s̊adanne kvantitative syste-
mer og fokuserer p̊a b̊ade den reaktive adfærd ved indlejrede systemer, s̊avel som behovet
for at analysere sammensatte systemer.

Afhandlingen best̊ar af to dele. Den første del er en introduktion, der begrunder
brugen af formelle metoder og model checking i særdeleshed, n̊ar der udvikles reaktive
systemer, hvor brugen af kvantitative ressourcer restringeres. Efterfølgende defineres
formalismer, som er brugbare til analyse af kvantitative systemer, og egenskaber ved
indlejrede systemer identificeres, s̊aledes at brugbare metoder og teorier til h̊andtering
af de kvantitative aspekter ved reaktive systemer kan identificeres. Dette inkluderer
spilteori til at modellere de reaktive aspekter samt modale transitionssystemer som en
basis for en specifikationsteori for sammensatte systemer, der tillader trinvis forfining.

Anden del af afhandlingen indeholder fem artikler. De første to artikler omhandler en
nyligt opst̊aet type af spil kaldet ’energispil’, hvor vi behandler eksistensen af uendelige
stier i multivægtede spil, hvor den samlede akkumulerede vægt langs stien er underlagt
øvre og nedre grænser. Vi giver matchende øvre og nedre grænser for kompleksiteten
af dette afgørbarhedsproblem i en række forskellige varianter af energispil samt viser
uafgørbarhed i yderligere to tilfælde. I det tilfælde, at den øvre grænse er ukendt,
giver vi en metode til at konstruere den præcise mængde af øvre grænser, der giver
anledning til eksistensen af s̊adanne uendelige stier med begrænset ressourceforbrug. De
resterende tre artikler definerer og analyserer vægtede modale transitionssystemer. Vi
præsenterer en algoritme, der bruger polynomiel plads, som finder den mest generelle
fælles forfining af en række deterministiske systemer og en sund kvantitativ udvidelse
af logikken CTL, der behandler vægtede modale transitionssystemer. To udvidelser
til en multivægtet udgave gives i de to efterfølgende artikler. Den første udvidelse
tillader, at labels forfines, og vi viser, at de vigtige begreber modal og semantisk forfining
opfører sig som ventet. Det samme er tilfældet for operatorerne for struktural og logisk
sammensætning samt kvotientoperatoren. Den anden udvidelse præsenterer en logik til
analyse af den akkumulerede vægt langs stierne. Semantikken for denne logik baseres p̊a
spilteori, og vi beviser derved, at den er b̊ade sund og fuldstændig. Yderligere bevises
det, at logikken er uafgørbar i det generelle tilfælde, og der identificeres anvendelige dele
af logikken, der er afgørbare.

v

Acknowledgements

My sincere gratitude goes to my supervisor, Kim G. Larsen. Thank you for always being
supportive and positive and for your inexhaustible source of good ideas and helpful com-
ments. I am grateful that you kept believing that it is possible to turn a mathematician
into a computer scientist.

An equally big thank you goes to my co-supervisor, Jǐŕı Srba, who was so kind to
take me under his wing as a PhD student. Your immense help regarding every aspect
of this thesis, from how to structure an introduction to how to keep a deadline has been
invaluable.

I would also like to thank my office mates, Mikkel Larsen Pedersen and Claus Thrane.
Thank you for making work a joy (almost) every day and for answering all my naive
questions.

During my work I had the pleasure of spending two months in Bruxelles at Université
Libre de Bruxelles. I would like to thank Jean-François Raskin for being a great host
and for providing me with new ideas and insight. And a huge thank you to my office
mate at ULB, Mahsa Shirmohammadi, who welcomed me with such open arms that it
brought our two directions of research together.

Without my additional co-authors, Sebastian S. Bauer, Axel Legay and Uli Fahren-
berg, the papers included in this thesis would not exist, so I am sending a big thank you
to them as well.

Last I would like to thank my mum for her endless support, my dad for teaching me
to be just like him, and my little brother for loving me.

Line Juhl
February 2012

vii

Contents

I. Introduction 1

1. Motivation 2
1.1. Model Checking . 3
1.2. Resources . 4
1.3. Synthesis . 6
1.4. Formal Specification . 7
1.5. Research Objectives . 8

2. How to Model Resources 10
2.1. Modelling Phase . 10

2.1.1. Transition Systems . 10
2.1.2. Composing Systems . 12
2.1.3. Modelling Resources . 13
2.1.4. Composing Weighted Systems . 14

2.2. Specification Phase . 15
2.2.1. Logical Formalisms . 15
2.2.2. Quantitative Requirements . 17

2.3. Multiple Quantities . 19

3. Adapting to the Challenges of Embedded Systems 22
3.1. Games . 22
3.2. Modal Transition Systems . 25

3.2.1. Refinable Sets of Labels . 27
3.2.2. Logical Characterisation . 30
3.2.3. Completeness Using Games . 33

3.3. Metrics . 34

4. Thesis Summary 37

II. Papers 43

A. Energy Games in Multiweighted Automata 44
1. Introduction . 45
2. Multiweighted Automata and Games . 47

ix

Contents

3. Relationship to Petri Nets . 49
4. Reductions among Energy Games . 51
5. Summary of Complexity Results . 56
6. Parameterized Existential Problems . 58
7. Extension to Timed Automata . 60
8. Conclusion and Future Work . 63

B. Optimal Bounds for Multiweighted and Parametrised Energy Games 64
1. Introduction . 65
2. Multiweighted Energy Games . 67
3. Weak Upper Bound . 68
4. Strict Upper Bound . 70
5. Parametrised Transitions . 72
6. Conclusion and Future Work . 73

C. Modal Transition Systems with Weight Intervals 75
1. Introduction . 76
2. Definitions . 79
3. Largest Common Refinement . 83
4. Logical Characterisation . 88
5. Conclusion and Future Work . 95

D. Extending Modal Transition Systems with Structured Labels 97
1. Introduction . 98
2. Label-Structured Modal Transition Systems 101
3. Specification Theory . 113
4. Logical Characterization . 125
5. Conclusion . 129

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Au-
tomata 130
1. Introduction . 131
2. Multiweighted Modal Automata . 132
3. Games on Multiweighted Modal Automata and Logic L 134
4. Decidability and Complexity of the Logic L 138
5. Conclusion . 148

Bibliography 148

x

Part I.

Introduction

1Motivation

For decades software systems have been synonymous with desktop computers or, in
the later years, laptops. However, nowadays we are surrounded by software systems
everywhere in life. This be in our cars, our phones or our TVs at home. Such systems
are known as embedded systems, and are special-purpose systems built to handle a specific
task for the electronics that it is part of. Due to the very nature of embedded systems,
they often react to stimuli from the surrounding environment and are usually subject to a
hardware platform with limited resources. Embedded systems are thus also characterised
as engineering artifacts involving computations subject to physical constraints [HS06].

As any other piece of software, embedded systems can be subject to errors. Such errors
are of course highly undesirable in safety-critical systems such as aeroplanes or cars, but
also for economical reasons surely no company is interested in errors in their products if
they can be avoided at a limited cost. Since we are increasingly dependent on embedded
systems (both safety-critical and non-safety-critical) in our daily lives, it is of uttermost
importance that the number of errors appearing in such systems are kept to a minimum.
Furthermore the systems developed nowadays are in general significantly larger and more
complex than before, thus making it increasingly hard and time-consuming to develop
error-free software. Reducing the time spend on developing a software systems without
lowering the quality of the product is therefore of huge interest to any company.

Ensuring the correctness of a piece of software is a highly non-trivial task. One
way is to use formal methods, which use mathematically-based techniques to identify
or exclude errors. Formal methods allow a design and its desirable requirements to be
described in a unambiguous manner such that one by mathematical reasoning can prove
or disprove the correctness of the model with respect to the expressed requirements—
so-called formal verification. Given the appropriate tool support, this approach can
ensure a more reliable system. Furthermore, a formal description can help designers,
programmers and end users to avoid misunderstandings, as they will have a common
agreement on the behaviour of the system. Formal methods can be deployed at many

2

1.1. Model Checking

stages in the design process and errors can be found early in the process, reducing the
cost of correction greatly [Pel01, BK08, AVARB+01].

Formal methods are increasingly used in the software industry to verify software sys-
tems [TWC01, HLP01], yet many companies still avoid formal methods due to several
different factors. Firstly, formal methods appear time and resource consuming, which
often conflicts with tight deadlines and budgets. The fact that formal methods in the
long run may save both time and money seems to be neglected. Secondly, the learning
curve for some formal methods is somewhat steep and as a consequence might discourage
potential new users.

1.1. Model Checking

Over the last 30 years an entire zoo of formal methods for verifying software systems
have been developed, each with different strengths and weaknesses. The contributions
of this thesis are within the formal verification method called model checking, which has
been successfully utilised for several industrial cases [CAP+98, SAH+00, Low96, Ern05,
JRLD07]. Model checking is a verification technique that given a finite mathematical
model of a system, attempts to logically prove that the model satisfies the properties
given by some formal specification. The specification must also be given within some
suitable mathematical framework, most often modal and temporal logics. The initial
work on model checking was done independently in the early 80s by Clarke and Emerson
[EC80, CE82] and Queille and Sifakis [QS82]. Clarke, Emerson and Sifakis were all
awarded the Turing Award in 2007 for their pioneering work on model checking.

In order to perform the actual verification of the model, algorithms automating the
verification process are useful. Such algorithms will often make an exhaustive search of
the entire model if necessary in order to verify a given property. Unfortunately, model
checking suffers from the state space explosion problem, entailing that the number of
states needed in the model grows exponentially with the number of submodels of the
model. This increased computational complexity makes in some cases model checking
infeasible. However, the extensive research in the area over the years has contributed
to the development of faster algorithms and more efficient data structures for exploring
and representing state spaces. Combined with new and faster computers, model checking
is nowadays not only restricted to toy examples, but can actually be applied to large-
scale industrial designs and is therefore widely accepted as a useful verification method
today [BK08]. The strengths of model checking lie in the sound mathematical framework
and the exhaustive (and automatic) search through the entire model. This approach
logically proves whether or not the model satisfies a given property and as a consequence
the developers can trust the result of the verification—given that the tool analysing
the model is flawless and that the model and the specification reflects the intended
design and requirements. The model checking approach is contrary to the well-known
(and widely used in industry) validation techniques of testing or simulation, where the
complete model may not be explored, thus not necessarily revealing an error even though
searching for it [Mye79]. An additional strength of model checking is that a negative

3

1. Motivation

System

Requirements

Modelling

Formalising

Model

Specification

Model
checking

Yes

No +
debugging

information

Figure 1.1.: Model checking

verification result can provide debugging information, helping to locate the error.
In summary model checking can be divided into the following three phases; modelling,

specification, and verification phase. Figure 1.1 depicts the three phases in connection.
Firstly, the concrete system in mind is modelled using some suitable formalism. Secondly,
the requirements that the system should adhere to are formalised in some mathematical
specification language. The model and the specification are then fed to the model checker
that answers either yes, the model satisfies the specification, or no, the model does not.
In case of a no, some debugging information can be provided, helping the user modify the
system or the specification in order to achieve a positive result. Being able to precisely
model the design and specify the properties in mind is a crucial point to model checking,
since imprecise modelling can lead to imprecise results. This is also one of the drawbacks
of model-based verification; surely the verification is only as good as the model of the
system, since we do not verify the code itself, but merely a model of the code. It is
therefore important that we develop formalisms which are capable of expressing all the
aspects of a given design that are needed for a correct verification process. Another
drawback is that only the stated properties bare verified. This gives rise to unexpected
errors that remain undiscovered. Thus also being able to formulate the right properties
is crucial to ensure correctness.

Due to the increasing use of embedded system (and thus also the demand for cor-
rectness of such), we seek to identify some of the challenges they bring to the different
phases of model checking. The hope is to enhance model checking and make it more
suitable for verification of embedded systems. These challenges include explicit handling
of both the quantitative aspects and the inherent reactive nature of embedded systems
as we will discuss in the following sections.

1.2. Resources

Correctness of software systems can be phrased in many ways. For a piece of software
running on a laptop, we might want to establish correctness as a certain functionality
that the program must posses. This could be the absence of a deadlock or that some
request-response requirement is always fulfilled. Such requirements address the services
ensured for the end user and are called functional requirements.

For modern embedded systems, such functional properties might not be sufficient

4

1.2. Resources

to adequately express the requirements of the system defined by the customer. Since
embedded systems are highly dependent on their actual hardware platform, we need
to construct properties dealing with the limited resources available for certain systems.
For instance the specification of an airbag for a car should not only require that the
airbag is inflated in case of an accident, but also insist that this behaviour is executed
within some strict time delay following the accident. An environmentally friendly coffee
machine might have the requirement that all cups of coffee should be served with some
maximum consumption of energy. These properties addressing the quality of the services
and involving the resources available on the execution platform are also known as extra-
functional requirements [HS06].

The resources of a system may be divided into boolean or quantitative resources. A
boolean resource could be a meeting room at a university or a designated part of the
memory on a computer. These resources are characterised as resources that a system
either holds or does not hold. In case the system (or process) holds the resource, no
other system can hold it simultaneously. Semaphores are often used in programming
when dealing with boolean resources. A quantitative resource is for instance energy,
bandwidth, time, volume or temperature. When obtaining these resources we use a nu-
merical value to measure the amount, as we always obtain some quantity of the resource.
The use of a such resource is also independent of the use of the same resource by other
systems. This thesis will solely concentrate on quantitative resources, and thus in the
remaining thesis a resource always refers to a quantitative resource.

The need for extra-functional requirements and therefore also explicit handling of
quantitative resources has been around for many years and as a result much work has
been done in this area already. Both formalisms for implementations and specifications
have been equipped with quantitative information. This includes both logics, process
algebra and graphical formalisms. We will present examples of such formalisms in Chap-
ter 2. Often an (mathematically) abstract approach is chosen when modelling quantities,
since they then can be applied to a broader range of problems. Still, a too general model
may also be useless for practical purposes due to its opaqueness and possible computa-
tional limitations.

An even more general (but highly relevant) approach is to consider multiple quantities
in the same model or specification. In real life it is usually not the case that an embedded
system only reacts to precisely one quantitative stimuli. Consider an automatic robot
built for an expedition to Mars. Such a vehicle will not only have to reason about its
own power supply, but likely also temperature, pressure, speed, etc. Moreover the robot
may enter a situation where a trade-off between these monitored variables is necessary—
should I keep the power consumption low or should I move at a higher speed in order to
survey more ground in less time? As evident, allowing multiple quantitative resources
introduces new considerations and new properties to be explored.

Another feature of many embedded systems compared to traditional software systems
running on desktop computers is their non-terminating nature. The majority of tra-
ditional systems perform some service once and then terminate, while this approach is
unsuitable for many embedded system. A traffic light or an elevator (or even an operat-
ing system) must keep functioning “forever” and have no termination criteria. The need

5

1. Motivation

for quantitative reasoning for such infinite behaviour is thus highly relevant.

1.3. Synthesis

As described previously, a characteristic of many systems nowadays is their reactive
nature. Systems are usually subject to some sort of communication with either other
systems, the environment or a user. A reactive system is a system that computes by
reacting to stimuli from the surrounding environment [HP85]. Many embedded systems
are reactive, since many read the value of some sensor (e.g. temperature, velocity) and
then conduct some computations depending on the concrete value and take actions by
setting actuators. Seen from the system’s point of view, some actions are controllable
by the system while the ones performed by the environment are uncontrollable. This
could for instance be the case for a conveyor belt, as it is in charge of adjusting its own
speed according to the uncontrollable flow of items put onto the belt. Another example
would be a thermostat adjusting the temperature. Here the thermostat is not in control
of environmental changes that effect the temperature, but can adjust the thermostat
based on the readings of the current temperature.

As a developer of such a reactive system, it is often useful to investigate whether
your system can behave in such a way that no matter how the environment behaves,
some requirement is still satisfied. In the positive case one is interested in constructing
a controller doing the actual task of responding to the environment in a suitable way.
Such a controller cannot be constructed using model checking, as this only yields ’yes’
information in the positive case. The task of constructing a controller reacting with
the environment in a satisfactory way is called synthesis. An overview of the tasks of
synthesis can be seen in Figure 1.2. Synthesis is somewhat similar to model checking, as
we both need a specification and a model of the system as input. However, the system is
given as two subsystems. One system represents the uncontrollable environment while
the other represents the controllable system interacting with the environment. The
outcome of the synthesis is a concrete strategy in both cases. In the positive case the
strategy will provide the user with information on how to perform the controllable actions
in order to achieve the required property. In the negative case, the strategy will provide
information on how the environment can perform the uncontrollable cases to prevent
that the requirement is satisfied.

When dealing with systems having both controllable and uncontrollable actions, the
mathematical concept of game theory is often used when creating a model of the system.
In general, game theory is used when describing situations where two or more individual
agents (or players) each make a series of decisions. An outcome of the game for each
player is determined on the basis of all the decisions made by the players. Each player is
interested in maximising his own outcome, and he therefore seeks to make his decisions
in a way that makes his outcome best possible, no matter the decisions of the opponents.
As the description indicates, the game theoretic framework has a long list of applications,
ranging from “simple” card games such as poker [MS07] to complex economics [vNM44]
and biology [MP73].

6

1.4. Formal Specification

Environment

System

Requirements

Modelling

Formalising

Model

Specification

Synthesis

Yes +
strategy
for user

No +
strategy for
environment

Figure 1.2.: Synthesis

1.4. Formal Specification

We now turn to the specification phase of model checking. In order to express the
requirements that the system should satisfy, a formalism for doing so is required. Below
we discuss what features a suitable specification formalism should encompass.

The increasing complexity in embedded software is due to both an increasing size of
the systems, but also a more interactive nature of nowadays systems. Such systems may
for sure also react with each other, thus a large system may be described by a number
of smaller reactive systems, increasing the complexity of the entire system considerably.

This growing complexity entails that it is in practice very hard to reason about the
correctness of such a system, no matter the method. In order to accommodate this prob-
lem, large software systems are divided into smaller and more transparent components
(as described using reactive systems above), which are designed by independent teams.
This approach may at first glance further complicate the verification process, since not
only must each component be correct, the components must also interact with each other
in the correct way. By defining an interface for each component that describes how the
component should react to the outside world, the interplay between components can
be ensured. The job of the individual developer teams is to design and implement a
specific component such that it complies with a given interface. In the view of formal
methods, these interfaces can be seen as specifications, while the specific components
can be seen as the concrete model or the implementation. Thus we may reason about
systems on a more abstract level by letting a specification act as an abstraction of a set
of implementations. It is for these reasons natural to develop formalisms for reasoning
at the specification level that allow independent reasoning on each component such that
a simplified design can be achieved through compositional reasoning.

Any such reasonable specification theory should be equipped with both a satisfaction
and a refinement relation to compare an implementation with a specification and to
compare two specifications, respectively. The last relation allows for stepwise refinement
such that a gradual refinement process is possible. In this way we may start out with
a general specification and by a series of refinements restrict the specification further
before finally ending up with a concrete implementation. Furthermore operators for
logical and structural composition of systems should be present. Logical composition
is useful when searching for a common implementation given several specifications that

7

1. Motivation

must be fulfilled. Structural (or parallel) composition is needed due to the inherently
parallel nature of reactive systems. The dual to structural composition, the quotient
operator, is also an important ingredient. This operator constructs a sub-specification
given an overall specification and another sub-specification refining a part of the overall
specification.

Usually two approaches can be taken when constructing a specification formalism.
A logical and a behavioural one. The logical approach entails that the specification is
given using some logic and the model checking is done by investigating the denotational
semantics of the logic. Appropriate logics will be mentioned in Section 2.2.1. Logics
are very useful when reasoning on the logical composition of specifications and can also
provide stepwise refinement along with the usual notion of a model satisfying a specifi-
cation given by a logical formula. However, logics are not suitable when addressing the
structural composition of systems, as the structural composition of two logical formulae
is so far not so well-understood [GS86, Hol89, LX91, ASW94].

Similarly, a behavioural approach can also be taken to express the specification using
a formalism similar to the one used to model the system (the implementation). The
verification procedure is then done by comparing the behaviour of the two systems using
for instance equivalence relations or preorders. Formalisms for this approach could be
the graphical formalism of transition systems [Kel76] or the one of process algebras,
e.g. Hoare’s CSP [Hoa85], Milner’s CCS [Mil80] or ACP by Bergstra and Klop [BK84].
Process algebras are suitable for parallel composition, but when considering the logical
composition, process algebras fall short. The constructed logical composition will either
be empty or be bisimilar to both of the components. This operator is thus not of much
use when studying specifications as process algebras.

Another formalism accommodating the behavioural approach is the formalism of modal
transition systems (MTS) formulated by Larsen and Thomsen in [LT88a]. This formal-
ism is capable of specifying optional behaviour, making the formalism “loose”, as it can
specify several non-bisimilar implementations. A modal transition system therefore gives
rise to a set of (non-bisimilar) implementations in the same way as a logical formula is
satisfied by a number of transition systems. This formalism both ensures compositional
reasoning and stepwise refinement, being two important features when addressing em-
bedded systems.

1.5. Research Objectives

The preceding sections have argued why errors in embedded software are highly unde-
sirable and why verification through formal model-based methods is a recommendable
approach in order to keep the number of errors and the time spend on finding them to
a minimum.

The aim of this work is to further strengthen the model checking framework available
for embedded system by tailoring the formalisms to the challenges of embedded systems.
In the above it has been argued that models and specifications reasoning on quantities are
needed when addressing such systems. Moreover, games and component-based specifica-

8

1.5. Research Objectives

tion theories should be utilised in order to fully capture the reactive nature of nowadays
computer systems. This work intends to enhance the model-based theory of embedded
systems to incorporate quantitative aspects.

This will be done by considering the following sub-questions, which can be grouped
under three general headlines.

1. Quantitative resources and specification formalisms

i) How can quantities be modelled using transition systems, logics and modal tran-
sition systems?

ii) What does a logic that reasons on quantitative modal transition systems look
like?

2. Quantitative resources and games

iii) What can be said about the use of limited resources when assuming an infinite
behaviour in games?

iv) Can game theory be applied to logics for modal transition systems?

3. Multiple resources

v) What is the computational cost of the above problems when assuming multiple
resources?

vi) How to identify the optimal usage of multiple resources when assuming an infinite
behaviour?

9

2How to Model Resources

As advocated in the previous chapter, many systems, especially embedded systems, are
highly resource dependent. Therefore we are interested in extending model checking for
asking and verifying properties that reason on resources.

This section proposes a suitable way to incorporate quantities into both the model and
the specification. When choosing a model for modelling a hardware or software system,
it is important that the chosen model has the right level of abstraction. The model must
capture all details necessary to check the property in mind, but on the other hand not
capture features of the system which are unnecessary for the property.

The choice of modelling formalism is thus of great importance. The same applies
to the specification formalism, which should of course be able to state the property in
mind—in our case properties related to the resource constraints or requirements of the
system.

We start by adding quantities to the modelling formalism of transition systems and
then move on to the question of quantitative properties. Finally we shall address the
notion of multiple quantitative aspects.

2.1. Modelling Phase

In the following we present the well-known formalism of transition systems and examine
the quantitative aspects that we seek to incorporate in order to obtain a simple model
for quantitative systems.

2.1.1. Transition Systems

One of the most used modelling formalisms for model checking is the one of transition
systems. The formalism was first employed for verification by Keller in [Kel76] and later
by Plotkin for structural operational semantics in [Plo81]. A transition system describes

10

2.1. Modelling Phase

s

t

refuel

unload

d
i
g

boulder gravel

Figure 2.1.: An excavator modelled as a transition system

a system as consisting of a number of states, each state being a snapshot of the system
at a given time. The behaviour of the system is modelled using transitions, which relate
pairs of states. A transition can also be seen as some form of “handshake” with the
given system and its environment. The environment may be another (or several other)
system(s) or an external user. It is common to decorate transitions with labels to denote
the type of behaviour that causes the state change, making the model more descriptive.

Definition 1 (Transition system). A transition system is a tuple T = (S, L, s0,−→),
where S is a set of states, L is a set of labels, s0 ∈ S is the start state and −→ ⊆
S × L× S is a transition relation.

Thus a transition system is essentially a directed graph with some information assigned
to each edge and a designated initial state. The above definition may also be referred to
as a labelled transition system. For convenience we write s

a−→ t if (s, a, t) ∈−→.

An execution (or run) π of a transition system is a series of states and transitions
starting with the initial state, such that π = s0

a0−→ s1
a1−→ s2

a2−→ A run can
be either finite or infinite and denotes one possible outcome when executing the actual
system. A maximal run is either infinite or a finite run that ends in a state with no
outgoing transitions. We denote the set of maximal runs starting from s0 as runs(s0).

Example 2. As an example of a transition system, consult Figure 2.1. The transition
system models an excavator. The start state s is indicated by the arrow with no
origin. The excavator may here choose to dig, refuel its tank or unload its dipper.
If the machine digs, it can choose between picking up gravel or a boulder. A

possible finite execution of the excavator is s
dig−−→ t

boulder−−−−→ s
unload−−−−→ s

refuel−−−−→ s.

Notice that a transition system can model nondeterminism, since one state may have
more than one outgoing transition assigned the same action. If on the other hand s

a−→ t
and s

a−→ t′ implies t′ = t′′ for all s, t, t′ ∈ S we call the system deterministic.

11

2. How to Model Resources

s1
a−→1 t1(A1)

s1 ‖ s2
a−→ t1 ‖ s2

s2
a−→2 t2(A2)

s1 ‖ s2
a−→ s1 ‖ t2

Table 2.1.: Interleaving semantics

s1
a−→1 t1 s2

a−→2 t2(A3)
s1 ‖ s2

a−→ t1 ‖ t2

Table 2.2.: Synchronising semantics

2.1.2. Composing Systems

An important aspect of all software systems, and embedded systems in particular, is
that of concurrency, meaning that different behavioural aspects are under the control
of designated components all operating simultaneously interacting between components.
It is therefore important that the chosen modelling formalism is capable of representing
concurrency in a suitable way. The modelling formalism should have a composition
operator ‖ that, given a number of systems T1, . . . , Tn running simultaneously, constructs
the full system, denoted T1 ‖ . . . ‖ Tn.

For transition systems the operator mentioned above can be defined in several ways.
One approach to modelling concurrency is using a purely interleaving view, where each
subsystem can perform its actions independent of the other subsystems, allowing the
resulting transition system to interleave the transitions of the subsystems in any possible
way. Given two transition systems T1 = (S1, L1, s

1
0,−→1) and T2 = (S2, L2, s

2
0,−→2) we

define the resulting interleaving system by T1 ‖ T2 = (S1 × S2, L1 ∪ L2, (s
1
0, s

2
0),−→),

where −→ is constructed using the structural operational semantics given in Table 2.1.

As evident, the state set of T1 ‖ T2 consists of all pairs (s1, s2) of states from the two
subsystems and the transition relation allows any outgoing transition from either s1 or
s2 from (s1, s2).

Another approach is based on communication between the systems and models for
instance reactive systems where a system reacts to stimuli from another system or an
environment. Here the operator is defined such that transitions cannot be taken in-
dependently, but must synchronise with a matching transition in another subsystem.
Table 2.2 shows how to define −→ in T1 ‖ T2 when taking a fully synchronising view.
Here we are only allowed to take transitions when both subsystems can synchronise on
the corresponding label.

Naturally one can also consider a mix between the two approaches described above,
where some transitions can be taken independently and some must synchronise. Here
one can define a set of handshaking actions H that must synchronise, while the remaining
actions have the interleaving semantics. The transition relation is thus defined by the
rules (A1) and (A2) for an action a 6∈ H and by the rule (A3) for a ∈ H.

We will now investigate how a reasonable extension of transition systems can be defined
in order to model quantities.

12

2.1. Modelling Phase

2.1.3. Modelling Resources

Before tempering with the model of transition systems presented above, let us consider
all the relevant characteristics of the resources that we are about to model. This should
help us make our model as useful as possible.

As noted in the motivation, we seek to model quantitative resources. These resources
share some characteristics. Most of them can be both gained and consumed during an
execution of a system. Temperature can for instance both increase and decrease, while
a battery may or may not be rechargeable. Time is on the other hand a resource that
cannot be regained. Furthermore, being able to compare two or more quantities of the
same resource to each other is essential. For instance when formalising “the valve should
open only if there is more than 4 gallons of oil left in the tank” or “pick the container
with the least volume”. By adding some sort of structure to the labels of transition
systems, where such comparisons are possible, one can model resources.

Resources can be categorised as either continuous (e.g. time) or discrete (e.g. price),
depending on the nature of the resource. Thus both a continuous and a discrete view
can be necessary. An obvious choice when modelling discrete quantitative resources is
to use an integer from Z to denote the quantity of the resource. The choice of Z as the
domain seems to fulfil our initial idea of a set with a notion of an order (the ≤ relation)
that can be both gained (positive integers) and consumed (negative integers). For a
continuous resource, the set of reals, R, is suitable instead. In the following we will use
Z as the weight domain.

Where in the model should the quantities be placed? Since the resources are gained
or consumed by the actions of the systems, it seems natural to impose a cost to system
changes to denote how the resource is gained or consumed as the system performs its
actions.

After the above discussion, we have the following natural extension to Definition 1.

Definition 3 (Weighted transition system). A weighted transition system is a tran-
sition system T = (S, L, s0,−→), where −→ ⊆ S×L×Z×S is a transition relation
with a label and an integer attached to each transition.

Along with the labels added in transition systems, we here decorate each transition
also with an integer. We call the element added to each transition the weight of the
transition. Again we write s

a,w−→ t if (s, a, w, t) ∈−→.
It is worth noticing that both Z and R equipped with addition and multiplication are

special cases of the algebraic structure called a semiring. In the literature, weights are
usually added by using semirings instead of integers; consult e.g. the handbooks [DKV09,
Sak09, Eil74]. The concept of weighted automata with weights drawn from semirings
was originally introduced by Schützenberger in [Sch61]. The use of semirings of course
makes the theory more general, but also makes the theory less transparent for a potential
user.

As for transition systems, we seek to define an execution of a weighted transition
system T = (S, L, s0,−→). For this purpose we define a configuration as a pair (s, v),

13

2. How to Model Resources

s

t

5
refuel -1

unload

-1

d
i
g-3

boulder
-2
gravel

Figure 2.2.: An excavator modelled as a weighted transition system

s1
a,w̄−−→1 t1(A1)

s1 ‖ s2
a,w̄−−→ t1 ‖ s2

s2
a,w̄−−→2 t2(A2)

s1 ‖ s2
a,w̄−−→ s1 ‖ t2

Table 2.3.: Interleaving semantics

where s ∈ S and v ∈ Z. An execution (or a weighted run) of T is then a finite or
infinite sequence of configurations (s0, v0), (s1, v1), . . ., such that for all i ≥ 0 we have

si
ai,wi−−−→ si+1 and vi+1 = vi + wi for some ai ∈ L. By runs(s0, v0) we denote the set of all

maximal weighted runs starting from (s0, v0).

Example 4. For the excavator from Example 2 fuel is surely a limited resource
that the machine depends on, as it cannot run on an empty tank. We can model
the fuel consumption (negative numbers) and gain (positive numbers) of a running
excavator by modelling the excavator as a weighted transition system, as seen in
Figure 2.2. The only action increasing the fuel level is refuel, the remaining ones
all decrease the fuel level. Handling a boulder requires more fuel than gravel. A
possible weighted run of the excavator is (s, 0), (s, 5), (t, 4), (s, 1), (s, 0).

2.1.4. Composing Weighted Systems

As argued in Section 2.1.2, systems are often concurrent and it is therefore important
that a model of the system can express this parallelism. Consider two weighted (and
labelled) transition systems, T1 = (S1, L1, s

1
0,−→1) and T2 = (S2, L2, s

2
0,−→2). Again we

may either adopt an interleaving or a synchronising view. In both cases we must decide
how to handle the weights of the transitions of T1 ‖ T2 = (S1× S2, L1 ∪L2, (s

1
0, s

2
0),−→)

when constructing the composite system. In case of an interleaving view, the most
natural solution is to keep the weight of the original transitions, as each transition of the
composed system corresponds to exactly one transition in one of the subsystems. The
corresponding semantics of −→ can be seen in Table 2.3.

A more interesting case occurs when assuming a fully synchronising view. Consider
two systems each gaining and consuming the same resource. When run in parallel, what

14

2.2. Specification Phase

s1
a,w̄1−−→1 t1 s2

a,w̄2−−→2 t2(A3)
s1 ‖ s2

a,w̄1⊕w̄2−−−−−→ t1 ‖ t2

Table 2.4.: Synchronising semantics

should happen to the use of the resource? The answer is surely dependent on the actual
nature of the resource. As seen in Table 2.4 we define an operator ⊕, that given two
weights of the subsystems determines the weight of the synchronised transition. How
should ⊕ be defined? In case time is the resource and the weight of a transition denotes
the time it takes to carry out the action, w1 ⊕ w2 could be defined as max(w1, w2),
since the total time of the synchronising action intuitively corresponds to the time of the
slowest of the two actions. However, if the resource represented is the price, we rather
define w1⊕w2 = w1 +w2, since this corresponds to the total price of the two transitions.
How to define ⊕ is therefore entirely determined by the concrete resource. The definition
of a structural composition operator for weighted systems is addressed in Paper D.

Having now defined the basic quantitative model used in the thesis, we move on to
another important issue of model checking—how to express the requirements that we
want to check.

2.2. Specification Phase

Model checking consists, as mentioned in Section 1.1, both of a modelling and a specifica-
tion phase. The requirements of a system can be formalised in many ways, as described
in Section 1.4. One way is a behavioural approach, where we use the same formalism
for both specification and implementation and then check whether or not the behaviour
of the two transition systems (in our case) are related by some suitable behavioural
preorder. Many of these are organised in van Glabbeek’s hierarchy [vG90]. However, as
a transition system fully describes the possible behaviour of a system, we may find it
easier to express our specification using a logical formalism. These formalisms express
precisely the properties that the system must satisfy without restricting the behaviour
of the system in other ways. Since the logical approach is the dominating approach to
specifications in the world of model checking, we will take a closer look at some often
applied logical formalisms for expressing specifications.

2.2.1. Logical Formalisms

Let us first try to outline two relevant types of properties one usually asks about a
system and present some formalisms incorporating them. Afterwards we try to adapt
some of these to a quantitative setting useful e.g. for embedded systems. The partition
presented below is based on the view taken in [BK08] and might be defined differently
in other literature.

15

2. How to Model Resources

Safety Safety properties can popularly be described as ’something bad should never
happen’. An example is ’the system is deadlock-free’ or for a mutual exclusion
algorithm a relevant safety property would be ’only one process can enter the
critical section at a time’.

More formally a safety property is satisfied if the system satisfies the property no
matter what execution is conducted. Thus a safety property can be violated by
providing a finite execution breaking the property at some point. Proving a safety
property requires checking all possible executions.

Liveness Liveness properties are in some sense dual to safety properties. Notice that a
safety property can be satisfied by a system with no behaviour at all. This is not
the case for liveness properties, on the contrary, they require that progress is made
in order to satisfy the property. An example of a liveness property for the mutual
exclusion algorithm is that ’each process will eventually enter the critical section’.

A liveness property can only be violated in infinite time, since it for any finite
execution of a system might be possible to extend the execution to a point where
the property is true. Verification of a liveness property requires that all executions
at some point satisfy the property.

In connection with liveness properties we sometimes make use of a fairness condition.
In the example of the liveness property for the mutual exclusion algorithm, we see that
the property may not hold in case one process enters the critical section infinitely often or
just stays in the critical section, while the remaining processes wait. Such an execution
is not ’fair’ to the waiting processes and the problem can be circumvented by proposing
a fairness condition. We can formulate a fairness condition saying that ’if some action
is infinitely enabled, it should at some point be executed’. As a fairness condition can
be used for ruling our unrealistic behaviour, it is sometimes assumed in order to prove
a liveness property.

The safety and liveness properties described above are all temporal properties. How-
ever, by using the words ’eventually’, ’always’ or ’after this, then that’ in the properties,
we do not explicitly need to refer to some model of time. Such properties are often de-
scribed using temporal logics [Pnu77, CE82, MP92], which are therefore the dominating
logics when specifying properties for model checking purposes.

Temporal properties can furthermore be divided into two categories, linear or branch-
ing time properties. A linear-time view reasons on fixed runs, while a branching time
view reasons on the whole tree of possible runs. This corresponds to the difference
between two of the behavioural preorders; trace equivalence and bisimulation.

We now mention a few prominent logical formalisms for specifying the temporal prop-
erties described above. For linear-time properties, the logic called linear temporal logic
(LTL) is often used [Pnu77]. A similar logic reasoning on branching-time properties is
the logic computation tree logic (CTL) [CE82], that extends the Hennessy-Milner logic
(HML) [HM85] with the until operator.

Other well-known temporal logics such as CTL* [EH86] or and the modal µ-
calculus [Koz83] are also commonly used. The logic CTL* in fact includes both CTL

16

2.2. Specification Phase

s |= true

s |= a iff a ∈ p(s)
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ¬ϕ1 iff s 6|= ϕ1

s |= EXϕ iff ∃s −→ t : t |= ϕ

s |= AXϕ iff ∀s −→ t : t |= ϕ

s |= A(ϕ1Uϕ2) iff ∀s0 −→ s1 −→ s2 −→ . . . ∈ runs(s) : ∃i ≥ 0 :

(si |= ϕ2 and ∀j ∈ {0, · · · , i− 1} : sj |= ϕ1)

s |= E(ϕ1Uϕ2) iff ∃s0 −→ s1 −→ s2 −→ . . . ∈ runs(s) : ∃i ≥ 0 :

(si |= ϕ2 and ∀j ∈ {0, · · · , i− 1} : sj |= ϕ1)

Figure 2.3.: Semantics of CTL

and LTL, while the modal µ-calculus includes all the aforementioned logics. The reason
for not always choosing the most expressive logic when looking for a formalism to use, is
due both to simplicity and hence understandability of the logic, but mainly to the fact
that often a more expressive logic leads to a higher computational complexity.

As the contributions of Paper C and E treat the logic CTL, we will emphasise the
syntax and semantics of CTL. The logical formulae of CTL are interpreted over states of
a transition system, T = (S, L, s0,−→), where each state is decorated with a subset of a
set of atomic propositions. Let p : S → 2A be the function assigning atomic propositions
from the set A to each state. The syntax of the CTL formulae is given by the grammar

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ | AXϕ | E(ϕ1Uϕ2) | A(ϕ1Uϕ2) ,

where a ∈ A is an atomic proposition. The semantics are given in Figure 2.3.
The well-known logical and temporal operators ∨, =⇒ , F (future) and G (globally)

can easily be constructed using the given syntax:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

EFϕ ≡ E(trueUϕ) AFϕ ≡ A(trueUϕ)
EGϕ ≡ ¬AF¬ϕ AGϕ ≡ ¬EF¬ϕ

As the formalism of transition systems has been extended to incorporate quantitative
aspects, it seems natural to also extend the specification formalisms as well, notably
CTL.

2.2.2. Quantitative Requirements

Quantitative logics have been proposed previously in the literature [DG07, Mei09, BG09,
FLT10], allowing us to state requirements about the resources of the system. We here

17

2. How to Model Resources

discuss the approach taken in Paper E, where we define a quantitative version of CTL.
Our approach is to remove the atomic propositions in the states and only reason on the

accumulated weight along the runs. For most resources, it is natural to add the weights
encountered along a run, as the accumulated weight at a point along the run represents
the remaining quantity of the resource at that particular moment. For this reason we
propose to replace atomic propositions with quantitative constraints on the form v ./ c,
./ ∈ {≤, <,=, >,≥} and c ∈ Z∪{−∞,∞}, where v denotes the accumulated weight so
far. With this version, reasoning only on the accumulated weights along runs, we can
express a requirement like “along no run should the accumulated weight get below 0” as
AG(v ≥ 0).

Having a logic capable of expressing a wide range of properties is in general very
useful. However, some properties regarding quantities are more applicable than others,
and some are even so relevant that they should be treated separately. We will motivate
such a property below.

For embedded systems, the access to resources can be sparse. Many everyday software
systems rely on a energy source that can be exhausted, e.g. a battery. Many industrial
machines control containers holding some material that should be used as a component
in some production. The aim of the machine is to make sure that the container never
runs out of material. This task is nowadays often carried out by a software controller.
Other systems adjust the temperature or pressure of some environment and must take
care that this value does not enter some ’bad’ region. Common for these examples is that
the resource in question must be kept above some threshold (often just nonnegative),
and in some cases also below some upper threshold. This requirement must be met at all
times during the execution of the system. The nature of the examples indicates that the
current value of the resource can be modelled by simply adding the previous different
fluctuations of the resource during the execution, given that we know the starting value.
This will be useful when formalising this so far loosely described requirement.

According to the classification in Section 2.2.1, the property described above is a safety
property, since violating the property can be done by presenting a finite run that violates
the bounds.

As mentioned in the motivation, many systems do not terminate, but must keep on
functioning for as long as needed. It is thus relevant that the requirement described
in the previous paragraph is satisfied not only until some specific criteria is met (e.g.
reaching some specific state), but also for infinite executions. In short we are looking for
infinite runs subject to resource constraints.

The property can be phrased using the quantitative version of CTL mentioned earlier.
For instance the requirement “the existence of a run that keeps the quantity of the
resource between the lower bound ` and the upper bound u at all times”can be expressed
with EG(v ≥ ` ∧ v ≤ u). We can instead require that all runs should satisfy the weight
constraints by changing the E to an A in the proposed formulae.

Driven by the examples described previously, a different weak upper bound can be
formalised. If we consider the battery with a minimum and maximum capacity, we
notice that when using the battery the maximum capacity cannot actually be exceeded,
but will stay at the maximum capacity when trying to charge a fully charged battery.

18

2.3. Multiple Quantities

This phenomenon is referred to as a weak upper bound. A weak upper bound can never
be exceeded and weights above the bound will be truncated when constructing the
weighted runs of the system. Thus we can impose two types of bounds—a (strict) bound
and a weak bound. These bounds can additionally both be upper and lower bounds.
However, a weak bound does not impose any non-trivial decision problems without used
in connection with a strict bound. Furthermore any lower bound can be transformed
into an upper bound and vice versa by multiplying all weights and bounds by −1. This
implies that only three combinations of bounds are necessary to study: A lower bound,
a lower and an upper bound, and a lower and a weak upper bound.

Due to its relevance, this thesis will specifically study the property of finding infinite
runs subject to resource constraints in Paper A and B. However, we also propose different
general logics for quantitative requirements in both Paper C, D and E. Apart from the
weak upper bound, the logics of Paper C and E are also capable of expressing the specific
property discussed above. These logics are furthermore interpreted on the specification
formalism of modal transition systems, which we will discuss in Section 3.2.

2.3. Multiple Quantities

Another strikingly relevant feature of embedded systems (or other systems reasoning
on resources) is the fact that one resource is very rarely enough. A system might both
want to keep track of a battery, some container holding a material and the temperature.
For this system, the model presented in Definition 3 cannot be used as a modelling
formalism. A simple way to resolve this problem is to add not only singletons to each
transition, but a vector. In this way each resource can be modelled using a coordinate
of the vector and the dimension of the vector corresponds to the number of resources to
be modelled.

Definition 5 (Multiweighted transition system). A k-multiweighted (or just k-
weighted) transition system is a transition system T = (S, L, s0,−→), where
−→ ⊆ S × L× Zk × S is a transition relation with an integer vector of dimension k
attached to each transition.

Let v̄ be a vector in Zk. By v̄[i] we denote the ith coordinate in v̄. A configuration
and a weighted run is defined similarly as for the case of k = 1, We define the addition
of two vectors as the coordinate-wise sum, (v̄1 + v̄2)[i] = v̄1[i] + v̄2[i] for v1, v2 ∈ Zk and
1 ≤ i ≤ k. Furthermore we write v̄1 ≤ v̄2 if v̄1[i] ≤ v̄2[i] for all i ∈ {1, . . . , k}.

The quantitative version of CTL considered in Section 2.2.2 can easily by extended in
order to handle multiple resources. One way to do this is by changing the syntax of the
quantitative aspects of the logics such that one has to explicitly state the coordinate for
which the constraint should hold.

What properties are useful to check for these multiweighted transition systems? The
infinite runs subject to resource constraints property addressed in the Section 2.2.2 can
surely we extended to a multiweighted setting, where we require that the accumulated

19

2. How to Model Resources

s

t

(5,0)
refuel (-1,-3)

unload

(-1,0)

d
i
g(-3,5)

boulder
(-2,3)
gravel

Figure 2.4.: An excavator modelled as a 2-weighted transition system

weight of all coordinates must remain nonnegative and below some fixed upper bound
(given as a vector).

Example 6. The excavator from Example 2 was in Example 4 extended with quan-
titative information modelling the fuel consumption and fuel gain of each possible
action. However, fuel may not be the only resource worth modelling. The weight of
the material currently on the dipper is also important, as the excavator cannot carry
a too heavy load. Modelling the excavator as a 2-weighted transition system as seen
in Figure 2.4 gives the opportunity to model both resources. The pairs depicted in
the figure represents the fuel consumption (first coordinate) and the change in weight
currently loaded on the dipper (second coordinate). We notice that refueling and
digging does not change the dipper load, while loading gravel is not as heavy as
loading a boulder onto the dipper. The only way to reduce the weight on the dipper
is to unload.

We can now state quantitative properties that we wish our excavator to satisfy. A
reasonable property is that starting with no fuel and no load, there exists way of oper-
ating the excavator such that the amount of fuel in the tank is always between 0 and 5
and the load of the dipper is always between 0 and 10. Using the second version of the
quantitative CTL adapted to a multiweighted setting, we can state this property as
EG(v̄[1] ≥ 0∧ v̄[1] ≤ 5∧ v̄[2] ≥ 0∧ v̄[2] ≤ 10). The property is satisfied for the excava-
tor, as the loop (s, (0, 0)),(s, (5, 0)),(t, (4, 0)),(s, (1, 5)),(s, (0, 2)),(s, (5, 2)),(t, (4, 2)),
(s, (1, 7)), (s, (0, 4)), (s, (5, 4)), (t, (4, 4)), (s, (2, 7)), (s, (1, 4)), (s, (0, 1)), (s, (5, 1)),
(t, (4, 1)), (s, (1, 6)), (s, (0, 3)), (s, (5, 3)), (t, (4, 3)), (s, (2, 6)), (s, (1, 3)), (s, (0, 0)) ad-
here to the resource constraints.

For the case of k = 1 the infinite runs subject to resource constraints property has been
studied in [BFL+08]. In Paper A we extend the work in [BFL+08] to a multiweighted
setting. We here investigate the consequences in terms of decidability and complex-
ity when adding additional weights to the infinite runs subject to resource constraints
property.

When considering these infinite runs subject to resource constrained properties, an-
other question arises. Assume that the upper bound is unknown. In this case it would
be interesting to construct the set of upper bounds that allows such infinite runs to exist.

20

2.3. Multiple Quantities

This set may be characterised by the set of smallest incomparable vectors contained in
the set, as any suitable vector naturally implies that any larger vector is also suitable.
Notice that a set of smallest vectors is needed as we do not have a total order on Zk.

Such a set of smallest incomparable vectors is known as the Pareto frontier, while
each element in the set is called Pareto optimal or Pareto efficient. The notion of Pareto
optimality originally stems from economics [Par71, Cir79] where it for instance describes
an allocation of resources where no individual can change the allocation without making
another individual worse off. Given this set, the suitable choice of upper bound is found
by weighing the different resources and choosing the more optimal bound for the purpose.
In this way the material used and money spend for constructing the actual system may
be minimized, as the bounds can be minimised. We investigate the problem of finding
the Pareto frontier in Paper B.

21

3Adapting to the Chal-
lenges of Embedded Systems

In the previous chapter we have established a basic model for modelling resources and
identified a class of properties that are relevant for resource dependent systems such as
embedded systems.

As advocated by Henzinger and Sifakis in [HS06], designing embedded systems can
be challenging, as hardware, software and environmental aspects cannot be separated
and all of these concerns should therefore be incorporated into the design. In this
chapter we will identify three aspects of embedded systems that are worth considering
in relationship with quantities. We will investigate infinite runs subject to resource
constraints and general quantitative logics in these new settings.

