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PREFACE 

This dissertation is submitted in partial fulfilment of the requirements for obtaining 

the degree of doctor of philosophy (Ph.D.). The dissertation consists of abstracts in 

English and Danish, a short thesis and four supporting papers. 

The study was carried out at the Section of Chemistry, Department of Chemistry and 

Bioscience at Aalborg University in the period from October 2015 to February 2019. 

The study was financed by Innovation Fund Denmark, under the RecoverP project 

(Grant number: 4106-00014B). Part of the work was carried out at Katholieke 

Universiteit Leuven, Department of Chemical Engineering (Leuven, Belgium).  
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ENGLISH SUMMARY 

Phosphorus is essential in many industries, particularly agriculture. However, 

phosphorus is a finite resource, and reserves are limited. Northern Europe has no 

phosphorus reserves, while Morocco has the World’s largest reserves of phosphate 

rock. Phosphorus has been used at an increasing rate, consequently, it is estimated 

that phosphorus reserves will be depleted within the next 200 years. 

Phosphorus can be recovered from waste streams. The most promising of which is 

wastewater. During wastewater treatment phosphorus is removed by biological or 

chemical means. This means sewage sludge contains a high concentration of 

phosphorus. In some places sludge is spread on fields as a fertilizer. However, this 

raises issues surrounding odour, heavy metal contamination, and poor public 

opinion. Sludge can be incinerated and phosphorus recovered from the ashes, but the 

incineration process is energy intensive, and heavy metal contamination is 

sometimes still an issue. 

Biologically bound phosphorus is released during digestion; therefore digested 

sludge liquors contain a high concentration of phosphorus, but much less solids than 

sludge itself. Phosphorus products can then be precipitate from digested sludge 

liquors. Struvite is an extremely effective fertilizer, since it contains nitrogen, 

phosphorus, and magnesium. Addition of magnesium is needed in order to 

precipitate struvite, often in the form magnesium chloride. 

The objective of this study is to increase the efficiency of struvite precipitation 

through concentrating digested sludge liquors (thus reducing the amount of 

magnesium additive) or through removal of phosphorus to a ‘clean’ stream, free of 

heavy metals or biological contamination. This can be achieved by using forward 

osmosis and selectrodialysis, respectively. 

TFC forward osmosis membrane was tested, using a seawater draw solution. Water 

permeability of 0.29 LMH bar
-1

 was achieved when concentrating digester centate, 

and a VCR of 7 was achieved using seawater draw. Membrane fouling was not 

found to be a problem during 68 hour operation. Biomimetic membrane achieved a 

water flux of 0.092 LMH bar
-1

. Using biomimetic membrane phosphorus 

permeability was found to decrease with increasing pH, while ammonium 

permeability increased with increasing pH. This shows increasing rejection with 

increasing charge on the ion. However, it was also found that sodium ions from the 

draw acted as co-ions for ammonium flux across the membrane. Consequently, pH 

adjustment could not prevent draw solution contamination. 

Selectrodialysis was investigated for recovery of ammonium and phosphate in 

separate streams simultaneously. Initial recovery rates of 0.072 and 1.31 mmol m
-2

 s
-
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1
 were found for phosphate and ammonium respectively. After 3 hours of operation 

90% phosphate and 72% ammonium was recovered into the concentrate streams. 

Simulations of membrane area and power usage were carried out for increasing 

recovery. 

Finally, an economic analysis of implementing both technologies at Aaby 

wastewater treatment plant (Aarhus, Denmark) is carried out. It was found that the 

cost of treatment (including construction, plant etc.) must be below €6.75 per cubic 

meter of digester centrate treated. Any cost incurred below this value would allow a 

profit to be made. Only forward osmosis was below this threshold. The membrane 

area required for selectrodialysis was large, incurring high costs. 

.
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DANSK RESUME 

Fosfor er vigtig i mange brancher, især i landbruget. Imidlertid er fosfor en 

begrænset ressource, hvor Nordeuropa ingen fosforreserver har, mens Marokko har 

verdens største reserver af fosfatsten. Fosfor bliver brugt i stigende grad, og det 

vurderes derfor, at fosforreserverne vil blive udtømt inden for de næste 200 år.  

Derfor kunne en løsning på dette problem være at genindvinde fosfor fra 

spildstrømme, hvor den mest lovende er spildevand. Under spildevandsrensning 

fjernes fosfor enten biologiske og/eller kemisk. Det betyder, at spildevandsslam 

indeholder en høj koncentration af fosfor. Nogle steder spredes slammet på marker 

som gødning. Dette medfører imidlertid nogle udfordringer såsom lugt, 

tungmetalforurening og general dårligt omdømme i befolkningen. Derimod kan 

slammet forbrændes, hvorved fosfor kan udvides fra asken, men 

forbrændingsprocessen er energiintensiv, og forurening af tungmetaller er stadigt et 

problem. 

En anden metode, er at fjerne fosfor fra udrådnet slam. Biologisk bundet fosfor 

frigives under udrådning og derfor indeholder væskefasen fra dette slam 

(rejektvand) en høj koncentration af fosfor, men med et lavere tørstofindhold. Fra 

denne væskefase kan forskellige fosforprodukter udfældes såsom Struvit. Dette 

produkt kan bruges til gødning, da det indeholder både nitrogen, fosfor og 

magnesium. Tilsætning af magnesium er nødvendig for at udfælde struvit, ofte i 

form af magnesiumklorid. 

Formålet med dette PhD projekt er at øge effektiviteten af struvitudfældningen ved 

at opkoncentrere rejektvandet fra det udrådnede slam, således at tilsætning af 

magnesium kan reduceres, eller ved at fjerne fosfor til en "ren" strøm, fri for 

tungmetaller og biologisk kontaminering. Dette kan opnås ved at benytte forskellige 

membranprocesser - henholdsvis direkte osmose og selektiv elektrodialyse. 

En TFC osmosemembran blev testet ved at anvende havvand fra Limfjorden , som 

trækopløsning. En vandpermeabilitet på 0,29 LMH bar-1 blev opnået ved 

opkoncentrering af rejektvand, og en opkoncentreringsfaktor på 7 blev opnået under 

anvendelse af havvand fra Limfjorden. Fouling af membranen er ikke et problem i 

løbet af 68 timers drift. En anden membran, som efterligner naturen, en såkaldt 

”biomimetic” membran opnåede en vandflux på 0,092 LMH bar-1. Ved brug af 

denne membran faldt fosforpermeabiliteten med stigende pH, mens 

ammoniak/ammoniumpermeabiliteten steg med stigende pH. Dette viser en stigende 

tilbageholdelse af ioner ved højere ladning. Det blev imidlertid også fundet, at 

natriumioner fra trækopløsningen fungerede som med-ioner for 

ammoniumtransporten over membranen, hvorved ammonium blev transporteret over 
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i trækopløsningen, mens natrium blev transporteret til rejektvandet. Derfor kunne 

pH-justering ikke forhindre forurening af trækopløsningen. 

 

Selektiv elektrodialyse blev undersøgt for at genvinde ammonium og fosfat i 

separate strømme samtidigt. Genindvindingen til start blev fundet til 0,072 og 1,31 

mmol m-2 s-1 for henholdsvis fosfat og ammonium. Efter 3 timers drift blev 90% 

fosfat og 72% ammonium genindvundet i koncentratstrømmene. Simuleringer af det 

nødvendige membranareal og strømforbrug blev udført for at undersøge muligheden 

for at genindvinde disse næringsstoffer. 

Endelig blev der gennemført en økonomisk analyse af implementeringen af begge 

teknologier på Aaby rensningsanlæg (Aarhus, Danmark). Det blev konstateret, at 

omkostningerne (herunder konstruktion, anlæg mv.) skal være under 6,75 € pr. m
3
 af 

behandlet rejektvand for at opnå en fortjeneste. Kun direkte osmose lå under denne 

værdi. Det membranareal, der kræves til selektiv elektrodialyse, var for stort og 

medførte for høje omkostninger på nuværende tidspunkt. 
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CHAPTER 1. INTRODUCTION 

Since the industrial revolution, humanity has been using finite resources at an ever 

increasing rate. As such it is necessary to find ways of reducing their use, or find 

alternative renewable resources which can be used in their place. The most notable 

example of this in recent years is oil. In order to reduce its use, alternative 

automotive fuels have been studied, such as the use of electric vehicles. However, 

some finite resources have no alternative, such as phosphorus which is contained in 

every living cell. Consequently, it is necessary to identify opportunities to reuse or 

recycle phosphorus from waste streams. 

1.1. PHOSPHORUS CYCLE AND SOURCES OF RECOVERY 

Phosphorus is essential to everyday life. It is mined as rock, with the largest reserves 

(over half of the world’s phosphate reserves) found in Morocco [1]. Through the use 

of intensive farming methods phosphorus use in fertilizers has significantly 

increased. ’Peak phosphorus’, is the term used to describe the time when the global 

phosphorus production rate is at its maximum. A number of estimates have been 

made as to when peak phosphorus will occur, with many studies citing that it will be 

reached by 2035 [2]. However, another study calculated that it was reached in 1989 

[3]. Similarly, the estimated lifetime of phosphorus reserves has been calculated to 

be anywhere between 50 and 400 years [3–5]. Therefore, it is essential to develop 

new and cost effective method to recover phosphorus before reserves are depleted. 

1.1.1. PHOSPHORUS CYCLE 

Prior to industrialization the phosphorus cycle was closed (Figure 1a). However, 

modern human activity has caused the cycle to be broken (Figure 1b). In 

industrialized countries faecal matter (containing phosphorus) goes to wastewater 

treatment plants (WWTPs). This prevents faeces decomposing and in many 

countries the phosphorus is not returned back into the soil. As such, farmers add 

fertilizer to the soil to ensure an appropriate phosphorus concentration. This may 

causes problems with a high run-off of phosphorus, if the phosphorus is not bound 

in the soil, resulting in higher phosphorus concentrations in water bodies. 
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Figure 1(a) Phosphorus cycle (b) phosphorus cycle broken by human activity 

Recovery of phosphorus from WWTPs or other phosphorus-rich waste streams is a 

good opportunity to reduce a country’s dependence on imported phosphorus, and 

create a more sustainable reliance on the declining mass of minable phosphate rock. 

1.1.2. USES OF PHOSPHORUS 

Phosphorus has many uses; the following section highlights some, but not all, 

industrial uses of phosphorus. Phosphoric acid is the most common starting point for 

other uses of phosphorus [6]. 

Around 90% of phosphorus is used in food production. With the most common use 

being fertilizers (80%). The application of phosphorus fertilizers has played a key 

role in agricultural prosperity and reducing global hunger [7]. Phosphorus is vital for 

the survival of crops as it plays a role in photosynthesis, and many other 

biochemical processes, such as root development, uniform crop maturity and disease 

resistance [8]. In the last 40 years fertilizer use has increased 700% [9], with China, 

India and the US accounting for 50% of its use [7]. Not only plants require 

phosphorus for growth, animals and people also require it. Phosphorus is a key 

component of DNA, and is vital in cellular energy production. It is therefore added 

to animal food stuffs (7%) to promote healthy bone growth/density [10] and skeletal 

tissue. A further 1-2% is used in food additives. [11,12]  

Table 1 shows some of the uses of phosphorus, and in which form it is used. It is 

important to understand which form of phosphorus is required for certain 

applications to ensure correct recovery, identify potential customers/ users, and 

ensure it is adequately pure for proper use. 

Phosphorus is also used in the following industries/products; 
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 Pigments and dyes (phosphinines [13]); 

 Glasses (phosphorus oxynitride [14]); 

 Phospho-ceramic construction materials (phospho-silicate [15]); 

 Industrial phosphate esters (triaryl/alkyl phosphates for use in fire 

retardants [16]); 

 Pesticides (dialkyl phosphates [17]); 

 Medicinal compounds; 

 Pyrotechnics (white, yellow or red phosphorus [18]); 

 Catalysts and synthetic reagents (i.e. surface-phosphated NiO catalysts 

[19]); 

 Electronic/electrical materials (black phosphorus [20]).[6] 

 

Table 1 Phosphorus uses and the type of phosphorus product used [21,22] 

Phosphorus Use Phosphorus form 

Fertilizer Superphosphate [Ca(H2PO4)2•H2O+CaSO4•2H2O] 

Concentrated superphosphate [Ca(H2PO4)2•H2O] 

Ammonium phosphate (NH4H2PO4) 

Diammonium phosphate [(NH4)2HPO4] 

Nitric phosphates 

Calcium phosphate 

Magnesium ammonium phosphate (struvite) 

[NH4MgPO4·6H2O] 

Food industry Polyphosphates 

Disodium phosphate 

Phosphoric acid 

Mono –calcium phosphate 

Sodium acid pyrophosphate 
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Tetra-sodium pyrophosphate  

Detergents Sodium tripolyphosphate 

Tetrapotassium pyrophosphate 

Metal surface treatments Phosphoric acid 

Toothpaste Sodium hexametaphosphate 

Sodium monofluorophosphate 

Fire retardants Ammonium phosphate 

Refractory industries Aluminium phosphate 

 

Since heavy metal contamination is often an issue when recovering phosphorus, the 

use of recovered products in direct human consumption is not legal, i.e in toothpaste, 

detergents, or food additives. Furthermore, there would be poor public opinion of 

using consumables containing phosphorus recovered from certain waste streams, 

such as wastewater. In order to ensure safe processes/use, many industries require a 

phosphorus compound with high purity. For example, the fire retardant industry 

requires a pure product in order to produce high-quality, potentially life-saving 

products. On the other hand, use of recovered phosphorus as a fertilizer has high 

potential. Phosphorus from waste streams is already used on agricultural land, but 

has poor public opinion due to odour and the potential for heavy metal 

contamination. As such, a market already exists for recovered phosphorus. Struvite 

is a widely studied phosphorus recovery product, and has a sale value of €225 per 

ton [23]. Struvite is of particular interest if it can be used in organic farming.  

Recovered phosphorus products show poor or no water solubility compared to 

commercially available fertilizer. Consequently, it may not be suitable for 

application requiring a liquid product. However, application in field trials shows 

improved agricultural output even though recovered fertilizers showed no water 

solubility. [24] Consequently, recovered phosphorus is best suited to fertilizer 

application.  

1.2. WASTE STREAMS WITH HIGH PHOSPHORUS CONTENT  

Different waste streams exist with high phosphorus content that could be recovered. 

Thus, once a suitable application has been selected, it is necessary to identify a 

waste stream suitable for recovery/reuse. When looking for waste streams with high 

phosphorus content, one may look no further than phosphorus mines themselves. 
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Thirty to 40% of mined phosphorus is lost during mining and processing [25]. While 

this may appear to be the perfect place to recover phosphorus, phosphorus mining 

wastes also contain considerable quantities of heavy metals and radioactive material. 

These pose a threat to human health, and complicate the recovery of phosphorus. 

Furthermore, this would only be suitable in the few regions where phosphate mines 

exist. [25,26] 

Surface run-off contains phosphorus [27]. White et al. (1977) measured the 

phosphorus content of surface run-off from catchments of the Taita experimental 

basin in New Zealand. Catchments included a hill pasture, fertilized with lime and 

super phosphate, and forested land, both native and exotic. It was reported that the 

hill pasture lost 3 times as much reactive phosphate, and up to 5 times as much total 

phosphate as forested land [28]. This is further supported by research in the United 

Kingdom which shows up to 2 kg P ha
-1

 y
-1

 being lost from land treated with slurry 

[29].  

