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Abstract

This thesis presents a new method that is able to efficiently select subsets of
sub-trajectories from a set of network-constrained vehicle trajectories. The
method can be used to improve the quality of histogram-based travel-time
estimates for paths in the underlying road network by identifying the trajec-
tories that are most relevant for a given road network path and time. The
thesis shows this with a series of detailed qualitative studies based on real-
life trajectory data sets capturing several years of vehicular travel in Northern
Denmark. We observe that the quality of travel-time estimates depends heav-
ily on the type of road and whether the road is located in a rural or an
urban area. After demonstrating the quality improvements provided by our
method over previous approaches, we design a network-constrained trajec-
tory index to efficiently apply our proposed collection method to compute
travel-time histograms. The proposed in-memory index utilizes methods
from string processing as a spatial index to identify trajectories in the in-
dexed data that traverse a given path. The majority of its memory footprint
is in the temporal index that comprises a collection of B+-trees or CSS-trees.
To further increases performance, we integrate the new index with a very
accurate cardinality estimator that allows us to minimize the accesses to the
considerably larger temporal index. To augment our collection method, we
propose a greedy algorithm that allows our index to provide a best-effort
travel-time estimate even if few trajectories matching a path are available.
This is achieved by allowing the index to rewrite a path-based travel-time
query as a series of sub-queries that each cover only a sub-path of the orig-
inal query path by partitioning the path in multiple iterations until a viable
sub-query is found. We perform an extensive performance study and qual-
itative analysis of our index structure and partitioning strategies. We show
that our method for travel-time estimation exhibits performance suitable for
real-time applications when used in conjunction with our in-memory index.
To show the scalability of the index, we integrate it into a multi-threaded
trajectory store that allows to concurrently update and query the indexed
trajectory set. To gain the full advantages of a multi-threaded application,
we test it on a modern multi-core system. Modern multi-core systems in-
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creasingly adopt a non-uniform memory access (NUMA) architecture, which
necessitates different software design approaches compared to those for sys-
tems providing uniform memory access. We propose several optimizations to
make the trajectory store NUMA-aware and provide an extensive experimen-
tal study of the system that shows considerable performance improvements
over the non-optimized version. Further, we propose a path-based API for
trajectory analysis that allows the aforementioned systems to be integrated
easily into trajectory analysis applications. We present an example trajectory
analysis application that allows users to not only compute travel-time esti-
mates, but also allows to see the impact of trajectory anonymization on the
result.



Resumé

Denne afhandling præsenterer en metode der kan bruges til at analysere
turdata (trajectory data), der er map-matchet til et vejnetværk. Metoden
forbedrer estimeringen af rejsetider for ruter i et vejenetværk ved at beregnet
disse tider ud fra histogrammer på de enkelte vejsegmenter eller et samlet
histogram for en sekvens af vejsegmenter. Afhandlingen viser forbedringen
i estimeringen af rejse ved en række detaljerede studier baseret på virkelige
data bestående af ture fra personbiler indsamlet over flere år i den nordlige
del af Danmark. Vi observere, at kvaliteten af de estimerede rejsetider afhænger
kraftigt af de vejtyper (f.eks. motorvej) der indgår i ruten og om ruten
går igennem landområder eller byområder. Den præsenterede metoden kan
forbedre kvaliteten af de estimerede rejsetider sammenlignet med eksisterende
metoder. For at gøre dette effektivt har vi designet et hukommelsen-baseret
(main-memory) indeks, som effektivt kan anvendes til at finde og lave bereg-
ninger på udelukkende de relevante histogrammer fra vejnetværket. Indek-
set anvender metoder fra tekststreng processering som et spatielt indeks til at
identificerer ruten effektivt. Det meste af hukommelsen der bruges af indek-
set anvendes til et temporale sub-indeks. Dette sub-indeks er implementeret
som en samling af B+-træer eller CSS-træer. Vi tilføjer en meget præcis kardi-
nalitets estimering til indekset for at opnå hurtigere svartider. Forbedringen
sker ved at minimerer mængden af data, der skal læses. Herudover tilføjer
vi en grådig algoritme til vores indsamlingsmetode, der gør det muligt for
indekset altid at returnere det bedste resultat, selvom der er meget få ture på
en rute. Dette sker ved at omskrive rutebasserede forespørgsler for rejsetid
på en lange rute til en serie af forespørgsler på kortere ruter, der dækker sam-
let dækker den oprindelig lange rute. Vi viser, at vores metode til estimer-
ing af rejsetid er så effektiv, at den kan anvendes i realtids programmer når
indekset er i hukommelsen. For at vise skalerbarheden af indekset til store
datasæt anvendes mange tråde i implementering af indekset. Disse tråde kan
både opdatere (skrive) og lave forespørgsler (læse) det indekserede datasæt.
For at opnå maksimal fordel ved flertrådet software evaluerer vi metoden
på en moderne computer med flere kerner. Moderne computere med flere
kerner er typisk opbygget uden ensartet svartider i tilgangen til hele hukom-
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melsen fra alle kerner. I stedet anvendes en såkaldt Non-Uniform Memory
Access (NUMA) arkitektur. En NUMA arkitektur kræver, at software de-
signes anderledes for at være mest effektiv. Vi foreslå flere optimeringer som
gør hukommelsen med turdata bevidst om, hvordan en computer med en
NUMA arkitektur kan udnyttes bedst mht. svartider. Vi udfører et større
eksperimentel studie af NUMA systemet. Studiet viser, at de tilføjede op-
timeringer giver betydelige forbedringer sammenlignet med en tilsvarende
ikke-NUMA udgave af systemet. Herudover foreslår vi et rute-baseret API
til tur-baseret analyse, der tillader, at systemet kan integreres i andre ap-
plikationer. Som et eksempel præsenterer vi en applikation til tur-baseret
analyse, der gør det muligt både at estimere rejsetider og evaluere effekten
af at anonymiserer turdata.
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Thesis Summary

1 Introduction

1.1 Background and Motivation

Vehicular transportation is an important global phenomenon that impacts the
lives of virtually all of us: We rely on it for mobility, and we are affected by
congestion, accidents, and air and noise pollution. Trailing only the energy
sector, the transportation sector is responsible for enormous greenhouse gas
(GHG) emissions and thus contributes to global warming [33]. Increasing the
efficiency of transportation networks is therefore a key approach to reducing
overall GHG emissions.

We are witnessing two trends that are relevant to our problem:

Big Trajectory Data We are seeing a rapid accumulation of vehicle trajec-
tory data, typically obtained from GPS data consisting of timestamped
latitude-longitude pairs. Trajectory data can be used for a variety of
applications, e.g., travel-time estimation.

Power Wall vs. Moore’s Law Since processors are hitting the power wall, in-
creasing the number of processing units remains the only efficient way
to increase processing power as opposed to increasing the performance
of single processing units, e.g., by increasing clock speeds [9, 24].

Not only is GPS data now available in larger quantities, but also at high
enough sampling rates [2] at which it can be reliably map-matched by on-
line [10] as well as off-line [25, 29] algorithms to publicly available map data,
e.g., OpenStreetMap [26].

We show that personalized travel-time estimations can improve trans-
portation efficiency by providing more accurate estimations of travel-time.
Personalized travel-time estimation is, however, more compute- and data-
intensive than previous approaches and therefore needs to be optimized for
modern hardware to achieve the short response times required for real-time
applications. When targeting modern hardware, we need to eschew data

3



structures that perform poorly in in-memory settings, e.g., the R-tree [12].
This is due to the availability of ever cheaper main memory, which has made
it feasible to keep even big trajectory data sets memory resident. Further-
more, we need to optimize our architecture for modern multi-core systems,
which rarely provide uniform memory access (UMA), further complicating
the design of efficient multi-threaded systems.

We demonstrate that through careful optimization of the underlying im-
plementation, existing applications like, e.g., on-line routing, can be im-
proved by "on-the-fly" analysis of large trajectory data sets [39–42]. We also
show how this new type of analysis can be integrated into new applications
with a novel path-based API [38].

1.2 Trajectory-Based Travel-Time Estimation

We model travel-time estimation as a query Q = (P, t, f ), consisting of a
path P, a starting timestamp t from which we obtain a time interval I, and
an optional filter predicate f that returns a travel-time histogram H for the
path P, based on trajectories within I that satisfy predicate f . We decide to
compute histograms because this also allows us to compute expected travel-
time ranges and because travel times often do not follow parametric distribu-
tions [5]. Trajectory data can be used in different ways to obtain travel-time
estimates:

Segment-based estimates, that are based on aggregates for every single sin-
gle road segment of a given path P and can be easily augmented by
traffic data obtained from other sources, e.g., Bluetooth sensors or in-
duction loops [4].

Path-based estimates, that are based on traversal times for a full path P.

Obtaining path-based estimates is considerably more complex than ob-
taining segment-based estimations, but we argue that doing this is worth
the effort due to the higher accuracy of this approach [39]. A motivating
example for the advantage of path-based estimates is shown in Figure 1,
where multiple trajectories traverse an intersection. If one wants to obtain
a travel-time histogram for the path P = 〈A, D〉 based on the given trajec-
tory set, a segment-based approach would collect a travel-time histogram for
each of segments A and D and then return the convolution of the histograms
(H(A) ∗ H(D)) as the estimate for the full path. The convolution f ∗ g creates
a mixture of the functions f and g and for discrete functions, e.g., histograms,
it is defined as ( f ∗ g)(x) = ∑∞

y=−∞ f (y)g(x− y).
This approach creates several problems in our example scenario:

• Histogram convolution assumes statistical independence between the
distributions of the segments, which is often an unrealistic assumption.
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1. Introduction

• The travel-time histogram for the full path exhibits an artificially high
variance [41].

This can be avoided with path-based estimation that is only based on
trajectories that fully traverse the given path P = 〈A, D〉, shown in red in the
example. This approach takes into account turn costs and does not require
to model these costs separately.

Fig. 1: Motivating Example [38]

Furthermore, path-based queries can be modeled as strict path queries
(SPQ), first proposed by Krogh et al. [18], which only select trajectories from
the set which follow a given path exactly. Several index structures that ef-
ficiently process SPQs have been proposed. In addition to being able to re-
trieving travel-times of any path in the network, the "on-the-fly" collection
also allows much finer-grained filter predicates that would not be feasible in
a pre-computed approach.

1.3 NCT Indexing on Modern Hardware

The type of query required to facilitate path-based estimates poses several
challenges compared to a segment-based approach. Where a segment-based
approach can be implemented as a convolution of pre-computed segment
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Fig. 2: Example NUMA Topology [42]

histograms, a path-based approach relies on identifying all trajectories that
follow a path exactly, i.e., an SPQ, and cannot be pre-computed for most
paths. Since this type of query relies on map-matched trajectory data, in-
dexing them using information of the graph structure of the road network is
more promising than using geo-spatial indexing methods, e.g., the R-tree [8].

Several such indexing methods have been described in the literature and
were considered for adaptation to travel-time estimation. Krogh et al. pro-
pose the disk-based NETTRA index, which is designed to facilitate integra-
tion into already existing database sytems [18]. Since we focus on real-time
query performance and since the main memories of modern systems con-
tinue to grow, we design an in-memory index.

The challenge is to identify an approach that scales well on modern hard-
ware. For this thesis, we understand modern hardware to mean:

• Large main memory.

• A non-uniform memory access (NUMA) architecture [19].

Figure 2 shows the memory hierarchy of an example NUMA system used
in our test system that consists of AMD Opteron 6376 processors, where L1i
is the instruction cache and L1d is the Level 1 data cache [42]. It shows that
each processing unit (PU) is connected to the main memory by a hierarchy
of caches that are connected directly to only a portion of the main memory.
A memory region which can only be accessed by a subset of the PUs di-
rectly is called a NUMA region. If a PU accesses memory in another NUMA
region, it needs to use the processor interconnect, e.g., HyperTransport for
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1. Introduction

AMD processors or QPI for Intel processors [13]. While those access meth-
ods guarantee cache-coherence between different PUs, they do not provide
uniform access times or bandwidths, which can differ by more than an order
of magnitude between PUs depending on their NUMA regions and where
the data is located.

1.4 Open Trajectory Data

Just indexing trajectory data efficiently is not enough, the data must also be
made available to users. We suggest an API for path-based queries that can be
integrated with a RESTful service to provide travel-time estimation services
and other trajectory-based analyses to users. To demonstrate the applicability
of our API, we use it to implement an example trajectory analytics web appli-
cation. The web application provides data privacy features that would allow
trajectory data sets to be made available to a wider range of users without
infringing upon drivers’ privacy.

1.5 Related Work

This section gives an overview of the most relevant related work in the three
areas that intersect with the topic of this thesis.

Travel-Time Estimation

Due to the importance of traffic management, a large number of approaches
for travel-time estimation have been proposed. Our overview is limited to
estimation methods based on trajectory data. Different approaches based
on pre-computed histograms have been proposed [5, 22]. These approaches
lack the flexibility of travel-time histograms computed at runtime, which can
adapt filter predicates at query time to achieve a considerably finer granu-
larity of the histograms than is feasible in the case of pre-computation ap-
proaches.

An approach based on tensor decomposition that also addresses the prob-
lem of data sparseness has also been proposed by Wang, Zheng, and Xue [37].
Another approach using deep neural networks has also been proposed by
Wang et al. [36]. These approaches, however, does not provide travel-time
distributions but only scalar estimates.

Trajectory Indexing

Ding’s R-tree-based UTR-tree [6] and the B+-tree-based PARINET from Popa
et al. [30] are network-constrained trajectory indexes optimized for nearest
neighbor queries and spatial range queries. Both indexes are, however, ill-
suited for strict path queries required for path-based estimation.
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These shortcomings are addressed by Krogh et al.’s NETTRA index [18]
that can be integrated with an existing RDBMS and by Koide et al.’s in-
memory SNT-index [17] that both support efficient processing of strict path
queries.

NUMA-Aware Query Processing

The increasing number of cores in modern computers and the accompanying
change from UMA architectures to NUMA architectures posed the problem
of how to best adapt database systems to exploit NUMA architectures.

The DORA system proposed by Pandis et al. [27] changes the "thread-to-
query" processing model, until then prevalent in OLTP, to a "thread-to-data"
model, which assigns partitions of a database to pinned threads with a local
lock manager to limit inter-core communication with the goal of increasing
transaction throughput on multi-core systems.

This data-oriented architecture has also been extended to OLAP work-
loads in the ERIS system by Kissinger et al. [15], which employs specialized
worker threads to process analytical queries on a partitioned database, or in
the extension of the HyPer database system proposed by Leis et al. [21] that
utilizes "work-stealing" to achieve optimal resource utilization on NUMA sys-
tems.

1.6 Organization

The remainder of this summary is structured as follows. Section 2 summa-
rizes Paper A that provides a preliminary study of time-travel estimation
based on "on-the-fly" trajectory selection. Section 3 summarizes Paper B that
conducts a much more detailed study based on a large real-world data set.
The study shows which type of predicates applied to a trajectory data set pro-
duce the most accurate travel-time estimates. Section 4 summarizes Paper C
that introduces a new in-memory trajectory index that facilitates efficient pro-
cessing of strict path queries (SPQ) that can be adapted for travel-time esti-
mation. Section 5 summarizes Paper D that adapts the in-memory index to
be used with real-time data and optimizes it for non-uniform memory access
(NUMA) systems. Section 6 summarizes Paper E that introduces an API for
path-based trajectory analytics.

Section 7 gives a summary of the contributions in the thesis, and Section 8
concludes.
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2. On-the-fly Trajectory Selection

2 On-the-fly Trajectory Selection

This section gives an overview of Paper A [39].

2.1 Problem Motivation and Statement

In our initial experiments, we aim to assess whether previously proposed
"one-size-fits-all" approaches to travel-time estimation can be improved upon.
The "one-size-fits-all" approaches use the same data points for all estimates
for different drivers if their trip is on the same road segments and in the
same time window. It allows to, e.g., detect heavy congestion, but does not
consider personal driving behavior or the influence of weather or other fil-
ter predicates on travel-time. The "one-size-fits-all" approaches have the ad-
vantage that they lend themselves well to pre-computation, which reduces
processing time considerably. These approaches, however, become infeasi-
ble when the number of predicates to be pre-computed becomes too large,
negating the approaches’ main benefit.

We contrast these approaches with our "on-the-fly" approach, in which
all predicates are evaluated at runtime, allowing for a much finer grained
selection of trajectories to base an estimate on. For an "on-the-fly" query, the
whole set of trajectories traversing the chosen segments is considered and
filtered at query time.

To identify whether "on-the-fly" trajectory selection can provide more ac-
curate travel-time estimations, we perform an analysis of traffic in Northern
Denmark based on a detailed trajectory data set from private car owners that
allows personalized, i.e., based on a single driver’s trips, estimation. The
analysis is based on the map-matched "Young Drivers" data set, which con-
tains around 670, 000 trajectories collected over two years at a 1 Hertz sam-
pling rate [43]. We use a histogram-based approach to estimate the traversal
times for single segments and short paths (two and three segments) to per-
form a preliminary evaluation of our approach.

The histograms obtained are compared to actual traversal times from the
trajectory data set in order to assess their accuracy. The analysis shows that
driver-based trajectory selection can improve travel-time histogram accuracy
with a query time of only a few milliseconds.

2.2 Histogram-Based Travel-Time Estimation

To evaluate our two "on-the-fly" approaches (Methods 3 and 4) we compare
them to "one-size-fits-all" histogram-based approaches for single segments
and short paths (the Legacy Method and Method 2), whose details are shown
in Table 1. As a baseline, we use the pre-aggregated Legacy Method (LM) that
constructs travel-time histograms for each static time interval of a fixed size
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(α) and computes path histograms by convolving the segment histograms.
Method 2 (M2) is identical, but also provides pre-aggregated histograms for
path traversals up to a length of 3. The "on-the-fly" Method 3 (M3) selects the
trajectories for a path histogram with a dynamic time interval that is centered
around the query timestamp t, whereas Method 4 (M4) also applies a filter
predicate f . In our study, we filter by drivers, but other filter predicates can
also be used.

Method Temporal Features Path Cost Predicate

LM Static, Off-line No No
M2 Static, Off-line Yes No
M3 Dynamic, On-line Yes No
M4 Dynamic, On-line Yes Yes

Table 1: A Summary of the four Methods [39]

Figure 3 shows how often the other methods improve over the baseline
(LM), i.e., their likelihood ratio ρ is larger than 1. The figure shows that only
the method using additional filter predicates, i.e., filtering by driver, (M4)
provides a consistent quality improvement for single segments and short
paths with different sample sizes (β) . Simply applying dynamic fine-grained
temporal filtering to the trajectory set provides little benefit. This can be seen
in both Figures 3a and 3b where the share of improvement of Method 3 and
Method 4 decreases to only about 50% for higher values of β.
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Fig. 3: Histogram Accuracy [39]

When comparing Figures 4a and 4b, which show the fraction of non-
empty result histograms with respect to the sample size β, we can see the
biggest drawback of M4. The trajectory set becomes a lot sparser when ap-
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3. Custom Predicate Selection

plying more selective predicates. If M4 is to be adapted for a universal travel-
time estimation system that can answer travel-time queries about arbitrary
paths, it needs to be combined with less restrictive methods.
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Fig. 4: Fraction of Non-Empty Results [39]

2.3 Discussion

Our experiments show that applying additional filter predicates to a trajec-
tory data set when computing travel-time histograms for which pre-computa-
tion is not practical can provide travel-time estimates with an up to 20%
higher accuracy. The study concludes with a performance study of the "on-
the-fly" approach implemented with a simple immutable in-memory index
based on Rao and Ross’s CSS-tree [32], which shows that queries with fine-
grained filter predicates can be processed in less than 3 milliseconds on aver-
age, a speed suitable for real-time applications. Our results are encouraging
and we perform a more detailed analysis with another data set from the same
area which is more than twice as large.

3 Custom Predicate Selection

This section gives an overview of Paper B [41].

3.1 Problem Motivation and Statement

For our extended study, we not only analyze single segments and short paths,
but pick the most often traversed paths in a network and see by how much
a purely path-based "on-the-fly" approach could improve estimation. Initial
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results show that when just choosing the most traveled paths without tak-
ing into account the structure of the network, i.e., the types of roads covered
by the path, no consistent improvement can be achieved. However, if we
focus our study on only paths consisting of a single segment category, no-
ticeably improvements can be observed. For each one of four different seg-
ment categories (motorway, primary, secondary, or tertiary), we study three
to four different paths. For the study, we use the larger ITSP trajectory set,
which consists of over 1.4 million trajectories and has also been enriched with
weather category data [1] so that we can also evaluate the impact of other fil-
ter predicates on the quality of estimation.

To provide a more in-depth study, we also devise a new two-part metric,
evaluating the accuracy and precision of travel-time histograms. Accuracy
measures how close the mean of a travel-time histogram is to the actual re-
sult using the symmetric absolute mean percentage error (sMAPE) [3]. Pre-
cision measures the "uncertainty" of an estimate based on the size of the
distribution-free prediction interval which is in turn based on the sample
variance of the collected values [35]. This metric can be adapted to not only
optimize routing towards the fastest travel-time, but also the most predictable
travel-time.

3.2 Full Path Histograms

Figure 5 shows the results for four paths on motorways in Northern Den-
mark compared to the "one-size-fits-all" approach based on single segment
histograms, which we use as a baseline.

We also evaluate the effects predicates filtering by weather and user have
on the quality of the results. While the "on-the-fly" approaches improve on
the baseline in most cases, the weather-based predicates provide only little
if any improvement over purely temporal filtering. User predicates provides
the best results on motorways and primary roads, especially for traffic out-
side cities.

Since real-life travel-time estimation will rarely require estimates for paths
consisting of only a single road category, this approach needs to be integrated
into a more extensive system. Figure 6 shows the architecture of a system that
provides a travel-time histogram for a full path by partitioning a query into
multiple non-overlapping sub-queries. The boxes represent software compo-
nents, and the arrows show the data flow between them and the user. To
obtain a travel-time histogram for a full path, the histograms obtained from
the sub-queries are convolved into a full path histogram, which is returned
to the user. If insufficient trajectories for a given sub-path are available, the
sub-query predicates are relaxed or the sub-path is repeatedly split until the
desired sample size is reached for constructing the corresponding partial re-
sult histogram.

12



3. Custom Predicate Selection

(a) Accuracy (b) Precision

Fig. 5: Motorway Histogram Quality [41]

Fig. 6: Architecture of a System Computing Full Path Histograms [41]
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3.3 Discussion

The results suggest how to best partition a query into sub-queries and what
types of filter predicates improve travel-time estimation. We can also see a
significant difference in the quality of travel-time estimates depending on the
road location and category. Travel-time estimates for roads leading through
rural areas are on average more accurate than those for urban roads, espe-
cially primary roads and motorways. The estimation error for, e.g., motor-
ways through rural areas, can be halved with our personalized path-based
approach. There are also considerable differences between primary and sec-
ondary/tertiary roads, with the latter allowing only considerably lower qual-
ity estimates.

