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Abstract

This thesis concerns point processes which are used for modelling a certain
type of data, where each data point describes the location of an object or
the time of an event. Such data are called point patterns and arise within
a variety of applications as for example forestry, astronomy, neuroscience,
criminology, or seismology, where the data points can describe the location
of trees in a forest, the time and position of fireballs observed from Earth, the
location of neurons in the brain, the site of crimes within a city, or the time of
an earthquake. Thus point pattern data can be observed on a wide range of
spaces such as one-, two-, and three-dimensional Euclidean spaces, spheres
or linear networks. Depending on the nature of this space - and the way
distance is measured - different tools and models exist for analysing the point
pattern. Most of the existing literature on point processes concerns Euclidean
spaces, but some advances has also been made for point processes on linear
networks or on spheres. In some cases, theory from the Euclidean space set-
up can easily be extended or modified to other types of spaces, but in other
cases such extensions are not straightforward or even possible. The thesis
concerns modelling and inference for point patterns on linear networks, the
Euclidean space, or the product space between the Euclidean space and there
sphere.

The thesis consists of two parts, where Part I is a brief introduction to
relevant concepts and methods aiming at giving the reader the necessary
background for understanding the scientific contribution of Papers A–D in
Part II. Specifically, Part I reviews existing theory for point processes on the
Euclidean space, linear networks, or the sphere and also introduces two spe-
cific types of point patterns of particular interest in the thesis: point patterns
on the product space between the three-dimensional Euclidean space and the
two-dimensional sphere describing the location of pyramidal cells in a part of
a human brain, and point patterns on linear networks describing the location
of spines on a dendrite tree from a mouse neuron.

The second-order moment properties of a point process describe how a
pair of points from the point process interact. It is common to investigate
such an interaction for an observed point pattern by considering the empirical
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estimate of the K-function, which is a second-order summary function. The
K-function has already been defined for point processes on Euclidean spaces,
spheres, and linear networks, and in Paper A a K-function for point processes
on the product space between a Euclidean space and a sphere is presented.
This new K-function is used in Paper A for a preliminary analysis of the
pyramidal cell data. The analysis is continued in Paper B, where modelling
the location of the pyramidal cells is in focus. Specifically, a hierarchical
model that exhibit cylindrical clusters and allow for complicated interaction
structures is proposed.

In the literature, only a handful of models have been discussed for point
processes on linear networks and of these it seems that only the Poisson pro-
cess has been applied for modelling data. In Paper C, an extension of the
conditional intensity function for point processes on the time line is used
for constructing point processes on directed acyclic linear networks, and it is
discussed how such a model can be fitted. Further, in the search for a suit-
able model for the spine data, a Cox process on linear networks is presented
(and fitted) in Paper D. Further in Paper D, new empirical second-order sum-
mary functions are introduced for linear networks for the purpose of model
checking.



Resumé

Denne afhandling omhandler punktprocesser, som bruges til at modellere en
bestemt type af data, hvor hvert datapunkt beskriver placeringen af et ob-
jekt eller tidspunktet for en hændelse. Sådanne data kaldes punktmønstre og
opstår inden for en bred vifte af fagområder som for eksempel skovbrug, as-
tronomi, neurovidenskab, kriminologi, eller seismologi, hvor datapunkterne
kan beskrive placering af træer i en skov, tidspunkt og position af meteo-
rer, placering af neuroner i hjernen, forbrydelser i en by, eller tidspunkt for
jordskælv. Punktmønstre bliver således observeres på forskellige typer af
rum, som en-, to-, og tre-dimensionelle Euklidiske rum, sfærer og lineære
netværk. Afhængig af hvilken type rum der betragtes - og alt efter hvordan
afstande måles - findes der forskellige værktøjer og modeller til at analysere
og beskrive punktmønstre. Størstedelen af den eksisterende litteratur om
punktprocesser vedrører Euklidiske rum, men nogle fremskridt er dog også
blevet gjort for punktprocesser på lineære netværk eller sfærer. I nogle til-
fælde kan teori udviklet for punktprocesser på Euklidiske rum let udvides
eller modificeres til andre typer af rum, men i andre tilfælde er sådan en
udvidelse ikke ligetil eller slet ikke mulig. Denne afhandling vedrører mod-
ellering samt inferens for punktmønstre både på lineære netværk, Euklidiske
rum, og produktrummet mellem et Euklidisk rum og en sfære.

Afhandlingen starter ud med en kort introduktion til relevante koncepter
og metoder med det formål at give læseren mulighed for at forstå det viden-
skabelige bidrag af artikel A–D set i forhold til eksisterende litteratur. I in-
troduktionen gennemgås eksisterende teori for punktprocesser på Euklidiske
rum, sfærer eller lineære netværk og der præsenteres to typer af punktmøn-
stre af særlig interesse for denne afhandling: punktmønstre på produktrum-
met mellem det tre-dimensionelle Euklidiske rum og den to-dimensionelle
sfære, som beskriver placering og orientering af pyramideceller i et udsnit af
en menneskehjerne, samt punktmønstre på lineære netværk, som beskriver
placeringen af spines på et dendrittræ fra en museneuron.

Andenordens momentegenskaberne for en punktproces beskriver hvor-
dan par af punkter fra punktprocessen interagerer. For at afdække og klas-
sificere sådanne interaktioner i et observeret punktmønster betragtes ofte et
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empirisk estimat af K-funktionen. Denne funktion er blevet præsenteret for
punktprocesser på Euklidiske rum, sfærer, og lineære netværk, og i artikel A
introduceres en K-funktion for punktprocesser på produktrummet mellem et
Euklidisk rum og en sfære. Denne nye K-funktion bruges i artikel A til en
indledende analyse af datasættet vedrørende pyramidecellers placering samt
orientering. Analysen fortsættes i artikel B, hvor der fokuseres på at mod-
ellere placeringen af pyramidecellerne. Specifikt foreslås en hierarkisk model
som udviser cylindriske klyngedannelser og som tillader komplicerede inter-
aktionsstrukturer.

I litteraturen beskrives kun en lille håndful af modeller for punktprocesser
på lineære netværk, og af disse er det tilsyneladende kun Poisson-processen
som hidtil er blevet brugt til at modellere data. I artikel C bruges en ud-
videlse af den betingede intensitetsfunktion for punktprocesser på tidslinjen
til at konstruere punktprocesser på acykliske lineære netværk med retninger,
og det diskuteres hvorledes sådanne modeller tilpasses data. Desuden, i
søgen efter en passende model til at beskrive spine-datasættet, bliver der i
artikel D præsenteret og tilpasset en Cox-proces for lineære netværk. I ar-
tikel D introduceres der ydermere nye empiriske opsummerende funktioner
for punktmønstre på lineære netværk med henblik på modeltjek.
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Introduction

A point pattern is a collection of coordinates or points within a chosen region;
this region can have many forms, e.g. a subset of the time line, a linear net-
work, or a three-dimensional box, and the points can describe the location of
any chosen event or object observed within that region. Thus, point pattern
data arise in an endless number of applications for example as the occurrence
of earthquakes over time, the location of spines on a dendrite tree, or the lo-
cation of neurons in a section of the brain. In spatial statistics we analyse
such point patterns to get a grasp of the underlying random mechanism that
produces the events/objects; this mechanism is referred to as a point process.
A point process may produce point patterns, where the points tend to fall
in clusters, repel each other, or fall completely independent of each other
with no sort of interaction between them. Detecting and modelling such
behaviours is a central part of a point pattern analysis.

The following introduction serves as a background for understanding and
putting into perspective the contribution of this thesis. The introduction is
kept brief and non-technical, while more details are given in each of the
subsequent papers. Notation used in the introduction and in Papers A–D
may to some extent be different, but each paper is fully self-contained.

1 Statistics for point processes on different spaces

Briefly speaking, a point process X on S is a random countable subset of the
space S, and the realisations of X are called point patterns; for a more tech-
nical introduction to point processes see e.g. Daley and Vere-Jones (2003).
Most commonly, S is a subset of the d-dimensional Euclidean space, Rd,
where distance between two points is measured by the Euclidean distance.
However, other spaces and distance metrics may be of interest such as the
k-dimensional sphere Sk = {u ∈ Rk+1 : ‖u‖= 1} along with the great circle
distance or a linear network L along with the shortest path distance; a linear
network is a finite union of line segments only intersecting at their end points.
Depending on the character of S and the associated distance metric, different
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tools and models are available for analysing point patterns on S. Most ex-
isting point process theory has been developed for Euclidean spaces, while
only few advances have been made for point processes on linear networks
and the sphere. In this thesis point processes on two non-Euclidean spaces S
are considered: a linear network and the product space Rd × Sk.

In Papers A and B, we consider datasets concerning the location and ori-
entation of pyramidal cells in a section of a human brain, where the cell
locations are given by three-dimensional coordinates and the orientations by
unit vectors. The data can thus be viewed as a point pattern on (a subset
of) R3 × S2; more details are given in Section 3.1. In Papers C and D, point
patterns on linear networks are considered. There each of the linear networks
is an approximation of an apical dendrite of a mouse neuron, and the points
describe the locations of spines along the network; more details are given in
Section 3.2.

1.1 Intensity function

A central part of analysing an observed point pattern is to fit a point process
model and next to check whether the fitted model adequately describe the
point pattern. For this, so-called summary functions and their empirical esti-
mates are vital tools. A summary function summarises certain characteristics
of a point process; one such function is the intensity function, whose empirical
estimate can be used to detect the presence and form of inhomogeneity in an
observed point pattern.

If the intensity function ρ : S → [0, ∞) of a point process X on S exists, it
describes the first-order moment properties of X. That is,

E n(X ∩ A) =
∫

A
ρ(u)dSu < ∞,

where n(X ∩ A) is the number of points from X falling in A ⊆ S, and dS
denotes integration with respect to a suitable measure on S, e.g. the Lebesgue
measure if S ⊆ Rd, one-dimensional arc length if S is a linear network, and
surface measure if S ⊆ Sk. Intuitively, ρ(u)dSu can be interpreted as the
probability of observing a point from X in an infinitesimal region of size
dSu that contains u. If the intensity function ρ(·) = ρ is constant, X is said
to be (first-order) homogeneous with intensity ρ, and then ρ is the expected
number of points per unit area/volume/length/surface area; otherwise the
point process is said to be inhomogeneous.
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1. Statistics for point processes on different spaces

1.2 Pair correlation function

To describe the second-order moment properties of X we can consider the
pair correlation function g : S× S→ [0, ∞), given that it exists. That is,

E{n(X ∩ A)n(X ∩ B)} =
∫

A

∫
B

g(u, v)ρ(u)ρ(v)dSu dSv < ∞

for disjoint A, B ⊂ S. We can interpret g(u, v)ρ(u)ρ(v)dSu dSv as the proba-
bility of simultaneously observing a point from X in each of two infinitesimal
regions of size dSu and dSv containing u and v, respectively. Alternatively, we
can heuristically understand g(u, v) as the probability of simultaneously ob-
serving points from X in these infinitesimal regions relative to the probability
of such points occurring independently of each other. If the pair correlation
function g(u, v) = g(dS(u, v)) only depends on the distance between u and v,
we say that it is isotropic; here dS is a distance metric related to S, and specif-
ically (unless otherwise stated) we let in the following dS be the Euclidean
distance on Rd when S ⊆ Rd, the great circle distance on Sk when S ⊆ Sk,
and the shortest path distance when S is a linear network. If g is isotropic,
then g(r) > 1 indicates that a pair of points with distance r is more likely
to occur in X than for a point process with independent points, and we say
that X posses clustering/aggregation at scale r. Similarly, g(r) < 1 indicates
regularity/repulsion at scale r.

