Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Quantities in Games and Modal Transition Systems

Juhl, Line

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Juhl, L. (2013). Quantities in Games and Modal Transition Systems. Department of Computer Science, Aalborg
University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://vbn.aau.dk/en/publications/020c8aad-60b1-407c-8e36-c9d6fe1e098e

PhD Dissertation

Quantities in Games and Modal
Transition Systems

Line Juhl

Aalborg University
Department of Computer Science

Abstract

As embedded software becomes an increasing part of our daily lives, modelling and
verification of embedded systems is highly relevant. Common for many embedded soft-
ware systems is the restricted use of and access to resources. Thus modelling and veri-
fication of embedded systems must not only rely on functional requirements, but also
extra-functional requirements such as fuel consumption or bandwidth usage. This the-
sis presents formalisms for modelling such quantitative systems and focuses on both
the inherent reactive characteristic of embedded systems, implied by the surrounding
environment, as well as on the need for compositional reasoning.

The thesis consists of two parts. The first part is an introduction that motivates
the need for formal methods, and model checking in particular, when developing re-
active systems with quantitative resource constraints. Then the formalisms for weighted
reasoning are defined, and the challenges of embedded systems are discussed in order
to identify useful methods and theories for dealing with the quantitative aspects of
reactive systems. This includes game theory for modelling the reactive aspects and
modal transition system as the basis for a compositional specification theory allowing a
stepwise refinement.

The second part of the thesis contains five papers. The first two papers are on the
recently emerged notion of energy games, where we study the existence of infinite runs
in multiweighed games subject to boundary constraints on the accumulated weights.
The boundary constraints considered are both lower and upper bounds. We give tight
complexity bounds for deciding the problem in a number of different settings and show
undecidability in two other cases. In the case of unknown upper bounds we provide
a method for constructing the exact set of upper bounds yielding such infinite runs.
The remaining three papers study and define weighted modal transition systems. We
present an algorithm running in polynomial space for finding the most general common
refinement for deterministic specifications and a sound quantitative extension of CTL
reasoning on weighted modal transition systems. Two extensions to a multiweighed set-
ting are given in the two succeeding papers. The first extension allows for refinable labels
and we prove that the key notions of modal and thorough refinement and determinisa-
tion behave as expected as well as the operators for structural and logical composition
and the quotient operator. The second extension presents a logic for reasoning on the
accumulated weight along the runs. The semantics of the logic is game-based and is
thereby proven to be both sound and complete. The logic is proven undecidable in
general, however useful decidable fragments are identified.

1ii

Dansk sammenfatning

Da brugen af indlejret software i vores dagligdag bliver mere og mere udbredt, er model-
lering og verifikation af indlejrede softwaresystemer saerdeles relevant. Feelles for mange
indlejrede systemer er den begraensede brug af og adgang til ressourcer. Derfor ma
modellering og verifikation af indlejrede systemer ikke kun bero pa rent funktionelle
egenskaber, men ogsa kvantitative egenskaber sa som energi- eller bandbreddeforbrug.
Denne afhandling praesenterer formalismer til modellering af sadanne kvantitative syste-
mer og fokuserer pa bade den reaktive adfeerd ved indlejrede systemer, savel som behovet
for at analysere sammensatte systemer.

Afhandlingen bestar af to dele. Den forste del er en introduktion, der begrunder
brugen af formelle metoder og model checking i szerdeleshed, nar der udvikles reaktive
systemer, hvor brugen af kvantitative ressourcer restringeres. Efterfolgende defineres
formalismer, som er brugbare til analyse af kvantitative systemer, og egenskaber ved
indlejrede systemer identificeres, saledes at brugbare metoder og teorier til handtering
af de kvantitative aspekter ved reaktive systemer kan identificeres. Dette inkluderer
spilteori til at modellere de reaktive aspekter samt modale transitionssystemer som en
basis for en specifikationsteori for sammensatte systemer, der tillader trinvis forfining.

Anden del af athandlingen indeholder fem artikler. De fgrste to artikler omhandler en
nyligt opstaet type af spil kaldet ’energispil’, hvor vi behandler eksistensen af uendelige
stier i multiveegtede spil, hvor den samlede akkumulerede vaegt langs stien er underlagt
gvre og nedre graenser. Vi giver matchende gvre og nedre graenser for kompleksiteten
af dette afggrbarhedsproblem i en rackke forskellige varianter af energispil samt viser
uafggrbarhed i yderligere to tilfeelde. 1 det tilfeelde, at den gvre graense er ukendt,
giver vi en metode til at konstruere den praecise meengde af gvre greenser, der giver
anledning til eksistensen af sadanne uendelige stier med begraenset ressourceforbrug. De
resterende tre artikler definerer og analyserer veegtede modale transitionssystemer. Vi
praesenterer en algoritme, der bruger polynomiel plads, som finder den mest generelle
feelles forfining af en raekke deterministiske systemer og en sund kvantitativ udvidelse
af logikken CTL, der behandler vaegtede modale transitionssystemer. To udvidelser
til en multiveegtet udgave gives i de to efterfglgende artikler. Den forste udvidelse
tillader, at labels forfines, og vi viser, at de vigtige begreber modal og semantisk forfining
opforer sig som ventet. Det samme er tilfaeldet for operatorerne for struktural og logisk
sammensaetning samt kvotientoperatoren. Den anden udvidelse praesenterer en logik til
analyse af den akkumulerede vaegt langs stierne. Semantikken for denne logik baseres pa
spilteori, og vi beviser derved, at den er bade sund og fuldsteendig. Yderligere bevises
det, at logikken er uafggrbar i det generelle tilfeelde, og der identificeres anvendelige dele
af logikken, der er afggrbare.

Acknowledgements

My sincere gratitude goes to my supervisor, Kim G. Larsen. Thank you for always being
supportive and positive and for your inexhaustible source of good ideas and helpful com-
ments. I am grateful that you kept believing that it is possible to turn a mathematician
into a computer scientist.

An equally big thank you goes to my co-supervisor, Jifi Srba, who was so kind to
take me under his wing as a PhD student. Your immense help regarding every aspect
of this thesis, from how to structure an introduction to how to keep a deadline has been
invaluable.

[would also like to thank my office mates, Mikkel Larsen Pedersen and Claus Thrane.
Thank you for making work a joy (almost) every day and for answering all my naive
questions.

During my work I had the pleasure of spending two months in Bruxelles at Université
Libre de Bruxelles. I would like to thank Jean-Francois Raskin for being a great host
and for providing me with new ideas and insight. And a huge thank you to my office
mate at ULB, Mahsa Shirmohammadi, who welcomed me with such open arms that it
brought our two directions of research together.

Without my additional co-authors, Sebastian S. Bauer, Axel Legay and Uli Fahren-
berg, the papers included in this thesis would not exist, so I am sending a big thank you
to them as well.

Last I would like to thank my mum for her endless support, my dad for teaching me
to be just like him, and my little brother for loving me.

Line Juhl
February 2012

vii

A.

Contents

Introduction

. Motivation

1.1. Model Checking
1.2 Resources e
1.3. Synthesis.
1.4. Formal Specification oo
1.5. Research Objectives.

How to Model Resources

2.1. Modelling Phase
2.1.1. Transition Systems o L
2.1.2. Composing Systemso
2.1.3. Modelling Resources,
2.1.4. Composing Weighted Systems

2.2. Specification Phase
2.2.1. Logical Formalisms
2.2.2. Quantitative Requirements

2.3. Multiple Quantities

Adapting to the Challenges of Embedded Systems

3.1, Gameso e

3.2. Modal Transition Systems L.
3.2.1. Refinable Sets of Labels
3.2.2. Logical Characterisation
3.2.3. Completeness Using Games

3.3. Metrics oL

Thesis Summary

Papers

Energy Games in Multiweighted Automata
1. Imtroduction
2. Multiweighted Automata and Games

1X

Contents

3. Relationship to Petri Nets 49
4. Reductions among Energy Games 51
5. Summary of Complexity Results, 56
6. Parameterized Existential Problems 58
7. Extension to Timed Automata 60
8. Conclusion and Future Work 0oL 63
B. Optimal Bounds for Multiweighted and Parametrised Energy Games 64
1 Introduction 65
2. Multiweighted Energy Games 67
3. Weak Upper Bound 68
4 Strict Upper Bound oo 70
5 Parametrised Transitions 72
6. Conclusion and Future Work oL 73
C. Modal Transition Systems with Weight Intervals 75
1. Introduction 76
2. Definitions 79
3. Largest Common Refinement 83
4. Logical Characterisation, 88
5. Conclusion and Future Work 95
D. Extending Modal Transition Systems with Structured Labels 97
1. Introduction 98
2. Label-Structured Modal Transition Systems 101
3. Specification Theory 113
4. Logical Characterization, 125
5. Conclusion 129
E. A Logic for Accumulated-Weight Reasoning on Multiweighted Modal Au-
tomata 130
1. Introduction 131
2. Multiweighted Modal Automata 132
3. Games on Multiweighted Modal Automata and Logic £ 134
4. Decidability and Complexity of the Logic £ 138
5. Conclusion 148
Bibliography 148

Part |I.

Introduction

Motivation

For decades software systems have been synonymous with desktop computers or, in
the later years, laptops. However, nowadays we are surrounded by software systems
everywhere in life. This be in our cars, our phones or our TVs at home. Such systems
are known as embedded systems, and are special-purpose systems built to handle a specific
task for the electronics that it is part of. Due to the very nature of embedded systems,
they often react to stimuli from the surrounding environment and are usually subject to a
hardware platform with limited resources. Embedded systems are thus also characterised
as engineering artifacts involving computations subject to physical constraints [HS06].
As any other piece of software, embedded systems can be subject to errors. Such errors
are of course highly undesirable in safety-critical systems such as aeroplanes or cars, but
also for economical reasons surely no company is interested in errors in their products if
they can be avoided at a limited cost. Since we are increasingly dependent on embedded
systems (both safety-critical and non-safety-critical) in our daily lives, it is of uttermost
importance that the number of errors appearing in such systems are kept to a minimum.
Furthermore the systems developed nowadays are in general significantly larger and more
complex than before, thus making it increasingly hard and time-consuming to develop
error-free software. Reducing the time spend on developing a software systems without
lowering the quality of the product is therefore of huge interest to any company.
Ensuring the correctness of a piece of software is a highly non-trivial task. One
way is to use formal methods, which use mathematically-based techniques to identify
or exclude errors. Formal methods allow a design and its desirable requirements to be
described in a unambiguous manner such that one by mathematical reasoning can prove
or disprove the correctness of the model with respect to the expressed requirements—
so-called formal verification. Given the appropriate tool support, this approach can
ensure a more reliable system. Furthermore, a formal description can help designers,
programmers and end users to avoid misunderstandings, as they will have a common
agreement, on the behaviour of the system. Formal methods can be deployed at many

1.1. Model Checking

stages in the design process and errors can be found early in the process, reducing the
cost of correction greatly [Pel01, BK08, AVARBT01].

Formal methods are increasingly used in the software industry to verify software sys-
tems [TWCO1, HLPO1], yet many companies still avoid formal methods due to several
different factors. Firstly, formal methods appear time and resource consuming, which
often conflicts with tight deadlines and budgets. The fact that formal methods in the
long run may save both time and money seems to be neglected. Secondly, the learning
curve for some formal methods is somewhat steep and as a consequence might discourage
potential new users.

1.1. Model Checking

Over the last 30 years an entire zoo of formal methods for verifying software systems
have been developed, each with different strengths and weaknesses. The contributions
of this thesis are within the formal verification method called model checking, which has
been successfully utilised for several industrial cases [CAP 798, SAH 00, Low96, Ern05,
JRLDO7]. Model checking is a verification technique that given a finite mathematical
model of a system, attempts to logically prove that the model satisfies the properties
given by some formal specification. The specification must also be given within some
suitable mathematical framework, most often modal and temporal logics. The initial
work on model checking was done independently in the early 80s by Clarke and Emerson
[EC80, CE82] and Queille and Sifakis [()S82]. Clarke, Emerson and Sifakis were all
awarded the Turing Award in 2007 for their pioneering work on model checking.

In order to perform the actual verification of the model, algorithms automating the
verification process are useful. Such algorithms will often make an exhaustive search of
the entire model if necessary in order to verify a given property. Unfortunately, model
checking suffers from the state space explosion problem, entailing that the number of
states needed in the model grows exponentially with the number of submodels of the
model. This increased computational complexity makes in some cases model checking
infeasible. However, the extensive research in the area over the years has contributed
to the development of faster algorithms and more efficient data structures for exploring
and representing state spaces. Combined with new and faster computers, model checking
is nowadays not only restricted to toy examples, but can actually be applied to large-
scale industrial designs and is therefore widely accepted as a useful verification method
today [BKO08]. The strengths of model checking lie in the sound mathematical framework
and the exhaustive (and automatic) search through the entire model. This approach
logically proves whether or not the model satisfies a given property and as a consequence
the developers can trust the result of the verification—given that the tool analysing
the model is flawless and that the model and the specification reflects the intended
design and requirements. The model checking approach is contrary to the well-known
(and widely used in industry) validation techniques of testing or simulation, where the
complete model may not be explored, thus not necessarily revealing an error even though
searching for it [Mye79]. An additional strength of model checking is that a negative

1. Motivation

G
System —~ Modelling | Model Yes
- S 7
Model
checking
.
No +
Requirements > Formalising > Specification debugging
information

Figure 1.1.: Model checking

verification result can provide debugging information, helping to locate the error.

In summary model checking can be divided into the following three phases; modelling,
specification, and verification phase. Figure 1.1 depicts the three phases in connection.
Firstly, the concrete system in mind is modelled using some suitable formalism. Secondly,
the requirements that the system should adhere to are formalised in some mathematical
specification language. The model and the specification are then fed to the model checker
that answers either yes, the model satisfies the specification, or no, the model does not.
In case of a no, some debugging information can be provided, helping the user modify the
system or the specification in order to achieve a positive result. Being able to precisely
model the design and specify the properties in mind is a crucial point to model checking,
since imprecise modelling can lead to imprecise results. This is also one of the drawbacks
of model-based verification; surely the verification is only as good as the model of the
system, since we do not verify the code itself, but merely a model of the code. It is
therefore important that we develop formalisms which are capable of expressing all the
aspects of a given design that are needed for a correct verification process. Another
drawback is that only the stated properties bare verified. This gives rise to unexpected
errors that remain undiscovered. Thus also being able to formulate the right properties
is crucial to ensure correctness.

Due to the increasing use of embedded system (and thus also the demand for cor-
rectness of such), we seek to identify some of the challenges they bring to the different
phases of model checking. The hope is to enhance model checking and make it more
suitable for verification of embedded systems. These challenges include explicit handling
of both the quantitative aspects and the inherent reactive nature of embedded systems
as we will discuss in the following sections.

1.2. Resources

Correctness of software systems can be phrased in many ways. For a piece of software
running on a laptop, we might want to establish correctness as a certain functionality
that the program must posses. This could be the absence of a deadlock or that some
request-response requirement is always fulfilled. Such requirements address the services
ensured for the end user and are called functional requirements.

For modern embedded systems, such functional properties might not be sufficient

1.2. Resources

to adequately express the requirements of the system defined by the customer. Since
embedded systems are highly dependent on their actual hardware platform, we need
to construct properties dealing with the limited resources available for certain systems.
For instance the specification of an airbag for a car should not only require that the
airbag is inflated in case of an accident, but also insist that this behaviour is executed
within some strict time delay following the accident. An environmentally friendly coffee
machine might have the requirement that all cups of coffee should be served with some
maximum consumption of energy. These properties addressing the quality of the services
and involving the resources available on the execution platform are also known as extra-
functional requirements [HS06].

The resources of a system may be divided into boolean or quantitative resources. A
boolean resource could be a meeting room at a university or a designated part of the
memory on a computer. These resources are characterised as resources that a system
either holds or does not hold. In case the system (or process) holds the resource, no
other system can hold it simultaneously. Semaphores are often used in programming
when dealing with boolean resources. A quantitative resource is for instance energy,
bandwidth, time, volume or temperature. When obtaining these resources we use a nu-
merical value to measure the amount, as we always obtain some quantity of the resource.
The use of a such resource is also independent of the use of the same resource by other
systems. This thesis will solely concentrate on quantitative resources, and thus in the
remaining thesis a resource always refers to a quantitative resource.

The need for extra-functional requirements and therefore also explicit handling of
quantitative resources has been around for many years and as a result much work has
been done in this area already. Both formalisms for implementations and specifications
have been equipped with quantitative information. This includes both logics, process
algebra and graphical formalisms. We will present examples of such formalisms in Chap-
ter 2. Often an (mathematically) abstract approach is chosen when modelling quantities,
since they then can be applied to a broader range of problems. Still, a too general model
may also be useless for practical purposes due to its opaqueness and possible computa-
tional limitations.

An even more general (but highly relevant) approach is to consider multiple quantities
in the same model or specification. In real life it is usually not the case that an embedded
system only reacts to precisely one quantitative stimuli. Consider an automatic robot
built for an expedition to Mars. Such a vehicle will not only have to reason about its
own power supply, but likely also temperature, pressure, speed, etc. Moreover the robot
may enter a situation where a trade-off between these monitored variables is necessary—
should I keep the power consumption low or should I move at a higher speed in order to
survey more ground in less time? As evident, allowing multiple quantitative resources
introduces new considerations and new properties to be explored.

Another feature of many embedded systems compared to traditional software systems
running on desktop computers is their non-terminating nature. The majority of tra-
ditional systems perform some service once and then terminate, while this approach is
unsuitable for many embedded system. A traffic light or an elevator (or even an operat-
ing system) must keep functioning “forever” and have no termination criteria. The need

1. Motivation

for quantitative reasoning for such infinite behaviour is thus highly relevant.