In the experiments, we use the same immutable index as in Paper A. How-
ever, this initial index design exhibits performance degradation when queried
with longer paths due to random memory accesses becoming a bottleneck.
Our next goal is to efficiently process such sub-queries in a integrated system
with an architecture similar to the system shown in Figure 6. This requires
identifying an index structure that is able to efficiently handle queries for any
kind of path while still being memory resident.

4 In-Memory Index

This section gives an overview of Paper C [40].

4.1 Problem Motivation and Statement

Given the results from Papers A and B, we set out to design an in-memory
index to facilitate the travel-time histogram retrieval for full trip paths. The
index is integrated into a query processing system that, even if not enough
trajectory data is available, always makes a best effort estimate based on other
data, e.g., speed limits, if necessary.

We adapt a network-constrained trajectory index based on data structures
for which efficient in-memory implementations already existed. Specifically,
we build on Koide et al.’s SNT-index that was designed to efficiently retrieve
trajectory IDs from strict path queries [17] and also provides better scalability
in respect to path length compared to our initial approach to indexing. The
index consists of two components:

A spatial index that allows fast look-ups of paths in the trajectory set and
that is implemented with an FM-index [7]. The FM-index is a text in-
dex that facilitates fast substring searches while at the same time com-
pressing the indexed string. To find out whether trajectories exist that
follow a given path P exist in the trajectory set, at most |P| rank queries
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with a complexity of O(log Σ), where Σ is the size of the network, are
required. In addition to the number of matching trajectories, the FM-
index also provides a spatial filter predicate which can then be applied
to the temporal indexes.

A temporal index that enables temporal filtering of the trajectories to be re-
trieved and that is implemented as a forest of B+-trees. The leaf nodes
of these indexes also store the spatial information of each data point,
which can be filtered with two integer comparisons with the informa-
tion obtained from the spatial index.

No matter how long a query path is, the SNT-index only needs to scan
the temporal index of the last segment of the path to apply temporal filters.
We extended the SNT-index so that we could obtain the traversal time of any
path by only scanning the first and last segments’ temporal indexes.

Fig. 7: Overall Architecture [40]

Figure 7 shows the architecture of our indexes which is based on the sys-
tem architecture introduced in Paper B. A user dispatches a full path query
Q = (P, I, f , β), with β being the required sample size, to the Sub-query
Module, which partitions the query into sub-queries, that are then checked
by the Cardinality Estimator. The cardinality estimator checks whether
the returned trajectory set of each sub-query returns at least β trajectories
by querying the Spatial Index and the Histogram Store. The Histogram
Store contains the time-of-day histograms for every segment and is used to
estimate the selectivity of temporal predicates, i.e., the interval I. If the selec-
tivity is too high, the predicates of the sub-query are relaxed, or the sub-query
path is split by the Sub-query Splitter into new sub-queries until enough
matching trajectories are found. For our evaluation, we use the ITSP data set
introduced in Paper B. The map-matched trajectory data is batch loaded into
the index but how real-time ingestion can be handled is discussed in Paper D.
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We also add a cardinality estimator that bases its results on the spatial index
and a time-of-day histogram of each segment to avoid unnecessary scans of
the temporal indexes. This increases performance since scans of the tempo-
ral indexes are several orders of magnitude slower than querying the spatial
index.

4.2 Indexing for Strict Path Queries

The cardinality estimator accuracy is shown in Figure 8a, where the cardi-
nality estimates based purely on the spatial index (ISA) are compared to
estimates based on the spatial index and selectivity estimations of the tem-
poral filters. The Q-error [23] (lower is better) is computed by comparing the
cardinality estimate to the actual cardinality obtained by the query. The se-
lectivity estimate of the time window (α) is based on either a simple formula
(BT-Fast, CSS-Fast) or on the time-of-day histogram of the first segment in the
sub-query path (BT-Acc, CSS-Acc). We can see that the combined cardinality
estimation outperforms the one based exclusively on the spatial index by an
order of magnitude on average.

0

1

2

3

ISA BT−Fast CSS−Fast BT−Acc CSS−Acc
estimator mode

q−
er

ro
r 

(1
0y )

(a) Q-Error

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

0

5

10

15

20

7 30 90 365 FULL
partition size

m
s 

pe
r 

qu
er

y

Index
●

●

●

CSS
CSS−Fast
CSS−Acc
BT
BT−Fast
BT−Acc

(b) Runtime

Fig. 8: Cardinality Estimator [40]

As the different cardinality estimator modes show, the paper also evalu-
ates two different data structures for use as temporal indexes:

B+-trees (BT) originally a disk-based index that supports out-of-order up-
dates and can also be used in-memory [11].

CSS-trees a compact index on sorted arrays that has been extended to sup-
port appends [32].

We can also observe that the CSS-tree-based implementation has a small
accuracy advantage over the B+-tree-based version. This is because the CSS-
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tree can efficiently obtain the exact selectivity of a time range, which can only
be estimated with a B+-tree.

The impact of different temporal index types and temporal partitioning
on performance is shown in Figure 8b. Overall, we see that with the excep-
tion of very fine-grained temporal partitioning, the cardinality estimator cuts
processing times in half on average. We can also see that CSS-trees provide a
slight performance advantage over B+-trees, which, however, becomes barely
noticeable when using the cardinality estimator.

The paper also provides a comprehensive qualitative analysis of the col-
lection methods. The parameters considered are:

Sample Size (β) The required number of trajectories for each sub-query from
10 to 50 in increments of 10.

Predicate ( f ) Filter trajectory set by time and/or user, or only by path.

Partitioning Method (π) Initial partitioning of Q is performed by road cat-
egory (πC), zone (rural/urban) (πZ), the combination of category and
zone (πZC), or no pre-partitioning (πN). This is compared against a
fixed-size partitioning of length 1, 2, or 3 (π1/2/3).

Splitting Method (σ) If a sub-query does not return the required number of
trajectories, we provide two methods for splitting the sub-query into
two sub-queries: (1) regular splitting that cuts the query path exactly
into two halves (σR) and (2) longest prefix splitting that splits the path so
that the first sub-query consists of the longest possible path for which
the trajectory set is greater and or equal to β (σL).

Figure 9a shows the estimation error of a full path histogram for different
collection methods. Figure 9b shows the same error weighted by the length
of the paths of the sub-queries.
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4.3 Discussion

Our Extended SNT-index allows spatial queries to be performed inO(|P|log Σ)
time, i.e., it does not depend on the size of the indexed data set. The empir-
ical analysis shows that the simpler splitting method performs considerably
better in terms of quality as well as runtime and that applying non-temporal
filter predicates worsens processing time considerably while only providing
qualitative improvements for certain types of sub-queries.

The Extended SNT-index scales considerably better than our earlier ap-
proaches, and the processing time can be cut in half on top of that by reducing
unnecessary scans of the temporal indexes by using a cardinality estimator.

5 Optimizing for Modern Hardware

This section gives an overview of Paper D [42].

5.1 Problem Motivation and Statement

The index structure proposed in Paper C is only implemented to run in a
single thread. To evaluate the scalability of our approach, we implement
a parallelized version of the index. In addition to the parallelization, we
extended the index to also allow for real-time data being ingested. Modern
multi-core systems provide two main avenues for parallelization:

Vectorization, which uses the CPU’s SIMD registers to achieve data paral-
lelism.

Multi-threading, which schedules threads on different cores to achieve task
parallelism.

Multi-threading requires coordination between the threads running on
different cores. This is done via shared memory, whose latency and band-
width can differ by more than an order of magnitude between different core
pairs on NUMA systems.

Figure 5 shows the latency of different types and sizes of memory ac-
cesses on our test system collected by the BenchIT tool [14]. For systems
with a larger number of cores or a more complex processor topology, those
differences can be even more pronounced.

These constraints require us to minimize the coordination required be-
tween remote cores because if cores are not located in the same region they
have to use the processor interconnect to access main memory and cannot
use their local memory bus or their shared lower level caches. In our test
system all processing units of a NUMA region share the L3 data cache.
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5.2 Indexing on Modern Hardware

The index consists of two main data structures:

The FM-index for computing the spatial filter predicates and the cardinality
of the trajectory set for a path.

B+-trees/CSS-trees for temporal filtering and storing segment traversal in-
formation.

These two components exhibit very different runtime behavior and also have
very different storage requirements, so we assign them to different types of
threads as shown in Figure 11.

Fig. 11: NUMA-Aware Architecture [42]

A query is processed by five types of worker threads that communicate
via message queues:
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Dispatcher distributes incoming messages from the message queue (MQ)
among worker queues (UQ and QQ) that are consumed by the Update
Worker and the Spatial Workers, respectively.

Update Worker handles trajectory updates that are regularly merged into
the index. In-between batch merges, the new trajectory data can be
queried at the segment-level only. The Update Worker also maintains
the time-of-day histograms (HS) that are used by the cardinality esti-
mator. It also updates the real-time store (RTS) that is used for outlier
detection on a segment level to be able to recognize congestion caused
by unforeseen events, e.g., traffic accidents.

Spatial Worker (SW) performs the initial query partitioning based on meta-
data and the spatial index and also handles spatial queries and cardi-
nality estimation. After a query has been partitioned, its sub-queries
are enqueued into their respective Temporal Queues (TQ) that are con-
sumed by the Temporal Workers.

Temporal Worker (TW) manages a subset of the temporal indexes, performs
scans to answer sub-queries, and enqueues their results into the Partial
Result Queues (PRQ) that are consumed by the Convolution Threads. If
insufficient trajectories are found, the sub-query is split and enqueued
into the FM queue (FMQ) to recompute the spatial filter predicate for
the new sub-queries.

Convolution Thread (CT) is a parallelized version of the HistogramBuilder
component that acts similar to a reducer. A CT combines sub-query
results into travel-time histograms covering the full query path.

Since the FM-index only takes up a fraction of the overall index size, it can
be replicated to decrease shared memory accesses and increase parallelism.
While this design supports a data-oriented architecture, we also apply two
additional optimizations to make it NUMA-aware:

Thread pinning assigns a worker thread to a PU and ensures that it is not
rescheduled on another PU.

NUMA allocation ensures that memory is allocated in the same NUMA re-
gion on which the thread that is accessing it is running. This was im-
plemented as a C++ allocator that uses the libnuma library [16].

For our evaluation, we use an "upsampled" version of the ITSP data set we
used in Papers B and C. Figure 10 shows how the NUMA-aware implemen-
tation compares to the naive implementation, i.e., the same code without the
aforementioned optimizations, on the same hardware. The figure compares
the median time from dispatching a travel-time query to the computation of
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5. Optimizing for Modern Hardware

the full path histogram (latency) relative to throughput (queries per second).
Since each Temporal Worker processes scans of a different partition of the
network, we also evaluate different partitioning methods for the network:

Hash partitions by the hash of the segment ID in a round-robin fashion.

Range partitions the segment IDs by range, which due to the way Open-
StreetMap assigns the IDs results in a simple form of spatial clustering.
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Fig. 12: Latency of Queries

Figure 12a shows the latencies when running with 16 threads, which on
our test system is identical with one socket that contains two NUMA regions.
Figure 12b shows the latencies when running with 58 out of 64 available
cores.

As we can see from both figures, the NUMA-aware implementation ex-
hibits at most half the latency of the naive implementation. This difference
becomes even more pronounced when increasing the throughput. In the
baseline version, we can also observe a noticeable difference between the
different partitioning methods at high throughput. In the baseline setting,
range partitioning reduces latency by over 60% compared to hash partition-
ing because the simple spatial clustering increases memory locality for many
sub-queries. In the NUMA-aware version, we can see an inverse effect, since
here the better load balancing between partitions through hash partitioning
becomes the dominant factor.
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5.3 Discussion

We show that a multi-threaded variant of our index remains scalable and can
be adapted to work in a data-oriented architecture suitable for NUMA sys-
tems. Especially under high throughput, its NUMA-aware optimizations give
it superior performance over the baseline implementation. We also show that
the choice of partitioning method can have considerable impact on perfor-
mance. Furthermore, the NUMA-aware optimizations have a comparatively
small code footprint of only about 3.5% of the full trajectory store source
code and therefore lend themselves well to optimizing existing systems and
not just systems implemented from scratch.

6 An API for Trajectory Analytics

This section gives an overview of Paper E [38].

6.1 Problem Motivation and Statement

After devising a trajectory store for modern hardware, we evaluate how to
best provide its processing capabilities to users. In parallel to developing the
new trajectory store, we thus design an API that does not rely on a specific
model of the trajectory data. We integrate the new API with our existing
PostGIS [31] trajectory data warehouse that uses the NETTRA index [18] in-
stead of the new trajectory store. The API can, however, be used with either
system as a storage layer. To demonstrate the applicability of the API, we
provide a RESTful [28] trajectory anonymization service whose architecture
is shown in Figure 13.

Fig. 13: Architecture of the API Demonstration [38]

22



6. An API for Trajectory Analytics

6.2 Open Data for Trajectories

Even if user-specific identifiers are removed from trajectory data, drivers can
often still be identified by trajectory pattern matching, creating data privacy
concerns when making trajectory data sets available. We therefore apply a
method called k-anonymization that was first proposed by Samarati et al. [34]
to our travel-time query results before releasing them. This method guaran-
tees that data from a user cannot be distinguished from the data from at least
k− 1 other users.

The service implements a travel-time analysis service with our path-based
API that translates service calls into SQL queries against the trajectory data
warehouse. Table 2 describes the subset of the functions used to implement
the anonymized travel-time service. Figure 14 shows how a RESTful service
that retrieves travel-times of an (origin,destination) pair filtered by time (tr)
and date range (dr) is implemented with the API. First, the two chosen co-
ordinates are matched to their closest road segment. Then the most traveled
path between those two segments is identified, and if there are enough trajec-
tories, their travel-time data is retrieved and then anonymized [20] and pro-
vided to the user. If insufficient data is available to guarantee k-anonymity,
no data is reported, to ensure user privacy.

Function Arguments Behavior

NearestSegment lon, lat Maps coordinates to the nearest
road segment ID (sid)

MostUsedRouteTrips sid1, sid2,
dr, tr

Provides the number of trips on
the most used path between two
segments and its path identifier
(pid) filtered by date (dr) and
time range (tr)

TripInfo sid1, sid2,
dr, tr

Retrieves all trip data on the
most used path between two
segments filtered by date and
time range

Table 2: Subset of the Path-based API Functions

6.3 Discussion

We demonstrate how the path-based API can be used to provide trajectory
analysis applications to users while still ensuring the data privacy of the
drivers. We do this by showcasing an intuitive map-based graphical user
interface that allows to choose two points on the map and specify additional
filters, e.g., weekdays, weather, and time of day. The relevant trajectories are
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Fig. 14: Anatomy of the RESTful Service [38]

then retrieved from the database with the API, and the path and the trajectory
data are then displayed alongside each other. The user can also modify the
anonymization level to see the effect of parameter k.

7 Contributions

This thesis makes the case for custom selection of trajectories to achieve
higher quality path-based travel-time estimates. Furthermore, it proposes a
novel in-memory trajectory index to facilitate efficient fine-grained selection
from big trajectory data sets, and provides detailed qualitative and quanti-
tative experimental evaluations. Finally, it proposes a novel path-based API
that allows these new selection methods for trajectory data to be integrated
into user applications.

• Paper A [39] proposes the new "on-the-fly" collection approach for
trajectory-based travel-time estimation and provides a preliminary ex-
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8. Conclusion

perimental study of the new approach. The study shows that user-
specific trajectory collection can improve travel-time estimation accu-
racy by up to 20% while providing real-time performance for single
road segments and short paths.

• Paper B [41] extends on the previous study by providing a two-part
metric to evaluate the quality of travel-time histograms and by con-
ducting a study of different types of collection methods. The study
evaluates the impact of the temporal, user, and weather predicates on
the quality of travel-time estimation and shows an improvement in ac-
curacy of up to 50%. The paper also proposes an architecture for a
system processing "on-the-fly" queries.

• Paper C [40] proposes an new in-memory trajectory index structure
integrated into the query processing system proposed in the previous
paper. The system can process travel-time queries for any path in only
a few milliseconds by implementing a best effort algorithm that always
provides an estimate based on trajectory and map data. The paper
presents a comprehensive runtime and qualitative analysis of the new
index structure based on a real world data set.

• Paper D [42] proposes a parallelized version of the trajectory index
structure proposed in the previous paper that is integrated into a tra-
jectory store optimized for non-uniform memory access platforms. The
paper discusses implementation details of the data-oriented architec-
ture and provides a detailed runtime and scalability analysis of the
trajectory store. We show that query latency is reduced by at least 50%
with low load scenarios when compared to our baseline. The difference
in latency between our NUMA-aware implementation and the baseline
grows to over one order of magnitude in high load scenarios.

• Paper E [38] proposes a path-based API to perform travel-time queries
on a trajectory data set. The usability of the API is demonstrated with a
trajectory analysis use case implemented as a RESTful service. The im-
plementation also allows users to evaluate the effect of anonymization
on the quality of the analysis.

8 Conclusion

This thesis shows that travel-time estimation for road segments and paths can
be improved by using on-the-fly methods that allow for a much more fine-
grained trajectory selection than approaches relying on pre-computation. We
verified our "on-the-fly" approach with one preliminary and two extensive
qualitative studies. The studies also reveal that increasing the sample size
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does not necessarily increase the quality of estimates. This is mostly due to
more stale data being included into the result set when requiring higher sam-
ple sizes, especially with queries containing very selective filter predicates.

To efficiently process complex path-based queries, we propose a novel
network-constrained trajectory index structure that allows efficient in-memory
processing of strict path queries. The index consists of two main data struc-
tures: (1) a space and runtime efficient spatial index and (2) a collection of
temporal indexes necessary for temporal filtering. The new index structure
is integrated into a travel-time estimation system that answers queries by
rewriting them into a series of smaller strict path sub-queries using a greedy
algorithm. This allows us to return a travel-time histogram covering the full
path of a query even with sparse trajectory data sets. We find that applying
complex filter predicates selectively, e.g., only using user filters on motorway
paths, yields the most accurate estimates while also considerably reducing
the runtime of sub-queries. The runtime is reduced by a further 50% by
a novel cardinality estimator that uses the spatial index and segment-level
histograms to allow the system to avoid costly scans of the temporal indexes.

To show that this system can be scaled up, we integrate our new index
structure into a scalable trajectory store optimized for modern NUMA sys-
tems. The NUMA-aware system allows travel-time queries and trajectory
inserts to be processed concurrently. We perform an extensive performance
study of the system and compare it to a version that is not NUMA-aware.
The NUMA-aware system provides 50% lower query latency in a low load
setting. This difference in latency grows to over 90% under high load. This is
particularly interesting since the code footprint of the NUMA-aware features
is comparatively small.

Finally, we suggest a path-based API that makes path-based trajectories
more accessible to users. We demonstrate the applicability of the API by
means of a service that allows anonymized travel-time analyses on a map-
based user interface.

Our work leaves multiple avenues of future work. The suggested travel-
time estimation method could be extended to include an adaptive component
that throughout a trip continuously updates the estimate based on real-time
data and current driving behavior. It could also be augmented further by
methods addressing data sparseness to not only base estimates for segments
without any trajectory data on the speed limit exclusively, e.g., the approach
suggested by Zheng and Van Zuylen [44]. The proposed trajectory store
could be improved upon by more advanced partitioning of the temporal
workers, e.g., load-based re-partitioning which can also utilize information
about previous queries to place frequent build and probe segment pairs in
the same NUMA region to further increase memory locality.
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Abstract

Today’s one-size-fits-all approach to travel-time computation in spatial networks pro-
ceeds in two steps. In a preparatory off-line step, a set of distributions, e.g., one
per hour of the day, is computed for each network segment. Then, when a path
and a departure time are provided, a distribution for the path is computed on-line
from pertinent pre-computed distributions. Motivated by the availability of massive
trajectory data from vehicles, we propose a completely on-line approach, where dis-
tributions are computed from trajectories on-the-fly, i.e., when a query arrives. This
new approach makes it possible to use arbitrary sets of underlying trajectories for
a query. Specifically, we study the potential for accuracy improvements over the
one-size-fits-all approach that can be obtained using the on-the-fly approach and re-
port findings from an empirical study that suggest that the on-the-fly approach is
able to improve accuracy significantly and has the potential to replace the current
one-size-fits-all approach.

c© 2017 IEEE. Reprinted, with permissions, from Robert Waury, Jilin Hu, Bin
Yang, and Christian S. Jensen, Assessing the Accuracy Benefits of On-The-Fly
Trajectory Selection in Fine-Grained Travel-Time Estimation, 2017
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1. Introduction

1 Introduction

A range of services related to road networks rely on the computation of
travel-times of paths [1]. For example, this applies to vehicle routing ser-
vices that compute fastest paths and to services that pre-compute payments
for transportation based on estimated travel-times.

The travel-time of a path is time-varying due to congestion and external
conditions such as precipitation and road-surface conditions; and travel-time
also varies across drivers.

Due to the proliferation of GPS data from vehicles, travel-time estimation
is increasingly being based on vehicle trajectory data. As more and more
such data becomes available, we believe that it is becoming feasible to esti-
mate travel-times in a much more fine-grained manner than what is possible
with today’s state-of-the-art approach, which is intuitively a one-size-fits-all
approach.

The one-size-fits-all approach pre-computes histograms off-line for each
road network segment based on travel-times extracted from trajectories that
traversed the segment. Specifically, this approach typically partitions a day
into intervals, e.g., 15-minute, 30-minute, or 1-hour intervals, and computes
a histogram for each interval based on trajectories that occurred during that
interval. It is also possible to pre-compute histograms for consecutive seg-
ments, i.e., paths [2, 3]. When a query in the form of a path and a depar-
ture time are provided, this approach produces a travel-time histogram for
the traversal by combining pertinent pre-computed histograms. The off-line
computation of histograms offers efficiency, but it also restricts flexibility, as
all queries must use the pre-computed histograms.

Instead, we propose an on-line approach, where histograms are computed
on-the-fly at query time. While this may reduce running time efficiency, it is
much more flexible: depending on the query, any subset of relevant trajecto-
ries can be used to form a histogram for segments and paths. We hypothesize
that this approach has the potential to improve the accuracy of travel-time
distribution estimates substantially over the one-size-fits-all approach. Put
differently, we believe that if we choose the “right” trajectories from which to
compute histograms, we get much more accurate histograms than is possible
with the one-size-fits-all approach.

To motivate this study, consider the road network of Denmark, which
consists of around 1.6 million edges. Pre-computing histograms for all po-
tentially interesting subsets of trajectories, e.g., one set for every driver in
personalized routing [4, 5], is infeasible as exponentially many such subsets
may exist.

The paper aims to provide insight into the potential of on-the-fly travel-
time histogram computation. To do this, we define several specific proce-
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dures for histogram computation that exemplify both the one-size-fits-all ap-
proach and the on-the-fly approach. We then detail a methodology for com-
paring the different procedures empirically using GPS data. In particular,
we build histograms for a road network using some of the data. Then we
use trajectories from the remaining data for testing. Intuitively, we provide
means of determining which histograms best predict the travel-times seen in
the test trajectories. Finally, we apply the methodology to a substantial GPS
dataset and report findings that suggest that on-the-fly histogram computa-
tion indeed has potential to improve the accuracy of travel-time distributions
in road networks.

