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Abstract

This thesis deals with a wide range of topics within the research area of advanced
baseband receiver design for wireless communication systems. In particular, the work
focuses on signal processing algorithms for receivers in multiple-input multiple-output
(MIMO) orthogonal frequency-division multiplexing (OFDM) systems, with a particu-
lar emphasis on the 3rd Generation Partnership Project (3GPP) Long Term Evolution
(LTE) standard as a study case.

Signal processing in wireless receivers can be designed following different strategies.
On the one hand, one can use intuitive argumentation to define the structure of the
receiver with the hope that the resulting heuristic architecture will exhibit the desired
behavior and performance. On the other hand, one can employ analytical frameworks
to pose the problem as the optimization of a global objective function subject to certain
constraints. This work includes contributions based on both types of approaches.

Our work on analytical frameworks is mainly focused on tools from variational
Bayesian inference in probabilistic models and, more specifically, the mean-field (MF)
and belief propagation (BP) methods. Within this context, one of our main contribu-
tions is the derivation of a novel message-passing scheme combining the MF and BP
frameworks; the algorithm is derived from the stationary points of a region-based free
energy approximation, and is guaranteed to converge if the underlying probabilistic
model satisfies certain conditions. Moreover, we apply the combined message-passing
algorithm to the probabilistic model of a MIMO-OFDM system; from the general
derivation of the messages in the model, several instances of receiver structures with
varying degrees of computational complexity and performance are obtained. We also
explore the applicability of MF methods to the problem of estimation of sparse signals.

Among the contributions within the area of heuristic approaches, we highlight our
study of iterative MIMO detection, interference cancellation and decoding for LTE
systems. A detailed study of channel estimation algorithms for OFDM is also provided,
including both pilot-based and data-aided schemes.
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Dansk Resumé

Denne afthandling omhandler en rackke emner indenfor forskningsomradet for avanceret
design af modtagere til tradlgse kommunikationssystemer. Arbejdet fokuserer navnlig p
signalbehandlingsalgoritmer til modtagere i ”multiple-input multiple-output” (MIMO)
"orthogonal frequency-division multiplexing” (OFDM) systemer og har seerlig fokus
pa‘“3rd Generation Partnership Project” (3GPP) “Long Term Evolution” (LTE) stan-
darden.

Signalbehandling i tradlgse modtagere kan designes efter forskellige strategier. Paden
ene side kan der bruges intuitive argumenter til at definere strukturen af modtageren
med habet om, at den resulterende heuristiske arkitektur vil udvise den gnskede adfserd
og prstationer. Paden anden side kan der anvendes analytiske tilgange til at fremsaette
problemet som optimeringen af en global funktion underlagt visse sidebetingelser. Dette
arbejde omfatter bidrag baseret p begge tilgange.

Vores arbejde med den analytiske tilgang er hovedsageligt fokuseret paveerktejer til
“variational Bayesian inference” i sandsynlighedsteoretiske modeller og - mere speci-
fikt - metoderne “mean field” (MF) og “belief propagation” (BP). I denne sammen-
haeng er en af vores vigtigste bidrag udledningen af en ny besked-baseret algoritme,
der kombinerer MF og BP. Algoritmen er udledt pabaggrund af stationsere punkter i
en region-baseret fri energi tilnszermelse og er garanteret at konvergere, hvis den un-
derliggende probabilistiske model opfylder visse betingelser. Endvidere, anvender vi
den kombinerede besked-baseret algoritme til den probabilistiske model af et MIMO-
OFDM system. Igennem den generelle udledning af beskederne i modellen, opnas der
flere eksempler pastrukturen i modtageren med varierende grader af beregningsmaes-
sig kompleksitet og ydeevne. Vi undersgger ogsaanvendeligheden af MF metoder til
problemet med estimering af signaler, som har egenskaben “sparse”.

Blandt bidragene indenfor heuristiske metoder, fremhver vi vores undersggelse af
iterativ MIMO-detektion, interferens annullering og afkodning til LTE-systemer. En de-
taljeret undersggelse af algoritmer til kanalestimering i OFDM systemer er ogsafremlagt,

herunder bade pilot-baseret og data-stgttet lgsninger.
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Introduction

In this introductory chapter, we begin by succinctly discussing the rapid evolution of
wireless communication systems over the last two decades. Next, we turn our attention
to the influence that this evolution has in the current research challenges in the field
of baseband receiver design, which is the main topic of this thesis. Finally, a brief

overview of the organization of the thesis is provided.

1.1 Modern Wireless Communication Systems

Wireless communication systems have been subject to a drastic transformation during
the last twenty years. From the old analog systems, focused exclusively on providing
voice communication services, wireless technology has undergone a steep evolutionary
path which has lead to today’s wireless broadband systems, offering a wide range of
multimedia services. A conceptual graph describing this evolution in terms of the data-
rates and mobility degrees supported by various wireless communication standards is
depicted in Figure 1.1. From the figure, it becomes apparent that a common trend
has been driving the development of mobile wireless systems: a strive for higher data
rates, even in high mobility scenarios. As an illustration, the International Telecommu-
nication Union - Radiocommunication Sector (ITU-R) sets the target peak data-rate
requirements for 4G systems, e.g. the Long Term Evolution-Avanced (LTE-A) sys-
tem [1], at 100 Mbps for users moving at vehicular speeds and 1 Gbps for low-mobility

users [2].
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Figure 1.1: Conceptual graph of the current wireless standard landscape.

While increased data-rates have indeed been the ultimate goal in the design of wire-
less systems, there are other important requirements that a modern wireless standard

should fulfil. In the following, we list and discuss some of them [3]:

High spectral efficiency: radio spectrum is a scarce and expensive resource that
must be shared among users of a communication systems. It is therefore of
crucial importance to make an efficient use of it, so that more users can be served

with higher data rates for a given portion of bandwidth.

Reduced latency: the proliferation of interactive, real-time services like video-conferencing
or multi-player internet gaming calls for reduced round-trip times compared to

previous systems.

All-IP architecture: the transition of mobile systems to an all-IP based core network
enables PC-like services and better interworking with fixed networks and other

mobile standards.

Interworking: interworking with other fixed and mobile networks is required in order
to advance towards network convergence, with different radio-access technologies

providing access to a global, technology-transparent network.



1.2 Challenges in the Area of Baseband Receiver Design

Spectral Flexibility: besides being scarce and expensive, the radio spectrum is also
highly fragmented due to the coexistence of very diverse systems and different
local regulations. Thus, it is paramount for modern standards to be scalable
in bandwidth, i.e. allowing deployment over wide as well as narrow bandwidth

allocations.

1.2 Challenges in the Area of Baseband Receiver Design

In the previous section, we have briefly sketched some basic goals and requirements
driving the progress of wireless communications during the recent years. From this
general view, we now limit our scope to discuss the impact that these goals and re-
quirements have on the design of wireless receivers.

The goal of a digital wireless receiver is, very generally, to estimate the value of a
sequence of bits sent by the transmitter (or transmitters) from the digitalized baseband
signal received at its antenna port(s). The quality of a receiver is commonly measured
by the probability that its estimates of the bit values coincide indeed with the originally
transmitted bits. Given a fixed transmission rate, a higher-quality receiver will make
less bit errors than a poorer-quality receiver; or, from another point of view, a higher-
quality receiver will be able to detect without error signals transmitted at a higher rate
compared to a poorer-quality receiver. Thus, the design of high-performance receivers
is crucial to enable systems with high spectral efficiency and, consequently, high data-
rates.

Conceptually, this very basic goal in the design of wireless receivers has remained
unchanged since the emergence of the first digital wireless standards. The receiver ob-
jective is to estimate the transmitted bit sequence given its received signal, regardless
of the type of system in which it is operating. It is, however, the relation between the
transmitted bit sequence and the received signal what is essentially different from one
communication standard to another. This relation is defined by, among others, the
type of transmission technology used, the type of complex modulations employed, the
encoding schemes, the propagation environment, etc; in short, it is basically defined by

the physical layer parameters of the system at hand. Therefore, while the conceptual
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task of a receiver is independent of the type of communication system, the specific op-
erations that are required in order to accomplish this task are very strongly determined
by the system’s physical layer design.

The above discussion leads us to the conclusion that, in order to understand the
challenges present in the design of receivers for current wireless standards, one needs
to understand the main technological advances that have been included in the physical
layer design of said standards. In the following, we briefly enumerate and discuss the, in
our view, most important physical-layer developments that have lead to the definition

of today’s mobile communication systems.

Multiple-input multiple-output (MIMO) antenna techniques: using multiple an-
tenna elements at the transmitter, the receiver or both ends is a very effective
way of increasing the reliability of a transmission, its data-rate or a combina-
tion of the two [4]. Theoretically, the capacity of a wireless link grows linearly
with the minimum of the number of antenna elements at the transmitter and
the receiver [5]; in practice, however, very efficient receivers, with the ability to
accurately estimate the MIMO channel and work with advanced channel codes,

are required in order to attain the capacity predicted by theory.

OFDM-based air interface: orthogonal frequency-division multiplexing (OFDM) and
closely related techniques (like single-carrier frequency-division multiplexing or
multi-carrier CDMA) have become the technology of choice for most modern
wireless standards [3,6]. Their flexibility and scalability in terms of bandwidth
allocation, their ability to effectively cope with the channel temporal dispersion
with simple equalization and their easy integration with MIMO techniques are

some of the main reasons motivating this choice.

Advanced channel codes and high-order modulation: very important advances
have been made in the field of coding theory in the last two decades with the
emergence of turbo codes [7] and the popularization of low-density parity check
(LDPC) codes [8]. These coding schemes allow for transmission very close to
the theoretical capacity in an additive white Gaussian noise (AWGN) channel,
but require iterative decoding schemes in order to do so. In addition, the use of
high-order quadrature amplitude modulations, like 64-QAM or even 128-QAM,
further help boosting the spectral efficiency of the system.



1.3 Structure of the Thesis

Given the physical layer mechanisms described above, we can already define which
the main challenges present in the design of modern wireless receivers will be. First,
the deployment of efficient MIMO detection techniques is required; to that end, high
quality channel estimators for OFDM systems are necessary; and, moreover, these
functionalities should be adequately integrated with iterative channel decoders and
high-order demodulators. Additionally, all these operations must be designed under
the constraint of a limited computational capability, especially for hand-held receivers.

It is clear that these challenges do not have an easy solution, and various different
strategies to approach the problematic have been proposed so far. We will momentarily
stop the discussion here and re-take it in Chapter 2, where we classify and summarize
some of the most relevant steps made by the research community in order to answer

the many open questions in the field of wireless receiver design.

1.3 Structure of the Thesis

In this chapter, we have introduced the context of this thesis. We started by concisely
describing the main objectives driving the design of today’s wireless communication
systems and the most relevant technological advances in physical layer design enabling
the achievement of said objectives. In the remainder of this work, we explore strategies
for the design of advanced wireless receivers that can effectively operate in modern
systems and can cope with the challenges described in Section 1.2. The rest of this

thesis is organized as follows:

Chapter 2 gives an overview of the most relevant strategies for the design of wireless
baseband receivers proposed in literature in the recent years. From a simple
signal model of a MIMO-OFDM system, we discuss optimal and sub-optimal
design strategies. Among the latter, we classify the different approaches into
two different categories: heuristic designs and approaches based on analytical

frameworks.

Chapter 3 summarizes the message-update equations of two well-known message-
passing techniques: the sum-product algorithm and variational message passing.
Additionally, the message-update equations of the message-passing approach pro-

posed in Papers A and B are also provided.
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Chapter 4 briefly classifies and describes the main contributions of this work, which
are presented in the form of scientific articles published or submitted to interna-

tional conferences and journals.

Papers A—O are the articles described in Chapter 4, and they contain the main sci-

entific content of this thesis.



An Introduction to Baseband

Receiver Design

In this chapter, we introduce the general problem of baseband receiver design and
briefly summarize the main approaches that can be found in state-of-the-art research.
We begin by presenting a simple OFDM signal model which is used as an illustration
of the challenges found in the area of receiver design. Taking as a starting point
the optimum —but computationally intractable- maximum a posteriori (MAP) design
criterium, we scan the different suboptimal approaches that have been proposed in
literature in the recent years. We classify the strategies into two separate categories:

heuristic methods and formal inference frameworks.

2.1 A Simple Signal Model for OFDM Communications

Figure 2.1 shows the block-diagram representation of the transmitter part of a simple
MIMO-OFDM system with M transmit antennas, which may belong to a single or mul-
tiple users. For the mth transmit chain, a sequence of information bits u,, is encoded
and interleaved, yielding a sequence of coded bits ¢,,. The coded bit sequence is com-
plex modulated, producing a vector of modulated data symbols mﬁ,ﬂf’. The modulated
data symbols are multiplexed with a sequence of pilot symbols m,(f?. The value and
allocation of the pilot symbols are known to the receiver, and they are used (mainly)

to improve the accuracy of channel estimation on the receiver side. Finally, the trans-

mitted symbol vector «,, containing both data and pilot symbols is OFDM modulated
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Figure 2.1: Block-diagram representation of the considered OFDM system.

and transmitted through the wireless channel. We assume that the transmission from
all M different transmit antennas is perfectly synchronized in time and frequency.
Assuming that the channel response is static over the duration of an OFDM symbol
and that the cyclic prefix is long enough to cope with the temporal dispersion of the
channel, the signal received at the nth antenna port of a receiver with N antennas

reads

M
Un(k) = O hom(B)am (k) + wo(k),  k=1,.. Kn=1...N (21
m=1

where hy,,, (k) is the frequency-response weight of the channel between transmitter
m and receiver n at subcarrier k, w,(k) denotes zero-mean complex additive white
Gaussian Noise (AWGN) with variance o2 and K is the total number of subcarriers. We

can re-write (2.1) for all subcarriers and all receive antennas in matrix-vector notation:

M M
Y= Zthm—l—w:ZHmazm—l—w. (2.2)
m=1 m=1

In (22)7 Y= [y1(1)7 R 7y1(K)7 s 7yN(1)7 s 7yN(K)]T> Xm = IN®diag{mm}v H, =
[diag{h1im},...,diag{hym}]T and Rum = [Ram(1), ..., B (K)]T, with Iy and A ® B
denoting respectively the identity matrix of dimension N and the Kronecker product

between matrices A and B.
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2.2 Optimum Receiver and Suboptimum Approaches

The goal of a baseband receiver is to infer the value of the information bit vectors
uq,...,up from the received signal in (2.2). With this goal in mind, the probability
of incorrect detection is minimized by formulating a decision rule implementing the

maximum a posteriori probability (MAP) criterion [9]:

~T 1T

[al,. .. 4k = argmaxp(uy, ..., urly). (2.3)

Ui,..., UM

In (2.3), p(ui,...,up|y) denotes the conditional probability mass function (pmf) of
the information bit vectors given the observation in (2.2), and is commonly referred
to as the a posteriori pmf of the information bits. In the case in which all possible
combinations of information bits uy,...,uys are equally likely to be transmitted (i.e.,
the prior pmf p(w1,...,ups) is uniform), the MAP criterion simplifies to the maximum
likelihood (ML) decision criterion [9]:
Tt

[al,... a3 = argmax p(y|uy, ..., uy). (2.4)

Ui,..., UM

In (2.4), p(y|u,...,un) denotes the conditional pdf of the observation y given the
information bits, and is commonly referred to as the likelihood function when considered
as a function of wy,...,uys, i.e for fixed y.

While the MAP and ML criteria lead to a decision rule minimizing the probability
of error, direct maximization of either the a posteriori pmf in (2.3) or the likelihood
function in (2.4) is typically intractable or too computationally complex to be imple-
mented in modern wireless communication systems. This is due to the presence of
unknown parameters, such as the channel weight vectors hi,...,hy or the AWGN
variance o2, together with the use of QAM complex modulation schemes and advanced
channel codes. For some specific configurations, it is still possible to design a receiver
following the optimum design criterion (see [10]), but in general one must resort to
suboptimum approaches.

In the remainder of this chapter, we briefly discuss different strategies for the sub-
optimal design of baseband receivers for wireless communication systems in general
and with a special focus on MIMO-OFDM systems. We classify the strategies into two

main categories: heuristic approaches and formal inference frameworks. In the former,
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Figure 2.2: Block-diagram representation of a heuristic sequential receiver.

the receiver’s operation is split into multiple smaller tasks which are then solved in-
dividually and independently from the other tasks. In the latter, on the other hand,
the receiver’s operation is designed in a global manner by trying to approximate the

MAP/ML criteria in a structured and analytical way.

2.3 Heuristic approaches

Heuristic methods for baseband receiver design attempt to break down the general prob-
lem presented in Section 2.2 into smaller, simpler problems. Typically, they divide the
receiver’s operation into three main tasks: channel estimation®', MIMO detection and
single-user decoding. A conceptual block-diagram of a receiver sequentially performing
these operations is shown in Figure 2.2.

By performing this division of tasks, each of the individual problems becomes sim-
pler to solve. In fact, in many cases optimal solutions given a design criterion can be
found and computed in practice. Unfortunately, locally finding the optimum solution
for the individual tasks does not guarantee the computation of the globally optimum
solution. In the following, we give a brief overview of state-of-art methods performing
each of the tasks described in Figure 2.2, with special focus on their application to

MIMO-OFDM systems.

!By channel estimation we refer to the estimation of all unknown channel parameters, including

the complex channel weights and the AWGN variance.

10
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For OFDM systems, one of the first problems to be tackled by the research commu-
nity was the estimation of the frequency response of the wireless channel based on the
information provided by pilot symbols. Amongst the methods proposed in literature,
linear minimum mean-squared error (LMMSE) channel estimators exploiting the time-
frequency correlation of the channel response have attracted the most attention [11].
This approach, however, has two important drawbacks: firstly, the time-frequency cor-
relation function of the channel is, in general, not known at the receiver; secondly,
LMMSE channel estimators usually involve the inversion of matrices of large dimen-
sion, which make them computationally cumbersome. In order to mitigate the first
drawback, Li et al. give some guidelines on how to design a robust LMMSE estimator
when the receiver does not have knowledge of the channel second-order statistics [12]. In
order to reduce the complexity of matrix inversions, a reduced-complexity version of the
estimator, based on a singular value decomposition of the channel covariance matrix,
has been proposed in [13]. In a slightly different approach, some authors have proposed
estimators which try to capitalize on the structure of the time-domain response in order
to estimate the frequency response [14, 15]; within this context, the work by Yang et.
al in [16], where a parametric model of the multipath wireless channel is invoked to
reduce complexity of LMMSE channel estimation, is especially remarkable.

In the area of MIMO detection, most efforts have been devoted to find reduced-
complexity versions of the ML MIMO detector [17], which has a computational complex-
ity increasing exponentially with the MIMO and complex modulation orders. Among
these, list-sphere decoders [18] have been shown to be a good compromise. In contra-
position to ML-based detectors, which jointly detect the symbols transmitted through
the MIMO channel, approaches attempting sequential detection of the symbols have
also been presented. They are usually based on a linear detection step, either using
zero-forcing or LMMSE filtering, followed by an interference cancellation step, in which
signal components corresponding to already detected symbols are subtracted before a
new detection step takes place. A first version of this sequential detection algorithm
was proposed in [19], in which the interference cancellation step was based on hard
decisions on the already detected symbols. A more evolved version of the algorithm
was presented in [20], following the approach in [21], in which the receiver uses soft
decisions on the already detected symbols and also provides soft outputs for use in

channel decoders.

11
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With regards to channel decoding, the techniques used obviously vary depending on
the type of code used. For convolutional codes, the Viterbi algorithm [9] provides an ML
sequence detector, i.e. minimizes the probability of an incorrect decoded sequence. An
alternative is the BCJR decoder [22], which instead minimizes the probability of error
of the individual bits of the transmitted sequence. Furthermore, the BCJR algorithm
directly provides soft outputs, i.e. the probabilities of the bits being 1 or 0 after
decoding, which makes it very attractive for use in iterative algorithms. While soft
versions of the Viterbi algorithm exist (see [23]), they yield poorer performance than
the BCJR method. For concatenated codes, and in particular for turbo codes, an
heuristic iterative decoding scheme built upon BCJR decoding was presented in [7];
while initially derived following intuitive argumentation, the iterative decoding of turbo
codes was shown later on to be an instance of the belief propagation framework [24];
similar interpretations of the BCJR algorithm within the belief propagation framework

have also been proposed [25].

2.3.1 Heuristic Iterative Receivers

As we stated previously, optimum design of the individual components of the receiver
depicted in Figure 2.2 does not, in general, imply global optimality of the receiver.
Intuitively, it is easy to see that such a receiver does not make use of all the informa-
tion available to compute its decisions. For instance, channel estimation needs to be
performed as a first step based only on the receiver’s knowledge of the pilot symbols,
as no information about the modulated data symbols (except the type of modulation
used) is available. Clearly, a better channel estimate can be obtained after MIMO
detection by incorporating the receiver’s knowledge on the coded bits ¢; ..., cps into
the channel estimation process. Similarly, the same can be done with the knowledge
acquired by the receiver after SU decoding, which can be used to refine the output of
both the channel estimation and the MIMO detection modules.

Inspired by the iterative structure of the decoding of turbo codes [7], a number of
iterative receiver structures based on the turbo principle have been proposed in litera-
ture. Conceptually, the receiver’s operation is still subdivided into the same individual
components as the sequential receiver in Figure 2.2. However, instead of performing
the involved operations just once in a sequential way, the different components are

interconnected and iteratively perform their operation with the output provided by

12
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Figure 2.3: Block-diagram representation of a heuristic iterative receiver.

each module being used as an input to other receiver components. A block diagram
of a heuristic iterative receiver illustrating this concept is depicted in Figure 2.3. The
discontinuous lines represent all possible feedback interconnections that may be made
among the individual receiver components.

Clearly, an iterative receiver following the scheme in Figure 2.3 must obtain better
performance than a classical sequential receiver when designed properly, as it makes a
more exhaustive use of all the information available at the receiver. However, the way
in which the information provided by the different components should be combined
and distributed in the receiver is unclear due to the lack of a global design criterion.
As a consequence, the information flow inside this type of iterative structures is often
designed using intuitive argumentation or based on the results obtained from simulation
studies. As an example of this problematic, there has been a debate in the research
community on whether a posteriori probabilities (APP) or extrinsic values should be fed
back from the decoder to the rest of the receiver components; several authors coincide
in proposing the use of extrinsic values for MIMO detection [21,26,27] while using APP
values for channel estimation [26,27], but no thorough justification for this choice is

given apart from its superior performance shown by simulation results.
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2. AN INTRODUCTION TO BASEBAND RECEIVER DESIGN

In the following, we give a very brief overview of relevant publications proposing
heuristic iterative receiver architectures for wireless communication systems in general
and MIMO-OFDM systems in particular. In the context of OFDM systems, a few algo-
rithms proposing iterative channel estimation and decoding have been presented [28,29]
which are mainly based on LMMSE channel estimators incorporating soft information
from the decoded symbols. It is also worth mentioning the work by Hanzo et al.,
summarized in [6]. A vast amount of work on iterative detection and decoding is avail-
able in literature; initiated by the receiver proposed in [21] and following the turbo
principle used to decode turbo codes, a variety of turbo receivers performing iterative
channel equalization and decoding have been proposed [30-32]. Finally, we highlight
two heuristic iterative structures performing channel estimation, multi-user detection

and channel decoding for CDMA systems [26] and MIMO-OFDM systems [27].

2.4 Inference Frameworks

In the previous section we dealt with heuristic methods for receiver design, in which
the receiver is intuitively divided into smaller individual components iteratively ex-
changing information among them. In this section, we explore a different strategy.
We stated in Section 2.2 that direct computation of the a posteriori pmf in (2.3) is
often intractable for most practical wireless communication systems. However, one can
try to find approximations to them. If a good approximation to the posterior pmf
b(ui,...,up) = p(u,...,uply) is found, then it is likely that a good approximation
to the MAP criterion can be obtained by finding the information bit vectors maximizing
b(uy,...,up).

A wide range of algorithms attempting to solve approximate computation of pdf/pmfs
and marginals can be found within the context of variational Bayesian inference frame-
works [33,34]. Variational approximation methods are defined by two main components:
a belief function b(z) trying to approximate the desired pmf p(z) and an objective
function F'(b) which is optimized with respect to the approximating belief function.
Typically, the objective function F'(b) is some type of discrepancy measure between
p(z) and the approximation b(z). Furthermore, some constraints are usually applied to

b(z) to ensure that the optimization of F'(b) is computationally tractable. We briefly
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2.4 Inference Frameworks

summarize next two fundamental approaches to variational Bayesian inference: the
mean-field (MF) approximation and belief propagation (BP)!.

Assume we want to approximate the pmf
1
=~ [ fa(za) (2.5)

where z = (i € J)T and function f,(z,) has arguments z,, with the entries of z,
being a subset of the entries of z for all a € A. In (2.5), Z = [, [[,cq fa(24)dz is a
normalization constant. Within the MF approach, an approximation b(z) ~ p(z) is

computed by minimizing the variational free energy [34]
F(b)=U(b) — H(b) (2.6)

with U(b) being the variational average energy

=3 b(2) falza)

acA z

and H (b) denoting the variational entropy

Zb ) log b(z

We can also rewrite (2.6) as
F(b) = —log Z + D(bl|p)

where D(b|lp) = >, b(2) log% is the Kullback-Leibler divergence between b and
p [38]. Therefore, minimizing F'(b) is equivalent to minimizing D(b||p). The mini-
mization of (2.6) becomes tractable by applying the following constraints to the belief

function:
b(z) = [ [ bi(z), (2.7)
> bi(z)=1 Vield (2.8)

'Some authors, e.g. Winn and Bishop [35,36], consider BP outside the variational Bayesian frame-
work, and usually use the term wvariational only in the context of MF-like approximations. We use,
however, the more general view proposed e.g. in [33,34,37], which considers BP as another algorithm

for variational Bayesian inference.
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2. AN INTRODUCTION TO BASEBAND RECEIVER DESIGN

We refer to (2.7) as the factorization constraint. It implies that the belief function
factorizes with respect to each of the variables z;. The condition in (2.8), which we
name the normalization constraint, ensures that each of the factors is normalized. Ob-
viously, one could consider different types of factorization, in which the belief function
factorizes with respect to groups of variables; such approaches are commonly referred
to as structured MF approaches, whereas the full factorization in (2.7) is usually named
naive MF [33,39].

Next, we turn to the BP approach to the problem. Instead of trying to approximate
the full pmf in (2.5), BP calculates approximate marginals bi(z;) ~ >_. ., p(z)! and
ba(2a) = 3.\ 4, P(2) of the desired pmf. The objective function for BP algorithms is
the Bethe free energy, defined as [34]

FBetho = UBothe - HBetho (29)

where the Bethe average energy is defined as
UBethe = — Z Z ba(za) IOg fa(za) (2'10)
CLEA Za
and the Bethe entropy reads
Hpethe = Y, Y ba(2a)logba(za) + Y (di = 1) Y bi(z:)log bi(=:). (2.11)
a€EA Za i€J Z4

In (2.11), d; denotes the degree of variable z;, defined as the number of factors f,,
a € A which have z; as an argument. The beliefs b; and b, are constrained to fulfill the

consistency constraints

D falza) =bi(z), Va€Ai€d (2.12)

za\2;

and the normalization constraints
D bi(z) = ba(za) =1, VacAicld (2.13)
Zg Zaq

The expression in (2.9) subject to the the constraints (2.12) and (2.13) is usually referred
to as the constrained Bethe free energy, and the BP marginals b; and b, are calculated

as its stationary points. The choice of the constrained Bethe free energy as objective

'The expression z\z; denotes all components of z except z;.
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functions is motivated by the fact that it is equal to the variational free energy in (2.6)
when p(z) can be expressed in a factor graph without cycles, i.e. a tree-structured
graph [34]. When that is the case, the marginals calculated using BP are exact. For
graphs with cycles, though, only approximate marginals are obtained [33, 34, 36].
Both the BP and the MF principles can be expressed as message-passing algorithms
in factor graphs. Factor graphs [40] are a tool which allows for a graphical representa-
tion of a probabilistic model. The message-passing interpretation of the BP principle
is known as the sum-product (SP) algorithm [40] due to the form of its message update
rules, while its MF counterpart is commonly known as the variational message-passing
(VMP) algorithm [35,39]. We introduce both message-passing algorithms in Chapter 3,
together with a novel algorithm proposed in [41,42] which combines the benefits of both
approaches, and which constitutes one of the important contributions of this thesis. The
contributions in [41,42] are included in the appendix of this thesis as Papers A and B.
We finalize the chapter with a brief review of relevant applications of variational
Bayesian inference frameworks to the design of wireless receivers. BP was initially
applied mainly to the decoding of channel codes like convolutional codes [40], turbo
codes [24] or low-density parity check codes [8], and its application was later on ex-
tended to iterative detection and decoding schemes [25,43-46]. In certain cases, the
application of BP to channel estimation problems leads to algorithms which are dif-
ficult to treat numerically. In such circumstances, authors like Dauwels and Loeliger
have proposed to combine BP with the expectation-maximization (EM) algorithm [47]
for parameter estimation [25,48]. An alternative approach is to find Gaussian approx-
imations of the SP algorithm [49,50]. Application of MF approaches to the design of
wireless receivers usually involve estimation of the wireless channels, in which the MF
approximation typically leads to algorithms which are computationally simpler than

its BP counterpart. Among these, we wish to highlight the contributions in [51-55].
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3

Message-Passing Algorithms for
Bayesian Inference on Factor

Graphs

As we discussed in Section 2.4, the algorithms obtained via the MF and BP inference
frameworks can be expressed as message-passing algorithms in probabilistic graphs,
yielding respectively the VMP [35] and the SP [40] algorithms. Since message-passing
techniques are one of the central topics of this thesis, we briefly summarize the two
algorithms in this chapter. Additionally, we also include the message update equations

for the combined VMP-SP algorithm which is proposed in Papers A and B.

3.1 Factor Graphs for Probabilistic Models

Let p(z) be the probability density function (pdf) of a vector z of random variables z;

(¢ € J) which factorizes according to
p(z) =5 [T fulz) (3.1)

where z, = (z]i € N(a))" with N(a) C J for all a € A and Z = [, [[,cq fa(2a)dz
is a normalization constant. We also define N(i) = {a € A|i € N(a)} for all i € J.
Similarly, N(a) = {i € Jja € N(i)} for all a € A. The above factorization can be
graphically represented by means of a factor graph [40]. A factor graph ! is a bipartite

!"We will use Tanner factor graphs [40] throughout this thesis
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3. MESSAGE-PASSING ALGORITHMS FOR BAYESIAN INFERENCE
ON FACTOR GRAPHS

graph having a variable node i (typically represented by a circle) for each variable z;,
i € J and factor node a (represented by a square) for each factor f,, a € A. An
edge connects a variable node i to a factor node a if, and only if, the variable z; is an
argument of the factor function f,. The set N(i) contains all factor nodes connected
to a variable node i € J and N(a) is the set of all variable nodes connected to a factor
node a € A.

Factor graphs provide a compact and intuitive representation of the statistical de-
pendencies among the random variables in a probabilistic model. Furthermore, they
enable the design of a class of iterative signal processing algorithms which are based
on the nodes of the graph iteratively exchanging information (messages) with their
neighbors (connected nodes). This class of algorithms has been coined message-passing
techniques, and in the following we will describe the two instances of these techniques
which have been most widely applied to signal processing for communication systems:
the SP and VMP algorithms.

3.2 The Sum-Product Algorithm

The SP algorithm is a message-passing algorithm that computes the exact marginal
distributions p;(z;) of the variables z; associated to the joint distribution p(z) for tree-
shaped factor graphs. When the factor graph does not have a tree structure, the
outcome of the algorithm is only an approximation of the true marginal, and the ap-
proximate marginals b;(z;) & p;(z;) are called beliefs. The message-passing algorithm
is derived from the equations of the stationary points of the constrained Bethe free
energy [34].

The algorithm operates iteratively by exchanging messages from variable nodes to

factor nodes and vice-versa. The message computation rules for the SP algorithm read

Ma—i(2i) = da<fa(za)>nj€ma)\i njser Vo €A € N(a)
Nisa(zi) = H Mme—i(z;), Vi€ ae N()
ceN(i)\a
where the notation (f(z)), denotes the expectation of f(x) taken over g(z) and d,
(a € A) are positive constants ensuring that the beliefs are normalized. Often the
constants d, need not be calculated explicitly, and it is enough to normalize the beliefs

after convergence of the algorithm (see Paper A for more details on normalization
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3.3 The Variational Message-Passing Algorithm

issues). We use the notation n)_,.) for output messages from a variable node to a
factor node and m.y, () for input messages from a factor node to a variable node.

The variables’ beliefs can be calculated at any point during the iterative algorithm
as

bi(z) = [[ masi(z) Vied
a€N(i)

The SP algorithm acquired great popularity through its application to iterative

decoding of, among others, turbo codes and LDPC codes, and has since then been used

for the design of many iterative algorithms in a wide variety of fields [25].

3.3 The Variational Message-Passing Algorithm

The VMP algorithm is an alternative message-passing technique which is derived based
on the minimization of the variational free energy subject to the mean-field approxi-
mation constraint on the beliefs. While it does not guarantee the computation of exact
marginals (even for tree-shaped graphs), its convergence is guaranteed by ensuring that
the variational free energy of the computed beliefs is non-increasing at each step of the
algorithm [34].

The operation of the VMP algorithm is analogous to the SP algorithm; the message

computation rules read

Mma—i(zi) = exp(log fa(za)>HjGN(a)\i njser VA €A1 € N(a) (3.2)
nisa(z) =€ [ mesi(z) Vied aeNG) (3.3)
ceN(i)

where e; (i € J) are positive constants ensuring that n;_,, are normalized. As in the

SP algorihtm, the beliefs can be obtained as

bi(z;) = e; H Me—i(2i) = Nisa(zi) Vi€ J,a € N(i).
ceN(i)

The VMP algorithm has recently attracted the attention of the wireless communi-
cation research community due to its suitability for conjugate-exponential probabilistic
models [35]. The computation rule for input messages from factor to variable nodes
allows for the obtention of closed-form expressions in many cases in which the SP

algorithm typically requires some type of numerical approximation.
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It is shown in Paper A that a message-passing interpretation of the EM algorithm
can be obtained from the VMP algorithm. Assume that for a certain subset of variables
zi, 1 € &€ C J we want to apply an EM update while still using VMP for the rest of
variables. To do so, the beliefs b; are restricted to fulfill the constraint b;(z;) = §(z; — Z;)
for all i € € additionally to the mean-field factorization and normalization constraints.
Minimizing the variational free energy subject to these conditions leads to a message
passing algorithm identical to the one described in (3.2) and (3.3) except that the

messages n;_,, for all i € € and a € N(i) are replaced by

Nisa(zi) = 0(z; — %) with Z; = argmax H Mma—i(zi) | - (3.4)
zi aeN(i)

3.4 Combined VMP-SP Algorithm

As stated previously in this chapter, the VMP and the SP algorithms are two message-
passing techniques suitable for different types of models. While SP is especially suit-
able in models with deterministic factor nodes, e.g. code or modulation constraints,
VMP has the advantage of yielding closed-form computationally tractable expressions
in conjugate-exponential models, as are found in channel weight estimation and noise
variance estimation problems. Based on these facts, it seems natural to try to combine
the two methods in a unified scheme capable of preserving the advantages of both.

A combined message-passing scheme based on the SP and VMP algorithms was
recently proposed in Papers A and B. This hybrid technique is based on splitting the
factor graph into two different parts: a VMP part and a SP part. To do this, part of
the factor nodes are assigned to the VMP set (Ayyp) and the rest are assigned to the

SP set (Agp). Given this classification, we can express the probabilistic model in (3.1)

as
VMPpart SPpart
1
p(Z) = E H fa(za) H fc(zc)
acAymp cEAsp

where Avyp U Agsp = A and Ayup NAsp = (0. By applying the Bethe approximation
to the SP part and the mean-field approximation on the VMP part, a new message-

passing scheme is derived from the stationary points of the region-based free energy.
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3.4 Combined VMP-SP Algorithm

The message computation rules for this algorithm read

my 57 (i) = exp{10g fa(Za)) T, xupinsar 70 € Avmp,i € N(a) (3.5)
mSP (z) = da FaZa) [, cxupimssar V0 € Asp,i € N(a) (3.6)
nisa(z)=e¢ [ mAF) [ miSizm) YiedaeN(i) (3.7)

CEN(i)ﬂAVMp CEN(i)ﬂAsp\a

where, again, d, and e; are positive constants ensuring normalized beliefs. The compu-
tation rules for messages outgoing factor nodes are preserved: for factor nodes in the
VMP part (a € Aymp) the messages are computed using (3.5) as in standard VMP;
for factor nodes in the SP part (a € Agp) the messages are computed via (3.6), which
corresponds to a standard SP message. A message from a variable node i to a factor
node a is computed as a VMP message when a € Ayump and as a SP message when
a € Agp, as can be deduced from (3.7).

As with the VMP and SP algorithms, the beliefs of the variables can be retrieved

at any stage of the algorithm as
bi(z)=e [  mM ) [ mitiz) vied
aeN(i)NAyvmp aeN(i)NAgp

Note that we can apply the EM restriction to the belief of variables z; which are
only connected to VMP factors (i.e. N(7) NAgp = (}). In that case, the message update
rules remain the same except that the message n;_, in (3.7) is replaced by (3.4) for

the selected variables.
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4

Contributions of the Thesis

In this chapter, we detail the contributions of this thesis. The main body of the
thesis is composed of Papers A—O. Most of the articles propose or study one or several
algorithms that deal with specific problems within the context of advanced baseband
receiver design.

Following the same nomenclature made in Chapter 2, we categorize the papers
according to the type of algorithm discussed in them: algorithms derived from formal
inference frameworks or heuristically designed algorithms. One paragraph per article

is provided which briefly introduces its content and scientific contribution.

4.1 Inference Frameworks

Papers A—H all deal with algorithms derived from variational Bayesian inference frame-
works. More specifically, Papers A and B present a novel message-passing algorithm
based on a combined application of the MF approximation and the BP framework;
the message computation rules of this technique have already been presented in Chap-
ter 3.4. Papers C—H, on the other hand, deal with particular applications of inference

frameworks to the design of receiver structures in wireless communication systems.

Paper A In this contribution, a joint message-passing approach combining belief prop-
agation and the mean-field approximation is presented. The algorithm is derived
based on the region-based free energy approximation method in [34]. Specifically,

the message-passing fixed point equations of the combined algorithm are shown
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to be the stationary points of the constrained region-based free energy approxi-
mation. Moreover, some conditions on the factor-graph describing the underlying

probabilistic model to ensure a convergent algorithm are given.

Paper B This article is, basically, a shortened conference version of Paper A. In it, the
message-update equations of a novel message-passing algorithm combining MF
and BP are derived from a constrained region-based free energy approximation.
Note that, although the expressions for the message computation rules in this
contribution are slightly different from the ones presented in Paper A, they are

equivalent.

Paper C In this paper, we apply the combined message-passing scheme introduced in
Papers A and B to the design of iterative receiver structures for a MIMO-OFDM
system. From a factor graph representing the underlying probabilistic model
of a MIMO-OFDM system, we derive a generic message-passing receiver itera-
tively performing channel weight estimation, noise variance estimation, MIMO
equalization and data decoding. We show how, by applying specific scheduling
schemes and different restrictions to the generic algorithm, we are able to ob-
tain a number of particular receiver architectures which span from full-iterative,
high performance receivers to simplified low-complexity implementations. Fur-
thermore, the performance of the proposed receiver structures is demonstrated

and compared to state-of-art methods by means of Monte Carlo simulations.

Paper D This paper deals with models and algorithms for estimation of sparse signals.
The contribution in it is two-fold: firstly, a hierarchical Bayesian formalism for the
design of sparsity-inducing priors is introduced; secondly, a variational message-
passing algorithm operating in the said hierarchical Bayesian model is proposed.
The general hierarchical model can be particularized for real- and complex-valued
models. A Bayesian formulation of the widely-used l;-norm constraint for sparse
estimation can also be obtained as an instance of our proposed model. In addi-
tion, the model allows for the design of novel priors with better sparsity-inducing
properties than the /j-norm. Simulation results illustrate how the proposed VMP
algorithm applied to the hierarchical Bayesian model outperforms state-of-the-
art sparse estimation techniques, especially for low and moderate signal-to-noise

ratio regimes.
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Paper E This contribution presents an iterative receiver structure for multi-user OFDM
systems performing channel weight and noise variance estimation, multi-user de-
tection and single-user decoding. The receiver is derived based on the VMP algo-
rithm (see Chapter 3.3), but uses a standard SP (equivalent to BCJR) decoder.
Note that in this work VMP and SP are separately applied to different parts of
the receiver, and the two algorithms are combined in an “ad-hoc” way; this is in
contrast to the approach in Paper C, in which a unified VMP-SP algorithm is
applied to the full probabilistic model. Nonetheless, the simulation results illus-
trate how the proposed scheme can significantly outperform a heuristic receiver
adapted for OFDM systems from [26].

Paper F We propose an iterative receiver structure for OFDM systems with syn-
chronous interferers. The receiver is derived based on a MF-based variational
inference framework, which is referred to as the divergence minimization (DM)
framework following the terminology in [52]. The proposed structure performs
iterative channel estimation, interference cancellation and single-user decoding of
the desired signal. The numerical results, obtained by Monte Carlo simulations,
show how the proposed scheme can effectively mitigate the effect of the interferers,
achieving BER values close to those of a receiver operating in an interference-free
scenario. It is also worth mentioning that the receiver structure presented in this

work can be seen as a specific instance of the generic receiver derived in Paper C.

Paper G In this conference contribution, we propose an iterative pilot-based channel
estimator for OFDM systems with co-channel interference. The proposed esti-
mator can be applied to systems in which the user of interest and the interferers
transmit their pilot signals in the same time-frequency locations. The iterative
estimator is derived following the DM framework in [52], yielding a sequential
scheme in which the channel coefficients for one user are estimated after sub-
tracting the signal contributions from all other users. As the numerical results
demonstrate, the performance of the sequential estimator approaches, with a suf-
ficient number of iterations, that of a joint LMMSE channel estimator; however,
its sequential structure allows for a significantly lower computational complex-
ity, as the cumbersome matrix inversions in the joint LMMSE estimator can be

avoided with a suitable design. As in the case of Paper F, the channel estimator
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proposed in this contribution can be interpreted as an instance of the generic

message-passing receiver presented in Paper C.

Paper H In this work, we apply the method presented in Paper D for modeling and
estimation of sparse signals to the problem of pilot-based channel estimation in
OFDM systems. As a result, a channel estimator based on VMP is obtained
which estimates the active components of the sparse time-domain response of
the channel rather than directly estimating the channel frequency-response coef-
ficients. Simulation results illustrate the effectiveness of the proposed approach,
which outperforms commonly-used frequency-domain estimators (e.g. a robustly-

designed Wiener filter) as well as other state-of-art sparse estimation techniques.

4.2 Heuristic Algorithms

Papers I-O in this thesis present contributions within the field of heuristic algorithms,
mainly for OFDM systems. In particular, Papers I and J deal with schemes for iterative
MIMO detection and decoding, while Papers L-O deal with issues regarding both
linear and iterative channel estimation algorithms for OFDM. The specific scientific

contributions made in each article are detailed in the following:

Paper I In this article, we analyze the performance of different implementations of
a MIMO receiver performing sequential interference cancellation (SIC) and de-
coding of the transmitted signals. The different receiver structures are specifi-
cally designed for the 3GPP LTE-downlink [56] parameter settings. It is shown
how SIC schemes using a “per-codeword” selection strategy clearly outperform
the schemes that operate on a “per-subcarrier” basis. Furthermore, it is found
that, for the evaluated schemes, providing soft-feedback from the channel decoder
only improves the receiver’s performance slightly compared to using hard-decision

feedback.

Paper J This contribution compares two transmission technologies, namely OFDM
and single-carrier frequency-domain multiplexing (SC-FDM) as potential tech-

nologies for the uplink of the 3GPP LTE-A system. The comparison is done
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under the assumption that, for both transmission schemes, a turbo-receiver per-
forming iterative interference cancellation, MIMO detection and single-user de-
coding, either in a sequential or a parallel fashion, is used. The numerical results
presented show that, while using a turbo-receiver for SC-FDM systems can very
significantly reduce the BER attained with this technology, an OFDM system
with turbo receivers can attain a superior spectral efficiency than its SC-FDMA
counterpart. This is especially relevant when only two receive antennas are em-
ployed; for systems with more receive than transmit antennas, both systems yield

comparable performance.

Paper K The contribution of this paper is two-fold: first, a parametric channel model
allowing for a more dynamical behavior of the multipath components compared to
standard models is presented; next, a detailed analysis of spatial smoothing tech-
niques [57] applied to the estimation of multipath components’ delays in OFDM
systems is provided. The proposed channel estimation technique uses Unitary
ESPRIT [58] together with spatial smoothing techniques to obtain an estimate of
the multipath components’ delays; this estimate is then fed to the channel estima-
tor proposed in [16]. From the presented simulation results, we draw two main
conclusions: first, it is crucial to adequately model the dynamical behavior of
multipath components in order to obtain meaningful insight from the numerical
evaluation; second, spatial-smoothing techniques can, when properly designed,
greatly improve the accuracy of the estimates of the multipath components’ de-

lays.

Paper L This contribution presents a heuristic iterative channel estimation algorithm
for the downlink of the 3GPP LTE standard. The iterative channel estimator
is based on a modified version of the robustly-designed Wiener filter [11] which
incorporates the receiver information on the data symbols by means of hard-
decision feedback. The effect of the number of iterations run inside the turbo
decoder before and after feeding back the information to the channel estimator
is analyzed via Monte Carlo simulations. The discussion of the results shows
that moderate gains in terms of BER and average cell spectral efficiency can
be obtained with the proposed scheme compared to a reference receiver without

increasing the total number of iterations run in the turbo decoder.
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Paper M In this article, several state-of-art pilot-aided channel estimation algorithms
are analyzed within a downlink 3GPP LTE context. The considered estimators
are defined under a unified notation that allows for a generic MSE evaluation
of all of them. Two main types of estimators are considered: estimators using
DFT techniques for the estimation of the channel impulse response and estimators
which incorporate knowledge of the multipath components’ delays. The MSE and
BER analysis shows that DF'T-based estimators suffer from two important degra-
dation effects: the leakage effect [14] caused by the limited sampling resolution in
the receiver and numerical instabilities due to the inversion of ill-conditioned ma-
trices. On the other hand, estimators making use of the multipath components’
delay information need very precise estimates of these delays to avoid severe MSE

degradation.

Paper N In this work, we analyze the performance of linear pilot-aided channel es-
timators for OFDM systems. In particular, two DFT-based channel estimators,
proposed in [15] and [59], are studied analytically and by means of Monte Carlo
simulations for a system with settings similar to the downlink of the 3GPP LTE
standard [56]. An MSE analysis of the estimators reveals that DFT-based estima-
tors suffer from numerical issues due to the inversion of ill-conditioned matrices
when the number of active subcarriers of the OFDM system is smaller than the
DFT size. This caveat can be overcome by means of Tikhonov regularization [60],
as it is done in [59]. Furthermore, a computational complexity analysis is provided
which demonstrates the computational advantages of DFT-based estimators as

compared to traditional Wiener filter approaches.

Paper O This contribution researches the effect of imperfections in the local oscilla-
tors of transmitters and receivers on the performance of OFDM systems. More
specifically, the impact of phase noise degradation in downlink LTE systems is
studied. We model the phase noise as a Wiener-Lévy process [61], and we eval-
uate the performance of a receiver employing LMMSE channel estimation with
different pilot patterns and for several phase noise powers via Monte Carlos simu-
lations. The numerical results show that phase noise can cause sever degradation
at high SNR regimes; this effect can be mitigated by increasing the pilot-symbol

density, with the associated cost of an increased transmission overhead.
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Abstract—We present a joint message passing approach that order to push the performance of this algorithm even further
combines belief propagation and the mean field approximatio For example, minimizing an upper bound on the log partition
based on the region-based free energy approximation method g,nction of a pdf leads to the powerful tree rewighted BP algo

proposed by Yedidia et al. We show that the message passing . - S .
fixed point equations obtained by this combination correspod rithm [10]. An offspring of this idea is the recently deveesp

to stationary points of a constraint variational free energ/ ap- uniformly tree rewighted BP algorithm [11]. Another exampl
proximation. Moreover, we present a convergent implementiaon  is [12], where methods from information geometry can be used

of these message passing fixed point equations provided thatto compute correction terms for the beliefs obtained by yoop
the underlying factor graph fulfills certain technical conditions. BP.

In addition, we show how to include hard constraints in the . . .
part of the factor graph corresponding to belief propagatin. As ~ 1he fixed point equations of both, BP and the MF ap-
an example, we demonstrate our method for iterative channel proximation, can be obtained by minimizing an approxima-
estimation and decoding in a time-varying frequency-flat mbile  tion of the Kullback-Leibler divergence, called regionsbd
channel. variational free energy [13]. This approach differs frorheat
methods, see, e.g., [f4]because the starting point for the
derivation of the corresponding message passing fixed point
equations is the same objective function for both, BP and

Variational techniques have been used for decades in quéte MF approximation. Since both methods have their own
tum and statistical physics, where they are referred tm@an advantages, it is of great benefit to combine them and develop
field (MF) approximation [2]. Later, they found their way toa unified message passing algorithMore precisely, suppose
the area of machine learning or statistical inference, e@p, that a probability mass function (pmf) admits an a priori
[3]-[6]. The basic idea of variational inference is to derthe factorization as a product of nonnegative real-valuedtions
statistics of “hidden” random variables given the knowledgand we want to apply BP to a certain subset of factors of
of “visible” random variables of a certain probability déys this factorization and the MF approximation to the remagnin
function (pdf). This is done by approximating the pdf byactors of this factorization. The main technical result of
some “simpler,” e.g., (fully) factorized pdf and minimigin this work is Theorem 2, where we show that the message
the Kullback-Leibler divergence between the approxintimpassing fixed point equations for such a combination of BP
and the true pdf, which can be done in an iterative, i.eand the MF approximation correspond to stationary points of
message passing like way. Apart from being fully factorizedne single constraint region-based variational free gnangl
the approximating pdf typically fulfills additional conatnts state a clear rule how to couple the messages propagating
that allow for messages that have a simple structure andecarid the BP and MF part. In fact, based on the factor graph
updated in a simple way. For example, additional exponkntigorresponding to a factorization of a pmf and a choice for
conjugacy constraints result in messages propagatingyalen separation into BP and MF factors of this factorization,
the edges in a Bayesian network that are described by a feweorem 2 gives the message passing fixed point equations
parameters [5]. Variational inference methods were régentor the factor graph representing the whole factorizatibthe
applied in [7] to thechannel state estimation/interferencgymf. One example for an application of Theorem 2 is joint
cancellation partof a class of MIMO-OFDM receivers thatchannel estimation, interference cancellation, and degod
iterate between detection, channel estimation, and degodi Note that typically these parts are considered as sepamése u

A different approach iselief propagatior{BP) [8]. Roughly and the coupling between these units is described in a lieuris
speaking, with BP one tries to fintbcal approximations, way Despite having a clear rule to update the messages for
which are—exactly or approximately—the marginals of &he whole factor graph representing a factorization of a,pmf
certain pdf. This can also be done in an iterative way, whes@é additional advantage is the fact that solutions of fixed
messages are passed along the edges in a factor graphgd8int equations for the messages are related to the stationa
A typical application of BP isdecodingof turbo or low

density parity check (LDPC) qugs. Based on the e)fce"e.mLAn information theoretical interpretation of the diffeteobjective func-
performance of BP, a lot of variations have been derived iians used in [14] can be found in [15].

|. INTRODUCTION



points of the corresponding constraint variational freergp > (...) runs through all possible realizations of X. We
approximation. Thls_correspondence 'S important beca.usev@rite x = (2; | i € Z)T for the realization of the vector
yields an interpretation of the computed beliefs for advitr f d jablesX — (X; | i € 7)T with probabili
factor graphs similar to the case of solely BP, where sanstio” fandom varia ) (X |1 P y
of the message passing fixed point equations do in general hetS functiorp(x). If 7 € 7 then Z_(' ) runs through all
x\z;
correspond to the true marginals if the factor graph hasesychossible realizations oX but X;. For any nonnegative real
but always correspond to stationary points of the condtraialued functionf with argumentc = (z; | i € )T andi € 7,
Bethe free energie [13]. Moreover, this observation allows f |;. denotesf with fixed argument;; = z;. If a function f is
to present a systematic way of updating the messages, namekyntically zero we writef = 0 and f # 0 means that it is not
Algorithm 2, that is guaranteed to converge provided that thidentically zero. For two real valued functiofisandg with the
factor graph representing the factorization of the pmf flglfi same domain and argumentwe write f () « g(z) if f = cg
certain technical conditions. for some real positive constant R, . We use the convention
The paper is organized as follows. In the remainder @fiat0In(0) = 0, aln(%) = oo if a > 0, and0In(3) = 0
this section we fix our notation. Section Il is devoted to thE9, p.31]. Forz € R, §(z) = 1 if 2 = 0 and zero else.
introduction of the region-based free energy approxinmatioMatrices A € C™*" are denoted by capital boldface greek
proposed by [13] and to recall how BP, the MF approximatiofetters. The superscripts and " stand for transposition and
and the EM algorithm [16] can be obtained by this methogiermitian transposition, respectively. For a matkixc C™*",
Since the MF approximation is typically used for parameteie entry in theith row andjth column is denoted by, ;.
estimation, we briefly show how it can be extended to ti®inally, CA'(u, X) stands for the distribution of a jointly
case of continuous random variables. Note that it is nptoper Gaussian random vector with megarand covariance
obvious how to define the Fréchet derivative of the Kullbadkatrix > and I'(k, 6) denotes the gamma distribution with
Leibler divergence with respect to a pdf when any point igcale parametet and shape parametér
the image of the pdf can be arbitrary close to zero. Therefore
we make use of [17, Th. 2.1] which allows to minimize the Il. KNOWN RESULTS
Kullback Leibler divergence without computing the Fréthga\
derivative in order to extend the MF approximation to the ] =
case of continuous random variables. Section il is the mainl-€tp(x) be a certain positive pmf of a vectdt of random
part of this work. There we state our main result, namelydriablesX; (i € 7) that factorizes as
Theor_em 2, and shqw how the message passing f|x§d pomt p(x) = H Fa(xa) 1)
equations of a combination of BP and the MF approximation
can be related to the stationary points of the correspondin N . N _ _
constraint region-based free energy approximation. We thwherex = (z; | i € )" andx, = (z; | i € N(a))" with
(i) show how to generalize Theorem 2 to the case where #)&a) C Z for all a € A. We also seV'(i) = {a € A|i €
factors of the pmf in the BP part are no longer restricted to Bé(a)} for all i € Z. Without loss of generality, we assume
strictly positive real-valued functions and (i) presengeévihm that all the factorsf, of the pmfp in (1) are real-valued
2 that is a convergent implementation of the message passqﬁitive functions. Later in Section (Ill), we shall showvho
update equations presented in Theorem 2 provided that {Re€lax the positivity constraints for some of these famtor
factor graph representing the factorization of the pmf ffalfi The factorization in (1) can be visualized infactor graph
certain technical conditions. As a byproduct, (i) givesghss [9]- In a factor graph,N'(a) is the set of all variable nodes
for BP, which is a special case of the combination of BpOnnected to a factor nodec A and (i) represents the set
and the MF approximation, with hard constraints, where onff all factor nodes connected to a variable nade Z. An
conjectures are formulated in [13]. In Section IV we appl§xample of a factor graph is depicted in Figure 1.
Algorihm 2 to joint channel estimation and decoding of a A regionR £ {Zr, Ar} consists of subsets of indic&s C
time-varying frequency-flat mobile channel. More advanced@ndAr C A with the restriction that: € Ag implies that
receiver architectures together with numerical simutetiand V' (a) € Zr. To each regiori we associate eounting number
a comparison with other state of the art receivers can bedfoufr € Z. A set R £ {(R,cg)} of regions and associated
in [18]. Finally, we conclude in Section V and present aRounting numbers is calledalid if

outlook for further research directions. Z crla,(a) = Z crlz (i) =1, VacAieT
R - R - gl .
RER RER

A. Notation For an arbitrary pmb of the vectorX of random variables
Capital calligraphic lettersd,Z, N denote finite sets. The x, (i € ), we define thevariational free energy13]
cardinality of a setZ is denoted by|Z|. If i € 7 we write

. Region-based free energy approximations [13]

acA

T\ i for )\ {i}. We use the convention thdf(...) = 1 F(b) 2 Zb(x) 1D%X§
0 px
where () denotes the empty set. For any finite $Bt I7 *
denotes the indicatior function df, i.e.,I7(i) = 1if i € T =Y b)) Inb(x) = Y b(x) Inp(x). @

andIz(i) = 0 else. We denote by capital lettefs discrete
random variables with probability mass functigiiz) and

>

—H(b) O]



In (2), H(b) denotes the entropy [19, p.5] éfand U (b) is Theorem 1: [13, Th. 2] Stationary points of the Lagrangian
called average energy &f Note thatF'(b) is the Kullback- in (4) must be BP fixed points with positive beliefs fulfilling
Leibler divergence [19, p.19] betweénand p, i.e., F(b) = (5) and vice versa.