1.3. Synthesis

As described previously, a characteristic of many systems nowadays is their reactive
nature. Systems are usually subject to some sort of communication with either other
systems, the environment or a user. A reactive system is a system that computes by
reacting to stimuli from the surrounding environment [HP85]. Many embedded systems
are reactive, since many read the value of some sensor (e.g. temperature, velocity) and
then conduct some computations depending on the concrete value and take actions by
setting actuators. Seen from the system’s point of view, some actions are controllable
by the system while the ones performed by the environment are uncontrollable. This
could for instance be the case for a conveyor belt, as it is in charge of adjusting its own
speed according to the uncontrollable flow of items put onto the belt. Another example
would be a thermostat adjusting the temperature. Here the thermostat is not in control
of environmental changes that effect the temperature, but can adjust the thermostat
based on the readings of the current temperature.

As a developer of such a reactive system, it is often useful to investigate whether
your system can behave in such a way that no matter how the environment behaves,
some requirement is still satisfied. In the positive case one is interested in constructing
a controller doing the actual task of responding to the environment in a suitable way.
Such a controller cannot be constructed using model checking, as this only yields ’yes’
information in the positive case. The task of constructing a controller reacting with
the environment in a satisfactory way is called synthesis. An overview of the tasks of
synthesis can be seen in Figure 1.2. Synthesis is somewhat similar to model checking, as
we both need a specification and a model of the system as input. However, the system is
given as two subsystems. One system represents the uncontrollable environment while
the other represents the controllable system interacting with the environment. The
outcome of the synthesis is a concrete strategy in both cases. In the positive case the
strategy will provide the user with information on how to perform the controllable actions
in order to achieve the required property. In the negative case, the strategy will provide
information on how the environment can perform the uncontrollable cases to prevent
that the requirement is satisfied.

When dealing with systems having both controllable and uncontrollable actions, the
mathematical concept of game theory is often used when creating a model of the system.
In general, game theory is used when describing situations where two or more individual
agents (or players) each make a series of decisions. An outcome of the game for each
player is determined on the basis of all the decisions made by the players. Each player is
interested in maximising his own outcome, and he therefore seeks to make his decisions
in a way that makes his outcome best possible, no matter the decisions of the opponents.
As the description indicates, the game theoretic framework has a long list of applications,
ranging from “simple” card games such as poker [MS07] to complex economics [vNM44]
and biology [MP73].

1.4. Formal Specification

.)
- Modelling | Model strategy
t
. A foruser
Synthesis
'a \] NO +

Requirements |»{ Formalising [+ Specification strategy for
environment

Figure 1.2.: Synthesis

1.4. Formal Specification

We now turn to the specification phase of model checking. In order to express the
requirements that the system should satisfy, a formalism for doing so is required. Below
we discuss what features a suitable specification formalism should encompass.

The increasing complexity in embedded software is due to both an increasing size of
the systems, but also a more interactive nature of nowadays systems. Such systems may
for sure also react with each other, thus a large system may be described by a number
of smaller reactive systems, increasing the complexity of the entire system considerably.

This growing complexity entails that it is in practice very hard to reason about the
correctness of such a system, no matter the method. In order to accommodate this prob-
lem, large software systems are divided into smaller and more transparent components
(as described using reactive systems above), which are designed by independent teams.
This approach may at first glance further complicate the verification process, since not
only must each component be correct, the components must also interact with each other
in the correct way. By defining an interface for each component that describes how the
component should react to the outside world, the interplay between components can
be ensured. The job of the individual developer teams is to design and implement a
specific component such that it complies with a given interface. In the view of formal
methods, these interfaces can be seen as specifications, while the specific components
can be seen as the concrete model or the implementation. Thus we may reason about
systems on a more abstract level by letting a specification act as an abstraction of a set
of implementations. It is for these reasons natural to develop formalisms for reasoning
at the specification level that allow independent reasoning on each component such that
a simplified design can be achieved through compositional reasoning.

Any such reasonable specification theory should be equipped with both a satisfaction
and a refinement relation to compare an implementation with a specification and to
compare two specifications, respectively. The last relation allows for stepwise refinement
such that a gradual refinement process is possible. In this way we may start out with
a general specification and by a series of refinements restrict the specification further
before finally ending up with a concrete implementation. Furthermore operators for
logical and structural composition of systems should be present. Logical composition
is useful when searching for a common implementation given several specifications that

1. Motivation

must be fulfilled. Structural (or parallel) composition is needed due to the inherently
parallel nature of reactive systems. The dual to structural composition, the quotient
operator, is also an important ingredient. This operator constructs a sub-specification
given an overall specification and another sub-specification refining a part of the overall
specification.

Usually two approaches can be taken when constructing a specification formalism.
A logical and a behavioural one. The logical approach entails that the specification is
given using some logic and the model checking is done by investigating the denotational
semantics of the logic. Appropriate logics will be mentioned in Section 2.2.1. Logics
are very useful when reasoning on the logical composition of specifications and can also
provide stepwise refinement along with the usual notion of a model satisfying a specifi-
cation given by a logical formula. However, logics are not suitable when addressing the
structural composition of systems, as the structural composition of two logical formulae
is so far not so well-understood [GS86, Hol89, LX91, ASW94].

Similarly, a behavioural approach can also be taken to express the specification using
a formalism similar to the one used to model the system (the implementation). The
verification procedure is then done by comparing the behaviour of the two systems using
for instance equivalence relations or preorders. Formalisms for this approach could be
the graphical formalism of transition systems [Kel76] or the one of process algebras,
e.g. Hoare’s CSP [Hoa85], Milner’s CCS [Mil80] or ACP by Bergstra and Klop [BK84].
Process algebras are suitable for parallel composition, but when considering the logical
composition, process algebras fall short. The constructed logical composition will either
be empty or be bisimilar to both of the components. This operator is thus not of much
use when studying specifications as process algebras.

Another formalism accommodating the behavioural approach is the formalism of modal
transition systems (MTS) formulated by Larsen and Thomsen in [LT88a]. This formal-
ism is capable of specifying optional behaviour, making the formalism “loose”, as it can
specify several non-bisimilar implementations. A modal transition system therefore gives
rise to a set of (non-bisimilar) implementations in the same way as a logical formula is
satisfied by a number of transition systems. This formalism both ensures compositional
reasoning and stepwise refinement, being two important features when addressing em-
bedded systems.

1.5. Research Objectives

The preceding sections have argued why errors in embedded software are highly unde-
sirable and why verification through formal model-based methods is a recommendable
approach in order to keep the number of errors and the time spend on finding them to
a minimum.

The aim of this work is to further strengthen the model checking framework available
for embedded system by tailoring the formalisms to the challenges of embedded systems.
In the above it has been argued that models and specifications reasoning on quantities are
needed when addressing such systems. Moreover, games and component-based specifica-

1.5. Research Objectives

tion theories should be utilised in order to fully capture the reactive nature of nowadays
computer systems. This work intends to enhance the model-based theory of embedded
systems to incorporate quantitative aspects.

This will be done by considering the following sub-questions, which can be grouped
under three general headlines.
1. Quantitative resources and specification formalisms

i) How can quantities be modelled using transition systems, logics and modal tran-
sition systems?

ii) What does a logic that reasons on quantitative modal transition systems look
like?
2. Quantitative resources and games

iii) What can be said about the use of limited resources when assuming an infinite
behaviour in games?

iv) Can game theory be applied to logics for modal transition systems?

3. Multiple resources

v) What is the computational cost of the above problems when assuming multiple
resources?

vi) How to identify the optimal usage of multiple resources when assuming an infinite
behaviour?

How to Model R rces

As advocated in the previous chapter, many systems, especially embedded systems, are
highly resource dependent. Therefore we are interested in extending model checking for
asking and verifying properties that reason on resources.

This section proposes a suitable way to incorporate quantities into both the model and
the specification. When choosing a model for modelling a hardware or software system,
it is important that the chosen model has the right level of abstraction. The model must
capture all details necessary to check the property in mind, but on the other hand not
capture features of the system which are unnecessary for the property.

The choice of modelling formalism is thus of great importance. The same applies
to the specification formalism, which should of course be able to state the property in
mind—in our case properties related to the resource constraints or requirements of the
system.

We start by adding quantities to the modelling formalism of transition systems and
then move on to the question of quantitative properties. Finally we shall address the
notion of multiple quantitative aspects.

2.1. Modelling Phase

In the following we present the well-known formalism of transition systems and examine
the quantitative aspects that we seek to incorporate in order to obtain a simple model
for quantitative systems.

2.1.1. Transition Systems

One of the most used modelling formalisms for model checking is the one of transition
systems. The formalism was first employed for verification by Keller in [[Xel76] and later
by Plotkin for structural operational semantics in [Plo81]. A transition system describes

10

2.1. Modelling Phase

refuel ‘
e‘ unload

—>

boulder gravel

Figure 2.1.: An excavator modelled as a transition system

a system as consisting of a number of states, each state being a snapshot of the system
at a given time. The behaviour of the system is modelled using transitions, which relate
pairs of states. A transition can also be seen as some form of “handshake” with the
given system and its environment. The environment may be another (or several other)
system(s) or an external user. It is common to decorate transitions with labels to denote
the type of behaviour that causes the state change, making the model more descriptive.

Definition 1 (Transition system). A transition system is a tuple T' = (S, L, so, —),
where S is a set of states, L is a set of labels, sy € S is the start state and — C
S x L x S is a transition relation.

Thus a transition system is essentially a directed graph with some information assigned
to each edge and a designated initial state. The above definition may also be referred to
as a labelled transition system. For convenience we write s — ¢ if (s, a,t) €—.

An ezecution (or run) m of a transition system is a series of states and transitions
starting with the initial state, such that T = s; —% §; —> sy —> A run can
be either finite or infinite and denotes one possible outcome when executing the actual
system. A maximal run is either infinite or a finite run that ends in a state with no
outgoing transitions. We denote the set of maximal runs starting from sy as runs(sg).

Example 2. As an example of a transition system, consult Figure 2.1. The transition
system models an excavator. The start state s is indicated by the arrow with no
origin. The excavator may here choose to dig, refuel its tank or unload its dipper.

If the machine digs, it can choose between picking up gravel or a boulder. A

. . . . dig boulder unload refuel
possible finite execution of the excavator is s — ¢ > S > S > S

Notice that a transition system can model nondeterminism, since one state may have
more than one outgoing transition assigned the same action. If on the other hand s — ¢
and s — t’ implies ¢ = t” for all s,t,t' € S we call the system deterministic.

11

2. How to Model Resources

(Al) S1 —a>1 tl (AQ) 59 —a>2 t2
S1 H 52—>t1 H So S1 ” So — 81 HtQ

Table 2.1.: Interleaving semantics

a a
S1 —>1 tl S9 —>2 t2

(A3) a
S1 || SS9 — 11 || to

Table 2.2.: Synchronising semantics

2.1.2. Composing Systems

An important aspect of all software systems, and embedded systems in particular, is
that of concurrency, meaning that different behavioural aspects are under the control
of designated components all operating simultaneously interacting between components.
It is therefore important that the chosen modelling formalism is capable of representing
concurrency in a suitable way. The modelling formalism should have a composition
operator || that, given a number of systems 71, . .., T;, running simultaneously, constructs
the full system, denoted T} || ... || T,.

For transition systems the operator mentioned above can be defined in several ways.
One approach to modelling concurrency is using a purely interleaving view, where each
subsystem can perform its actions independent of the other subsystems, allowing the
resulting transition system to interleave the transitions of the subsystems in any possible
way. Given two transition systems Ty = (S, L1, 83, —>1) and Ty = (Sy, Lo, 82, —>2) we
define the resulting interleaving system by Ty || To = (Sy x Sa, L1 U Lo, (s, s3), —),
where — is constructed using the structural operational semantics given in Table 2.1.

As evident, the state set of T || Ty consists of all pairs (si, s2) of states from the two
subsystems and the transition relation allows any outgoing transition from either s; or
So from (s1, s9).

Another approach is based on communication between the systems and models for
instance reactive systems where a system reacts to stimuli from another system or an
environment. Here the operator is defined such that transitions cannot be taken in-
dependently, but must synchronise with a matching transition in another subsystem.
Table 2.2 shows how to define — in 7T} || 75 when taking a fully synchronising view.
Here we are only allowed to take transitions when both subsystems can synchronise on
the corresponding label.

Naturally one can also consider a mix between the two approaches described above,
where some transitions can be taken independently and some must synchronise. Here
one can define a set of handshaking actions H that must synchronise, while the remaining
actions have the interleaving semantics. The transition relation is thus defined by the
rules (A1) and (A2) for an action a ¢ H and by the rule (A3) for a € H.

We will now investigate how a reasonable extension of transition systems can be defined
in order to model quantities.

12

2.1. Modelling Phase

2.1.3. Modelling Resources

Before tempering with the model of transition systems presented above, let us consider
all the relevant characteristics of the resources that we are about to model. This should
help us make our model as useful as possible.

As noted in the motivation, we seek to model quantitative resources. These resources
share some characteristics. Most of them can be both gained and consumed during an
execution of a system. Temperature can for instance both increase and decrease, while
a battery may or may not be rechargeable. Time is on the other hand a resource that
cannot be regained. Furthermore, being able to compare two or more quantities of the
same resource to each other is essential. For instance when formalising “the valve should
open only if there is more than 4 gallons of oil left in the tank” or “pick the container
with the least volume”. By adding some sort of structure to the labels of transition
systems, where such comparisons are possible, one can model resources.

Resources can be categorised as either continuous (e.g. time) or discrete (e.g. price),
depending on the nature of the resource. Thus both a continuous and a discrete view
can be necessary. An obvious choice when modelling discrete quantitative resources is
to use an integer from Z to denote the quantity of the resource. The choice of Z as the
domain seems to fulfil our initial idea of a set with a notion of an order (the < relation)
that can be both gained (positive integers) and consumed (negative integers). For a
continuous resource, the set of reals, R, is suitable instead. In the following we will use
7 as the weight domain.

Where in the model should the quantities be placed? Since the resources are gained
or consumed by the actions of the systems, it seems natural to impose a cost to system
changes to denote how the resource is gained or consumed as the system performs its
actions.

After the above discussion, we have the following natural extension to Definition 1.

Definition 3 (Weighted transition system). A weighted transition system is a tran-
sition system 7' = (S, L, s9, —), where — C S x L x Z x S is a transition relation
with a label and an integer attached to each transition.

Along with the labels added in transition systems, we here decorate each transition
also with an integer. We call the element added to each transition the weight of the
transition. Again we write s = ¢ if (s,a,w,t) €—s.

It is worth noticing that both Z and R equipped with addition and multiplication are
special cases of the algebraic structure called a semiring. In the literature, weights are
usually added by using semirings instead of integers; consult e.g. the handbooks [DKV09,
Sak09, Eil74]. The concept of weighted automata with weights drawn from semirings
was originally introduced by Schiitzenberger in [SchG1]. The use of semirings of course
makes the theory more general, but also makes the theory less transparent for a potential
user.

As for transition systems, we seek to define an execution of a weighted transition
system T' = (S, L, s, —>). For this purpose we define a configuration as a pair (s,v),

13

2. How to Model Resources

boulder gravel

Figure 2.2.: An excavator modelled as a weighted transition system

2t ot
(Al) S1 mwl 1 (AQ) S9 a’ﬁ)2 2
S1 H SQHtl ” So S1 H So — 81 HtQ

Table 2.3.: Interleaving semantics

where s € S and v € Z. An execution (or a weighted run) of 7" is then a finite or
infinite sequence of configurations (so,vo), (s1,v1), ..., such that for all i > 0 we have
g; —nty si+1 and v;11 = v; + w; for some a; € L. By runs(sg, vg) we denote the set of all
maximal weighted runs starting from (sg, vg).

Example 4. For the excavator from Example 2 fuel is surely a limited resource
that the machine depends on, as it cannot run on an empty tank. We can model
the fuel consumption (negative numbers) and gain (positive numbers) of a running
excavator by modelling the excavator as a weighted transition system, as seen in
Figure 2.2. The only action increasing the fuel level is refuel, the remaining ones
all decrease the fuel level. Handling a boulder requires more fuel than gravel. A
possible weighted run of the excavator is (s,0), (s,5), (t,4), (s, 1), (s,0).

2.1.4. Composing Weighted Systems

As argued in Section 2.1.2, systems are often concurrent and it is therefore important
that a model of the system can express this parallelism. Consider two weighted (and
labelled) transition systems, Ty = (51, L1, s, —1) and Ty = (Ss, Lo, s3, —>2). Again we
may either adopt an interleaving or a synchronising view. In both cases we must decide
how to handle the weights of the transitions of T} || Ty = (S; X Sy, L1 U Ly, (s}, s3), —)
when constructing the composite system. In case of an interleaving view, the most
natural solution is to keep the weight of the original transitions, as each transition of the
composed system corresponds to exactly one transition in one of the subsystems. The
corresponding semantics of — can be seen in Table 2.3.

A more interesting case occurs when assuming a fully synchronising view. Consider
two systems each gaining and consuming the same resource. When run in parallel, what

14

2.2. Specification Phase

a, W2
$1 —>1 ty Sg —>g to

a, w1 w2

S1 || Sy — 11 || iy

Table 2.4.: Synchronising semantics

should happen to the use of the resource? The answer is surely dependent on the actual
nature of the resource. As seen in Table 2.4 we define an operator &, that given two
weights of the subsystems determines the weight of the synchronised transition. How
should @ be defined? In case time is the resource and the weight of a transition denotes
the time it takes to carry out the action, w; @ wy could be defined as max(wy,wsy),
since the total time of the synchronising action intuitively corresponds to the time of the
slowest of the two actions. However, if the resource represented is the price, we rather
define wy ® wy = wy + wo, since this corresponds to the total price of the two transitions.
How to define & is therefore entirely determined by the concrete resource. The definition
of a structural composition operator for weighted systems is addressed in Paper D.

Having now defined the basic quantitative model used in the thesis, we move on to
another important issue of model checking—how to express the requirements that we
want to check.