The paper’s contributions are as follows: (i) we motivate and identify a
new paradigm for travel-time distribution computation; (ii) we define spe-
cific procedures for travel-time histogram computation; (iii) we identify a
methodology for empirical evaluation of the accuracy of histograms; and (iv)
we report findings from an empirical study with a substantial GPS dataset.

The remainder of the paper is structured as follows. Section 2 describes
the paper’s setting and trajectory selection criteria and defines the histogram
computation techniques to be compared, Section 3 details the empirical eval-
uation methodology, and Section 4 reports on the empirical study. Finally,
Section 5 concludes.

2 Travel-Time Estimation Methods

This section provides the setting of our study and describes four histogram
computation methods.

2.1 Trajectories in Spatial Networks

A spatial network, as shown in Figure A.1, is a weighted directed graph
G = (V, E, l), where V is a vertex set, E ⊆ V×V is an edge set, and l : E→ R

is a length function. Every edge e ∈ E represents a road segment.
A trajectory tr in a spatial network is represented as a tuple.

tr = (a, s),

where a = (a1, .., ak) is a tuple of trajectory-specific information like driver
and vehicle ID and s is a sequence of triples (t, e, p), where t is a timestamp,
e ∈ E is a segment in the spatial network G, and p is the vehicle’s position
on segment e, given as a distance from the start of the segment, meaning that
∀tr ∀(t, e, p) ∈ tr.s (p ≤ l(e)). Table A.1 provides five example trajectories.

A traversable sequence of neighboring segments is called a path. Exam-
ples of paths include 〈e1, e5, e8〉 and 〈e1, e2, e4〉. Path-based traffic information
can provide more detailed insights into travel-time, e.g., if a path contains
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Fig. A.1: Example Road Network Graph

ID user s
tr1 A 〈(1, e1, 3), (2, e1, 6), (3, e5, 4), (4, e8, 5)〉
tr2 A 〈(21, e1, 4), (22, e5, 3), (23, e8, 4)〉
tr3 A 〈(36, e1, 4), (37, e2, 3), (38, e4, 3), (39, e4, 6)〉
tr4 B 〈(3, e1, 2), (4, e1, 4), (5, e1, 6), (6, e5, 3), (7, e8, 3)〉
tr5 B 〈(16, e1, 1), (17, e1, 4), (18, e1, 7), (19, e3, 3), (20, e6, 1)〉

Table A.1: Example Trajectories

Method Temporal Features Path Cost Predicate

LM Static, Off-line No No
M2 Static, Off-line Yes No
M3 Dynamic, On-line Yes No
M4 Dynamic, On-line Yes Yes

Table A.2: A Summary of the four Methods

left turns where right of way has to be observed, path-based histograms can
pick up those path-specific delays, whereas single-segment histograms would
only give an average based on all directions.

2.2 Histogram Computation Techniques

Given a path P = 〈e1, e2, . . . , eX〉 and a departure time t, we apply four dif-
ferent methods to compute a travel-time distribution of using path P at t. We
represent a distribution as a histogram and use HP,t to denote the travel-time
histogram of traversing path P at t. A summary of the four methods is given
in Table A.2.
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Legacy Method (LM) [4, 6, 7]: In LM we partition every day into multi-
ple equal-sized intervals, e.g., 96 15-min intervals or 24 1-hour intervals. For
each segment e in the road network and for each interval I, we identify a set
of trajectories Te,I that occurred on segment e during interval I. If the cardi-
nality of set Te,I exceeds threshold β, we derive a histogram HLM

e,I from the
trajectories in Te,I , which represents the travel-time distribution of traversing
e during interval I.

This procedure is conducted off-line, meaning that all histograms are pre-
computed once and for all.

To compute the travel-time distribution of P at t using LM, we first iden-
tify the interval I such that t ∈ I. Next, we are able to obtain relevant his-
tograms for all segments in P, i.e., HLM

e1,I , HLM
e2,I , . . ., HLM

eX ,I . Finally, we convolve
the segments’ histograms to derive the histogram for path P at t:

HLM
P,t = �X

i=1HLM
ei ,I ,

where � is the convolution operator.
For example, for P = 〈e1, e2, e3, e4〉, the travel-time distribution at t is

computed as follows.

HLM
P,t = HLM

e1,I � HLM
e2,I � HLM

e3,I � HLM
e4,I

Convolution of histograms has been used in multiple earlier approaches [8–
10] and assumes independence between different segments, which often does
not hold for all segments [6].

In LM, the intervals of the histograms that are use in convolution are
pre-defined and not dependent on the departure time t. Thus LM is a static
approach. Next, LM considers all trajectories and does not apply any predi-
cates to further filter trajectories. Thus, LM is a non-specific approach. Finally,
LM only assigns histograms to segments, but not to paths. This explains the
“Path Cost” column in Table A.2.

Method 2 (M2) [2, 3]: We consider a static, path-based, and non-specific
method, M2.

M2 differs from LM in that it computes histograms not only for all seg-
ments, but also for some paths.

Specifically, if more than β trajectories occurred on path Pk during interval
I, we maintain a histogram HM2

Pk ,I for path Pk. The cardinality of any path Pk
is typically small. The larger the cardinality of a path Pk, the less likely the
path is to have more than β trajectories.

Similar to LM, the procedure is also conducted off-line.
To estimate the travel cost distribution of P at t, we first identify the inter-

val I such that t ∈ I. Next, we choose the coarsest combination of available
histograms of segments and subsequences of P and convolve them to obtain
HM2

P,t .
HM2

P,t = �Pk∈CoarsestSetHM2
Pk ,I ,
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For example, let P = 〈e1, e2, e3, e4〉. Assume that we have, in addition
to the histograms of all segments, histograms HM2

〈e1,e2〉,I
, HM2
〈e2,e3〉,I

, HM2
〈e1,e2,e3〉,I

.
Then, we have CoarsestSet = {〈e1, e2, e3〉, e4} since they together cover path P
and 〈e1, e2, e3〉 is coarser than paths 〈e1, e2〉 and 〈e2, e3〉. Thus, we have the
following:

HM2
P,t = HM2

〈e1,e2,e3〉,I � HM2
e4,I .

Consider another scenario where we also have histogram HM2
〈e1,e2,e3,e4〉,I

.
Then CoarsestSet = {〈e1, e2, e3, e4〉}, and thus the histogram can be returned
directly, and no convolution is needed.

Method 3 (M3): We consider a dynamic, path-based, and non-specific
method, M3.

In M3, we consider dynamically constructed intervals that are dependent
on the given departure time t. Specifically, we construct interval I′ = [t −
α
2 , t + α

2 , ], where α is an interval parameter. For example, if α = 60 minutes,
we construct interval I′ = [9:06, 10:06] if the departure time t is 9:36. We
only consider the trajectories that occurred during I′ to derive histograms for
segments or paths.

In addition, when we consider building histograms for the segments and
paths that do not contain the first segment in the given path P, we use a
shift-and-enlarge procedure [2] that shifts interval I′ by the minimum traversal
time and enlarges I′ by the maximum traversal time of the proceeding seg-
ments. For instance, assume that traversing 〈e1, e2, e3〉 takes at least 2 minutes
and at most 5 minutes. When retrieving the trajectories for building a his-
togram for segment e4, we should then use a shifted-and-enlarged interval
I′ = [9:08,10:11].

This procedure is conducted on-line, since the dynamically constructed
interval I′ is based on the departure time t, meaning that the histograms
cannot be pre-computed.

Finally, we compute the path cost distribution for path P at t as follows.

HM3
P,t = �X

Pk∈CoarsestSetH
M3
Pk ,I′ .

Method 4 (M4): We consider a dynamic, path-based, and specific method,
M4.

In M4, we only consider the trajectories further that satisfy particular
predicates during the dynamically constructed intervals. Such predicates
help us choose trajectories under specific conditions and may enable more
accurate travel-time estimation when such specific conditions apply.

For example, a predicate defined on drivers enables us to consider tra-
jectories from only a specific driver. Alternatively, a predicate defined on
weather enables us to only consider trajectories from different weather con-
ditions, e.g., rainy and icy conditions. This procedure is also on-line. We use
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HM4
Pk ,I′ , f to denote the histogram of path Pk that is derived from trajectories

that satisfy predicate f during interval I′. Then, we have the following:

HM4
P,t, f = �

X
Pk∈CoarsestSetH

M4
Pk ,I′ , f

For our example in Figure A.1 and Table A.1, the histogram HM4
P,t, f with

P = 〈e1, e5, e8〉, t = 4, α = 6, and f = "user = B" would be based on the
trajectory set {tr4}, and HM3

P,t would be based on {tr1, tr4}.

3 Experimental Design

This section explains how we evaluate the accuracy of the histograms com-
putation techniques from Section 2.2. The objective of the study is to assess
the potential for higher travel-time distribution prediction accuracy of his-
tograms constructed using the on-the-fly approach. In order to assess the
accuracy benefits of on-the-fly approach, we utilize the concept of likelihood.

3.1 Experimental Setup

Since our method is expected to increase predictive performance, we consider
trajectories from a real-world dataset (cf. Section 4.1). To evaluate our results,
we first store all trajectories from the first year (until December 2007) in a
temporal index. All trajectories for the following year are initially held back
and are then inserted in order. From those, k trajectories trq with a duration
of at, least 120 seconds are randomly selected, and a query Q = (P, t, α, R, f )
is generated from them before they are inserted. P is the path for which the
histograms are computed, t is the center of an interval I, α is the interval
parameter, R is the recurrence of the interval, and f is a predicate. The query
is run with t = t1, where t1 is the first timestamp of each trq, P is the sequence
of segments traversed in trq.s, and f is the predicate used for M4 user ∈ trq.a.
For α and R, multiple different values are considered.

We compare all methods introduced in Section 2.2. In addition to the
above parameters, the parameters d ≥ 1 and β ≥ 1 are specified. Parameter
d denotes the maximum cardinality of paths for which traversal times are
collected and β denotes the minimum sample size. The histogram collection
therefore returns up to d histograms for every segment in S. If the number
of trajectories traversing them is below β, they yield empty histograms.

3.2 Likelihood Ratio

Since our method aims to improve travel-time predictions, we evaluate the
method introduced in Section 2.2 by considering the likelihood the retrieved
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histograms for our sample trajectory trq would have predicted an actual
traversal time TTe of each segment or path in trq.s.

To achieve this, we first define a discrete probability density function pH
derived from a histogram H:

pH(TTe) =
m(TTe)

n
,

where m : R → N is a function that maps a traversal time to the number
of trajectories that traversed the segment or path of the histogram within the
time range of the bin of TTe. Further, n = ∑ mi is the number of trajectories
sampled in all bins of the histogram.

Fig. A.2: Histogram for e1 in G

The histogram for e1 from our example trajectories in Table A.1 is shown
in Figure A.2, where m(1) = 2, m(2) = 1, m(3) = 2, and n = 5. It follows
that pH(1) = 2

5 , pH(2) = 1
5 , and pH(3) = 2

5 .
Next, from the probability density function pH , the likelihood L(H|TTe) =

pH(TTe) of the traversal time TTe is computed. If likelihood for the M3 dy-
namic histograms LM3 = L(HM3|TTei ) consistently improves compared to
the LM static approaches LLM = L(HLM|TTei ), the on-the-fly approach can
provide more accurate travel-time estimations.

The likelihood ratio æ = LM3
LLM

, where LLM is the likelihood derived from
the convolved static histogram, and LM3 is the likelihood derived from the
dynamic one, is then computed from the respective histograms.

If LM3
LLM

> 1 then the likelihood for the dynamic approach is higher and
therefore is a better predictor of travel-time. The same comparison is per-
formed for the likelihood of the M4 dynamic user histogram LM4, and for
the M2 non-convolved static histogram LM2.

4 Empirical Study

We evaluate our results by examining the accuracy of travel-time estimation
based on a real-life trajectory dataset. In the study, we exclude traversal times
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for the first and last segments of trajectories to avoid any outliers that may
exist for such segments. In the experiments, we only consider paths with
cardinalities up to 3 since the share of empty results for M4 exceeds 30% in
our dataset after that. We use a sample size of k = 1, 000 trajectories, and we
use equi-width histograms with bin width h = 1s.

4.1 Young Drivers Dataset

The Young Drivers dataset covers ca. 670,000 trajectories within Aalborg and
the surrounding area during the period from December 2006 to December
2008 and comprises over 100 million map-matched GPS records [11] sampled
at 1 Hertz [12]. The data was collected from private cars, so all trajectories
with the same vehicle ID are assumed to be generated by the same driver.
This allows us to use the vehicle ID as a predicate in Method 4. Apart from
timestamp, trajectory ID, and vehicle ID, the records also contain a segment
ID and the vehicle’s position on the segment. These records are grouped by
trajectory ID, sorted by timestamp, and then aggregated to form a trajectory
set TR as defined in Section 2.1.

4.2 Histogram Accuracy

We first consider the accuracy of the advanced methods when compared to
the baseline LM. Specifically, we measure the likelihood ratios æM2 = LM2

LLM
,

æM3 = LM3
LLM

, and æM4 = LM4
LLM

of the histograms computed by the different
methods. When the fraction of likelihood ratios above 1 exceeds 0.5 sub-
stantially, this suggests that the method represented by the nominator is an
improvement over the method represented by the denominator.

Figures A.3a, A.3c, and A.3e show how often the likelihood of M2, M3,
and M4 histograms improves upon the likelihood of the LM histograms for
single segments and paths of length 2 and 3 when selecting trajectories in
I for every day, with α set to either 60 or 120 minutes and when varying β
from 5 to 100 trajectories.

Similarly, Figures A.3b, A.3d, and A.3f show the fraction of likelihood
ratios above 1 when using trajectories from all weekdays or all weekends.
Specifically, if departure time t falls on a weekday, all trajectories within I on
weekdays are considered, and if it falls on a Saturday or Sunday, all trajec-
tories within I on weekends are considered. For the single segment results
reported in Figures A.3a and A.3b, the difference between convolved (LM)
and non-convolved (M2) static is omitted since no convolution occurs.

From the figures, we see that the M3 histograms, despite considering a
larger time range due to the shift-and-enlarge procedure, provide no notice-
able improvement on the LM histograms. The same observation holds for the
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Fig. A.3: Histogram Accuracy

M2 histograms. However, the M4 histograms exhibit a consistent improve-
ment, especially for β ≥ 10. We also see that for the non-specific histograms,
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α = 60 performs better than the larger time range in most cases. For the M4
histograms, no such pattern can be observed. While outperforming the LM
baseline for single segment histograms, the other two non-specific methods
are only slightly better than the baseline method for two-segment histograms
(cf. Figures A.3c and A.3d), and both methods are slightly worse than the
baseline for three-segment histograms (cf. Figures A.3e and A.3f). With single
segments as well as paths, the M4 histograms consistently outperform their
non-specific counterparts; and for paths, they are the only methods that man-
age to improve significantly on the baseline. The improvement remains con-
sistent even for larger sample sizes for the single segment histogram methods
as well as for the path-based methods.

4.3 Fractions of Non-Empty Results

Next, we evaluate how significantly filtering by user reduces the sample that
is considered for histogram construction. This is to understand the trade-off
between higher sample size and “fit” of the trajectories that is made when
using the different methods. To evaluate the impact, we look at how often
queries return non-empty histograms for segments in S, i.e., when the num-
ber of trajectories n ≥ β. Figures A.4a–A.4c show how often queries with
d = 1 and a daily interval return non-empty results with our dataset for dif-
ferent segments given different time ranges α and minimum sample sizes β.
The fractions of non-empty returns of the M3 method (cf. Figure A.4b) are
slightly higher than those of the static methods (cf. Figure A.4a), which is
to be expected due to the shift-and-enlarge procedure that increases the time
range for every subsequent segment.

The fraction of non-empty returns for M4, shown in Figure A.4c, is signif-
icantly lower than for the two other histogram types, since single drivers con-
duct considerably fewer trips than the whole population of drivers. Datasets
as sparse as the Young Drivers dataset would therefore require the histograms
computed with the other methods as fall-back from M4 to provide sufficient
coverage of segments and paths.

4.4 Computational Efficiency

While computational efficiency is not the focus of this paper, but is rather a
different subject to be considered after the improved accuracy of the on-the-
fly approach is established, current results are encouraging.

With our in-memory temporal index, the retrieval of all M3 histograms
over a period between one and two years, with d = 3 took between 1.4 and 2.5
ms per trajectory for the daily and weekend/weekday interval, and between
0.2 and 0.5 ms for the weekly interval. For the M4 histograms, the retrieval
times fell from 0.9 to 1.5 ms and from 0.15 to 0.25 ms, respectively.
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Fig. A.4: Fraction of Non-Empty Results

5 Conclusion

The empirical study indicates that on-the-fly histogram construction is able to
provide considerable accuracy improvements over the state-of-the-art, even
for sparser datasets. The evaluation also shows that the improvements are
consistent across smaller as well as larger sample sizes. With GPS data be-
coming more and more abundant, on-the-fly histogram construction will be-
come even more attractive in the future.
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Abstract

Travel-time estimation for paths in a road network often relies on pre-computed his-
tograms that are usually available on a road segment level. Then the pre-computed
histograms of the segments of a path are convolved to obtain a histogram that esti-
mates the travel time. With the growing sizes of trajectory datasets, it becomes possi-
ble to compute histograms for increasingly longer sub-paths. Since pre-computation
is infeasible for all sub-paths in a road network, we propose computing histograms
on-the-fly, i.e., during routing. Such an on-the-fly method must filter the underlying
trajectory dataset by spatio-temporal predicates to obtain the relevant trajectories and
offers the opportunity to apply additional filtering predicates to the trajectories with
little overhead. We report on a study showing that considerable improvements in
accuracy of the histograms obtained for paths can be obtained by choosing filtering
predicates that not only adapt to the intended start of a trip, but also to the driver and
the weather. We also make the cases for a sub-path partitioning based on segment
categories since there are significant differences between road types when applying
our on-the-fly method.

c© 2018 IEEE. Reprinted, with permissions, from Robert Waury, Christian
S. Jensen, and Kristian Torp, Adaptive Travel-Time Estimation: A Case for
Custom Predicate Selection , 2018
The layout has been revised.



1. Introduction

1 Introduction

Travel times in road networks depend to a large degree on speed limits and
congestion, but are also influenced by the vehicle type, weather conditions,
and the driver’s behavior.

Figure B.1 illustrates the main challenge addressed in this paper. A driver
wants to go from Point A to Point B during non-rush hours and dry weather
conditions and issues a query to a trajectory database. This database contains
six trajectories labeled tr1 to tr6. For each of the trajectories, the weather
condition, rush/non-rush, and the travel time from A to B is shown. As an
example, tr1 uses 200 seconds to go from A to B during rush hour and dry
weather conditions.

The database contains no trajectories for the query that match exactly the
route and the dry weather conditions and that occurred during non-rush
hour. The challenge is then which trajectories to use for the travel-time esti-
mation. Should the travel-time be estimated using tr1 and tr2, as they match
the route and the weather conditions, but do not occur during rush hour? Or
should tr3 and tr4 be used as they match the route, the rush-hour condition,
but not the weather condition? Or should tr5 and tr6 be used as they match
the rush hour and weather condition, but not the complete path? Or should
all trajectories tr1 to tr6 be used?

Fig. B.1: Trajectories on a Path

Current approaches to travel-time estimation base their estimates on all
recorded trajectories crossing a path in a fixed time window. However, this
arrangement only estimates the travel time of an average vehicle and fails to
account for behavior related to specific circumstances and the driver.

The goal of this study is to extend an approach presented previously [1]
to longer paths within the road network based on more detailed data and to
focus on how segment categories and congestion influence travel time. With
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this extended on-the-fly approach to trajectory selection, the considered data
can be limited to the most relevant trajectories so that estimates based on
unrelated or less relevant trajectories is avoided. Furthermore, we show that
our on-the-fly approach can consider travel patterns specific to certain sub-
path types, thereby increasing the overall accuracy of travel-time estimates.
The amount of personalized GPS data can be expected to grow in the coming
years, making our approach even more viable.

In an earlier study, we showed that the predictive performance of travel-
time histograms can be improved with an on-the-fly approach as opposed to
simply using pre-computed histograms [1]. This study, however, was limited
to short paths only and used a small dataset. In this study, we consider how
histogram quality is affected when our method is applied to longer paths and
when categories of segments are accounted for. Since we are unable to make
assumptions about the underlying distributions of the travel time, we can-
not rely on proven methods like Student’s one sample t-test to evaluate our
results [2]. To address this limitation, we suggest a two-factor quality mea-
surement, encompassing definitions of accuracy and precision, to evaluate
histograms.

Section 2 reviews related work, provides an overview of core concepts,
and defines the problem. Section 3 provides details about our collection
method and gives a detailed example. Next, Section 4 describes the experi-
mental setting and our baseline, and Section 5 reports our results. Section 6
concludes and provides an outlook for future research.

2 Preliminaries and Problem Formulation

This section introduces basic concepts related to travel-time estimation in
spatial networks and formulates the problem we are addressing.

2.1 Related Work

Previous studies on travel-time estimation either estimate segment traversal
times and turn costs [3] or estimate histograms for single segments or short
pre-defined paths with considerable traffic [4, 5]. In our approach, travel-
times are computed for paths instead of only for individual segments, which
eliminates the need to estimate turn costs. To our knowledge, no previous
work has considered different segment categories or suggested two-factor
quality metrics that can be applied to travel-time estimations of single trajec-
tories.
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2.2 Trajectories in Spatial Networks

A spatial network is modeled as a directed graph G = (V, E), where V is
a vertex set and E ⊆ V × V is a set of edges that represent road segments.
Every edge e ∈ E has a category that captures the road type of the segment
it represents. A traversable sequence of segments P = 〈e1, e2, ..., el〉 is called
a path, with |P| = l. Its sub-paths 〈ei, ..., ej〉, with 1 ≤ i ≤ j ≤ l, are denoted
as P[i, j]. The set of trajectories we call T. A trajectory tr ∈ T of a user u
in a spatial network is denoted as (trx, u) → s, where trx is the trajectory
identifier and s is a sequence of 4-tuples:

s = 〈(e1, t1, d1, w1), (e2, t2, d2, w2), ..., (el , tl , dl , wl)〉,

where ei = (vx, vy) ∈ E, t1, .., tl are the timestamps when a segment was
entered with ∀i∀j : i < j ⇒ ti < tj, di > 0 is the duration of the traversal,
wi is the weather during ti, and l is the number of segments traversed. The
path of trajectory tr is called Ptr, and its starting time is tr.t1. The duration
function D(tr, P) = di + di+1 + ... + dj, with Ptr[i, j] = P, returns the traversal
time TTP

tr of a path P by a trajectory if tr does not fully traverse P, D(tr, P) is
undefined.

2.3 Problem Formulation

Our goal is to provide a histogram that estimates the travel-time of a trip
on a pre-defined path dependent on the day of the week, the time of day,
the driver, and environmental factors, e.g., the weather. To achieve that, we
answer the path query Q = (P, t, u, v). This query on a trajectory set takes as
parameters a path P, a starting time t, user information u, and environmental
factors v at t. It returns a trajectory set TP of trajectories that best capture the
travel-time of user with u on P during t given v. From this set, travel times
XP = {x1, ..., xβ} are extracted from which a histogram can be computed that
approximates the travel-time distribution of a trip.