As a first aspect, we will address game theory, as games are suitable for modelling the
reactive behaviour of embedded systems. Furthermore, stepwise refinement and com-
positional reasoning are also needed to ensure a better design process and we therefore
consider modal transition systems as a specification formalism for quantitative embed-
ded systems. Another important issue is robustness. We seek to ensure that small
perturbations of the input values cause small perturbations in the output values. For
this purpose the boolean-valued result of model checking is not enough, and we instead
attempt to define a real-valued model checking result.

3.1. Games

The modelling formalism of labelled transition systems is not suitable for synthesis pur-
poses, as described in Section 1.3, since the transitions are not distinguished as control-
lable and uncontrollable. It is therefore not possible to distinguish the environment from
the controllable systems when modelling the system (consult e.g. Figure 1.2). For this

22

3.1. Games

purpose we need to make use of some concepts from the world of game theory.
Games can be defined in many ways, depending on the nature of the real world concept

that we seek to model. In our setting, the game will consist of two players, namely the
system and the environment, whose decisions corresponds to the actions that they are
able to take at a given time. Our games are turn-based, implying that players take
turn in performing their actions. The currect state decides whose turn it is. As we
look for quantitative formalisms, we are also interested in annotating each action with
the corresponding use of one or several different resources, as in the case of transition
systems. The definition below extends the definition of a multiweighted transition system
to incorporate the game aspect.

Definition 7 (Game). A k-weighted turn-based game (or just a game) is a tuple
G = (S1, S2, s0,−→), such that S1 and S2 are disjoint sets and TG = (S1∪S2, s0,−→)
is a k-weighted transition system. We say that S1 is the set of states belonging to the
system (Player 1) and S2 is the set of states belonging to the environment (Player
2).

A play of a game G = (S1, S2, s0,−→) unfolds by placing a pebble in s0 and then
letting Player 1 and 2 move the pebble around in the system following the transitions.
When the pebble is in a state from S1, Player 1 picks an outgoing transition to move
the pebble along, when the state is from S2, Player 2 picks an outgoing transition.

Configurations and weighted runs in G is defined as configurations and weighted runs
in the corresponding weighted transition system TG. We denote all infinite and maximal
weighted runs in G starting from (s0, v0) by runs(s0, v̄0). In order to keep track of the
decisions made by each player (i.e. the transitions picked), we define the notion of a
strategy. A strategy for Player i ∈ {1, 2} is a function σ from each finite prefix of a
weighted run in runs(s0, v̄0) of the form (s0, v̄0), (s1, v̄1), . . . , (sn, v̄n), where sn ∈ Si to a
configuration (sn+1, v̄n+1) such that (s0, v̄0), . . . , (sn+1, v̄n+1) is a prefix of some run in
runs(s0, v̄0). A strategy for a player thus chooses the next transition to take when in a
state belonging to this player. The choice is dependent on all the previous choices of
the game. A run (s0, v̄0), (s1, v̄1), . . . respects a strategy σ if σ(si, v̄i) = (si+1, v̄i+1) for all
i ≥ 0.

The important property of finding infinite runs subject to resource constraints can
also be formulated in a game setting and is then known in the literature as an energy
game or a generalised energy game in the multiweighted case. Here we do not look for
appropriate runs, but for a strategy that can ensure that no matter how the opponent
behaves, the property is still satisfied. In this thesis the term energy game will also refer
to generalised energy games.

Definition 8 (Energy game). Given a k-weighted game G = (S1, S2, s0,−→) an
(generalised) energy game asks whether there exists a strategy σ for Player 1 such
that all weighted runs (s0, v̄0), (s1, v̄1), . . . ∈ runs(s0, 0̄) respecting σ satisfies 0 ≤ v̄i
for all i ≥ 0.

23

3. Adapting to the Challenges of Embedded Systems

In the affirmative case we say that Player 1 wins the energy game (or that the game
is winning).

Without loss of generality we assume that the starting value of the resource is always
0 (by setting v0 = 0). This is possible since any other starting value v can be simulated
by adding a new start state s to the system and a transition s

v−→ s0.
As described in Section 2.2.2, we in some cases not only want to keep the accumulated

weights nonnegative, but also below some upper threshold. This upper bound may be
weak or not. We will therefore consider two extension of Definition 8. Given some vector
of upper bounds b̄, we define an energy game with upper bound as an energy game were
all weighted runs respecting σ must furthermore keep their accumulated weight vectors
below or equal to b̄. An energy game with a weak upper bound b̄ is an energy game
where all coordinates of the accumulated weight vectors are truncated if going above
their corresponding coordinate in b̄.

Energy games with only lower bounds were first considered by Chakrabarti et al.
in [CdAHS03], while upper bounds were introduced in [BFL+08]. Other papers on
energy games are [BFLM10, CD10, DDG+10]. Generalised energy games were studied
in [BJK10, Cha10, CDHR10]. In Paper A we study generalised energy games with both
lower and upper bounds, while Paper B studies the same games, but with an unknown
upper bound.

Example 9. The running example of the excavator may also be modelled as a game.
The model is seen in Figure 3.1a. Here the diamond state is controlled by Player 1,
while the square state is controlled by Player 2. Since the driver of the excavator
does not fully determine the content of the soil that the excavator digs in, it seems
more realistic to model the excavator as a game, where Player 2 plays the role of the
environment.

As a suitable energy game we seek a strategy for Player 1 such that the amount
of fuel and volume of material on the dipper stay nonnegative and possibly below
some upper bound. In case of no upper bounds, Player 1 can easily win by refueling
indefinitely. Unfortunately, this behaviour is not useful in practice and will eventually
flood the fuel tank. Let us therefore consider an energy game with the upper bounds
used in Example 6 (the vector (5, 10)). As state t is uncontrollable to Player 1,
the energy game cannot be won. Player 2 may choose gravel twice, leading to the
path (s, (0, 0)), (s, (5, 0)), (t, (4, 0)), (s, (2, 3)), (s, (1, 0), (t, (0, 0), (s, (−2, 3)) violating
the constraints.

However, using the upper bound (8, 7) the energy game is winning. The winning
strategy for Player 1 is seen in Figure 3.1b.

Two special cases of an energy game are found by setting either S1 = ∅ or S2 = ∅.
In the former case we have no Player 1 states and therefore require that all runs must
satisfy the boundary constraints. This is called a universal energy game. The latter case
has no Player 2 states and thus look for the existence of a run satisfying the bounds.
We call this an existential energy game.

24

3.2. Modal Transition Systems

s

t

(5,0)
refuel (-1,-3)

unload

(-1,0)

d
i
g

(-3,5)
boulder

(-2,3)
gravel

(a) An excavator modelled as a 2-
weighted game

if w̄[1] ≥ 1∧w̄[2] ≥ 3 then unload

else if w̄[1] ≤ 3 then refuel

else dig

(b) Winning strategy for Player 1 with upper
bound (8, 7)

Figure 3.1.: An energy game with upper bounds

Notice that universal and existential energy games can be defined on weighted tran-
sition systems, as the game aspect is not present in these special cases. Asking an AG
property in CTL with the relevant bounds on the weights corresponds to a universal
energy game, while an EG property corresponds to an existential energy game (as in
Example 6).

3.2. Modal Transition Systems

Having established that the use of games is useful in order to capture the interactive
behaviour of systems, we now turn to another relevant issue for model checking of em-
bedded systems, namely the construction of a suitable specification formalism.

As mentioned in Section 1.4, the logical approach to specifications is suitable for step-
wise refinement and logical composition of specifications, but is not the best solution
when addressing the structural composition of specifications. Since structural compo-
sition is highly relevant for embedded systems, we choose the behavioural formalism of
modal transition systems [LT88a, AHL+08] as specification formalism. This formalism
is similar to normal transition systems, but allows for underspecification by giving rise
to two types of transitions, namely the may and must transitions. The may transitions
denote behaviour that may be left out in an implementation while the must transitions
denote behaviour that must be present in an implementation. MTSs have a well-defined
notion of satisfaction and refinement, and both structural and logical composition along
with quotienting is possible [Rac08].

We will in the following enhance this theory with quantitative information, allowing for
quantitative reasoning using modal transition systems. We begin by giving the standard
definition of a modal transition system as found in [LT88a].

Definition 10 (Modal transition system). A modal transition system (MTS) is a
tuple M = (S, L, s0,99K,−→), where S is a set of states, L is an alphabet, s0 ∈ S is
the initial state and −→⊆99K⊆ S×L×S are the must and may transition relations,
respectively.

25

3. Adapting to the Challenges of Embedded Systems

Given an implementation as a transition system and a specification as a modal tran-
sition system, one wants to check whether the implementation satisfies the requirements
given by the specification. By providing the following refinement relation we are capable
of stepwise refinement as advocated in [Lar89] where we gradually resolve the optional
behaviour (the may transitions) present in the specification. A refinement of a specifica-
tion is therefore a modal transition system that preserves the required behaviour of the
original specification and does not introduce additional optional behaviour. By resolving
each uncertainty we will end up with a system consisting of only required behaviour—an
implementation. An implementation is therefore defined as a modal transition system
where the may and must transitions coincide. Formally the refinement relation is as
follows.

Definition 11 (Modal refinement for MTS). Given two modal transition systems
M = (S, LM , s0, 99KM ,−→M) and N = (T, LN , t0, 99KN ,−→N) we say that M
modally refines N , written M ≤m N if there exists a relation R ⊆ S × T such
that (s0, t0) ∈ R and for all (s, t) ∈ R

- if t
a−→N t′ then also s

a−→M s′ and (s′, t′) ∈ R, and

- if s
a
99KM s′ then also t

a
99KN t′ and (s′, t′) ∈ R.

For two implementations the notion of modal refinement corresponds to the behavioral
equivalence of bisimulation [Par81, Mil83], which entails that any transition enabled in
either of the systems must be matched by the other system yielding another bisimilar
pair of systems.

Semantically we view an MTS M as the set of implementations refining M . We
therefore say that M semantically (or thoroughly) refines another MTS N if the set of
implementations of M is included in the set of implementations of N . The notion of
modal refinement is sound with respect to this view. Thus an implementation being
a modal refinement of a specification M is also an implementation of any other modal
transition system N , where M ≤m N . Unfortunately, modal refinement is not com-
plete with respect to the semantic view as showed in [LT88a, HL89]. To illustrate this,
Figure 3.2b and 3.2a (overtaken from [BKLS09b]) depict two specifications M and N ,
where M thoroughly refines N , but where M 6≤m N . However, completeness is ensured
when considering deterministic systems [BKLS09b]. Determinism in modal transition
systems is also treated by Henzinger and Sifakis in [HS06, HS07], where they furthermore
advocate the use of determinism, as most practical systems are deterministic by nature.

Despite this shortcoming of modal refinement, this notion is often preferred to thor-
ough refinement since the computational complexity of checking modal refinement is
much lower than checking thorough refinement. Modal refinement requires only polyno-
mial time (by a standard greatest fixed-point computation) while thorough refinement
is EXPTIME-complete [BKLS09a].

That modal transition systems constitute a flexiable graphical specification formal-
ism [BL92], is evident from the wide range of applications in different context such

26

3.2. Modal Transition Systems

s0
a a

(a) N

t0

a

a

a

(b) M

Figure 3.2.: Modal refinement is not complete

as product lines [FUB06, LNW07b, GLS08b], interface theories [UC04, RBB+09] and
modal abstractions in program analysis [GHJ01, HJS01, NNN08].

There are several extentions and variants of the formalism. This includes timed
modal specifications [CGL93], the probabilistic extension of abstract probabilistic au-
tomata [DKL+11], and specifications with explicit presentation of data [BLL+11]. Ex-
panding on the expressivitity of the may and must transisition, the variants of disjunc-
tive MTS [LX90], 1-selective MTS [FS08], MTS with obligations [BK11], and parametric
MTS [BKL+11] have been introduced. In the following section we extend the original
MTSs to incorporate the use of resources, resulting in a specification formalism for mul-
tiweighted transition systems as defined in Definition 5.

3.2.1. Refinable Sets of Labels

The approach used when extending normal transitions systems to a quantitative setting
was to add an integer weight (possibly a vector of integer weights) to each transition.
This rather simple approach is in Paper C extended to the modal setting. As the may
and must transitions allow for a loose specification giving rise to several different concrete
implementations, it is natural to also take this approach when adding quantitative in-
formation to MTSs. Thus the quantities should have a flavor of “looseness” as well. This
can be achieved by adding intervals of integers to each transition instead of integers. In
this way a designer does not have to specify the precise weight of the transition when con-
structing the specification, but can specify an interval wherein the exact quantity must
lie, leaving the exact choice of the weights to be determined when constructing the im-
plementation. Let I be the set of all non-empty intervals [n,m] = {a ∈ Z | n ≤ a ≤ m}
such that n ≤ m and n,m ∈ Z ∪ {∞,−∞}.

Definition 12 (Weighted modal transition system). A weighted modal transition
system (WMTS) is a MTS, M = (S, L, s0, 99K,−→), where −→⊆99K⊆ S×L×I×S
assigns an action and an interval to each transition.

An implementation is obtained by picking one concrete weight in each interval and
resolving the may transitions. An implementation thus corresponds to a weighted tran-
sition system as defined in Definition 3.

The refinement relation must be updated in order to deal with this new information
on the transitions. As we would like a refinement to be closer to a real implementable

27

3. Adapting to the Challenges of Embedded Systems

system with no uncertainties, it is natural to require that for matching transitions the
refinement carries a possibly more narrow interval still contained in the interval of the
refined transition. In this way we narrow the set of available integers for each weight.
An implementation will settle on a concrete weight for each transition. Formally we
extend Definition 11 as follows.

Definition 13 (Modal refinement for WMTS). Given two weighted modal transition
systems M = (S, LM , s0, 99KM ,−→M) and N = (T, LN , t0, 99KN ,−→N) we say that
M modally refines N , written M ≤m N if there exists a relation R ⊆ S × T such
that (s0, t0) ∈ R and for all (s, t) ∈ R

- if t
a,J−→N t′ then also s

a,I−→M s′ such that I ⊆ J and (s′, t′) ∈ R, and

- if s
a,I
99KM s′ then also t

a,J
99KN t′ such that I ⊆ J and (s′, t′) ∈ R.

As in the case of multiweighted transition systems, the theory of weighted modal
transition systems can be extended to a k-weighted setting by considering vectors of
intervals drawn from Ik instead of I. This approach is taken in Paper E.

Example 14. Imagine that the 2-weighted implementation M of an excavator seen
in Figure 2.4 was build from the specification N of a family of excavators given in
Figure 3.3. Here the solid transitions indicate a must transition (and an underlying
may transition), while the dashed lines indicate a may transition. The must transi-
tions of N can be matched by the corresponding must transitions in M , while the
may transitions of M also have matching may transitions in N . Furthermore each
weight of the implementation is a member of the corresponding interval from the
specification. Therefore M ≤m N (M is even an implementation of N). Different
implementations could have been obtained by either picking different weights from
any of the intervals or by implementing none or only one of the may transitions, as
picking up any material after digging is not required.

The choice of intervals as the used notion for specification of quantitative information
is due to the low complexity when handling intersection and set inclusion as necessary
when studying refinement and logical composition. However, a more general approach
would be applicable for systems where the quantitative information cannot be expressed
as intervals of integers, but rather as a set of integers or a general lattice.

For a good specification formalism we are interested in expressing “loose” information
that may be refined into concrete implementable information. For this purpose partially
ordered sets are suitable, as they impose an order on the elements of a set suitable
for the refinement relation, but do not restrict the elements of the set further. We
therefore define a label-set as a set of labels with a partial order (K,v), where ⊥ ∈ K
is the least element of K. The element ⊥ is included to model inconsistencies when
reasoning on the conjunction and quotient of two systems. The intuition is that we use

28

3.2. Modal Transition Systems

s

t

([4,6],[0,0])
refuel ([-2,-1],[-3,-2])

unload

([-1,-1],[0,0])

d
i
g([-3,-3],[5,6])

boulder
([-2,-2],[3,4])
gravel

Figure 3.3.: An excavator modelled as a weighted modal transition system N

the smallest elements (apart from ⊥) to denote implementable labels, while all other
elements above them correspond to unresolved uncertainties regarding the label. The
set of implementation labels in K is denoted Imp(K) and consists of all k ∈ Kr ⊥ such
that k′ v k implies k′ = k for all k′ ∈ Kr ⊥. To each label k ∈ K we associate the set
JkK = {k′ ∈ Imp(K) | k′ v k}, denoting the set of implementation labels below k.

We now the following defintion.

Definition 15 (Label-structured modal transition system). A label-structured
modal transition system (LSMTS) is a tuple M = (S, (K,v), s0, 99K,−→), where
S is a set of states, (K,v) is a label-set, s0 ∈ S is the initial state and −→⊆99K⊆
S ×K × S assigns a label to each transition.

As evident, we draw the weights from K instead of Z or Zk as in the weighted case. In
order to construct only sensible systems we require that the label-sets are well-formed,
meaning that JkK 6= ∅ for all k ∈ Kr{⊥}, such that any specification always guarantees
some implementation.

For the refinement relation for LSMTSs, we require that a transition in the refinement
has a label smaller than the label of the corresponding refined transition. The two items
in Definition 11 are therefore updated to accommodate this requirement.

Definition 16 (Modal refinement for LSMTS). Given two LSMTSs
M = (S, (KM ,vM), s0, 99KM ,−→M) and N = (T, (KN ,vN), t0, 99KN ,−→N) we
say that M modally refines N , written M ≤m N if there exists a relation R ⊆ S×T
such that (s0, t0) ∈ R and for all (s, t) ∈ R

- if t
k−→N t′ then also s

`−→M s′ such that ` v k and (s′, t′) ∈ R, and

- if s
`
99KM s′ then also t

k
99KN t′ such that ` v k and (s′, t′) ∈ R.

An implementation is an LSMTS where −→=99K and for any s
a−→ s′ we have a ∈

Imp(K). With this more general set of labels, it is possible to capture the interval

29

3. Adapting to the Challenges of Embedded Systems

energy gain

recharge refuel

material

brick boulder gravel dig unload

⊥

Figure 3.4.: v

weights presented previously, but also any general set of integers (with ⊆ as the partial
order). Moreover K can represent a normal alphabet used for a modal transition system
by letting each k ∈ K r {⊥} be an implementation label. Then no label refinement can
take place and the labels thus act as a normal alphabet.

Example 17. The label-set depicted in Figure 3.4 (along with its ordering) can
be useful when specifying a more general excavator. Here we allow not only the
weights to be refined, but also the actions. A specification can have a transition
labelled energy gain, indicating that either a refuel or recharge action should be
present, but allowing the concrete implementation to decide its source of energy (fuel
or battery). The material available for the excavator can also be unspecified in the
specification by using the more general label material.

Paper D introduces the idea of refinable labels and defines label-sets. The definition of
the satisfaction and modal refinement relation is presented and we prove that refinement
is sound with respect to thorough refinement, but only complete in case of deterministic
systems. Furthermore we define operators for structural and logical composition and for
the quotient. The structural operator satisfy the property of compositional refinement,
implying that we can refine systems before composing them. As expected, our conjunc-
tion operator yields the largest refinement refining all systems being logically composed
(under suitable conditions). Our quotient operator is also proven to be sound and to
construct the largest possible quotient, as one would expect.

The formalism of label-structured modal transition systems is therefore applicable
as a specification formalism for embedded systems with quantitative resources. The
formalism also allows labels to be refined, generalising the concept of refinement.

3.2.2. Logical Characterisation

We will now turn to the logical characterisation of multiweighted modal transition sys-
tems. Logics are excellent at expressing only the required behaviour without restricting
the remaining behaviour in any way. This is also possible with an WMTS, but is how-
ever quite cumbersome, as one must explicitly add may transitions with any behaviour.
Properties that e.g. no deadlock must occur or that some state is always reachable
are easy to express using temporal logics, but may be more complex to express using
WMTSs. We can therefore profitably use logical formulae alongside WMTSs when de-

30

3.2. Modal Transition Systems

signing a system. In [Lar89] the first logical characterisation of refinement was obtained
using HML.

In this thesis we seek to define a quantitative version of CTL that reasons on WMTSs
(in particular the multiweighted extension) instead of weighted transitions systems. Ide-
ally we would like a specification to satisfy a logical formula if and only if all its imple-
mentations satisfy the specification. In this way we can propose a general specification
for a system and check that it satisfies some requirements given in CTL. Hereafter we
can safely construct any implementation, as this will also satisfy the logical formula.

How do we define such a logic in order to make it both sound and complete with
respect to implementations? Here soundness implies that if a specification satisfies a
formula then so will all refinements, while completeness implies that if all implementa-
tions satisfy a formula, then so does the specification. Surely we need a sound logic,
as we otherwise might construct a flawed implementation even though the specification
satisfies the logical formula. Completeness is useful as it allows for counterexample gen-
eration: a specification not satisfying a formula has at least one implementation also
not satisfying it. For related work on generalised model checking and 3-valued logics,
consult [BG00, HJS01, GHJ01, GP09].

In the folowing we will use the quantitative version of CTL from Section 2.2.2 (used
in Paper E) for definitions and examples. The reasoning behind the semantic choices
can however be applied to any version of CTL. As we here consider k-weighted modal
transition systems, we extend the syntax of the accumulated weight logic to use linear
expressions on the form e ::= 〈i〉 · c | e + e, where 0 ≤ i ≤ k and c ∈ Z. With 〈i〉 we
address the ith coordinate in the accumulated weight vector. Thus instead of atomic
propositions we use propositions on the form e ./ b, where ./ ∈ {<,≤,=,≥, >} and
b ∈ Z ∪ {−∞,∞}.

We use a positive normal form of CTL that uses the temporal operators next (X),
until (U) and weak until (W). The syntax of our accumulated-weight logic is given by
the following grammar, where we distinguish between state and path formulae.

ϕ ::= e ./ b | ¬(e ./ b) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | Eψ | Aψ . (3.1)

The path formulae are given by

ψ ::= Xϕ | ϕ1Uϕ2 | ϕ1Wϕ2 .

The crucial point is how to define the semantics of the logic in order to obtain sound-
ness and completeness. As we reason on WMTSs, we must distinguish may and must
transitions when giving the semantics, since they are treated differently in the modal
refinement relation.

Intuitively we should not consider the may transitions when dealing with a formula
requiring the existence of a run, as any may transition can be dropped in an implementa-
tion. Thus a witnessing run containing may transitions is not guaranteed to appear in all
implementations. On the other hand, for any formula where all runs must satisfy some
property, we must study any run that might be a maximal run in some implementation.

31

3. Adapting to the Challenges of Embedded Systems

(s, v̄) |= e ./ b iff JeKv̄ ./ b

(s, v̄) |= ¬(e ./ b) iff JeKv̄ 6./ b
(s, v̄) |= ϕ1 ∧ ϕ2 iff (s, v̄) |= ϕ1 and (s, v̄) |= ϕ2

(s, v̄) |= ϕ1 ∨ ϕ2 iff (s, v̄) |= ϕ1 or (s, v̄) |= ϕ2

(s, v̄) |= Eψ iff ∃ γ = (s0, v̄0), (s1, v̄1), . . . ∈ runs(s, v̄) where

sk −→ sk+1 for all k ≥ 0 : γ |= ψ

(s, v̄) |= Aψ iff ∀ γ = (s0, v̄0), (s1, v̄1), . . . ∈ pruns(s0, v̄0) : γ |= ψ

Figure 3.5.: Semantics of the accumulated-weight logic for WMTSs

s0 s1 s2

[4,6] [0,2]

Figure 3.6.: Counterexample to completeness

This reasoning argues for the first try of defining the semantics, which is also proposed
in Paper C.

In order to formally state the semantics of the logic, we define a run in a WMTS M

as a sequence of configurations (s0, v̄0), (s1, v̄1), . . . such that for all i ≥ 0, si
W̄i
99K si+1

and v̄i+1 = v̄i + w̄i, where w̄i ∈ W̄i. Again the set runs(s, v̄) denotes all maximal runs in
M starting from (s, v̄). By pruns(s, v̄) we denote the set of all runs from (s, v̄) that are
either infinite or has no outgoing must transitions. These paths are the ones that may
be maximal runs in an implementation.

State formulae ϕ, ϕ1 and ϕ2 are interpreted over configurations of WMTSs as seen in
Figure 3.5. The semantics for path formulae is unchanged from the normal interpretation
over paths in MTSs and are therefore omitted.

The semantics specifies that in order for a formula quantified by E to be true, we only
look for maximal runs of only must transitions. For formulae quantified by A we on the
contrary need to check every outgoing path ending in a state with no outgoing must
transitions in order to establish satisfaction.

For such a logic in positive normal form the distinction between may and must tran-
sitions for E and A formulae ensures soundness w.r.t refinement, as proven in Paper C.

Unfortunately, the logic presented in Paper C (and above) is not complete. A simple
counterexample can be seen by considering the formula ϕ = EG(〈1〉 ≤ 10) and the 1-
weighted WMTS seen in Figure 3.6. Since no maximal path with only must transitions
exists, we can conclude that the configuration (s0, 0) does not satisfy ϕ. On the other
hand, all implementations have maximal paths consisting of either one or two must
transitions, all meeting the requirement that the accumulated weight does not exceed
10 at any point.

This example shows that deciding the satisfiability of a formula quantified by E by
only studying the maximal paths of must transitions is not adequate to ensure com-

32

3.2. Modal Transition Systems

pleteness. Even though we cannot be sure that one specific may transition will appear
in all implementations, we can try to make sure that regardless of what may transitions
are implemented the property is still satisfied. As this approach seems similar to the
game theoretic approach where Player 1 seeks to ensure some behaviour regardless of
the choices of Player 2, we will try to construct the semantics for the logic based on
games in order to ensure completeness.

3.2.3. Completeness Using Games

In order to ensure that a WMTS satisfies a logical formula if and only if all imple-
mentations satisfy it, we can view WMTSs as games when dealing with a formula on
the form Eψ. As we do not know what may transitions will be implemented or what
precise weights will be chosen in an arbitrary implementation, we let Player 2 control
these uncontrollable choices while Player 1 controls the must transitions. We can then
seek a strategy for Player 1 such that no matter what choices Player 2 makes (i.e. no
matter what implementation we consider) we can still satisfy the formula. In this way
we still guarantee soundness, since our strategy ensures satisfaction of the formula in
any implementation chosen by Player 2.

We first notice that in the case of a state s with both outgoing may and must tran-
sitions, we do not have to consider the outgoing may transitions when checking that a
formula on the form Eϕ is satisfied. This is evident if we consider the implementation
I that does not implement the may transitions. Here if Eϕ is satisfied, some run γ
exists that satisfies ψ. The run γ does for sure not stop in s, since it must be maximal.
Therefore γ will also be a maximal and witnessing run for any implementation that also
implements some or all of the outgoing may transitions from s. Thus we only distinguish
states with outgoing must transitions (controllable by Player 1) and states with no out-
going must transitions (controllable by Player 2). As we also need the formula to hold
for any choice of weights from the intervals, we leave this choice to Player 2. The game
played here is therefore modified slightly from Definition 7, since we after each choice
of a transition (by either Player 1 or 2) let Player 2 choose a weight from the weight
interval. Furthermore Player 2 may stop the game in any state controllable by Player 2
in order to model that no outgoing may transitions are implemented.

We define a strategy for Player 1 in a WMTS as a function from each finite prefix
of a weighted run that ends in a state s controllable by Player 1 to a must transition
outgoing from s. A run (s0, v̄0), (s1, v̄1), . . . respects a strategy σ if for all si controllable
by Player 1 we have σ(si, v̄i) = (si, W̄ , si+1) for some W̄ . We can now state the game
based semantics for Eψ.

(s, v̄) |= Eψ iff there exists a strategy σ for Player 1 such that

for all γ ∈ runs(s, v̄) where γ respects σ we have γ |= ψ .

The example depicted in Figure 3.6 along with the formula ϕ = EG(〈1〉 ≤ 10) is no
longer a counterexample to completeness when assuming the semantics based on games.

This is evident since the (only available) strategy that maps (s0, 0) to s0
[4,6]−→ s1 is

33

3. Adapting to the Challenges of Embedded Systems

sufficient to ensure that no matter what Player 2 does, the resulting run will always
have an accumulated weight no larger than 10.

As evident, the game-based semantics rules out the counterexample to completeness
presented above. However, this is unfortunately not always the case. Consider the
formula ϕ = AF(AX false). The formula states that for all paths, at some point there is
no outgoing transitions. Notice that false can be modelled by 〈1〉 < 0∧〈1〉 > 0. Now for
the example in Figure 3.6 we have (s0, 0) 6|= ϕ, as (s0, 0), (s1, 4) is a path in pruns(s0, 0)
where s1 has an outgoing transition. However, any implementation will surely in all
weighted runs encounter a state with no outgoing transition. In general the logic is
therefore not complete.

The semantics based on games is presented in Paper E for a small, but practically
useful fragment of CTL. We here prove both soundness and completeness of the logic if
we restric ourselves to the unnested formulae of the form AGϕ, AFϕ, EGϕ, and EFϕ.

3.3. Metrics

The model checking view presented in Figure 1.1 shows that the result of the model
checking is either a ’yes’ or a ’no’. This boolean answer is also used when model checking
quantitative models to quantitative specifications. However, the quantities present in the
specification and models pave the road for a quantitative answer to the model checking
question instead of a boolean one. This will help engineers in their search for correct
implementations, as they in the negative case are interested in some way of telling
’how close’ they are to satisfying the specification. A quantitative analysis entails that
two implementations not satisfying the specification can be compared and we might
find that one is closer to satisfying the specification than the other. In the case that
an implementation of the specification is not at hand, we are thus able to rate the
implementations not satisfying the specification and pick the better match. This is not
possible in the previously considered boolean framework, as two such implementations
cannot be distinguished.

In order to develop a quantitative framework for analysis, we first need to define a
notion of distance between two implementations. This is done by lifting the decision
problem associated with the known behavioral equivalences and preorders into a search
problem, assigning a nonnegative real number to pairs of systems. Quantitative analysis
was recently studied for reactive systems by de Alfaro et al. [dAM01, dAF03, dAFS04,
dAFS09] and Thrane et al. [TFL10, FLT10, FTL11, FLT11] and for probabilistic sys-
tems in [JS90, DGJP04]. An overview can be found in [Thr11]. Several distances have
been considered—these merely model different ways of estimating the distance and are
applicable in different settings.

Having defined a metric on implementations, it can be lifted to a distance from an
implementation to a specification. This has been done for the logic of CTL [FLT10],
timed CTL [HMP05] and the µ-calculus [LLM05] among others. Recently we have de-
veloped a framework for calculating the distance between a quantitative implementation

34

3.3. Metrics

s′

t′

(3,0)
refuel (-1,-3)

unload

(-1,0)

d
i
g (-4,3)

gravel

(a) Implementation M of an excava-
tor

s

t

([4,6],[0,0])
refuel ([-2,-1],[-3,-2])

unload

([-1,-1],[0,0])

d
i
g([-3,-3],[5,6])

boulder
([-2,-2],[3,4])
gravel

(b) Specification N of an excavator

dm(s′, s) = max

{
1 + λ dm(s′, s)

0 + λ dm(t′, t)

dm(t′, t) = 2 + λ dm(s′, s)

(c) Calculating the modal refinement distance dm(M,N)

Figure 3.7.: Modal refinement distance

and a quantitative modal transition system [BFJ+11]1. In the paper we study the no-
tion of modal and thorough refinement and broaden these notions to distances, giving
a nonnegative real as the result. In this way we are both capable of measuring the dis-
tance between an implementation and a specification, but in general also between two
specifications. The asymmetric thorough distance is defined on sets of implementations
and for two modal transition systems, M and N , the thorough distance from M to N is
smaller than ε if and only if for each implementation of M there exists an implementa-
tion of N such that the distance between these two implementations is smaller than ε. A
distance of 0 thus implies that M thoroughly refines N . As hoped for, we show that the
modal distance is never smaller than the thorough distance, implying that the modal
distance can be used as an upper bound for the thorough distance. Thus the boolean
framework, where modal refinement implies thorough refinement, generalises nicely to
the quantitative framework.

Example 18. Figure 3.7a depicts an implementation M of an excavator. If we
compare the implementation with the specification N given in Figure 3.7b, we see
that the energy gain/consumption associated with the refuel and gravel actions
in M does not fit into the intervals specified in N .

Using the modal refinement distance dm defined in [BFJ+11] and a discounting
factor of λ = 0.9, we find that the distance from M to N is dm(M,N) = 10. This

1As this paper does not directly fit the subject of this thesis, it is not included as a paper.

35

3. Adapting to the Challenges of Embedded Systems

follows since the distance from s′ to s is calculated as the distance between either
the two refuel or dig actions added to the discounted weight between the two new
resulting states. Similarly for the distance from t′ to t. The distance between the two
refuel actions is 1 (the integer 3 has distance 1 to the interval [4, 6]), the distance
between the two dig actions is 0 and the distance between the two gravel actions
is 2. These intermediate results are seen in Figure 3.7c.

Finding the least fixed points of the equations yields dm(M,N) = dm(s′, s) =
max(1+0.9 ·10, 0.9 (2+0.9 ·4.47)) = 10. This gives an upper bound on the thorough
refinement distance between the two systems—in fact the two distances coincide for
this example since the systems are deterministic.

36

4Thesis Summary

This chapter presents a summary of the five papers that are included in this thesis. For
each paper the abstract, contributions and publication history are presented.

The layout of the papers has been edited to fit the format of this thesis and appendices
has been moved to the main text.

The sub-questions identified as part of the research objectives in Section 1.5 are ad-
dressed in the papers as follows. Question i) is primarily treated in Paper C and D,
suggestions for question ii) are given in Paper C, D and E, question iii) is studied in
Paper A and B, question iv) is treated in Paper E, question v) is mainly addressed in
Paper A and E, and finally question vi) is the focus of Paper B.

37

4. Thesis Summary

Paper A: Energy Games in Multiweighted Automata

Uli Fahrenberg Line Juhl Kim G. Larsen Jǐŕı Srba

Energy games have recently attracted a lot of attention. These are games played on
finite weighted automata and concern the existence of infinite runs subject to bound-
ary constraints on the accumulated weight, allowing e.g. only for behaviours where a
resource is always available (nonnegative accumulated weight), yet does not exceed a
given maximum capacity. We extend energy games to a multiweighted and parame-
terized setting, allowing us to model systems with multiple quantitative aspects. We
present reductions between Petri nets and multiweighted automata and among differ-
ent types of multiweighted automata and identify new complexity and (un)decidability
results for both one- and two-player games. We also investigate the tractability of an
extension of multiweighted energy games in the setting of timed automata.

Contributions

• Definition of multiweighted energy games seeking infinite runs in multiweighted
automata constrained by both upper and lower bounds on the accumulated weight.

• Complexity results for all identified subclasses of the problem relying on reductions
to and from Petri nets and among different classes of energy games.

• (Un)decidability results for existential energy games where the upper bound is
unknown.

• Undecidability result for timed multiweighted energy games.

Publication History

The paper was accepted and presented at the 8th International Colloquium on Theo-
retical Aspects of Computing (ICTAC’11) and published in Proc. of ICTAC’11, volume
6916 of LNCS, pages 95-115, Springer, 2011.

38

Paper B: Optimal Bounds for Multiweighted and
Parametrised Energy Games

Line Juhl Kim G. Larsen Jean-François Raskin

Multiweighted energy games are two-player multiweighted games that concern the exis-
tence of infinite runs subject to a vector of lower and upper bounds on the accumulated
weights along the run. We assume an unknown upper bound and calculate the set of
vectors of upper bounds that allow an infinite run to exist. For both a strict and a
weak upper bound we show how to construct this set by employing results from previous
works, including an algorithm given by Valk and Jantzen for finding the set of minimal
elements of an upward closed set. Additionally, we consider energy games where the
weight of some transitions is unknown, and show how to find the set of suitable weights
using the same algorithm.

Contributions

• Method for constructing the set of upper bounds that win an energy game with
weak unknown upper bound employing a generic algorithm for calculating sets of
minimal elements.

• Upper bound on the complexity for constructing the set of upper bounds that win
an energy game with strict unknown upper bound.

• Method for constructing the set of weights of transitions that win an energy game
with unknown weights of some transitions.

Publication History

Manuscript in preparation for submission.

39

4. Thesis Summary

Paper C: Modal Transition Systems with Weight
Intervals

Line Juhl Kim G. Larsen Jǐŕı Srba

We propose weighted modal transition systems, an extension to the well-studied specifi-
cation formalism of modal transition systems that allows to express both required and
optional behaviours of their intended implementations. In our extension we decorate
each transition with a weight interval that indicates the range of concrete weight values
available to the potential implementations. In this way resource constraints can be mod-
elled using the modal approach. We focus on two problems. First, we study the question
of existence/finding the largest common refinement for a number of finite deterministic
specifications and we show PSPACE-completeness of this problem. By constructing the
most general common refinement, we allow for a stepwise and iterative construction of a
common implementation. Second, we study a logical characterisation of the formalism
and show that a formula in a natural weight extension of the logic CTL is satisfied by a
given modal specification if and only if it is satisfied by all its refinements. The weight
extension is general enough to express different sorts of properties that we want our
weights to satisfy.

Contributions

• Definition of weighted modal transition systems and their appurtenant refinement
relation.

• PSPACE-completeness of deciding existence/finding the largest common refine-
ment given a number of deterministic specifications.

• Syntax and semantics and proof of soundness for a weighted extension of CTL
reasoning on weighted modal transition systems.

Publication History

An abstract was accepted and presented at the 21st Nordic Workshop on Programming
Theory (NWPT’09). The full paper is published in Journal of Logic and Programming,
volume 81(4), pages 408-421, Elsevier, 2012.

40

Paper D: Extending Modal Transition Systems with
Structured Labels

Sebastian Bauer Line Juhl Kim G. Larsen
Axel Legay Jǐŕı Srba

We introduce a novel formalism of label-structured modal transition systems that com-
bines the classical may/must modalities on transitions with structured labels that rep-
resent quantitative aspects of the model. On the one hand, the specification formalism
is general enough to include models like weighted modal transition systems and allows
the system developers to employ more complex label refinement than in the previously
studied theories. On the other hand, the formalism maintains the desirable properties
required by any specification theory supporting compositional reasoning. In particu-
lar, we study modal and thorough refinement, determinization, parallel composition,
conjunction, quotient, and logical characterization of label-structured modal transition
systems.

Contributions

• Definition of label-structured modal transition systems allowing refinement of la-
bels.

• Proof of desirable properties for the defined notions of determinization, modal and
thorough refinement.

• Definition of the operators for structural composition, logical composition and
quotienting and proof of desirable properties.

• Syntax and semantics of a label-structured extension of HML reasoning on label-
structured modal transition systems.

• Proof of soundness in general and completeness for a suitable subset of the extended
HML logic.

Publication History

The paper is published in Mathematical Structures in Computer Science, volume 22,
pages 581-617, Cambridge University Press, 2012.

41

4. Thesis Summary

Paper E: A Logic for Accumulated-Weight Reasoning on
Multiweighted Modal Automata

Sebastian Bauer Line Juhl Kim G. Larsen
Axel Legay Jǐŕı Srba

Multiweighted modal automata provide a specification theory for multiweighted transi-
tion systems that have recently attracted interest in the context of energy games. We
propose a simple fragment of CTL that is able to express properties about accumulated
weights along maximal runs of multiweighted modal automata. Our logic is equipped
with a game-based semantics and guarantees both soundness (formula satisfaction is
propagated to the modal refinements) as well as completeness (formula non-satisfaction
is propagated to at least one of its implementations). We augment our theory with a
summary of decidability and complexity results of the generalized model checking prob-
lem, asking whether a specification—abstracting the whole set of its implementations—
satisfies a given formula.

Contributions

• Syntax and game-based semantics for a fragment of CTL reasoning of the accu-
mulated weights of weighted modal transition systems.

• Proof of soundness and completeness of the logic.

• (Un)decidability results for various fragments of the logic.

Publication History

The paper was accepted and presented at the 6th International Symposium on Theo-
retical Aspects of Software Engineering (TASE’12) and published in Proc. of TASE’12,
pages 77-84, IEEE Computer Society Press, 2012.

42

Part II.

Papers

AEnergy Games in Multi-
weighted Automata

Uli Fahrenberg
INRIA/IRISA, Rennes Cedex, France

Line Juhl Kim G. Larsen Jǐŕı Srba
Aalborg University, Department of Computer Science, Denmark

Abstract Energy games have recently attracted a lot of attention. These are games
played on finite weighted automata and concern the existence of infinite runs subject
to boundary constraints on the accumulated weight, allowing e.g. only for behaviours
where a resource is always available (nonnegative accumulated weight), yet does not
exceed a given maximum capacity. We extend energy games to a multiweighted and
parameterized setting, allowing us to model systems with multiple quantitative aspects.
We present reductions between Petri nets and multiweighted automata and among differ-
ent types of multiweighted automata and identify new complexity and (un)decidability
results for both one- and two-player games. We also investigate the tractability of an
extension of multiweighted energy games in the setting of timed automata.

44

1. Introduction

1. Introduction

Energy games are two-player games played on finite weighted graphs with the objective
of finding an infinite run where the accumulated weight is constrained by a lower and pos-
sibly also an upper bound. Such games have attracted considerable attention [BFLM10,
BFL+08, BJK10, CdAHS03, Cha10, CDHR10, CD10, DDG+10, EM79, ZP96] in recent
years, as they find natural applications in design and analysis of resource-constrained
reactive systems, e.g. embedded or hybrid systems.

We study multiweighted energy games, where the weight vectors can have an arbitrary
dimension. Let us motivate the study by a small example of an automatic lawn mower
with a rechargeable battery and a container for collecting grass. Both the battery and
the container have a maximum capacity that cannot be exceeded. We assume that
the battery can be recharged and the container can be emptied at nearby servicing
stations. The charger is an old-fashioned one, and it charges only for a fixed amount of
energy corresponding to going from discharged to fully charged. If the lawn mower starts
charging while the battery is not fully discharged, the battery will break. The station
for emptying the container removes a unit amount of grass at a time and consumes a
unit of battery energy. The container will break if too much grass is stored in it.

A weighted game describing the lawn mower behaviour is given in Figure 1a. Each
transition has a 2-dimensional vector representing the change to the accumulated battery
level in the first coordinate and to the accumulated volume of grass in the container in
the second coordinate. The numbers bmax and cmax represent the maximum capacity
of the battery and the container, respectively. The initial state drawn as a diamond is
controlled by Player 1 (the existential player), while the other state drawn as a square
is controlled by Player 2 (the universal player).

In the initial state, Player 1 has the choice of either charging the battery, emptying
the container or cutting the grass. Moving to the lawn costs one unit of battery energy,
and then Player 2 (the environment) controls whether the actual mowing, which costs
again one energy unit, will fill the container with one or two units of grass, depending on
whether the grass was short or tall. A configuration of the game consists of the state and
the accumulated weight in all coordinates. A run is a sequence of transitions between
configurations formed by the players of the game and starting from the initial state with
zero accumulated weight.

The question we ask now (the problem called energy games with lower and upper
bounds) is whether Player 1 has a strategy so that in the infinite run of actions the lawn
mower performs, starting with empty battery and empty container, both the accumu-
lated battery level as well as the container content stay invariantly above zero and do
not exceed the given upper bounds bmax = 4 and cmax = 3. Such a strategy exists and
it is depicted in Figure 1b. Figure 1c illustrates a finite run of the lawn mower game
according to this strategy. If we lower the volume of the container to cmax = 2, no such
strategy exists. Player 1 must take the charge transition as the first step, after which
cutting is the only opportunity. Player 2 can now choose to cut the short grass, leading
to battery level 2 and grass volume 1. From here Player 1 can only empty the container,
as cutting would allow Player 2 to break the container. After emptying the container,

45

A. Energy Games in Multiweighted Automata

(bmax, 0)
charge (−1,−1)

empty

(−
1
,0)

cu
t(−1, 2)

tall

(−1, 1)

short

(a) A lawn mower 2-weighted game

bmax = 4 (battery capacity)
cmax = 3 (container capacity)

if battery = 0 then charge

else if battery ≥ 2 and container ≤ 1 then cut

else if battery ≥ 1 and container ≥ 1 then empty

(b) A winning strategy for Player 1

♦ ♦ ♦ ♦ ♦ ♦ ♦� �
0

1

2

cmax = 3

bmax = 4

−−−→
charge

−→
cut

−−−→
short

−→
cut

−−→
tall

−−−→
charge

−−−→
empty

−−−→
empty

(c) A run of the game (dashed line shows battery level, solid line container content)

Figure 1.: A lawn mower example

battery level is 1 and no transition (apart from cutting) is possible.

There are several variants of the above energy game problem. If we e.g. assume a
modern battery charger which does not break the battery when it is not empty, then we
have another variant of the problem called energy games with weak upper bounds. The
weak upper bound game allows taking transitions that will exceed the upper bounds,
but these will never accumulate more energy than the maximum capacity. We may also
consider infinite runs that are constrained only by a given lower bound but with no
upper bound. Finally, we ask questions regarding parameterization. We want to decide
whether there exists some battery capacity bmax and some initial battery level such that
Player 1 wins the energy game with lower and upper bound (or some of its variants). In
our example one can by a simple reasoning argue that for a container capacity cmax = 2,
there is no battery capacity bmax so that Player 1 can guarantee an infinite behaviour of
the lawn mower.

Contributions. We define the variants of multiweighted energy games (Section 2) and
present reductions involving these games, leading to new decidability and complexity
results. Some reductions are to/from Petri nets (Section 3) while others are between
different multiweighted energy games (Section 4). This is followed by a summary of
decidability and complexity results we achieved. In Section 6 we consider a parameterized
version of existential one-player games and show that some variants of the problem
lead to undecidability while others are decidable in polynomial time. We conclude by
presenting an undecidability result for a natural timed extension of the energy games
(Section 7).

46

2. Multiweighted Automata and Games

Related work. The idea of checking whether a given resource stays above zero at all
times was first presented by Chakrabarti et al. in [CdAHS03], treating the subject in
relation to interfaces. The lower and (weak) upper bound problems were first formulated
in [BFL+08] for the case with a single weight. The paper presents several complexity
results for the 1-weighted case, both timed and untimed, and has given rise to a number
of recent papers on 1-weighted energy games [CDHR10, CD10, DDG+10].

The multiweighted extension has been studied in [BJK10], but only for energy games
with unary weights, i.e. updates by 1, 0 or −1. A continuation of this work presents a
polynomial time algorithm for the 2-weighted case with unary inputs [Cha10]. Contrary
to this line of work, we consider binary input encoding, hence weight updates are now
drawn from the full set of integers. Also in contrast to [BJK10, Cha10], where only
complexity upper bounds are given, we give complexity lower bounds that in most cases
match the upper bounds.

Multiweighted energy games with general integer updates have been considered
in [CDHR10], where the authors show that the problem of deciding the existence of an
initial weight vector such that Player 1 can win the lower bound energy game is solvable
in polynomial time. In contrast to this, we show here that the non-parameterized variant
of this problem—can Player 1 win with a given initial weight vector—is EXPSPACE-
hard. We also treat the parameterized setting, where we show that the existential lower
and (weak) upper bound problems with both bounds and initial weight vector parame-
terized are also decidable in polynomial time, unless the upper bound parameter is used
in the transitions of the automaton, in which case the problem becomes undecidable.

2. Multiweighted Automata and Games

We denote by Zk the set of integer vectors of dimension k > 0 and by w̄[i] the i’th
coordinate of a vector w̄ ∈ Zk. A k-weighted game G is a four-tuple (Q1, Q2, q0,−→)
where Q1 and Q2 are finite, disjoint sets of existential and universal states, respectively,
q0 ∈ Q1∪Q2 is the initial state and −→ ⊆ (Q1∪Q2)×Zk× (Q1∪Q2) is a finite weighted

transition relation, written as q
w̄−→ q′ whenever (q, w̄, q′) ∈ −→. We refer to Figure 1a

in the introduction for an example of a k-weighted game with k = 2.
We are interested only in infinite runs in multiweighted games, hence for the rest of

the paper, we assume that the game G is non-blocking, i.e. for every q ∈ Q1 ∪ Q2 we

have q
w̄−→ q′ for some w̄ ∈ Zk and q′ ∈ Q1 ∪Q2.