2.2. Specification Phase

Model checking consists, as mentioned in Section 1.1, both of a modelling and a specifica-
tion phase. The requirements of a system can be formalised in many ways, as described
in Section 1.4. One way is a behavioural approach, where we use the same formalism
for both specification and implementation and then check whether or not the behaviour
of the two transition systems (in our case) are related by some suitable behavioural
preorder. Many of these are organised in van Glabbeek’s hierarchy [vG90]. However, as
a transition system fully describes the possible behaviour of a system, we may find it
easier to express our specification using a logical formalism. These formalisms express
precisely the properties that the system must satisfy without restricting the behaviour
of the system in other ways. Since the logical approach is the dominating approach to
specifications in the world of model checking, we will take a closer look at some often
applied logical formalisms for expressing specifications.

2.2.1. Logical Formalisms

Let us first try to outline two relevant types of properties one usually asks about a
system and present some formalisms incorporating them. Afterwards we try to adapt
some of these to a quantitative setting useful e.g. for embedded systems. The partition
presented below is based on the view taken in [BKO08] and might be defined differently
in other literature.

15

2. How to Model Resources

Safety Safety properties can popularly be described as ’something bad should never
happen’. An example is 'the system is deadlock-free’ or for a mutual exclusion
algorithm a relevant safety property would be ’only one process can enter the
critical section at a time’.

More formally a safety property is satisfied if the system satisfies the property no
matter what execution is conducted. Thus a safety property can be violated by
providing a finite execution breaking the property at some point. Proving a safety
property requires checking all possible executions.

Liveness Liveness properties are in some sense dual to safety properties. Notice that a
safety property can be satisfied by a system with no behaviour at all. This is not
the case for liveness properties, on the contrary, they require that progress is made
in order to satisfy the property. An example of a liveness property for the mutual
exclusion algorithm is that ’each process will eventually enter the critical section’.

A liveness property can only be violated in infinite time, since it for any finite
execution of a system might be possible to extend the execution to a point where
the property is true. Verification of a liveness property requires that all executions
at some point satisfy the property.

In connection with liveness properties we sometimes make use of a fairness condition.
In the example of the liveness property for the mutual exclusion algorithm, we see that
the property may not hold in case one process enters the critical section infinitely often or
just stays in the critical section, while the remaining processes wait. Such an execution
is not 'fair’ to the waiting processes and the problem can be circumvented by proposing
a fairness condition. We can formulate a fairness condition saying that ’if some action
is infinitely enabled, it should at some point be executed’. As a fairness condition can
be used for ruling our unrealistic behaviour, it is sometimes assumed in order to prove
a liveness property.

The safety and liveness properties described above are all temporal properties. How-
ever, by using the words ’eventually’, "always’ or ’after this, then that’ in the properties,
we do not explicitly need to refer to some model of time. Such properties are often de-
scribed using temporal logics [Pnu77, CE82, MP92|, which are therefore the dominating
logics when specifying properties for model checking purposes.

Temporal properties can furthermore be divided into two categories, linear or branch-
ing time properties. A linear-time view reasons on fixed runs, while a branching time
view reasons on the whole tree of possible runs. This corresponds to the difference
between two of the behavioural preorders; trace equivalence and bisimulation.

We now mention a few prominent logical formalisms for specifying the temporal prop-
erties described above. For linear-time properties, the logic called linear temporal logic
(LTL) is often used [Pnu77]. A similar logic reasoning on branching-time properties is
the logic computation tree logic (CTL) [CE82], that extends the Hennessy-Milner logic
(HML) [HMS85] with the until operator.

Other well-known temporal logics such as CTL* [EH86] or and the modal pu-
calculus [[K0z83] are also commonly used. The logic CTL* in fact includes both CTL

16

2.2. Specification Phase

s |= true

sk=a iff a € p(s)

5 @1 A2 iff s E @1 and s = ¢y

s e iff s ¥ 1

s = EXy iff 3s—titkEg

s = AXg iff Vs—iitlEg

s = A(e1Ugps) iff Vsg —> 51 —> So —> ... €runs(s) : 3 >0:
(si =p2and Vj e {0,---,i—1} @ s; = ¢1)

s = E(¢1Ugo) iff Jdsg —> 81 —> S —> ... €runs(s) : Fi >0 :

(si E g and Vi € {0, ,i— 1} : s, 1)

Figure 2.3.: Semantics of CTL

and LTL, while the modal p-calculus includes all the aforementioned logics. The reason
for not always choosing the most expressive logic when looking for a formalism to use, is
due both to simplicity and hence understandability of the logic, but mainly to the fact
that often a more expressive logic leads to a higher computational complexity.

As the contributions of Paper C and E treat the logic CTL, we will emphasise the
syntax and semantics of CTL. The logical formulae of CTL are interpreted over states of
a transition system, T' = (S, L, s9, —>), where each state is decorated with a subset of a
set of atomic propositions. Let p : S — 24 be the function assigning atomic propositions
from the set A to each state. The syntax of the CTL formulae is given by the grammar

pu=truela| o Aps | mp [EXe | AXp | E(p1Up2) [A(piUps) |

where a € A is an atomic proposition. The semantics are given in Figure 2.3.
The well-known logical and temporal operators V, =, F (future) and G (globally)
can easily be constructed using the given syntax:

P1V 2 = (71 A i) pr = P2 =01V
EFy = E(trueUy) AFp = A(trueUy)
EGp = ~AF—~p AGyp = —EF—p

As the formalism of transition systems has been extended to incorporate quantitative

aspects, it seems natural to also extend the specification formalisms as well, notably
CTL.

2.2.2. Quantitative Requirements

Quantitative logics have been proposed previously in the literature [DG07, Mei09, BG09,
FLT10], allowing us to state requirements about the resources of the system. We here

17

2. How to Model Resources

discuss the approach taken in Paper E, where we define a quantitative version of CTL.

Our approach is to remove the atomic propositions in the states and only reason on the
accumulated weight along the runs. For most resources, it is natural to add the weights
encountered along a run, as the accumulated weight at a point along the run represents
the remaining quantity of the resource at that particular moment. For this reason we
propose to replace atomic propositions with quantitative constraints on the form v < ¢,
<€ {<,<,=,>>}and ¢ € ZU{—00,00}, where v denotes the accumulated weight so
far. With this version, reasoning only on the accumulated weights along runs, we can
express a requirement like “along no run should the accumulated weight get below 0”7 as
AG(v > 0).

Having a logic capable of expressing a wide range of properties is in general very
useful. However, some properties regarding quantities are more applicable than others,
and some are even so relevant that they should be treated separately. We will motivate
such a property below.

For embedded systems, the access to resources can be sparse. Many everyday software
systems rely on a energy source that can be exhausted, e.g. a battery. Many industrial
machines control containers holding some material that should be used as a component
in some production. The aim of the machine is to make sure that the container never
runs out of material. This task is nowadays often carried out by a software controller.
Other systems adjust the temperature or pressure of some environment and must take
care that this value does not enter some 'bad’ region. Common for these examples is that
the resource in question must be kept above some threshold (often just nonnegative),
and in some cases also below some upper threshold. This requirement must be met at all
times during the execution of the system. The nature of the examples indicates that the
current value of the resource can be modelled by simply adding the previous different
fluctuations of the resource during the execution, given that we know the starting value.
This will be useful when formalising this so far loosely described requirement.

According to the classification in Section 2.2.1, the property described above is a safety
property, since violating the property can be done by presenting a finite run that violates
the bounds.

As mentioned in the motivation, many systems do not terminate, but must keep on
functioning for as long as needed. It is thus relevant that the requirement described
in the previous paragraph is satisfied not only until some specific criteria is met (e.g.
reaching some specific state), but also for infinite executions. In short we are looking for
infinite runs subject to resource constraints.

The property can be phrased using the quantitative version of CTL mentioned earlier.
For instance the requirement “the existence of a run that keeps the quantity of the
resource between the lower bound ¢ and the upper bound wu at all times” can be expressed
with EG(v > ¢ Av < u). We can instead require that all runs should satisfy the weight
constraints by changing the E to an A in the proposed formulae.

Driven by the examples described previously, a different weak upper bound can be
formalised. If we consider the battery with a minimum and maximum capacity, we
notice that when using the battery the maximum capacity cannot actually be exceeded,
but will stay at the maximum capacity when trying to charge a fully charged battery.

18

2.3. Multiple Quantities

This phenomenon is referred to as a weak upper bound. A weak upper bound can never
be exceeded and weights above the bound will be truncated when constructing the
weighted runs of the system. Thus we can impose two types of bounds—a (strict) bound
and a weak bound. These bounds can additionally both be upper and lower bounds.
However, a weak bound does not impose any non-trivial decision problems without used
in connection with a strict bound. Furthermore any lower bound can be transformed
into an upper bound and vice versa by multiplying all weights and bounds by —1. This
implies that only three combinations of bounds are necessary to study: A lower bound,
a lower and an upper bound, and a lower and a weak upper bound.

Due to its relevance, this thesis will specifically study the property of finding infinite
runs subject to resource constraints in Paper A and B. However, we also propose different
general logics for quantitative requirements in both Paper C, D and E. Apart from the
weak upper bound, the logics of Paper C and E are also capable of expressing the specific
property discussed above. These logics are furthermore interpreted on the specification
formalism of modal transition systems, which we will discuss in Section 3.2.

2.3. Multiple Quantities

Another strikingly relevant feature of embedded systems (or other systems reasoning
on resources) is the fact that one resource is very rarely enough. A system might both
want to keep track of a battery, some container holding a material and the temperature.
For this system, the model presented in Definition 3 cannot be used as a modelling
formalism. A simple way to resolve this problem is to add not only singletons to each
transition, but a vector. In this way each resource can be modelled using a coordinate
of the vector and the dimension of the vector corresponds to the number of resources to
be modelled.

Definition 5 (Multiweighted transition system). A k-multiweighted (or just k-
weighted) transition system is a transition system T = (S,L,so, —>), where
—+ C 8 x L xZFx S is a transition relation with an integer vector of dimension k
attached to each transition.

Let © be a vector in Z*. By #i] we denote the ith coordinate in ¥. A configuration
and a weighted run is defined similarly as for the case of k£ = 1, We define the addition
of two vectors as the coordinate-wise sum, (o7 + 03)[i] = 0;[i] + 02i] for vy, v, € ZF and
1 <i < k. Furthermore we write v; < vy if 01[i] < 05[] for all i € {1,...,k}.

The quantitative version of CTL considered in Section 2.2.2 can easily by extended in
order to handle multiple resources. One way to do this is by changing the syntax of the
quantitative aspects of the logics such that one has to explicitly state the coordinate for
which the constraint should hold.

What properties are useful to check for these multiweighted transition systems? The
infinite runs subject to resource constraints property addressed in the Section 2.2.2 can
surely we extended to a multiweighted setting, where we require that the accumulated

19

2. How to Model Resources

(5,0) ‘
refuel (-1,-3)
e‘ unload

(_375) (‘273)
boulder gravel

Figure 2.4.: An excavator modelled as a 2-weighted transition system

weight of all coordinates must remain nonnegative and below some fixed upper bound
(given as a vector).

Example 6. The excavator from Example 2 was in Example 4 extended with quan-
titative information modelling the fuel consumption and fuel gain of each possible
action. However, fuel may not be the only resource worth modelling. The weight of
the material currently on the dipper is also important, as the excavator cannot carry
a too heavy load. Modelling the excavator as a 2-weighted transition system as seen
in Figure 2.4 gives the opportunity to model both resources. The pairs depicted in
the figure represents the fuel consumption (first coordinate) and the change in weight
currently loaded on the dipper (second coordinate). We notice that refueling and
digging does not change the dipper load, while loading gravel is not as heavy as
loading a boulder onto the dipper. The only way to reduce the weight on the dipper
is to unload.

We can now state quantitative properties that we wish our excavator to satisfy. A
reasonable property is that starting with no fuel and no load, there exists way of oper-
ating the excavator such that the amount of fuel in the tank is always between 0 and 5
and the load of the dipper is always between 0 and 10. Using the second version of the
quantitative CTL adapted to a multiweighted setting, we can state this property as
EG(v[1] > 0A0[1] < 5AD[2] > 0AD[2] < 10). The property is satisfied for the excava-
tor, as the loop (s, (0,0)), (s, (5,0)), (¢, (4,0)),(s, (1,5)),(s, (0,2)),(s, (5,2)),(t,(4,2)),
(s,(1,7)), (5,(0,4)), (s,(5,4)), (t,(4,4)), (s,(2,7)), (s,(1,4)), (s,(0,1)), (s,(5,1)),
(t,(4,1)), (s, (1,6)), (5,(0,3)), (s, (5,3)), (£, (4,3)), (5,(2,6)), (s, (1,3)), (s, (0,0)) ad-

here to the resource constraints.

For the case of k£ = 1 the infinite runs subject to resource constraints property has been
studied in [BFL708]. In Paper A we extend the work in [BFL708] to a multiweighted
setting. We here investigate the consequences in terms of decidability and complex-
ity when adding additional weights to the infinite runs subject to resource constraints
property.

When considering these infinite runs subject to resource constrained properties, an-
other question arises. Assume that the upper bound is unknown. In this case it would
be interesting to construct the set of upper bounds that allows such infinite runs to exist.

20

2.3. Multiple Quantities

This set may be characterised by the set of smallest incomparable vectors contained in
the set, as any suitable vector naturally implies that any larger vector is also suitable.
Notice that a set of smallest vectors is needed as we do not have a total order on Z*.

Such a set of smallest incomparable vectors is known as the Pareto frontier, while
each element in the set is called Pareto optimal or Pareto efficient. The notion of Pareto
optimality originally stems from economics [Par71, Cir79] where it for instance describes
an allocation of resources where no individual can change the allocation without making
another individual worse off. Given this set, the suitable choice of upper bound is found
by weighing the different resources and choosing the more optimal bound for the purpose.
In this way the material used and money spend for constructing the actual system may
be minimized, as the bounds can be minimised. We investigate the problem of finding
the Pareto frontier in Paper B.

21

Adapting to

lenges of Embedded S

In the previous chapter we have established a basic model for modelling resources and
identified a class of properties that are relevant for resource dependent systems such as
embedded systems.

As advocated by Henzinger and Sifakis in [HS06], designing embedded systems can
be challenging, as hardware, software and environmental aspects cannot be separated
and all of these concerns should therefore be incorporated into the design. In this
chapter we will identify three aspects of embedded systems that are worth considering
in relationship with quantities. We will investigate infinite runs subject to resource
constraints and general quantitative logics in these new settings.

As a first aspect, we will address game theory, as games are suitable for modelling the
reactive behaviour of embedded systems. Furthermore, stepwise refinement and com-
positional reasoning are also needed to ensure a better design process and we therefore
consider modal transition systems as a specification formalism for quantitative embed-
ded systems. Another important issue is robustness. We seek to ensure that small
perturbations of the input values cause small perturbations in the output values. For
this purpose the boolean-valued result of model checking is not enough, and we instead
attempt to define a real-valued model checking result.

3.1. Games

The modelling formalism of labelled transition systems is not suitable for synthesis pur-
poses, as described in Section 1.3, since the transitions are not distinguished as control-
lable and uncontrollable. It is therefore not possible to distinguish the environment from
the controllable systems when modelling the system (consult e.g. Figure 1.2). For this

22

3.1. Games

purpose we need to make use of some concepts from the world of game theory.

Games can be defined in many ways, depending on the nature of the real world concept
that we seek to model. In our setting, the game will consist of two players, namely the
system and the environment, whose decisions corresponds to the actions that they are
able to take at a given time. Our games are turn-based, implying that players take
turn in performing their actions. The currect state decides whose turn it is. As we
look for quantitative formalisms, we are also interested in annotating each action with
the corresponding use of one or several different resources, as in the case of transition
systems. The definition below extends the definition of a multiweighted transition system
to incorporate the game aspect.

Definition 7 (Game). A k-weighted turn-based game (or just a game) is a tuple
G = (51, 52, S0, —), such that S; and S are disjoint sets and Tz = (S1USs, sg, —)
is a k-weighted transition system. We say that S is the set of states belonging to the
system (Player 1) and S, is the set of states belonging to the environment (Player
2).

A play of a game G = (51, S, So, —) unfolds by placing a pebble in sy and then
letting Player 1 and 2 move the pebble around in the system following the transitions.
When the pebble is in a state from S;, Player 1 picks an outgoing transition to move
the pebble along, when the state is from S5, Player 2 picks an outgoing transition.

Configurations and weighted runs in G is defined as configurations and weighted runs
in the corresponding weighted transition system 7;. We denote all infinite and maximal
weighted runs in G starting from (sg,vg) by runs(sg, Tp). In order to keep track of the
decisions made by each player (i.e. the transitions picked), we define the notion of a
strategy. A strategy for Player i € {1,2} is a function o from each finite prefix of a
weighted run in runs(sg, 99) of the form (sg, vg), (s1,01), ..., (Sn, Un), where s, € S; to a
configuration (S,y1,0,41) such that (sg, o), .., (Snt1, Uny1) 1S a prefix of some run in
runs(sg, Up). A strategy for a player thus chooses the next transition to take when in a
state belonging to this player. The choice is dependent on all the previous choices of
the game. A run (sg,0p), ($1,71), . .. respects a strategy o if o(s;, 0;) = (Siy1, Vi1) for all
1> 0.

The important property of finding infinite runs subject to resource constraints can
also be formulated in a game setting and is then known in the literature as an energy
game or a generalised energy game in the multiweighted case. Here we do not look for
appropriate runs, but for a strategy that can ensure that no matter how the opponent
behaves, the property is still satisfied. In this thesis the term energy game will also refer
to generalised energy games.

Definition 8 (Energy game). Given a k-weighted game G = (51, Ss, so, —) an
(generalised) energy game asks whether there exists a strategy o for Player 1 such
that all weighted runs (sg, 0p), ($1,01), ... € runs(sg,0) respecting o satisfies 0 < v;
for all 7 > 0.

23

3. Adapting to the Challenges of Embedded Systems

In the affirmative case we say that Player 1 wins the energy game (or that the game
is winning).