As the example in Figure B.1 shows, there are several possibilities to se-
lect a set of relevant trajectories. The easiest way would be to collect all
trajectories that traverse any of the segments e ∈ P and compute a travel-
time histogram Hi for each segment. Then these can be convolved to obtain
a travel-time histogram H for the complete path: H = H1 � H2 � ...� Hl .
This approach has the advantage that the segment histograms can be pre-
computed and updated easily. The histograms can also be pre-computed for
discrete time intervals to be able to distinguish between rush hour and free-
flow times. This approach, however, fails to consider factors such as turn
costs, weather conditions, or user-specific behavior.

It is therefore advantageous to base histograms on trajectories that not
only closely match user and environmental factors, but also whose paths
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most closely resemble P. As mentioned in Section 2.2, segments have dif-
ferent properties depending on their category. The study presented in this
paper aims to show which predicates result in the most relevant trajectory
sets for travel-time estimates based on the different segment categories in a
road network, such that the highest-quality travel-time histograms are com-
puted.

3 Collection Method

To address the shortcomings of the segment level approach, we employ the
strict path query Q = (P, t, f ) that returns a set of trajectories TP ⊆ T that
follow all segments on the path P without stops or detours:

TP = {tr ∈ T|∃i, j[Ptr[i, j] = P ∧ tr.ti ∈ It ∧ f (u, wi)]},

where It is a temporal filter predicate derived from the starting time t and f
is a set of filter predicates that trajectories in TP have to fulfill.

Using such a query Q for an average trip path, which can consist of
dozens of segments, is unlikely to return a sufficient number of trajectories.
Instead, we need to split Q into k sub-queries 〈Q1, Q2, ..., Qk〉 =
〈(P1, t1, f1), (P2, t2, f2), ..., (Pk, tk, fk)〉 that return the trajectory sets 〈T1, T2, ..., Tk〉,
where Pi are non-overlapping sub-paths of P, and t1 ≤ t2 ≤ ... ≤ tk.

3.1 Architecture

Figure B.2 shows the overall architecture of the implementation of our ap-
proach. After a user dispatches a query Q to the Sub-query Module, the
query is initially partitioned according to a simple heuristic, e.g., sub-paths
of a fixed length, or sub-paths that have the same segment category. Each of
the k sub-queries is then assigned temporal and trajectory filter predicates.
The Trajectory Module then runs each sub-query and returns the cardinal-
ities of their trajectory sets 〈|T1|, |T2|, ..., |Tk|〉 to the Sub-query Module. The
module then checks whether pre-defined sample size requirements are met
(or significantly exceeded) in each sub-query result. If the sample size re-
quirement is not met by a sub-query, the query can be modified in three
ways:

• The trajectory filter predicates 〈 f1, f2, ..., fk〉 are relaxed.

• The temporal filter predicates 〈I1, I2, ..., Ik〉 are relaxed.

• The partitioning of the paths 〈P1, P2, .., Pk〉 is changed by splitting it into
smaller sub-paths.
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Fig. B.2: Overall Architecture

When the sample size requirements are satisfied for every trajectory set in
〈T1, T2, ..., Tk〉 travel-time histograms of the sub-paths 〈H1, H2, ..., Hk〉 are com-
puted in the Histogram Builder and are convolved into a single histogram
H = H1 � H2 � ...� Hk that aims to approximate the travel-time distribution
for the complete path P [6].

If the sample size requirements are significantly exceeded, it may also be
prudent to increase the selectivity of the predicates to obtain more relevant
trajectory sets.

3.2 Parameters

In our study, we perform a strict path query Q = (P, t, f ), described above
with three additional parameters: α ∈ (0, 24 hours], R ∈ {daily, weekly, ...},
and β ≥ 1. For each of our queries Q = (P, t, f , α, R, β), two types of filter
predicates are supported in f :

• User predicates u

• Weather predicates w

This means that only trajectories of user u or with weather condition w qual-
ify for TP. If f = ∅ then only the temporal filter predicates are checked.
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The parameter α is the time window size, which means that with the starting
time t, only trajectories in the interval It = [t− α

2 , t + α
2 ) are considered. R

is the recurrence parameter for interval It. It describes which days are con-
sidered, e.g., if R = daily then the trajectories on all days that fall into It are
considered. The parameter β ≥ 1 is the sample size requirement. Since not
all eligible trajectories might be required for an accurate estimate, only the
first β trajectories are collected. They are collected from the closest eligible
interval until the sample size requirement is met or the eligible intervals are
exhausted. This parameter is included to reduce the likelihood of obtaining
stale results and to reduce query processing time.

3.3 Example

We proceed to describe four queries on the trajectory set T from Table B.1
in the example road network G in Figure B.3. In all examples, the query
path is P = 〈A, B, E〉, the starting time is t = [Mon, 9:40], and the sample size
parameter β is omitted. All durations d are in seconds. If the filter parameter
f = ∅, only temporal filters are applied.

Fig. B.3: Example Road Network Graph G

1. Q1 = (P, t, 30, daily, ∅). Q1 includes every trajectory in the interval I =
[9:25, 9:55) on every day of the week and returns T1 = {tr1, tr2, tr3, tr4,
tr6, tr7}.

2. Q2 = (P, t, 20, daily, ∅). Q2 includes every trajectory in the interval I =
[9:30, 9:50) on every day of the week and returns T2 = {tr1, tr2, tr3, tr7}.

3. Q3 = (P, t, 30, weekly, ∅). Q3 includes every trajectory in the interval
I = [9:25, 9:55) on every Monday and returns T3 = {tr1, tr2, tr7}.

4. Q4 = (P, t, 30, daily, {”u = a”}). Q4 includes every trajectory in the
interval I = [9:25, 9:55) on every day of the week and of user a and
returns T4 = {tr1, tr3}.

Trajectory tr5 is never selected because it does not meet the strict path re-
quirement.
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tr u s

tr1 a 〈(A, [Mon, 9:35], 57, fog), (B, [Mon, 9:36], 36, fog),
(E, [Mon, 9:36], 47, fog), (F, [Mon, 9:37], 13, fog)〉

tr2 b 〈(A, [Mon, 9:42], 52, fog), (B, [Mon, 9:43], 35, fog),
(E, [Mon, 9:43], 40, fog)〉

tr3 a 〈(A, [Tue, 9:41], 50, wet), (B, [Tue, 9:42], 35, wet),
(E, [Tue, 9:43], 41, wet), (F, [Tue, 9:44], 11, wet)〉

tr4 c 〈(A, [Tue, 9:51], 63, wet), (B, [Tue, 9:52], 39, wet),
(E, [Tue, 9:53], 51, wet), (F, [Tue, 9:54], 13, wet)〉

tr5 a 〈(A, [Wed, 9:30], 56, wet), (D, [Wed, 9:31], 12, wet),
(C, [Wed, 9:31], 25, wet), (B, [Wed, 9:32], 40, wet),
(E, [Wed, 9:33], 40, wet)〉

tr6 b 〈(A, [Wed, 9:29], 47, wet), (B, [Wed, 9:30], 38, wet),
(E, [Wed, 9:31], 35, wet), (F, [Wed, 9:31], 13, wet)〉

tr7 c 〈(A, [Mon, 9:38], 56, dry), (B, [Mon, 9:39], 39, dry),
(E, [Mon, 9:40], 50, dry), (F, [Mon, 9:41], 10, dry)〉

Table B.1: Example Trajectory Set T

3.4 Congestion-dependent Window Size

In addition to the above method we define the query Q = (P, t, f , α, R, β, simCI),
where simCI ∈ [0, 1) is the similarity of the congestion index. The conges-
tion index CII is a measure of the congestion on a path in a time inter-
val I. It is defined in terms of the average travel time TTI in the interval
and the free-flow travel-time TTff , which is the average travel time between
22:00 and 6:00. The congestion index for interval I is defined as follows:
CII = max(1− (TTff /TTI), 0) ∈ (0, 1).

The congestion-dependent window size is computed by first dividing
the day (or week) into s = 24 hours

α (s = 168 hours
α ) intervals 〈I1, I2, ..., Is〉 =

〈I[0,α), I[α,2α), ..., I[(s−1)α,sα)〉, e.g., if α = 15 minutes then the intervals are
〈[0:00, 0:15), [0:15, 0:30), ..., [23:45, 0:00)〉. Second, the congestion index of each
interval is computed. A range of intervals 〈Ii, ..., Ij〉 is denoted as I[i,j]. We
call the initial starting interval of the starting time t, It = Ii = I[i,i], so that
(i− 1)α ≤ t < iα. Then, for the adjacent intervals, it is checked whether the
difference of their congestion indexes exceeds the maximum allowed differ-
ence δmax = simCI |maxCI − CIIt |, where maxCI is the maximum congestion
index of the path. If not, they are merged into a larger interval. The metric
ensures that the most congested intervals are never merged with other inter-
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m(I[i,j]) =


m(I[i,(j+1) mod s]) if |CII(j+1) mod s

− CIIt | ≤ δmax

m(I[(i−1) mod s,j]) if |CII(i−1) mod s
− CIIt | ≤ δmax

I[i,j] otherwise
(B.1)

vals; and if simCI = 0, only intervals with an identical congestion index are
merged, i.e., the lower simCI the closer the congestion indexes of two adjacent
intervals have to be to be merged. This is repeated until the first interval with
a difference larger than the maximum difference is found. This procedure is
defined by the recursive function m(I[i,i]) in Equation B.1.

4 Experimental Setup

This section describes the six hypotheses we aim to study, the datasets and the
sample used in our experiments, their evaluation criteria, and the baseline.

4.1 Hypotheses

This section describes the hypotheses we study in our experiments and offers
some explanation of their relevance.

• HA: Impact of User Predicate We assume that user predicates improve
the predictive performance of our method since we expect driving be-
havior to be more predictive of travel-time than the time of day (and
day of the week) alone.

• HB: Impact of Weather Predicate We assume that weather predicates
improve the predictive performance of our method because we expect
driving behavior to change with the weather.

• HC: Impact of Temporal Filters We assume that smaller time windows
improve the predictive performance of our method since they are more
sensitive to changes in congestion.

• HD: Impact of Sample Size We assume that larger sample sizes im-
prove the quality of our estimates since they would be less sensitive to
outliers.

• HE: Impact of Segment Category We assume that there will be a dif-
ference in predictive performance between the different segment cat-
egories since there is less interference with the traffic, e.g., by round-
abouts or traffic lights on segment categories like motorways.
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• HF: Impact of Congestion We assume that the queries using congestion-
based window sizes provide improved predictive performance because
it allows them to be sensitive to congestion while also being less af-
fected by data staleness since the windows sizes can be larger than for
the methods using fixed size time windows.

4.2 Datasets

This section describes the map and trajectory datasets used.

OpenStreetMap

Our network graph is based on the OpenStreetMap data [7] of the road net-
work of Northern Denmark, which contains around 750,000 road segments.
When converted to a spatial network graph, this graph has around 1.46 mil-
lion directed edges. Each edge represents a direction on a segment and has
one of 17 different segment categories. Our study focuses on four major
segment categories in particular:

• motorways: major divided roads that have at least two lanes

• primary roads: important roads that link larger towns

• secondary roads: roads that link towns

• tertiary roads: roads connecting villages or that are urban main streets

This categorization is available for all OpenStreetMap maps and makes seg-
ment category-based partitioning possible for other map-matched trajectory
datasets as well [8].

ITSP Dataset

The "ITS Platform" dataset contains over 1.1 billion GPS points sampled at
1 Hertz collected from 458 distinct vehicles in Aalborg and the surrounding
region during the period from May 2012 to December 2014 [9].

In a preprocessing step, the GPS points are map-matched to obtain in
excess of 79 million segment traversals that form around 1.4 million trajec-
tories, where a new trajectory is created if more than a 180 seconds have
elapsed since the last GPS point. The map-matching algorithm also discards
GPS points at the beginning and end of a trip if too few points are matched
to the start and end segments of the trajectory [10]. This is done so the du-
rations of the segment traversals are meaningful. During the pre-processing,
the trajectories are also annotated with weather categories.
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Each GPS record contains the following information:

• trajectory ID

• vehicle ID

• segment ID

• time and date the segment was entered (minute resolution)

• time on segment (second resolution)

• weather type

Since the cars in our dataset are privately owned, we treat the vehicle ID
as the user ID. The segment IDs are derived from the unique mapping of
OpenStreetMap segment key and the driving direction. The time on a seg-
ment is also computed during the preprocessing step. The following weather
categories are derived from the NOAA weather data [11] for Denmark: fog,
thunder, drifting, wet, dry, snow, and freezing. An additional category "none"
is included, which happens to be most prevalent in our dataset due to miss-
ing data from the weather stations.

4.3 Trajectory Sample

For our study, we pick a point in time covered by the ITSP dataset and desig-
nate it the "cutoff timestamp" tc. In our case, it is a timestamp on September
8th 2013, the median of the starting timestamps tr.t1. This is to ensure that
subsequent queries have at least a year of trajectory data available. We then
identify 14 paths that could be viable sub-paths in a partitioned query as de-
scribed in Section 3 and whose trajectory sets TP satisfy the following criteria:

• They have a trajectory set before the "cutoff timestamp" with |TP
≤tc
| ≥

5000.

• |P| ≥ 6

• They have a length of at least 500 meters.

• They do not overlap with any of the other chosen paths.

• They consist of a single segment category.

• If multiple overlapping paths meet the requirements, the longest one is
chosen.
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name category |P| length T̄T/TTff maxCI |TP
≤tc/>tc

| tl/r/y/o

MW1 motor-
way

11 7836 241/241 0.095 10611/
9066

0/0/0/0

MW2 motor-
way

12 17565 531/538 0.087 8157/
6623

0/0/0/0

MW3 motor-
way

11 16486 517/516 0.137 7015/
5056

0/0/0/0

MW4 motor-
way

17 9064 321/327 0.154 6932/
5705

0/0/0/0

P1 primary 28 7022 357/343 0.081 5104/
4479

0/3/0/1

P2 primary 18 5543 253/243 0.076 5504/
4349

0/2/0/0

P3 primary 20 7960 352/340 0.061 7324/
5793

0/1/0/0

S1 secon-
dary

13 1539 135/120 0.187 5192/
4176

5/0/0/0

S2 secon-
dary

17 1503 155/135 0.282 5133/
3807

4/0/0/2

S3 secon-
dary

11 1355 73/70 0.136 5213/
4204

0/1/0/1

S4 secon-
dary

12 2973 131/124 0.353 5109/
4263

0/0/0/1

T1 tertiary 11 1038 67/62 0.240 5095/
4535

0/1/0/3

T2 tertiary 11 720 22/22 0.335 5096/
6462

0/0/0/8

T3 tertiary/
unclas-
sified

8 884 90/71 0.495 5479/
4421

0/1/1/2

Table B.2: Paths chosen for the study

59



Paper B.

Details pertaining to the chosen paths can be found in Table B.2 that con-
tains the name, segment category, number of segments, length in meters,
average travel-time in seconds, free-flow travel-time, maximum congestion
index, number of full traversals before and after tc, and number of obstacles.
The table also shows that most paths are considerably longer than the short
minimum length (500 m). Obstacles are separated into four groups: signaled
intersections (tl), roundabouts (r), stop and yield signs (y), and other obsta-
cles (o), i.e., speed bumps, pedestrian crossings, and bus stops at the same
lane.

The obstacles are also counted if they immediately precede or follow the
path. Link type road segments were ignored since they do not form longer
paths in the road network. Segments categorized as trunk, residential, living-
street, service, road, track, and unpaved were excluded since the ITSP dataset
does not contain sufficient numbers of trajectories traversing them.

The paths MW1–3 are motorway paths outside of cities and MW4 is
within city limits. P1–3 are primary roads outside cities. S1 and S2 are
on secondary roads within city limits and S3 and S4 are outside cities. The
tertiary paths T1–3 are all within city limits. Path T3 also contains unclassi-
fied segments and is included because no other paths of sufficient length and
sample size are in the dataset.

From each of those paths, we sample a set {tr1, .., trn} ⊂ TP
>tc

of trajecto-
ries that started after tc and fully traverse them. For our study, we choose
n = 1000 for each path.

4.4 Sample Types

For each sampled trajectory tr, three different sets of trajectories are retrieved:

• TP
p , based on all preceding traversing trajectories

• TP
u , based on all preceding traversing trajectories of the same user (cf.

Section 3.3, example 4)

• TP
w , based all preceding traversing trajectories during the same weather

condition w

Each of these sets is a subset of TP
<tr.t1

. The same temporal filter predicates
are applied to the three sets TP

p/u/w. The combination of a user and a weather
predicate is supported but is not included in the study because our dataset is
too sparse for such a selective predicate.

We evaluate seven different sample sizes β (20, 30, 40, 50, 60, 70, and 80),
six different time window sizes α (15, 20, 30, 45, 60, and 90 minutes), and four
recurrence patterns R:

• daily (D)
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• weekly (W)

• Monday to Friday (F)

• Monday to Thursday (T)

The recurrence from Monday to Thursday is included because studies of
driving behavior show that driving behavior on Fridays often differs signifi-
cantly from those of the preceding week days [12].

4.5 Qualitative Assessment

The predictive performance for each trajectory sample TP
β = 〈tr1, ..., trβ〉 is

evaluated by its set of travel times XP = 〈d(tr1, P), ..., d(trβ, P)〉 = 〈x1, ..., xβ〉.
For each travel-time sample XP retrieved for a sample trajectory tri we eval-
uate the accuracy, which we define as distance to the sample mean, and its
precision, which we define as the width of its prediction interval. For both
values, we consider lower values as better since they allow better estimates
of travel time.

Accuracy

The accuracy of the retrieved samples for a path P is defined as the symmetric
mean absolute percentage error [13] between the mean of the sample X̄P

i and
the travel-time of the trajectory tri on P, TTP

tri
= D(tri, P):

sMAPEP =
100%

n

n

∑
i=1

|X̄P
i − TTP

tri
|

1
2 (X̄P

i + TTP
tri
)

where n is the size of the trajectory sample mentioned in Section 4.3.
The sMAPE was chosen because it allows the comparison of results from

different paths and is not as biased against overestimations as its non-symmet-
ric variant [14].

Precision

The precision of the distribution of the sample 〈x1, ..., xβ〉 is based on the
width of its prediction interval.

Since earlier studies show that travel-time distributions cannot be ex-
pected to follow a parametric distribution [5], we use the distribution-free
prediction interval suggested by Saw et al. [15]:

[X̄P − AP, X̄P + AP],
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where X̄P is the sample mean, AP = λ(1 + 1
β )

1
2 SP, SP is the square root

of the sample variance, and β is the sample size.
We choose λ ≥ 1 so that we obtain the 90% prediction interval P(|X̄P −

xβ+1| ≤ AP) ≥ 0.9, where TTP
tri

is considered the (β + 1)-th sample xβ+1. For
computing λ, the method suggested by Konijn [16] is used, i.e., for β = 20,
we choose λ = 3.154.

For the precision to be comparable between different paths, we normalize
it with the travel time and average it for each path and method:

precisionP =
100%

n

n

∑
i=1

2AP
i

TTP
tri

Since the distribution-free prediction interval makes very little assumptions
about the underlying distribution, it provides only a very conservative esti-
mate. It is therefore of little use in predicting future values but allows us
to compare the ranges of the underlying distributions of different paths and
collection methods.

It should be noted that good precision is subordinate to accuracy since a
method with good precision but poor accuracy will be less likely to include
the actual travel time than a method with poor accuracy and poor precision.
The precision is therefore useful when comparing methods with similar ac-
curacy or when trying to show that one methods is outperforming another in
both regards. Our precision metric could also be used when making routing
decision in a setting where time constraints, e.g., a trip might not take longer
than 45 minutes, have to be observed. Sub-paths with large prediction in-
tervals could then be avoided by the routing algorithm since they introduce
more uncertainty to the travel time.

4.6 Baseline

As a baseline for accuracy, we use the sum of the average travel times of
each segment of path P = 〈e1, ..., el〉, ∑l

i=1 X̄〈ei〉, which is equivalent to the
average of the travel-time samples from the trajectory sets returned for the
sub-queries Qi = (〈ei〉, 0, 24 hours, daily, ∅, ∞), with 1 ≤ i ≤ l.

We do not provide a baseline for precision. Our metric requires a single
trajectory set to be comparable, so we only compare the three different filter
methods with each other.

5 Results

This section describes the effect sample size, window size, recurrence, and
different collection methods have on accuracy and precision.
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(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.4: Accuracy w/ different sample sizes

5.1 Effect of Sample Size

Figures B.4a to B.5d show the results for a daily sampling with a window size
of α = 20 minutes with seven different sample size requirements β. Samples
where the requirement is not met are ignored. The y-axis in Figures B.4a
to B.4d shows the average symmetric mean absolute percentage error of the
samples, and the y-axis in Figures B.5a to B.5d shows the average width of
the prediction interval in percent of travel-time.
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(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.5: Precision w/ different sample sizes

Figures B.4a and B.5a show that for the four motorway paths, the user-
based method outperforms the other two in accuracy as well as precision,
except for MW3 that produces slightly worse precision with larger sample
sizes. The accuracy baseline for MW1 is not visible in Figure B.4a (and B.6a)
because it is nearly identical to the baseline of MW2. Use of the weather
predicate shows only little improvement compared to method without trajec-
tory predicates. Increasing the sample size has little effect on accuracy and
generally makes the precision worse. This is most likely due to the higher
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(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.6: Accuracy w/ congestion-dependent window sizes

probability of outliers in the larger samples and because of data staleness.
Figure B.4a also shows that MW4 exhibits the worst accuracy and precision
for all methods. This most likely is because it is within the city limits and
therefore has a much higher density of motorway accesses and exits, which
make driving behavior less predictable. This is also consistent with its higher
congestion index.

A similar pattern can be seen for the three primary paths in Figures B.4b
and B.5b but the user-based method gets worse with higher sample sizes.
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(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.7: Accuracy w/ congestion-dependent window sizes

This may be explained by the high selectivity of the user-based method,
which requires the method to collect trajectories further back in time than
the other methods to meet the sample size requirements. When data stal-
eness becomes a problem, this may suggest that those paths are especially
affected by long-term cycles, e.g., seasons. This is consistent with the devel-
opments for P2 where the degradation in accuracy is the most pronounced for
the user-based method but also shows some improvements with increasing
sample sizes for the weather-based method. Among all segment categories,
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the three primary paths are closest to each other in accuracy and precision,
which could in part be due to them being the least affected by congestion.

For the secondary paths in Figures B.4c and B.5c, the user-based method
manages to improve accuracy, except for S3, which never manages to exceed
the results of the method without predicates. This may be because of the
relative fast average traversal time of S3, which suggests that the user-based
method is best for secondary paths with longer average travel-times. The two
inner city paths S1 and S2 exhibit the same behavior as MW4 insofar as they
also have much lower accuracy and precision than their counterparts outside
city limits.