1.3 K-functions

Another second-order summary function is the K-function, which was pre-
sented for point processes on Rd first by Ripley (1976) in the homogeneous
case and later extended by Baddeley et al. (2000) to the inhomogeneous case.
Lawrence et al. (2016) and Møller and Rubak (2016) present an analogue of
the K-function for point processes on Sk. These two K-functions, in the fol-
lowing referred to as the spatial and spherical K-function and denoted by
KRd and KSk , respectively, can be defined by

KS(r) =
1

νS(B)
E ∑

u∈X∩B
∑

v∈X\{u}

I(dS(u, v) ≤ r)
ρ(u)ρ(v)

, S = Rd, Sk, (1)

under the assumption that the right-hand side does not depend on the choice
of B ⊆ S for 0 < νS(B) < ∞, where νS(·) is the Lebesgue measure on Rd for
S = Rd and the surface measure on Sk for S = Sk. Further, I(·) denotes
the indicator function. If the distribution of X is invariant under translations
when S = Rd (in which case X is said to be stationary) or invariant under
rotations when S = Sk, then X is homogeneous and ρKS(r) can be interpreted
as the expected number of further points from X occurring within distance r
of a typical point of X (when measuring distance with respect to dS).
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For homogeneous point processes on linear networks, Okabe and Yamada
(2001) suggest a K-function directly adapted from the spatial K-function.
However, their network K-function depends on the geometry of the net-
work and thus cannot be compared for point processes on different networks.
Later, a modified version of the network K-function, KL, was introduced by
Ang et al. (2012), which removes the dependency on the network geometry
and extends the definition to inhomogeneous point process (fulfilling certain
assumptions). For point processes on Rd × Sk, there exists no analogue of
the K-function. In Paper A, we extend the notion of a K-function to point
processes on S ⊆ Rd × Sk and show that if the point process possesses a
certain separable structure, then this space-sphere K-function is proportional to
the product of the spatial and spherical K-functions.

For the spatial, spherical and network K-functions, the assumptions re-
quired to define them are fulfilled whenever the pair correlation function is
isotropic with respect to dRd , dSk , and dL, respectively. In that case, the pair
correlation function and the K-function are related by

KRd(r) =
2πd/2

Γ(d/2)

∫ r

0
td−1g(t)dt, (2)

cf. Baddeley et al. (2000),

KS2(r) = 2π
∫ r

0
g(t) sin(t)dt, (3)

cf. Lawrence et al. (2016), and

KL(r) =
∫ r

0
g(t)dt, (4)

cf. Ang et al. (2012). Thus, the K-function and the pair correlation function
are closely related.

1.4 Other second-order summary functions

Other commonly used second-order summary functions for point processes
on Rd, include the F-, G-, and J-functions defined by van Lieshout and Bad-
deley (1996) in the stationary case and by van Lieshout (2011) in the non-
stationary case. Shortly, for a stationary point process X ⊂ Rd, F(r) is the
probability of observing a point from X within distance r > 0 of a fixed point
in Rd, G(r) can be interpreted as the probability of observing a point from
X\{x}with distance r of a fixed point x ∈ X, and J(r) = [1−G(r)]/[1− F(r)]
for F(r) < 1.

If the isotropic pair correlation function, the K-function, or another rele-
vant summary function can be expressed on closed form for the point pro-
cess model of interest, it and its empirical estimates can be used for fitting
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2. Point process models

the model to an observed point pattern. One option is to perform minimum
contrast estimation (see for example Guan, 2009; Diggle, 2014), where the esti-
mates of the model parameters are chosen such that the discrepancy between
the curve for the theoretical summary function and the empirical summary
function for the data is as small as possible. After a model has been fitted,
the next natural step is to perform a model check, that is, to investigate how
well the fitted model actually describes the data. One possibility is to use
a global rank envelope procedure Myllymäki et al. (2017), where the shape of
the empirical summary function for the data is compared to that of point
patterns simulated from the fitted/hypothesised model; this procedure pro-
vides both a confidence region for the empirical summary function under
the hypothesised model as well as a p-interval encompassing the most lib-
eral and conservative p-values of the associated test. However, if a summary
function first has been used for model fitting it should not be used for model
checking too. Moreover, if the pair correlation function or the K-function has
been used for model fitting, neither should be used for model checking due
to their close relation, see (2)–(4). For point processes on Rd, we can then
use the F-, G-, and J-functions, but for point processes on Sk or on a lin-
ear network there are no further second-order summary functions available
complicating a rigorous model check.

In Paper D, we suggest new empirical summary functions useful for
model checking when S is a linear network. These are adaptations of the
F-, G-, and J-functions for point processes on Rd to linear networks.

2 Point process models

2.1 Poisson processes

One of the simplest but yet most important point process models is the Pois-
son process, which is easily defined both on Rd, Sk, Rd × Sk, and on a linear
network. This process is fully specified by its intensity function and possesses
no sort of interaction between points. More precisely, X is a Poisson process
on S if n(X∩ A) follows a Poisson distribution for any bounded A ⊆ S, and if
further the points in X ∩ A are independent and identically distributed with
density proportional to ρ when conditioning on n(X ∩ A). For a Poisson pro-
cess, the pair correlation function g ≡ 1, reflecting that the model does not
posses repulsion or aggregation at any scale. Note that other processes may
have the same pair correlation function (Baddeley and Silverman, 1984). The
Poisson process is often to simple to describe real point pattern data, but can
then serve as a reference mark when investigating whether a point pattern
exhibits repulsion or aggregation. Additionally, the Poisson process is often
used as a building stone for more interesting models such as the Cox processes.
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2.2 Cox processes

The Cox processes were first introduced by Cox (1955) and constitute a flexi-
ble class of point processes often used for modelling clustered point patterns.
The Cox process is an extension of the Poisson process, where the intensity
function now is stochastic and determined by a non-negative random field Λ;
that is, Λ = {Λ(u) : u ∈ S} is a collection of non-negative random variables
indexed by the elements in S. More precisely, X is said to be a Cox process
driven by Λ, if X conditioned on Λ is a Poisson process with intensity function
Λ. Then X has intensity function ρ(u) = EΛ(u) and pair correlation function
g(u, v) = E[Λ(u)Λ(v)]/[ρ(u)ρ(v)]. If Z = log(Λ) is a Gaussian random field,
meaning that any finite collection of elements from Z follows a (multivariate)
Gaussian distribution, X is called a log Gaussian Cox process (LGCP; see Møller
et al., 1998). The distribution of Z (and thus X) is fully specified by its mean
and covariance function. Often the covariance function is assumed to depend
only on the distance between the points, in which case we say that the covari-
ance function is isotropic; this property entails an isotropic pair correlation
function. Depending on the choice of distance metric and the space we are
considering, there are different valid isotropic covariance functions to choose
from; see for example Gneiting (2013) when S = Sk, Berg and Porcu (2017)
when S = R× Sk, and Anderes et al. (2017) when S is a linear networks.

2.3 Models on linear networks

Besides the Poisson and Cox processes, there exists a large number of point
process models for describing both clustered and regular point patterns on
the Euclidean space. However, for linear networks only few point process
models have been considered in the literature: Baddeley et al. (2014) use the
Poisson process to analyse spines on a dendrite tree, and Baddeley et al.
(2017) discuss some point process constructions extended from the Euclidean
space to linear networks; these constructions yield point processes in Rd

with an isotropic pair correlation function (when measuring distance with
respect to dRd ), but mimicking these constructions for a linear network L do
in general not lead to point processes on L with an isotropic pair correla-
tion function (when measuring distance with respect to dL). Furthermore,
their constructions lead to point processes on L which are either clustered
or with the same first- and second-order moments as the Poisson process;
none of the constructions lead to regular point processes. Finally, consid-
ering both the shortest path distance and the so-called resistance metric (a
metric adapted from electrical network theory to linear networks), Anderes
et al. (2017) present isotropic covariance functions on linear networks and
briefly mention that these can be used to construct LGCPs (which in turn
will have an isotropic pair correlation function).
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In Paper D, we adapt a clustered Cox point process on Rd proposed by
Lavancier and Møller (2016) to the case of a linear network. The model, which
is not a LGCP, has an isotropic pair correlation function and is obtained by
randomly removing points from a Poisson process with probabilities deter-
mined by a spatially correlated random field. Further, in Paper C we extend
both clustered and repulsive models for point processes on R specified by a
conditional intensity function to directed acyclic linear networks; more de-
tails are given in Section 2.4.

2.4 Models on the time line specified by a conditional inten-
sity function

On the time line, R+ = {x ∈ R : x ≥ 0} (or alternatively the whole real line,
R), a point process can be constructed by specifying the so-called conditional
intensity function. This construction exploits that R+ has an evolutionary
character, meaning that we can talk about points from R+ coming before or
after one another.

Let X be a point process on S ⊆ R+. Then the events/points of X can
be strictly ordered, say X = (t1, t2, . . . ) such that ti < ti+1 for i = 1, 2, . . . ,
and we let Xt− denote the events or history up to time t, that is, Xt− = {ti ∈
X : ti < t}. Heuristically, the conditional intensity function (also called the
hazard function) λ∗ can be defined as

λ∗(t)dt = E[n(X ∩ [t, t + dt])|Xt− ],

where the ∗ indicates that λ∗(t) depends on the history up to time t; for a
more formal definition of the conditional intensity function see Daley and
Vere-Jones (2003). Thus, λ∗(t)dt can be interpreted as the expected number
of points falling in an infinitesimal interval containing t and of length dt
when conditioning on events occurring before time t. If λ∗(t) = λ(t) does
not depend on the history, the events occur independently of each other and
the resulting process is a Poisson process with intensity function λ.