D(b || p). For a setR of regions, theegion-based variational

free energyis defined as [13Fx = Ur — Hz with ba(%a) = da fa(Xa) H Nisa(@i), VaeA
i€N(a)
a )
Ur =3 cn > D br(xr)In fa(xa), bi@) =[] maoile), Viel
RER  a€AR Xr a€N(7)
A
Hp = — Z CR ZbR(XR) Inbr(xg). with
ReR XR
Here, eachh is defined locally on a regioiR. Instead of Ma—i(i) = da Z fa(xa) H nj—a(2;)
minimizing F with respect t, we minimizeFz with respect ¥a\@; JEN(@)\i (6)
to all br ((R,cr) € R) where thebr have to fulfill certain Nia(Ti) = H Me—yi(x;)
constraints. The quantitids; are calledbeliefs We give two ceEN(i)\a

examples of valid sets of regions.

Example 2.1:The trivial example Ryr = {(R =
(Z,A),cr)} with cg = 1. It leads to the MF fixed point
equations, as will be shown in subsection 1I-C.

Example 2.2:We define two types of regions:

1) large regions:R, = (N(a),{a}) with cp, =1V a €

for all a € A,i € N(a). Here,d, (a € A) are positive con-
stants that ensure that the beliéfs(a € A) are normalized
to one

Often, the following alternative system of fixed point equa-
tions is solved instead of (6).

A: i . Tffla%i(xi) = Wa,i Z fa(xa) H ﬁ]%a(xg)
2) small regions:R; £ ({i}, ) with cg, = 1—|N(i)| Vi € s JeN N
. _ _ ()
. . . Nisa(Ti) = H Me—yi(Ti)
The region-based variational free energy correspondirigeo ceN()\a

valid set of regions
forall a € Ai € N(a) wherew,; (a € A,i € N(a))

Rep 2 {(Ri,cr,) | i € T} U {(R4,cR,) | a € A} are arbitrary positive constants. The reason for this i$ tha
. for a fixed scheduling the messages computed in (6) differ
IS calleq theBethe free en_erg{/l3], [20]: It leads t_o the BP from the messages computed in (7) only by positive constants
fixed point equations, as will be shown in subsection II'Be-n‘\/vhich drop out when the beliefs are normalized. See also [13,
Bethe free energy is equal to the exact variational free@/nerEq (68) and Eq. (69)], where the o * symbol is used in
when the factor graph has no cycles [13]. the update equations noting that the normalization cotsstan
are irrelevant. A solution of (7) can be obtained, e.g., by

B. Belief propagation fixed point equations updating corresponding likelihood ratios of the messages i

The fixed point equations for BP can be obtained fro 6) or by updating the messages according to (6) but ignoring

%ange any more. In both cases, a rescaling of the messages is
irrelevant and therefore a solution of (7) is obtained. Hasve

energy reads we note that rescaling a solution of (7) has not necessarily t

ba(Xa) be a solution of (6). Hence, the beliefs obtained by solving
Fep = Z Zba(xa)ln fa(%a) (7) need not be stationary points of the Lagrangian in (4).
acA xa To the best of our knowledge, this elementary insight is not
=Y (NG = 1)) bilas) Inbi(x;) (3) published yet in the literature and we state a necessary and
i€z z; sufficient condition when a solution of (7) can be rescaled to

a solution of (6) in the following lemma.
Lemma 1:Suppose that{m,—(x;),nisa(zi)} (a €
A,i € N(a)) is a solution of (7) and set

with b, = br, Va € A, b; £ bg, Vi € T, and Fgp £ Fr,,.
The normalization constraints for the beliéfs (i € Z) and
the marginalization constraints for the beliéfs(a € A) can

be included in the Lagrangian [22, Sec. 3.1.3] i s 1 Va e A (®)
o > fa(xa) 11 Nisa(Ti) .
Lep =Fgp — Z Z Z/\az(xz)(bz(xz) - Z ba(xa)) *a ieN(a)
a€AieN (a) wi Xa\@i Then this solution can be rescaled to a solution of (6) if and
- Z %(Z ba(%4) — 1). (4) only if there exist positive constants (i € Z) such that
acA Xq ~

i i . . Wq.i = €ida, Vae A,’L S N(Q) (9)
The stationary points of the Lagrangian in (4) are then eelat ’
to the BP fixed point equations by the following theorem. Proof: See Appendix A. [ |



Remark 2.1:Note that for factor graphs that have treealgorithm is a special instance of the MF approximation [26,
structure the messages computed by the forward-backw&et.2.3.1], which we briefly summarize in the following.
algorithm [9] always fulfill (9) because we have,; = 1 Suppose that we apply the MF approximationptin (1) as
(a € Ajie N(a)) andd, =1 (a € A) in this case. described before. In addition, we assume that foi all€ C 7

the beliefsh; fullfill the constraints thab;(z;) = §(x; — &;).

C. Fixed point equations for the mean field approximation Using the fact tha In(0) = 0, we can rewriteFr in (11) as

A message passing interpretation of the MF approximation Fur = Z Zbi(;ci) In b; (;)
was derived in [5], [23]. In this section, we briefly show how i€T\E @i
the corresponding fixed point equations can be obtainedéy th _ Z Z H bi(:) In fu(x). (14)
free energy approach. To this end we &gr from Example ! arta

2.1 together with the factorization constraint €A Xa i€N(a)

For all i € 7 \ &€ the stationary points ofyg in (14) have
- Hbi(xi)' (10)  the same analytical expression as the one obtained in (12).
ez For i € £, minimizing Fyr in (14) with respect toz; yields
Plugging (10) into the expression for the region based fregz;) = 6(z; — ;) with
energy corresponding to the trivial approximatiBgr we get

Fue =33 bi(a) nby(a) =3 S0 ] balw) In fulxa) fi=arg£1a><< H)exp< > 10 bj(:vj)lnfa(xa)>>-

i€T x a€A x4 i€N(a) aeN (i xa\z; JEN (a)\i
(11)

with Fyr £ Fg,,.. Assuming that all the beliefs; (i € T) (15)
have to fulfill a normalization constraint, the stationagimds  Setting bi(x;) = cinisa(z) Vi € Z,a € N(i), we get the
of the corresponding Lagrangian for the MF approximatiomessage passing update equations defined ingd&ptthat
can easily be evaluated to be we have to replace the messagegs,,(z;) for all i € £ and

aeN(@i)b
bi(z;) = e; exp( Z Z H j(z;)In f, xa)>
a€N (1) xa\zi JEN (a)\i (12) Ni—a (Il) = 5(561—.%1) with 571 = argmax( H maﬁi(xi)>
-, *i a€N (i
for all i € 7 where the positive constants (i € Z) are N (16)

such thatb; is normalized to one for ali € Z 2 . The forallic E,aeN(a).
updatesh; can be obtained by iterating ovére Z. At each

step the objective function, i.e., the Lagrangian corresjm 1
to the mean field free energy (11), cannot increase and the
algorithm is guaranteed to converge. Note that in order to
derive a particular updatg; (i € Z) we need all previous

. COMBINED BELIEF PROPAGATION/ MEAN FIELD
APPROXIMATION FIXED POINT EQUATIONS

updatesb; with j € UaeN(l N(a) \ i. The beliefsy; are p(x) = fa(x4) fa(xa) (17)
obtained by setting; (z;) = nHa(:cZ) VieZ,aeN(i)and ael;IMF ael;IBP
solvin
g be a partially factorized pmf wittdyr N Agp = () and A £
Niya(i) =6 H Mai(5) Aue U Agp. As before, we havex 2 {z; | i € T}, x, 2
aEN (i) (z; | i€ N(a))T with N(a) C T for all a € A, andN (i) =

graph representing the factorizatify, . ,_, fa(xa4) in (17) as
"BP part” and to the factor graph representing the factoiora

(13) fa(X4) In (17) as "MF part”. Furthermore, we set
for all @ € A,i € N(a). The MF approximation can beH"eAMF (%)

extended to the case whepeis a continuous pdf, which is Tur 2 U N(a) Tep 2 U N(a)
shown in Appendix B. Formally, each sum over statesvith aC€Avr a€Agp

i € 7 in (12) and (13) has to be replaced by a Lebesgugq

integral whenever the corresponding random variakleis

) {a € A| i€ N(a)} for all i« € Z. We refer to the factor

ma—)z T _exp< Z H CiNj—a 1'7 lnfa(xa)

xa\zi JEN (a)\i

continuous. NMue(i) £ Ave NN (3) Nep(i) £ Agp NN (i).
. Following [13], as outlined in Subsection II-A, we define
D. EM algorithm the following regions and counting numbers:

Message passing interpretations of the EM algorithm [16] 1) one MF regionRyr = (Zwmr, Awr) With cg,,. = 1;
were derived in [24], [25]. It can be shown that the EM 2) small regionsR; £ ({i},0) with cg, = 1 — [Ngp(i)| —

2 - L I, (7) for all i € Zgp;

The Lagrange multiplier [22, p.283] for each belief (: € Z) corre- 3) | . AN ith — 1§ I
sponding to the normalization constraint can be absorbtl thre positive ) arge regionsi, = ( (a), {a}) with cg, = 1 for a
constante; (i € 7). a € Agp.



This yields the valid set of regions

Repmr Z{(Ri,cr,) | i € T} U{(Ra,cr,) | a € Asp}
U {(RMF’CRMF)}'

The additional termslz,. (i) in the counting numbers of
the small regionsR; (i € Z) defined in 2) compared to
the counting numbers of the small regions for the Beth
approximation (see Example 2.2) guarantee that this isithde

a valid set of regions.

The valid set of regions in (18) gives the region-based

variational free energy

Xa)
Z Zb .fa Xa)

acAgp Xa

- Z Z H bi(2;) In fo(xq)

a€AwF Xa 1€N(a)

—Z|NBP ) —1) Zb (i) Inb;(z;)

i€l

Fgp mMF =

with Fgp, vr £ FRreswe In (19), we have already plugged in

the factorization constraint for the MF patrt, i.e., we set

Hb%

1€IvF

bvr (XmF)

The normalization constraints for the beliéfs(i € Zur \ Zgp)

(18)

(19)

Theorem 2:Stationary points of the Lagrangian in (20) in
the combined BP/MF approach must be fixed points with
positive beliefs fulfilling

ba(xa) = da .fa(xa) H ni%a(Ii)a Vac ABP

€N (a)

xl—eln ma_n:cZ H ma_”arl Viel

a€Ngp(i) a€Nwve(2)
(21)

with
Ni—a (I’L) =€ H c—n H mc—n Il
ceNgp(i)\a CE./\/MF(z
VaeAieN(a)
a—)z (z;) =d, Z fa(%a) H Nj—a(Z5),
xa\Ti JEN (a)\i

Va € Agp,i € N(a)

mtl\z/liz ‘TZ —exp( Z H Nj—a .%'7 lnfa(xa)>,

xa\zz JGN( )\
Va € Awr,i € N(a)

(22)
and vice versa. Here; (i € 7) andd, (a € Agp) are positive
constants that ensure that the beligf§i € 7) andb, (a € A)
are normalized to one with; = 1 V i € Zgp.

Proof: See Appendix C. [ |
Remark 3.2:Note that for eachi € 7\ Zgp Theorem 2 can

andb, (a € Agp) and the marginalization constraints for theye generalized to the case whe¥e is a continuous random
beliefsb, (a € Agp) can be included in the Lagrangian [22yariable following the derivation presented in Appendix B.

Sec.3.1.3]

A
Lgp,mr = Fep,MF

2D 31D 3 SN (T8

a€AgpicN (a) Ti

- Z %‘(Zbiiﬂi—l)

1€Zmr \Zep

- > %(Zb Xa —1)

a€ Agp

=3 balxa)

Xq \ i

(20)

Formally, each sum over stateswith i € 7\ Zgp in (21) and
(22) has to be replaced by a Lebesgue integral whenever the
corresponding random variablg; is continuous.

A. Hard constraints for BP

Some conjectures on how to generalize Theorem 1 ([13,
Th. 2]) to hard constraints, i.e., to the case where the facto
fa (a € A) of the pmfp are not restricted to be strictly
positive real-valued functions, can be found in [13, SedY/
However, the derivations in [13, Sec.VI.D] are based on the

Remark 3.1:Note that there is no need to introduce normafact that we are allowed to compute the stationary points of

ization constraints for the beliets (i € Zgp). If a € Ngp(i),

the Lagrangiarigp in (4), i.e., that we are allowed to take the

then it follows from the marginalization and normalizatiogorresponding derivatives, even though the facfaréa € A)

constraint for the belieb, that

1= balxa)
=S (X balxa)

T Xa \ T4

The stationary points of the Lagrangidikp mr in (20)
are then obtained by setting the derivativesigf, me With

respect to the beliefs and the Lagrange multiplier equal to
zero. The following theorem relates the stationary poirfts o

of the pmfp are no longer strictly positive functions.

In the sequal, we show how to generalize Theorem 2 to the
case wherd,, > 0V a € Agp based on the simple observation
that we are interested in solutions where the variatiorgibre
based free energy is not plus infinity (recall that we want to
minimize this quantity). As a byproduct, this also yields an
extension of Theorem 1 ( [13, Th.2]) to hard constraints by
simply settingAwr = 0.

To this end we analyze the first term of the free energy
FBP,MF in (19) which is

2 3 Th(x) ;

a€Agp Xa

(23)

the LagrangianLgp mr to solutions of fixed point equationsNote that the remaining terms ifp yr— Fy are all finite due

for the beliefs.

to the assumption that the beliéfs(: € Z) are valid pmfs and,



therefore, nonnegative and bounded functions, and therfact the forward/backward algorithm [9]. The fact that the

fa with @ € Ay are strictly positive real-valued functions. resulting beliefsbh;, with i € Zgp can not increase the
Now let X, with a € Agp be a fixt state withf,(x,) = 0. region-based variational free energy in (19) is proved in
Then we see from (23) that} = oo unlessb,(x,) = 0. Appendix D.

Note also that, regardless of the valuedhgfx, ), we are not  3) For eachi € Zyr N Zgp anda € Nye(i) the message
allowed to take the derivative ofy with respect tob, (X, ). n;—q(2;) IS now available and can be used for further
Based on the fact thaigp ur < 0o, We set updates in the MF part.

4) For each € Zyr \ Zgp recompute the message ., (x;)

ba(Ra) =0, V¥ X, With a € Agp, fu(%a) =0.  (24) and send it to alk € Aye(i). Note that for all indices
We distinguish between two cases: i € Iyr \ Zgp the recomputed beliefs (z;) = n;—q ()
1) Suppose thaf, |;,= 0 for somea € Agp andz; € fulfill
x,. Then (24) implies thab, |z,= 0. Moreover, the OFgp Mp 9% Fap mr 1
marginalization constraints imply that(z,) = 0 and, bi(n) = and ()2 = DD > 0,
thereforeb. |z,= 0 for all ¢ € Ngp(i). Hence, we can
exclude the state; from the set of all possible states: which implies that the region-based free energy in (19)
can not increase.
If fo|z,=0 with a € Agp,i € N(a) eXC|Udefit25) 5) Proceed as described in 2).

Remark 3.3:If the factor graph representing the BP part has
Note that f, |z,= 0 for somea € Agp implies that cycles then Algorithm 2 can be modified by running loopy BP
p |z, = 0. This just means that the true set of realizationia step 2). However, in this case the algorithm is not guaat
of the random variableX; is smaller. to converge.

2) Suppose that we have excluded all valaggof z; for
all i € Zgp from case 1) and (24) is fulfilled. The
analysis for the remainindy, (x,) andb;(z;), which are
stationary points, is the same as in the proof of Theorem
2 and the resulting fixed point equations are identical In this section, we present an example where we show
to (22), because we can reintroduce the stag$rom how to compute the updates of the messages in (22) based
(24) in the message passing update equations, as canAlgorithm 1. We choose a simple channel model where
be seen immediately from (22). In fact, the additiondhe updates of the messages are simple enough in order to
terms for the states in (24) in the update of the message®id overstressed notation. A class of more complicated

IV. APPLICATION TO ITERATIVE CHANNEL ESTIMATION
AND DECODING

mBP..(x;) (a € Agp,i € N(a)) do not contribute MIMO-OFDM receiver architectures together with numerical
because,(x,) = 0 for all of these states. All the beliefssimulations can be found in [18].

b; are still positive functions: let € Zgp, a € Nap(i), Specifically, we consider a time-varying frequency-flat
andz; = z,. Due to (25),f, |z,# 0. This implies that channel with input-output relationship

fa(Xa) # 0 for some statex, = (z; | j € N(a))T

with i € A/(a) and the stationary poirt,(X,) # 0. The y=hox+z

marginalization constraints in the BP part together with
the fact that the beligf, must be a nonnegative function"
then implies thab;(z;) > 0.

wherez ~ CA (0,7 'Iy) andx,y € C". The symbolsz; €

x (1 €[1:NJ) beIong to a certain modulation alphabet. We
assume that each symhgl € C can be mapped to a unique bit
vectorc; € {—1,1}M. We choose for the prior distributions
B. Convergence of I and H [5]

If the BP part has no cycles and
IN(a) NZgp| < 1, Va € Awr, (26)

then there exists a convergent implementation of the coeabin
message passing equations in (22). In fact, we can iteratd "€ pdfpy x m.cr with C = (CT,...,C})" admits the
between updating the beliets with i € Zyr \ Zgp and the factorization
forward backward algorithm in the BP part, as is outlined in
the following Algorithm. py.xmcr(yxh,e.q)

Algorithm 1: If the BP part has no cycle and (26) is = Py|xu.cr(¥[x h, c,7)pxic(x[c) pc(c) pu(h) pr(v)

pr(v) ~T(kP,1/5P)
pr(h) ~ CN (P, AP7H).

fulfilled, the following implementation of the fixed point — H Pyaixs mr (il hiy )
equations in (22) is guaranteed to converge. ey
1) Initialize b; for all 7 € 7, Zgp and send the cor-
) i € Tur \ Tep x [ px,ic,@jle;) pu(h) po(e) pr(v), (27)

responding messages . (x;) = b;(x;) to all factor
nodesa € Nyr(7).
2) Use all messages:M* (z;) with ¢ € Zgp N Zur and where we used the fact that, H, and X are independent.

a—1

a € Nue(i) as fixed input for the BP part and runHere, the pdfpc represents the code constraints for the bits

JE[L:N]



that typically admits an additional factorization and forall i € [1: N].
N B 3) Use the messagespY -
Pyi| X, H,r (Yl his ) fixed input for the BP part
= %exp(—ﬂyi — hixi]?) 4) After running BP in the BP
~CNr1f), ViE[iNL @) R S
Now let

Ié{cl,...,CN]w}U{Xl,...,XN}

U {Hl, .. HN} U {F} (29) Hx; 2 ani—ﬁﬂyﬂxi,
A& {py,x, m.r|i€[l: N} U{px,c, [i€[l: N} P Ai"
U{pu(h)} U{pc,pr}. (30) Xi — Xi=py;|x;

By a slight abuse of notation we used in (30) the names of
the functions in the factorization in (27) as indices of tle¢ s

rox; () (i€ [l:N])as
and run (loopy) BP.

part, compute the messages
1 : NJ]) and update the
Namely, after setting

H;,T (‘Ti)‘ri

v (@)@ —

A. We shall choose the following splitting of into .Agp and for all i € [1: N] we obtain:

Awe. (i) Update of(k, 3) for br:
Agp £ {pc} U {px;c, |i€[l:N]}
Awr = {pr} U {pa(h)} U {py, x, m,r | i € [1: N]}.
The splitting in (31) yields ME
pYi‘XivHivF*}F(’Y)
Igp = {Cl,...,ONA{}U{Xl,...,XN}
Inr = {X1,..., Xn}U{H1, ..., Hn}U{T}, e %exp <—7/dhiz

which implies thatZgp N Zyr = {X1,..., Xn}. The factor
graph corresponding to the factorization in (27) with the
splitting of A into Awr and Agp as in (31) is depicted in
Figure 1. v 5 5
We now show how to apply Algorithm 1 for the factor graph o eXP ( = (lyil* + (o,

(31)

(32)

NH;—py, x,; H;.T (hi)nXi_)pY“Xi,Hi,F (‘Ti)lyi - hi‘ri|2>

+ |MH¢'|2)(U§Q + |IU'X1:|2)

depicted in 1. B .
Algorithm 2: (Application of Algorithm 1): 2R(yi MHT‘MXi)))
1) Initialize LN F(v)
ﬂk k—1 = eFmp ~>F H mpy Sr()
= — — ~ T |X;,Hj,T
be(n) = Gy (=8 ~ Tk, 1/8) ie[is]
1 Bk
b, (hy) = exp ( — ——|hi — pr|? _ =1 ery(—
(i) = 2= exp (= o lh = ) o ee(-18)
NCN(MHMU%IIL VZE[lN]
and set with updated shape and inverse scale parameter
nropr () = br(7)
Nropy v, (V) = 00(7), Vi€[l:N]
N H;—pe (hi) = b, (hi) k=N +kp
NH sy, x, o (h) = br(he), ¥ @ € [1: N, B=Bo+ > (P + (o, + lnm, P)o%, + lux,[?)
2) Using the particular form of the distributiops. | x, s, JE[L:N]
(i € [1: NJ]) in (28), we get — 2R(y; nm, px,)),
MF
mpy X, H; FHX( )
X exp ( - /dW”rame. ()Y respectively. The update for the beliaf is
2
/dhinHiﬁpYi\XivHiT (hi)lys — hii| ) br(’}/) = nIMipY IX;.H; F( )~ F(k’ 1/ﬁ) (33)
2
k(of, + lpm|?) Yk,
e N A N 2)
Hi i (i) Update of (u,, 0%, ) for by, (i € [1: N]):



MF part : BP part
|
|
l o O
Pyy|X1,H,,T @ Px,|C,
| o
|
. . pC
| .
. Coroe)
@ Pxn|Cn .
' o
|
Fig. 1. Factor graph corresponding to the factorizationhef pdf in (27).
beliefsby, (i € [1: N]) are
ba, (hi) = nMF h;
Z’\f)":i\xi,Hi,rﬂHi (hz) HY’( ) nHl_)Z’YHXwQHi’F( ) .
~CN(pu,;,05,), Vie[l:N]. (34)
ocexp <_ /anFHPYi\XivHN(V)V 5) Proceed as described in 2).
Note that there is an ambiguity in the choice of variable
anﬁpyﬂxwir(m)|yi - hﬂ;i|2> nodes in .the MF part. For exa}mple, we could have cthen
z; to be a single variable node in the factor graph. In this case
ko% +| 2) o 2 we do not make the assumption that the random varialiles
x exp < _ 0% TR QLXQ ) (i € [1: N]) are independent in the MF approximation and
B ox, Tl the set of indice€ in (29) has to be replaced by
MF
st (1) T2{Cy,...,Cnar} U{X1, ... Xn'} U{H} U{T}.
X exp ( —/ H dhjng; —py Each factor nodey, x, u,r (¢ € [1 : N]) is then connected
FE[:N]\i to the same variable nodd with

(h — pP)*AP(h — up)>

JE[L:N]\7 p
P — M

5
pyiix. i (iles b ) = — exp(=yly: - e, hz;|?)
2) ~CN(elhx;,1/v), Vie€[l:N]

o<exp<—/\’;i hi —

MF
nHi*PYi\Xi,Hi,F (hl)

wheree; denotes the-th unit vector inC» .

V. CONCLUSION AND OUTLOOK

We showed that the message passing fixed point equations
12 exp ( — %lhi — i, |2) of a combination of BP and the MF approximation correspond
O, g to stationary points of one single constraint region-based
) variational free energy. These stationary points are in- one

forall i € [1 : N] where Lemma 2 yields the updatedqy_one correspondence to solutions of a coupled system of
mean and variance parameters message passing fixed point equations. For an arbitrargrfact
graph and a choice of a splitting of the factor nodes into a

WwH, = g%i < Z /\Z»(M? — ) + AP P+ ygx> set of MF and BP factor nodes, our result gives immediately
JjE

H;

the corresponding message passing fixed point equations and

1: N\ . . . . .
[1 v yields an interpretation of the computed beliefs as statipn
o = PCCAEE) points. Moreover, we presented an algorithm for updating
v . X; . .
% + AP the messages that is guaranteed to converge provided that

the factor graph fulfills certain technical conditions. Weoa
for all i € [1 : NJ, respectively. The updates for theshowed how to extend the MF part in the factor graph to



continuous random variables and to include hard conssraimormalization of the beliefs, (a € A) in (5) gives
in the BP part of the factor graph. Finally, we showed how to

compute the messages in a simple example. d, = Z Jfa(xa) H Nj—a(2:)
An interesting extension of our result would be to geneealiz -7€N(“)~
the functions in the factorization of the BP part to func- > fa(xa) _ II 7joa(z:)
tions depending on continuous random variables. A promisin = JEN(a)
approach are the results in [27], which could be used to 'GAI_/[(a) Ta,j
generalize the Lagrange multiplier for the marginalizatio 13
constraints to the continuous case. However, these metireds ==——— VYaed (39)
based on the assumption that the objective function isHetéec do I 7y

differentiable and it seems to be not obvious how to define ,jeN(a) )
the Fréchet derivative of the Kullback Leibler divergenc¥here we used (35) in the second step and (8) in the last step.

depending on pdfs. The reason for this is that in gene@@MPining (37), (38), and (39) we obtain

any point in the image of a pdf can be arbitrary close to Ni _ Ka,iTa,i

zero. Therefore, the argument of the logarithm in the Kukba dq Wa,i

Lell_ol_e_r dlvergence, is not gl_Jara_mteed to be nonnegativedn th -G , YaeAieN(a)
definition of the Fréchet derivative. An extension to contius Wa,i

random variables in the BP part would allow to apply &ith
combination of BP with the MF approximation, e.g., for sanso
self-localization, where both methods are used [28], [29].
Another interesting extension could be to generalize tee fr
energy such that the messages in the BP part are equivaleftOW Suppose that (9) is fulfilled. Setting

to the messages for tree rewighted BP. Fai = ei\ <m’ VaeAiecNa)

I #ei Viez
ceN(3)

1— 1

Tai=¢; " VaecAiecN(a)
and reversing all the steps finishes the proof.

APPENDIX

A. Proof of Lemma 1 B. Extension of the MF approximation to continuous random
variables

Suppose that(x) is a pdf for the vector of random variables
X. In this appendix, we assume that all integrals are Lebesgue

Suppose thafmg i(z;), i sa(7i)} (a € Ayi € N(a)) is
a solution of (7) and set

Masi(Ti) = KaiMmasi(zi), VaecAieN() (35) integrals. For each € Z we can rewritefyr in (11) as
ﬁi—m(xi) = Ta,ini—m(xi)a Vae Aai € N(a) FMF :/bz(xl) In bi(xi)dxi — /lnp Hb :vz d.%'l
i€l
With kg, 70 > 0 (a € A,i € N(a)). Plugging (35) into (7)
we obtain the following fixed point equations for the message -y / (2;) Inbj(x;) d;
{maﬂi(xi), ni%a(xi)} (a S .A,Z S N(Q)) JEINI
=D(b; || a;) — bi(x;)Inb;(x;)dx; 40
Ha,ima%i(xi) ( || ) jezz\i J( J) J( J) J ( )
:Wa,i( H Ta,j) Z fa(xa) H nj%a(xj) with
JEN (a)\i Xa\Ti JEN (a)\i A
Ta,ini%a(zi) aZ(Il) =P (/1np 7!_[1\11) i dIJ)
=( JI #ei) TI mesita)
(ceN(i)\a ) ceN(i)\a —ep( Y / In fa(xa) blz;) da;),
(36) a€N (1) JEN(a)\z
for all a € A,i € N'(a). Now (36) is equivalent to (6) if and Viel.
only if Suppose that; (i € Z) are measurable, integrable functions.
, For eachi € Z, m|n|m|2|ng Fyvr in (40) with respect ta;
Tai= ] #ei VacAieN(a) (37)  subject to b;(x;) dz; = 1 is equivalent to minimizing
ceN(i)\a
Wa,i H Ta,j D(bi || ai) + N\ / bi(xi) dx;
da:%, VaeAieN(a) (38) D(b I a; )
“ B [ ai(z;)dz;
where the positive constants, (e € A) are such that the 1n/a1 z; da:l) /b (z;) dz; (41)
beliefs b, (¢ € A) in (5) are normalized to one. This
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with Lagrange multiplier\; that ensures thdi; is normalized Combining (46) with (43), we further get

to one. Now let
pi(E) = / bi(z;) dx;
E

fii(E) 2 %

for Lebesgue measurable sdis If b; is a measurable inte-
grable function that vanishes only on sets of measure zexo, w
see thatu; and fi; are absolutely continuous with respect to

one another. Hence, we can apply [17, Th. 2.1] Witk 0 and
find that for each € 7 the quantityD(b; || a;) is minimized
subject to [ b;(x;) dz; = 1 if and only if

a;(x;)

bi(x; _—
(i) = Jai(z;)da;”
b; (1 € ) in (42) differs fromb; (i € Z) in (12)

(42)

Formally,

FBP,MF = - Z Zba(xa)lnfa(xa)

a€Agp Xa

- Z Z H bi(z;) In fo(xa)

a€AVF Xa i€N(a)

€L T
+ ) L (47)
a€ Agp
with the mutual information [19, p. 19]
ba(Xa)
I, 2 bo(xg)In =——————— Vaec Agp. (48)
; [Liena) bilzi)

by replacing the sum over the states with the Lebesgue Next, we shall compute the stationary points of the Lagramgi

integral.

C. Proof of Theorem 2

The proof of Theorem 2 is based on the ideas of the proof
of [13, Th. 2]. However, we will see that we get a significant
simplification by augmenting it with some of the arguments
originally used in [10] for Markov random fields and adopted
to factor graphs in [11]. In particular, we shall make use of

the following observation. Recall the expression f@p, mr in
(19)

Fep,MF = Z Zb Xq) b ;

a€App Xa

- Z Z H bi(z;)In fo(xa)

a€AVF Xa iEN(a)

— > (INer(i)| - 1) Zb zi)Inbi(z;), (43)
i€l
the marginalization constraints
(@) = > ba(Xa), VacAppicN(), (44)
Xo \ T
and the normalization constraints
Zb ZZ —1 ViEIMF\IBp
(45)

Zb (xq) =1, Vae Agp.

Using the marglnallzatlon constraints (44), we see that

ZZZ) xalngxl

a€Agp Xaq ’LGN )

= Z Z Z bo(x4) Inb;(x;)

a€App Xa i€N(a)

Z Z sz(xz) lnbi(:vi)

a€Agpi€N (a) @i

Z Z sz(xz) lnbl(:vz)

i€Zpp a€Npp(i) Ti

Z |Nep(i |Zb () Inb;(z;).

1€Zgp

(46)

Lgp,mr =Fgp,MF

= il (b = 37 balxa)

a€AgpieN(a) i Xa \Ti

- Z %‘(Zbi T —1)
1€ Iur \Zep T

= (S balxa) - 1) (49)
a€Agp Xa

using the expression fakgp, me in (47). The particular form

of Fgp mr in (47) is convenient because the marginalization

constraints in (44) imply that for all € 7 anda € Agp we
_have% = —Inqe(i)(a). Setting the derivative oLgp,vr
in (49) with respect td;(z;) andb,(x,) equal to zero for all
1 € Z anda € Agp, We get the following fixed point equations
for the stationary points.

Z )\az :Ez

a€Ngp(7)

2 > e

a€Nwr (1) xa\z; JEN (a)\i
+ |Nep(i)| + Iz ()i — 1, Vi€

Inb,(x4) =1In fo(x4) Z Aa,i(i +1Il( H bi(fi))

In b;(

i(x5) In fo(xq)

€N (a) i€N (a)
+9% —1, Vac Agp.
(50)
Setting
1
BP A o _
(o) £ exp (i) 1= ).
Va € Agp,i € N(a)
(51)
mVF (

a—)z —exp< Z H I] hlfa Xa))
xa\zi JEN (a)\i

V a € Ayvr,i € N(a),

we can rewrite (50) as



() = e; H ma_n H ma_n:cZ Viel
a€Npp(i) aE/\/MF(Z
ba(xa) =d, fa(xa) H “BP /. \’ VGEABP
. ma—>i ('rl)
€N (a)
(52)
with
e; £ exp(Igye\zep(i)yi), VieT (53)
d, 2 ex <% 1+ Y ) Y a € Agp.
i€N(a) ( Wer( )|)
(54)
Finally, we define
ni—)a(xi) £ €; H c~>1 ,Tz H mc%l ‘TZ
ceNer(i)\{a} ceNur ()
VaeAieN(a). (55)

Plugging the expression for;_,,(x;) in (55) into the second

line in (52) , we find that

i(z:) = e; H ma_n H ma_”:cZ Viel
a€Ngp(7) aE/\/MF(z
ba(xa) - da fa(xa) H ni%a(xi)v Vac ABP-
€N (a)
(56)

Using the marginalization constraints in (44) in combioati
with (56) and noting that; = 1 for all i € Zgp we further
find that

Niya (T )mi'li (xz)

I I mll—)l

a€Nesp(%)
= bi(wi)

> ba(xa)

Xo \ T

da Y fal%a)

Xo \ T

I I mll—)l

aENMF( )

Va € Agp,i € N(a).

H Nj—a (‘Tj )7
JEN (a) 57)
57

Dividing both sides of (57) by;_,.(z;) gives

a~>z (7)) = d, Z Ja(Xa) H nj%a(xj)

Xa \Ti JEN(G)\i

Vae€ Agp,i € N(a).
Noting thatn,_.,(x;) = b;(
N (a), we can write the messages'"

a—1

Z H Nja (T 1nfa(xa)>
Vae Avr,i EN(CL). (59)

xa\z; jEN (a)\i
Now (55), (58), and (59) is equivalent to (22) and (56) is

(58)
z;) for all a € Aur and j €
(z;) in (1) as

MF
My (T;) = exp

equivalent to (21). This completes the proof that statipnar
points of the Lagrangian in (20) must be fixed points with

positive beliefs fulfilling (21). Since all the steps areeesible,
this also completes the proof of Theorem C.
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D. Proof of convergence

In order to finish the proof of convergence for the algorithm
presented in Subsection IlI-B, we need to show that running
the forward/backward algorithm in the BP part in step 2) of
Algorithm 1 cannot increase the free enerfiyp mr in (19).

To this end we analyze the factorization

p(xsp) o H fa(xa) H H mb%z i)

ac Agp 1€LgpNIur bGNMF( )

(60)

with xgp £ {z; | i € Zgp}. The factorization in (60) is the
product of the factorization of the BP part in (17) and the
incoming messages from the MF part and we compute the
marginals ofp(xgp) in (60) in step 2) of Algorithm 1. The
Bethe free energy (3) corresponding to the factorizatiaie®)

is

FBP— Z Zb Xa %

a€App Xa

DD Zb vy 7
i€ ZppNImr aENyE(i) Ti a%i(zi)
= > (INep()] + [Nwr (i) = 1) D i) Inbi(a)

1€Zgp

Xa)
aEZ.ABP Xza b Xa ,fa Xa)
Yoo > D biw) nm ()

1€ZgpNInr a€ENWF (i) Ti

— Z (INep(3)] — 1) Zb xi) Inb;(z;).
1€1gp
We now show that m|n|m|2|ngFBp in (61) is equivalent to
minimizing Fgp mr In (19) with respect td, andb; for all
a € Agp andi € Zgp. Obvioulsy,

Zq

(61)

O0Fgp,MF O0Fgp )
= Vi € 74 T
8b1(:1:1) 8b1(:1:1) ’ e BP\ MF
and
OFgp,MF O0Fgp
— = A .
Doa(xa) ~ Tbu(xa) @€ AP

This follows from the fact thattgp wr differs from Fgp by
terms that depend only dn with i € Zye.
Now suppose that € Zgp N Zyr. In this case, we find that

CTORME _ (1~ [Nen() 1 bi(a1) + 1)
- > > I bi@j)nfaxa) (62)
a€NWr (i) xq\zi JEN (a)\i
and
O0Fgp

= (1= Wee(i))(nby(zs) + 1) = > Inmp ().

bi(:) a€Nye (i)

(63)
From (22) we see that

= exp( Z H n]—m x] lnfa(xa)>

xa\zi JEN (a)\i
Vae NMF(i).

MF
a—1 ‘TZ

(64)
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Note that, according to step 2) in Algorithm 1, the messagesth

mMF . (x;) in (64) arefixed inputsfor the BP part. Therefore, , 1

we are not allowed to plug the expressions for the messages 0" =7 11
mMF . (z;) in (64) into (63) in general. However, sinee € of T a3
Awr andi € ZgpNZyr, condition (26) implies that/(a)\i C p=o?(EL + B2
Zwr \ Zgp and guarantees that 91 03

(65)

Nja(j) = bj(x5)

is constant in step 2) of Algorithm 1 for all € N(a) \

t C Zme \ Zgp. Therefore, we are indeed allowed to plug the
expressions of the messaged'™ (z;) in (64) into (63) and [
finally see that also

OFgpvme  OFf
Hence, minimizingFgp in (61) is equivalent to minimizing
Fgp,vr in (19). [4]
By assumption, the factor graph in the BP part has tree
structure. Therefore, [13, Prop. 3] implies that 5]
1) Fgp > 0; ]
2) Fgp = 0 if and only if the beliefs{b;,b,} in (61) are
the marginals of the factorization in (60). 7
Hence, forb; fixed with j € Zyr \ Zgp, We see thatFsp ur
in (19) is minimized by the marginals of the factorization in
(60). 18]
It remains to show that running the forward/backword[g]
algorithm in the BP part as described in step 2) in Algorithm
1 indeed computes the marginals of the factorization in.(GO%
Applying Theorem 1 to the factorization in (60) yields thé*0l
message passing fixed point equations

II

ceNgp(i)\a

Vae€ Agp,i € N(a)

msiz(%) =dq Z fa(xXa) H Nj—a(;),
Xa\Ti JEN (a)\i

V a € Agp,i € N(a). [14]
(66)
The message passing fixed point equations in (66) are thd

(2]
(3]

Vi € Igp N L.

BP MF (11
mc—)i(xi) H mc—)i(xi)a

CENMF(i)

Nisa (i) =

[12]

(23]

same as the message passing fixed point equations for [EQ?

BP part in (22) with fixed input messagesM . (z;) for

all i € Zgp N Iyr and a € Nue(i). Hence, running the
forward/backward algorithm in the BP part indeed computé]'s7
the marginals of the factorization in (60) and Algorithm 1 igig]

guaranteed to converge.

[19]

E. Product of two Gaussian distributions [20]

Lemma 2:Let

1 1 [21]
p1(z) = p exp ( — ;|:c — u1|2)
i
i 22]

1
pa(x) —exp(——2|:c—u2|2).

TO2 5 [23]

Then
1 1 , [24]
pr(z)pa(z) o — exp (— =z — pl?)
Yixea g

Proof: Follows from direct computation.
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Abstract—We present a joint message passing approach that
combines belief propagation and the mean field approximation.
Our analysis is based on the region-based free energy approxi-
mation method proposed by Yedidia et al., which allows to use
the same objective function (Kullback-Leibler divergence) as a
starting point. In this method message passing fixed point equa-
tions (which correspond to the update rules in a message passing
algorithm) are then obtained by imposing different region-based
approximations and constraints on the mean field and belief
propagation parts of the corresponding factor graph. Our results
can be applied, for example, to algorithms that perform joint
channel estimation and decoding in iterative receivers. This is
demonstrated in a simple example.

I. INTRODUCTION

Variational techniques have been used for decades in quan-
tum and statistical physics, where they are referred to as
mean field (MF) approximation [1]. They are also applied
for statistical inference, see, e.g., [2]-[5]. The basic idea of
variational inference is to derive the statistics of “hidden”
random variables given the knowledge of “visible” random
variables of a certain probability density function (pdf). This
is done by approximating the pdf by some “simpler,” e.g.,
(fully) factorized function in an iterative (message passing
like) way. Typically, such a function has to fulfill additional
constraints. For example, [4] imposes additionally exponential
conjugacy constraints in order to derive simple update rules
for the messages that propagate along the edges in a Bayesian
network. Variational inference methods were recently applied
in [6] to the channel state estimation/interference cancellation
part of a class of MIMO-OFDM receivers that iterate between
detection, channel estimation, and decoding.

A different approach is belief propagation (BP) [7]. Roughly
speaking, with BP one tries to find local approximations,
which are—exactly or approximately—the marginals of a
certain pdf. This can also be done in an iterative way, where
messages are passed along the edges in a factor graph [8]. A
typical application of BP is decoding of turbo codes.

An obvious question that arises is the following: Can we
combine both approaches and develop a unified message
passing algorithm that combines BP and the MF approach,
and how do the two types of messages influence each other?
The main contribution of this work is to shed light on this
open problem using the free energy approach proposed in [9]
and to derive the message passing fixed point equations for
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978-1-4244-6746-4/10/$26.00 ©2010 IEEE

a joint approach, where BP is applied to a subset of factor
nodes and the MF approximation is employed to the remaining
factor nodes of a factor graph.

The paper is organized as follows. Section II is devoted to
the introduction of the region-based free energy approxima-
tions proposed by [9]. We briefly summarize the main steps
to derive the message passing fixed point equations for BP
in Section III. In Section IV, we show how the MF approx-
imation can be included in the free energy framework. Our
main result—the combined BP/MF fixed point equations—is
presented in Section V. Section VI is devoted to a discussion
of a simple example and shows simulation results. Finally, we
conclude in Section VII.

II. REGION-BASED FREE ENERGY APPROXIMATIONS

In the following two sections, we follow the presentation
and main results given in [9]. Let p(x) be a certain pdf that
factorizes as

p(x) = H fa(Xa),

where x £ {z; |i € I}, 12 {1,...,N}, x, C x,and a €
A 2{1,...,M}. Such a factorization can be visualized in a
factor graph [8]. We assume that p(x) is a positive function
and that x is a set of discrete random variables. Our analysis
can be extended to continuous random variables by simply
replacing sums by integrals. Now define the sets of indices

N(a) 2 {i|z; €x,} and N(i) = {a|z; €x.}.

A region R £ {xg, ARr} consists of a subset xg C x of
variables and a subset A g C A of indices with the restriction
that a € Ag implies that x, C xg. To each region R we

associate a counting number cr € Z. A set R £ {R} of
regions is called valid if

Z crlap(a) = Z crlxp(zi) =1 Vae A,iel,
RER RER

where I (_) is the indicator function.
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We define the variational free energy [9]

F(b) 2 Zb b(x
= Zb )Inb(x) — Y b(x)Inp(x). (1)
\x , x
é_}}(b) =—;(b)

In (1), H(b) denotes entropy and U(b) is called average
energy. Note that F'(b) is the Kullback-Leibler divergence [10,
p. 19] between b and p, i.e., F'(b) = D(b || p). For a set R of
regions, the region-based variational free energy is defined as

[9] Fr 4 Ur — Hi with
Ur £ Y crUg,
RER
Hr 2 ) cgHg,
RER
Ur & — ) br(xr)nfa(xa),
a€AR XR
Hrp 2 - br(xr)Inbr(xr).
XR

Here, br(xg) is defined locally on the region R. Instead
of minimizing F' with respect to b, we minimize Fr with
respect to all br (R € R), where the br have to fulfill certain
constraints. The quantities br are called beliefs. We give two
examples of valid sets of regions.

Example II.1 The trivial example R = {R = (x, 4)}.

Example I1.2 We define two types of regions:

1) large regions: R, = (xq,{a}) with cg, =1V a € A;

2) small regions: R; £ ({z;},0) with

cr, =1—|N@)|Viel

Here, |N(i)| denotes the cardinality of the set N(z) for all
1 € I. The region-based variational free energy corresponding
to the valid set of regions R = {R; |i € I}U{R, | a € A}
is called the Bethe free energy [9], [11]. The exact variational
free energy is equal to the Bethe free energy when the factor
graph has no cycles [9].

ITI. BELIEF PROPAGATION FIXED POINT EQUATIONS

The fixed point equations for BP can be obtained from
the Bethe free energy by imposing additional marginalization
constraints and computing the stationary points. The Bethe
free energy reads

Xa)
Zzb (%a) fa Xa)

aGA Xa
=Y (NG -1) Zb )nby(z;), (2)
i€l
with by(x,) 2 br,(Xs) V @ € A and bi(z;) =

br,({z:}) V i € L. The summation over the index set I in (2)
can be restricted to indices with |N(z)| > 1 (the dependence
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on beliefs b;(z;) with |N(¢)| = 1 drops out). In addition, we
impose marginalization constraints on the beliefs

)= ba(xa) VieILaeN(),

Xa \ i

3

which can be included in the Lagrangian

LEFr+Y Y > dai(x)

a€Ai€EN(a) z;

- Z ba(xa) )

Xa\T;
“
where the A, ;(x;) are Lagrange multipliers [12, p. 283].
The following theorem gives a connection between the BP
fixed points with positive beliefs and stationary points of the
Lagrangian in (4).

Theorem 1 [9, Theorem 2] Stationary points of the con-
strained Bethe free energy must be BP fixed points with
positive beliefs and vice versa.

Note that beliefs with tight nonnegativity constraints can only
belong to critical points but not to stationary points. We
summarize the main steps in the proof of Theorem 1. The
stationary points of the Lagrangian in (4) can then be evaluated
as

ba(Xa) o fa(Xa)exp (ZieN(a) )\a,i(l'i)) Vae A
bi(z;) o< exp (W EaeN(i) )\a,i(-Ti)) Viel

Now we apply the following lemma.

®)

Lemma 1 [9, p. 2292] For each i € 1 (recall that |N(3)| >
1) we can reparametrize

=In H Me—yi(T)

c€N(i)\a

Aa,i () Y ae N(®) 6)

in an unique way with mg,—,;(z;) > 0 Va € N(3). The inverse
of this mapping is given by

2 — |N()]
IN@)| -1
)\b,i(wi)) Y a € N(i).

Ma—si(Ts) = exp( Aa,i(T:)

>

NG
INOI=L e e

The proof of Lemma 1 is based on a simple matrix inversion.
Defining

Nimsa(Ti) 2 H mei(z;) Vi€ la€ N(i),
c€N(i)\a

Q)

plugging the reparametrization (6) into (5), and applying the
marginalization constraints in (3) yields the following fixed
point equations for BP:

ma—n -Tz Z fa xa H nj%a(xj)

Xo \Zs JEN(a)\i ®)
nz—)a xz = H mc—)z xz

cEN(i)\a
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Remark III.1 This result can be extended to the case where
the functions f, are nonnegative under the assumption that
> x.\z; fa(Xa) > 0 for all i € N(a) (If this expression is
zero for one x; = I; then p(x) = 0 for all x\ z; and z; = T;
and we can remove Z;). The key observation is that we must
set by (Xq) = 0 whenever f,(X,) = 0 for a certain x, = X,
if we assume that Fr is finite. The beliefs b;(x;) are always
positive.

IV. FIXED POINT EQUATIONS FOR THE MEAN FIELD
APPROXIMATION

The MF approximation can be interpreted as a message
passing algorithm on a factor graph [13]. In this section, we
briefly show how the corresponding fixed point equations can
be obtained by the free energy approach. To this end we define
one region R £ (x, A) with cg = 1 and impose the constraint
that b(x) fully factorizes, i.e.,

i€l
This constraint can be directly plugged into the expression for
the variational free energy in (1). Doing so we get

F=> > "bi(x)nbi(z:)->_ > [ be(@i)In faxa).
i€l x; a€A X, i€EN(a)

The stationary points for the MF approximation can easily be
evaluated:

bi(z ocexp< Z Z H bj(x;) lnfa(xa)>‘v’iel.
a€EN (i) xo\z; JEN (a)\7

The updates b; can be evaluated by iterating over ¢ € I. At
each step the objective function decreases and the algorithm
is guaranteed to converge. To derive a particular update b; we
need all previous updates b; for j € U,en() N(a) \ i

A message passing interpretation for the MF approximation
can be obtained by setting n;_, n(;)(%:) = bi(z;) Vi € I,
which results in [13]

nz—)N(z) z;) = H Ma—i(T;)

a€N (i)
Z H i N(j) *Tj)lnfa(xa))‘

ma—n’(zz =€xp (
xa\zi JEN (a)\i
C)

Remark IV.1 In the MF approach, we assume that the func-
tions f,(x,) are positive.

V. COMBINED BELIEF PROPAGATION / MEAN FIELD FIXED
POINT EQUATIONS

We are now in a position to combine BP and the MF

approximation. Let
H fa(xa) H fa(xa)

a€Amr a€ App
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be a partially factorized pdf. As before we have x = {z; | i €
ILI={1,...,N}, x, Cx,anda € A ={1,...,M} with
A = Apg U App. Furthermore, we set

{i €I|3a € Ayp with i € N(a)}
{i € I| Ja € Agp with i € N(a)}.

Ivr

> >

Iep

Note that Ayg N Agp = @ but Inp N Igp # @ in general. We
define the set R of valid regions:

1) one MF region Ruvr 2 (Xmr, Amp) With xyp = {z; |
1€ IMF} and CRMF =1;

2) small regions R; = ({z;},0) with cr, =1 — | Npp(2)| —
Iy, (2) for all ¢ € Ipp;

3) large regions R, £ (x,,{a}) with cg, =1 forall a €
Agp,

with Ngp(i) 2 {a € Agp | a € N(i)}. This yields the region-
based variational free energy

Pr= Y ba(xa)

a€App Xa

-S> I bi(xi)lnfa(xa)

a€EAMF Xa iEN(a)

_Z|NBP )| —1) Zb (z:) Inb;(z;).

i€l

10)

We can restrict the summation over the index set I in the last
term in (10) to indices ¢ € I with | Npp(¢)| # 1. The constraints
for the BP part can be included in a Lagrangian

L2Fg+ Z Z Z)\a,i(flh‘) bi(zi) —

a€App i€ENpp(a) Ti

> ba(xa)

Xa\Z5

We now derive the stationary points of this Lagrangian. To
this end we define the set

A = {i € Igp NInr | | Nop(i)| = 1},

which corresponds to variable nodes that are “dead ends” in
the BP part, i.e., there is a unique a; € Agp for each i € A,
but are connected to the MF part. The stationary points can
be evaluated as

Aari(z:) = In(b)F(z;)) Vie A

ba(xa) o< bF(xa) [ 8¥F(z:) Vae A
i€EN(a)
bMF(z)bBP(z;) Viel\A
bi(s) o 3 ba,(%q;) Vi€A,
xai\xi
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with

X

iEN(@\A

P\ Ner(DT-1 i(xi) | Viel A
b?P(mz—) A p (lNBP(l)I 1 GIVEBP('L) a, ( )) BP\

1 VieI\lgp

bEF(xa) & fa(xXa)exp ( a,i(zi)> VaeAgp

Ao

B (i) £

exp< Z Z H bj(xj)lnfa(xa)> ViEIMF
a€Nyr (i) Xa\i JEN (a)\i

1 ViGI\IMF,

where we defined Nug(i) £ {a € Aump | a € N(i)} and

Aai(Ti) 2 Naji(T)

The messages for the BP part can now be introduced in a
similar way as for solely BP. Applying Lemma 1 to A, ;(x;)
for all ¢ € Igp \ A gives the reparametrization

—In b (z;) Vi cIpp\ A,a € Nap(i).

Aa,i(zi) = In H mBP. (z;) Y a € Npp(i).
cENpp(i)\a
Defining the messages
MmN (@) £ 0 (x) Vielgp
nha(zi) & [ mei(@) Vieln\Aae Nop(i)
c€Npp(i)\a
yields
bgp( xa H nz—)a xz v ac ABP

tEN(a)\A
ba(xq) o bP(x4) H n?’le(i)(xi) YV ae€ App

i€EN(a)
H ma—n xl
a€ Npp(1)

bi(fL'i) X nz—)N(z) (L’z Viel \ A.

J/

Vv

=b%¥ (x:)

Using the marginalization constraints, we end up with the fixed
point equations for the BP part

Z fa Xa H n_]—)a :Ej) H ”?AEN(J)("L’J)

a—)z

xa\i  JEN(a)\({7}UA) JEN(a)\i
nha(@)= [ m.@)

c€ Npp(i)\a

(1n
for all @ € Agp,i € Igp \ A. The beliefs b;(x;) for i € A can
be evaluated from the marginalization constraints, i.e.,

bi(zs) ocndE (@) D Bor(@ar) [T nfSne)(@s)
Xa; \Ti JEN(a\i

AlED)

/

for all 7 € A.
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It remains to introduce the remaining messages for the MF
part

( ?4—>N(z) :E% - H ma—n '73%
aENM]:(z)
e ten( T #e)
Xa\z; JEN(a)\i

M5 NG) (25) In fa(xa)>

for all a € Amg, ¢ € Imp. All these steps are reversible. Thus,
we have proved the following theorem.

Theorem 2 Stationary points of the constrained variational
free energy in the combined BP/MF approach must be fixed
points with positive beliefs and vice versa. The corresponding
fixed point equations are (11) and (12).

Remark V.1 The inclusion of hard constraints in the BP part
can be done in the same fashion as for solely BP propagation.

VI. A SIMPLE EXAMPLE

Assume a frequency-flat time-varying channel with input-
output relationship
y =Xh+z,

where z € CN(0,77'1),X £ diag(z; | i = 1,...,n), and
y € C™. The symbols x; € C belong to a certain modulation
alphabet. Rewriting

p(y,X,7,h) o p(y|X,v,h)p(7)p(h)p(X),

where we used the fact that -y, h, and x are independent, gives
a factorization where we wish to apply BP for p(X) and the
MF approximation for the remaining factors. Notice that p(X)
includes modulation and the code constraints. We assume that
the prior distributions of v and h are of the form

p(v) o AF " lexp(—87)
p(h) oc exp(—(h —hP)7Af (h —b")).
Let
h£Ey, (h)  Run=Covy,(h)  72Ep (7)
X2Ep)(X) 22 Vargy(X),

with b; = bBPOMF (i = 1,...,n), b, = BF, and b, = b{‘y’“:.
Then we get the following message passing update equations:
Update for ~v:

m]z:/l(li/)%v(wmml;lx,h,"r)ﬁv(’)’)

AN =T exp(—4(6F + 6)),

Ny N(v) (7)

with
g 2 E{bi} Ep, ”y - Xh”2
lyll? + Tr((Rn + hhH)(S + XXH))

— 2R(yHXh).
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Fig. 1. Average BER versus Eb/NO for a time-varying channel with a square
Doppler spectrum. The channel code is a turbo code with polynomial (1, 1/3)
and codeword length of 196, the modulation scheme is 16-QAM, and the
interleaver is random. A pilot based LMMSE estimate yields the initialization
of h; two QPSK modulated pilot symbols are employed for this purpose. The
channel covariance matrix is assumed to be perfectly known at the receiver.

Update for h:

nh—)N(h) (h) = m];\)/l(lil)ah(h)m;h;[(l;dx,h,'y)—)h(h)
o« exp(—(h—h)?R;'(h-h)),

with
= (AL +A)
A £5(2 +XXH)
This follows from
Eg3 Es, (7lly — Xh[* —7]ly|*) = h¥ Ah — 2R(h" h).
Update for z; (i=1,...,n):

MF _ MF
i N (i) = Mp(ylx,h,y)—i
o exp(Ep, ..} Eb, Ep, (Inp(y | x,h,7)))
o< exp(—7(|z;|*[Rn + hh"];; — 2R(y; [h];z;)).

Fig. 1 depicts the average BER versus E,/Ng of three
algorithms. The blue curve denotes the performance of a
scheme performing separate decoding and LMMSE channel
estimation based on pilot symbols, while knowing the noise
precision. The green curve represents the performance of the
combined BP/MF approach after convergence is reached. The
former “separate” receiver is used to compute the initial values
of the channel coefficients and symbol estimates. The red
curve depicts the performance of a decoder having perfect
knowledge of the channel coefficients and noise precision.