Without loss of generality we assume that the starting value of the resource is always
0 (by setting vg = 0). This is possible since any other starting value v can be simulated
by adding a new start state s to the system and a transition s — s.

As described in Section 2.2.2, we in some cases not only want to keep the accumulated
weights nonnegative, but also below some upper threshold. This upper bound may be
weak or not. We will therefore consider two extension of Definition 8. Given some vector
of upper bounds b, we define an energy game with upper bound as an energy game were
all weighted runs respecting ¢ must furthermore keep their accumulated weight vectors
below or equal to b. An energy game with a weak upper bound b is an energy game
where all coordinates of the accumulated weight vectors are truncated if going above
their corresponding coordinate in b.

Energy games with only lower bounds were first considered by Chakrabarti et al.
in [CdAHS03], while upper bounds were introduced in [BFL708]. Other papers on
energy games are [BFLMI10, CD10, DDG10]. Generalised energy games were studied
in [BJK10, Chal0, CDHR10]. In Paper A we study generalised energy games with both
lower and upper bounds, while Paper B studies the same games, but with an unknown
upper bound.

Example 9. The running example of the excavator may also be modelled as a game.
The model is seen in Figure 3.1a. Here the diamond state is controlled by Player 1,
while the square state is controlled by Player 2. Since the driver of the excavator
does not fully determine the content of the soil that the excavator digs in, it seems
more realistic to model the excavator as a game, where Player 2 plays the role of the
environment.

As a suitable energy game we seek a strategy for Player 1 such that the amount
of fuel and volume of material on the dipper stay nonnegative and possibly below
some upper bound. In case of no upper bounds, Player 1 can easily win by refueling
indefinitely. Unfortunately, this behaviour is not useful in practice and will eventually
flood the fuel tank. Let us therefore consider an energy game with the upper bounds
used in Example 6 (the vector (5,10)). As state ¢ is uncontrollable to Player 1,
the energy game cannot be won. Player 2 may choose gravel twice, leading to the
path (s, (0,0)), (s, (5,0)), (t,(4,0)), (s, (2,3)), (s, (1,0), (¢, (0,0), (s,(—2,3)) violating
the constraints.

However, using the upper bound (8,7) the energy game is winning. The winning
strategy for Player 1 is seen in Figure 3.1b.

Two special cases of an energy game are found by setting either S; = () or Sy = 0.
In the former case we have no Player 1 states and therefore require that all runs must
satisfy the boundary constraints. This is called a universal energy game. The latter case
has no Player 2 states and thus look for the existence of a run satisfying the bounds.
We call this an existential energy game.

24

3.2. Modal Transition Systems

(5,0) s
efuel -1,- ep - _
refu Q‘ Elnloazd if w[1] > 1Aw[2] > 3 then unload
else if w[1] < 3 then refuel

(_375> (‘273)

boulder gravel else dig
(a) An excavator modelled as a 2- (b) Winning strategy for Player 1 with upper

weighted game bound (8,7)

Figure 3.1.: An energy game with upper bounds

Notice that universal and existential energy games can be defined on weighted tran-
sition systems, as the game aspect is not present in these special cases. Asking an AG
property in CTL with the relevant bounds on the weights corresponds to a universal
energy game, while an EG property corresponds to an existential energy game (as in
Example 6).

3.2. Modal Transition Systems

Having established that the use of games is useful in order to capture the interactive
behaviour of systems, we now turn to another relevant issue for model checking of em-
bedded systems, namely the construction of a suitable specification formalism.

As mentioned in Section 1.4, the logical approach to specifications is suitable for step-
wise refinement and logical composition of specifications, but is not the best solution
when addressing the structural composition of specifications. Since structural compo-
sition is highly relevant for embedded systems, we choose the behavioural formalism of
modal transition systems [[LT88a, AHL"08] as specification formalism. This formalism
is similar to normal transition systems, but allows for underspecification by giving rise
to two types of transitions, namely the may and must transitions. The may transitions
denote behaviour that may be left out in an implementation while the must transitions
denote behaviour that must be present in an implementation. MTSs have a well-defined
notion of satisfaction and refinement, and both structural and logical composition along
with quotienting is possible [Rac08].

We will in the following enhance this theory with quantitative information, allowing for
quantitative reasoning using modal transition systems. We begin by giving the standard
definition of a modal transition system as found in [LT88a].

Definition 10 (Modal transition system). A modal transition system (MTS) is a
tuple M = (S, L, sp,--+,—), where S is a set of states, L is an alphabet, sy € S is
the initial state and —C--+C S x L x S are the must and may transition relations,
respectively.

25

3. Adapting to the Challenges of Embedded Systems

Given an implementation as a transition system and a specification as a modal tran-
sition system, one wants to check whether the implementation satisfies the requirements
given by the specification. By providing the following refinement relation we are capable
of stepwise refinement as advocated in [Lar89] where we gradually resolve the optional
behaviour (the may transitions) present in the specification. A refinement of a specifica-
tion is therefore a modal transition system that preserves the required behaviour of the
original specification and does not introduce additional optional behaviour. By resolving
each uncertainty we will end up with a system consisting of only required behaviour—an
implementation. An implementation is therefore defined as a modal transition system
where the may and must transitions coincide. Formally the refinement relation is as
follows.

Definition 11 (Modal refinement for MTS). Given two modal transition systems
M = (S, Ly, 80,--*m,—>n) and N = (T, Ly, tg,-->n, —>n) We say that M
modally refines N, written M <,, N if there exists a relation R C S x T such
that (sg,t0) € R and for all (s,t) € R

- if t %5 ' then also s —+,; s’ and (s,#') € R, and

- if s -Z>p; ¢ then also ¢ -—»x ¢ and (¢, ¢) € R.

For two implementations the notion of modal refinement corresponds to the behavioral
equivalence of bisimulation [Par81, Mil83], which entails that any transition enabled in
either of the systems must be matched by the other system yielding another bisimilar
pair of systems.

Semantically we view an MTS M as the set of implementations refining M. We
therefore say that M semantically (or thoroughly) refines another MTS N if the set of
implementations of M is included in the set of implementations of N. The notion of
modal refinement is sound with respect to this view. Thus an implementation being
a modal refinement of a specification M is also an implementation of any other modal
transition system N, where M <,, N. Unfortunately, modal refinement is not com-
plete with respect to the semantic view as showed in [[LT88a, HL89]. To illustrate this,
Figure 3.2b and 3.2a (overtaken from [BKLS09b]) depict two specifications M and N,
where M thoroughly refines N, but where M £,, N. However, completeness is ensured
when considering deterministic systems [BKLS09b]. Determinism in modal transition
systems is also treated by Henzinger and Sifakis in [H506, HS07], where they furthermore
advocate the use of determinism, as most practical systems are deterministic by nature.

Despite this shortcoming of modal refinement, this notion is often preferred to thor-
ough refinement since the computational complexity of checking modal refinement is
much lower than checking thorough refinement. Modal refinement requires only polyno-
mial time (by a standard greatest fixed-point computation) while thorough refinement
is EXPTIME-complete [BIXLS09a].

That modal transition systems constitute a flexiable graphical specification formal-
ism [BL92], is evident from the wide range of applications in different context such

26

3.2. Modal Transition Systems

Figure 3.2.: Modal refinement is not complete

as product lines [FUB06, LNWO07h, GLS08b], interface theories [UC04, RBBT09] and
modal abstractions in program analysis [GHJO1, HJSO1, NNNO§].

There are several extentions and variants of the formalism. This includes timed
modal specifications [CGL93], the probabilistic extension of abstract probabilistic au-
tomata [DKL711], and specifications with explicit presentation of data [BLL"11]. Ex-
panding on the expressivitity of the may and must transisition, the variants of disjunc-
tive MTS [LX90], 1-selective MTS [F'S08], MTS with obligations [BK11], and parametric
MTS [BKL"11] have been introduced. In the following section we extend the original
MTSs to incorporate the use of resources, resulting in a specification formalism for mul-
tiweighted transition systems as defined in Definition 5.

3.2.1. Refinable Sets of Labels

The approach used when extending normal transitions systems to a quantitative setting
was to add an integer weight (possibly a vector of integer weights) to each transition.
This rather simple approach is in Paper C extended to the modal setting. As the may
and must transitions allow for a loose specification giving rise to several different concrete
implementations, it is natural to also take this approach when adding quantitative in-
formation to MTSs. Thus the quantities should have a flavor of “looseness” as well. This
can be achieved by adding intervals of integers to each transition instead of integers. In
this way a designer does not have to specify the precise weight of the transition when con-
structing the specification, but can specify an interval wherein the exact quantity must
lie, leaving the exact choice of the weights to be determined when constructing the im-
plementation. Let Z be the set of all non-empty intervals [n,m| ={a € Z | n < a < m}
such that n < m and n,m € Z U {co, —00}.

Definition 12 (Weighted modal transition system). A weighted modal transition
system (WMTS) is a MTS, M = (S, L, sg, --+, —), where —C--+C SXLxZIx S
assigns an action and an interval to each transition.

An implementation is obtained by picking one concrete weight in each interval and
resolving the may transitions. An implementation thus corresponds to a weighted tran-
sition system as defined in Definition 3.

The refinement relation must be updated in order to deal with this new information
on the transitions. As we would like a refinement to be closer to a real implementable

27

3. Adapting to the Challenges of Embedded Systems

system with no uncertainties, it is natural to require that for matching transitions the
refinement carries a possibly more narrow interval still contained in the interval of the
refined transition. In this way we narrow the set of available integers for each weight.
An implementation will settle on a concrete weight for each transition. Formally we
extend Definition 11 as follows.

Definition 13 (Modal refinement for WMTS). Given two weighted modal transition
systems M = (S, Ly, So, -=*a, —>) and N = (T, Ly, tg, --+n, —>n) We say that
M modally refines N, written M <,, N if there exists a relation R C S x T such
that (sg,t0) € R and for all (s,t) € R

- ift LJ>N t' then also s a—’I>M s’ such that I C J and (s',¢') € R, and

v ,J
- if s 2%, & then also t ~2»x t' such that T C J and (s',t') € R.

As in the case of multiweighted transition systems, the theory of weighted modal
transition systems can be extended to a k-weighted setting by considering vectors of
intervals drawn from Z* instead of Z. This approach is taken in Paper E.

Example 14. Imagine that the 2-weighted implementation M of an excavator seen
in Figure 2.4 was build from the specification N of a family of excavators given in
Figure 3.3. Here the solid transitions indicate a must transition (and an underlying
may transition), while the dashed lines indicate a may transition. The must transi-
tions of N can be matched by the corresponding must transitions in M, while the
may transitions of M also have matching may transitions in N. Furthermore each
weight of the implementation is a member of the corresponding interval from the
specification. Therefore M <,, N (M is even an implementation of N). Different
implementations could have been obtained by either picking different weights from
any of the intervals or by implementing none or only one of the may transitions, as
picking up any material after digging is not required.

The choice of intervals as the used notion for specification of quantitative information
is due to the low complexity when handling intersection and set inclusion as necessary
when studying refinement and logical composition. However, a more general approach
would be applicable for systems where the quantitative information cannot be expressed
as intervals of integers, but rather as a set of integers or a general lattice.

For a good specification formalism we are interested in expressing “loose” information
that may be refined into concrete implementable information. For this purpose partially
ordered sets are suitable, as they impose an order on the elements of a set suitable
for the refinement relation, but do not restrict the elements of the set further. We
therefore define a label-set as a set of labels with a partial order (K,C), where L € K
is the least element of K. The element 1 is included to model inconsistencies when
reasoning on the conjunction and quotient of two systems. The intuition is that we use

28

3.2. Modal Transition Systems

([4,6],[0,0])
refuel (PerLP3f2D
unload
(331660 7)& (202, 34)
boulder . = , gravel
=) /
S Y e

Figure 3.3.: An excavator modelled as a weighted modal transition system N

the smallest elements (apart from L) to denote implementable labels, while all other
elements above them correspond to unresolved uncertainties regarding the label. The
set of implementation labels in K is denoted Imp(/K’) and consists of all k € K~ L such
that k' C k implies k' = k for all ¥’ € K~ L. To each label k € K we associate the set
[k] = {K € Imp(K) | ¥ C k}, denoting the set of implementation labels below k.

We now the following defintion.

Definition 15 (Label-structured modal transition system). A label-structured
modal transition system (LSMTS) is a tuple M = (S, (K,C), so, --+, —>), where
S is a set of states, (K,C) is a label-set, sp € S is the initial state and —C--+C
S x K x S assigns a label to each transition.

As evident, we draw the weights from K instead of Z or Z* as in the weighted case. In
order to construct only sensible systems we require that the label-sets are well-formed,
meaning that [k] # 0 for all k € K~ {L}, such that any specification always guarantees
some implementation.

For the refinement relation for LSMTSs, we require that a transition in the refinement
has a label smaller than the label of the corresponding refined transition. The two items
in Definition 11 are therefore updated to accommodate this requirement.

Definition 16 (Modal refinement for LSMTS). Given two LSMTSs
M:<S7 (KMng)as(]?__‘)M?—}M) and N:(T> (KN7EN)7t0>__')N7—)N) we
say that M modally refines N, written M <,, N if there exists a relation R C S x T
such that (so,t9) € R and for all (s,t) € R

~if t —%5 v ¢/ then also s ——y; s such that ¢ C k and (s',t') € R, and

¢ k
- if s ==+ps &' then also t =+, t' such that ¢ C k and (s',t') € R.

An implementation is an LSMTS where —s=--» and for any s — s’ we have a €
Imp(K). With this more general set of labels, it is possible to capture the interval

29

3. Adapting to the Challenges of Embedded Systems

energy gain material
/\ /’\
recharge refuel brick boulder gravel dig wunload

Figure 3.4.: C

weights presented previously, but also any general set of integers (with C as the partial
order). Moreover K can represent a normal alphabet used for a modal transition system
by letting each k € K ~ {L} be an implementation label. Then no label refinement can
take place and the labels thus act as a normal alphabet.

Example 17. The label-set depicted in Figure 3.4 (along with its ordering) can
be useful when specifying a more general excavator. Here we allow not only the
weights to be refined, but also the actions. A specification can have a transition
labelled energy gain, indicating that either a refuel or recharge action should be
present, but allowing the concrete implementation to decide its source of energy (fuel
or battery). The material available for the excavator can also be unspecified in the
specification by using the more general label material.

Paper D introduces the idea of refinable labels and defines label-sets. The definition of
the satisfaction and modal refinement relation is presented and we prove that refinement
is sound with respect to thorough refinement, but only complete in case of deterministic
systems. Furthermore we define operators for structural and logical composition and for
the quotient. The structural operator satisfy the property of compositional refinement,
implying that we can refine systems before composing them. As expected, our conjunc-
tion operator yields the largest refinement refining all systems being logically composed
(under suitable conditions). Our quotient operator is also proven to be sound and to
construct the largest possible quotient, as one would expect.

The formalism of label-structured modal transition systems is therefore applicable
as a specification formalism for embedded systems with quantitative resources. The
formalism also allows labels to be refined, generalising the concept of refinement.

3.2.2. Logical Characterisation

We will now turn to the logical characterisation of multiweighted modal transition sys-
tems. Logics are excellent at expressing only the required behaviour without restricting
the remaining behaviour in any way. This is also possible with an WMTS, but is how-
ever quite cumbersome, as one must explicitly add may transitions with any behaviour.
Properties that e.g. no deadlock must occur or that some state is always reachable
are easy to express using temporal logics, but may be more complex to express using
WMTSs. We can therefore profitably use logical formulae alongside WMTSs when de-

30

3.2. Modal Transition Systems

signing a system. In [Lar89] the first logical characterisation of refinement was obtained
using HML.

In this thesis we seek to define a quantitative version of CTL that reasons on WMTSs
(in particular the multiweighted extension) instead of weighted transitions systems. Ide-
ally we would like a specification to satisfy a logical formula if and only if all its imple-
mentations satisfy the specification. In this way we can propose a general specification
for a system and check that it satisfies some requirements given in CTL. Hereafter we
can safely construct any implementation, as this will also satisfy the logical formula.

How do we define such a logic in order to make it both sound and complete with
respect to implementations? Here soundness implies that if a specification satisfies a
formula then so will all refinements, while completeness implies that if all implementa-
tions satisfy a formula, then so does the specification. Surely we need a sound logic,
as we otherwise might construct a flawed implementation even though the specification
satisfies the logical formula. Completeness is useful as it allows for counterexample gen-
eration: a specification not satisfying a formula has at least one implementation also
not satisfying it. For related work on generalised model checking and 3-valued logics,
consult [BG00, HJSO1, GHJO1, GP09].

In the folowing we will use the quantitative version of CTL from Section 2.2.2 (used
in Paper E) for definitions and examples. The reasoning behind the semantic choices
can however be applied to any version of CTL. As we here consider k-weighted modal
transition systems, we extend the syntax of the accumulated weight logic to use linear
expressions on the form e ::= (i) - ¢ | e + €, where 0 < i < k and ¢ € Z. With (i) we
address the ith coordinate in the accumulated weight vector. Thus instead of atomic
propositions we use propositions on the form e > b, where < € {<, <, =, > >} and
beZU{—o0,00}.

We use a positive normal form of CTL that uses the temporal operators next (X),
until (U) and weak until (W). The syntax of our accumulated-weight logic is given by
the following grammar, where we distinguish between state and path formulae.

pu=epab|(exab) [o1 Apa @1V | o |EY|AY. (3.1)

The path formulae are given by

Y = X | o1Ups | o1 Wy .

The crucial point is how to define the semantics of the logic in order to obtain sound-
ness and completeness. As we reason on WMTSs, we must distinguish may and must
transitions when giving the semantics, since they are treated differently in the modal
refinement relation.

Intuitively we should not consider the may transitions when dealing with a formula
requiring the existence of a run, as any may transition can be dropped in an implementa-
tion. Thus a witnessing run containing may transitions is not guaranteed to appear in all
implementations. On the other hand, for any formula where all runs must satisfy some
property, we must study any run that might be a maximal run in some implementation.