A weighted run in a k-weighted game G = (Q1, Q2, q0,−→) restricted to a weak upper
bound b̄ ∈ (N0∪∞)k is an infinite sequence (q0, v̄0), (q1, v̄1), (q2, v̄2), . . . where q0, q1, . . . ∈
Q1 ∪ Q2, v̄0 = 0̄ = (0, 0, . . . , 0) and v̄1, v̄2, . . . ∈ Zk such that for all j ≥ 0 we have

qj
w̄j−→ qj+1 and

v̄j+1[i] = min
{
v̄j[i] + w̄j[i], b̄[i]

}
for all coordinates i. An illustration of a run in a 2-weighted game is given in Figure 1c
in the introduction. Intuitively, a weighted run is a sequence of states together with
the accumulated weight gathered along the path. Moreover, the accumulated weight is

47

A. Energy Games in Multiweighted Automata

truncated, should it exceed in some coordinate the given maximum weight b̄. By WRb̄(G)
we shall denote the set of all weighted runs in G restricted to the maximum accumulated
weight b̄.

A strategy for Player i ∈ {1, 2} in a k-weighted game G = (Q1, Q2, q0,−→) (re-
stricted to a weak upper bound b̄) is a mapping σ from each finite prefix of a weighted
run in WRb̄(G) of the form (q0, v̄0), . . . , (qn, v̄n) with qn ∈ Qi to a configuration
(qn+1, v̄n+1) such that (q0, v̄0), . . . , (qn, v̄n), (qn+1, v̄n+1) is a prefix of some weighted run
in WRb̄(G). A weighted run (q0, v̄0), (q1, v̄1), . . . respects a strategy σ of Player i if
σ((q0, v̄0), . . . , (qn, v̄n)) = (qn+1, v̄n+1) for all n such that qn ∈ Qi. Figure 1b in the
introduction shows a strategy for the 2-weighted game from Figure 1a; note that the run
of the game depicted in Figure 1c indeed respects this strategy.

We shall consider three decision problems related to energy games on a given k-
weighted game G = (Q1, Q2, q0,−→). Below we let ∞ = (∞,∞, . . . ,∞), and we write
w̄ ≤ v̄ if w̄[i] ≤ v̄[i] for all i, 1 ≤ i ≤ k.

Energy Game with Lower bound (GL): Given a game G, is there a strategy σ for
Player 1 such that any weighted run (q0, v̄0), (q1, v̄1), . . . ∈ WR∞(G) respecting
σ satisfies 0̄ ≤ v̄i for all i ≥ 0?

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight stays above zero in all coordinates.

Energy Game with Lower and Weak upper bound (GLW): Given a game G and a vector
of upper bounds b̄ ∈ Nk

0, is there a strategy σ for Player 1 such that any weighted
run (q0, v̄0), (q1, v̄1), . . . ∈ WRb̄(G) respecting σ satisfies 0̄ ≤ v̄i for all i ≥ 0?

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight, which is truncated whenever it exceeds the given upper
bound, stays in all coordinates above zero.

Energy Game with Lower and Upper bound (GLU): Given a game G and a vector of
upper bounds b̄ ∈ Nk

0, is there a strategy σ for Player 1 such that any weighted
run (q0, v̄0), (q1, v̄1), . . . ∈ WR∞(G) respecting σ satisfies 0̄ ≤ v̄i ≤ b̄ for all i?

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight stays in all coordinates above zero and below the given
upper bound.

The problems GL, GLW and GLU can be specialized in two different ways. Either
by giving Player 1 the full control over the game by setting Q2 = ∅ or dually by giving
the full control to Player 2 by assuming that Q1 = ∅. The first problem is called the
existential variant as we essentially ask whether there exists some weighted run with the
accumulated weight within the given bounds. The second problem is called the universal
variant as we now require that all weighted runs satisfy the constraints of the energy
game. We will denote the respective existential problems by EL, ELW and ELU, and the
universal problems by AL, ALW and ALU. These special cases are known as one-player

48

3. Relationship to Petri Nets

games or simply as multiweighted automata, and we denote such games as only a triple
(Q, q0,−→).

In the general formulation of energy games there is no fixed bound on the dimension
of the weight vectors, in other words, the dimension k is a part of the input. If we
want to consider problems of a fixed dimension k, we use the notation GL(k), GLW(k),
GLU(k), EL(k) etc.

As the inputs to our decision problems are numbers, it is important to agree on their
encoding. We will use the binary encoding, unlike some other recent work [BJK10, Cha10]
where unary notation is considered and thus enables to achieve better complexity bounds
as the size of their input instance is exponentially larger.

We may also easily allow an initial weight vector w̄0 different from 0̄. This is evident
by adding a new fresh start state with one transition labeled with w̄0 pointing to the
original start state. In addition we may assume that in any given upper bound or weak
upper bound vector b̄ we have b̄[1] = b̄[2] = · · · = b̄[k]. This can be achieved by scaling

every i’th coordinate of all weight vectors on transitions with b̄[1]·...·b̄[k]

b̄[i]
in order to obtain

equality on the coordinates of b̄. Such a scaling implies only polynomial increase in the
size (in binary encoding) of the upper bound constants.

3. Relationship to Petri Nets

We show that the existential variants of the infinite run problems on multiweighted
automata can be reduced to the corresponding problems on Petri nets and vice versa.
This will allow us to transfer some of the decidability and complexity results from the
Petri net theory to our setting.

We shall first define the Petri net model with weighted arcs (that allow to consume
more than one token from a given place). A Petri net is a triple N = (P, T,W) where P
is a finite set of places, T is a finite set of transitions, and W : (P × T)∪ (T ×P)→ N0

is a function assigning a weight to each arc in the net. A marking on N is a function
M : P → N0 denoting the number of tokens present in the places. A marked Petri net
is a pair (N,M0) where N is a Petri net and M0 is an initial marking on N .

A transition t ∈ T is enabled in a marking M if M(p) ≥ W (p, t) for all p ∈ P . An
enabled transition may fire. When a transition t fires, it produces a new marking M ′

obtained as M ′(p) = M(p) − W (p, t) + W (t, p) for all places p ∈ P . Then we write

M
t−→ M ′. A marking M is reachable in N if M0 −→∗ M where −→ =

⋃
t∈T

t−→. A
marked Petri net is called 1-safe if for any reachable marking M the number of tokens
in any place is at most one, i.e. M(p) ≤ 1 for all p ∈ P . We say that a marked net
(N,M0) has an infinite run if there is a sequence of markings M1,M2, . . . and transitions

t1, t2, . . . such that M0
t1−→ M1

t2−→ M2
t3−→ . . . The infinite run problem for Petri nets

(see e.g. [Esp98]) is to decide whether a given Petri net has an infinite run.

Lemma 1. The infinite run Petri net problem is polynomial time reducible to EL. The
infinite run Petri net problem for 1-safe nets is polynomial time reducible to ELU and

49

A. Energy Games in Multiweighted Automata

p1

p2

p3

p4

p5t

14

2

3
3

2

q0 qt

(−1,−4,−2, 0, 0)

(3, 0, 0, 3, 2)

Figure 2.: Translation of a Petri net to a 5-weighted automaton

q q′

(−2, 5, 3)
 pq pq′

p1
p2 p3

2
5

3

1 1

Figure 3.: Translation of a 3-weighted automaton to a Petri net

ELW. The problem EL is polynomial time reducible to the infinite run problem of Petri
nets.

Proof. We first prove the first part of the lemma. Given a Petri net N = (P, T,W)
where P = {p1, . . . , pk} we construct a k-weighted automaton A = (Q, q0,−→) such

that Q = {q0} ∪ {qt | t ∈ T}. Now for every t ∈ T we add to A two transitions q0
w̄−t−→ qt

and qt
w̄+

t−→ q0 where w̄−t [i] = −W (pi, t) and w̄+
t [i] = W (t, pi) for all i, 1 ≤ i ≤ k. Consult

Figure 2 for an example. The initial weight vector then corresponds to the initial marking
of the net in the expected way. It follows from the construction that each transition firing
can be simulated by two transitions in the constructed weighted automaton and vice
versa. Observe that the reachable Petri net markings are represented as accumulated
weight vectors in the automaton and hence are nonnegative in all coordinates. It is easy
to verify that the net has an infinite run if and only if the EL problem has a solution.
The reduction clearly runs in polynomial time.

For the second part, observe that if the net is 1-safe then by taking the upper bound
b̄ = (1, 1, . . . , 1) we have a reduction from the infinite run problem for 1-safe nets to
ELU and ELW.

The reduction from k-weighted automata to Petri nets works in a similar way. Given
a k-weighted automaton A = (Q, q0,−→) we construct a Petri net N = (P, T,W) where

P = {p1, . . . , pk} ∪ {pq | q ∈ Q} and T = {t(q,w̄,q′) | q
w̄−→ q′}. For each t(q,w̄,q′) we set

W (pq, t(q,w̄,q′)) = 1, W (t(q,w̄,q′), pq′) = 1 and for all i, 1 ≤ i ≤ k, W (pi, t(q,w̄,q′)) = −w̄[i]
if w̄[i] < 0 and W (t(q,w̄,q′), pi) = w̄[i] if w̄[i] ≥ 0. See Figure 3 for an example of the
reduction. The initial marking corresponds to the initial weight vector in the natural
way, and there is one extra token in the place pq0 representing the current state of
the automaton. As before, it is easy to verify that the constructed Petri net has an
infinite run if and only if the EL problem has a solution. The reduction clearly runs in
polynomial time. �

50

4. Reductions among Energy Games

Theorem 2. The problem EL is EXPSPACE-complete. The problems ELU and ELW
are PSPACE-complete.

Proof. The complexity bounds for EL follow from Lemma 1 and from the fact that the
existence of an infinite run in a Petri net is decidable in EXPSPACE [Yen92, AH09] and
EXPSPACE-hard (see e.g. [Esp98]). The same problem for 1-safe Petri nets is PSPACE-
complete (see again [Esp98]) and by Lemma 1 we get PSPACE-hardness also for ELU
and ELW. The containment of the ELU and ELW problems in PSPACE can be shown
by noticing that these problems have an infinite run (q0, v̄0), (q1, v̄1), . . . if and only if
there are two indices i < j such that (qi, v̄i) = (qj, v̄j). As the size of any configuration
(q, v̄) appearing on such a run is polynomially bounded by the size of the input (which
includes the upper bound vector), we can use a nondeterministic algorithm to guess such
a repeated configuration (qi, v̄i) and nondeterministically verify whether it forms a loop
which is reachable from the initial pair (q0, v̄0). This completes the argument for the
containment of ELU and ELW in PSPACE. �

4. Reductions among Energy Games

In this section we present reductions among the variants of one- and two-player energy
games with a particular focus on the size of the weight vectors.

Theorem 3. The problem GLU(k) is polynomial time reducible to GL(2k) and GLW(2k)
for all k > 0. The reduction preserves the existential and universal variants of the
problems.

Proof. Let Gk = (Q1, Q2, q0,−→) be a k-weighted game and let b̄ be a given upper
bound vector for the GLU problem. We construct a 2k-weighted game G2k = (Q1]
{qs}, Q2, qs,−→) where q

(w̄[1],w̄[2],...,w̄[k],−w̄[1],−w̄[2],...,−w̄[k])−−−−−−−−−−−−−−−−−−−−−−→ q′ in G2k if and only if q
w̄−→ q′

in Gk. We moreover add the initial transition qs
w̄0−→ q0 where w̄0[i] = 0 and w̄0[k + i] =

b̄[i] for all i, 1 ≤ i ≤ k. Figure 4 illustrates the construction on an example. Intuitively,
every coordinate in the weight vector is duplicated and the duplicated coordinate gets
initially the value from the vector b̄, while the original coordinate is 0. It is now easy
to verify that during any run in G2k all its configurations (q, v̄) satisfy the invariant
v̄[i] + v̄[k + i] = b̄[i] for all i, 1 ≤ i ≤ k.

The upper bound check is hence replaced with a lower bound on the duplicate coor-
dinates and hence the GLU problem is reduced to GL and also to GLW (by using the
weak upper bound vector b̄), while the size of the weight vectors doubles. The reduction
also clearly preserves the existential and universal variants of the problems. �

Since we already know that ELU(1) is NP-hard [BFL+08], using Theorem 3 with k = 1
gives that EL(2) is NP-hard too, which is of course then also the case for EL. Similarly
as GLU(1) is known to be EXPTIME-hard [BFL+08], we get EXPTIME-hardness also
for GL(2) and hence also for GL.

Our next reductions show (perhaps surprisingly) that allowing multiple weights is not
that crucial in terms of complexity. The first theorem shows that for upper bound games,

51

A. Energy Games in Multiweighted Automata

q0

q1

q2

(−3, 1)

(4,−4)(1, 5)

(−2, 1)

qs q0

q1

q2

(0, 0, 5, 7)

(−3, 1, 3,
−1)

(4,−4,−4, 4)(1, 5,−1,−5)

(−2, 1, 2,−1)

Figure 4.: Example of reduction from GLU with b̄ = (5, 7) to GL

it suffices to work with one weight only; Theorem 5 then shows that for the existential
variant, two weights are enough.

Theorem 4. The problem GLU is polynomial time reducible to GLU(1).

Proof. Let G = (Q1, Q2, q0,−→) be a k-weighted game and b̄ a given upper bound vector
for the GLU problem. We assume that G is encoded in binary and let n denote the size
of such encoding. This means that all constants that appear in the description of G are
less than 2n. We will construct a corresponding 1-weighted game G′ = (Q′1, Q

′
2, qs,−→)

where Q′1 = Q1 ∪ {q2, q3, . . . , qk+5 | q ∈ Q1} ∪ {qs} and Q′2 = Q2 ∪ {q1 | q ∈ Q2} that
simulates G.

Let w̄ denote any weight vector present in G. Clearly, 0 ≤ w̄[1], . . . , w̄[k] < 2n due to
the encoding of the input. Without loss of generality we can assume that all coordinates
of b̄ are the same, i.e. that b̄ = (b, . . . , b) for some 0 ≤ b < 2n.

We need to encode the weights from G using only one weight. We will do so by
placing them into the single (large) weight w′. Since b < 2n, at most n bits are needed
to represent each weight w̄[i]. The weight w′ is constructed by appending the weights
from G in higher and higher bit positions, with a suitable separation sequence to ensure
that weights cannot get ‘entangled’ should their bounds overflow or underflow. Formally,
we introduce the following notation for any integer ` ∈ Z and any i, 1 ≤ i ≤ k:

〈`〉i = ` · 2(i−1)(n+2) .

For example, if n = 4 then 〈6〉2 = 6 · 26 = (in binary) = 110 · 1000000 = 110000000. A
weight vector w̄ of size k in G is now represented by the number

〈w̄〉 def
= 〈w̄[1]〉1 + 〈2n+1〉1 + 〈w̄[2]〉2 + 〈2n+1〉2 + . . .+ 〈w̄[k]〉k + 〈2n+1〉k

where the weights w̄[1], . . . , w̄[k] written in binary from the less significant bits to more
significant ones are separated by the binary string ‘10’. For example if again n = 4 then
the weight vector w̄ = (110, 1, 1011) with the weights written in binary is represented
by the binary number 〈w̄〉 = 10 1011 10 0001 10 0110.

The new upper bound B for G′ is defined by B = 〈b〉k+1 + 〈b̄〉 where apart from
the standard encoding of all upper bounds for all coordinates we add one more time
the constant b at the most significant bits (we will use these bits for counting in our
construction).

52

4. Reductions among Energy Games

q q′

(w̄[1], . . . , w̄[k])

q q1 q′

q2

q3 q4 q5

. . .
qk+3

qk+4qk+5

〈w̄[1]〉1 + · · ·+ 〈w̄[k]〉k 0

〈b〉k+1

−〈0̄〉+B

−〈1
〉k

+1

−〈1〉1

0

−〈1〉2

0

−〈1〉3

0

−〈1〉k

0

0

0

Figure 5.: Simulation of a transition in a k-weighted game by a 1-weighted game

Each transition q
w̄−→ q′ in G is transformed into a number of transitions in G′ as

depicted in Figure 5 where Player 1 (existential) states are drawn as diamonds and
Player 2 (universal) states are drawn as squares. The states drawn as filled circles can
be of either type, and their type is preserved in the translation. We also add the initial

transition qs
〈0̄〉−→ q0 which inserts the separation strings 10 at the correct positions.

The idea is that the update of the accumulated weight vector v̄ in G via adding a vector
w̄ like in Figure 5 is simulated by adding the numbers 〈w̄[1]〉1, 〈w̄[2]〉2, . . . , 〈w̄[k]〉k to
the accumulated weight in G′. The chosen encoding of k weights into a single weight
is crucial to preserve the soundness of the construction as discussed in the following
remark.

Remark 1. Given an accumulated weight vector v̄ and a weight update vector w̄ where
0̄ ≤ v̄, w̄ ≤ b̄ < (2n, . . . , 2n), then adding the numbers 〈v̄〉 and 〈w̄[i]〉i in 〈v̄〉 changes
at most the bits that are designated for representing the weight coordinate w̄[i] and
the separating two bits 10 just before it. This can be easily seen by analyzing the two
extreme cases of adding 11 . . . 1 to an accumulated weight coordinate with full capacity
and subtracting 11 . . . 1 from an accumulated weight coordinate that represents zero as
showed in the following two examples.

. . . 10 111 . . . 111 10 . . .

+ . . . 00 111 . . . 111 00 . . .

. . . 11 111 . . . 110 10 . . .

. . . 10 000 . . . 000 10 . . .

− . . . 00 111 . . . 111 00 . . .

. . . 01 000 . . . 001 10 . . .

Let us now argue about the correctness of this polynomial time construction. Assume
that Player 1 has a winning strategy in the game G. As the accumulated weight stays
within the bounds during any such play in G, it is clear that the same winning strategy
can be performed also in G′ using only a single weight. One complication is that each
transition in G is split in G′ and a new node for Player 2 (q1 in Figure 5) is inserted.

Hence Player 2 could possibly have an extra winning strategy by playing q1
〈b〉k+1

−−−→ q2,
instead of the expected move to q′. However, because the accumulated weight vector v̄
satisfies 0 ≤ v̄[i] ≤ b < 2n for all i, we can see that Player 1 wins in this case, by taking

53

A. Energy Games in Multiweighted Automata

q q′

(w̄[1], . . . , w̄[k])

q

. . .

q′

(〈w̄[1]〉1 + . . .+ 〈w̄[k]〉k, 0)

(i)

(max, 0)

(ii)

(−max, 0)

(iii)

(0, 〈max〉k+1)

(iv)

(0,−〈max〉k+1) (v)

(−1, 1 + 〈1〉k+1) (1,−〈1〉k+1)

(0, 〈b〉k+1)

(vi)

(0,−〈0̄〉)

(vii)

(0, 〈max〉k+1 + max)

(viii)

(0,−〈max〉k+1 −max)

(ix)

(0,−〈1〉k+1)

(0,−〈1〉1)

(0, 0)

(0,−〈1〉2)

(0, 0)

(0,−〈1〉3)

(0, 0)

(0,−〈1〉k)

(0, 0)

(0, 0)

Figure 6.: Simulation of a k-weighted transition by a 2-weighted automaton

the loop q2, q3, . . . qk+3, q2 exactly b times while choosing the zero or −〈1〉i transitions
(for all i) in such a way that the bits representing the weight v̄[i] are all set to 0. What
remains in G′ as the accumulated weight is then the value 〈0̄〉 which consists only of the
separation symbols. From here Player 1 takes the transition with weight −〈0̄〉, setting
the accumulated weight to zero, and wins by performing the transition labeled with
+B (which is possible only if the accumulated weight is exactly zero) and repeatedly
performing in qk+5 the self-loop with weight zero.

On the other hand, assume that a play in G causes the accumulated weight in some
coordinate i, 1 ≤ i ≤ k, to get out of the bounds; we shall argue that Player 2 has a
winning strategy in G′ in this case. Should this happen during a transition from q to q′

in G, then in G′, Player 2 will simply move from the intermediate state q1 to q2, while
the counter value of size b is added to the most significant bits of the accumulated weight
via adding the number 〈b〉k+1. It is clear that it is possible to move from q2 to qk+5 only
if the accumulated weight is exactly 〈0̄〉. In order to achieve this value, the accumulated
weight needs to be decreased exactly b times via taking the loop q2, q3, . . . , qk+3, q2.
Because of Remark 1 we can see that only the bits relevant to each weight coordinate
were changed before entering the loop, so it is impossible to zero all bits corresponding
to the coordinate i while preserving the separation bits 10. �

Theorem 5. The problem ELU is polynomial time reducible to ELU(2).

Proof. The reduction idea is similar to the one in the proof of Theorem 4. The main
complication is that Player 2 has no states in control, hence checking the underflow
and overflow of weights has to be performed without resorting to an opponent. As the
original weight values are destroyed during such a check, we need to employ a second
weight for saving them.

Let A = (Q, q0,−→) be a k-weighted automaton and b̄ the upper bound vector for the
ELU problem. We construct a corresponding 2-weighted automaton A′ = (Q′, qs,−→).

54

4. Reductions among Energy Games

q q′

(w̄[1], . . . , w̄[k])

q

q1

q2 q′
· · ·

(w̄[1], . . . , w̄[k]) (2n, 2n, . . . , 2n) (−2n,−2n, . . . ,−2n)

(−1, 0, . . . , 0) (0, 0, . . . ,−1)

Figure 7.: Simulation of a transition in a LW game by a LU game

Let w̄ denote the weight vectors in A and v̄[1], v̄[2] the two weights in A′. As before for
an input automaton of size n we may assume that all weights in A have the same upper
bound b̄ = (b, b, . . . , b) where b < 2n.

The upper bound b̄′ for the ELU(2) problem in A′ is given by b̄′ = (max, 〈max〉k+1 +
max) with max = 〈b〉k+1 + 〈b̄〉. The reason for reserving twice as many bits in the second
weight is that we need to save there two copies of the first weight. Figure 6 shows how
to simulate one transition in A by a number of transitions in A′. From the newly added

initial state qs we also add the transition qs
(〈0̄〉,0)−−−→ q0 which inserts the separation strings

‘10’ into the first weight.

We shall now argue that the automaton A′ faithfully simulates A. We will examine
the effect of the sequence of transitions between q and q′ added to the automaton A′

(here numbered with (i), (ii), . . . , (ix) for convenience) and argue at the same time that
the part of the run between q and q′ in A′ is uniquely determined. By construction,
v̄[2] will be zero when entering q, and then the transition (i) adds the encoded weights
of the original transition in A to v̄[1]. Transition (ii) will add the upper bound to v̄[1],
hence before this, we need to take the loop with weight (−1, 1 + 〈1〉k+1) until v̄[1] equals
zero, thereby copying twice the value of v̄[1] to v̄[2] (first copy in the less significant bits,
second copy in the more significant bits). After the transitions (ii) and (iii), v̄[1] is then
again at zero. Now transition (iv) wants to add the upper bound to the most significant
bits of v̄[2], hence before this, we need to take the loop with weight (1,−〈1〉k+1) until the
value of the most significant bits in v̄[2] is copied to v̄[1], thereby restoring the original
weight in v̄[1].

After the transitions (iv) and (v), we are in a situation where both coordinates in the
accumulated weight store the same number, and we can afford to destroy the second copy
during the verification phase for bound overflow/underflow performed by transitions (vi),
the long loop, and transitions (vii), (viii) and (ix). This is identical to the construction in
the previous proof (except for the extra coordinate v̄[1] which is not updated). Provided
that no violation of bounds was detected, we will reach q′ with v̄[1] encoding the weight
vector of A at q′ and v̄[2] equal to zero.

Hence a transition between two states in A can be performed if and only if the sequence
of transitions between q and q′ in A′ can be performed. As the reduction is clearly in
polynomial time, this concludes the proof. �

The next theorem finishes our considerations about reductions between different vari-
ants of energy games.

55

A. Energy Games in Multiweighted Automata

Theorem 6. The problem GLW is polynomial time reducible to GLU, and ELW is
polynomial time reducible to ELU.

Proof. Let G = (Q1, Q2, q0,−→) be a k-weighted game and let b̄ be a given upper
bound vector for the GLW problem. We will construct a corresponding k-weighted
game G′ = (Q′1, Q

′
2, q0,−→) where Q′1 = Q1 ∪ {q1, q2 | q ∈ Q1} and Q′2 = Q2 that

simulates G.
As before we assume that the weak upper bound is b̄ = (b, . . . , b) and that b is repre-

sented using at most n bits, hence 0 ≤ b < 2n. The new upper bound for G′ is given as
b̄′ = (b′, . . . , b′) where b′ = 2n + b (in binary the most significant bit 1 is appended to the
binary encoding of b).

Each transition q
w̄−→ q′ in G is simulated by a number of transitions in G′ as seen in

Figure 7. Moving from q to q1 adds w̄ to the accumulated weights of G′ in exactly the
same way as in G. In q1 Player 1 has the opportunity to decrement independently all
weight coordinates with an arbitrary value. The two last transitions from q1 to q′ make
sure that in all coordinates all weights are no more than b, otherwise the upper bound
b̄′ is exceeded.

It is now clear that if Player 1 has a winning strategy in G, then it has a winning
strategy also in G′ by lowering all weights above b to exactly b in the state q1. On the
other hand, if Player 1 does not have a winning strategy in G, then it cannot win in G′

either. This can be observed by the fact that Player 1 is forced to decrement all weights
to at least b, and the player cannot benefit from decrementing them to any lower number
as this makes the position of Player 1 in the weak upper bound game only worse.

Since the reduction is clearly in polynomial time and it adds only existential (Player 1)
states, this concludes the proof. �

Now, in combination with Theorems 4 and 5, we get the following corollary.

Corollary 7. The problems GLW and ELW are polynomial time reducible to GLU(1)
and ELU(2), respectively.

5. Summary of Complexity Results

The collection of complexity results and reductions between different types of energy
games and automata enables us to draw the conclusions presented in Table 1. Notice
that the LU problems are computationally easier than the L problems for an arbitrary
number of weights, even though they are harder than the L problems in the 1-weighted
case. The configuration space for the LU (and LW) problems is bounded (see Theorem 2),
whereas the same a priori does not apply to the L problem.

Observe also that any universal problem with k weights can be solved by checking
the same problem for each coordinate independently. If the k-weighted problem violates
the bounds at some coordinate, so will do the 1-weighted problem projected on this
coordinate. On the other hand, if some coordinate in the 1-weighted problem violates
the bounds then so will do the k-weighted game, as the same run leading to the violation

56

5. Summary of Complexity Results

Weights Type Existential Game

One L ∈ P [BFL+08] ∈ UP ∩ coUP [BFL+08]

LW ∈ P [BFL+08] ∈ NP ∩ coNP [BFL+08]

LU NP-hard [BFL+08],
∈ PSPACE [BFL+08]

EXPTIME-complete [BFL+08]

Fixed
(k>1)

L NP-hard,
∈ k-EXPTIME [BJK10] (Rem. 2)

EXPTIME-hard,
∈ k-EXPTIME [BJK10] (Rem. 3)

LW NP-hard, ∈ PSPACE (Rem. 4)
PSPACE-complete for k ≥ 4

EXPTIME-complete
(Rem. 5)

LU PSPACE-complete (Rem. 4) EXPTIME-complete (Rem. 5)

Arbitrary L EXPSPACE-complete
(Thm. 2)

EXPSPACE-hard (from EL)
decidable [BJK10]

LW PSPACE-complete (Thm. 2) EXPTIME-complete (Rem. 5)

LU PSPACE-complete (Thm. 2) EXPTIME-complete (Rem. 5)

Table 1.: Complexity bounds; results obtained in this paper are in bold

in one coordinate leads to a violation in the k-weighted game (unless the violation occurs
in some other coordinate before that). As AL(1), ALW(1) and ALU(1) are decidable
in P [BFL+08], this implies polynomial upper bounds also for all the other k-weighted
universal problems.

Remark 2. The problem ELU(1) is NP-hard, and Theorem 3 implies NP-hardness for
EL(2). The upper bound follows from the game version of the problem (see also Re-
mark 3).

Remark 3. The lower bound follows from EXPTIME-hardness of GLU(1) and Theorem
3. The upper bound is due to a result in [BJK10] showing (k−1)-EXPTIME containment
for GL(k) but for games where weight updates are only +1, 0, and −1. We can reduce
updates with arbitrary weights into this setting by standard techniques (introducing
intermediate transitions which repeatedly add or subtract 1) but this causes an expo-
nential blowup in the size of the system. Hence the complexity upper bound increases
by one exponent to k-EXPTIME.

Remark 4. The PSPACE upper bound follows from the results for an arbitrary number
of weights (Theorem 2). The PSPACE lower bound for ELU(2) is due to the reduction
in Theorem 5 and PSPACE-hardness of ELU. By using Theorem 3 we get PSPACE-
hardness for ELW(4) because ELU(2) is PSPACE-hard, and we also get NP-hardness of
ELW(2) as ELU(1) is NP-hard.

Remark 5. The upper bound for GLU follows from Theorem 4 and the EXPTIME upper
bound for GLU(1); the upper bound for GLW follows additionally from Theorem 6. The
lower bound for GLU is obvious and for GLW it is by Theorem 3 and the EXPTIME-
hardness result for GLU(1).

57

A. Energy Games in Multiweighted Automata

6. Parameterized Existential Problems

In this section we shall focus in more detail on the existential one-player energy games.
So far we have studied decision problems where both the initial weight vector and the
upper bound were given as a part of the input. We will now consider parameterized
versions of the problems where, given a weighted automaton, we ask whether there is
some initial weight vector v̄0 (and some upper bound b̄ in case of ELU and ELW) such
that the automaton has a run where the accumulated weight satisfies the constraints
imposed by the respective variant of the problem.

Recent work by Chatterjee et al. [CDHR10] proves that the parameterized version of
the EL problem, asking if there is an initial weight vector such that the accumulated
weight of some run in the automaton stays (component-wise) above zero, is decidable
in polynomial time. Perhaps surprisingly, this result contrasts with our EXPSPACE-
hardness result for the EL problem where the initial weight vector is fixed. An interesting
fact, using Lemma 1, is that by the result of [CDHR10], it is also decidable in polynomial
time whether there is an initial marking such that a given Petri net has an infinite run.

The situation can be, however, different when considering the problems ELU and
ELW. Depending on whether the parameterized upper bound b̄ is allowed to appear as
a weight in transitions of the given weighted automaton (see Section 1 for an example
where the upper bound appears as a weight), we shall show below that the problem is
either decidable in polynomial time or undecidable.

We present first the positive result. Its proof is based on a polynomial time algo-
rithm for zero-weight cycle detection in multiweighted automata by Kosaraju and Sul-
livan [KS88], and we acknowledge [CDHR10] where we found a pointer to this result,
which is mentioned there in connection with the parameterized EL problem.

Theorem 8. The parameterized ELU and ELW problems where the upper bound param-
eter does not appear as a weight in the underlying weighted automaton are decidable in
polynomial time.

Proof. We shall first focus on the ELU problem. Notice that a parameterized ELU
problem has an infinite run (q0, v̄0), (q1, v̄1), . . . where 0̄ ≤ v̄i ≤ b̄ for all i and some b̄
if and only if there are two indices j < k such that (qj, v̄j) = (qk, v̄k). In other words,
there is a cycle such that the accumulated weight on that cycle is exactly 0̄. A result
in [KS88] shows that the existence of such zero-weight cycle is decidable in polynomial
time.

Assume without loss of generality that the given weighted automaton contains only
states reachable (while disregarding the weights) from the initial state q0. It is now clear
that if the weighted automaton contains a zero-weight cycle then the parameterized
ELU problem has a solution by choosing an appropriate initial weight vector v̄0 and a
sufficiently large upper bound b̄ which enables us to execute the whole cycle plus reach
the cycle from the initial pair (q0, v̄0). On the other hand, if there is no zero-weight cycle
then the parameterized ELU does not have a solution, as for any choice of v̄0 and b̄,
every run will eventually violate either the lower bound or the upper bound.

58

6. Parameterized Existential Problems

By similar arguments, it is easy to see that a parameterized ELW problem has a
solution if and only if the weighted automaton contains a nonnegative-weight cycle. To
check for the existence of such a cycle in polynomial time we can use the trick described
in [CDHR10]. We simply add to each state in the automaton a number of self-loops with
weights (−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . (0, . . . , 0,−1) and then ask for the existence
of a zero-weight cycle. �

However, if the upper bound can appear as a weight, we get undecidability.
Recall that a Minsky machine with two nonnegative counters c1 and c2 is a sequence

of labeled instructions 1 : inst1; 2 : inst2; . . . , n : instn where instn = HALT and each
insti, 1 ≤ i < n, is of one of the following forms:

(Inc) i: cj := cj + 1; goto k

(Test-Dec) i: if cj = 0 then goto k else (cj := cj - 1; goto `)

for j ∈ {1, 2} and 1 ≤ k, ` ≤ n. Instructions of type (Inc) are called increment instruc-
tions and of type (Test-Dec) are called test and decrement instructions. A configuration
is a triple (i, v1, v2) where i is the current instruction and v1 and v2 are the values of the
counters c1 and c2 respectively. A computation step between configurations is defined in
the natural way. If starting from the initial configuration (1, 0, 0) the machine reaches
the instruction HALT then we say it halts.

It is well known that the problem whether a given Minsky machine halts is undecid-
able [Min67].

Theorem 9. The parameterized ELU(2) and ELW(4) problems where the upper bound
parameter can appear as a weight in the underlying weighted automaton are undecidable.

Proof. We provide a reduction from the undecidable halting problem of Minsky ma-
chines [Min67] to ELU(3). Let 1 : inst1; 2 : inst2; . . . , n : instn be a Minsky machine over
the nonnegative counters c1 and c2. We construct a 3-weighted automaton (Q, q0,−→)
where Q = {qi, q′i | 0 ≤ i ≤ n} and where the initial weight vector v̄0 and the upper
bound b̄ are parameterized. The intuition is that the first and second coordinates will
record the accumulated values of counters c1 and c2, respectively, and the third coordi-
nate will be used for counting the number of steps the machine performs. The transitions
are of four types:

1. q0
+b̄−→ q′0

−b̄−→ q1

2. For each instruction i: cj := cj + 1; goto k, we add the transitions

• qi
(+1,0,+1)−−−−−→ qk if j = 1, and qi

(0,+1,+1)−−−−−→ qk if j = 2.

3. For each instruction i: if cj = 0 then goto k else (cj := cj - 1; goto `),
we add the transitions

• qi
(+b̄[1],0,0)−−−−−−→ q′i

(−b̄[1],0,+1)−−−−−−−→ qk and qi
(−1,0,+1)−−−−−→ q` if j = 1, and

59

A. Energy Games in Multiweighted Automata

• qi
(0,+b̄[2],0)−−−−−−→ q′i

(0,−b̄[2],+1)−−−−−−−→ qk and qi
(0,−1,+1)−−−−−→ q` if j = 2.

4. Finally, we add the loop qn
(0,0,0)−−−→ qn.

It is now easy to argue that the constructed 3-weighted automaton has an infinite run
if and only if the Minsky machine halts.

From Theorem 5 we get that ELU(3) is reducible to ELU(2), hence the parameterized
existential problem is undecidable for vectors of dimension two. By Theorem 3 we can
reduce ELU(2) to ELW(4), which implies the undecidability of the problem also for weak
upper bound and weight vectors of size at least four. �

The parameterized problems ELU(1) and ELW(k) for 1 ≤ k ≤ 3 where the upper
bound parameter can appear in the automata are open.

7. Extension to Timed Automata

It is natural to ask for extensions of the results presented in this article to multiweighted
timed automata and games [ATP04, BFH+01].

Formally a k-weigthed timed automaton is defined as follows. Let Φ(C) be the stan-
dard set of (diagonal-free) clock constraints over a finite set of clocks C given by con-
junctions of constraints of the form x ./ c with x ∈ C, c ∈ Z, and ./ any of the relations
≤, <, =, >, and ≥.

A k-weighted timed automaton is a tuple T = (L, `0, C, E, r, w), where L is a finite set
of locations, `0 ∈ L is the initial location, C is a finite set of clocks, E ⊆ L×Φ(C)×2C×L
is a finite set of edges, and r : L → Z

k, w : E → Z
k assign weight vectors to locations

and edges.
Note that we allow weight updates on edges here; as shown in [BFLM10], this can

have a significant influence on the complexity of the problems one wants to consider.
We also use the standard notation v |= g for the fact that a valuation v : C → R≥0

satisfies the clock constraint g ∈ Φ(C), v+t for the valuation given by (v+t)(x) = v(x)+t,
and v[R] for the valuation with clocks in R reset to value 0.

The semantics of a k-weighted timed automaton is now given by a k-weighted au-
tomaton with states Q = L×RC

≥0 and transitions

(`, v)
t·r(`)−→ (`, v + t) for all t ∈ R≥0 (delay),

(`, v)
w(e)−→ (`′, v′) for all e = (`, g, R, `′) ∈ E s.t. v |= g and v′ = v[R] (switch).

We recall the fact that weights on delay transitions may be non-integer real numbers;
formally we have to change the definition of a k-weighted game to allow an infinite
weighted transition relation −→ ⊆ Q × Rk × Q. A run in a multiweighted timed
automaton is a sequence of alternating switch and delay transitions in the corresponding
multiweighted automaton.

60

7. Extension to Timed Automata

(−6, 0)

`1

(1, 0) (30, 0)

`2

(−1, 0) (−n, 0)

`3

x := 0

(5, 0) (−5, 0) (−5, 0) (5, 0)

x = 1

Figure 8.: The module for incrementing (n = 3) and decrementing (n = 12)

For the case with one weight and one clock only, extensions to timed automata have
been discussed in [BFLM10, BFL+08]. In [BFL+08] it has been shown that the GLU(1)
problem is already undecidable for one-clock multiweighted timed automata. By an
adaptation of the technique introduced in [BFL+08], we can prove that the existential
problem ELU with two weights and one clock is also undecidable. As the reductions from
Theorem 3 apply also to timed automata, we altogether get the following undecidability
results.

Theorem 10. The problems ELU(2), EL(4) and ELW(4), and GLU(1), GL(2) and
GLW(2) are undecidable for one-clock multiweighted timed automata.

Proof of Theorem 10. We start by proving the case of ELU(2). The proof is by reduction
from Minsky machines to multiweighted timed automata, based on the technique of the
proof of Theorem 17 in [BFL+08]. We construct a one-clock 2-multiweighted timed
automaton T that simulates a Minsky machine such that the Minsky machine loops if
and only if T is a positive instance of the ELU(2) problem.

The values c1, c2 of the counters will be encoded by the accumulated weight vector
w̄ = (5− 2−c1 , 5− 2−c2) and T will start with an initial weight vector of v̄0 = (4, 4), and
the upper bound vector is b̄ = (5, 5).

In order to simulate the instructions of the Minsky machine we now describe two
different modules of T .

Increment and decrement: Figure 8 shows the general module used for incrementing
and decrementing counter c1; by interchanging the two weights one obtains the module
for c2. Note that the second component w̄[2] of the weight vector is not changed in the
module, and we assume that w̄[1] = 5 − e when entering the module and 0 ≤ en ≤ 30.
We now prove that when exiting the module, w̄[1] = 5− en

6
.

Any legal run must decrease w̄[1] to value 0 while delaying in `1 (otherwise adding 5
to w̄[1] in the following transition exceeds the upper bound), hence the clock x has the
value 5−e

6
when leaving `1. We cannot delay in the next location, as this would exceed

the upper bound, hence we arrive in `2 with x = 5−e
6

and w̄[1] = 0. We must delay in
`2 until w̄[1] has the value 5, otherwise the following transition would exceed the lower
bound, hence the delay in `2 is precisely 1/6 time units. Location `3 is thus entered with
x = 1− e

6
and w̄[1] = 5, and after delaying for e/6 time units, w̄[1] = 5− en

6
.

Hence instantiating n = 3 converts an input of w̄[1] = 5 − e to w̄[1] = 5 − e
2
, thus

incrementing counter c1. Likewise, for n = 12 counter c1 is decremented.

The test-decrement module: We have shown how to implement a module which
increments a counter, so we miss to construct a module performing the instruction

61

A. Energy Games in Multiweighted Automata

(0, 0) (0, 0) Module mk

Dec (0, 0) Module m`

(1, 0) (−1, 0)

(0, 0)
(−4, 0) (4, 0)

Figure 9.: The test-decrement module

if c1 = 0 then goto k else (c1 := c1 - 1; goto `). This module is displayed in
Figure 9; the construction for the corresponding c2 module is symmetric.

We now argue that the module acts as claimed. If c1 = 0 when entering, i.e. w̄[1] = 4,
then the upper path can be taken, leading to Module mk with counter value c1 = 0 (and
c2 unchanged). On the other hand, attempting to take the lower path exits the Dec
module with a value w̄[1] = 3, hence the following transition leads to a violation of the
lower bound.

If c1 ≥ 1, i.e. w̄[1] ≥ 4.5, when entering the module, then the (1, 0) transition in the
upper path will violate the upper bound. In the lower path, the Dec module is left with
w̄[1] ≥ 4 and c1 decreased by one, hence Module m` is entered with the correct c1 value.

We have shown how to faithfully simulate a Minsky machine by a one-clock 2-
multiweighted timed automaton such that the Minsky machine has an infinite com-
putation if and only if the timed automaton has an infinite alternating run.

By undecidability of the halting problem for Minsky machines, this concludes the
proof for the case of ELU(2).

For the case of EL(4) and ELW(4) we observe that the construction in the proof of
Theorem 3 can be adapted also to multiweighted timed automata. Given a k-weighted
timed automaton T = (L, `0, C, I, E, r, w) and an upper bound vector b̄, we construct a
2k-weighted timed automaton T ′ = (L′, `′0, C, I

′, E ′, r′, w′) with L′ = L] {`′0}, I ′(`) =
I(`) for ` ∈ L, I ′(`′0) = (

∧
x∈C x = 0), E ′ = E ∪ {(`′0, (

∧
x∈C x = 0), ∅, `0)}, r′(`′0) = 0̄,

and

r′(`) = (r̄[1], . . . , r̄[k],−r̄[1], . . . ,−r̄[k]) for ` ∈ L and r̄ = r(`),

w′(`, g, R, `′) = (w̄[1], . . . , w̄[k],−w̄[1], . . . ,−w̄[k])

for (`, g, R, `′) ∈ E and w̄ = w(`, g, R, `′),

w′(`′0, g, R, `0) = (0, . . . , 0, b̄[1], . . . , b̄[k]).

Then T is a positive instance of the ELU problem with an upper bound vector b̄ if and
only if T ′ is a positive instance of the EL or ELW (with weak upper bound vector b̄)
problems. The claim then follows from Theorem 10.

The results for the game versions of the problems follow from undecidability of GLU(1)
[BFL+08] together with Theorem 3. �

62

8. Conclusion and Future Work

8. Conclusion and Future Work

We have presented an extension of different types of energy games to a setting with
multiple weights and established a comprehensive account of the complexity of these
problems. To derive our results, we have demonstrated a close connection of these
problems with infinite run problems in Petri nets, together with a number of reductions
between different variants of multiweighted energy games. We have also studied a param-
eterized version of these problems and shown that depending on the precise statement
of the problem, it is either solvable in polynomial time or undecidable. Finally, we have
demonstrated that for the timed automata extension of energy games, the lower and
upper bound existential problem is undecidable already for one clock and two weights.

There are two main problems left open. The first one deals with settling the complex-
ity of the one-weight lower and upper bound existential problem, which is only known to
be between NP and PSPACE. This is closely related to the lower bound and weak upper
bound problems with a fixed number of weights. The second problem deals with the com-
plexity of energy games with lower bound only, as the present upper complexity bound
depends on the number of weights and does not have a matching lower bound. Further
extensions with e.g. different acceptance conditions and the optimization problems are
also of future interest.

63

BOptimal Bounds for Multiweighted
and Parametrised Energy Games

Line Juhl Kim G. Larsen
Aalborg University, Department of Computer Science, Denmark

Jean-François Raskin
Université Libre de Bruxelles, Belgium

Abstract Multiweighted energy games are two-player multiweighted games that con-
cern the existence of infinite runs subject to a vector of lower and upper bounds on the
accumulated weights along the run. We assume an unknown upper bound and calculate
the set of vectors of upper bounds that allow an infinite run to exist. For both a strict
and a weak upper bound we show how to construct this set by employing results from
previous works, including an algorithm given by Valk and Jantzen for finding the set
of minimal elements of an upward closed set. Additionally, we consider energy games
where the weight of some transitions is unknown, and show how to find the set of suitable
weights using the same algorithm.

64

1. Introduction

1. Introduction

Energy games have recently attracted considerable attention [BFLM10, BFL+08, BJK10,
CdAHS03, Cha10, CD10, CDHR10, DDG+10, FJLS11]. An energy game is played by
two players on a weighted game automaton. Player 1 is winning if he has a strategy
such that all infinite runs respecting this strategy has nonnegative accumulated weight
at all times. A variant of energy games furthermore requires an upper bound that the
accumulated weight must stay below at all times in order for Player 1 to win. The upper
bound can also be weak, implying that all accumulated weights going above are simply
truncated. As embedded systems are often resource-constrained systems exhibiting a
reactive behaviour, energy games are relevant for ensuring that the resource of the system
never becomes unavailable no matter the choices of the environment. Multiweighted
energy games, where the weights of the automaton are vectors, are useful for modelling
systems that depend on more than one resource.

In this paper we consider multiweighted energy games with unknown upper bound
(both strict and weak) and fixed initial value. When considering the existence of a
vector of upper bounds such that Player 1 is winning, it is from an engineering viewpoint
relevant to construct the actual vector instead of giving a boolean answer to the problem.
We therefore seek to construct the exact set of upper bounds that make Player 1 win the
energy game. We will denote such upper bounds as winning. For both types of upper
bounds it is clear that if some vector of upper bounds is winning, then also coordinate-
wise larger vectors are winning. In order to characterise the set of winning upper bounds,
it is thus sufficient only to find the smallest vector of winning upper bounds. However,
≤ is not a total order on Zk for k > 1, so instead of a unique smallest vector we search
for the set of smallest incomparable vectors winning for Player 1.

To motivate the study, let us consider a small example of an automatic vacuum cleaner.
The machine has a rechargeable battery and a container for the dust it collects. As we
are interested in a behaviour that never empties the battery nor completely fills the dust
container, it can be modelled using a 2-weighted energy game as seen in Figure 1a. The
vector attached to each transition denotes the change in battery (first coordinate) and
container level (second coordinate). The diamond state is controlled by Player 1 while
the square state is controlled by the environment, as the vacuum cleaner does not control
how dirty the floor is when vacuuming.

The lower bound of the two resources are naturally 0, while the upper bound corre-
sponds to the size of the battery and container, respectively. For a manufacturer it is
useful to know what size he can possible make the battery and the container in order to
ensure an infinite run. The set of minimal winning upper bounds consists in this case of
the vectors (6, 2) and (5, 3). The upper bound vector (6, 2) keeps the container as small
as possible, while the upper bound vector (5, 3) keeps the battery as small as possible.
Surely, the first coordinate of an upper bound cannot be smaller than 5, as charging
adds 5 to the accumulated weight in the first coordinate. Similarly, the second coordi-
nate cannot be smaller than 2, as a very dirty floor adds 2 to the accumulated weight in
the second coordinate. The winning strategy for Player 1 can be seen in Figure 1b for
(6, 2) and Figure 1c for (5, 3). Any vector larger than one of the minimal vectors will

65

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

(5, 0)
charge (−1,−1)

empty

(−
1,0)

vacu
u
m(−1, 2)

very dirty
(−1, 1)
dirty

(a) A vacuum cleaner 2-weighted game

if battery ≥ 1 and container ≥ 1
then empty

else if battery ≥ 2 and container = 0

then vacuum
else charge

(b) A winning strategy for Player 1 with up-
per bound (6, 2)

if battery = 0
then charge

else if battery ≥ 2 and container ≤ 1

then vacuum
else empty

(c) A winning strategy for Player 1 with up-
per bound (5, 3)

Figure 1.: A vacuum cleaner example

also serve as a winning upper bound.

Contributions. For multiweighted energy games with an unknown upper bound (both
strict and weak) and fixed initial value we calculate the set of minimal upper bounds
such that the energy game is winning. For a strict upper bound we make use of results
from [BJK10] and [FJLS11] in order to construct the set, yielding an algorithm running
in 2k-exponential time. In the case of a weak upper bound we utilise an algorithm
given by Valk and Jantzen in [VJ84], that constructs the set of minimal elements of an
upward-closed set (the so-called Pareto frontier), by showing that the preconditions for
applying the algorithm are fulfilled. The relevant definitions are given in Section 2, while
Section 3 and Section 4 treat the cases of a weak and a strict upper bound, respectively.