It can be seen that the performance of the BP/MF algo-
rithm is close to that of the scheme having perfect channel
knowledge. Moreover, the BP/MF algorithm significantly out-
performs the scheme performing separate channel estimation
and decoding.
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VII. CONCLUSION

Using the region-based free energy approximation method
proposed in [9], we derived message passing update equations
for a factor graph where BP is applied to one part of the
factor nodes and the MF approximation is implemented on the
remaining factor nodes. The proposed theoretical framework
provides a mean to determine the way messages computed on
the same factor graph using BP and the MF approximation are
to be combined.

A simple example confirmed the validity of the BP/MF
method. This example shows that the method allows to com-
bine the estimation of densities of continuous parameters with
BP processing of discrete variables, unlike methods using the
EM algorithm to compute point estimates of these parameters
[14].
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Receiver Architectures for MIMO-OFDM Based on
a Combined VMP-SP Algorithm

Carles Navarro Mand@n, Gunvor E. Kirkelund, Erwin Riegler, Lars P. B. Christens
Bernard H. Fleury.

Abstract

Iterative information processing, either based on hedasistr analytical frameworks, has been shown to be
a very powerful tool for the design of efficient, yet feasjblgreless receiver architectures. Within this context,
algorithms performing message-passing on a probabiligtigph, such as the sum-product (SP) and variational
message passing (VMP) algorithms, have become increggioglular.

In this contribution, we apply a combined VMP-SP messagsipg technique to the design of receivers for
MIMO-ODFM systems. The message-passing equations of tidviceed scheme can be obtained from the equations
of the stationary points of a constrained region-baseddreggy approximation. When applied to a MIMO-OFDM
probabilistic model, we obtain a generic receiver architecperforming iterative channel weight and noise preaisi
estimation, equalization and data decoding. We show thstgineric scheme can be particularized to a variety
of different receiver structures, ranging from high-pemnfance iterative structures to low complexity receivers.
This allows for a flexible design of the signal processingcggily tailored for the requirements of each specific
application. The numerical assessment of our solutionsgd@an Monte Carlo simulations, corroborates the high
performance of the proposed algorithms and their supgritmiheuristic approaches.

Index Terms

MIMO, OFDM, multi-user detection, message-passing athars, belief propagation, mean-field approxima-
tion, sum-product, variational message-passing, itarathannel estimation, equalization and data decoding

I. INTRODUCTION

During the last two decades, wireless communication systbave undergone a rapid and steep
evolution. While old analog systems mainly focused on pimg voice communications, today’s digital
systems offer a plethora of different services such as matfia communications, web browsing, audio
and video streaming, etc. Along with the growing variety efvices offered, the amount of users accessing
them has also experienced a drastic increase. The contiratiapplications requiring large amounts of
data traffic and high density of users, together with thecgragss of wireless spectrum resources, dictates
high spectral efficiency to be an essential target in thegdesf modern wireless systems.

From a physical layer point of view, the emergence of mudtiplput multiple-output (MIMO) tech-
nigues [1] together with the development of near-capaaittyieving channel codes, such as turbo [2] or
low-density parity check (LDPC) [3] codes, have been thetmasarkable steps towards this goal. The
use of multiple antennas allows for increasing the thecaktiapacity of a wireless channel linearly with
the minimum of the number of antenna elements at the tratesmaimd at the receiver ends [4]. Depending
on the specific MIMO technique employed, multiple antenrasloe used to exploit the number of degrees
of freedom of a wireless channel, its diversity or a mixtuféoth [5]. The combination with advanced
channel codes enables transmission schemes with unpréeddegh spectral efficiency. However, in order
to realize in practice the performance predicted by themmtyanced receiver architectures combining high
performance channel estimators, MIMO detectors and chalew®ders are required.

Joint maximum likelihood (ML) receivers are prohibitivetpmplex for most modern communication
systems, especially systems with high MIMO order and camaed codes. A wide-spread approach
for the design of suboptimal, yet efficient receiver arddtitees is to separate the receiver into several
individual blocks, each performing a specific task: chamvedght estimation, noise estimation, interference
cancellation, equalization or data decoding are some ebeamimspired by the iterative decoding scheme



of turbo codes, some structures in which the different ctuesit blocks exchange information in an
iterative manner have been proposed [6]-[10]. In thesawexse each block is designed individually, and
the way it exchanges information with the other blocks iseblasn heuristics. Consequently, while each
block is designed to optimally perform its task, the fullgee@r structure does not necessarily optimize
any global performance criterion. Nevertheless, thesetsires have shown remarkably good performance
at an affordable complexity, while keeping a large degreéexdbility in their design.

Motivated by the success of heuristic iterative approacaeet of formal frameworks for the design of
algorithms performing iterative information processirayé arisen in recent years. Among these, methods
for variational Bayesian inference in probabilistic mal§ll] have attracted much attention from the
communication research community in recent times. Themadworks allow for the design of iterative
algorithms based on the optimization of a global cost fumctiTypically, they are derived from the
stationary points of a discrepancy measure between thebpildip distribution that needs to be estimated
and a postulated auxiliary distribution, the latter dsition providing an estimate of the former. The
different frameworks differ on the particular discrepamogasure selected and the restrictions applied
to the postulated auxiliary function. We especially highti two main approaches suggested so far in
literature: belief propagation (BP) and mean-field (MF) noels.

BP [16] is a Bayesian inference framework applied to gragdhgcobabilistic models. In its message-
passing form —referred to as the sum-product (SP) algorithifif- messages are sent from one node
of the graphical model to neighboring nodes. The messageutation rules for the SP algorithm are
obtained from the stationary points of the Bethe free engtd}. When the graphical model representing
the system is free of cycles, the SP algorithm provides exacginal distributions of the variables in the
model. When the graph has cycles, however, the algorithpudsionly an approximation of the marginal
distributions and it is, moreover, not guaranteed to ca®¢t8]. In most cases, nonetheless, the obtained
marginals are still a high quality approximation of the exdistributions. BP and the SP algorithm have
found widespread application in the decoding of channeksdd7], [19], and have also been proposed
for the design of iterative receiver structures in wirelessnmunication systems [20]-[24]. However,
modifications of the original algorithm are required for graeter estimation problems, such as channel
estimation. This has been solved by, e.g., combining thel&itam with the expectation-maximization
(EM) algorithm [21], [25] or approximating SP messages Wwhare computationally untractable with
Gaussian messages [26], [27].

MF approaches —proposed by Attias in [28] and formulatedhasvariational Bayesian expectation-
maximization (VBEM) principle by Beal [29]- are based on timénimization of the Kullback-Leibler
(KL) divergence [30] between a postulated auxiliary fuastiand the distribution to be estimated. The
minimization becomes especially computationally tralgtainder the MF approximation [31], in which
the auxiliary function is assumed to completely factorizéhwespect to the different parameters. The
obtained iterative algorithm guarantees convergencerimgef the KL divergence, but convergence to
the globally optimum solution can only be guaranteed whencitnsidered problem has a unique single
optimum. However, it has proven very useful in the desigrierfitive receiver structures including channel
estimation, e.g., channel estimation and detection for GSfstems [32], iterative multiuser channel
estimation, detection and decoding [33] or channel estomainterference cancellation and detection
in OFDM systems [34], [35]. For other applications of MF nmdl, see [36]-[38]. Message-passing
interpretations of this technique on probabilistic graplse also been proposed in [12], [39], [40] and
are commonly referred to as variational message-passiMPj\echniques.

In this contribution, we apply a hybrid message-passinméaork to the design of iterative receivers
in a MIMO-OFDM setup. This hybrid framework, recently prgea in [41], [42], combines the SP and
VMP algorithms in a unified message-passing technique. dMgsspdates are obtained from the stationary
points of a particular region-based free energy approxandfi4] of the probabilistic system. Specifically,

1Some authors, e.g. Winn and Bishop [12], [13], consider BBsida the variational Bayesian framework, and usually tmee term
variational only in the context of MF-like approximations. We use, hoae\the more general view proposed e.g. in [11], [14], [1%}ick
considers BP as another algorithm for variational Bayesiéerence.



the combined framework allows for performing VMP in partsioé graph and SP in others, thus enabling
a flexible, yet global, design.

From a MIMO-OFDM signal model, we derive a generic messaagsing receiver performing channel
estimation, MIMO detection and channel decoding in an ftegafashion. Channel estimation is not
limited to the estimation of channel weights, but also idelsi estimation of the noise variance, which
proves to be crucial for the operation of the receiver. Thaiegtion of a unified framework to the whole
receiver design unequivocally dictates the type of infdramathat should be exchanged by the individual
constituents of the receiver in the form of messages. Thie ntrast to heuristic approaches which,
for instance, arbitrarily select a-posteriori or extrsmyprobabilities to be exchanged between the channel
decoder and other modules based on intuitive argumentatitrends observed by simulation results [9],
[10].

The generic messages derived can easily be particularigedpplying different assumptions and
restrictions to the signal model considered. Thus, our émmark enables a highly scalable and flexible
design of the signal processing in the receiver. For ingaagplying the messages to only part of the factor
graph yields simplified architectures performing just assilof the receiver tasks; also, small modifications
to the factor-graph lead to different receiver structurath wlifferent performance and computational
complexity tradeoffs. These properties are illustratedun numerical evaluation, where the performance
of a few selected instances of our proposed receiver isss$eta Monte Carlo simulations. The presented
results demonstrate the high accuracy of our approach,tarsiiperiority to iterative receivers based on
heuristics.

The remainder of the paper is organized as follows. The bigralel of the MIMO-OFDM system
considered is presented in Section Il, followed by a briefiew of the combined message-passing
framework proposed in [41], [42] in Section Ill. In SectioW,Ithe generic messages to be exchanged
in the factor-graph are derived, and the performance of fiferdnt receivers obtained from the generic
derivation is tested in Section V. Finally, we draw some ficahclusions in Section VI.

A. Notation

Throughout the paper, lower-case boldface letters reptesgumn vectors, while upper-case boldface
letters denote matrices;)™ and (-)" denote the transpose and conjugate-transpose of a vectoataix
respectively;| - || denotes the Euclidian normd ® B represents the Kronecker product of matricks
and B; I denotes the identity matrix of dimensia¥. Moreover,log denotes the natural logarithm;
f(z) < g(z) means thatf(x) is equal tog(xz) up to a proportionality constant;f(x)), denotes the
expectation off () over g(x), i.e. (f(z))y = [ f(z)g(x)dz; S\s denotes all elements in the sgtbut
S.

1. SIGNAL MODEL

In this section a multi-user signal model for MIMO-OFDM isried. The system is composed
by M synchronous transmitter chains amd receiver antennas, as depicted in Fig. 1. These trans-
mitters can represent different transmission brancheshefsame physical transmitter, or physically
separated transmitters at different locations. For siit transmitter, a finite sequence of information
bits w,, is encoded, yielding a sequence of coded laifs After interleaving, the interleaved coded
bits ¢, are complex modulated, resulting in the vectdf) of complex-modulated data symbols. Fi-
nally, the data symbols are multiplexed with the pilot sydsbﬂ(mp), giving the transmitted symbols
T = [T (1,1), .. 2 (K, 1), ... 2n(1, L), ..., 2 (K, L)Y, wherez,,(k, ) denotes the symbol sent by
the mth transmitter on theéth subcarrier of théth OFDM symbol of a frame. The transmitted symbols
x,, are then OFDM modulated using an IFFT and the insertion ofciccprefix.

The signal is transmitted through a wide-sense stationappmelated scattering (WSSUS) channel.
The channel impulse response from transmitteto receivern during the transmission of thgh OFDM
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Fig. 1. Block-diagram representation of the transmissiaueh

symbol/ can be described by

I nm

Gnm (L, T) Z a® ()§(r — 1) (1)

wherea!’), and 7\, are respectively the complex gain and delay of #fiemultipath component and,,,

is the number of multipath components. We assume that thenehaesponse is static over the duration
of an OFDM s ?/mbol, but changes from one OFDM symbol to the.n&bsio, the maximum delay of each
wireless link7\»™) is assumed to be smaller than the duration of the OFDM cyakdix3, so that no
inter-symbol interference (I1SI) degrades the transmisdtwom (1), the sample of the channel frequency
response at théth subcarrier of théth OFDM symbol is found to be:

I nm

(1)
nm k l § OK _]27TkAfT7L7n_

In this expressionA; denotes the OFDM subcarrler spacing.

At the receiver, the signal is OFDM demodulated by discaydive cyclic prefix and applying an FFT
on the received samples. Under the previously stated asmnsphat the channel is block fading and the
maximum delays are smaller than the duration of the cyckédixrthe signal received at theh receive
antenna on thé&th subcarrier of théth OFDM symbol reads

M n=1...,N,
B = Bk, (k) + wa(k D), k=1,... K, @
— l=1,...,L,

with w,(k, ) denoting zero-mean additive complex white Gaussian n@WéQN) with variance\~.
The equations in (2) can be recast in a matrix-vector nota®

M M
y:Zthm+w:ZHmwm+w (3)

2\We assume without loss of generality that the dela&i,é are ordered in increasing order, i R A



wherey = [y],...,yN]T, with y,, = [y,(1,1),...,yn(K,1),...,y.(1, L), ..., y.(K, L)]T denoting the
received signal at theth receive antenna for a frame Af subcarriers and OFDM symbols. Additionally,
hy = b1, ..., ¢35 X = Iy @ diag{z,,}, H,, = [diag{hi,},...,diag{hy,}]" and h,,, =
P (1, 1), oo By (K1), o B (1, L), .. b (K, L)]T. Equation (3) can be further compressed as

y=Xh+w=Hz+w
wherex = [z],..., 2}, ]", h=[h],....,hy,]", X = [X,1,...., Xy]andH = [H,, ..., H,,].

[1l. M ESSAGEPASSING TECHNIQUES

In this section, we briefly introduce message-passing iqakes on factor graphs. First, we define the
concept of factor graph on a probabilistic model, followgdtbe description of two standard message-
passing schemes: the sum-product (SP) algorithm [17] amdidhational message-passing (VMP) algo-
rithm [12]. Finally, we show how to combine both algorithnesgerform hybrid VMP and SP message
passing in a factor graph [41].

A. Factor Graphs for Probabilistic Models

Let p(z) be the probability density function (pdf) of a vecterof random variables; (i € Z) which
factorizes according to

1
p(z) = [ falza) 4)
acA

wherez, = (z]i € N(a))" with N(a) CZ foralla € AandZ = [, [[,c 4 fa(z.)dz is a normalization
constant. We also defin&’(i) = {a € Ali € N(a)} for all i € Z. Similarly, N'(a) = {i € Z|a € N'(i)}
for all @« € A. The above factorization can be graphically representedhbgns of a factor graph [17].
A factor graph is a bipartite graph having a variable nodéypically represented by a circle) for each
variable z;, © € 7 and a factor node. (represented by a square) for each factgra € A. An edge
connects a variable nodeto a factor node: if, and only if, the variablez; is an argument of the factor
function f,. The setN (i) contains all factor nodes connected to a variable nodeZ and N (a) is the
set of all variable nodes connected to a factor nedeA.

Factor graphs provide a compact and intuitive represemadf the statistical dependencies among
the random variables in a probabilistic model. Furthermtitey enable the design of a class of iterative
signal processing algorithms which are based on the nodie gfraph iteratively exchanging information
(messages) with their neighbors (connected nodes). Thss af algorithms has been coinegkssage-
passingtechniques, and in the following we will describe the twaamses of these techniques which have
been most widely applied to signal processing for commuitinasystems: the SP and VMP algorithms.

B. The Sum-Product Algorithm

The SP algorithm is a message-passing algorithm that casphé exact marginal distributiops z;)
of the variables;; associated to the joint distributigri{z) for tree-shaped factor graphs. When the factor
graph does not have a tree structure, the outcome of theitalgois only an approximation of the true
marginal, and the approximate marginals:;) ~ p;(z;) are called beliefs. The message-passing algorithm
is derived from the equations of the stationary points ofdbestrained Bethe free energy [14].

The algorithm operates iteratively by exchanging mességes variable nodes to factor nodes and
vice-versa. The message computation rules for the SP #igoread

Mai(2) = dal fa(Za) L cpupinimar V0 € A0 € N(a)

ni—m(Zi) = H mc—)i(zi)7 Vi € I? a < N(7’>
ceN(i)\a

3We will use Tanner factor graphs [17] throughout this agticl



whered, (a € A) are positive constants ensuring that the beliefs are naedkto one. Often the constants
d, need not be calculated explicitly, and it is enough to noizeailhe beliefs after convergence of the
algorithm (see [42] for more details on normalization isyuéVe use the notation.,_,(, for output
messages from a variable node to a factor noderand, . for input messages from a factor node to a
variable node. This convention will be kept through the dsthe paper, also for other message-passing
schemes.

The variables’ beliefs can be calculated at any point dutitggiterative algorithm as

b2<22) = H ma_n(zi) Viel.
aeN (i)

The SP algorithm acquired great popularity through its i@ppbn to iterative decoding of, among
others, turbo codes and LDPC codes, and has since then bednfarsthe design of many iterative
algorithms in a wide variety of fields [21].

C. The Variational Message-Passing Algorithm

The VMP algorithm is an alternative message-passing tgdenihich is derived based on the minimiza-
tion of the variational free energy subject to the mean-fgdgroximation constraint on the beliefs. While
it does not guarantee the computation of exact marginaen(éwr tree-shaped graphs), its convergence is
guaranteed by ensuring that the variational free energhettbmputed beliefs is non-increasing at each
step of the algorithm [14].

The operation of the VMP algorithm is analogous to the SPrélgn; the message computation rules
read

Ma—i(2;) = exp{log fa(Za)) T, cprapsnivar V@ € Asi € N(a) (5)
Nisa(z) =€ [[ mei(z) Vi€ TI,aeN(i) (6)
ceN (i)

wheree; (i € T) are positive constants ensuring that,, are normalized. As in the SP algorihtm, the
beliefs can be obtained as

bz(zz) =€ H mc_n(zi) = ni—>a<zi> Vi € I, a € N(l)
ceN (i)

The VMP algorithm has recently attracted the attention ef\threless communication research com-
munity due to its suitability for conjugate-exponentiabpabilistic models [12]. The computation rule
for input messages from factor to variable nodes allows tier dbtention of closed-form expressions in
many cases in which the SP algorithm typically requires stype of nhumerical approximation.

It is shown in [42] that a message-passing interpretatiothefEM algorithm can be obtained from
the VMP algorithm. Assume that for a certain subset of véemb;, i € £ C Z we want to apply an EM
update while still using VMP for the rest of variables. To dn the beliefsh; are restricted to fulfill the
constrainth;(z;) = 0(z; — Z;) for all i € £ additionally to the mean-field factorization and norméai@a
constraints. Minimizing the variational free energy sebj® these conditions leads to a message passing
algorithm identical to the one described in (5) and (6) ekdbpt the messages,_,, for all : € £ and
a € N (i) are replaced by

Nisal(z) = 0(2 — %) with 2, = argmax,, H Ma—i(zi) | - (7)
a€eN (i)



D. Combined VMP-SP Algorithm

As stated previously in this section, the VMP and the SP @lgos are two message-passing techniques
suitable for different types of models. While SP is espécisliitable in models with deterministic factor
nodes, e.g. code or modulation constraints, VMP has thengalya of yielding closed-form computa-
tionally tractable expressions in conjugate-exponemtiatlels, as are found in channel weight estimation
and noise variance estimation problems. Based on these faseems natural to try to combine the two
methods in a unified scheme capable of preserving the adyest both.

A combined message-passing scheme based on the SP and VbtRhalg was recently proposed
in [41], [42]. This hybrid technique is based on splitting ttactor graph into two different parts: a VMP
part and a SP part. To do this, part of the factor nodes argressbito the VMP setA4y\p) and the rest
are assigned to the SP setsp). Given this classification, we can express the probaiailisibdel in (4)
as

VMPpart SPpart
1 l N7 )
pe) =7 1 fulza) T =0
acAymp c€Asp

whereAyvypUAgsp = A and Ay NAgp = 0. By applying the Bethe approximation to the SP part and the
mean-field approximation on the VMP part, a new messagefmgpssheme is derived from the stationary
points of the region-based free energy [41], [42]. The mgss@mputation rules for this algorithm read

m(\g/[f(zi) = exp(log fa(za»l‘[,-ema)\inﬁw Va € Aywp,i € N(a) (8)
(1) = ool Za) T s Ve € Aspi € N(a) ©
Nisa(2i) = € H mYMP(z) H mit () Vi€ ZI,ac N(i) (10)

ceN (W)NAymp ceN(i)NAgp\a
where, againgd, and e; are positive constants ensuring normalized beliefs. Thaptmation rules for
messages outgoing factor nodes are preserved: for factiesno the VMP partd € Avyp) the messages
are computed using (8) as in standard VMP; for factor nodekenSP part{ € Asp) the messages are
computed via (9), which corresponds to a standard SP mes8agessage from a variable noddo a
factor nodea is computed as a VMP message whea Ayyp and as a SP message wher Agp, as
can be deduced from (10).
As with the VMP and SP algorithms, the beliefs of the varialitan be retrieved at any stage of the

algorithm as
bi(z;) = e; H myMP(2) H mor (%) Viel.
aeN (i) NAymp aeN (i)NAsp
Note that we can apply the EM restriction to the belief of abkesz; which are only connected to
VMP factors (i.e.N (i) N Agp = 0). In that case, the message update rules remain the samgt éxae
the message;_,, in (10) is replaced by (7) for the selected variables.

IV. MIMO-OFDM RECEIVER BASED ON COMBINED VMP-SPA

In this section, we present a generic iterative receiveMiviO-OFDM systems based on the mixed
VMP and SP message-passing strategy outlined in SectidD. IRecalling the signal model presented
in Section Il, we can now postulate the probabilistic modeWhich we will apply the combined VMP-
SP technique. In our case, we identify the observation tohberéceived signal vectay. As unknown
parameters, we include the vector of information hits= [u],...,u},]", the vector of coded bite =
[e],...,cl,]T, the vector of modulated symbats= [z, ..., x]", the vector of complex channel weights
h = [hy,...,hy]" and the AWGN precision\. The system function of our model is the joint pdf of all
parameters, which can be factorized as

p(u, ¢,z h, A, y) = p(y|h, , )\)p(h) p()‘)p(mv & u) (11)
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Fig. 2. Generic factor graph of the receiver.

where we have chosen to group the factors on the right-haedrsio four functions. Factof, (y, h, x, \) =
p(y|h,x, \) denotes the likelihood of the channel weigltsthe noise precision\ and the transmitted

symbolsz given the observatiog. Factorf(h) = p(h) contains the assumed prior model of the channel

weights, which is relevant for channel weight estimationn@ion fx()\) £ p()\), likewise, contains the
assumed prior model for the noise precision paramgtevhich defines how estimation of the noise
precision is done. Finally, functiofi;(x, c, u) = p(x, c,u) denotes the modulation and code constraints.
Note that further factorization of the factors in (11) is pib¢e and will, in fact, be used later in this
section.

A schematic factor-graph-like representation of the maal€l1) is depicted in Fig. 2. The observation
factor nodefo is connected to three ovals: channel weights, noise poecend modulation and coding.
Each of the ovals represents a subgraph corresponding tordat., fx and fy in (11). The three

subgraphs are connected fg, which reads
foly,z, h,A) oc XV exp {=Ally — Xh[*} = X" exp {—\||ly — He|*} .

Each of the subgraphs in Fig. 2 will be detailed in the remairaf this section. For now, we define the
setsA¢, Ay and Ay as the set of factor nodes inside the channel weights, nogsgspn and modulation
and coding subgraphs respectively. Likewise, we definedtsZs, 7y andZ,; as the set of variable nodes
inside the channel weights, noise precision and modulai@hcoding subgraphs respectively. With these
definitions, the set of all factor nodes in the graph is givgh b

A= {fo}UAcUANUAM,
and the set of all variable nodes reads
T =TcUINUZy.

From the observation factor nodf, sets of messagedl., My and M, are sent to the respective
subgraphs. These sets are composed of individual messages, » € Z. The specific composition of
the sets of messages depends on the exact configurationiableasind factor nodes of the corresponding
subgraph, which will be described later in the section. Afieocessing is completed at each subgraph,
sets of message®d’c, Ny and Ny, which correspond to the updated estimates of the channghtse
the noise precision and the transmitted symbols respégtae send back tgo.

In order to apply the combined VMP-SP algorithm, we need findevhich factor nodes are assigned
to the VMP setAyyp and which are assigned to the SP ggf. We select the following splitting:

Avae 2{fo} U Ac U Ax
Asp £ Ay

“with a slight abuse of notation, from this point on we use tames of functions and variables as indices of the det®mdZ respectively.
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Fig. 3. Subgraph corresponding to the noise precision pniodel.

i.e. the observation factor node and all factors in the chhmreight and noise precision subgraphs are
assigned to the VMP set, and all factor nodes in the modulaia coding subgraph are assigned to the
SP set.

In the remainder of this section, we will present the detafleach of the subgraphs, with several
alternative factor-graph representations yielding défife message-passing configurations. The performance
of the individual receiver structures obtained will be exéd and compared in Section V.

A. Noise Precision Subgraph
The noise precision subgraph is the graphical representafi fy in (11), which we specify now as

() £ p()
wherep()) denotes the prior distribution of. With this, we can now specify the sets

Ax ={fx}
To ={\).

The factor graph representation of the subgraph is depintéth. 3. It only consists of the variable node
A and the factor nodé¢y. Since there is only one variable node connecte¢htahe set of message®ly
reduces taMy = {m,_}. Analogously,Ny = {n,_ s, }.

According to the message-computation rules given in Sedtipthe message transmitted froffig to
A is calculated as

mfo—v\()‘) = exp {(10g fO<y7 Z, h’? )\)>NCNM} = )‘KLN exXp {_)‘A} (12)
with

A=y~ Xh|*+ T {B"CB + B'H "B} + T {X2,X"}.

In the above expressioh, = (h)n., H = (H)n,, & = (x)n,, X = (X)n, are the means di, H, x
and X respectively taken with respect to the channel weights andutation and coding output messages.
Moreover,3;, = (hkh")n. — hi", andC = (H"H) N, — H H. Finally, B = UAY? where A is the
diagonal matrix of eigenvalues aiid is the matrix containing the eigenvectors3f = (xx) N, — 22",
e 3, =UAU".

The message in (12) is proportional to the pdf of a complexrakiVishart distribution of dimension
1, KLN + 1 degrees of freedom and associated covariatice[43]. We select the prior pdf()\) to be
conjugate, i.e., a complex Wishart. This yields the message

mpy—a(A) = p(A) x Nt exp{—AAprior}-
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Fig. 4. Subgraph corresponding to the prior model of thetjomannel weights.

Given the two incoming messagsesy, _,» andmy,_., the outgoing message fromis also proportional
to a complex Wishart pdf

Nas fo (A) X Mg A (M) A (A) o ANEENFa=L o p LN (A + Aprior) }-

Since usually no prior information on the noise precisioravgilable at the receiver, we selegt))
non-informative with parameters = 0 and Ayior = 0. With this choice, the mean of with respect to

Ny reads KIN

A=Ay = 1 (13)
Note that the above update farcoincides with the ML estimate of the noise precision. Sjrewe will
see later in the section, only the first moment\ois needed to compute other messages, it is sufficient

to pass just this value to the rest of the graph.

B. Channel Weights Subgraph

The channel weights subgraph includes the graphical goriof the factorf- in (11). We will
present in the following two alternative subgraphs représg two possible definitions ofc: in the first
one, coinedjoint channel weights subgraph, all channel weights for all trahsntennas are grouped
together in a single variable node in the second one, which we refer to disjoint channel weights
subgraph, the weights are split infd variable nodes, ..., h,, each of them containing the channel
weights associated with an individual transmit antenna.

1) Joint Channel Weights Modelfhe joint channel weights subgraph is obtained from theofalhg
definition:

fo(h) = p(h)

with p(h) denoting the prior pdf of the vector of channel weightsUsing this model forf. leads to
defining the factor and variable node sets as

Ac ={fc}
T ={h}.

The factor graph describing the joint channel weight opi®presented in Fig. 4. As there is only one
variable node connected to the factor ngie the set of input messages to the channel weights subgraph
is simply M ¢ = {my,_} and the set of output messages is the singlé¥an= {n_,, }.

The message fronfy to h is given by

mfo—n(h) = exp{(log fo(y, =, h, \)) Ny Ny} X exp {—;\ <||y — Xh|*+ hHDh)}
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with D = (X" X)n, — X" X. Hence,m,,_,»(h) is proportional to a Gaussian pdf. We also impose the
prior p(h) to be Gaussian, which yields the message

mfc—>h(h) = p(h) X €xXp {_(h' - h'prior)HE_1 (h - hprior)} .

hprior

For most practical channels it is reasonable to assumehiigt= 0. The receiver needs an estimate of
the prior covariance of the chann®l, . In order to obtain the outgoing messagg.. s, (h), the two
incoming messages are combined, leading to

~ A —1 ~
o () o€ (W) geon () o exp { ~(h — R85, (b — ).}
Thus,ny_, s, Is proportional to a Gaussian pdf with covariance matrix
R . R A -1
Eh - (AXHX + AD + z)’_lplrior>
and mean value ) . /e H
h =2, ()\X Y+ E;;plrimhprior> .

2) Disjoint Channel Weights ModelThe disjoint channel weights subgraph is obtained by fagtay
fc with respect to each transmitter. More specifically, we defin

fo(h) =[] fon(hm)

with fo (hm) £ p(h,,), m = 1,..., M denoting the prior pdf of the channel weights for théh transmit

m

antenna. We also specify the sets

Ac ={fc,,
IC :{hm

m=1,...,M}
m=1,...,M}.

Fig. 5 shows the factor graph of the disjoint channel weightelel with the above definitions. With
this configuration, the channel weight vectoris split into M variable nodes, ..., h,;, each of them
containing the weights associated with one transmit amteBach of these variable nodes is furthermore
connected to a factor nodg.,,. Due to this separation, the set of incoming messages rddgs=
{ms,—=n,|m=1,..., M}, while the set of outgoing messagesiNg = {nn,,—s,|m =1,..., M}. With
this structure, the channel weight vectors are estimatgdesgially by iterating through the transmit
antenna indexn.

For themth transmit antenna, the incoming message reads

mfo—)hm(hm) =€exp {(10g fO(yv Z, h’v )\)>NMNNNém)}

X exp {—5\ (Hy - Z X by — thmH2 + h;f)mhm> }

m'#m

.....

m/#m
mth one. Furthermoreh,y = (huw) v, Xm = (Xm)n, and D, = (X0 X )N, — X" X,.. Again,
Mf,—h,, IS Observed to be proportio%al to a Gaussian pdf. Analogdosihe joint channel weights case,
we need to specify the prior of each individual channel veatq. Defining them as Gaussians leads to
the message
Mfe, —hm (hm) = p(hm) X €exp {_<hm - hm,prior)HE_1 (hm — hm,prior)}

hm,prior
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Disjoint Channel Weights

fo

Fig. 5. Subgraph corresponding to the prior model of theoifisjchannel weights.

where, once more, the receiver requires estimates of tbhegmrameters of the channel for each transmitter.
The outgoing message from variable nddg is obtained by multiplying both incoming messages, leading
to

~ A —1 ~
Pt (on) € Mg (o, (i) o6 €50 { = (R = )55, (o = o)}

which equals, up to a proportionality constant, a Gauss@fnyith covariance matrix

~ n A N R —1
S = <)\X:1Xm +AD,, + ;! )

m.,prior
and mean value
~ A ~ ~_H ~ ~ _
Ry =Sh ()\Xm <y - Xm,hm,> + zh;primhmvpm,) .
m/#m

It is important to note that every time a new message_., is computed, the set of messagkfc
needs to be recomputed again, asmaj},_,»,_,,m’ # m depend on the updated messaggs_. s, .

C. Modulation and Coding Subgraph

The modulation and coding subgraph describes the fggtan (11). We choose to factorize this factor
according to

fu(z, e, u) =

M Un

H me(w%))me (.’E%), Cm,a1y - - 7Cm,Cm>me (Cm,lu <o Cm Cry Um 1y - - - 7um,Um) H fuml(um,z)
m=1 i=1

A

wherefm(mﬁﬁ)) = p(m%)) denotes the prior pdf of the pilot symbols transmitted fréwent:th transmitter,
me(w;f Conly s CnCn ) = p(mﬁ,‘f)\cm,l, ..., tm.c,, ) denotes the modulation constraints on the data sym-
bols of themth transmitter,fc, (i1, - -\ CnCos Um s - - - s U U = P(Cmty s CnOo [ U1y - - s Um0,
represents the code constraints for thth codeword and,,,,, , (unm.:) =S p(um,;) is the prior pdf of theith

information bit transmitted by theith antenna. In addition, the vectar§) andz'? contain, respectively,
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Fig. 6. Subgraph corresponding to the modulation and codamgtraints.

the modulated pilot and data symbols transmitted fromrittle antenna. FinallyC',, andU,,, denote the
number of coded and information bits respectively trantadiin a codeword from theith antenna. Using
this factorization offy;, we define the setsly; andZy; as

Au ={fp, m=1,... M}YU{fm, Im=1,... . M}yU{fe,
U{fuslm=1,...,.M,i=1...U,}

T ={xPm=1... M}yu{e@m=1... M}U{cpilm=1,... . Mi=1...Cp,}
U{umim=1,...,M,i=1...Upy}.

The factor graph with the modulation and coding constrasshown in Fig. 6. As it can be observed,
the modulated symbols have been separated into differeiatolea nodes according to the transmit antenna
index m from which they are sent. The symbols corresponding to eatsmit antenna port have been
further subdivided into two different variable node&’ andz'?, the first containing the pilot symbols
and the second containing the modulated data symbols. Tdelated data symbobsﬁ,ff) are connected to
the encoded bits,, 1, . .., ¢y ¢, Via the modulation factor nodg.,,,, which describes the mapping of bits

m=1,...,M}
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onto a complex constellation. The coded bits are, in tutated to the information bits,,, 1, . .., umu,,
through the specific channel code and interleaving scherheedt which is represented in a simplified
manner by the factof.,, in Fig. 6. Finally, every information bit,, ; has an associated prior probability
represented by the factor nodg .. For the vast majority of applications, however, the valokthe bits
will be assumed to be equrobable With the proposed streicthe set of incoming messages is defined

asMy = { w|m=1,. .,M} U {m (d>|m =1,.. .,M}, while the set of outgoing messages
becomesNM:{n ®) 1,. M}U{n (d) fo|m:1,...,M}.

f—>w

Tm —>f0 |m -5 Lm
In order to ease the derivation of the messages for this apbgmwe can re-writgo (y, , h, \) as

M 9 M 9
foy. @, h,A) o NN exp {—AHW =S HDD| Ay - > HY 2l }
m=1 m=1

where the contribution of pilot and data symbols has beeit spib two separate terms. We start by

computing the message that factor ng@esends tor'?:

Mg (®)) = exp {(log fo(y,z, h, )‘)>NNNCN§;’”}

o . A 2 ~
<] (Hw - e | el
m/#m
d . ~
+ Y (@Gl + @) C) ms?))}. (14)

m/#m

~ (d
In the above expression, and S|m|IarIy to prewous defingjar A(d) = (:v(d?>NM, H,(n) = <H§Z?)NC,

m

C — (HOWHD) N — (HOPH? and 6, — (HOWHD) v — (B H?. Additionally,
Ny = {n WORS li = 1 LMYy U{n, @_, soli=1,...,M,i # m} denotes the set of all outgoing
detection messages excezptd) The message in (14) is proportional to a Gaussian pdf wivartance
matrix .
S0~ 3 (EOPEY 4 )
m,VMP
and mean

) e 1) A@D
o = 350 ((H ( Sy A ) Yy cmm,mgjz>.

m/#m m/#m

The outgoing message, @0 (:r;ﬁn ) is obtained by multiplying the messages _ (d>(:r;fn ) andm
In this casem, . is a SP message reading

me—mm) x H (Z 5:105,%) (1) (Z) - S)) (15)

i=1 SES'UL

m—)ngf) '

where §,, is the modulation set for usen and 3 (@ (s) represents the extrinsic values nff ) for
each constellation point € S,,,, obtained from the SF% demodulator and decoder. The comlmrezemtage
fed back to the observation factor node reads

M@ g (a (d)) o m, —m(d)( (d))mem_mg)(w%))

—|s A(d)VMP 2
mH(Zﬂxsm(s)exp{ e }6@2%)—5)), (16)

i=1 SESm
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where 2, (i) is theith entry in the main diagonal oﬁ]wu) . It can be observed that the message

m,VMP

factorizes with respect to the individual modulated syrshgf (1), so the mean and variance of each data
symbol can be computed independently and used to build thee mectorz and the covariance matrix
3. by inserting the updated mean and variances in their cayrebpg positions.

It is important to note that, because the factor ngde, is a SP factor node, the message. .

m

is obtained by multiplying all messages received at vagiatddez'? except the message coming from
fm,,» which in this particular setup reduces to

(D) =m

d
n_( m z)).

m =M,
All message-passing among the modulation factor nodegdcbids and information bits is completed by
using the standard SP algorithm, and will therefore not leemleed here.

It remains to describe the income and outcome messagesimyalilot symbols. As pilot symbols are
known by the receiver, their prior distribution jgz® (i) = §(z) (i) — pm(i)) With p,,(i) denoting the
ith pilot symbol sent from transmit antenna This imposes that the outgoing message, is also
a Dirac delta, which can also be described as a degeneratsi@aumessage with meazrﬁfj) = p,, and
covarianceﬁ]m("@ = 0.

fo—>m5le)<

V. SIMULATION RESULTS

In this section, we propose a number of receiver structuasedbon the derivations made in Section IV
and evaluate their performance by means of Monte-Carlo latious. First, we present the parameters
of the MIMO-OFDM system considered, followed by a descaptof the specific receiver structures that
will be evaluated. Finally, the BER performance resultsaoi®d are presented and discussed.

A. Description of the MIMO-OFDM System

We begin by describing the MIMO-OFDM system used for obtagnihe numerical results. Its main
parameters are summarized in Table I. We consider an OFDMmywith A/ = N = 2 antennas at both
transmitter and receiver ends. Two streams of random latgndependently encoded using a convolutional
code with rate 1/3 and generating polynomials 133, 171 artd(@6tal). After channel interleaving, the
coded bits are mapped onto symbols of a QPSK or 16QAM coasteil (with Gray mapping) which are
then inserted into an OFDM frame consisting of= 7 OFDM symbols with K = 75 subcarriers and
with a subcarrier spacing of 15kHz. Part of the time-frequyegslements are reserved for the transmission
of pilot symbols. We specify the following pilot patternsigh symbols are transmitted in the first and
fifth OFDM symbol of the frame, with a frequency spacing of Iba&arriers, resulting in a total of
13 pilot symbols per frame. Note that both transmit anterstese the same time-frequency elements
for the simultaneous transmission of pilot symbols. Pilpnbols are randomly chosen from a QPSK
constellation.

Realizations of the channel time-frequency response aoraly generated using the extended typical
urban (ETU) model from the 3GPP LTE standard [44] with 9 Ryldading taps. The channel responses
corresponding to two different transmitters are uncoteelaand remain static over the duration of an
OFDM frame. A new channel response is generated for each OFBiMe, with the responses of two
different frames being also uncorrelated.

B. Receiver Structures

We introduce now the specific receiver architectures thiitbeievaluated in this section. All receivers
are based on the generic message-passing receiver pregetection IV. The messages exchanged can
be obtained by particularizing the generic messages aogptd the specific receiver configuration, as it
will be detailed in the following. We evaluate three mainagpf VMP-SP receiver, which are described
next.
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TABLE |
PARAMETERS OF THEOFDM SYSTEM SIMULATED

Parameter Value
Tx antennas X/) 2
Rx antennas ) 2
Subcarriers K) 75
OFDM symbols () 7
Subcarrier spacingX f) 15 kHz
Channel coding 1/3 Convolutional
Symbol mapping 16QAM
Pilot symbols 13
Channel model 3GPP ETU

1) I-DJC-DD and I-DSC-DD ReceiversrFirst, we introduce a full iterative receiver using exadtig
messages derived in Section IV. The receiver operates ktiitely updating the beliefs of the channel
weight vector, the data symbols and information bits andllfinthe noise precision parameter.

Initialization of the beliefs of the channel weights and thensmitted symbols is required. The ini-
tialization of the channel weights is obtained from a pbassed joint linear minimum mean-squared-
error (LMMSE) channel estimator. For the initializationtbe transmitted symbols, maximum-likelihood
detection (MLD) is used, followed by soft-in soft-out (SIBBCJR decoding. The belief of the transmitted
data symbols is set to a Gaussian pdf with mean and covanatges obtained from soft modulation of
the a-posteriori probabilities (APP) of the coded bits ot#d from the SISO BCJR decoder. An initial
estimate of the noise precision is obtained as in SectioA.¥fter the initialization, a full iteration of
the receiver consists of updating the beliefs of the chamméyht vectors (using either the joint channel
weight model in Fig. 4 or the disjoint channel weight modelFig. 5), a message-passing run on the
modulation and coding subgraph (updating the beliefs ofstratted symbols, coded bits and information
bits) and, finally, an update of the noise precision paramétete that the message-passing operations
done through the channel code factor node can be replacetSlty BCJR decoding. In this case, the SP
messages..,, , 1., can be identified to be the extrinsic values of the coded hitpud by the BCIR
decoder.

We refer to the described architectures as Iterative - Bated Joint Channel estimation - Data Decoding
(I-DJC-DD) for the receiver using the joint channel weightedel and Iterative - Data-aided Sequential
Channel estimation - Data Decoding (I-DSC-DD) for the reeeiobtained using the disjoint channel
weights model.

2) DJC-DD and DSC-DD ReceiverdiVe introduce now a class of receivers which perform iteeativ
data-aided channel weights and noise precision estimaigether with equalization and demodulation of
the transmitted symbols. Compared to the receivers predgdrgfore, channel decoding is left outside of
the iterative process, and is performed only once at the #adanvergence of the algorithm. The receiver
capitalizes on just the knowledge of the complex modulasimacture of the transmitted signal to refine
its channel estimates, and not on the code structure. Th&sver architecture is obtained by applying
a special scheduling to the message computation and exetlmtgeen the subgraphs. Specifically, no
messages are passed from variable nag@sto factor nodesf M, until the last iteration of the algorithm.
Instead, after the messa pl® are computed, the updated message) is directly computed
using (16). To this end, an Initial value of the messages _ is needed. This can be obtained by

setting

1
B(d)(.)(S):m \V/m:1,...,M,i:1,...,Nd,S€Sm

in (15). In the expression abovks,,| denotes the cardinality of the s&f,. Note that this initialization
corresponds to assuming that all modulated symbols in timsteliation are equally likely, which is a
valid assumption when the information bits are equiprobald the channel code is regular.
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As for the previous receivers, an initialization of the b#diof the channel weight vector, noise precision
and transmitted symbols is required. The channel weightovea@re initialized as a Gaussian pdf, with
mean obtained from a pilot-based LMSSE channel estimatmaii covariance. Similarly, the beliefs of
the transmitted symbols are also set to a Gaussian pdf wiinraed covariance values obtained from
a MIMO MLD (no BCJR decoding is done, as opposed to the I-DITdhd I-DSC-DD receivers). An
initial estimate of the noise precision is then obtainedbfeing the procedure in Section IV-A. After the
initialization, the receiver operates by iteratively updg the beliefs of the channel weights (either jointly
as in Fig. 4, or sequentially as in Fig. 5), the transmittechisgls and noise precision parameter. After
convergence of the algorithm (or maximum number of iterstiattained), the messages. ,, —are
computed, and a round of decoding based on the SP algoritiparisrmed, yielding the beliefs of the
information bits.

We refer to these receivers as Data-aided Joint Channetasin - Data Decoding (DJC-DD) for the
receiver using the joint channel weight prior model (Settig-B1) and Data-aided Sequential Channel
estimation - Data Decoding (DSC-DD) for the receiver usihg tlisjoint channel weight prior model
(Section IV-B2).

3) PSC-DD ReceiverFinally we present a simple receiver consisting of a pilded channel estimator,
a MIMO maximum likelihood detector (MLD) and data decodiii@pe channel estimation module is based
on the VMP-SP generic receiver described in Section IV. Haips iteratively the beliefs of the channel
weight vectors corresponding to each transmit antenna lanahaise precision. To this end, the channel
estimator only exploits the pilot signals transmitted freach transmit antenna and does not capitalize
on data symbols to refine its estimates.

In order to obtain this pilot-aided channel estimator frdma generic receiver architecture in Section 1V,
the messages, ) must be set to

—fo
n0 g (@) = [ [ o6

This enforces that data symbols are not employed for chameigiht estimation. In addition, the disjoint
channel weights setup (see Fig. 5) is selected. With thidigumation, the output messageés,, are
constant, reflecting the receiver’'s knowledge on the vafuéepilot symbols. Hence, expectations taken
over N in the channel weights and noise precision subgraphs reduttee value of the pilot symbols
(or zero for data symbols), with all second-order terms sfainig. Note that, for this channel estimator,
no update of the beliefs of the data symbols is performedakzption and decoding are done outside
the VMP-SP framework.

Additionally, a small modification in the processing copesding to the noise precision subgraph is
required. Note that, for the computation of the messagg._.,, the signal received at all —pilot and
data— subcarriers is used, while only the signals receivedilat positions are utilized for channel
weight estimation. This can be avoided by restricting thissgage to include only the observation at
pilot positions, i.e. calculatin@@fo(p)_M instead, where

1
with N denoting the total number of pilots in a frame.

The initialization for this estimator is simpler comparexthat of the other receivers. It consists of
setting the beliefs of the channel weight vector correspantb each transmit antenna to a Gaussian prior
with zero mean and zero covariance, while an initial valuetti@ noise precision can be obtained from
the signal received at pilot subcarriers. The receiverapsrby sequentially updating the channel weight
vectors corresponding to each transmitigr. . ., h,, following the procedure described in Section 1V-B2.

This is followed by an update of the noise precision paramé@&tee channel responses belonging to each
transmit antenna obtained after convergence of the wnerastimator are fed to a MIMO maximum

Fon (1, @7, R, A) 2 ply®]a® RO, A) o A exp {‘A v = x0n
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TABLE Il
SUMMARY OF RECEIVER STRUCTURES

Initialization Operation
Receiver Channel Weights Transmitted Symbolg Channel Weight Modell Demodulation & Decoding
PSC-DD | Null mean and covariance - Disjoint -
DJC-DD LMMSE estimator ML detector Joint Demodulation only
DSC-DD LMMSE estimator ML detector Disjoint Demodulation only
I-DJC-DD LMMSE estimator MLD + BCJR Joint Demodulation and decoding
I-DSC-DD LMMSE estimator MLD + BCJR Disjoint Demodulation and decoding

—o—E /N, =-2dB
1k —»— E_ /N, =2dB
—e— E /N, =6dB
-2+ —A— Eb/NO =10dB

Mean Squared Error

Iteration Index

Fig. 7. MSE of the estimates of the channel weights for the -P®Creceiver versus the iteration index. 13 pilot symbols iaserted per
OFDM frame. The dashed black lines represent the MSE olataiith pilot-based LMMSE joint channel estimation.

likelihood detector (MLD), followed by BCJR decoding. Thwse can obtain BER performance results
and benchmark them with analogous receiver structureg @sidifferent channel estimator.

As we will see in the performance evaluation, this iteratgtimator approximates the performance of
a pilot-based joint LMMSE channel estimator with perfecowtedge of the noise variance. The iterative
estimator, however, presents the advantage of avoidindbetsume matrix inversions depending on the
specific values of the pilot-symbols. This estimator was@nted (outside the context of message-passing
techniques) in [34]. A more detailed discussion of the cotatonal advantages of this estimator over
the LMMSE estimator is provided in this contribution.

In the following, we refer to this receiver as Pilot-aidedj8ential Channel estimation - Data Decoding
(PSC-DD) receiver.

The main characteristics of all the receivers presentesdeaboe summarized in Table II.

C. Numerical Results

We evaluate separately the performance of the three actimiés described in Section V-B, beginning
with the simplest scheme, the PSC-DD receiver; we follovhwhte DJC-DD and DSC-DD receivers and
conclude with the most advanced structures: the 1-DJC-D@ 1dDSC-DD receivers.

In Fig. 7, the mean squared error (MSE) of the estimates ofctf@nel weights obtained with the
PSC-DD receiver is depicted. The MSE is plotted for thrededéht F,/N, values as a function of
the number of iterations performed. It is observed that tedopmance of the sequential pilot-based
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—~A— PSC-DD 10 iter
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Fig. 8. BER as a function of, /Ny for the PSC-DD receiver with QPSK modulation. 13 pilot sytsbare inserted per OFDM frame. The
BER performance of a similar receiver using LMMSE channdimestion with knowledge of the noise variance is includecaagference.

estimator approaches the performance of a joint LMMSE egtmwith sufficient number of iterations.
It is especially interesting to note the dependency of thabwer of iterations required for convergence
on the £, /N, value. ForE,/N, = —2dB and E;,/N, = 2dB, between 2 and 3 iterations are sufficient
to achieve an MSE virtually equal to the LMMSE bound. WhenréasingE;, /N, to 6dB, however, a
minimum number of 5 iterations is needed, and about 10 iteratare required fo,/N, = 10dB.
Similar observations can be made when evaluating the BERh@fréceiver with QPSK modulation,
as shown in Fig. 8. Again, the performance of the PSC-DD vecetquals that of the receiver with
the LMMSE estimator when enough iterations for the recebteeconverge have been run, and fewer
iterations are needed the smallgs/ N, is. These results suggest that the iterative channel estirma
the PSC-DD receiver would be a good choice to obtain an irdhannel estimate for the more complex
iterative structures that we will discuss next. Furthermadinis channel estimator has the additional benefit
of outputting soft estimates (the beliefs) of both the cleirweights and the noise precision. Classical
channel estimators, on the other hand, typically requipaisge noise estimation prior to the estimation
of the channel weights, and only provide hard (point) edtsa

BER results for the DJC-DD and DSC-DD receivers are porttageFig. 9. The results have been
obtained using a QPSK constellation for the modulation @& dgmbols. They indicate that a significant
performance gain can be obtained by iteratively updatimgctieannel weights, transmitted data symbols
and noise precision parameter after the initializatiognethough the receiver does not capitalize on the
code structure within the iterative process. For both kexsi(with joint and sequential channel estimation),
most of the improvement with respect to the initializatienobtained in the first three iterations, with
only marginal gains obtained after further processing.ardigg the channel estimation approach, DJC-DD
leads to a slightly better performance than DSC-DD in the lesimulatedE, /N, range; the improved
accuracy of the joint estimation approach comes at the egeh a larger computational complexity,
as it operates with vectors and matrices of dimensibhsimes as large as in the sequential estimation
approach, which can be a problem when calculating the nagessatrix inversions.

Note that the receivers evaluated in Fig. 9 operate by dagitg on the structure of the constellation
used for the modulation of data symbols. Hence, their perdoice strongly depends on the type of modula-
tion used. Low-order modulations, such as BPSK or QPSK rfthis receiver, as there is a relatively large
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Fig. 9. BER as a function o} /N, for the DJC-DD and DSC-DD receivers with QPSK modulation.pll8t symbols are inserted per

OFDM frame.
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Fig. 10. BER as a function of} /N, for the I-DJC-DD and I-DSC-DD receivers with 16-QAM modudat. 13 pilot symbols are inserted

per OFDM frame.

distance between the points in the constellation, allovbbeger refining (through SP message-passing)
of the VMP estimates of the transmitted symbols. When usighdr order modulations, however, the
receiver's performance suffers from the relatively smadtahce between adjacent constellation points.
Specifically for the system investigated in this work, werfduhat the DJC-DD and DSC-DD receivers
for 16-QAM or higher order modulations do not improve thefpenance with respect to the initialization.
The aforementioned problem with high-order modulations lba circumvented with the inclusion of
the channel code structure in the iterative processingpas th the I-DJC-DD and I-DSC-DD receivers.
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Fig. 11. Average noise variance estimated by the I-DJC-Digiver as a function of the iteration index. 13 pilot symbale inserted per
OFDM frame. The dashed black lines represent the true naisance for eactt, /Ny value.

The BER performance of both receivers with 16-QAM modulatath symbols is depicted in Fig. 10. For
benchmarking purposes, the BER performance of a heutigtoesigned iterative receiver with analogous
features to the I-DJC-DD receiver is also plotted. We retethis receiver as LMMSE receiver, as the
channel estimation and MIMO detection modules are seggrdesigned after the LMMSE principle.
The LMMSE receiver is based on the design proposed in [9] forudtiuser CDMA receiver, and was
adapted to MIMO-OFDM in [40], where a detailed descriptidnte operational principles can be found.
In addition, the BER performance of a modified version of Hi®JIC-DD receiver has also been included.
This receiver, which we denote as I-DJC-DD(EM) receivesutes from applying the EM restriction to
the beliefs of the channel weighits and the noise precision parameterThus, this receiver is identical
to the I-DJC-DD receiver except that the messages;, andn,_,;, are computed according to (7). This
modified messages imply that all terms depending on the sesater moments of;, = nj_. s, vanish.

The results show that vast improvements in BER of the |-DIT-&hd I-DSC-DD receivers with
respect to the initialization are obtained, even for vewy 16,/ N, values. As in the case of the DJC-DD
and DSC-DD receivers, joint estimation of the channel wisigherforms marginally better than sequential
estimation. Both message-passing receivers clearly dotpethe heuristic LMMSE receiver, with, /N,
gains close to 1dB at a BER of 1%. We explain these gains bydbethat, contrary to the separate
design of the different modules in the LMMSE receiver, our R18P receivers are analytically derived
based on a global objective function, namely the regiorethdisee energy. This global design ensures that
the information shared by the different receiver composiéhtreated correctly, and resolves the choice
of the appropriate type of information to be passed from thanael decoder to the other component
parts of the receiver. It is also remarkable that the EM-tranged version of the 1-DJC-DD receiver
achieves roughly the same performance as the non-coreddraersion. This result seems to indicate that
there is no significant gain to be achieved by computing sudinoel estimates as compared to just point
estimates, at least for the system considered.

Another key feature of the 1-DJC-DD and I-DSC-DD receivershe estimation of the noise precision.
This functionality does not only account for the AWGN, bus@lincludes inaccuracies in the estimates
of the channel weights and data symbols. Fig. 11 depicts tbeaged noise variance estimate (inverse
of the noise precision estimatg provided by the I-DJC-DD receiver as a function of the itieraindex
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for three differentZ, /N, levels. The true AWGN variances are also depicted as daslae#t bnes. It
is apparent from the results that the behavior of the noisevee estimates (with respect to the true
value) depends heavily on the regime in which the receiveperating. For the very low, /N, regime,
the receiver significantly overestimates the noise vagatius is due to the low accuracy of the channel
weights estimates and the large amount of errors in the atgwf the data symbols obtained. At the other
extreme, for hight, /N, values, the estimates of the channel weights and data sgrhbobme so accurate
(as it can be observed from the low BER values) that the nasiance estimate rapidly converges to the
true AWGN variance, as the contribution of the estimateatouracies becomes negligible. In the medium
Ey/Ny range, the noise variance estimate slowly converges toweValger than the true variance, the
difference between both values depending again on the @ocwf the other parameters’ estimates.
Conceptually, the estimate of the noise precision reptesbe amount of ‘trust’ that the algorithm has
on the beliefs of the channel weights and data symbols. Wdh hoise precision values, the receiver
has high confidence on these beliefs, leading to a rapid cgernee towards a stable solution. On the
contrary, low noise precision values will yield slower cbas on the beliefs from one iteration to the
next, resulting in a slower convergence rate.

VI. CONCLUSION

In this article we have used a hybrid VMP-SP message passamgefvork [41], [42] for the design
of iterative receivers for wireless communication. Therfeavork has been applied to the factor graph of
a generic MIMO-OFDM system. The messages obtained from émergc derivation have been used to
obtain a set of receiver architectures ranging from contpmutally simple solutions to full-scale iterative
architectures performing channel weight estimation, enqigecision estimation, MIMO equalization and
channel decoding. The performance of the proposed resehas been assessed and compared to state-
of-the-art solutions via Monte Carlo simulations.