31

3. Adapting to the Challenges of Embedded Systems

(s,0) Eerxb iff Tells < b

(s,0) = —(exab) iff lels w4 b

(s,0) = o1 A o iff (s,7) = ¢1 and (s,9) = o
(5,0) F o1 Vs i (5,0) g1 or (5,7) g2
(s,0)

s,0) | EY iff 3 v = (s0,70), (51,01), ... € runs(s, v) where
S — Sp1 forall k>0 @y
(5,0) F AY iff YV v = (s0,%0), (81,01), ... € pruns(so, Up) : v E ¥

Figure 3.5.: Semantics of the accumulated-weight logic for WMTSs

46 0,2
oL e

Figure 3.6.: Counterexample to completeness

This reasoning argues for the first try of defining the semantics, which is also proposed
in Paper C.
In order to formally state the semantics of the logic, we define a run in a WMTS M

as a sequence of configurations (sg,7), (s1,71), ... such that for all i > 0, s; A Sit1
and ¥, = ¥; + W;, where w; € W;. Again the set runs(s,v) denotes all maximal runs in
M starting from (s,v). By pruns(s,v) we denote the set of all runs from (s, v) that are
either infinite or has no outgoing must transitions. These paths are the ones that may
be maximal runs in an implementation.

State formulae ¢, 1 and ¢, are interpreted over configurations of WMTSs as seen in
Figure 3.5. The semantics for path formulae is unchanged from the normal interpretation
over paths in MTSs and are therefore omitted.

The semantics specifies that in order for a formula quantified by E to be true, we only
look for maximal runs of only must transitions. For formulae quantified by A we on the
contrary need to check every outgoing path ending in a state with no outgoing must
transitions in order to establish satisfaction.

For such a logic in positive normal form the distinction between may and must tran-
sitions for E and A formulae ensures soundness w.r.t refinement, as proven in Paper C.

Unfortunately, the logic presented in Paper C (and above) is not complete. A simple
counterexample can be seen by considering the formula ¢ = EG((1) < 10) and the 1-
weighted WMTS seen in Figure 3.6. Since no maximal path with only must transitions
exists, we can conclude that the configuration (sg,0) does not satisfy ¢. On the other
hand, all implementations have maximal paths consisting of either one or two must
transitions, all meeting the requirement that the accumulated weight does not exceed
10 at any point.

This example shows that deciding the satisfiability of a formula quantified by E by
only studying the maximal paths of must transitions is not adequate to ensure com-

32

3.2. Modal Transition Systems

pleteness. Even though we cannot be sure that one specific may transition will appear
in all implementations, we can try to make sure that regardless of what may transitions
are implemented the property is still satisfied. As this approach seems similar to the
game theoretic approach where Player 1 seeks to ensure some behaviour regardless of
the choices of Player 2, we will try to construct the semantics for the logic based on
games in order to ensure completeness.

3.2.3. Completeness Using Games

In order to ensure that a WMTS satisfies a logical formula if and only if all imple-
mentations satisfy it, we can view WMTSs as games when dealing with a formula on
the form Ei). As we do not know what may transitions will be implemented or what
precise weights will be chosen in an arbitrary implementation, we let Player 2 control
these uncontrollable choices while Player 1 controls the must transitions. We can then
seek a strategy for Player 1 such that no matter what choices Player 2 makes (i.e. no
matter what implementation we consider) we can still satisfy the formula. In this way
we still guarantee soundness, since our strategy ensures satisfaction of the formula in
any implementation chosen by Player 2.

We first notice that in the case of a state s with both outgoing may and must tran-
sitions, we do not have to consider the outgoing may transitions when checking that a
formula on the form Eyp is satisfied. This is evident if we consider the implementation
I that does not implement the may transitions. Here if Eg is satisfied, some run =y
exists that satisfies 1. The run v does for sure not stop in s, since it must be maximal.
Therefore v will also be a maximal and witnessing run for any implementation that also
implements some or all of the outgoing may transitions from s. Thus we only distinguish
states with outgoing must transitions (controllable by Player 1) and states with no out-
going must transitions (controllable by Player 2). As we also need the formula to hold
for any choice of weights from the intervals, we leave this choice to Player 2. The game
played here is therefore modified slightly from Definition 7, since we after each choice
of a transition (by either Player 1 or 2) let Player 2 choose a weight from the weight
interval. Furthermore Player 2 may stop the game in any state controllable by Player 2
in order to model that no outgoing may transitions are implemented.

We define a strategy for Player 1 in a WMTS as a function from each finite prefix
of a weighted run that ends in a state s controllable by Player 1 to a must transition
outgoing from s. A run (sg,0p), (S1,71), . . . respects a strategy o if for all s; controllable
by Player 1 we have o(s;, ;) = (s;, W, s;,1) for some W. We can now state the game
based semantics for Ei).

(s,0) = Ey iff there exists a strategy o for Player 1 such that
for all v € runs(s, v) where ~y respects o we have v = 1 .

The example depicted in Figure 3.6 along with the formula ¢ = EG((1) < 10) is no
longer a counterexample to completeness when assuming the semantics based on games.

This is evident since the (only available) strategy that maps (sp,0) to sg Gl sp is

33

3. Adapting to the Challenges of Embedded Systems

sufficient to ensure that no matter what Player 2 does, the resulting run will always
have an accumulated weight no larger than 10.

As evident, the game-based semantics rules out the counterexample to completeness
presented above. However, this is unfortunately not always the case. Consider the
formula ¢ = AF(AX false). The formula states that for all paths, at some point there is
no outgoing transitions. Notice that false can be modelled by (1) < 0A (1) > 0. Now for
the example in Figure 3.6 we have (sg,0) £ ¢, as (so,0), (s1,4) is a path in pruns(sy,0)
where s; has an outgoing transition. However, any implementation will surely in all
weighted runs encounter a state with no outgoing transition. In general the logic is
therefore not complete.

The semantics based on games is presented in Paper E for a small, but practically
useful fragment of CTL. We here prove both soundness and completeness of the logic if
we restric ourselves to the unnested formulae of the form AGy, AFp, EGp, and EFg.

3.3. Metrics

The model checking view presented in Figure 1.1 shows that the result of the model
checking is either a ’yes’ or a 'no’. This boolean answer is also used when model checking
quantitative models to quantitative specifications. However, the quantities present in the
specification and models pave the road for a quantitative answer to the model checking
question instead of a boolean one. This will help engineers in their search for correct
implementations, as they in the negative case are interested in some way of telling
’how close’ they are to satisfying the specification. A quantitative analysis entails that
two implementations not satisfying the specification can be compared and we might
find that one is closer to satisfying the specification than the other. In the case that
an implementation of the specification is not at hand, we are thus able to rate the
implementations not satisfying the specification and pick the better match. This is not
possible in the previously considered boolean framework, as two such implementations
cannot be distinguished.

In order to develop a quantitative framework for analysis, we first need to define a
notion of distance between two implementations. This is done by lifting the decision
problem associated with the known behavioral equivalences and preorders into a search
problem, assigning a nonnegative real number to pairs of systems. Quantitative analysis
was recently studied for reactive systems by de Alfaro et al. [IAMO1, dAF03, dAFS04,
dAFS09] and Thrane et al. [TFL10, FLT10, FTL11, FLT11] and for probabilistic sys-
tems in [JS90, DGJP04]. An overview can be found in [Thrll]. Several distances have
been considered—these merely model different ways of estimating the distance and are
applicable in different settings.

Having defined a metric on implementations, it can be lifted to a distance from an
implementation to a specification. This has been done for the logic of CTL [FLT10],
timed CTL [HMPO05] and the p-calculus [LLMO5] among others. Recently we have de-
veloped a framework for calculating the distance between a quantitative implementation

34

3.3. Metrics

(3,0) ([4,61,[0,0])
refuel (-1,-3) refuel ([-2,-1],[-3,-2])
unload s unload
III '\.I_'_“ Q_‘ \\\
(_473) ([_37_3]3[576]) / ﬁ H K ([_2’_2}7[3’4])
gravel boulder: = |% ' grave
N . ~—y ’ L
- @ -
(a) Implementation M of an excava- (b) Specification N of an excavator

tor

1+ Ad, (s s)
0+ Ad,,(t,t)

dp(t', 1) =2+ Xd (5, 9)
(c) Calculating the modal refinement distance d,, (M, N)

dpn (', 8) = max {

Figure 3.7.: Modal refinement distance

and a quantitative modal transition system [BFJ"11]'. In the paper we study the no-
tion of modal and thorough refinement and broaden these notions to distances, giving
a nonnegative real as the result. In this way we are both capable of measuring the dis-
tance between an implementation and a specification, but in general also between two
specifications. The asymmetric thorough distance is defined on sets of implementations
and for two modal transition systems, M and N, the thorough distance from M to N is
smaller than e if and only if for each implementation of M there exists an implementa-
tion of IV such that the distance between these two implementations is smaller than e. A
distance of 0 thus implies that M thoroughly refines N. As hoped for, we show that the
modal distance is never smaller than the thorough distance, implying that the modal
distance can be used as an upper bound for the thorough distance. Thus the boolean
framework, where modal refinement implies thorough refinement, generalises nicely to
the quantitative framework.

Example 18. Figure 3.7a depicts an implementation M of an excavator. If we
compare the implementation with the specification N given in Figure 3.7b, we see
that the energy gain/consumption associated with the refuel and gravel actions
in M does not fit into the intervals specified in N.

Using the modal refinement distance d,, defined in [BFJ"11] and a discounting
factor of A = 0.9, we find that the distance from M to N is d,,(M, N) = 10. This

L As this paper does not directly fit the subject of this thesis, it is not included as a paper.

35

3. Adapting to the Challenges of Embedded Systems

follows since the distance from s’ to s is calculated as the distance between either
the two refuel or dig actions added to the discounted weight between the two new
resulting states. Similarly for the distance from ¢’ to t. The distance between the two
refuel actions is 1 (the integer 3 has distance 1 to the interval [4,6]), the distance
between the two dig actions is 0 and the distance between the two gravel actions
is 2. These intermediate results are seen in Figure 3.7c.

Finding the least fixed points of the equations yields d,,(M,N) = d,,(s,s) =
max(140.9-10,0.9 (24 0.9-4.47)) = 10. This gives an upper bound on the thorough
refinement distance between the two systems—in fact the two distances coincide for
this example since the systems are deterministic.

36

Thesis

This chapter presents a summary of the five papers that are included in this thesis. For
each paper the abstract, contributions and publication history are presented.

The layout of the papers has been edited to fit the format of this thesis and appendices
has been moved to the main text.

The sub-questions identified as part of the research objectives in Section 1.5 are ad-
dressed in the papers as follows. Question i) is primarily treated in Paper C and D,
suggestions for question ii) are given in Paper C, D and E, question iii) is studied in
Paper A and B, question iv) is treated in Paper E, question v) is mainly addressed in
Paper A and E, and finally question vi) is the focus of Paper B.

37

4. Thesis Summary

Paper A: Energy Games in Multiweighted Automata

Uli FAHRENBERG Line JUHL Kim G. LARSEN Jifi SRBA

Energy games have recently attracted a lot of attention. These are games played on
finite weighted automata and concern the existence of infinite runs subject to bound-
ary constraints on the accumulated weight, allowing e.g. only for behaviours where a
resource is always available (nonnegative accumulated weight), yet does not exceed a
given maximum capacity. We extend energy games to a multiweighted and parame-
terized setting, allowing us to model systems with multiple quantitative aspects. We
present reductions between Petri nets and multiweighted automata and among differ-
ent types of multiweighted automata and identify new complexity and (un)decidability
results for both one- and two-player games. We also investigate the tractability of an
extension of multiweighted energy games in the setting of timed automata.

Contributions

e Definition of multiweighted energy games seeking infinite runs in multiweighted
automata constrained by both upper and lower bounds on the accumulated weight.

e Complexity results for all identified subclasses of the problem relying on reductions
to and from Petri nets and among different classes of energy games.

e (Un)decidability results for existential energy games where the upper bound is
unknown.

e Undecidability result for timed multiweighted energy games.

Publication History

The paper was accepted and presented at the 8th International Colloquium on Theo-
retical Aspects of Computing (ICTAC’11) and published in Proc. of ICTAC’11, volume
6916 of LNCS, pages 95-115, Springer, 2011.

38

Paper B: Optimal Bounds for Multiweighted and
Parametrised Energy Games

Line JUHL Kim G. LARSEN Jean-Francois RASKIN

Multiweighted energy games are two-player multiweighted games that concern the exis-
tence of infinite runs subject to a vector of lower and upper bounds on the accumulated
weights along the run. We assume an unknown upper bound and calculate the set of
vectors of upper bounds that allow an infinite run to exist. For both a strict and a
weak upper bound we show how to construct this set by employing results from previous
works, including an algorithm given by Valk and Jantzen for finding the set of minimal
elements of an upward closed set. Additionally, we consider energy games where the
weight of some transitions is unknown, and show how to find the set of suitable weights
using the same algorithm.

Contributions

e Method for constructing the set of upper bounds that win an energy game with
weak unknown upper bound employing a generic algorithm for calculating sets of
minimal elements.

e Upper bound on the complexity for constructing the set of upper bounds that win
an energy game with strict unknown upper bound.

e Method for constructing the set of weights of transitions that win an energy game
with unknown weights of some transitions.

Publication History

Manuscript in preparation for submission.

39

4. Thesis Summary

Paper C: Modal Transition Systems with Weight
Intervals

Line JUHL Kim G. LARSEN Jiri SRBA

We propose weighted modal transition systems, an extension to the well-studied specifi-
cation formalism of modal transition systems that allows to express both required and
optional behaviours of their intended implementations. In our extension we decorate
each transition with a weight interval that indicates the range of concrete weight values
available to the potential implementations. In this way resource constraints can be mod-
elled using the modal approach. We focus on two problems. First, we study the question
of existence/finding the largest common refinement for a number of finite deterministic
specifications and we show PSPACE-completeness of this problem. By constructing the
most general common refinement, we allow for a stepwise and iterative construction of a
common implementation. Second, we study a logical characterisation of the formalism
and show that a formula in a natural weight extension of the logic CTL is satisfied by a
given modal specification if and only if it is satisfied by all its refinements. The weight
extension is general enough to express different sorts of properties that we want our
weights to satisfy.

Contributions

e Definition of weighted modal transition systems and their appurtenant refinement
relation.

e PSPACE-completeness of deciding existence/finding the largest common refine-
ment given a number of deterministic specifications.

e Syntax and semantics and proof of soundness for a weighted extension of CTL
reasoning on weighted modal transition systems.

Publication History

An abstract was accepted and presented at the 21st Nordic Workshop on Programming
Theory (NWPT’09). The full paper is published in Journal of Logic and Programming,
volume 81(4), pages 408-421, Elsevier, 2012.

40

Paper D: Extending Modal Transition Systems with
Structured Labels

Sebastian BAUER Line JUHL Kim G. LARSEN
Axel LEGAY Jifi SRBA

We introduce a novel formalism of label-structured modal transition systems that com-
bines the classical may/must modalities on transitions with structured labels that rep-
resent quantitative aspects of the model. On the one hand, the specification formalism
is general enough to include models like weighted modal transition systems and allows
the system developers to employ more complex label refinement than in the previously
studied theories. On the other hand, the formalism maintains the desirable properties
required by any specification theory supporting compositional reasoning. In particu-
lar, we study modal and thorough refinement, determinization, parallel composition,
conjunction, quotient, and logical characterization of label-structured modal transition
systems.

Contributions

e Definition of label-structured modal transition systems allowing refinement of la-
bels.

e Proof of desirable properties for the defined notions of determinization, modal and
thorough refinement.

e Definition of the operators for structural composition, logical composition and
quotienting and proof of desirable properties.

e Syntax and semantics of a label-structured extension of HML reasoning on label-
structured modal transition systems.

e Proof of soundness in general and completeness for a suitable subset of the extended
HML logic.

Publication History

The paper is published in Mathematical Structures in Computer Science, volume 22,
pages 581-617, Cambridge University Press, 2012.

41

4. Thesis Summary

Paper E: A Logic for Accumulated-Weight Reasoning on
Multiweighted Modal Automata

Sebastian BAUER Line JUHL Kim G. LARSEN
Axel LEGAY Jifi SRBA

Multiweighted modal automata provide a specification theory for multiweighted transi-
tion systems that have recently attracted interest in the context of energy games. We
propose a simple fragment of CTL that is able to express properties about accumulated
weights along maximal runs of multiweighted modal automata. Our logic is equipped
with a game-based semantics and guarantees both soundness (formula satisfaction is
propagated to the modal refinements) as well as completeness (formula non-satisfaction
is propagated to at least one of its implementations). We augment our theory with a
summary of decidability and complexity results of the generalized model checking prob-
lem, asking whether a specification—abstracting the whole set of its implementations—
satisfies a given formula.

Contributions

e Syntax and game-based semantics for a fragment of CTL reasoning of the accu-
mulated weights of weighted modal transition systems.

e Proof of soundness and completeness of the logic.

e (Un)decidability results for various fragments of the logic.

Publication History

The paper was accepted and presented at the 6th International Symposium on Theo-
retical Aspects of Software Engineering (TASE’12) and published in Proc. of TASE’12,
pages 77-84, IEEE Computer Society Press, 2012.

42

Part Il.

Papers

Energy Game
weighted

Uli FAHRENBERG
INRIA/IRISA, Rennes Cedez, France

Line JUHL Kim G. LARSEN Jifri SRBA

Aalborg Unwversity, Department of Computer Science, Denmark

Abstract Energy games have recently attracted a lot of attention. These are games
played on finite weighted automata and concern the existence of infinite runs subject
to boundary constraints on the accumulated weight, allowing e.g. only for behaviours
where a resource is always available (nonnegative accumulated weight), yet does not
exceed a given maximum capacity. We extend energy games to a multiweighted and
parameterized setting, allowing us to model systems with multiple quantitative aspects.
We present reductions between Petri nets and multiweighted automata and among differ-
ent types of multiweighted automata and identify new complexity and (un)decidability
results for both one- and two-player games. We also investigate the tractability of an
extension of multiweighted energy games in the setting of timed automata.