Furthermore we study a related problem in Section 5, where we consider multiweighted
energy games where both the initial value and the upper bound (if any) are known,
but where some weights of the transitions are unknown. We call these parametrised
transitions. We here seek to characterise the set of possible evaluations for the parameters
such that Player 1 can win the energy game. For a weak upper bound, it is again sufficient
to construct the set of minimal evaluations such that Player 1 is winning, and we are
once again able to apply the algorithm from [VJ84] to construct the set.

Related Work. Previously energy games have been considered in different settings.
One-weighted energy games with both upper and lower bounds were defined in [BFL+08].
Here they study the existence of a winning strategy for Player 1 for a fixed initial value
and fixed upper and lower bound and provide bounds on the complexity for the identified
problems both in a timed and untimed setting. The paper [FJLS11] extends the results

66

2. Multiweighted Energy Games

from [BFL+08] to the multiweighted case. The work of [CDHR10] treats multiweighted
energy games with only a lower bound and show that deciding whether there exists a
vector of initial values for the resources such that Player 1 can win the energy game is
coNP-complete and that only finite-memory strategies are sufficient. In [BJK10] they
give a procedure running in (k − 1)-exponential time that calculates the Pareto frontier
of winning initial vectors in multiweighted energy games with k weights, a lower bound
and unary weights on transitions (vector addition systems with states). For energy
games with imperfect information and fixed initial value, the paper [DDG+10] proves
decidability of the problem, but undecidability in case the initial value is not fixed.

2. Multiweighted Energy Games

In this paper, we let Z and N denote the sets of all integers and all nonnegative integers,
respectively. We define Nω as N∪{ω}, where ω is a new element modelling an arbitrary
nonnegative integer. Thus ω > m for any m ∈ N.

For two k-dimensional vectors v̄, v̄′ ∈ Nk
ω we use the notation v̄[i] to denote the

ith coordinate of the vector v̄ (1 ≤ i ≤ k) and write v̄ ≤ v̄′ if v̄[i] ≤ v̄′[i] for all
i ∈ {1, . . . , k}. We define the sum of two vectors as the coordinate-wise sum, i.e. v̄+ v̄′ =
(v̄[1] + v̄′[1], . . . , v̄[k] + v̄′[k]). The notation 0̄ = (0, . . . , 0) is used to denote the vector of
all zeros and ∞ = (∞, . . . ,∞) as the ditto for ∞.

A set K ⊆ N
k is said to be upward closed if x̄ ∈ K and x̄ ≤ ȳ implies ȳ ∈ K.

Furthermore we define min(K) as the set of smallest incomparable vectors of K,

min(K) = {x̄ ∈ K | ∀ ȳ(6= x̄) ∈ K : ȳ 6≤ x̄} .
We call such a min(K) the minimal generating set of K.
It it well-known that such a set of incomparable vectors of natural numbers will be

finite (as stated in Dickson’s lemma) and unique.
We now define a game with multiple weights as an automaton with dedicated state

sets for each player and a transition function decorated with a vector of integers.

Definition 1. A k-weighted game is a four-tuple G = (S1, S2, s0,−→), where S1 and S2

are finite, disjoint sets of existential and universal states, respectively, s0 ∈ S1 ∪ S2 is
the start state and −→ ⊆ (S1 ∪ S2)×Zk × (S1 ∪ S2) is a finite multiweighted transition
relation.

We write s
w̄−→ s′ whenever (s, w̄, s′) ∈ −→. In the following we consider only non-

blocking automata, i.e. for every s ∈ S1 ∪ S2 we have s
w̄−→ s′ for some w̄ ∈ Nk and

s′ ∈ S1 ∪ S2.

Definition 2. A configuration in a k-weighted game G = (S1, S2, s0,−→) is a pair (s, v̄)
such that s ∈ S1 ∪ S2 and v̄ ∈ Zk.

A weighted run π in G restricted to a weak upper bound b̄ ∈ (N∪{∞})k is an infinite

sequence of configurations (s0, v̄0), (s1, v̄1), . . . such that for all i ≥ 0 we have si
w̄i−→ si+1

and v̄i+1[j] = min{b̄[j], v̄i[j] + w̄i[j]} for all j ∈ {1, . . . , k}.

67

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

By WRb̄(G) we denote all weighted runs in G with weak upper bound b̄ starting from
the initial state. Let πi denote the ith configuration of a weighted run π.

As we are concerned with games we need a notion of a strategy for a player.

Definition 3. A strategy for Player i ∈ {1, 2} in a k-weighted game G = (S1, S2, s0,−→)
restricted to some weak upper bound b̄ is a mapping σ assigning a configuration (s, v̄)
to any finite prefix of a weighted run in WRb̄(G) of the form (s0, v̄0), . . . , (sj, v̄j) where
sj ∈ Si such that (s0, v̄0), . . . , (sj, v̄j), (s, v̄) is a prefix of a weighted run in WRb̄(G).

We say that a weighted run (s0, v̄0), (s1, v̄1), . . . respects a strategy σ of Player i if
σ((s0, v̄0), . . . , (sj, v̄j)) = (sj+1, v̄j+1) for all sj ∈ Si.

We can now define the following three notions of winning vectors.

GL: Given a k-weighted game G, a vector v̄0 ∈ Nk wins the (multiweighted) energy
game with lower bound (GL) if there exists a winning strategy σ for Player 1 such
that any weighted run (s0, v̄0), (s1, v̄1), . . . ∈ WR∞(G) respecting σ satisfies 0̄ ≤ v̄i
for all i ≥ 0.

GLW: Given a k-weighted game G, a vector b̄ ∈ Nk wins the (multiweighted) energy
game with lower and weak upper bound (GLW) if there exists a winning strategy
σ for Player 1 such that any weighted run (s0, 0̄), (s1, v̄1), . . . ∈ WRb̄(G) respecting
σ satisfies 0̄ ≤ v̄i for all i ≥ 0.

GLU: Given a k-weighted game G, a vector b̄ ∈ Nk wins the (multiweighted) energy
game with lower and upper bound (GLU) if there exists a winning strategy σ for
Player 1 such that any weighted run (s0, 0̄), (s1, v̄1), . . . ∈ WR∞(G) respecting σ
satisfies 0̄ ≤ v̄i ≤ b̄ for all i ≥ 0.

Notice that we may allow an initial weight vector v̄0 different from 0̄. This is evident
by adding a new start state with one transition labelled with v̄0 pointing to the old start
state.

Define I = {v̄0 ∈ Nk | v̄0 wins GL}, W = {b̄ ∈ Nk | b̄ wins GLW} and U = {b̄ ∈
N
k | b̄ wins GLU} as the winning vectors for GL, GLW and GLU, respectively. The

paper [BJK10] calculates the set min(I) using (k − 1)-exponential time for k-weighted
energy games with unary weights.

This paper aims to calculate the minimal generating sets of winning weak and strict
upper bounds, min(W) and min(U).

3. Weak Upper Bound

In this section we study the problem of finding the set min(W) as defined in Section 2.
The paper [VJ84] by Valk and Jantzen contains an algorithm for computing the min-

imal generating set of an upward closed set K ⊆ Nk provided that K satisfies a certain
decidability criterion.

68

3. Weak Upper Bound

(s0, 0̄)

(sj, v̄i)

(sj, v̄j)

(s0, v̄m)(sk, v̄k)

(s`, v̄`)

· · ·

· · ·

· · ·

· · ·

Figure 2.: Self-covering tree

The decidability question is defined for a set K ⊆ N
k as a predicate pK : Nk

ω →
{true, false} by pK(d̄) = ({d̄′ ∈ Nk | d̄′ ≤ d̄}∩K 6= ∅). Thus pK(d̄) decides whether or
not the set K has any elements in common with the set of vectors smaller than or equal
to d̄. If pK(d̄) is decidable for any d̄ ∈ Nk

ω, the algorithm can be applied to compute the
minimal generating of K.

We will now argue that the algorithm proposed in [VJ84] is useful for constructing
min(W). The set W is upward closed since a weak upper bound b̄ ∈ Nk that wins
GLW ensures that any b̄′ ≥ b̄ will also win GLW. As min(W) is exactly the minimal
generating set of W , min(W) can be found using the algorithm in case pW is decidable.

Lemma 4. The predicate pW (d̄) is decidable for any d̄ ∈ Nk
ω.

Proof. Given a vector d̄ ∈ Nk
ω the following procedure will either construct b̄ ∈ W such

that b̄ ≤ d̄ or report than no such b̄ exists. Let d̄′ be the vector d̄ where all ω-entries are
substituted by ∞.

Starting from the configuration (s0, 0̄) we construct a self-covering tree containing
prefixes of all weighted runs. Any configuration (s, v̄) induces the child (s′, v̄′) for any

s
w̄−→ s′ such that v̄′[`] = min{d̄′[`], w̄[`] + v̄[`]} for all ` ∈ {1, . . . , k}. The unfolding of

the game graph stops for each branch (i.e. weighted run (s0, 0̄), (s1, v̄1), . . . ∈ WRd̄′(G))
when reaching an i such that either

A. v̄i[`] < 0 for some ` ∈ {1, . . . , k} or

B. si = sj and v̄i ≥ v̄j for some j < i.

Figure 2 illustrates such a self-covering tree. Here v̄i ≥ v̄j and v̄m ≥ 0̄. Any leaf
satisfies either A or B.

Notice that since the state set is finite and (Nk,≤) is a wqo, such an i exists for all
branches and we thus construct a finite tree. In the case of A we mark a leaf configuration
(si, v̄i) as losing and in case of B we mark (si, v̄i) as winning. We propagate the marking
of the leaves to the configuration (s0, 0̄) in the following way, starting with configurations
having only leaves as children. If the state of the configuration belongs to Player 1 and

69

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

at least one child is winning, we mark the configuration as winning. Otherwise it is
losing. If the state of the configuration belongs to Player 2 and all children are winning
we mark the configuration as winning. Otherwise it is losing. In case (s0, 0̄) is losing,
pW (d̄) = false, as any weighted run is forced to a losing leaf if Player 2 consistently
picks losing children. If (s0, 0̄) is winning, we set pW (d̄) = true, as we can construct b̄
and a winning strategy σ for Player 1, proving the existence of a winning vector b̄ for
GLW.

The strategy σ is determined by the tree. For each prefix of each branch π↓n =

(s0, 0̄), . . . , (sn, v̄n), where sn ∈ S1, we let σ(π↓n) = (s, v̄), where sn
w̄−→ s for some

w̄ such that v̄ = v̄n + w̄ and (s, v̄) is a winning child of (sn, v̄n). For any branch
π↓m = (s0, 0̄), . . . , (sn, v̄n), . . . , (sm, v̄m), where sm = sn and v̄m ≥ v̄n (a winning leaf) we
let σ(π↓m) = σ(π↓n). Notice that if (sn, v̄n) does not have any winning children (or is a
losing leaf) a winning strategy will never lead us to this state (and thus any next state
can be picked).

It is easy to see that any weighted run respecting σ keeps all accumulated weights
nonnegative, since all transitions taken by Player 1 and 2 leads to states marked as
winning by the definition of σ. At some point the weighted run will enter a loop that
has a nonnegative accumulated weight in all coordinates. Furthermore σ is finitely
representable.

The weak upper bound b̄ that satisfies b̄ ≤ d̄ and is contained in W can be found
by examining the self-covering tree and pruning the tree by removing the branches not
respecting σ. For the entries of d̄ that are not ω we reuse these entries in b̄ and for any
remaining ω-entry in dimension ` we find the largest accumulated weight max` seen in
any configuration of the tree in dimension `. Formally

b̄[`] =

{
max` if d̄[`] = ω ,

d̄[`] otherwise

for all ` ∈ {1, . . . , k}. This bound is save to apply as a weak upper bound, since
truncating all weights at this upper bound will not cause the accumulated weights to be
negative at any point. �

As Lemma 4 allows us to use the algorithm presented in [VJ84] we get the following
corollary.

Corollary 5. The set min(W) is computable.

Notice that we can apply the above procedure for the special case of d̄ = (ω, . . . , ω) if
we are interested in whether there exists some weak upper bound that wins GLW (e.g. de-
termine whether W is empty or not).

4. Strict Upper Bound

For the case of a strict upper bound we see that U is also an upward closed set, but for
deciding pU(d̄) for any d̄ ∈ Nk

ω we cannot use the approach presented in the proof of

70

4. Strict Upper Bound

(−3, 1)

(4,−4)(1, 5)

(−2, 1)

(−3, 1, 3,−1)

(4,−4,−4, 4)(1, 5,−1,−5)

(−2, 1, 2,−1)

Figure 3.: Example of a reduction from Gk to G2k

Lemma 4. This is due to the construction of the self-covering tree, where we here cannot
stop when reaching a cycle with positive accumulated weight in one of the coordinates,
since looping forever (as indicated in Figure 2 by dashed arrows) will eventually cause
one of the strict upper bounds to be violated. For constructing min(U) we instead make
use of energy games with no upper bound.

Theorem 6. The set min(U) is computable in 2k-exponential time.

Proof. The paper [FJLS11] provides the following useful reduction. Determining whether
a given upper bound b̄ wins GLU with k weights is polynomial time reducible to deter-
mining whether the initial vector (0̄[1], . . . , 0̄[k], b̄[1], . . . , b̄[k]) wins GL with 2k weights.

Given a k-weighted game Gk the reduction works by constructing a 2k-weighted game
G2k by doubling the number of weights on each transition of Gk, adding a new start
state and letting each new transition have the weight (w̄[1], . . . , w̄[k],−w̄[1], . . . ,−w̄[k])
for any old transition with weight w̄. The reduction is seen in Figure 3, where the circular
states denote either a Player 1 or Player 2 state. Now if one of the first k weights goes
above b̄, one of the last k weights will go below 0.

The paper [BJK10] provides an algorithm running in (k − 1)-exponential time for
constructing the set min(I) for any k-weighted game with only unary updates, that is

a game G = {S1, S2, s0,−→}, where each s
w̄−→ s′ satisfies w̄ ∈ {−1, 0,−1}k.

We can reduce G2k with arbitrary updates to the unary setting by introducing inter-
mediate transitions that repeatedly add or subtract 1 (causing an exponential blowup in
the size of the automaton) and obtain the finite set min(I) by applying the algorithm
presented in [BJK10].

Now we can easily construct min(U) for Gk from min(I) for G2k as “subvectors” of
the vectors in min(I) with all 0’s in the first k coordinates,

min(U) = {b̄ ∈ Nk | (0̄[1], . . . , 0̄[k], b̄[1], . . . , b̄[k]) ∈ min(I)} .

This procedure presented in [BJK10] runs in (k−1)-exponential time for en k-weighted
game with unary updates on transitions. Since we in our setting double the number of
weights and reduce the arbitrary weights to unary weights, we achieve a procedure
running in 2k-exponential time. �

In case of an energy game with both unknown strict upper bound and unknown initial
value, the above proof can as well be applied for finding the set of all pairs of initial

71

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

(p, 0)
charge (−1,−1)

empty

(−
1,0)

vacu
u
m(−1, 2)

very dirty
(−1, 1)
dirty

Figure 4.: A parametrised vacuum cleaner example

values and upper bounds that will win the energy game (this set corresponds to the set
min(I) for G2k). The problem of simultaneous synthesis with initial value and strict
upper bound can therefore be solved in 2k-exponential time.

5. Parametrised Transitions

A variant of the problem of parametrised bounds is parametrised transitions. Instead of
letting the upper bound or initial value be unknown, we may also consider multiweighted
energy games where not all weights of the transitions that gain resources are known. As
in the case of an unknown upper bound, we are interested in not only knowing whether
there exists an assignment of weights such that Player 1 has a winning strategy in the
various energy games, but in constructing the actual set of assignments such that Player
has a winning strategy. For no upper bound or a weak upper bound this set is upward
closed and can thus be characterised by its minimal generating set. For a strict upper
bound this is not the case and we must to represent the set otherwise.

Consider the automatic vacuum cleaner in Figure 4, where the first coordinate of the
weight of the charge transition is unknown (the parameter p). For a strict upper bound
of (5, 3) we now seek to compute the set of possible weight assignments to p such that
Player 1 has a winning strategy. The smallest possible weight assigned to p is 2 (using
the strategy from Figure 1c). As it turns out, both 3, 4 and 5 as the value of p give
rise to a winning strategy for Player 1 (again as seen in Figure 1c). Surely p cannot
be assigned a larger weight than the upper bound in the first coordinate, as this would
enable us from charging at any time. The full set of suitable values of p is therefore
{2, 3, 4, 5}.

Formally we let a parametrised k-weighted game G = {S1, S2, s0,−→} over a set of
parameters P = {p1, . . . , p`} be a game where −→ ⊆ (S1 ∪ S2)× (Z ∪ P)k × (S1 ∪ S2).
Given an evaluation function e : P → N, we let −→e be the set −→ where any parameter
pi ∈ P is substituted with its evaluation e(pi). In case there exists an evaluation function
e for a parametrised game G with upper bound b̄ such that b̄ wins GLU given the game
Ge = (S1, S2, s0,−→e), we say that e wins GLU with parametrised transitions. The
same winning notion can be defined for GLW and GL with parametrised transitions.
Given two evaluations e, e′, we say that e ≤ e′ if e(pi) ≤ e′(pi) for all i ∈ {1, . . . , `}.

72

6. Conclusion and Future Work

We denote the set of winning evaluations for GLU, GLW and GL with parametrised
transitions by UT , WT and IT , respectively. Notice that the sets WT and IT are upward
closed, implying that these sets can be characterised by their minimal generating set of
evaluations, min(WT) and min(IT).

For min(WT) and min(IT) we as in Section 3 seek to use the algorithm presented
in [VJ84] to construct the two sets. The predicates pWT

and pIT must decide for any
parametrised game G whether there exists an evaluation for G in WT or IT , respectively.

Lemma 7. The predicates pWT
(d̄) and pIT (d̄) are decidable for any d̄ ∈ N`

ω.

Proof. Given a k-weighted game G with parametrised transitions and either a weak
upper bound b̄ or no upper bound, the existence of a winning evaluation implies the
existence of a winning evaluation e that for all i ∈ {1, . . . , `} satisfies e(pi) ≤M , where
M is the largest sum obtained by adding all negative weight updates in one coordinate,

i.e. M = maxj∈{1,...,k}

(∑
s

w̄−→s′
max(0,−w̄[j])

)
. To see this we note that between each

subsequent visit to any state we only need to visit all other states at most once (otherwise
we could remove a loop or Player 2 could force an arbitrary low accumulated weight),
and thus we subtract at most M in each coordinate between subsequent visits. Setting
e(pi) = M for all i ∈ {1, . . . , `} we can apply the decidability results from [FJLS11] on
the game Ge (either with or without b̄ as weak upper bound). Thus pWT

and pIT can be
answered. �

Using the algorithm presented in [VJ84], this leads to the following corollary.

Corollary 8. The sets min(WT) and min(IT) are computable.

In the case of GLU with parametrised transitions and b̄ as the upper bound the set UT
is not upward closed. However, the set of useful evaluations is finite, since any winning
evaluation must satisfy −b̄[i] ≤ e(t)[i] ≤ b̄[i] for all transitions t and all i ∈ {1, . . . , k}.
This set min(UT) can therefore be constructed by an exhaustive search of the possible
winning evaluations (again using the decidability results from [FJLS11]).

6. Conclusion and Future Work

Using the algorithm of Valk and Jantzen [VJ84] we have shown how to characterise the
set of winning upper bounds for multiweighted energy games with fixed initial value and a
weak upper bound. For a strict upper bound the problem is solvable using 2k-exponential
time. Furthermore we have studied multiweighted energy games with parametrised
transitions. For a fixed initial value and either a weak upper bound or no upper bound
the same algorithm is applied to construct the set of winning evaluations. For a strict
upper bound the set is shown computable as well.

Future work should include an investigation of the complexity of the above problems.
As there is no upper bound on the complexity of the Valk and Jantzen algorithm, we
have so far no complexity results for the results relying on the algorithm. Another
future work regards parametrised transitions, where we so far are able to synthesise

73

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

only nonnegative weights, and thus require that weights known to be negative are not
parametrised. A likely expansion is therefore to synthesising the set of winning eval-
uations for energy games where any weight coordinate can be unknown. Furthermore
the subject of simultaneous synthesis should be explored, where we consider games with
combinations of parametrised values, this may be initial value, upper bound (strict or
weak) or weight coordinates of transitions. Another direction of research is to study the
problems in connection with imperfect information.

74

CModal Transition Systems
with Weight Intervals

Line Juhl Kim G. Larsen Jǐŕı Srba
Aalborg University, Department of Computer Science, Denmark

Abstract We propose weighted modal transition systems, an extension to the well-
studied specification formalism of modal transition systems that allows to express both
required and optional behaviours of their intended implementations. In our extension we
decorate each transition with a weight interval that indicates the range of concrete weight
values available to the potential implementations. In this way resource constraints can
be modelled using the modal approach. We focus on two problems. First, we study
the question of existence/finding the largest common refinement for a number of finite
deterministic specifications and we show PSPACE-completeness of this problem. By
constructing the most general common refinement, we allow for a stepwise and iterative
construction of a common implementation. Second, we study a logical characterisation
of the formalism and show that a formula in a natural weight extension of the logic CTL
is satisfied by a given modal specification if and only if it is satisfied by all its refinements.
The weight extension is general enough to express different sorts of properties that we
want our weights to satisfy.

75

C. Modal Transition Systems with Weight Intervals

1. Introduction

Modal transition systems [LT88a] provide a specification formalism which can express
both safety and liveness requirements of their implementations—labelled transition sys-
tems. This formalism allows for two kinds of transitions to be present, namely required
(must) transitions and allowed (may) transitions. A rather loose specification can then
be transformed into a concrete implementable system by a series of refinements. This
idea of stepwise refinement is applicable for example for the development of embedded
systems. Recent work on modal transition systems includes applications in several differ-
ent areas like component-based software development [Rac08, BPR09], interface theory
[UC04, RBB+09], modal abstractions and program analysis [GHJ01, HJS01, NNN08],
and other areas [FS08, WGC09]. An overview article can be found in [AHL+08]. A simi-
lar concept has been studied also in the area of software product lines (see e.g. [GLS08b]
and [GLS08a]), however, their notion of refinement is syntactic and different from the
semantic refinement relation (based on the concepts of simulation/bisimulation) studied
in the theory of modal transition systems.

We present an extension of modal transition systems called weighted modal transition
systems that decorate each transition with an interval containing a range of weights.
The idea of modelling quantitative aspects in transition systems is well studied. For ex-
ample weighted transition systems (see e.g. the book [DKV09]) are a known extension
of standard labelled transition systems. Such systems are particularly useful for mod-
elling resource constraints, which are often seen in embedded systems (e.g. fuel/power
consumption, price). Weights therefore seem like a natural addition to modal transition
systems, in order to combine the benefits of the ’modal’ approach with the modelling of
quantities. By allowing both negative and positive weights, we are furthermore able to
model systems with both resource gains and losses.

Contrary to weighted transition systems, where transitions and/or states are labelled
with specific weights, we decorate transitions with sets of weights. This adheres to the
idea of a ’loose’ specification, since a specification then determines the range of allowed
weights instead of the precise weight. The refinement process will then rule out some of
the weights, eventually ending up with an implementation containing the final concrete
weight.

To motivate the use of weighted modal transition systems as a model for embedded
systems, consider an ATM machine. Two clients might each give a specification (or
requirements), detailing their allowed and required use of the machine, along with inter-
vals specifying the acceptable power consumption for each option. This is demonstrated
in Figure 1 (the two topmost systems). Here the dotted lines denote allowed behavior
(i.e. the behaviour that a client is willing to perform), while the solid lines denote re-
quired behavior (i.e. the behaviour a client is insisting on). The interval attached to
each transition is the interval where the power consumption (or some other cost) must
lie in. As we can see, both clients require that a card is inserted. After the insertion, the
clients only allow three actions, namely balance, withdraw and transfer. The balance
option is required by the left client, while the right client requires that a withdrawal
must be possible in an implementable system satisfying the specification. Even though

76

1. Introduction

the left client only specifies a withdrawal as optional, he/she requires that a PIN must
be entered in order to continue. After the PIN is accepted, an amount can be withdrawn
any number of times. The right client on the other hand specifies that a PIN is only
optional, however, that each amount withdrawn must be preceded with re-entering the
PIN.

An important problem is now to determine the existence of an implementation satis-
fying the needs of both clients and giving the exact power consumption for each option,
fitting in the consumption requirements made by the clients. We call such an implemen-
tation a common implementation. As it can be seen, the option of a transfer is allowed
by both clients, but since their power consumption intervals are not overlapping, it is
not possible to produce a specific system with a power consumption satisfying both
clients. The transfer option is, however, not required by any of the clients, and can thus
be ignored in a possible common implementation. Since insertion of the card, balance,
withdrawal and PIN entering are required behavior for one or the other of the two spec-
ifications, these must be present in the implementable system. Instead of constructing
just one common implementation, we aim at constructing the most permissive common
refinement, so that this refinement encapsulates all common implementations. Figure 1
shows a most permissive common refinement below the two clients’ specifications. After
entering the PIN a withdrawal is only allowed once, since the right-hand side specifica-
tion requires that a new amount specification is preceded by a PIN, while the left-hand
side specification does not.

Considering the common refinement in Figure 1, one might be interested in knowing
whether it is possible to withdraw some amount consuming between 10 and 20 energy
units. Since a withdrawal consumes at least 13 energy units and at most 19 (adding
the lower and upper interval bounds along the path), this is indeed possible. However,
since the transition labelled ’amount’ is only optional, some concrete implementations
may leave it out. It is therefore desirable to develop a logical setting that guarantees
that if some property is true for a given specification then it is also true for all its
implementations.

Our contribution consists of a definition of weighted modal transition systems and an
extension of the concepts related to modal transition systems to the weighted setting.
This includes modal and thorough refinements and the definition of an implementation.
Then we study the largest common refinement problem of finite deterministic specifica-
tions. A construction computing the conjunction of a given number of finite deterministic
specifications is presented, and we show that a given specification is their common re-
finement if and only if it refines the constructed largest common refinement. We further
show that deciding whether a common refinement exists or not is a PSPACE-complete
problem.

Our algorithm for the largest common refinement was inspired by the common im-
plementation construction provided in [BKLS09b]. However, we extend this technique
to the weighted scenario and more importantly generalize the construction such that
we construct the ‘most permissive’ common refinement, contrary to [BKLS09b] where
only the existence of a common implementation was studied. The maximality of our
construction hence allows for a stepwise and iterative construction of a common im-

77

C. Modal Transition Systems with Weight Intervals

s1 s2

s3

card

[2, 5]

withdraw

[1, 1]

PIN

[4, 9] am
ou

n
t

[3
,4

]

ba
la
nc

e

[1
, 6

]

re
tu

rn

[1
, 1

]

transfer
[6, 8] account

[5, 7]

t1 t2

card

[4, 8]

withdraw

[1, 3]

PIN

[5, 10]

amount
[2, 4]

ba
la
nc

e

[4
, 5

]

re
tu

rn

[1
, 1

]

transfer
[2, 5]

ac
co

u
n
t

[4
,6

]

card

[4, 5]

withdraw

[1, 1]

PIN

[5, 9]

amount

[3, 4]

ba
la
nc

e

[4
, 5

]

re
tu

rn

[1
, 1

]

Figure 1.: Two specifications of an ATM machine and their largest common refinement
below.

plementation, which is desirable in many applications and was not possible with the
previous algorithms.

We note that in this study we restrict ourselves to deterministic specifications as
demonstrated, for example, in our running examples. There are two reasons that jus-
tify this choice. First of all, for nondeterministic specifications the two studied notions
of thorough and modal refinement do not coincide and hence the refinement process,
though sound, is not complete (see e.g. [AHL+08]). On the other hand for determin-
istic specifications, as advocated in the work by Henzinger and Sifakis [HS06, HS07],
modal refinement and modal composition are complete. More detailed analysis of this
has been recently given in [BKLS09b]. Second, in many practical cases, deterministic
specifications are desirable and often used, and much of the recent work deals mainly
with deterministic systems. For example in [HS06] the authors discuss two main chal-
lenges in embedded systems design: the challenge to build predictable systems, and that
to build robust systems. They suggest how predictability can be formalized as a form of
determinism, and robustness as a form of continuity.

Another problem we study in this article concerns finding a logical characterisation
of weighted modal transition systems. By a natural extension of the action-based CTL
we define, based on the work of De Nicola and Vaandrager [NV90], a weighted CTL
logic for model checking weighted modal specifications. Compared to other weighted
logics like [LLM05] and [DG07], we allow to state arbitrary constraints on the prefixes of
model executions and extend the semantics to deal with modal transition systems. On
the other hand, we do not consider semiring interpretations of CTL formula quantifiers
like in [LLM05] and semiring semantics of MSO like in [DG07].

The definition of our logic is rather generic with respect to the choice for querying the

78

2. Definitions

weight constraints. Our main result shows that a specification satisfies a given formula
of weighted CTL if and only if all its refinements satisfy the same formula, which is
an important fact that justifies the choice of the logic and supports a step-wise model
based development process. We discuss a few specializations of the generic logic to some
concrete instances in order to argue for its applicability.

The article is organized as follows. Section 2 introduces the model of weighted modal
transition systems, modal and thorough refinement relations and some basic properties
of the model. In Section 3 we study the problem of largest common refinement of a given
set of finite deterministic specifications and among others prove PSPACE-completeness
of the problem. In Section 4 we search for a logical characterisation of weigted modal
transition systems. For this purpose we suggest a definition of a generic weighted CTL
logic and argue for the soundness of this choice. Finally, Section 5 provides a short
summary and mentions some of the open problems.

2. Definitions

We begin by extending the notion of modal transition systems (consult e.g. [LT88a,
AHL+08]) by adding an interval to each transition in the specification. This set denotes
the different values that the weight of the transition can be instantiated to in an imple-
mentation. We define [n,m] = {a ∈ Z : n ≤ a ≤ m} for n ≤ m, n,m ∈ Z∪{−∞,∞} to
denote the closed interval between n and m, and use I to stand for the set of all such
nonempty intervals.

Definition 1. A (interval) weighted modal transition system (WMTS) is a 5-tuple M =
(S,Σ, 99K,−→, δ), where S is a set of states, Σ is an action alphabet, −→⊆99K⊆ S×Σ×S
and δ : (99K ∪ −→)→ I assigns a weight interval to transitions. The relations 99K and
−→ are called the may and must transitions, respectively.

By the definition of δ we see that if (s, a, t) belongs to both 99K and −→ then the
weight intervals of the must and may transition are the same. This fact is important and
implicitly used later on. It ensures the so-called consistency, meaning that any given
modal specification is guaranteed to have an implementation.

We write s
a
99K t if (s, a, t) ∈ 99K and s

a,W
99K t if e = (s, a, t) ∈ 99K and δ(e) = W ,

similarly for the elements of −→. If no t exists such that (s, a, t) ∈99K, we write s 6 a99K,
similarly for must transitions. The class of all WMTSs is denoted by W . An WMTS is
deterministic if for all s ∈ S and a ∈ Σ there is at most one t such that (s, a, t) ∈99K.
The class of all deterministic WMTSs is denoted by dW .

While a general WMTS models a specification giving a variety of weights and op-
tional behaviour, an implementation (defined below) defines the precise behaviour of the
system, including the precise weight of all transitions.

Definition 2 (Implementation). A WMTS is an implementation if −→ = 99K and all
weight intervals are singletons. The class of all implementations is denoted by iW .

79

C. Modal Transition Systems with Weight Intervals

d1

a,
[2
, 5

] b,[0,8]

c, [4, 7]

b,[1,4]

a
,[1,3]

a
,[4,6]

a
,[5,5]

b, [0, 4]

d2

a,
[1
, 4

] b,[2,6]

c, [6, 7]

b,[3,9]

a
,[2,8]

a
,[0,4]

a
,[0,3]

d3

a,
[4
, 7

] b,[3,8]

c, [2, 9]

b,[2,9] a,
[1
, 3

] c, [1, 3]

a
,[6,7]

b,[0,8]

sCR

a
,[4,4]

b,[3,4]

i1

a
,[4,4]

b,[3,3]

b, [4, 4]

i2

a
,[4,4]

i3

a
,[4,4]

a, [4, 4]

b,[4,4]

s′CR

s1 s2

s3

a,
[4
, 4

] b,[3,6]

c, [6, 7]

b,[3,4]

a
,[2,3]

Figure 2.: Different examples of weighted modal transition systems.

To ease the notation, we often denote a WMTS M = (S,Σ, 99K,−→, δ) containing a
state s ∈ S as a pair, (s,M). Thus the notation (s,M) ∈ W is short hand notation
for M ∈ W with s a state in M (the same applies to iW and dW). The lowercase
letters s, t, . . . are used for states (specifications) in general, while i, j, . . . are used for
implementations and d, e . . . are used for deterministic specifications. Since every must
transition is also a may transition, may transitions in figures will not be drawn between
states if a must transition is already present.

Take a look at the examples in Figure 2 (ignore the systems sCR and s′CR for the
moment). The three systems rooted with d1, d2 and d3 are examples of weighted modal
transition systems, all of them being deterministic. The systems rooted with i1, i2 and
i3 are examples of implementations where may and must transitions coincide and all
intervals are singletons.

We can now define the refinement relation for WMTSs, a natural extension of the
refinement relation on MTSs. Intuitively, a weight interval on a transition denotes the
only acceptable weights allowed in an implementation. A refinement should therefore
never allow any new weights to be added, eventually leading to an implementation with
only singleton intervals. From now on, when using the term refinement we always refer
to the modal refinement relation between two WMTSs as defined below.

Definition 3 (Modal refinement of WMTS). Let (si,Mi) ∈ W such that Mi =
(Si,Σ, 99Ki,−→i, δi) for 1 ≤ i ≤ 2. We say that s1 modally refines s2, written
(s1,M1) ≤m (s2,M2) or simply s1 ≤m s2 if M1 and M2 are clear from the context, if
there is a refinement relation R ⊆ S1 × S2 such that (s1, s2) ∈ R and for each (s, t) ∈ R

80

2. Definitions

and every a ∈ Σ:

1. whenever s
a,W
99K1 s

′, then there exists t
a,V
99K2 t

′ where W ⊆ V such that (s′, t′) ∈ R,
and

2. whenever t
a,V−→2 t

′, then there exists s
a,W−→1 s

′ where W ⊆ V such that (s′, t′) ∈ R.

Hence (s,M) refines (t, N) (s ≤m t) if it is possible to mimic must transitions in N by
M , and it is possible to mimic may transitions in M by N . We say that a WMTS (s,M)
is an implementation of a WMTS (t, N) if (s,M) ∈ iW and (s,M) ≤m (t, N). Notice
that any WMTS has an implementation, for instance one can turn all may transitions
into must transitions and pick an arbitrary weight from each interval as the singleton
weight.

Consult again Figure 2. The systems i1, i2, i3 and sCR are all refinements of the
specification d1 (in fact also of d2 and d3). The first three refinements i1, i2 and i3 are
also implementations of d1.

Remark 1. Notice that for two implementations (i, I), (j, J) ∈ iW , the relation of modal
refinement, (i, I) ≤m (j, J), corresponds to strong bisimulation (with the assumption
that actions and weights are considered as observable pairs).

Definition 4 (Thorough refinement). Let (s,M) be a WMTS and define JsK = {(i, I) ∈
iW : (i, I) ≤m (s,M)}, that is all possible refinements of (s,M) that are also implemen-
tations. For (s,M), (t, N) ∈ W we say that s thoroughly refines t, written s ≤t t (or
(s,M) ≤t (t, N)), if JsK ⊆ JtK.

The following lemma is easy to prove, but it is an important property that guarantees
a sound stepwise refinement development methodology.

Lemma 5. The relations ≤m and ≤t are both transitive.

Proof. Let (s,M), (u,O), (t, N) ∈ W . First the case of ≤m. Assume two relations R1

and R2 according to Definition 3 showing that s ≤m u and u ≤m t. It is easy to check
that the relation R defined as

R = {(s′, t′) : ∃u′.((s′, u′) ∈ R1 ∧ (u′, t′) ∈ R2)}

is indeed a refinement relation according to Definition 3 and that (s, t) ∈ R.
We now consider ≤t. Assume s ≤t u and u ≤t t. This immediately implies that

JsK ⊆ JuK ⊆ JtK and hence that s ≤t t. �

We can now show that modal refinement implies thorough refinement.

Lemma 6. For two WMTSs, (s,M) and (t, N), it holds that

s ≤m t⇒ s ≤t t.

Proof. Assume that s ≤m t. If i ≤m s for an implementation i, then by Lemma 5 also
i ≤m t. Hence JsK ⊆ JtK which means that s ≤t t. �

81

C. Modal Transition Systems with Weight Intervals

s s1 s2a, [3, 4] a, [1, 4] t

t1

t2

t3
a, [2, 1

0]

a, [0, 4]

a, [1, 6]

Figure 3.: s ≤t t, but s 6≤m t.

Notice that thorough refinement does not imply modal refinement. A counter-example
can be seen in Figure 3. The figure is overtaken from [BKLS09b] and intervals have
been added, thus a counter-example already exists in the unweighted case. To show that

s 6≤m t we try to construct a relation R. For sure (s, t) ∈ R must hold. Since s
a,[3,4]
99K s1

either (s1, t1) or (s1, t2) must belong to R. In the first case, t1
a,[1,6]−→ t3 and therefore

a must transition from s1 must exist as well. Since this is not the case, we assume

(s1, t2) ∈ R. Then the transition s1

a,[1,4]
99K s2 implies the existence of a may transition

from t2. This is also not the case, thus R cannot exist and s 6≤m t. On the other hand,
every implementation of s can perform at most two consecutive a’s with the weights
either 3 or 4 for the first a-transition and 1, 2, 3 or 4 for the second a-transition. These
implementations are also implementations of t, hence s ≤t t.

However, if we restrict the refined specifications to be deterministic (or at least the
right-hand side one) we get the following.

Lemma 7. For (s,M) ∈ W and (d,D) ∈ dW, it holds that

s ≤m d⇔ s ≤t d.

We omit the proof here, since it follows as a straightforward modification of the proof
given in [BKLS09b] by adding appropriate intervals to all transitions.

For the complexity results presented in the remainder of the paper we assume constant
time interval operations (the encoding of integers is assumed binary).

In [BKLS09a] it was shown that checking whether a finite modal transition system
is thoroughly refined by another finite modal transition system is EXPTIME-complete.
The thorough refinement problem for MTSs can be reduced to the same problem for
WMTSs by adding the same singleton weight to all transitions. Hence the thorough
refinement problem for finite WMTSs is also EXPTIME-hard. The algorithm presented
in [BKLS09a] for determining whether one MTS thoroughly refines another one can be
easily extended to the weighted setting by adding appropriate checks for set inclusions of
the weight intervals. This addition does not effect the running time of the algorithm, and
the thorough refinement problem for finite WMTS is therefore decidable in EXPTIME
as well.

On the contrary, the problem of deciding whether two finite weighted modal specifica-
tions are in the modal refinement relation is decidable in deterministic polynomial time
using the standard greatest fixed-point computation, similarly as in the case of strong
bisimulation (for efficient algorithms implementing this strategy see e.g. [KS90, PT87]).

82

3. Largest Common Refinement

3. Largest Common Refinement

This section addresses the largest common refinement problem of finite determinis-
tic specifications defined as follows: given a number of finite deterministic WMTSs,
(d1, D1), . . . , (dn, Dn), we want to find a specification (s,M) ∈ W such that (s,M) ≤m
(dj, Dj) for all j, 1 ≤ j ≤ n, or to report that no such common refinement exists. More-
over, we are interested in constructing some largest common refinement refinement (s,M)
such that any other common refinement of the given deterministic specifications refines
(s,M). Notice that such a largest common refinement is not unique. In what follows,
we implicitly assume that the given deterministic specifications (d1, D1), . . . , (dn, Dn) are
finite.

Figure 2 shows our running example. Our task is to construct the largest common
refinement of the deterministic specifications d1, d2 and d3.

Let (d1, D1), . . . , (dn, Dn) ∈ dW be n deterministic WMTSs. We will construct a
specification (sCR,MCR) ∈ W and prove that (sCR,MCR) is the most general common
refinement of d1, . . . , dn. The state set of MCR consists of n-tuples, (e1, . . . , en), where
every ei belongs the the corresponding state set of Di. Additionally some states in MCR

will be marked. Marked nodes represent situations where no common refinement exists.
The pseudo-code in Alg. 1 constructs MCR, a common refinement of the given specifica-
tions, or returns that no such refinement exists. The algorithm avoids the construction
of the whole product space and returns only the reachable parts of such common refine-
ment.

It is easy to see that the algorithm always terminates. The first repeat-loop (lines
3–22) runs until Waiting is empty, and in each iteration one element is removed from
Waiting . Elements are also added to Waiting , however since Di are finite for all i, and
no removed element is added again to Waiting , this repeat-loop terminates. The second
repeat-loop (lines 23–27) as well as the forall-loop (lines 30 and 31) also terminate due
to the finiteness of the set S and finiteness of the −→ relation.

Alg. 1 constructs MCR by inspecting the n deterministic WMTSs and adding the
needed states and transitions to MCR, and furthermore marking states if these represent
situations where no common refinement can exist. The marked set is expanded by adding
all states, from which a path consisting of only must transitions leads to a marked state.
If the state (d1, . . . , dn) is marked, no common refinement exists. If this is not the case,
a common refinement exists and the most general common refinement is constructed by
removing all marked states and transitions leading to marked states.

In our running example in Figure 2, given the input d1, d2 and d3 Alg. 1 first constructs
an intermediate specification s′CR where the marked nodes s1, s2 and s3 are drawn as
circles. After removing them the algorithm returns the specification (sCR,MCR,).

Lemma 8. If (e1, . . . , en), a state in MCR, has a path consisting only of must transitions
leading to a state marked by Alg. 1 in the first repeat-loop, then e1, . . . , en have no
common refinement.

Proof. Assume that (e1, . . . , en) is a state in MCR, from which there is a path consisting
of only must transitions leading to a state marked by Alg. 1 in the first repeat-loop. We

83

C. Modal Transition Systems with Weight Intervals

Input: A finite number n of deterministic WMTSs, (di, Di) ∈ dW , where
Di = (Si,Σ, 99Ki,−→i, δi) for i = 1, . . . , n.

Output: The string “No common refinement exists” or a (sCR,MCR) ∈ dW , where
MCR = (S,Σ, 99K,−→, δ) s.t. (sCR,MCR) ≤m (di, Di) for all i.

1 begin
2 S := ∅;−→:= ∅; 99K:= ∅; Marked := ∅; Waiting := {(d1, . . . , dn)};
3 repeat
4 Select (e1, . . . , en) ∈Waiting ; Waiting := Waiting \ {(e1, . . . , en)};

S := S ∪ {(e1, . . . , en)};
5 forall the a ∈ Σ do

6 if ∃i : ei
a−→i fi and ∀j : ej

a
99Kj fj then

7 temp := δ1((e1, a, f1)) ∩ . . . ∩ δn((en, a, fn));
8 if temp = ∅ then
9 Marked := Marked ∪ {(e1, . . . , en)};

10 else
11 −→ := −→ ∪

{(
(e1, . . . , en), a, (f1, . . . , fn)

)}
;

12 δ
((

(e1, . . . , en), a, (f1, . . . , fn)
))

:= temp;
13 if (f1, . . . , fn) /∈ S then Waiting := Waiting ∪ {(f1, . . . , fn)};

14 if ∀i : ei
a
99Ki fi then

15 temp := δ1((e1, a, f1)) ∩ . . . ∩ δn((en, a, fn));
16 if temp 6= ∅ then
17 99K := 99K ∪

{(
(e1, . . . , en), a, (f1, . . . , fn)

)}
;

18 δ
((

(e1, . . . , en), a, (f1, . . . , fn)
))

:= temp;
19 if (f1, . . . , fn) /∈ S then Waiting := Waiting ∪ {(f1, . . . , fn)};

20 if ∃i : ei
a−→i fi and ∃j : ej 6

a
99Kj then

21 Marked := Marked ∪ {(e1, . . . , en)};

22 until Waiting = ∅;
23 repeat
24 Marked ′ := Marked ;
25 forall the (e, a, f) ∈−→ do
26 if f ∈ Marked then Marked := Marked ∪ {e};
27 until Marked ′ = Marked ;
28 if (d1, . . . , dn) ∈ Marked then return “No common refinement exists”
29 S := S r Marked ;
30 forall the (e, a, f) ∈−→ ∪ 99K where f ∈ Marked do
31 −→:=−→ r{(e, a, f)}; 99K:=99K r{(e, a, f)};
32 sCR := (d1, . . . , dn); return (sCR,MCR)

Algorithm 1: Construction of the most general common refinement.

84

3. Largest Common Refinement

show that the states e1, . . . , en have no common refinement.

First observe that if (e1, . . . , en)
a,V−→ (f1, . . . , fn) exists in MCR we know that ei

a,Vi−→ fi,

where V ⊆ Vi for at least one i and ej
a,Vj
99K fj, where V ⊆ Vj for all j (Alg. 1, line 6-

13). Let p be any common refinement of e1, . . . , en. Assume therefore that n refinement

relations Rj exist such that (p, ej) ∈ Rj for all j. Then p must have a p
a,W−→ q transition,

where W ⊆ Vj and (q, fj) ∈ Rj for all j. The fact that q is a refinement of fi is clear by

the second item in Definition 3, since (p, ei) ∈ Ri and ei
a,Vi−→ fi, where V ⊆ Vi, forces a

p
a,W−→ q transition, where W ⊆ Vi and (q, fi) ∈ Ri. The fact that q is also required to

be a refinement of f1, . . . , fn is given by the first item in Definition 3, since (p, ej) ∈ Rj

for all j and p
a,W
99K q. Since e1, . . . , en are deterministic, ej

a,Vj
99K fj, where W ⊆ Vj for all

j are forced to be the matching transitions, thus requiring (q, fj) ∈ Rj to hold.
Next observe that if a state (g1, . . . , gn) ∈ Marked in Alg. 1 then either (g1, . . . , gn) has

been marked at line 9 or line 21. If it is marked at line 9, then there exists some a ∈ Σ and
f1, . . . , fn such that gi

a−→i fi for at least one i and δ1((g1, a, f1))∩. . .∩δn((gn, a, fn)) = ∅.
Otherwise (if it was marked at line 21) there exists i such that gi

a−→i fi and there exists j

such that gj 6
a
99Kj. Both cases imply that g1, . . . , gn have no common refinement. The first

case is obvious, since the weight set of the matching transition in a common refinement
must be contained in every δi((gi, a, fi)) (due to determinism), but no transition with an
empty weight set is allowed. The second case also leads to no common implementation,

since gi
a,Vi−→ fi forces p

a,V−→ q, where V ⊆ Vi in the refinement, but p
a,V
99K q cannot be

matched from gj.
These two observations lead to our conclusion, since any common refinement p of

e1, . . . , en, with refinement relations Rj and (p, ej) ∈ Rj for all j eventually fulfills
(q, gj) ∈ Rj for some q, because of the path consisting of only must transitions. However,
since g1, . . . , gn cannot have a common refinement, Rj cannot exist. �

By noting that Alg. 1 returns “No common refinement exists” only if there exists a
path consisting of only must transitions from sCR to a node marked before in the first
repeat-loop and applying Lemma 8 to sCR we have the following corollary.

Corollary 9. If Alg. 1 returns “No common refinement exists” then the specifications
(d1, D1), . . . , (dn, Dn) have no common refinement.

Lemma 10. If (d1, D1), . . . , (dn, Dn) have no common refinement then Alg. 1 returns
“No common refinement exists”.