A fundamental contribution of this work is the applicatioiheounified framework that jointly optimizes
the receiver architecture based on a global cost functiamety the region-based variational free energy.
The message-passing scheme used in this work can be obfaomedhe equations of the stationary
points of a particular region-based free energy approxonaflhe resulting algorithm applies the VMP
and SP algorithms to different parts of the graph and unegaily defines how the messages of the
two respective frameworks are to be combined. As a reswdthstbrid technique allows for a convenient
design of wireless receivers in which the SP algorithm isduse demodulation and channel decoding
and the VMP algorithm is applied for channel weight estimatinoise covariance estimation and MIMO
equalization. The connection between the specific rec&werponent parts is defined by the message-
computation rules, in contrast to other approaches in wttiehselection of information to be exchanged
among the specific receiver components is done based on wahresults and/or intuitive argumentation.

We illustrate the application of the framework by applyinngd the design of receivers in a MIMO-
OFDM communications system. From the factor-graph reptesg the underlying probabilistic model,
a set of generic messages exchanged between differentgbdhis model, represented by sub-graphs, is
derived. We choose to split the factor graph in three maigsaghs corresponding to the channel weights
prior model, the noise precision model and the modulatiah @ding constraints. The advantage of this
modular approach is that it enables a scalable, flexiblegdesi the receiver in which the modification
of a specific sub-graph does not modify the processing peddrin other parts of the graph. Thus,
a collection of different receiver architectures can beaotsd by applying different initialization and
scheduling strategies.

In order to assess the performance of the receivers deriviedtiae proposed framework, we define
five specific instances of the generic message-passingieec&he particular architectures selected span
from to full-scale iterative schemes, in which the outputtleé channel decoder is used to refine the
estimates of the channel parameters and the transmittedodymo low-complexity solutions, in which
only pilot symbols are used for channel weight and noisean@e estimation. This particular selection
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of receiver architectures serves as an illustration of Hosvttadeoff between computational complexity
and receiver performance can be adjusted, with the genergsage-passing receiver as a starting point.
The numerical results, obtained via Monte Carlo simulaiona realistic MIMO-OFDM setup, confirm
the effectiveness of the receivers derived following thérid/ VMP-SP framework. In particular, the
convergence behavior of the receivers tested is especmtharkable. All receiver instances yield an
improved or equal performance with increasing number o&itens, both in terms of BER and MSE of
the channel weight estimates. We explain these favoraloieecgence properties by the use of the unique,
global cost function from which the algorithm is derived.eléstimation of the noise precision parameter,
accounting for the uncertainty on the estimates of the oblamaights and transmitted symbols in addition
to the AWGN variance, is another key feature of the proposelditecture.
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Abstract

Sparse modeling and estimation of complex signals is not uncommon in practice. However, his-
torically, much attention has been drawn to real-valued system models, lacking the research of sparse
signal modeling and estimation for complex-valued models. This paper introduces a unifying sparse
Bayesian formalism that generalizes to complex- as well as real-valued systems. The methodology relies
on hierarchical Bayesian sparsity-inducing prior modeling of the parameter of interest. This approach
allows for the Bayesian modeling of /;-norm constraint for complex-valued as well as real-valued models.
In addition, the proposed two-layer hierarchical model allows for the design of novel priors for sparse
estimation that outperform the Bayesian formulation of the ¢;-norm constraint and lead to estimators
approximating a soft-thresholding rule. An extension of the two-layer model to a three-layer model is
also presented. Varying the free parameters of the three-layer model leads to estimators that approximate
a hard-thresholding rule. Finally, a variational message-passing (VMP) implementation of the proposed
Bayesian method that effectively exploits the hierarchical structure of the inference problem is presented.
The simulation results show that the VMP algorithm outperforms existing sparse methods both in terms
of the sparsity of the estimation results and achieved mean squared error in low and moderate SNR

regimes.
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I. INTRODUCTION

During the last decade the research on compressive techniques and sparse signal representations has
received considerable attention (see e.g., [1]-[4]). With a few minor variations, the general goal of sparse

reconstruction is to estimate the parameter vector ¢ of the following canonical model:
y=Hoa+w. (1

In this expression y is a M x 1 vector of measurement samples, H = [hy,...,h] is an M X L
measurement matrix with L column vectors h;. The additive term w is an M x 1 perturbation vector,
which is assumed to be a white Gaussian random vector with zero-mean and covariance matrix X = \~1T
with A > 0 being the noise precision parameter. The unknown L x 1 parameter vector o = [y, ..., ar]”
has only K non-zero entries, i.e., o is assumed to be K-sparse. System model (1) can be either real-
valued, when H and w are real and « is real [1], [2], or complex-valued, when H or w is complex
and o is complex as well.

Historically, a real-valued system model has dominated the research in sparse signal reconstruction and
compressive sampling techniques. However, complex systems are not so uncommon in practice in which
sparse parameter estimation is sought as well. An example is the estimation of the dominant multipath
components in the response of wireless channels [4], [S]. Motivated by the lack of formal tools for sparse
learning in complex-valued system models and inspired by the recent developments of sparse Bayesian
methods [3], [6]-[11] we propose a unifying sparse Bayesian formalism that applies to both real- and
complex-valued system models. The formalism enables to generalize and improve the sparse Bayesian
methods proposed nowadays.

Sparse Bayesian learning (SBL) [3], [12], [13] applied to model (1) aims at finding a sparse maximum

a posteriori (MAP) estimate of o
QAP = argmin {pHy — HaH% + )\_IQ(a)} , 2)
«@

with p = 1/2 (real model) or p = 1 (complex model), the Euclidean norm || - ||2, and the penalty
term Q(a) ¢ —logp(a),! by modeling the prior p(cx) using a hierarchical structure, which involves
a conditional prior p(avy) and a hyperprior p(«y). The hierarchical approach to the representation of
sparsity-inducing prior has several important advantages. First of all, one is free to choose the prior

pdfs in the formulation of the hierarchical structure, which is advantageous for the generalization of

'z ¢ y denotes exp(z) = exp(f) exp(y) and thus = = B + y for some arbitrary constant 3.

August 22, 2011 DRAFT



SBL for complex- and real-valued system models. When carefully chosen, the resulting hierarchical
structure also allows for the construction of efficient inference algorithms, in terms of sparsity enhancing
capability, and an analytical derivation of the inference expressions. Second, the two-layer hierarchy can
be naturally extended with an additional hierarchy tier by treating the parameters of the hyperprior — the
hyperparameters — as random variables specified by a hyper-hyperprior distribution. This yields additional
degrees of freedom in controlling the sparsity properties of the resulting inference scheme, as will be
demonstrated later in this work.

The SBL methodology has developed following two distinct approaches that differ in the way the
hierarchical prior model is constructed. The first approach is exemplified by the relevance vector machines
(RVMs) [12]. In RVM, each component of « is independently constrained using a two-layer hierarchical
prior p(ay|y1)p(71), where p(oy|y;) is a Gaussian probability density function (pdf) with zero-mean and
variance -y, and p(y;) = p(vi; ar, by) = by, “ ' exp(—by/v)/T(a;) is an inverse gamma hyperprior pdf
with parameters a; and b;.> Further in the text we refer to this formulation of the hierarchical prior pdf
as a Gaussian-Inverse gamma (G-IGa) prior model. Notice that the G-IGa prior model applies equally
well to the modeling of complex-valued as well as real-valued ;. Using the G-IGa prior model an
RVM algorithm is then formulated to estimate the hyperparameters v = [v1,...,v]” by maximizing its
posterior pdf p(y|y, A) o< p(y) | p(yla, A)p(e]y)da; as 7, decreases it drives the corresponding weight
«y towards zero, thus encouraging a solution with only a few non-zero coefficients in c. It is known [12]
that the prior p(a) = [ p(ax,y)d~ is the product of pdfs of Student-t distributions over ;. Under such
a prior most of the probability mass is concentrated along the coordinate axes in the parameter space,
thus encouraging a posterior distribution with a mode lying close to these axes in the a-space [13]. The
analytical tractability of the resulting inference problem allows for a further analysis of SBL with these
hierarchical priors, especially in case of a non-informative hyperprior p(vy) o Hlel v ! which is also
termed automatic relevance determination (ARD) [11], [12]. In the latter case the prior p(«x) is improper:
pla) x Hle 1/]ey]. It leads to the log-sum penalization term Q(a) = Zlel log |oy| in (2), which is
known to strongly promote sparsity [7], [8].> Furthermore, ARD leads to very efficient and fast inference
schemes [6], [14], [15].

The second approach to SBL was proposed in [16] for real-valued models to realize a popular ¢;-

%In the original formulation of the RVM algorithm the parameter -y; models the precision (inverse variance) of the conditional
Gaussian prior p(au|y:) and the hyperprior p(~i;ai,b;) is a gamma pdf. The model has been reformulated here to match the
framework adopted in this sequel of the paper.

3Note, however, that the hierarchical formulation realizes this log-sum penalty term indirectly through the product of two pdfs
that form a conjugate family.
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norm regularization for each component of a. This approach consists in independently constraining
each element of « using a two-layer hierarchical prior p(aq|v;)p(y;). Similarly to the G-IGa model
p(aq|y) is a Gaussian pdf with zero-mean and variance 7;; however, the hyperprior p(7y;) = p(yi;n) is
selected as an exponential pdf with rate parameter 7. We refer to this formulation of the hierarchical
prior pdf as a Gaussian-exponential (G-E) prior model. It can be shown [16] that in this case the prior
pdf p(a;n) = [ plaly)p(v;n)dy o« [T/, exp (—v27]ag) is the product of Laplace pdfs with zero-
mean and scale parameter /27. In this case the penalty term in (2) reads Q(«) = /2n|la|; with || - |1
denoting the ¢;-norm. The MAP estimate with this selection of Q)(cx) is called Least Absolute Shrinkage
and Selection Operator (LASSO) [17]. The popularity of the LASSO regression is mainly attributed to
the convexity of the ¢; penalty term Q(c) = +/2n||a]|1 as well as to its provable sparsity-inducing
properties (see, e.g., [2], [18]).

The sparsity properties of the LASSO estimator depend heavily on the value of the regularization
parameter k = A\~1,/2). If & is selected too large, the resulting estimator produces overly sparse estimates,
i.e., relevant information will be discarded; in contrast, small values of « lead to non-sparse solutions,
especially in low signal-to-noise ratio (SNR) regime. While techniques exist for empirically choosing the
regularization parameters [8], the Bayesian methodology provides all the tools necessary for finding an
optimal regularization term. In other words, by modeling 7 and A as random variables and incorporating
them into the inference framework, an optimal value of x can be found. This requires extending the
two-layer prior modeling of p(«) with a third layer — the “hyper-hyperprior” pdf for . Naturally, the
“hyper-hyperprior” again depends on some parameters that have to be specified. However, it is reasonable
to assume that the performance of the resulting estimator is less sensitive to the exact choice of these
“hyper-hyperparameters”: the tiers of such hierarchical priors can be seen as different layers of abstraction
from the actual model parameter vector «c. Thus, on the highest layer such a “hyper-hyperprior” gives
a very abstract description of the representation of . In this work we propose several extensions and
generalizations of this hierarchical modeling approach.

Our goal in this work is threefold. First, we extend the G-E prior model to complex domain, effectively
generalizing the hierarchical prior formulation for real as well as complex models. We do so by using a
gamma hyperprior p(~y;; €,7;) instead of an exponential prior; furthermore, L individual parameters 7; are
used instead of a single regularization parameter. We will refer to this new hierarchical prior formulation
as Gaussian-gamma (G-Ga) prior model. The obtained results naturally generalize those obtained in [16]
for real . We demonstrate that by varying the shape parameter € of the gamma hyperprior p(7y;;€,7;) a

family of solutions for o that approximate a soft-thresholding rule with different degrees of sparseness
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is obtained. Second, instead of a two-layer prior we propose a three-layer hierarchical prior for both real
and complex parameters. This is realized by modeling the hyperprior parameters 7; as random variables
with the gamma pdf p(n;) = p(m; ar, by) = bf" nl‘”_l exp(—bym)/T'(a;). This leads to a model with 2L+ 1
free parameters, i.e., € and a;, b;, [ = 1,...,L, to control the degree of sparseness of the resulting
solution. We show that, in contrast to the G-Ga model, varying the parameter ¢ with fixed a; and b; leads
in this case to a family of solutions for « that approximate a hard-thresholding rule. Moreover, a weakly
informative prior can be constructed that induces an equivalent weighted log-sum penalization of the
parameter likelihood function [8], [10]. This three-layer prior model we term Gaussian-gamma-gamma
(G-Ga-Ga) prior model. Furthermore, we show that for both two-layer and three-layer prior models,
choosing non-informative hyperpriors yields a log-sum penalization of the parameter likelihood, which is
identical to the ARD formulation of the RVM-type of hierarchical prior. Finally, we propose a variational
Bayesian message passing algorithm that exploits the hierarchical structure of the inference problem. Due
to the adopted choice of the pdfs in the hierarchical prior model it is possible to compute the messages in
closed form. Thus, inference can be implemented very efficiently. We should mention that a three-layer
prior model has been also independently proposed in [7] for hierarchical adaptive LASSO (HAL). In [7]
the authors use a three-layer hierarchical prior to motivate the adaptive version of the LASSO estimator.
There are, however, several important distinctions between their approach and the one advocated in our
work. First of all, although a three-layer hierarchy is used, the prior pdfs used in the hierarchy prohibit
an application of this structure to models with complex parameters; specifically, one does not obtain a
LASSO-type of objective function when this hierarchical modeling is applied to models with complex
parameters. Second, the inference algorithm does not really exploit the three-layer hierarchy. Instead, it
works with a two-layer structure, where the first layer is a Laplace pdf and the second layer is a gamma
pdf. Such a two-layer structure has been explicitly used earlier for sparse estimation of multipath wireless
channels in [5]. More on this will be discussed later in the text.

Throughout this paper we shall make use of the following notation. For vectors & and matrices X,
()7 and (-)" denote respectively the transpose and the Hermitian transpose. The expression (f (%)) g(a)
denotes the expectation of a function f(x) with respect to a density ¢(x). For a random vector x,
N(z|a, B) and CN(z|a, B) denote respectively a multivariate real and a multivariate complex Gaussian

@=L exp(—bx) denotes a

pdf with a mean a and a covariance matrix B; similarly, Ga(z|a,b) = %az
Gamma pdf with shape parameter a and rate parameter b. The range of integration of integrals will not

be explicitly given when it is obvious.
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II. BAYESIAN FRAMEWORK FOR SPARSE ESTIMATION

We begin with the specification of the probabilistic structure of the SBL problem for model (1). Two
types of hierarchical prior models for « are considered: a two-layer and a three-layer hierarchical model.
Later we will see that these models lead to priors for a with distinct sparsity-inducing properties.

The joint pdf of system model (1) with a two-layer prior model for o reads

p(y, o, v, A) = p(yla, )p(A)p(a|y)p(7)- 3)

The joint pdf of system model (1) with a three-layer prior model for « is obtained by assuming that the

parameters 1) of the p() in (3) are random. The resulting joint pdf is then specified as

p(y, o, v,m, A) = p(yla, )p(AN)p(ey)p(y[n)p(n). “4)

Both the two-layer formulation (3) and the three-layer formulation (4) share the same likelihood function
p(y|a, A) and the prior pdf of the noise precision parameter p(A). Due to (1) the likelihood func-
tion is Gaussian: p(y|a,\) = N(y|Ha, \"1I) for the real-valued system model and p(y|a, \) =
CN(y|Ha, \~I) for the complex-valued model. The prior p()\) is selected as a gamma prior, i.e.,
p(\) = p(\;c,d) = Ga()N|c,d). This choice is convenient since the gamma distribution is a conjugate
prior for the precision of a Gaussian likelihood function. Additionally, selecting ¢ = d = 0 makes this
prior non-informative.

Let us specify the structure of the hierarchical priors of « in (3) and (4). Motivated by [12], [16] we
select the conditional prior p(a|y) = [T~ p(cu|y) to be the product of Gaussian pdfs. While in [12],
[16] real-valued o« was considered, here we consider both real- and complex-valued . To this end we
define

plailm) = <L>p exp <—pw> )

™ "
with the parameter p € {%, 1}. The conditional prior p(«y|y;) for real-valued oy is realized by selecting
p =1/2, while p = 1 entails the prior for complex-valued «;. In the next section we compute the prior
for v that results from the two-layer prior model and analyze its sparsity-inducing property. We redo the

same exercise in the following section with the three-layer prior model.
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A. Two-Layer Hierarchical Prior Model

As we have already mentioned, the original G-E prior model in [16] assumes that p(-y) is a product of
exponential pdfs with a common rate parameter 7. We can easily generalize this model by considering
p(7) as a product of gamma pdfs with individual rate parameters. Specifically, we assume that p(vy) =

]_[lelp(fyl) with p(y;) = p(y;6,m) 2 Ga(yile,n;). The G-E prior model is then the special case with

the settings ¢ = 1 and n; = ... = 1y = 1. We define now 1 = [n1,...,nz]” and compute the prior of
« to be
. L
pasen) = [ platpeiemdy = [[plasen) ©)
0 1=1
with
203" 0
plause,m) = =T || “TPKe—p(2¢/pril cul)- (7

In this expression, K, (-) is the modified Bessel function of the second kind and order » € R. Further
in the text we refer to this formulation of the hierarchical prior pdf as Gaussian-gamma (G-Ga) prior
model. The prior (7) is valid for real-valued (p = 1/2) as well as for complex-valued (p = 1) .

By selecting € = 1, p = 1/2, and using the identity K ( L \/_ exp(—z) [19], (7) yields the

Laplace prior for real a;:

p(az;ezl,m)zw—exp —V2mla]), o €R. (8)

In the complex case, when p = 1, it is easy to see that selecting ¢ = 3/2 leads to the same order of the
Bessel function in (7) as in the real case. Making use of the same identity for the Bessel function we

find the corresponding prior for complex a;:

2m
plagse=3/2,m) = 7exp( 2y/milu]), a; €C. )

Hence, the G-Ga prior model realizes the ¢; penalty term Q(a;n) = QZlel VPl with e = 1 for
real o and with € = 3/2 for complex a.
The G-Ga prior model can be used with arbitrary values of ¢, leading to the general optimization

problem (2) with

Q(ose,m) Zlog |ou| P Ky (24/prlcur))) - (10)
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Fig. 1. Two-layer hierarchical prior pdf for the complex system model with the setting 7 = 1: (a) The restriction to R
(Im{aq } = 0) of p(au;e,m) (7) for different values of €. (b) Contour plot of the restriction to the Im{a } = Im{aa} =0 -
plane of Q(a1,az;€,m) x® —logp(ar; e, n)p(az; e, n). In (b) the black dashed line indicates the penalty term resulting when
the prior pdf is a circular symmetric Gaussian pdf.

One important observation is that decreasing € beyond 3/2 in the complex case (or equivalently beyond
1 in the real case) leads to a non-convex penalty term that resembles the £,-norm penalty for 0 < p < 1.*
Unfortunately, in this case the optimization problem (2) with penalty term (10) is no longer convex. Note,
however, that the hierarchical approach advocated in this work does not involve a direct optimization of the
objective function in (2). Instead, the non-convex penalty term (10) is realized indirectly as a product of
Gaussian and gamma pdfs. Moreover, since in the G-Ga model formulation the prior p(a|v) is Gaussian,
the resulting MAP objective function for « is necessarily convex with respect to « irrespective of the
value of €.

Let us stress that (6) represents a family of prior pdfs for o parameterized by € and 1. While the entries
in 17 can be recognized as multiple regularization parameters, the impact of ¢ is less straightforward. To
better understand its influence on the shape of (6) we visualize in Fig. 1(a) the restriction® to R of the

prior p(ayq, €,m;) in (7) with p = 1 for various values of €. Observe the change of the shape of p(ay; e, m;)

*The norm £,, 0 < p < 1, better approximates the pseudo-norm £, — the number of non-zero entries in the vector — as
compared to ¢, with p > 1.

>The same is true for G-E and G-IGa models.

®Let f denote a function defined on a set A. The restriction of f to a subset B C A is the function defined on B that
coincides with f on this subset.
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Fig. 2. Two-layer hierarchical prior for the complex system model: Restriction to Im{h{’y} = 0 of the resulting MAP
estimation rule (2) with € as a parameter in the case when H is orthonormal. The black dashed line indicates the hard-threshold
rule [20].

with e: the smaller the value of ¢ the more rapidly p(ay,€,m;) decays around the origin. In Fig. 1(b)
we show the contour lines of the restriction to R of Q(aq,as;€,n) x —logp(ag;e,n)p(as; e, n); each
contour line is computed for a specific choice of e. It can be seen from the plots that as ¢ decreases
towards 0 more probability mass concentrates along the «-axes; as a consequence, the mode of the
resulting posterior is more likely to be found close to the axes, thus indicating a sparse solution. The
behavior of the classical ¢; penalty term obtained for e = 3/2 can also be clearly recognized.

In order to get further insight into the impact of ¢ on the MAP estimate & with penalty term (10),
we consider the case when H is orthonormal, i.e., when th hj = 0, where d;; is the Kronecker
delta. In this case the solution & can be easily computed since the optimization (2) decouples into L
independent scalar optimization problems. Furthermore, when the G-Ga prior model realizes an £1-norm
constraint, i.e., the prior pdfs (8) (real case) or (9) (complex case) is selected, the MAP solution can even

be computed analytically as follows:

qp = sign(thy)max{O, |thy| — )\_11 /%}, l=1,...,L, (11)
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where sign(z) = x/|z|. The interpretation of this result is quite intuitive: for complex «a; the region
where the estimate &; is exactly zero is the closed disc with radius A‘l\/ﬁ centered at origin; for real
oy it is given by the closed interval [—/\_1\/2_7% AL 217l]. Correspondingly, the solution (11) is a soft-
thresholding rule for each entry in & with threshold A ~* %. In Fig. 2 we visualize the estimation rules
produced by the MAP solver for different values of e. Note their typical soft-threshold-like behavior.
As ¢ — 0, more components of a are pulled towards zero since the threshold value increases, thus

encouraging a sparser solution.

B. Three-Layer Hierarchical Prior Model

We now turn to the SBL problem with a three-layer prior model for « represented by the joint pdf in (4).
Specifically, we extend the G-Ga prior model to a three-layer model by considering the hyperparameters
in n as random. We assume that p(n) = Hle(m), where p(n;) = p(ni;a,b) = Ga(mlag, by). The
resulting three-layer model we term Gaussian-gamma-gamma (G-Ga-Ga) prior model.

Let us now compute the prior p(«) that corresponds to the G-Ga-Ga model. First, we note that
ple,y,m) = pley)p(vIm)p(n) = [Ty p(euly)p(vulm)p(n) and marginalize p(cx,~,n) over n. This
requires computing p(c|vy)p(v) = p(ely) [ p(v|n)p(n)dn. Defining a £ [a1,..., )" andb £ [by, ..., b]7

we obtain

L oo L
p(v;e a,b) = H/ p(yilms ©)p(m; a, b)dm = T [ p(vis €, ar, bo), (12)
1 70 1

where

bMT(e+ap) —(eta
LI ’)f Ly 4 by) (e, (13)

(€ a1,b) = T (a)

Finally, marginalizing p(a|vy)p(7;e€, a, b) over v yields
p(ase, a,b) Hp o €,aq, by) (14)
with

o0
poys e, ar, by) /paz!’n (v)dy
0

p 2\ €P 2
P I( e—l—al)F(al—l—p) loy| |ov|
- Ule+ —p+1; . 15
<7i'bz> INGIINET) P by cranem PR by (1

In this expression, U(+;;-) is the confluent hypergeometric function [19]. Unfortunately, this function
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Fig. 3. Three-layer hierarchical prior pdf for the complex system model with the setting a = 1, b = 0.1: (a) Restriction
to Im{h{’y} = 0 of the resulting MAP estimation rule (2) with € as a parameter in the case when H is orthonormal. The
black dashed line indicates the hard-threshold rule and the black solid line the soft-threshold rule (11). (b) Contour plot of the
restriction to the Im{1} = Im{a2} = 0 — plane of the penalty term Q(a1, az;€, a,b) x® —log p(ai;¢€,a,b)p(asz; €, a,b).

makes a further analytical investigation of (15) rather difficult. Nonetheless, we can study its behavior
numerically. Following the same approach as for the G-Ga prior model, we show the estimation rules
produced by the MAP solver for different values of ¢ and fixed parameters a; and b; when H is
orthonormal in Fig. 3(a). Notice, the estimation rules obtained with the G-Ga-Ga prior model approximate
the hard-thresholding rule. In Fig. 3(b), we depict the contour of the penalty term Q(aq, ao;e€,a,b) x©
—log p(a; €, a,b)p(as;e, a,b). Observe that although the contours are qualitatively similar to those shown

in Fig. 1(b) for the G-Ga model, the corresponding estimation rules in Fig. 3(a) are not.

C. Weighted log-sum Penalization

The use of the additional third layer in the G-Ga-Ga prior model leads to the introduction of the
additional free parameter vectors a and b which must be selected in addition to the prior parameter e.
In this section we discuss a selection of these parameters that leads to a “weakly” informative prior for
o with good sparsity-inducing properties.

Recall that the entries in 17 in the G-Ga prior model represent regularization parameters. The range
of appropriate values for 7 is primarily determined by the particular SNR, measurement signal y, and

dictionary H (see (11)); this range can be quite large in general. Thus, it makes sense to employ a
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Fig. 4. Three-layer hierarchical prior for the complex system model with small b (b = 107°): Restriction to Im{h y} = 0
of the resulting MAP estimation rule (2) with a; as a parameter in the case when H is orthonormal. The black dashed line
indicates the hard-threshold rule and the black solid line the soft-threshold rule (11).

diffuse prior over 1. This can be achieved by selecting the entries in b to be small; practically, we set

by =1075,1=1,..., L. For small b; the prior (13) can be approximated as

T (e+a) —(a+1)

(€ a;,b)  ————r= (16)
(€, a1, by) (T (ar) v
If in addition we select € = 0 we obtain the improper prior for

Pl ar) oy Y. (17)

The prior p(«y;a;) obtained by marginalizing p(ay|v;)p(7;; a;) over ~; is also improper in this case:
plag; ap) o oy |72 @te), (18)

The prior (18) leads to a weighted log-sum penalty term Q(a; a) = 2 Zle(al + p) log |oy| parametrized
by a in the MAP objective function. Observe that selecting @ = 0 in (18) the log-sum penalty term is
automatically obtained. Such form of penalty appears in the ARD formulation of the G-IGa prior model

[12], [21], as well as in the re-weighted ¢; optimization [8].
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The dependency of (18) on a; gives some extra degree of freedom to further adjust the sparsity
property of this prior. To demonstrate this, let us again consider the special case of an orthogonal
measurement matrix H. In Fig. 4 we depict the corresponding MAP estimation rules for a; with penalty
term Q(ay;a;) = 2(a; + p)log |ay|. Observe that increasing the value of a; also increases the values of

the effective threshold, thus resulting in sparser solutions of cx.

III. RELATED APPROACHES AND METHODS

In this section we establish the relationship between the sparse Bayesian modeling approach with
hierarchical priors developed in Sec. II and other state-of-the-art sparse estimation techniques proposed
in the literature.

The iterative re-weighted ¢; minimization method studied by [8], [10], [21] solves the weighted

optimization problem for the real system model (p = 1/2) in (2) with penalty term

L
Q(a; B) =Y Bileul, (19)
=1
where 5;, [l =1,..., L, are some fixed weights. In [8] it is proposed to update the weights as
Br=(l6a] +¢)7, (20)

where ¢ is some small constant and ¢&; is the current estimate of ay; such an algorithm leads to a sequence
of re-weighted ¢; minimization problems.

We show that our proposed G-Ga prior model also implements the same objective function, albeit
for real as well as complex system models. Indeed, the MAP estimate of a computed using the G-Ga

hierarchal prior model with the setting e = p + 1/2 yields the penalty term

L
Q(asm) =2 v/pmileul. 1)

=1
Hence, (21) is equivalent to (19) with the weighting factors 8, = 2,/pm;, [ = 1,..., L. Quite naturally
this relationship can be exploited by selecting the hyperparameters 17; = 1/(4p(|&;| +<)?) as proposed in
[8]. Moreover, in contrast to [8] and as already mentioned in Sec. II, the Bayesian hierarchical approach
is not constrained to the ¢;-type of penalty term obtained with ¢ = p+ 1/2, but can be used for arbitrary
values of ¢, leading to the general re-weighted constrained optimization problem by updating n; in (10).
We will demonstrate that due to the strong sparsity-inducing nature of the prior (7) for € < p+1/2, (10)

leads to a sparser estimate as compared to that obtained using (21).
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Similarly to the G-Ga prior model, the two-layer G-IGa prior model proposed in [12] also requires
specifying the hyperprior parameters. In [12] the variance ~; follows an inverse gamma distribution. The
corresponding marginal distribution of ; can be shown to follow a Student-t distribution. This result can
be easily generalized for complex variables, leading to the prior for
P ' T(a; + p)

'(ar)

Setting a; and b; to zero leads to a special case of non-informative hyperpriors and ARD, with an improper

plassabr) = (2) (b1 + plaul?) ™. 22)

prior p(a) o Hlel || =2 that leads to the log-sum penalty term Q(c) = 2p Zlel log ||. We should
also add that the ¢; re-weighting scheme in [8] has also been motivated using the log-sum penalty term
(see [8] for more details). Moreover, it has been demonstrated [10], [21] that the ARD approach to
SBL based on the G-IGa prior model can also be interpreted as a series of re-weighted ¢; minimization
problems; the computation of the weighting factors, however, differs from that used in [8].

Similarly, in [16] the author also suggests to make use of Jeffreys’ prior for the variance ~; in the
G-E prior model. It can be shown that this choice of hyperprior in fact again leads to the same improper
ARD prior p(cy) o< |oy|~27. Hence, the G-IGa model proposed by Tipping in [12] and the G-E model
proposed by Figueiredo in [16] are equivalent when the hyperpriors are chosen to be non-informative.
Note that since the G-Ga prior model endorses the G-E model as a special case, the same is true when
e=n=0,l=1,...,L, in (7). Furthermore, for the three-layer prior model it is easily seen that letting
a; = by = € = 0 in (13) also entails the non-informative Jeffreys’ prior for 7;. Thus, the equivalent
marginalized prior p(«;) coincides with that obtained in [12] and [16] when non-informative hyperpriors
are assumed. In other words, when second or third layer priors are chosen to be non-informative, an
instance of ARD is obtained regardless of the hierarchal prior model used.

While two-layer models in general require specifying the regularization parameters, three-layer prior
models effectively lead to an alternative automatic procedure for selecting the parameters 7);. The three-
layer structure has been implicitly exploited in [5] for sparse variational Bayesian extension of the SAGE
algorithm for parameter estimation in sparse wireless channels and explicitly in [7] for hierarchical
adaptive LASSO. In [5] the authors exploit the two-layer prior structure, where the first layer is the
¢y prior, ie., p(a|fn) Hlel exp(—2m;|aq|) and the second layer is the gamma hyperprior p(7) =
Hlel Ga(7|a, by). Obviously, the prior p(c|7) can be constructed via the G-Ga model as we showed in
Sec. II-A with 7 = ,/7;; thus, the two-layer /1-gamma prior model used in [5] is equivalent to the three-

layer structure discussed in Sec. II-B with the selected hyper-hyperprior p(n) = Hlel Ga(y/mi|ar, br).
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Thus, 7, = /n; following a generalized gamma distribution [22]. The resulting update expressions for
7; can then be computed as [5], [7]
i a;+pt
| = 177"
b+ p~téu|

(23)
Notice the similarity between the update expression (23) and the one proposed in [8] for the weights
B; in (19). Let us stress that although the authors in [7] discuss the three-layer structure, they do not
exploit the hierarchy for constructing the inference algorithm; instead, the first two layers are combined
together to give the Laplace prior. This leads to the desired LASSO-type objective function for estimating
«a and makes their approach numerically equivalent to that proposed in [5]. Nonetheless, despite formal
similarities between the update expressions for the ¢; weighting parameters obtained with the three-layer
hierarchical prior and those proposed in [8], a substantial difference between these schemes lies in the
order in which the parameters are updated. Specifically, in [8] the weights are updated once a single
weighted ¢; optimization problem has been solved with fixed weights n;, [ = 1,..., L; similarly, the
ARD approach estimates the corresponding weighting parameters once the vector o that optimizes the
ARD objective function are computed [21]. In contrast, in [5] and [7] the update expressions for the
weights of the weighted ¢; optimization are evaluated concurrently with the update expressions for the

model parameter vector «; in other words, a weight 7; is updated each time the corresponding parameter

«y is updated.

IV. VARIATIONAL MESSAGE PASSING

In this section we present a variational message passing (VMP) algorithm for estimating o given the
observation y. First, we derive the VMP inference expressions for the SBL problem with the two- and
the three-layer prior models. Then, a procedure for removing a basis function from the measurement

matrix H is described.

A. The VMP algorithm

Let ® = {a,v,m, A} be the set of unknown parameters to be estimated and let p(y,®) be the
joint pdf specified in (4). The factor graph [23] that encodes the factorization of p(y,®) in (4) is
shown in Fig. 5. Consider an auxiliary pdf ¢(®) for the unknown parameters that factorizes according
to ¢(®) = q(a)q(v)q(n)g(N\). The VMP algorithm is an iterative scheme that attempts to compute
the auxiliary pdf ¢(®) by minimizing the Kullback-Leibler (KL) divergence KL(q(®)||p(®|y)). In the

following we summarize its key steps; the reader is referred to [24] for more information on VMP.
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Fig. 5. A factor graph [23] that represents the joint pdf (4). In this figure fy = p(yla, ), fo = plaly), fv = p(v),
fn =p(0), and fx = p(A).

From [24] the auxiliary function ¢(¢;), ¢; € ¢ is updated as the product of incoming messages from
the neighboring factor nodes f, to the variable node ¢;:
g(d) o< [ mpsen (24)
fneNtb»;
In (24) Ny, is the set of factor nodes neighboring the variable node ¢; and my, 4, denotes the message

from factor node f,, to variable node ¢;. This message is computed as

Mf,— = XD (<1H Fud1, a(o,), @ean\{@}) » (25)

where Ny, is the set of variable nodes neighboring the factor node f,,. After an initialization procedure,
the individual factors of ¢(®) are then updated iteratively in a round-robin fashion using (24) and (25).

In the following we derive two versions of the VMP algorithm: one applied to the two-layer G-Ga prior
model (referred to as VMP-2L), and another one applied to the three-layer G-Ga-Ga model (VMP-3L).
The messages corresponding to VMP-2L are easily obtained as a special case of the messages computed
for VMP-3L by assuming ¢(7;) = §(m; — 1j;), where §(-) is a Dirac delta function and 7j; is some fixed
number. We compute the messages for both real-valued (p = 1/2) and complex-valued (p = 1) signal
models (1).

1) Update of q(a): According to (24) the computation of ¢(c) requires evaluating the product of

messages my, . and my,_ . These are obtained as

My, .. =exp({Inp(yla, N))qer))
o exp (—p(Aqlly — Hall3) , (26)
Mp,—a = eXp(<lnp(a‘7)>q('y))

x exp (—pa'V(v)a), 27)
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where we define V' () = diag{(y; 1>q(,y), cee (’ygl>q(,y)}. Multiplying (26) and (27) yields the Gaussian
auxiliary pdf ¢(a) = CN <a|d,ﬁ]a> when p = 1 and ¢(a) = N <a|d,ﬁ]a> when p = 1/2 with
corresponding mean and covariance given by

Yo = (N H"H+V (7)), (28)

= () ga) = Mgy ZaH y. (29)

Q>

2) Update of q(~y): The computation of g(v) requires evaluating the messages m,,_,  and m,__,~:

Mo~y = exp((Inp(e|7))g(a))

o [T e (o Hlouha) (30)
My < [ exp(=2m)g(m))- 31)
=1
Notice that (|a;|?),(a) in (30) is the Ith diagonal element of (aax™) (o) = 3. + aall. Multiplying (30)
and (31) yields
) x H'YE P~ Lexp (=1 pleu| i) — M) () - (32)

The right-hand side expression in (32) is recognized as the product of Generalized Inverse Gaussian (GIG)

Uy

pdfs [251, ie., g(v) = [T/~ q(; p, w, vi) where q(; p, up, vp) = 2;({“1(/%—”)% “exp (— Yy — %’n‘l)

with order p = ¢ — p and parameters u; = 2(n;) ., and v; = 2p(|oy|?)

a(n) a(a)

Observe that the computation of V() in (28) requires evaluating (7, >q(,y) forall l = 1,...,L.

Luckily, the moments of the GIG distribution are given in closed form for any n € R [25]:

2 2 Kpin (24/000) () (1)) g(ar)
<">q<7>=<p<|al| o) ) for 2 o) (33)

i (1) q(m) p< \/p M) g(n) !az! >q(a))

In the special case of ¢1-norm priors, i.e., when p = € — p = 1/2, using the identity K,(-) = K_,(-)
[19], (33) simplifies to

0 Dty = <<<m>¢> : (34)

P ’al’2>q(a)
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3) Update of q(n): The update of ¢(n) is the product of messages my, _y, and m;,__y:

L
q(n) o< Hﬁf+al_1 exp (—((M)g(y) + b)) (35
=1

which is identified as a gamma pdf. The first moment of 7); used in (33) is easily computed as

_|_
(W)atn) = 7 S (36)

Mty + 0
Naturally, ¢(n7) is only computed for VMP-3L.
4) Update of g(\): The update of ¢(\) can be shown to be g(\) = Ga(A|pM +c, p(Hy—HaH%)q(a) +

d). The first moment of X\ used in (28) and (29) is therefore computed as

pM + ¢
Norn) = . (37
N7 oy — Hal2) g + d

B. Pruning a basis function

When the estimation algorithm produces a sparse parameter vector & with K non-zero components, the
remaining L — K basis function in the measurement matrix H can be removed from the model. This basis
function pruning drastically lowers the computational complexity of the VMP algorithm. Specifically, it
reduces the computational complexity of the inversion of the covariance matrix in (28) from O(L?) to
O(K?).

A closer inspection of (28) reveals that the parameters (7, 1>q(,y) are in fact classical regularization

terms for estimating the weights c.. Quite naturally, the larger the value of (v, 1> i.e., the larger the

q(v)>
regularization for the /th basis function h;, the smaller the estimate of the corresponding «;. Thus, it
makes sense to remove h; in H when (v, 1>q(,y) exceeds a certain large threshold. The same method

was used in [12] for the G-IGa prior model to obtain a sparse solution.

V. NUMERICAL RESULTS

We perform Monte Carlo simulations to evaluate the performance of the two versions of the derived
VMP algorithm in Sec. IV. A complex-valued signal model (1) is considered in all experiments, where for
each Monte Carlo run a random M x L matrix H, a K-sparse vector «, and a random perturbation vector
w are generated. In order to test the methods on a realistic benchmark we use a random dictionary H
whose entries are independent and identically distributed (iid) zero-mean complex symmetric Gaussian
random variables with unit variance. The indices of the K non-zero components of o are uniformly

drawn from the set {1,2,..., L}. The K non-zero components of « are iid and drawn from a zero-mean
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Legend Model Parameters
VMP-2L(e = 3/2) | G-Ga e=3/2
VMP-2L(e = 0) G-Ga e=0

VMP-3L(e = 3/2) | G-Ga-Ga | e =3/2, a =1, b= 10751
VMP-3L(e = 0) G-Ga-Ga| ¢e=0,a=1,b=10"%1

TABLE I
THE SELECTED PARAMETERS FOR THE PROPOSED PRIOR MODELS PRESENTED IN SEC. II. HERE, 1 := [1,...,1]%.

complex circular symmetric Gaussian distribution with unit variance. All reported curves are computed
based on a total of 200 Monte Carlo runs.

Table I summarizes the choice of the free parameters for the G-Ga and G-Ga-Ga prior models discussed
in Sec. II. As indicated in the table, the selected value of € used in the different versions of the VMP
algorithm is appended to their acronyms.

To initialize the VMP algorithm we set (X),(») equal to (Var{y})~! and (v, 1>q(,y) equal to the inverse
number of columns L. Furthermore, we let ¢ = d = 0 in (37), which corresponds to a non-informative
prior for A. Once the initialization is completed, the algorithm sequentially updates the auxiliary pdfs
q(a), q(v), q¢(A), and ¢(n) until convergence is achieved. As stated in Sec. IV, ¢(n) is only updated for
VMP-3L, whereas for VMP-2L the entries in n are free parameters that must be determined. Therefore, we
propose to use the re-weighting scheme of [8] to update 77; once the VMP-2L algorithm has converged and
a solution ¢; is produced. The parameters 7;, [ = 1,..., L, are then updated based on the corresponding
estimates @; and the VMP-2L algorithm is iterated once more with the updated parameters. Specifically,

7 is updated as [8]
m = (|| +¢)7? (38)

with the parameter ¢ set to ¢ = 10~3. Empirically we have observed that only a few (roughly 3 — 4) re-
weighting updates are needed. Initially, we choose = [1,...,1]7 the first time the VMP-2L algorithm
solves the optimization problem.

In the sequel we perform the following investigations: first, the performance of the VMP-2L and VMP-
3L is analyzed; then, the VMP algorithm is compared with several state-of-the-art sparse estimation
schemes. The performance of the compared algorithms is evaluated based on the mean-squared error
(MSE) of & and the number of non-zero elements K in &. Note that the estimate Qy 18 set to zero when

(7] ")q(~) exceeds a fixed threshold set at 10°.

August 22, 2011 DRAFT



20

©-VMP-2L(c = 3/2)

(
107 +-VMP-2L(e = 0)
VMP-3L(¢ = 3/2)
_10|| = VMP-3L(e = 0) 4
10 | I | 10 | | | | |
0 10 20 30 40 50 60 70 1 15 2 25 3 35 4
SNR [dB] Overcompleteness ratio
() (b)

. . . )
40 50 60 70 1 15 2 25 3 3.5 4
SNR [dB] Overcompleteness ratio

(© (d)

Fig. 6. Performance of the VMP algorithm: (a,b) MSE versus (a) SNR and (b) overcompleteness ratio L/M with M = 100.
(c,d) Estimated number of non-zero components K versus (c) SNR and (d) overcompleteness ratio L/M (M=100) at 15 dB
SNR. The gray horizontal line indicates the true number of non-zero components in c.

A. Performance of the VMP algorithm

Here we evaluate the performance of the VMP algorithm versus (i) the SNR per received signal
component and (ii) the overcompleteness ratio L /M. The results illustrate the sensitivity of the algorithm
to measurement noise and its performance in classical compressive sampling test setting, where the number
of basis functions L exceeds the number of measurements samples M. In these investigations the true
number of non-zero components in o is set to K = 10.

In Figs. 6(a) and 6(c) the performance of the algorithm is evaluated versus the SNR with M = 100 and
L = 200, which yields an overcompleteness ratio of L /M = 2. Notice that in a very high SNR regime,
i.e., when the observation is practically noise free, the performance of the compared schemes is almost
indistinguishable. However, when the noise cannot be neglected, VMP-3L(e = 0) clearly outperforms the
other three schemes in terms of the estimate /X , followed closely by VMP-2L(e = 0); VMP-2L(e = 3/2)
clearly performs worse than the other schemes both in terms of the achieved sparseness and MSE. Observe
that when e = 3/2, which is equivalent to the ¢;-norm parameter constraint, both G-Ga and G-Ga-Ga
models induce a heavily overestimation of K; in contrast, setting ¢ = 0 leads to much sparser solutions.

Also, notice that for a fixed ¢, the G-Ga-Ga model generally leads to an estimator that produces sparser
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Fig. 7. Performance of the VMP algorithm: (a)-(c) MSE performance and (d)-(f) estimated number of non-zero components
K versus the true number of non-zero components /. The SNR is set to 10 dB in (a) and (d), 30 dB in (b) and (e), and 60
dB in (c) and (f).

results as compared to that of the G-Ga model.

In Figs. 6(b) and 6(d) the performance of the algorithm is compared as a function of the overcom-
pleteness ratio L/M for an SNR level fixed at 15 dB. Here again VMP-3L(e = 0) is a clear winner. We
also notice that for a fixed ¢ the G-Ga-Ga model induces better performance over the G-Ga model, and
the case ¢ = 0 outperforms the schemes realizing the ¢;-norm parameter constraints with e = 3/2.

Next we evaluate the performance of the schemes as a function of the number of non-zero components
K in a. To this end we set M = 100, L = 200 and vary K from 10 to M. The MSE and the estimate
K are compared for SNR fixed at 10 dB, 30 dB, and 60 dB. The corresponding results are shown
in Fig. 7. In low SNR regime (~ 10 dB) VMP-2L(e = 0), VMP-3L(e = 3/2), and VMP-3L(e = 0)
exhibit an almost identical MSE performance, with VMP-2L(e = 3/2) performing worse only for low
K values. However, K does vary for these schemes. For € = 3/2 the estimate K is almost independent
of the true number of non-zero components K. However, when ¢ = 0, VMP-3L(¢ = 0) underestimates
K, performing best only if K < 20; in contrast VMP-2L(e = 0) exhibits acceptable performance for
K < 40. As the SNR increases, the performance of all schemes improves, yet the MSE curves begin
to exhibit an interesting thresholding effect, which gives the highest K value for which the algorithm
is still able to recover the true number of non-zero components. Here, VMP-2L(e = 0) performs the

best, exhibiting the thresholding behavior at K ~ 60 or even K ~ 70 as the SNR grows to 60 dB. It
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is followed by VMP-3L(e = 0), exhibiting the thresholding effect already at K ~ 30 for both 30 dB
and 60 dB SNR. However, the performance of both schemes with € = 0 significantly degrades when K
increases beyond the corresponding sparsity threshold levels, i.e., when the signal becomes less sparse.
Specifically, the number of non-zero components in « is underestimated, leading to an abrupt increase in
the MSE of the estimates. The VMP schemes with ¢ = 3/2 become effective only when the SNR level
becomes very high, with VMP-3L(e = 3/2) inducing superior performance than VMP-2L(e = 3/2).

In what follows we compare the performance of VMP-2L(e = 0) and VMP-3L(e = 0) with several

other sparse estimation algorithms.

B. Comparison with Existing Sparse Methods

In the following, we compare VMP-2L(e = 0) and VMP-3L(e = 0) to the ARD formulation of the
RVM [12], [13], the sparse reconstruction by separable approximation (SpaRSA) algorithm [26],” and
a re-weighted version of SpaRSA. The SpaRSA algorithm is a proximal gradient method for solving the
LASSO cost function. We can easily extend the framework of [26] to solve the weighted LASSO cost
function:

~ . f1 -
zzargmln{§\ly—HB 1z\|§+m\|z||1}, (39)
zeCr

where o = B~z and B £ diag{B3}. The components of 8 £ [31,...,3r]T are updated according to
(20) with ¢ = 1073 a total of 3 times. Further in the text we will refer to this algorithm as Reweighted
SpaRSA. Note that the choice of x has a crucial impact on the performance of the resulting inference.
For large x the algorithm produces very sparse estimates; however, the MSE performance in this case
might significantly degrade. In our implementation of this estimation scheme we select kK = 0.2 for
SpaRSA and x = 0.05 for Reweighted SpaRSA. The latter values were empirically found to balance
well the achieved signal sparsity with the MSE. As already mentioned, VMP-3L, in contrast, provides
the necessary mechanism to set this regularization parameter automatically.

In Fig. 8 the performance of the compared schemes is depicted for K = 10. In Figs. 8(a), 8(c) the
dependency of the estimates” MSE on the SNR for the overcompleteness ratio L/M = 2 with M = 100
is visualized. Observe that VMP-2L(e = 0) and VMP-3L(e = 0) achieve lower MSE in the SNR range
up to 60 dB as compared to the other schemes. Furthermore, in this SNR range they also produce

sparser estimates. However, Reweighted SpaRSA “catches” the VMP curves already at 30 dB, slightly
"The software is available on-line at http://www.Ix.it.pt/~mtf/SpaRSA/
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Fig. 8. Performance comparisons of VMP-2L(e = 0) and VMP-3L(e = 0) with ARD RVM, SparseRSA and Reweighted
SparseRSA algorithms: (a,Ab) MSE versus (a) SNR and (b) overcompleteness ratio L/M with M = 100. (c,d) Estimated number
of non-zero components K versus (c) SNR and (d) overcompleteness ratio L/M (M=100) at 15 dB SNR. The gray horizontal
line indicates the true number of non-zero components in cx.

outperforming VMP-2L(e = 0) in terms of the estimated number of non-zero components. A similar trend
is observed when the algorithm performance is compared as a function of the overcompleteness ratio L /M
in Figs. 8(b) and 8(d). Although the G-Ga and G-Ga-Ga models with ¢ = 0 lead to estimators with better
performance than the other schemes, the performance of VMP-2L(e = 0) degrades as the ratio L/M
increases, while VMP-3L(e = 0) performs well almost independently of the actual overcompleteness
ratio.

Now we test the performance of the algorithms versus K with L/M = 2 and M = 100. The
corresponding results are shown in Fig. 9 for the SNR level fixed at 10 dB, 30 dB, and 60 dB. Interestingly,
a similar thresholding behavior is observed here also for ARD RVM and both SparseRSA schemes. The
VMP schemes perform better in low (~ 10 dB) and moderate (~ 30 dB) SNR regimes. In high SNR
regime ARD RVM performs almost as well as VMP-2L(e = 0), yet it significantly overestimates K
for K > 70. Reweighted SparseRSA also performs quite well in the high SNR regime, for K < 50,

overestimating K as K grows.
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Fig. 9. Performance comparisons of VMP-2L(¢ = 0) and VMP-3L(¢ = 0) with ARD RVM, SparseRSA and Reweighted
SparseRSA algorithms: (a)-(c) MSE performance and (d)-(f) estimated number of non-zero components K versus the true
number of non-zero components K. The SNR is set to 10 dB in (a) and (d), 30 dB in (b) and (e), and 60 dB in (c) and (f).

VI. CONCLUSION

In this paper a unifying sparse Bayesian formalism with hierarchical sparsity prior modeling was
proposed. The presented methodology generalizes the sparse modeling of complex- as well as real-valued
systems. Taking as a starting point the hierarchical structure for modeling the ¢; parameter constraint,
originally proposed by M. Figueredo, we extend this model to the complex domain, which leads to a
parametric family of sparsity-inducing hierarchical priors.

The new approach uses a product of zero-mean Gaussian priors defined for each element of the
parameter vector o, with the variance of each prior following a gamma distribution characterized by a
shape parameter ¢ and a component specific scale parameter 7;. This model we termed the Gaussian-
gamma prior model. The choice ¢ = 3/2 in case of complex-valued models and ¢ = 1 in case of
real-valued models corresponds to the Bayesian hierarchical modeling of the ¢;-norm constraint in the
objective function. Naturally, other values of € > 0 can be utilized. This additional degree of freedom in
controlling the sparsity properties with € leads to priors with strong sparsity properties. More specifically,
it was shown that the case ¢ = 0 encourages a sparser solution than the ¢;-norm constraint. Furthermore,
varying the parameter ¢ of the Gaussian-gamma model leads to estimators of « that approximate a

well-known soft-thresholding rule.
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We also considered a further extension of the Gaussian-gamma prior model by modeling the hyperpa-
rameters 77; as random variables with a gamma prior pdf. The new model — the Gaussian-gamma-gamma
prior model — also generalizes complex- as well as real-valued scenarios and allows for an automatic
selection of the parameter 7);. Similarly to the Gaussian-gamma model, the three-layer Gaussian-gamma-
gamma prior also leads to a family of parametric priors with different sparsity-inducing properties.
However, varying the free parameters of the Gaussian-gamma-gamma model leads to estimators of «
that approximate a hard-thresholding rule.

Finally, we proposed a variational message passing (VMP) algorithm for the estimation of the model
parameters. The proposed VMP algorithm effectively exploits the probabilistic structure of the inference
problem. It was shown that in general the case ¢ = 0 outperforms the ¢1-norm constraint both in terms of
the sparsity as well as in the achieved MSE. The proposed extension of the Bayesian hierarchical model
for sparsity constraint is a very powerful, yet analytically tractable and simple mechanism for imple-
menting sparse estimators. Our numerical results show that we obtained a very significant performance
improvement over existing sparse methods when testing in low and moderate SNR regimes, in which

state-of-art estimators failed to produce sparse solutions.
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Abstract—In this contribution, a multi-user receiver for M-
QAM MIMO-OFDM operating in time-varying and frequency-
selective channels is derived. The proposed architecture jointly
performs semi-blind estimation of the channel weights and noise
inverse variance, serial interference cancellation and decoding in
an iterative manner. The scheme relies on a variational message-
passing approach, which enables a joint design of all these
functionalities or blocks but the last one. Decoding is performed
using the sum-product algorithm. This is in contrast to nowadays
proposed approaches in which all these blocks are designed and
optimized individually. Simulation results show that the proposed
receiver outperforms in coded bit-error-rate a state-of-the-art
iterative receiver of same complexity, in which all blocks are
designed independently. Joint block design and, as a result, the
fact that the uncertainty in the channel estimation is accounted
for in the proposed receiver explain this better performance.

I. INTRODUCTION

During recent years, algorithms based on iterative informa-
tion processing or “turbo” techniques have become widespread
in wireless receiver design [1]-[3]. The success of these
algorithms can be explained by their remarkable properties:
high performance at tractable complexity and flexibility in
their design. An emblematic example is turbo-codes, which,
when associated with turbo-decoding, allow for transmission
close to capacity at tractable complexity [1].

In this paper, we focus on a specific application of iterative
information processing, namely to design efficient, feasible
algorithms for channel estimation (i.e. estimation of both
the channel transfer function and the channel inverse noise
variance), interference cancellation, and decoding in MIMO-
OFDM systems. Some related work is already available in
the literature. Worth noticing is the iterative algorithm for
detection and interference cancellation [4] applied to multiuser
CDMA. This algorithm is extended for various transmission
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Fig. 1. Baseband signal model of the considered MIMO-OFDM system.

schemes in [5]-[7] to include estimation of the channel re-
sponse into the iterative process. We coin this receiver the
LMMSE-based receiver, according to the dominant structure
implemented in its constituent blocks. An essential feature of
this receiver is that its constituent blocks are designed and
optimized individually. These blocks are connected afterwards
to form the iterative structure.

In this contribution, we apply variational Bayesian (VB)
inference [8] and one of its applications, namely the variational
Bayesian expectation maximization (VBEM) algorithm [9] to
perform channel weight and noise inverse variance estimation
as well as serial interference cancellation in an M-QAM
MIMO-OFDM system operating in time-variant frequency-
selective channels. Decoding is performed using the sum-
product (SP) algorithm [3]. The VBEM algorithm has already
been applied in [10] for GSM channel estimation and detec-
tion. In [11] it is combined with the sum-product algorithm
for the design of a multiuser CDMA receiver. Further related
work is found in [12]-[15]. In our paper, we apply the VBEM
scheme in [11] to MIMO-OFDM and reformulate it as a
variational message-passing (VMP) algorithm on factor graphs
[16].

The proposed VMP receiver and the LMMSE-based receiver
from [5]-[7] share similar features in their respective struc-
tures. Thus, we find it useful to also include a comparison of
the two schemes. A crucial difference is that the estimation
of the noise and residual interference power in the VMP
receiver accounts for the uncertainty in the channel coefficient
estimates, an effect not considered in the LMMSE-based
receiver. This, combined with the joint design of all receiver
blocks but decoding, yields a superior performance of the
VMP receiver, as our simulation results demonstrate.

The notational convention for the rest of the paper is as
follows: the superscripts (-)T and () denote transposition
and Hermitian transposition respectively. The symbol - o -
denotes proportionality. The trace operator is designated as
tr(-). The expectation operation with respect to a function ¢(x)
is represented by (-),(.). The newest estimate of the mean or
covariance of a variable is denoted by °. The operators diag(-)
and Diag(-) denote the vectorized diagonal of a matrix and the
diagonalized matrix of a vector respectively. For matrices A
and B, the Kronecker and Hadamard products are represented
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by A®B and A®B respectively (for the Hadamard product A
and B are assumed to have the same dimension). The identity
matrix of dimension K is designated as I and 14 represents
the all-one matrix of dimension G x G. We employ Ox and
[1...1]k to designate respectively the all-zero column-vector
and the all-one row-vector of length K.