For a conditional intensity function λ∗(·) = λ∗(·; θ), depending on a
parameter vector θ, and a point pattern x observed on a bounded interval
W ⊆ S, the likelihood function is given by

L(θ; x) = ∏
t∈x

λ∗(t; θ) exp
(
−
∫

W
λ∗(s; θ)ds

)
. (5)

Thus, parameter estimation for a model specified by a conditional intensity
function is simply a matter of maximising the likelihood. However, this can
rarely be done analytically – one exception being the homogeneous Poisson
process – and therefore numerical methods are usually needed for obtaining
the maximum likelihood estimates.
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One common model for clustered point processes is given by the condi-
tional intensity function

λ∗(t) = µ + α ∑
ti∈Xt−

exp(ti − t),

where µ, α > 0 are model parameters. This conditional intensity function
increases with α whenever a new point occurs, whereafter it decreases expo-
nentially towards the baseline intensity µ. This model is a special case of the
Hawkes (or self-exciting) process (Hawkes, 1971a,b).

The self-correcting process introduced by Isham and Westcott (1979) is an
example of a regular point process and is defined by the conditional intensity
function

λ∗(t) = exp
(

µt− ∑
ti∈Xt−

α
)

for model parameters µ, α > 0. Note that the logarithm of the conditional
intensity function increases linearly with time and with rate µ, while it de-
creases with α each time a point occurs.

Simulations from a fitted model are useful for model checking as dis-
cussed in Section 1, where an empirical summary function can be used for
a global rank envelope procedure; the inverse method (see e.g. Daley and
Vere-Jones, 2003) and Ogata’s modified thinning algorithm (Ogata, 1981) are
two algorithms for simulating point processes specified by a conditional in-
tensity function. Another option for model checking, is to exploit that if
X = (t1, t2, . . . ) follows a point process model specified by λ∗, then the trans-
formation t̃i =

∫ ti
0 λ∗(s) yields a point process X̃ = {t̃1, t̃2, . . . } that follows

a unite-rate Poisson process (see e.g. Daley and Vere-Jones, 2003, Proposition
7.4.IV), entailing that the interevent times t̃i+1 − t̃i, i = 1, 2, . . . , are indepen-
dent and exponentially distributed with mean 1. Thus, for an observed point
pattern x = (t1, . . . , tn), we can perform model checking by investigating
whether the interevent times of the transformed point pattern x̃ = (t̃1, . . . , t̃n)
(calculated using the fitted conditional intensity function) are independent
and exponentially distributed with mean 1. This sort of model checking is
referred to as residual analysis.

Introducing directions to an acyclic linear network give the network an
evolutionary character similar to the time line, and this enables us in Paper C
to extend the definition of a conditional intensity function to apply for a di-
rected acyclic linear network. Specifically, we define models inspired by the
Hawkes and self-correcting processes, find an expression of the likelihood
similar to (5), and adapt the inverse method, Ogata’s modified thinning algo-
rithm, and the residual analysis procedure to directed acyclic linear networks.
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3 Examples of point pattern data sets

3.1 The pyramidal cell data

The pyramidal cell data briefly mentioned in Section 1 come from a small
section of the primary motor cortex of a brain from a healthy (but deceased)
human and contain information on the cells lying within this section. Specifi-
cally, two things are recorded for each pyramidal cell: a set of three-dimensional
coordinates describing the location of its nucleolus and a unit vector pointing
from its nucleolus toward its apical dendrite, giving a sense of its orientation.
Thus, the data set can be viewed as a point pattern on S ⊂ R3 × S2 with the
locations in a subset of R3 and the orientations in S2.

The pyramidal cell data set are not only interesting as an example of
a point pattern on R3 × S2 but also for modelling, since finding a suitable
model can give a better understanding of the structuring of neurons (of which
75% to 80% are pyramidal cells). A hypothesis, called the minicolumn hypothe-
sis, suggests that neurons are organised in columns perpendicular to the pial
surface of the brain. Biological studies have been performed to investigate
the minicolumn hypothesis (see e.g. Lorente de Nó, 1938; Mountcastle, 1978;
Buxhoeveden and Casanova, 2002) and it is believed that neurological dis-
eases such as Alzheimers and schizophrenia can be linked with deviations
from such a columnar structure. Only few statistical studies have been made
to investigate the minicolumn hypothesis, see Skoglund et al. (2004), Cruz
et al. (2005), Cruz et al. (2008), and Rafati et al. (2016). Of these, Rafati et al.
(2016) is the only study considering neurons from a human brain (Skoglund
et al., 2004; Cruz et al., 2005, 2008, consider either rat or monkey brains),
and Rafati et al. (2016) further use tools from point process theory for the
analysis. Specifically, using the cylindrical K-function, a summary function
introduced by Møller et al. (2016) for detecting columnar structures, Rafati
et al. (2016) find evidence of columnar structures. However, they do not find
a suitable point process model for characterising the neuronal structuring in
more details. Finding an appropriate model for the structuring of neurons in
healthy humans can not only serve as evidence of or against the minicolumn
hypothesis but also as a benchmark for detecting and classifying abnormal
changes of the neuronal organisation in humans with neurological diseases.

In Paper A, the space-sphere K-function (also proposed in Paper A as
discussed in Section1.3) is used to investigate whether the location and ori-
entation of the pyramidal cells are independent. If this is the case it eases the
modelling as the locations and orientations may be modelled separately. Fur-
ther, we find in Paper A an inhomogeneous Poisson model that seem to fit
the orientations adequately. Next, in Paper B we consider the locations only
and try to model these with a number of point process models with columnar
structures in R3. The main idea behind these models is to first find a suitable
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model for the point pattern projected onto a plane in R2 perpendicular to the
pial surface, and second to build a model for the third dimension conditional
on the planar point process.

3.2 The spine data

Spines are small protrusions on the dendrite trees of a neuron that among
other help transmitting electrical signals to the cell body. If the dendrite tree
is approximated by a linear network L, we can view the locations of spines
as a point pattern on L. Previous studies analysing the distribution of spine
locations as a point pattern include Jammalamadaka et al. (2013) and Bad-
deley et al. (2014), where dendrite trees extracted from rat neurons grown
in vitro are considered. Specifically, Jammalamadaka et al. (2013) investigate
the distribution of spine locations for a large number of neurons, and they
conclude (by considering the network K-function) that a homogeneous Pois-
son model adequately describes the spine locations. In Baddeley et al. (2014)
the focus is mostly on presenting new tools for multitype point processes on
linear networks; that is, a point process where the points are classified into a
number of types. For illustrating the use of these new tools, Baddeley et al.
(2014) consider one of the datasets from Jammalamadaka et al. (2013), where
each spine is classified according to its shape giving a multitype point pat-
tern. Regardless of the spine type and considering both homogeneous and
inhomogeneous Poisson processes, Baddeley et al. (2014) find some evidence
that the spines are spatially clustered but they do not search for a suitable
model. In conclusion, the only model that has been fitted to the spine data
(and seemingly to any point pattern on a linear network) is a Poisson process.

In Paper D, we consider six point pattern datasets each describing the
location of spines on a linear network that represents a dendrite tree. These
dendrite trees are apical dendrites from mouse neurons grown in vivo. Jam-
malamadaka et al. (2013) mention that their results for in vitro grown neurons
do most likely not hold for the in vivo setting. In Paper D we therefore set
out to find an adequate point process model for the in vivo spine data. In
that effort, we suggest a Cox process as briefly mentioned in Section 2.3.

The spine data is also shortly considered in Paper C to illustrate the con-
cepts presented therein. Specifically, we introduce directions to the linear
network representing the dendrite tree (yielding a directed acyclic linear net-
work as the linear network forms a tree) and fit a model specified by an
analogue to the conditional intensity function (as discussed in Section 2.4).
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1. Introduction

Abstract

This paper concerns space-sphere point processes, that is, point processes on the
product space of Rd (the d-dimensional Euclidean space) and Sk (the k-dimensional
sphere). We consider specific classes of models for space-sphere point processes, which
are adaptations of existing models for either spherical or spatial point processes. For
model checking or fitting, we present the space-sphere K-function which is a natural
extension of the inhomogeneous K-function for point processes on Rd to the case of
space-sphere point processes. Under the assumption that the intensity and pair cor-
relation function both have a certain separable structure, the space-sphere K-function
is shown to be proportional to the product of the inhomogeneous spatial and spherical
K-functions. For the presented space-sphere point process models, we discuss cases
where such a separable structure can be obtained. The usefulness of the space-sphere
K-function is illustrated for real and simulated datasets with varying dimensions d
and k.

1 Introduction

Occasionally point processes arise on more complicated spaces than the usual
space Rd, the d-dimensional Euclidean space, as for spatio-temporal point
processes, spherical point processes or point processes on networks (see e.g.
Dvořák and Prokešová, 2016; Lawrence et al., 2016; Møller and Rubak, 2016;
Baddeley et al., 2017, and the references therein for details on such point
processes). In this paper we consider space-sphere point processes that live on
the product space S = Rd × Sk, where Sk = {u ∈ Rk+1 : ‖u‖k+1 = 1} is
the k-dimensional unit sphere, ‖ · ‖k denotes the usual distance in Rk, and
d, k ∈ {1, 2, . . .}. For each point (y, u) ∈ S belonging to a given space-sphere
point process, we call y its spatial component and u its spherical compo-
nent. Assuming local finiteness of a space-sphere point process, the spatial
components constitute a locally finite point process in Rd, but the spherical
components do not necessarily form a finite point process on Sk. However, in
practice the spatial components are only considered within a bounded win-
dow W ⊂ Rd, and the associated spherical components do constitute a finite
point process.

One example is the data shown in Figure A.1 that consists of the location
and orientation of a number of pyramidal neurons found in a small area of
a healthy human’s primary motor cortex. More precisely, the locations are
three-dimensional coordinates each describing the placement of a pyrami-
dal neuron’s nucleolus, and the orientations are unit vectors pointing from a
neuron’s nucleolus toward its apical dendrite. These data can be considered
as a realisation of a space-sphere point process with dimensions d = 3 and
k = 2, where the spatial components describe the nucleolus locations and the
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spherical components are the orientations. How neurons (of which around
75% to 80 % are pyramidal neurons) are arranged have been widely discussed
in the literature. Specifically, it is hypothesised that neurons are arranged in
columns perpendicular to the pial surface of the brain. This hypothesis, re-
ferred to as the minicolumn hypothesis, have been studied for more than
half a century (see e.g. Lorente de Nó, 1938; Mountcastle, 1978; Buxhoeveden
and Casanova, 2002), and it is believed that deviation from such a colum-
nar structure is linked with neurological diseases such as Alzheimers and
schizophrenia.