Animal manure contains phosphorus, cattle and swine faeces have been found to 

contain 6.7 and 29.1 g kg
-1

 total-P respectively [30]. In 1997, livestock farms in the 

US produced 0.7 million tons of recoverable phosphorus [31]. Livestock manure is 

often spread on fields; however, it suffers from poor public opinion due to odour and 

health concerns. Furthermore, livestock is often concentrated on large farms, as 

such; phosphorus from manure is not evenly distributed across a country or 

continent, and can only be transported short distances. While the spreading of 

manure has been found to be effecting in increasing the phosphorus content of soil, 

some (depending on animal feed etc.) of the phosphorus is inorganic and not soluble 

in water, and as such cannot be used by plants. One method to overcome this is by 

treating the manure with hydrothermal carbonization, then acid treating the product. 

Though this method 80-90% of phosphorus can be recovered [32]. 

Municipal wastewater not only covers human excreta, but also some surface run-off, 

and phosphorus from household items (i.e detergents and toothpaste). Consequently 

wastewater contains 75-300 mg P L
-1

 [33]. Treatment of wastewater involves 

phosphorus removal by biological or chemical means. This results in a sludge which 

has high phosphorus concentration. Biologically bound phosphorus is released 

during sludge digestion, with digester liqours (high phosphorus content) being 

returned to the head of the WWTP. This continuous cycle means that wastewater 

treatment is more costly, due to the costs of chemical dosing to remove the 

phosphorus and due to struvite build up in pipes and digesters. 

Since WWTPs already require phosphorus removal, it may be cost effective to 

introduce phosphorus recovery to this waste stream. As such, the remainder of this 

dissertation will focus on recovery from wastewater. In Denmark, phosphorus in 

wastewater amounts to 20-25% of the 11,000 tonnes of phosphorus imported each 

year. 
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1.3. WHERE ON THE WASTEWATER TREATMENT PLANT SHOULD 

RECOVERY OCCUR? 

There are a number of places in a WWTP from which phosphorus can be recovered. 

Error! Reference source not found. shows a typical bio-P WWTP. As seen in the 

figure there are a number of treatment steps by which phosphorus can be 

removed/recovered. Firstly, wastewater itself can be used. Raw municipal 

wastewater contains 5-20 mg L
-1

 total phosphorus, some of which is chemically or 

biologically bound [34]. Raw wastewater also contains a relatively high suspended 

solids concentration, and contains other objects such as toilet paper, wet wipes, and 

other waste. Even after screening, which removes larger objects and solids, the 

phosphorus concentration is relatively low, so extensive treatment would need to 

occur in order to achieve a desirable phosphorus concentration, or recovery would 

be inefficient. 

 

Figure 2 Process flow diagram of a typical bio-P WWTP red boxes highlight area 
where phosphorus is removed, percentages show the percent of phosphorus 
present in influent sludge and effluent at Aaby WWTP.. 

Phosphorus is partly recovered during primary sedimentation; but the phosphorus is 

biologically or chemically bound. Thus, this fraction of phosphorus cannot be 

recovered easily, and the concentration is relatively low. 

During bio-treatment wastewater is pumped through an aerated tank in which 

bacteria, which may include phosphate accumulating organisms, treat the raw 

wastewater, achieving several results: 

100% 

96% 

4% 
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 Phosphate removal; 

 Driving off gases; 

 Coagulation of suspended solids; 

 Generating a biological floc 

 Oxidation of nitrogenous and carbonaceous matter. 

Phosphorus is removed by phosphate accumulating organisms and chemical 

precipitation. Chemical precipitation involves the dosing of a coagulant and mixing. 

Commonly used coagulants are salts of iron, aluminium, or calcium. Ferric ions and 

phosphate react slowly, as such lime can be added in order to raise pH, and hasten 

coagulation. Solids are removed in the secondary sedimentation tank. Consequently, 

it is not possible to recover phosphate from the liquors as the majority of incoming 

phosphorus is contained in sludge.  

A large fraction of phosphorus in EBPR plants is biologically bound (up to 10-15% 

[34]) , but the phosphorus is released during aerobic digestion. The amount of 

phosphorus released can be increased by lowering pH in the digester to between 4 

and 6 [35]. Digested sludge is dewatered and the liquors sent to the head of the 

WWTP for further treatment, the dry solids are often disposed of or burnt to ash and 

used as fertilizer. Phosphorus can then be recovered from the sludge ash, separating 

phosphorus from heavy metals in the sludge ash. Digested sludge liquors contain a 

high concentration of phosphate, usually 75-300 mg L
-1

, compared to 4-12 mg L
-1

 

for influent [36]. Not only does digester centrate contain phosphorus, but it also 

contains other resources, such as ammonia. Consequently, digester centrate (the 

liquors from centrifuging digested sludge) may be used as a source of phosphorus. 

1.4. METHODS OF PHOSPHORUS RECOVERY CURRENTLY 

AVAILABLE 

There are several phosphorus recovery methods available on the market. Table 2 

shows a number of commercially available phosphorus recovery technologies. Some 

methods have been developed to extract phosphorus from sludge ash. However 

heavy metal contamination is a commonly mentioned issue when using sludge 

ashes. Sulzle Kopf reports nickel contamination of 129 mg kg
-1

 ashes, but German 

consent is only 80 mg L
-1

. Ravita has solved this issue, and heavy metal 

concentrations were found to be low, but phosphorus recovery was also lower than 

that of Sulzle Kopf – 55-63% for Ravita compared to 80% for Sulzle Kopf. Suez 

Phosphogreen reported low heavy metal contamination, but also has a P recovery of 

~50%. As seen in the table, most technologies do not achieve phosphorus recovery 

higher than 90%. Furthermore, the use of technologies requiring heat, such as 

incineration of sludge to create sludge ash, has high operational cost. As such, it is 

necessary to look into developing new recovery methods or making existing 

processes more efficient. 
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Figure 3 shows a typical bio-P WWTP, red boxes indicate streams often used for 

phosphorus recovery. These include sludge (extraction e.g. by acidification), 

digester centrate or filtrate (precipitation/crystallization), sludge ash (shown as 

sludge disposal), or digested sludge liquors (digester centrate) 

(precipitation/crystallization). 

 

Figure 3 Typical places phosphorus is recovered from wastewater 

Table 2 Commercially available P recovery technologies 
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Aqueous 

Phase 

EkoBalans Sweden >75 Struvite 

precipitation 

[37] 

Suez 

Phosphogre

en 

France ~50 Struvite 

precipitation 

[38] 

DHV 

Crystalactor 

Netherlands 85-95 Struvite 

crystallization 

[24] 



27 
 

Ostara Pearl Canada 85-95 Struvite 

crystallization 

[24] 

P-RoC Austria 85-95 Struvite 

crystallization 

[24] 

PRISA - 85-95 Struvite 

precipitation/crysta

llization 

[24] 

Sewage 

sludge 

Stuttgart 

process 

Germany >65 Wet chemical 

leaching  

[39] 

Gifhorn 

process 

Not 

specified 

~80 Wet chemical 

leaching  

[40] 

Aqua Reci Sweden Not 

reported 

Super critical water 

oxidation 

[41] 

MEPHREC Germany ~70 Metallurgic melt-

gassing  

[40] 

Sludge 

ashes 

LEACHPH

OS 

Switzerland ~60-70 Acidic wet-

chemical, leaching  

[40]  

PASCH Germany ~60-70 Acidic wet-

chemical, leaching  

[40] 

RecoPhos Austria ~85 Acidic wet-

chemical, 

extraction 

[40] 

Thermphos China ~85 Thermo-electrical 

(produces P4) 

[40] 

Sulzle Kopf Germany 80 Gasification ashes 

as P-fertilizer  

[42] 

Eliquo Stulz Germany 80 Sludge ashes [43] 

Ravita Finland 55-63 Recovery as 

phosphoric acid 

[44] 
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Outotec 

AshDec 

Germany Not 

reported 

Sludge ashes [45] 

Ash2Phos Sweden 90-95 Sludge ashes [46] 

 

Worldwide, 1.7 million tonnes of incinerated sewage sludge ash (ISSA) is produced 

annually. The majority of this is produced in North America, Europe, and Japan. 

While the phosphorus content of ISSA is similar to that of low-grade phosphate ore, 

most ISSA is sent to landfill. This is partially due to public concerns over pathogen 

transfer to crops, and accumulation of heavy metals in agricultural soils. Most 

countries in Europe have regulations to prevent heavy metal contamination of soil. 

While some concentrate on limiting sludge exposure on certain soils, such as the 

Safe Sludge Matrix in the UK, others concentrate on creating ‘high quality’ sludge, 

i.e. one with low heavy metals content. This is achieved by limiting the 

concentration of heavy metals in wastewater, by restricting the substances disposed 

of in sinks etc. both in the home and workplace (i.e labs etc.). [47] 

In order to produce ISSA, sludge goes through a number of processes. Firstly, it is 

thickened to give solids content of 3-8 wt%, and is then dewatered to a solids 

content of 18-35 wt%. Sewage sludge needs to have a solids content of 28-33 wt% 

in order to burn auto-thermally. Sludge is incinerated in a fluidized bed incinerator. 

A sand bed near the bottom of the incinerator helps to avoid temperature spikes in 

the incinerator. The sand bed tends to have a temperature of 750ᵒC, and the overhead 

freeboard zone has a temperature of 800-900ᵒC. The incinerator has a residence time 

of only 1-2 seconds [48], and in this time organic matter is combusted to CO2 and 

other trace gases with water removed as vapour. Major components of ISSA are Si, 

Al, Ca, Fe and P [49]. The concentration of Fe and Al depends greatly on the 

method of phosphorus removal used, due to Al and Fe use in chemical dosing. [47] 

ISSA often has low bioavailability of phosphorus, and contains heavy metals [50–

52]. Bioavailability is characterized by a Na/P ratio >1.75 in the starting materials 

[52], or by a pot experiment, which involves growing plants in soil with known 

nutrient value, then testing the soil composition and plant growth after a set period 

of time [53]. Pot experiments are not as accurate as field trials, which can last 

multiple years [54]. In Germany it was estimated that half of the 19,000 ton year
-1

 

ISSA only half is suitable for use [52]. Consequently it requires treatment before 

use. Two methods of treatment have been widely investigated; these are an 

electrodialytic process or acid leaching.  

Using the electrodialytic process phosphate is concentrated at the anode, and heavy 

metals at the cathode [55]. The anolyte was found to be 98% phosphorus, and 2% 

heavy metals. Copper was found to have an 80% removal, but lead and iron 
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removals were found to be as low as 4 and 6% respectively [55]. Electrodialytic 

process can take place with or without ion exchange membranes. Using ion 

exchange membranes has been found to give better separation from heavy metals 

and 96% phosphorus recovery [56]. 

Acid leaching involves dissolving ISSA in acid. Takahashi et al. (2001) investigated 

the use of dissolving ISSA in H2SO4 (pH 2). Lead is insoluble in H2SO4, and is 

therefore removed from the product. Phosphorus was then recovered by filtration, 

and precipitated at pH 10. While the remaining solution was easily disposed of, due 

to its low salts concentrations, the phosphate product was found to contain heavy 

metals. [57] 

Another study used 0.5 M HCl, and produced 97% struvite purity with low heavy 

metals concentration. Furthermore, the struvite product was found to have 94% 

bioavailability. However, in order to achieve this a molar ratio of 1.6:1.6:1 Mg:N:P 

was required. [58] 

Consequently, treatment using this method would either be costly, or risk heavy 

metal contamination. Furthermore, this method of recovery is only possible if 

incineration is the usual method of sludge disposal [59]. 

Extraction via wet chemical leaching takes place by dissolving phosphorus in an 

acidic (pH < 2) or basic solution. Using acidic wet chemical leaching will give 

aluminium, calcium, or iron phosphates. It has been found that a ratio of 2.7 to 14.1 

mol H
+
/mol P is required for phosphorus recovery >66.5% when using ISSA and 

HCl or H2SO4. pH is raised slightly in order to avoid heavy metal removal alongside 

phosphorus recovery. Heavy metal contamination can be reduced further by 

precipitating heavy metals with sulphide. This results in the precipitation of Al-P 

(Ca is precipitated as CaSO4), while heavy metals remain in solution [57]. Since Al-

P cannot be used as a fertilizer, further treatment is necessary to create a usable 

product. This can be achieved by dissolving Al-P in alkaline solution, which causes 

the precipitation of Ca-P. A minimum of 4 mol OH
-
/mol P is required. Ions can then 

be recovered using an ionic exchanger [60] or filtration [61]. [62] 

Alternatively, alkaline wet chemical leaching can be used to produce Ca-P. In this 

process amphoteric Al-P compounds dissolve, while heavy metals remain in ISSA. 

pH > 13 can then be used to precipitate a very low impurity Ca-P product using the 

addition of CaCl2. Waste with low Ca concentration is able to achieve up to 75% 

phosphorus recovery, however this is dependent on both the Al and Ca 

concentration. However, if Ca concentration is high, for example due to hard 

drinking water, only 0-35% phosphorus can be recovered [62].  

In Northern Europe water tends to be hard, as such this method of recovery would 

not be appropriate. Furthermore, the process is energy intensive when producing 
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ISSA, and requires a large volume of acid/base. This will incur a high cost, and the 

use of concentrated acids will be considered a health and safety risk/ require special 

equipment and/ training. As such it may be necessary to use an alternative recovery 

method, such as struvite crystallization. 

The presence of struvite (MgNH4PO4·6H2O) at WWTPs was first noted in the 

1930s, when a crystalline substance was found in sludge supernatant lines [63]. 

Struvite often forms in pipework and digesters at WWTPs, causing process 

inefficiency and disruption. However, controlling the precipitation process can 

produce a fertilizer and reduce struvite blockages in the rest of the WWTP. 

Below is the general reaction by which struvite forms [64].  

𝑀𝑔2+ + 𝑁𝐻4
+ + 𝑃𝑂4

3− + 6𝐻2𝑂 ⇌  𝑀𝑔𝑁𝐻4𝑃𝑂4 · 6𝐻2𝑂   𝑝𝐾 = 13.26 

Solubility product  

Kstr = [Mg
2+

][NH4
+
][PO4

3-
] = 2.51 10

-13
 M

3 
[65] 

Doyle and Parsons (2002) compared the solubility product of struvite from a number 

of papers, and found that precipitation occurs above pH = 8 [66–70], and calcium 

phosphate apatite occurs at pH>9.5 [64]. Above pH = 9.5 ammonium removal 

decreases, due to the change in ammonium to ammonia with increasing pH [67].  

The conditional solubility product for struvite can be calculated from Equation 1 or 

Equation 2 

Equation 1 

K’str = Mg2+CMgNH4+CNPO43-CP 

Equation 2 

𝐾𝑠𝑡𝑟
′ = 𝐾𝑠𝑡𝑟 ∙ (𝛼𝑃𝑂4

3− ∙ 𝛼𝑁𝐻4
+ ∙ 𝛼𝑀𝑔2+)−1 

Where CMg, CN, and CP are the dissolved concentration of magnesium, ammonium 

and phosphate respectively, and Mg2+, NH4+, and PO43- are the fraction of 

magnesium as Mg
2+

, ammonium as NH4
+
 and phosphate as PO4

3-
. 
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A number of reactions take place for struvite to form, these are shown below. 