II. SIGNAL MODEL

We consider the LTE-like MIMO-OFDM system depicted in
Fig. 1 in which we have K transmitters, indexed by k, and G
receivers, indexed by g. In the kth transmitter, denoted by Txy,
the bit-stream by, is encoded, interleaved and modulated into
data symbols, which are then multiplexed with pilot symbols
to allow for channel estimation in the receiver. Pilot and data
symbols are arranged in an OFDM frame of L OFDM symbols
consisting of N subcarriers each. The OFDM frame of Txy
is represented by xy £ [Tg11 - Thnt - - .kaL]T € A}, where
! indexes the OFDM symbols and n indexes the subcarrier
number. The set &) of legal M-ary sequences of Txj is
determined by the coding and modulation scheme and the
multiplexing scheme of data and pilot symbols.

The OFDM frames are transmitted across a time-variant
frequency-selective channel. The samples of the time-
frequency response of the sub-channel from transmit antenna
k to receive antenna g are concatenated in the channel weight
vector agr, = [agk11 - - - AgklL - - - Qghni - - - agkNL]T. Assuming
that inter-symbol and inter-subcarrier interferences are negli-
gible, the received signals at all G’ antenna ports are given in
vector notation by

K
y= Z Apxp +w (1)
k=1
=Xa+w 2)
=Ax+w. 3)

—

The vector y is the concatenation of the output vectors o
all receive antennas, y = [y]...yy...y&]" with y, £
[Yg11 -+ Ygni - - - Ygnr]" denoting the output of receive an-
tenna ¢g. The channel matrix for transmitter k is defined
as A, £ Diag(ag)([1...1]5 ® Iy). The noise vector w
is white and circularly symmetric complex Gaussian: w ~
CN(0gnL,021anL), with 02 denoting the noise variance.
We define the precision parameter A = 2. The matrix
X is defined as X £ Ig @ (([1...1]x ® Iy)Diag(x))
and a £ [a],...a}, ...alk]". The matix A = (Ig ®
([1 - 1]K & IN))Dlag(a)(([l R 1]2 ® IK) ® IN) is the
MIMO channel matrix. The vector x = [xI...x}...xL|T
contains the concatenated OFDM codewords from all transmit
antennas. The receiver outputs an estimate by of the bit-stream

for any k.

III. GRAPHICAL REPRESENTATION

In this section, we present a graphical representation of the
signal model introduced in the previous section. This graphical
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VMP region

SP region

Fig. 2. Factor-graph [3] of the signal model in Section II. The parameter
K indicates that the corresponding block is repeated K times, one for each
transmitter. Notice that the left region is equivalent to the Bayesian network
representation from [17].

representation will be used to derive the message-passing
algorithm in Section IV. Let

® 2 {y,a \xy,...Xg,by,...bg} (@))

denote the set of all (observed and unobserved) variables in
(1). Based on the assumptions made in Section II, the joint
probability density function (pdf) of ® factorizes as

pa(®) = py(yla, X\, x1,... Xk )pa(a)pr(N)

[ 2. xx[br)pb, (br).  (5)
k

The constraints imposed by coding, modulation and multi-
plexing of the deterministic pilot symbols are included in
the factor px, for transmitter k. A straightforward graphical
representation of this factorization is the Tanner factor-graph
[3] depicted in Fig. 2. Factors are represented as squares,
variables as circles. An edge between a variable node and
a factor node indicates that the variable is an argument of the
factor.

Based on this graphical representation of the signal model,
we employ iterative algorithms to estimate the joint pdf pe.
We split the graph into two regions as depicted in Fig. 2. In the
right-hand region, we apply the SP algorithm [3] to compute
the marginals py, and py,. In the left-hand region, we apply
the VMP algorithm [16] to estimate p, and py. The VMP
algorithm is used to reformulate the VB inference method
proposed in [11] in terms of messages.

The motivation for splitting the Tanner graph in this way
and applying two different message-passing methods is as
follows. The SP algorithm is a well-established algorithm for
computing the marginal probability mass functions py, and
Db, in known channel conditions. Direct computation of the
channel marginals p, and p) by means of the SP algorithm
is, however, computationally infeasible. In this case, one has
to rely on techniques for approximating these marginals, e.g.
particle filters or the EM algorithm [18]. Here, we propose
another avenue and compute these marginals with the VMP
algorithm. We define the set of unknown variables in the VMP
region as ®yvyp = {a, A, x1,...xx} C P.
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Variational Message-Passing (VMP)

We consider an arbitrary factor-graph. The message from
factor node f to a variable node ¢ in the set Ny of
neighbouring nodes of f is

mf*)(b é exp(ln f>m¢’4.fv¢/€/\/’f\¢' (6)

The message from variable node ¢ to any factor node f
in the set V;, of factor nodes neighbouring ¢ is

mo—p & [ mp—o. (7)
' eEN

The estimated auxiliary function of ¢ is

b¢ X Mp—f- (8)

IV. VARIATIONAL MESSAGE-PASSING

In this section, we apply the VMP algorithm [11], [17] to
the left-hand region in the factor-graph in Fig. 2, see [16] and
references therein for variational inference on factor-graphs.
The message-passing rules are summarized in (6)-(8). Their
derivations are sketched in App. A.

The VMP algorithm approximates the joint pdf
pq)VMP,y((I’VMpv y) = Py (vla, A, x1, ... Xk )pa(@)pa(A)
[1; px, (xx) with an auxiliary function bg,,(®vmp) in
such a way that the KL divergence from bg..,.p(®vMmp)
0 Poyyp,y(Pvmp,y) is minimized [17]. We constrain
the auxiliary function to factorize according to
baoy e (PvMP) = ba(@)br(A)bx, (X1) .. b (XK).

The VMP algorithm implements sequential message
updates to update the factors in bg. . (Pvmp). Updating
ba(a), bx(A), and by, (x) corresponds to estimating the
channel weights, estimating the precision parameter, i.e. the
channel inverse noise variance, and interference cancellation,
respectively.

A. Estimation of the Channel Weights

In this subsection, we derive the messages to and from the
variable node a. These messages are used to update b, by
means of (8). The message to node a from p, is obtained
from (6):

Mp, —a = €XpP (<1n py(y|aa )\a X))mkﬂpy 1), Mxy—py ) (16)
Solving the expectation yields

Mp,—a X pCN(j\VMPpr—mXHYa pr—>a)~ (17)

Here, pear(p, C) is a multivariate complex Gaussian pdf with
mean vector p and covariance matrix C, and (A]py_,a =
(XVMPXHX + ;\VMP(IG X CX))_l. The matrix Cx is the
block-diagonal concatenation of the estimates ka of the
covariance matrices of x;, kK = 1... K. Both ka and the
estimate XVMP of the precision parameter are defined later in
this section. We impose the prior p, to belong to the family
of conjugate pdfs of a for p,. This choice guarantees that the
auxiliary pdf b, is also in this family. From (16) the conjugate
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family of pdfs of a for py is the Gaussian family. Thus, from

(6)

Mp,—a = PeN (0arNL, Ca), (18)

where C, is the prior channel covariance matrix. Inserting
(17) and (18) in (7) yields

Ma—p, ocpc,\/(é,é ) = ba

(19)
with & = AyypCaXMy and Ca = (C7' + C; )70 As
the Gaussian pdf is fully defined by these two moments — its

natural statistics — it is enough to pass them to p,.

B. Estimation of the Precision Parameter

In this subsection, we define the messages to and from
variable node A. The auxiliary function by is then updated
by plugging these messages in (8). The message from p, to
A\ reads from (6)

Mp, -\ = €XP (<1n py(yla, )\,X))maﬂpy I kaﬂpy). (20)

Evaluating the expectation under the assumption that the
messages Ma—.p, and mx, p. k = 1...K, are Gaussian
densities [11] yields

My, —x X pew, (W, GNL +1). QD

In this expression, pcyy, (M ™1, d) is a complex Wishart pdf
defined by three parameters: the dimension F', the degree
of freedom d, and a matrix M of dimension F' x F [19].
Here F=1,d=GNL+1, and M is a scalar given as
= tr((y — A%)(y — AP + XC X" + 37, AkakAk +
3 .(1¢ ® Cy, ) ®Diag(diag(Ca, ))). The estimate Cy, of the
auto-covariance matrix of aj; can be obtained from Ca. The
estimate ka of the covariance matrix of xj, is defined later
in this section.

We select py, to be a conjugate pdf of A\, which is a complex
Wishart pdf of dimension one [20, Sec. IVb]. From (6)

My, —x = pew, (M., dpr) (22)

with given parameters My, and dp,. By inserting (21) and
(22) into the message-passing rule (7), we obtain the complex
Wishart pdf

Ma—py X Pew, (W + M) ™ dpe + GNL) = by, (23)

It is enough to pass the first moment XVMP =
(dpr + GNL) (W + M,,)~" [20, Eq. (22)] of this pdf, since
the other message updates only depend on this value. As we
have no prior information on A, we select p) to be uniform
over the range of . For this improper prior, we have M, =0
and dp,, = 0 [20].

C. MIMO Decoding

To update by,, we compute the messages to and from the
variable node xj. From (6), the message from node py to
variable node x;, is

mpy —XE =

€xp (<1Il py(Y‘av >\7X)>maﬂpym>\ﬂpy e e mxk,g,,y)' 24)
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Channel Estimation

VMP receiver:

LMMSE-based receiver:

~ chan

. o N1, X
a= (C;1 + Avmp XX + Avmp (Ie ® Cx)) Avmp Xty

4~ A\ —1
a= (0;1 + XHALI\/HV[SEX> XHALI\IMSEy

(©))

~ chan

(10)

MIMO Detection/Interference Cancellation

VMP receiver:

g 9

LMMSE-based receiver:

. 1 apgdet N
X = (kal + AII;{AL?\/IMSEAIC)

Xy = <5\VMPAEAI¢ + Avamp Z Z Diag(diag(cakgakg, )))

1~ adet N ~
AY AT Nvse <y - Z Ak’xk/>

—1
)‘VMPAII: (y— Z Ak/)A(k/>
k'#k

an

(12)
K/ #k

Estimation of the Precision Matrix

VMP receiver: AVMP = &VMPIGNL with

(- A% (y-ARDT+XCa X430, Ay Gy Al 4T, (16®Cx, ) ODiag(diag(Ca, )

Avnp = (

LMMSE-based receiver: 0’2 is the average power of the channel

GNL a3)

-

-1
)IGNL +odlg® )y cxk) (14)
k

15

Aikinos = ((HLleAgly=as) )
Ai?\jﬂ\/[SE = < < lr( (Y*AZ)I\ngA;() H)

—1
>IGNL+ Z Ak/ka,A};/>
k'#k

Fig. 3.

Solving the expectation, yields

'rnpy~»x;C X pC/\/’()A(lm ka) (25)

with mean vector X; = XVMprkAE (y — Zk,;ﬁk Ak/ik/)
and covariance matrix ka = (S\VMPAEA;C + S\VMp
Dy Doy diag(cakgakg,))’l. The estimate Cakgakg/ of the
cross-covariance matrix of the channel vectors ap, and ayg
can be obtained from Ca.

Demodulation and decoding are performed in the right
region of the graph in Fig. 2 using the SP algorithm. The
estimated mean of a symbol xg,; in X; is computed to be
jjk'nl = ZIEM l‘P(l‘kng = 1‘|)A(k), where P(xknl = x|§<k) =
Yy e Xn wpn—z Moy —x, (Xk) With M denoting the set of
constellation points of the selected M-QAM modulation. For
convolutional codes, these marginals can be obtained with the
BCIJR algorithm. Likewise, the estimated variance of xy,; is
62 =2 cem TP (xpn = x|Xg) — £7,;,. Any two distinct
symbols are assumed to be uncorrelated. As a result, the
estimate of the covariance matrix of x; after decoding reads
Cy, = Diag(52 52

Tr11? """ UIA:NL)'

We approximate the message from x;, to p, by a Gaussian
pdf. Notice that the Gaussian family is the conjugate family of
xy, for p,. With this approximation and from (25) we obtain

Mx),—py, X PCN()A(k:, ka) = bxk . (26)

We only pass the natural statistics X, Cx, to py. From (8),
the message (26) represents the estimated posterior pdf of xy.

Channel estimation, MIMO detection/interference cancellation and the precision matrix estimation in the VMP and LMMSE-based receiver.

V. COMPARISON WITH THE LMMSE-BASED RECEIVER

In this section, we compare the VMP receiver derived in the
previous section to a state-of-the-art iterative receiver proposed
in [5], further developed for detection in multiuser CDMA
[6], and applied to MIMO-OFDM systems in [7]. We refer
to this receiver as the LMMSE-based receiver. Due to lack
of space, the derivation of the LMMSE-based receiver is not
included in this work, but the expressions of the different
component blocks are summarized in Fig. 3 together with the
corresponding expressions obtained for the VMP receiver.

The conceptual difference between the two schemes is
that in the LMMSE-based receiver the different constituent
blocks are designed independently, while in the VMP receiver
the blocks corresponding to factors in the VMP region are
designed jointly, by minimizing a global cost function, i.e. a
KL divergence, in this region.

By inspecting the expressions in Fig. 3 we observe that
the LMMSE-based receiver and the VMP receiver share some
structural properties. For instance, from (9) and (10) it is clear
that both algorithms use an LMMSE-like channel estimator,
which mainly depends on the channel prior covariance, es-
timates of the transmitted symbols and an estimate of the

precision matrix, namely Ayypl in the VMP receiver and
~ chan . . ..
yvmsk 1n the LMMSE-based receiver. Similarly, the detec-

tion part of both receivers consists of interference cancellation
followed by LMMSE filtering of the residual interference.
However, we can highlight two critical differences between
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TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS
Cyclic prefix length 4.7 ps
Symbol duration 66.7 us
Subcarrier spacing 15 kHz

Pilot overhead
Pilot pattern

4.8% pilots
Regular spacing/diamond, QPSK

Modulation alphabet 16-QAM
Number of information bits 660
Number of subcarriers N 75
Number of OFDM symbols L 7
Number of transmitters K 2
Number of receivers G 2
Channel interleaver block

Convolutional code (155,117,127)g

the two algorithms: firstly, only one scalar estimate of the
precision parameter is needed in the VMP receiver, while
the LMMSE-based receiver calculates two different precision

. . . ~ chan
matrices, one for channel estimation (Ajyper) and one for

detection (AET\ZMSE); secondly, the LMMSE-based receiver
does not deal with the uncertainty in the channel weight
estimates and considers them as the true values in the detection
part, while the VMP receiver accounts for channel estimation
errors via the term Ca in (11) and (13).

VI. SIMULATION RESULTS

To verify the performance of the VMP receiver, we perform
Monte-Carlo simulations for an LTE-like 2 x 2 system with the
settings reported in Table I. We consider a pilot scheme where
all transmitters transmit pilots in the same time-frequency
resources. Realizations of the channel time-frequency response
are generated using the extended typical urban (ETU) channel
model from the 3GPP LTE standard [21], with Rayleigh-fading
channel taps, and assuming no correlation over transmit or re-
ceive antennas. Note that the channel is wide-sense-stationary
and uncorrelated-scattering (WSSUS) [22]. We compute the
prior covariance matrix C, from the channel time-frequency
correlation function.

We test the OFDM-MIMO system with the two receivers
described in Fig. 3. Both receivers use the same initialization,
consisting of MMSE pilot-based channel estimation and joint
soft-decision maximum likelihood (ML) detection, followed
by soft-in soft-out sequential decoding. In both receivers an it-
eration consists of estimation of the channel weights, followed
by sequential detection and decoding of all K transmitted
frames, and ending with estimation of the precision parameter
or matrices.

The bit-error-rate (BER) performance of both receivers
versus the signal-to-noise ratio (Fy,/Ny) is illustrated in Fig. 4.
For the sake of comparison, the initialization is also de-
picted (denoted by the ‘Linear Receiver’ tag). Both receivers
perform 10 iterations. The results show that both iterative
structures significantly improve the performance of the linear
receiver, especially for Ej,/Ny larger than 0 dB. Moreover,
the VMP receiver outperforms the LMMSE-based receiver in
the considered signal-to-noise range. The gain is about 0.5
dB in the operation range of the MIMO-OFDM system. The
convergence behaviour of both iterative structures is described
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in Fig. 5, which depicts the frame-error-rate versus the number
of iterations at the receiver for three different E} /Ny values.
Both receivers converge after approximately 5 iterations for
all operation points. Again, the VMP receiver outperforms the
LMMSE-based receiver regardless of the number of iterations.

VII. CONCLUSION

We derive a novel iterative receiver structure for M-QAM
MIMO-OFDM operating in frequency-selective time-variant
channels. The scheme performs jointly semi-blind estimation
of the channel weights and of the noise inverse variance based
on both data and pilot symbols, serial interference cancellation,
and decoding. The scheme was already proposed for CDMA
in [11]. A variational message-passing (VMP) interpretation
of it is provided here.

The VMP receiver is compared with the LMMSE-based
iterative receiver derived in [5]-[7]. Both iterative architectures
are made of the same blocks and exhibit similar complexity.
However, in the VMP receiver all blocks but decoding are
jointly optimized according to a global cost function, the KL
divergence, while in the LMMSE-based receiver all blocks
are designed independently. Furthermore, the VMP framework
yields a structure that takes into account the inaccuracy of the
channel weight estimates. This inaccuracy is neglected in the
LMMSE-based receiver.

In order to assess the effect of these structural differences,

978-1-4244-5638-3/10/$26.00 ©2010 IEEE



we evaluate the performance of both receivers in an LTE-like
scenario. The simulation results show that the VMP receiver
outperforms the LMMSE-based receiver with a signal-to-noise
ratio gain of 0.5 dB at relevant BER values.

An issue not addressed in the paper is how to combine
efficiently the VMP algorithm — used for channel weight and
noise inverse variance estimation as well as serial interference
cancellation — and the sum-product algorithm — employed
for decoding — in the receiver. A solution has been recently
proposed in [23].
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APPENDIX A
THE VARIATIONAL MESSAGE-PASSING ALGORITHM

In VB inference [11] we consider as the cost function the
KL divergence Dk, (ba| fo) £ [ d® be log l}%:, where fg is
a pdf of a set of variables ® and bs is an auxiliary function,
which approximates fs. We seek an auxiliary function that
minimizes the cost function.

We reformulate the VB inference problem to message-
passing on a factor-graph [16]. We assume that fg factorizes
according to fe = [[, fa(Ny,), where Ny, C @ is the set of
neighbouring variables of f,. We select an auxiliary function
b, which factorizes according to bg = [] bed bg. As shown
in [11], the factor by of bg which minimizes Dkr,(bas || fo)
with all other factors by, V¢’ € ®\¢ fixed is

b¢ ocexp< Z 1Hfa>b¢,v¢’eNfa\¢ (27)
fa€Ng
o H exp(In fa)s,, veren;, \és (28)
faeN¢

where N, is the set of neighbouring factors of ¢. With the
definitions in (6) and (7) we can recast (28) as

boox [[ mps—o=mor, (29)
FLEN
for any f, € Ny, and we have
b<1> = H b¢ .8 H H mf(:_,(ﬁ. (30)

ped pe® fleNy

Identity (28) can be used to design an iterative algorithm which
at each iteration updates a given factor by of bg while keeping
the other factors fixed. The iterative algorithm converges in the
sense of the KL divergence, since Dkr,(bs|| f&) is minimized
at each iteration. The identities in (29) provide a message-
passing interpretation of the updating steps.
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Abstract—In this paper, we present a novel iterative receiver combiner (MMSE-IRC) for OFDM receivers with multiple
for MIMO-OFDM systems with synchronous interferers. The antennas is proposed. The combiner parameters are estimate
receiver is derived based on the Kullback-Leibler divergese \\qing 5 discrete-Fourier-transform-based robust MMSins
minimization framework, and combines channel estimation, ¢ |ati timat hich is theref it
interference cancellation and residual noise estimationni an ‘@nN€oOUS correlation estimator, which IS therelore Sees
iterative manner. By using both the pilot and data symbols, he theleakage effect [8] when the channel delays are not perfectly
channel estimator improves the accuracy of the estimates ieach aligned with the receiver sampling grid.
iteration, which leads to a more effective interference cacellation In our latest work, we proposed an iterative pilot-based
and data detection process. A performance evaluation basesh  -panne| estimator for OFDM systems with synchronous inter-

Monte-Carlo simulations shows that the proposed scheme can]c d . d pilots [91. In thi K
effectively mitigate the effect of interferers, and operaes very [€rers and super-imposed pilots [9]. In this work, we prapos

close to the single-user performance even in severe interemce an iterative receiver performing channel estimation, rinte
scenarios. ference cancellation and residual noise variance estimati

Our receiver is derived by applying the Kullback-Leibler
(KL) divergence minimization (DM) principle, which was
Orthogonal Frequency Division Multiplexing (OFDM) haspresented in [10] for multiuser detection in a code-diwisio
become the selected transmission technique for severtreenultiple access scenario. The channel estimator combiges t
wireless standards, such as the IEEE standard for local anfbrmation available from the pilot symbols with infornat
metropolitan area networks (better known as WiMAX) [1]from soft-decisions on the data symbols, thus outperfogmin
or the 3GPP UTRA Long Term Evolution (LTE) [2]. Itstypical schemes using only the pilot symbols. Furthermore,
ability to cope with time-dispersive channels while allogi the channel estimation error is taken into account in the
for receivers with low complexity, its ability to easily egrate interference cancellation and detection process by estigha
multiple antenna techniques and its flexibility in terms othe covariance of the channel estimates and the residuse noi
bandwidth usage and resource allocation are some of ttwvariance.
advantages that have motivated its selection. The remainder of the paper is organized as follows. The sig-
In OFDM, the transmission bandwidth is divided into multinal model for our considered scenario is presented in Sectio
ple narrowband subcarriers. By the addition of a propericycll. In Section IIl, the DM framework is briefly introduced, dn
prefix (CP), these subcarriers become fully orthogonal attte proposed iterative receiver is derived. Its perforneaisc
experience frequency flat fading conditions in time-inaati assessed by means of Monte-Carlo simulations in Section IV
channels [3]. This allows for simple equalization of thensip and finally some concluding remarks are provided in Section
at the receiver, while keeping a high spectral efficiency die
to the use of orthogonal overlapping subcarriers. In OFDM The following notation will be used throughout the paper.
systems with frequency re-use, however, the signal tratesini Vectors are represented by boldface lowercase letterde whi
from other cells may create co-channel interference whfch,matrices are denoted as boldface uppercase lettefs;and
not correctly treated, can induce a severe degradationeof th)” denote respectively the transpose and conjugate transpose
receiver performance, especially at the cell edge. of a vector; t{-} denotes the trace operation, and diej
Much work has been done in interference cancellatiorpresents a diagonal matrix with the elements of vegtor
techniques for OFDM, as in [4]-[6]. These methods, howevek ® B denotes the Kronecker product of matricksand B;
assume perfect knowledge of the channel at the receivey. represents théV x N identity matrix; 2 « y denotes
In [7], @ minimum mean-squared error interference rejectiairect proportionality, i.e..c = ay, and z «¢ y denotes

I. INTRODUCTION
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Fig. 1. Block diagram of the considered system.

exponential proportionality, i.eexp[z] = exp|8 + y], for is additive white Gaussian noise (AWGN) with varianeg.
arbitrary constants: andg; finally, E,, { f(x)} represents the The received signal at all subcarriers in all receive araenn
expectation of the functiofi(x) with respect to the probability ports can be expressed in vector-matrix notation as

distribution ¢,.(x) of x. M
Il. SIGNAL MODEL r= Z_l Ho X +w. (3)
We consider a M_IMO-QFDM system with\/ transmit n the above expressiony — [T,....rL]T, H, =
antennas and a receiver wiffi receive antennas, as depicte i : T T
R . . ; iag{him}, ..., diaglhym, H* ) xm = [ (1), ..., 2m (K)]
in Fig. 1. Transmit antennas, ..., M, transmit the signal T
. : and w = [wi(l),...,w1(K),...,wn(1)...,wn(K)]".
of interest, while antennad/; + 1,..., M are regarded as T
. . ; Furthermore, r,, = [rp(1),...,m(K)]", hpm =
interferers. We assume that all transmitters in the system T .
. . m(1)s .oy Apm (K] and we also define
perfectly synchronized in time and use the same frequency™" 1% W |7
resources. For thex!” transmitter, the information bits,,(k), ~— ™ ‘im0 T Nml e
k=1,..., K, are encoded, yielding a stream of coded bits I1l. PROPOSEDRECEIVER
cm(k), k = 1,..., Kcm, which is modulated onto a set of |n this section, our proposed iterative receiver with clenn

QAM/QPSK symbols denoted by, (k), k = 1,...,Ka. estimation and interference cancellation is presentest, Ehe
The data symbols are then multiplexed with a sequence géneral DM principle is briefly explained, followed by the
pilot symbols z,,(k), & = 1,...,K,, resulting in the application to our specific scenario. Finally, some remanks
transmitted symbols sequenag,(k), k& = 1,..., K. The jmplementation issues are given.

transmitted symbols are then OFDM modulated by means of , L o

an inverse fast Fourier transform (IFFT) and the insertibn & 1€ Divergence Minimization principle

a cyclic prefix. We assume that the sets of pilot subcarriersLet @ denote a vector including as components all the un-

P = {p1,...,pk,} and data subcarrie® = {dy,...,dx,} known parameters to be estimated ard|r) be the posterior
are the same for all transmitters, and hence probability density function (pdf) ofe given an observation
. r. The DM framework approximates(®|r) by an auxiliary
T (k) = { ip-’”gg’ X B Zi . (1) pdf g(®) minimizing the KL divergence [11]
d,m\?), = ay
P
Note thatPUD = {1,..., K} andPND = (. K denotes the D(Q(‘I’)Hp(i’h‘)) 2 /d¢Q(¢’)10g p%gPIz)' (4)

total number of subcarriers in the system, whilg and Ky L i } o
denote the number of pilot and data subcarriers respegtivel N our application, we are interested in estimating the
The signal received at each of the antenna ports is OFCiA#Sired transmitted signals; , ..., x,y,. To achieve this re-
demodulated by removing the cyclic prefix and performing liably, we need estimates o_f the channel transfer functions
fast Fourier transform (FFT). Assuming that the channel f&t:---»har, the interfering signalscy, 4., XM and the
static during one OFDM symbol and that the cyclic prefif’Verse of the noise covariance matR,’, with 3, =

w !
. . H . .
is longer than the maximum excess delay of the channel, thWW " }- Therefore, the set of parameters to be estimated is
signal received at the'" subcarrier of receive antennareads

® = {3 ' hy,...,hy,xi1,...,xp}, While the observation
vectorr is given by (3). In order to obtain a solution that can
M be computed with tractable complexity, we define an auxiliar
ra(k) = Zlhnm(k)xm(k) +wn (k) ) function q(®) that factorizes according to

M
wheref_an(k) denotgs the channel frequency response from q(®) = qz,l(zgjl) H Qh,, (D), (Xim)- (5)
transmitterm to receive antenna at subcarriek andw,, (k) v el



The auxiliary function is iteratively updated by minimigin In the above equations}m = [»] {x;}, X[ﬂ = Iy ®
the KL divergence in (4) with respect to one of the factor i
in (5) while keeping the rest fixed. By alternatively updgtln8 _g{ H} and B =In® d|ag{o—f (LA (K } with
the different factors, the KL divergence is minimized ane thoz](k) =E []{|$C7( 2=z M( k)% Detalls on( D will
auxiliary distributiong(®) approximates the true posterior pdhe given in the following subsection.
p(®|r). More details about the formal principles of the DM
framework can be found in [10]. C. Update of the inverse noise covariance distribution

In the following, the updating steps aof(®) with re-

For the update of the inverse noise covariance distri-
spect to the different parameters are described. The algo P

—1 istributi [#] (4] —
rithm assumes initial dlstnbutlonr§2 25, qL] (h,,) and %U;'fn g]g 1(X51), the QIstrlbutloQSQz (x) and g, (_h) =
0] .  [I;=1 a5, (h;) are kept fixed, leading to the following min-
¢z, (xm ), where the superindgx)!” indicates the*” updating |mj|zat|on problem:
step.
minimize D »=1g (h)gl( ®

B. Update of the channel gain distributions (qz i ;” )q (1 Hp |r)

_ subject to [ gy, 1 (E51)dE,t =1 (12)

When updating the channel dlstrlbunqm ( m) in the qullfz )> 0.

(i+1)*" updating step, the dlSthbutIO@% -1, gll(x) =
ijl qg[fl (x;) and q}[;] (h) = TLsm q,[ll (h;) are treated as
constants. The updated distributiq}ﬁi” (h,,) is obtained by

Analogously to the channel gain update, the solution of the
minimization reads

solving the minimization problem: q;t”(z B p(B,Y) exp { []{E 1{ log p( r|<I>)}}}
minimize D (g, (hw)af! (0o () (£51)||p(@1)) (13)
subject to [ g, (h,,)dh,, =1 After performing the marginalizations with respect to the
qn, (hy,) >0, channel distribution and the transmitted symbols distrity
(6) and assuming(X,!) is a uniform distribution, we obtain an
which leads to the solution updated distribution given by
g () oxp () @ (E) o 25 exp [r{-2, Y] (14)
- exp [Eqa[;:] {Eq’[{:] {Eq[;t1 { 10gp(r|‘1>)}}}} (7) with
h (h,,) denotes th distribution di,,. The | . (4] S EH
wherep enotes the prior distribution elog- lil_(p Xl hZ 'hl B
likelihood function in (7) reads (x ; ; * Z
log p(r|®) o 3 [0 gli” (i) alil 17
M M +ZB ) VL s T ZX = X; (15)
log [Z! = (r = > Hpxpm) 1250 (r = Y Hyxin).(8) i=1
m=1 m=1 The above expression has the form of a complex Wishart

By assuming that the prior distribution df,, is Gaussian distribution [12]. Specifically, the matrid, ! is Wishart

with zero mean and covariance matily,, = E{h,,h/’}, the distributed assi;;t ~ Wy (NK +2, Cli™), and has mean

marginalizations in (7) lead to an updated distribution ahhi value

is also Gaussian, with pdf ‘ -1
a5 - (z25) . a

q[i+1] (hm) - w q[vi =\ VK ) .

m

exp [— (h,, — Az "(hy, —hﬁf”)] (9) In order to obtain simpler expressions, it can be further
assumed thafS;! represents the covariance matrix of a
The mean value is given by white Gaussian process witB;' = 0,,2Iy%. Under these
(Q—l)[i]B[i])‘l conditions, the corresponding distribution of the recgaio
w m variance becomes

[i1"

hgjﬂ:(z*1 + X" (@K 4 B i

X () (e H Izl 10 _
2 a4 4203 = (02K exp [~ ()] (@)
and the covariance is which is chi-square distributed [12], with mean value
E[i+1] _

= tr{C"}
b, [i+1] 2 g 2l _ . (18
(=, + X0 (@ HEXE 4 BE (@ HIBEN T (11) () R {U“’ } (NK+2> (18)

w



D. Update of the transmitted symbol distributions simulations. In this work, we opt to evaluate the following
Analogously to the other updates, when updating the disticheme:
bution g, (x,), the distributiQnngfn (%) = [1j2m sl (x;), 1) Updategy, (hy), m=1,... M.
af'(n) =TI, ¢} () and 4", (') are kept fixed, and ~ 2) UPdateds,, (Xm), m=1,.... M.
J ] S 3) Updateq, 1 (=;1).
the update is achieved by solving Ty \Tw _
_ _ _ The above sequence of updates represents a full iteratitwe of
minimize D(Qmm (xm)qg; (x)q,[f] (h)q;],l(zjul)Hp(«Iﬂr)) receiver. Although there is no evidence of this scheme being
v optimal, simulation results shown in the next section camfir

subject to Z G, (Xm) =1 the good performance of a receiver using this design.
Vm 2) Initialization: Although the convergence of the DM
Gy (Xm) 2 0. (19)  receiver is ensured due to the minimization performed ah eac

update step, the receiver might converge to differentostatly
points depending on the initial values used in the algorithm
q;i:” (Xm ) oxp(Xpm) It is therefore of crucial importance to initialize the &give
receiver properly. In this work, we choose to initialize the
Fexp [quf] {Egp {Eq[;] “ng(r@)}}}} 20) " channel estimates with a linear minimum mean-squared error
LMMSE) channel estimator using only the signal received
t pilot subcarriers. The expression of the LMMSE channel
estimates for channdi,,, reads

The solution to (19) reads

-1
Since no prior information on the transmitted data symbsls

available (we assume that the receiver has perfect infoomat
on the pilot symbols), a uniform prior distribution is assan

and p(x,,) can be removed from (20). After marginalizing 0 i M - 1
with respect to the fixed distributions, the updating step is Bt = S iy Xnm (O Xp i T, , X0 +20,) 1y
given by j=l1
(23)
K N
i () o exp 20,2 S Re{as, () Y Al vum (B)1} | where S, = E{w,wl}, By,n,,, = E{hnhll,} and
k=1 n=1 %, , = E{h, ;hT.}. The subindex in matrices and vectors
(21) indicates that only elements corresponding to the pilot sub
with carriers are taken. The initial values for the covariancéhef
‘ _ ) channel estimates are taken from the prior channel cowajan
Yo (B) = 1o (k) = > 1 ()3 (k) e, = =
j#m Once an initial value for the channel estimates is available

T (k) il estimates of the transmittgd symbols can be_obtaine_d. In

h[i]*(k)zhnm[k7k] » (22)  our proposed implementation, these are obtained using a
nm soft-output maximume-likelihood detector (MLD) [13%. From

where we have assumed thBf,! = o, %Iyg, as in (18). the soft output detector, the initial value ) and BYY are

As it can be observed in the above expressions, the upda@diained forn = 1..., M. With these initial values, the initial

distribution is obtained by cancelling the signal conttibn estimate of the inverse noise covariar(ééf}])*1 is obtained

from other transmitters. Also, the covariance of the channigy using either (16) or (18).

estimates,EEij, is taken into account. From the updated

distribution, the values okl and B, are calculated
to be used in the updates of the inverse noise covariancen this section, we evaluate the performance of the proposed
and the channel gain distributions. When the last iteratibn channel estimator by means of Monte-Carlo simulations. In
the algorithm is reached, the distributions,, (x.»), m = order to do so, we define an OFDM system with parameters
1,...,M, are used to obtain soft estimates of the codddspired by the 3GPP Long Term Evolution (LTE) 5 MHz
symbols, which are fed to the channel decoder in order #lownlink physical layer parameters [2]. The system opsrate
detect the information bits. with an FFT size of 512, with 300 active subcarriers, and a
, frequency spacing of 15 KHz between them. Pilot subcarriers

E. Implementation Issues are transmitted in every OFDM symbol, with a frequency

1) Order of the updates. While the DM framework allows spacing of 12 subcarriers (i.e. 600 KHz) between them.
to obtain the update rules for each of the distributions mif-he desired and interfering signals have their pilots in the
imizing the KL divergence with respect to the true posterimame subcarriers, and perfect synchronization between the
distribution, there is so far no formal way of determiningransmitters is assumed. Hence, pilots of all transmitigpobds
the optimal updating sequence. Therefore, this has to teerlap in frequency. The pilot sequences are made of random
determined by performing a performance evaluation of thiedependent and uniformly distributed QPSK symbols. A
different possible updating orderings by, e.g., Montel@€arconvolutional code is used for channel coding, with BCJR [14

1 [
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Fig. 2. BER performance of the DM receiver Fig. 3. MSE performance of the DM receiver’s channel estimat

decoding at the receiver, and QPSK modulation is employgdta symbols is increased due to the interference carioallat
for the data symbols. at the detector and the estimate of the noise covarianatntpa

We consider a scenario with two single-antenna transrajttelo an improvement in the channel estimates.
one transmitting the desired signal and the other being an
interferer. The receiver has two receive antennas, and the

signal-to-interference level per receive antenna brascB i |n this work we have presented a novel iterative receiver
dB (i.e., both the desired and interfering signal are resmbivfor MIMO-OFDM systems with synchronized interferers. The
with the same power). The channel responses are generatgséiver, derived under the DM framework, combines channel
according to the extended Typical Urban channel model [1&stimation, interference cancellation and residual nest
which consists of 9 taps and has a maximum excess delayn@dtion in an iterative fashion, and is guaranteed to comverg
5 us. Block fading is used, i.e., the channel response is stadige to the formal principle under which it has been derived.
over the duration of an OFDM symbol, and we assume thahe performance has been assessed by means of Monte-Carlo
the cyclic prefix is long enough to cope with the inter-symbgafimulations, showing that our proposed scheme performs ver
interference due to multipath propagation. closely to the single-user bound, even with an interference
In Fig. 2, the bit error rate performance of our proposed réevel as high as 0 dB. This is due, in large proportion, to the
ceiver in the considered scenario is depicted. For compasis channel estimator, which combines the information avélab
sake, the performance of a receiver using LMMSE chanrfedbm the pilot symbols with the information obtained from
estimation and MLD detection (also used as initialization f soft-decisions on the data symbols, allowing to drastcall
the DM receiver) is shown, as well as the single-user bouneduce the channel estimates’ error.
(SUB). As it can be seen, the iterative process greatly inggo
the performance of the receiver with a few iterations. After ACKNOWLEDGMENT

first iteration of the algorithm, the receiver shows a gain of This work has been partly funded by the FP7-ICT Network
0.9 dB at 1% BER with respect to the initialization, whichyt Excellence in Wireless Communications. NEWCOM++
is further improved up to a 1.7 dB gain with five iterations(congract No. 216715). The authors would also like to thank
After the first few iterations the receiver converges, adh®a |4fineon Technologies Denmark A/S and Nokia Denmark A/S
performance which is only slightly more than 2 dB away frorfyy the financial support which made this work possible.
the SUB, even in such a strong interference environment.
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Abstract—In this paper, we present a novel approach for pilot- not correctly treated, can induce a severe degradationeof th
aided channel estimation in OFDM systems with synchronous receiver performance, especially at the cell edge.
co-channel interference. The estimator is derived based on  nych work has been done in interference cancellation
the Kullback-Leibler divergence minimization framework. The . .
obtained solution iteratively updates both the desired usés and techniques for OFDM, as in [4]-[6]. These methods, howe\_/er,
the interferer's channels, using a combination of minimum nean assume perfect knowledge of the channel at the receiver.
squared-error filtering and interference cancellation, awiding In [7], @ minimum mean-squared error interference rejectio
the complex matrix inversions involved in pure MMSE channel combiner (MMSE-IRC) for OFDM receivers with multiple
estimation approaches. Estimation of the noise variance ialso  gntennas is proposed. The combiner parameters are estimate
included in the iterative algorithm, accounting for the Gaussian . . . .
noise and residual interference after each iteration. Thestimates YSIN9g & d|screte—!:our|er.-transformtbasfed robust MMSE‘"_}S
of both channels are used at the equalizer to reject the intder- taneous correlation estimator, which is therefore semsitb
ing signal, thus mitigating the degradation due to co-chanal the leakage effect [8] when the channel is not sample-spaced.
interference. _Simulation results show that a receiver _usig the In this work, we propose a pilot-aided channel estimator
proposed estimator performs as good as one employing a pure 5 OEDM systems with severe synchronous co-channel inter-
MMSE estimator, and very closely to a receiver having perfet ference in both the data and pilot subcarriers. The estimato
knowledge of the channel coefficients. X ’ . . o
is derived by applying the Kullback-Leibler (KL) divergenc
|. INTRODUCTION minimization (DM) approach, which was presented in [9] for
Orthogonal Frequency Division Multiplexing (OFDM) hasmultiuser detection in a code-division multiple accesgeays
become the selected transmission technique for severmhtre®ur proposed scheme is able to estimate the desired usdr’'s an
wireless standards, such as the IEEE standard for local dhd interferer’'s channels based on just the signal recemed
metropolitan area networks (better known as WiMAX) [1]pilot subcarriers. The estimates are then used in a MMSE-IRC
or the 3GPP UTRA Long Term Evolution (LTE) [2]. Itscombiner, effectively mitigating the effect of the intendace.
ability to cope with time-dispersive channels while allagi A similar problem was studied in [10]. The solution proposed
for receivers with low complexity, its easy integration kwit there, however, requires a preamble in which no interfexésc
multiple antenna techniques and its flexibility in terms ofresent at the pilot subcarriers. Our estimator, on theraont
bandwidth usage and resource allocation are some of ttan effectively separate and estimate both channels when th
advantages that have motivated its selection. pilot signals of the desired user and the interferer oveiriap
In OFDM, the transmission bandwidth is divided into multifrequency for every OFDM symbol.
ple narrowband subcarriers. By the addition of a propericycl The remainder of the paper is organized as follows. The
prefix (CP), these subcarriers become fully orthogonal as@ynal model for our considered system is presented in Sec-
experience frequency flat fading conditions in time invatiation Il. In Section Ill, the DM framework is briefly introdude
channels [3]. This allows for simple equalization of thensig and the channel estimator is derived. The performance of the
at the receiver, while keeping a high spectral efficiency dusstimator is assessed by means of Monte-Carlo simulations
to the use of orthogonal overlapping subcarriers. In OFDM Section IV. Finally, some concluding remarks are given in
systems with frequency re-use, however, the signal tratesini Section V.
from other cells may create co-channel interference whfch, The following notation will be used throughout the paper.
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(k)
Fig. 1. Block diagram of the transmitters. wherew, (k) is additive white Gaussian noise (AWGN) with

variance o2 and hy,,(k) represents the frequency-domain

channel gain from transmitter to receive antenna at thek*”
Vectors are represented by boldface lowercase letterde whsubcarrier. In (1), we assume that the channel responsaiis st
matrices are denoted as boldface uppercase lett¢fs.and during one OFDM block. Hence, full orthogonality between
() denote respectively the transpose and conjugate transpssiecarriers is achieved. The received signal at antenrianpor
of a vector. t{-} denotes the trace operation, adthg{x} for all subcarriers can be re-written in matrix-vector rimta
represents a diagonal matrix with the elements of vegtor as
x x y denotes direct proportionality, i.ec,= oy, andx ¢ y r, = X1h,1 + Xsh,» +w, (2)
denotes exponential proportionality, i.exp[z] = exp[S + y], . _ T _
for arbitrary constants and 5. Finally, E,, { f(x)} represents with T, = [T”(O)'T”r"(]l[” R T
the expectation of the functiorf(x) with respect to the [P (0) -« (N = DI, W = [ (0) -« -0 (N, = 1)]

and X,, = diag{[zm(0)---z,n (N, — 1)]} is a diagonal

probability distributiong..(x) of x. matrix containing the transmitted symbols.

The demultiplexer following the FFT and CP removal block
separates the signal received at pilot and data subcarTiees

We consider an OFDM system with single transmit antendiot signalsr,,, = [r,,(0) -7y .(N, — 1)]7 are fed to
and one interferer, as depicted in Fig. 1. In the diagram, ttiee respective channel estimator blocks, while the datzatsg
first transmitter represents the user of interest, whilst#wnd r,,, = [rq.,(0) - rqn(Ng — 1)]T are sent to the equalizer.
transmitter represents a synchronized interferer tretisgni Based on the signal received on the pilot subcarriers, the
in the same time-frequency resources. For each of them, #reannel estimation block (which will be explained in detail
information bitsh,,(k), m =1,2,k =0,..., N,—1 are coded, in Section Ill) provides the equalizer with estimatﬁg,m
yielding a stream of coded bits,,(k), ¥ = 0,...,N. — 1. of the channel frequency responses of both the desired and
These are modulated onto a set of QAM symhwejs,,(k), interfering channels. Using these estimates and the signal
k = 0,...,Ng — 1 to be mapped onto an OFDM block.received at data subcarriers, the equalizer performs MMSE-
The number of subcarriers used for data transmission IRC filtering to recover the desired transmitted symbols as:
an OFDM block isNg; = N./M, N, is the number of - -1
coded bits transmitted in one/OFDM block add is the Za (k) = gy (k) (B (k) Ha(k) +031)  ra(k). (3)
modulation order. The data symbols are then multiplexetl witn the above equation;;(k) = [ra.1(k)ra2(k)|T, Ha(k) =
a sequence of pilot symbois, ,,,(k), k =0,...,N, =1, N, [hg (k) hgo(k)] andhg (k) = [ha1m(k)haem(k)]T, with
being the number of pilot subcarriers per block. We assumg ,,,.,(k) being the channel coefficient for thé" data sub-
that pilot symbols are allocated to the same subcarriers gatrrier from transmittern to receive antenna, andI denotes
both transmitters. The resulting sequence of symbgl$k), the 2x2 identity matrix. Finally, the coded bits of the usér o
k=0,...,N,—1is then mapped to th&,, = Nq+ N, active interesté, (k) are recovered from the equalized symbols in
subcarriers of the OFDM system, and transmitted through tiie QAM detector, and are fed to the channel decoder which
wireless channel after insertion of a cyclic prefix (CP). Wgields the estimates of the information bitgk).
assume in this work that the CP is long enough to cope Il CHANNEL ESTIMATOR
with the time dispersion in both the desired and interfering '
channels. In this section, two channel estimation approaches are

The structure of the receiver is shown in Fig. 2. We assurRéesented. The first one is the linear MMSE estimator, which
a receiver with two antenna ports. The extension to a high&fll be used as a benchmark for the performance evaluation of
number of antennas is straightforward. After FFT and CRUr estimator. Next, our proposed channel estimator, based

removal, the received signal at thé" subcarrier of the,t» the DM framework, is introduced. The DM principle is briefly
antenna port is given by: explained, along with the application to our specific scienar

More details about the DM framework and its relation to other
(k) = 21(k)hn1 (k) + 22(k)hn2 (k) +w,(k), (1) known algorithms can be found in [9].

Il. SIGNAL MODEL



A. MMSE Channel Estimator C. Update of the channel vectors

The linear MMSE channel estimator aims at minimizing |n this subsection, the derivation of the updating step for
the mean-squared error of the estimate. For the signal mo@&'.l(hm) is detailed. Due to the symmetry of the problem,
presented, the MMSE estimate of the channel from transrgie update fow,, ,(h, ) is analogous.
antenna 1 to receive antennareads:

}Lpg

To updateqy, . (h,,), the distributionsg’ (h,,) and

hy= argmin E{(h,,; — hy1) (h,; —hp1)} q;],l(z,;;) are kept fixed, andy, ,(h,1) is updated by
" solving the following problem:
= Zhnlhp,nlxll;{,l (Xpylzhp,an[{{,l d gp
+Xp28n,,. X5 + Bu,) T ) minimize D(‘Ihm (hp,1)q£fl,2(hp,2)
where S, = E{w,w/} = 021, Si,,1,., = E{huihl, ) a0y b, B50)) ()

andX,, . = E{hpynmhg,,m}. The estimator requires the subjectto [ gu. ,(hy1)dh,; =1
inversion of anN, x N, matrix every OFDM symbol, which a0 p(]ln 1;0) o

is normally to complex to compute in a mobile receiver for a pr =
system with a large number of subcarriers. In the rest of th¢,q distributionqﬁ” (h,1) solving (8) is found to be
section, we present an iterative approach which avoids this Bt ’

matrix inversion. 1 hy 1) oc plhy)
D, P

hp,1
B. Divergence m|n|m|zat|0r.1 . . exp [Eqm {Eqm {logp(rp|hp71, h, ., E;D}H 9)
Let @ denote a vector including as components all the un- I
known parameters to be estimated aui®|r) be the posterior
probability density function (pdf) ofp given an observation
r. The DM framework approximates(®|r) by an auxiliary
pdf ¢(®) minimizing the KL divergence [11]

where p(h,, ;) is the prior pdf ofh, ;. The log-likelihood
function in (9) reads

log p(rylhy 1, hy 2, 1)

q(® - _
D(a(®)||p(@Ir)) £ / A%q(®)log (51>|2) (5) o log |2, = w{ By (1 — Xpahy1 — Xy 2hy2)
In order to make the mathematical problem tractable, the - (rp — Xphy —Xp,th,z)H}- (10)
auxiliary distribution functiong(®) is assumed to factorize _
as shown below. The marginalization of (10) with respect q:&iiz(hpg) and

In our application, the parameters to estimate are t}g]e] (=21) yields
channel responses of the desired and interfering chaneels &, "
well as the inverse of the noise covariance matrix, e+

{byn1,hpno, 25!}, where 2, = E{w,,w,}. The S {qug ) { log p(rp|hy,1,hy 2, 2;,})}}
subindexp indicates that only pilot subcarriers are taken into ' wp
account. The auxiliary pdf is assumed to factorize accgrdin ® —tr{(ﬂ;lp)["']A[i] }, (11)
to: ’
4(®) = (B, By iz, S50 ) where(21],)~ £E, {35!} and
p.n Z;;
= th,nl (hp,nl)thm,g (hp,n2)q2;1 ] (E;in) (6) .
o [i — _ _ i
The observation is the received signal at the pilot subeasyi A= (1 = Xp by, X”’th’ﬂ) 4
ie (rp — Xpahy 1 — Xpohlh) 7+ X, 050 X7, (12)
r=ryn,= Xp,lhp,nl + Xp,2hp,n2 + Wp.n- (7)

Details on(QE}}]p)—l and E%] are given later on in this sec-
: -

The algorithm iteratively minimizes the KL divergence with. : :
. . .N h h I
respect to one of the factors in (7), while the other factoes ;}lon ote that terms independentlaf , have been neglected

. . '+1]
kept fixed, resulting in an iterative scheme. In the derivation as they do not affe@ifp . (Bp).

Note that the channel estimation process is done indepen'—:Or Rayleigh fading channels, the prior distributiontgf,

dently for each of the receive antennas. In the remainder '3fC2ussian with Z€ro mean gnd. coyariance mam?&l =
the section we therefore drop the receive antenna subin hp71h£1}- Using this prior distribution and (11) in (9), we
n in order to simplify the notation (e.th,; denotesh, ;). obtain an updated distribution, which is also Gaussianh wit

The algorithm is started with initial distributionﬁfﬂil(hp,l), pdf:

qgﬂ.z(hug) and q[z?],l (E;i), and these distributions are suc- i+ (hy1) &

cessively updated according to the updating steps detailed "' 1] B i 1] ]

the following two subsections. exp [— (hpy —h, )" %, "7 (hpy —hyy )k13)

)



with mean vector By choosing the prior pdE;; to be flat, (18) becomes

. —1
i+1 i ” X
B =, (2, X8 X 0l ) X, e = e [~ {3 LB, @)
A i
(v — Xpomy) (14) \which has the form of a Wishart distribution [13] &, ~
and covariance matrix W, (Np +2, (B[i])_l). The mean o, ! is therefore
=it = (2,;{1 + (m};{p)*lxglxp,l)* . @15) | B\
. . o Q)12 E {2;}} - L (22
By inspecting (14), it is seen that the channel response P a, -y 4 N, +2

Wp

updating step has the form of an MMSE or Wiener filter [12],

applied to the interference-cancelled received signalilat p [N order to simplify the algorithm, it is assumed tH8f,,
positions. As the interference cancellation is not ideag t fepresents the covariance matrix of a white Gaussian noise

, e e, L, .
estimate of the noise covariance matl, takes into Vector with 3, = diag{o,,,...,0,,}. In this case, the
account both the noise and the residual interference powerUPdated pdf is given by

order to correctly smooth the channel response, as it isshow _ _ _ i

in the next subs);ction. P Yoy (0“’5) > (J“Jf)Np <P [7 U“’I?tr{BHH (23)

Note that the update of the channel coefficients in (1)nich is a chi-square distribution [13]. Specificaly;? ~
does only provide estimates of the channel response at p'BI(Qt and the expectation af 2 is ?

subcarriers. Estimates of the full frequency response lat af'»™2’

active subcarriers are obtained by using tr {BW}
. A\ ! I L I o { *2} = == 24
h; = Ehlhp,l (E;LNX;{IXI,J + Q,[u‘)]’p) le)-{l (Ull)p> qigf)] Ow, Np +9 ( )
: (rp - Xp,2h][;,]2) (16) E. Implementation Issues
instead of (14) in the last iteration of the algorithm with 1) Matrix inverse in the update of the channel vectors:
— H As it can be observed in (14), the inversion of a matrix of
Ehlhpl E hlhp.l . R R K . .
- _ . dimensionsN,, x N, is still required for the update of the
D. Update of the noise covariance matrix . channel coefficients vector. To avoid the matrix inversids,)
When updatinggs,-1 (2,!), the distributionng‘l _(h,;) can be rewritten as:
and q,[fl ,(hy, 2) are kept fixed, and the optimization problem h[iJlrl] - US (S + (o.)1y )AUHXIH1
to solve is the following: P [‘?] ' P
_ . - (r, — X,h! ) 25
minimize D(qgl.l(hpvl)qgl.z(hpﬂ) ( p — Xp2hys (25)
B B H . . g
e (B2 ‘ hy 1, hy o, S0, ) wherel;, , = USU" is the singular value decomposition
Iz (B, )| [P, By 2, By, 1) (17) (SVD) of the channel covariance matrix. We have also made

subject to fq;—; (B! =1

use of the fact thaX ', X, 1 = Ly, for constant unit-power

Iz, (Eii) = 0. pilots, and the simplification of the noise covariance matri

introduced in (23) and (24). Note that the matrix to invert is

_ now a diagonal matrix, which can be inverted with jugj
q;ﬂ](z;i) x p(E;;) complex operations. Also, in a wide-sense stationary cdlann

o the prior covariance matrices of the channels will not cleang
-exp [quﬂ {quﬂ {10gp(rp|hp,1, hy, o, E;i)}}] (18)  over time, and therefore the SVDs need to be computed only
mheoe _ once for each channel.
The marginalization of (10) is taken with respectltﬁf1 and 2) Initialization: Previously in this section, details on how

The solution reads

h[ﬂQ, resulting in to update each of the pdfs have been given. An initializadion
& them for the first iteration of the algorithm, however, is deg.
E 1 {Eg’l 2{logp(rp|h]gyl,hp,2,23;;)}} In our proposed implementation, the channel responses are
Pl b TE . initialized to null vectors, i.e.,hl)h, = [0,...,0]7, and
o log |2, — tf{EE}pB[']}, (19) their covariance matrices are initialized to the prior gova

ance matrices of the channd:fim = Xh,...- As for the
. 4 noise variance, it is initialized to the AWGN variance, ,i.e.
B = (r, - X,,hl", — X, 50l (02,2) = 0,2, In subsequent iterations, this initialization is
(e, - X, hl _x opld )i updated _vvith the residL_JaI interference after the interfeee
e 27,2 cancellation performed in the updates of the channel respon
+ Xp,12£fllegl + Xp,zzﬁﬂﬂngg. (20) vectors.

where



3) Updating schedule: Another important aspect having an

-5 T T T T T T T T
impact on the performance of the algorithm is the order in g —©— Desired Channel TU
which the pdfs are updated. So far, no analytical way of -1 L e o |
determining the optimal updating order has been found. Ir ~ B - Interfering Channel IndA

this article, we evaluate the following updating scheme:

1) Updategp,, , (hy 1)

2) Updategy,, ,(hy,2)

3) Updateq,-2(0,?)
Intuitively, the desired user channel should be as strong ©
stronger than the interfering channel, thus it is selectebet
estimated first. Once a first estimate of the desired channt
is available, the interfering channel can be estimated mor
accurately. Finally an estimate of the residual noise plus 10 ;
interference is obtained to improve the channel estimates i ! teration
subsequent iterations. Simulation results (which havebeet
included here due to lack of space) showed no relevant g@ig 3. MSE of the channel estimates versus the number aftivers of the
by updating the reciprocal of the noise variance between ttf@nnel estimator at a fixed SNR of 25 dB.
estimates of the desired and interfering channel. Thezgfois
step is not included in the algorithm, yielding a less comple o
scheme with no appreciable loss in performance.