Another example is the time and geographic location of fireballs, which
are bright meteors reaching a visual magnitude of −3 or brighter. They
are continually recorded by U.S. Government sensors and made available
at http://neo.jpl.nasa.gov/fireballs/. We can consider fireball events
as a space-sphere point process with dimensions d = 1 and k = 2, where
the time and locations are the spatial and spherical components, respectively.
Figure A.2 shows the location of fireballs on the globe (identified with the
unit sphere) observed over a time period of about 606 weeks.

The paper is organised as follows. In Section 2, we define concepts related
to space-sphere point processes and give some natural examples of such pro-
cesses. In Section 3, we define the space-sphere K-function, a functional sum-
mary statistic which is analogue to the space-time K-function when d = 2 and
Sk is replaced by the time axis (Diggle et al., 1995; Gabriel and Diggle, 2009;
Møller and Ghorbani, 2012). The space-sphere K-function is defined in terms
of the pair correlation function which is assumed to have a certain stationary
form. In the case where both the intensity and pair correlation function have
a specific separable structure discussed in Section 4, the space-sphere K-
function is shown to be proportional to the product of the spatial K-function
(Baddeley et al., 2000) and the spherical K-function (Lawrence et al., 2016;
Møller and Rubak, 2016). Further, an unbiased estimate is given in Section 5.
In Section 6, the usefulness of the space-sphere K-function is illustrated for
the fireball and neuron data as well as for simulated data, and it is e.g. seen
how the K-function may be used to test for independence between the spatial
and spherical components.
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Figure A.1: Location and orientation of pyramidal neurons in a small section of a human brain.
For details, see Section 6.2.

Figure A.2: Top: orthographic projection of the fireball locations. Bottom: time of fireball events
measured in weeks. For details, see Section 6.1.
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2 Preliminaries

2.1 Setting

Throughout this paper we consider the following setting.
Equip Rd with the Lebesgue measure |A| =

∫
A dy and Sk with Lebesgue/

surface measure ν(B), where A ⊆ Rd and B ⊆ Sk are Borel sets. Thus, the
product space S = Rd × Sk is equipped with Lebesgue measure µ given by
µ(A× B) = |A|ν(B).

Let X be a simple locally finite point process on S, that is, we can view
X as a random subset of S such that the restriction XB = X ∩ B of X to any
bounded set B ⊂ S is finite. We call X a space-sphere point process, and assume
that it has intensity function ρ with respect to µ and pair correlation function
g with respect to the product measure µ⊗ µ. That is, for any Borel function
h : S 7→ [0, ∞),

E
{

∑
(yi ,ui)∈X

h(yi, ui)
}
=
∫

h(y, u)ρ(y, u)dµ(y, u), (A.1)

provided this integral is finite. We say that X is (first order) homogeneous if ρ is
a constant function. Furthermore, for any Borel function k : S× S 7→ [0, ∞),

E
{ 6=

∑
(yi ,ui),(yj ,uj)∈X

k(yi, ui, yj, uj)
}

(A.2)

=
∫∫

k(y1, u1, y2, u2)ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2),

provided this double integral is finite. Here, we set g(y1, u1, y2, u2) = 0 if
ρ(y1, u1)ρ(y2, u2) = 0, and ∑ 6=(yi ,ui),(yj ,uj)∈X means that we sum over pairs of

distinct points (yi, ui), (yj, uj) ∈ X.
The functions ρ and g are unique except for null sets with respect to µ

and µ⊗ µ, respectively. For ease of presentation, we ignore null sets in the
following. Note that g(y1, u1, y2, u2) = g(y2, u2, y1, u1) is symmetric on S× S.
We say that X is stationary in space if its distribution is invariant under trans-
lations of its spatial components; this implies that ρ(y, u) depends only on u,
and g(y1, u1, y2, u2) depends only on (y1, y2) through the difference y1 − y2.
If the distribution of X is invariant under rotations (about the origin in Rd)
of its spatial components, we say that X is isotropic in space. Stationarity and
isotropy in space imply that g(y1, u1, y2, u2) depends only on (y1, y2) through
the distance ‖y1 − y2‖d. We say that X is isotropic on the sphere if its distri-
bution is invariant under rotations (on Sk) of its spherical components; this
implies that g(y1, u1, y2, u2) depends only on (u1, u2) through the geodesic
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(great circle/shortest path) distance d(u1, u2) on Sk. If X is stationary in
space and isotropic on the sphere, then ρ is constant and

g(y1, u1, y2, u2) = g0{y1 − y2, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.3)

depends only on (y1, y2) through y1 − y2 and on (u1, u2) through d(u1, u2)
(this property is studied further in Section 3). If it is furthermore assumed
that X is isotropic in space, then

g(y1, u1, y2, u2) = g∗{‖y1 − y2‖d, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk,

depends only on (y1, y2) through ‖y1− y2‖d and on (u1, u2) through d(u1, u2).
The spatial components of X constitute a usual spatial point process Y =

{y : (y, u) ∈ X}, which is locally finite, whereas the spherical components
constitute a point process on the sphere U = {u : (y, u) ∈ X} that may be
infinite on the compact set Sk. Let W ⊂ Rd be a bounded Borel set, which
we may think of as a window where the spatial components YW = Y ∩W
are observed. As X is locally finite, the spherical components associated with
YW constitute a finite point process UW = {u : (y, u) ∈ X, y ∈ W} on Sk. Let
N = N(W) denote the cardinality of YW . To avoid trivial and undesirable
cases, we assume that |W| > 0 and that the following inequalities hold:

0 < E(N) < ∞ (A.4)

and
0 < E{N(N − 1)} < ∞, (A.5)

where, by (A.1)–(A.2),

E(N) =
∫

W×Sk
ρ(y, u)dµ(y, u)

and

E{N(N − 1)}

=
∫

W×Sk

∫
W×Sk

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2).

Note that Y has intensity function ρ1 and pair correlation function g1
given by

ρ1(y) =
∫

ρ(y, u)dν(u), y ∈ Rd, (A.6)

and

ρ1(y1)ρ1(y2)g1(y1, y2)

=
∫∫

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dν(u1)dν(u2)
(A.7)

25



Paper A.

for y1, y2 ∈ Rd, where we set g1(y1, y2) = 0 if ρ1(y1)ρ1(y2) = 0. This follows
from (A.1)–(A.2) and definitions of the intensity and pair correlation function
for spatial point processes (see e.g. Møller and Waagepetersen, 2004) Clearly,
if X is stationary in space, then Y is stationary, ρ1 is constant, and g1(y1, y2) is
stationary, that is, it depends only on y1 − y2. If in addition X is isotropic in
space, then g1(y1, y2) is isotropic, that is, it depends only on ‖y1 − y2‖d. On
the other hand if Y is stationary (or isotropic) and the spherical components
are independent of Y, then X is stationary (or isotropic) in space.

Similarly, using definitions of the intensity and pair correlation function
for point processes on the sphere (Lawrence et al., 2016; Møller and Rubak,
2016), UW has intensity function ρ2 (with respect to ν) and pair correlation
function g2 (with respect to ν⊗ ν) given by

ρ2(u) =
∫

W
ρ(y, u)dy, u ∈ Sk, (A.8)

and

ρ2(u1)ρ2(u2)g2(u1, u2)

=
∫

W

∫
W

ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2)dy1 dy2
(A.9)

for u1, u2 ∈ Sk, where we set g2(u1, u2) = 0 if ρ2(u1)ρ2(u2) = 0. Note that
we suppress in the notation that ρ2 and g2 depend on W. Obviously, if X
is isotropic on the sphere, then ρ2 is constant and g2(u1, u2) is isotropic as it
depends only on d(u1, u2).

2.2 Examples

The following examples introduce the point process models considered in
this paper.

Example 1 (Poisson and Cox processes). First, suppose X is a Poisson process
with a locally integrable intensity function ρ. This means that, the count
N(A) = #XA is Poisson distributed with mean

∫
A ρ(y, u)dµ(y, u) for any

bounded Borel set A ⊂ S and, conditional on N(A), the points in XA are
independent and identically distributed (IID) with a density proportional to
ρ restricted to A. Note that g = 1. Further, X is stationary in space and
isotropic on the sphere if and only if ρ is constant, in which case we call X
a homogeneous Poisson process with intensity ρ. Furthermore, Y and UW are
Poisson processes, so g1 = 1 and g2 = 1.

Second, let Λ = {Λ(y, u) : (y, u) ∈ S} be a non-negative random field so
that with probability one

∫
A Λ(y, u)dµ(y, u) is finite for any bounded Borel

set A ⊂ S. If X conditioned on Λ is a Poisson process with intensity function
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Λ, then X is said to be a Cox process driven by Λ (Cox, 1955). Clearly, the
intensity and pair correlation functions of X are

ρ(y, u) = E{Λ(y, u)}, y ∈ Rd, u ∈ Sk, (A.10)

and
ρ(y1, u1)ρ(y2, u2)g(y1, u1, y2, u2) = E{Λ(y1, u1)Λ(y2, u2)},

for y1, y2 ∈ Rd and u1, u2 ∈ Sk. To separate the intensity function ρ from
random effects, it is convenient to work with a so-called residual random field
R = {R(y, u) : (y, u) ∈ S} fulfilling Λ(y, u) = ρ(y, u)R(y, u), so E{R(y, u)} =
1 (see e.g. Møller and Waagepetersen, 2007; Diggle, 2014). Then

g(y1, u1, y2, u2) = E{R(y1, u1)R(y2, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.11)

whenever ρ(y1, u1)ρ(y2, u2) > 0.

Note that projected point processes Y and UW are Cox processes driven by
the random fields {

∫
Sk Λ(y, u)dν(u) : y ∈ Rd} and {

∫
W Λ(y, u)dy : u ∈ Sk},

respectively. Their intensity and pair correlation functions are specified by
(A.6)–(A.9).

Example 2 (Log Gaussian Cox processes). A Cox process X is called a log Gaus-
sian Cox process (LGCP; Møller et al., 1998) if the residual random field is of
the form R = exp(Z), where Z is a Gaussian random field (GRF) with mean
function µ(y, u) = −c(y, u, y, u)/2, where c is the covariance function of Z.
Note that X has pair correlation function

g(y1, u1, y2, u2) = exp [c{(y1, u1), (y2, u2)}] (A.12)

for y1, y2 ∈ Rd and u1, u2 ∈ Sk.