Proof. We prove the contraposition. That is, assume that Alg. 1 does not return “No
common refinement exists”. This implies that (d1, . . . , dn) is not a marked state and that
Alg. 1 returns (sCR,MCR). We want to construct relations R1, . . . , Rn in order to show
that sCR is a common refinement of d1, . . . , dn. We define the relations as

Ri = {((e1, . . . , en), ei) : (e1, . . . , en) ∈MCR}

and continue to prove that these n relations fulfill the criteria of Definition 3. It is clear
that ((d1, . . . , dn), di) ∈ Ri. Let ((e1, . . . , en), ei) ∈ Ri and consider a must transition

85

C. Modal Transition Systems with Weight Intervals

ei
a,Vi−→ fi. Since by assumption the algorithm returns (sCR,MCR) and (e1, . . . , en) ∈

MCR, (e1, . . . , en) is not marked. Therefore ej
a,Vj
99K fj exists for all j and the transition

(e1, . . . , en)
a,
⋂

j Vj−→ (f1, . . . , fn) is added to MCR in Alg. 1, line 11-13. Furthermore,
(f1, . . . , fn) is not marked (and thus not removed), since otherwise (e1, . . . , en) would have
been marked during the repeat loop in line 23-27, a contradiction. Hence (f1, . . . , fn) is
a state in MCR and ((f1, . . . , fn), fi) ∈ Ri as required.

On the other hand, consider a may transition (e1, . . . , en)
a,V
99K (f1, . . . , fn). By con-

struction ei
a,Vi
99K fi, where V ⊆ Vi for all i. Hence ((f1, . . . , fn), fi) ∈ Ri for all i as

required. �

With the above lemmas and Alg. 1 we have the following complexity result.

Theorem 11. The problem of existence of a common refinement for a given number of
finite deterministic specifications is PSPACE-complete.

Proof. In order to show containment in PSPACE, Cor. 9 and Lemma 10 give us that the
existence of a common refinement is equivalent to the question whether the state sCR
gets marked by Alg. 1. In other words, this is equivalent to the question whether there
is a must-path from sCR to some state marked directly in line 9 or 21 of the algorithm.
Such a path can be nondeterministically guessed on the fly (without constructing the
whole state-space) and by Savitch’s theorem this implies the containment in PSPACE.

The hardness result follows directly from PSPACE-hardness of the common imple-
mentation problem for unweighted MTSs shown in [BKLS09b]. �

The last theorem states that MCR is the largest common refinement.

Theorem 12 (Maximality of MCR). If Alg. 1 returns (sCR,MCR) then for every (t, N) ∈
W such that (t, N) ≤m (di, Di) for all i, 1 ≤ i ≤ n, it holds that (t, N) ≤m (sCR,MCR).

Proof. Let (t, N) ∈ W be a common refinement of (d1, D1), . . . , (dn, Dn). This means
that there exist n relations R1, . . . , Rn satisfying the conditions in Definition 3. We
construct a new relationQ satisfying the same conditions in order to prove that (t, N) ≤m
(sCR,MCR). The relation Q is defined as follows:

(s, (e1, . . . , en)) ∈ Q if and only if (s, ei) ∈ Ri for all i, 1 ≤ i ≤ n.

We observe that (t, (d1, . . . , dn)) ∈ Q, since (t, di) ∈ Ri for all i. This satisfies the first
condition in the refinement definition. Let now (s, (e1, . . . , en)) ∈ Q and consider what
happens in case of must and may transitions.

Consider a transition s
a,V
99K s′. Then for all i we have that for all ei such that (s, ei) ∈

Ri there exists fi such that ei
a,Wi
99K fi with V ⊆ Wi and (s′, fi) ∈ Ri. This implies that

q = (e1, . . . , en)
a,W1∩...∩Wn
99K (f1, . . . , fn) is a transition in MCR. Since V ⊆ W1 ∩ . . . ∩Wn

and (s′, fi) ∈ Ri for all i, then (s′, (f1, . . . , fn)) ∈ Q as desired. Notice that (f1, . . . , fn)
cannot be a node which was removed in Alg. 1 since this would imply that (f1, . . . , fn) is

86

3. Largest Common Refinement

(d1, D1) (d2, D2) · · · (dn, Dn)

(sCR,MCR)

JsCRK

(d1, D1) (d2, D2) · · · (dn, Dn)

(s2
CR,M

2
CR)

· · ·

(snCR,M
n
CR)

JsnCRK=

Figure 4.: Two ways of using Alg. 1 yielding the same result.

marked. The states f1, . . . , fn would not therefore have a common refinement by Lemma
8. This contradicts the fact that (s′, fi) ∈ Ri for all i.

Consider now a transition (e1, . . . , en)
a,V−→ (f1, . . . , fn). By construction of MCR we

know that there exists at least one ej such that ej
a,Wj−→ fj and that ei

a,Wi
99K fi exist for

all i (Alg. 1, line 6-13). Since (d1, D1), . . . , (dn, Dn) are deterministic, fi (for all i) are

unique. Now because ej
a,Wj−→ fj and (s, ej) ∈ Rj, we get that s

a,W−→ s′ with W ⊆ Wj

such that (s′, fj) ∈ Rj. This, however, also means that s
a,W
99K s′ and because (s, ei) ∈ Ri

for all i, we get that (s′, fi) ∈ Ri and W ⊆ Wi for all i. Notice that V = W1 ∩ . . .∩Wn,
so W ⊆ V holds. Thus (s′, (f1, . . . , fn)) ∈ Q by the definition of Q. �

As a corollary and due to the transitivity of ≤m (Lemma 5), Cor. 9, Lemma 10 and
the maximality of MCR (Thm. 12) we get the main result.

Corollary 13. Let (d1, D1), . . . , (dn, Dn) be finite deterministic WMTSs and assume that
Alg. 1 returns a specification (sCR,MCR). A specification (s,M) ∈ W is a common re-
finement of the specifications (d1, D1), . . . , (dn, Dn) if and only if (s,M) ≤m (sCR,MCR).

This theorem allows us to find a common refinement (and thus also a common im-
plementation) in a stepwise and iterative manner. Consider Figure 4. Here (sCR,MCR)
is constructed by giving (d1, D1), . . . , (dn, Dn) ∈ dW as input to Alg. 1. The specifi-
cation (snCR,M

n
CR) is, on the other hand, constructed by using Alg. 1 iteratively. First

(d1, D1), (d2, D2) is given as input and then the output, (s2
CR,M

2
CR), and (d3, D3) is used

as input, continuing in this way until the last received output and (dn, Dn) is given as
input, finally outputting (snCR,M

n
CR). The theorem below states that both applications

of the algorithm lead to the same set of possible implementations.

Theorem 14. Let (d1, D1), . . . , (dn, Dn) be finite deterministic WMTSs and assume
that (sCR,MCR) and (snCR,M

n
CR) are the specifications obtained as illustrated in Figure

4. Then JsCRK = JsnCRK.

Proof. Using Corollary 13 gives us that (snCR,M
n
CR) ≤m (sCR,MCR). The other direc-

tion is an easy induction in n, the number of deterministic specifications. As a base
case we have n = 2. The two uses of Alg. 1 are here equal, and the theorem follows.
For the induction step assume (sCR,MCR) ≤m (sn−1

CR ,M
n−1
CR) holds. Notice that now

87

C. Modal Transition Systems with Weight Intervals

(sCR,MCR) ≤m (snCR,M
n
CR) also holds, since (snCR,M

n
CR) is the output when Alg. 1 is

given (sn−1
CR ,M

n−1
CR) and (dn, Dn) as input and Corollary 13 is thus applicable. Lemma 6

now implies JsCRK = JsnCRK. �

This result is more general than the algorithm in [BKLS09b], which checks only for
the existence of a common implementation of (unweighted) modal specifications. The
algorithm presented here furthermore constructs the most permissive common refinement
and provides support for step-wise development of systems.

4. Logical Characterisation

In the previous section we discussed algorithms for constructing some largest common
refinement for a given set of weighted deterministic modal specifications. Now we shall
turn our attention to a logical characterisation of weighted modal transition systems.
We define an extension of the well-known CTL logic [EC80] that will allow us to state
logical queries that include constraints about the weights along the finite and infinite
paths. There are several well justified choices for the definition of the constraints on the
paths. We provide a meta-definition of a general constraint form which specializes to
many useful constraint choices. Our main result is that as long as a certain monotonicity
property is preserved, a specification satisfies a given logical formula if and only if all its
refinements do. This result can be understood as a soundness principle for the suggested
logic.

We start with the definition of must-/may-paths in weighted modal transition systems.

Definition 15 (Path). A must-path in a WMTS M = (S,Σ, 99K,−→, δ) is a finite or
infinite sequence π of transitions of the form

π = s1
a1−→ s2

a2−→ s3
a3−→

A must-path is maximal if it is infinite or it ends in a state with no outgoing may
transitions (and hence of course also no outgoing must transitions). The set of all
maximal must-paths starting from a state s is denoted by maxmustP(s).

Similarly, a may-path is a finite or infinite sequence π of transitions of the form

π = s1
a1
99K s2

a2
99K s3

a3
99K

A may-path is maximal if it is infinite or it ends in a state with no outgoing must
transition (note that outgoing may transitions are allowed). The set of all maximal
may-paths starting from a state s is denoted by maxmayP(s). Notice that a must-path
is not necessarily a prefix of a maximal must-path and that a maximal may-path may
be a strict prefix of another maximal may-path.

Given a must- or may-path in the form above, the notation π[j] denotes the j’th state
of the path, that is π[j] = sj.

88

4. Logical Characterisation

For specifying logical properties we suggest a notion of weighted action-based CTL
(WCTL), a particular extension of CTL (see e.g. [BK08]). The action-based syntax is
based on the work of De Nicola and Vaandrager [NV90] which introduces an action-
labelled next operator. In [NV90] they discuss a close relationship between action-based
and state-based logics (see also [MKB08]). We further extend their logic such that it
can be interpreted over modal transition systems and we add a generic weight constraint
function in order to reason about the cost of the transitions and demonstrate a few
examples of well-justified weight constraint functions.

Let us first define the so-called action formulae:

χ, χ′ ::= true | a | ¬χ | χ ∧ χ′

where a ∈ Σ ranges over the actions of a given WMTS. The semantics to action formulae
is given by the following satisfaction relation (a, b ∈ Σ):

a |= true

a |= b iff a = b

a |= ¬χ iff a 6|= χ

a |= χ ∧ χ′ iff a |= χ and a |= χ′ .

The (state) formulae of WCTL are now generated by the following abstract syntax:

ϕ, ϕ1, ϕ2 ::= true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | EXc
χ ϕ | AXc

χ ϕ

| E (ϕ1 U
c
χ ϕ2) | A (ϕ1 U

c
χ ϕ2) | E (ϕ1 R

c
χ ϕ2) | A (ϕ1 R

c
χ ϕ2)

where χ ranges over action formulae and c : I∗ ∪ Iω → {0, 1} is a constraint function
assigning 0 (false) or 1 (true) to any finite and infinite sequence of weight intervals (for
the definition of I see the first paragraph of Section 2). We moreover require that c
satisfies the following monotonicity property:

if c(w1, w2, . . .) = 1 then c(w′1, w
′
2, . . .) = 1 for any w′i ⊆ wi for all i.

This means that if some sequence of intervals is acceptable by the constraint function, so
will be the sequence containing any subintervals. By L we denote the set of all WCTL
formulae.

This syntax is similar to the standard action-based CTL. The main difference is the
superscript ’c’ attached to the next, until and release operators. For example, E (ϕ1 Uc

χ

ϕ2) holds in a state s if there exists a maximal must-path which satisfies that ϕ2 holds
in some state along the path, ϕ1 holds in all states prior to that state, the actions on the
subpath where ϕ1 holds satisfy χ and c is true for the sequence of intervals belonging to
the subpath where ϕ1 holds. The reason for choosing a must-path is that the existence of
such a path in the specification will guarantee its existence also in any of its refinements.
Similarly, the formula E (ϕ1 R

c
χ ϕ2) holds in a state s if there exists a maximal must-path

which satisfies that ϕ2 holds in all states along the path, a requirement that is dropped

89

C. Modal Transition Systems with Weight Intervals

as soon as ϕ1 holds, the actions on the path where ϕ2 holds satisfy χ and c is true for
the sequence of intervals belonging to the path where ϕ2 holds (hence the need for the
constraint function to be defined over infinite sequences of intervals too). For the path
quantifier A, the temporal operators U and R have a similar meaning, only in this case
we require that all maximal may-paths satisfy these properties.

The semantics of WCTL formulae is then interpreted over the states of a WMTS.
Let M = (S,Σ, 99K,−→, δ) ∈ W , χ range over action formulae, s ∈ S, and ϕ, ϕ1 and
ϕ2 be formulae from L. The satisfaction relation |= is defined inductively by s |= true,
s 6|= false and

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |=EXc
χ ϕ iff ∃(s a−→ s′) : a |= χ ∧ s′ |= ϕ ∧ c(δ(s, a, s′)) = 1

s |=AXc
χ ϕ iff ∀(s a

99K s′) where a |= χ : s′ |= ϕ ∧ c(δ(s, a, s′)) = 1

s |=E (ϕ1 U
c
χ ϕ2) iff ∃π = s1

a1−→ s2
a2−→ . . . ∈ maxmustP(s) :

∃i ≥ 1 : si |= ϕ2

∧ ∀j ∈ {1, . . . , i− 1} : (sj |= ϕ1 ∧ aj |= χ)

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . . , δ(si−1, ai−1, si)) = 1

s |=A (ϕ1 U
c
χ ϕ2) iff ∀π = s1

a1
99K s2

a2
99K . . . ∈ maxmayP(s)

where ai |= χ for all i :

∃i ≥ 1 : si |= ϕ2 ∧ (∀j ∈ {1, . . . , i− 1} : sj |= ϕ1)

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . . , δ(si−1, ai−1, si)) = 1

s |=E (ϕ1 R
c
χ ϕ2) iff ∃π = s1

a1−→ s2
a2−→ . . . ∈ maxmustP(s) :(

∀k ≥ 1 : sk |= ϕ2 ∧ ak |= χ

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . .) = 1
)
∨(

∃i ≥ 1 : si |= ϕ1 ∧ ∀j ∈ {1, . . . , i} : (sj |= ϕ2 ∧ aj |= χ)

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . . , δ(si−1, ai−1, si)) = 1
)

s |=A (ϕ1 R
c
χ ϕ2) iff ∀π = s1

a1
99K s2

a2
99K . . . ∈ maxmayP(s)

where ai |= χ for all i :(
∀k ≥ 1 : sk |= ϕ2

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . .) = 1
)
∨(

∃i ≥ 1 : si |= ϕ1 ∧ (∀j ∈ {1, . . . , i} : sj |= ϕ2)

∧ c(δ(s1, a1, s2), δ(s2, a2, s3), . . . , δ(si−1, ai−1, si)) = 1
)
.

90

4. Logical Characterisation

If the system M is not clear from the context, we also use the notation (s,M) |= ϕ
meaning that s |= ϕ where s a state in M . We remark that for the cases of E (ϕ1 U

c
χ ϕ2)

and A (ϕ1 Rc
χ ϕ2) we may consider also paths that are not necessarily maximal, but for

the sake of techincal conveniences we restrict ourself to maximal runs in all cases.
Notice that, as usual, we can express the temporal modalities ‘eventually’ (Fc

χ) and
‘always’ (Gc

χ).

EFc
χ ϕ ≡ E (true Uc

χ ϕ)

AFc
χ ϕ ≡ A (true Uc

χ ϕ)

EGc
χ ϕ ≡ E (false Rc

χ ϕ)

AGc
χ ϕ ≡ A (false Rc

χ ϕ)

The generic definition of the constraint function c can be specialized in order to express
a variety of interesting properties that we want our sequences of intervals to fulfil. We
will now give two examples.

Example 16. Consider the ATM machines shown in Figure 1 in Section 1. It might
be worth knowing, for example, whether or not in any implementation it is possible
to check the balance without entering PIN while consuming between 0 and 15 units of
power. We thus want to reason about the accumulated energy along a given path. For
this purpose, let the constraint function cS be given as

cS(w1, w2, . . .) =

{
1 if

[∑
i=1 ni,

∑
i=1mi

]
⊆ S

0 otherwise,

where wi = [ni,mi] and S is a given set of elements from Z∪ {−∞,∞}. The constraint
function then returns 1 if the interval containing all possible sums of weights belonging
to each interval is contained in the set S, and 0 otherwise.

Notice that if c(w1, w2, . . .) = 1 then c(w′1, w
′
2, . . .) = 1 for any w′i ⊆ wi for all i, since

smaller intervals do not give rise to any new accumulated sums, thus still preserving the
requirement of being a subset of S.

Using this constraint function one can specify that every possible total accumulated
weight along some path should be contained in [0, 15], as required in the ATM machine.
The WCTL formula to check this is

ϕ ≡ E
(
true U

c[0,15]

¬PIN

(
EX

c[−∞,∞]

return true
))
≡ EF

c[0,15]

¬PIN

(
EX

c[−∞,∞]

return true
)
,

stating that there exists a path where the action ‘return’ is enabled in some state in the
future (with an arbitrary cost), and that we until reaching the state enabling ‘return’
must not take a transition with action ‘PIN’ and that the accumulated cost on this
subpath (where the balance is checked) must consume between 0 and 15 power units.

Consulting the leftmost specification in Figure 1 we see that s1 |= ϕ holds, since a

must-path s1
card,[2,5]−→ s2

balance,[1,6]−→ s3 exists, and from s3 an outgoing must transition with

91

C. Modal Transition Systems with Weight Intervals

the action ‘return’ is required. Any implementation would therefore also require these
three transitions.

On the other hand, t1 6|= ϕ, since in the specification the ‘balance’ transition is only
optional, and thus might not be present in an implementation.

Example 17. As another example consider a specification of a gas tank, able to both
gain and lose gas. In this case we are interested in keeping the volume of gas in the
tank between some interval at all times, since the tank would otherwise explode or have
a too low volume. It is therefore not adequate to only consider the volume at the end
of a given path. All subpaths must also fulfil the interval bound (note that we allow for
negative weights). We therefore define cS as

cS(w1, w2, . . .) =

{
1 if ∀j ≥ 1 :

[∑j
i=1 ni,

∑j
i=imi

]
⊆ S

0 otherwise,

where wi = [ni,mi] and S is a given set of elements from Z∪ {−∞,∞}. In this way we
specify, using the operator G, that the volume of the tank must be between 0 and 100
everywhere along all potentially infinite paths where the action emergency is not taken
by

AG
c[0,100]
¬emergency true .

If emergency is triggered along some path, the tank will shut down and the volume need
not be guarded any more.

This kind of weight constraint function proved useful e.g. in [BFL+08] where the
existence of such an infinite path was studied in the context of weighted timed automata.
Observe again that if c(w1, w2, . . .) = 1 then c(w′1, w

′
2, . . .) = 1 for any w′i ⊆ wi for all i.

We shall now formulate a technical lemma that will be used in the proof of the main
theorem of this section.

Lemma 18. Let (s1,M), (t1, N) ∈ W and (s1,M) ≤m (t1, N).

1. If πN ∈ maxmustP(t1) then there exists πM ∈ maxmustP(s1) of the same length as
πN , such that (πM [i],M) ≤m (πN [i], N) for all i.

2. If πM ∈ maxmayP(s1) then there exists πN ∈ maxmayP(t1) of the same lento as
πM , such that (πM [i],M) ≤m (πN [i], N) for all i.

Moreover, in both cases the weight intervals on the path πM are subintervals of the
corresponding intervals on the path πN .

Proof. Let (s1,M), (t1, N) ∈ W and assume that s1 ≤m t1.

1. Let πN = t1
a1,V1−→ t2

a2,V2−→ t3
a3,V3−→ . . . be a maximal must-path in N . We want to show

that there exists a maximal must-path πM = s1
a1,W1−→ s2

a2,W2−→ s3
a3,W3−→ . . . in M such that

si ≤m ti and Wi ⊆ Vi for all i. We prove this by induction. By induction hypothesis

we assume that there is a path s1
a1,W1−→ s2

a2,W2−→ . . .
aj−1,Wj−1−→ sj in M for j > 1 such that

92

4. Logical Characterisation

si ≤m ti and Wi ⊆ Vi for all i, 1 ≤ i ≤ j. (The base case where j = 1 requires that
s1 ≤m t1 which is true by the assumption of the lemma.) We now distinguish two cases
(recall that πN is a maximal must-path).

• Case where tj has no outgoing may transitions. Because sj ≤m tj we get that sj
cannot have any outgoing transitions either and a maximal must-path in N was
matched by a maximal must-path in M as required.

• Case where tj
aj ,Vj−→ tj+1. Because sj ≤m tj there must be a transition sj

aj ,Wj−→ sj+1

such that sj+1 ≤m tj+1 and Wj ⊆ Vj. Hence there is a path s1
a1,W1−→ s2

a2,W2−→
. . .

aj ,Wj−→ sj+1 in M such that si ≤m ti and Wi ⊆ Vi for all i, 1 ≤ i ≤ j + 1, as
required by the induction.

2. Let πM ∈ maxmayP(s1) be a maximal may-path in M . We want to find a matching
maximal may-path in N . The arguments are symmetric as in the proof of part 1. Notice
that the maximality of πM in case of a finite path, i.e. the absence of any must transition
at the end of the path, implies that the path πN constructed in a similar manner as in
part 1. is also maximal (the presence of a must transition at its last state would enforce
the presence of a must transition in the last state of πM). �

Given a specification (s,M) ∈ W and a WCTL formula ϕ such that (s,M) |= ϕ, the
following theorem shows that any refinement also satisfies ϕ. This problem is closely
related to generalized model checking (as defined in [BG00]), which asks, given (s,M) ∈
W and ϕ ∈ L, does there exists an implementation (i, I) ∈ JsK, such that (i, I) |= ϕ. In
our case we, on the other hand, consider the validity problem for all refinements—does
any refinement fulfil ϕ?

Theorem 19. Let (t, N) ∈ W and let ϕ ∈ L be a WCTL formula. Then (t, N) |= ϕ if
and only if (s,M) |= ϕ for all (s,M) s.t. (s,M) ≤m (t, N).

Proof. The ‘if’ part is trivial since (t, N) is a refinement of itself. We prove ‘only if’
below.

Let (s,M), (t, N) ∈ W be two weighted modal transition systems, where M =
(SM ,Σ, 99K,−→, δM) and N = (SN ,Σ, 99K,−→, δN). We show that for any formula
ϕ ∈ L:

if (s,M) ≤m (t, N) and (t, N) |= ϕ then (s,M) |= ϕ . (1)

The proof is by structural induction over the structure of the formula ϕ.
Induction basis: The cases ϕ = true and ϕ = false are trivial.
Induction step: Assume ϕ1 and ϕ2 are state formulae for which (1) hold.

• ϕ = ϕ1 ∧ ϕ2:

Since the induction hypothesis applies to ϕ1 and ϕ2 we have

t |= ϕ1 ∧ ϕ2 =⇒ (t |= ϕ1) and (t |= ϕ2) =⇒

(s |= ϕ1) and (s |= ϕ2) =⇒ s |= ϕ1 ∧ ϕ2.

93

C. Modal Transition Systems with Weight Intervals

• ϕ = ϕ1 ∨ ϕ2:

Similar as for conjunction.

• ϕ = EXc
χ ϕ1:

If t |= ϕ then there exists t
a,W−→ t′, where a |= χ, t′ |= ϕ1 and c(W) = 1. Since

s ≤m t, we conclude that s
a,V−→ s′, where V ⊆ W exists such that s′ ≤m t′. The

requirement on the constraint function c implies that also c(V) = 1, since V ⊆ W .
By the induction hypothesis s′ |= ϕ1 and thus s |= ϕ as well.

• ϕ = E (ϕ1 U
c
χ ϕ2):

If t |= ϕ then there exists a must-path πN = t1
a1−→ t2

a2−→ . . . with t1 = t in
maxmustP(t) on which there exists j such that tj |= ϕ2, tk |= ϕ1 and ak |= χ for

all k < j and c(δ(t1
a1−→ t2), δ(t2

a2−→ t3), . . . , δ(tj−1
aj−1−→ tj)) = 1. By Lemma 18

we know that there exists a must-path πM = s1
a1−→ s2

a2−→ . . . with s1 = s in
maxmustP(s) such that si ≤m ti for all i. The induction hypothesis implies that
also sj |= ϕ2 and that sk |= ϕ1 for all k < j. By the requirement on c we also

have that if c(δ(t1
a1−→ t2), δ(t2

a2−→ t3), . . . , δ(tj−1
aj−1−→ tj)) = 1 then c(δ(s1

a1−→
s2), δ(s2

a2−→ s3), . . . , δ(sj−1
aj−1−→ sj)) = 1, since δ(si

ai−→ si+1) ⊆ δ(ti
ai−→ ti+1) for

all i. Hence s |= ϕ.

• ϕ = E (ϕ1 R
c
χ ϕ2):

The same reasoning as in the previous case is used. As t |= ϕ then there exists a
must-path πN ∈ maxmustP(t) such that ϕ2 and χ holds in all states and transitions
respectively until and including the first state where ϕ1 holds (possibly never) and
c equals 1 when evaluated on the weight intervals corresponding to the path where
ϕ2 holds. Again Lemma 18 provides a must-path πM ∈ maxmustP(s) such that
the induction hypothesis and the requirement on c gives us that s |= ϕ.

• ϕ = AXc
χ ϕ1:

Consider here an arbitrary transition s
a,V
99K s′ where a |= χ. Since s ≤m t, there

exists t
a,W
99K t′ with V ⊆ W such that s′ ≤m t′. As t |= ϕ, we know that t′ |= ϕ1

and c(W) = 1. By the induction hypothesis and the requirement on c, we get that
also s |= ϕ.

• ϕ = A (ϕ1 U
c
χ ϕ2):

Consider an arbitrary path πM = s1
a1
99K s2

a2
99K . . . with s1 = s in maxmayP(s)

where ai |= χ for all i. By Lemma 18 a path πN = t1
a1
99K t2

a2
99K . . . with t1 = t

in maxmayP(t) exists such that si ≤m ti for all i. As t |= ϕ, then there exists

j such that tj satisfies ϕ2, tk |= ϕ1 for all k < j and c(δ(t1
a1
99K t2), δ(t2

a2
99K

t3), . . . , δ(tj−1

aj−1

99K tj)) = 1. By the induction hypothesis sj |= ϕ2 and sk |= ϕ1

94

5. Conclusion and Future Work

for all k < j. Since δ(si
ai
99K si+1) ⊆ δ(ti

ai
99K ti+1) for all i, this implies that

c(δ(s1
a1
99K s2), δ(s2

a2
99K s3), . . . , δ(tj−1

aj−1

99K tj)) = 1. We now have that s |= ϕ as
required.

• ϕ = A (ϕ1 R
c
χ ϕ2):

Again, we prove that if t |= ϕ then also s |= ϕ. This is done as in the previous
case by considering an arbitrary path in maxmayP(s) where all actions satisfy χ
and applying Lemma 18, the induction hypothesis and the requirement on c.

�

The reader may wonder why this action-based CTL is in positive normal form. The
reason for this is that we require that a formula satisfied by a specification is also
satisfied by all refinements. This does not hold for a formula of the form ¬ϕ. Consider

for instance the specification consisting of two states s1 and s2, with s1

a,W
99K s2. Then the

state s1 satisfies ϕ ≡ ¬ EXc
a true, with c returning constantly 1, since EX requires a must

transition. However, in the refinement consisting of two states i1 and i2 with i1
a,V−→ i2,

V ⊆ W , the state i1 does not satisfy ϕ, since there indeed exists a must transition from
s1 with the action a. On the other hand, in the refinement consisting of an isolated state
j1 with no transitions j1 |= ϕ holds.

Thus, showing that a specification does not satisfy some ϕ only implies the existence of
at least one refinement satisfying ¬ϕ, not all of them as required by the modal refinement
methodology.

5. Conclusion and Future Work

We presented a novel extension of modal transition systems called weighted modal tran-
sition systems where each transition is decorated with an interval of weights, describing
all possible values that can be used in an implementation. Furthermore we constructed
the largest common refinement of a number of finite deterministic specifications, and
proved the correctness of the construction. This result generalizes the previously known
algorithm for the common implementation problem on unweighted deterministic modal
transition systems. We also suggested a notion of weighted CTL logic in order to rea-
son about the properties of the weighted modal transition systems and argued for the
soundness of this choice.

Clearly the proposed logic is undecible due to its generality. As a future work it would
therefore be interesting to identify decidable fragments of the logic. This can be achieved
e.g. by considering a subset of the allowed state formulae, an unweighted version of the
logic or by reasoning only about implementations.

In our future work we will also consider the common implementation/specification
problems of nondeterministic specifications, a determinisation construction, algorithmic
aspects of the generalized model checking problem for weighted modal specifications as
well as the extension of the formalisms to mixed systems where the must transitions

95

C. Modal Transition Systems with Weight Intervals

are not necessarily included in the may transitions. One might also consider a lattice of
values as weight domain instead of the less general intervals considered here.

96

DExtending Modal Transition Sys-
tems with Structured Labels

Sebastian Bauer
Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Line Juhl Kim G. Larsen
Aalborg University, Department of Computer Science, Denmark

Axel Legay
INRIA/IRISA, Rennes Cedex, France

Jǐŕı Srba
Aalborg University, Department of Computer Science, Denmark

Abstract We introduce a novel formalism of label-structured modal transition systems
that combines the classical may/must modalities on transitions with structured labels
that represent quantitative aspects of the model. On the one hand, the specification
formalism is general enough to include models like weighted modal transition systems
and allows the system developers to employ more complex label refinement than in the
previously studied theories. On the other hand, the formalism maintains the desirable
properties required by any specification theory supporting compositional reasoning. In
particular, we study modal and thorough refinement, determinization, parallel com-
position, conjunction, quotient, and logical characterization of label-structured modal
transition systems.

97

D. Extending Modal Transition Systems with Structured Labels

1. Introduction

Modern computing systems are often large and complex assemblies of numerous reactive
and interacting components. The components are often designed by independent teams,
working under a common agreement what the interface of each component should be.
Consequently, the search for mathematical foundations which support compositional
reasoning about interfaces is a major research goal. The framework should support
inferring properties of the global implementation, and designing and advisedly reusing
components.

In a logical setting, interfaces are specifications and components that implement an
interface are understood as models/implementations. Specification theories should sup-
port various features including (1) refinement, which allows to compare specifications
as well as to replace a specification by another one in a larger design, (2) structural
composition, which allows to combine specifications of different components, (3) logical
conjunction, expressing the intersection of the set of requirements expressed by two or
more specifications, and last but not least, (4) a quotient operator that, given two spec-
ifications S and T , synthesizes the largest (w.r.t. refinement) specification that can be
composed with S in order to refine T .

For sequential systems the classical notion of Denotational Semantics, founded by
Scott and Strachey, provides a rich mathematical foundation for successfully describing
the semantics of many sequential programming languages and systems [Gor79, Sto77]
where components, i.e. programs, are basically modelled as computable functions from
the domain of input values to the domain of output values. Most importantly, the se-
mantics of a composite program is expressed in terms of the semantics of its components
thus supporting compositional reasoning. A similar well-established specification theory
for sequential systems is that of Hoare Logic [Hoa69], where a program is specified by
pairs of pre- and post-conditions on states. In particular, Hoare Logic comes equipped
with all the ingredients required and described above for a specification theory, with
“strongest postcondition” and “weakest precondition” transformers providing the means
for composing and quotienting specifications with respect to sequential composition.

Process algebras such as CCS [Mil80] and CSP [Hoa85] provide a corresponding math-
ematical foundation for concurrent and reactive systems. Here systems are semantically
understood as labelled transition systems [Plo81] describing their interaction capabilities
and dynamic evolution. Based on the labelled transition system semantics, several equiv-
alences and preorders have been proposed [vG90] in order to capture different aspects
of the extensional behaviour of a process. This results in specification theories where
both the specification and the implementation are expressed within the same formalism,
e.g. CCS, and with a preferred preorder or equivalence determining the satisfaction of
an implementation with respect to a specification. To achieve the goal of compositional
analysis great care has normally been taken to ensure that the preorders and equiva-
lences are substitutive with respect to the various process constructions, e.g. parallel
composition, including the notions of observational equivalence [Mil80] and bisimulation
equivalence [Par81, Mil83] used in CCS.

The specification theory of modal transition systems [LT88a] grew out of a series of

98

1. Introduction

attempts to achieve a more flexible and easy-to-use compositional development method-
ology for CCS. For the initial motivation consider the so-called stepwise refinement
method to be carried out in CCS. A specification (in CCS) S of some desired system is
given. The task is to find an implementation I of S such that I ≡ S, where ≡ may be
observational (or bisimulation) equivalence. In a first refinement-step S might be refined
to a composite specification of the form C[S1, S2], where the context C is some CCS-
construct (e.g. parallel composition) and S1 and S2 are subspecifications. Now we may
have different teams working independently towards implementations I1 and I2 of the
subspecifications S1 and S2. Given the congruence property of observational equivalence,
it will now suffice to establish the equivalences below to conclude, in a compositional
manner, that the assembled implementation C[I1, I2] satisfies the original specification
S:

C[S1, S2] ≡ S (1)

I1 ≡ S1 (2)

I2 ≡ S2 (3)

However, looking more carefully at the stepwise refinement above, we notice that (2)
and (3) require Si and Ii (i = 1, 2) to be proved congruent, i.e. interchangeable, in any
context and not just interchangeable in the context of C in which they are actually
going to be placed. We are therefore asked to prove more than what seems necessary.
Moreover, the subspecifications Si (i = 1, 2) may have to specify behaviours that are not
at all relevant in the context C. Again it seems that the above compositional analysis
can be substantially harder than necessary.

In order to reduce the work of (1-3), the notion of context-dependent or relativized
bisimulation was introduced in [Lar85, Lar87]. Here, in order to reduce the overall
effort, the observational equivalence ≡ is relativized with information about the con-
text C. The required proofs Ii ≡ Si can thus be replaced with proofs of the more
specific Ii ≡e Si where e is some partial information (stated as a labelled transition
system) about the context C. The work [LM87, LM92] applies the relativized bisim-
ulation to the compositional verification of the Alternating Bit Protocol, and [PS00]
introduces a proof technique for polymorphic Pi-Calculus based on polymorphic types
which can be seen as a “disciplined instance” of relativized bisimulation. A more recent
usage of relativized bisimulation includes the use of environment information to produce
environment-specific (reduced) code from embedded system specifications [LLW05] and
to generate relevant test sequences from real-time specifications [LMN05].

The introduction of modal transition system was pre-dated by the simpler formalisms
of partial specifications [LT88b] and the corresponding notion of partial bisimulation.
Roughly speaking, partial specifications are labelled transition systems with certain
(specification) states being interpreted as completely unspecified. As such, partial spec-
ifications are very similar to that of processes with divergence and the so-called pre-
bisimulation [Sti87, SW89]. However, though allowing for simple and intuitive subspecifi-
cations on several examples, the specification theory constituted by partial specifications
is closed under neither conjunction nor quotienting.

99

D. Extending Modal Transition Systems with Structured Labels

Compared with partial specifications, the introduction of modal transition sys-
tems [LT88a] resulted in a specification theory much closer to logic (see [BL92] for a
logical characterization of the expressive power of modal transition systems), thus still
with a behavioural semantics allowing for easy composition with respect to process con-
structions. In short, modal transition systems are labelled transition systems equipped
with two types of transitions: must transitions that are mandatory for any implemen-
tation, and may transitions which are optional for an implementation. Refinement of
modal transition systems now essentially consists in iteratively resolving the unsettled
status of may transitions: either by removing them or by turning them into must tran-
sitions.

It is well admitted that modal transition systems and their extensions (e.g., [Rac08])
match all the requirements of a good specification theory. There is also no doubt that the
formalism is expressive enough to encode complex industrial problems (see e.g., [COM11,
SPE10]). Moreover, the model has applications in other contexts, which include the
verification of product lines [FUB06, GLS08a, LNW07b] and a counterexample-guided
abstraction refinement technique for transition systems [GHJ01].

While searching for a specification theory for embedded systems, it is not only the
functional requirements [LNW07b, FP07, BMSH10] of system behaviours that are of
importance. The theory should be also capable of expressing constraints for several non-
functional properties such as timing, energy-consumption, band-width etc. Recently such
efforts have been of high interest in the theory community [CDL+10, KKN09, DKL+11,
BLPR09, BPR09, DLL+10].

For different non-functional extensions it is common that similar proof techniques are
used to argue about the specification formalisms. In this article, we present a speci-
fication theory that unifies several of the proof techniques described in the literature
by introducing a general framework of label-structured modal transition system. Spe-
cializations of the framework include, apart from the well-known instances like unla-
belled/labelled modal transition systems, also a new specification theory for weighted
and multi-weighted transition systems that were studied only recently [JLS12]. Other
formalisms like timed modal transitions systems can be embedded into the framework
as argued in [BLPR09] where the authors show that operations defined on some classes
of timed modal specifications can be reduced to questions on modal transition systems
by using a region-based abstraction.

In this article, we study the classical questions related to the formalism of label-
structured modal transition systems: (i) modal and thorough refinement, consistency
and pruning, determinism and deterministic hull (in Section 2), (ii) parallel composi-
tion, conjunction and quotient (in Section 3) and (iii) logical characterization including
generalized model checking (in Section 4).

As a result, we offer in a self-contained manner a full specification theory of label-
structured modal transition systems. The theory specializes to some well-known for-
malisms studied earlier but at the same time also provides novel results for instances
such as weighted and multi-weighted modal transition systems.

100

2. Label-Structured Modal Transition Systems

2. Label-Structured Modal Transition Systems

We shall now introduce the notion of label-structured modal transition systems and some
basic properties of the formalism. Before that we need to define the notion of labels and
label-sets used during the system design and specification refinement.

Definition 1 (Label-set). A label-set is a partially ordered set of labels (K,v) such
that ⊥∈ K (modelling inconsistency) is the least element of K.

A label k ∈ K r {⊥} is called an implementation label if k′ v k implies k′ = k for all
k′ ∈ K r {⊥}. In other words, implementation labels are all elements in K just above
⊥. The set of all implementation labels of (K,v) is denoted by Imp(K,v). To each
label k ∈ K we associate the set JkK of all implementation labels below k by

JkK = {k′ ∈ Imp(K,v) | k′ v k}.

Definition 2 (Well-formed label-set). A label-set (K,v) with the least element ⊥∈ K
is called well-formed if JkK 6= ∅ for every k ∈ K r {⊥}.

Well-formedness of label-sets ensures consistency of the label refinement relation v,
in other words it should always be possible to refine any label into an implementation
label. We can now define label-structured modal transition systems that combine the
underlying may/must transition relation known from modal transition systems with the
label structure defined above.

Definition 3 (Label-structured modal transition system). A label-structured modal tran-
sition system (LSMTS) is a tuple (S, s0, (K,v), 99K,−→) where S is a set of states with
the initial state s0 ∈ S, (K,v) is a well-formed label-set, 99K⊆ S × K × S is the
may transition relation, and −→⊆ S ×K × S is the must transition relation such that
−→⊆ 99K.

We write s
k
99K s′ if (s, k, s′) ∈ 99K. If for some k ∈ K no state s′ ∈ S exists such

that s
k
99K s′ we write s 6 k99K, and if there exists some s′ ∈ S such that s

k
99K s′ we write

s
k
99K. The aforementioned notations apply also to −→. By abuse of notation, we use S

to denote an LSMTS (S, s0, (KS,vS), 99KS,−→S) and the subscripts are omitted if they
are clear from the context. The notation (s, S) denotes the LSMTS S with the initial
state s0 replaced by s. The class of all LSMTSs with the well-formed label-set (K,v) is
denoted byM(K,v), and we typically use capital letters S, T , U to range over this class.

An LSMTS S is called an implementation if −→= 99K and all labels on the transitions

are implementation labels, that is, for all s
k−→ s′ in S we have k ∈ Imp(K,v). The

class of all implementations with well-formed label-set (K,v) is denoted by I(K,v), and
we typically use capital letters I and J to range over this class.

In the following, LSMTSs will be often represented as graphs with the convention that
whenever two states are connected by both a must and a may transition under the same
label, then we draw only the must transition.

101

D. Extending Modal Transition Systems with Structured Labels

⊥

•

(a) v

i0 i1

•

•
≤m

(b) I

s0 s1 s2

•
⊥

•

•
•

⊥
(c) S

Figure 1.: Unlabelled modal transition system over the label-set Kunlabelled

⊥

a b c d

(a) v

s0 s1

s2

a

b

d a

≤m

(b) S

t0

t1

t2

a

b

a

c

d

(c) T

Figure 2.: Modal transition systems over the label-set Kaction

Example 4. The most trivial instance of LSMTSs is obtained by choosing the well-
formed label-set Kunlabelled = ({⊥, •},v) where v= {(⊥,⊥), (⊥, •), (•, •)} illustrated
in Figure 1(a). This label-set gives rise to unlabelled modal transition systems where
• models a single implementation label and ⊥ is the inconsistency label. An example
is shown in Figure 1(b) and (c). The LSMTS I in Figure 1(b) is an implementation
because every label is an implementation label and the may and must transition relations
coincide. Note that the LSMTS in Figure 1(c) is not an implementation as (i) there
are transitions labelled with ⊥ and (ii) there are several may transitions without the
corresponding must ones. The definition and explanation of modal refinement, denoted
≤m, is deferred to Section 2.2. �

Example 5. A well-known instance of the framework is obtained by considering a
finite set of actions Σ and defining a well-formed label-set Kaction by Kaction = (Σ ∪ {⊥
},v) where a v b if and only if a =⊥ or a = b. Here all labels (apart from ⊥)
are implementation labels and this setting corresponds exactly to the class of modal
transition systems [LT88a]. Illustration of the label-set Kaction and two examples of
modal transition systems are given in Figure 2. �

Example 6. As another example of a well-formed label-set demonstrating a more
interesting label refinement, we can consider the following structure Kmachine =
({drink , coffee, tea, coin, 1EURO , 2EURO ,⊥},v) where the ordering v is given in Fig-
ure 3(a). Here it is possible to provide a high-level specification of a vending machine by
using the labels drink and coin that can be later in a concrete implementation refined
into the implementation labels coffee and tea, and 1EURO and 2EURO , respectively.

�

102

2. Label-Structured Modal Transition Systems

drink

coffee tea

coin

1EURO 2EURO

⊥
(a) v

i0i1 i2

1EURO

tea

2EURO

coffee ≤m

(b) I

s0 s1

coin

drink

(c) S

Figure 3.: Vending machines over the label-set Kmachine

⊥

· · · [-2,-2] [-1,-1] [0,0] [1,1] [2,2] · · ·

· · · [-2,-1] [-1,0] [0,1] [1,2] · · ·

· · · [-2,0] [-1,1] [0,2] · · ·
· · ·· · ·· · ·

(a) v

i0

i1

[4, 4][2, 2] ≤m

(b) I

s0

s1

[4, 4][2, 3] ≤m

(c) S

t0

t1

[2, 6]

[2, 7][1, 3]

(d) T

Figure 4.: Weighted modal automata over Kweighted

Example 7. Another instance of the framework is called weighted modal automata.
Here the well-formed label-set Kweighted is given as a set of integer intervals with the
natural inclusion ordering, formally Kweighted = (K,v) where K = {[a, b] | a, b ∈
Z s.t. a ≤ b} ∪ {⊥} and [a′, b′] v [a, b] if a ≤ a′ and b′ ≤ b, ⊥v [a, b], and ⊥v⊥,
for all a, a′, b, b′ ∈ Z. It follows that implementation labels are singleton sets of the
form [a, a] where a ∈ Z. Consult Figure 4 for the illustration of Kweighted and for three
examples of weighted modal automata. The automaton I is an implementation while S
and T are not. �

2.1. Product of Labels

In this subsection we will discuss a product construction on labels which will allow us
to form (by a general construction) new instances of the framework from existing ones.

Definition 8 (Product). Let (K1,v1) and (K2,v2) be two label-sets with the least
elements ⊥1 and ⊥2, respectively. The product (K1,v1)⊗ (K2,v2) of the two label-sets
is a label-set (K,v) where K =

(
(K1r{⊥1})×(K2r{⊥2})

)
∪{⊥} and (k′1, k

′
2) v (k1, k2)

if k′1 v1 k1 and k′2 v2 k2 for all k1, k
′
1 ∈ K1 r{⊥1} and all k2, k

′
2 ∈ K2 r{⊥2}, and ⊥v `

for all ` ∈ K.

It is easy to observe that the product construction preserves well-formedness and
implementations are derived component-wise as stated in the following lemma.

Lemma 9. Let (K1,v1) and (K2,v2) be well-formed label-sets. Then

103

D. Extending Modal Transition Systems with Structured Labels

1. (K1,v1)⊗ (K2,v2) is a well-formed label-set, and

2. Imp((K1,v1)⊗ (K2,v2)) = Imp(K1,v1)× Imp(K2,v2).

Using the product construction of label-sets, we can e.g. combine the previously intro-
duced well-formed label-sets Kaction and Kweighted from Examples 5 and 7 into weighted
modal transition systems using the label-set Kaction ⊗ Kweighted or into multi-weighted
modal transition systems using the label-set Kaction⊗Kweighted⊗Kweighted⊗ . . .⊗Kweighted

and further combine these with other quantitative aspects.

2.2. Refinement

We shall now define the notion of modal refinement that combines the label refinement,
given by the partial ordering on the label-set, with the allowed transitions that may
be present and required transitions that must be present. It is a generalization of the
original notion of modal refinement over classical modal transition systems [LT88a].

Definition 10 (Modal refinement). Let S, T ∈ M(K,v) be two LSMTSs with initial
states s0 and t0, respectively. We say that S modally refines T , written S ≤m T , if there
exists a relation R ⊆ S × T with (s0, t0) ∈ R such that for every (s, t) ∈ R:

1. whenever s
k
99K s′ then there is t

`
99K t′ such that k v ` and (s′, t′) ∈ R, and

2. whenever t
`−→ t′ then there is s

k−→ s′ such that k v ` and (s′, t′) ∈ R.

The implementation semantics of an LSMTS S ∈ M(K,v) is defined as the class JSK
of all implementations refining S, i.e. JSK = {I ∈ I(K,v) | I ≤m S}.

Example 11. Refinement of modal transition systems labelled with actions (see Exam-
ple 5) is illustrated in Figure 2. The system S is a modal refinement of the system T ,
and the relation demonstrating this is given by {(s0, t0), (s1, t1), (s2, t0)}. Note that S
is not an implementation yet, as it contains a may transition under b without a must
transition under the same label. �

Example 12. Consider the label-set Kmachine from Example 6. A specification of a
vending machine is depicted in Figure 3(c). It allows to enter a coin and, should this
happen, it requires that a drink is returned to the customer. One of the possible imple-
mentations (where all labels are implementation labels and the may and must transition
relations coincide) of this specification is given in Figure 3(b). The modal refinement
between the implementation and specification is easily demonstrated by the relation
{(i0, s0), (i1, s1), (i2, s1)}. �

Example 13. Refinement of weighted modal automata (see Example 7) is illustrated
in Figure 4. The relation {(s0, t0), (s1, t0)} is witnessing the modal refinement between
Figure 4d and 4c. Note that the refined specification in Figure 4c is not an implementa-
tion yet as it contains the label [2, 3] which is not an implementation label. We can thus
refine it further, ending up with an implementation as seen in Figure 4b. The witnessing
relation is {(i0, s0), (i1, s1)}. �

104

2. Label-Structured Modal Transition Systems

Lemma 14. The modal refinement relation ≤m is a preorder.

Proof. Reflexivity is trivial. Transitivity can be seen as follows. Let S, T, U ∈ M(K,v)

be three LSMTSs with their initial states s0, t0, u0 such that S ≤m T ≤m U . From the
assumption S ≤m T we know that there exists a witnessing relation R1 ⊆ S × T , and
from the assumption T ≤m U we know that there exists a witnessing relation R2 ⊆ T×U .
We define a relation R ⊆ S × U by the relational composition of R1 and R2, i.e.

R = {(s, u) | ∃t ∈ T : (s, t) ∈ R1 and (t, u) ∈ R2}.
We show that R is proving S ≤m U . Obviously (s0, u0) ∈ R. Now, let (s, u) ∈ R be an
arbitrary element of R. Let t ∈ T be a state such that (s, t) ∈ R1 and (t, u) ∈ R2.

1. Assume s
ks
99K s′. From (s, t) ∈ R1 it follows that there exists t

kt
99K t′ such that

ks v kt and (s′, t′) ∈ R1. Then, as (t, u) ∈ R2, we get u
ku
99K u′ such that kt v ku

and (t′, u′) ∈ R2, hence (s′, u′) ∈ R and by transitivity of v also ks v ku.