The tertiary paths in Figures B.4d and B.5d exhibit very different behav-
iors from each other. T1 has the most accurate and precise results but the
user-based method only provides better results with lower sample sizes. This
is most likely again due to having to rely on more stale data than the other
methods due its high selectivity. For T1, the weather-based method also
shows the best results for larger sample sizes. Path T2 performs the worst,
which is most likely due to it being short and due it being in a residential
area, which can cause considerably more interference. The predicate-based
methods provide no improvements over the plain on-the-fly method. For
path T3, the user-based method exhibits decreasing accuracy and precision
with increasing sample size and does not improve upon the baseline. All
three paths share the characteristic that the user-based method provides the
worst precision for higher sample sizes.

5.2 Congestion-dependent Window Size

Figures B.6a to B.7d show accuracy and precision when using the congestion-
based window size with a daily sampling, a sample size of β = 20, and an
initial time window of α = 15 minutes. For each segment category, nine win-
dow sizes based on the congestion similarities simCI , (0, 0.05, 0.1, 0.2, 0.25, 0.3,
0.4, 0.5, 0.75) are shown in the figures.

The accuracy for motorways shown in Figure B.6a exhibits no signifi-
cant improvements. The precision shown in Figure B.7a is slightly improved
for low values of simCI for MW4 and the user-based method of MW3. Fig-
ures B.6b and B.7b show similar results for the primary roads with no im-
provements in accuracy and small improvements in precision for smaller sim-
ilarity values. The accuracy of the user-based method can be improved with
similarity values between 0.05 and 0.2, which also provides small improve-
ments in precision, as shown in Figures B.6c and B.7c.

Figure B.6d shows that congestion-based window sizes can significantly
improve the accuracy of the user-based methods on tertiary roads. So much
in fact that it now manages to outperform the other methods on paths T1 and
T3. The increased window sizes also increase precision for larger similarity
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(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.8: Accuracy & Precision w/ different window sizes

values, which can be seen in Figure B.7d.

5.3 Effect of Window Size

Figures B.8a to B.8d show the results for a daily sampling, a sample size of
β = 20, with six different window sizes α (15, 20, 30, 45, 60, and 90 minutes).

Figure B.8a shows that smaller window sizes improve accuracy as well
as performance for the motorway paths. A similar pattern can be seen in

68



5. Results

(a) motorways (b) primary roads

(c) secondary roads (d) tertiary roads

Fig. B.9: Accuracy & Precision w/ different recurrences

Figure B.8b for primary paths, but for slightly larger window sizes (20 to
30 minutes). The secondary roads in Figure B.8c show similar behavior and
perform best with smaller window sizes with the exception of S3. The user-
based method performs best for the tertiary paths in Figure B.8d with larger
window sizes, which suggests that more recent data is more important to
the quality of the estimates than the closeness to the time of day. This is
also consistent with the results for the congestion-based window size where
a large tolerance for merging adjacent intervals also increases accuracy and
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precision.

5.4 Effect of Recurrence

Figures B.9a to B.9d show the results for a sample size of 20, a window size of
20 minutes, with four different recurrences (weekly (W), daily (D), Monday
to Friday (F), and Monday to Thursday (T)).

Figure B.9a shows that the user-based method performs best with a weekly
recurrence except for the inner city motorway MW4, which has best the pre-
cision and accuracy with a daily recurrence and Monday to Thursday. The
other methods perform best with a workday recurrence. The results for the
primary roads in Figure B.9b are consistent with earlier observations for P2
since the recurrence with the highest selectivity again yields the worst results
for the user-based method. The same is true for the method without predi-
cates, but the effect is far less pronounced. For nearly all paths and methods,
the recurrence from Monday to Thursday or Friday yields the best accuracy.
Figure B.9c shows that the recurrence of Monday to Thursday or Friday ex-
hibits the best accuracy for the inner city paths, except for the user-based
method where a weekly recurrence does best. For the other two paths, the
weekly recurrence is the most inaccurate, except for the user-based method
for S3. In all other cases for S3 and S4, one or both workday recurrences per-
form the best. The tertiary paths in Figure B.9d show that recurrences with
higher selectivity perform worse, which is consistent with our results for the
different window sizes.

6 Conclusion and Outlook

Our study shows that the quality of travel-time estimates to a large extent
depends on the segment types. With errors as low as 4% for motorway paths
and as high as at least 40% for some tertiary paths, the diverging results for
different road types suggest that there is no single best way to identify the
most relevant trajectories for travel-time estimates.

Hypothesis HA turned out to hold in most cases, as user-specific data can
significantly improve the accuracy and precision of estimates on longer paths.
HypothesisHB, on the other hand, proved to be less applicable since weather-
based predicates do not provide consistent improvements. The impact of
temporal filters (HC) is very segment-category dependent, where motorways
and primary and secondary roads are very congestion-sensitive, i.e., they
yield better results with smaller window sizes. In contrast, tertiary roads
seem to be more sensitive to data staleness, i.e., they get worse with smaller
window sizes (as well as smaller sample sizes).
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Hypothesis HD turned out to not hold in most cases. First, only the user-
based method is considerably affected by the sample size; furthermore, the
precision deteriorates in nearly all cases when the sample size is increased.
Hypothesis HE turned out to generally hold since the four different segment
categories exhibit very different predictive performance. But the varying per-
formance of the secondary and tertiary paths within the same category sug-
gests that other factors need to be considered as well, e.g., the number of
traffic lights, or whether they are inside or outside cities, to meaningfully
distinguish sub-paths. Hypothesis HF proved to hold, but the study also
showed that the different paths exhibit very different sensitivity to conges-
tion.

Our results show that sub-path estimates hold the potential to yield con-
siderably better results than segment-based methods and also show that the
segment category has a large influence on their quality. These results sug-
gest that to achieve the best possible estimations, different collection meth-
ods should be employed for different sub-paths of a trip. This could be
implemented as a hybrid approach of pre-computed histograms as well as
histograms computed on the fly with different collection methods where pre-
computation is not feasible. New index structures that facilitate these hybrid
estimation queries are also of interest for further research. Several different
indexes that support strict path queries on trajectory datasets have been pro-
posed [17–19]. They can be extended in future research to allow the efficient
execution of the collection methods studied in this paper.
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Abstract

A key service in vehicular transportation is routing according to estimated travel
times. With the availability of massive volumes of vehicle trajectory data, it has be-
come increasingly feasible to estimate travel times, which are typically modeled as
probability distributions in the form of histograms. An earlier study shows that use
of a carefully selected, context-dependent subset of available trajectories when esti-
mating a travel-time histogram along a user-specified path can significantly improve
the accuracy of the estimates. This selection of trajectories cannot occur in a pre-
processing step, but must occur online—it must be integrated into the routing itself.
It is then a key challenge to be able to select very efficiently the "right" subset of
trajectories that offer the best accuracy when the cost of a route is to be assessed. To
address this challenge, we propose a solution that applies novel indexing to all avail-
able trajectories and that then is capable of selecting the most relevant trajectories and
of computing a travel-time distribution based on these trajectories. Specifically, the
solution utilizes an in-memory trajectory index and a greedy algorithm to identify
and retrieve the relevant trajectories. The paper reports on an extensive empirical
study with a large real-world GPS data set that offers insight into the accuracy and
efficiency of the proposed solution. The study shows that the proposed online selec-
tion of trajectories can be performed efficiently and is able to provide highly accurate
travel-time distributions.

c© 2019 EDBT. Reprinted, with permissions, from Robert Waury, Christian S.
Jensen, Satoshi Koide, Yoshiharu Ishikawa, and Chuan Xiao, Indexing Trajec-
tories for Travel-Time Histogram Retrieval , 2019
The layout has been revised.



1. Introduction

1 Introduction

Vehicular transportation is an important global phenomenon that impacts
the lives of virtually all of us. We rely on it for mobility, and we are affected
by congestion, accidents, and air and noise pollution. Its influence can be
expected to continue into the foreseeable future. For example, in the Eu-
ropean Union alone, more than 75% of all freight transport and more than
80% of passenger transport rely on the road networks [1]. The availability of
high-resolution GPS trajectories allows for reliable map-matching to a road
network. The resulting trajectories are called network-constrained trajectories
(NCT) and can be used to obtain travel-time estimates for paths in the net-
work, thus making transportation more predictable, safe, and environmen-
tally friendly.

When using such a data set, the most straightforward approach to com-
puting a travel-time estimate for a path is to compute a real-valued estimate
for each segment in the path and then sum up these to obtain an estimate
for the full path. This approach can be refined by collecting travel-time his-
tograms for each segment and then combine them by means of convolution
to obtain a travel-time histogram for the full path. This improves the accu-
racy of estimates since travel times are better modeled as distributions than
real valued. Further, the distributions often do not follow a parameterized
distribution, e.g., normal or uniform, and are therefore better estimated with
histograms. This segment level approach can also be extended to computing
different histograms for different times of day, e.g., the 96 15-minute intervals
of the day, to account for changing congestion throughout the day. These his-
tograms can be used as edge weights by routing algorithms to compute better
results. All of the above approaches, however, only consider travel-time esti-
mates at the segment level. These approaches fail to take into account factors
like the times it takes to pass through intersections, going straight or turn-
ing left or right, which are hard to model accurately. An earlier study [2]
shows that travel-time estimates for a given path can be improved consider-
ably when they are computed from trajectories that strictly follow the path,
as opposed to computing them from segment-level estimates. This type of
path-based estimate relies on efficiently processing strict path queries (SPQ) as
proposed by Krogh et al. [3], which is a query on a trajectory set that only
returns trajectories which traversed a given path without detours.

We propose a system that can compute time-varying and personal travel-
time histograms for any path in a network based on a large trajectory set.
It would be infeasible and impractical to pre-compute and store these time-
varying and personal weights for any path in a network before routing oc-
curs. For example, given even a moderately sized road network of a million
segments, for all 15-minute windows, nearly a 100 million histograms would
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be needed to just cover every single segment, with the storage requirements
increasing dramatically when considering larger path lengths. We therefore
obtain the weights for a path on-the-fly by expressing them as a series of
SPQs, which we can efficiently process using our in-memory NCT index. If
any of these sub-queries fails to retrieve a sufficient number of matching tra-
jectories, we apply a greedy algorithm that relaxes the SPQ’s predicates until
the retrieved trajectory set has a specified cardinality. Since performance is
crucial in our setting, we also implement a cardinality estimator for SPQs
to prevent unnecessary index traversals. We also show that carefully choos-
ing the initial set of SPQs increases the accuracy of the path weights and
increases the performance of the query. We perform extensive experiments
using a real-world trajectory data set containing 1.4 million trajectories from
Northern Denmark, which shows that our approach is suitable for real-time
applications.

The main contributions of this paper are the following:

• An adapted NCT index that supports efficient computation of travel-
time histograms for SPQs.

• A greedy algorithm that enables efficient processing of any SPQ in pe-
riodic time intervals.

• A cardinality estimator for SPQs.

• A detailed analysis of the accuracy and performance of the solution and
its components.

The rest of the paper is structured as follows. Section 2 provides an
overview of prior work, preliminaries, and a detailed problem description.
Section 3 describes the query processing method, while Section 4 details the
construction and use of the NCT index. Section 5 outlines the experimen-
tal setup and the evaluation metrics. Section 6 reports on the results of the
experiments, and Section 7 concludes.

2 Problem Formulation

This section provides an overview of prior work, preliminaries, and a prob-
lem definition.

2.1 Related Work

We review approaches to travel-time estimation and then, we review network-
constrained trajectory indexing with a focus on indexes supporting SPQs.
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Travel-Time Estimation

Earlier studies on travel-time estimation compute histograms for single seg-
ments [4], which still requires to model turn costs [5], or for short pre-defined
paths with considerable traffic [6], which are then convolved at query time.
In our approach, travel-times are computed for sub-paths instead of only
for individual segments. This approach implicitly handles turn costs within
sub-paths, and turn costs only need to be modeled explicitly in-between sub-
paths if applicable. Other approaches based on tensor decomposition [7],
support vector regression [8], variance-entropy-based clustering [9], or deep
neural networks [10] have also been proposed. But they either do not pro-
vide travel-time distributions or do not provide estimates for specific paths
but only for origin-destination pairs.

NCT Indexing

Several indexes for network-constrained trajectories based on R-trees [11–13]
or B+-trees [14] have been proposed, but they are often only optimized for
range queries or nearest neighbor queries.

Two indexes have been proposed to support strict path queries, NET-
TRA [3] and the SNT-index [15]. NETTRA is a disk-based index designed to
answer SPQs with minimal I/O and also supports efficient updates of the in-
dex, but may return false positives due to hash collisions. The SNT-index uses
data structures adapted from string matching to efficiently identify matching
trajectories. This index was originally designed to retrieve all matching trajec-
tory IDs in a given time interval that fulfill the SPQ requirement. We extend
it to accommodate travel-time retrieval as well.

2.2 Network Graph & Trajectories

Fig. C.1: Example Road Network

A spatial network is modeled as a directed graph G = (V, E,F ), where
V is a vertex set, E ⊆ V × V is a set of edges that represent road segments,
and F : E → Cat × Z × SL × L is a set of functions, where Cat is the set
of road categories, Z is the set of different types of zones the segments are
located in, SL is the set of speed limits in kilometers per hour (or 1000

3600 meters
per second), and L is the set of segment lengths in meters. From this we
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e c z sl l estimateTT
A motorway rural 110 900 29.5 s
B primary city 50 120 8.6 s
C secondary city 30 40 4.8 s
D secondary city 30 80 9.6 s
E primary city 50 100 7.2 s
F primary rural 80 800 36.0 s

Table C.1: Example of F and Function estimateTT

can derive the function estimateTT(ei) = 3.6 F (ei).l
F (ei).sl that returns the traversal

time in seconds if the segment is traversed at the speed limit. This func-
tion is used as a fallback so that we can return a result even if no data is
available for a segment. Every edge e ∈ E has a category that captures the
road type of the segment it represents and a zone type describing its loca-
tion. Figure C.1 shows the graph representation of the road network we use
in examples. Table C.1 shows the mapping of each segment to categories
c ∈ Cat = {motorway, primary, secondary} and zones z ∈ Z = {city, rural}.

A traversable sequence of segments P = 〈e0, e1, . . . , el−1〉 is called a path,
with |P| = l. A sub-path 〈ei, . . . , ej−1〉, with 0 ≤ i < j ≤ l, of P is denoted as
P[i, j). The set of trajectories is given as T ⊆ D×U ×S , where D is the set of
all trajectory ids, U is the set of all drivers. Further, S : Nl → E× T S × C is
the domain of functions from the set consisting of the first l natural numbers
to the range of triples consisting of an edge e ∈ E, a timestamp t ∈ T S , and
a time duration TT ∈ C. This domain of functions encodes finite sequences
of length l.

A trajectory tr ∈ T of a user u with the id d is therefore denoted as
(d, u, s), where s ∈ S is a sequence of 3-tuples:

s = 〈(e0, t0, TT0), (e1, t1, TT1), . . . , (el−1, tl−1, TTl−1)〉,

where t0, .., tl−1 are the timestamps when a segment was entered with ∀i∀j(i <
j⇒ ti < tj), TTi > 0 is the duration of the traversal of ei, and l is the number
of segments traversed.

The path of trajectory tr is called Ptr, and its starting time is tr.t0. The
duration function Dur(tr, P) = TT0 + TT1 + . . . + TTl−1 returns the sum of
all segment traversal times aP

tr of a path P by a trajectory. If a trajectory path
Ptr does not contain P as a sub-path , Dur(tr, P) is undefined. A trajectory
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set in our example road network from Figure C.1 is shown below:

tr0 : (0, u1)→〈(A, 0, 3), (B, 3, 4), (E, 7, 4)〉
tr1 : (1, u2)→〈(A, 2, 4), (C, 6, 2), (D, 8, 4), (E, 12, 5)〉
tr2 : (2, u2)→〈(A, 4, 3), (B, 7, 3), (F, 10, 6)〉
tr3 : (3, u1)→〈(A, 6, 3), (B, 9, 3), (E, 12, 4)〉

2.3 Travel-Time Query

To address the shortcomings of the segment-level approach, we employ the
strict path query Q = spq(P, I, f , β) that returns a travel-time histogram H.
The histogram can be derived from the traversal times of the set of trajectories
T P ⊆ T that traverse path P without stops or detours in the time interval I,
and fulfill additional filter predicates f :

T P = {tr ∈ T |∃i, j (Ptr[i, j) = P ∧ tr.s.ti ∈ I ∧ f (tr))},

where I = [ts, te) denotes a temporal predicate with a size α = te − ts and
β is a cardinality requirement for T P, i.e., we only proceed if |T P| ≥ β. If
β is omitted all eligible trajectories are retrieved. The temporal predicate
can either cover a fixed time interval, e.g., all trajectories from December 1st
2017 until May 1st 2018, or a periodic time-of-day interval denoted as IR =
〈. . . ,

[
ts− 24 hours, te− 24 hours

)
,
[
ts, te

)
,
[
ts + 24 hours, te + 24 hours

)
, . . . ,

[
ts +

n (24 hours), te + n (24 hours)
)
〉, e.g., all trajectories from 8:00 until 8:30 on

every day. Parameter f is an additional non-temporal filter predicate that
trajectories in T P have to fulfill, e.g., being from a specified driver.

Using such a query Q for a typical trip path, which can consist of dozens
of segments, may not return a sufficient number of trajectories to derive ac-
curate travel-time estimations. To address this problem, we split Q into k
sub-queries 〈Q1, Q2, . . . , Qk〉 = 〈spq(P1, I1, f1, β), spq(P2, I2, f2, β), . . . ,
spq(Pk, Ik, fk, β)〉 that return the trajectory sets {T1, T2, . . . , Tk}, where Pi are
sub-paths that partition P. These can then be used to compute a set of k
histograms {H1, H2, . . . , Hk} if ∀i |Ti| ≥ β. Their convolution we call H =
H1 ∗ H2 ∗ . . . ∗ Hk, where ∗ is the discrete convolution operator and H is a
travel-time histogram that covers the full path P. The intuition behind par-
titioning into k sub-queries is, that different sub-paths often provide better
estimates with different predicates, e.g., user predicates mainly improve ac-
curacy outside of cities [2]. Another advantage of partitioning the query is
the increased number of eligible trajectories. How this partitioning into sub-
queries is performed and how the sub-queries are processed is discussed in
Sections 3 and 4.

An example query for our example trajectory set could be Q =
spq(〈A, B, E〉, [0, 15), u = u1, 2). This would return T P = {tr0, tr3} yield-
ing a histogram with H = {[10, 11) : 1; [11, 12) : 1} since Dur(tr0, 〈A, B, E〉) =
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11 and Dur(tr3, 〈A, B, E〉) = 10. But if a larger cardinality is required, Q
could be split into two queries Q1 = spq(〈A, B〉, [0, 15), ∅, 3) and Q2 =
spq(〈E〉, [0, 15), ∅, 3) that yield the histograms H1 = {[6, 7) : 2; [7, 8) : 1} and
H2 = {[4, 5) : 2; [5, 6) : 1}, from which the convolution H = {[10, 11) : 4;
[11, 12) : 4; [12, 13) : 1} can be obtained.

3 Query Processing

This section describes the architecture of the system, the processing of travel-
time queries, and the greedy algorithm used for relaxing sub-query predi-
cates.

3.1 Architecture

Fig. C.2: Overall Architecture

Figure C.2 shows the overall system architecture, where boxes with dotted
lines indicate pre-existing components, dashed lines indicate modified com-
ponents, and solid lines indicate new components. At first, a GPS data set is
map-matched off-line to trajectories and loaded into the modified SNT-index
consisting of a collection of temporal indexes and a spatial index.

Once the trajectory set is loaded, a user is able to dispatch a strict path
query Q to the Sub-query Module where the query is initially partitioned
into k sub-queries by the Query Partitioner according to a simple heuristic
called π, e.g., sub-paths of a fixed length, or sub-paths that have the same
segment category. Each sub-query is then assigned temporal and trajec-
tory filter predicates. Next, the Cardinality Estimator uses the Histogram
Store and the SNT-Index to estimate the cardinality β̂ of the trajectory set
Ti returned by the sub-query spq(Pi, Ii, fi, β). If β̂ is smaller than the desired
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cardinality β, the sub-query is modified by the Sub-query Splitter using a
splitting function σ that relaxes the predicates. If the sub-query’s cardinality
estimate meets the requirement, it is dispatched to the index, and a trajectory
set Ti is obtained. If |Ti| ≥ β, it is forwarded to the Histogram Builder. If the
cardinality is still below the threshold, it is modified again by the Sub-query
Splitter.

Once all trajectory sets {T1, T2, . . . , Tk} are obtained, their travel-time sets
{X1, X2, . . . , Xk} are extracted, with Xi =
{Dur(tr, Pi)|tr ∈ Ti}. From those, a set of histograms H = {H1, H2, . . . , Hk}
is computed, and they are convolved into a single histogram H = H1 ∗ H2 ∗
. . . ∗ Hk that estimates the travel-time distribution for the complete path P.

3.2 Partitioning Methods

For the initial partitioning of queries, we propose five different methods. We
use the query Q = spq(P, I, f , β) with path P = 〈A, C, D, E〉 from the network
in Figure C.1 as example. The initial periodic time interval IR

i is identical for
all sub-queries and is always chosen so that te − ts = αmin, where αmin is the
minimum time interval size, which is chosen by the system. The predicate
f is also initially identical for all sub-queries but may be modified by the
splitting method (cf. Section 3.3).

Regular (πp)

The regular partitioning creates sub-queries for paths of length p, i.e., every
query is partitioned into k = d l

p e sub-queries, i.e., the sub-queries πp(Q) =

〈spq(P[0, p), IR
1 , f1, β), spq(P[p, 2p), IR

2 , f2, β), . . . , spq(P[pb l
p c, l), IR

k , fk, β)〉 are
created. In our experiments we chose π1, π2 and π3, which for our exam-
ple path yield the paths 〈〈A〉, 〈C〉, 〈D〉, 〈E〉〉, 〈〈A, C〉, 〈D, E〉〉, and 〈〈A, C, D〉,
〈E〉〉, respectively.

Segment Category (πC)

The segment type partitioning creates partitions of sub-paths with identical
segment categories, i.e., two neighboring segments ei and ei+1 are split unless
F (ei).c = F (ei+1).c. For our example query, this results in the sub-paths
〈〈A〉, 〈C, D〉, 〈E〉〉.

Zone Type (πZ)

The zone type partitioning creates partitions of sub-paths within the same
zone type, i.e., two neighbouring segments ei and ei+1 are split unless F (ei).z =
F (ei+1).z. For our example query, this results in the sub-paths 〈〈A〉, 〈C, D, E〉〉.
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Zone Type & Segment Category (πZC)

The zone type and segment category partitioning creates partitions of sub-
paths within the same zone type and segment category combination, i.e.,
two neighboring segments ei and ei+1 are split unless F (ei).z = F (ei+1).z ∧
F (ei).c = F (ei+1).c. For our example query, this results in the sub-paths
〈〈A〉, 〈C, D〉, 〈E〉〉.

None (πN)

No initial partitioning is attempted, and the query is processed according to
one of the splitting strategies described below. For our example query, this
results in the single sub-path 〈〈A, C, D, E〉〉.