44

1. Introduction

1. Introduction

Energy games are two-player games played on finite weighted graphs with the objective
of finding an infinite run where the accumulated weight is constrained by a lower and pos-
sibly also an upper bound. Such games have attracted considerable attention [BFTLM10,
BFL108, BJK10, CdAAHS03, Chal0, CDHR10, CD10, DDG*10, EM79, ZP96| in recent
years, as they find natural applications in design and analysis of resource-constrained
reactive systems, e.g. embedded or hybrid systems.

We study multiweighted energy games, where the weight vectors can have an arbitrary
dimension. Let us motivate the study by a small example of an automatic lawn mower
with a rechargeable battery and a container for collecting grass. Both the battery and
the container have a maximum capacity that cannot be exceeded. We assume that
the battery can be recharged and the container can be emptied at nearby servicing
stations. The charger is an old-fashioned one, and it charges only for a fixed amount of
energy corresponding to going from discharged to fully charged. If the lawn mower starts
charging while the battery is not fully discharged, the battery will break. The station
for emptying the container removes a unit amount of grass at a time and consumes a
unit of battery energy. The container will break if too much grass is stored in it.

A weighted game describing the lawn mower behaviour is given in Figure la. Fach
transition has a 2-dimensional vector representing the change to the accumulated battery
level in the first coordinate and to the accumulated volume of grass in the container in
the second coordinate. The numbers by, and cpax represent the maximum capacity
of the battery and the container, respectively. The initial state drawn as a diamond is
controlled by Player 1 (the existential player), while the other state drawn as a square
is controlled by Player 2 (the universal player).

In the initial state, Player 1 has the choice of either charging the battery, emptying
the container or cutting the grass. Moving to the lawn costs one unit of battery energy,
and then Player 2 (the environment) controls whether the actual mowing, which costs
again one energy unit, will fill the container with one or two units of grass, depending on
whether the grass was short or tall. A configuration of the game consists of the state and
the accumulated weight in all coordinates. A run is a sequence of transitions between
configurations formed by the players of the game and starting from the initial state with
zero accumulated weight.

The question we ask now (the problem called energy games with lower and upper
bounds) is whether Player 1 has a strategy so that in the infinite run of actions the lawn
mower performs, starting with empty battery and empty container, both the accumu-
lated battery level as well as the container content stay invariantly above zero and do
not exceed the given upper bounds bn., = 4 and cnhax = 3. Such a strategy exists and
it is depicted in Figure 1b. Figure 1lc illustrates a finite run of the lawn mower game
according to this strategy. If we lower the volume of the container to cphax = 2, no such
strategy exists. Player 1 must take the charge transition as the first step, after which
cutting is the only opportunity. Player 2 can now choose to cut the short grass, leading
to battery level 2 and grass volume 1. From here Player 1 can only empty the container,
as cutting would allow Player 2 to break the container. After emptying the container,

45

A. Energy Games in Multiweighted Automata

bmax =4 (battery capacity)
Cmax = 3 (container capacity)

if battery = 0 then charge
else if battery > 2 and container < 1 then cut
else if battery > 1 and container > 1 then empty

(a) A lawn mower 2-weighted game (b) A winning strategy for Player 1
bmax = 4 RN RAE
R N e Y Y M RS
Crmax = 3 — — e T
L4 Ses - . Seo -
2 A N g
1 ,' Say ’”
0 . Sel e
—y — 0= — — S
<> charge <> cut O short <> cut O tall <> charge <> empty <> empty <>

(¢) A run of the game (dashed line shows battery level, solid line container content)

Figure 1.: A lawn mower example

battery level is 1 and no transition (apart from cutting) is possible.

There are several variants of the above energy game problem. If we e.g. assume a
modern battery charger which does not break the battery when it is not empty, then we
have another variant of the problem called energy games with weak upper bounds. The
weak upper bound game allows taking transitions that will exceed the upper bounds,
but these will never accumulate more energy than the maximum capacity. We may also
consider infinite runs that are constrained only by a given lower bound but with no
upper bound. Finally, we ask questions regarding parameterization. We want to decide
whether there exists some battery capacity bnax and some initial battery level such that
Player 1 wins the energy game with lower and upper bound (or some of its variants). In
our example one can by a simple reasoning argue that for a container capacity cmax = 2,
there is no battery capacity bmax so that Player 1 can guarantee an infinite behaviour of
the lawn mower.

Contributions. We define the variants of multiweighted energy games (Section 2) and
present reductions involving these games, leading to new decidability and complexity
results. Some reductions are to/from Petri nets (Section 3) while others are between
different multiweighted energy games (Section 4). This is followed by a summary of
decidability and complexity results we achieved. In Section 6 we consider a parameterized
version of existential one-player games and show that some variants of the problem
lead to undecidability while others are decidable in polynomial time. We conclude by
presenting an undecidability result for a natural timed extension of the energy games
(Section 7).

46

2. Multiweighted Automata and Games

Related work. The idea of checking whether a given resource stays above zero at all
times was first presented by Chakrabarti et al. in [CdAHS03], treating the subject in
relation to interfaces. The lower and (weak) upper bound problems were first formulated
in [BFLT08] for the case with a single weight. The paper presents several complexity
results for the 1-weighted case, both timed and untimed, and has given rise to a number
of recent papers on 1-weighted energy games [CDHR10, CD10, DDG™10].

The multiweighted extension has been studied in [BJIK10], but only for energy games
with unary weights, i.e. updates by 1, 0 or —1. A continuation of this work presents a
polynomial time algorithm for the 2-weighted case with unary inputs [Chal0]. Contrary
to this line of work, we consider binary input encoding, hence weight updates are now
drawn from the full set of integers. Also in contrast to [BJIK10, Chal0], where only
complexity upper bounds are given, we give complexity lower bounds that in most cases
match the upper bounds.

Multiweighted energy games with general integer updates have been considered
in [CDHR10], where the authors show that the problem of deciding the existence of an
initial weight vector such that Player 1 can win the lower bound energy game is solvable
in polynomial time. In contrast to this, we show here that the non-parameterized variant
of this problem—can Player 1 win with a given initial weight vector—is EXPSPACE-
hard. We also treat the parameterized setting, where we show that the existential lower
and (weak) upper bound problems with both bounds and initial weight vector parame-
terized are also decidable in polynomial time, unless the upper bound parameter is used
in the transitions of the automaton, in which case the problem becomes undecidable.

2. Multiweighted Automata and Games

We denote by ZF the set of integer vectors of dimension & > 0 and by @[i] the i’th
coordinate of a vector w € ZF. A k-weighted game G is a four-tuple (Q1, Qa, go, —>)
where ()1 and (), are finite, disjoint sets of existential and universal states, respectively,
qo € Q1UQ, is the initial state and — C (Q1UQy) X ZF x (Q1UQ,) is a finite weighted
transition relation, written as ¢ — ¢’ whenever (¢, w,q') € —. We refer to Figure la
in the introduction for an example of a k-weighted game with k = 2.

We are interested only in infinite runs in multiweighted games, hence for the rest of
the paper, we assume that the game G is non-blocking, i.e. for every ¢ € Q1 U Q2 we
have ¢ — ¢ for some w € Z* and ¢’ € Q1 U Q.

A weighted run in a k-weighted game G' = (Q1, Q2, qo, —) restricted to a weak upper
bound b € (NgUoo) is an infinite sequence (qo, o), (q1,01), (g2, 02), - . . where qo, qi, ... €
Q1 UQ2, 59 =0 = (0,0,...,0) and ¥y, %y,... € Z* such that for all j > 0 we have
d; — q¢j+1 and _

¥j41[i] = min {;[i] + w;d], bli] }
for all coordinates 7. An illustration of a run in a 2-weighted game is given in Figure 1c
in the introduction. Intuitively, a weighted run is a sequence of states together with
the accumulated weight gathered along the path. Moreover, the accumulated weight is

47

A. Energy Games in Multiweighted Automata

truncated, should it exceed in some coordinate the given maximum weight b. By WR;(G)
we shall denote the set of all weighted runs in G restricted to the maximum accumulated
weight b.

A strategy for Player i € {1,2} in a k-weighted game G = (Q1,Q2, qo, —) (re-
stricted to a weak upper bound b) is a mapping o from each finite prefix of a weighted
run in WR;(G) of the form (qo, %), .-, (qn,0n) with ¢, € @Q; to a configuration
(Gn+1, Uny1) such that (qo, o), - - - (Gns On)s (Gne1, Uny1) is a prefix of some weighted run
in WR;(G). A weighted run (qo,v), (q1,01), ... respects a strategy o of Player i if
o((90,70), -+ (Gn,Un)) = (qnt1,0ng1) for all n such that ¢, € @Q;. Figure 1b in the
introduction shows a strategy for the 2-weighted game from Figure 1a; note that the run
of the game depicted in Figure 1c indeed respects this strategy.

We shall consider three decision problems related to energy games on a given k-
weighted game G = (@1, Q2, o, —). Below we let 36 = (00,00, ...,00), and we write
w < v if wi] <ol for all i, 1 <i < k.

Energy Game with Lower bound (GL): Given a game G, is there a strategy o for
Player 1 such that any weighted run (qo,), (q1,71),... € WRs(G) respecting
o satisfies 0 < ; for all 4 > 07

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight stays above zero in all coordinates.

Energy Game with Lower and Weak upper bound (GLW): Given a game G and a vector
of upper bounds b € Nf, is there a strategy o for Player 1 such that any weighted
run (qo, o), (q1,01), - .. € WR;(G) respecting o satisfies 0 < 9; for all ¢ > 07

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight, which is truncated whenever it exceeds the given upper
bound, stays in all coordinates above zero.

Energy Game with Lower and Upper bound (GLU): Given a game G and a vector of
upper bounds b € NE/ is there a strategy o for Player 1 such that any weighted
run (qo, ¥o), (q1,71), . . . € WRss(G) respecting o satisfies 0 < v; < b for all 47

Hence we ask whether Player 1 has a winning strategy such that during any play
the accumulated weight stays in all coordinates above zero and below the given
upper bound.

The problems GL, GLW and GLU can be specialized in two different ways. Either
by giving Player 1 the full control over the game by setting Q2 = () or dually by giving
the full control to Player 2 by assuming that Q1 = (). The first problem is called the
existential variant as we essentially ask whether there ezists some weighted run with the
accumulated weight within the given bounds. The second problem is called the universal
variant as we now require that all weighted runs satisfy the constraints of the energy
game. We will denote the respective existential problems by EL, ELW and ELU, and the
universal problems by AL, ALW and ALU. These special cases are known as one-player

48

3. Relationship to Petri Nets

games or simply as multiweighted automata, and we denote such games as only a triple
(Q,q0, —).

In the general formulation of energy games there is no fixed bound on the dimension
of the weight vectors, in other words, the dimension k is a part of the input. If we
want to consider problems of a fixed dimension k, we use the notation GL(k), GLW (k),
GLU(k), EL(k) etc.

As the inputs to our decision problems are numbers, it is important to agree on their
encoding. We will use the binary encoding, unlike some other recent work [BJIK 10, Chal0)]
where unary notation is considered and thus enables to achieve better complexity bounds
as the size of their input instance is exponentially larger.

We may also easily allow an initial weight vector w, different from 0. This is evident
by adding a new fresh start state with one transition labeled with w, pointing to the
original start state. In addition we may assume that in any given upper bound or weak

upper bound vector b we have b[1] = b[2] = --- = b[k]. This can be achieved by scaling
B[1]-...-BlK]
il bld]
equality on the coordinates of b. Such a scaling implies only polynomial increase in the
size (in binary encoding) of the upper bound constants.

every i'th coordinate of all weight vectors on transitions with in order to obtain

3. Relationship to Petri Nets

We show that the existential variants of the infinite run problems on multiweighted
automata can be reduced to the corresponding problems on Petri nets and vice versa.
This will allow us to transfer some of the decidability and complexity results from the
Petri net theory to our setting.

We shall first define the Petri net model with weighted arcs (that allow to consume
more than one token from a given place). A Petri net is a triple N = (P, T, W) where P
is a finite set of places, T is a finite set of transitions, and W : (P x T) U (T x P) — N,
is a function assigning a weight to each arc in the net. A marking on N is a function
M : P — Ny denoting the number of tokens present in the places. A marked Petri net
is a pair (N, M) where N is a Petri net and M, is an initial marking on N.

A transition ¢t € T is enabled in a marking M if M(p) > W(p,t) for all p € P. An
enabled transition may fire. When a transition ¢ fires, it produces a new marking M’
obtained as M'(p) = M(p) — W(p,t) + W(t,p) for all places p € P. Then we write

M -4 M’. A marking M is reachable in N if My —* M where —» = User s A
marked Petri net is called 1-safe if for any reachable marking M the number of tokens
in any place is at most one, i.e. M(p) < 1 for all p € P. We say that a marked net
(N, Mpy) has an infinite run if there is a sequence of markings M;, Mo, ... and transitions
t1,ts,... such that M, I M, T M, 3y . The infinite run problem for Petri nets
(see e.g. [Esp98]) is to decide whether a given Petri net has an infinite run.

Lemma 1. The infinite run Petri net problem is polynomial time reducible to EL. The
infinite run Petri net problem for 1-safe nets is polynomial time reducible to ELU and

49

A. Energy Games in Multiweighted Automata

3 3 (_17_47_27070)
() 1\|< -
t 5 7 @

(3,0,0,3,2)

Figure 2.: Translation of a Petri net to a 5-weighted automaton

q q

Figure 3.: Translation of a 3-weighted automaton to a Petri net

ELW. The problem EL is polynomial time reducible to the infinite run problem of Petri
nets.

Proof. We first prove the first part of the lemma. Given a Petri net N = (P, T, W)
where P = {p1,...,pr} we construct a k-weighted automaton A = (Q, gy, —) such

that Q@ = {q} U{q |t € T}. Now for every t € T" we add to A two transitions o N Q@
—

and ¢, — qo where w; [i] = =W (p;,t) and @;[i] = W (¢, p;) for all 4, 1 < i < k. Consult
Figure 2 for an example. The initial weight vector then corresponds to the initial marking
of the net in the expected way. It follows from the construction that each transition firing
can be simulated by two transitions in the constructed weighted automaton and vice
versa. Observe that the reachable Petri net markings are represented as accumulated
weight vectors in the automaton and hence are nonnegative in all coordinates. It is easy
to verify that the net has an infinite run if and only if the EL problem has a solution.
The reduction clearly runs in polynomial time.

For the second part, observe that if the net is 1-safe then by taking the upper bound
b= (1,1,...,1) we have a reduction from the infinite run problem for 1-safe nets to
ELU and ELW.

The reduction from k-weighted automata to Petri nets works in a similar way. Given
a k-weighted automaton A = (@, go, —>) we construct a Petri net N = (P, T, W) where
P=A{p,....o0e}U{ps | q € QY and T = {t(g0,4) | ¢ 5 ¢'}. For each tiga.q) We set
W (pg, tga,q)) = 1, W(tgage),Py) = 1 and for all 4, 1 < i < k, W(p;, tgaqe)) = —0[i]
if wli] < 0 and W(tgwq),p:;) = w[i] if w[i] > 0. See Figure 3 for an example of the
reduction. The initial marking corresponds to the initial weight vector in the natural
way, and there is one extra token in the place p,, representing the current state of
the automaton. As before, it is easy to verify that the constructed Petri net has an
infinite run if and only if the EL problem has a solution. The reduction clearly runs in
polynomial time. |

50

4. Reductions among Energy Games

Theorem 2. The problem EL is EXPSPACE-complete. The problems ELU and ELW
are PSPACE-complete.

Proof. The complexity bounds for EL follow from Lemma 1 and from the fact that the
existence of an infinite run in a Petri net is decidable in EXPSPACE [Yen92, AH09] and
EXPSPACE-hard (see e.g. [Esp98]). The same problem for 1-safe Petri nets is PSPACE-
complete (see again [Fsp98]) and by Lemma 1 we get PSPACE-hardness also for ELU
and ELW. The containment of the ELU and ELW problems in PSPACE can be shown
by noticing that these problems have an infinite run (qo, o), (¢1,71), ... if and only if
there are two indices ¢ < j such that (¢;,v;) = (¢;,7;). As the size of any configuration
(q,v) appearing on such a run is polynomially bounded by the size of the input (which
includes the upper bound vector), we can use a nondeterministic algorithm to guess such
a repeated configuration (g;, ¥;) and nondeterministically verify whether it forms a loop
which is reachable from the initial pair (qo,¥p). This completes the argument for the
containment of ELU and ELW in PSPACE. |

4. Reductions among Energy Games

In this section we present reductions among the variants of one- and two-player energy
games with a particular focus on the size of the weight vectors.

Theorem 3. The problem GLU(k) is polynomial time reducible to GL(2k) and GLW(2k)
for all k > 0. The reduction preserves the existential and universal variants of the
problems.

Proof. Let Gj, = (Q1,Q2,qy, —) be a k-weighted game and let b be a given upper
bound vector for the GLU problem. We construct a 2k-weighted game Gop = (Q1 W

(w[1],@[2],...,w[k],—w[1],—w([2],...,~w[k])
{as}, Q2, gs, —) where ¢

in G. We moreover add the initial transition ¢, —= g where wg[i] = 0 and wo[k + i] =
b[i] for all i, 1 < i < k. Figure 4 illustrates the construction on an example. Intuitively,
every coordinate in the weight vector is duplicated and the duplicated coordinate gets
initially the value from the vector b, while the original coordinate is 0. It is now easy
to verify that during any run in Gg all its configurations (g, v) satisfy the invariant
o[i] + o[k +i] = bfi] for all i, 1 < i < k.