2. Symmetric to the previous direction.

�

Modal refinement induces an equivalence relation on LSMTS. We say that S and T
are equivalent, denoted by S ≡m T , if both S ≤m T and T ≤m S are satisfied.

Lemma 15. Let I, J ∈ I(K,v) be two implementations. Then I ≤m J implies I ≡m J .

Proof. Given a relation R witnessing I ≤m J we can use R−1 = {(j, i) | (i, j) ∈ R} to
prove that J ≤m I. Let (j, i) ∈ R−1.

1. Assume that i
k−→ i′. Remember that then also i

k
99K i′. From the fact that

(i, j) ∈ R it follows that there exists j
`
99K j′ such that k v ` and (i′, j′) ∈ R. Since

J is an implementation, we get that k = ` and j
`−→ j′. Obviously, (j′, i′) ∈ R−1.

2. The other direction is symmetric.

�

The notion of modal refinement can be understood as refinement defined at the syntac-
tical level as it directly relates the states of two specifications. A semantically motivated
notion of refinement, usually called thorough refinement, says that S is a refinement of
T if every implementation of S is also an implementation of T .

Definition 16 (Thorough refinement). Let S, T ∈ M(K,v) be two LSMTSs. We say
that S thoroughly refines T , written S ≤t T , if JSK ⊆ JT K.

It is an expected result that modal refinement implies thorough refinement, as stated
in the following soundness theorem. The opposite implication does not hold in general
and details are discussed in Section 2.4.

Theorem 17 (Soundness). Let S, T ∈ M(K,v) be two LSMTSs. Then S ≤m T implies
S ≤t T .

Proof. Follows immediately from the transitivity of modal refinement (see Lemma 14).
�

105

D. Extending Modal Transition Systems with Structured Labels

s0 s1 s2

s3

•

⊥

• •
⊥

•

(a) A consistent, but locally incon-
sistent LSMTS S

s0 s1

s3

•

•

(b) The locally consistent re-
sult ρ(S) of pruning S

Figure 5.: Example of the pruning operator

2.3. Consistency and Pruning

Similar to the classical notion of consistency, an LSMTS S is consistent if it has at least
one implementation.

Definition 18 (Consistency). Let S ∈M(K,v). The LSMTS S is consistent if JSK 6= ∅.

Consistency is a semantical notion and in the rest of this article it will be useful to
introduce also a syntactical notion of consistency, called local consistency.

Definition 19 (Local consistency). Let S ∈M(K,v). A state s ∈ S is locally consistent

if s 6 ⊥−→. The LSMTS S is locally consistent if all states of S are locally consistent.

From our assumption of well-formedness of label-sets, it follows that any locally con-
sistent S has at least one implementation, thus local consistency implies consistency.
The converse is not true as explained in the following example.

Example 20. Consider the LSMTS S presented in Figure 5(a) with the label-set
Kunlabelled from Example 4. The system S is clearly not locally consistent but it is
consistent as an implementation with just two states connected by a must (and may)
transition labelled with • is an implementation of S. �

We shall now define a pruning operator that removes locally inconsistent states.

Definition 21 (Pruning). Let S ∈M(K,v) be an LSMTS and let B ⊆ S be a subset of
its states. Let

pre(B) = {s ∈ S | s k−→ s′ and s′ ∈ B for some k ∈ K}

and pre0(B) = B, prej+1(B) = pre(prej(B)) for j ≥ 0, and pre∗(B) =
⋃
j≥0 prej(B).

The pruning ρ(S) of S is defined if s0 /∈ pre∗(bad) where bad = {s ∈ S | s ⊥−→}, and in
this case, ρ(S) is the LSMTS (Sρ, s0, (K,v), 99Kρ,−→ρ) where

Sρ = S r pre∗(bad),

99Kρ = 99K ∩
(
Sρ × (K r {⊥})× Sρ

)
, and

−→ρ =−→ ∩
(
Sρ × (K r {⊥})× Sρ

)
.

106

2. Label-Structured Modal Transition Systems

It is clear that for an LSMTS with n states one can compute pre∗(bad) by finitely
many iterations, more precisely pre∗(bad) = pren(bad) in this case. Also note that
well-definedness of pruning is equivalent to the absence of a path of must transitions
from the initial state to a locally inconsistent state (that enforces inconsistency via must
transition labelled with ⊥).

Figure 5 shows the application of the pruning operator ρ to the system S and one can
easily observe that ρ(S) ≤m S. Pruning also does not remove any implementation. A
summary of the properties of pruning is given in the following proposition.

Proposition 22. Let S ∈M(K,v). If ρ(S) is defined, then

1. ρ(S) is locally consistent,

2. ρ(S) ≤m S,

3. Jρ(S)K = JSK, and

4. for any locally consistent T ∈M(K,v), if T ≤m S then T ≤m ρ(S).

Moreover, ρ(S) is defined if and only if S is consistent.

Proof. 1. As all labels ⊥ were removed in ρ(S), it is trivially locally consistent.

2. We will show that the relation R = {(s, s) | s ∈ S r pre∗(bad)} is a refinement

relation in order to argue that ρ(S) ≤m S. Let (s, s) ∈ R. If s
k
99Kρ s′ in ρ(S)

then this by the construction implies that s′ ∈ S r pre∗(bad). Clearly we have

also s
k
99K s′ in S and (s′, s′) ∈ R. On the other hand, if s

k−→ s′ in S then

s′ 6∈ pre∗(bad) as s 6∈ pre∗(bad), which means that s
k−→ρ s

′ also in ρ(S) and
(s′, s′) ∈ R.

3. The inclusion Jρ(S)K ⊆ JSK follows from the fact that ρ(S) ≤m S. Let I ∈ JSK.
This means that there is a refinement relation R demonstrating that I ≤m S. We
will argue that R is also a refinement relation demonstrating I ≤m ρ(S). However,
this easily follows from the observation that R cannot contain any state from
pre∗(bad), because otherwise a must path to the label ⊥ will be enforced in I too,
but then I is not an implementation.

4. The same argumentation as in the previous point applies also here. Any refinement
relation demonstrating T ≤m S can be used to establish also T ≤m ρ(S). In order
to apply the reasoning as above, it is important that T does not contain any
transition with the label ⊥.

For the last claim, observe that if ρ(S) is not defined then there is a must path from
its initial state to a state requiring a transition under ⊥. Any implementation then
has to contain such a path to a state requiring a transition under ⊥, but then it is not
an implementation. On the other hand, if ρ(S) is defined then we can change every
transition in ρ(S) to a must transition and replace every label by some implementation
label below it (possible thanks to well-formedness of the label-set) in order to construct
an implementation of ρ(S), which is also an implementation of S as ρ(S) ≤m S. �

107

D. Extending Modal Transition Systems with Structured Labels

s0 s1

[0, 1] 6≤m
≤t

(a) S

t0

t1

t2

[0,
0]

[1, 1]

(b) T

Figure 6.: Incompleteness of modal refinement demonstrated by systems S and T

2.4. Determinism and Completeness of Refinement

In general, thorough refinement does not imply modal refinement. A counterexample,
using the label-set Kweighted (see Example 13), is given in Figure 6. Clearly, the transition

s0

[0,1]
99K s1 cannot be matched by any of the two transitions from t0 as their labels are

less general than [0, 1]. Hence S 6≤m T . On the other hand, any implementation of S is
either empty or it is a tree of height one with the outgoing edges labelled by either [0, 0]
or [1, 1]. All such implementations are also refinements of the system T .

It is known that for classical modal transition systems thorough refinement implies
the modal one, under the assumption of determinism [BKLS09b]. We can generalize this
result to the class of label-structured modal transition systems. Before we define when
an LSMTS is deterministic, we first define when two labels k1, k2 are unifiable, that is,
if there is another label k which overlaps with k1 and k2 with respect to their sets of
implementation labels.

Definition 23 (Unifiable labels). Two labels k1, k2 ∈ K are called unifiable if there
exists k ∈ K such that JkK ∩ Jk1K 6= ∅ and JkK ∩ Jk2K 6= ∅.

Then, determinism expresses that for any two outgoing may transitions from the same
state under two different labels k1 and k2, the labels k1 and k2 are not unifiable.

Definition 24 (Determinism). A LSMTS S is called deterministic if for any state s ∈ S
and any two transitions s

k1
99K s′1 and s

k2
99K s′2, if k1 and k2 are unifiable, then k1 = k2

and s′1 = s′2.

Returning to Figure 6 we can realize that the system T is not deterministic as there is
a branching of the transitions with labels [0, 0] and [1, 1], while there exists a label [0, 1]
such that J[0, 1]K ∩ J[0, 0]K 6= ∅ and J[0, 1]K ∩ J[1, 1]K 6= ∅.

A very natural assumption that has to be imposed on the label-sets later on in order
to show completeness of modal refinement, is completeness of label refinement: inclusion
of implementation labels implies label refinement.

Definition 25 (Completeness of label refinement). Let (K,v) be a label-set. Label
refinement v is complete if for all k, ` ∈ K, JkK ⊆ J`K implies k v `.

108

2. Label-Structured Modal Transition Systems

All examples of label-sets provided in this article satisfy this property. Note that label
refinement is always sound by definition, i.e. k v ` implies JkK ⊆ J`K by transitivity of
label refinement.

Under the assumption of (1) completeness of label refinement, (2) determinism of the
refined LSMTS, and (3) local consistency of the refining LSMTS, thorough refinement
implies the modal one.

Theorem 26 (Completeness). Let (K,v) be a well-formed label-set for which label
refinement v is complete. Let S, T ∈ M(K,v) with initial states s0 and t0, respectively,
such that S is locally consistent and T is deterministic. Then S ≤t T implies S ≤m T .

Proof. Assume that S ≤t T . We define a relation R ⊆ S × T as the smallest relation
satisfying:

1. (s0, t0) ∈ R,

2. if (s, t) ∈ R, s
k
99K s′, t

`
99K t′, and JkK ∩ J`K 6= ∅ then (s′, t′) ∈ R.

First, we show a technical result (that we use later on) saying that any (s, t) ∈ R satisfies
J(s, S)K ⊆ J(t, T)K. For (s0, t0) ∈ R, we have J(s0, S)K = JSK ⊆ JT K = J(t0, T)K from the
assumption S ≤t T . Now, let (s, t) ∈ R such that J(s, S)K ⊆ J(t, T)K and assume that

s
k
99K s′, t

`
99K t′, and JkK ∩ J`K 6= ∅. Let I ′ ∈ J(s′, S)K and let m ∈ JkK ∩ J`K which exists

by the construction. Then, since S is locally consistent, there exists an implementation
(i0, I) ∈ J(s, S)K such that i0

m−→ i′ and (i′, I) ≤m I ′. From J(s, S)K ⊆ J(t, T)K it follows

that I ∈ J(t, T)K. Then there exists a transition t
`′

99K t′′ such that (i′, I) ∈ J(t′′, T)K

and m ∈ J`′K. Now, we have t
`
99K t′ and t

`′

99K t′′ such that m ∈ J`K ∩ J`′K, hence
` and `′ are unifiable. As T is deterministic it follows that ` = `′ and t′ = t′′, so
(i′, I) ∈ J(t′, T)K. Finally, from (i′, I) ≤m I ′ and Lemma 15 it follows that (i′, I) ≡m I ′

and hence I ′ ∈ J(t′, T)K.
Now we show that R is a relation witnessing S ≤m T . Clearly (s0, t0) ∈ R. Let

(s, t) ∈ R.

1. Assume s
k
99K s′. By local consistency of S we can assume that k 6=⊥. Then, for

each implementation label m ∈ JkK, there exists an implementation Im ∈ J(s, S)K
such that i0

m−→ i′. We also know that Im ∈ J(t, T)K because J(s, S)K ⊆ J(t, T)K.
Hence there exists a transition t

`m
99K t′m such that m ∈ J`mK. We have to show that,

for all m ∈ JkK, the labels `m are the same. Suppose that there are m1,m2 ∈ JkK

and transitions t
`m1
99K t′m1

and t
`m2
99K t′m2

such that m1 ∈ J`m1K and m2 ∈ J`m2K.
Then, since m1 ∈ J`m1K ∩ JkK and m2 ∈ J`m2K ∩ JkK and T is deterministic, it
follows that `m1 = `m2 and t′m1

= t′m2
. It follows that there is a unique transition

t
`
99K t′ such that m ∈ J`K for all implementation labels m ∈ JkK, this means

JkK ⊆ J`K which implies k v ` by completeness of label refinement. Moreover, by
the definition of R, we get (s′, t′) ∈ R.

109

D. Extending Modal Transition Systems with Structured Labels

s0

s1

s2

[0,
1]

[3, 4]
≤m

(a) S

t0 t1
[0, 4]

(b) D(S)

Figure 7.: Determinization

2. Assume t
`−→ t′. If ` =⊥ then there is a transition s

⊥−→ s′ in S, contradicting
local consistency of S; hence ` 6=⊥. Then, for each implementation I ∈ J(t, T)K
we have that there exists a transition i0

m−→ i′ for some label m ∈ J`K. We know
that J(s, S)K ⊆ J(t, T)K, so every implementation (j0, J) ∈ J(s, S)K has a transition

j0
m−→ j′. It follows that S must have a transition s

k−→ s′ such that m ∈ JkK.
Suppose that JkK 6⊆ J`K, then there would exist an implementation (j̄0, J̄) ∈ J(s, S)K
having j̄0

n−→ j̄′ with an implementation label n ∈ JkK not belonging to J`K, which

means that there must exist another transition in T , say t
`′

99K t′′ such that n ∈ J`′K.
But then we have m ∈ J`K ∩ JkK and n ∈ J`′K ∩ JkK which contradicts determinism
of T . Thus, we have JkK ⊆ J`K, which implies k v ` by completeness of label
refinement. Moreover, by definition of R, we get (s′, t′) ∈ R.

�

2.5. Determinization

It is a well-known fact that, for almost all existing specification theories, deciding thor-
ough refinement involves more complex decision procedures than the ones that can be
used to decide modal refinement (see e.g. [BKLS09a] dealing with the classical modal
transition systems). In the previous subsection, we have seen that in case of determin-
istic systems modal and thorough refinements coincide and can be decided by efficient
syntactical fixed-point based algorithms. In Section 3.1 it will become moreover evident
that determinism plays an important role in establishing several soundness results.

It is thus worth studying a general procedure that, given a nondeterministic LSMTS
S, computes its smallest deterministic over-approximation D(S), called deterministic
hull.

Example 27. Consider the system in Figure 7(a) where S is a LSMTS with label-set
Kweighted . It is nondeterministic since there is the label [0, 4] for which J[0, 4]K∩J[0, 1]K 6= ∅
and J[0, 4]K ∩ J[3, 4]K 6= ∅. The best we can do is to approximate S by a deterministic
LSMTS in Figure 7(b). However, D(S) is an over-approximation as JSK (JD(S)K
witnessed by the implementation with a single must transition labelled with [2, 2].

In the following, we will propose an algorithm that computes, for a given LSMTS S,
a deterministic LSMTS D(S) such that D(S) is an over-approximation of S with the

110

2. Label-Structured Modal Transition Systems

property that it is a minimal one with respect to modal refinement. The construction is
a generalization of the algorithm presented in [BKLS09b] and dealing specifically with
modal transition systems.

We impose the following assumption on the label-set (K,v) necessary for applying
the determinization algorithm. For any set L ⊆ K of pairwise unifiable labels we require
the existence of the least upper bound lub(L) ∈ K such that ` v lub(L) for all ` ∈ L
and whenever ` v `′ for all ` ∈ L then lub(L) v `′.

Definition 28 (Deterministic hull). Let S = (S, s0, (K,v), 99K,−→) be an LSMTS.
The deterministic hull of S is defined by the LSMTS

D(S) = (P(S) r {∅}, {s0}, (K,v), 99KD,−→D)

where the transition relations 99KD and−→D are defined as follows. Let T ∈ (P(S)r{∅})
be a state in D(S). For every maximal, nonempty set L ⊆ {k | s k

99K, s ∈ T } of pairwise

unifiable labels we have T `
99KD T` where ` = lub(L) and T` = {s′ ∈ S | s k

99K s′, s ∈
T , k ∈ L}. If, moreover, for each s ∈ T we have s

k−→ s′ for some s′ ∈ T` and some

k ∈ K such that k v `, then T `−→D T`.

Now we show that D(S) is the smallest deterministic over-approximation of S.

Theorem 29 (Soundness and minimality of determinization). Let S ∈ M(K,v). Then
the following holds:

1. D(S) is deterministic,

2. S ≤m D(S), and

3. for every deterministic D ∈M(K,v), if S ≤m D then D(S) ≤m D.

Proof. 1. Let T be a state in D(S) and assume that there exist two different tran-

sitions T `1
99K T`1 and T `2

99K T`2 such that `1 and `2 are unifiable. It follows that
there exists a least upper bound ` ∈ K of `1 and `2. Hence all labels below `1 are
unifiable with all labels below `2. This contradicts the fact that `1 and `2 are the
least upper bounds of maximal, unifiable sets of labels.

2. We define a relation R ⊆ S×D(S) by R = {(s, T) | s ∈ T }. Clearly, (s0, {s0}) ∈ R
for the respective initial states. Now, let (s, T) ∈ R.

First, assume that s
k
99K s′. Then, since s ∈ T , there exists a maximal, nonempty

set L ⊆ {k | s k
99K, s ∈ T } of pairwise unifiable labels such that k ∈ L. So there

exists a transition T `
99K T` where ` = lub(L), which in particular means that

k v `. Moreover, by the definition of T`, we have that s′ ∈ T`, hence (s′, T`) ∈ R.

Second, assume that T `−→ T`. Then we know that for all t ∈ T there is t
k−→ t′

such that k v ` and t′ ∈ T`. Since we know that s ∈ T , it follows that there is

s
k−→ s′ such that k v ` and s′ ∈ T`, hence (s′, T`) ∈ R.

111

D. Extending Modal Transition Systems with Structured Labels

3. Let D ∈ M(K,v) be a deterministic LSMTS and assume that S ≤m D witnessed
by the relation R. We want to show that D(S) ≤m D. We define a relation
R′ ⊆ D(S)×D by

(T , d) ∈ R′ if and only if ∅ 6= T ⊆ {s ∈ S | (s, d) ∈ R}.

We show that R′ is a relation witnessing D(S) ≤m D. Clearly, ({s0}, d0) ∈ R′ for
the corresponding initial states. Let (T , d) ∈ R′.

• First, assume that T `
99K T` and ` = lub(L) for some maximal, nonempty set

L ⊆ {k | s k
99K, s ∈ T }. We want to show that there exists d

`′

99K d′ such
that ` v `′ and (T`, d′) ∈ R′. Let

S = {s ∈ T | s k
99K, k ∈ L}

which is nonempty since L is nonempty and it is a subset of {k | s k
99K, s ∈ T }.

From the assumption (T , d) ∈ R′, we know that for all s ∈ S it holds that
(s, d) ∈ R by the definition of R′. Let

∆ = {s k
99K s′ | s ∈ S and k ∈ L}.

For every transition s
k
99K s′ in ∆, it follows from (s, d) ∈ R that there exists

d
k′

99K dk′ in D such that k v k′ and (s′, dk′) ∈ R. Let L′ denote the set of all
such k′. Since L is a set of pairwise unifiable labels and for every k′ ∈ L′ there
is some k ∈ L such that k v k′, we know that L′ is a set of pairwise unifiable

labels, too. For every k′ ∈ L′ we have a transition d
k′

99K dk′ for some dk′ ∈ D.

From the determinism of D, it follows that there exists d
`′

99K d′ such that
d′ = dk′ and `′ = k′ for all k′ ∈ L′. Hence k v `′ for all k ∈ L. Since ` is the
least upper bound of L, we can conclude that ` v `′. Moreover, it holds that

(T`, d′) ∈ R′ because T` = {s′ ∈ S | s k
99K s′, s ∈ T , k ∈ L} is nonempty, and

for every s′ ∈ T` it holds that (s′, d′) ∈ R.

• Second, assume that d
`′−→ d′. By the definition of R′ we know that (s, d) ∈ R

for all s ∈ T . Then it follows that, for all s ∈ T , we have s
k−→ s′ such that

k v `′ and (s′, d′) ∈ R. Note that T is nonempty, thus there is some maximal,

nonempty set L ⊆ {k | s k
99K, s ∈ T } of pairwise unifiable labels such that

k ∈ L for all labels k where s
k
99K and k v `′. This implies that there exists

T `−→ T` with ` = lub(L). Now, we have to show that ` v `′. Let k ∈ L, then

there exists s
k
99K s′ with s ∈ T , and from (s, d) ∈ R it follows that k v `′ by

the determinism of D, and (s′, d′) ∈ R. Since ` is the least upper bound of L,
it follows that ` v `′. Finally, we show that (T`, d′) ∈ R′. The set T` is clearly
nonempty, and moreover, it holds that for every s′ ∈ T` we have (s′, d′) ∈ R.

�

112

3. Specification Theory

We can use the above theorem to prove that given two LSMTSs S and T , whenever
S thoroughly refines T , then D(S) modally (syntactically) refines D(T).

Corollary 30. Let (K,v) be a well-formed label-set for which the label refinement v is
complete. Let S, T ∈ M(K,v) be locally consistent LSMTSs. If S ≤t T then D(S) ≤m
D(T).

Proof. By Theorem 29 we know that T ≤m D(T) and by Theorem 17 also T ≤t D(T).
By transitivity and the assumption S ≤t T , it follows that S ≤t D(T), which implies
S ≤m D(T) by completeness of refinement (Theorem 26). By minimality of D(S) we
can conclude that D(S) ≤m D(T). �

3. Specification Theory

In order to apply label-structured modal transition systems as a specification formalism
for software components, we need to define several operators on LSMTSs essential for
any specification theory supporting compositional reasoning. First, structural composi-
tion (or parallel composition) allows us to combine interacting specifications. Second,
logical composition (or conjunction) of two or more specifications expresses the greatest
specification satisfying all the requirements of the given set of specifications. And third,
a quotient operator which is dual to parallel composition: given a specification T express-
ing a requirement that needs to be implemented, and a specification S of the components
that already exist, the quotient of T by S is the smallest specification which, together
with S, satisfies T . All these operators are an important part of any compositional
specification theory.

3.1. Operators on Labels and their Product

Operators on LSMTSs naturally involve different ways of combining labels. In this
subsection, we introduce label operators on well-formed label-sets which will become
crucial ingredients for the operators on LSMTSs introduced later on. In the text to
follow, label operators are consistently denoted by symbols in circles.

Definition 31 (Label operator). A (binary) label operator on a label-set (K,v) is a
partial function � : K ×K ⇀ K.

A label operator � on (K,v) is called commutative if k�` is defined iff `�k is defined,
and if they are defined then k � ` = `� k. The operator is associative if k � (`�m) is
defined iff (k � `)�m, and if they are defined then k � (`�m) = (k � `)�m.

We can also form products of label operators which are operators on the product of
their label-sets.

Definition 32 (Product of label operators). Given two well-formed label-sets (K1,v1)
and (K2,v2), and two label operators �1 and �2, the product of �1 and �2 is given by

113

D. Extending Modal Transition Systems with Structured Labels

the label operator �1 ×�2 on K1 ⊗K2 which is defined as follows:

(k1, k2)(�1 ×�2)(`1, `2) =


(k1 �1 `1, k2 �2 `2) if ⊥6= ki �i `i is defined for i ∈ {1, 2}
⊥ if ki �i `i is defined for i ∈ {1, 2}

and either k1 � `1 =⊥ or k2 � `2 =⊥
undefined otherwise

It is easy to see that if two label operators, �1 and�2, are commutative and associative
then so is the product operator �1 ×�2.

3.2. Parallel Composition

We start with the parallel composition, an operator that reflects the standard structural
composition of implementations at the specification level.

Two LSMTSs with the same well-formed label-set (K,v) can be structurally composed
with respect to a label operator ⊕ on (K,v). Two transitions (in different parallel
components) labelled with k ∈ K and ` ∈ K can synchronize if k ⊕ ` is defined. The
synchronized transition is then labelled with the label k ⊕ `.

The desired property of parallel composition, crucial for any compositional specifi-
cation theory, is called compositional refinement. It allows for a step-wise refinement
of individual specifications while their parallel composition is guaranteed to refine the
parallel composition of the original specifications. However, in order to achieve this, we
have to impose a natural requirement on the label operator ⊕ for composing labels.

Definition 33 (Compositional label operator). A label operator ⊕ on a well-formed
label-set (K,v) is compositional if whenever k′ v k and `′ v ` then k′ ⊕ `′ is defined if
and only if k ⊕ ` is defined, and in the positive case moreover k′ ⊕ `′ v k ⊕ `.

As expected, compositionality of label operators is preserved under their products.

Proposition 34. If ⊕1 and ⊕2 are compositional label operators on well-formed label-
sets (K1,v1) and (K2,v2) respectively, then ⊕1 × ⊕2 is a compositional label operator
on (K1,v1)⊗ (K2,v2).

The actual definition of ⊕ depends on the interpretation of parallel composition for the
modelled quantity. We present several possible definitions of ⊕ for some of the examples
seen so far. All of the defined operators are compositional label operators and they can
be further combined using the product construction.

Example 35. In Example 5 we have instantiated LSMTSs to modal transition systems
labelled with actions, with well-formed label-set Kaction = (Σ ∪ {⊥},v) for a finite set
of actions Σ. The label operator for Kaction can be defined as follows, depending on the
desired synchronization scheme.

114

3. Specification Theory

• Synchronization by shared actions:

a⊕ b =


a if a = b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

• Complete interleaving:

a⊕ b =


a if a 6=⊥ and b = e

b if a = e and b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

Here we assume the existence of a special action e ∈ K s.t. s
e
99K s for every state

s.

�

Example 36. For weighted modal automata (see Example 7), the definition of ⊕ de-
pends on how we want to interpret the weights. If the weights on transitions model e.g.
costs (or energy consumption) then the composition operator may be defined as the sum
of intervals:

k ⊕ ` =

{
[i1 + i2, j1 + j2] if k = [i1, j1] and ` = [i2, j2]

⊥ if k =⊥ or ` =⊥

Note that this label operator is total, so every transition in a weighted modal automaton
will synchronize with each transition in the other automaton. Other options may include
taking the interval intersection as the composition operator, should the weights represent
e.g. (discrete) time intervals in which a transition can be executed. �

For the rest of this subsection, let us fix a well-formed label-set (K,v) with a compo-
sitional label operator ⊕ on it.

Definition 37 (Parallel composition). Let S, T ∈M(K,v) be two LSMTSs such that S =
(S, s0, (K,v), 99KS,−→S) and T = (T, t0, (K,v), 99KT ,−→T). The parallel composition
of S and T is defined as the LSMTS

S‖T = (S × T, (s0, t0), (K,v), 99K,−→)

where the transition relations 99K and −→ are defined by the following rules:

s
k
99KS s′ t

`
99KT t′ k ⊕ ` is defined

(s, t)
k⊕`
99K (s′, t′)

s
k−→S s

′ t
`−→T t

′ k ⊕ ` is defined

(s, t)
k⊕`−→ (s′, t′)

115

D. Extending Modal Transition Systems with Structured Labels

As we assumed that the label operator ⊕ is compositional, we get the property of
compositional refinement, also called independent implementability [dAH05]. In other
words, modal refinement is a precongruence with respect to parallel composition. This
is formalized in the following theorem.

Theorem 38 (Independent Implementability). Let S, S ′, T, T ′ ∈ M(K,v) be LSMTSs
and let ⊕ be a compositional label operator on (K,v). If S ′ ≤m S and T ′ ≤m T then
S ′‖T ′ ≤m S‖T .

Proof. Assume that R1 is a relation showing S ′ ≤m S and R2 is a relation showing
T ′ ≤m T . We define a relation R ⊆ (S ′×T ′)× (S×T) by ((s′, t′), (s, t)) ∈ R if and only
if (s′, s) ∈ R1 and (t′, t) ∈ R2. We show that R witnesses S ′‖T ′ ≤m S‖T .

Obviously ((s′0, t
′
0), (s0, t0)) ∈ R where s0, s

′
0, t0, t

′
0 are the initial states of S, S ′, T , T ′,

respectively. Let ((s′, t′), (s, t)) ∈ R.

1. Assume (s′, t′)
k′⊕`′
99K (ŝ′, t̂′). By the rule of parallel composition, we have s′

k′

99K ŝ′

and t′
`′

99K t̂′. Then, from (s′, s) ∈ R1 and (t′, t) ∈ R2 it follows that there exist

s
k
99K ŝ and t

`
99K t̂ such that k′ v k, `′ v `, (ŝ′, ŝ) ∈ R1, and (t̂′, t̂) ∈ R2. From

the fact that ⊕ is a compositional label operator it follows that k′⊕ l′ v k⊕ `, and

then (s, t)
k⊕`
99K (ŝ, t̂) and ((ŝ′, t̂′), (ŝ, t̂)) ∈ R.

2. Assume (s, t)
k⊕`−→ (ŝ, t̂). By the rule of parallel composition, we have s

k−→ ŝ and

t
`−→ t̂. Then, from (s′, s) ∈ R1 and (t′, t) ∈ R2 it follows that there exist s′

k′−→ ŝ′

and t
`′−→ t̂′ such that k′ v k, `′ v `, (ŝ′, ŝ) ∈ R1, and (t̂′, t̂) ∈ R2. From the

compositionality of the label operator it follows that k′ ⊕ `′ v k ⊕ `, and then

(s′, t′)
k′⊕`′−→ (ŝ′, t̂′) and ((ŝ′, t̂′), (ŝ, t̂)) ∈ R.

�

Clearly, if ⊕ is commutative and associative, then so is the parallel composition (up
to isomorphism).

3.3. Conjunction

Different component requirements can be often specified by independent teams. The
issue of dealing with the aspects of multiple viewpoints/properties is thus essential. It
should be possible to represent several specifications (viewpoints) for the same implemen-
tation and to combine them in a logical manner. This is the objective of the conjunction
operation.

Two LSMTSs with the same label-set (K,v) can be conjoined with respect to a label
operator 7 on (K,v). We first state a necessary condition on 7 such that the con-
junction operator yields the greatest lower bound with respect to the modal refinement
relation on LSMTSs.

116

3. Specification Theory

Definition 39 (Greatest lower bound operator). A commutative label operator 7 on a
well-formed set (K,v) is a greatest lower bound operator if the following is satisfied:

1. if k 7 ` is defined, then k 7 ` v k and k 7 ` v `,

2. if m 6=⊥, m v k and m v `, then k 7 ` is defined and m v k 7 `.

As in the case of the compositional label operator, it is easy to see that greatest lower
bound operators are preserved by the product construction.

Proposition 40. Let 71 and 72 be greatest lower bound operators on (K1,v1) and
(K2,v2), respectively. Then 71 ×72 is a greatest lower bound operator on the product
(K1,v1)⊗(K2,v2).

Again, the actual definition of 7 depends on the interpretation of conjunction for the
modelled quantity.

Example 41. Conjoining labels in Kaction = (Σ ∪ {⊥},v), for a finite set of actions Σ
(see Example 5), can be defined as follows:

a7 b =


a if a = b, a 6=⊥, b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

�

Example 42. For the case of weighted modal automata (see Example 7), conjunction
7 can be defined as the intersection of the intervals, assuming that we consider the cost
(energy) interpretation.

k 7 ` =

{
k ∩ ` if k 6=⊥, ` 6=⊥ and k ∩ ` 6= ∅
⊥ otherwise

�

It is easy to see that the label operators defined in Examples 41 and 42 are greatest
lower bound operators on their respective label-sets.

Let us fix a well-formed label-set (K,v) and some greatest lower bound operator 7
on (K,v) for the rest of this subsection.

Definition 43 (Conjunction). Let S, T ∈ M(K,v) be two LSMTSs such that S =
(S, s0, (K,v), 99KS,−→S) and T = (T, t0, (K,v), 99KT ,−→T). The conjunction of S
and T is defined by the LSMTS S ∧ T = (S × T, (s0, t0), (K,v), 99K,−→) where the
transition relations 99K and −→ are defined by the following rules.

s
k−→S s

′ t
`
99KT t′ k 7 ` is defined

(s, t)
k7`−→ (s′, t′)

s
k
99KS s′ t

`−→T t
′ k 7 ` is defined

(s, t)
k7`−→ (s′, t′)

117

D. Extending Modal Transition Systems with Structured Labels

s0

s1

b
[2, 2]

a
[2, 3]

c
[2, 5]

d
[3, 6]

(a) S

t0

t1 t2

a
[1
, 4

]

d
[1
, 2

]

b
[1, 3]c

[1, 4]

(b) T

s0, t0

s1, t2

b

[2, 2]

c

[2, 4]

(c) ρ(S ∧ T)

Figure 8.: Pruned conjunction of two LSMTSs S and T

s
k
99KS s′ t

`
99KT t′ k 7 ` is defined

(s, t)
k7`
99K (s′, t′)

s
k−→S s

′ (
k 7 ` is not defined for any ` such that t

`
99KT

)
(s, t)

⊥−→ (s, t)

t
`−→T t

′ (
k 7 ` is not defined for any k such that s

k
99KS

)
(s, t)

⊥−→ (s, t)

Clearly, conjunction ∧ on LSMTSs is commutative (up to isomorphism) as 7 is commu-
tative, and moreover, if 7 is an associative label operator, then so is conjunction.

Example 44. An example for conjoining specifications is given in Figure 8. Here S and
T are LSMTSs with the label-set Kaction ⊗ Kweighted . Note that the state (s1, t1) does
not appear in ρ(S ∧ T) since it is locally inconsistent in S ∧ T ; the LSMTS T requires
a transition labelled with the action d and the weight interval [1, 2], however, S only
allows d with the weight interval [3, 6]. �

We now propose a notion of determinism that is dedicated to the conjunction oper-
ation. This definition shall be used later on to prove that conjunction is the greatest
lower bound with respect to the modal refinement ordering.

Definition 45 (7-determinism). A LSMTS S ∈ M(K,v) is 7-deterministic if for all

may transitions s
k′

99K s′ and s
k′′

99K s′′ in S with labels k′, k′′ ∈ K r {⊥}, whenever there
is an ` ∈ Kr{⊥} such that both k′7 ` and k′′7 ` are defined, then k′ = k′′ and s′ = s′′.

It is easy to see that if 7 is associative, then the construction for conjunction presented
in Definition 43 preserves 7-determinism. The reader may also observe that for modal
transition systems with the label-set Kaction , the notions of 7-determinism and deter-
minism (as defined in Section 2) coincide. In this case, we note that the determinization
algorithm proposed in Section 2.5 can be applied to compute minimal deterministic
LSMTSs of non-deterministic ones.

Under the assumption of 7-determinism, the conjunction construction yields the great-
est lower bound with respect to modal refinement, as stated in the following theorem.

118

3. Specification Theory

Theorem 46 (Greatest lower bound of conjunction). Let S, T, U ∈ M(K,v) be locally
consistent LSMTSs such that S and T are 7-deterministic and S ∧ T is consistent.
Assume that 7 is a greatest lower bound label operator. Then

1. ρ(S ∧ T) ≤m S and ρ(S ∧ T) ≤m T , and

2. if U ≤m S and U ≤m T , then U ≤m ρ(S ∧ T).

Proof. 1. It suffices to show that ρ(S ∧ T) ≤m S, the other assertion is symmetric.
We define a relation R ⊆ (S × T) × S by R = {((s, t), s) | s ∈ S, t ∈ T}. We
will show that R is a relation witnessing ρ(S ∧ T) ≤m S. Clearly ((s0, t0), s0) ∈ R
where s0 is the initial state of S and t0 is the initial state of T . Let ((s, t), s) ∈ R.

Let (s, t)
k7`
99K (s′, t′). Since ρ(S ∧T) does not contain any transitions labelled with

⊥, we know that k 7 ` 6=⊥. Then there are transitions s
k
99K s′ and t

`
99K t′. By

assumption we know k 7 ` v k, and from the definition of R we can conclude
((s′, t′), s′) ∈ R.

Now, let s
k−→ s′. By local consistency of S we can assume that k 6=⊥. Suppose

that T does not have any t
`
99K t′ such that k 7 ` is defined, then (s, t)

⊥−→ (s′, t)

contradicting the local consistency of ρ(S ∧ T). So there exists t
`
99K t′ such that

k 7 ` is defined and then (s, t)
k7`−→ (s′, t′). By the assumption about the label

operator we know that k 7 ` v k. By the definition of R we get ((s′, t′), s′) ∈ R.

2. We can assume a relation R1 witnessing U ≤m S and a relation R2 witnessing
U ≤m T . We define a relation R ⊆ U × (S × T) by

R = {(u, (s, t)) | (u, s) ∈ R1 and (u, t) ∈ R2}.

We show that R is witnessing U ≤m ρ(S ∧ T). Clearly (u0, (s0, t0)) ∈ R for the
initial states. Let (u, (s, t)) ∈ R.

Assume that u
m
99K u′. Then there exists s

k
99K s′ such that m v k, and t

`
99K t′

such that m v `. By Definition 39 part 2. we get that k 7 ` is defined and

m v k 7 `, hence (s, t)
k7`
99K (s′, t′), and (u′, (s′, t′)) ∈ R by the definition of R.

Assume that (s, t)
k7`−→ (s′, t′). By local consistency of ρ(S ∧ T) we can assume

that k 7 ` 6=⊥. Then (w.l.o.g.) there exist s
k−→ s′ with k 6=⊥, and t

`
99K t′ with

` 6=⊥ thanks to local consistency of S and T . It follows from (u, s) ∈ R1 that
there exists u

m−→ u′ such that (u′, s′) ∈ R1 and m v k. Local consistency of U
implies m 6=⊥. We have to show that (u′, t′) ∈ R2. From (u, t) ∈ R2 it follows

that there exists t
`′

99K t′′ such that m v `′ and (u′, t′′) ∈ R2. Now, by m 6=⊥,
m v k and m v `′ we know that k 7 `′ is defined (Definition 39 part 2.). From
7-determinism of T we get ` = `′ and t′ = t′′. It follows that (u′, t′) ∈ R2 and thus
(u′, (s′, t′)) ∈ R.

�

119

D. Extending Modal Transition Systems with Structured Labels

s0

s1

drink

(a) S

t0

t1 t2

tea coffee

(b) T

s0, t0

s1, t1 s1, t2

tea coffee

(c) S∧T = ρ(S∧T)

u0

u1

tea

(d) U

u′0

u′1

coffee

(e) U ′

Figure 9.: Conjunction of two LSMTSs specifying a vending machine

Corollary 47. Let S, T, U ∈ M(K,v) be locally consistent LSMTSs such that S and T
are 7-deterministic and S ∧ T is consistent. Then U ≤m S and U ≤m T if and only if
U ≤m ρ(S ∧ T). In particular, JS ∧ T K = JSK ∩ JT K.

Proof. The implication from left to right is exactly the second part of Theorem 46. The
other direction follows from the first part of Theorem 46 and the transitivity of v. The
additional assertion JS ∧ T K = JSK ∩ JT K follows from U ≤m S and U ≤m T if and only
if U ≤m ρ(S ∧ T) if we take U as an implementation, and by Proposition 22 showing
that Jρ(S ∧ T)K = JS ∧ T K. �

For maximality of the conjunction (see Theorem 46, 2.), 7-determinism is necessary.
To see this, consider the example shown in Figure 9 that shows two specifications of a
vending machine with the label-set Kmachine from Example 6. The LSMTS S requires
drink , and T allows tea and coffee. For the conjunction S ∧ T we take 7 as the obvious
greatest lower bound for Kmachine for which drink 7tea = tea and drink 7coffee = coffee.
Note that T is not 7-deterministic in this case. It is easy to see that (S ∧ T) ≤m S and
(S∧T) ≤m T , however U and U ′ are both refining S and T , but U 6≤m (S∧T) = ρ(S∧T).
With a small extension of the proof for modal transition systems [DLLW10], it can easily
be proved that there does not exist any LSMTS which is the greatest lower bound for S
and T but the construction of conjunction in this case is at least safe.

3.4. Quotient

An essential operator in a complete specification theory is the one of quotienting. It
allows for factoring out behaviours from a larger component. Given two component
specifications S and T , the quotient of T by S, written T \\S, is a specification of
exactly those components that when composed with S refine T . In other words, the
quotient is the largest specification that can be composed with S and still refines T .

As expected, we have to first state the required property for label operators used for
quotienting.

Definition 48 (Dual label operators). Let � and ⊕ be two label operators on a given
well-formed label-set (K,v). We say that the operator � is a dual label operator to ⊕
if m v `� k if and only if k ⊕m v `.

120

3. Specification Theory

Example 49. Quotienting labels in Kaction = (Σ ∪ {⊥},v) for a finite set of actions Σ
as introduced in Example 5, together with the ⊕ operator for synchronization by shared
actions given in Example 35 can be defined as identical to ⊕, namely:

a� b =


a if a = b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise.

Clearly, � is a dual label operator to ⊕. �

Example 50. A more interesting example of � in Kweighted (see Example 7) dual to the
composition operator ⊕ from Example 36 that sums up weight intervals is given by

[a, b]� [a′, b′] =

{
[a− a′, b− b′] if [a− a′, b− b′] ∈ Kweighted

⊥ otherwise.

�

Let us for the rest of this subsection fix two label operators � and ⊕ such that � is
a dual label operator to ⊕ on a well-formed label-set (K,v).

Definition 51 (Quotient). Let S, T ∈ M(K,v) be two LSMTS such that S =
(S, s0, (K,v), 99KS,−→S) and T = (T, t0, (K,v), 99KT ,−→T). The quotient of T by
S is defined as T \\S =

(
(T ×S)∪{u}, (t0, s0), (K,v), 99K,−→

)
where u is a new state

modelling a universal state, and the transition relations 99K and −→ are defined by the
following rules:

t
`
99KT t′ s

k
99KS s′ `� k is defined

(t, s)
`�k
99K (t′, s′)

t
`−→T t

′ s
k−→S s

′ `� k is defined

(t, s)
`�k−→ (t′, s′)

t
`−→T

(
`� k is not defined for any k s.t. s

k−→S

)
(t, s)

⊥−→ (t, s)

m ∈ K and m⊕ k is not defined for any s
k
99KS

(t, s)
m
99K u

m ∈ K
u

m
99K u

The first two rules presented above are derived from the two rules of Definition 37,
while the third one captures the inconsistency present when the larger system T has
a must transition that cannot be mimicked by the smaller system S in parallel with
any transition from the quotient. To achieve maximality of the quotient, we introduce
a universal state u that allows for an arbitrary behaviour. Any allowed behaviour not
structurally composable with the allowed behaviour of the smaller system can be safely
added to the quotient (leading to the state u) as this will not affect the parallel compo-
sition with the smaller system. This is captured by the fourth rule.

121

D. Extending Modal Transition Systems with Structured Labels

Example 52. An example of quotienting is shown in Figure 10. Both specifications
T and S have as the label-set Kaction ⊗ Kweighted where Kaction = ({a, b,⊥},v), and
ρ(T \\S) is the result of the pruned quotient of T by S with respect to the product of
the corresponding label operators from Examples 49 and 50 where the resulting opera-
tors are summarized in Figure 11 (these operators are already defined by the product
construction, we just present their combined definitions for clarity reasons). Thereby, a
may transition under [−∞,∞] between two states stands for all may transitions between
those states under any label in Kweighted .

• The quotient ρ(T \\S), in state (t0, s0), may do the action b with any weight
(abbreviated by [−∞,∞]) and afterwards show arbitrary behaviour (reflected by
the universal state) since S has no corresponding transition for action b in state
s0.

• Note that the state (t3, s3) is not present in the pruned quotient. If ρ(T \\S)
would allow for a transition labelled with a (which would be possible with the
weight interval [0, 0]), then (b, [1, 4]) � (b, [0, 4]) yields ⊥ (on a must transition),
turning (t3, s3) into an inconsistent state with no implementation.

�

The quotient T \\S intends to synthesize the largest component that can be composed
with S in order to refine T . In existing theories such as modal transition systems,
this maximality property only holds when the specifications are deterministic. As for
conjunction, we now propose a general notion of determinism for quotienting.

Definition 53 (⊕/�-determinism). Let S ∈ M(K,v) be an LSMTS. We say that S is
⊕/�-deterministic if, for any k′, k′′ ∈ K r {⊥},

1. whenever s
k′

99K s′ and s
k′′

99K s′′ and there exists m ∈ K r {⊥} such that k′ ⊕m
and k′′ ⊕m are defined, then k′ = k′′ and s′ = s′′, and

2. whenever s
k′−→ s′ and s

k′′−→ s′′ and there exists ` ∈ K r {⊥} such that `� k′ and
`� k′′ are defined, then k′ = k′′ and s′ = s′′.

The reader may again observe that for modal transition systems with the label-set
Kaction , the notions of ⊕/�-determinism and determinism (as defined in Section 2)
as well as 7-determinism coincide. Here, in case of non-deterministic LSMTSs, the
determinization algorithm proposed in Section 2.5 can be applied to compute minimal
deterministic versions of them.

Under the assumption of ⊕/�-determinism, the quotient construction T \\S yields
the most general LSMTS that, composed with S, still refines T .

Theorem 54 (Soundness and maximality of quotient). Let S, T,X ∈M(K,v) be locally
consistent LSMTSs such that T \\S is consistent. Assume that S is ⊕/�-deterministic,
and assume that � is the dual label operator to ⊕. Then X ≤m ρ(T \\S) if and only if
S‖X ≤m T .

122

3. Specification Theory

t0

t1

t2 t3

t4

a

[5, 8]

b

[0, 4]

a

[0, 0]

b

[1, 4]

(a) T

s0

s1

s2 s3

s4

a

[0, 3]

b

[0, 1]

b

[0, 0]

a

[0, 0]

b

[0, 4]

(b) S

(t0, s0)

(t1, s1)

(t2, s2)

u (t3, s3)

a

[5, 5]

b

[0, 3]

b [−∞
,∞]

a [−∞,∞]

a [−∞,∞] a [0, 0]

⊥

[−∞,∞]

a

b

[−∞,∞]

(c) T \\S

(t0, s0)

(t1, s1)

(t2, s2)

u

a

[5, 5]

b

[0, 3]

b [−∞
,∞

]

a [−∞
,∞

]

[−∞,∞]

a

b

[−∞,∞]

(d) ρ(T \\S)

(s0, (t0, s0))

(s1, (t1, s1))

(s2, (t2, s2))

a

[5, 8]

b

[0, 4]

(e) S‖ρ(T \\S)

Figure 10.: Quotienting of two LSMTSs

(a, i)⊕ (a′, i′) =


a, [l + l′, r + r′] if a = a′ 6=⊥, i = [l, r], i′ = [l′, r′]

⊥ if a =⊥ or a′ =⊥ or i =⊥ or i′ =⊥
undefined otherwise

(a, i)� (a′, i′) =


a, [l − l′, r − r′] if a = a′ 6=⊥, i = [l, r], i′ = [l′, r′],

[l − l′, r − r′] ∈ Kweighted

⊥ if a =⊥ or a′ =⊥ or i =⊥ or i′ =⊥ or
i = [l, r], i′ = [l′, r′] and [l − l′, r − r′] 6∈ Kweighted

undefined otherwise

Figure 11.: Label operators ⊕, � for quotienting with the label-set Kaction ⊗Kweighted

123

D. Extending Modal Transition Systems with Structured Labels

Proof. “=⇒”: We assume a relation R1 witnessing X ≤m ρ(T \\S). We define a relation
R2 ⊆ (S ×X)× T by

R2 = {((s, x), t) | (x, (t, s)) ∈ R1}.
We show that R2 is a relation witnessing S‖X ≤m T . Clearly ((s0, x0), t0) ∈ R2 for the
corresponding initial states. Let ((s, x), t) ∈ R2.

1. Assume (s, x)
k⊕m
99K (s′, x′). Then there exist s

k
99K s′ and x

m
99K x′. Since X is

locally consistent, we know m 6=⊥. From (x, (t, s)) ∈ R1 and x
m
99K x′ it follows

that there exists (t, s)
`�k′
99K (t′, s′′) such that m v `�k′ and (x′, (t′, s′′)) ∈ R1. From

m v ` � k′ we get k′ ⊕ m v ` by assumption. Moreover, we have t
`
99K t′ and

s
k′

99K s′′. Then, from ⊕/�-determinism of S it follows k = k′ and s′ = s′′, and so
k ⊕m v `. Thus (x′, (t′, s′)) ∈ R1 and hence ((s′, x′), t′) ∈ R2.