3.3 Splitting Methods

If a sub-query spq(P, I, f , β) does not return the desired cardinality, it is mod-
ified by a splitting function σ described in Procedure C.1 that takes a query
and the list of time interval sizes A = 〈α1, . . . , αn〉, with ∀i∀j (i < j ⇒ αi <
αj), and α1 = αmin and αn = αmax as arguments.

At first the procedure tries to increase the sample size by increasing the
size of the time interval for the path by choosing the next largest size from
the list A and widening the periodic interval with widen([ts, te)R, αi+1) =

[ts − αi+1−αi
2 , te +

αi+1−αi
2 )R. After A has been exhausted, the path is split, and

two new sub-queries with the smallest allowed time interval size αmin are
created.

We propose two types of splitting and again use the path P = 〈A, C, D, E〉
in examples.

σR Regular splitting cuts the path in half, i.e., P1 = P[0, b l
2c) and P2 =

P[b l
2c, l), so splitting the example path P results in P1 = 〈A, C〉 and

P2 = 〈D, E〉.

σL Longest prefix splitting creates two sub-paths P1 = P[0, m) and P2 =
P[m, l), with 1 ≤ m < l, where the maximum value for m for which
|T P1 | ≥ β holds is chosen.

If a sub-path cannot be split further, any non-temporal filter predicates are
dropped (Line 10). As a fallback, all temporal filters and the β parameter
are dropped as well, i.e., for a single segment, all available trajectories are
considered in the fixed time interval [0, tmax) (Line 12).
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Algorithm C.1 Modify a sub-query spq to increase sample size (σ):
Require: Sub-query spq(P, I, f , β), time interval sizes A
Ensure: a sequence of sub-queries 〈Q1, . . . , Qk〉

1: αi ← te − ts
2: if αi < αmax then
3: I′R ← widen(IR, αi+1)
4: return 〈spq(P, I′R, f , β)〉
5: else if |P| > 1 then
6: m← split(P)
7: I′R ← shrink(IR, αmin)
8: return 〈spq(P[0, m), I′R, f , β), spq(P[m, l), I′R, f , β)〉
9: else if f 6= ∅ then

10: return 〈spq(P, IR, ∅, β)〉
11: else
12: return 〈spq(P, [0, tmax), ∅)〉
13: end if

4 The Index

This section describes the SNT-index and how we adapt and optimize it to
support travel-time queries using an example trajectory set.

4.1 SNT-Index

Koide et al. [15] proposed the SNT-index for strict path queries using the
FM-index as a spatial index and a forest of B+-trees as a temporal index. The
advantage of the FM-index over R-tree-based methods is that by represent-
ing the trajectory set T as a string T and adapting a method from substring
matching, evaluating spatial queries is only dependent on the size of the spa-
tial network (|E|) and not on the size of the trajectory set (|T |). In addition, it
can be established from just the FM-index whether a given path is traversed
at all, often saving a costly temporal index traversal. While the original index
returns a set of trajectory ids given the query spq(P, I), where P is the path
and I is a time interval, our index returns the traversal times of the trajec-
tories for P, which can be stored in a histogram. Sections 4.1 and 4.1 recap
the previously described SNT-index and the remaining section describes our
modifications to it to facilitate the efficient retrieval of travel-times.

The Spatial FM-Index

For our example we are indexing the trajectory set T = {tr0, tr1, tr2, tr3}
introduced earlier.
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To index the trajectories, we first need to compute the trajectory string
T from the alphabet Σ = E ∪ {$} where the symbol $ denotes the end of
a trajectory and where ∀e ∈ E (e > $) and T = Ptr0 $Ptr1 $ . . . $Ptrn−1 $, ∀tr ∈
T . With our example trajectory set, this yields the trajectory string T =
ABE$ACDE$ABF$ABE$.

Algorithm C.2 Calculate ISA range [st, ed) for a path P of length l (getIS-
ARange):
Require: Burrows-Wheeler transform Tbwtof the trajectory string T, symbol

counts C, path P = p0...pl−1
Ensure: ISA range [st, ed) that matches P

1: c← pl−1
2: st← C[c]
3: ed← C[c + 1]
4: for i← 2 to l do
5: c← pl−i
6: st← C[c] + rankc(Tbwt, st)
7: ed← C[c] + rankc(Tbwt, ed)
8: if st ≥ ed then
9: return [0, 0)

10: end if
11: end for
12: return [st, ed)

From this trajectory string, we compute an array S of all suffixes of T,
where S[i] = T[i, n), where 0 ≤ i < n = |T|. These suffixes are then sorted
lexicographically to obtain the suffix array SA as shown in Figure C.3, where
SA[j] contains the index of the j-th smallest suffix. From SA, we can then
compute the inverse suffix array ISA where SA[j] = i and ISA[i] = j [16]. Every
substring (or in our case, subpath) P of length l therefore has a range of ISA
values R(P) = [st, ed) that is defined as R(P) = {i | S[SA[i]] [0, l) = P}, e.g.,
the ISA range of the path 〈A〉 is R(〈A〉) = [4, 8) since four trajectories contain
A and they appear at the start of the suffixes S[SA[st]] to S[SA[ed− 1]], and
the range for R(〈A, B〉) is [4, 7) as only three trajectories traverse this path.

The ISA range of a path can be obtained efficiently from two data struc-
tures that comprise the FM-index:

C an array that stores the number of lexicographically smaller characters
in the trajectory string for every member of the alphabet Σ, e.g., C[′B′] =
8 since there exist 8 characters in T that are lexicographically before ′B′.

Tbwt the Burrows-Wheeler transform [17] of the trajectory string T that is
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Fig. C.3: The Suffix Array and Burrows-Wheeler-Transform

defined as Tbwt[i] = T[SA[i]− 1], with 0 ≤ i < |T|. For our example,
this yields the string EFEE$$$$AAAACBDBB.

We define the rank operation rankc(Tbwt, i) that counts the occurrences of
the character c in Tbwt[0, i). As an example of computing the ISA range, we
compute the range for the path P = 〈A, B〉 as described in Procedure C.2.
At first, the segment c ← B is set in Line 1, and st ← 8 and ed ← 11 are
initialized in Lines 2 and 3. For the first (and in this case the only) iteration
of the loop from Line 4 to 11, c ← A, st ← 4 + rankA(Tbwt, 8), and ed ←
4 + rankA(Tbwt, 11), which yields the ISA range [4, 7), since the ranks are 0
and 3, respectively.

The Burrows-Wheeler transform is stored in a wavelet tree to enable rank
queries in O(log|Σ|) time [18]. Therefore, obtaining the ISA range [st, ed) of
any path P can be performed in O(|P| log |Σ|) time, which does not depend
on the size of T.

The Temporal Indexes

The temporal indexes F = {Φe| e ∈ E} contain a B+-tree for every segment in
the network. Each tree indexes the records r ∈ Φ by the timestamp t when a
trajectory entered the segment. A leaf node entry r for a timestamp t contains
the ISA index (isa) and the trajectory identifier (d).

The original SNT-index is only capable of retrieving the trajectory ids,
which would then have to be processed in turn to obtain the traversal times
of the query path.
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Extensions to the SNT-Index

To support travel-time histogram construction directly using the SNT-index,
we add the following information to each leaf node in a temporal index:

• The traversal time TT of the segment in seconds.

• The sequence number seq of the segment in the trajectory.

• The sum of the travel-times aseq = ∑
seq
i=0 TTi from the start of the trajec-

tory and up to and including the segment.

Figure C.4 shows the contents of the temporal index ΦA of segment A for
our example trajectory set where each leaf is a record r, mapping a timestamp
t to a tuple (isa, d, TT, a, seq). Furthermore, we add an associative container
U that maps every trajectory id d to its respective user id u to check the filter
predicate f . With those fields, we can build a hash table during the scan of
the index of the first segment with the trajectory id and sequence number as
the key (d, seq) and the aggregate of the preceding segment of the trajectory
(a0 − TT0), as value as described in Procedure C.3. The sequence number is
included to guard against trajectories with circular paths. The spatial filtering
is performed with the ISA range [st, ed) obtained from Procedure C.2 during
the index scan in Line 3. The filter predicate f can be evaluated in constant
time with the associative container U. The cardinality parameter β is used to
reduce the processing time since not all eligible trajectories are necessary to
obtain a good estimate, and the buildMap procedure terminates as soon as β
trajectories are found (Line 6). When scanning the temporal index of the last
segment in the query, we can obtain the traversal time of the query path by
al−1 − (a0 − TT0) as described in Procedure C.4.

4.2 Travel-Time Query

When used together, the previous three procedures make it possible to obtain
the set of travel times for any path, as shown in Procedure C.5, to answer the
sub-query spq(P, I, f , β). To obtain all trajectories that traversed a path P
during a given time interval I, an ISA range is first obtained from the FM-
index in Line 1. If a non-empty range is returned, a range scan on the index
of the first (Line 6) and last segment (Line 11) of the path are performed for
I and filtered by the ISA index in the leafs. If no matching trajectories exist
or no periodic time interval with more than β trajectories is found (Line 7)
the query returns the empty set. If the sub-query provided by Procedure C.1
has a fixed time interval, the query is processed regardless of β. If that still
yields no trajectories, an estimate based on the speed limit of the segment is
provided (Line 13).
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Fig. C.4: Extended Temporal Index

Procedure C.6 shows how a full query is partitioned and processed. For
longer trips, the periodic interval IR

i is adapted with the shift-and-enlarge
procedure (Line 4) suggested by Dai et al. [6], that shifts the beginning of
the interval ts by the sum of all previous minimums Si = ∑

j=i−1
j=1 Hmin

j and

enlarges it by the sum of all previous ranges Ri = ∑
j=i−1
j=1 (Hmax

j − Hmin
j ).

4.3 Optimizations

CSS-Trees

The cache sensitive search tree (CSS-tree) proposed by Rao and Ross is a low
memory overhead pointer-less index that speeds up searches in sorted ar-
rays [19]. In our system, we use it as an append-only replacement for the
temporal B+-tree forest (cf. Section 4.1) to speed up Procedures C.3 and C.4
and to reduce memory consumption. Furthermore, its ability to efficiently
compute the size of a key range in logarithmic time is used to improve the
accuracy of the cardinality estimator (cf. Section 4.4). The CSS-tree is op-
timized to reduce the number of cache misses during a search by using the
processor’s cache line size as its node size. Since it indexes sorted arrays, only
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Algorithm C.3 Create a mapping of trajectory identifier and sequence num-
ber (d, seq) to an antecedent travel time diff for the first β trajectories matching
the predicates (buildMap):
Require: Temporal index Φ of the first segment of the query path, ISA range

[st, ed), time interval I, predicate f , and cardinality parameter β
Ensure: a mapping of (d, seq) to (a− TT)

1: M← ∅
2: for all r ∈ Φ do
3: if r.t ∈ I ∧ st ≤ r.isa < ed ∧ f (r.d) then
4: diff ← r.a− r.TT
5: M← M ∪ {(r.d, r.seq)→ diff}
6: if |M| ≥ β then
7: return M
8: end if
9: end if

10: end for
11: return M

Algorithm C.4 Compute the travel times for all eligible trajectories over the
path identified in the buildMap function (probeMap):
Require: Temporal index Φ of the last segment of the query path, path length

l, and probe table M
Ensure: a list of travel times X

1: X ← ∅
2: for all r ∈ Φ do
3: b← M[(r.d, r.seq + 1− l)]
4: if b 6= ∅ then
5: X ← X ∪ {r.a− b.diff}
6: end if
7: end for
8: return X

appends can be performed efficiently. We deem this an acceptable trade off
because inserting additional trajectories would also require a re-computation
of the entire FM-index, making the index mostly suited for batch updates.

Temporal Partitioning

Temporal partitioning of the SNT-index was originally proposed here [20],
but not evaluated. It allows more efficient updates to the index without
necessitating a complete re-computation of the FM-index which does not ef-
ficiently support updates or appends. Partitioning requires to split the trajec-
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Algorithm C.5 Retrieve all travel-times X = 〈x0, ..., xβ−1〉 of trajectories in I
that meet predicate f for a path P (getTravelTimes):
Require: Burrows-Wheeler transform of the trajectory string Tbwt, temporal

indexes F, symbol counts C, path P = p0...pl−1, time interval I, predicate
f , and cardinality parameter β

Ensure: a set of travel-times X
1: [st, ed)← getISARange(Tbwt, C, P)
2: if st ≥ ed then
3: return ∅
4: end if
5: Φ0 ← F[p0]
6: M← buildMap(Φ0, [st, ed), I, f , β)
7: if |M| < β and isPeriodic(I) then
8: return ∅
9: end if

10: Φl−1 ← F[pl−1]
11: X ← probeMap(Φl−1, l, M)
12: if X = ∅ and |P| = 1 then
13: return {estimateTT(p0)}
14: end if
15: return X

tory set T into T1, . . . , TW , where ∀i < j
(
@tri ∈ Ti

(
∀trj ∈ Tj (tri.t0 ≥ trj.t0)

))
.

From those trajectory sets, W trajectory strings T1, . . . , TW are then computed,
and Procedure C.2 is modified return a collection of ISA ranges from the
Burrows-Wheeler transforms T1

bwt, . . . , TW
bwt using separate segment counters

C1, . . . , CW . Temporal partitioning also requires adding the partition identi-
fier w to every leaf in the temporal indexes since every partition’s FM-index
can return a different ISA range for the same path.

4.4 Cardinality Estimator

Cardinality estimators are widely used in DBMSs to improve query plans.
In our case, we want to avoid costly scans of our temporal indexes if the
required sample size β cannot be met. We require a function card(Q) that
returns an estimate β̂ for the cardinality of the return trajectory set T and if
β̂ < β, we apply the split function σ to Q without running a costly query. The
cardinality estimator relies on a time-of-day histogram for every segment and
fast computation of the ISA range [st, ed), which is enabled by Procedure C.2.
The exact count of all trajectories traversing a path cP = ed− st is efficiently
retrieved. After that, the selectivity of the temporal filters needs to be esti-
mated. The easiest way is to assume a uniform distribution throughout the
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Algorithm C.6 Compute a histogram H for the query spq(P, I, f , β) (trip-
Query):
Require: Burrows-Wheeler transform of the trajectory string Tbwt, temporal

indexes F, symbol counts C, query spq(P, I, f , β), time interval sizes A,
partitioning method π, and splitting method σ

Ensure: a histogram H
1: 〈Q1, . . . , Qk〉 ← π(Q);H ← ∅
2: for all Qi ∈ 〈Q1, . . . , Qk〉 do
3: if isPeriodic(Ii) and i > 1 then
4: Ii ← [ts + Si, te + Ri)

R

5: end if
6: Xi ← getTravelTimes(Pi, Ii, fi, β)
7: if Xi 6= ∅ then
8: H ← H∪ createHistogram(Xi)
9: else

10: 〈Qi+1, . . . , Qk〉 ← 〈Qi+1, . . . , Qk〉 ∪ σ(Qi)
11: end if
12: end for
13: H ← H1
14: for all i > 1∧ Hi ∈ H do
15: H ← H ∗ Hi
16: end for
17: return H

day and to divide the size of a periodic interval by the length of the day,
which yields the time-of-day selectivity:

seltod = sel(P, IR = [ts, te)
R) =

te − ts

24 hours
(C.1)

The uniformity assumption, however, usually does not hold so, the selectivity
estimate can be improved by maintaining a time-of-day histogram He for
every segment e. Then the selectivity can be estimated using the following
formula:

sel(P, IR = [ts, te)
R) =

B
(

He0 , [ts, te)
)

B
(

He0 , [0, 24 hours)
) , (C.2)

where B
(

H, [ts, te)
)

counts the elements of all buckets in H in the range [ts, te).
In addition to being constrained by the time-of-day a user might wish to limit
the query to a certain time frame, e.g., only considering trajectories within
the past year. The selectivity can be estimated naively with the following
formula:

selt f = sel(P, I = [ts, te)) =
te − ts

F[e0]max − F[e0]min
, (C.3)
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where F[e0]min and F[e0]max are the earliest and latest traversal times of seg-
ment e0. When using the CSS-tree, the number of entries for which ts ≤ t < te
can be obtained exactly in logarithmic time and seltf can be computed exactly.
To compute the selectivity of user predicates selu, we use the default of 1

10
suggested by Selinger et al. [21]. To obtain the estimate for a query, we com-
bine these selectivity factors to obtain our estimate β̂ = seltod ∗ seltf ∗ selu ∗ cP.

We define five different modes for the cardinality estimator:

ISA only uses the size of the ISA range cP as estimate β̂

BT-Fast uses formulas C.1 and C.3 to estimate the selectivity

BT-Acc uses formulas C.2 and C.3 to estimate the selectivity

CSS-Fast uses formula C.1 and a fast lookup in the CSS-tree to estimate the
selectivity

CSS-Acc uses formula C.2 and a fast lookup in the CSS-tree to estimate the
selectivity

5 Experimental Setup

This section describes the data set and quality metrics we use to evaluate our
system.

5.1 Datasets

OpenStreetMap

Our network graph is based on the OpenStreetMap data of the road network
of Northern Denmark, which contains around 750,000 road segments. When
converted to a spatial network graph, this graph has around 1.46 million di-
rected edges [22]. Each edge represents a direction on a segment and has
one of 17 different segment categories. This categorization is available for all
OpenStreetMap maps and makes segment category-based partitioning pos-
sible for other map-matched trajectory datasets as well. The OpenStreetMap
data also includes the speed limits for many segments, which we use as a
fallback if no trajectory data is available. If the speed limit is not known, we
use the median of all known speed limits of its segment category.

Zone Dataset

To distinguish rural and urban areas, we use the zoning map published by
the Danish Business Authority [23] that consists of 4,259 zone geometries,
each of which assigns one of three categories to an area:
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• city: segments within city limits

• rural: segments in rural areas

• summer house: segments in areas zoned for summer house usage

A spatial join is used to assign a zone type to every segment in the map.
A fourth category that we call ambiguous is assigned to segments located in
more than one zone type.

ITSP Dataset

The "ITS Platform" dataset contains over 1.1 billion GPS points sampled at
1 Hertz collected from 458 vehicles in Aalborg and the surrounding region
during the period from May 2012 to December 2014 [24].

In a preprocessing step, the GPS points are map-matched [25] to obtain
in excess of 79 million segment traversals that form around 1.4 million tra-
jectories, where a new trajectory is created if more than a 180 seconds have
elapsed since the last GPS point. The map-matching algorithm also discards
GPS points at the beginning and end of a trip if too few points are matched
to the start and end segments of the trajectory. This is done so the durations
of the segment traversals are meaningful. Each GPS record contains the tra-
jectory ID, the vehicle ID, a segment ID, the time and date the segment was
entered (minute resolution), and the time on segment (second resolution).
Since the cars in our dataset are privately owned, we treat the vehicle ID as
the user ID. The segment IDs are derived from the unique mapping of Open-
StreetMap segment key and the driving direction. The time on a segment is
also computed during the preprocessing step.

5.2 Query

We derive our query setQ from a random sample TS ⊂ T from our trajectory
set:

Q = {spq(Ptr, Itr, f , β)|tr ∈ TS} ,

with either f = {u = tr.u} or f = ∅ if no user filters are used and different
values of β being used in the experiments. For the time interval Itr, either the
periodic time interval IR

tr = [tr.s.t0 − αmin
2 , tr.s.t0 +

αmin
2 )R or or the fixed time

interval Itr = [0, tr.s.t0) is used.
For the interval size we use the values 15 min, 30 min, 45 min, 60 min,

90 min, and 120 min.
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5.3 Accuracy Metric

sMAPE

To evaluate the accuracy of the retrieved traversal times, we use the sym-
metric mean absolute percentage error [26] of the sum of the means of all
sub-paths.

sMAPE =
100%
|Q|

|Q|

∑
i=1

|∑k
j=1 X̄j − atri |

1
2 (∑

k
j=1 X̄j + atri )

,

where k is the respective number of sub-queries of each query Q ∈ Q and
X̄j is the travel-time mean retrieved with the sub-query.

Weighted Error

The weighted error, which we derive from sMAPE, considers the accuracy of
the sub-query results and weighs them according to their fraction of the path
length.

wE =
100%
|Q|

|Q|

∑
i=1

k

∑
j=1

wj
|X̄j − a

Pj
tri
|

1
2 (X̄j + a

Pj
tri
)

,

with wj =
∑

e∈Pj F (e).l
∑e∈P F (e).l , where P is the query path and Pj is the sub-query

path.

Log-Likelihood

To evaluate the quality of the histograms, we compute the average log-likeli-
hood of the travel-times atri with a discrete probability density function de-
rived from the result histogram Hi.

For each trajectory with a result histogram H with a bucket width h, we
compute the average log-likelihood logL:

1
|Q|

|Q|

∑
i=1

logL(atri , Hi),

where the likelihood L(x, H) is defined by the discrete probability density
function

pH(x) = γ f (x, H) + (1− γ)U(x),

where U(x) is a uniform distribution defined for [tmin, tmax), 0 < γ < 1 and

f (x, H) =
B
(

H, [b x
h c, b

x
h c+ h)

)
B(H, [tmin, tmax))

.
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The smoothing with the uniform distribution U(x) is performed so that
pH(x) ∀x ∈ [tmin, tmax) never reaches zero.

Q-Error

To evaluate the accuracy of the cardinality estimator, we use the q-error pro-
posed by Moerkotte et al. [27]. To estimate the quality of our cardinality
estimate β̂, we compare it to the actual cardinality of the retrieved trajectory
set n = |T |. For every estimate, we obtain the q-error q = max(β̂′/n′, n′/β̂′)
with n′ = max(n, 1) and β̂′ = max(β̂, 1). This is done to handle estimations
for empty sets as proposed by Stefanoni et al. [28]. The q-error shows the
difference in orders of magnitude between the real cardinality and the esti-
mate.

6 Evaluation

This section reports on the experimental results. For all experiments, a query
set Q is generated from the trajectory set |TS| = 6,942, which is a random 1%
sample of all trajectories in T that occur after the 8th of September 2013, the
median of the timestamps in the ITSP data set. This is to ensure that every
query has more than a year of trajectory data available. On average, the paths
of the query set have a length of 13.7 kilometers, consist of 55 segments, and
last 800 seconds.

In our study we evaluate three types of queries:

Temporal Filters that use a periodic time interval and no user filter
(spq(Ptr, IR

tr , ∅, β))

User Filters that use a periodic time interval and a user filter
(spq(Ptr, IR

tr , {u = tr.u}, β))

SPQ Only that use a fixed time interval and no user filter
(spq(Ptr, [0, tmax), ∅, β))

6.1 Qualitative Assessment

Figures C.5 to C.8 show the results of accuracy measured with sMAPE, the
weighted error, and the log-likelihood and the average sub-query length. The
figures show the results for different types of partitioning and splitting meth-
ods and filter predicates.

The regular partitioning method πp (cf. Section 3.2) is used as a baseline
with p = 1, 2, and 3 because they are the sub-path lengths for which his-
tograms can still be pre-computed at a reasonable overhead and because no
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Fig. C.5: sMAPE

known histogram-based methods perform better. For the user filter queries,
we also evaluate the πMDM method that partitions queries like πC but only
applies user filters to sub-queries with paths on main roads like motorways
or other major roads connecting cities. This partitioning method is derived
from the results of a previous study of travel-time estimation methods [2].