Magnesium forms metal hydroxides 

MgOH
+
 (aq)             Mg

2+
(aq) + H2O(l) ⇌  MgOH(aq) + H

+
(aq), logKMg1 = -11.4 

Mg(OH)2 (aq)           MgOH(aq) + H2O(l) ⇌Mg(OH)2(aq) + H
+
(aq), logKMg2 = -4.4 

Thus, 

𝛼𝑀𝑔2+ =  
[𝑀𝑔2+]

[𝑀𝑔2+] + [𝑀𝑔𝑂𝐻+] + [𝑀𝑔(𝑂𝐻)2]
 

𝛼𝑀𝑔2+ =  
[𝑀𝑔2+]

[𝑀𝑔2+] + [𝑀𝑔2+] ∙
𝐾𝑀𝑔1

[𝐻+]
+ [𝑀𝑔2+] ∙ 𝐾𝑀𝑔1 ∙

𝐾𝑀𝑔2

[𝐻+]2

 

𝜶𝑴𝒈𝟐+ =  
1

1 +
𝐾𝑀𝑔1

[𝐻+]
+ 𝐾𝑀𝑔1 ∙

𝐾𝑀𝑔2

[𝐻+]2

 

 

Ammonium forms ammonia at high pH;  

NH4
+
(aq) +H2O(l) ⇌ NH3

 
(aq) + H3O

+
(aq), logKN1 = -9.3 

𝛼𝑁𝐻4
+ =

[𝑁𝐻4
+]

[𝑁𝐻4
+] + [𝑁𝐻3]

 

𝛼𝑁𝐻4
+ =

1

1 +
𝐾𝑁1

[𝐻+]

 

 

Finally the phosphate reaction;  

H3PO4 (aq)                H3PO4(aq) + H2O(l) ⇌ H2PO4
-
(aq) + H3O

+
(aq), logKP1 = -2.1 

H2PO4
-
 (aq)               H2PO4

-
(aq) + H2O(l) ⇌ HPO4

2-
(aq) + H3O

+
(aq), logKP2 = -7.2 

HPO4
2-

 (aq)               HPO4
2-

(aq) + H2O(l) ⇌ PO4
3-

(aq) + H3O
+
(aq), logKP3 = -12.3 
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𝛼𝑃𝑂4
3− =

[𝑀𝑔2+]

[𝐻3𝑃𝑂4] + [𝐻2𝑃𝑂4
−] + [𝐻𝑃𝑂3

2−] + [𝑃𝑂4
3−]

 

𝛼𝑃𝑂4
3− =

1

[𝐻+]3 ∙
1

𝐾𝑃3
∙

1
𝐾𝑃2

∙
1

𝐾𝑃1
+ [𝐻+]2 ∙

1
𝐾𝑃3

∙
1

𝐾𝑃2
+ [𝐻+] ∙

1
𝐾𝑃3

+ 1
 

 

The solubility constant describes the dissociation of molecules in aqueous solutions, 

as with the struvite equilibrium shown previously. Figure 4 shows the log of the 

solubility product for struvite, as seen in the figure, the solubility is lowest around 

pH 10, which as previously discussed, is in the optimal range for struvite recovery. 

 

Figure 4 Log of the struvite solubility product as a function of pH 

While struvite precipitates most efficiently between pH 9 and 11, it is often 

precipitated between pH 7 and 8 in order to avoid the co-precipitation of other salts 

and heavy metals alongside struvite. As such, at pH 7-8: 

𝑀𝑔2+ + 𝑁𝐻4
+ + 𝐻𝑃𝑂4

2− + 6𝐻2𝑂 →  𝑀𝑔𝑁𝐻4𝑃𝑂4 · 6𝐻2𝑂 + 𝐻+ 

Sodium hydroxide (NaOH) is usually dosed into the rector in order to control the 

pH, and prevent acidification. However, aeration can be used to strip carbon dioxide, 

which also increases pH. [64] 

A fluidised bed reactor is commonly used for struvite recovery. In this, a column 

reactor is used, with the addition of a seed material, upon which struvite precipitates 

(commonly used seed materials can be seen in Table 3). The feed solution is 

pumped into the base of the reactor, along with NaOH and a source of magnesium. 
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Large particles form in the bottom of the reactor, where saturation is highest, while 

smaller particles form higher in the column. As these increase in size they fall to 

lower levels in the reactor, aiding the formation of larger particles. Effluent is taken 

out of the top of the reactor and returned to the head of the WWTP, while a recycle 

loop takes P-rich waste from high in the reactor column back to the base of the 

reactor. A simple schematic of this can be seen in Figure 5. 

 

Figure 5 Fluidised struvite reactor 

There are three stages to precipitation: 

 Saturation; this occurs with the addition of Mg
+
, and pH adjustment using 

NaOH or aeration. Under saturated conditions struvite will spontaneously 

precipitate. 

 Nucleation; is the initial stage in crystal growth, it involves the coming 

together of particles in a particular pattern, typical of a crystalline solid, this 

forms the basis on which other particles deposit, leading to crystal growth. 

I.e. small particles in a reactor. 

 Crystal growth; occurs when a crystal becomes larger by addition of ions in 

the crystal lattice, as with the growth of larger particles at the base of the 

reactor. 

Since magnesium concentration tends to be low in wastewater, it is often dosed to 

the reactor in order to ensure maximum phosphate recovery, usually in the form 

MgCl2 or Mg(OH)2. In order to achieve a phosphate recovery of ~85% a P:Mg ratio 

of 1:1.3 is required, as shown in Figure 6. Magnesium chloride is one of the most 

costly parts of the process. Seawater contains Mg and can be used as Mg source but 
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also contains high concentration of chloride, which have to be reduced prior to use 

[71].  

 

Figure 6 P yield as a function of Mg/P ratio, calculated using MINTEQ 
(Ammonium = 50 mgL-1, phosphate = 3.16 mgL-1, Magnesium =4.108 mgL-1, 
pH=7.5) 

Table 3 shows results from some studies into struvite precipitation. As seen in the 

table, most studies utilize aeration for pH adjustment. Aeration provides a more 

effective phosphate recovery (>80%), than using NaOH (62-97%). This is due to the 

removal of carbonate during aeration. A seed material is sometimes used to aid 

struvite precipitation. Seed materials are often used when using a fluidized bed 

reactor. This is a material on which struvite can precipitate. Seed materials can be a 

number of substances, including; quartz [72], silica sand [72], pumice [73], clay 

[74], and metals [75].  

Table 3 Struvite precipitation in literature 

Method Phosphate 

Recovery 

(%) 

Seed 

Material 

Influent Ref 

Aeration >80 Struvite 

crystals 

Digester 

liquors 

[76] 
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Aeration 84.1-90.5 - Swine 

wastewater 

[77] 

Aeration 80 - Belt press 

liquors 

[78] 

Aeration - Wire mesh Swine 

wastewater 

[75] 

Aeration 80 - Digested 

sludge 

[79] 

Aeration 62-81 Quartz Digester 

supernatant 

[72] 

Aeration and 60% 

magnesium 

hydroxide slurry 

94 500g 

crushed and 

sieved 

(1mm) 

struvite 

Digester 

centrate 

[80] 

Aeration and 

seawater and 

bittern as Mg
+
 

source 

97.1-99.5 - Urine [81] 

Mg
+
 from seawater >70 - Belt press 

liquors 

[82] 

MgCl2 and pH 

adjustment using 

NaOH 

97 - Digester 

centrate 

[83] 

pH adjustment 

using NaOH 

75-92 - Synthetic 

wastewater 

[84] 

pH adjustment 

using NaOH 

62 - Synthetic 

wastewater 

[85] 

pH adjustment 

with NaOH 

>91.8 - Sludge [86] 
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Going forward phosphorus recovery for struvite crystallization will be investigated. 

This is due to the lower cost of struvite recovery compared to that of, for example, 

sludge ashes, which require high energy input. Furthermore, struvite is a suitable 

fertilizer which does not require additional processing, and the combination of 

nitrogen phosphorus and magnesium is highly desirable in agriculture. Furthermore, 

struvite is already found in wastewater treatment plants, and is therefore relatively 

simple to recover from wastewater compared to other recoverable compounds. 
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CHAPTER 2. MEMBRANE 

TECHNOLOGY FOR PHOSPHORUS 

RECOVERY AS STRUVITE 

Membrane technology uses a selective barrier (membrane) to separate one or more 

components of a stream by sieving, sorption or diffusion. Membranes are usually 

selective to particle size, molecular weight, or charge. Membrane performance is 

determined by: 

 Flux (movement of permeate through the membrane) 

 Selectivity 

 Stability (mechanical, chemical, or thermal) 

 Fouling 

 Cost. 

There are two types of membrane filtration; dead-end and cross-flow. During dead-

end filtration the feed flows perpendicular to the membrane and all water introduced 

to the system passes through the membrane. This causes a thick build-up of particles 

on the membrane surface, which can become dense when applying hydraulic 

pressure, known as a cake layer. This can hinder permeate flux, resulting in flux 

decline over time. Consequently dead-end filtration requires regular membrane 

cleaning, or replacement, as such it is also known as batch filtration. A simple 

schematic of dead-end filtration can be seen in Figure 7.[87] 

 

Figure 7 Dead-end filtration 

 



MEMBRANE TECHNOLOGY FOR PHOSPHORUS RECOVERY FROM WASTEWATER 

38 
 

Cross-flow filtration uses a flow tangential to the membrane. As the feed flows 

across the membrane surface the pressure difference causes components smaller 

than the membrane pore size to pass the membrane (permeate), the remaining feed 

then flows back to the feed reservoir, or to another location, this is known as the 

retentate. This setup can be seen in Figure 8. Cross-flow filtration is useful for 

applications where the feed requires concentration, rather than gaining a clean 

permeate. The addition of the retentate stream encourages a lesser degree of fouling 

(smaller cake formation) as the solids are taken with the flow back to the feed 

reservoir. Unlike dead-end filtration, cross-flow filtration allows for continuous use, 

as cake can be removed by increasing the flow rate of the feed.[88] 

 

Figure 8 Cross-flow filtration 

Membrane pore size varies depending on which type of membrane is used. This 

enables the user to determine which membrane is best for their application, i.e, to 

retain whatever feed component is necessary. Membranes with smaller pore size are 

more likely to foul as the membrane rejects a greater number of feed components, 

and a larger pressure is required to force permeate through smaller pores. Figure 9 

shows the pore size distribution of various membrane technologies. 

 

Figure 9 Membrane pore size distribution (pressure driven processes) 
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While the most common driving force is pressure gradient (as with reverse osmosis, 

nanofiltration, ultrafiltration, and microfiltration) other driving forces can be used. 

Forward osmosis utilizes an osmotic pressure difference; this involves the 

movement of water from a less concentrated solution to a more concentrated 

solution. Electrodialysis uses an electrical field gradient, which draws ions through 

ion selective membrane. Lastly, temperature can be used, as in membrane 

distillation. 

The following sections outline the two technologies used for phosphorus recovery in 

this dissertation. 

2.1. FORWARD OSMOSIS  

Struvite crystallization can be made more efficient (and cost effective) by 

concentrating the phosphorus and thereby reducing the quantity of magnesium 

needed, ie. reducing the P:Mg ratio from 1:1.3 to 1:1. From calculations carried out 

in MINTEQ, it is possible to achieve this by increasing the phosphorus and 

magnesium concentration. Figure 10 shows the recovery achievable for digester 

centrate, and digester centrate concentrated 3-fold. Digester centrate is used as a 

feed solution due to its high phosphorus concentration relative to other streams on 

the WWTP. As seen in the figure, once concentrated, a greater phosphorus yield is 

possible with less added magnesium.  

 

Figure 10 P Yield as struvite for (a) un-concentrated digester centrate 
(Ammonium = 50 mgL-1, phosphate = 3.16 mgL-1, Magnesium = 4.108 mgL-1, 
pH=7.5), (b) digester centrate concentrated 3-fold (Ammonium = 150 mgL-1, 
phosphate = 9.48 mgL-1, Magnesium = 12.324 mgL-1, pH=7.5) 

Forward osmosis is a membrane technology by which water is moved from a 

solution of low osmotic potential to a solution of high osmotic potential through a 
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water permeable membrane [89], as shown in Figure 11. No hydraulic pressure is 

required, which reduces fouling and energy costs [90].  

 

Figure 11 Simplified schematic of forward osmosis process 

Figure 11 shows a simplified example of how forward osmosis works. As seen in 

the figure, draw solution consists of NaCl solution, while the feed (in this case 

digester centrate) contains water and components such as phosphoric acid (HxPO4
y-

) 

or ammoniacal nitrogen (NHx) (other components are also rejected by the 

membrane, but these have been left out of the simplified schematic), which are 

rejected by the membrane. On the other hand water passes through the membrane, 

from feed to draw. 

Forward osmosis membrane comprise of a porous support layer and thin active 

layer, which rejects contaminants, such as phosphate or ammonium. Membranes can 

be orientated with the active layer facing either the draw solution (AL-DS) or feed 

solution (AL-FS), as shown in Figure 12. 
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Figure 12 Simple diagram showing membrane orientation. 

 

2.1.1. FOULING, SCALING, AND CONCENTRATION POLARIZATION 

There are certain phenomena which inhibit/reduce water flux through the 
membrane. These are concentration polarisation, reverse salt flux, fouling, and 
for some processes scaling.  

Table 4 Types of concentration polarization 

 Dilutive Concentrative 

Internal If AL-FS membrane orientation 

is used, the draw solution enters 

the porous support layer. Water 

then moves through the 

membrane diluting the draw 

solution in the support layer. 

[91] 

Occurs when AL-DS membrane 

orientation is used. The feed 

solution enters the porous support 

layer of the membrane and water 

diffuses across the dense active 

layer, but salt in the feed is trapped 

in the support layer leading to an 

increased concentration on the feed 

side of the active layer. [92] 

External Occurs when the draw solution 

concentration is diluted by 

Occurs when there is a build-up of 

solutes on the active layer surface 
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permeate water at the membrane 

surface. 

(similar to that in pressure driven 

membrane processes) 

 

Concentration polarization occurs in two forms; internal and external, with 
both having dilutive or concentrative forms.  

Table 4 describes all four of these forms of concentration polarization. The type of 

internal concentration polarization depends on membrane orientation, i.e whether 

the active layer of the membrane is AL-FS or AL-DS [93] and are depicted in Figure 

13. Concentration polarization reduces the osmotic pressure difference between the 

feed and draw solutions, thus reducing the driving force for water flux. Therefore, it 

has a negative impact on water flux. External concentration polarization can be 

mitigated by ensuring turbulent flow e.g. via the application of spacers adjacent to 

the membrane or high cross-flow of water [94]. Internal concentration polarization 

can only be reduced by decreasing the thickness of the membrane support layer. 

 

Figure 13 Diagram of dilutive (left) and concentrative (right) internal 
concentration polarization. 