Example 3 (Marked point processes). It is sometimes useful to view X as a
marked point process (see e.g. Daley and Vere-Jones, 2003; Illian et al., 2008),
where the spatial components are treated as the ground process and the
spherical components as marks. Often it is of interest to test the hypothesis
H0 that the marks are IID and independent of the ground process Y. Under
H0, with each mark following a density p with respect to ν, the intensity is

ρ(y, u) = ρ1(y)p(u), y ∈ Rd, u ∈ Sk,

and the pair correlation function

g(y1, u1, y2, u2) = g1(y1, y2), y1, y2 ∈ Rd, u1, u2 ∈ Sk,

does not depend on (u1, u2).
In some situations, it may be more natural to look at it conversely, that is,

treating UW as the ground process and YW as marks. Then similar results for
ρ and g may be established by interchanging the roles of points and marks.
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Example 4 (Independently marked determinantal point processes). Considering
a space-sphere point process X as a marked point process that fulfils the
hypothesis H0 given in Example 3, we may let the ground process Y be dis-
tributed according to any point process model of our choice regardless of
the marks U. For instance, in case of repulsion between the points in Y, a
determinantal point process (DPP) may be of interest because of its attractive
properties (see Lavancier et al., 2015, and the references therein). Briefly, a
DPP is defined by a so-called kernel C : Rd ×Rd → C, which we assume is a
complex covariance function, that is, C is positive semi-definite and Hermi-
tian. Furthermore, let ρ

(n)
1 denote the nth order joint intensity function of Y,

that is, ρ(1)1 = ρ1 is the intensity and ρ(2)1 (y1, y2) = ρ1(y1)ρ1(y2)g1(y1, y2) for
y1, y2 ∈ Rd, while we refer to Lavancier et al. (2015) for the general definition
of ρ(n)1 which is an extension of (A.6)–(A.7). If for all n = 1, 2, . . . ,

ρ(n)1 (y1, . . . , yn) = det{C(yi, yj)}i,j=1,...,n, y1, . . . , yn ∈ Rd,

where det{C(yi, yj)}i,j=1,...,n is the determinant of the n× n matrix with (i, j)-
entry C(yi, yj), we call Y a DPP with kernel C and refer to X as an indepen-
dently marked DPP. It follows that Y has intensity function ρ(y) = C(y, y) and
pair correlation function

g1(y1, y2) = 1− |R(y1, y2)|2, y1, y2 ∈ Rd,

whenever ρ(y1)ρ(y2) > 0, where R(y1, y2) = C(y1, y2)/
√

C(y1, y1)C(y2, y2)
is the correlation function corresponding to C and |z| denotes the modulus
of z ∈ C.

Alternatively, we may look at a DPP on the sphere (Møller et al., 2018),
that is, modelling UW as a DPP while considering YW as the marks and im-
pose the conditions of IID marks independent of UW .

3 The space-sphere K-function

3.1 Definition

When (A.3) holds we say that the space-sphere point process X is second order
intensity-reweighted stationary (SOIRS) and define the space-sphere K-function
by

K(r, s) =
∫
‖y‖d≤r, d(u,e)≤s

g0{y, d(u, e)}dµ(y, u), r ≥ 0, 0 ≤ s ≤ π, (A.13)

where e ∈ Sk is an arbitrary reference direction. This definition does not de-
pend on the choice of e, as the integrand only depends on u ∈ Sk through its
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geodesic distance to e and ν(·) is a rotation invariant measure. For example,
we may let e = (0, . . . , 0, 1) ∈ Sk be the “North Pole”.

Let σk = ν(Sk) = 2π(k+1)/2/Γ{(k + 1)/2} denote the surface measure of
Sk. For any Borel set B ⊂ Rd with 0 < |B| < ∞, we easily obtain from (A.2)
and (A.13) that

K(r, s)

=
1
|B|σk

∫∫
y1∈B, ‖y1−y2‖d≤r, d(u1,u2)≤s

g0{y1 − y2, d(u1, u2)}dµ(y1, u1)dµ(y2, u2)

=
1
|B|σk

E
[ 6=

∑
(yi ,ui),(yj ,uj)∈X

I{yi ∈ B, ‖yi − yj‖d ≤ r, d(ui, uj) ≤ s}
ρ(yi, ui)ρ(yj, uj)

]
(A.14)

for r ≥ 0, 0 ≤ s ≤ π, where I(·) denotes the indicator function. The relation
given by (A.14) along with the requirement that the expression in (A.14) does
not depend on the choice of B could alternatively have been used as a more
general definition of the space-sphere K-function. Such a definition is in
agreement with the one used in Baddeley et al. (2000) for SOIRS of a spatial
point process. It is straightforward to show that (A.14) does not depend on
B when X is stationary in space.

For r, s > 0 and (y1, u1), (y2, u2) ∈ S, we say that (y1, u1) and (y2, u2) are
(r, s)-close neighbours if ‖y1 − y2‖d ≤ r and d(u1, u2) ≤ s. If X is stationary
in space and isotropic on the sphere, then (A.14) shows that ρK(r, s) can be
interpreted as the expected number of further (r, s)-close neighbours in X of
a typical point in X. More formally, this interpretation relates to the reduced
Palm distribution (Daley and Vere-Jones, 2003).

Some literature treating marked point processes discuss the so-called mark-
weighted K-function (see e.g. Illian et al., 2008; Koubek et al., 2016), which to
some extent resembles the space-sphere K-function in a marked point process
context; both are cumulative second order summary functions that consider
points as well as marks. However, the mark-weighted K-function has an em-
phasis on the marked point process setup (and considers e.g. ρ1 rather than
ρ), whereas the space-sphere K-function is constructed in such a way that
it is an analogue to the planar/spherical K-function for space-sphere point
processes.

Example 1 continued (Poisson and Cox processes). A Poisson process is clearly
SOIRS and K(r, s) is simply the product of the volume of a d-dimensional
ball with radius r and the surface area of a spherical cap given by {u ∈ Sk :
d(u, e) ≤ s} for an arbitrary e ∈ Sk (see Li, 2011, for formulas of this area).
Thus, for r ≥ 0, the space-sphere K-function is

KPois(r, s) =


rdπ(d+k+1)/2

Γ(1+d/2)Γ{(k+1)/2} Isin2(s)

(
k
2 , 1

2

)
, 0 ≤ s ≤ π

2 ,

rdπ(d+k+1)/2

Γ(1+d/2)Γ{(k+1)/2}{2− Isin2(π−s)(
k
2 , 1

2 )},
π
2 < s ≤ π,
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where Ix(a, b) is the regularized incomplete beta function. In particular, if
k = 2,

Isin2(s)(
k
2 , 1

2 ), 0 ≤ s ≤ π
2

2− Isin2(π−s)(
k
2 , 1

2 ),
π
2 < s ≤ π

 = 1− cos(s).

If the residual random field R in (A.11) is invariant under translations
in Rd and under rotations on Sk, then the associated Cox process is SOIRS.
The evaluation of g (and thus K) depends on the particular model of R as
exemplified in Example 2 below and in Section 7.

Example 2 continued (LGCPs). Suppose that the distribution of R is invari-
ant under translations in Rd and under rotations on Sk, and recall that R is
required to have unit mean. Then the underlying GRF Z has a covariance
function of the form

c(y1, u1, y2, u2) = c0{y1 − y2, d(u1, u2)}, y1, y2 ∈ Rd, u1, u2 ∈ Sk,

and EZ(y, u) = −σ2/2 for all y ∈ Rd and u ∈ Sk, where σ2 = c0(0, 0) is the
variance. It then follows from (A.12) that X is SOIRS with

g0(y, s) = exp{c0(y, s)}, y ∈ Rd, 0 ≤ s ≤ π. (A.15)

4 Separability

4.1 First order separability

We call the space-sphere point process X first order separable if there exist
non-negative Borel functions f1 and f2 such that

ρ(y, u) = f1(y) f2(u), y ∈ Rd, u ∈ Sk.

By (A.4), (A.6), and (A.8) this is equivalent to

ρ(y, u) = ρ1(y)ρ2(u)/E(N), y ∈ Rd, u ∈ Sk, (A.16)

recalling that ρ2 and N depend on W, but ρ2/EN does not depend on the
choice of W. Then, in a marked point process setup where the spherical
components are treated as marks, ρ2(·)/E(N) is the density of the mark dis-
tribution. First order separability was seen in Example 3 to be fulfilled under
the assumption of IID marks independent of the ground process. Moreover,
any homogeneous space-sphere point process is clearly first order separable.
In practice, first order separability is a working hypothesis which may be
hard to check.
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4.2 Second order separability

If there exist Borel functions k1 and k2 such that

g(y1, u1, y2, u2) = k1(y1, y2)k2(u1, u2), y1, y2 ∈ Rd, u1, u2 ∈ Sk,

we call X second order separable. Assuming first order separability, it follows
by (A.5), (A.7), (A.9), and (A.16) that second order separability is equivalent
to

g(y1, u1, y2, u2) = βg1(y1, y2)g2(u1, u2), y1, y2 ∈ Rd, u1, u2 ∈ Sk, (A.17)

where
β = E(N)2/E{N(N − 1)}

and noting that β and g2 depend on W, but βg2 does not depend on the
choice of W. The value of β may be of interest: for a Poisson Process, β = 1;
for a Cox process, var(N) ≥ E(N) (see e.g. Møller and Waagepetersen, 2004),
so β ≤ 1; for an independently marked DPP, β ≥ 1 (Lavancier et al., 2015).

Example 1 continued (Poisson and Cox processes). Clearly, when X is a Poisson
process, it is second order separable. Assume instead that X is a Cox process
and the residual random field is separable, that is, R(y, u) = R1(y)R2(u),
where R1 = {R1(y) : y ∈ Rd} and R2 = {R2(u) : u ∈ Sk} are independent
random fields. Then, by (A.11), X is second order separable and

g(y1, u1, y2, u2) = E{R1(y1)R1(y2)}E{R2(u1)R2(u2)}

for y1, y2 ∈ Rd and u1, u2 ∈ Sk.

Example 2 continued (LGCPs). If X is a LGCP driven by Λ(y, u) = ρ(y, u) ·
exp{Z(y, u)}, second order separability is implied if Z1 = log R1 and Z2 =
log R2 are independent GRFs so that Z(y, u) = Z1(y) + Z2(u). Then, by
the imposed invariance properties of the distribution of the residual random
field, Z1 must be stationary with a stationary covariance function c1(y1, y2) =
c01(y1 − y2) and mean −c01(0)/2, and Z2 must be isotropic with an isotropic
covariance function c2(u1, u2) = c02{d(u1, u2)} and mean −c02(0)/2. Conse-
quently, in (A.15), c0(y, s) = c01(y) + c02(s) for y ∈ Rd and 0 ≤ s ≤ π.