The upper bound check is hence replaced with a lower bound on the duplicate coor-
dinates and hence the GLU problem is reduced to GL and also to GLW (by using the
weak upper bound vector b), while the size of the weight vectors doubles. The reduction

also clearly preserves the existential and universal variants of the problems. [|

> ¢’ in Gy if and only if ¢ = q

Since we already know that ELU (1) is NP-hard [BFL"08], using Theorem 3 with k£ = 1
gives that EL(2) is NP-hard too, which is of course then also the case for EL. Similarly
as GLU(1) is known to be EXPTIME-hard [BFL"08], we get EXPTIME-hardness also
for GL(2) and hence also for GL.

Our next reductions show (perhaps surprisingly) that allowing multiple weights is not
that crucial in terms of complexity. The first theorem shows that for upper bound games,

o1

A. Energy Games in Multiweighted Automata

1)
K/‘bqﬂ il (’?”1’3’ ¢
./_‘ (0’ 07 5’ 7) /_\
—& (1,5)()4 -4~ —e—""e (1,5,—1,—5)(|(4,—4,—4,4)
qdo qs qdo
(-2
V1) @ (-2 02
)) 1)

Figure 4.: Example of reduction from GLU with b = (5,7) to GL

it suffices to work with one weight only; Theorem 5 then shows that for the existential
variant, two weights are enough.

Theorem 4. The problem GLU is polynomial time reducible to GLU(1).

Proof. Let G = (Q1, Q2, qo, —) be a k-weighted game and b a given upper bound vector
for the GLU problem. We assume that GG is encoded in binary and let n denote the size
of such encoding. This means that all constants that appear in the description of G are

less than 2. We will construct a corresponding 1-weighted game G’ = (@}, Q%, ¢s, —)

where Q7 = Q1 U {q2,43,. .., @res | ¢ € @1} U{gs} and Q5 = Q2 U {q1 | ¢ € @2} that
simulates G.

Let w denote any weight vector present in G. Clearly, 0 < w[1],...,w[k] < 2™ due to
the encoding of the input. Without loss of generality we can assume that all coordinates
of b are the same, i.e. that b= (b,...,b) for some 0 < b < 2".

We need to encode the weights from G using only one weight. We will do so by
placing them into the single (large) weight w'. Since b < 2", at most n bits are needed
to represent each weight w[i]. The weight w’ is constructed by appending the weights
from G in higher and higher bit positions, with a suitable separation sequence to ensure
that weights cannot get ‘entangled’ should their bounds overflow or underflow. Formally,
we introduce the following notation for any integer ¢ € Z and any i, 1 <1 < k:

<€>z —/. 2(i—1)(n+2))

For example, if n = 4 then (6)? = 6 - 2° = (in binary) = 110 - 1000000 = 110000000. A
weight vector w of size k in G is now represented by the number

(@) < (W) + @)+ @2)2 + (27 4 (k] + (2

where the weights w[1], ..., w[k] written in binary from the less significant bits to more
significant ones are separated by the binary string ‘10’. For example if again n = 4 then
the weight vector w = (110,1,1011) with the weights written in binary is represented
by the binary number (w) = 10 1011 10 0001 10 0110.

The new upper bound B for G’ is defined by B = (b)**! + (b) where apart from
the standard encoding of all upper bounds for all coordinates we add one more time
the constant b at the most significant bits (we will use these bits for counting in our
construction).

52

4. Reductions among Energy Games

O +B —(0)
0 < <
qk+5 qk+4 ™

@8 o 494 g 4 0 0 qk+3

Figure 5.: Simulation of a transition in a k-weighted game by a 1-weighted game

Each transition ¢ — ¢’ in G is transformed into a number of transitions in G’ as
depicted in Figure 5 where Player 1 (existential) states are drawn as diamonds and
Player 2 (universal) states are drawn as squares. The states drawn as filled circles can
be of either type, and their type is preserved in the translation. We also add the initial

transition g, ﬂ> qo which inserts the separation strings 10 at the correct positions.

The idea is that the update of the accumulated weight vector v in G via adding a vector
w like in Figure 5 is simulated by adding the numbers (w[1])!, (w[2])?, ..., (w[k])* to
the accumulated weight in G’. The chosen encoding of k weights into a single weight
is crucial to preserve the soundness of the construction as discussed in the following
remark.

Remark 1. Given an accumulated weight vector v and a weight update vector w where
0 <o,w<b< (27...,2"), then adding the numbers () and (w[i])* in (v) changes
at most the bits that are designated for representing the weight coordinate w[i] and
the separating two bits 10 just before it. This can be easily seen by analyzing the two
extreme cases of adding 11...1 to an accumulated weight coordinate with full capacity
and subtracting 11...1 from an accumulated weight coordinate that represents zero as
showed in the following two examples.

...10111...111 10... ...10000...000 10...
+...00111...111 00... —...00111...111 00...
...11111...110 10... ...01000...001 10...

Let us now argue about the correctness of this polynomial time construction. Assume
that Player 1 has a winning strategy in the game G. As the accumulated weight stays
within the bounds during any such play in G, it is clear that the same winning strategy
can be performed also in G’ using only a single weight. One complication is that each

transition in G is split in G’ and a new node for Player 2 (¢; in Figure 5) is inserted.
b k+1
Hence Player 2 could possibly have an extra winning strategy by playing ¢ <—> q2,

instead of the expected move to ¢’. However, because the accumulated weight vector v
satisfies 0 < o[i] < b < 2™ for all ¢, we can see that Player 1 wins in this case, by taking

23

A. Energy Games in Multiweighted Automata

(=L 1+ (1)) (1, —(1)*)
q ¢ a (i) Q (i) (i) Q (iv)
Y O
(@[1], ..., w[k)) (@' + ...+ (@[k])F,0) ~ (max,0) ~ (—=max,0) ~ (0, (max)*+!)

(0, =(max)* 1) | (v)

(0, —(max)**! —max) (0, (max)**! 4 max)

q (ix) (viii)

0, =M1 0, =1 (0,—(1)*) (0,—(1)")

Figure 6.: Simulation of a k-weighted transition by a 2-weighted automaton

the loop ¢2,¢s, - - - Grs3, @2 exactly b times while choosing the zero or —(1)? transitions
(for all 7) in such a way that the bits representing the weight v[i] are all set to 0. What

remains in G’ as the accumulated weight is then the value (0) which consists only of the
separation symbols. From here Player 1 takes the transition with weight —(0), setting
the accumulated weight to zero, and wins by performing the transition labeled with
+B (which is possible only if the accumulated weight is exactly zero) and repeatedly
performing in g5 the self-loop with weight zero.

On the other hand, assume that a play in G causes the accumulated weight in some
coordinate 7, 1 < ¢ < k, to get out of the bounds; we shall argue that Player 2 has a
winning strategy in G’ in this case. Should this happen during a transition from ¢ to ¢’
in GG, then in G', Player 2 will simply move from the intermediate state ¢; to g2, while
the counter value of size b is added to the most significant bits of the accumulated weight
via adding the number (b)*1. It is clear that it is possible to move from go to g5 only
if the accumulated weight is exactly (0). In order to achieve this value, the accumulated
weight needs to be decreased exactly b times via taking the loop ¢2,¢s, ..., qrr3, Q2-
Because of Remark 1 we can see that only the bits relevant to each weight coordinate
were changed before entering the loop, so it is impossible to zero all bits corresponding

to the coordinate ¢ while preserving the separation bits 10. |

Theorem 5. The problem ELU is polynomial time reducible to ELU(2).

Proof. The reduction idea is similar to the one in the proof of Theorem 4. The main
complication is that Player 2 has no states in control, hence checking the underflow
and overflow of weights has to be performed without resorting to an opponent. As the
original weight values are destroyed during such a check, we need to employ a second
weight for saving them.

Let A = (Q, qo, —) be a k-weighted automaton and b the upper bound vector for the
ELU problem. We construct a corresponding 2-weighted automaton A" = (@', ¢s, —).

54

4. Reductions among Energy Games

(=1,0,...,0) ~-- ~(0,0,...,—1)
q q q M G2 q
[® v @ @

(@[1], ..., a[k]) (@[1],...,@[k]) g (27,27, ...,27) (=27, —2", ..., —2")

Figure 7.: Simulation of a transition in a LW game by a LU game

Let w denote the weight vectors in A and o[1], 9[2] the two weights in A’. As before for
an input automaton of size n we may assume that all weights in A have the same upper
bound b = (b,b,...,b) where b < 2"

The upper bound & for the ELU(2) problem in A’ is given by &' = (max, (max)**! +
max) with max = (b)**1 4 (b). The reason for reserving twice as many bits in the second
weight is that we need to save there two copies of the first weight. Figure 6 shows how

to simulate one transition in A by a number of transitions in A’. From the newly added

e .. 0),0
initial state g, we also add the transition g, M qo which inserts the separation strings

‘10" into the first weight.

We shall now argue that the automaton A’ faithfully simulates A. We will examine
the effect of the sequence of transitions between ¢ and ¢’ added to the automaton A’
(here numbered with (i), (ii), ..., (ix) for convenience) and argue at the same time that
the part of the run between ¢ and ¢’ in A’ is uniquely determined. By construction,
v[2] will be zero when entering ¢, and then the transition (i) adds the encoded weights
of the original transition in A to o[1]. Transition (ii) will add the upper bound to v[1],
hence before this, we need to take the loop with weight (—1, 1+ (1)*!) until ¥[1] equals
zero, thereby copying twice the value of ©[1] to ©[2] (first copy in the less significant bits,
second copy in the more significant bits). After the transitions (ii) and (iii), v[1] is then
again at zero. Now transition (iv) wants to add the upper bound to the most significant
bits of ©[2], hence before this, we need to take the loop with weight (1, —(1)**1) until the
value of the most significant bits in ¥[2] is copied to ©[1], thereby restoring the original
weight in o[1].

After the transitions (iv) and (v), we are in a situation where both coordinates in the
accumulated weight store the same number, and we can afford to destroy the second copy
during the verification phase for bound overflow /underflow performed by transitions (vi),
the long loop, and transitions (vii), (viii) and (ix). This is identical to the construction in
the previous proof (except for the extra coordinate v[1] which is not updated). Provided
that no violation of bounds was detected, we will reach ¢’ with ©[1] encoding the weight
vector of A at ¢’ and ©[2] equal to zero.

Hence a transition between two states in A can be performed if and only if the sequence
of transitions between ¢ and ¢’ in A’ can be performed. As the reduction is clearly in
polynomial time, this concludes the proof. [|

The next theorem finishes our considerations about reductions between different vari-
ants of energy games.

25

A. Energy Games in Multiweighted Automata

Theorem 6. The problem GLW is polynomial time reducible to GLU, and ELW is
polynomial time reducible to ELU.

Proof. Let G = (Q1,Q2,qy, —) be a k-weighted game and let b be a given upper
bound vector for the GLW problem. We will construct a corresponding k-weighted
game G' = (Q},Q, qo,—>) where Q) = Q1 U {q1,¢2 | ¢ € @1} and @), = Q- that
simulates G.

As before we assume that the weak upper bound is b = (b, ...,b) and that b is repre-
sented using at most n bits, hence 0 < b < 2". The new upper bound for G’ is given as
b = (b,...,b") where b’ = 2" +b (in binary the most significant bit 1 is appended to the
binary encoding of b).

Each transition ¢ — ¢’ in G is simulated by a number of transitions in G’ as seen in
Figure 7. Moving from ¢ to ¢; adds w to the accumulated weights of G’ in exactly the
same way as in G. In ¢; Player 1 has the opportunity to decrement independently all
weight coordinates with an arbitrary value. The two last transitions from ¢; to ¢’ make
sure that in all coordinates all weights are no more than b, otherwise the upper bound
b is exceeded.

It is now clear that if Player 1 has a winning strategy in G, then it has a winning
strategy also in G’ by lowering all weights above b to exactly b in the state ¢;. On the
other hand, if Player 1 does not have a winning strategy in G, then it cannot win in G’
either. This can be observed by the fact that Player 1 is forced to decrement all weights
to at least b, and the player cannot benefit from decrementing them to any lower number
as this makes the position of Player 1 in the weak upper bound game only worse.

Since the reduction is clearly in polynomial time and it adds only existential (Player 1)
states, this concludes the proof. [|

Now, in combination with Theorems 4 and 5, we get the following corollary.

Corollary 7. The problems GLW and ELW are polynomial time reducible to GLU(1)
and ELU(2), respectively.

5. Summary of Complexity Results

The collection of complexity results and reductions between different types of energy
games and automata enables us to draw the conclusions presented in Table 1. Notice
that the LU problems are computationally easier than the L problems for an arbitrary
number of weights, even though they are harder than the L problems in the 1-weighted
case. The configuration space for the LU (and LW) problems is bounded (see Theorem 2),
whereas the same a priori does not apply to the L problem.

Observe also that any wuniversal problem with k weights can be solved by checking
the same problem for each coordinate independently. If the k-weighted problem violates
the bounds at some coordinate, so will do the 1-weighted problem projected on this
coordinate. On the other hand, if some coordinate in the 1-weighted problem violates
the bounds then so will do the k-weighted game, as the same run leading to the violation

o6

5. Summary of Complexity Results

Weights ‘ Type ‘ Existential ‘ Game ‘
One L € P [BFL108] € UP N coUP [BFLT08]
LW € P [BFLT08] € NP N coNP [BFLT08]
LU NP-hard [BFLT08], EXPTIME-complete [BFLT08]
€ PSPACE [BFLT08]
Fixed L NP-hard, EXPTIME-hard,
(k>1) € k-EXPTIME [BJK10] (Rem. 2) | € k-EXPTIME [BJK10] (Rem. 3)

LW NP-hard, € PSPACE (Rem. 4) | EXPTIME-complete
PSPACE-complete for k > 4 (Rem. 5)

LU PSPACE-complete (Rem. 4) EXPTIME-complete (Rem. 5)

Arbitrary | L EXPSPACE-complete EXPSPACE-hard (from EL)
(Thm. 2) decidable [BJK10]

LW PSPACE-complete (Thm. 2) EXPTIME-complete (Rem. 5)
LU PSPACE-complete (Thm. 2) EXPTIME-complete (Rem. 5)

Table 1.: Complexity bounds; results obtained in this paper are in bold

in one coordinate leads to a violation in the k-weighted game (unless the violation occurs
in some other coordinate before that). As AL(1), ALW(1) and ALU(1) are decidable
in P [BFL708], this implies polynomial upper bounds also for all the other k-weighted
universal problems.

Remark 2. The problem ELU(1) is NP-hard, and Theorem 3 implies NP-hardness for
EL(2). The upper bound follows from the game version of the problem (see also Re-
mark 3).

Remark 3. The lower bound follows from EXPTIME-hardness of GLU(1) and Theorem
3. The upper bound is due to a result in [BJK10] showing (k—1)-EXPTIME containment
for GL(k) but for games where weight updates are only +1, 0, and —1. We can reduce
updates with arbitrary weights into this setting by standard techniques (introducing
intermediate transitions which repeatedly add or subtract 1) but this causes an expo-

nential blowup in the size of the system. Hence the complexity upper bound increases
by one exponent to k-EXPTIME.

Remark 4. The PSPACE upper bound follows from the results for an arbitrary number
of weights (Theorem 2). The PSPACE lower bound for ELU(2) is due to the reduction
in Theorem 5 and PSPACE-hardness of ELU. By using Theorem 3 we get PSPACE-
hardness for ELW (4) because ELU(2) is PSPACE-hard, and we also get NP-hardness of
ELW (2) as ELU(1) is NP-hard.

Remark 5. The upper bound for GLU follows from Theorem 4 and the EXPTIME upper
bound for GLU(1); the upper bound for GLW follows additionally from Theorem 6. The
lower bound for GLU is obvious and for GLW it is by Theorem 3 and the EXPTIME-
hardness result for GLU(1).

o7

A. Energy Games in Multiweighted Automata

6. Parameterized Existential Problems

In this section we shall focus in more detail on the existential one-player energy games.
So far we have studied decision problems where both the initial weight vector and the
upper bound were given as a part of the input. We will now consider parameterized
versions of the problems where, given a weighted automaton, we ask whether there is
some initial weight vector 7y (and some upper bound b in case of ELU and ELW) such
that the automaton has a run where the accumulated weight satisfies the constraints
imposed by the respective variant of the problem.

Recent work by Chatterjee et al. [CDHR10] proves that the parameterized version of
the EL problem, asking if there is an initial weight vector such that the accumulated
weight of some run in the automaton stays (component-wise) above zero, is decidable
in polynomial time. Perhaps surprisingly, this result contrasts with our EXPSPACE-
hardness result for the EL problem where the initial weight vector is fixed. An interesting
fact, using Lemma 1, is that by the result of [CDHR10], it is also decidable in polynomial
time whether there is an initial marking such that a given Petri net has an infinite run.

The situation can be, however, different when considering the problems ELU and
ELW. Depending on whether the parameterized upper bound b is allowed to appear as
a weight in transitions of the given weighted automaton (see Section 1 for an example
where the upper bound appears as a weight), we shall show below that the problem is
either decidable in polynomial time or undecidable.

We present first the positive result. Its proof is based on a polynomial time algo-
rithm for zero-weight cycle detection in multiweighted automata by Kosaraju and Sul-
livan [KS88], and we acknowledge [CDHR10] where we found a pointer to this result,
which is mentioned there in connection with the parameterized EL problem.

Theorem 8. The parameterized ELU and ELW problems where the upper bound param-
eter does not appear as a weight in the underlying weighted automaton are decidable in
polynomial time.

Proof. We shall first focus on the ELU problem. Notice that a parameterized ELU
problem has an infinite run (go, %), (q1,71),... where 0 < v; < b for all i and some b
if and only if there are two indices j < k such that (g;,v;) = (qx, 0). In other words,
there is a cycle such that the accumulated weight on that cycle is exactly 0. A result
in [[KS88] shows that the existence of such zero-weight cycle is decidable in polynomial
time.