The use of more concentrated draw solutions increases the severity of internal 

concentration polarization [95], as this encourages a higher water flux. This in turn 

causes a more concentrated or dilute layer to form within the porous membrane 

support layer (depending on membrane orientation). Increasing support layer 

thickness also causes more severe internal concentration polarization [96], as seen 

when using reverse osmosis membranes in forward osmosis mode [97] (reverse 

osmosis membranes are thicker than forward osmosis membranes). Other than using 
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less concentrated draw solutions, increasing feed solution temperature [92], and 

ultrasound [98] have been found to aid in mitigating internal concentration 

polarization. 

There are a number of equations used to model the effect of concentration 

polarization on water flux. Water flux (Jw (L m
-2

 h
-1

 (LMH))) can be calculated 

using Equation 3, where A is the water permeability coefficient (LMH bar
-1

), πD,b is 

the osmotic pressure of the draw solution (bar) and πF,b is the osmotic pressure of the 

feed solution (bar). 

Equation 3 

𝐽𝑤 = 𝐴(𝜋𝐷,𝑏 − 𝜋𝐹,𝑏) 

Equation 3 assumes that salt does not cross the membrane, and there is an absence of 

dilutive or concentrative ECP. This can only be used when permeate flux is very 

low, for higher flux, the equation is modified to form Equation 4, which includes the 

effects of concentrative and dilutive ECP. k is the mass transfer coefficient, as per 

Equation 5.[92] 

Equation 4 

𝐽𝑤 = 𝐴 [𝜋𝐷,𝑏 exp (−
𝐽𝑤

𝑘
) − 𝜋𝐹,𝑏 exp (

𝐽𝑤

𝑘
)] 

Equation 5 

𝑘 =  
𝑆ℎ𝐷

𝑑ℎ
 where; 𝑆ℎ = 1.85 (𝑅𝑒𝑆𝑐

𝑑ℎ

𝐿
)

0.33

 (laminar flow) 

             𝑆ℎ = 0.04𝑅𝑒0.75𝑆𝑐0.33 (turbulent flow) 

Equation 6 can be used to calculate the effect of concentrative ICP and dilutive ECP 

on permeate flux when membrane is AL-DS. K, how easily a solute can diffuse in 

and out of the support layer, is defined by Equation 7. K is a measure of the severity 

of ICP. B is the salt permeability coefficient; τ is the tortuosity of the support layer, 

tm the thickness and ε the membrane porosity. B can be ignored when using a 

membrane with high salt rejection and high permeate flux.[92] 

Equation 6 

𝐽𝑤 = 𝐴 [𝜋𝐷,𝑏 exp (−
𝐽𝑤

𝑘
) − 𝜋𝐹,𝑏 exp(𝐽𝑤𝐾)] 
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Equation 7 

𝐾 = (
1

𝐽𝑤

) ln
𝐵 + 𝐴𝜋𝐷,𝑚 − 𝐽𝑤

𝐵 + 𝐴𝜋𝐹,𝑏

=  
𝑡𝑚𝜏

𝐷𝜀
 

For AL-FS configurations, Equation 8 can be used to calculate dilutive ICP and 

concentrative ECP. For this case, K can be determined using Equation 9. 

Equation 8 

𝐽𝑤 = 𝐴 [𝜋𝐷,𝑏 exp(−𝐽𝑤𝐾) − 𝜋𝐹,𝑏 exp (
𝐽𝑤

𝑘
)] 

Equation 9 

𝐾 = (
1

𝐽𝑤

) ln
𝐵 + 𝐴𝜋𝐷,𝑏

𝐵 + 𝐽𝑤 + 𝐴𝜋𝐹,𝑚

 

Equation 4 is suitable for use when using a symmetric membrane. However, most 

forward osmosis membranes are asymmetric, as such, only Equation 6 and Equation 

8 should be used to calculate the effects of concentration polarization. [92] 

 

When using digester centrate as a feed solution, fouling occurs [99] due to a build-

up of bacterial clusters, biopolymers, and inorganic scales [100]. Fouling in forward 

osmosis tends to be less dense than that of pressure driven membrane processes such 

as reverse osmosis [101–103]. Reverse salt flux (the flux of salts from the draw 

solution to feed solution) exacerbates the cake enhanced osmotic pressure in the 

fouling layer, leading to an elevated osmotic pressure on the feed side. This results 

in a lower water flux [104] and may potentially also induce fouling. In forward 

osmosis, fouling has been found to be negligible [89,105], or easily reversed by 

cleaning [106–109], however limited studies have been carried out on untreated 

digester centrate. Methods of cleaning include; increasing cross flow velocity (from 

8.5 to 25.6 cm s
-1

 [109]), chemical cleaning [108], or osmotic backwash [107]. 

Chemical and physical cleaning have been found to restore water flux to 96% and 

90% of the initial water flux, respectively [108]. Scaling is a form of inorganic 

fouling and occurs when salt precipitates on the membrane surface [110]. It occurs 

when the feed solution reaches supersaturation, which triggers precipitation [111]. 

Scaling can be mitigated by pH adjustment [112]. 
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2.1.2. DRAW SOLUTION SELECTION 

Ideal draw solutions have a reasonably higher osmotic pressure than the feed 

solution [113]; however, finding a suitable draw solution is one of the main 

challenges in forward osmosis. Too low an osmotic pressure and the flux will be low 

and the feed solution will not be adequately concentrated (for VCR = 3 osmotic 

pressure of digester centrate at Aaby WWTP is ~15 bar (Paper 1)) too high, and the 

process will experience an increase in concentration polarization [96]. 

Many studies have been carried out to find suitable draw solutions for forward 

osmosis, the necessary traits of such a solution are; easily recoverable, cost efficient, 

and have a relatively low molecular weight, which leads to high osmotic pressure 

[113]. Existing studies have focused on the use of fertilizer [114–116], hydrogels 

[117–120], MgCl2 [96,121], and NaCl [121–126] as draw solution. NaCl solution is 

the most widely used draw solution; however, this requires using another membrane 

process, such as reverse osmosis, to recover initial draw solution concentration.  

These draw solutions require treatment post forward osmosis. This incurs a further 

cost for treatment. However, there are many sources of salt solutions readily 

available in nature, the most prevalent of which is seawater, and includes salt lakes, 

such as the Dead Sea. These naturally occurring salt water sources can be used a 

draw solution, then, providing there is not high contamination from the feed 

solution, can be discharged without treatment [58]. Furthermore, salt solutions are a 

common side product of the food production industry, cheese brine being a 

commonly known example, and are costly to dispose of. 

Table 5 shows some of the draw solutions used in recent studies. As seen in the 

table, osmotic pressures of the tested draw solutions range from 14 bar to over 200 

bar. The osmotic pressure of digester centrate is 1.8 bar [124] (approximately, 

depending on treatment plant, time of year etc.), as such, all draw solutions in Table 

5 are capable of treating digester centrate. However, all exhibit a reverse salt flux, 

which lowers the effectiveness of the draw solution by raising osmotic pressure in 

the feed, and leads to the potential for ions to diffuse from feed to draw, thus losing 

resources to be recovered, or contaminating water produced during forward osmosis 

desalination. Consequently, it is necessary to understand the mechanism by which 

reverse salt flux occurs for particular membranes, and if it affects the rejection of 

ions in the feed, such as ammonium, which has been highlighted as an issue for 

concentration of wastewater [108,127]. 

Solute flux, Js (mol m
-2

 h
-1

), was calculated with the following equation: 
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Equation 10 

𝐽𝑠 =
𝐶𝑠,𝐹,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑠,𝐹,𝑓𝑖𝑛𝑎𝑙𝑉𝑓𝑖𝑛𝑎𝑙

𝐴𝑚 ∗ 𝑡
 

where Cs,F,initial and Cs,F,final are the initial and final feed solute concentrations (mol), 

respectively, Am is the effective membrane area (m
2
), and t is the time in hours. Js 

can then be used in Equation 11 to calculate solute rejection. 

Equation 11 

𝑅 (%) = (1 −
𝐽𝑠

𝐽𝑤𝐶𝐹𝑒𝑒𝑑

) ∗ 100 

 

Table 5 Draw solutions used in forward osmosis 
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Magnesium 

Acetate 

0.54-

1.85 

CTA 14-42  0.63-

1.06 

- 

[128] 

Sodium 

propionate 

0.32-

1.06 

CTA 14-42 0.8-

2.29 

- 

Sodium 

acetate 

0.52-

1.69 

CTA 14-42 1.5-

3.55 

- 

Sodium 

formate 

0.32-

1.03 

CTA 14-42 3.86-

7.63 

- 

EDTA 

sodium salt 

0.7 CTA - 0.17-

0.3 

- [129] 

Ammonia-

carbon 

dioxide 

1.1-6 CTA 48.5- 

252.8  

- 95-99 [113] 
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NaCl 0.05-

1.5 

TFC - - <90 [130] 

KCl 2 CA 90.5 59.6  - 

[114] NaNO3 2 CA 82.2 84.9 - 

NH4NO3 2 CA 65.8 227.9* - 

*Initial values given in mmol m
-2

 s
-1

, hence reverse salt flux higher than initial 

concentration 

If the feed solution requires concentrating beyond the capabilities of the draw 

solution or the flux is too low, pressure assisted osmosis (PAO) can be used. PAO 

involves the addition of pressure to the feed side of forward osmosis setup, as show 

in Figure 14. This allows the concentration of the feed solution above that of 

osmotic equilibrium [131], i.e. the feed will have an osmotic pressure higher than 

the draw solution after treatment.  

 

Figure 14 Simplified schematic of FO and PAO 

Further dilution of the draw solution has benefits for draw solution disposal or 

regeneration. When using a fertilizer draw solution it is possible to dilute the draw 

solution to a suitable concentration for direct fertigation [131], which would need 

diluting when using traditional forward osmosis. Draw solution regeneration using 

reverse osmosis is more energy efficient when using PAO, as the draw solution is 

highly diluted, which reduces the fouling propensity when using reverse osmosis 

[132]. Water flux increased 9% and 29% for 2 and 4 bar applied pressure 

respectively [133]. For 10 bar applied pressure water flux increased ~x20 times, 

whereas an increase in draw solution concentration, from 0.1 M to 3 M (NH4)2SO4 

corresponded to an water flux increase of 38% [131]. 
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2.1.3. REGENERATION OF DRAW SOLUTION  

After the concentration of the feed solution, the draw solution is diluted. In order to 

reuse draw solution, and recover water, it is necessary to regenerate them by 

removing water, and increasing the concentration once more. This is usually carried 

out using reverse osmosis [96,121,134], nanofiltration [135,136], ultrafiltration 

[137], or membrane distillation [138], depending on the draw solution used. Other 

thermal processes, such as heating an ammonia-carbon dioxide draw solution to 

60ᵒC to recover the ammonia and carbon dioxide [139], have been used, however 

these have been found to be energy demanding, and costly [140].  

As discussed in the previous section, 100% rejection of the draw is rarely, if ever, 

achieved. Regeneration of the draw solution also offers another opportunity for loss 

of initial draw solution concentration. Table 6 shows the rejection of the most 

commonly used draw solution regeneration methods. Membrane distillation has the 

highest rejection; however, its initial/setup costs were high. Nanofiltration had 

variations in rejection (99.7% vs 35.5%) for the same membrane; as such it may not 

be reliable. This can be explained, as nanofiltration is not selective for monovalent 

salts (i.e. brackish water), and as such can only be used for certain draw solutions. 

Reverse osmosis has the highest overall rejection, with all draw solutions being 

rejected >98.7%. 

Table 6 Draw solution rejection during regeneration 

Regeneration Method Draw 

solution 

Rejection 

(%) 

Ref. 

Reverse Osmosis 

Magnesium 

acetate 

>99 

[128] 

Magnesium 

formate 

98.7 

Sodium 

acetate 

>99 

Sodium 

propionate 

>99 

Sodium 

chloride 

98.9 

Nanofiltration Na2SO4 97.7 [136] 
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Brackish 

water 

35.5 

Ultrafiltration Super 

hydrophilic 

nanoparticles 

90.5-92.7 [137] 

Membrane 

distillation 

Sodium 

Chloride 

~100 [141] 

2.1.4. TYPES OF MEMBRANES 

Forward osmosis membrane have three key properties; low structural parameter 

(maximize water flux, S = thickness × tortuosity / porosity for the support layer 

[142]), high selectivity, low reverse salt flux [143]. Conventionally, reverse osmosis 

membranes, with thinner support layers, have been used for forward osmosis 

application. These membranes have a cellulose triacetate (CTA) or thin film 

composite (TFC) active layer, and a porous support structure (usually polysulfone or 

polyethersulfone). The active layer is usually formed by inter-facial polymerization 

and has a thickness of 100-200 µm. 

However, a new generation of membranes are being utilized, with promising results, 

these membranes make use of biomimetic active layers. These membranes utilize 

aquaporin proteins, which are highly selective, resulting in high rejection. A 

comparison of commercially available membranes can be found in Table 7. Further 

discussion on water flux, ammonia and phosphorus rejection, can be found in 

section 2.1.5. 

Table 7 Comparison of commercially available membranes (from supplier data 
sheets and press releases) 

Supplier Membrane 

Type 

Pure water 

flux (LMH) 

using 1M 

NaCl draw 

solution  

Operation 

pH range 

Reverse 

draw 

solute 

Flux 

(gMH) 

Aquaporin 

A/S 

Biomimetic 7 2-11 <2.5 

Porifera TFC 22-27  2-11 4.4-16.2 

HTI TFC 20 2-12 82 
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CTA 9 Not 

Reported 

Not 

Reported 

FTSH2O CTA Not Reported 3-7 Not 

Reported 

 

2.1.5. MEMBRANE PERFORMANCE 

Water flux can be affected by a number of parameters other than just the type of 

membrane used. The draw and feed solution used can greatly affect the water flux 

due to osmotic pressure difference, fouling, scaling or concentration polarization. 

Since different studies use different draw solutions it is beneficial to compare water 

transport across the membrane by comparison of water permeability (LMH bar
-1

), as 

per Equation 3. Osmotic pressure of digester centrate is 1.8 bar and water 

permeability has been found to be 0.28 LMH bar
-1

 when using digester centrate feed 

solution and TFC forward osmosis membrane [124]. 

Figure 15 shows reported membrane permeability for TFC, CTA, biomimetic, and 

nanocomposite membranes. As seen in the figure, most reported water permeability 

fall between 0.14-0.3 LMH bar
-1

. This is typically true of traditional membranes 

(TFC and CTA). However, recently new membranes have been developed, and these 

membranes have higher water permeability [144,145]. These membranes rely on 

altering the surface of the membrane with ester substrates or nanocomposite fibres. 

Goh et al. (2013) fabricated a multi-walled carbon nanotube membrane (CNT) 

membrane which achieved 4.48 LMH bar
-1

 [146]. 
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Figure 15 Water Permeability (A) for increasing draw solution osmotic 
pressure (πD) for TFC [96,101,144,147,148], CTA [113,149], biomimetic [150], 
and nanocomposite membranes [145,151]. 

When recovering resources, it is essential to have a membrane with a low 

permeability of resources such as ammonia and phosphorus. Membrane permeability 

has been studied extensively in forward osmosis, with most studies using 

membranes supplied by HTI [99,123,152,153].  