Example 3 continued (Marked point processes). Consider the space-sphere point
process X as a marked point process with marks in Sk. As previously seen,
first and second order separability is fulfilled under the assumption of IID
marks independent of the ground process, but we may in fact work with
weaker conditions to ensure the separability properties as follows. Assume
that each mark is independent of the ground process Y and the marks are
identically distributed following a density function p with respect to ν. Then
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the first order separability condition (A.16) is satisfied with ρ2(u) = E(N)p(u)
for u ∈ Sk. In addition, assuming the conditional distribution of the marks
given Y is such that any pair of marks is independent of Y and follows the
same joint density q(·, ·) with respect to ν⊗ ν, it is easily seen that the second
order separability condition (A.17) is satisfied with

g2(u1, u2) =
q(u1, u2)

βp(u1)p(u2)
, u1, u2 ∈ Sk,

whenever ρ2(u1)ρ2(u2) > 0. If we also have pairwise independence between
the marks, that is, q(u1, u2) = p(u1)p(u2), then the pair correlation function
g(y1, u1, y2, u2) = g1(y1, y2) does not depend on (u1, u2) and g2(u1, u2) = 1/β
is constant. Note that this implies g2 ≤ 1 for an independently marked
DPP, reflecting that even when the marks are drawn independently of Y the
behaviour of the points implicitly affects the marks as the number of points
is equal to the number of marks.

Again, the roles of points and marks may be switched resulting in state-
ments analogue to those above.

4.3 Assuming both SOIRS and first and second order separa-
bility

Suppose that X is both SOIRS and first and second order separable. Then the
space-sphere K-function can be factorized as follows. Note that Y and UW
are SOIRS since there by (A.3), (A.7), (A.9), and (A.16) exist Borel functions
g01 and g02 such that

g1(y1, y2) = g01(y1 − y2)

=
∫∫

ρ2(u1)

E(N)

ρ2(u2)

E(N)
g0{y1 − y2, d(u1, u2)}dν(u1)dν(u2)

(A.18)

for y1, y2 ∈ Rd with ρ1(y1)ρ1(y2) > 0, and

g2(u1, u2) = g02{d(u1, u2)}

=
∫

W

∫
W

ρ1(y1)

E(N)

ρ1(y2)

E(N)
g0{y1 − y2, d(u1, u2)}dy1 dy2

(A.19)

for u1, u2 ∈ Sk with ρ2(u1)ρ2(u2) > 0. Hence, the inhomogeneous K-function
for the spatial components in Y (introduced in Baddeley et al., 2000) is

K1(r) =
∫
‖y‖d≤r

g01(y)dy, r ≥ 0,

and the inhomogeneous K-function for the spherical components in UW (in-
troduced in Lawrence et al., 2016; Møller and Rubak, 2016) is

K2(s) =
∫

d(u,e)≤s
g02{d(u, e)}dν(u), 0 ≤ s ≤ π,
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where e ∈ Sk is arbitrary. Combining (A.13) and (A.17)–(A.19), we obtain

K(r, s) = βK1(r)K2(s), r ≥ 0, 0 ≤ s ≤ π.

Note that, if X is a first order separable Poisson process, then D(r, s) =
K(r, s)− K1(r)K2(s) is 0, and an estimate of D may also be used as a func-
tional summary statistic when testing a Poisson hypothesis.

5 Estimation of K-functions

In this section, we assume for specificity that the observation window is W ×
Sk, where W ⊂ Rd is a bounded Borel set, and a realisation XW×Sk = xW×Sk

is observed; in Section 7, we discuss other cases of observation windows. We
let YW = yW and UW = uW be the corresponding sets of observed spatial and
spherical components.

First, assume that ρ1 and ρ2 are known. Following Baddeley et al. (2000),
we estimate K1 by

K̂1(r) =
6=

∑
yi ,yj∈yW

I(‖yi − yj‖d ≤ r)
w1(yi, yj)ρ1(yi)ρ1(yj)

, r ≥ 0, (A.20)

where w1 is an edge correction factor on Rd. If we let w1(yi, yj) = |W ∩
Wyi−yj | be the translation correction factor (Ohser, 1983), where Wy = {y+ z :
z ∈ W} denotes the translation of W by y ∈ Rd, then K̂1 is an unbiased
estimate of K1 (see e.g. Lemma 4.2 in Møller and Waagepetersen, 2004).
For d = 1, we may instead use the temporal edge correction factor with
w1(yi, yj) = |W| if [yi − yj, yi + yj] ⊆ W and w1(yi, yj) = |W|/2 otherwise
(Diggle et al., 1995; Møller and Ghorbani, 2012). Moreover, for estimation of
K2, we use the unbiased estimate

K̂2(s) =
1
σk

6=

∑
ui ,uj∈uW

I{d(ui, uj) ≤ s}
ρ2(ui)ρ2(uj)

, 0 ≤ s ≤ π, (A.21)

cf. Lawrence et al. (2016) and Møller and Rubak (2016). A natural extension
of the above estimates gives the following estimate of K:

K̂(r, s) =
1
σk

6=

∑
(yi ,ui),(yj ,uj)∈xW×Sk

I{‖yi − yj‖d ≤ r, d(ui, uj) ≤ s}
w1(yi, yj)ρ(yi, ui)ρ(yj, uj)

(A.22)

for r ≥ 0, 0 ≤ s ≤ π. This is straightforwardly seen to be an unbiased
estimate when w1 is the translation correction factor.

Second, in practice we need to replace ρ1 in (A.20), ρ2 in (A.21), and ρ in
(A.22) by estimates, as exemplified in Section 6. This may introduce a bias.
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6 Data examples

6.1 Fireball locations over time

Figure A.2 shows the time and location of n = 344 fireballs observed over
a time period from 2005-01-01 03:44:09 to 2016-08-12 23:59:59 corre-
sponding to a time frame W of about 606 weeks. The data can be recovered at
http://neo.jpl.nasa.gov/fireballs/ using these time stamps. Figure A.2
reveals no inhomogeneity of neither fireball locations or event times. There-
fore we assumed first order homogeneity, and used the following unbiased
estimates for the intensities:

ρ̂1 = n/|W| = 0.57, ρ̂2 = n/(4π) = 27.37, ρ̂ = n/(4π|W|) = 0.05.

Then K̂1, K̂2, and K̂ (with w1 in (A.20) and (A.22) equal to the temporal edge
correction factor) were used as test functions in three different global rank
envelope tests for testing whether fireball event times, locations, and loca-
tions over time each could be described by a homogeneous Poisson model
with estimated intensity ρ̂1, ρ̂2, and ρ̂, respectively. Appendix A provides
a brief account on global rank envelope tests; see also Myllymäki et al.
(2017). Under each of the three fitted Poisson processes and using 2499
simulations (as recommended in Myllymäki et al., 2017), we obtained p-
intervals of (0.028, 0.040) for the event times, (0.908, 0.908) for the locations,
and (0.445, 0.516) for the locations over time. The associated 95% global rank
envelopes for K̂1 and K̂2 are shown in Figure A.3, and the difference between
K̂ and the upper and lower 95% global rank envelope is shown in Figure A.4.
Since K̂2 and K̂ stay inside the 95% global rank envelopes for the considered
distances on Sk and R× Sk, there is no evidence against a homogeneous Pois-
son model for neither locations or locations over time. On the other hand,
with a conservative p-value of 4%, the global rank envelope test based on
K̂1 indicates that a homogeneous Poisson model for the event times is not
appropriate. However, the observed test function K̂1(r) falls only outside the
envelope in Figure A.3 for large values of r. Thus, choosing a slightly smaller
interval of r-values would lead to a different conclusion.

As an alternative to the space-sphere K-function, we considered the sum-
mary function D(r, s) which in case of a Poisson process is 0. Estimating D
by D̂(r, s) = K̂(r, s)− K̂1(r)K̂2(s), we performed a global rank envelope test
with D as test function. The resulting test gave a p-interval of (0.537, 0.564)
which is similar to the one obtained using K̂ as test function.

6.2 Location and orientation of pyramidal neurons

We now return to the space-sphere point pattern concerning location and
orientation of pyramidal neurons described in Section 1, which is a data set
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Figure A.3: Left: K̂1(r)− 2r for the fireball event times (solid curve) along with a 95% global rank
envelope (grey area) under a homogeneous Poisson model on the time interval for the observed
events. Right: K̂2(s)− 2π{1− cos(s)} for the fireball locations (solid curve) along with a 95%
global rank envelope (grey area) under a homogeneous Poisson model on S2.
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Figure A.4: Difference between K̂(r, s) for the observed fireball locations over time and the
lower (K̂low) or upper (K̂upp) 95% global rank envelope under a homogeneous Poisson model on
W × S2. Left: K̂(r, s)− K̂low(r, s). Right: K̂upp(r, s)− K̂(r, s).
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collected by Ali H. Rafati, a biomedical and clinical scientist. The point pat-
tern is observed on W × S2, where W ⊂ R3 is the rectangular box shown in
Figure A.1 with side lengths 492.7 µm, 132.0 µm, and 407.7 µm. Due to the
way data was collected, 46 neurons in the original dataset had an orienta-
tion/unit vector lying exactly in the x-z plane, meaning that the orientations
of these 46 neurons are located only on a great circle of S2. To keep the anal-
ysis simple we disregarded these neurons, resulting in a dataset consisting
of n = 504 neurons. Below we initially discuss an appropriate parametric
forms of the intensity for the locations and orientations and how to estimate
the intensity parameters. Then we investigate whether the orientations and
locations can be described by a Poisson model with the proposed intensity,
where we first consider the data as two separate point patterns (a spatial
point pattern describing the locations and a spherical point pattern describ-
ing the orientations) and next as a space-sphere point pattern.

Figure A.1 reveals no inhomogeneity for the neuron locations, whereas it
is evident that the orientations are inhomogeneous pointing mostly toward
the pial surface of the brain (the plane perpendicular to the z-axis). Thus, we
estimated the intensity of the locations by ρ̂1 = n/|W| = 1.9× 10−5, and for
the orientations we let the intensity be ρ2(u) = n f (u), where f is a density on
S2 which we model as follows. Figure A.5 indicates that the orientations arise
from a mixture of two distributions; one distribution with points falling close
to the North Pole and another with points falling in a narrow girdle. There-
fore, we let f (u) = p fK(u) + (1− p) fW(u) be the mixture density of a Kent
and a Watson distribution on S2 (see e.g. Fisher et al., 1987) for a detailed
description of these spherical distributions). In brief, the Kent density, fK,
depends on five parameters (three directional, one concentration, and one
ovalness parameter), and its contours are oval with centre and form speci-
fied by the directional parameters. Depending on the values of the ovalness
and concentration parameter, the Kent distribution is either uni- or bimodal.
Here, to account for the large number of points centred around the North
Pole, we consider the unimodal Kent distribution. Furthermore, the Watson
density, fW , depends on two parameters; a directional parameter determining
the centres of the density’s circular contours, and a concentration parameter
controlling where and how fast the density peaks. Depending on the sign of
the concentration parameter, the density either decreases or increases as the
geodesic distance to the centres of the contours increases, giving rise to either
a bimodal or girdle shaped distribution. Since the Watson distribution shall
describe the orientations on the girdle, the concentration parameter must be
negative.