2. Assume t
`−→ t′. By local consistency of T we can assume that ` 6=⊥. Suppose

that there does not exist a transition s
k−→ s′ such that ` � k is defined, then

(t, s)
⊥−→ which contradicts (t, s) ∈ ρ(T \\S). It follows that there exists s

k−→ s′

such that ` � k is defined, and (t, s)
`�k−→ (t′, s′). By a similar argument as above

we know that ` � k 6=⊥. Then from (x, (t, s)) ∈ R1 it follows that there exists
x

m−→ x′ such that (x′, (t′, s′)) ∈ R1 and m v `� k which implies k ⊕m v `. We

can conclude that (s, x)
k⊕m−→ (s′, x′) and ((s′, x′), t′) ∈ R2.

“⇐=”: We assume a relation R2 witnessing S‖X ≤m T . We define a relation R1 ⊆
X × (T × S) by

R1 = {(x, (t, s)) | ((s, x), t) ∈ R2} ∪ {(x, u)}.
We show that R1 is a relation witnessing X ≤m ρ(T \\S). Clearly (x0, (t0, s0)) ∈ R1 for
the corresponding initial states. First, let (x, u) ∈ R1, then clearly for every transition

x
m
99K x′, it holds again that (x′, u) ∈ R1 since the universal state u allows arbitrary

behaviour. Second, let (x, (t, s)) ∈ R1.

1. Assume x
m
99K x′. If there is no transition s

k
99K s′ such that k⊕m is defined, then

(t, s)
m
99K u, and in this case, (x, u) ∈ R1, and clearly m v m by reflexivity of v.

If there is a transition s
k
99K s′ such that k ⊕m is defined, then (s, x)

k⊕m
99K (s′, x′).

From ((s, x), t) ∈ R2 it follows that there exists t
`
99K t′ such that ((s′, x′), t′) ∈ R2

and k ⊕m v `, implying m v `� k. Hence (t, s)
`�k
99K (t′, s′) and (x′, (t′, s′)) ∈ R1.

2. Assume (t, s)
`�k−→ (t′, s′). From local consistency of ρ(T \\S) we know ` � k 6=⊥.

Then there are t
`−→ t′ and s

k−→ s′. From ((s, x), t) ∈ R2 we can conclude that

there exists (s, x)
k′⊕m−→ (s′′, x′) such that k′ ⊕m v ` and ((s′′, x′), t′) ∈ R2. Then

there exist s
k′−→ s′′ and x

m−→ x′. The fact that k′ ⊕m v ` implies m v `� k′ by
the duality of the operators. From ⊕/�-determinism of S it follows that k = k′

and s′ = s′′. Thus m v `� k and ((s′, x′), t′) ∈ R2, hence (x′, (t′, s′)) ∈ R1. �

124

4. Logical Characterization

4. Logical Characterization

It was shown in [Lar89] that Hennessy-Milner logic [HM85] can be used as a logical
characterization for modal refinement of modal transition systems (the reader may also
consult [BG00]). In this section we shall extend this result to LSMTSs and study other
related topics. For the rest of this section, we fix a well-formed label-set (K,v).

Let us first introduce LSHML, an extension of Hennessy-Milner logic (HML) that is
interpreted over LSMTSs, taking into account their label structures. The syntax of the
logic is given by the abstract syntax:

ϕ ::= true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈k〉ψ | [k]ψ

where k ∈ K is a label. We define the ∨-free fragment of LSHML as a set of formulae
in LSHML not containing the disjunction operator.

Let S ∈ M(K,v) be an LSMTS. The satisfaction relation between a state s ∈ S
and a formula ϕ is defined inductively as follows.

s |= true

s 6|= false

s |= ϕ1 ∧ ϕ2 iff S |= ϕ1 and S |= ϕ2

s |= ϕ1 ∨ ϕ2 iff S |= ϕ1 or S |= ϕ2

s |= 〈k〉ϕ iff ∃(s `−→ s′) : J`K ⊆ JkK and s′ |= ϕ

s |= [k]ϕ iff ∀(s `
99K s′) s.t. J`K ∩ JkK 6= ∅ : s′ |= ϕ

We write S |= ϕ iff s0 |= ϕ where s0 is the initial state of S.

Example 55. Consider the specification of a vending machine given in Figure 3c. The
specification satisfies the property that after inserting a 1e coin, a drink is guaranteed,
as we have s0 |= [1EURO]〈drink〉true. On the other hand, we are not guaranteed to
receive a cup of tea if a coin is inserted as s0 6|= [coin]〈tea〉true. �

We are now ready to prove the soundness and completeness theorems for our logic. The
following theorem ensures soundness of LSHML, i.e., if a formula holds for a specification,
then it holds for any of its refinements.

Theorem 56 (Soundness). Let T ∈M(K,v), and ϕ a LSHML-formula. Then

T |= ϕ =⇒ ∀S ≤m T : S |= ϕ .

Proof. Assume that S ≤m T and T |= ϕ. We prove by induction on the structure of
ϕ that S |= ϕ too. Let s0 and t0 be the initial states of S and T , respectively. The
induction basis, where ϕ = true and ϕ = false, is trivial.

ϕ = ϕ1 ∧ ϕ2 . By the definition of |= and then from the induction hypothesis.

125

D. Extending Modal Transition Systems with Structured Labels

ϕ = ϕ1 ∨ ϕ2 . As in the case above.

ϕ = 〈k〉ψ . From T |= 〈k〉ψ it follows that there exists t0
`−→ t such that J`K ⊆ JkK and

t |= ψ. Since S ≤m T there exists s0
`′−→ s such that `′ v ` and (s, S) ≤m (t, T). By

the induction hypothesis we get s |= ψ. From transitivity of v we have J`′K ⊆ JkK
and therefore S |= ϕ.

ϕ = [k]ψ . Let s0
`
99K s such that JkK ∩ J`K 6= ∅. Since S ≤m T we know that there

exists t0
`′

99K t in T with ` v `′ and (s, S) ≤m (t, T). Clearly, JkK ∩ J`′K 6= ∅ and
because T |= [k]ψ we know that t |= ψ. By the induction hypothesis we get s |= ψ
and hence S |= ϕ.

�

We shall now focus on the issue of completeness. We consider two possible definitions:

1. Completeness with respect to implementations: if all implementations of a specifi-
cation S satisfy a formula of the logic, then so does the specification S.

2. Completeness with respect to modal refinement: if all formulae satisfied by some
specification S are satisfied also by another specification T , then S ≤m T .

The latter, completeness with respect to modal refinement, is also known as logical
characterization in the literature [Lar89].

We first study the completeness with respect to implementations and observe that
LSHML-logic is not complete in this case.

Theorem 57. The logic LSHML is incomplete with respect to implementations.

Proof. Let T be an LSMTS consisting of a single transition t0
•
99K t over the label-set

Kunlabelled from Example 4. Consider the formula ϕ = 〈•〉true∨ [•]false. Since there is no
must transition from t0 and at the same time there is a may transition, we get t0 6|= ϕ. On
the other hand, any implementation of T either contains no transition at all (and then
it satisfies [•]false) or it contains at least one outgoing transition (and then it satisfies
〈•〉true). Hence any implementation of T satisfies ϕ and we get the incompleteness result
with respect to implementations. �

Inspecting the proof of the above theorem, one can notice that it is the disjunction
that breaks the completeness property. In fact, we can show completeness if we consider
the ∨-free fragment of LSHML.

Theorem 58 (Completeness with respect to implementations for ∨-free LSHML). Let
T ∈M(K,v) be a locally consistent specification, and let ϕ be a ∨-free LSHML-formula.
Then

(∀I ∈ JT K : I |= ϕ) =⇒ T |= ϕ .

126

4. Logical Characterization

Proof. We prove the contraposition. We show that for any ∨-free LSHML-formula ϕ

if T 6|= ϕ then there exists I ∈ JT K such that I 6|= ϕ .

The proof is by induction on the structure of the formula ϕ and under the assumption
that T 6|= ϕ we construct its implementation (i0, I) such that i0 6|= ϕ. During the
construction we will write that we add a transition i0

n−→ (i′0, I
′) for an implementation

(i′0, I
′), meaning that together with this transition we implicitly add also a disjoint copy

of I ′ rooted at i′0 to the implementation I.
The induction basis, where ϕ = true and ϕ = false, is trivial.

• Case 1: ϕ = ϕ1 ∧ ϕ2. By the definition of |= either T 6|= ϕ1 or T 6|= ϕ2 Assume
w.l.o.g. that T 6|= ϕ1. By applying the induction hypothesis there is I ∈ JT K such
that I 6|= ϕ1 and we conclude that I 6|= ϕ1 ∧ ϕ2.

• Case 2: ϕ = 〈k〉ψ. Assume that T 6|= 〈k〉ψ, which is the case if for all t0
`−→ t

we have either (1) J`K 6⊆ JkK or (2) (t, T) 6|= ψ. We construct an implementation

(i0, I) ∈ JT K as follows. For every t0
`−→ t such that (1) is satisfied, we add the

transition i0
n−→ (i′0, I

′) into I where n ∈ J`K r JkK and (i′0, I
′) ≤m (t, T) (the

implementation (i′0, I
′) exists by local consistency of T and well-formedness of the

label-set). For every t0
`−→ t such that (2) is satisfied, we have by induction

hypothesis an implementation (i′0, I
′) ∈ J(t, T)K such that i′0 6|= ψ. We add i0

m−→
(i′0, I

′) to I for some m ∈ J`K. It is easy to see that I ≤m T , and moreover I 6|= 〈k〉ψ
by the construction.

• Case 3: ϕ = [k]ψ. Assume that T 6|= [k]ψ. Then there exists t0
`
99K t such that

J`K∩JkK 6= ∅ and (t, T) 6|= ψ. By induction hypothesis there exists (i′0, I
′) ∈ J(t, T)K

such that i′0 6|= ψ. Let (i0, I) ∈ JT K be some implementation of T (which exists by
local consistency of T) where we add the transition i0

n−→ (i′0, I
′) with n ∈ J`K∩JkK.

Clearly, we still have I ≤m T and moreover the transition i0
n−→ i′0 ensures that

i0 6|= [k]ψ.

�

A similar completeness result in the setting of partial Kripke structures can be found
also in [AH06].

We now study completeness with respect to modal refinement, that is the completeness
definition considered in [Lar89]. In this article, it was shown that for classical modal
transition systems (with the label-set Kaction from Example 5), the LSHML logic is
complete with respect to refinement. We first observe that the result does not extend to
general LSMTSs.

Theorem 59. The logic LSHML is incomplete with respect to modal refinement.

Proof. Consider the systems S and T from Figure 6. By case analysis it is easy to verify
that s0 |= ϕ if and only if t0 |= ϕ for any LSHML-formula ϕ. However, as argued before,
S 6≤m T . �

127

D. Extending Modal Transition Systems with Structured Labels

On the other hand, if we consider only deterministic systems, LSHML is complete
even with disjunction, as proved below. We let F(S) = {ϕ | S |= ϕ} denote the set of
all LSHML-formulae satisfied by S.

Theorem 60 (Completeness with respect to modal refinement for deterministic
LSMTSs). Let S, T ∈M(K,v) be deterministic LSMTSs (see Definition 24) and assume
that the label refinement relation v is complete. Then

F(T) ⊆ F(S) =⇒ S ≤m T .

Proof. Assume that F(T) ⊆ F(S). We define a relation R ⊆ S × T by

R = {(s, t) | F((t, T)) ⊆ F((s, S))}.

We show that R is a relation witnessing S ≤m T . Clearly (s0, t0) ∈ R for the respective
initial states. Let (s, t) ∈ R.

• First, assume that s
k
99K s′. Clearly, t

`
99K t′ for some ` such that JkK ∩ J`K 6= ∅,

otherwise the formula [k]false is satisfied in (t, T) but not in (s, S), contradicting
our assumption that F((t, T)) ⊆ F((s, S)). By the determinism of T there can
only be one such ` with JkK ∩ J`K 6= ∅.
For the sake of contradiction assume that k 6v `. By completeness of label re-
finement we get JkK 6⊆ J`K. Thus, there exists some m ∈ JkK r J`K. The formula
[m]false holds in (t, T) due to the choice of m and the absence of any other may
transition having any common implementation labels with JkK, hence in particular
also with JmK = {m}. However, [m]false does not hold in (s, S), contradicting
the assumption that F((t, T)) ⊆ F((s, S)). Thus, we can assume the existence of

t
`
99K t′ with k v `.

Now we need to argue that (s′, t′) ∈ R. Assume that this is not the case. Then
we have F((t′, T)) 6⊆ F((s′, S)), and therefore there is a formula ϕ′ such that
(t′, T) |= ϕ′ and (s′, S) 6|= ϕ′. Consider the formula ϕ = [k]ϕ′. Again (t, T) |= ϕ,
but (s, S) 6|= ϕ. This contradicts the assumption that F((t, T)) ⊆ F((s, S)). Thus
(s′, t′) ∈ R.

• Second, assume that t
`−→ t′. As in the previous item, there must be a transition

s
k−→ s′ such that JkK ⊆ J`K, otherwise the formula 〈`〉true is satisfied in (t, T)

but not in (s, S), contradicting the assumption that F((t, T)) ⊆ F((s, S)). By the

determinism of S we know that s
k−→ s′ is a unique transition such that JkK ⊆ J`K

and due to the completeness of label refinement we know that k v `.

Remains to argue that (s′, t′) ∈ R. Assume that this is not the case. The arguments
are similar to the previous case by considering the formula 〈`〉ϕ′ where t′ |= ϕ′ and
s′ 6|= ϕ′. Thus (s′, t′) ∈ R and this completes the proof.

�

128

5. Conclusion

5. Conclusion

We introduced label-structured modal transition systems, a basis for a specification for-
malism that generalizes modal theories such as weighted and multi-weighted modal tran-
sition systems. Our work contributes to the long-term objective towards the unification
of existing specification theories through a common framework. A full specification the-
ory for label-structured modal transition systems was developed, including the notions of
modal and thorough refinement, consistency, determinization and deterministic-hull and
a number of completeness results, often conditioned (as expected) by the requirement
of determinism. We showed soundness results for the operators of parallel composition,
conjunction and quotient. The specification theory was concluded by suggesting an
extension of Hennessy-Milner logic to handle quantitative aspects and by showing the
interplay between the logic and the refinement theory in a similar way as known from
the classical theory of labelled transition systems and bisimulation.

Most of the proof techniques were generalizations of the techniques developed for
concrete instances of the framework like modal transition systems, however, the general
theorems provide novel results for particular instances like weighted and multi-weighted
modal transition systems. Finally, we consider the uniform and complete presentation
of the main aspects of the suggested specification theory as a contribution on its own.

There are a few instances of recently studied extensions of modal transition systems
that cannot be captured in our framework. Here we list some of them as possible
directions for future research.

Abstract Probabilistic Automata [DKL+11] and constraint Markov Chains [CDL+10]
are recently introduced stochastic extensions of modal transition systems. One of the ma-
jor difficulties is how to capture and generalize the satisfaction relation which is (unlike
to our framework) based on a redistribution of weights from one to several transitions.

The theories based on the optimistic approach introduced in Interface Au-
tomata [dAH01, dAHS02] are also hard to capture by our framework. Here the semantics
of a given specification is viewed as a two player game. The approach is optimistic in
the sense that two specifications can be composed if and only if there exists at least one
environment in which they can cooperate. The input and output modalities are orthog-
onal to may and must ones, which suggests that the label-structured modal transition
systems need to be further extended to capture this phenomenon.

Finally, it would be of interest to consider models that manipulate data like in the
spirit of sociable interfaces [dAdSF+05, AdAdS+06] and see if they can be described in
the framework of label-structured modal transition systems.

129

EA Logic for Accumulated-
Weight Reasoning on Multi-
weighted Modal Automata

Sebastian Bauer
Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Line Juhl Kim G. Larsen
Aalborg University, Department of Computer Science, Denmark

Axel Legay
INRIA/IRISA, Rennes Cedex, France

Jǐŕı Srba
Aalborg University, Department of Computer Science, Denmark

Abstract Multiweighted modal automata provide a specification theory for multi-
weighted transition systems that have recently attracted interest in the context of en-
ergy games. We propose a simple fragment of CTL that is able to express properties
about accumulated weights along maximal runs of multiweighted modal automata. Our
logic is equipped with a game-based semantics and guarantees both soundness (formula
satisfaction is propagated to the modal refinements) as well as completeness (formula
non-satisfaction is propagated to at least one of its implementations). We augment
our theory with a summary of decidability and complexity results of the generalized
model checking problem, asking whether a specification—abstracting the whole set of
its implementations—satisfies a given formula.

130

1. Introduction

1. Introduction

Modal transition systems [LT88a] (MTS) have been recently studied as a suitable spec-
ification formalism in connection with step-wise design of component-based systems.
This model is essentially a labelled transition system with two kinds of transition rela-
tions: a may (allowed) and must (compulsory) transition relation. During the system
design process the must-transitions must be preserved, while the may-transitions may
be omitted.

One of the key elements in model-based design is the notion of refinement. Spec-
ifications are gradually refined into more concrete ones until we arrive at the most
concrete specification (called implementation) that cannot be refined any more. Tak-
ing the point of view that implementations can be seen as (abstractions of) the final
products like executable systems we want to implement, we get the natural notion of
so-called thorough refinement : specification S1 thoroughly refines S2 if any implemen-
tation of S1 is also an implementation of S2. Unfortunately, the thorough refinement
preorder is computationally hard and deciding thorough refinement between two spec-
ifications is EXPTIME-complete [BKLS09a]. Hence, for feasibility reasons, thorough
refinement is often approximated by modal refinement (defined directly on specifications
in a bisimulation-like manner). Deciding modal refinement is possible in deterministic
polynomial time [BKLS09b] and two specifications that are in modal refinement are also
in thorough refinement, though not the other way round [LNW07a].

On the logical counter-part of the theory, already the first work on MTS [LT88a]
introduced Hennessy-Milner logic for MTS with a model checking procedure on the
specifications to decide whether all of its implementations satisfy the formula. Later,
(3-valued) extensions of the problem were considered for several branching and linear
time logics [HJS01, BG00, GHJ01, GC05, WGC09, GP09, BvK10]. In this paper we
study the model checking problem for multiweighted modal automata. In comparison
to other related works, we do not deal with Kripke MTS, but we consider multiweighted
modal automata, that are finite MTS with vectors of integer intervals as labels. These
(multi-)weighted automata have recently been in the focus of the research community
but treated mainly as reachability/infinite runs problems with cost/energy objectives
without any logical characterization. The theory of multiweighted modal automata
constitutes an abstraction theory for multiweighted automata which we already studied
in the context of energy games [FJLS11].

As a first contribution we investigate model checking formulae of a simple fragment of
CTL with atomic propositions referring explicitly to accumulated (multi-)weights along
maximal runs in the automata. This logic is inspired by the one we recently proposed
in [JLS12], but with the crucial addition of a game semantics that is needed to prove
completeness with respect to refinement. More precisely, the semantics of the logic is
defined according to a game-based interpretation with two players, the must-player and
the may-player. The intuition is that the selections of the must-player can be realized
in every possible implementation, whereas the may-player can choose between all the
design choices of the specification that are not yet fixed. The fact that our semantics

131

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

guarantees that all implementations satisfy a formula1, immediately implies preservation
of formula satisfaction under refinement. This leads to a new aspect not seen in previous
works, namely that of completeness of our logic: if all implementations of a specification
satisfy a formula, so does the specification. Completeness is also of practical interest as
it allows for counterexample generation.

As our second contribution, we provide an overview of decidability and complexity
analysis of the model checking problems for our proposed accumulated-weight logic,
showing that in their full generality the problems are undecidable but by imposing some
natural restrictions we get decidability and the problems in many cases specialize to the
well studied problems in the theory. Throughout the paper, we restrict ourselves to the
four EF, EG, AF and AG fragments of CTL as they provide a good balance between the
expressiveness of the logic for practical applications and on the other hand allow us to
conclude at least partial decidability results.

Related work: Weighted models have been widely studied over the past years [DG07,
DKV09]. Other works on quantitative models with quantitative reasoning include
[DM10, BG09, KS08]. The main difference with our model is that they do not consider
formalisms capable of a step-wise refinement process like we do through the modalities.

In a very recent paper [BCHK11], the branching time logic CTL has been extended
to quantitative objectives that allow reasoning on several accumulated weights. The
underlying model used in this work is the one of quantitative Kripke structures and the
paper presents a largest decidable fragment of this logic. The logic we propose is only
a fragment of CTL extended with accumulative reasoning on multiweights, however, we
use multiweighted modal transition systems as the underlying specification model, not
just the implementations. Hence, contrary to others, our model is able to express both
allowed and required behaviours, and also looseness of the quantitative information, not
possible in [BCHK11].

2. Multiweighted Modal Automata

We define [a, b] = {n ∈ Z | a ≤ n ≤ b} for a ≤ b, a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞} to
denote the interval with lower bound a and upper bound b, and we use W to denote the
set of all such intervals. A k-weight interval, for a natural number k ≥ 1, is an element
W ∈ Wk, in other words a vector consisting of k intervals. Projection on the i-th
interval, 1 ≤ i ≤ k, is denoted by W [i]. Moreover, we write W ⊆ V where W,V ∈ Wk

iff W [i] ⊆ V [i] for all i, 1 ≤ i ≤ k. The set of all singleton intervals of the form [a, a] is
denoted by W1 and by misusing the notation the set Wk

1 will often be identified with Zk
and we refer to its elements as k-weights or just weights. The addition of two weights
w1, w2 ∈ Zk is defined by (w1 ⊕ w2)[i] = w1[i] + w2[i].

A k-weighted modal automaton is a variant of the classical modal transition sys-
tems [LT88a] where transitions are labeled by k-weight intervals (instead of actions). A
k-weighted modal automaton differs from the usual weighted automaton by distinguish-
ing two transition relations: the may-transition relation expresses which transitions are

1Some other works seek for the existence of one such implementation [WGC09].

132

2. Multiweighted Modal Automata

optional for any implementation, and the must-transition relation contains those tran-
sitions that are mandatory for any implementation.

Definition 1. A k-weighted modal automaton is a tuple S = (S, s0, w0, 99K,−→) where
S is a set of states, s0 ∈ S is an initial state, w0 ∈ Zk is an initial weight, and −→⊆ 99K
⊆ S ×Wk × S are the must- and may-transition relations, respectively.

The set of all k-weighted modal automata is denoted by M. Given a k-weighted modal
automaton S = (S, s0, w0, 99K,−→) ∈ M, a state s ∈ S and a weight w ∈ Zk, we write
S(s,w) for the k-weighted modal automaton (S, s, w, 99K,−→) where the initial state s0

and the initial weight w0 are replaced by s and w, respectively.
We note that although we have omitted actions from the definition, this is not a

real restriction: given a finite set of actions Σ = {a1, . . . , an} and a k-weighted modal
automaton, we can encode the actions in a (k + n)-weighted modal automaton by in-
troducing for every i-th action ai ∈ Σ, 1 ≤ i ≤ n, a new weight coordinate k + i which
equals 1 iff the transition is labelled by action a, and 0 otherwise.

A k-weighted modal automaton S = (S, s0, w0, 99K,−→) is an implementation iff
all labels are singleton intervals from Wk

1 and 99K=−→. In other words, all allowed
transitions are also implemented and all choices of concrete weights from the interval
are realized.

We shall now introduce the classical notion of modal refinement [LT88a] extended
with the interval refinement, defined similarly as in [JLS12].

Definition 2. Let S1 = (S1, s0,1, w0,1, 99K1,−→1) and S2 = (S2, s0,2, w0,2, 99K2,−→2) be
two k-weighted modal automata. We say that S1 modally refines S2, written as S1 ≤m S2,
if w0,1 = w0,2 and there is a binary relation R ⊆ S1 × S2 such that (s0,1, s0,2) ∈ R and
for all (s1, s2) ∈ R:

1. whenever s1
W 1
99K1 s

′
1 then there exists s2

W 2
99K2 s

′
2 such that W 1 ⊆ W 2 and (s′1, s

′
2) ∈

R,

2. whenever s2
W 2−→2 s

′
2 then there exists s1

W 1−→1 s
′
1 such that W 1 ⊆ W 2 and (s′1, s

′
2) ∈

R.

Clearly, modal refinement is a preorder. The set of all implementations of a modal
automaton S is then defined by JSKimpl = {I | I ≤m S and I is an implementation }.

Example 3. Examples of 2-weighted modal automata are drawn in Figure 1. Figure 1b
shows a specification S of a Mars vehicle. The vehicle has a battery and a container
for carrying rocks that it collects. The first weight denotes changes in the battery level,
while the second weight denotes changes in the accumulated volume of rocks. In s0 the
battery can be charged, while state s1 enables the search for new rocks or the deposit
of a rock. The abilities to collect a big rock and to reset are not required behaviours
in a possible implementation. The automaton T given in Figure 1a is a refinement
of S, demonstrated by the refinement relation {(t0, s0), (t1, s1), (t2, s2), (t3, s3)}. This
refinement is furthermore an implementation of S as it implements two of the three

133

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

t1 t2t0

t3

(0, 0)
reset

(0, 0)
collect

(−
1,
−1

)
de

p
os

it

(−1, 0)

search
(6, 0)

charge

(−1, 2)
small rock

(a) T

s1 s2s0

s3

([0, 0], [0, 0])
reset

([0, 0], [0, 0])
collect

([
−1
,−

1]
,

[−
1,
−1

])
de

po
si
t

([−1,−1], [0, 0])

search
([5, 7], [0, 0])

charge

([−2,−2], [3, 4])
big rock

([−1,−1], [1, 2])
small rock

(b) S

Figure 1.: Examples of 2-weighted modal automata

proper may-transitions present in S (and all must-transitions) and has all transitions
labelled with k-weights from the corresponding interval in S.

3. Games on Multiweighted Modal Automata and Logic L
As motivated in the introduction, the semantics of our logic will be based on a game
characterization in order to be able to argue for its completeness. We shall now introduce
this game.

Let S = (S, s0, w0, 99K,−→) be a k-weighted modal automaton. The game is played
in rounds, with two players called the must- and may-player. The set of states S is
partitioned into must- and may-states in which it is the turn of the must- and may-
player, respectively. A must-state is a state in which there is at least one outgoing
must-transition, otherwise the state is a may-state. Configurations are of the form
(s, w) where s ∈ S and w ∈ Zk is the so far accumulated weight. Each round starts
from the current configuration (s, w), initially (s0, w0), and has two steps: (i) selection
of a transition and (ii) choosing a specific weight from the weight interval of the chosen
transition. Formally,

(i) a) If s is a must-state, then the must-player chooses some must-transition
(s,W, s′) ∈−→.

b) If s is a may-state, then the may-player chooses some may-transition
(s,W, s′) ∈99K or decides to stop the game.

(ii) Afterwards, if the game was not stopped and a transition (s,W, s′) was selected,
the may-player chooses a weight w′ ∈ W .

The pair (s′, w⊕w′) now becomes the new current configuration and the game continues
with a next round.

The intuition is that the must-player can only select must-transitions in must-states
and thus the selections (or moves) of the must-player can be realized in every possible
implementation. The may-player can choose between all the design choices of S which

134

3. Games on Multiweighted Modal Automata and Logic L

are not yet fixed, i.e. the may-player can choose whether to take any may-transition (and
in this case, which one) or not, and which weight to pick from a weight interval (both
for may- as well as must-transitions).

Any maximal sequence (finite that cannot be prolonged using a must-transition or

infinite) of configurations (s0, w0)(s1, w1) . . . such that for all i ≥ 0, we have si
W i
99K si+1

and wi+1 = wi ⊕ vi where vi ∈ W i, is called a run on S. Let runs(s, w) denote the set
of all runs starting from (s, w) on S(s,w). Any run complying with the above rules (i)
and (ii) is called a play in S. A strategy of the must-player is a function σ that maps
every finite prefix (s0, w0)(s1, w1) . . . (sr, wr) of a play, ending in a must-state sr, to a
must-transition (sr,W , s′) ∈−→. For a fixed strategy σ of the must-player, we define
the set plays(σ, (s, w)) of all plays starting from (s, w) on S(s,w) in which the choice of
the next must-transition is according to σ. For a run γ ∈ runs(s, w) the projection to
the i-th configuration is denoted by γi.

We are now ready to define a fragment L of the logic CTL to express properties
about accumulated weights of maximal runs in multiweighted modal automata. The
satisfaction relation will be defined via the games introduced above and we will show
that the logic is sound and complete w.r.t. refinement. In what follows let k implicitly
represent the number of weight coordinates.

The set of linear expressions is given by the abstract syntax e ::= 〈i〉 · c | e+ e where
1 ≤ i ≤ k and c ∈ Z. The L-formulae are given by the abstract syntax

ϕ, ϕ1, ϕ2 ::= e ./ b | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

ψ ::= AGϕ | AFϕ | EGϕ | EFϕ

where e is a linear expression, ./∈ {<,≤,=, 6=,≥, >}, b ∈ Z ∪ {−∞,∞}.
In order to give the semantics, we first define, for a linear expression e and a weight

w ∈ Zk, its denotational semantics JeKw ∈ Z by J〈i〉 · cKw = w[i] · c and Je1 + e2Kw =
Je1Kw + Je2Kw. The satisfaction of an L-formula ψ in a configuration (s, w) is now given
in Figure 2. Notice that the semantics of the AF and AG fragments can also be defined
using strategies. However, as these reduce essentially to one-player games, we prefer to
give their direct definitions for clarity.

By the EF, AF, EG and AG fragments we refer to the four main fragments of L, namely
formulae of the form EFϕ, AFϕ, EGϕ or AGϕ, respectively. If ϕmoreover does not contain
any disjunction (conjunction), we call the fragment disjunction-free (conjunction-free).
In the following, for S = (S, s0, w0, 99K,−→) ∈ M, we shortly write S |= ψ whenever
(s0, w0) |= ψ.

Example 4. As an example of an L-formula consider ψ = EG
(
〈1〉 ≥ 0∧〈1〉 ≤ 10∧〈2〉 ≥

0∧ 〈2〉 ≤ 6
)

in connection with the modal automata from Figure 1. The formula claims
the existence of a strategy for the must-player such that the battery level is between 0
and 10 and the volume of accumulated rocks is between 0 and 6 in any configuration.
By consulting Figure 1 we can see that S |= ψ. No matter what weight the may-player
chooses within the intervals and regardless whether the may-player chooses to stop or
not in s3, the must-player can always keep the two accumulated weights between the

135

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

(s, w) |= e ./ b iff JeKw ./ b

(s, w) |= ϕ1 ∧ ϕ2 iff (s, w) |= ϕ1 and (s, w) |= ϕ2

(s, w) |= ϕ1 ∨ ϕ2 iff (s, w) |= ϕ1 or (s, w) |= ϕ2

(s, w) |= AGϕ iff ∀γ ∈ runs(s, w) ∀i : γi |= ϕ

(s, w) |= AFϕ iff ∀γ ∈ runs(s, w) ∃i : γi |= ϕ

(s, w) |= EGϕ iff there exists a strategy σ of the must-player such that

∀γ ∈ plays(σ, (s, w)) ∀i : γi |= ϕ

(s, w) |= EFϕ iff there exists a strategy σ of the must-player such that

∀γ ∈ plays(σ, (s, w)) ∃i : γi |= ϕ

Figure 2.: Semantics of the logic L

In s0:

if 〈1〉 = 0 ∨ (〈1〉 = 1 ∧ 〈2〉 = 0) then charge

else collect

In s1:

if (〈1〉 ≥ 4∧〈2〉 = 0) ∨ (〈1〉 = 3∧〈2〉 ∈ {0, 1}) then search
else deposit

Figure 3.: A strategy for the must-player

bounds. A sufficient strategy for the must-player is seen in Figure 3. Notice that the
choice for the must-player in the state s2 is always to go for a small rock, thus this is
omitted in the strategy. As we will see shortly, the logic L is sound, implying that an
L-formula satisfied by S is also satisfied by all refinements of S, thus T |= ψ as well.

On the other hand, the formula ψ′ = AG
(
〈1〉 + 〈2〉 ≤ 20

)
can be easily seen not to

be satisfied by S. Since the logic L in this paper is proved complete, it allows us to
generate counter-examples: implementations of S that do not satisfy the formula ψ′.
Indeed, the implementation T does not satisfy ψ′ as a run may consist of continuously
charging using the selfloop in t0.

Remark 1. Note that the formula EFψ cannot in general be expressed as the negation
of AG¬ψ as opposed to the classical CTL. Consider for example a 1-weighted modal

automaton with just one transition s0

[2,2]
99K s1. Clearly, (s0, 0) 6|= EF 〈1〉 = 2 while also

(s0, 0) 6|= AG 〈1〉 6= 2. Similarly, AF is not dual with EG. On the other hand, as expected,
the classical duality laws for EF and AG, as well as AF and EG, hold on implementations.

Now we can show that satisfaction of any L-formula is preserved by modal refinement.
In particular this means that if S |= ψ then any implementation of S also satisfies ψ.

136

3. Games on Multiweighted Modal Automata and Logic L

Theorem 5. Let S ∈ M be a k-weighted modal automaton and ψ be an L-formula.
Then

S |= ψ =⇒
(
∀ T ∈M : T ≤m S =⇒ T |= ψ

)
.

Proof. It is clear that the theorem holds for any formula ϕ which is a logical combination
of atomic propositions, because it only refers to the current accumulated weight (which
is 0 in the initial configuration). Let ϕ be a logical combination of atomic propositions,
and let ψ be a formula of the form EFϕ, EGϕ, AFϕ, AGϕ. Let T ∈ M be a k-weighted
modal automaton such that T ≤m S.

For the case ψ ∈ {AGϕ,AFϕ}, consider a run γT in T . It is clear that from the modal
refinement T ≤m S it follows that there exists a run γS in S such that both runs have
the same length, and for all i, the state of (γT)i is in a modal refinement relation with
(γS)i, i.e. T(γT)i ≤m S(γS)i , and the accumulated weights of (γT)i and (γS)i coincide.
Hence T |= ψ.

Consider now the case ψ ∈ {EGϕ,EFϕ}. By assumption we know that there is a strat-
egy σ for the must-player that witnesses S |= ψ. We can iteratively construct a strategy
σ′ for the must-player on T as follows. Assume a configuration (t, w) with a must-state t
that is related (the states are related by modal refinement and the weights are the same)
to a configuration (s, w) of S such that there is a strategy for the must-player witnessing
S(s,w) |= ψ. So for (s, w) there exists a choice of the next must-transition such that for
any choice of the weight of the may-player, in the next configuration there is again a
strategy for the must-player which witnesses the satisfaction of ψ. This must-transition
is also present in T , due to modal refinement, hence the choice of the must-transition
by σ can be simulated by the strategy σ′ in T . Finally, note that the may-player in
T has at most the choices (for weights and may-transitions) as there are in S. Hence
T |= ψ. �

We shall now argue for the completeness of our logic. The proof is more straightforward
for the formulae AGϕ and AFϕ, and for the formulae EGϕ and EFϕ the proof relies on
the fact that in our turn-based games the absence of a winning strategy implies the
existence of a spoiling strategy for the opponent.

Theorem 6. Let S ∈ M be a k-weighted modal automaton and ψ be an L-formula.
Then (

∀I ∈ JSKimpl : I |= ψ
)

=⇒ S |= ψ .

Proof (sketch). Let S = (S, s0, w0, 99K,−→) ∈ M be a k-weighted modal automaton.
Let ϕ be a logical composition of atomic propositions of the form e ./ b. Since any
k-weighted modal automaton has an implementation I and I |= ϕ by assumption,
necessarily also S |= ϕ.

Now consider the case ψ ∈ {AGϕ,AFϕ}. Let γS be a run in S. Then, clearly, there
exists an implementation I ∈ JSKimpl and a run γI in I such that both runs have the same
length, and for all i, the state of (γI)i is in a modal refinement relation with (γS)i, i.e.
I(γI)i ≤m S(γS)i , and the accumulated weights of (γI)i and (γS)i coincide. So essentially
both runs have the same sequence of weights, and we can conclude that S |= ψ.

137

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

Let us now consider the case ψ ∈ {EGϕ,EFϕ}. Assume that S does not satisfy ψ,
i.e. S 6|= ψ, then there does not exist any strategy σ for the must-player such that all
plays γ ∈ plays(σ, (s0, w0)) satisfy the respective property. We can infer the existence
of a spoiling strategy of the may-player as follows. First, we define win = {(s, w) |
(s, w) is a configuration in S and must-player has a strategy in S(s,w) witnessing ψ}.
Given a configuration (s, w) in S such that (s, w) /∈ win and s is a must-state, then
for all choices of the must-player we know that there is a next choice of the may-player
(selection of a weight from the interval) such that the next configuration is not in win.
Similarly, if s is a may-state, we also know that there exists at least one choice of the next
(may-)transition and weight such that the next configuration is not in win; otherwise it
would contradict with (s, w) /∈ win.

Obviously, we can construct an implementation I of S, in the form of a tree, for which
the weights and the presence of transitions are chosen according to the above choices of
the must- and may-players. It is clear that the must-player does not have any strategy
witnessing the formula ψ since any play in I does not satisfy the respective property.
This contradicts our assumption that all implementations satisfy ψ. Hence S |= ψ.

�

4. Decidability and Complexity of the Logic L
We shall now study the model checking problem for L: given a finite k-weighted modal
automaton T and an L-formula ψ, the question is to decide whether T |= ψ. As we will
show, the problem is undecidable in general. Fortunately, there are several practically
usable fragments of the logic for which we show decidability. In the rest of this section
we shall implicitly assume that all input modal automata are finite. The first part
concentrates on undecidability results, while the two following parts study the decidable
fragments of the logic.

4.1. Undecidability of EF, EG and AF

We start by showing that in general the model checking problem is undecidable for three
(EF, EG, AF) of the four fragments of the logic.

The authors of [BCHK11] propose a CTL logic on Kripke structures that can reason
about multiple accumulated weights and they show undecidability of an unnested EG
formula. As our semantics of L corresponds to normal CTL semantics when interpreted
on implementations (the may-player has no choices, thus the existence of a strategy
corresponds to the existence of a run), the undecidable formula constructed in [BCHK11]
can be expressed using an EG formula from our logic L. Since the operators are dual
on implementations (see Remark 1), the model checking problems of the EG and AF
fragments of L are undecidable, even for implementations.

Theorem 7 ([BCHK11]). The model checking problems of the EG and AF fragments are
undecidable, even for implementations.

138

4. Decidability and Complexity of the Logic L

For the EF fragment we will describe a reduction from the halting problem of a 2-
counter Minsky machine to the model checking problem of the EF fragment of the logic.
Recall that a Minsky machine [Min67] consists of a finite number of instructions and two
nonnegative integer counters initially both set to 0. Each instruction either increases
one of the counters (an increment instruction) or tests for zero and decreases a counter
(a test-and-decrement instruction). We say that a Minsky machine halts if it is pos-
sible to reach the last instruction called halt when starting from the first instruction.
Otherwise it loops. It is well-known that the halting problem for Minsky machines is
undecidable [Min67].

We now describe the reduction for the EF fragment where the problem becomes un-
decidable even if we restrict ourselves only to specifications where the may- and must-
transitions coincide (though intervals are not necessarily singletons).

Let 1 : inst1; 2 : inst2; . . . ; n − 1 : instn−1; n : halt be a Minsky machine over the
nonnegative integer counters c1 and c2. We construct a 9-weighted modal automaton
S = (S, s1, 0, 99K,−→) ∈ M where every may-transition is also a must-transition and
an L-formulae EFϕ such that (s1, 0) |= EFϕ iff the Minsky machine halts. The intuition
behind the coordinates is as follows: 〈1〉 represents the first counter, if 〈3〉 is set to 1
then the may-player is testing if the first counter is empty, if 〈5〉 is set to 1 then the
may-player is testing if the first counter is nonempty, if 〈7〉 is set to 1 then the may-player
indicates that an increment instruction is not allowed. The role of the coordinates 〈2〉,
〈4〉, 〈6〉 and 〈8〉 is dual and corresponds to the second counter. Finally, if 〈9〉 is nonzero,
the halt instruction has been reached.

Let S = {si | 1 ≤ i ≤ n} be the set of states. The transitions are of the following types,
depending on the instructions of the Minsky machine (here 1 ≤ j ≤ 2, 1 ≤ i, k, ` ≤ n).

1. For each instruction i: cj := cj + 1; goto k, we add the transitions

• si
(1,0,0,0,0,0,[0,1],0,0)−−−−−−−−−−−→ sk if j = 1, and

• si
(0,1,0,0,0,0,0,[0,1],0)−−−−−−−−−−−→ sk if j = 2.

2. For each instruction i: if cj = 0 then goto k else (cj := cj - 1; goto `),
we add the transitions

• si
(0,0,[0,1],0,0,0,0,0,0)−−−−−−−−−−−→ sk and si

(−1,0,0,0,[0,1],0,0,0,0)−−−−−−−−−−−−→ s` if j = 1, and

• si
(0,0,0,[0,1],0,0,0,0,0)−−−−−−−−−−−→ sk and si

(0,−1,0,0,0,[0,1],0,0,0)−−−−−−−−−−−−→ s` if j = 2.

3. Finally, we add the transition sn
(0,0,0,0,0,0,0,0,0,1)−−−−−−−−−−→ sn.

Let now

ϕ1 = 〈1〉= 0 ∧ 〈3〉= 1 ∧ 〈5〉= 0 ϕ2 = 〈2〉= 0 ∧ 〈4〉= 1 ∧ 〈6〉= 0

ϕ3 = 〈1〉≥ 0 ∧ 〈5〉= 1 ∧ 〈7〉= 0 ϕ4 = 〈2〉≥ 0 ∧ 〈6〉= 1 ∧ 〈8〉= 0

ϕ5 = 〈5〉= 0 ∧ 〈7〉= 1 ϕ6 = 〈6〉= 0 ∧ 〈8〉= 1

ϕ7 = 〈9〉= 1 ∧ 〈3〉= 0 ∧ 〈4〉= 0 ∧ 〈5〉= 0 ∧ 〈6〉= 0 ∧ 〈7〉= 0 ∧ 〈8〉= 0.

139

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

and
ϕ = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨ ϕ5 ∨ ϕ6 ∨ ϕ7.

We now argue that (s1, 0) |= EFϕ iff the Minsky machine halts. Assume first that
the machine halts. Then the must-player can reach the state sn with some accumulated
weight w by faithfully simulating the Minsky machine. If the may-player picks 0 in all
intervals, ϕ7 is satisfied in (sn, w), and thus also ϕ. If, on the other hand, the may-player
picks 1 in any interval, this will force ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 or ϕ6 to be true. Therefore
(s0, 0) |= EFϕ holds regardless of the choices of the may-player.

Assume now that the Minsky machine does not halt. If the must-player does not
cheat, sn can never be reached and ϕ7 can thus never be true. If the may-player chooses
0 in every interval, neither ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 nor ϕ6 can be true in any configuration,
hence (s0, 0) |= EFϕ can never be true.

We investigate what happens if the must-player cheats. This is possible either by (1)

taking the transition si
(0,0,[0,1],0,0,0,0,0,0)−−−−−−−−−−−→ sk while c1 > 0 or (2) taking si

(−1,0,0,0,[0,1],0,0,0,0)−−−−−−−−−−−−→
s` while c1 = 0 (and similarly for c2).

In case (1), the may-player sets 〈3〉 = 1. Since the accumulated weight in coordinates
3-8 can never be lowered, ϕ1 can still hope to be true at some point. This would be
possible if 〈1〉 = 0, but for this not to happen the may-player sets 〈5〉 = 1 should the
other player try to decrement 〈1〉. This ensures that ϕ1 cannot be true, so (s0, 0) |= EFϕ
can never be true if the may-player chooses 0 in the remaining intervals (unless the
must-player cheats in the other counter; here the may-player behaves analogously).

In case (2), the may-player sets 〈5〉 = 1. Now ϕ3 can still be true at some point.
However, that would require 〈1〉 = 0, and when incrementing 〈1〉, the may-player can
set 〈7〉 = 1, making sure that EFϕ cannot become true. Similarly for c2.

The above construction leads to the following theorem.

Theorem 8. The model checking problem of the EF fragment is undecidable, even for
specifications with intervals but where the may- and must-transition relations coincide.

Notice that in the proof of Theorem 8 we use intervals to argue for undecidability. We
will see that this is exactly the issue causing undecidability.

4.2. Decidability with Restricted Fragments

In order to obtain decidability results, we first restrict our model to contain only singleton
intervals and notice that the EF fragment becomes decidable. Notice that this restriction
is not sufficient for the two remaining undecidable fragments, EG and AF, since these
are undecidable even for implementations.

Notice that a formula EFϕ is true on a k-weighted modal automaton iff it is true on
its must-projection that is obtained by removing all the may-transitions that do not
have a corresponding must-transition. The reason is that the may-player can, in any
may-state, decide to stop the game and hence the formula ϕ must be satisfied in some
configuration reachable via must-transitions only. So in the following we assume that
99K=−→. Since the intervals are assumed singletons, we therefore need to consider only

140

4. Decidability and Complexity of the Logic L

implementations. The EF fragment was shown to be decidable for implementations in
[BCHK11] (even if we allow nesting). We thus have the following decidability result.

Theorem 9 ([BCHK11]). The model checking problem of the EF fragment of L against
weighted modal automata with singleton intervals is decidable.

The following alternative proof of the above theorem is not included in the submitted
paper, as the theorem follows from [BCHK11], but for completeness we include this
direct and self-contained proof. The proof is by reduction to the reachability problem
on Petri nets. As expected, we store the accumulated weights in places of the Petri net.
The main complication is that we need to remember also negative weights, something
not possible in Petri nets. For that reason, for each coordinate we create two places p+

and p− such that tokens can be only added to them and the actual weight is represented
by the difference between the number of tokens in p+ minus the number of tokens in p−.
The checking of arbitrary boolean formula over simple linear expressions is then encoded
inductively into Petri net fragments.

A Petri net is formally defined as a triple N = (P, T,W), where P and T are finite
sets of places and transitions, respectively, and W : (P × T) ∪ (T × P) → N is a
weight function assigning a nonnegative integer to each arc. A marking is a function
M : P → N returning the number of tokens present in each place. Giving a marking M ,
any transition t ∈ T may fire if M(p) ≥ W (p, t) for all p ∈ P . When a transition fires,
it produces a marking M ′ obtained as M ′(p) = M(p)−W (p, t) +W (t, p) for all p ∈ P .
A marking M is reachable in N from an initial marking M0 if there exists a series of
transition firings ending in the marking M .

Proof of Theorem 9. We show a polynomial time reduction to the decidable reachability
problem on Petri nets. Let S = (S, s0, w0, 99K,−→) be a k-weighted modal automaton
with singleton intervals. We construct a Petri net N = (P, T,W) and two markings M0

and Mf such that S |= EFϕ iff Mf is reachable in N with the initial marking M0.
First notice that a formula EFϕ is true on a k-weighted modal automaton iff it is true

on its must-projection that is obtained by removing all the may-transitions that do not
have a corresponding must-transition. The reason is that the may-player can, in any
may-state, decide to stop the game and hence the formula ϕ must be satisfied in some
configuration reachable via must-transitions only. So in the following we assume that
99K=−→. Since the intervals are assumed singletons, S is an implementation, and the
may-player has no control of the game, i.e. it can be seen as a one-player game for the
must-player.

Second, due to Lemma 10 on page 143, we can assume that ϕ solely consists of
simple linear expressions, i.e. expressions of the form 〈i〉 ./ b, where ./ ∈ {≤,≥} and
b ∈ Z ∪ {−∞,∞}.