While most studies found a near complete rejection of phosphate [154], >92% 

[149,152,153], ammonia rejection is still much lower (calculated using Equation 

11). Rejection of ammoniacal nitrogen has been measured to be 62-93.3% [108,127] 

for CTA membranes in forward osmosis treatment of reject water [155]. 

Ammoniacal nitrogen has potential to cause eutrophication if discharged to 

watercourses [156], and in drinking water ammoniacal nitrogen in excess of 0.2 mg 

L
-1

 will cause odour and taste issues [157]. In addition, low rejection of ammoniacal 

nitrogen results in loss of nutrient to be recovered and contamination of the draw 

solution [158], which then may have to be treated prior to discharge [159]. 

Ammoniacal nitrogen has a small hydrated/molecular radius (330 pm for ammonium 

and 180 pm for ammonia [160]), consequently it can pass the membrane with 

greater ease than larger ions. Ammonium has been found to aid reverse salt flux by 

acting as a co-ion for reverse sodium flux [97,161], while ammonia has been seen to 

diffuse across the membrane, aided by its small size and neutrality [97,162]. 
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2.2. ELECTRODIALYSIS AND SELECTIVE ELECTRODIALYSIS 

Since wastewater contains a large quantity of biological contaminants it could be 

beneficial to create a phosphorus product which does not contain any potential 

hazards. Electrodialysis/selectrodialysis is an alternative technology to forward 

osmosis, though which phosphorus is extracted from the feed (diluate), creating a 

more ‘pure’ product stream than forward osmosis. 

Electrodialysis involves the movement of ions across selectively permeable 

membranes via the application of potential difference across the membrane stack. A 

typical stack consists of diluate, concentrate, brine, and electrode rinse, as shown in 

Figure 16. Membranes are selective towards anions or cations, and are used in an 

alternating configuration, separating the different solutions. Net spacers separate the 

membranes, allowing greater turbulence, reducing concentration polarisation. Since 

the process relies on charge to move ions, uncharged compounds are unaffected.  

Diluate is the solution from which ions are to be recovered; the concentrate is the 

stream in which ions are recovered, and the electrode rinse is usually 20 g L
-1

 

Na2SO4, which protects the electrodes.  

  

Figure 16 Example electrodialysis set-up using anion exchange membrane 
(AEM) and cation exchange membrane (CEM) 

Selective electrodialysis (selectrodialysis) uses a similar process, but utilizes 

membranes which are selective to charge (i.e. monovalent or multivalent); an 

example for phosphorus recovery can be seen in Figure 17. Selectrodialysis also 

makes use of a brine solution; this enables monovalent ions to pass out of the 

concentrate if they are not required in the concentrate. Since there can be many 

different combinations of membranes there are many possibilities to improve the 

quality of the concentrate product. 
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Figure 17 Example selectrodialysis set-up using monovalent anion exchange 
membrane (MVA) 

Electrodialysis/selectrodialysis separates ions by charge, and thereby obtains high 

concentration phosphorus, and low impurity concentration if the membrane setup is 

done properly. This is especially useful in cases of recovery from a diluate which 

contains contaminants, such a biological contamination or heavy metals. Allowing 

nutrients to be recovered and used without the health and safety risk, such as that 

presented by spreading sludge on fields, or heavy metal contamination in struvite 

precipitation or the use of sludge ashes. Below are some of the equations associated 

with electrodialysis/selectrodialysis. 

Equation 12 can be used to calculate the current efficiency of the electrodialysis 

process: 

Equation 12 

𝐶𝐸 =  
𝑧𝐴 (

𝑚𝐴(𝑡)
𝑀𝐴

) 𝐹

𝑛𝐼𝑡
 

Where z is the charge on the ion, mA(t) is the total weight of the transferred ions 

(either phosphate or ammonium), MA is the molar mass of the ion, F is Faraday's 

constant (96485 A·s·mol-1), n is the number of cell trios, I is the applied current 

(A), and t is the time period (s). 

The membrane transport number ti’ can be calculated using a modified Nernst 

equation, as in Equation 13 [163]. 

Equation 13 

𝐸𝑚 =
𝑅𝑇

𝑛𝐹
(2𝑡𝑖

′ − 1) ln (
𝑎1

𝑎2

) 
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where Em is the potential difference across the cell, a1 and a2 are the mean activities 

of electrolyte solutions and n is the electrovalence of counter-ion. 

The separation efficiency (𝑆𝐵
𝐴) between components A and B can be calculated 

using Equation 14. If 0<𝑆𝐵
𝐴<1 ion A transported slower than ion B, whereas if -

1<𝑆𝐵
𝐴<0 ion A was transported faster than ion B. cA(t) and cB(t) are the 

concentrations of ion A and B in the diluate [164]. 

Equation 14 

𝑆𝐵
𝐴(𝑡) =

(
𝐶𝐴(𝑡)
𝐶𝐴(0)

) − (
𝐶𝐵(𝑡)
𝐶𝐵(0)

) 

(1 − (
𝐶𝐴(𝑡)
𝐶𝐴(0)

)) + (1 − (
𝐶𝐵(𝑡)
𝐶𝐵(0)

))

 

Lower current utilization efficiency is seen above the limiting current density (ilim). 

If electrodialysis is run above the limiting current density the cost per unit of 

recovered product will be higher than if it is run using a lower current density than 

the limiting current density. The limiting current density can be calculated using 

Equation 15. 

Equation 15 

𝑖𝑙𝑖𝑚 =
𝐶𝐷𝑧𝐹

𝛿(𝑡𝑚 − 𝑡𝑠)
 

where, C is the diluate concentration, D the diffusion coefficient, δ the boundary 

layer thickness, tm and ts the ion transport numbers in the membrane and the solution 

respectively. The recovery can be calculated using Equation 16. 

Equation 16 

𝑅 = (
𝐶𝐶,𝑡𝑉𝐶,𝑡−𝐶𝐶,𝑖𝑉𝐶,𝑖

𝐶𝐷,𝑖𝑉𝐷,𝑖
)  (

𝐶𝐶,𝑡−𝐶𝐶,𝑖

𝐶𝐷,𝑖
) 

Where CC,t is the concentration in the concentrate compartment at a given time, and 

CC,i is the initial concentration in the concentrate compartment. If the volume change 

in the diluate and concentrate were negligible the shortened expression can be used. 
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2.2.1. MEMBRANES 

Two types of membranes are used in electrodialysis, anion exchange membrane 

(AEM) and cation exchange membrane (CEM). Electrodialysis membrane is 

electrically conductive, which allows only ions with positive or negative charge to 

pass. CEMs only allow the transfer of cations, and usually consist of a polymer with 

negatively charged groups, such as; –SO3
-
, -COO

-
, -PO3

2-
, -PO3H

-
, or –C6H4O

-
. 

AEM usually consist of a membrane matrix with a positive charge such as; –NH3
+
, –

NRH2
+
, –NR2H

+
, –NR3

+
, –PR3

+
, –SR2

+
. A simplified schematic of the membranes 

can be seen in Figure 18. [165,166] 

 

Figure 18 Simplified diagrams of CEM and AEM electrodialysis membranes 

Selectrodialysis uses monovalent anion exchange (MVA) and monovalent cation 

exchange (MVC) membranes (Figure 19) which are selective to monovalent ions, i.e 

multivalent ions are rejected by the membrane. These membranes have a surface 

charge, negative for MVA and positive for MVC membranes. Electrostatic repulsion 

between multivalent ions and the charged membrane surface provides monovalent 

selectivity. [167] 
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Figure 19 Simplified diagrams of MVC and MVA selectrodialysis membranes 

2.2.2. PERFORMANCE 

A number of studies have taken place on the use of electrodialysis or selectrodialysis 

for phosphate removal from wastewater. Using electrodialysis combined with gas 

stripping, phosphorus and ammonia were removed in the ranges 86-94% and 96-

100%, respectively [168]. Another study reported phosphorus removal of 77% (the 

decrease in the diluate concentration), however, recovery was reported to be 65% 

(the increase in the concentrate concentration) [169]. These studies used diluate 

streams of synthetic anaerobic digestion side streams and diluted hydrolysed urine, 

respectively. Ammonia has been found to achieve an ionic flux of 0.27 mol m
-2

 h
-1

, 

with an average total current efficiency of 76%. This leads to a power consumption 

of 4.9 kWh per kg N. In a separate study phosphate ionic flux was found to be 16 

mmol m
-2

 h
-1

, costing 16.6 kWh per kg phosphate produced [170]. Equation 17 can 

be used to calculate specific power consumption. 

Equation 17 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
𝐸 ∫ 𝐼𝑑𝑡

𝑡

0

𝑉𝐷

 

Where I is the current (A), VD is the diluate volume, and E is the energy supplied (J). 

Phosphorus recovery using selectrodialysis often relies on MVA membrane to allow 

monovalent anions to move out of the concentrate, but retain the multivalent 

phosphate ions. Zhang et al. (2009) found that MVA membranes were effective in 

separating mono-and multi-valent ions from one another [171]. A phosphorus 

efficiency of 26.6% was achieved using MVA membrane and synthetic diluate 

(KH2PO4 and NaCl solution) [172]. The main concern with this method is that 

wastewater contains a large number of ions, as such there is a competitive influence 

on phosphorus concentrating efficiency [173]. 
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2.2.3. POTENTIAL CHALLENGES 

Key issues in electrodialysis/selectrodialysis are: 

 Membrane fouling, particularly of the AEM membrane (due to 

macromolecules) [174–176]. 

 Scaling [177,178]. 

 Product use, i.e to crystallize or use liquid product. 

 Energy requirement. 

 Concentrate pH (to ensure phosphate has a multi-valent charge and cannot 

pass MVA membrane). 

 Phosphate interactions with cations. 

 

 

In this dissertation forward osmosis will be used to concentrate real digester centrate 

and selectrodialysis will be used to create a phosphorus product free of biological 

contamination and heavy metals. 
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CHAPTER 3. OBJECTIVES 

The objective of this PhD project is to gain knowledge on the subject of membrane 

technology for phosphorus recovery. The main focus will be on forward osmosis 

and selective electrodialysis. 

While these topics are not novel, most studies use synthetic or filtered digester 

centrate. This allows for overambitious results, since digester centrate contains a 

significant quantity of large molecules and solids which could present issues in 

membrane fouling or clogging. Studies supporting this thesis have used digester 

centrate collected from Aaby WWTP (Aarhus, Denmark). 

This project will concern: 

1) Testing of forward osmosis membranes (biomimetic and TFC) for 

orthophosphate rejection, ammonia rejection, suitability of seawater as a 

draw solution, and water permeability,  

2) Selectrodialysis for simultaneous phosphate and ammonia recovery. 

3) Cost analysis for the implementation of forward osmosis or selectrodialysis at 

Aaby WWTP. 
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CHAPTER 4. FORWARD OSMOSIS 

Forward osmosis was used to concentrate digester centrate from Aaby WWTP 

(Aarhus, Denmark). The following chapter discusses results obtained using 

biomimetic and TFC forward osmosis membranes. All experiments were carried out 

using a lab-scale setup with 140cm
2
 effective membrane area. Results in this chapter  

are published in [124,179]. 

4.1. FEED SOLUTION OSMOTIC PRESSURE 

Digester centrate was collected from Aaby WWTP (Aarhus, Denmark) an 84,000 

PE municipal WWTW, using denitrification/nitrification and enhanced biological 

phosphorus removal (EBPR) treatment. At the plant, ferric chloride was added to 

control the concentration of total-P, excess EBPR sludge was pre-thickened and 

added to a mesophilic digester with a residence time of 20-22 days. This sludge was 

then dewatered in a decanter centrifuge and the digester centrate collected for this 

study. The composition of digester centrate collected from Aaby WWTP can be 

found in Table 8.  

Table 8 Digester centrate composition 

Parameter Digester Centrate  

Ortho-P (mM) 1±0.03 

Total P (mM) 9.4±0.3 

Ammoniacal nitrogen (mM) 122±5 

Mg
+
 (mM) 0.04±0.0009 

Ca
+
 (mM) 1±0.05 

Na
+
 (mM) 3.7±1.0 

Cl
-
 (mM) 209±51 

pH 8.0±0.2 

Electrical Conductivity (mS cm
-1

) 13.189±0.007 

Osmotic Pressure (bar) 1.8±0.3 
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It is essential to know the osmotic pressure of the feed and draw solutions to ensure 

an adequate driving force between the two. Using the osmotic pressure difference 

water permeability can be determined, per Equation 3, which is key in evaluating a 

membranes performance. Determining feed solution osmotic pressure can be 

challenging, as digester centrate contains many components. There are three 

methods which may be suitable for this application. First, there is the determination 

of osmotic pressure using water activity, aw, which is the partial vapour pressure of a 

substance (digester centreate) divided by the standard state partial vapour pressure of 

pure water (Equation 18). 

Equation 18 

𝜋 = − (
𝑅𝑇

𝑉𝑚

) ln (𝑎𝑤) 

where; Vm (m
3
) is the partial molar volume of water, R is the ideal gas constant 

(0.0831 L bar mol
-1

 K
-1

), T is the temperature in Kelvin and aw is the water activity. 

It is assumed that all solutes are fully rejected by the membrane and therefore 

contribute to the osmotic pressure difference across the membrane. 

From a number of feed solution samples concentrated to a specific VCR it is 

possible to plot a graph of feed osmotic pressure by VCR, as seen in Figure 20. 

From these data a line of best fit can be determined and used to estimate feed 

solution osmotic pressure. However, this graph can only be used for a short period 

of time due to seasonal changes in composition, and only for digester centrate 

collected from Aaby WWTP, since digester centrate composition varies between 

WWTPs. Nevertheless, producing the data necessary to plot Figure 20 is relatively 

fast and precise, with ±0.003 aw error (provided by supplier). Plus, inline osmotic 

pressure can be determined from the VCR of the feed. 
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Figure 20 Feed osmotic pressure for various VCR calculated using water 
activity. 

The second method of determining feed solution osmotic pressure is experientially. 

This is achieved by taking draw solutions of various, and known, osmotic pressure 

and running forward osmosis for a short period of time. From this mass changes can 

be plotted against time, as in Figure 21. For draw solutions with a higher osmotic 

pressure than that of the feed, water will move into the draw solution, i.e positive 

Δm/Δt. For lower osmotic pressure water will move into the feed solution, i.e 

negative Δm/Δt. If both feed and draw have the same osmotic pressure, Δm/Δt will 

be 0. 

This is time consuming, as there is potential for the need to run many experiments in 

order to find a suitable range of draw solutions. Lastly, as with the method using aw, 

it would need to be repeated periodically and for different WWTPs, and an inline 

determination of osmotic pressure would be impossible. 
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Figure 21 Experimental determination of osmotic pressure. 

The final method is to calculate the osmotic pressure using known concentrations of 

solutes found in digester centrate. However, there are many compounds present in 

digester centrate, and it would be impossible to find all of them, and give an 

inaccurate osmotic pressure if any were excluded. Wastewater contains 

macromolecules which also contribute to osmotic pressure, but the effect of these 

cannot be calculated. Furthermore, as with the experimental method, this method 

cannot be used inline. Consequently, feed solution osmotic pressures have been 

determined using the feed solution aw, and was found to be 1.8±0.3 bar. 