The eight parameters of the proposed intensity function ρ2 were esti-
mated as follows. The orientations occurring on the southern hemisphere
are presumed to come from the Watson distribution, while the orientations
on the northern hemisphere come from both distributions. Therefore, and

36



6. Data examples

because the Watson density on the northern hemisphere is a reflection of
the southern hemisphere, we simple estimated the mixture probability by
p̂ = 1 − 2ns/n = 0.94, where ns is the observed number of points on the
southern hemisphere. The directional parameters were chosen based on ex-
pectations expressed by the scientist behind the data collections, which were
supported by visual inspection of the data; e.g. the directional parameter for
the Kent distribution that determines the centre of the contours was chosen
as the North Pole corresponding to the direction perpendicular to the pial
surface and consistent with Figure A.5. Finally, the concentration and oval-
ness parameters were estimated by numerical maximization of the profile
likelihood, giving the estimated density

f̂ (u) = 0.94 CK exp{14.89u3 + 2.69(u2
1 − u2

2)}+ 0.06 CW exp(−7.88u2
2),

where u = (u1, u2, u3) ∈ S2 and CK, CW are normalising constants (see Fisher
et al., 1987, for details). Figure A.5 suggests that the fitted density (and as-
sociated marginal densities found by numerical integration of f̂ ) adequately
describe the distribution of the observed orientations. Therefore, we now
turn to investigate whether the locations and orientations can be described
by Poisson models with the estimated intensities.

First, we considered the locations and orientations separately and used
K̂1 and K̂2, respectively, as test functions for the global rank envelope proce-
dure. Using 2499 simulations from a homogeneous Poisson process on W,
we obtained a global rank envelope test with p-interval (0.000, 0.020). Thus,
we reject that the locations follow a homogeneous Poisson model. The associ-
ated 95% global rank envelopes in Figure A.6 show that the rejection is due to
the observed K̂1(r) falling below the envelope for r-values between 10 µm to
25 µm. This suggests that the observed locations exhibit some degree of regu-
larity that needs to be modelled. For the orientations, a global rank envelope
test based on 2499 simulations under an inhomogeneous Poisson model on
S2 with intensity ρ̂2(u) = n f̂ (u) gave a p-interval of (0.475, 0.481) and thus
no evidence against the proposed model. Figure A.6 shows the associated
95% global rank envelope.

Second, we considered the data as a space-sphere point pattern and used
K̂ and D̂ to test for a Poisson model with a separable intensity estimated
by ρ̂(y, u) = ρ̂1ρ̂2(u)/n = n f̂ (u)/|W|, cf. (A.16). As the test functions K̂(r, s)
and D̂(r, s) depend on the two-dimensional argument (r, s) and they are non-
smooth with large jumps due to few orientations occurring in areas with low
intensity, we increased the number of simulations to 49999 in order to im-
prove the quality of the global rank envelope test (49999 is a much higher
number than recommended in Myllymäki et al., 2017, for test functions de-
pending on one argument only). This resulted in the p-intervals (0.547, 0.549)
for K̂ and (0.000, 0.003) for D̂; plots of the difference between the associated
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Figure A.5: Plots of the observed neuron orientations (dots) and the fitted mixture density f̂
(grey scale). Left: plot of orientations represented as cosine-colatitude and longitude along
with their marginal histograms and marginal fitted densities (solid curves) found by numeri-
cally integrating f̂ . Right: stereographic projection of the northern (top) and southern (bottom)
hemisphere.

envelopes and the observed test function are shown in Figure A.7. In con-
clusion, the test based on K̂ reveals no evidence against the proposed space-
sphere Poisson model even though the corresponding Poisson model for the
locations was rejected by the test based on K̂1. However, the test based on D̂
provides a great deal of evidence against the model. This conclusion is prob-
ably due to the fact that for this data set K̂1(r)K̂2(s) � K̂(r, s), meaning that
the test based on D̂ is highly controlled by the values of K̂1 and K̂2, which
results in a rejection for r-values from 10 µm to 20 µm, in line with the test
based on K̂1.

It is unsatisfactory that K̂ does not detect any deviation from Poisson
when K̂1 clearly does, but we expect that the large jumps in K̂(r, s), caused
by (r, s)-close neighbours with low intensity, may explain why no evidence
against the model is detected. The few orientations that were modelled using
a Watson distribution mostly fall in places with very low intensity. There-
fore, we independently thinned the space-sphere point pattern with reten-
tion probability p̂ f̂K(u)/ f̂ (u) for u ∈ S2. Thereby (with high probability) we
removed neurons with orientations that were most likely generated by the
Watson distribution. This lead to removal of 26 neurons. For the thinned
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data, the global rank envelope test based on K̂ for testing the hypothesis
of an inhomogeneous Poisson process with intensity proportional to a Kent
density gave a p-interval of (0.052, 0.058). Still, the model was not rejected
at a 5% significance level, but we at least got closer to a rejection; and so
we continued the analysis with the thinned data. The analysis here indicates
that, at least in some cases, the power of the global rank envelope test based
on K̂ may be small. This is investigated further in Section 6.3.
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Figure A.6: Left: K̂1(r)− 4πr3/3 for the neuron locations (solid curve) along with a 95% global
rank envelope (grey area) under a homogeneous Poisson model on W ⊆ R3. Right: K̂2(s) −
2π{1− cos(s)} for the neuron orientations (solid curve) along with a 95% global rank envelope
(grey area) under the fitted inhomogeneous Poisson model on S2.

As we have seen, a homogeneous Poisson model is not adequate for the
locations, and thus a Poisson model with intensity ρ̂ as described above is not
suitable for describing the space-sphere point pattern. To investigate whether
orientations and locations can be modelled separately, that is, whether the lo-
cations and orientations are independent, we kept the locations fixed, and in-
dependent of the locations we simulated IID orientations from the fitted Kent
distribution. The resulting global rank envelope test based on 49999 of such
simulations gave a p-interval of (0.9255, 0.9258) for K̂ and (0.1265, 0.1266) for
D̂, showing no evidence against the hypothesis of independence between lo-
cations and orientations. Alternatively, if one does not have a suitable model
to simulate the spherical (or spatial) components from, the independence test
may be performed by randomly permuting the components. Formally, this
tests only the hypothesis of exchangeability; a property that is fulfilled under
independence. Performing such a permutation test for our data where the
locations were fixed and the orientations permuted 49999 times resulted in a
p-interval of (0.5431, 0.5445) using either K̂ or D̂ (as K̂ and D̂ only differ by
a constant under permutation of the orientations and thus lead to equivalent
tests).
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Figure A.7: For T̂ = K̂ (first row) and T̂ = D̂ (second row): difference between T̂(r, s) for the
observed neuron locations and orientations and the lower (T̂low) or upper (T̂upp) 95% global rank
envelope under the fitted inhomogeneous Poisson model on W × S2. Left: T̂(r, s)− T̂low(r, s).
Right: T̂upp(r, s)− T̂(r, s).

6.3 Simulation study

In the data analyses in Sections 6.1–6.2, the tests based on K̂ failed to reject
the proposed Poisson models in cases where the corresponding spatial model
was rejected when using K̂1. To investigate whether the space-sphere K-
function is a valuable addition to the existing functional summary statistics
on the space and sphere, we performed a simulation study comparing the
power of global rank envelope tests based on either K̂, D̂, or a combination
of K̂1 and K̂2. (The combined test function is simply a concatenation of K̂1
and K̂2. Mrkvička et al., 2017, recommended using such a combination rather
than K̂1 or K̂2 as a test function.)

Specifically, we consider a homogeneous LGCP X driven by a random
field Λ(y, u) = ρ exp{Z(y, u)}, where ρ > 0 and

Z(y, u) = α + σ1Z1(y) + σ2Z2(u) + δZ3(y, u), y ∈ R, u ∈ S2,

for parameters σ1, σ2 > 0, δ ≥ 0, and α = −(σ2
1 + σ2

2 + δ2)/2. Further,
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Z1, Z2, and Z3 are independent GRFs with mean 0 and covariance functions
c1(y1, y2) = exp(−‖y1 − y2‖d/φ1), c2(u1, u2) = exp(−d(u1, u2)/φ2), and
c3(y1, u1, y2, u2) =
c1(y1, y2)c2(u1, u2), respectively, with parameters φ1, φ2 > 0. Note that the
resulting LGCP is homogeneous (and thus first order separable) and SOIRS
for any value of δ ≥ 0. In addition, by (A.12), the process is second order
separable if and only if δ = 0, in which case X has pair correlation function

gθ(y1, u1, y2, u2)

= exp{σ2
1 c1(y1, y2) + σ2

2 c2(u1, u2)}, y1, y2 ∈ R, u1, u2 ∈ S2,
(A.23)

where θ = (σ1, φ1, σ2, φ2).
For each value of δ = 0, 0.5, 1, 1.5, 2, we simulated 100 realisations of a

LGCP on [0, 1]× S2 with ρ = 1000, σ1 = σ2 = 0.5, φ1 = 0.05, and φ2 = 0.132.
Then for each of these simulations, we fitted the LGCP model with δ =
0 using a second order composite likelihood approach proposed by Guan
(2006) to estimate θ. In the present time-sphere setting, for a finite point
pattern x ⊂ [0, 1]× S2, the log second order composite likelihood is given by

CL(θ; x) =
6=

∑
(yi ,ui),(yj ,uj)∈x

w(yi, ui, yj, uj) log{ρ(2)θ (yi, ui, yj, uj)}

− nr,slog
{ ∫

[0,1]×S2

∫
[0,1]×S2

w(y1, u1, y2, u2)

· ρ(2)θ (y1, u1, y2, u2)dµ(y1, u1)dµ(y2, u2)

}
.

(A.24)

Here, for user specified distances r and s, w(y1, u1, y2, u2) = I{‖y1 − y2‖d <
r, d(u1, u2) < s}, nr,s is the number of (r, s)-close neighbours, and ρ(2)θ is
the second order joint intensity function, which for the homogeneous LGCP
presented above is ρ(2)θ (y1, u1, y2, u2) = ρ2gθ(y1, u1, y2, u2). Then (A.24) is
easily seen not to depend on ρ, and by (A.23) the composite likelihood can
be written as

CL(θ; x) = l1(σ1, φ1; x) + l2(σ2, φ2; x) (A.25)

for functions l1 and l2. Thus, maximising the composite likelihood with re-
spect to θ can be split into two maximisation problems; that is, maximising l1
with respect to (σ1, φ1) and l2 with respect to (σ2, φ2). Finally, we tested the
null hypothesis δ = 0 using the global rank envelope test with 4999 simula-
tions from the fitted model using either K̂, D̂, or a combination of K̂1 and K̂2
as test functions.