Known Channel
—O6— MMSE
—B— DM (5 iter)
—— DM (10 iter)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the propose 0¢
channel estimator by means of Monte-Carlo simulations. Ir
order to do so, we define an OFDM system with parameter
inspired by the 3GPP Long Term Evolution (LTE) 5 MHz G 107}
downlink physical layer parameters [2]. The system operate
with an FFT size of 512, with 300 active subcarriers, and &
frequency spacing of 15 KHz between them. Pilot subcarrier: 107k
are transmitted in every OFDM symbol, with a frequency
spacing of 6 subcarriers (i.e. 300 KHz) between them. Bott

the desired and interfering signals have their pilots in the w07 s : 5 " %

same subcarriers, and perfect synchronization between tf SNR (dB)
transmitters is assumed. Hence, pilots of both transmitted
signals overlap in frequency. The pilot sequences are made o Fig. 4. BER performance for an Indoor A Channel.

random independent and uniformly distributed QPSK symbols

The power of the interfering signal is equal to that of the

desired signal, and 16QAM modulation is employed for th&ignal power and the noise power for each antenna branch,

data symbols. A convolutional code is used for channel gpdiris fixed to 25 dB. It is observed that the iterative process

with BCJR [14] decoding at the receiver. improves greatly the quality of the estimates, due to the
Two different channel models are considered, namely teffectiveness of the interference cancellation and theatipgl

ITU Indoor Office A channel [15] and the COST 259 Typof the noise covariance matrix, which accounts for both the

ical Urban channel [16]. The former channel exhibits a loAWGN and the residual interference. A lower MSE (about a

frequency selectivity, with a coherence bandwidth of aboitdB difference) is achieved in the Indoor A channel. This is a

3.2 MHz, while the latter has a much narrower coherene@nsequence of the lower frequency selectivity, a wellvkmo

bandwidth of around 467 KHz. Block fading is assumed, witfesult from MMSE channel estimation. It is also noted that th

a static channel response over the duration of an OFDM syapnvergence rate of the algorithm depends on the frequency

bol and independent realizations between consecutive OFlectivity of the channel as well: while 5 iterations aregh

symbols. The same channel profile is assumed for all wireldss achieve convergence in the Indoor channel, around 10

links (desired and interfering). iterations are needed in the Typical Urban channel. As the
In Fig. 3, the Mean-Squared Error (MSE) of the channégsults show, the DM channel estimator performance coegerg

estimates of the desired and interfering channel versus thethe MMSE estimator with sufficient number of iterations,

number of iterations of the estimator are shown for the twand the number of iterations required for convergence dipen

considered channels. The MSE of the MMSE estimator @ the frequency selectivity of the channel.

also depicted for comparison’s sake. The signal-to-n@te r The receiver's performance is evaluated in terms of bit-

(SNR), which is calculated as the ratio between the desirettor-rate (BER) in Fig. 4 for the Indoor Office A channel
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—— DM (10 iter)
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To conclude, it is worth remarking that although the es-
timator has been presented and evaluated for an OFDM
system with synchronized co-channel interference, agiidin
to other scenarios could be very advantageous. For instance
our estimator would allow to reduce the pilot overhead in
a MIMO-OFDM system by placing the pilot sequences of
all transmit antennas in the same time-frequency locations
instead of having specific locations reserved for each of the
antennas as it is common in current wireless standards, e.g.
LTE.
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Fig. 5. BER performance for a Typical Urban Channel.

and in Fig. 5 for the Typical Urban channel. Results are showii!
when the estimators use 5 and 10 iterations. As a reference,
the BER of the receiver with perfect knowledge of the channel
is also depicted, as well as the BER of a receiver using the
MMSE estimator. In the Indoor Channel, the performance o
the DM and MMSE estimators is equivalent. When compared
with a receiver with perfect knowledge of the channel, d3l
very small degradation in the range of 1 dB is observed in
the high SNR range. Furthermore, as commented above, thg
performance of the estimator does not significantly improve
after 5 iterations, with only a very marginal gain after 10
iterations. In the Typical Urban channel, a larger deviatio [5]
from the perfect channel knowledge results is observed. The
degradation ranges from 1.7 dB to 2.4 dB at BER of 10%
and 0.1% respectively. However, the degradation in the hig
SNR range is relatively small when considering a scenatrio wi
such a severe interference. Again, the performance of the D
estimator is very close to the MMSE estimator, and only a
very slight gain is observed when increasing the number of
iterations of the algorithm from 5 to 10. (8]

6]

V. CONCLUSION [9]

In this paper, we have presented a novel approach for
channel estimation in OFDM systems with synchronized co-
channel interferers and overlapped pilot symbols. Baseti®n [10]
KL-divergence minimization principle, an iterative algbm
for estimation of the channel gains based on the signg|
observed at pilot locations has been derived. The resulting
algorithm combines MMSE channel estimation with succe§-<l
sive interference cancellation and estimation of the naised
residual interference power. The effectiveness of the ggeg
estimator is assessed by Monte-Carlo simulations. ThdtsesiL3]
show that our algorithm performs as good as the MMSE chan;
nel estimator, with the advantage of avoiding the cumbeesom
matrix inversion in the latter. An overall receiver perf@nte
very close to that of a receiver with perfect knowledge of tH&®!
channel coefficients is attained, especially in channeth wiie)
low frequency selectivity.

which made this work possible.
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Abstract—In the literature efficient methods have been pro-
posed for sparse channel estimation with a solution typically
obtained through /¢;-norm penalization of the parameter of
interest. However, other penalization terms than the ¢;-norm have
proven to have strong sparsity-inducing properties. In this work,
we propose a sparse Bayesian learning channel estimator based
on hierarchical Bayesian prior modeling and variational message
passing (VMP). Using the developed prior model, the VMP
algorithm is able to realize various sparsity-inducing constraints
to the channel estimation task. The numerical results show
superior performance of our channel estimator as compared to
traditional and state-of-the-art sparse methods.

I. INTRODUCTION

During the last few years the research on compressive
sensing techniques and sparse signal representations [1], [2]
applied to channel estimation has received considerable atten-
tion, see e.g., [3]-[7]. The reason is that, typically, the impulse
response of the wireless channel has a few dominant multipath
components. A channel exhibiting this property is said to be
sparse [3].

The general goal of sparse signal representations from
overcomplete dictionaries is to estimate the sparse vector o
of the following system model:

y=Pa+ w. (1)

In this expression y € CM is the vector of measurement
samples and w € CM is the additive white Gaussian ran-
dom noise with covariance matrix A~'I and noise precision
parameter A > 0. The matrix ® = [¢;,...,¢,] € CM*E
is the overcomplete dictionary with more columns than rows
(L > M) and o € CF is an unknown sparse vector with few
non-zero elements at unknown locations.

Often, a sparse channel estimator is constructed by solving
the ¢;-norm constrained quadratic optimization problem, see
among others [4]-[6]:

&:argmin{Hy—@a||§+fi||a||1} 2)

with £ > 0 being some regularization constant and | - ||,
denotes the ¢, vector norm. This method is also known as
Least Absolute Shrinkage and Selection Operator (LASSO)
regression [8] or Basis Pursuit Denoising [9]. The popularity
of the LASSO regression is mainly attributed to the convexity
of the cost function, as well as to its provable sparsity-inducing

properties (see [2]). In [4]-[6] LASSO regression is applied
to orthogonal frequency-division multiplexing (OFDM) pilot-
aided channel estimation. Various convex optimization based
channel estimation algorithms that minimize the LASSO cost
function are compared in [6].

Another approach to sparse channel estimation is sparse
Bayesian learning (SBL) [7], [10]-[12]. Specifically, SBL aims
at finding a sparse maximum a posteriori (MAP) estimate of
a

a = argmin {||y — ®a3 + A7 Q) } 3)

by specifying a prior p(cx) such that the penalty term Q ()
—logp(a) induces a sparse estimate a.!

Obviously, by comparing (2) and (3) the SBL framework
realizes the LASSO cost function by choosing the ¢;-prior
p(a) x exp(—al al]1) with & = A~'a.2 However, instead of
working directly with the prior p(c), SBL models this using a
two-layer (2-L) hierarchical structure. This involves specifying
a conditional prior p(a|vy) and a hyperprior p(vy) such that
p(a) = [ p(a|y)p(y)dvy has a sparsity-inducing nature. The
hierarchical approach to the representation of p(a) has several
important advantages. First of all, one is free to choose simple
and analytically tractable prior pdfs. Second, when carefully
chosen, the resulting hierarchical structure then allows for the
construction of efficient inference algorithms with analytical
derivation of the inference expressions.

In [13] we propose a 2-L and a three-layer (3-L) prior
model for a. The introduced hierarchical prior models lead
to novel sparse inducing priors that as a special case result
in the ¢;-prior for complex variables. We also propose a
variational message passing (VMP) algorithm for estimating
o that effectively exploits the hierarchical structure of the
prior model. This paper adapts the Bayesian probabilistic
framework introduced in [13] to OFDM pilot-aided sparse
channel estimation. This approach leads to a novel channel
estimation algorithm that makes use of various priors with
strong sparsity-inducing properties. The numerical results re-

"Here = o<® y denotes exp(z) = exp(v) exp(y), and thus = = v +y, for
some arbitrary constant v. We will also make use of « o< y which denotes
x = vy for some positive constant v.

%In the case o € RE, p(ax) ox exp(—al|ax||1) is the product of Laplace
pdfs. To the best of our knowledge the Laplace pdf has not yet been defined
for complex variables. We therefore refer to it as the £;-prior.



veal the promising potential of our estimator with improved
performance as compared to state-of-the-art methods. In par-
ticular the estimator outperforms LASSO.

Throughout the paper we shall make use of the following
notation: (-)7 and (-)¥ denote respectively the transpose and
the Hermitian transpose; the expression (f(x))qz) denotes
the expectation of the function f(x) with respect to the
density ¢(x); CN(x|a, B) denotes a multivariate complex
Gaussian pdf with mean a and covariance matrix B; similarly,
Ga(z]a,b) = %x“_l exp(—bz) denotes a Gamma pdf with
shape parameter a and rate parameter b.

II. SIGNAL MODEL

We consider a single-input single-output OFDM system
with N subcarriers. A cyclic prefix (CP) is added to pre-
serve orthogonality between subcarriers and to eliminate inter-
symbol interference between consecutive OFDM symbols.
The channel is assumed static during the transmission of
each OFDM symbol. In baseband representation the received
OFDM signal € C¥ reads in matrix-vector notation

r=Xh+n. 4)

The diagonal matrix X = diag {x1,z2,...,2n} contains the
transmitted symbols. The components of the vector h € CV
are the samples of the channel frequency response at the N
subcarriers. Finally, n € C¥ is a zero-mean complex sym-
metric Gaussian random vector with independent components
with variance A71.

To estimate the vector h in (4), a total of M pilot symbols
are transmitted at selected subcarriers. The pilot pattern P
denotes the set of indices of the pilot subcarriers. The received
signals observed at the pilot positions rp are then divided by
the corresponding pilot symbols X p to produce the observa-
tions used to estimate the channel vector h:

y2 (Xp) 'rp =hp+ (Xp) 'np. (5)

We assume that all pilot symbols hold unit power such that the
statistics of the noise term (X p)~'np remain unchanged, i.e.,
y € CM yields the samples of the true channel frequency re-
sponse (at the pilot subcarriers) corrupted by additive complex
circularly symmetric white Gaussian noise with component
variance A\

In this work, we consider a frequency-selective wireless
channel that remains constant during the transmission of
each OFDM symbol. The maximum relative delay 7yax iS
assumed to be large compared to the sampling time 7g, i.e.,
Tmax/Ts > 1 [3]. The impulse response of the wireless channel
is modeled as a sum of multipath components:

K
g(r) = B (r — 7). 6)
k=1

In this expression, ; and 73 are respectively the complex
weight and the continuous delay of the kth multipath compo-
nent, and &(-) is the Dirac delta function. The parameter K
is the total number of multipath components. The channel pa-

rameters S, T, and K are random variables. Specifically, the
weights {f;} are mutually uncorrelated zero-mean with the
sum of their variances normalized to one. Additional details
regarding the assumptions on the model (6) are provided in
Section VI.

III. THE DICTIONARY MATRIX

Our goal is to estimate h in (4) by applying the general
optimization problem (3) to the observation model (5). For
doing so, we must define a proper dictionary matrix ®. In this
section we give an example of such a matrix. As a starting
point, we invoke the parametric model (6) of the channel.
Making use of this model, (5) can be written as

y=T(r)B+w (N

with hp = T(7)8, w = (Xp) 'np, B = [B1,..., A]",
T=[r,...,7x]",and T(1) € CM*X depending on the pilot
pattern P as well as the unknown delays in 7. Specifically,
the (m, k)th entry of T'(7) reads
N ) m=12,....M

T(T)m.k = exp (—J27 fnT) s k=12 K ®)
with f,,, denoting the frequency of the mth pilot subcarrier.
In the general optimization problem (3) the columns of ®
is known. However, the columns of T'(7) in (7) depends on
the unknown delays in 7. To circumvent this discrepancy we
follow the same approach as in [5] and consider a grid of
uniformly spaced delay samples in the interval [0, Tiax]:

T, 275
O
with ¢ being some positive constant. We now define the
dictionary ® € CM*L as & = T(7,). Thus, the entries of
® are of the form (8) with delay vector 74. The number
of columns L = (Tmax/Ts + 1 in @ is thereby inversely
proportional to the selected delay resolution Ty /(.

It is important to notice that the system model (1) with ®
defined using discretized delay components is an approxima-
tion of the true system model (7). This approximation model
is introduced so that (3) can be applied to solve the channel
estimation task. The estimate of the channel vector at the pilot
subcarriers is then hp = ®a. In order to estimate the channel
h in (4) the dictionary @ is appropriately expanded (row-wise)
to include all N subcarrier frequencies.

=0 . ,Tmax} ’ )

IV. BAYESIAN PRIOR MODELING

In this section we specify the two types of hierarchical prior
models for a: the 2-L and the 3-L hierarchical prior model.
We begin by specifying the joint pdf of the system model (1)
for respectively the 2-L and the 3-L hierarchical prior model.
Specifically, in case of the 2-L prior model, the joint pdf of
the system model (1) reads

(Y, o, 7, A) = p(yle, \)p(A)p(eey)p(v; m). (10)

For the 3-L prior model, the parameter 1) specifying the prior
of « in (10) is assumed random. The joint pdf is then of the
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Fig. 1.  2-L hierarchical prior pdf for a« € C2: (a) Contour plot of
the restriction to the Im{ar1} = Im{az} = 0 - plane of the penalty
term Q(a1,a2;¢,m) o —log(p(ai;e,n)p(az;e,n)). (b) Restriction to
Im{th y} = 0 of the resulting MAP estimation rule (3) with € as a parameter
in the case when @ is orthonormal. The black dashed line indicates the hard-
threshold rule and the black solid line the soft-threshold rule (obtained with
€ = 3/2). The black dashed line indicates the penalty term resulting when
the prior pdf is a circular symmetric Gaussian pdf.

form:

MNpN)p(edy)p(yIm)p(n).  (11)

In (10) and (11) we have p(y|a, \) = CN(y|®a, A\~ T) due
to (1). Furthermore, we let p(A) = p(\;c,d) £ Ga(A|c, d).
This choice is motivated by the fact that the gamma distri-
bution is a conjugate prior for the precision of a Gaussian
likelihood function. In addition, setting ¢ = d = 0 makes p(\)
non-informative. Finally, we select p(a|y) = Hle plag|v)
with p(az]y) £ CN(ay|0,v). In the following we show the
main results and properties of these prior models. We refer to
[13] for a more detailed analysis.

p(y, c,v,m,A) = p(yley,

A. Two-Layer Hierarchical Prior Model

The 2-L prior model assumes that p(vy) = Hlel p(y;) with
p(m) = p(vi;6,m) £ Ga(yile,m). We compute the prior of

o to be
o) L
ples e m) =/0 plely)p(v;e,mdy = [ [ plesse,m) (12)
=1
with
_ 2 # e—1
plase,m) = T loa| T K1 (2y/mileu]).  (13)

In this expression, K, (-) is the modified Bessel function of
the second kind with order v € R. Thus, the prior (13) leads
to the general optimization problem (3) with penalty term

(14)

Qe e, m) Zlog Jou | K1 (24/m]eu]))

=1

We show now that the 2-L prior model induces the ¢;-
norm penalty term and thereby the LASSO cost function as
a special case. Selecting ¢ = 3/2 and using the identity
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Fig. 2.  Three-layer hierarchical prior pdf for ¢ € C2? with the setting
a = 1, b = 0.1: (a) Restriction to Im{hfy} = 0 of the resulting
MAP estimation rule (3) with € as a parameter in the case when @ is
orthonormal. The black dashed line indicates the hard-threshold rule and the
black solid line the soft-threshold rule. (b) Contour plot of the restriction to the
Im{a1} = Im{ep} = O — plane of the penalty term Q (a1, a2;¢€,a,b)
—log(p(a1; €, a, b)p(az;€,a, b)).

= /% exp(—

2n
plage=3/2,m) = 76XP( 2y/milaql).

It clearly leads to the ¢;-norm of penalty term Q(c
2,/n||||1 with the selection n; =7, 1 =1,..., L.

The prior pdf (13) is specified for each choice of € and of
the regularization parameter 7). In order to get insight into the
impact of € on the properties of this prior pdf we consider the
case o € C2. In Fig. 1(a) the contour lines of the restriction

R of Q(a1,asse,n) o« —log(p(au;e, n)p(az;e,n)) are
visualized;® each contour line is computed for a specific choice
of e. Notice that as € decreases towards 0 more probability
mass accumulates along the a-axes; as a consequence, the
mode of the resulting posterior is more likely to be found close
to the axes, thus promoting a sparse solution. The behavior of
the classical ¢; penalty term obtained for ¢ = 3/2 can also
be clearly recognized. In Fig. 1(b) we consider the case when
® is orthonormal and compute the MAP estimator (3) with
penalty term (14) for different values of e¢. Note the typical
soft-threshold-like behavior (see e.g., [15]) of the estimators.
As € — 0, more components of & are pulled towards zero
since the threshold value increases, thus encouraging a sparser
solution.

) [14], (13) yields the prior

IOI»—‘

(15)
n) =

B. Three-Layer Hierarchical Prior Model

We now turn to the SBL problem with a 3-L prior model
for a represented by the joint pdf in (11). Specifically, the
goal is to incorporate the regularization parameter 7 into the
inference framework, such that it can be automatically set by
the algorithm. We assume that p(n) = HlL p(m) with p(n;) =
p(mi;ar, b)) = Ga(mlag, b;). Let us now compute the prior
p(c) that corresponds to the 3-L prior model. Defining a £
[a1,...,4])" and b2 [by,...,br]" we obtain p(a;e,a,b) =

3Let f denote a function defined on a set A. The restriction of f to a subset
B C A is the function defined on B that coincides with f on this subset.
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Fig. 3. A factor graph that represents the joint pdf (11). In this figure
fy =ple, A). fa = plaly). fv =p(¥In). fn = p(n), and fx = p(A).

HzL p(aus €, ar,by) with

p(az;eaazvbz)=/ p(aa]y)p(y)dy
0

Tt alla+1) (Ja 7 o
T (el (a) b Uletas=)-

In this expression, U(-;-;-) is the confluent hypergeometric
function [14]. In Fig. 2(a) we show the estimation rules
produced by the MAP solver for different values of e and
fixed parameters a; and b; when ® is orthonormal. It can
be seen that the estimation rules obtained with the 3-L prior
model approximate the hard-thresholding rule. In Fig. 2(b), we
depict the contour of the penalty term Q(aq,a9;e€,a,b)

—log(p(as;e, a,b)p(ag; €, a,b)). Observe that although the
contours behave qualitatively similarly to those shown in Fig.
1(a) for the 2-L prior model, the corresponding estimation
rules in Fig. 2(a) and Fig. 1(b) are different.

Naturally, the 3-L prior model has three free parameters to
be set, €, a, and b. In [13], it is shown that the choice ¢ = 0 and
b; small (practically we let b; = 1076, 1 = 1,..., L) induces
a weighted log-sum penalization term. This type of penalty is
known to strongly promote a sparse estimate [10], [11]. Later
in the text we will also adopt this parameter choice.

V. VARIATIONAL MESSAGE PASSING

In this section we present a VMP algorithm for estimating
h in (4) given the observation y in (5). Let ® = {a, v, 1, A\}
be the set of unknown parameters and p(y, ®) be the joint
pdf specified in (11). The factor graph [16] that encodes
the factorization of p(y, ®) is shown in Fig. 3. Consider an
auxiliary pdf ¢(®) for the unknown parameters that factorizes
according to ¢(®) = q(a)q(v)q(n)q(N). The VMP algorithm
is an iterative scheme that attempts to compute the auxiliary
pdf that minimizes the Kullback-Leibler (KL) divergence
KL(g(®)||p(®ly)). In the following we summarize the key
steps of the algorithm; the reader is referred to [17] for more
information on VMP.

From [17] the auxiliary function ¢(;), 8; € © is updated
as the product of incoming messages from the neighboring
factor nodes f,, to the variable node 6;:

H myf, -6,

fn€NG,

a7)

In (17) N, is the set of factor nodes neighboring the variable
node 6; and my, _,¢, denotes the message from factor node

fn to variable node 6;. This message is computed as

myg, e, = €Xp (<1D fn11, a6,), ;N7\ (0 }) (18)

where Ny, is the set of variable nodes neighboring the
factor node f,,. After an initialization procedure, the individual
factors of ¢(@) are then updated iteratively in a round-robin
fashion using (17) and (18).

We provide two versions of the VMP algorithm: one applied
to the 2-L prior model (referred to as VMP-2L), and another
one applied to the 3-L model (VMP-3L). The messages
corresponding to VMP-2L are easily obtained as a special
case of the messages computed for VMP-3L by assuming
q(m) = 8(m — 1), where 7j; is some fixed real number.

1) Update of q(a): According to (17) and Fig. 3 the
computation of the update of ¢(a) requires evaluating the
product of messages my, . and my,_ . Multiplying these
two messages yields the Gaussian auxiliary pdf ¢(a) =

CN (a|d,ﬁ3a

) with corresponding mean and covariance
given by

o= (Mm@ + V()
& = (@)gia) = Mg Za®y.
In the above expression we have defined V(vy) =
diag{<7f1>q(~,), AR <721>q(7)}'

2) Update of q(vy): The update of ¢(«) is proportional to
the product of the messages my,, ~ and my _.~:

) o Hvé 2exp

The right-hand side expression in (21) is recognized as the
product of Generalized Inverse Gaussian (GIG) pdfs [18] with
order p = e— 1. Observe that the computation of V'(«y) in (19)
requires evaluating <71_1>q(~/) foralll =1,..., L. Luckily, the
moments of the GIG distribution are given in closed form for
any n € R [18]:

n o <|O‘l|2>q(a) % p+n(2\/ 77l
O = ( (M) q(m) ) Kp(2¢/(m)q

19)
(20)

v ) g(a) 20

- <771>q(n)) :

) {leul®)g(e) )
(m () g(a))

22)

3) Update of q(n): The update of ¢(n) is proportional to
the product of messages my, ., and my !

O( Hne-l—al 1 eXp

which is identified as a gamma pdf. The first moment of 7,
used in (22) is easily computed as

€+ a;
<’Yl>q(~y) + bl .
Naturally, ¢(n7) is only computed for VMP-3L.

4) Update of q(\): The update of g(\) can be shown to be
qg(\) = Ga(A|M +c, (||ly — Pa|3) 4(a) + d). The first moment

—((M)g(y) +00m) (23)

(M)q(m) = (24)
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Fig. 4. Comparison of the performance of the VMP-2L, VMP-3L, RWF, ARD RVM, and SparseRSA algorithms: (a) BER versus Ej/No, (b) MSE versus
Ey/No, (c¢) MSE versus number of available pilots M with fixed L = 200 and the ratio between received symbol power and noise variance set to 15 dB.
In (a,b) we have M = 100 and L = 200. In (a) the dashed line shows the BER performance when the true channel vector h in (4) is known.

of A\ used in (19) and (20) is therefore
M+ c
ly — ®a3)g(a) +d’

VI. NUMERICAL RESULTS

(25)

<)‘>q()\) = <

We perform Monte Carlo simulations to evaluate the perfor-
mance of the two versions of the derived VMP algorithm in
Section V. We consider a 3GPP LTE alike scenario [21] with
the settings specified in Table I. The multipath channel (6) is
inspired by [22] where for each realization of the channel,
the total number of multipath components K is Poisson
distributed with a mean of (K),x) = 10 and the delays
Tk, kK =1,..., K, are independent and uniformly distributed
random variables drawn from the continuous interval [0,
144 T,] (the CP length). The kth non-zero component [
conditioned on the delay 7, has a zero-mean complex cir-
cular symmetric Gaussian distribution with variance o (73) =
(1Bk|*)p(8y|m) = wexp(—7x/v) and parameters u,v > 0.*

To initialize the VMP algorithm we set (\) () equal to
the inverse of the sample variance of y and (7, ")4(y) is set
equal to the inverse number of columns L. Furthermore, we
let ¢ = d = 0 in (25), which corresponds to a non-informative

4By specifying (K)p(K) = 10, Tmax = 144 T, and a decay rate v =
20 Ts then w is computed such that <Z§:1 1Bk ()12 p(a,. 1) = 1.

. TABLEI _
Parameter settings for the simulations. The convolutional

code and decoder has been implemented using [19].

Sampling time, T} 32.55 ns
CP length 4.69 us /144 T,
Subcarrier spacing 15 kHz
Pilot pattern Equally spaced, QPSK
Modulation QPSK
Subcarriers, N 1200
Pilots, M 100
OFDM symbols 1
Information bits 727
Channel interleaver Random
Convolutional code (133,171,165)s
Decoder BCIJR algorithm [20]

prior for A. Once the initialization is completed, the algorithm
sequentially updates the auxiliary pdfs ¢(«), ¢(v), ¢(n), and
g(A) until convergence is achieved. Naturally, ¢(n) is only
updated for VMP-3L, whereas for VMP-2L the entries in n
are set to M. For both versions we select ¢ = 0 and for VMP-
3L weseta; =1and by = 1075 1 = 1,..., L. Finally, the
dictionary @ is specified by M pilot subcarriers and a total of
L = 200 columns (corresponding to the choice Tyax = 144
T, and ¢ =~ 1.4 in (9)).

The VMP is compared to a classical channel estimator and
two state-of-the-art sparse estimation schemes. Specifically,
we use as benchmark the robustly designed Wiener Filter
(RWF) [23], the automatic relevance determination (ARD)
formulation of the relevance vector machine (RVM) [10],
[11], and the sparse reconstruction by separable approxima-
tion (SpaRSA) algorithm [24].> The ARD RVM solves the
optimization problem (3) with the log-sum penalization term
Qla) = 22%:1 log ||, whereas SpaRSA is a proximal
gradient method for solving (2). In case of the SpaRSA
algorithm the regularization parameter s needs to be set. In all
simulations, we let k = 1/2 which leads to good performance
in high signal-to-noise ratio (SNR) regime.

The performance is compared with respect to the resulting
bit-error-r/glte (BER) and mean-squared error (MSE) of the
estimate h versus the SNR (E;,/Ng). In addition, in order to
quantify the algorithms’ ability to reduce the pilot overhead,
we evaluate the MSE versus the number of available pilots
M. Hence, in this setup M is no longer fixed as in Table I.

In Fig. 4(a) we compare the BER performance of the
different schemes. We see that VMP-3L outperforms the other
schemes across all the SNR range considered. Specifically, at
1 % BER the gain is approximately 2 dB compared to VMP-
2L and ARD RVM and 3 dB compared to SpaRSA and RWFE.
Also VMP-2L achieves lower BER in the SNR range 0 - 12
dB as compared to ARD RVM and across the whole SNR
range compared to SpaRSA and RWF.

The superior BER performance of the VMP algorithm is
well reflected in the MSE performance shown in Fig. 4(b).
Again VMP-3L is a clear winner followed by VMP-2L.. The
bad MSE performance of the SpaRSA for low SNR is due

5The software is available on-line at http://www.Ix.it.pt/~mtf/SpaRSA/



to the difficulty in specifying the regularization parameter
across a large SNR range.

We next fix the ratio between received symbol power and
noise variance to 15 dB and evaluate the MSE versus number
of available pilots M. The results are depicted in Fig. 4(c). Ob-
serve a noticeable performance gain obtained with VMP-3L.
In particular, VMP-3L exhibits the same MSE performance
as VMP-2L and ARD RVM using only approximately 85
pilots, roughly half as many as VMP-2L and ARD RVM.
Furthermore, VMP-3L achieves a significant improvement
using this number of pilots as compared to SpaRSA and RWF
where all 200 pilots are available.

VII. CONCLUSION

In this paper, we proposed a sparse Bayesian learning based
channel estimation algorithm. The channel estimator relies on
Bayesian hierarchical prior modeling and variational message
passing (VMP). The VMP algorithm effectively exploits the
probabilistic structure of the hierarchical prior model and
thereby applies various priors with strong sparsity-inducing
properties. It was shown that we obtain an estimator with better
performance than the typically applied ¢;-norm constrained
based estimator. Our numerical results show that the proposed
channel estimator yields superior performance in terms of
bit-error-rate and mean-squared error. It also allows for a
significant reduction of the amount of pilot subcarriers needed
for estimating the channel as compared to other existing
estimators.
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Abstract—In this paper, we investigate different multiple-input ﬂll Encoderl—»llnterleav {mapper|—f OI;E:M Y

multiple-output (MIMO) receiver structures based on MMSE : .
filtering and sequential interference cancellation (SIC) 6r the anteonna :

downlink of the 3GPP long term evolution (LTE) system. We ., mapping | %
divide them into two approaches: symbol-SIC receivers, in Wich C—’I E"COderl—’I'”te”eaVH Mapper l—' PPmne —’W
the detection and interference cancellation is done indepelently

for each subcarrier, and codeword-SIC structures, in whichthe Fig. 1. Block diagram of the transmitter

processing is carried out for each independently-coded stam

by including the turbo-decoder inside the feedback loop. Tk

results show that symbol-SIC receivers need to take into aotint o
the propagation of errors in the interference cancellationto terference cancellation is done at modulated-symbol |eved

provide the turbo decoder with reliable soft bit values. Hovever, codeword-SIC, where the interference is cancelled in a per-
Ehetshe are clearly ?}Jtpefformsldt.by C;J(:ﬁw?rdtf'g chem.esy.ddu codeword fashion. Furthermore, we propose two modification
o the error correction capabilities of the turbo-decoder inside ; i i
the feedback loop. We [s)how that the best tradeoff between of the codeword-SIC recelyer, one avoiding grror prop@g\atl
computational complexity and receiver performance is actéved f"md the other Compe_nsatlng for the err_or introduced in the
by only cancelling the interference of a codeword when this &s  interference cancellation step. All the different scheraes
been successfully decoded. evaluated under LTE parameters by means of link-level sim-
ulations, showing the superiority of the proposed struegur
The remainder of the paper is organized as follows. Section
The 3rd Generation Partnership Project (3GPP) is currenfjyjescribes the system considered. In Section 111, theedfit
finalizing the standardization of UTRA long term evolutiors|c algorithms are presented, and a performance evaluation

(LTE). This new system aims at peak data rates of 100 Mbggne in Section IV. Finally, Section V concludes the work.
in 20 MHz bandwidth in the downlink [1]. To achieve the

required spectral efficiency, a physical-layer air inteefdased Il. SYSTEM DESCRIPTION

on the combination of orthogonal frequency-division multi

plexing (OFDM) and multiple-input multiple-output (MIMO) In the following, the considered MIMO-OFDM system

has been defined [2]. OFDM divides the available bandwid#ill be described. A block diagram of a transmitter with

into narrow orthogonal subcarriers. With the addition of antennas is shown in Fig. 1. As it is shown, the information

cyclic prefix (CP), the subcarriers become flat-fadingveilhg  bits are split into two codewords, which are independently

simple equalization of the channel, and easing the intiegratencoded and interleaved before being mapped to complex

with MIMO techniques [3]. modulated symbols. The complex symbols are then mapped
MIMO techniques have promised a linear increase of the the antennas depending on the MIMO order of the system:

capacity of wireless links with the number of antennas uséor a2 x 2 system, each codeword is transmitted through one

at the receiver and the transmitter [4]. An efficient way afntenna; for al x 4 system, codeword is mapped to transmit

achieving most of this capacity increase is the combinatiemtennasl and 2, and codeword2 is mapped to transmit

of space-division multiplexing (SDM) with sequential inte antennas3 and4. Finally, the bits are OFDM modulated by

ference cancellation (SIC) at the receiver. Since this@pgr applying an inverse fast Fourier transform (IFFT) and addin

was presented in [5], many different receiver algorithmeehaa CP.

been proposed ([6]-[9]) and, for a practical system, it is Assuming that the channel response is static over the

unclear which the optimal choice in terms of performance amtliration of an OFDM symbol and the cyclic prefix is long

complexity is. enough to cope with the multipath delays of the channel, the
In this paper, we review different approaches suggestedsignal seen from thel/ antennas at the receiver after CP

literature. We divide them into symbol-SIC, in which the infemoval and fast Fourier transform (FFT) can be expressed

I. INTRODUCTION



N [oFDm Son ww: Symbol transmitted from théth antenna after detection and
Rx s | - | Antenna | Demap [| Deinter |—Decoder— interference cancellation of the previoiis 1 symbols is:
. . to
. + . ~
R sic |1 [Codeword Ti(k) = gilklyi—1[k]. 3)
- pping Soft . Cw?2
ZIW'_. - > Demap —| Deinter —Decoder— X X
Rx Here,g;[k] denotes theth row of the MMSE matrix:

o2 -t
Gult] = (HEN [ + STy ) BT @)

x

Fig. 2. Block diagram of a symbol-SIC MIMO-OFDM receiver

as: where H;. y[k] is the matrix formed by removing the— 1
first columns of H[k]. The vectory;_1[k] in (3) is the
k] = H[k]x[k k 1 ¢

vl [lx[k] + wlk] @) received signal in subcarriérafter cancelling the interference
wherex[k] = [z1(k)z2(k) - - -z (k)]T represents the complexcontribution from the first — 1 transmit antennas:
transmitted symbols at subcarrikrfrom the N transmitting ‘ _ T 5
antennasw|k| = [wy (k)wsz(k) - - war(k)]T is the i.i.d. com- Yie1[k] = ylk] = Husioa [kl 1[4 ©)
plex additive white Gaussian noise (AWGN) vector and  whereH.;_1[k] and&;.;_1[k] represent the—1 first columns
and elements of[k] and x[k] respectively. The elements

haa(k) - han(k) #;(k) are calculated by taking hard decisions of the MMSE
H[k] = : : (2) estimates in (3). Subsequently, the interference fromithe
hari(k) -+ hun(k) detected symbol is cancelled from the received signalngivi

is the channel transfer function matrix at théh subcarrier  yi[k] = yi—1[k] — hi[k]2i(k) = y[k] — Hu[k]X1.:[k] (6)
frequency. The coefficients;; (k) in (2) describe the complex
channel gain from the transmit antenjio the receive antenna
i. Since no channel state information (CSI) is assumed
the transmitter, the transmitted power is equally distedu
among the transmit antennas, leading to a variance of
transmitted symbols? = E[z;(k)z;(k)*] = £, whereP is - _
the total power transmitted at each subcarrier, andl and Tilk) = pi(k) +n ()

(-)* represent the expected value and conjugate operatigvtsere, = g;[k]h;[k] and# is normally distributed with zero

with h;[k] denoting theith column of H[k].

The MMSE estimates; (k) are then fed to a soft-demapper
v%ich calculates log-likelihood ratios (LLRs) of the codwts.
'ﬁo do so, the estimates are approximated to a Gaussian proces
the . .
described by:

respectively. The AWGN terms; (k) have variance? . mean and variance? = o2 (u — p?) [10].
2) Symbol-SIC with Error Compensatiods drawback of
l1l. MIMO SIC RECEIVERS the previous scheme is that it doesn’t take into account the

In this section, we describe the different receiver stmestu €rror introduced in the interference cancellation steprwae
evaluated. We classify them in two types: symbol SIC anrong hard—decisiom(k). is taken. To show the effect of these
codeword SIC. In symbol-SIC, the interference cancelfaiso €rrors. (5) can be re-written as:
done independently at each subcarrier on modulated-symbQ! 121 _ g1 rhix. [k CH, ke [k - wlk] (8
level, whereas in codeword-SIC the detection is done 01?%1[ ] i [klxion K] i1 [KJeri-a[k] + wik] (8)
codeword level and the interference contribution is sultéch where the vectoé,.; i [k] = x1.;_1[k] — %X1.;1[k] represents

after decoding and re-encoding of the codeword. the error introduced by wrong symbol-decisions. In order
to compensate for these errors, Leeal. proposed the use
A. Symbol-SIC Receivers of an improved MMSE matrix taking error propagation into

The structure of a symbol-SIC receiver is shown in Fig. #6count[6]. In this receiver, which we refer to as symbdC-S
MMSE processing and sequential interference cancellaion With €rror compensation (S-SIC EC), (4) is replaced by:
performed independently at each subcarrier. Next, thetsire " " o2
of the codewords is re-built and, after soft demodulation Gil] Hi:n (] (Hi:N[k]Hi:N[k]JFﬁIN—iH
and deinterleaving, the decoder yields hard decisions en th 1 1
information bits. To simplify the notation, we will assumerh +  5H1i1[kQs,.,, [k]H{{i_l[l@]) 9
that H[k] and x[k] have been reordered at each subcarkrier T
according to the optimal detection order proposed in [8], i. where Qz,, 1 is the covariance matrix of the decision
symbols with transmit antenna subindéxwill be detected errors in thei — 1 previously detected symbols, whose ele-
first, whilst the ones with subindeX will be detected last. ments are given by, (k) = E{é,(k)é}(k)|Z,(k), 2 (k)},

1) Conventional Symbol-SICWe consider here the con-i.e. the expected value of the errors product given the hard
ventional symbol-SIC (S-SIC) approach described in [Sthwi decisions on the symbols. The off-diagonal elements can be
the difference that we employ a linear MMSE filter insteadeglected by assuming uncorrelated symbol errors. For the
of the zero-forcing approach. The MMSE estimate of thdiagonal elements, the authors in [6] propose to calculate



is cancelled from the received signal at all subcarriers by:

] Antenna

. . , .

MMSE | . Cod;\?vord — DSr?]f;p || Deinter |—| Decoder =" y [k] = Y[k] - chl[k]xcwl[k] (12)

* | mapping X
™ where H,,,1[k] denotes the columns df[k] corresponding
ol e to the antennas on which the selected codeword has been
'C";rcf: | a2 b Mapper |—interieav}— Encoder mapped, andk.,,1[k] are the recpnstructed symbols trans- _

. ~+_mapping mitted over those antennas, obtained from the re-encoded bi

_ _ _ decisions. In the second stage, the MMSE estimates of the
Fig. 3. Block diagram of a Codeword-SIC MIMO-OFDM receiver symbols corresponding to the the remaining codeword are
obtained with the matrix:

. . . o2 -1
the eIe_ments of th(_a matrix from an approxmapon of the G/[k] = (HZQ[k]chg[k] + _ngN/Q) H K] (13)
probability of error given the modulation constellatiordahe o
noise varia}nce in (7). We adopt howevefadifferent apprnawhere the matrixH.,2[k] denotes the columns GHI[k]|
by assuming that the LLRs of the bits corresponding {Qresponding to the antennas where the undetected cadlewor
z;(k) are available, the probability of each symboin the g mapped.
constellation Rei(k) = s|z:(k)) can be obtained. Hence, 2y Ccodeword-SIC with Verified Feedbackoded packet-
diagonal elements o, ,, ,(x) can be obtained by: based systems usually have some error-detection cajesilit
. . 20 4 so that the receiver can check whether the packet has been

(k) = E{lep(k)7|2,(k)} correctly received or a retransmission is required. A commo
> " lap(k) — s]*P(x,p(k) = s|#,(k)) (10) way of achieving this (and the one used in LTE) is to
SES append a cyclic redundancy code (CRC) to the information
wheres is a set with all the possible points of the constellatioRitS ©f the packet. After decoding of the packet, the receive
used. The detection and interference cancellation praséiss €an, by checking the CRC, know if the detection process
same as in the conventional symbol-SIC, but using (9) iniste32S been successful. We propose here to make use of this

x

of (4). error detection capability in our codeword-SIC structure,
a scheme we call codeword-SIC with verified feedback (C-
B. Codeword-SIC SIC VF). The detection and decoding of the first codeword

. . selected is equivalent to the C-SIC scheme. After decoding,
In the following, three codeword-SIC algorithms are Olet'he CRC of the decoded codeword is checked. If the CRC is

e prct, re-encoing and re-mapoing of e coceurd s done
gp q Y ' and interference cancellation and decoding of the remginin

will assume here that the codewords are ordered accord] eword is performed according to (12) and (13), as in the

to the _optlmal detection and decodl_ng sequence. A detalle_ IC approach. Otherwise, no feedback is performed and
analysis on how to select the detection order can be foundﬂ;]ne remaining codeword is detected with a plain MMSE as in
[8]. ; : . . . .
. . (11). This avoids the introduction of errors in the inteeiece
1) Conventional Cod_eword—SIC: The  conventional ancellation, as well as reducing the processing involuebe
code_word-SIC (C-SIC) is an_alogous tq the sympoI-SI gse in which the first codeword is not successfully decoded.
receiver. However, the ordering, detection, decoding an 3) Codeword-SIC with Error Compensatiohe introduce
interferenc_e ca_ncellation are don_e in a per-codeword d:)a_shi here a new modification to the Codeword-SIC scheme which
as shov_vn in Fig. 3, rather than independently .for Ir'd'v'duﬂllakes use of both the error detection and the error correctio
subcarriers. In the first stage, the MMSE estimates of t '?operties of the channel decoder. To do so, we make use of
symbols transmitted by the antennas corresponding to eSoft-input soft-output decoder, which yields soft demisi
select_ed codewordt. ... [k], are qbtained for all subcarrierson both the information and thé coded bits in the form of
by using thed x N MMSE matrix: LLRs. These soft values will have better quality than the
o2 -1 ones generated at the soft demapper, as they benefit from
Glk] = <HH[k]H[k] + —§IN> H [k]. (11) the decoding process. In the first stage of the receiver, the
Tz codeword selected to be decoded first is detected through
Note that in the case of 4 transmit antennas, the symb&¥/SE (11), exactly as in the other two schemes. Then, soft
transmitted through two antennas (the ones correspondingdecoding of the codeword is performed, and hard decisions
the selected codeword) will be detected. Subsequently, #ve the information bits are taken. If the CRC is correct, the
symbols are soft demapped, providing the decoder with sefift values of the coded bits can be fully trusted; thus, hard
values on the coded bits. After decoding, the hard decisiansdecision on the coded bits is taken, and the interferingadign
the information bits are re-encoded and mapped to the compige reconstructed by complex modulation of the bits. Then,
symbol constellation in order to re-build the transmittgphal. interference cancellation and detection can be perfornmed o
Then, the interference term created by the selected codewtire second codeword as in (12) and (13), having the certainty



that no errors are being fed back. When the CRC is not corre
there are errors among the soft coded bits delivered by tie <
decoder. Nevertheless, the coded bits are also sliced tb h
values, complex modulated, and the interference on thensleci
codeword is cancelled by (12). In the MMSE fiter, howeve
we compensate for the errors introduced, analogously to 1
S-SIC EC, by using the following MMSE matrix:
2
Gl = L] (FoalbHIEL 01 + T2y

x

PER

) 1
+ ﬁchl[k]Qécwl[k] ngl[k]) (14)

x

where Qg ,[x denotes the covariance matrix of the error c
the remodulated symbol.,,1 = Xcw1 — Xew1- Again, the : ‘ ‘

. 8 9 10 11 12 13 14 15 16
off-diagonal elements 0Q;_, ;) can be neglected, and the SNR (dB)

diagonal elements can be calculated as in (10). In this case,
however, the probabilities of each symbol of the consieltat Fig. 4. PER for & x 2 antenna system with 16QAM and coding rate2

will be obtained from the LLRs provided by the soft-output
decoder, thus taking advantage of the coding gain.

10°

T
——MMSE

IV. PERFORMANCEEVALUATION
. . . . . —8—S-SIC EC
In this section, the simulation results of the describe —x—g—glg
: ——C-SIC VF
SIC schemes are presented. The performance of a lin A C-SICEC

receiver using conventional MMSE detection is also show
for comparison’s sake. A turbo-coded OFDM system with LT
parameters is considered. The 5MHz transmission bandwir
configuration is selected [2], [11], which corresponds360

subcarriers, and the antenna configurations evaluate?i>ae

and 4 x 4. In both configurations, two codewords are inde
pendently encoded, rate-matched and interleaved follpwi
3GPP specifications in [12]. The channel model used is t 102L
20 taps Typical Urban channel in [13], where we assume |

10

PER

correlation between spatial channels and uncorrelateckblc 9 10 11 12 13 ) 15
fading, i.e., the channel is constant over the duration & o SNR (dB)

transmission time interval (TTI). No hybrid automatic rape

request (HARQ) retransmissions are used. Fig. 5. PER for &4 x 4 antenna system with 16QAM and coding raté&

In Fig. 4, the packet error rate (PER) obtained with all
the considered schemes is depicted for the 2 system
with 16QAM modulation and coding rate/2. The conven- performance corresponds to the C-SIC EC receiver, although
tional S-SIC receiver shows a very poor performance, beiitgonly achieves a marginal gain over the C-SIC VF. These
considerably worse than the linear MMSE receiver. This fwo schemes slightly outperform the conventional C-SI@; th
due to error propagation in the interference cancellatioth areason is that, in C-SIC, error propagation takes place when
the soft-values calculation. As this scheme assumes tleat the first codeword is not correctly decoded. This drawback is
interference of each symbol has been perfectly removed, #nided by not cancelling the interference in the case ofC-S
channel decoder is unable to compensate for errors in #E, or by making use of the soft information at the output of
detection process. On the other hand, when information #re decoder in the case of the C-SIC EC.
the reliability of previously detected symbols is incoraied The PER performance of the studied receivers for the
into the MMSE filtering and the soft-values calculation, as i4 x 4 antenna configuration case is shown in Fig. 5, where
the S-SIC EC scheme, the decoder has precise informatamain 16QAM modulation and coding rate of 1/2 have been
about the quality of the detected bits, thus being able &mployed. Note that the conventional S-SIC scheme has not
decode the codewords with much better accuracy. For theen plotted as its poor performance was already statecdabov
configuration shown, the S-SIC EC receiver outperforms ties it can be observed, the trends are similar to 2he 2
linear MMSE receiver, obtaining an SNR gain of ab0wdB configuration. Again, codeword-SIC schemes perform best,
at 1% PER. Larger gains can be achieved when a codewosghile the achievable gain of the S-SIC EC with respect to
SIC scheme is used. These schemes perform better théMSE does not exceed 1 dB afs PER. For this antenna
the linear receiver by betweeh9 and 2.2 dB. The best configuration, the gain obtained by considering error com-



V. CONCLUSION

In this paper, we have addressed the design of a MIMO SIC
receiver for 3GPP LTE. The studied receivers have been split
into two categories: symbol-SIC receivers, where detactio
and interference cancellation is done independently fahea
subcarrier, and codeword-SIC receivers, in which the dietec
is done on a per-codeword basis, and the channel turbo-
decoder is included in the interference cancellation loop.
Our results show that the codeword schemes outperform the
symbol-based significantly over the whole SNR range and for

Spectral Efficiency (b/s/Hz)

—— MMSE
|- --s-sicEc]]
- = C-SIC VF

20 25

10 15
SNR (dB)

30

every MCS. Furthermore, the best tradeoff between complexi

and performance corresponds to the C-SIC VF scheme, in
which the interference from any codeword is only cancelled
when this has been correctly decoded. By doing so, SNR gains
of up to 2 dB with respect to a conventional MMSE receiver

can be obtained, whilst the complexity is kept low by avoidin

Fig. 6. Spectral efficiency curve forax 2 antenna system the

TABLE |
MCS USED FOR SPECTRAL EFFICIENCY CURVE

Modulation Coding Rates
QPSK 1/6,1/3,1/2, 2/3
16QAM 1/2,2/3, 3/4
64QAM 2/3, 4/5 [

2
pensation in the codeword-SIC scheme is more noticeabl[e,]
but still inside 0.2 to 0.3 dB with respect to C-SIC VF. The[s]
conventional C-SIC receiver, again, is the one obtainingstvo
results due to error propagation. From the results obtaihisd
observed that when the first codeword decoding is erroneou$l
not performing interference cancellation is better thamglo 5
it without compensating for the errors introduced. When
compensation is done, slightly better results can be obdain
at the expense of a significant complexity increase.

In order to evaluate the performance of the proposelfl
schemes in the whole SNR range, a spectral efficiency curve
obtained with MMSE, S-SIC EC and C-SIC VF schemes is
presented in Fig 6. This curve has been generated by sgectiii]
the modulation and coding schemes (MCS) from Table | which
provide the highest spectral efficiency for a given SNR. Theg)
curves show how the C-SIC VF scheme outperforms both S-
SIC EC and MMSE over the whole SNR range and for every
MCS. For SNR larger than 5 dB, the codeword SIC schemg
is betweenl.5 and 2 dB better than a conventional MMSE
receiver. The S-SIC EC receiver, on the other hand, exhibits
different performance gains depending on the modulatiah af
coding rate. For a given modulation, the performance is in-
creased at higher coding rates. The explanation is thahigis 1]
coding rates are used at higher SNR and, as a consequence, tlh
probability of errors in the detected symbols is lower, vbhic
benefits the interference cancellation process. A code®iEd
can still benefit from the interference cancellation at IOMRS
by making use of the strong error correction capabilities 3]
the low code rates employed.

[12]

feedback loop when decoding errors are detected.
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Abstract—The paper deals with turbo detection techniques
for Single User Multiple-Input-Multiple-Output (SU MIMO)
antenna schemes. The context is on the uplink of the upcoming
Long Term Evolution - Advanced (LTE-A) systems. Iterative
approaches based on Parallel Interference Cancellation (PIC)
and Successive Interference Cancellation (SIC) are investigated,
and a low-complexity solution allowing to combine interstream
interference cancellation and noise enhancement reduction is
proposed. Performance is evaluated for Orthogonal Frequency
Division Multiplexing (OFDM) and Single Carrier Frequency
Division Multiplexing (SC-FDM) as candidate uplink modulation
schemes for LTE-A. Simulation results show that, in a 2x2
antenna configuration, the turbo processing allows a consistent
improvement of the link performance, being SC-FDM the one
having higher relative gain with respect to linear detection.
The turbo receiver’s impact is however much reduced for both
modulation schemes in a 2x4 configuration, due to the higher
diversity gain provided by the additional receive antennas.

Index Terms—LTE-A, MIMO, OFDM, SC-FDM, turbo re-
ceiver, PIC, SIC

I. INTRODUCTION

The 3rd Generation Partnership Project (3GPP) is currently
specifying the system requirements for the upcoming Long
Term Evolution - Advanced (LTE-A) systems, aiming at target
peak data rates of 1 Gbits/s in local areas and 100 Mbit/s
in wide areas. While in the previous Release 8 [1] only
single transmit antenna schemes have been standardized for the
uplink, multiple-input-multiple-output (MIMO) techniques are
expected to be deployed to meet these ambitious requirements.
Orthogonal Frequency Division Multiplexing (OFDM) has
been selected in the Release 8 for the downlink due to its
high robustness to multipath as well as its flexibility, allowing
to easily share resources among users while keeping full
intra-cell orthogonality [2]. In this scheme, the modulated
symbols are split over narrowband subcarriers and transmitted
in parallel over the wireless channel; a cyclic prefix (CP) is
inserted to mitigate the intersymbol interference (ISI) and the
intercarrier interference (ICI), allowing simple equalization
in the receiver. Despite its advantages, OFDM suffers from
high Peak to Average Power Ratio (PAPR) of the transmitted

signals, which requires higher power backoff in the transmit-
ter to avoid distortions, and hence leading to lower power
efficiency. This is particularly critical in uplink because of the
power consumption constraint in the User Equipment (UE).
Therefore, Single Carrier Frequency Division Multiplexing
(SC-FDM) has been selected for the uplink in LTE [1]. This
modulation scheme exploits the same benefits in terms of
multipath mitigation and flexibility as OFDM. However, data
symbols are transmitted serially in the time domain, leading
to a consistent reduction of the PAPR [3]. Nevertheless, the
choice of the uplink modulation scheme for LTE-A has not
yet been finalized. It has been shown that OFDM generally
outperforms SC-FDM in terms of spectral efficiency when
linear receivers are used [4]; this is because SC-FDM systems
suffer from an effect called “noise enhancement”, which
degrades the estimation of the data symbols. In a previous
study [5], we implemented an iterative receiver for a single-
input-multiple-output (SIMO) SC-FDM system, showing that
the noise enhancement can be overcome by the non-linear
detection. That makes the performance of SC-FDM similar
to OFDM.

In this paper, we extend the previous work to a double
stream Single User MIMO scheme for the upcoming LTE-A
systems. Iterative approaches based on parallel and successive
interference cancellation are investigated, and a new turbo
processing solution allowing to reduce the computational
complexity is proposed. Both parallel and successive inter-
ference cancellation have been widely treated in literature, for
CDMA as well as OFDM systems (e.g.,[6],[7] and [8]). Their
aim is basically a progressive reduction of the interstream
interference by including in the detection process a previous
estimate of the transmitted data sequences. Here, since our
main scope is leveraging SC-FDM performance, we combine
in the iterative processing (even called turbo processing) both
the traditional interstream interference removal provided by
the aforementioned techniques and the noise enhancement
reduction.

The remainder of the paper is structured as follows. In

978-1-4244-2517-4/09/$20.00 ©2009 IEEE
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Section I, the MIMO LTE-A system is presented. Section
IT describes the principles of the iterative detection, focusing
on Parallel and Successive Interference Cancellation. Section
IIT shows our proposed turbo processing strategy with limited
complexity. In Section IV, simulation results are presented and
discussed. Finally, Section V summarizes the conclusions.

SC-FDM Specific % | DL

QPSK/QAM |51 |
Modulator

cw1 ce
L,

MIMO

cw2 Encoder | |
p—

QPSK/QAM |2
Modulator

xy | IFFT

CP

Fig. 1. MIMO transmitter with 2 codewords.

II. SYSTEM MODEL

A simplified baseband model of a MIMO OFDM/SC-FDM
transmitter with 2 codewords (CWs) and N transmit antennas
is depicted in Fig.1. For each CW, the information bits are
independently encoded, interleaved, and finally mapped to
QPSK/M-QAM symbols, yielding the vectors s;, i=1,2. Then,
a Discrete Fourier Transform (DFT) is performed in the case of
SC-FDM, spreading each data symbol over all the subcarriers,
obtaining the vectors d;. For OFDM instead, each data symbol
is mapped over one subcarrier, i.e. d; = s;. Symbols d; are
then mapped over the transmit antennas by the MIMO encoder
block. Finally, an Inverse Fast Fourier Transform (IFFT) is
applied and a CP is appended. Assuming that the channel
response is static over the duration of an OFDM symbol, and
the CP is long enough to cope with the delay spread of the
channel, the received signal after CP removal and fast Fourier
transform (FFT) can be written as follows:

y[k] = H[k]x[k] + wlk] (1

where x[k] = [z1(k),22(k),..., 2N, (K)]T is a vector con-
taining the encoded complex transmitted MIMO symbols
at subcarrier k from the Np transmit antennas, w(k]

[wi (k), wa(k),...,wn,(k)]T is the additive white Gaussian
noise vector with E[w;(k)w;(k)*] = o2, and
hll(k) thT (k)
HE = | z @
hNgl(k) h‘NRNT (k)

is the channel transfer function matrix at subcarrier k. h;;(k)
denotes the complex channel gain from the transmit antenna
J to the receive antenna i. In this study, it is assumed that
E[s;(k)s;(k)*] = 1 and that the transmitted power is equally
distributed among the transmit antennas.

III. ITERATIVE DETECTION

The structure of the considered turbo receiver is shown in
Fig.2. The equalizer and the turbo decoder are joint in a loop,
benefiting from the mutual information exchange. The aim is

improving the performance with respect to the linear receiver
by iteratively enhancing the reliability of the data estimates
for each CW. The turbo decoder provides an estimate of
all the coded bits in the form of likelihood ratios, that are
subsequentely interleaved and modulated as done in [5] to get
a soft estimate of the transmitted symbols. These soft estimates
are then fed back to an interference canceller, allowing to
progressively remove the mutual interference contribution.
In SC-FDM systems, the inverse discrete Fourier transform
(IDFT) performed at the receiver spreads the noise contribu-
tion from faded subcarriers over all the data symbols. Iterative
processing aims even at reducing this noise enhancement.
In the following, we present the principles of two widely
adopted iterative detection techniques: Parallel Interference
Cancellation and Successive Interference Cancellation.

SC-FDM Specific
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Fig. 2. MIMO Turbo Receiver.