 

4.2. NATURALLY OCCURRING SALT WATER AS A DRAW SOLUTION 

Many counties have access to seawater; however, the salinity in natural water 

sources varies around the world. This can cause issues when looking to utilize these 

saline waters as draw solution for forward osmosis since not all saline waters are of 

an adequate salinity to facilitate efficient flux, and consequently VCR. As such it is 

necessary to ascertain whether using seawater is commercially viable, firstly in the 

region in which you intend to apply forward osmosis, and secondly, for the depth 

below sea level from which seawater will be taken. 
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Table 9 Salinity of naturally occurring salt waters, and this flux and VCR these 
are capable of achieving when concentrating digester centrate 
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Table 9 shows some examples of salinities around the world. Salinity as low as 10 

PSU can be seen, such as in the Baltic Sea, a relatively low salinity, which can be 

attributed to dilution by a vast number of estuaries. Waters with salinity this low are 

not suitable for use in forward osmosis for phosphorus recovery from wastewater, as 

a minimum VCR of 3 is required to reduce the magnesium demand from 1.3:1 to 1:1 

Mg:P. These osmotic pressures can only achieve a VCR of 1.7 for digester centrate 

collected from Aaby WWTP. Similar can be said of the Caspian Sea, as such, all 

saline waters with salinity under 14.87 PSU (relating to a VCR of 3) should be 

disregarded for this purpose. The average salinity of seawater globally is 35 PSU, as 

seen for the Atlantic/Pacific Ocean and North Sea. This corresponds to a theoretical 

VCR between 4.1 and 4.4, thus reducing the magnesium demand to 1:1 Mg:P. The 

Dead Sea, one of many hypersaline lakes located worldwide, has an extremely high 

salinity. While this may appear desirable, using such a high osmotic pressure will 

give rise to an extremely high flux, forcing the foulants in the wastewater into the 

membrane with a greater force, consequently forming a much thicker and less 

readily-removed fouling layer than solutions with lower salinity. Additionally, 

concentration polarization will have a far greater effect for osmotic pressures as high 

as this. The combination of increased fouling and concentration polarization would 

therefore, lead to a decrease in average flux, a need for a greater number of cleaning 

cycles, and an increase in pumping costs due to increased viscosity. As such, it 

would not be cost-efficient to use hypersaline lakes without first diluting them, 

however, the effects of using a high salinity draw solution can be reduced by using a 

counter current flow configuration, as this makes the osmotic pressure difference 

more uniform over the length of the membrane. 

Table 10 Effect of seawater salinity with increasing depth below sea level [186] 

Depth 
(m) 

Salinity 
(PSU) 

Temperature 
(ᵒC) 

Osmotic 
Pressure (bar) 

Max Flux 
(LMH) 

VCR 

0 35,84 23,3 26,9 24,3 4,4 

200 35,91 16,3 26,3 23,7 4,4 

400 35,48 11,72 25,5 23,1 4,3 

600 35,19 9,31 25,1 22,7 4,2 

1000 35 5,99 24,7 22,3 4,1 

 

Location is not the only parameter to affect the osmotic pressure of seawater, 

temperature and salinity change with depth below seawater surface. Table 10 shows 
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salinity for the first 1000m below surface level for the North Atlantic Ocean. The 

osmotic pressure falls by 2.2 bar, resulting in a 6.8% decrease in potential VCR. For 

varying depths salinity does not significantly change, however temperature does, 

this, along with  

Figure 22, shows that temperature does not play a key role in the osmotic pressure of 

seawater, as such; seasonal changes in temperature should not affect the forward 

osmosis process. 

One problem with using seawater as draw solution and discharging it back into the 

sea without treatment is the risk of contamination, which has potential to cause 

eutrophication [58], amongst other problems i.e. micro-pollutants/heavy metal 

contamination. This has been investigated later in the chapter. 

Seawater has varying salinity and temperature in different parts of the world, and in 

different seasons. As such, it is necessary to calculate the osmotic pressure, flux, and 

VCR seawater is capable of achieving. Too low a salinity and it will not be able to 

concentrate digester centrate to an adequate VCR, too high and the user risks the 

adverse effects of concentration polarization. The Van’t Hoff equation (Equation 19) 

can be used to determine the osmotic pressure seawater with a certain salinity and 

temperature. Where M is the molarity of salt (mol L
-1

), R the gas constant (0.0831 L 

bar mol
-1

 K
-1

), and T the temperature (K). i is the Van’t Hoff Factor, a measure of 

the number of ions a solute will form when dissolved in water, since NaCl in 

seawater is fully dissociated i is equal to 2 . 

Equation 19 

𝜋 = 𝑖𝑀𝑅𝑇 

In practice, Equation 19 was used to calculate the osmotic pressure of NaCl 

solutions, while water activity (Equation 18) was measured for seawater, as the 

salinity of the seawater used was unknown. The theoretical calculations discussed in 

the remainder of this section use Equation 19.  

Figure 22 shows the osmotic pressure for seawater with increasing salinity for 4, 20, 

and 30ᵒC. There is a linear increase in osmotic pressure with salinity, and increasing 

osmotic pressure with increasing temperature, however, the effect of temperature on 

osmotic pressure is low. Consequently, seasonal variations in temperature should not 

affect a full-scale plant operating using a seawater draw solution. In Denmark there 

are 27 WWTP within 1km of the coast, of these, 12 have a salinity of 10-19 PSU, 13 

20-29 PSU, and two have access to 30+ PSU. As such, the majority of Danish 

WWTPs in the vicinity of the coast have access to seawater with salinity of 20+ 

PSU (13+ bar osmotic pressure). 
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Figure 22 Calculated osmotic pressure for seawater 

From the osmotic pressure, calculated in  

Figure 22, the average flux can be estimated. This can be achieved using the water 

permeability of the membrane (in this instance 0.904 LMH bar
-1

 (from experiments 

carried out using TFC membrane) and Equation 3.  

As seen in  

Figure 23, this corresponds to an average water flux >2.8 LMH for WWTPs in 

Denmark. 
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Figure 23 Calculated average water flux using seawater draw solution and digester 

centrate feed soluton 

It is then possible to calculate the VCR to which the seawater draw solution is able 

to concentrate digester centrate. VCR can be calculated using Equation 20, which 

Vinitial and Vfinal are the initial and final feed solutions volumes. 

Equation 20 

VCR =  
Vinitial

Vfinal

 

A WWTP with access to seawater with a salinity of greater than 20 PSU would be 

capable of achieving a VCR of 3 (as shown in Figure 24), thus attaining a decrease 

in P:Mg ratio from 1:1.3 to 1:1. Meaning that in Denmark alone, 15 WWTP are 

capable of utilizing this technology for phosphorus recovery based solely on draw 

solution availability. 
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4.3. WATER FLUX & PERMEABILITY 

Water flux and permeability were calculated for both biomimetic (Aquaporin A/S, 

Denmark) and TFC (Porifera, USA) membranes.  

TFC membranes exhibited the higher water flux, achieving 49.7 LMH with 

deionized water feed solution and 54.5 bar osmotic pressure difference. For TFC 

membranes average water flux was 27.1 LMH and 5.2 LMH for deionized water and 

digester centrate feed solutions, respectively. When using deionized water feed 

solution biomimetic membranes achieved a water flux of 5.2 LMH, and 2.1 LMH 

for digester centrate feed solution. As shown in Figure 25. 

Figure 24 VCR seawater can be calculated using seawater draw solution to 
concentrate digester. 
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Figure 25 Water flux for both TFC and biomimetic membranes, using deionosed 

water and real digester centrate feed solutions. 

 

Figure 26 shows water permeability (calculated using Equation 3). TFC membranes 

exhibited average water permeability of 1.1 and 0.3 LMH bar
-1

 for deionized water 

and digester centrate, respectively. Conversely, it was 0.21 and 0.09 LMH bar
-1

 for 

deionized water and digester centrate respectively when using biomimetic 

membrane. The difference between water permeability for deionized water and 

digester centrate feed solutions can be attributed to internal concentration 

polarization, as the support later is facing the feed (AL-DS) when using digester 

centrate and facing the draw (AL-FS) when using deionized water feed solution. 

With the support facing the feed when using deionized water the internal 

concentration polarization is reduced, giving a higher water flux. When this is no 

longer the case – as when using digester centrate- internal concentration polarization 

can occur in the membrane support layer. The gradient of water permeability against 

osmotic pressure difference for both TFC and biomimetic membranes is close to 

zero, showing external concentration polarization is not an issue. 
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Figure 26 Water permeability (A) for both TFC and biomimetic membranes, using 

deionosed water and real digester centrate feed solutions. 

In order to determine if long term operation could be successful the setup was run 

for three 22 hour periods, with a one hour cleaning cycle in between each 22 hour 

cycle. The 22 hour runs used seawater draw solution and digester centrate feed 

solution, while the cleaning cycle used deionized water feed solution and seawater 

draw solution. Water permeability (A) during the two cleaning cycles can be seen in 

Figure 27. Average water permeability was 0.23 and 0.21 for cleaning cycle 1 and 2 

respectively. By the end of the cleaning cycle water permeability for both cleaning 1 

and 2 were almost the same. It is therefore possible to conclude that membrane 

fouling is not an issue, as the water permeability is not affected over prolonged use. 
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Figure 27 Water permeability during cleaning cycles, between 22 hour cycles using 

digester centrate feed solution and TFC membranes. 

 

4.4. PHOSPHORUS  

Rejection was calculated using Equation 11 [153]. As shown in Figure 28, average 

phosphorus rejection was 99.5% for TFC membrane. Similarly, previous studies 

reported phosphorus rejection >92% have been found for CTA membranes 

[149,152]. 
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Figure 28 Phosphorus rejection for TFC membrane 

In order to recover as much phosphorus as possible it is essential that the membrane 

have as high phosphorus rejection as possible. Figure 29 shows the percentage of 

phosphorus lost to the draw solution (from feed solution) at different pH using 

biomimetic membrane. Phosphate has increasing charge with increasing pH, 

corresponding to a decreasing percentage of phosphate lost to the draw solution, 

from 15.8% at pH 5 to 5.8% at pH 10. The biomimetic membrane relies on surface 

charge to repel ions; consequently, ions with greater charge are more easily rejected. 

Conversely, molecules will not be rejected and can diffuse through the membrane, 

as they have no charge. 
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Figure 29 Phosphorus lost to draw solution using real digester centrate and 
biomimetic membrane. 

 

4.5. AMMONIA 

Figure 30 shows ammoniacal nitrogen diffusion for TFC and biomimetic 

membranes. TFC membrane exhibited a higher ammoniacal nitrogen flux than 

biomimetic membranes. For biomimetic membranes ammoniacal nitrogen diffusion 

stays steady up to pH 7, however, from pH 7 diffusion increases, corresponding to 

the increase in ammonia over ammonium. Uncharged ammonia can pass the 

membrane more easily than ammonium, which has a charge of +1, due to the 

membrane surface charge. As such, it would be necessary to keep pH low to reduce 

ammonical nitrogen diffusion across the membrane. Consequently, pH adjustment to 

aid struvite or calcium phosphate precipitation would need to take place after 

forward osmosis treatment, not before, as pH 9-10 is optimal for struvite 

precipitation. 
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Figure 30 Diffusive TAN flux 

Digester centrate from Aaby WWTP is pH  = 8.7±0.2, therefore, ammonical 

nitrogen loss at pH 8 was calculated at increasing VCR using the average 

ammonical nitrogen flux at pH 8, as shown in  

Figure 31. The percentage of ammonical nitrogen lost increases significantly 

between VCR 1 and 2 – with around 30% of the initial feed mass being lost to the 

draw. By VCR 10 this has increased to 50% and 56% for biomimetic and TFC 

membranes respectively. Consequently, seawater draw solution would require 

treatment prior to discharge or use as drinking water. Furthermore, if ammonia 

recovery is the main purpose alternative membranes or technology may be more 

suitable. However, phosphorus recovery through struvite would still be possible as 

the concentration of ammoniacal nitrogen is 10-20 times higher than that of 

phosphate. As such, a loss of 50% would not reduce the ammoniacal nitrogen 

concentration to below that of phosphate.  
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Figure 31 TAN loss, calculated using TAN flux at pH 8, it should be noted that this 

does not account for reductions in N loss due to struvite precipitation. 

4.5.1. TRANSPORT MECHANISM THROUGH BIOMIMETIC MEMBRANE 

Equation 21 can be used to calculate the flux of ammoniacal nitrogen. This can be 

used to determine the ratio of ammoniacal nitrogen flux to sodium ion reverse flux. 

Equation 21 

𝐽𝑁𝐻4
+ = 𝑘′(pH) + (−𝐽𝑁𝑎+) 

Where  is the fraction of the reverse sodium ion transport that is linked to the 

ammonium transport, and  k’ is the flux of ammonium with co-transport of an anion. 

The fraction of ammoniacal nitrogen present as ammonium (𝛼𝑁𝐻4
+) was calculated 

from Equation 22. 

Equation 22 

𝛼𝑁𝐻4
+ =

1

1 +
𝐾𝑎

[𝐻+]
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Where [H
+
] is the concentration of hydrated protons and Ka is the dissociation 

constant which for ammoniacal nitrogen is 5.62·10
-10

 M (calculated from pKa = 

9.25). 

 

Figure 32 (a) Ratio of ammoniacal nitrogen to sodium flux (λ) (b) ammoniacal 
nitrogen diffusion as a function of pH (See Paper 2) 

Ammoniacal nitrogen comes in two forms – ammonia (NH3) and ammonium 

(NH4
+
). As mentioned previously, ammonia diffuses through the membrane with 

greater efficiency than ammonium since it is uncharged, and therefore not repelled 

by the charged surface of the membrane. Ammonium on the other hand is charged. 

As such, there are two ways by which it can pass the membrane; 

1. When an ammonium ion moves from feed to draw a positive ion will move 

from draw to feed, i.e Na
+
, 

2. With a negative ion moving from feed to draw, i.e. Cl
-
. 

Figure 32 (a) shows the ratio of ammoniacal nitrogen flux to reverse Na
+
 flux at 

increasing pH (λ). λ decreases with increasing pH, as seen from the red line, this 

corresponds with a decreasing concentration of ammonium (and increasing 

ammonia). However, Figure 32 (b) shows the diffusion of ammoniacal nitrogen 

increasing with increasing pH, corresponding to higher ammonia diffusion than 

ammonium transport at lower pH. Consequently, it would be necessary to either use 

an uncharged draw solution, or operate a low pH, where charged ammonium will be 

rejected more effectively by the membrane. 
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CHAPTER 5. SELECTRODIALYSIS 

A four compartment selective electrodialysis setup (Figure 33) was used to recover 

phosphorus and ammonia in separate compartments. Phosphorus was concentrated 

in an anion concentrate stream, and ammonium was concentrated in a cation 

concentrate. Diluate was digester centrate, and electrode rinse solution was 20 gL
-1

 

Na2SO4. In the anion compartment pH = 10 was maintained, in order to ensure a 

higher charge on the phosphate ions, thus preventing their passing the MVA 

membrane. In the cation compartment pH 4 and 8 were investigated to see the effect 

of increasing ammonia over ammonium.  Results in this chapter are from Paper 3. 