Assume without loss of generality that the given weighted automaton contains only
states reachable (while disregarding the weights) from the initial state go. It is now clear
that if the weighted automaton contains a zero-weight cycle then the parameterized
ELU problem has a solution by choosing an appropriate initial weight vector vy and a
sufficiently large upper bound b which enables us to execute the whole cycle plus reach
the cycle from the initial pair (gg, 7). On the other hand, if there is no zero-weight cycle
then the parameterized ELU does not have a solution, as for any choice of 7, and b,
every run will eventually violate either the lower bound or the upper bound.

o8

6. Parameterized Existential Problems

By similar arguments, it is easy to see that a parameterized ELW problem has a
solution if and only if the weighted automaton contains a nonnegative-weight cycle. To
check for the existence of such a cycle in polynomial time we can use the trick described
in [CDHR10]. We simply add to each state in the automaton a number of self-loops with
weights (—1,0,...,0), (0,—1,0,...,0), ...(0,...,0,—1) and then ask for the existence
of a zero-weight cycle. [

However, if the upper bound can appear as a weight, we get undecidability.

Recall that a Minsky machine with two nonnegative counters ¢; and ¢, is a sequence
of labeled instructions 1 : insty; 2 : insty; ...,n : inst, where inst, = HALT and each
inst;, 1 <4 < n, is of one of the following forms:

(Inc) itcj :=c¢; +1; goto k
(Test-Dec) i: if ¢; = O then goto k else (¢; := ¢; - 1; goto /)

for j € {1,2} and 1 < k,¢ < n. Instructions of type (Inc) are called increment instruc-
tions and of type (Test-Dec) are called test and decrement instructions. A configuration
is a triple (i, vy, v9) where i is the current instruction and vy and vy are the values of the
counters ¢; and ¢y respectively. A computation step between configurations is defined in
the natural way. If starting from the initial configuration (1,0,0) the machine reaches
the instruction HALT then we say it halts.

It is well known that the problem whether a given Minsky machine halts is undecid-
able [Min67].

Theorem 9. The parameterized ELU(2) and ELW(4) problems where the upper bound
parameter can appear as a weight in the underlying weighted automaton are undecidable.

Proof. We provide a reduction from the undecidable halting problem of Minsky ma-
chines [Min67] to ELU(3). Let 1 :insty; 2 :insty; ..., n : inst, be a Minsky machine over
the nonnegative counters ¢; and c3. We construct a 3-weighted automaton (Q, gy, —)
where @ = {g¢i,¢, | 0 < i < n} and where the initial weight vector ¥y and the upper
bound b are parameterized. The intuition is that the first and second coordinates will
record the accumulated values of counters ¢; and co, respectively, and the third coordi-
nate will be used for counting the number of steps the machine performs. The transitions
are of four types:

+b b
L.g—q¢ —

2. For each instruction ¢: ¢; := ¢; + 1; goto k, we add the transitions
1,0,+1 o 0,41,+1 e .
qu—+)>qklfj:1, andqi(Jr—+)>qk1fj:2.
3. For each instruction i: if ¢; = 0 then goto k else (¢; := ¢; - 1; goto £),
we add the transitions

g RO,) CHUOAD, o ond g S22, 0, if = 1, and

29

A. Energy Games in Multiweighted Automata

.« (0,45[2],0) y (0,-B[2),+1), o and g, (0,—1,41) witi=2.

4. Finally, we add the loop ¢, M Gn-

It is now easy to argue that the constructed 3-weighted automaton has an infinite run
if and only if the Minsky machine halts.

From Theorem 5 we get that ELU(3) is reducible to ELU(2), hence the parameterized
existential problem is undecidable for vectors of dimension two. By Theorem 3 we can
reduce ELU(2) to ELW (4), which implies the undecidability of the problem also for weak
upper bound and weight vectors of size at least four. |

The parameterized problems ELU(1) and ELW (k) for 1 < k < 3 where the upper
bound parameter can appear in the automata are open.

7. Extension to Timed Automata

It is natural to ask for extensions of the results presented in this article to multiweighted
timed automata and games [ATP04, BEHT01].

Formally a k-weigthed timed automaton is defined as follows. Let ®(C') be the stan-
dard set of (diagonal-free) clock constraints over a finite set of clocks C' given by con-
junctions of constraints of the form x < ¢ with z € C, ¢ € Z, and < any of the relations
<, <, =,>,and >.

A k-weighted timed automaton is a tuple T' = (L, ¢y, C, E, r,w), where L is a finite set
of locations, ¢, € L is the initial location, C'is a finite set of clocks, E C Lx®(C)x2° x L
is a finite set of edges, and r : L — ZF, w : E — Z* assign weight vectors to locations
and edges.

Note that we allow weight updates on edges here; as shown in [BFLM10], this can
have a significant influence on the complexity of the problems one wants to consider.

We also use the standard notation v |= g for the fact that a valuation v : C' — Rxg
satisfies the clock constraint g € ®(C'), v+t for the valuation given by (v+t)(x) = v(z)+t,
and v[R] for the valuation with clocks in R reset to value 0.

The semantics of a k-weighted timed automaton is now given by a k-weighted au-
tomaton with states @ = L x R, and transitions

(6,0) "8 (6,0 + 1) for all t € Rsg (delay),
(¢, v) el (¢',0") for all e = (¢, g, R, 0') € E s.t. v = g and v' = v[R] (switch).

We recall the fact that weights on delay transitions may be non-integer real numbers;
formally we have to change the definition of a k-weighted game to allow an infinite
weighted transition relation — C @ x RF x Q. A run in a multiweighted timed
automaton is a sequence of alternating switch and delay transitions in the corresponding
multiweighted automaton.

60

7. Extension to Timed Automata

5,0 —5,0 —5,0 5,0
(~6,0) 5.0 (1,0) (5.0 (30,0)()(—1,0) 5.0 (=n.0) =

Zl 22 €3

z:=0
Figure 8.: The module for incrementing (n = 3) and decrementing (n = 12)

For the case with one weight and one clock only, extensions to timed automata have
been discussed in [BFLM10, BFL708]. In [BFL708] it has been shown that the GLU(1)
problem is already undecidable for one-clock multiweighted timed automata. By an
adaptation of the technique introduced in [BFL708], we can prove that the existential
problem ELU with two weights and one clock is also undecidable. As the reductions from
Theorem 3 apply also to timed automata, we altogether get the following undecidability
results.

Theorem 10. The problems ELU(2), EL(4) and ELW(4), and GLU(1), GL(2) and
GLW(2) are undecidable for one-clock multiweighted timed automata.

Proof of Theorem 10. We start by proving the case of ELU(2). The proof is by reduction
from Minsky machines to multiweighted timed automata, based on the technique of the
proof of Theorem 17 in [BFLT08]. We construct a one-clock 2-multiweighted timed
automaton 7T that simulates a Minsky machine such that the Minsky machine loops if
and only if 7" is a positive instance of the ELU(2) problem.

The values ¢y, ¢o of the counters will be encoded by the accumulated weight vector
w=(5—275-2"2) and T will start with an initial weight vector of vy = (4,4), and
the upper bound vector is b = (5,5).

In order to simulate the instructions of the Minsky machine we now describe two
different modules of T'.

Increment and decrement: Figure 8 shows the general module used for incrementing
and decrementing counter c;; by interchanging the two weights one obtains the module
for ¢o. Note that the second component w[2] of the weight vector is not changed in the
module, and we assume that w[l] = 5 — e when entering the module and 0 < en < 30.
We now prove that when exiting the module, w[1] =5 — %.

Any legal run must decrease w|[1] to value 0 while delaying in ¢; (otherwise adding 5

to w[1] in the following transition exceeds the upper bound), hence the clock z has the

value % when leaving ;. We cannot delay in the next location, as this would exceed
the upper bound, hence we arrive in ¢ with x = % and w[1] = 0. We must delay in

{5 until w[1] has the value 5, otherwise the following transition would exceed the lower

bound, hence the delay in {5 is precisely /6 time units. Location ¢3 is thus entered with
r=1—¢ and w[1] = 5, and after delaying for ¢/6 time units, w[1] =5 — <.

Hence instantiating n = 3 converts an input of w[l] = 5 — e to w[l] = 5 —
incrementing counter c¢;. Likewise, for n = 12 counter ¢; is decremented.

5, thus

The test-decrement module: We have shown how to implement a module which
increments a counter, so we miss to construct a module performing the instruction

61

A. Energy Games in Multiweighted Automata

W (1,0) (oo (=1,0)

Figure 9.: The test-decrement module

if ¢4 = 0 then goto k else (c; := ¢; - 1; goto ¢). This module is displayed in
Figure 9; the construction for the corresponding ¢, module is symmetric.

We now argue that the module acts as claimed. If ¢; = 0 when entering, i.e. w[l] = 4,
then the upper path can be taken, leading to Module m;, with counter value ¢; = 0 (and
¢o unchanged). On the other hand, attempting to take the lower path exits the Dec
module with a value w[1] = 3, hence the following transition leads to a violation of the
lower bound.

If ¢; > 1, i.e. w[l] > 4.5, when entering the module, then the (1,0) transition in the
upper path will violate the upper bound. In the lower path, the Dec module is left with
w[1] > 4 and ¢; decreased by one, hence Module m, is entered with the correct ¢; value.

We have shown how to faithfully simulate a Minsky machine by a one-clock 2-
multiweighted timed automaton such that the Minsky machine has an infinite com-
putation if and only if the timed automaton has an infinite alternating run.

By undecidability of the halting problem for Minsky machines, this concludes the
proof for the case of ELU(2).

For the case of EL(4) and ELW (4) we observe that the construction in the proof of
Theorem 3 can be adapted also to multiweighted timed automata. Given a k-weighted
timed automaton T = (L, ¢, C, I, E,7,w) and an upper bound vector b, we construct a
2k-weighted timed automaton 7" = (L', ¢, C, I' E',r',w') with L' = LW {{}, I'({) =
I(¢) for ¢ € L, I'((y) = (Nyec® = 0), E' = EU{({), (N,ec® =0),0,4)}, () =0,

and

r'(0) = (F[1],...,7[k],—7[1],..., —7[k]) for £ € L and 7 = r(¢),
w'(l, g, R, 0) = (w[1],. U_)[/f] wll],..., —w[k])
or (¢, g, R,ﬁ’) € Fand w=w(l,g,R,),
w,(fé,g,R,Eo):(O,...,O 7[] B[D

Then T is a positive instance of the ELU problem with an upper bound vector b if and
only if 7" is a positive instance of the EL or ELW (with weak upper bound vector b)
problems. The claim then follows from Theorem 10.

The results for the game versions of the problems follow from undecidability of GLU(1)
[BELT08] together with Theorem 3. [|

62

8. Conclusion and Future Work

8. Conclusion and Future Work

We have presented an extension of different types of energy games to a setting with
multiple weights and established a comprehensive account of the complexity of these
problems. To derive our results, we have demonstrated a close connection of these
problems with infinite run problems in Petri nets, together with a number of reductions
between different variants of multiweighted energy games. We have also studied a param-
eterized version of these problems and shown that depending on the precise statement
of the problem, it is either solvable in polynomial time or undecidable. Finally, we have
demonstrated that for the timed automata extension of energy games, the lower and
upper bound existential problem is undecidable already for one clock and two weights.

There are two main problems left open. The first one deals with settling the complex-
ity of the one-weight lower and upper bound existential problem, which is only known to
be between NP and PSPACE. This is closely related to the lower bound and weak upper
bound problems with a fixed number of weights. The second problem deals with the com-
plexity of energy games with lower bound only, as the present upper complexity bound
depends on the number of weights and does not have a matching lower bound. Further
extensions with e.g. different acceptance conditions and the optimization problems are
also of future interest.

63

Optimal Bounds for Mult
and Parametrised Energ

Line JUHL Kim G. LARSEN

Aalborg University, Department of Computer Science, Denmark

Jean-Francois RASKIN

Unwversité Libre de Bruxelles, Belgium

Abstract Multiweighted energy games are two-player multiweighted games that con-
cern the existence of infinite runs subject to a vector of lower and upper bounds on the
accumulated weights along the run. We assume an unknown upper bound and calculate
the set of vectors of upper bounds that allow an infinite run to exist. For both a strict
and a weak upper bound we show how to construct this set by employing results from
previous works, including an algorithm given by Valk and Jantzen for finding the set
of minimal elements of an upward closed set. Additionally, we consider energy games
where the weight of some transitions is unknown, and show how to find the set of suitable
weights using the same algorithm.

64

1. Introduction

1. Introduction

Energy games have recently attracted considerable attention [BFLM10, BELT08, BJK10,
CAAHS03, Chal0, CD10, CDHR10, DDG"10, FJLS11]. An energy game is played by
two players on a weighted game automaton. Player 1 is winning if he has a strategy
such that all infinite runs respecting this strategy has nonnegative accumulated weight
at all times. A variant of energy games furthermore requires an upper bound that the
accumulated weight must stay below at all times in order for Player 1 to win. The upper
bound can also be weak, implying that all accumulated weights going above are simply
truncated. As embedded systems are often resource-constrained systems exhibiting a
reactive behaviour, energy games are relevant for ensuring that the resource of the system
never becomes unavailable no matter the choices of the environment. Multiweighted
energy games, where the weights of the automaton are vectors, are useful for modelling
systems that depend on more than one resource.

In this paper we consider multiweighted energy games with unknown upper bound
(both strict and weak) and fixed initial value. When considering the existence of a
vector of upper bounds such that Player 1 is winning, it is from an engineering viewpoint
relevant to construct the actual vector instead of giving a boolean answer to the problem.
We therefore seek to construct the exact set of upper bounds that make Player 1 win the
energy game. We will denote such upper bounds as winning. For both types of upper
bounds it is clear that if some vector of upper bounds is winning, then also coordinate-
wise larger vectors are winning. In order to characterise the set of winning upper bounds,
it is thus sufficient only to find the smallest vector of winning upper bounds. However,
< is not a total order on Z* for k > 1, so instead of a unique smallest vector we search
for the set of smallest incomparable vectors winning for Player 1.

To motivate the study, let us consider a small example of an automatic vacuum cleaner.
The machine has a rechargeable battery and a container for the dust it collects. As we
are interested in a behaviour that never empties the battery nor completely fills the dust
container, it can be modelled using a 2-weighted energy game as seen in Figure la. The
vector attached to each transition denotes the change in battery (first coordinate) and
container level (second coordinate). The diamond state is controlled by Player 1 while
the square state is controlled by the environment, as the vacuum cleaner does not control
how dirty the floor is when vacuuming.

The lower bound of the two resources are naturally 0, while the upper bound corre-
sponds to the size of the battery and container, respectively. For a manufacturer it is
useful to know what size he can possible make the battery and the container in order to
ensure an infinite run. The set of minimal winning upper bounds consists in this case of
the vectors (6,2) and (5,3). The upper bound vector (6, 2) keeps the container as small
as possible, while the upper bound vector (5,3) keeps the battery as small as possible.
Surely, the first coordinate of an upper bound cannot be smaller than 5, as charging
adds 5 to the accumulated weight in the first coordinate. Similarly, the second coordi-
nate cannot be smaller than 2, as a very dirty floor adds 2 to the accumulated weight in
the second coordinate. The winning strategy for Player 1 can be seen in Figure 1b for
(6,2) and Figure lc for (5,3). Any vector larger than one of the minimal vectors will

65

B. Optimal Bounds for Multiweighted and Parametrised Energy Games

(_ 1) 2)
very dirty

(a) A vacuum cleaner 2-weighted game

if battery > 1 and container > 1 if battery =0
then empty then charge

else if battery > 2 and container =0 else if battery > 2 and container < 1
then vacuum then vacuum

else charge else empty

(b) A winning strategy for Player 1 with up- (¢) A winning strategy for Player 1 with up-
per bound (6, 2) per bound (5, 3)

Figure 1.: A vacuum cleaner example

also serve as a winning upper bound.

Contributions. For multiweighted energy games with an unknown upper bound (both
strict and weak) and fixed initial value we calculate the set of minimal upper bounds
such that the energy game is winning. For a strict upper bound we make use of results
from [BJK10] and [FJLS11] in order to construct the set, yielding an algorithm running
in 2k-exponential time. In the case of a weak upper bound we utilise an algorithm
given by Valk and Jantzen in [V.J84], that constructs the set of minimal elements of an
upward-closed set (the so-called Pareto frontier), by showing that the preconditions for
applying the algorithm are fulfilled. The relevant definitions are given in Section 2, while
Section 3 and Section 4 treat the cases of a weak and a strict upper bound, respectively.

Furthermore we study a related problem in Section 5, where we consider multiweighted
energy games where both the initial value and the upper bound (if any) are known,
but where some weights of the transitions are unknown. We call these parametrised
transitions. We here seek to characterise the set of possible evaluations for the parameters
such that Player 1 can win the energy game. For a weak upper bound, it is again sufficient
to construct the set of minimal evaluations such that Player 1 is winning, and we are
once again able to apply the algorithm from [V.J84] to construct the set.

Related Work. Previously energy games have been considered in different settings.
One-weighted energy games with both upper and lower bounds were defined in [BFL08].
Here they study the existence of a winning strategy for Player 1 for a fixed initial value
and fixed upper and lower bound and provide bounds on the complexity for the identified
problems both in a timed and untimed setting. The paper [FJL.S11] extends the results

66

2. Multiweighted Energy Games

from [BFL708] to the multiweighted case. The work of [CDHR10] treats multiweighted
energy games with only a lower bound and show that deciding whether there exists a
vector of initial values for the resources such that Player 1 can win the energy game is
coNP-complete and that only finite-memory strategies are sufficient. In [BJK10] they
give a procedure running in (k — 1)-exponential time that calculates the Pareto frontier
of winning initial vectors in multiweighted energy games with k weights, a lower bound
and unary weights on transitions (vector addition systems with states). For energy
games with imperfect information and fixed initial value, the paper [DDG™10] proves
decidability of the problem, but undecidability in case the initial value is not fixed.

2. Multiweighted Energy Games

In this paper, we let Z