A. Parallel Interference Cancellation (PIC)

In the PIC technique, all the CWs are detected in parallel,
interleaved, re-modulated and sent back to the interference
canceller, whose output for the m-th CW in the subcarrier k
at n-th iteration can be written as follows:

Ym,clk] 3)

where Z = {1,2} is the set of the CWs’indexes, H;_ 1.,y
denotes the column of H corresponding to the antennas on
which the (Z — {m})-th CW has been mapped, and d;:?m}
is the frequency domain soft estimate of the (Z — {m})-th
CW, obAtained in the previous iteration. Note that for SC-
FDM, d2~! . is obtained through a DFT operation over

Z—{m}
~n—1 In-—1
the soft modulated symbols s, {(m} (for OFDM, d_ (m} =

A;:?m}). The residual error after the interference cancellation
should be taken into account in the equalization. The frequency
domain equalization for the m-th CW in subcarrier k can be

carried out as follows [8]:

— ¥Ik] = Hy gy (KA, ]

Y el = HE k] [HF Q HY [k] + NpoZIn, ] yi o[k

“)
where (-) denotes the hermitian operator, Ing is the Ng X
Np identity matrix, and Q, = diag[qi, - ,qnN.] is the

Np x Np diagonal matrix of the residual interference powers,
whose j-th element can be expressed as:

1, it j=m
qi:{1a§_{m}n_l it j#m®
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where a% 1 is the variance of the soft modulated
symbols of the (Z {m})-th CW at (n-1)-th iteration. It can
be computed as follows:

1 Nsub

Nsub

0% mpn-1 = Sy Em}[k]( ©6)
k=1

where Ny, is the number of subcarriers. Note that at the
beginning, when no apriori information is available, 5% = 0
and Eq.(4) acts as a traditional Minimum Mean Square Error
(MMSE) equalizer. The receiver performs the tasks described
above for a number of iterations; after that, the turbo decoder

takes hard decisions about the transmitted bits.

B. Successive Interference Cancellation (SIC)

In the SIC technique the CWs are first ordered depending on
some criterion, and the detection and the decoding processes
are performed sequentially. The CWs are usually ordered
according to their equivalent channel gain, so that the CW
with highest equivalent channel gain is detected first. The
equivalent channel gain of the m-th CW at the n-th iteration
can be expressed as follows:

Nsup

Z HTYL

subk 1

-1

QuHY[k] + Nrol Iy, ]

(N
The selected CW is detected, soft modulated and fed back
to the interference canceller, whose output can be written as
follows:

- HZ—{m} [k}ap

7—(my k], where

Yim,elk] = y[k]
p=nif Z —{m} = argmaz;—, o H"
®)

The equalizer’s output for the m-th CW in subcarrier k is given
by:

p=n—1if Z—{m} # argmaz—, o H"

yn k]
)

,dny], Whose generic j-th element

Vincqlk] = HLK] [HKIQuH ] 4+ Npo? Ly,

where Q,, = diag [G1,-
can be written as:

1, if 7=m
gi=1 1- E%_{m}m if j#m,j=argmax;—1 2H]'(10)

1 - a%—{m},n—l if j#m,j# ngaxi:uﬁ?

IV. TURBO PROCESSING WITH LIMITED COMPLEXITY

An obvious drawback of the iterative detection techniques is
their computational complexity, increasing with the number of
iterations. However, since an estimate of the transmitted CWs
is available at each iteration, the turbo processing presented
above is redundant once at least one of them has been correctly
detected. In LTE, a cyclic redundancy code (CRC) is appended
to the information bits of the CW to check if the detection pro-
cess has been successful. Here, we propose to use this error-
detection capability to reduce the turbo processing complexity.

H,, [K]

In fact, checking the CRC allows to stop the iterative process
once CWs are correctly decoded. Furthermore, we combine in
the same process both the interstream interference removal and
the noise enhancement reduction for SC-FDM. For simplicity,
in the following we will refer to a double transmit antenna
system.

Let us suppose to perform the generic n-th iteration of the
PIC or SIC algorithm. After both CWs have been detected,
their CRC is checked by taking hard decisions on the soft
bits. The possible options and the subsequent behaviour to be
adopted are the followings:

o Both CWs are not successfully detected. Continue per-
forming PIC or SIC in the (n+1)-th iteration.

e Only one CW is successfully detected. In this case, the
interstream interference can be fully removed from the
wrong CW. Therefore, the MIMO system is virtually re-
duced to a single-input-multiple-output one, and the noise
enhancement reduction strategy for SC-FDM presented in
[5] can be adopted. To sum up, the following steps have
to be performed:

— (n+1)-th iteration: feed back only the correct CW for
interstream interference removal and equalization;

- from (n+2)-th iteration: re-modulate the wrong CW
obtaining d“Jrl and use the equalizer coefficients
defined in [5], that have been shown to reduce the
noise enhancement of SC-FDM in a SIMO system.
We distinguish between forward coefficients, which
aim at increasing the Signal-to-Noise Ratio (SNR),
and feedback coefficients, designed at the purpose
of reducing the noise contribution in the estimated
sequence. The forward coefficient at the g-th receive
antenna in subcarrier k can be defined as follows:

Crrq (k)=
1 b o (K)
L+ 0001 (1= 52 1) St [hguwr () + 02,
(1D
where
. N 2
= 1 g Zq:Rl |hq,wr (k)‘

o~ N
NSUb k=1 (1 - Uin“,n—i—l) ZQ:R

The feedback coefficient in subcarrier £ can be
expressed as:

1 |hq,wr (k>|2 + ‘7121;
(12)

Cr (k th wr (k) Cpq (k) =1 (13)
Therefore the resultant output of the equalizer is
given by:

Uit-eqlk] = CalKly LK) = Cp(k)dyT K] (14)

where Cg (k] [Cga(k),---
further details, we refer to [5].

o Both CWs are successfully detected: jump to the detec-
tion of the next data frame.

s Cﬂ-‘7NR (k)] For

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on July 9, 2009 at 09:20 from IEEE Xplore. Restrictions apply.



TABLE I
SIMULATION PARAMETERS

Carrier frequency 2 GHz
Sampling frequency 15.36 MHz
Subcarrier spacing 15 KHz
FFT size 1024
Used subcarriers 600
CP length 5.29/4.68" s
Slot duration 0.5 ms
Symbols per slot 7
MIMO schemes (2x2, 2x4) SM
User speed 3 kmph

MCS settings QPSK: 1/6, 1/3, 1/2, 2/3
16QAM: 172, 2/3, 3/4
64QAM: 2/3, 4/5
3GPP Rel.8 compliant Turbo code

with basic rate 1/3

Channel code

Turbo decoder iterations 8
MMSE, PIC, SIC

Receiver scheme

“First OFDM/SC-FDM symbol in a slot.
both _ 7th OFDM/SC-FDM symbol in a slot.

V. PERFORMANCE EVALUATION

The performance of the turbo receiver is evaluated by Monte
Carlo simulations. We use as a reference 10 MHz LTE con-
figuration parameters [1]. The main simulation parameters are
gathered in Table I. An urban micro channel model (SCM-D)
[9] is used in the simulations, and perfect channel knowledge
is assumed. In the following, we will assume that an iteration
of both PIC and SIC is completed once an estimate of both
CWs is available by exploiting the feedback information. The
linear MMSE equalization can instead be considered as the
0-th iteration of the PIC scheme.

Fig.3 shows the performance of PIC and SIC for a 2x2 SC-
FDM system in terms of Block Error Rate (BLER), assuming
16QAM 2/3. Linear MMSE performance is also included.
Both iterative techniques lead to a consistent gain over linear
detection, up to 5 dB with 6 iterations. Most of the gain
is already obtained after the first iteration. Note that at the
first iteration PIC performs better than SIC because in the
latter the soft interference is removed only from one CW.
However, for higher number of iterations both techniques tend
to perform similarly. It can be seen (Fig.4) that SIC converges
slightly faster than PIC. This is because in SIC one of the
soft estimates used in the interference cancellation is obtained
in the current iteration, while in PIC both are obtained in the
previous iteration.

Fig.5 depicts a comparison between OFDM and SC-FDM
for SIC receivers. As it can be observed, OFDM clearly
outperforms SC-FDM when linear receivers are used. This
is due to the noise enhancement in SC-FDM systems. OFDM
performance can be further improved by the iterative detection.
However, for OFDM the gain of SIC with respect to MMSE
is limited to 3.5 dB. This allows reducing the performance

MMSE
- -O- - PIC it
- -8— - PIC 2it
= =q~= - PIC 4it
- -O- - PIC 6it
—8— SIC it
1072 —&— SIC 2it
—&— SIC 4it
—6— SIC 6it

BLER

10 12 14 16 18 20 22 24
SNR[dB]

Fig. 3.  BLER performance of SC-FDM in a 2x2 antenna system, with
16QAM 2/3.

0.4 T T T T

BLER

Number of iterations

Fig. 4. SC-FDM PIC vs. SIC, SNR=18dB.

gap between OFDM and SC-FDM, to within 1 dB. The
higher relative gain of SC-FDM compared to MMSE is due
to the reduction of the noise enhancement provided by the
turbo processing. Furthermore, comparing Fig.3 and Fig.5, it
can also be noticed that the relative gain between different
iterations is slightly higher for SC-FDM.

The gap between the modulation schemes with MMSE is
quite reduced with a 2x4 antenna configuration, as presented in
Fig.6. This is due to the increase of diversity, which averages
the channel seen at the receiver. In this way, the deep fades of
the channel are smoothed, and therefore the noise enhancement
of SC-FDM is reduced. Here, the iterative processing only
leads to a gain up to 2 dB for SC-FDM and 1.5 dB for OFDM,
thus further reducing their performance gap.

The performance result on the whole SNR range, when
link adaptation is used, is shown in Fig.7. The link adaptation
is done based on average SNR and the corresponding curve
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antenna system, with 16QAM 2/3.

results from the envelope of the spectral efficiency curves for
several Modulation and Coding Schemes (MCSs). For low
SNRs, OFDM performs as good as SC-FDM for both linear
and iterative detection. The performance gap is relevant for
high order MCSs, where the higher relative gain of the turbo
receiver for SC-FDM is evident. OFDM and SC-FDM tend
perform similarly in a 2x4 antenna system, as suggested by
the previous results.

VI. CONCLUSIONS

In this paper, iterative detection techniques are presented
and investigated in a Single User MIMO context for the uplink
of the upcoming LTE-A standard, and a limited complexity
solution combining interstream interference removal and noise
enhancement reduction is proposed. Performance is evalu-
ated for both OFDM and SC-FDM as candidate modulation
schemes for the uplink of LTE-A. Simulation results show
that the proposed solution leads to a gain in terms of BLER

8
——— SC-FDM MMSE

7I"| = = = OFDM MMSE
—+— SC-FDM SIC 4it

6f | - + — OFDM SIC 4it

Spectral Efficiency (bits/s/Hz)

N o ; ; ; ; ; ;
-0 -5 0 5 10 15 20 25 30 35
SNR[dB]

Fig. 7. Link adaptation curves for 2x2 and 2x4 antenna configurations.

up to 5 dB over linear detection for a SC-FDM 2x2 antenna
configuration, thus outperforming OFDM with linear MMSE
receiver. For OFDM, the gain of the turbo processing over
linear detection is limited to 3.5 dB. The diversity gain
obtained by adding antennas at the receiver reduces the impact
of the turbo processing: in fact, link adaptation based on
average SNR shows no relevant difference in performance
when the antenna configuration is increased to a 2x4 system.
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Abstract—In this paper we present a refined model of the
wireless multipath channel along with a thorough analysis on the
impact of spatial smoothing techniques when used for improved
channel estimation. The state-of-the-art channel estimation al-
gorithm for pilot-aided OFDM systems is robustly designed
and operates without knowledge of the time-varying multipath
propagation delays in the wireless channel. However, algorithms
exploiting knowledge of these time-varying delay parameters can
outperform the state-of-the-art solution. We demonstrate from
simulations how the Unitary ESPRIT algorithm together with
spatial smoothing techniques exhibit a promising potential for
multipath propagation delay estimation. Furthermore, we show
that the optimum smoothing parameters depend notably on the
channel model assumed, specifically in terms of the dynamical
behavior of the multipath delays.

I. INTRODUCTION

During the last decade, the technique of orthogonal
frequency-division multiplexing (OFDM) has entered and set-
tled within several wireless standards, e.g. European digital au-
dio broadcasting, IEEE 802.11a wireless local area networking
and 3GPP long term evolution (LTE). The reasons for OFDM
being widely selected are manifold. A few motivations include
the flexibility in spectrum occupancy, robustness against inter-
symbol-interference and easy integration with multiple antenna
techniques.

Today, even higher data rates are demanded - calling for
larger digital constellation sizes and coherent detection. Chan-
nel estimation is therefore required and commonly achieved
using pilot symbol transmissions. In principle, the channel
estimation may be conducted in a completely non-parametric
manner. However, this approach conflicts with the requirement
of high data rates due to the dimensionality of the estimation
problem and also due to the time-varying behavior of the
wireless channel (expensive time-frequency overhead of pilot
symbols). With the aim of lowering the dimension of the
estimation task and the amount of pilot symbols needed,
a parametric structure of the wireless multipath channel is
typically imposed [1]-[4]. Yet, the parametric channel model
assumed in scientific literature and wireless standards [5] does
not adequately reflect dynamic environments, e.g. with a mo-
bile receiver. For instance, the multipath propagation delays,
the inter-delay gaps and the overall number of delays are often

modeled as persistently fixed - even though the receiver is
assumed to be moving. Furthermore, it is common to include
modeling of the Doppler frequency shifts experienced by
the receiver [2], [4] - despite the fact that Doppler shifts
and delay fluctuations are indisputably related. Hence, the
default and widely used modeling of the wireless channel is
counterintuitive and inadequate.

When employing the state-of-the-art channel estimator [1]
(robust design), the fluctuating behavior of the multipath
delays are of no importance since a continuum of equally
powered channel components is assumed. However, this robust
design yields an irreducible performance degradation which is
avoidable if instead a channel estimator presupposing knowl-
edge of the time-varying delays is used. Hence, if sufficiently
accurate delay estimates can be obtained, the robust state-of-
the-art channel estimator [1] can be outperformed. Yet, for
this opposing solution to earn practical attention it requires a
sufficiently accurate/realistic model of the wireless multipath
channel.

In recent literature [2] the ESPRIT algorithm [6] has been
proposed to serve as initial multipath delay acquisition tool
for pilot-aidled OFDM systems. The ESPRIT algorithm is
an eigenvalue decomposition based method which exhibits
satisfactory estimation performance when the multipath prop-
agation delays in the channel model stay persistently fixed.
However, in more realistic scenarios the propagation delays
will fluctuate over time, the overall number of delays will
change and also the inter-delay gaps will vary. Thus, depend-
ing on the individual realizations of the channel the delays will
sometimes tend to cluster while other times tend to be more
dispersed. Such effects are typically not captured by the chan-
nel models in use. Accordingly, promising simulation-based
algorithm performance may implicitly give rise to erroneous
comprehension - directly inherited from the inappropriate
channel modeling.

In this paper we present an advanced multipath channel
model which manages to mimic an increased amount of real-
world channel effects. Compared to the default state-of-the-
art channel model, this advanced model is of supplementary
dynamic nature and therefore allows for interesting simulation-
based comparisons. In terms of channel estimation perfor-
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mance we compare the state-of-the-art algorithm [1] with the
linear minimum mean squared error (LMMSE) estimator [2]
using Unitary ESPRIT [7] as multipath delay estimation tool.
Additionally, a key contribution of this paper is a thorough
analysis of the performance gain obtained when applying
a spatial smoothing scheme for improved delay estimation
accuracy. The smoothing scheme is also employed in [2], yet
no analysis of its impact is provided and no justification for
the smoothing parameters are given. We investigate how to op-
timize the smoothing parameters depending on the dynamical
behavior of the wireless multipath channel model assumed.

The remaining parts of this paper are organized as fol-
lows. In Section II a scenario involving an OFDM system
is described and the signal model is presented. The channel
models considered are introduced and discussed in Section
III. In Section IV we briefly describe the main principles of
the ESPRIT algorithm. Performance evaluations are conducted
and compared in terms of Monte-Carlo simulations in Section
V. Concluding remarks are provided in Section VI.

II. OFDM SIGNAL MODEL

We consider a single-input single-output OFDM system
designed with a total of N subcarriers. The effective spectrum
occupied by the system is often adjusted by forcing certain
subcarriers inactive, for instance at each edge of the overall
bandwidth. Accordingly, only N,, < N subcarriers are used
for actual transmissions.

The OFDM signal is generated as follows. Initially, a stream
of raw information bits are modulated onto a set of PSK/QAM
symbols which are then multiplexed with a sequence of M
pilot symbols. After multiplexing the sequence consists of
exactly N, symbols x,,x,,...,z, , and these are intended
for transmission. Finally, OFDM modulation by means of an
IFFT is performed and a cyclic prefix is inserted.

The received signal is OFDM demodulated by discarding
the samples corresponding to the cyclic prefix and the N time-
domain samples left are exposed to a FFT. We assume that
the channel remains static during transmission of each OFDM
symbol and furthermore that the duration of the cyclic prefix
exceeds the maximum excess delay of the channel. The OFDM
demodulated signal at the receiver is then given as
T — Xh +w, (1)

r= [7‘ r ...,TNJ

172729

where X = diag{wmxw e
from the transmitted symbols and h = [k, h,,... hy
contains as components the channel frequency responses at
the NV, active subcarriers. Circular symmetric additive white
Gaussian noise contributions with variance ¢ are contained

: _ T
in the vector w = [w,,w,,...,wy ] .

T } is a diagonal matrix built
, I

A. Pilot Symbol Observations

The received pilot symbol observations are used to estimate
the channel frequency response at all subchannels carrying
non-redundant data symbols. Conveniently, we define the
following subset of indices

P = {p(1),p(2),....p(M)} € {1,2,..., N},

which identifies the M subcarriers used for pilot symbol trans-
missions. We extract the M equations from (1) corresponding
to the indices contained in P and define

T o(m)

Yo ™=

L p(m)

m=12,...,M,

which we can appropriately and compactly formulate as

yi=(X,) ', =h, +(X,) w,, )
meanwhile the subscript notation should be obvious to in-
terpret. We assume that all pilot symbols hold unit power,
whereby the statistics of the noise term (X,,) ™ w,, remains
unchanged. Hence, the observations available in (2) are known
to the receiver due to the pilot symbol data and y yields
the true channel frequency responses (at the pilot subcarriers)
embedded in zero-mean complex Gaussian noise. To prop-
erly estimate the channel frequency responses at all active
subcarriers, i.e. the vector h in (1), a parametric model of
the wireless channel is invoked. In this way the dimension is
notably reduced since the task is now altered to estimate only
a relatively small number of channel model parameters.

III. MULTIPATH CHANNEL MODELS

Two different multipath channels are presented in this
section. The overall model for these two channels is the same
and the first configuration described is simpler but unrealistic
with respect to certain physical interpretations. The second
configuration described is more dynamic and sophisticated
while easier to accept from a physical point of view. In the
entire paper we assume a non-line-of-sight, far-field scenario
where only the receiver is moving.

The model commonly used to describe a time-varying
multipath channel impulse response is given by

(t)
g(t,7) =Y a,(t)s(T = 7,()), 3)
=1

where J is the Dirac delta. Each complex-valued amplitude
a,, £ =1,2,...,L(t), is typically modeled as a wide-sense
stationary, zero-mean complex Gaussian process [1]-[4]. The
processes {a, } are furthermore assumed to be mutually uncor-
related, i.e. the channel described by (3) is a so-called wide-
sense stationary and uncorrelated scattering [8] (WSSUS)
Rayleigh fading channel.

A. Static Reference Channel

The simpler and static channel model is described according
to a relaxed version of (3) reading

L
g(t,7) =Y o, (t)d(r —1,). 4)
/=1

The overall number L of echoes in the channel is fixed and also
the delay parameters {7, } are persistently static. All amplitude
processes {«,} are assumed to share the same normalized
autocorrelation function, given in terms of the zeroth-order
Bessel function of the first kind. Accordingly, the normalized
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Doppler power spectrum associated with each echo is bathtub-
shaped and usually referred to in terms of Clarke or Jakes,
see [9, Sec. 3.2] and the references therein. Such modeling is
based on the assumption of a uniform scattering environment, a
scenario which is difficult to accept by physical means. Specif-
ically, it is hard to imagine a propagation environment such
that the transmitted signal is scattered into plenty reflections
arriving uniformly from every direction, all equally delayed,
and thereby combining into one of the L dominant echoes
in the channel. Nonetheless, such a channel model is usually
assumed, e.g. by 3GPP in [5].

B. Dynamic Channel

A more realistic model would allow for the delay parameters
to fluctuate over time as a result of receiver mobility. Also, the
overall number of echoes in the channel may change from time
to time due to blocking obstacles in the environment. Hence,
a channel impulse response as described by (3) is appropriate
and notably more realistic than the model in (4). Initially, for

¢=1,2,...,L(t), the channel echoes are modeled as
0 R
a,(t) = \lféZexp (527 f, cos(8,, )t + jeo,.), (5
r=1

where @), is the average power of the £’th echo, f, denotes the
maximum Doppler frequency and {¢, } are i.i.d. uniform ini-
tial phases. In contrast to the uniform scattering environment,
each channel echo «, in (5), is (heuristically) modeled from
R azimuth excited subcomponents centered around a nominal
angle of arrival 0,. Specifically, the modeling reads

éé < U(—m,m) and ¢9M|§[ o VM(H_[,,%)7
where the notation VM (6,, k) refers to the von Mises distribu-
tion with location parameter 6, and concentration parameter
Kk > 0, see [10] for details. In this setup the channel echoes
do not share the same normalized autocorrelation function and
the Doppler power spectra are therefore individual too.

Following the modeling suggestion in [11], it is convenient
to let transitions of arising channel echoes occur according
to a homogeneous Poisson process with rate \,. Assigning
i.i.d. exponential lifetimes with mean 1/, to the echoes then
results in L(t) being a Poisson distributed random variable
with E[L(t)] = X, /A, For simplicity and due to our receiver
mobility assumption, it is furthermore convenient to model the
delay fluctuations from straight line advancements, i.e.

[ cos(d,)

T,(t)="T,, + 7 t>t

(t - tmo)?

£;0)

where f_ denotes the carrier frequency of the communication
system and t,, is the birth time of the (’th echo. The
distribution of the initial delays {7, ,} can be specified as
desired - a simple choice is to select the uniform distribution
on an appropriate interval. The average power terms {Q,}
may then be assigned according to an exponentially decaying
function (i.e. the power delay profile is specified). The straight
line advancements of the multipath delays are illustrated in

3000 -
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Figure 1. Contiguous realization of the dynamic channel with maximum

Doppler frequency f, = 100Hz and carrier frequency f, = 2GHz.

Fig. 1 which reports a ten seconds realization of the dynamic
channel with E[L(t)] = 15 delays on average. As can be
seen from the figure the channel exhibits a reasonable amount
of dynamical behavior, e.g. the overall number of delays is
changing over time and also the straight line patterns of the
delays are quite apparent.

The simpler and more static channel model described
comprises the state-of-the-art reference. The intention with
the more realistic and dynamic channel model described is
to mimic a time-varying and fluctuating behavior of L(t),
{r,(t)} and {|r,(t) — 7, (t)|}. Our goal is to investigate how
incorporation of such dynamics affects the pilot-aided channel
estimation performance.

IV. PROPAGATION DELAY ESTIMATION

Assuming the reference channel model (4) as described in
Section III-A, we reformulate the observation model (2) as

y=T(r)a+mn, (6)

where we have introduced a M x L matrix T(7), the vector
a = |a,,a,,...,a,]" and the additive noise vector 7. The
matrix T(7) depends on the delay parameters and the pilot
symbol positions in such a way that its (m, £)’th entry reads

m=1,2,..., M,
(=1,2,...,L,
where T denotes the sampling time of the communication
system. Notice that the L columns building up the matrix T'(7)
are of identical structure and by system design the parameters

N, T and P are known - only the delays {7, } are unknown.
The theoretical covariance matrix associated with y reads

. . p(m) T,
T, ,6 =exp ( —j2r=5 f),

R .= E[yyH] = T(7)ATH (1) + 0°L,,, )

where we have implicitly assumed that any component of « is
statistically independent of any component of n. Furthermore,
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A = E[aaH] is a L x L diagonal matrix due to the
uncorrelated scattering assumption. Notice in (7), that since
the delay parameters are assumed static the covariance matrix
R does not change over time.

Now, any vector in the null space of T (7) is an eigen-
vector of R with associated eigenvalue 2. Therefore, the
particular eigenvectors of R not belonging to the null space
of TH(r) are all associated with eigenvalues strictly greater
than o2. This key fact provides insight on how the signal
subspace and the noise subspace can be separated according
to the individual magnitudes of the eigenvalues. From a proper
design of the set P, the structure inherited by the matrix T(T)
allows for two specific submatrices to be related by a simple
rotational (i.e. unitary) transform. Estimation of this unitary
transform is essentially how the ESPRIT algorithm is used to
estimate the unknown delay parameters, see [2].

Obviously, the theoretical covariance matrix R is not avail-
able. Instead the ESPRIT algorithm is applied to some ‘pru-
dent’ estimate of the matrix. Observations which we denote
by {y k} are collected temporally, and in a generic manner we
arrange K of such vectors in the M x K matrix

. |
Y| - ®)
o |

The estimate used could then be the sample covariance matrix

R._ LyvH B._ L(R.IRT
R:=—YY” o Ri=3(R+JIRTJ),
where R is the centrosymmetric equivalent' of R. Here J
denotes the M x M reversal matrix with 1’s in its entire anti-
diagonal and 0’s elsewhere, see [12, Sec. 4.8, 6.5.8].

If instead we assume the more realistic and dynamic channel
model (3) as described in Section III-B, the entire situation is
crucially altered. In (6), the delay parameter T = 7(¢) is now
time-variant and the basis of the underlying signal subspace
is therefore changing over time (potentially, the dimension
changes too, e.g. while gathering data for the matrix Y).
Essentially, the rotational transform to be estimated is time-
variant since the delay parameters no longer stay fixed and
hence, the basic assumptions for ESPRIT are not satisfied. Yet,
by considering only time frames of sufficiently short duration,
the delay fluctuations can be considered negligible. Finally, to
achieve improved estimation accuracy and reduced complexity
we employ Unitary ESPRIT [7], not standard ESPRIT.

A. Spatial Smoothing

To decrease any disturbing impact from the time-varying
delay parameters it seem obvious to use an observation matrix
Y where K is as small as possible. With K small, only
a few observations are collected in the time direction and
this fact complies well with the rigorous latency requirements
of today’s communication systems. If the number of pilot

IThe theoretical covariance matrix in (7) is Toeplitz when the subcarrier
spacings between adjacent pilots are all identical.

symbols M is relatively large and if the set P is designed
appropriately, we can apply a so-called spatial smoothing tech-
nique. By doing so we artificially build up more time-direction
observations by suffering on overall dimension (aperture) in
the frequency direction. By applying a vertical sliding window
of size M, < M to the M x K matrix in (8) we obtain a new
observation array of size

M, x K(M = M, +1).

Notice how the attribute of wide-sense stationarity in the
frequency domain (inherited from the uncorrelated scattering
assumption in the delay domain) is paramount when applying
the smoothing window. Obviously, the number M, should be
chosen according to a trade-off between aperture and estima-
tion accuracy. Choosing M, smaller generates more snapshots
while is (simultaneously) penalized by poorer ability to resolve
closely displaced delay parameters. Notice that with K = 1
the data matrix Y in (8) has unit rank and consequently R
only holds a single nonzero eigenvalue. In this case we should
indeed make sure that M — M, + 1 exceeds the total number
of delays in the channel - otherwise there are not enough
nonzero eigenvalues for ESPRIT to process. Spatial smoothing
techniques are commonly employed to decorrelate coherent
signal sources, see e.g. [13] and the references therein.

V. PERFORMANCE EVALUATION

In this section we evaluate the pilot-assisted channel esti-
mation performance of the LMMSE estimator from [2] using
Unitary ESPRIT as delay estimation tool. For all configu-
rations considered we evaluate uncoded bit-error-rate (BER)
performance of the OFDM system. We investigate the impact
of spatial smoothing as a function of the window size M, and
the two different channel models are treated separately. We
consider a 3GPP LTE alike scenario with system parameters:

N = 2048, N, = 1200, T, = 32.55ns, M = 200.

The duration of the cyclic prefix is 4.69us, corresponding to
144 Ti-samples. A total of 14 OFDM symbols are transmitted
every millisecond and four of these carry M = 200 pilots
each. We assume the pilot symbols to be evenly positioned
along the N,, = 1200 active subchannels with a fixed spacing
of six subcarriers, i.e.

P ={3,9,15,...,597,603,...,1185,1191,1197}.  (9)

The set of pilot symbol positions P in (9) represents a uniform
linear array of sensors with maximum overlap. The carrier
frequency of the system is assumed to be f, = 2GHz and
we consider a receiver traveling at walking speed, i.e. the
maximum Doppler frequency is assumed to be f, = 10Hz.
The digital modulation scheme used is QPSK (gray coded),
both for data symbols and pilot symbols.

A. Performance in Static Reference Channel

As the static reference channel we employ the 3GPP EVA-
profile from [5, Annex B.2] which constantly holds L = 9
multipath echoes with fixed delays and its maximum excess
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Figure 2. BER performance as a function of M, . The two grey-dashed lines
indicate the BER performance at 10dB and 25dB of signal-to-noise ratio
(SNR) using true/known channel frequency responses.

delay is approximately half the duration of the cyclic prefix.
To visualize how the window size M, impacts the overall
system performance, we consider a span from A, = 200
towards M, = 10, corresponding to no smoothing and full-
scale smoothing, respectively. Figure 2 reports the uncoded
BER-performance of the OFDM system as a function of the
window size M,. We always feed the true number of delays
(i.e. L = 9) directly to Unitary ESPRIT, since estimation
of the number of channel echoes is not an objective in this
paper. In Fig. 2, it is interesting to note that a rather wide
range of window sizes are leading to the same degree of
performance (near to that of using known channel coefficients).
Even with K = 1 we realize that near-optimal performance
is achievable. However, additional smoothing is required and
the range of window sizes inheriting splendid performance is
more tight when K is smaller. Notice also the immediate and
steep performance gains obtained when M, decreases from its
maximum value M = 200. This behavior partly reflects the
fact that rank is building up in the covariance matrix estimate,
cf. the discussion at the end of Section IV. Finally, recall that
the inter-delay gaps are persistently fixed in this scenario and
hence, the resolvability issues for Unitary ESPRIT to deal with
are identical/constant for all individual channel realizations.

B. Performance in Dynamic Multipath Channel

With a channel inheriting additional dynamical behavior we
now repeat the same simulation study as just described in the
previous section. Hence, we wish to visualize the impact of the
window size M, in a scenario where the delay resolvability
issue is non-constant across the individual realizations of
the channel. For simulation technical reasons the dynamic
channel holds fifteen echoes on average?, i.e. L(t) is Poisson

2Basically, we require P(L(t) = 0) to be negligible.
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Figure 3. BER performance as a function of M, . The two grey-dashed lines
indicate the BER performance at 10dB and 25dB of SNR using true/known
channel frequency responses.

distributed with mean parameter equal to 15. The maximum
excess delay is the same as for the static reference channel
and also the power delay profile is similar to that of the
static reference channel. Since E[L(t)} = 15, then roughly
anything from five to twenty-five echoes can be observed in the
instantaneous realizations of the channel. In some realizations
the delays will tend to cluster while in others tend to be more
dispersed. As before, we feed the true number of delays to
Unitary ESPRIT such that it always seeks for the instantaneous
amount of channel echoes. Figure 3 illustrates how the window
size M, affects the system performance in this case.

As can be readily seen from Fig. 3, the wide range of
window sizes leading to the same degree of performance is not
present anymore. The curves are still bathtub shaped, however,
notably less steep and edged compared to Fig. 2. Also, none
of the curves appear tight along the known channel bound as
in the first case considered. This is jointly caused by the fact
that more delays have to be estimated on average and since the
instantaneous realizations of the channel sometimes trigger the
delays more clustered. If for system design purposes we were
to select and fix a single value of M,, then based on Fig. 2,
anything in the range from 90 to 150 would seem appropriate.
Based on Fig. 3, however, the optimum value of M, seems to
appear tightly around 120.

C. State-of-the-art Comparison

To get a full picture of the BER performance across a wide
SNR-range we have fixed M, = 120 and conducted another
simulation study. We now compare the LMMSE estimator
from [2] using Unitary ESPRIT against the robustly designed
state-of-the-art channel estimator from [1]. Our comparison is
carried out using the dynamical channel with parameters as in
the previous section. Figure 4 reports the outcome, where two
selected values for K are shown, namely K = 1 and K = 40.
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Figure 4. BER-performance as a function of average SNR.

In the SNR-range from —10dB to 15dB the state-of-the-art
solution is marginally outperformed with KX = 1. However,
when using K = 40 the state-of-the-art solution is more
notably outperformed and in a slightly wider SNR-range.
That is, better or similar performance can be achieved us-
ing the LMMSE estimator from [2] together with Unitary
ESPRIT. Yet, the state-of-the-art solution operates on lower
computational complexity and this fact directly implies a need
for complexity reductions in order to comparably gain the
performance enhancements suggested in Fig. 4.

Notice from Fig. 2, where the static channel model was
assumed, that a similar study as reported in Fig. 4 would
conclude that the state-of-the-art solution could be notably
outperformed in the entire SNR-range considered, even with
K = 1. This follows since the BER performance in Fig. 2
with K = 1 and M, = 120 is almost as good as using
known channel frequency responses, both at 10dB and 25dB
of SNR. The point here is that the channel model selection
can importantly affect the results obtained. In general, validity
of the evaluated algorithm performance is achieved through
adequate and comprehensive modeling.

VI. CONCLUSION

In this paper we have considered channel estimation tech-
niques for pilot-aided OFDM systems, where the estimation is
grounded on a parametric model of the wireless channel. The
multipath delay parameters in the channel model have been es-
timated via the Unitary ESPRIT algorithm and spatial smooth-
ing techniques have been applied to improve the estimation
accuracy. Incorporation of the delay estimates in a LMMSE
estimator allows for improved performance compared to the
robustly designed state-of-the-art solution. That is, the state-
of-the-art channel estimator can be outperformed over a wide
SNR-range. Yet, computational complexity and estimation of
the instantaneous number of channel echoes remain critical
issues for the opposing channel estimator investigated.

In order to provide a rigorous performance assessment of the
opposing channel estimation solution, we have compared state-
of-the-art channel modeling against a refined channel model
of additional dynamical nature. The main additional features
comprise a time-varying number of channel echoes together
with fluctuating delay positions, i.e. non-constant inter-delay
gaps. From simulations we have analyzed the impact of spatial
smoothing techniques when used to improve the multipath
delay estimation accuracy. Our results indicate that both
estimation accuracy and the optimum smoothing parameters
are notably affected with increased dynamical behavior of the
channel model assumed.

To conclude, our work shows that the selection of appropri-
ate channel models is crucial when assessing the performance
of receiver algorithms. Choosing inadequate models may
imply misleading comprehension and could therefore yield
improper algorithm selection for practical applications.

ACKNOWLEDGMENT

The authors would like to thank Infineon Technologies
Denmark A/S and Nokia Denmark for the financial support
which made this work possible. This work has been funded in
part by the European Commission within the ICT-216715 FP7
Network of Excellence in Wireless Communications (NEW-
COM++) and by the project ICT-217033 Wireless Hybrid
Enhanced Mobile Radio Estimators (WHERE).

REFERENCES

[1] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson and P. O. Bor-
jesson, "OFDM Channel Estimation by Singular Value Decomposition",
IEEE Transactions on Communications, Vol. 46, No. 7, 1998.

[2] B. Yang, K. B. Letaief, R. S. Cheng and Z. Cao, "Channel Estimation for
OFDM Transmission in Multipath Fading Channels Based on Parametric
Channel Modeling", IEEE Transactions on Communications, 2001.

[3] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson and P. O.
Borjesson, "On Channel Estimation in OFDM Systems", In Proceedings
of the IEEE Vehicular Technology Conference, Vol. 2, 1995.

[4] Y. Li, L. J. Cimini Jr. and N. R. Sollenberger, "Robust Channel
Estimation for OFDM Systems with Rapid Dispersive Fading Channels",
IEEE Transactions on Communications, Vol. 46, No. 7, 1998.

[5] "Evolved Universal Terrestrial Radio Access; Base Station Radio Trans-
mission and Reception", 3rd Generation Partnership Project (3GPP)
Technical Specification, TS 36.104 V8.4.0, December 2008.

[6] R. Roy and T. Kailath, "ESPRIT - Estimation of Signal Parameters
Via Rotational Invariance Techniques", IEEE Transactions on Acoustics,
Speech and Signal Processing, Vol. 37, No. 7, 1989.

[71 M. Haardt and J. A. Nossek, "Unitary ESPRIT: How to Obtain Increased
Estimation Accuracy with a Reduced Computational Burden", IEEE
Transactions on Signal Processing, Vol. 43, No. 5, 1995.

[8] P. A. Bello, "Characterization of Randomly Time-Variant Linear Chan-
nels", IEEE Transactions on Communications Systems, 1963.

[91 A. Goldsmith, "Wireless Communications", Cambridge University

Press, 2005.

A. Abdi, J. A. Barger and M. Kaveh, "A Parametric Model for the

Distribution of the Angle of Arrival and the Associated Correlation

Function and Power Spectrum at the Mobile Station", IEEE Transactions

on Vehicular Technonlgy, Vol. 51, No. 3, 2002.

R. Heddergott, U. P. Bernhard and B. H. Fleury, "Stochastic Radio

Channel Model For Advanced Indoor Mobile Communication Systems",

Proceedings of the 8th IEEE International Symposium on Personal,

Indoor and Mobile Radio Communications, Vol. 1, 1997.

P. Stoica and R. Moses, "Spectral Analysis of Signals", Pearson Prentice

Hall, 2005.

H. Krim and M. Viberg, "Two Decades of Array Signal Processing Re-

search: The Parametric Approach", IEEE Signal Processing Magazine,

Vol. 13, No. 4, 1996.

[10]

(11]

[12]

(13]



Paper L

Iterative Channel Estimation
with Robust Wiener Filtering in
LTE Downlink

Luis A. Maestro Ruiz de Temino, Carles Navarro Manchén,

Christian Rom, Troels B. Sgrensen and Preben Mogensen

IEEFE 68th Vehicular Technology Conference, VITC Fall-2008. Calgary, September
2008.

173



L. ITERATIVE CHANNEL ESTIMATION WITH ROBUST WIENER
FILTERING IN LTE DOWNLINK

174



lterative Channel Estimation with Robust Wiener
Filtering in LTE Downlink

Luis Angel Maestro Ruiz de Temifip Carles Navarro i Manch&n Christian Ror,
Troels B. Sgrensémand Preben Mogensén
*Department of Electronic Systems, Aalborg University
Niels Jernes Vej 12, 9220 Aalborg, Denmark
Email: {lam, cnm, tbs, prh@es.aau.dk
fInfineon Technologies
Alfred Nobels Vej 25, 9220 Aalborg, Denmark
Email: christian.rom@infineon.com

Abstract—In this paper, an iterative enhancement of the robust algorithms in literature, it requires accurate knowledde o
Wiener filter (RWF) estimator is presented for a turbo-codedor-  second order channel statistics, which is not always féasib
thogonal frequency division multiplexing (OFDM) system urder = o+ 5 mopjle receiver. To overcome this, a robust design of

the umbrella of the 3GPP Long Term Evolution. The proposed . - . .
scheme can operate with uncoded or coded feedback, andthe filter can be used [5], which eases the practical imple-

outperforms the conventional linear RWF in the whole signaito- mentation while still keeping an acceptable performance. T
noise ratio (SNR) range with both approaches. Results shovhat  further improve the accuracy of the estimator, iterativaroiel

most of the gain is obtained in the first iteration of the algoithm,  estimators can be employed. In these schemes, the estimates
and better performance is achieved with the coded feedback are improved by feeding back data decisions to the channel

scheme. A good tradeoff between accuracy and complexity is . . . . . . .
achieved by selecting a low number of turbo coding iteratios estimation block in an iterative fashion, as done for instan

(TCI) in the iterative loop and concentrating most of them atthe in [6], [7]. However, these schemes usually suffer from a
final decoding stage. Following this design, cell spectrafficiency  prohibitive computational complexity.

gains of around 2.7 % and 6.5 % can be obtained with respect  |n this paper, we propose an iterative enhancement of the
to linear RWF for micro- and macro-cell scenarios respectiely. oot Wiener filter (RWF) in a turbo-coded OFDM system.
The complexity of the scheme can be tuned by varying
the number of channel estimation iterations as well as the
Over the recent years, an increasing demand for highermber of iterations inside the turbo decoder. The perfoaea
data rates in wireless communications systems has ariserofinthe estimator is evaluated for LTE parameters, showing
order to support broadband services. To achieve such htplat improved accuracy can be achieved while keeping the
data rates, wideband transmission over the dispersivelenolgomputational complexity at a reasonable level, making it
channel is required. A highly efficient way to cope withsuitable for practical implementation in a mobile receiver
the frequency selectivity of wideband channels is orthogo-The remainder of the paper is organized as follows: in
nal frequency division multiplexing (OFDM). In OFDM, theSection II, the considered OFDM system is described. The
transmission bandwidth is divided into lower-rate narramtd proposed iterative scheme is presented in Section III, &nd i
orthogonal subcarriers. This, together with the employtoén performance is analyzed in Section IV. Finally, Section V
a proper cyclic prefix (CP), allows simple equalization of thconcludes the work.
multipath channel [1]. The ability to easily cope with mpéth
distortion and the high spectral efficiency has motivategl th Il. SYSTEM DESCRIPTION
election of OFDM in upcoming wireless standards, such A simplified block diagram of the considered OFDM sys-
as the 3GPP Long Term Evolution (LTE) [2] or the IEERem, with classical linear reception, is depicted in FigOh
802.16e-2005 standard (WiMAX) [3]. In both standards, tilothe transmitter side, the bit streasris fed to the turbo encoder
assisted channel estimation (PACE) is defined in order tovall block, which follows 3GPP Release 7 specifications [8]. This
coherent detection at the receiver. block contains a rate 1/3 turbo encoder, a rate matching
When PACE is employed, pilot symbols, known by both thmodule that performs repetition or puncturing of the codi¢sl b
transmitter and the receiver, are sent in pre-defined stibcardepending on the selected coding rate, and a bit interleaver
locations. By processing the received signal at theseiposjt The coded bits, denoted by the vectgrare then modulated
the receiver can estimate the whole channel response éoto a QPSK, 16QAM or 64QAM constellation and pilot
each OFDM symbol. Minimum mean-squared-error (MMSEJymbols are inserted in the data stream. These modulated
interpolation of the channel response has been proposed a&yrabols, both data and pilots, are mapped ontaXheentral
solution [4], known as Wiener filtering interpolation. Atthgh subcarriers of the system, and an inverse fast Fourierfolans
it exhibits the best performance among the existing line@FFT) of size N, is performed to obtain the time-domain

I. INTRODUCTION



X, IFFT )
b Turbo ¢ [ QPSK/IQAM | . j | Il I.TERATIVE ROBUSTYVIEN!ER FILTER
Encoder Mapper CP Tnsertion In this section, we present an iterative enhancement of the
RWEF in which the demodulated data symbols are re-used, as if
they were known, in order to improve the estimates’ accuracy
Y [ cpr - ~  The operation of the algorithm is depicted in Fig.2. In thstfir
emoval |y, ¢ b . . .
| & . Soft  Tuwbo | ~ _ stage, only the pilot symbols are used to obtain the estimate
FFT Dem"F“Iftor Decoder of the CTF which can be expressed as:
h ~ _ _ ~
u 0 2 —1
Channel by p = Rhuhp (thhp +8-0y- IP) hrsp )
Estimation wherehrs, = X, 'y, € C"» is the least squares channel

estimate in frequency-domain at pilot positionise R is a
constant that depends on the modulatibne NV»*» is the
identity matrix and Rn,n, € (CNuX_Np,thhp € CNvxNp)
OFDM signal. After the addition of the CP, the signal €€ subsets of the covariance mafix, € C"//+*%ss. The
transmitted over a wireless multipath channel charaadrizZi@tter is defined assuming a uniform power delay profile (PDP)

Fig. 1. Block diagram of the considered system with classicear reception

N1 as [5]:
g(1,t) = a;()3(T — 1) (1) _ 1 — ¢ 2mi gt (k=n) [Ny g
; Runlk, n] = (6)

om :TNy—1 k—n
where «;(t) are wide sense stationary, uncorrelated complex Too Niyge

Gaussian random path gains at time instantwith their The estimate of the CTF in the used subcarrl?e%w? is
respective delays;. IV; denotes the total number of paths. then employed, together with the received signal, in thé sof
At the receiver, the CP is first discarded, and a fast Fouri@ggmodulator block to obtain an estimate of the transmit dode
transform (FFT) is performed to recover the frequency-damapits &. Note that in this block, the pilot symbols have been
signal. Assuming that the channel is static over the dumatieemoved from the information stream. If the maximum number
of one OFDM symbol and that the CP is longer than thef iterations has not been reached, the veéds decoded
maximum excess delay of the channel,_i, the signal using an iterative turbo decoder, withturbo coding iterations
yu € C* can be described as: (TCI), thus obtaining a hard estimate of the uncoded transmi
Vo = X hy + W, ) bits b. Finally, the vectorb is re-encpded and posteriorly re-
modulated to QPSK/QAM symbols in the mapper block. It is
Note that the subindex indicates that only thé&/,, subcarriers important to highlight here that this block is also respblesi
filled with symbols are considered. In (2X., € CY*"« {5 re-multiplex the pilots with the data symbols in order to

is a diagonal matrix containing the transmitted symbols angep the same structure as in the received signal. This point
h, € CM« is a vector with the channel transfer function (CTFs the end of the first stage, which is relatedite: 0 with i

coefficients at each subcarrier: denoting the iteration index. From this point ¢h> 0), all
Neml o ok, demodulated transmit symbols, both data and pilots, aré use
hy[k] = ) eV (3) in the estimation process. Hence, it is appropriate to tewri
i=0 the estimate of the CTF far> 0 as:
where k denotes the subcarrier index afl§ denotes the ~6i) = _ 5 1o a1
sampling period. Finallyw, € CY is an additive white hpwr = Ron, (Ron, +5-0, L) 7 (Xa) " ye (7)
Gaussian noise vector with varianeg. whereX,, € CN«*Nu s a diagonal matrix whose elements

In order to recover the transmitted bits, the channel estimgre the estimated transmit symbols (both data and pilots).
tor block needs to obtain an estimate lof, which is used  This iterative process is repeated until the maximum number
by the soft demodulator to derive the soft estimatesf the of jterations’,,., is achieved. Then, the vectéris decoded
coded bits. To this endy, pilot symbols are transmitted inwith N TCI, obtaining the output bit vectds. It is worth men-
some predefined subcarrier positions. The received signakioning the employment of a different number of TCI inside
these locations can be written as: and outside the estimation loop since it will be demonstrate

v, = X,h, + w, (4) later that it plays an important role on the system perforrean
with X, € C¥»*N» and (w,,h,) € CN» being subsets of IV. PERFORMANCEEVALUATION
the corresponding matrices defined in (2). Finally, the softIn the following, the performance of the iterative estimato
estimates of the coded bits pass through an iterative tunp@posed in Section Il will be evaluated by means of Monte
decoder, which is based on the max-log maximum a-posteri@arlo simulations. To this end, a single-input single-oaitp
algorithm [9], [10], obtaining as output the hard decisiams (SISO) downlink OFDM system based on the 10 MHz LTE
the information bitsb. physical layer parameters [11] will be considered. These
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TABLE | i—LM=2 ]
SIMULATION PARAMETERS ool | ——i=1,M=4
i=1,M=6 g
Sampling frequency 15.36 MHz Y it ‘ ‘ ‘
: ; 5 6 7 8 9 10
Subcarrier spacing 15 KHz SNR [dB]
Niyjpe 1024
N, 600 . .
¢ Fig. 3. Average MSE for RWF with QPSK 1/2
CP length 5.2/4.68 us
Pilot spacing 6 TABLE Il
Pilot overhead 4.76% RELATIVE SPECTRAL EFFICIENCY GAINS(%)
Slot duration 0.5 ms i i
OFDM symbols per siof 7 Conflguratlgn M=2, N=6 | M=1, N=7 | M=3, N=5 | M=4, N=4
Antenna scheme SISO Relative gain 4.4 3.3 1.6 0.5
User speed 3 kmph
MCS settings QPSK: 1/6, 1/3, 1/2, 2/3 ) .
160AM: 1/2, 2/3, 3/4 (i = 0) has also been plotted. First of all, the employment
64QAM: 1/2, 2/3, 3/4, 415 of the iterative RWF allows for a reduced MSE compared
to the linear algorithm. Besides, it can be observed that the
aFjrst OFDM symbol in a slot. estimates’ accuracy is highly improved witlf = 2 TCI since
both _ 7th OFDM symbol in a slot. the MSE is significantly lowered. There is not appreciative

gain by increasingv further than 2. From the results, we can

conclude that it is worth employing a low number of TGA)X
parameters are gathered in Table | as well as the modulatianthe inner decoding while concentrating most of thex) (
and coding set (MCS) formats employed. QPSK modulatign the last one to correct as many errors as possible.
has been considered for pilot symbols, which are transthitte Table Il gathers the relative gains in spectral efficiencthef
in the first and fifth OFDM symbol within a slot with an eventerative RWF ati = 1 with respect to the linear estimator with
frequency-domain spacing of 6. Furthermore, Typical Urbatifferent combinations oM andN. In this case, 16QAM/3
20 taps channel model [12] is employed in the simulations ahds been considered as well as an operating poiSN\ak =
low user speed is considered. Results are presented in teimgB. The results confirm the statement above mentioned
of packet error rate (PER), spectral efficiency (bits/s/Hall since the configuration with/ = 2 and N = 6 provides the
mean squared error (MSE) of the CTF as a function of thfghest gain~ 4.4 %.

signal-to-noise ratio (SNR). Finally, Fig. 4 depicts PER vs SNR curves for thé =
) ) ) 2, N = 6 configuration for two selected MCS, namely QPSK
A. Turbo Coding lterations Evaluation 1/2 and 16QAM 2/3. Results show that in both cases, this

The goal of this subsection is to provide the optimumonfiguration performs slightly better than uncoded feekba
distribution of TCI inside and outside the estimation loodi = 1, M = 0, N = 8), obtaining a gain aroune- 0.3 dB at
Furthermore, in order not to increase the complexity at tHeER = 10~2 with respect to the linear estimatar=¢ 0).
receiver, while compared with the linear RWF, the maximum o
number of TCI is fixed to be\l + N = 8. In the rest of B- Spectral Efficiency Results
the document, only one iteration of the algorithm has beenin this section, we extend the previous results and build
considered since it has been observed that most of the gdie link adaptation (LA) curves for the iterative RWF. Fig. 5
is obtained in this first stage. Fig.3 depicts the average M®Eesents the spectral efficiency results for: uncoded feedb
in dB for the proposed iterative estimator at the end of thewded feedback wittl/ = 2, N = 6 and linear RWF. The
first iteration using QPSKl/2. The number of TCI inside latter has been represented for comparison purposes.tResul
the estimation loopN]) varies from 0 (uncoded feedback) tosshow that coded feedback with/ = 2, N = 6 obtains
8. For the sake of comparison, the MSE of the linear RWiRe highest gains with respect to the linear algorithm. At



10 4
35 = = = Known Channel
N ——RwFizo;M=0;N=8
D ol ——RWFi=1;M=0;N=8
Q 5 3 .
- 2 RWFi=1;M=2;N=6
x 107 > g
—_ S8 > 2.5¢
o [8)
i @
por s
] =
= L
§ 1072k = = =Known Channel I 157
—e—RWF i=0; M=0; N=8 B
—8—RWF i=1; M=0; N=8 . 8 I
RWFi=1; M=2;N=6 N o
. 0.5f
‘\
-3 = L L L L L L
10 L 1 1 L L O
3 4 6 7 8 9 -5 0 5 10 15 20 25 30
SNR [dB] SNR [dB]
@ ! -
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10’ ‘ : ‘ ; ‘ ‘ TABLE Il
4 RELATIVE CELL EFFICIENCY GAINS (%)
Cell environment| M=0, N=8 | M=2, N=6 | M=2, N=8
@ Micro 0.8 2 2.7
s 10} E Macro 2.2 5 6.5
S
i,
° presented in Table Ill, which also includes results for a new
8 .2 = = = Known Channel . configuration with)M/ = 2 and N = 8 TCI. As expected,
a1 RWF1=0; M=0,N=8 S the gains are higher for coded feedback and for macro-cell
—E—RWFi=1;M=0;N=8 9 19 :
RWFi=1: M=2: N=6 environment, since lower values of SNR are more likely to
o happen in this scenario and, as shown before, the iterative
. N estimation is better exploited for medium-low SNR. Notettha
10 5 13 1 1 1 17 1 the M = 2, N = 8 configuration obtains the highest gains
SNR [dB] up to 6.5 % and 2.7 % in macro- and micro-cell scenarios,
() respectively.

Fig. 4. Packet error rate for: (a) QPSK 1/2; and (b) 16QAM 2/3 C Complexity

Regarding the complexity of the iterative approach, it has
to be mentioned that each iteration of the algorithm has a
SNR = —2dB, which corresponds to QPSK 1/6, a relativgomplexity of the same order as the one of linear RWF.
gain of 36 % in spectral efficiency is achieved. At mediumpgy this estimator, the main contribution to the complexity
SNR, e.9.,.SNR =15 dB (16QAM 2/3), the gain is reduced cgmes from the termRu,n, + 3 - 02 - L,)~!. This ma-
to 4.4 % whereas atyNR = 25 dB (64QAM 4/5) it is only trix can be pre-calculated and stored for several scenarios
1.3%. These gains are further reduced in the case of uncodggs only one run-time matrix multiplication is requiretV{
feedback, being almost negligible at low SNR. This is dugomplex multiplications). However, this complexity can be
to the fact that at this SNR range many errors committed gjgnificantly lowered by using a low-rank reduction based
the symbols’ detection are fed back to the channel estimatgp the singular value decomposition (SVD) of the channel
which will use this wrong information as correct symbohytocovariance matri®y,n, [5]. This low-rank estimator
decisions. However, we must highlight that no degradation hny require2pN,, multiplications where is the index of the
performance is observed, i.e., the iterative algorithmv&ps  first singular value approximately equal to zero. Fig. 6 d&pi
better than the linear one even at low SNR and consideripg amplitude of the singular values Ehuhu for different
uncoded feedback. channel profiles. Note that in scenarios with long maximum
Finally, the LA curves are mapped to cell spectral efficienqgyath delay, such as the exponential decaying profile (EDP)
by means of SNR distributions for macro- and micro-cell envivith 7,1 = 17 us, the number of singular values with
ronments [13]. The relative spectral efficiency gains otsdi significant amplitude becomes larger; therefore, the numbe
with the iterative estimator compared to the linear one aoé required multiplications (complexity) increases. &bV



linear RWF. Furthermore, by slightly increasing the number

10 of TCI in the last decoding taV = 8, cell spectral efficiency

160 Indoor A = 0.31s) 1 gains of 2.7 % and 6.5 % are achievable over linear RWF
140 — Typical Urban 1, = 2.14yss) i for micro- and macro-cell environments, respectively.aftin
Pedestrian Br(,_= 3.705) using a low-rank estimator based on fche SVD decomposmon
1201 EDP ¢ = 17p8) il of the channel autocovariance matrix, the complexity can
§ 100 Nt , be significantly reduced, especially for channels with shor
= maximum excess delay.
€ 80p : : 4
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Abstract— Frequency direction Pilot-symbol Aided Channel
Estimation (PACE) for Orthogonal Frequency Division Multi-
plexing (OFDM) is crucial in high-rate wireless systems. The
choice of an estimator for upcoming standards, such as the
Long Term Evolution (LTE) of UTRA, has to take into account
their specificities, namely the presence of virtual subcarriers and
non-sample-spaced channels. To ease this choice, we propose
a unified presentation of estimators encompassing most of the
algorithms that can be found in literature, which only differ
by the assumptions made on the channel. This unification leads
to common Mean Squared Error (MSE) expression, both for
sample-spaced and non sample-spaced channels, and enables
easy, yet comprehensive comparisons between the estimators.