 

Figure 33 Selectrodialysis setup 
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5.1. ANION CONCENTRATE 

Anions move from the diluate through the AEM membrane into the anion 

concentrate. Anions with a charge greater than one are then trapped in the anion 

concentrate, as they cannot pass the MVA membrane. In order for phosphate to 

move into the anion concentrate two single charge anions must pass the MVA 

membrane. In this case two chloride ions will move through the MVA membrane. 

Consequently it is necessary to have an abundant supply of chloride ions in the 

anion concentrate compartment, therefore 10 gL
-1

 NaCl was added to the 

concentrate streams. 

Figure 34 shows the phosphate concentration decreasing in the diluate compartment 

and increasing in the anion concentrate compartment. Within four hours the diluate 

was depleted of phosphate and recovery >95% was recorded for both pH 4 and 8. 

The initial recovery rate for the first two hours of operation was 0.028 ± 0.006 mmol 

m
-2

s
-1

 (calculated using Equation 23). 

Equation 23 

𝐽𝑖 =


𝐴
 

Where A is the membrane area (m
2
) and  is Δc/Δt 
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Figure 34 P concentration in diluate and concentrate for experiments with pH 4 
(a) and 8(b) cation compartment. 

 

Figure 35 shows the phosphate, chloride, and sulphate concentrations in the diluate 

and anion concentrate compartments. Phosphate concentration decrease in the 

diluate and increase in the anion concentrate, while chloride decreases in both 

diluate and anion concentrate compartments. Sulphate on the other hand, initially 

increases in the diluate, then decreases, and increases in the anion concentrate. The 

initial increase in diluate sulphate concentration is likely due to sulphate ions 

passing from the electrode rinse in to the diluate, these ions then pass through the 

AEM membrane into the anion concentrate. Sulphate causes an issue when entering 

the anion concentrate as it is unable to pass the MVA membrane, since it has a 2- 

charge. Since sulphate cannot leave the anion compartment it reduces the purity of 

any potential phosphorus product. In total 104.mM chloride leaves the anion 

compartment, while 6.7mM and 9.5mM of phosphate and sulphate respectively 

enter it. By charge, the phosphate and sulphate movement corresponds to 37.5% of 

chloride movement. This raises the issue of what other ions are moving into the 

anion concentrate, and whether these other ions have a single charge or remain in the 

concentrate. Nitrite was also measured, but was found to be below detectable limits. 

As seen in the figure, the chloride concentration is 17.6mM after 8 hours, in order to 

reduce costs in a full-scale system chloride concentration could be reduced. 
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Figure 35 Chloride, sulphate and phosphate concentrations in diluate (a) and anion 

concentrate (b) compartments, when using pH = 4 cation concentrate. 

5.2. CATION CONCENTRATE 

Figure 36 shows the ammoniacal nitrogen concentration in the diluate and cation 

concentrate for pH 4 and 8 cation concentrate. Ammoniacal nitrogen concentration 

decreases from 84-125 mM to 3-6 mM during the 8 hour experiment. The initial 

recovery rate of ammonium was calculated to be 0.6  0.3 mmol m
-2

s
-1

 for the first 

two hours (calculated using Equation 23). The average current efficiency was 

calculated to be 85  15% for the first 4 hours of operation (calculated using 

Equation 12). Ammoniacal nitrogen recovery was calculated using Equation 16, and 

was found to be 71.3% and 71.9% for pH 4 and 8 respectively. Some ammoniacal 

nitrogen was found to be lost due to evaporation of ammonia, this corresponded to 

7.8% and 11.4% of the initial diluate ammoniacal nitrogen concentration for pH 4 

and 8 respectively. 
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Figure 36 N concentration in diluate and concentrate for experiments with pH 4 
(a) and 8(b) cation compartment. 

5.3. SIMULATIONS 

Phosphate and ammoniacal nitrogen concentrations can be simulated as an 

exponential decline in the dilute in order to model the membrane area and power 

required for increasing recovery. The rate constant (k) was used to estimate the 

membrane area required to treat digester centrate at Aaby WWTP. k was found to be 

1 h for both phosphate and ammoniacal nitrogen. 

Equation 24 was used to calculate the development in concentration in order to 

determine the required membrane area for a digester centrate stream of 10 m
3
 h

-1
 

with a phosphate concentration of 6 mM and an ammonium concentration of 105 

mM. The phosphate concentration was calculated throughout an electrodialysis cell 

with dimensions l x h x w, where l is the length, h is the height (0.1 m) and w is the 

width (0.05 m). The single flow chamber was divided into a number of control 

volumes to solve the concentration as function of length and time in the cell. The 

area of the membrane was Acell = Δl x h, and the volume of each cell was Vcell = Δl x 

h x w.  

Equation 24 

𝐶𝐶,𝑡+∆𝑡,𝑙 = 𝐶𝐶,𝑡,𝑙 + (
𝑄𝐶𝐶,𝑡,𝑙−∆𝑙 − 𝑄𝐶𝐶,𝑡,𝑙 − 𝐽𝐴𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙

) ∆𝑡 
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Equation 24 takes account of the convective transport in and out of each control 

volume, and the loss of phosphorus or ammonia through the membrane, with Δl = 

0.4 m and Δt = 1 s. Concentrations of a given length and new time (CC,t+Δt,l) were 

predicted from concentrations at current and previous length and at previous time 

(CC,t,l and CC,t,l- Δl, respectively). This was done until a steady state was reached 

(dC/dt = 0). The boundary condition was that initial concentrations throughout the 

cell equalled the inlet concentrations of 6 mM phosphate and 105 mM ammonium, 

and the flow was 10 m
3
h

-1
. The required cell length was calculated as function of the 

degree of recovery. The energy consumption (W) can be calculated by using 

Equation 25. 

Equation 25 

𝐸 = 𝑖𝐴∆𝑉 

where i is the current density and V is the voltage drop for one stack. (From Paper 

3) 

Figure 37 shows the area of AEM membrane required in a stack to recover 

phosphate from Aaby WWTP, and the power needed to move phosphate across the 

membrane. As seen in the figure, the slope of the line increases after 70% recovery. 

Consequently, it is more cost efficient to only recover up to 70% P. 

 

Figure 37 Membrane area and power required to recover P (Paper 3) 
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CHAPTER 6. ECONOMIC CASE STUDY 

– AABY WWTP 

Aaby WWTP has a struvite recovery facility which treats 10m
3
 day

-1
 digester 

centrate, containing around 6 mM PO4-P. The plant runs for 340 days a year. Costs 

have been calculated for both a forward osmosis and selectrodialysis system at Aaby 

WWTP. A number of assumptions have been made in order to simplify the costs 

involved in installing forward osmosis or selectiodialysis at Aaby WWTP, these are: 

Forward osmosis: 

 Membrane modules cost assumed to be €1320 ($1500), with each module 

being 27m
2
, price includes membrane housing (based on pricing by for 

Porifera Inc.) [187] 

Selectrodialysis: 

 Membrane cost based on those of 85% of those of lab-scale membranes 

purchased from PCCell GmbH (€347 per square meter for CEM and AEM 

membranes and €459 per square meter for MVA membranes (including 

15% price reduction for bulk purchase)). 

 Draw solution is seawater (pumping costs only) and WWTP is adjacent to 

coast (within 1km) 

 Concentrate compartments are half the volume of diluate compartment. 

General: 

 Cost incurred by redundant (existing) equipment has been excluded. 

 5% loss of membrane area every 3 years [188]. 

 Maintenance costs calculated using 5% membrane area replacement plus 1 

day (8 man hours for 2 men) of installation per 27 m
2
 membrane module 

installed. 

 General man-hour costs are estimated based on normal weekly checking of 

1 hour per week. 

 1 man-hour is equal to €25 

 1 kWh costs €0.35. 

 Bulk purchase of NaCl equates to cost of €133 ($150) per tonne [189]. 

 Cost of magnesium chloride €261 (1950 Danish Krone) per tonne (current 

price paid by Aaby WWTP). 

 All P recovered is precipitated as struvite using a 1:1 Mg:P ratio. 
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 All costs converted to Euros (€) using x-rates.com and exchange rate at 

time of calculating (28.11.2018). 

6.1. FORWARD OSMOSIS 

6.1.1. MEMBRANE COSTS 

 

  

 

Figure 38 shows a cost estimate for TFC membrane. The membrane area required 

was based on the average water permeability, discussed in Chapter 4 (0.287 LMH 

bar
-1

 for TFC membranes). An osmotic pressure difference of 20 bar was assumed 

(seawater draw solution is capable of this osmotic pressure difference) and 

membrane area required was calculated using Equation 26. TFC membrane was only 

considered in this calculation because it had higher water permeability therefore 

requiring a smaller membrane area, resulting in a lower cost.  

Equation 26 

𝐴𝑚 =  
𝑉𝑃

𝐽𝑊 𝑥 𝑡
 

Where Am is the membrane area (m
2
), and VP is the volume of permeate (L). 
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Figure 38 Membrane area per cubic meter digester centrate treated at Aaby WWTP 

using TFC membranes. Calculation based on a membrane flux of 5.7LMH. 

In order to determine the membrane area required for forward osmosis, it is 

necessary to decide on an average flux the membrane is capable of achieving, and 

the VCR to which the draws solution will be concentrated.  

Figure 39 shows the relationship between membrane costs per cubic meter of treated 

digester centrate by flux for various VCRs. From the figure it is possible to see the 

cost decreasing with increasing water flux. Since the average water flux when using 

TFC membranes was 5.2 LMH, a conservative water flux of 5 LMH was used for 

estimating the membrane area required. While a VCR of 7 was achieved using TFC 

membranes [124], theoretically a VCR of only 3 is required to reduce the P:Mg ratio 

from 1:1.3 to 1:1, therefore, in order to keep costs to a minimum a VCR of 4 is 

optimal as it ensures adequate concentration of phosphate, but does not require the 

time or energy demand of higher VCR. 
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Figure 39 Membrane cost of treating digester centrate with as a function of flux for 

VCRs between 2 and 5 

6.1.2. PUMPING COSTS 

Pumping costs can be determined by calculating the energy required to move the 

feed or draw solution through a specific length of pipe, with a certain number of 

fittings or fixtures.  

In order to determine the power required, the cross sectional area of the pipe must be 

calculated, using Equation 27. Where v is the free stream velocity (m s
-1

), A is the 

cross sectional area of the pipe (m
2
), and Q is the flow rate (m

3
 s

-1
). The pipe 

diameter can be calculated from A. 

Equation 27 

𝐴 =  
𝑄

𝑣
 

After this the Reynolds number must be calculated to determine the flow type 

(laminar or turbulent). This was done using Equation 28: 
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Equation 28 

𝑅𝑒 =  
𝜌𝑣𝑑

𝜇
 

Where Re is the Reynolds number, ρ is the density (kg m
-3

), d is the pipe diameter 

(m), and µ is the dynamic viscosity (Ns m
-2

). For seawater draw solution the 

Reynolds number was calculated to be 4889.28, since it is >4000 the flow is 

considered turbulent, as such Moody’s diagrams were consulted to determine the 

Darcy-Weisbach friction factor (λ) using relative pipe roughness (ε/d) of 0.04, 

giving a friction factor of 0.07. This was then used in Equation 29 to calculate the 

friction losses in the pipe. Where Hf is the loss of head due to friction (m), l is the 

pipe length (m), g is gravitational force (9.81 m s
-2

). 

Equation 29 

𝐻𝑓 =  𝜆
𝑙

𝑑

𝑣2

2𝑔
 

This was calculated for up to 1000m of pipework. Next the fitting losses were 

calculated using Equation 30.  

Equation 30 

𝐻 =  𝑘𝑓𝑖𝑡𝑡𝑖𝑛𝑔

𝑣2

2𝑔
 

The fitting coefficient values (kfitting) used are shown in Table 11. 

Table 11 Fittings used to estimate head loss in pipe 

Fitting kfitting Quantity 

Sharp edged entrance 0.5 1 

Close radius 90 degree 

bend 

0.75 2 

Close radius 45 degree 

bend 

0.3 2 

Gate Valve (fully open) 0.12 1 
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Although through completing proper design work for the pipeline the number of 

fittings could change it has been assumed that the pipe would have an entrance, a 

number of bends and a gate valve to isolate the pump during maintenance. 

Hf and H can then be combined with the static head loss (20m assumed in this case) 

to give the total head loss from which power (P) can be calculated using Equation 

31. 

Equation 31 

𝑃 =
𝑄𝜌𝑔𝐻

3.6 ∗ 106
 

From this the energy required can be determined, and then the cost.  

Figure 40 shows the power and cost per cubic meter digester centrate treated for 

pumping seawater up to 1 km, assuming 20 m
3
 day

-1
 is required. As seen, the cost is 

not significant compared to that of the membrane, as such, a pipeline of 1 km is 

feasible. 
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Figure 40 Cost and power demand of pumping seawater draw solution by distance 

The pumping costs and power requirement were also calculated for digester centrate. 

However, Reynolds number was 3457.24, as such, the friction factor was calculated 

using the Swamee-Jain approximation. The simplified expression (Equation 32) was 

used as 5.74/Re0.9 << κ/3.7D (κ is the pipe roughness value (mm)) [190]. 

Equation 32 

𝜆 =  
0.25

[log(
𝜅

3.7 𝑑
)]

2 

As with draw solution, the power and cost for pumping digester centrate feed 

solution can be seen in  

Figure 41. The cost is around half of that of seawater as 10m
3
 day

-1
 is being pumped 

rather than 20m
3
 day

-1
. It is unlikely that digester centrate will require pumping 1km, 

but it has been calculated to this distance for comparative purposes. 
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Figure 41 Cost and power demand of pumping digester centrate feed solution by 

distance 

6.1.3. CAPITAL EXPENDITURE 

The initial cost incurred a membrane plant, can be calculated using past projects. 

Capital expenditure (CAPEX) can be calculated without the initial cost of 

membranes using previous projects CAPEX excluding membranes (Equation 33) 

[191]. 

Equation 33 

𝐾𝐹 =  𝐾𝐹𝑅 (
𝐴

𝐴𝑅

)
𝑚

 

Where KF is the plant costs for the new plant (€), KFR is the plant cost for the 

existing plant (€), A is the membrane area for for the new plant (m
2
), AR is the 

membrane area for the existing plant (m
2
), and m is the degrading exponent (0.8 for 

cross-flow plants). Data in Table 12 were used to calculate the plant costs at Aaby 

using Equation 33. The costs amounted to €52000. 
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Table 12 Data used to calculate plant costs for Aaby WWTP [187] 

Element Value 

Equipment and materials (€) 17750000 

Pumps (€) 5183000 

Others (€) 32660000 

Membrane Area (m
2
) 416664 

 

The final CAPEX cost is associated with construction. For previous forward osmosis 

plants construction costs have represented 48.1% of the CAPEX [187], as such ,it is 

possible to estimate them for Aaby WWTP using the membrane and plant costs. 

This gives a figure of €52000. 