The translation proceeds as follows. For each state s ∈ S we add a place ps to P .
To simulate the accumulated weights, we introduce places that store tokens according
to the increase and decrease of the weights by performing transitions. Let Oϕ be the
multiset of linear expressions occurring in the formula ϕ (each occurrence of any linear
expression is included). Each such expression o ∈ Oϕ addresses exactly one coordinate

141

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

ps ps′

p+
o′,1 p−o′,1 p+

o′′,2 p−o′′,2

2 5

1 1

(a) Translation of a 2-weighted
transition (s′, (−2, 5), s′) ∈−→
to a Petri net

pin
ψ p1

ψ p2
ψ pout

ψ

p+
o,i

p−o,i

t1
1

1

b

t3
1

1

t5
1

1

t2

1

1
1 1

t4

1

1 1

(b) Checking a simple linear expression ψ = 〈i〉 ≤ b
at occurrence o

Figure 4.: Gadgets used in the reduction

w(o) ∈ {1, . . . , k}. For each o ∈ Oϕ with w(o) = i we add two places p+
o,i (a plus

place) and p−o,i (a minus place) to P . Any increase in coordinate j is simulated by
adding tokens to the plus places p+

o,j, and any decrease is simulated by adding tokens
to the minus places p−o,j. Thus transitions of S are translated according to the following
scheme. For each must-transition (s, w, s′) ∈−→ in S we add a transition t to T , and
we let W (ps, t) = W (t, ps) = 1. In order to capture the change of each weight coordinate
j we have to add multiplicities, for each o ∈ Oϕ such that w(o) = j. If w[j] > 0, then
we let W (t, p+

o,j) = w[j]. If w[j] < 0, then we let W (t, p−o,j) = −w[j]. Fig. 4a shows an
example where S contains one must-transition with weight (−2, 5) and ϕ comprises two
simple linear expressions o and o′ addressing coordinates 1 and 2, respectively.

At any moment the Petri net N should be able to enter a checking phase in order to
check whether the corresponding configuration in S satisfies ϕ or not. By induction on
the structure of ϕ we construct a net gadget checking the formula satisfaction. The gad-
get shown in Fig. 4b shows how to check satisfaction of any occurrence o of simple linear
expression the form ψ = 〈i〉 ≤ b, which corresponds to checking M(p+

o,i) ≤ M(p−o,i) + b.
This gadget is activated by putting one token in pin

ψ . Then we add b tokens to p−o,i when
firing transition t1. Now transition t2 can be fired a number of times until either p+

o,i

or p−o,i are empty. Firing transition t4 ensures that p−o,i for sure can be emptied. It is
therefore only possible to empty all places except pout

ψ iff 〈i〉 ≤ b is satisfied. If this is
not the case, some tokens in p+

o,i are impossible to remove, since p−o,i runs out of tokens
before p+

o,i. The gadget for checking the formula 〈i〉 ≥ b is similar, the only change is the
update of the following two multiplicities to arcs: W (p−o,i, t4) = 0 and W (p+

o,i, t4) = 1.

The conjunction of two formulae, ψ = ψ1 ∧ψ2, is checked by checking the two subfor-
mulae one at a time by putting their gadgets in series. The gadget for this check is seen
in Fig. 5. The gadgets checking ψ1 and ψ2 are inserted in the corresponding dashed box.
All places can be emptied (except pout

ψ) iff both subformulae are true.

For the disjunction of two formulae, ψ = ψ1 ∨ ψ2, we need to provide two paths in
N ; one satisfying ψ1 and one satisfying ψ2. The gadget is seen in Fig. 6. The gadgets
entitled ’Empty ψ’ are designed to empty all places associated with ψ, that is all p+

o,i

142

4. Decidability and Complexity of the Logic L

pin
ψ pin

ψ1
pout
ψ1

pin
ψ2

pout
ψ2

pout
ψ

ψ1 ψ2
1 1 1 1 1 1

Figure 5.: Checking the formula ψ = ψ1 ∧ ψ2

pin
ψ

pin
ψ1

pout
ψ1

qin
ψ2

qout
ψ2

qin
ψ1

qout
ψ1

pin
ψ2

pout
ψ2

pout
ψ

ψ1 Empty ψ2

Empty ψ1 ψ2

1
1

1
1

1 1

1 1 1
1

1
1

Figure 6.: Checking the formula ψ = ψ1 ∨ ψ2

and p−o,i with o ∈ Oϕ. This gadget is seen in Fig. 7. When q′ receives a token, repeatedly
firing the transitions below q′ will provide the existence of an execution where all places
have no tokens when passing on the token to qout

ψ . All arcs in Fig. 6 have multiplicity 1.
The whole Petri net N is constructed by adding the gadgets described for simulating

any run of S including the accumulated weights and creating a gadget for checking ϕ
(containing a number of smaller gadgets depending on the structure of ϕ). In order to
connect the checking part to the remaining Petri net (see Fig. 4a), we add for all s ∈ S
a transition ts to T along with two arcs with multiplicities W (ps, ts) = W (ts, p

in
ϕ) = 1.

Now from every place ps in N holding a token it is possible to fire ts and add a token to
pin
ϕ , from where it is possible to check whether ϕ is satisfied in s or not.
Let us define now the initial marking as M0(ps0) = 1, M(p+

o,i) = w0[i] if w0[i] ≥ 0 and
M(p−o,i) = −w0[i] if w0[i] < 0 for all o and M(p) = 0 for any other place p. The marking
we want to reach is defined as Mf (p) = 0 for all p ∈ P \ {pout

ϕ } and Mf (p
out
ϕ) = 1. As

argued above, the marking Mf is reachable from the initial marking M0 iff S |= EFϕ.
This run in N corresponds to simulating S until reaching the configuration satisfying ϕ
and then entering the checking phase at this moment.

To sum up, we have shown how to reduce the model checking problems for the EF frag-
ment on weighted modal automata with singleton intervals to the decidable reachability
problem on Petri nets [May81]. �

We shall now argue that by restricting the formulae to contain only conjunctions,
some fragments of the logic become decidable.

First we show that with singleton intervals (though still allowing modalities) the model
checking problem for any L-formula reduces to the same problem for a formula with so-
called simple linear expressions. A linear expression is simple if it is of the form 〈i〉 ./ b,
where ./ ∈ {≤,≥} and b ∈ Z.

Lemma 10. Model checking of an L-formula against a weighted modal automaton with
singleton intervals is polynomial time reducible to model checking an L-formula where
all linear expressions are simple.

143

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

qin
ψ

q′

qout
ψ

p+
o,i p−o′,i p+

o′′,i

· · · · · ·

Figure 7.: Gadget for emptying places associated with ψ

Proof. Let S = (S, s0, w0, 99K,−→) be a k-weighted modal automaton with only single-
ton intervals. Consider any linear expression of the form e = 〈i1〉 · c1 + . . . + 〈in〉 · cn,
i1, . . . , in ∈ {1, . . . , k}. Notice that for any modal automaton with singleton intervals,
step (ii) in the game can be ignored, since the weights are already uniquely given.

We now construct a (k + 1)-weighted automaton T = (S, s0, w
′
0, 99KT ,−→T), where

w′0 = (w0[1], . . . , w0[k], w0[i1] · c1 + . . . + w0[in] · cn). For each s
w
99K s′ in 99K we add

s
v
99K s′ to 99KT , where v = (w[1], . . . , w[k], w[i1] · c1 + . . . + w[in] · cn). The set −→T

is constructed similarly. Now any linear expression e ./ b, ./ ∈ {<,≤,=, 6=,≥, >},
b ∈ Z, is satisfied in S if and only if the state formula 〈k + 1〉 ./ b is satisfied in T for
./ ∈ {≤,≥}. The relations <, =, 6= and > can be modelled using only ≤ and ≥. For
e ./ b, where ./ ∈ {<,>} we instead use e ≤ b − 1 and e ≥ b + 1, respectively. For ./,
where ./ ∈ {=, 6=} we use e ≤ b ∧ e ≥ b and e < b ∧ e > b, respectively. �

We now prove that the disjunction-free EG fragment is decidable, by showing a reduc-
tion to the so-called multiweighted energy games [FJLS11].

A k-weighted energy game is a four tuple G = (S1, S2, s0,−→) where S1 and S2 are
finite disjoint sets of existential and universal states, respectively, s0 ∈ S1 ∪ S2 is the
start state and −→ ⊆ (S1 ∪ S2) × Zk × (S1 ∪ S2) is a finite multiweighted transition
relation. Furthermore a k-weighted game is non-blocking, meaning that all states have
some outgoing transition.

Configurations, plays and strategies are defined similarly to the same terms on k-
weighted modal automata. A configuration is a pair (s, w), where s ∈ S1 ∪ S2 and
w ∈ Zk, while a play is an infinite sequence of configurations (s0, w0)(s1, w1) . . . such
that (si, vi, si+1) ∈−→ and wi + vi = wi+1 for all i ≥ 0. A strategy for the existen-
tial player is a mapping σ from each finite prefix of a play (s0, w0) . . . (sn, wn) such
that sn ∈ S1 to a configuration (sn+1, wn+1) such that (s0, w0) . . . (sn, wn)(sn+1, wn+1)
is a prefix of a play in G. Given a strategy σ, the set of all plays in G of the form
(s0, w0)(s1, w1) . . ., where w0 = 0 and σ((s0, w0) . . . (sn, wn)) = (sn+1, wn+1) for all
sn ∈ S1 is called plays(σ,G). Given a k-weighted game G and a b ∈ Nk, the en-
ergy game with upper bound asks whether there exists a strategy σ for the existential
player such that all (s0, w0), (s1, w1) . . . ∈ plays(σ,G) satisfy 0 ≤ wi ≤ b for all i. If
we have only the requirement of 0 ≤ wi for all i, we call it an energy game with lower
bound.

144

4. Decidability and Complexity of the Logic L

Theorem 11. Model checking the disjunction-free EG fragment is polynomial time equiv-
alent to deciding the winner of energy games with lower bound.

Proof. Let S = (S, s0, w, 99K,−→) be a k-weighted modal automaton. We will first
reduce the model checking problem of EG on S to an energy game with only lower
bounds.

Due to Lemma 14 we can assume that S is a weighted modal automaton with sin-
gleton intervals. This ensures that we can apply Lemma 10 and assume that all linear
expressions in ϕ are simple. First, we notice that any such ϕ can be rewritten to an
equivalent form

ϕ =

(
k∧
i=1

〈i〉 ≥ `i

)
∧

(
k∧
i=1

〈i〉 ≤ ui

)
, (1)

where `i, ui ∈ Z∪{−∞,∞} and `i = −∞ implies ui =∞. This follows since a coordinate
with no upper bound can safely be bounded above by∞ and a coordinate with no lower
bound can safely be bounded below by −∞. In addition a coordinate with an upper
bound and no lower bound can be simulated using only a lower bound by multiplying
all weights on transitions and the bound in this coordinate by −1. It is clear that there
exits a unique `i giving the largest lower bound and a unique ui giving the smallest
upper bound for each i ∈ {1, . . . , k} should there be multiple constrains related to the
coordinate i.

We shall now reduce the model checking problem for EGϕ to a k-weighted energy
game. The game GS = (S1, S2, sG,−→G) is constructed from S by splitting S into two
sets, such that sG = s0, S1 = {s ∈ S | s −→ s′ for some s′ ∈ S} (the existential states)
and S2 = S \ S1 ∪ {s′} (the universal states). The state s′ is added to S2 in order to
capture the fact that any may-transition can be dropped. In any universal state we
therefore add a transition to s′ with 0 as weight. Furthermore s′ has a selfloop also with
0 as weight vector in order to ensure a non-blocking game. Hence we define

−→G = −→ ∪ 99K ∪ {s 0−→G s
′ | s ∈ S2} ∪ {s′

0−→G s
′}.

Now S satisfies EGϕ iff there exists a strategy σ for the existential player in GS such
that any infinite play that proceeds according to σ and starts in sG with initial weight
(w[1]− `1, . . . , w[k]− `k) has accumulated weights which are always nonnegative and do
not exceed (u1 − `1, . . . , uk − `k). As proved in [FJLS11] it is possible to remove the
upper bounds by doubling the number of weights, hence we get an equivalent instance
of the lower bound energy game with 2k weights.

To conclude the other direction of the proof, we can realize that any k-weighted energy
game G = (S1, S2, sG,−→) with only lower bounds can be reduced to a modal automaton

S with singleton intervals by turning all transitions s
w−→ s′, where s ∈ S2 into only

may-transitions. Clearly, the existential player wins the energy game with initial weight
w0 iff S |= EG(〈1〉 ≥ 0 ∧ . . . ∧ 〈k〉 ≥ 0). �

Determining the winner of an energy game with only lower bounds is decidable and
EXPSPACE-hard [FJLS11]. This yields the following corollary.

145

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

Corollary 12. Model checking the disjunction-free EG fragment on multiweighted modal
automata is decidable and EXPSPACE-hard.

Another complexity result is obtained by reducing the model checking problem of the
AG fragment to energy games. This time to the universal version, where all runs must
maintain the accumulated weights nonnegative at all times, giving us a polynomial time
algorithm.

Theorem 13. Model checking the disjunction-free AG fragment is in P .

Proof. By using the same reductions as in the proof of Theorem 11, we find an equiv-
alence with the universal energy game with only lower bounds. The only modification
is that after constructing the game GS = (S1, S2, sG,−→G) we make another game
GS′ = (∅, S1 ∪ S2, sG,−→G), such that all states belong to the universal player. Decid-
ing a universal energy game (regardless of the bounds) can be done in polynomial time
[BFL+08]. �

We are now ready to prove the decidability of the full AG fragment.

4.3. Decidability of AG

In order to prove that the AG fragment of L is decidable, we need the following lemma,
stating that the weight intervals can be reduced to singleton intervals when model check-
ing a formula in the EG or AG fragment.

Lemma 14. Let S ∈M be a k-weighted modal automaton and ψ be a formula from the
EG or AG fragment. We can in polynomial time construct a k-weighted modal automaton
T ∈M with singleton intervals such that

S |= ψ iff T |= ψ.

Proof. In order to bypass the exponential blow up that the straightforward reduction of

a transition s
[`,u]
99K s′, `, u ∈ Z, (even in the case of k = 1) to u − ` different singleton

weighted transitions from s to s′ would give, we instead use the following construction.

Each transition s
W
99K s′ in S is translated into a number of transitions in T . For each

coordinate i of W one of the gadgets depicted in Figure 8 is chosen. Notice that the
figure is shown for k = 1. Otherwise zeros are put into coordinates different from i. In

case s
W−→ s′ in S the transition from s to s′′ in each gadget must be a must-transition

as well. The k selected gadgets (Figure 8a-8d) for each coordinate are then connected to
each other in series in any order. What gadget to use depends on the specific interval,
and we thus distinguish between the following three cases.

Both bounds are integers: In this case coordinate i of W is bounded by the interval
[`, u], `, u ∈ Z. We can assume that the size of the interval, u−`, is written in binary using
r+1 bits as brbr−1 . . . b1b0 such that br = 1. The corresponding gadget is given in Figure

8a. We add the lower bound of the interval first (s
`
99K sk), and using the remaining

146

4. Decidability and Complexity of the Logic L

srs

sr−1 sr−2 sr−3

. . .
si−1

. . .

s′′

tr−1 tr−2
. . .

ti
. . .

t0 t′′

s′

`

0

br · 2r

2r−1

0

2r−2

0

2r−3

0

20

0

0

br−1 · 2r−1 br−2 · 2r−2 b1 · 21 b0 · 20
0

(∗) 0 (∗) 0 (∗) 0 (∗) 0

(a) Case `, u ∈ Z (transitions marked with (∗), (tj , 0, sj−1) ∈99K, are present if bj = 1)

s s′′ s′u 0

−1

(b) Case ` = −∞, u ∈ Z

s s′′ s′` 0

1

(c) Case ` ∈ Z, u =∞

s s′′ s′0 0

1

−1

(d) Case ` = −∞, u =∞

Figure 8.: Translation of (s, ([`, u]), s′) ∈ 99K into singleton weighted transitions

construction we let the may-player construct a value j ∈ {0, . . . , u − `}, simulating the
game semantics of ψ, where the may-player chooses a weight in each weight interval.

To see this we observe that taking the path sr
br·2r
99K tr−1

br−1·2r−1

99K tr−2

br−2·2r−2

99K . . .
b1·21

99K

t0
b0·20

99K t′′
0
99K s′ (the uppermost path) corresponds to the may-player constructing u− `

and thus picking the weight u from W . Taking the lowermost path along transitions
with weight 0 corresponds to picking the weight `, while any other path from s to s′

builds a weight between ` and u. Notice that the may-player cannot construct a weight
larger than u− `, since he only moves to the lowermost part of the figure (where he can
construct any number for the remaining bits) if he chooses 0 for any of the bits in u− `
set to 1.

One bound is an integer, one bound is not: In the second case, where coordinate i of
W is bounded below by −∞ or above by ∞ (but not both) we use either the gadget
in Figure 8b or the gadget in Figure 8c. We start by adding the upper bound (in case
the lower bound is −∞) or the lower bound (in case the upper bound is ∞) and then
decrease (or increase) the first coordinate by an arbitrary number.

Both bounds are not integers: The last case, where the interval equals the set Z, we use
the gadget depicted in Figure 8d in order to decrease or increase the weight arbitrarily.

Now S |= ψ if and only if T |= ψ. This is true since the may-player cannot choose
the weights differently in T than he could have done in S. The may-player can however
choose to stop anywhere inside the gadget, but this cannot break the satisfiability of ψ
due to the G quantifier. �

We are now ready to prove the decidability of the AG fragment.

Theorem 15. The model checking problem of the AG fragment of L is decidable.

147

E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata

Proof. Let S ∈M and let AGϕ be a formula from the AG fragment. By Lemma 14 we can
reduce S to a weighted modal automaton with only singleton intervals. Furthermore we
may consider only the may-projection of S obtained by turning all may-transitions into
must-transitions, thus obtaining the most permissible implementation. Now ϕ must be
satisfied in every reachable configuration. Since S is an implementation, checking AGϕ
corresponds to checking the negation of EF¬ϕ and hence it is decidable by Theorem 9.

�

5. Conclusion

We studied multiweighted modal automata and proposed a fragment of CTL in order
to reason about the accumulated weights gathered along the execution of the system, a
practically motivated problem where one of its particular instances called energy games
has recently become an active research topic. The semantics of the logic is given in terms
of two-player games and the definitions were justified by showing that the fragment is
both sound and, contrary to the previous attempts, also complete. We believe that a
game-semantics is necessary for achieving the completeness of the logic, and the paper
takes a first step in this direction. We showed that the logic is in general undecidable,
but there are reasonable fragments that are practically interesting and remain decidable.

There are various directions for future works. Clearly, larger fragments of CTL (or
generally of the µ-calculus), should be identified for which both soundness and com-
pleteness can be obtained. As the model checking problem is in general undecidable, a
possible way to attack the problem can be to extend our framework to a three-valued
formalism with refinement, like in the spirit of [GP09]. Another direction for future work
is to extend the results to a more general setting using lattices, as in [KL07].

148

Bibliography

[AdAdS+06] B. T. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman,
and P. Roy. Ticc: A Tool for Interface Compatibility and Composition. In
18th International Conference on Computer Aided Verification (CAV’06),
volume 4144 of Lecture Notes in Computer Science, pages 59–62. Springer,
2006.

[AH06] A. Antonik and M. Huth. Efficient Patterns for Model Checking Partial
State Spaces in CTL intersection LTL. Electronic Notes in Theoretical
Computer Science, 158:41 – 57, 2006.

[AH09] M. Atig and P. Habermehl. On Yen’s Path Logic for Petri Nets. In 3rd
International Workshop on Reachability Problems (RP’03), volume 5797
of Lecture Notes in Computer Science, pages 51–63. Springer-Verlag, 2009.

[AHL+08] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. W ↪asowski. 20 Years
of Modal and Mixed Specifications. Bulletin of the EATCS, (95):94–129,
2008.

[ASW94] H. R. Andersen, C. Stirling, and G. Winskel. A Compositional Proof
System for the Modal mu-Calculus. In 9th Annual IEEE Symposium on
Logic in Computer Science (LICS’94), pages 144–153. IEEE Computer
Society, 1994.

[ATP04] R. Alur, S. L. Torre, and G. J. Pappas. Optimal Paths in Weighted Timed
Automata. Theoretical Computer Science, 318(3):297–322, 2004.

[AVARB+01] Y. Abarbanel-Vinov, N. Aizenbud-Reshef, I. Beer, C. Eisner, D. Geist,
T. Heyman, I. Reuveni, E. Rippel, I. Shitsevalov, Y. Wolfsthal, and
T. Yatzkar-Haham. On the Effective Deployment of Functional Formal
Verification. Formal Methods in System Design, 19(1):35–44, 2001.

[BCHK11] U. Boker, K. Chatterjee, T. Henzinger, and O. Kupferman. Temporal
Specifications with Accumulative Values. In 26th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’11), pages 43–52. IEEE Com-
puter Society, 2011.

[BFH+01] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager. Minimum-Cost Reachability for Priced
Timed Automata. In 4th International Workshop on Hybrid Systems:

149

Bibliography

Computation and Control (HSCC’01), volume 2034 of Lecture Notes in
Computer Science, pages 147–161. Springer-Verlag, 2001.

[BFJ+11] S. S. Bauer, U. Fahrenberg, L. Juhl, K. G. Larsen, A. Legay, and
C. Thrane. Quantitative Refinement for Weighted Modal Transition Sys-
tems. In 36th International Symposium on Mathematical Foundations of
Computer Science (MFCS’11), volume 6907 of Lecture Notes in Computer
Science, pages 60–71. Springer-Verlag, 2011.

[BFL+08] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infi-
nite Runs in Weighted Timed Automata with Energy Constraints. In 6th
International Conference on Formal Modelling and Analysis of Timed Sys-
tems (FORMATS’08), volume 5215 of Lecture Notes in Computer Science,
pages 33–47. Springer-Verlag, 2008.

[BFLM10] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey. Timed Automata
with Observers under Energy Constraints. In 13th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC’10),
pages 61–70. ACM, 2010.

[BG00] G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning
about Partial State Spaces. In 11th International Conference on Concur-
rency Theory (CONCUR’00), volume 1877 of Lecture Notes in Computer
Science, pages 168–182. Springer-Verlag, 2000.

[BG09] B. Bollig and P. Gastin. Weighted versus Probabilistic Logics. In Diekert
and Nowotka [DN09], pages 18–38.

[BJK10] T. Brázdil, P. Jančar, and A. Kučera. Reachability Games on Extended
Vector Addition Systems with States. In 37th International Colloquium
on Automata, Languages and Programming (ICALP’10), Part II, volume
6199 of Lecture Notes in Computer Science, pages 478–489. Springer-
Verlag, 2010.

[BK84] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Commu-
nication. Information and Control, 60(1-3):109–137, 1984.

[BK90] J. C. M. Baeten and J. W. Klop, editors. Theories of Concurrency: Uni-
fication and Extension (CONCUR’90), volume 458 of Lecture Notes in
Computer Science. Springer-Verlag, 1990.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[BK11] N. Beneš and J. Kret́ınský. Process Algebra for Modal Transition System-
ses. In 6th Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science (MEMICS’10), Selected Papers, volume 16 of OA-
SIcs, pages 9–18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

150

Bibliography

[BKL+11] N. Beneš, J. Kret́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Paramet-
ric Modal Transition Systems. In 9th International Symposium on Auto-
mated Technology for Verification and Analysis, (ATVA’11), volume 6996
of Lecture Notes in Computer Science, pages 275–289. Springer-Verlag,
2011.

[BKLS09a] N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. Checking Thorough
Refinement on Modal Transition Systems Is EXPTIME-Complete. In
6th International Colloquium on Theoretical Aspects of Computing (IC-
TAC’09), volume 5684 of Lecture Notes in Computer Science, pages 112–
126. Springer-Verlag, 2009.

[BKLS09b] N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. On Determinism in
Modal Transition Systems. Theoretical Computer Science, 410(41):4026–
4043, 2009.

[BL92] G. Boudol and K. G. Larsen. Graphical versus logical specifications. The-
oretical Computer Science, 106(1):3–20, 1992.

[BLL+11] S. Bauer, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. A Modal
Specification Theory for Components with Data. In 8th International
Symposium on Formal Aspects of Component Software (FACS’11), 2011.
To appear in LNCS.

[BLPR09] N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. A Compositional
Approach on Modal Specifications for Timed Systems. In Formal Methods
and Software Engineering, 11th International Conference on Formal Engi-
neering Methods (ICFEM’09), volume 5885 of Lecture Notes in Computer
Science, pages 679–697. Springer-Verlag, 2009.

[BMSH10] S. S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On Weak Modal
Compatibility, Refinement, and the MIO Workbench. In 16th Interna-
tional Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’10), volume 6015 of Lecture Notes in Computer
Science, pages 175–189. Springer-Verlag, 2010.

[BPR09] N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinement and Consistency
of Timed Modal Specifications. In 3rd International Conference on Lan-
guage and Automata Theory and Applications (LATA’09), volume 5457 of
Lecture Notes in Computer Science, pages 152–163. Springer-Verlag, 2009.

[BvK10] N. Beneš, I. Černá, and J. Křet́ınský. Disjunctive Modal Transition Sys-
tems and Generalized LTL Model Checking. Technical Report FIMU-RS-
2010-12, Faculty of Informatics, Masaryk University, 2010.

151

Bibliography

[CAP+98] W. Chan, R. J. Anderson, B. Paul, S. Burns, F. Modugno, D. Notkin,
and J. D. Reese. Model Checking Large Software Specifications. IEEE
Transactions on Software Engineering, 24:498–520, 1998.

[CD10] K. Chatterjee and L. Doyen. Energy Parity Games. In 37th International
Colloquium on Automata, Languages and Programming (ICALP’10), Part
II, volume 6199 of Lecture Notes in Computer Science, pages 599–610.
Springer-Verlag, 2010.

[CdAHS03] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Re-
source Interfaces. In 3rd International Conference on Embedded Software
(EMSOFT’03), volume 2855 of Lecture Notes in Computer Science, pages
117–133. Springer-Verlag, 2003.

[CDHR10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. General-
ized Mean-payoff and Energy Games. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), volume 8 of LIPIcs, pages 505–516. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2010.

[CDL+10] B. Caillaud, B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, and
A. Wasowski. Compositional Design Methodology with Constraint Markov
Chains. In 7th International Conference on Quantitative Evaluation of
SysTems (QEST’10), pages 123–132. IEEE Computer Society, 2010.

[CE82] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In Logics of Programs,
Workshop 1981, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer-Verlag, 1982.

[CGL93] K. Cerans, J. C. Godskesen, and K. G. Larsen. Timed Modal Specification
- Theory and Tools. In 5th International Conference on Computer Aided
Verification,(CAV’93), volume 697 of Lecture Notes in Computer Science,
pages 253–267. Springer-Verlag, 1993.

[Cha10] J. Chaloupka. Z-Reachability Problem for Games on 2-Dimensional Vector
Addition Systems with States Is in P. In 4th International Workshop on
Reachability Problems (RP’10), volume 6227 of Lecture Notes in Computer
Science, pages 104–119. Springer-Verlag, 2010.

[Cir79] R. Cirillo. The Economics of Vilfredo Pareto. Frank Cass Publishers,
1979.

[COM11] COMBEST, 2008–2011. http://www.combest.eu.com.

152

Bibliography

[dAdSF+05] L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea.
Sociable Interfaces. In 5th International Conference on Frontiers of Com-
bining Systems (FROCOS’05), volume 3717 of Lecture Notes in Computer
Science, pages 81–105. Springer, 2005.

[dAF03] L. de Alfaro and M. Faella. Information Flow in Concurrent Games. In
30th International Colloquium on Automata, Languages and Programming
(ICALP’03), volume 2719 of Lecture Notes in Computer Science, pages
1038–1053. Springer-Verlag, 2003.

[dAFS04] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and Branching Metrics
for Quantitative Transition Systems. In 31st International Colloquium
on Automata, Languages and Programming (ICALP’04), volume 3142 of
Lecture Notes in Computer Science, pages 97–109. Springer-Verlag, 2004.

[dAFS09] L. de Alfaro, M. Faella, and M. Stoelinga. Linear and Branching Sys-
tem Metrics. IEEE Transactions on Software Engineering, 35(2):258–273,
2009.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface Automata. In 8th ESEC and
9th ACM SIGSOFT FSE, ESEC/FSE-9, pages 109–120. ACM, 2001.

[dAH05] L. de Alfaro and T. A. Henzinger. Interface-Based Design. In Engineer-
ing Theories of Software-intensive Systems, volume 195 of NATO Science
Series: Mathematics, Physics, and Chemistry, pages 83–104. Springer-
Verlag, 2005.

[dAHS02] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed Interfaces. In
2nd International Conference on Embedded Software (EMSOFT’02), vol-
ume 2491 of Lecture Notes in Computer Science, pages 108–122. Springer-
Verlag, 2002.

[dAM01] L. de Alfaro and R. Majumdar. Quantitative Solution of Omega-Regular
Games. In 33th Annual ACM Symposium on Theory of Computing
(STOC’01), pages 675–683. ACM, 2001.

[DDG+10] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk. En-
ergy and Mean-Payoff Games with Imperfect Information. In 24th Inter-
national Workshop on Computer Science Logic (CSL’10), volume 6247 of
Lecture Notes in Computer Science, pages 260–274. Springer-Verlag, 2010.

[DG07] M. Droste and P. Gastin. Weighted Automata and Weighted Logics. The-
oretical Computer Science, 380(1-2):69–86, 2007.

[DGJP04] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for
Labelled Markov Processes. Theoretical Computer Science, 318(3):323–
354, 2004.

153

Bibliography

[DKL+11] B. Delahaye, J.-P. Katoen, K. G. Larsen, A. Legay, M. L. Pedersen,
F. Sher, and A. Wasowski. Abstract Probabilistic Automata. In 12th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’11), volume 6538 of Lecture Notes in Computer
Science, pages 324–339. Springer-Verlag, 2011.

[DKV09] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Au-
tomata. Springer-Verlag, 1 edition, 2009.

[DLL+10] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed
I/O Automata: A Complete Specification Theory for Real-time Systems.
In 13th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC’10), pages 91–100. ACM, 2010.

[DLLW10] B. Delahaye, K. G. Larsen, A. Legay, and A. Wasowski. On Greatest Lower
Bound of Modal Transition Systems. Technical report, INRIA, 2010.

[DM10] M. Droste and I. Meinecke. Describing Average- and Longtime-Behavior
by Weighted MSO Logics. In 35th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS’10), volume 6281 of Lecture
Notes in Computer Science, pages 537–548. Springer-Verlag, 2010.

[DN09] V. Diekert and D. Nowotka, editors. 13th International Conference on De-
velopments in Language Theory (DLT’09), volume 5583 of Lecture Notes
in Computer Science. Springer-Verlag, 2009.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing Correctness Properties
of Parallel Programs Using Fixpoints. In 7th International Colloquium
on Automata, Languages and Programming (ICALP’80), volume 85 of
Lecture Notes in Computer Science, pages 169–181. Springer-Verlag, 1980.

[EH86] E. A. Emerson and J. Y. Halpern. ”Sometimes”and ”Not Never”Revisited:
On Branching versus Linear Time Temporal Logic. Journal of the ACM,
33:151–178, 1986.

[Eil74] S. Eilenberg. Automata, Languages, and Machines. Academic Press, Inc.,
1974.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional Strategies for Mean Payoff
Games. International Journal of Game Theory, 8(2):109–113, 1979.

[Ern05] J. Ernits. Memory Arbiter Synthesis and Verification for a Radar Memory
Interface Card. Nordic Journal of Computing, 12:68–88, 2005.

[Esp98] J. Esparza. Decidability and Complexity of Petri Net Problems — An
Introduction. In Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 374–428. Springer-Verlag, 1998.

154

Bibliography

[FJLS11] U. Fahrenberg, L. Juhl, K. G. Larsen, and J. Srba. Energy Games in
Multiweighted Automata. In 8th International Colloquium on Theoreti-
cal Aspects of Computing (ICTAC’11), volume 6916 of Lecture Notes in
Computer Science, pages 95–115. Springer-Verlag, 2011.

[FLT10] U. Fahrenberg, K. Larsen, and C. Thrane. A Quantitative Characteriza-
tion of Weighted Kripke Structures in Temporal Logic. Computing and
Informatics, 29(6+):1311–1324, 2010.

[FLT11] U. Fahrenberg, A. Legay, and C. Thrane. The Quantitative Linear-Time–
Branching-Time Spectrum. In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’11),
volume 13 of LIPIcs, pages 103–114. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2011.

[FP07] G. Feuillade and S. Pinchinat. Modal Specifications for the Control Theory
of Discrete Event Systems. Discrete Event Dynamic Systems, 17(2):211–
232, 2007.

[FS08] H. Fecher and H. Schmidt. Comparing Disjunctive Modal Transition Sys-
tems with an One-Selecting Variant. Journal of Logic and Algebraic Pro-
gramming, 77(1-2):20–39, 2008.

[FTL11] U. Fahrenberg, C. Thrane, and K. G. Larsen. Distances for Weighted Tran-
sition Systems: Games and Properties. In 9th Workshop on Quantitative
Aspects of Programming Languages (QAPL’11), volume 57 of EPTCS,
pages 134–147, 2011.

[FUB06] D. Fischbein, S. Uchitel, and V. Braberman. A Foundation for Be-
havioural Conformance in Software Product Line Architectures. In ISSTA
2006 Workshop on Role of Software Architecture for Testing and Analysis
(ROSATEA’06), pages 39–48. ACM, 2006.

[GC05] A. Gurfinkel and M. Chechik. How Thorough Is Thorough Enough? In
13th IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME’05), volume 3725
of Lecture Notes in Computer Science, pages 65–80. Springer-Verlag, 2005.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-Based Model
Checking Using Modal Transition Systems. In 12th International Con-
ference on Concurrency Theory (CONCUR’01), volume 2154 of Lecture
Notes in Computer Science, pages 426–440. Springer-Verlag, 2001.

[GLS08a] A. Gruler, M. Leucker, and K. D. Scheidemann. Calculating and Mod-
eling Common Parts of Software Product Lines. In 12th International
Conference on Software Product Lines (SPLC’08), pages 203–212. IEEE
Computer Society, 2008.

155

Bibliography

[GLS08b] A. Gruler, M. Leucker, and K. D. Scheidemann. Modeling and Model
Checking Software Product Lines. In 10th IFIP WG 6.1 International
Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’08), volume 5051 of Lecture Notes in Computer Science, pages
113–131. Springer-Verlag, 2008.

[Gor79] M. Gordon. The Denotational Description of Programming Languages.
Springer-Verlag, 1979.

[GP09] P. Godefroid and N. Piterman. LTL Generalized Model Checking Revis-
ited. In Jones and Müller-Olm [JMO09], pages 89–104.

[GS86] S. Graf and J. Sifakis. A Logic for the Specification and Proof of Regular
Controllable Processes of CCS. Acta Informatica, 23:507–527, 1986.

[HJS01] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal Transition Systems:
A Foundation for Three-Valued Program Analysis. In 10th European Sym-
posium on Progamming (ESOP’01), volume 2028 of Lecture Notes in Com-
puter Science, pages 155–169. Springer-Verlag, 2001.

[HL89] H. Hüttel and K. G. Larsen. The Use of Static Constructs in A Modal
Process Logic. In Symposium on Logical Foundations of Computer Science:
Logic at Botik ’89, volume 363 of Lecture Notes in Computer Science,
pages 163–180. Springer-Verlag, 1989.

[HLP01] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space-Craft
Controller Using SPIN. IEEE Transactions on Software Engineering,
27(8):749–765, 2001.

[HM85] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and
Concurrency. Journal of the ACM, 32(1):137–161, 1985.

[HMP05] T. A. Henzinger, R. Majumdar, and V. S. Prabhu. Quantifying Similari-
ties Between Timed Systems. In 3rd International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’05), volume 3829 of
Lecture Notes in Computer Science, pages 226–241. Springer-Verlag, 2005.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Com-
munications of the ACM, 12:576–580, 1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol89] S. Holmström. A Refinement Calculus for Specifications in Hennessy-
Milner Logic with Recursion. Formal Aspects of Computing, 1:242–272,
1989.

156

Bibliography

[HP85] D. Harel and A. Pnueli. On the Development of Reactive Systems. In
Logics and Models of Concurrent Systems, volume 13 of Nato Asi Series
F, pages 477–498. Springer-Verlag, 1985.

[HS06] T. A. Henzinger and J. Sifakis. The Embedded Systems Design Challenge.
In 14th International Symposium on Formal Methods (FM’06), volume
4085 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,
2006.

[HS07] T. A. Henzinger and J. Sifakis. The Discipline of Embedded Systems
Design. IEEE Computer, 40(10):32–40, 2007.

[JLS12] L. Juhl, K. G. Larsen, and J. Srba. Modal Transition Systems with Weight
Intervals. Journal of Logic and Algebraic Programming, 81(4):408–421,
2012.

[JMO09] N. D. Jones and M. Müller-Olm, editors. 10th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’09),
volume 5403 of Lecture Notes in Computer Science. Springer-Verlag, 2009.

[JRLD07] J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David. Guided Con-
troller Synthesis for Climate Controller Using UPPAAL TIGA. In 5th
International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS’07), volume 4763 of Lecture Notes in Computer Science,
pages 227–240. Springer-Verlag, 2007.

[JS90] C.-C. Jou and S. A. Smolka. Equivalences, Congruences, and Complete
Axiomatizations for Probabilistic Processes. In Baeten and Klop [BK90],
pages 367–383.

[Kel76] R. M. Keller. Formal Verification of Parallel Programs. Communications
of the ACM, 19:371–384, 1976.

[KKN09] J.-P. Katoen, D. Klink, and M. R. Neuhäußer. Compositional Abstrac-
tion for Stochastic Systems. In 7th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’09), volume 5813 of
Lecture Notes in Computer Science, pages 195–211. Springer-Verlag, 2009.

[KL07] O. Kupferman and Y. Lustig. Lattice Automata. In 8th International
Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’07), volume 4349 of Lecture Notes in Computer Science, pages
199–213. Springer-Verlag, 2007.

[Koz83] D. Kozen. Results on the Propositional mu-Calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

157

Bibliography

[KS88] S. Kosaraju and G. Sullivan. Detecting Cycles in Dynamic Graphs in Poly-
nomial Time. In 20th Annual ACM Symposium on Theory of Computing
(STOC’88), pages 398–406. ACM, 1988.

[KS90] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. Information and Computation, 86(1):43–
68, 1990.

[KS08] A. Kučera and O. Stražovský. On the Controller Synthesis for Finite-State
Markov Decision Processes. Fundamenta Informaticae, 82(1-2):141–153,
2008.

[Lar85] K. G. Larsen. A Context Dependent Equivalence between Processes. In
12th Colloquium on Automata, Languages and Programming (ICALP’85),
volume 194 of Lecture Notes in Computer Science, pages 373–382.
Springer-Verlag, 1985.

[Lar87] K. G. Larsen. A Context Dependent Equivalence Between Processes. The-
oretical Computer Science, 49:184–215, 1987.

[Lar89] K. G. Larsen. Modal Specifications. In Sifakis [Sif90], pages 232–246.

[LLM05] A. Lluch-Lafuente and U. Montanari. Quantitative µ-calculus and CTL de-
fined over constraint semirings. Theoretical Computer Science, 346(1):135–
160, 2005.

[LLW05] K. G. Larsen, U. Larsen, and A. Wasowski. Color-Blind Specifications
for Transformations of Reactive Synchronous Programs. In 8th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE’05), volume 3442 of Lecture Notes in Computer Science, pages
160–174. Springer-Verlag, 2005.

[LM87] K. G. Larsen and R. Milner. Verifying a Protocol Using Relativized Bisim-
ulation. In 14th International Colloquium on Automata, Languages and
Programming (ICALP’87), volume 267 of Lecture Notes in Computer Sci-
ence, pages 126–135. Springer-Verlag, 1987.

[LM92] K. G. Larsen and R. Milner. A Compositional Protocol Verification Using
Relativized Bisimulation. Information and Computation, 99(1):80–108,
1992.

[LMN05] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online Testing of Real-
time Systems Using UPPAAL. In 4th International Workshop on Formal
Approaches to Software Testing (FATES’04), Revised Selected Papers, vol-
ume 3395 of Lecture Notes in Computer Science, pages 79–94. Springer-
Verlag, 2005.

158

Bibliography

[LNW07a] K. G. Larsen, U. Nyman, and A. Wasowski. On Modal Refinement and
Consistency. In 18th International Conference on Concurrency Theory
(CONCUR’07), volume 4703 of Lecture Notes in Computer Science, pages
105–119. Springer-Verlag, 2007.

[LNW07b] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O Automata for
Interface and Product Line Theories. In Programming Languages and
Systems, 16th European Symposium on Programming (ESOP’07), volume
4421 of Lecture Notes in Computer Science, pages 64–79. Springer-Verlag,
2007.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Pro-
tocol Using FDR. Software - Concepts and Tools, 17(3):93–102, 1996.

[LT88a] K. G. Larsen and B. Thomsen. A Modal Process Logic. In 3rd An-
nual Symposium on Logic in Computer Science (LICS’88), pages 203–210.
IEEE Computer Society, 1988.

[LT88b] K. G. Larsen and B. Thomsen. Compositional Proofs by Partial Speci-
fication of Processes. In Mathematical Foundations of Computer Science
(MFCS’88), volume 324 of Lecture Notes in Computer Science, pages 414–
423. Springer-Verlag, 1988.

[LX90] K. G. Larsen and L. Xinxin. Equation Solving Using Modal Transition
Systems. In 5th Annual IEEE Symposium on Logic in Computer Science
(LICS’90), pages 108–117. IEEE Computer Society, 1990.

[LX91] K. G. Larsen and L. Xinxin. Compositionality Through an Operational
Semantics of Contexts. Journal of Logic and Computation, 1(6):761–795,
1991.

[May81] E. Mayr. An Algorithm for the General Petri Net Reachability Problem.
In 13th Annual ACM Symposium on Theory of Computing (STOC’81),
pages 238–246. ACM, 1981.

[Mei09] I. Meinecke. A Weighted µ-Calculus on Words. In Diekert and Nowotka
[DN09], pages 384–395.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[Min67] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

159

Bibliography

[MKB08] R. Meolic, T. Kapus, and Z. Brezocnik. ACTLW - An Action-Based
Computation Tree Logic with Unless Operator. Information Sciences,
178(6):1542–1557, 2008.

[MP73] J. Maynard Smith and G. R. Price. The Logic of Animal Conflict. Nature,
246(5427):15–18, 1973.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

[MS07] P. B. Miltersen and T. B. Sørensen. A Near-Optimal Strategy for a Heads-
Up No-Limit Texas Hold’em Poker Tournament. In 6th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS’07),
pages 191:1–191:8. IFAAMAS, 2007.

[Mye79] G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., 1979.

[NNN08] S. Nanz, F. Nielson, and H. R. Nielson. Modal Abstractions of Con-
current Behaviour. In 15th International Symposium on Static Analysis
(SAS’08), volume 5079 of Lecture Notes in Computer Science, pages 159–
173. Springer-Verlag, 2008.

[NV90] R. D. Nicola and F. W. Vaandrager. Action versus State based Logics for
Transition Systems. In Semantics of Systems of Concurrent Processes, vol-
ume 469 of Lecture Notes in Computer Science, pages 407–419. Springer-
Verlag, 1990.

[Par71] V. Pareto. Manual of Political Economy. Augustus M. Kelley, 1971.
Translated by Ann S. Schwier.

[Par81] D. M. R. Park. Concurrency and Automata on Infinite Sequences. In 5th
GI-Conference on Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer-Verlag, 1981.

[Pel01] D. A. Peled. Software Reliability Methods. Springer New York, Inc., 2001.

[Plo81] G. Plotkin. A Structural Approach to Operational Semantics. FN 19,
DAIMI, 1981. Computer Science Department, Aarhus University, Den-
mark.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In 18th Annual Sympo-
sium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Computer Society, 1977.

[PS00] B. C. Pierce and D. Sangiorgi. Behavioral Equivalence in the Polymorphic
Pi-Calculus. Journal of the ACM, 47:531–584, 2000.

160

Bibliography

[PT87] R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM
Journal of Computing, 16(6):973–989, 1987.

[QS82] J.-P. Queille and J. Sifakis. Specification and Verification of Concurrent
Systems in CESAR. In 5th Colloquium on International Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer-Verlag, 1982.

[Rac08] J.-B. Raclet. Residual for Component Specifications. Electronic Notes in
Theoretical Computer Science, 215:93–110, 2008.

[RBB+09] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone.
Why Are Modalities Good for Interface Theories? In 9th International
Conference on Application of Concurrency to System Design (ACSD’09),
pages 119–127. IEEE Computer Society, 2009.

[SAH+00] J. Staunstrup, H. R. Andersen, H. Hulgaard, J. Lind-Nielsen, K. G. Larsen,
G. Behrmann, K. Kristoffersen, A. Skou, H. Leerberg, and N. B. Theil-
gaard. Practical Verification of Embedded Software. IEEE Computer,
33:68–75, 2000.

[Sak09] J. Sakarovitch. Elements of Automata Theory. Cambridge University
Press, 2009.

[Sch61] M. P. Schützenberger. On the Definition of a Family of Automata. Infor-
mation and Control, 4(2-3):245–270, 1961.

[Sif90] J. Sifakis, editor. International Workshop on Automatic Verification Meth-
ods for Finite State Systems 1989, volume 407 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1990.

[SPE10] SPEEDS, 2006–2010. http://www.speeds.eu.com.

[Sti87] C. Stirling. Modal Logics for Communicating Systems. Theoretical Com-
puter Science, 49:311–347, 1987.

[Sto77] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Progam-
ming Language Theory. The MIT Press, 1977.

[SW89] C. Stirling and D. Walker. CCS, Liveness, and Local Model Checking in
the Linear Time Mu-Calculus. In Sifakis [Sif90], pages 166–178.

[TFL10] C. Thrane, U. Fahrenberg, and K. G. Larsen. Quantitative Analysis of
Weighted Transition Systems. Journal of Logic and Algebraic Program-
ming, 79(7):689–703, 2010.

[Thr11] C. Thrane. Models and Analysis for Reactive Systems. PhD thesis, Aalborg
University, 2011.

161

Bibliography

[TWC01] J. Tretmans, K. Wijbrans, and M. R. V. Chaudron. Software Engineering
with Formal Methods: The Development of a Storm Surge Barrier Control
System Revisiting Seven Myths of Formal Methods. Formal Methods in
System Design, 19(2):195–215, 2001.

[UC04] S. Uchitel and M. Chechik. Merging Partial Behavioural Models. In 12th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineerings (FSE’04), pages 43–52. ACM, 2004.

[vG90] R. J. van Glabbeek. The Linear Time-Branching Time Spectrum (Ex-
tended Abstract). In Baeten and Klop [BK90], pages 278–297.

[VJ84] R. Valk and M. Jantzen. The residue of vector sets with applications to de-
cidability problems in Petri nets. In Advances in Petri Nets 1984, volume
188 of Lecture Notes in Computer Science, pages 234–258. Springer-Verlag,
1984.

[vNM44] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[WGC09] O. Wei, A. Gurfinkel, and M. Chechik. Mixed Transition Systems Revis-
ited. In Jones and Müller-Olm [JMO09], pages 349–365.

[Yen92] H. Yen. A Unified Approach for Deciding the Existence of Certain Petri
Net Paths. Information and Computation, 96(1):119–137, 1992.

[ZP96] U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on
Graphs. Theoretical Computer Science, 158(1&2):343–359, 1996.

162

	Introduction
	Motivation
	Model Checking
	Resources
	Synthesis
	Formal Specification
	Research Objectives
	How to Model Resources
	Modelling Phase
	Specification Phase
	Multiple Quantities
	Adapting to the Challenges of Embedded Systems
	Games
	Modal Transition Systems
	Metrics
	Thesis Summary
	Papers
	Energy Games in Multiweighted Automata
	Introduction
	Multiweighted Automata and Games
	Relationship to Petri Nets
	Reductions among Energy Games
	Summary of Complexity Results
	Parameterized Existential Problems
	Extension to Timed Automata
	Conclusion and Future Work
	Optimal Bounds for Multiweighted and Parametrised Energy Games
	Introduction
	Multiweighted Energy Games
	Weak Upper Bound
	Strict Upper Bound
	Parametrised Transitions
	Conclusion and Future Work
	Modal Transition Systems with Weight Intervals
	Introduction
	Definitions
	Largest Common Refinement
	Logical Characterisation
	Conclusion and Future Work
	Extending Modal Transition Systems with Structured Labels
	Introduction
	Label-Structured Modal Transition Systems
	Specification Theory
	Logical Characterization
	Conclusion

	A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Automata
	Introduction
	Multiweighted Modal Automata
	Games on Multiweighted Modal Automata and Logic L
	Decidability and Complexity of the Logic L
	Conclusion

	Bibliography