Figure C.5a shows the average error for seven different partitioning meth-
ods with temporal filters. Here, π1 performs worst, followed π2 and π3, and
they achieve their highest accuracy at β = 30. If only the speed limits are used
to estimate the travel time, sMAPE is 34.3% and if all available trajectories for
each segment are used, the error is 13.8%. The partitioning methods based
on the segment category and/or zone (πC, πZ, and πZC) together with πN
achieve very similar accuracy. Here, the accuracy peaks at β = 20. Category-
based partitioning is the most stable in terms of accuracy, and zone-based
partitioning provides the overall best result. The queries using user filters
shown in Figure C.5b perform equally well, but with the exception of πZ do
not degrade as much with higher values of β and also obtain their lowest
error at β = 20 and exhibit very similar accuracy to the queries without user
filters. The SPQ Only methods in Figure C.5c methods did not manage to
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Fig. C.6: Weighted Error

outperform the baseline because it does not use periodic intervals that can
observe changing congestion, e.g., longer travel-times during rush hours. In
nearly all cases with regular splitting (σR) achieves considerably better accu-
racy than longest prefix splitting (σL). In most cases

A similar picture to the sMAPE results can be seen for the temporal filter
queries in Figure C.6a, with πN having the lowest weighted error. If only the
speed limits are used to make an estimate, the weighted error is 36.9%, and
if all available trajectories for each segment are used, the error is 24.0%. For
the user filter queries in Figure C.6b, only πMDM manages to consistently
outperform the baseline. The SPQ only queries shown in Figure C.6c show
the lowest error with the coarsest partitioning methods. The low error of
the SPQ only methods is due to sub-query results being weighted according
to the length of the sub-paths and not relative to the share of travel time.
Estimates for paths on long segments with high speed limits, e.g., motorways,
exhibit already low estimation errors and also tend to improve the most when
custom predicates are used [2]. In all cases, σL has a higher error than σR.
Figure C.7 shows the average path lengths of the final sub-queries. We can
see that there is an inverse relationship between the weighted error and the
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Fig. C.7: Sub-query Path Length

sub-query paths. We can also see that πZ provides the coarsest partitioning
with the exception of πN , which initially provides none.

Figures C.8a to C.8c show the average log-likelihood with f (x, H) derived
form a histogram with a bucket size of h = 10s and different values for β and
γ = 0.99. The queries with only temporal filters and πZ and πZC return the
most accurate histograms, and the coarser the partitioning method the less
accurate the histograms are with low sample sizes. Among the User Filter
queries πMDM consistently outperforms the other three partitioning methods.
The queries run with πN do not even outperform the baseline for β < 30. In
all cases, σL performs worse than σR. We evaluated several values for γ (from
0.90 to 0.99) but the qualitative results did not change.

6.2 Efficiency

The index is implemented in C++17 and compiled with g++ 7.2.0 with the -O3
-march=native flags. For the performance test, the SNT-index with a CSS-
forest and only a single partition is used. The FM-index is implemented using
sdsl-lite’s integer-alphabet Huffman-shaped wavelet tree implementation,
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Fig. C.8: Log-Likelihood

and the suffix array is computed with Yuta Mori’s sais-lite library [16].
The performance test ran on a server with AMD Opteron 6376 processors and
512 GiB RAM. For the processing time, the average runtime in milliseconds
of 6,942 queries is reported in Figure C.9.

The temporal filter queries shown in Figure C.9a perform very similar to
the baseline, with πC and πZC being slightly faster than regular partitioning.
The combination of πC and σL has been omitted in the figure for reasons of
scaling since the results are in the range of 50 to 65 ms. In Figure C.9b, it can
be seen that the average user filter query takes around 4 to 5 times longer
than the temporal filter queries; and with πMDM, queries only take around
twice as long since it applies non-temporal predicates only selectively. SPQ
only queries have much lower processing times than do the other two query
types, and all consistently outperform the baseline. The reason for their low
processing times can be seen in Figure C.7c and Procedure C.5. Since their
sub-queries tend to cover comparatively long paths, SPQ only queries need
to perform considerably fewer temporal index scans than the other query
types, which need to be split into more sub-queries to fulfill the cardinality
requirements. The average runtime of πN with σL, which is between 30 to
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35 ms, has been omitted in Figure C.9c. In all cases σL performed poorly in
comparison to σR.

6.3 Temporal Partitioning

Figure C.10 shows the effect of the temporal partitioning defined in Sec-
tion 4.3 on memory consumption and setup time. The figures show the
results for partition sizes of 7, 30, 90, and 365 days, resulting in a 138, 33,
11, and 3 partitions, respectively. We also examine the case where only one
partition is used (FULL). Where applicable, the performance of the index
with a B+-forest (BT) is reported as well. For the in-memory B+-trees, we
use the btree_multimap from Google’s cpp-btree library [29]. Figure C.10c
shows the memory consumption of the different index components, where
Forest is the memory consumption of the CSS-tree or B+-tree forest, respec-
tively. The size of the forest is not impacted by different partition sizes, but if
the partition feature is removed from the index, the memory saved in the tree
leafs by omitting the partition identifier w is around 300 MiB for our data
set. We can also see that the in-memory B+-tree forest has slightly higher
memory requirements than the CSS-forest. The associative container U used
to enable user filtering (user) is also not affected by the partitioning and
takes up around 65 MB for our data set. The two data structures that com-
prise the FM-index, the wavelet tree (WT) and the segment counter (C), are
affected considerably by partitioning. The segment counter grows linearly
with the number of partitions from less than 6 MB to nearly 600 MB since a
separate segment count needs to be maintained for every wavelet tree. The
compression rate of the wavelet tree degrades considerably with smaller tra-
jectory strings, which for the 7 day partitioning are only a few MBs per par-
tition as opposed to several hundred in a single partition and it grows from
around 280 MB to over 4 GB. The memory requirements of the time-of-day
histograms required for the cardinality estimator are affected considerably if
a histogram is maintained for every non-empty partition for every segment,
and the memory required for the histograms soon exceeds the amount re-
quired for the index. Figure C.10a shows the memory consumption for three
different bucket sizes h (1, 5, and 10 minutes).

The setup times for the index shown in Figure C.10b are not significantly
affected by the different partition sizes or tree types and always remain be-
tween 425 and 475 seconds. For the setup, the trajectory and map data are
loaded from disk.

6.4 Cardinality Estimator

Figure C.10 shows the results for the cardinality estimator. In all cases the
results for partitioning method πZ with regular splitting and β = 20 are
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shown. Figure C.11c shows the q-error of the five different cardinality esti-
mator modes. Here, 5,000 queries are run, after which their cardinalities n
are compared with estimate β̂. The simplest estimate using just the ISA range
is on average off by an order of magnitude. The four other modes provide
considerably more reliable estimates, with the histogram based methods per-
forming better than the fast ones and the CSS-tree based methods performing
slightly better than their B+-tree counterparts.
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Fig. C.9: Processing Time

Since the selectivity estimates of the estimators might underestimate car-
dinalities of queries, a query might be split despite covering a sufficient sam-
ple size. This may affect the quality of the overall travel-time estimate. Fig-
ure C.11b, however, shows that the effects on quality are minuscule compared
to the baseline (ISA) and might even yield slight improvements in accuracy.

Figure C.11a shows that partitioning as well as using the cardinality esti-
mators can impact performance significantly. For single, yearly, and quarterly
partitions, the query performance changes little, and use of the cardinality
estimator reduces query processing times by around 50%. For smaller par-
titions, however, the effects of using the cardinality estimator diminish; and
with weekly partitioning, the B+-tree version of the index performs worse
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Fig. C.10: Temporal Partitioning

with the estimators. The histogram-based CSS-tree version (CSS-Acc) per-
forms worse than the fast version (CSS-Fast), which is most likely due to
the amount of time-of-day histograms that have to be scanned to obtain the
selectivity seltod.

6.5 Implications

Overall our data shows that after a certain β is reached no significant gains
in accuracy are obtained by increasing it further indicating smaller result sets
obtained from fewer SPQs of long paths provide more accurate estimates
than larger result sets obtained with short paths. One can also see that eval-
uating non-temporal predicates comes with a considerable overhead and for
the user predicates provides no improvement in quality over the purely tem-
poral methods. If such methods are however applied selectively (e.g. πMDM)
the performance overhead is mitigated and the accuracy improves. The naive
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Fig. C.11: Cardinality Estimator

regular splitting method does not only achieve better accuracy but also has a
considerably shorter runtime, making it more suitable for a real-time queries.
The CSS-tree version of the index is as least as fast or faster than the B+-tree-
based version, but the improvements become less noticeable when using the
index in conjunction with a cardinality estimator. CSS-trees reduce the me-
mory consumption of the index as well and improve the accuracy of the
cardinality estimator with their efficient range lookups. We have also shown
that temporal partitioning of the index is viable in some cases, but that using
time-of-day histograms to estimate the selectivity of periodic time intervals,
despite slight improvements in estimator accuracy and query performance,
is hardly worth the memory overhead for the evaluated data set. Additional
experiments with larger data sets may offer additional insight into this trade
off, but no larger trajectory data sets with user information were available to
us. Our results show that modifications aimed at improving query perfor-
mance often also improve the accuracy of the estimates.
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7 Conclusions & Outlook

Travel-time estimations in road networks can be improved considerable by
utilizing large NCT data sets not only to provide estimates on a segment
level, but also for full paths in the network. To our knowledge no current
system supports these path-based estimations which cannot rely on pre-
computations. We therefore propose a system that computes travel-time es-
timations based on trajectories selected at runtime and is able to improve
upon the accuracy of existing histogram-based methods by expressing them
as a series of strict path queries and adapting their predicates automatically
to ensure accurate estimates. The SPQs are processed by our adapted SNT-
index which is able to retrieve the traversal times for any path directly from
the index. We have shown that the queries can be processed fast enough
for real-time applications by utilizing specialized in-memory data structures
and cardinality estimators tailored to SPQs. We evaluate our system with
a large real-world trajectory data set and find that optimizing queries for
performance is not preclusive of accuracy.

Our proposed system leaves several avenues of future work. The current
greedy algorithm used for identifying a suitable partitioning and splitting
of an SPQ is based on fairly simple heuristics and could be augmented by
more sophisticated machine learning methods to improve accuracy of esti-
mations. Approaches that use different values of the parameter β for each
sub-query, e.g., smaller sample size requirements in rural zones, could be
evaluated. While the processing time of single query might not considerably
improve through parallelization the overall query throughput of the system
most likely could, making it suitable for online routing applications that sup-
port a large number of users. Our approach also does not fully address the
issue of data sparseness apart from providing relaxing the predicates if their
selectivity is too low. Several approaches to solving the problem of data
sparseness have been suggested [7, 30] and could be combined with our sys-
tem to provide time-dependent travel-time estimates for paths where data is
sparse.
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Abstract

The increasingly massive volumes of vehicle trajectory data that are becoming avail-
able hold potential to enable more accurate vehicle travel time estimation than hith-
erto possible. To enable such uses, we present a multi-threaded in-memory trajectory
store that supports efficient and accurate travel-time estimation for road-network
paths from network-constrained trajectories. The trajectory store employs advanced
indexing to support so-called strict path queries that retrieve all trajectories that tra-
verse a given path to provide accurate travel-time estimations. As a key novel feature,
the store is designed and implemented to exploit modern non-uniform memory access
(NUMA) systems. We provide a detailed experimental study of the performance of
the trajectory store using a synthetic trajectory data set based on real traffic data
which shows that query latency can be halved compared to our baseline system.
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1. Introduction

1 Introduction

Travel time is a fundamental metric in the planning of road transportation.
With accurate travel times available, it is possible for transportation com-
panies to optimize the use of their fleets. To compute the travel time of a
path in a road network, Dijkstra’s algorithm (or similar) is often used. To
enable this, a road network is modeled as a weighted graph, where the edge
weights are the travel times of the corresponding road segments. A drawback
of Dijkstra’s algorithm is that it does not take turn directions at intersections
into account. This drawback can be eliminated if network-constrained trajectory
(NCT) data is available. With such data it is possible to have different travel-
times, e.g., depending on whether right or left turns occur on an intersection.
With NCT data available we cannot only collect aggregate travel-times for
edges, but also collect travel-time distributions for edges in the form of his-
tograms. If those histograms are only collected on a per segment basis and
a path estimate is obtained through the convolution of all the histograms of
the segments along the path, inaccuracies can arise due to the distribution
independence assumption that underlies convolution. By adopting a path-
based approach, where histograms are also collected for some paths, fewer
histograms need to be convolved when computing the distribution of a path.
This in turn increases the accuracy of the travel time distribution of a path [1].

The availability of rapidly growing trajectory data sets requires trajectory
stores to take advantage of the increasing parallelism of modern multi-core
systems to efficiently analyze these data sets. To increase the number of cores
in a system, hardware vendors now often ship multi-processor systems with
a non-uniform memory access architecture (NUMA) as opposed to a symme-
tric multi-processor architecture. In a NUMA systems the cores are divided
into disjoint groups that each have their own local main memory and are
connected to the other groups via a communication network that has con-
siderably lower bandwidth and higher latency than local memory accesses.
To take full advantage of the increased parallelism of NUMA systems, it is
essential to minimize memory accesses to remote memory regions.

Figure D.1 shows an example memory hierarchy of a NUMA system,
where eight processing units (PU) form a single NUMA region with shared
memory. If the memory in a different region is accessed, the access occurs
via a processor interconnect that is considerably slower than the memory bus.
Today, NUMA systems can often be found on single chips since producing
multiple smaller and simpler processors and interconnecting them on a die is
economically attractive for chip manufacturers since it increases chip yields
during the fabrication process [2].

In this paper we propose the, to our knowledge, first NUMA-aware tra-
jectory store which follows a data-oriented architecture. It is designed to ef-
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Fig. D.1: Memory Hierarchies in a NUMA system

ficiently query a large in-memory trajectory data set to answer travel-time
queries consisting of a road network path and a start time. This is the
first NUMA-aware query processing system that coordinates several differ-
ent worker types which not only handle different data partitions as proposed
by earlier systems but also separates the spatial and temporal dimension of a
query for purposes of load balancing.

The main contributions of this paper are the following:

• Design of a trajectory store that can simultaneously handle updates and
real-time queries.

• An implementation of a scalable NUMA-aware trajectory store.

• A detailed experimental evaluation of the proposed trajectory store.

The rest of the paper is structured as follows. Section 2 provides an
overview of related work. Section 3 gives a detailed description of the ar-
chitecture of the proposed trajectory store, while Section 4 provides imple-
mentation details. Section 5 introduces our experimental setup and reports
on the experimental results, and Section 6 concludes.

2 Related Work

The proposed system relies on the efficient processing of so-called strict-path
queries (SPQ) that retrieve trajectories relevant to a path. We review the
most relevant approaches to processing SPQs as well as several NUMA-aware
database systems.
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2.1 Network-Constrained Trajectory Indexing

Several indexing methods have been proposed to enable efficiently process-
ing SPQs.

NETTRA

The NETTRA index proposed by Krogh et al. [3] enables efficient SPQ pro-
cessing on trajectory data. An SPQ finds all sub-trajectories that follow the
same path between points A and B, i.e., trajectories without detours or extra
stops. The NETTRA index uses path encoding based on prime numbers to
determine the route of a trajectory. The NETTRA index targets disk-resident
data and relies on conventional disk-based indexes such as B+trees for an-
swering queries efficiently. Thus, the NETTRA index is not a main-memory
index. Further, it and is designed to be updated with complete trajectories.

SNT-Index

The SNT-index proposed by Koide et al. [4] is an in-memory index for net-
work constrained trajectories (NCT) that is optimized for SPQs. The SNT-
index consists of a spatial index and a collection of temporal indexes, one
for each road segment. The temporal index of a segment contains one entry
for every traversal of that segment, consisting of the timestamp when the seg-
ment was entered, a trajectory ID, and a spatial predicate. As a preprocessing
step to computing the spatial index, all segment traversals of the trajectory
set are represented as strings so that the spatial index can utilize string in-
dexing to identify whether a certain path exists in the trajectory set. The
spatial index also computes a spatial filter predicate that consists of a value
range that can be evaluated by means of two compare instructions when
scanning the temporal indexes. To efficiently obtain this filter predicate, an
FM-index [5] based on the Burrows-Wheeler transform [6] of the trajectory
string is used. The FM-index can obtain the spatial filter predicate of a path
P in O(|P| log Σ) time, where Σ is the size of the road network. After the
predicate is computed, the temporal index of the first segment of the path is
scanned, and all matching trajectory IDs are returned. Since the FM-index
achieves considerable compression of trajectory strings, most of the memory
footprint of the index is caused by the temporal indexes.

Extended SNT-Index

Our trajectory store utilizes the so-called Extended SNT-index [7] that sup-
ports not only the efficient retrieval of the IDs of trajectories that follow a
path, but also the time needed to traverse the path. This is done by also
storing the segment traversal time and its aggregate in the temporal indexes.
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Because of the efficient spatial filtering method provided by the SNT-index,
the Extended SNT-index can obtain the traversal times of a path with a single
query on the FM-index and a scan of the temporal indexes of the first and
last segments of the path, regardless of the length of the path. The scan of the
first segment, called the build phase, collects the travel times of all trajectories
that satisfy the spatial and temporal filters. The build phase is followed by a
probe phase in which the path traversal times of the trajectories identified in
the previous phase are computed. One of the biggest drawbacks of the SNT-
index is that its spatial index, the FM-index, cannot be updated efficiently. To
address this, temporal partitioning is used, and one FM-index is maintained
for each partition.

2.2 NUMA-Aware Query Processing

Several query processing systems exist that are adapted to the NUMA archi-
tecture. They often follow a data-oriented architecture in which data place-
ments aim to achieve improved cache utilization and more efficient memory
access patterns. This is achieved through data partitioning and by minimiz-
ing coordination between the different partitions. This is similar to optimiza-
tions that would be applied to a distributed system.

OLTP

Pandis et al. propose DORA, a DBMS following a data-oriented design that
uses a thread-to-data as opposed to a thread-to-transaction assignment for
transactional workloads [8]. DORA partitions the data among its worker
threads and manages accesses to each partition with thread-local data struc-
tures whenever possible thereby reducing the contention on the global lock
manager, which is the main bottleneck in multi-threaded DBMSes.

Porobic et al. propose ATraPos which extends this to multi-socket sys-
tems [9] which also allows the repartitioning of the data among the workers
based on the query load and the system topology.

OLAP

Several NUMA-aware systems optimized for analytical queries exist. Kissinger
et al. follow a data-oriented architecture with their ERIS storage engine [10].
Specifically, ERIS partitions the data, and queries to each partition are pro-
cessed by an "Autonomous Execution Unit" (AEU) that is a thread pinned
to a core in the same NUMA region as the partition. ERIS achieves load
balancing via repartitioning of the data among the AEUs.

Leis et al. propose a NUMA-aware extension to the HyPer system [11]
that achieves load balancing through so-called work stealing.
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3 Architecture

Our trajectory store receives two types of input:

Updates segment traversals that are ingested from an input stream and col-
lected into trajectories and indexed.

Travel-Time Queries consisting of a path and a start time that return a travel-
time histogram based on the indexed trajectories.

For our trajectory store we also follow a data-oriented architecture since tem-
poral data lends itself well to partitioning. In contrast to the other systems,
we implement more than one type of worker since we are not indexing rela-
tional data, but data with a spatial and temporal dimension and can therefore
utilize specialized indexing techniques for each dimension.

3.1 Overview

As shown in Figure D.2, the system consists of a Dispatcher thread (Disp), an
Update Worker (UW), several Spatial Workers (SW) and Temporal Workers
(TW), and multiple Convolution Threads (CT). Every worker runs in its own
thread, and the threads communicate with each other through either single-
producer/single-consumer (SPSC) or multiple-producer/multiple-consumer
(MPMC) queues. Queries and updates enter the system through the Dis-
patcher that enqueues updates into the Update Queue (UQ) and queries into
the Query Queue (QQ). The Dispatcher also coordinates batch updates. We
proceed to consider each type of worker in turn.

Fig. D.2: Architecture of the Trajectory Store

3.2 Update Worker

Figure D.3a shows the architecture of the Update Worker. The worker con-
tinually polls UQ for new update messages that are tuples containing a tra-
jectory ID, a segment ID, a timestamp, and the traversal time of the segment.
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(a) Update Worker

(b) Spatial Worker

(c) Temporal Worker

Fig. D.3: Worker Architecture

When an update arrives, it is inserted into the active trajectory set. If it is
the last segment being traversed by an active trajectory, it is inserted into
the Update Buffer that maintains a list of all trajectories to be inserted dur-
ing the next batch update. Each update is also inserted into the Histogram
Store (HS) that stores a time-of-day histogram for each segment in order of
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the road network to track at which minute of the day a segment has seen
traffic. For each segment, the Update Worker also maintains a running av-
erage of the most recent traversal times in the Real-Time Store (RTS), which
enables the identification of outliers in real-time. When a batch update is
triggered by the Dispatcher, all future finished trajectories are inserted into
a new Update Buffer instance. The old Update Buffer computes a batch up-
date of all finished trajectories since the last update. First it computes the
Burrows-Wheeler transform of the trajectory string in order to compute the
FM-index for the batch. Then all segment traversals for the batch are inserted
into the temporal indexes of their respective Temporal Workers. Finally, a
copy of the new FM-index is inserted into each Spatial Worker, which makes
the new trajectory set accessible for SPQs.

3.3 Spatial Worker

As shown in Figure D.2, all Spatial Workers share the MPMC Query Queue
(QQ) into which all queries are inserted. Each worker continually polls QQ
for queries. Once a query is found, the global real-time data store is checked
for any travel-time outliers on the path of the query. If any are found, their
travel times are forwarded to the Convolution Thread of that query. After
all outliers are removed, the remaining query is partitioned into multiple
sub-queries using the network metadata. Queries are partitioned by a simple
heuristic [7] to increase query accuracy and parallelism and the resulting sub-
queries can be processed independently from each other. Then the time-of-
day histograms from HS and the spatial filter predicates from the FM-indexes
are used to derive a cardinality estimate for each sub-query. If the estimate
is below a desired threshold β the partition is split, and a new estimate is
obtained. Once a viable sub-query with a sufficient estimated cardinality is
identified, it is enqueued into its respective Temporal Queue (TQi).

Since a temporal worker might still not find the required amount of tra-
jectories, a sub-query may have to be split again, which triggers a recompu-
tation of the spatial predicates. If that is necessary, the new sub-queries are
inserted into the FM Queue (FMQ) by the Temporal Workers. The FMQ is
also continually polled for new sub-queries.

Since any Spatial Worker can process any query, these workers also enable
load balancing in the system in the sense that a long running query on one
worker does not block the whole system.