6.1.4. TOTAL COST 

Table 13 shows the costs associated with implementing forward osmosis at Aaby 

WWTP for 20 years, one year, and the cost per cubic meter of treated digester 

centrate. The required membrane area was calculated using Equation 26. For a VCR 

of 4, and 10 m
3
 day

-1
, the permeate volume is equal to 7500 L in 24 hours. The 

membrane area calculated was 62.5 m
2
, however, TFC membranes come in 27m

2
 

modules, as such, it would be necessary to base the cost on three of these modules 

(81 m
2
), as two would not provide a large enough area. Similarly, when calculating 

membrane area loss, the module would not be able to be replaced until most of the 

area was lost, as such, it would only need to be replaced every 20 years. 

Table 13 Costings associated with FO treatment at Aaby WWTP. 

Cost (€) 20 years 1  year Per cubic meter 

digester centrate  

treated 

Plant 52000 2600 0.76 

Construction 52000 2600 0.76 

Power (seawater, 

1km) 

1300 65 0.02 
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Pumping 

(digester 

centrate, 50m) 

2700 135 0.04 

Initial membrane  4000 200 0.06 

Membrane 

maintenance/ 

replacement 

1300 65 0.02 

Man-hours 

(maintenance) 

400 20 0.01 

Man-hours 

(general) 

25000 1250 0.37 

Magnesium 

Chloride (struvite 

precipitation) 

10000 500 0.15 

TOTAL 148700 7435 2.19 

 

Figure 42 shows an estimate of cost for membranes, plant and construction for 

increasing membrane area. It assumes cost increases linearly with membrane area, 

i.e, it does not account for cost savings when bulk purchasing products/materials etc. 

Increasing costs suggest that forward osmosis may be suitable when dealing with 

small membrane area, but may not be cost effective for large membrane areas. 
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Figure 42 Membrane, plant and construction costs for increasing membrane 
area 

6.2. SELECTRODIALYSIS 

In order to cost for implementing selectrodialysis at Aaby WWTP it is necessary to 

determine the recovery in order to calculate membrane area and power needs.  

Figure 43 shows the membrane and power costs for increasing recovery. As seen in 

the figure, the slope of both power and membrane costs increase after 70% recovery, 

therefore, increasing the cost of treatment. Consequently, it is practical to recover 

70% phosphate and ammonium, but not higher (calculated using Equation 24).  

In order to recover 70% a membrane area of 231.6m
2
 is required for the AEM 

membrane. This has been calculated using the model discussed in Paper 3. Due to 

the membrane configuration used, each membrane will need to be 57.9 m
2
 (the AEM 

membrane at the end of the stack does not count towards the 231.6 m
2
 required as it 

is purely used to protect the electrode). A membrane stack containing 5no. AEM and 

CEM and 4no. MVA membranes were used, as per the setup used in Paper 3. 

Costings were calculated assuming this number of membranes was used, each with 

an area of 57.9m
2
. The power consumption was calculated using Equation 25. 
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Figure 43 Membrane and power costs per m3 digester centrate treated using 
selectrodialysis 

Costs associated with plant, construction, and pumping power were calculated in the 

same manner as forward osmosis, and are shown in Table 14. 

Table 14 Costings associated with implementing selectrodialysis at Aaby 
WWTP. 

Costs (€) 20 years 1 year Per cubic meter 

digester centrate 

treated 

Plant 140000 7000 2.06 

Construction 130000. 6500 1.91 

Power (pumping, 

diluate 50m) 

1300 65 0.02 

Power (pumping 

rinse, 50m 

1300 65 0.02 
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Power (pumping 

anion concentrate 

50m) 

660 33 0.01 

Power (pumping 

cation 

concentrate 50m) 

660 33 0.01 

Initial membrane  310000 15500 4.56 

Power (across 

membrane stack) 

100000 5000 1.47 

Membrane 

maintenance 

100000 5000 1.47 

Man-hours 

(maintenance) 

4000 200 0.06 

Man-hours 

(general) 

25000 1250 0.37 

Magnesium 

chloride (struvite 

precipitation) 

7000 350 0.10 

Sodium chloride 

(concentrate 

streams) 

90000 4500 1.32 

TOTAL 909920 45496 13.38 

 

Costs are generally higher for selectrodialyis, due to the need for multiple 

membranes (in the stack) and power needed to draw ions into the concentrate. The 

larger membrane area also increases the cost of plant and construction. However, the 

technology has a few benefits over forward osmosis. Selectrodialysis creates a 

‘pure’ concentrate, as such there will be fewer issues with heavy metal 

contamination, or biological contamination in the product. Furthermore, as shown in 

Chapter 5, it is possible to concentrate ammonium and phosphate in separate 

concentrate streams, allowing a greater number of potential uses/customers. 
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6.3. OUTCOME 

Aaby WWTP is capable of producing 300kg struvite per day, equal to 102 tonnes 

per year. Struvite has a potential sale value of €225 (£200) [83]. This equates to 

€67.50 per day, as such each cubic meter of digester centrate treated should cost less 

than €6.75 in order to secure a profit. 

Therefore, from a purely cost-orientated view it would be beneficial to use forward 

osmosis at Aaby WWTP, however, in reality many other factors play a role in 

deciding which technology is suitable, such as; 

 Available space. 

 WWTP consents/restrictions (both volume and concentration). 

 Available power supply. 

 Training costs. 

 Write-off cost of redundant equipment. 

 Draw solution availability (i.e seawater). 

Selectrodialysis, however, would not currently be a suitable option, as it is 

expensive (€13.38 per cubic meter digester centrate treated). However, as more 

selectrodialysis membranes enter the market costs are likely to decrease, which will 

make the technology more cost effective. 
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CHAPTER 7. CONCLUSION 

Forward osmosis was capable of concentrating digester centrate for subsequent 

phosphorus recovery using TFC or biomimetic membrane. A VCR of 7 was 

achieved by concentrating digester centrate using seawater draw solution and TFC 

membrane. It was determined that theoretically a VCR of 3 is achievable using 

seawater with salinity >20PSU (corresponding to pressure of 15 atm). This would 

allow the reduction of added magnesium to a P:Mg ratio of 1:1 rather than 1:1.3 for 

un-concentrated digester centrate. The TFC membrane tested was found to have 

higher water permeability than biomimetic membranes, 0.092 and 0.29 LMH bar
-1

 

for biomimetic and TFC membranes respectively when concentrating digester 

centrate. However, biomimetic membranes exhibited a smaller water permeability 

difference between deionized water and digester centrate feed solutions. 

Membrane fouling was not observed during a 68 hour (3x 22 hour digester centrate 

concentrating plus 2x 1 hour cleaning cycles using deionized water) operating 

period when using TFC membranes. Water permeability remained steady during 

both cleaning cycles. 

Ortho-P permeability was seen to decrease with increasing pH, corresponding to 

increasing charge on the phosphoric acid species. This is likely due to the membrane 

relying on charge rejection. TFC membranes had average P rejection of 99.5%.  

Conversely, ammoniacal nitrogen flux increased with increasing pH, as ammonium 

becomes ammonia, which is uncharged and not as easily rejected by the membrane. 

Furthermore, ammonium flux is supported by reverse Na
+
 flux and Cl

-
 flux. 

Ammoniacal nitrogen contamination of a seawater draw means it would need 

treatment prior to discharge, therefore using seawater as a method to make forward 

osmosis cost effective for phosphorus recovery is not viable with membranes 

currently on the market. Using Aaby WWTP as an example, this corresponds to 

41% and 46% ammoniacal nitrogen lost using biomimetic and TFC membranes, 

respectively. 

Selectrodialysis is an alternative method where phosphate and ammonia can be 

concentrated in a ‘pure’ concentrate compartment. This separates ammonia and 

phosphorus from bacteria and some heavy metals in digester centrate. The 

membrane configuration used allowed ammonia and phosphate to be concentrated in 

separate concentrate streams. Cross-contamination between the concentrate streams 

was not observed. Initial recovery rates were measured to be 0.072 mmol m
-2

s
-1

 and 

1.31 mmol m
-2

 s
-1

 for phosphate and ammonium respectively. With an average 

recovery of 72±0.4% and 90±10% for ammonium and phosphate observed after 3 h 

of operation. Ammonium recovery rate was 18 times higher than that for phosphate, 
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however, the ammonium concentration was a similar magnitude higher than 

phosphate.  

Through modelling, it was determined that an AEM membrane area of 231.6 m
2
 is 

required for 70% recovery, corresponding to a power requirement of 289044 W to 

treat digester centrate from Aaby WWTP. In order to optimize phosphate recovery, 

pH in the diluate should be kept low in order to dissolve phosphorus products 

formed at high pH, thus allowing their recovery. 

From cost calculations, it was estimated that forward osmosis using TFC membrane 

at Aaby will cost €2.19 per cubic meter digester centrate treated, while 

selectrodialysis costs €13.38. In order to be cost effective cost of treatment must be 

<€6.75, as such selectrodialysis would not currently be a cost effective solution. 

Decreasing membrane costs and area would make selectrodialysis more cost 

appropriate as this would decrease maintenance, man –hour, and build costs. 
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NOMENCLATURE 

Symbol/Abbreviation Definition Unit 

   

EBPR Enhanced biological phosphorus 

removal 

- 

PE Population equivalent - 

WWTP Wastewater treatment plant - 

   

 Forward Osmosis  

   

𝑎𝑤 Water activity - 

𝐴 Water permeability LMH bar
-1

 

𝐴𝑚 Membrane area m
2
 

B Salt permeability coefficient m
2
 s

-1
 

𝐶𝐹𝑒𝑒𝑑  Feed concentration M 

𝐶𝑠,𝐹,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  Initial feed concentration M 

𝐶𝑠,𝐹,𝑓𝑖𝑛𝑎𝑙  Final feed concentration M 

𝑑ℎ Hydraulic diameter m 

𝐷 Diameter m 

i Dissociation factor - 

𝐽𝑤 Water flux L m
-2

 h
-1

 (LMH) 

𝐽𝑖  Ion flux mmol m
-2

 h
-1

 or g m
-

2
 h

-1
 (gMH) 

−𝐽𝑁𝑎+  Reverse sodium flux mmol m
-2

 h
-1

 or g m
-

2
 h

-1
 (gMH) 

𝐽𝑁𝐻4
+  Ammonium flux mmol m

-2
 h

-1
 or g m

-

2
 h

-1
 (gMH) 

𝐽𝑠 Reverse salt flux mmol m
-2

 h
-1

 or g m
-

2
 h

-1
 (gMH) 

𝑘 Mass transfer coefficient - 

𝐾𝑎  Dissociation constant M 

𝐿 Length of pipe or channel m 

M Molarity M 

R Ideal gas constant L bar mol
-1

 K
-1

 

𝑅𝑒 Reynolds number - 

𝑅 (%) Rejection % 

𝑆𝑐 Schmidt number - 

𝑆ℎ Sherwood number - 

𝑡 time hours 

tm Membrane thickness m 

T Temperature K 
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𝑉𝑓𝑖𝑛𝑎𝑙  Final volume L 

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙  Initial volume L 

𝑉𝑚  Partial molar volume of water m
3
 

𝜀 Membrane porosity - 

𝛼𝑁𝐻4
+  Percentage of ammoniacal 

nitrogen as ammonium 

% 

 Ratio of ammonical nitrogen flux 

to sodium flux 

- 

𝜋𝐷,𝑏 Osmotic pressure of draw solution Bar 

𝜋𝐹,𝑏 Osmotic pressure of feed solution Bar 

𝜏 Tortuosity of support layer - 

   

AL-FS Active layer facing feed solution - 

AL-DS Active layer facing draw solution - 

CNT Carbon nanotube - 

CTA Cellulose triacetate - 

ECP External concentration 

polarization 

- 

HTI Hydration technology industries - 

ICP Internal concentration polarization - 

PAO Pressure assisted osmosis - 

PSU Practical salinity unit g kg
-1

 

S Membrane structural parameter - 

TFC Thin-film composite - 

VCR Volume concentration ratio - 

   

 Selectrodialysis  

   

𝐴𝑐𝑒𝑙𝑙  Area of cell m
2
 

𝐶 Concentration M 

𝐶𝐴 Concentration of ion A M 

𝐶𝐵 Concentration of ion B M 

𝐶𝐶,𝑖  Initial concentration in 

concentrate compartment 

M 

𝐶𝐶,𝑡 Concentration in concentrate 

compartment at time t 

M 

𝐶𝐷,𝑖  Initial concentration in diluate 

compartment 

M 

𝐶𝐸 Current efficiency % 

𝐷 Diffusion coefficient - 

𝐸 Energy supplied J 

𝐸𝑚  Potential difference across cell V 

𝐹 Faradays constant A·s·mol
-1

 

𝑖 Current density V m
-2
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𝑖𝑙𝑖𝑚  Limiting current density A m
-2

 

𝐼 Applied current A 

𝐽 Ion flux g m
-2

 h
-1 

(gMH) 

𝑚𝐴 Total weight of transferred ion g 

𝑀𝐴 Molar mass of ion g 

𝑛 Number of cell trios - 

𝑄 Flow rate m
3
 s

-1
 

𝑅 Ideal gas constant L bar mol
-1

 K
-1

 

𝑆𝐵
𝐴 Separation efficiency - 

𝑡 time S 

𝑡𝑖
′ Membrane transport number - 

𝑡𝑚 Ion transport number in 

membrane 

- 

𝑡𝑠 Ion transport number in solution - 

𝑇 Temperature K 

𝑉𝑐𝑒𝑙𝑙  Cell volume m
3
 

𝑉𝐶,𝑖  Initial volume in concentrate 

compartment 

L 

𝑉𝐶,𝑡 Volume in concentrate 

compartment at time t 

L 

𝑉𝐷 Diluate volume L 

𝑉𝐷,𝑖  Initial volume in diluate 

compartment 

L 

𝑧𝐴 Charge on ion - 

𝛿 Boundary layer thickness m 

∆𝑉 Voltage drop V 

   

AEM Anion exchange membrane - 

CEM Cation exchange membrane - 

MVA Monovalent anion exchange 

membrane 

- 

MVC Monovalent cation exchange 

membrane 

- 

   

 Economic Case Study  

   

𝐴 Membrane area of new plant m
2
 

𝐴𝑚 Membrane area m
2
 

𝐴𝑅 Membrane area of existing plant m
2
 

𝑑 Pipe diameter m 

𝑔 Gravitational constant m s
-2

 

𝐻 Headloss m 

𝐻𝑓  Headloss due to friction M 

𝐽𝑊  Water flux L m
-2

 h
-1

 (LMH) 
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𝑘𝑓𝑖𝑡𝑡𝑖𝑛𝑔 Fitting coefficient - 

𝐾𝐹  Plant costs for new plant € 

𝐾𝐹𝑅  Plant costs for existing plant € 

𝑙 Pipe length m 

𝑚 Degrading exponent - 

𝑃 Power W 

𝑄 Flow rate m
3
 s

-1
 

𝑅𝑒 Reynolds number - 

𝑡 Time hours 

𝑣 Free stream velocity m s
-1

 

𝑉𝑃 Permeate volume L 

𝜅 Pipe roughness mm 

𝜆 Friction coefficient - 

𝜇 Dynamic viscosity Ns m
-2

 

𝜌 density Kg m
-3

 

   

CAPEX Capital expenditure - 
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