I. INTRODUCTION

In the frame of OFDM for upcoming wireless systems,
much attention has been given to pilot-based channel esti-
mators (PACE) showing that the performance tradeoff of the
algorithms depends on the relationship between the Power
Delay Profile (PDP) properties and the frequency-domain pilot
spacing. Deterministic approaches have, so far, been sepa-
rated into time- and frequency-domain solutions. Deterministic
time-domain solutions are: the Time-Domain Least Squares
(TDLS) [3], [4], the Maximum Likelihood (ML) approach
[5], [6] and the Noise Reduction Algorithm (NRA) [7]. Deter-
ministic frequency-domain methods are Spline, Gaussian or
Lagrange interpolation, and require higher pilot overhead to
achieve an acceptable performance [8]. Bayesian approaches
such as the Minimum Mean Squared Error (MMSE) estimator
in time domain and/or frequency domain have been proposed
in [2], [3], with complexity reduction by Singular Value
Decomposition (SVD) suggested in [9].

The major contribution of this paper is to provide a frame-
work for the choice of a channel estimation algorithm for
the upcoming PACE OFDM-based standards. In this study we
derive a uniform algorithm and Mean Squared Error (MSE)
formulation, covering all studied algorithms and thereby facil-
itating a generic performance comparison. Three main effects
will be studied: the impact of a priori knowledge in a full
bandwidth system with a SS channel, the effect of virtual
subcarriers and the effect of a NSS channel. Performance
simulations are conducted in a LTE context and will show the
importance of knowing the exact tap delays, for the studied
algorithms, at the receiver in order to avoid the leakage effect
due to NSS channel.

II. ANALYTICAL MODEL
A. Multipath Channel Model

The OFDM signal is transmitted over a block fading nor-
malized multipath Rayleigh channel with a Channel Impulse
Response (CIR) given by:

N-1 N-1
g(1) = Z a;0(T — 7;) with Z E{la;*} =1 (1)
=0 i=0

where a; are the different wide sense stationary, uncorrelated
complex Gaussian random path gains with their corresponding
time delays 7;, N is the number of paths and 7 _; is assumed
to be smaller than the cyclic prefix.

B. Baseband Model

Due to spectral constraints, many multicarrier systems make
use of only a subset of N,, < Ny subcarriers, leaving unused
the Ny — N, remaining ones, usually placed at the edges of
the transmission bandwidth. The latter are the so-called virtual
subcarriers, and this scenario will be referred to as Partial
Bandwidth, where Ny is the FFT size. In such a context,
the received signal at the used subcarriers can be described
by:

Yu = D,hy +w, =D, F,g+w, ()

where the (frequency) Channel Transfer Function (CTF) at the
used subcarrier positions h,, € CNu is:

h, =F,g (€)

D, € CN«*Nu js a diagonal matrix with the transmitted sym-
bols at the used subcarriers, w,, € CN« is the AWGN vector
corresponding to the used subcarriers, and F,, € CNu*Nrst g
a subset of the Fourier matrix F with F,[k,n] = F[k,n]

jom <k _
Nirt for%gkg%—l.

—j52
€

C. Received Signal at Pilot Subcarriers

N, pilot symbols are transmitted in positions {p,,, 0 <
m < N, — 1}. The received signal in these pilot subcarriers
can be then written as:

yp = Dphp + wp, =D, Fpg +w, (4)

D, € CNeXNe h, € CNo, F, € CNo*Ntst and w,, € CNe
with Dy[m, m] = Dy [pm, D], hp[m] = hy[pm], Fplm, n] =
F . [pm,n] and wy[m] = Wy [pm].
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III. CHANNEL ESTIMATION ALGORITHMS

The initial Least Squares (LS) estimate at the pilots is :
h, =D, 'y, =h,+ D, 'w, (5)

The pilot symbols are M-PSK modulated with unit power and
the number of pilot symbols used N, is assumed to be larger
than the normalized maximum delay of the channel.In the
following, at sampling rate 75, two scenarios are considered:

Case 1 A SS-CIR scenario, where it is assumed that the
delays 7; are sample spaced on the same grid as the
receiver and all :—1 are integer values.

Case 2 A NSS-CIR scenario, where it is assumed that the
delays 7; are not sample spaced on the same grid as
the receiver and some It are not integer values.

Ts

A. Sample-Spaced Channel

The different studied algorithms can be written in the
following generic formula:

hest = Fua:gest = FumMesthls (6)

which will be specified for each estimator.

1) Time-Domain Least Squares: This estimator [3], [4]
assumes no a priori knowledge of the channel, and estimates
N, = N, samples of g, corresponding to g,[n] = g[n] for
0 <n < Np, — 1. The formulation of TDLS is:

htdls = Fupgtdls = FupF;plhls (7)

where F,, € CNexNy and F., € CNwxNy correspond,
respectively, to F,,im,n] = F,[m,n] and F,[k,n] =
F,[k,n] for 0 < n < N, — 1. For the TDLS estimator,
then, M., = F;pl. Note that F,, is always invertible due to
the Vandermonde structure of the DFT matrix [4]; however,
in a Partial Bandwidth scenario, this matrix can become ill-
conditioned depending on the number of virtual subcarriers.

2) Maximum Likelihood: The ML estimator [5], [6], as-
sumes that the receiver knows the CIR length, i.e, the last
channel path’s delay 7n_1, and only estimates the N, =
Ny = % + 1 first samples of the SS-CIR, corresponding
to gs[n] = g[n] for 0 < n < N, — 1. The ML estimator is
expressed as:

hml = Fusgml = Fus (Figngs)ilF;Ishls (8)

where F,; € CcNoxNs anq F.s € cNuxN; correspond, re-
spectively, to Fp,s[m,n] = F,[m,n] and F [k, n] = F,[k, n]
for 0 < n < N, — 1. In this case, My = (FLLF,,)"'FLL.
Similarly to the case of the TDLS estimator, the matrix F,,,
is always of full column rank (for N, > Nj), implying that
FstpS is of full rank. However, in the presence of virtual
subcarriers this matrix can become ill-conditioned, as for the

TDLS estimator.

3) Noise Reduction Algorithm : As a solution to the ill-
conditioning problems [11] of the previous estimators, a small
value can be added to the diagonal of the matrix to be
inverted [7], thus avoiding numerical instability :

hnra - Fusgnra = Fus (Féstps + A/nraIs)_nglshls (9)

where I, is the identity matrix of size Ny, and ~,,.q iS
a positive scalar value. From (9), it follows that M.y, =
(FELFps 4 Ynrals) "'FLL. In a Full Bandwidth scenario with
evenly spaced pilot subcarriers, it can be shown that the
optimum value is Y, = Nso2.

4) Enhanced Noise Reduction Algorithm : The Enhanced
Noise Reduction Algorithm (ENRA) differs from the NRA by
only estimating the N, = N, samples of g which are not
null, ie., gi[n] = g[r,/7s] for 0 < n < N; — 1. Therefore,
the knowledge of the number of paths and their corresponding
delays is required. The estimator is given by:

henra = Futgenra = Fut (Fngt + ’YenraIt)_nghls (10)

where F,; € CcNoxNe 3png F. € CcNuxN; correspond,
respectively, to F[m,n] = F,[m,7,/7s] and F[k,n] =
Fulk, /7] for 0 < n < N; — 1. I, denotes the identity
matrix of size Np. Hence, for the ENRA M, = (Fngt +
yenmlt)*ng. Analogously to the NRA, the value Yeprq =
N;o?2 is optimum in a Full Bandwidth with equally spaced
pilots scenario.

5) Wiener Filter: The Wiener filter (WF) estimator mini-
mizes the MSE of the estimate by making use of channel and
noise correlation properties, and has been broadly treated in
literature [2], [9], [10], [12]. It is classically formulated as:

hyt = Ru,n, (Ru,n, +021,) Thyg (1)

where Ry, n, = E{h, hf } is the correlation matrix of h,, and
h,, Ry,n, = E{h,h/'} is the autocorrelation matrix of hy,
and I, is the identity matrix of size N,,. In the sample spaced
case, it leads to:

hwf = Futgwf = FUt(F;lI?—ItFPt + O'iRgtlgt)_nghls (12)

For WF, M., = (FgFPt + UiR;tlgt)_ng.

Note that when no information about the channel correlation
is available, a robust design of the filter is proposed, and
consists of assuming a sample-spaced PDP with Ny samples
and equal mean power in all taps. In such conditions F,; =
Fus, Fpr = Fps and Rg,q, = N%Is, showing that this robust
WF implementation is equivalent to the NRA given in (9).

6) Generic Formulation: When observing the expressions
of the studied algorithms, a general formulation that covers all
the cases can be given by:

hest — Fua:gest - Fua: (F]I)_Ig;FpI +7€stcest)_1F£{phl8 (13)

An overview over the specific values taken by each element
of (13) is given in Table 1.
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Table 1: Generalization of the algorithms
Estimator H Fuz ‘ pr ‘ Vest ‘ Cest ‘ Sz ‘ Nest ‘
TDLS Fu, | Fyp 0 0 g | Np
ML Fus | Fps 0 0 gs | Ng
NRA Fus | Fps | Nso?, I gs | Ns
ENRA Fu | Fi Nio2 I, g Ny

WF Fut Fpt 0'121) Rgtlgt gt Nt

7) MSE of the Estimators: The different studied estimators
are all described by (6). It is then possible to evaluate their
respective performance by using one single generic MSE
expression. The MSE is calculated as:

MSE{h..[k]} = E{|h,[k] — hes[k]*} (14)

Using (6), the MSE for the k*" subcarrier becomes:

MSE{hest[k]} = Q[ka k] (15)
where
Q = FuzKI - Mestprb)Rgmgm (I - Fchfst)
+ oMo ML |F (16)

Note that Rg ., = E{g,gf’} depends on the a priori
assumptions made by each estimator. The average MSE of
the estimator can consequently be defined as:

— 1
MSE(h...} = ~tr{Q} (17)

In a Full Bandwidth (N,, = Ny ;) scenario with a constant
pilot spacing A, = N]{}f t, the products between the DFT-
based matrices become pdiagonal matrices, and it is easy
to simplify (16). Under such conditions, the MSE of the
estimate becomes independent on the subcarrier index k. For
the estimators which do not assume any knowledge of the
mean power of the paths (TDLS, ML, NRA and ENRA), the

MSE reduces to the generic expression:
Vost + V. ENPU?U
(Np + Yest)?

MSE{hest7,full} = (18)

B. Non-Sample-Spaced Channel

In an NSS scenario, there is at least one path of the
channel with a delay 7; which is not an integer multiple
of the sampling period 7,. In this situation, the i*" column
of the leakage matrix L ! will have non zero values for
every element, i.e., L[n,i] # 0 Vn. a is the vector of size
Ny containing only the channel taps. As a consequence, the
complex gain of the i*" path will have a contribution on
all the samples of the equivalent SS-CIR. Fig. 1 illustrates
how NSS paths are mapped to the equivalent SS-CIR for
a simple example where Ny = 64 and the channel is

g(7) = 0.86(7—0.575) +0.56(T —3.575) +0.36 (71— 7.575). As

IThe relationship between g and a can be found to be: g =
k_ Ti

Nl FHTa = La where T[k,i] = e "N;jt 7T and L[n,i] =

fre )

1 szn(w%)

—_— T e

Nigt sin(x7 (n=75))
leakage matrix, and represents how the complex gain a; of each channel path
is mapped to the SS-CIR.

—j2

— T ((Nygpp_1)2i+
Jfot(( Frt—1) 7 n),LE(CfotXNiS the

can be seen, most of the power of each path is mapped to the
surrounding samples in the SS-CIR. It is especially interesting
how the last samples have significant amplitude, due to the
leakage of the first channel paths.

—¥ NSS-CIR
0.8 —— Equivalent SS-CIR|q

Amplitude

0 10 20 30 40 50 60
Delay (‘rs)

Fig. 1. Leakage of the NSS-CIR paths to the equivalent SS-CIR

The estimators studied in the sample-spaced case rely on
the fact that most of the samples of g are zero, and thus
they can be canceled in the estimation problem. Obviously,
this assumption does not hold any more in the NSS scenario,
and the estimators must be modified accordingly. Due to the
ill-condition problems of the TDLS and ML estimators, only
NRA, ENRA and WF will be considered in the following.

1) Modified NRA: The NRA algorithm for SS channel is
based on the knowledge of the CIR length, i.e., the max-
imum excess delay of the channel, so that every sample
of g beyond this value is assumed to be zero. For the
NSS scenario, however, the length of the SS-CIR is Ny
due to the leakage effect, which will cause a performance
degradation if N, < Ny Since the actual path delays are
considered unknown, the selection of the samples to estimate
can only be approximated: it is expected that they will be
concentrated at the beginning and at the end of the SS-CIR.
Therefore, a suboptimal solution to the problem, provided that
no knowledge of the actual channel paths is available, is given
by the Modified NRA, (MNRA), which is formulated as:

hm,nra

FTng?nnra (19)
= Fum (Ffmem + ”YmnmIm)il F;{Imhls

where the matrix F,,,, € CN«*Nm is defined as:
Fumlk,n] =
F.[k,n], 0<n<[Nn(l-—a)]-1
Fu[kafot_Nm+n]7 [le_a) STLSNm—l

(20)
and F,,, € CNe*Nu js defined analogously with respect
to F,,. I,,, is the identity matrix of size IV,,. Furthermore,
the parameter 7., is selected to be Vinra = Nma?u,
analogously to the sample-spaced case.

Two parameters shall be adapted depending on the PDP and
o2: N,, representing the number of samples of the equivalent
SS-CIR to estimate, and « representing the proportion of the
estimated samples in the final part of the SS-CIR.

2) ENRA and Wiener Filter: When using the ENRA or
the Wiener Filter estimator, it is assumed that the delays of
the channel are perfectly known, so that there is no need
to estimate the equivalent SS-CIR. Instead, the parameters



hal-00264309, version 1 - 15 Mar 2008

to estimate are the complex gains a; of each of the paths,
represented by the vector a. The estimators can be rewritten
for the NSS scenario as:

henra - Tuaenra - Tu (Tpr + ’Yenra:[t)_lT;};Ihls (21)

hys = Tyawy = To(TY T, + o2 R,)T s (22)

where the matrices T,, € CN«*Nt and T, € CNpx Nt gre
defined with respect to T in the same way as F, and F),
with respect to F. As in the SS case, Yenra = afuNt, and
R, € CVe*Nt i the correlation matrix of the channel gains,
ie, Ry, = diag{E{|ao|?},...,E{|an,-1]?}} as we assume
i.i.d. channel taps. It can be seen that these definitions of the
ENRA and WF estimator are equivalent to (10) and (12) when
the channel is restricted to be sample-spaced.

3) MSE of the Estimators: Unlike the SS scenario, it is
difficult to find a general expression that includes all the
studied algorithms for an NSS channel. For this reason, we
will study the performance of a generic estimator such as:

hest = Mesthls (23)
which includes any linear estimator that can be expressed in
matrix form. With this formulation, the MSE over an NSS
channel is:

MSE{h...} = &
~T, R, T} MH

est

+MestTpRaaTHMH

est

tr{T R, TH?
MestTpRaan (24)
+ UiMestMgt}

and the specific values of M., for each studied algorithm are:

Fu'"'L (F Fpm + PYTVL’LTU/IH/L) 1FZI){m7 MNRA
Mest = (T%T + ’YenraIt) p ) ENRA
( T + 0'2 R, ) , WF
(25)

IV. PERFORMANCE EVALUATION

In the following, the performance of the estimators dis-
cussed in section III will be studied via Monte Carlo sim-
ulations. A single-input single-output OFDM system with
physical layer parameters proposed for the downlink of UTRA
LTE will be used [1]. QPSK modulation is used for both pilot
and data symbols. Evenly spaced pilot symbols with a spacing
of A, = 6 subcarriers are transmitted in every OFDM block.

Two channel power delay profiles, with 20 equispaced taps
and a decay of 1dB per tap leading to an overall loss of 19dB,
are used for this simulation study. The “long SS” profile is
sample spaced of length 3.711 us and the “long NSS” profile
is not sample spaced differing by 0.5 T added to all delays
of the “long SS” profile.

Results for Bit Error Rate (BER) using the studied estima-
tors as a function of the Signal-to-Noise Ratio (SNR) will be
given.

Known Channel| |

BER

-10 -5 0 5 10 15 20 25
Eb/No (dB)

Fig. 2. Performance of the different estimators in a Full Bandwidth OFDM
system (Nu = Nyp; = 2048) and a pilot spacing of 6 for the “long SS”
channel.

-10

—A— N, =400 ||

—e— N, =800

_e_Nu=12007

—— N, =1600

—— N =2048
u

i i i T T
0 0.5 1 15 2 25 3 35 4
Length of uniform CIR (us)

Fig. 3.  MSE of the ML estimator for varying assumed CIR length and
different Ny, Ny ¢y = 2048 and Eb/No = 15 dB

A. Sample-Spaced Scenario

The performance of the different studied algorithms in a
Full Bandwidth system using the “long SS” channel profile is
depicted in Fig. 2. From the BER results shown in IV-A, we
see that the TDLS curve lies 3.5 dB from the known channel
performance at Eb =10 dB, whereas this distance is reduced
to 0.25 dB for the ENRA and WF estimators.

In the case of partial bandwidth the TDLS totally fails, due
to bad conditioning. The ML fails as seen on Fig. 3, leading
to ill-conditionning of the matrix to be inverted, when the size
of the CIR is large for a given N,,.

B. Non-Sample-Spaced Scenario

The effect of having an NSS PDP on the classical algorithms
is studied. The BER results are given in Fig. 4 for the NRA,
MNRA, ENRA and WF using the “long NSS” channel profile.
It is noted that the ENRA and WF have the same performance
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—€— NRA

—}— MNRA

Known Channel
—o— Wiener

—E— ENRA

BER

10 i i i i i i
-10 -5 0 5 10 15 20 25

Eb/No (dB)

Fig. 4. Effect of leakage on the classical algorithms in an LTE scenario with
Nu = 1200, Ny, = 2048 and a pilot spacing of 6 for the “long” NSS
channel.
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Fig. 5. MSE of the ENRA with different delay estimation errors in an LTE
scenario with Nu = 1200, Nys; = 2048 and a pilot spacing of 6 for the
“long” NSS channel.

as when employing the “long SS” PDP. The NRA, on the other
hand, suffers from significant degradation for % >10 dB in
both MSE and BER. From these results it can be observed
that the knowledge of the tap delays of the PDP is of crucial
importance to avoid the leakage effect.

In Fig. 5 the robustness of the ENRA against delay es-
timation errors is studied. A random zero-mean Gaussian
error with variance o2 has been added to the delay’s values
to simulate imperfect delay estimates, and the MSE of the
estimates has been represented. The results show that even
with small errors the ENRA suffers from severe degradation
as the SNR increases. Very high accuracy in the tap delay
estimates is therefore needed in order to avoid leakage.

V. CONCLUSION

In this paper, we have propose a unification of linear PACE
OFDM algorithms. Analysis and simulation results are first

given for a sample-spaced channel and Full Bandwidth. The
effects of introducing virtual subcarriers as well as a non-
sample-spaced channel are studied.

When Partial Bandwidth is used, the TDLS and ML algo-
rithms suffer from severe ill-conditioned matrices an cannot
be used as such if the number of virtual subcarriers is too
large.

When the channel is non-sample-spaced, exact knowledge
of the tap delays is necessary to avoid leakage, with the studied
algorithms, but even small errors of tap delay estimates lead to
significant performance degradation. This means that without
an accurate tap delay estimator the target peak data rates at
high SNR in LTE might be compromised.

A modified DFT based robust Wiener seems to be a good
candidate for low and middle range SNR (up to 15 dB).
However at higher SNR this solution is not recommended
and other solutions should be used. These could be based on
accurate tap delay estimation or iterative data aided estimation.
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ABSTRACT

This paper studies common linear frequency direction pilot-
symbol aided channel estimation algorithms for orthogonal fre-
quency division multiplexing in a UTRA long term evolution
context. Three deterministic algorithms are analyzed: the max-
imum likelihood (ML) approach, the noise reduction algorithm
(NRA) and the robust Wiener (RW) filter. A closed form mean
squared error is provided for these three algorithms. Analyti-
cal and simulation results show that, in the presence of virtual
subcarriers, the ML can suffer large performance degradation
due to ill-conditioned matrix issues. A solution to this problem
is to use the Tikhonov regularization method giving the NRA.
The equivalence between the NRA and the RW is proved an-
alytically. A practical implementation of the NRA and RW is
proposed based on partial-input partial-output FFT, leading to
6 to 8 times lower complexity than the reference implementa-
tion.

1. INTRODUCTION

Over the last years Orthogonal Frequency Division Multiplex-
ing (OFDM) has been adopted in high data-rates communica-
tion systems. By using a Cyclic Prefix (CP) the subcarrier or-
thogonality is preserved over the dispersive multipath channel.
OFDM is used in upcoming standards such as IEEE 802.16 and
UTRA Long Term Evolution (LTE) [1]. Both standards use co-
herent detection through Pilot-symbol Aided Channel Estima-
tion (PACE) with virtual subcarriers.

Peter Hoeher showed in [2] that the two dimensional inter-
polation problem of PACE could be solved by using 2 cascaded
orthogonal 1-D filters, giving virtually no performance loss
compared to the 2-D filter. The latency requirements of stan-
dards such as LTE or IEEE 802.16e limit the pilot span avail-
able for channel estimation in time direction to a low amount
of samples. This increases the importance of the frequency di-
rection interpolation which is the focus of this paper.

Much attention has been given to this topic showing that
the performance tradeoff of the algorithms depends on the
relationship between the Power Delay Profile (PDP) length
and the frequency domain pilot spacing. Deterministic ap-
proaches can be separated into time and frequency domain so-
lutions. Deterministic time domain solutions are: the Time Do-
main Least Squares (TDLS) [3] and [4], The Maximum Like-
lihood approach (ML) [5], [6] and The Noise Reduction Al-
gorithm (NRA) [7]. Deterministic frequency domain meth-
ods are Spline, Gaussian or Lagrange interpolation, and re-
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quire higher pilot overhead to achieve an acceptable perfor-
mance [8]. Bayesian approaches such as the Minimum Mean
Squared Error (MMSE) in time domain or frequency domain
have been proposed in [2], [3], with complexity reduction by
Singular Value Decomposition (SVD) suggested in [9]. How-
ever, Bayesian approaches cannot directly be used as they need
large channel dependent matrix inversions and require accurate
knowledge of channel correlation properties. To reduce their
complexity, different solutions have been proposed by, for ex-
ample assuming a uniform PDP [9], [10].

We propose to study three algorithms: ML, NRA and RW.
When introducing virtual subcarriers in the OFDM symbol, un-
equal MSE distribution at different carriers appears, in partic-
ular, MSE increases at band edges [6]. This MSE increase at
the band-edges is analyzed, and solutions to alleviate the prob-
lem are suggested. The ML approach shows not to be suitable
when introducing too many virtual subcarriers, or having chan-
nel profiles with large delays. A more convenient approach is
to use the NRA by introducing a diagonal matrix in the calcu-
lation of the pseudo-inverse of the ML, known as the Tikhonov
regularization. The authors prove that the NRA is equivalent
to the Robust Wiener (RW) approach when assuming identi-
cal channel statistics knowledge at the receiver and a sample
spaced PDP. Performance is then evaluated for LTE parame-
ters, and implementation strategies are analyzed focusing on
the computational complexity.

The remainder of this paper is structured as follows: the
OFDM baseband received signal model is given in section II.
An algorithm study is presented in section III, followed by a
performance analysis in section IV. The complexity study and
implementation strategy are then given in section V. Finally
section VI concludes the work.

II. OFDM BASEBAND RECEIVED SIGNAL

A. Notations

The notations used throughout this paper are:

v : forall
€ :  membership
(" : hermitian transpose of a matrix or vector

| :  absolute value

trace operator

expectation operator

the n** row and k" column element of
a matrix X
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Bold upper-case letters are used for matrices and bold lower-
case letters are used for vectors.

B. Received Signal

In the following an analytical model is derived with the purpose
of studying some specific frequency direction channel estima-
tion algorithms. In order to simplify the mathematical expres-
sions of this model, we will assume that the maximum excess
delay of the channel is shorter than the CP and accordingly, as-
sume no Inter-Symbol Interference (ISI) between consecutive
OFDM symbols. The channel variations are considered negli-
gible over the duration of 1 OFDM symbol giving Inter-Carrier
Interference (ICI) free signal reception. Furthermore, we will
consider that the receiver is ideally synchronized with the ar-
rival of the first physical path of the channel. Depending on
the initial assumptions different matrix vector models can be
derived. Starting with a very general case with all subcarriers
used for data transmission, the received signal before channel
equalization is:

y=XFg+w=Xh+w (1)
X: data symbol diagonal (N ¢:-Ny r¢)
F: DFT (Ny-Nyse)
g: Channel Impulse Response (CIR) (N ;1)
h: Channel Transfer Function (CTF) (N ¢;-1)
w: Additive White Gaussian Noise (AWGN) (N#s:-1)

—j2rnk
with V{n, k} € [0,N; s — 1)2, F[n, k] = e Nore .

When virtual subcarriers are introduced, data and pilot symbols
are only partially using the bandwidth. It is then possible to
reorder the rows of y to have a clear notation that separates
virtual subcarriers from the used subcarriers. The perceived
CIR is assumed to have a finite length and to be sample spaced.
The received vector may be written as:

= o [e w )l
X, : data and pilot symbol diagonal matrix (N,,-N,)
F,s: subDFT of used subcarriers and CIR (N,,-Ny)
F,,,: subDFT of used subcarriers and noise (N,,-(Ny s — Ny))
F,s: subDFT of virtual subcarriers and CIR (N s, — N,)-Nj)
F,,: subDFT of virtual subcarriers and noise ((Nyz; — N,) -
(Ngrt — Ny))
gs: CIR vector of length of the maximum excess delay (Ng-1)
Ny g2 FFT size
N,,: number of used subcarriers for data and pilots
N,,: number of pilot subcarries in one OFDM symbol
N;: number of CIR samples with energy
Only the subset of pilot-carrying subcarriers are available for
channel estimation leading to:

F'MS

P ] w2

3

where X, is a diagonal subset matrix of X, and F; is a sub-
set matrix of F,; where only the elements affecting the pilot
subcarriers are considered.

Vp = XpFpsgs + wp = Xphy, +w,

III. ALGORITHM STUDY

Different classical algorithms are presented in this section.
However they are studied in the case of OFDM containing
virtual subcarriers which will affect their notation and perfor-
mance. They are all based on an initial least-squares estimate at
the pilot positions. It is noted that the pilots are all transmitted
with a M-PSK constellation leading to a constant pilot power.
Without loss of generality we assume that this power is set to
unity. The initial least-squares estimate at the pilots is given
by:

h;, = X, y,. 4)

A.  Maximum Likelihood

Assuming that the maximum CIR length is known at the re-
ceiver, the ML estimate of the channel response is expressed
as [5]:

hml = Fusgm,l = Fus (F;Ings)ilF;Ighls (5)
However, when virtual subcarriers are present, the matrix:
T =F/.F,, ()

can become ill-conditioned, leading to high MSE, as it will be
shown in Section I'V.

B. Noise Reduction Algorithm

A simple solution to alleviate the ill-conditioning problem is
to add a small value ~ to the diagonal of the matrix T, also
known as the Tikhonov regularization method. This is sug-
gested in [7], giving the NRA algorithm:

hnra - Fusgnra = Fus (lengps + 71)71F513hls~ (7)

Assuming that F,;, = UAVH by SVD, with \; being the '
singular value of F,, (7) can be rewritten as:

hnra = FusVAnraUths (8)

where A4ty 5] = % for (i = j), and A,q[i, 5] = 0 for

X2t
N
C. Wiener and Robust Wiener

In his work, Hoeher showed that the optimum linear estimator,
in the MSE sense, in PACE OFDM is the Wiener filter, which
is given by [2]:

h, = Rin, (Ru,n, + 05In,) "hy ©)

where Rpp, is the cross-correlation matrix of h and h,,
Ry, n, is the autocorrelation matrix of h,, and o2, is the power
of the gaussian noise. Generally, the frequency correlation
properties are not known at the receiver, and furthermore they
can vary over time. For this reason, a robust design based
on the assumption of a uniform PDP with sample-spaced
equally-powered taps and the same length of the CIR is
proposed. The resulting constant correlation matrices can be
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then expressed as:

Rin, = E{hhf/} = P,y Fl} (10)
and
Rp,n, = E{h,h/} = N%FPSINSF;Q. (1)
Using this formulation, (9) can be rewritten as:
hyy =Fu FL(F,FL + 021y ) 'hy,.  (12)

We refer to this estimator as RW.

D. Equivalence Between NRA and RW

Comparing (7) and (12), a strong similarity can be observed.
By using the SVD of the matrix F,5, the RW estimator can be
expressed as:

hrw = FusVAerths

A
)\erNs o2

13)

where A, [, j] = fori = j, and A, [i, 5] = 0 for

1% 7.

From inspection of (8) and (13), it is straightforward to see
that h,,,., = h,.,, when v = N 02 . Moreover, it can be shown
that this value minimizes the MSE of the estimator when no
virtual subcarriers are present and regularly-spaced pilots are
used, and it will be assumed for the NRA algorithm in the re-
minder of this paper. Therefore the full equivalence between
the time-domain NRA algorithm and the frequency domain
RW algorithm has been proven, assuming the same a priori
knowledge available at the receiver.

E. MSE of the Estimators

The different proposed practical solutions are all covered
by (7). It is therefore possible to study their respective
performance by using one single closed form MSE expression.
The MSE is calculated as:

MSE{hya[n]} = E{[h[n] — hnra[n][*}. (14)
Using (7), the MSE for the nt" subcarrier becomes:
MSE{h;,4[n]} = M[n,n] (15)
where
M =F,[(I-A)Rg e (I-A)+o2A2T HFE.  (16)

In the previous equation, A = (T + 1)~ 1T, where T is de-
fined in (6), and Rg__ is the autocorrelation matrix of gs. The
average MSE of the estimator can consequently be defined as:

MSE{h,;q[n]} = a7

1
tr{M}.
N, My

Note that the MSE of the ML estimator is obtained by setting
v = 0 and the MSE of the RW estimator is obtained by setting
v = Nyo2.

IV. PERFORMANCE ANALYSIS

In the following, the performance of the estimators discussed
in section III will be studied. A single input single output
OFDM system with the physical layer parameters proposed for
the downlink of UTRA LTE will be used [1]. The system is
based on a constant subcarrier spacing of 15 KHz, with differ-
ent bandwidth configurations ranging from 1,25 to 20 MHz, as
shown in Table 1. The CP is assumed to be always longer than
the maximum delay of the channel, and QPSK modulation is
used for both pilot and data symbols. Evenly spaced pilot sym-
bols with a spacing of 6 subcarriers are transmitted in every
OFDM block.

Table 1: OFDM parameters for LTE

Signal Bandwidth | Nfft | Nu | Sampling frequency
1.25 MHz 128 75 1.92 MHz
2.5 MHz 256 | 150 3.84 MHz
5 MHz 512 | 300 7.68 MHz
10 MHz 1024 | 600 15.36 MHz
20 MHz 2048 | 1200 30.72 MHz

In Fig. 1, the MSE of the ML estimator depending on the max-
imum delay of the channel is analyzed using (17), where a
sample-spaced uniform PDP and an OFDM system with an
FFT size of 2048 and different number of used subcarriers have
been used. The Signal-to-Noise Ratio (SNR) is set to 15 dB and
the sampling rate is the one corresponding to the LTE 20 MHz
configuration. When all the subcarriers are used, the error of
the estimate grows linearly with the channel length. When vir-
tual subcarriers are used, however, the matrix T to be inverted
becomes ill-conditioned after a certain channel length, yield-
ing a large degradation of the MSE that makes the estimator
unusable. The maximum channel length before the estimator
becomes unstable decreases as the number of used subcarriers
is reduced.

Fig. 2 depicts the same analysis for the different LTE con-
figurations shown in Table 1, which all have the same ratio be-
tween used and virtual subcarriers. The results show that the
larger the bandwidth, the smaller is the maximum length of the
channel that can be estimated without suffering from the ill-
conditioning effect. In the extreme case of 20 MHz bandwidth,
only channels with a maximum delay lower than 800 ns can be
estimated accurately, showing that ML is not a good option for
systems with large FFT sizes and virtual subcarriers.

By adding a diagonal of small values to the matrix T, the
ill-conditioning of the matrix to be inverted is avoided . This
is illustrated in Fig. 3, where the MSE corresponding to each
subcarrier has been represented for the ML and the NRA esti-
mators in a LTE 2,5 MHz configuration. Only half of the band-
width has been represented, where subcarrier O indicates the
central subcarrier. The channel profile used is a sample spaced
modified ITU Pedestrian B profile, which has a maximum ex-
cess delay of 3.7 us, and the SNR has been set to 15 dB. As can
be seen, ML suffers severe degradation in the edge of the band-
width, due to the use of virtual subcarriers. NRA significantly
alleviates this problem and also achieves a better performance
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MSE (dB)

1.5 2 25
Length of uniform CIR (us)

Figure 1: MSE for varying CIR length, different used band-
widths sizes, ML algorithm, Ny ¢, = 2048 at Eb/No = 15dB

—— 1,25 MHz ||
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—o— 10 MHz ||
— 20 MHz
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Length of uniform CIR (us)

Figure 2: MSE for different bandwidths of the LTE standard
and a varying uniform channel profile length, at Eb/No = 15dB.

The ratio AJ,V v ig fixed to 0.586
Fre

over all the bandwidth, as it makes use of the noise variance
knowledge.

Finally, the Symbol Error Rate (SER) performance of ML
and NRA is shown in Fig. 4, where again a sample spaced mod-
ified Pedestrian B channel profile has been used. The curves
for 20 and 2.5 MHz configurations are depicted. The results
for ML show an acceptable performance for the 2.5 MHz set-
tings, with a degradation of around 3.5 dB at 1% SER with
respect to perfect channel estimation. For 20 MHz, however,
ML is unable to estimate the channel, as the estimator becomes
numerically unstable due to the matrix inversion. NRA, on the
other hand, performs better than ML in both scenarios, with a
distance of 1.5 dB to the known channel curve. Furthermore,

10 T
ML
= = =NRA
5 ]
ol ]
@ -5 1
=2
w
(]
= 10} 4
-151 1
—20} ]
_o5 i i i i i i i
10 20 30 40 50 60 70 80

Subcarrier Index

Figure 3: MSE per subcarrier for 2.5Mhz LTE settings, PedB
channel, at Eb/No = 15dB

.

SER

....... Perfect Channel Knowledge
—8— ML 2.5 MHz
—A— NRA 2.5 MHz

- =0= ML 20 MHz
- =A=" NRA 20 MHz
1073 T T T T i -
-10 -5 0 5 10 15 20 25 30
E,/N, (dB)

Figure 4: SER as a function of SNR for Pedestrian B channel
profile, for 2,5 MHz and 20 MHz

it exhibits total robustness to the FFT size and number of sub-
carriers used, turning out to be a more suitable estimator for
OFDM systems in both large and small bandwidth scenarios.

V. COMPLEXITY AND IMPLEMENTATION STRATEGY

The optimal linear Wiener filter is discarded as it requires com-
putation of a matrix inverse that depends on the channel statis-
tics and is therefore computationally prohibitive for large band-
widths. Due to the high MSE’s experienced by the ML algo-
rithm, only different approaches of computing the RW or NRA
algorithm are studied.

Three main implementation proposals are considered and dis-
cussed for different parameter settings. They are given as fol-
lows:
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I) A precalculated RW filter, where the filter coefficients are
calculated in advance and pre-stored in memory.

II) SVD of RW where the coefficients are also pre-stored in
memory.

IIT) FFT based NRA, where F,, is computed by a partial in-
put partial output FFT, as suggested in [11]. It is noted
that a general analytical expression of the complexity is
nontrivial in this case. For this reason the complexity of a

full FFT is considered as an upper bound.

Table 2: Complexity of the Estimator
Proposal | Complexity
I O(NyN,)
I O(NsN. + N, + NZ)
111 O(fotlogg(fot) + Nsz)

The orders of complexity of the different proposals are given
in Table II. Practical Complex Multiply Accumulate (CMAC)
operations per estimated CTF are used as complexity unit. Pa-
rameters are chosen according to the LTE settings given in Ta-
ble I for the 2,5MHz and the 20MHz bandwidths. The com-
plexity results are then shown in Fig. 5. The main complexity
factor is the FFT size allowing an increased data rate. How-
ever, for the chosen solutions, the length of the CIR is criti-
cal in determining the solution with lowest complexity. When
considering a small FFT size of 256, the SVD of RW has the
lowest complexity if the CIR length is below 3,5 us. On the
other hand, for an FFT size of 2048, the FFT based solution
has the lowest complexity for CIR lengths above 1,7 us. As
the interest of complexity reduction lies in the worst case sce-
narios, the most promising algorithm implementation would be
the one based on partial-input, partial-output FFT, where III is
an upper complexity bound. As the input is of size N,, and the
output of size N the complexity of Il could be further reduced
by an approximate factor of 1,5 to 2. From Fig. 5 solution III
is up to 4 times less complex than solution I and II, and with an
optimized implementation [11] this could be further enhanced
leading to a factor 6 to 8 times lower complexity.

VI. CONCLUSION

Frequency direction PACE is studied for OFDM in an LTE con-
text. In this paper we show that when virtual subcarriers are
introduced, the ML time domain algorithm suffers from high
MSE due to ill-conditioned matrices. The FFT size and the
number of used subcarriers will determine the length of sup-
ported CIR for an ML with acceptable performance. A solu-
tion to this problem is to introduce a small value to the diag-
onal of the matrix to be inverted giving the NRA. We prove
that there is a full equivalence between the time domain NRA
and the frequency domain RW algorithm. This proof helps us
to define a low complex FFT based implementation of the RW
solution. Complexity evaluations show that this solution has
significantly lower complexity than the classical implementa-
tions by SVD in the case of large FFT sizes.

Nb of CMAC per OFDM symbol with pilots

—— |:RW
11:Rsvd
—©— Il:NRA

0 1 2 3 4 5 6
Length of CIR in us

Figure 5: Complexity in CMAC of different implementations
for LTE settings in both 2,5 MHz and 20 MHz
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ABSTRACT

In this paper, the effects of phase noise on the spectral effi-
ciency of the next generation of OFDM based mobile systems
with channel estimation is investigated. The simulation con-
text and parameter settings are taken from the 3GPP Evolved
UTRA (E-UTRA) study item, focusing on an OFDM down-
link single antenna system in 20 MHz bandwidth. Phase noise
is modeled as a Wiener-Lévy process and several phase noise
powers are evaluated. The OFDM coherent detection method
is based on Pilot Assisted Channel Estimation (PACE) with
Wiener based frequency domain interpolation and second or-
der gaussian interpolation for the time domain interpolation.
The cell level spectral efficiency is also evaluated for micro
and macro-cell scenarios. The simulation results indicate that
the phase noise effect in E-UTRA downlink can be reduced by
using high performance local oscillator or by placing pilots in
every OFDM symbols.

I. INTRODUCTION

The work presented in this paper investigates the phase noise
effects in a downlink E-UTRA system including channel es-
timation. 3GPP has initiated a study item looking into long
term evolution of the existing 3G radio technology known as
the Evolved UTRA (E-UTRA) [1]. OFDM has been proposed
as the modulation scheme for downlink and will use coherent
detection based on Pilot Assisted Channel Estimation (PACE).

One of the OFDM system drawbacks is its sensitivity to
phase noise [3], [4], [5]. Phase noise is a characteristic of
the local oscillator in the transmitter and receiver and it can be
modeled as a Wiener-Lévy process [3]. This model is quite ac-
curate and appropriate for quantitative studies of system perfor-
mance degradation due to phase noise [3]. The phase noise pa-
rameters suitable for beyond 3G system are given in [11], [12].

Channel estimation in OFDM is also sensitive to phase noise
[3]. Large attention has been given to research on channel
estimation algorithms in such a context. The phase noise ef-
fects in the OFDM system with channel estimation for Wireless
LAN 802.11a have previously been investigated in [9]. The
Optimum linear solution, in a Minimum Mean Square Error
(MMSE) sense is achieved with Wiener filtering [2] which, re-
quires knowledge of channel statistics (such as the Power De-
lay Profile (PDP)) and noise variance. This algorithm will be
chosen throughout this paper due to its high performance.

In this paper , an analytical study is conducted and the per-
formance loss is divided into pilot overhead, channel estimate

1-4244-0330-8/06/$20.00©2006 IEEE

inaccuracy, and phase noise. The phase noise effect on spectral
efficiency for an E-UTRA downlink with channel estimation
is evaluated. Moreover, the link level throughput is mapped
to corresponding cell-level spectral efficiency using available
Geometry' (G-factor) distributions for macro and micro-cell
scenarios.

This paper is organized as follows: Section II gives a brief
description of the E-UTRA simulator and the used parameter
set, the analytical model and performance loss analysis is pre-
sented in section III. The phase noise model and channel esti-
mation algorithm are explained in section IV and V. The sim-
ulation results are shown in section VI and, finally, in section
VII conclusions are drawn.

II. SIMULATOR AND SYSTEM PARAMETERS

Throughout this paper results will be given through Monte
Carlo simulations from a developed Link Simulator, using the
proposed parameter values of Table 1. The study will be done
using a SISO, downlink OFDM based transmission. The down-
link bandwidth occupied in this system is scalable into 1.25
MHz, 2.5 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. How-
ever in this study, we will only deal with a fixed bandwidth
of 20 MHz. Different modulation and coding sets (MCS) are
chosen according to the spectral efficiency they can achieve.
All pilot and data symbols will have equal power in this study.
Turbo decoding and interleaving following the UTRA specifi-
cations release 6 are used throughout the simulations.

III. ANALYTICAL MODEL

A.  Assumptions

In order to simplify the mathematical expressions of this
model, we will assume that the maximum excess delay of the
channel is shorter than the cyclic prefix and, therefore, there is
no inter-symbol interference (ISI) between consecutive OFDM
symbols. Furthermore, we will consider that the receiver is ide-
ally synchronized with the arrival of the first physical path of
the channel.

B. Transmitted Signal

The m!" transmitted symbol in an OFDM system can be ex-
pressed as a vector of length Ny, samples, defined by:

IThe G-factor is the ratio of total received wideband BS power and other-
cell/noise interference at the MS. It is averaged over short-term fading but not
shadowing.
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Table 1: E-UTRA parameters for simulation.

Parameter Value
Carrier Frequency 2 GHz
Transmission BW 20 MHz
Sub-frame duration 0.5 ms
Sub-carrier spacing 15 kHz
OFDM symbols

per sub-frame 7

CP length 4.7 us
FFT size 2048
Useful subcarriers 1200

MCS settings QPSK: 1/6, 1/3, 1/2, 2/3
16QAM: 1/2, 2/3, 3/4
64QAM: 1/2, 2/3, 3/4, 4/5

Channel model Typical Urban 20 paths [10]

Sm = ¥m.dm (H

where dy, is a vector with N, QAM or PSK modulated sym-
bols, and ¥, (2) is a matrix which performs both an Inverse
Discrete Fourier Transform (IDFT) operation and ads a redun-
dant Cyclic Prefix (CP) of N, samples. The elements of ¥,
are defined by:

L ()
VNg

where k is the sub-carriers index and n is the time sample. Fur-
thermore, Ny, = N, + Nj is the total length in samples of the
OFDM symbol and Ny is the number of subcarriers (size of the
IDFT).

Ui [n] = 3

C. Received Signal

After the convolution with the channel, the signal that reaches
the receiver can be written as:

“

H,, is the Nyy x Ny, channel matrix for the m** OFDM
symbol, defined in (5).

In (5) am,p [n] represents the p'" complex tap coefficient of
the channel impulse response in the n'" time sample of the
m!" OFDM symbol. Py, is a Nys x N, diagonal matrix that
models the effects of phase noise at the receiver. The elements
of its diagonal are:

I'm = PmHmSm + Wm

@1, [n] (6)

When ®,,, [n] is small compared to 1, the elements in the
diagonal can be approximated by /%" ~ 1 4 j®,, [n] , and
therefore:

Pmn,n]=e

Pn=1+j®Pm @)

where ®,,, is a diagonal matrix with the values of ®,, [n]
in its diagonal, and I is the identity matrix. Finally, wy, is an
Ny long vector with additive white Gaussian noise (AWGN).
Using (7), we can re-write the received signal as:

rm=(I4+j®m) -Hm-Sm +wWm 8

D. Signal After Receiver DFT

Once the signal reaches the receiver, the CP is removed, and a
Discrete Fourier Transform (DFT) is performed. Both opera-
tions are modeled by the matrix WIl | which is a matrix equal
to W1 but with zeros in the first N, columns. The received
signal after the DFT can be written as:

Zm = Hry = (COm 4 Conm)dm + W (9)

where, CO,, =
vl i H,,) V.

@EIHm\IIm, and Cpnm =

E. Channel Equalization

After the DFT at the receiver, a 1 tap equalizer is applied. The
elements of z,, are divided by an estimate of the channel trans-
fer function in the corresponding subcarrier to obtain an esti-
mate of the transmitted symbol:

(10)

hy, is an estimate of the diagonal of COy, + CpN,m, obtained
by the use of PACE and a given channel estimation algorithm.

F. Degradation Mechanisms

From the analysis above, it comes out that there are three main
mechanisms that will cause a loss in the system performance:

(1)

Total loss = Larco + Lpiror + Lpn

L 41,0 represents the loss due to the inaccuracy of the channel
transfer function estimate, l~1m , and it depends on the algorithm
used. Lprror is the loss due to the use of pilot symbols to es-
timate the channel, which will decrease the amount of useful
information, and is dependent on the pilot density. Lpy is the
loss due to the phase noise effect and the error is caused by a
common phase rotation and inter-carrier interference (ICI) [3].
It should be noted that the three degradation mechanisms are
coupled and therefore, there are not independent of one an-
other.

IV. PHASE NOISE MODEL

Phase noise in the local oscillator can be seen as a multiplica-
tion of the transmitted signal with a noisy carrier e/®®*). The
random phase of this carrier is modeled by a Wiener-Lévy pro-
cess as follows [5]:

t
d(t) = 27r/ w(r)dr (12)
0
In (12), p(t) is a zero-mean white Gaussian process with
power spectral density Ny . The single-sideband (SSB) phase
noise power is a Lorentzian spectrum [7]:

2 1

= . 2
T (58s)

L(f)

13)
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Wm0 (0] Wi, -1 (0]
lI’m = \Ilrn,k [n] (2)
\I/m,O [Ngs - 1] \I/m,NS—l [Ngs - 1]
am,0 [0] 0 0
am,0 [0} Am,0 [1] 0
: am,1 [1]
Hm = am,Ng—l [O] am,0 [Tl} 0 (5)
0 am,Ng—l [1]
: g i 0
0 0 aWNg_l [Né] am71 [Ngs — 2} am70 [Ngs — 1]

n (13), Afsgp = 27Ny is the two-sided 3 dB bandwidth of
phase noise. The power spectrum in (13) is an approximation
to practical oscillator spectra, which enables analytical treat-
ment.

In discrete time, phase noise can be modeled as a Markov
process [3]. The random phase value of the disturbed subcarrier
at the ' sample of the m** OFDM symbol can be written as:

Py, [n] = @1 [Ngs — 1]+Zu[mNgs+i] (14)

=0

where w [i] is a white Gaussian random process with zero mean
and variance o, = 27A f34B Nl, T denotes the OFDM symbol
period.

V. CHANNEL ESTIMATION ALGORITHM

The channel estimation problem is solved by using Wiener
based frequency domain interpolation and second order gaus-
sian interpolation for the time domain interpolation. Pilot sym-
bols are used to estimate the channel transfer function (CTF).
For the simplicity of derivation of the channel estimation al-
gorithm, the channel impulse response is considered constant
over the duration of an OFDM symbol, and phase noise will
not be included in the derivation of the estimation algorithm.

First, an estimate of the CTF at the pilot subcarriers is ob-
tained. Then, the full CTF is calculated using the following
interpolation method.

1) Estimate at Pilot Position: Let p;,i = 0,1,..., N, — 1
be a set of indexes containing the subcarrier indexes that carry
pilot symbols, where [V, is the number of pilot symbols in an
OFDM symbol. A Least-Squares (LS) estimate of the channel
transfer function at these pilot positions can be calculated as:

5)

z [pi)and d [ps] are respectively the received symbol after the
FFT and the transmitted symbol in the i*" pilot subcarrier.

2) Wiener filtering Interpolation: Wiener filtering is the op-
timum interpolation method in terms of mean square error. Us-
ing the statistics of the channel and noise, it performs a MMSE
interpolation of the estimates at pilot sub-carriers, optimally re-
ducing the effects of noise and channel distortion. In the pres-
ence of additive white Gaussian noise,The full CTF estimate is
obtained by:

ﬁ = thp. (thhp + O'EVINP)_I i’vlp (16)

where thp is the cross correlation matrix of the true channel
transfer function and the true channel transfer function h at
pilot subcarriers hy, Rp,n, is the autocorrelation matrix of
the true channel transfer function at pilot subcarriers, o2, is the
noise power and Iy, is the IV, x IV, identity matrix. Note
that the channel transfer function coefficients are assumed to
be uncorrelated to the noise process.

3) Second Order Interpolation: The frequency response of
the channel changes through time. Thus, the channel estimates
require to be updated. Second order interpolation has been cho-
sen as the performance degradation is neglegible for the pro-
posed pilot schemes. The expression of the interpolated esti-
mates for evenly spaced pilots is [8]:

By = Cpio1(m)hypm,_, + Cpi(m)hym,..

(17)
+Cp,it1(M)hp m;y, Mp i <M < myp i1

where my, ;, ..., my, ;41 represent the OFDM symbols index of
the symbols carrying pilots, Ap; is the spacing between OFDM
symbols carrying pilots, and the interpolation coefficients are:

1 m— My 2 m— My
Cpﬂ,—l(m) - 9 {< Apt ) - Apt }
2
Cp.i(m) =1 (m A m”) (18)

Apy
m — My ; 2
P, +
{ < Apy )

m—"mmyp;
Ap:

Cpitr(m) =

N =
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Table 2: Phase Noise Characteristics.
SSB Power at Bandwidth Ratio

1 MHz offset A f3qp PPN

-100 dBc/Hz 625 Hz 4.17%
-110 dBc/Hz 62 Hz 0.41%
-115dBc/Hz 20 Hz 0.13%
-120 dBc/Hz 6 Hz 0.04%

VI. SIMULATION RESULTS

The main parameters for the simulation are shown in Table 1.
A low velocity environment is considered (3 kmph). Two pilot
patterns are used to investigate the impact of using dense/sparse
pilot symbols in time domain. The 15 pilot scheme (P1) is
a comb type with pilot in all OFDM symbols. The 2"¢ pilot
scheme (P5) is a rectangular type with pilots in the 3" and
7!"OFDM symbols of each sub-frame. One sub-frame con-
tains 7 OFDM symbols. Both pilot schemes have a equally fre-
quency spacing of 8. P; and P, introduce a total pilot overhead
of 12.5% and 3.6%, respectively.

Several phase noise powers are considered based on the SSB
phase noise power at 1 MHz frequency offset from the carrier.
It is indicated in [11] that good quality phase noise oscillators
achieve -120 dBc/Hz at 1 MHz offset and medium quality -
100 dBc/Hz. These phase noise powers can be related with the
phase noise bandwidth using (13). The phase noise character-
istics for this simulation are summarized in Table 2. It may be
useful to characterize the quality of an OFDM oscillator by the
relation between its phase noise bandwidth and the subcarrier
spacing of the OFDM signal (A f,.):

_ Af3ap
PPN AL

19)

The link performance evaluation is conducted from very low
G-factor (-10 dB) to very high G-factor (40 dB). In practice, the
maximum G-factor is around 30 dB, due to the RF impairments
such as non-linearity in amplifier. In this study, the investiga-
tion is still conducted up to 40 dB in order to investigate the
performance of the higher-order MCS schemes.

Fig. 1 shows link adaptation (LA) curves with various MCS
schemes for the case with and without phase noise of -115
dBc/Hz. The spectral efficiency for individual MCS schemes
versus G-factor is also plotted. The LA curve without phase
noise represents the achievable performance with the given pi-
lot pattern. At low speed, the degradation due to the estimation
error is negligible and therefore, the main loss is due to the pi-
lot overhead. Phase noise does not affect the spectral efficiency
of lower order MCS schemes.

Fig. 2 shows the LA curves when the pilot schemes P; is
used. The link performance using various phase noise powers
is illustrated. The maximum achievable spectral efficiency for
this pilot schemes is 3.5 b/s/Hz. Phase noise of -120 dBc/Hz
gives no noticeable degradation. A significant degradation is
shown for the phase noise of -100 dBc/Hz.

The LA curves for the pilot schemes P, is shown in Fig.
3. The maximum achievable spectral efficiency is close to

—+—QPSK 1%

——QP3K 143

—*—QPsK12

—+—QPSK 23

——— 160AM 1/2
160AM 243

280 e 160AM 34

—=—B40AM 1,2

—=—B40AM 2/3

—=—B40AM 3/4

—=—B40AM 4/5

— =~ LA (Phase Noise)
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35

w
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Figure 1: Spectral efficiency of PN= -115 dBc/Hz & pilot
scheme P; with different MCS schemes.
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Figure 2: LA curves for pilot scheme P; .
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Figure 3: LA curves for pilot scheme P5.
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Figure 4: CDF of G-factor in macro & micro-cell scenarios.

4 b/s/Hz. Phase noise of -120 dBc/Hz gives degradation in
higher order MCS schemes. The spectral efficiency is getting
worse for phase noise of -115 dBc/Hz, -110 dBc/Hz, and -100
dBc/Hz, respectively.

From Fig. 2 and Fig. 3, it is shown that P, can reduce
the phase noise effect with the cost of pilot overhead. P» can
achieve higher spectral efficiency compared to P, when high
performance oscillator (phase noise < -120 dBc/Hz) is used.
P, outperform compared to P» by using oscillator with phase
noise > -115 dBc/Hz. The reason is that P; has pilots in every
OFDM symbols. Thus, it can track the common phase error
introduced by the phase noise. The results in Fig. 2 and Fig.
3 also indicate that low ppy ratio factor (Table 2) results in
higher performance.

The study in the cell level requires G-factor distribu-
tions used for the macro-cell outdoor and the micro-cell in-
door/outdoor scenarios, which are shown in Fig. 4 [13]. The
spectral efficiency at cell level is evaluated by conditioning the
G-factor dependent throughput with the probability of obtain-
ing a given G-factor and integrating over the whole G-factor
range. The results are shown in Fig. 5 where the bar plot of the
cell level spectral efficiency obtained for both pilot schemes
and several phase noise powers are presented. For the P, case
in the macro-cell scenario, phase noise does not give signifi-
cant degradation except for a phase noise of -100 dBc/Hz that
leads to a spectral efficiency degradation of around 21%. In the
microcell scenario, significant degradations of 17% and 50%
are shown for phase noise of -110 dBc/Hz and -100 dBc/Hz,
respectively. Overall, the P, case has similar trend as the P;.
In the macro-cell scenario, a significant degradation of 53%
is caused by phase noise of -100 dBc/Hz. In the micro-cell
scenario, a phase noise of -110 dBc/Hz and -100 dBc/Hz give
degradation of 32% and 71%, respectively.

VII. CONCLUSION

The goal of this paper has been to give an estimate of the perfor-
mance degradation due to phase noise in a downlink E-UTRA
SISO scenario with channel estimation. An analytical model of
the received signal has been derived to give an expression for
the performance loss, including loss due to phase noise. The
phase noise is modeled as a Wiener-Lévy process. It is con-
cluded that the higher order modulation schemes suffered most
in spectral efficiency degradation. The throughput obtained at
link-level was mapped to a cell level spectral efficiency using

= : | 1 (Macro)

i | I P Micrn) |
| I P2 (Macro)
| P2 (Micra)

Spectral Efficiency bfs/Hz

Ph=-115
dBc/Hz

Ph=-120
dBc/Hz

Mo P

Ph=-110
dBc/Hz

Ph=-100
dBc/Hz

Figure 5: Cell throughput for different phase noise powers.

available Geometry (G-factor) distributions for the macro and
micro-cell scenarios. In the macro-cell scenarios, significant
spectral efficiency degradation appears at a phase noise level
of -100 dBc/Hz, while in the micro-cell scenarios, it already
appears at a phase noise level of -110 dBc/Hz. The phase noise
effect in E-UTRA downlink can be reduced by using high per-
formance local oscillator or by placing pilots in every OFDM
symbols. In future work, an advanced receiver can be consid-
ered to minimize ICI due to the phase noise.
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