3.4 Temporal Worker

Each Temporal Worker maintains temporal indexes of a subset of the seg-
ments in the network; these segments are assigned via a partitioning method.
Each worker continually polls its Temporal Queue (TQi) that contains either a
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build job consisting of a path, a time range and spatial predicates, or a probe
job consisting of a list of timestamped partial results. If a build job is re-
ceived, the specified temporal index is scanned for matching entries. If fewer
than β entries are found, the sub-query is split and send back to the Spatial
Workers via the FMQ to obtain updated spatial predicates. If the query is
successful and consists only of a single segment, it is forwarded immediately
to its Convolution Thread via the Partial Result Queue (PRQ). If not, a probe
query consisting of the partial result is enqueued into the TQ of the Temporal
Worker containing the last segment of the path. However, this is only done if
the current partition does not own this segment. Otherwise, the probe job is
processed immediately locally and the result enqueued into its PRQ.

The Temporal Workers support two types of segment partitioning:

Hash that assigns segments via a hash function
(hash(si) mod n).

Range that assigns an equal-sized range of segment IDs to each worker.

For range partitioning, we use the segment IDs assigned by our map data,
where segment IDs are usually assigned by geographical proximity, i.e., ad-
jacent edges are usually continuously numbered.

3.5 Convolution Thread

The Convolution Threads (CT) can be thought of as reducers. Each CT col-
lects the partial result histograms of a subset of the query IDs and convolves
them into a travel-time histogram covering the full query path. Once the last
result histogram of a sub-query arrives at its CT, the resulting travel-time
histogram for the full query path is emitted.

The convolution operation only requires few data points for every sub-
query, but the operation is computationally expensive and is therefore per-
formed in its own threads.

4 Implementation

This section describes the implementation details of the proposed main-memory
index structure and how it is made NUMA-aware.

4.1 NCT Index

The trajectory store is an updated C++17 implementation of the Extended
SNT-Index [7]. As the spatial index, an FM-index based on sdsl-lite’s wavelet
tree implementation [12] is used. The Burrows-Wheeler transform is com-
puted with sais-lite-lcp [13]. As the temporal indexes, we use in-memory
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B+-trees [14]. However, any multi-map that allows for ordered traversal can
be used. For inter-thread communication, lock-free implementations of SPSC
and MPMC queues are used [15, 16]. The Armadillo math library is used
for histogram convolution [17]. All test programs for the experiments are
compiled with clang version 8.0.1 with the options -O3 -march=native.

4.2 Placement Strategy

Usually the operating-system scheduler migrates threads between cores, which
can cause suboptimal memory access patterns on NUMA systems because it
pollutes the cache. Further, if a thread is moved to another NUMA region,
this results in expensive remote memory accesses because Linux by default
allocates memory according to a first touch policy [18]. Since Linux imple-
ments the pthreads API, we can control which core a thread is scheduled for
by setting its affinity using the function pthread_setaffinity_np. This func-
tion ensures that a thread is scheduled only on a given set of cores.

In our system, we ensure that all Temporal Workers are scheduled for ei-
ther the same NUMA region or adjacent ones to ensure that forwarding probe
jobs can be done as locally as possible. Threads that share data structures are
also scheduled for the same region or adjacent ones.

We do not schedule threads on all available cores since some compute
resources are required for background tasks, like preparing batch updates or
generating input data, that need to be performed asynchronously.

4.3 Allocation Strategy

Linux provides the libnuma C library as a drop-in replacement for the malloc
and free memory-management functions.

numa_alloc_onnode(size_t size, int node) Allocates heap memory in a
specified NUMA region.

numa_alloc_local(size_t size) Allocates heap memory in the region, the
process is running in.

numa_free Frees memory allocated by the previous two functions.

With this library, we implement C++ allocators that ensure the placement
of thread-local as well as shared data structures like the queues in local (and
optimal) NUMA region. For example, the Temporal Queues are always allo-
cated in the region where their worker is running.
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5 Evaluation

This section describes the experimental setup and methodology and analyzes
the experiments.

5.1 Experimental Setup

We proceed to cover the testing environment and methodology.

Data Sets

For the evaluation, we use the real-life road network graph of Northern Den-
mark provided by OpenStreetMap [19]. It contains more than 750,000 roads
and more than 1.4 million directed edges.

To generate a sufficiently large trajectory data set for the experiments
we use the ITS Platform data set that contains around 1.4 million map-
matched trajectories comprised of over 79 million segment traversals col-
lected in Northern Denmark over a time of over two years [20, 21]. To gener-
ate realistic workloads we treat all trajectories as if they were generated on a
single day and then choose a random sample from that set for every batch.

Performance Metrics

We evaluate the system by three metrics:

Latency Measures how long it takes for a travel-time query to return a travel-
time histogram.

Throughput Measures how many queries (or messages) can be dispatched
in a fixed amount of time while still maintaining an acceptable latency.

Scalability Shows how increasing the amount of compute resources or data
affects latency and throughput.

Latency is measured in milliseconds from dispatch to result, while through-
put is measured in queries (or messages) per second. The testing setup for
measuring latency is shown in Figure D.4. A Message Producer (MP) sends
update and query messages to the Dispatcher. When a query is sent, a no-
tification consisting of the query ID and the current timestamp is sent to
the Result Thread (RT) that, upon receipt of the result travel-time histogram,
reports the latency of the query.

The latency is deemed acceptable if it does not exceed 200 milliseconds
which can be considered "instantaneous" in interactive applications [22].

We compare our NUMA-aware trajectory store against the "plain" version
of our trajectory store that then serves as a baseline. For this, we leave the
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Fig. D.4: Testing Setup

allocation strategy to the standard allocators, and we leave thread placement
entirely up to the operating-system scheduler. Apart from those modifica-
tions, the baseline runs the exact same code as our NUMA-aware trajectory
store. We also evaluate the effect the different partitioning methods have on
the performance metrics and how well our solution scales.

Test Hardware

Our tests are performed on the NUMA system described in Table D.1. It
consists of four sockets that are connected via a HyperTransport network
with the topology shown in Figure D.5a. With this topology, every region
has at most a distance of 2 to any other region.

Figure D.5b shows the latency of reads measured in CPU cycles between
the different NUMA regions that were obtained with the BenchIT tool [23].
We can see that local reads only incur roughly half the latency compared to
reading remote memory. It also shows that small reads in the same region
outperform remote reads by nearly an order of magnitude due to the speed
of the shared L3 caches for local reads.

Processors 4x AMD Opteron 6376
Cache (per chip) L2: 8x 2 MB / L3: 2x 6 MB
RAM 512 GB (64 GB/region)
Cores 64
NUMA Regions 8
OS Ubuntu 14.04.3 LTS (3.13.0-147)

Table D.1: Test System

Test Setup

We test how throughput affects latency and how well our system scales in
two settings:

Query-Only Loads an index and runs travel-time queries without additional
updates.
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(a) NUMA topology of our test system with an example thread placement
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Fig. D.5: Test System
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Real-Time Starts with an empty index that simultaneously receives updates
and queries and performs periodical batch updates.

For each setting, three tests are performed with scalability settings de-
scribed in Table D.2. It lists the batch size, the number of batches inserted,
the number of queries run during each batch, and the numbers of workers
of each type that are scheduled. A trajectory value of, e.g., 250,000, and a
batch value of 10 mean 2.5 million trajectories were indexed in ten partitions
(FM-indexes).

Test
Type

Test
Size

Batches/
Queries/
Trajectories

Throughput Threads SW/TW/CT

Query-
Only

Region 10/1,000/
250,000

5-25 Q/s 8 2/2/2

Query-
Only

Socket 10/2,000/
500,000

10-60 Q/s 16 4/4/6

Query-
Only

System 10/5,000/
2,500,000

10-60 Q/s 58 16/24/16

Real-
Time

System 3/5,000/
100,000

5,000 M/s 57 15/24/16

Real-
Time

System 3/50,000/
100,000

50,000 M/s 57 15/24/16

Real-
Time

System 3/50,000/
100,000

100,000 M/s 57 15/24/16

Table D.2: Test Sizes

5.2 Results

This section reports on experimental results for both test settings.

Query-Only Results

Results for the query-only setting are shown in Figure D.6. The black hori-
zontal line denotes the 200 millisecond boundary.

We consider three scalability scenarios. For the optimized version, we
schedule all worker threads on either a single region or on a single socket;
for the baseline, we just the let the operating-system scheduler decide the
placement. In the third scenario, we schedule a worker on nearly every core
of the test system while allowing a few cores to remain available for back-
ground tasks.
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Fig. D.6: Query-Only

For all scalability scenarios, the NUMA-aware version of our trajectory
store achieves improved latency by up to a factor of two in low-throughput
settings. At higher throughput, the advantage of the NUMA-aware trajectory
store is even more pronounced. We can also observe that the difference in per-
formance is larger with higher core counts. For the unoptimized version of
the system, we see that range partitioning performs considerably better than
hash partitioning due to the better memory locality of this method, which
leads to more probe jobs being processed without inter-thread communica-
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tion. The better memory locality occurs because segment IDs are clustered
spatially.

This effect cannot be observed for the optimized version; and the inverse
is actually true when evaluating system level scalability since the better load
balancing achieved by hash partitioning becomes noticeable.

Not only does the optimized version achieve lower latency at all through-
put rates, its latency also degrades more gracefully as the load increases. We
can also observe that the number of cores can be scaled linearly with the data
size while maintaining acceptable latency.

Real-Time Results

For the real-time tests, several batches containing both updates and queries
are sent to the trajectory store. Three batches are inserted at different through-
put rates and different query-to-update ratios. For all experiments, we use
the thread placement shown in Figure D.5a. The results are shown in Fig-
ure D.7, where vertical bars indicate the point where a batch update was
triggered. Before the first batch is triggered, only segment-level data from
the RTS can be used; and if no data is available the speed limit of the seg-
ment is used.

Figure D.7a shows the moving average (k = 1, 000) of the query latency
of three batches, each consisting of 100,000 trajectories and 5,000 queries at
a throughput of 5,000 messages per second. Figure D.7b shows the moving
average (k = 10, 000) of the query latency of three batches, each consisting
of 100,000 trajectories and 50,000 queries at a throughput of 50,000 messages
per second. Figure D.7c shows the moving average (k = 10, 000) of the query
latency of three batches, each consisting of 100,000 trajectories and 50,000
queries at a throughput of 100,000 messages per second.

We can observe that even at the highest throughput rate, the average la-
tency never exceeds 50 milliseconds; and even for the baseline, it remains
within acceptable levels. The highest average latency can be observed during
a batch update, during which the latency nearly doubles until the update is
complete. Further, the difference in performance between the two versions is
less pronounced than in the Query-Only scenario. However, during spikes
in latency, the difference between the NUMA-aware trajectory store and the
unoptimized trajectory store is also the biggest. This is consistent with the
observation from the Query-Only experiments, where the performance of
the optimized version degrades more gracefully under high loads. The dif-
ference between the partitioning methods is also less noticeable, with range
partitioning only producing small reductions in latency, if any at all.

125



Paper D.

5

10

15

20

25

0 5000 10000 15000
Number of Queries Dispatched

M
ov

in
g 

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(a) 5,000 messages/second in three batches of 100,000 trajectories and 5,000 queries

10

20

30

0 50000 100000 150000
Number of Queries Dispatched

M
ov

in
g 

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(b) 50,000 messages/second in three batches of 100,000 trajectories and 50,000 queries

0

10

20

30

40

0 50000 100000 150000
Number of Queries Dispatched

M
ov

in
g 

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(c) 100,000 messages/second in three batches of 100,000 trajectories and 50,000 queries

Fig. D.7: Real-Time Latency
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6 Conclusions & Outlook

In order for travel-time estimation in road networks to be able to take ad-
vantage of the increasingly massive trajectory data sets, means are needed
that enables them to be ingested and indexed efficiently. We propose a novel
trajectory store design and implementation that improves the performance of
travel-time queries based on so-called strict-path queries and is optimized for
non-uniform memory access (NUMA) computing hardware systems. With
the rising number of processing units on a single chip, NUMA systems are
becoming the norm even on single-socket machines. We show that our ar-
chitecture can be adapted easily to be NUMA-aware with the modifications
required to handle thread placement and NUMA-aware allocation making
up less than 3.5% of the trajectory store’s code base.

We evaluate our prototype system with a large synthetic data set based on
a map-matched real-world trajectory data set. The NUMA-aware trajectory
store outperforms a baseline implementation in all scenarios, and it performs
especially well under high loads. When queried in a static setting or when
being updated concurrently, the trajectory store delivers query latencies suit-
able for real-time applications.

The proposed trajectory store opens to several avenues of future work.
It can be extended further by implementing an additional load balancing
mechanism on the Temporal Worker level by repartitioning the segments ei-
ther based on query load or by trying to maximize the co-location of build
and probe jobs to the same worker. Furthermore, the multiple worker type
architecture can also be adapted to applications beyond spatio-temporal data
processing.
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Abstract

Large vehicle trajectory data sets can give detailed insight into traffic and congestion
that is useful for routing as well as transportation planning. Making information
from such data sets available to more users can enable applications that reduce travel
time and fuel consumption. However, extracting such information efficiently requires
deep knowledge of the underlying schema and indexing methods. To enable more
users to extract information from trajectory data, we have developed an API that
removes the need to be familiar with the schema. Furthermore, when giving access
to trajectory data, privacy concerns often call for the application of anonymization
methods before analysis results are made available. In our demonstration, owners of
trajectory data are able to experiment with different levels of anonymization to see
how this affects the quality of different types of trajectory analysis services imple-
mented on top of a large trajectory data set.

c© 2019 ACM. Reprinted, with permissions, from Robert Waury, Christian S.
Jensen, Peter Dolog, and Kristian Torp, Analyzing Trajectories Using a Path-
based API, 2019
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1. Introduction

1 Introduction

Fig. E.1: Intersection Analysis

A trajectory analysis example is shown in Figure E.1 that illustrates a
trajectory set that covers different traversals of a signalized intersection. The
figure also illustrates how trajectory data offers benefits over data that only
covers single road segments. To estimate the traversal time for the path taking
the right turn (P = 〈A, D〉), one could use all traversal time histograms of
segments A (H(A)) and D (H(D)) and convolve them (H(A) ∗ H(D)), or one
could consider only trajectories that fully traverse the turn (H(A, D)) [1].

Since the former also contains trajectories of cars going straight, which is
usually faster than making a right turn, and cars making a left turn, which is
usually slower, it is likely to provide an inaccurate estimate with an artificially
high variance.

On the other hand, using detailed trajectory data causes privacy concerns
since publishing such data would allow to identify drivers’ home addresses
and places of work by mining the data set for repeating patterns. Therefore,
trajectory data sets often cannot be released to the public in full. However,
we can allow users to query the data and then answer the queries to an extent
that satisfies privacy restrictions either by using anonymization methods or
reporting only particular aggregates.

The trajectory analytics services we demonstrate here target multiple use
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cases. Municipalities invest substantial resources into analyzing the travel
times of road intersections to obtain reliable information for city and traffic
planning. Many such analyses can be performed faster and easier by using
existing data sets that are, however, currently not available to the munici-
palities. Another use case is tendering for public transportation contracts
where tenders are advertised in all EU countries. Here companies already
present on a market have an advantage when bidding, since they can more
reliably estimate travel times and costs and adjust their bids accordingly. If
trajectory analytics services for a region are made available to all parties, the
public sector could expect more competitive offers from companies new to
the market.

Such services do not need to be provided via an SQL interface, but can
be provided by a RESTful service implemented on top of a path-based API,
which allows easy access to the trajectory data without requiring any knowl-
edge about the underlying database schema or indexing methods. Such ser-
vices are also easier to integrate into a variety of applications. Our goal is to
demonstrate how information contained in trajectory data sets can be made
easily available to other parties without violating the privacy of the individu-
als from which the data is collected, i.e., making a trip or a driver identifiable
from the published data.

We provide a fast and flexible implementation that allows more mean-
ingful analytics on trajectory data than do other, more prevalent traffic data
sources, e.g., loop detectors.

2 The Trip API

The TripAPI provides easy access to a data warehouse while being indepen-
dent of its schema and indexing methods. It provides access to basic infor-
mation about routes and segments, e.g., speed and travel-time information

2.1 Data and Parameters

The ITS Platform data set used for the demonstration contains over 1.1 billion
GPS points sampled at 1 Hertz from 458 vehicles in and around Aalborg,
Denmark during the period from May 2012 to December 2014 [2].

In a preprocessing step, the GPS points are map-matched [3] to the Open-
StreetMap model of the road network of Denmark [4]. This results in over 79
million segment traversals that form some 1.4 million trajectories. The map-
matched trajectories are stored in the fact table of our PostGIS data ware-
house by segment traversals and are organized in a star schema as shown in
Figure E.2.

To use any service, the user specifies two GPS coordinates that are then
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2. The Trip API

Function Arguments Behavior Index

NearestSegment lon, lat Maps coordinates to the
nearest road segment ID
(sid)

R-Tree
(PostGIS)

SegmentInfo sid Retrieves segment infor-
mation

B+-Tree
(PostgreSQL)

TripInfoSegment sid, dr, tr Retrieves all trips on the
most used path between
two segments filtered by
date and time range

B+-Tree
(PostgreSQL)

TripInfo sid1, sid2,
dr, tr

Retrieves all trip data on
the most used path be-
tween two segments fil-
tered by date and time
range

NETTRA

MostUsedRoute-
Trips

sid1, sid2,
dr, tr

Provides the number of
trips on the most used
path between two seg-
ments and its path iden-
tifier (pid) filtered by
date (dr) and time range
(tr)

NETTRA

Route sid1, sid2,
pid

Retrieves segment ge-
ometries of a path

NETTRA

RouteLength sid1, sid2,
pid

Returns length of a path NETTRA

GetFreeFlowTT sid1, sid2,
pid

Computes free flow
travel-time for a path

NETTRA

NoUnique-
VehicleID

sid Counts number of
unique vehicles on a
segment

B+-Tree
(PostgreSQL)

GetWeatherType weatherkey Returns the weather in-
formation for a weather
measurement obtained
with TripInfo

B+-Tree
(PostgreSQL)

Table E.1: TripAPI Functions

map-matched to the closest OpenStreetMap segment. The NETTRA index is
used to find the most frequently used route between the two segments [5]
which has been shown to scale to big trajectory data sets. Users can also
apply additional filter predicates, e.g., weather, date range, week day, and
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Fig. E.2: Data Warehouse Schema

month, to evaluate their impact on travel times.

2.2 API Functions

The TripAPI provides the functions described in Table E.1, which describes
each function’s arguments and behavior and states which index is used in
the implementation. These functions are implemented using PostGIS spatial
queries and the NETTRA index, but could be implemented on top of any
database system with spatial capabilities.

The API is used to efficiently retrieve trajectory data and information
about road segments. This data is then used to provide a number of anony-
mized analysis services on an application server. Passing a path identifier
(pid) returned by the trip functions, e.g., TripInfo, is necessary since the most
frequent path between two segments might change based on the predicates,
e.g., time or date range.

3 RESTful Services

We adopt a RESTful architecture for the web services [6] that provides exter-
nal access to resources for analytics applications based on the TripAPI. Since
we focus only on data retrieval and encapsulation, a RESTful architecture fits
better to our goals than do other styles such as SOAP [7].

We use a parametric style that adds all parameters of the resource as
follows:
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4. Anonymized Service Results

http://. . ./TravelTime?from={GPS}&to={GPS}.
The parametric style has the advantage that all query parameters appear

right after the resource and was chosen for our demonstration as it easily
maps to the dimensions of the data warehouse.

After requesting the URI of our service, the server transfers a representa-
tion of a resource as a list of records from the fact table or as an aggregated
list of records joined with information from the dimension tables in a JSON
document.

4 Anonymized Service Results

Figure E.3 shows how user applications can interact with the service and the
data warehouse. An application submits an HTTP GET request that is rewrit-
ten by the application server as an SQL query against the data warehouse.
The result set is then aggregated and anonymized on the server before being
returned to the user.

Fig. E.3: System Architecture

4.1 K-Anonymity

K-anonymity was introduced by Sweeney and Samarati [8]. To ensure k-
anonymity of reported data, we need to ensure that the data reported for
a user can also belong to at least k− 1 other users. This can be achieved by
not only removing unique identifiers like primary keys but also anonymizing
so called "quasi-identifiers" that would otherwise enable re-identification by
correlation. We use it for our demonstration because it is a proven yet easy
to explain anonymization method with implementations available from third
parties.

137



Paper E.

4.2 TravelTime Service

The TravelTime service provides a k-anonymous average speed histogram of
all trajectories for the most traveled path between two segments for every
time window within a specified time range. The service can be used to ana-
lyze the influence on congestion of the time of day or factors like weather or
season.

Figure E.4b shows an average speed histogram for the time of day in
15 minute intervals of a motorway path. If an interval does not contain
any trajectories, the average speed of the subsequent interval is reported.
Figure E.4c shows the same data, but with k = 7, i.e., this time every interval
contains the trajectories of at least 7 different users. If too few users are
present, it is merged with subsequent intervals until trajectories from at least
k users are found. If a path has been traversed by fewer than 7 users, no
result is reported.

4.3 Trips Service

The Trips service shows all travel times of the trajectories matching the de-
sired predicates for a chosen route. It lists the year, month, day of the week,
time of day, and the traversal time in seconds. It can be used to estimate the
distribution of travel times for a given path. Such data can be anonymized
using existing methods by treating every column except the traversal time as
a quasi-identifier. A result of the service can be seen in the Result Sidebar in
Figure E.4a.

5 Implementation

The RESTful service is written in Python and provided via the widely used
Flask framework that accesses the database via the TripAPI. The user input is
then transformed into a GET request to the server hosting the RESTful service
that in turn rewrites the user request into an SQL query. The result set is
aggregated/anonymized on the application server before being returned to
the user as a JSON document. For anonymizing the trajectory data for the
Trips service, a Python implementation [9] of the Mondrian algorithm [10] is
used.

6 Demonstration Scenario

For the demonstration, we utilize a graphical web interface, shown in Fig-
ure E.4a, that visualizes the JSON documents returned by the TravelTime
and Trips services. After two GPS coordinates are chosen on the map, the
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6. Demonstration Scenario

Anonymization Settings

Path

Filter Sidebar
Result Sidebar

TravelTime

Trips

(a) Demo UI

(b) Speed Histogram with k = 1 (c) Speed Histogram with k = 7

Fig. E.4: Technical Demonstration

most frequently used path between these points is rendered on the map. The
TravelTime service also produces an average-speed histogram that is shown
next to the map. Below, the table of the anonymized trajectory data from the
Trips service is presented. The interface allows users to apply time, date, and
weather constraints to the trajectories. In addition, a user can pick a level of
anonymization between k = 1, i.e., no anonymization, and k = 25. The user
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can then compare results of the TravelTime service for different k as shown
in Figures E.4b and E.4c and observe how the Trips table is affected. For our
example path, we can see that during the night and until the early morning,
larger intervals are reported for times with only sparse trajectory coverage
as well as a smaller range of values. Note that the service experiences only
a limited loss of accuracy during rush hours, where many trajectories are
available.

Our demonstration allows users to easily and quickly visualize the im-
pact of different data privacy guarantees on the quality of trajectory analyses
and how, e.g., the granularity of estimates on different road categories are
affected. Based on the results, users can make informed choices on which
trade-off between privacy and accuracy to apply when opening their data to
analyses, without knowing the details of the underlying database. Further-
more, our demonstration shows that our TripAPI provides a level of abstrac-
tion suitable for implementing trajectory analytics on top of large trajectory
data sets.
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