Table A.1 gives an overview of the conclusions reached by these tests.
Note that the power of the tests based on either of the three test functions in
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Test function δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 2

Liberal K̂ 4% 7% 42% 75% 98%
D̂ 2% 45% 92% 97% 100%
K̂1, K̂2 10% 11% 29% 28% 42%

Conservative K̂ 2% 5% 32% 72% 90%
D̂ 0% 26% 77% 82% 86%
K̂1, K̂2 10% 11% 29% 28% 40%

Table A.1: Power of tests for different values of δ when using the global rank envelope test with
either K̂, D̂, or K̂1 combined with K̂2. The decision was made using a significance level of 5% for
both the liberal and conservative tests.

general increases with δ, both for the liberal and conservative test (for details
see Appendix A). Thus, with increasing degree of non-separability the tests
more often detect deviation from the separable model. However, tests based
on K̂ and particularly D̂ seem preferable in this setup as they have a higher
power than tests based on K̂1 combined with K̂2.

Obviously, the conservative p-value always lead to fewer rejections than
the liberal, giving a lower power. However, if the global rank envelope proce-
dure is based on a higher number of simulations, then the conservative and
liberal test will more often lead to the same conclusion.

7 Additional comments

Section 2.2 introduced examples of space-sphere point processes for which
the second order separability property described in Section 4 seems natural.
However, for other classes of point processes a different structure of the pair
correlation function may be more interesting. For example, suppose X is a
Cox process driven by

Λ(y, u) = ∑
(y′ ,u′ ,γ′)∈Φ

γ′k(y′, u′, y, u), y ∈ Rd, u ∈ Sk, (A.26)

where Φ is a Poisson process on S × (0, ∞) with intensity function ζ, and
k(y′, u′, ·, ·) is a density with respect to µ. Then X is called a shot noise Cox
process (SNCP) with kernel k (Møller, 2003). The process has intensity func-
tion

ρ(y, u) =
∫∫

γ′ζ(y′, u′, γ′)k(y′, u′, y, u)dµ(y′, u′)dγ′, y ∈ Rd, u ∈ Sk,
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and pair correlation function

g(y1, u1, y2, u2)

= 1 +

∫∫
γ′2ζ(y′, u′, γ′)k(y′, u′, y1, u1)k(y′, u′, y2, u2)dµ(y′, u′)dγ′

ρ(y1, u1)ρ(y2, u2)

(A.27)

for any y1, y2 ∈ Rd and any u1, u2 ∈ Sk with ρ(y1, u1)ρ(y2, u2) > 0. In the
trivial case where the kernel k(y′, u′, y, u) in (A.26) does not depend on u (or
y), the SNCP is both first and second order separable, with intensity and pair
correlation functions that do not depend on the spherical (or spatial) compo-
nents, and the process thus fulfils second order separability in the sense of
(A.17). However, the specific structure of the pair correlation function for a
SNCP in (A.27) makes it more natural to look for a product structure in g− 1
rather than g. That is, we may say that X is second order separable if there
exist Borel functions h1 and h2 such that

g(y1, u1, y2, u2)− 1 = h1(y1, y2)h2(u1, u2) (A.28)

for y1, y2 ∈ Rd, u1, u2 ∈ Sk. This property is naturally fulfilled whenever
we consider a Poisson process or any marked point process with marks that
are IID and independent of the ground process as described in Example 3.
Now, think of Φ in (A.26) as a marked point process with ground process
{(y, u) : (y, u, γ) ∈ Φ} and marks {γ : (y, u, γ) ∈ Φ}, and assume that the
ground process and the marks are independent processes, the ground process
is a homogeneous Poisson process on S with intensity α > 0, and the marks
are IID with mean m1 and second moment m2. If in addition k(y′, u′, y, u) =
k0{y − y′, d(u, u′)}, then Λ and thus X is stationary in space and isotropic
on the sphere. Further, X is homogeneous with intensity ρ = m1α and pair
correlation function

g(y1, u1, y2, u2)

= 1 +
m2

αm2
1

∫
k0{y1 − y′, d(u1, u′)}k0{y2 − y′, d(u2, u′)}dµ(y′, u′)

(A.29)

for y1, y2 ∈ Rd and u1, u2 ∈ Sk. Clearly, (A.29) depends only on (y1, y2)
through y1− y2, and on (u1, u2) through d(u1, u2), although there is no simple
expression for these dependencies in general. Furthermore, separability in
the form of (A.28) is fulfilled if the kernel k in (A.29) factorizes such that

k0{y− y′, d(u, u′)} = k01(y− y′)k02{d(u, u′)}, y, y′ ∈ Rd, u, u′ ∈ Sk,

for Borel functions k01 and k02. Then by (A.6)–(A.9), the pair correlations
functions for Y and UW are

g1(y1, y2) = 1 + c1
m2

αm2
1

∫
k01(y1 − y′)k01(y2 − y′)dy′, y1, y2 ∈ Rd,
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and

g2(u1, u2) = 1 + c2
m2

αm2
1

∫
k02{d(u1, u′)}k02{d(u2, u′)}dν(u′), u1, u2 ∈ Sk,

where

c1 =
1
σ2

k

∫∫∫
k02{d(u1, u′)}k02{d(u1, u′)}dν(u1)dν(u2)dν(u′)

and

c2 =
1
|W|2

∫ ∫
W

∫
W

k01(y1 − y′)k01(y1 − y′)dy1 dy2 dy′.

That is, g1 depends only on the spherical components through the constant
c1, and similarly g2 depends only on the spatial components through c2.
Prokešová and Dvořák (2014) discuss how an analogue property can be ex-
ploited to estimate the parameters of space-time SNCPs using minimum con-
trast estimation for the projected processes. A similar procedure will be ap-
plicable for space-sphere point processes, but we have not investigated this
further.

Section 5 considered the situation where the spatial components of X are
observed on a subset of Rd and the spherical components are observable
on the entire sphere. In more general applications, the spherical components
may only be observable on a subset of Sk leading to edge effects on the sphere
too. To account for this, edge correction methods for the sphere should be
used when estimating K2 (see Lawrence et al., 2016) and K. If X is observ-
able on a product space W1 ×W2, where W1 ⊂ Rd and W2 ⊂ Sk, then an
edge corrected estimate for K may be obtained by combining edge corrected
estimates for K1 and K2 analogous to (A.22). Concerning the specific choice
of edge correction method, Baddeley et al. (2016) mentioned for planar point
processes that, “So long as some kind of edge correction is performed . . . ,
the particular choice of edge correction technique is usually not critical”. We
expect that the situation is similar for our setting.

For one-dimensional test functions, Myllymäki et al. (2017) recommend
using 2499 simulations to perform a global rank envelope test, and Mrkvička
et al. (2017) discuss the appropriate number of simulations when using a
multivariate test function (as the empirical space-sphere K-function). In Sec-
tion 6.2, we used 49999 simulations for the global rank envelope test based
on K̂, since K̂ had steep jumps. To avoid this large number of simulations,
a refinement of the global rank envelope test discussed in Mrkvička et al.
(2018) can be applied.

In Example 1 we noticed that if a space-sphere point process is a Poisson
process, then the spatial and spherical components are Poisson processes as
well. Nevertheless, using K̂ for testing a space-sphere Poisson model may
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lead to a different conclusion than using K̂1 and K̂2 for testing whether the
corresponding Poisson models for the spatial and spherical components, re-
spectively, are appropriate. Indeed, in the case of Figures A.3–A.4, the test
based on K̂1 showed some evidence against a homogeneous Poisson model
for the fireball event times, while no evidence against a homogeneous Pois-
son model for the locations over time was seen with the test based on K̂. This
observation together with the results in Section 6.2 was our motivation for
making the simulation study in Section 6.3, where we investigated the power
of global rank envelope tests based on either K̂, D̂, or a combination of K̂1
and K̂2, and we concluded that tests based on K̂ and in particular D̂ seem
preferable.

In Section 6.3, we utilised homogeneity and second order separability to
speed up optimisation of the second order composite likelihood proposed
in Guan (2006). If the process is inhomogeneous but first (and second) or-
der separable, we still get a separation of the composite likelihood simi-
lar to (A.25), where l1 and l2 now may depend also on intensity parame-
ters. As an alternative, the second order composite likelihood discussed in
Waagepetersen (2007) can be used. However, in that case, first and second
order separability do not yield a separable likelihood as in (A.25), and for our
simulation study it resulted in unstable estimates (and thus it was discarded
in favour of the one proposed by Guan, 2006). Furthermore, one may investi-
gate whether the adaptive procedure discussed in Lavancier et al. (2018) will
provide stable estimates in the space-sphere setting. In short, Lavancier et al.
(2018) consider the score function related to (A.24) and introduce a modified
weight function w depending on g.

In this paper, we considered point processes living on Rd × Sk. Naturally,
we may extend the results/methods to more general metric spaces Rd ×M,
where M is a compact set (e.g. a torus). However, we need to require some
invariance property for the metric space M and its metric under a group
action, such that we can define an equivalence of the SOIRS property needed
to define K.
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ments and to Ali H. Rafati for collecting the pyramidal cell data. This work
was supported by The Danish Council for Independent Research | Natu-
ral Sciences, grant DFF – 7014-00074 “Statistics for point processes in space
and beyond”, and by the “Centre for Stochastic Geometry and Advanced
Bioimaging”, funded by grant 8721 from the Villum Foundation.

45



References

Appendix A

In Sections 6.1–6.3, we used the global rank envelope test presented in Myl-
lymäki et al. (2017) to test for various point process models. In this appendix,
we briefly explain the idea and use of such a test. A global rank envelope test
compares a chosen test function for the observed data with the distribution
of the test function under the null model; as this distribution is typically un-
known it is approximated using a Monte Carlo approach. The comparison is
based on a rank that only gives a weak ordering of the test functions. Thus,
instead of a single p-value, the global rank envelope test provides an interval
of p-values, where the end points specify the most liberal and conservative
p-values of the test. A narrow p-interval is desirable as the test is incon-
clusive if the p-interval contains the chosen significance level. The width of
the p-interval depends on the number of simulations, smoothness of the test
functions and dimensionality. Myllymäki et al. (2017) recommended to use
2499 simulations for one-dimensional test functions and a significance level
of 5%.

An advantage of the global rank envelope procedure is that it provides a
graphical interpretation of the test in form of critical bounds (called a global
rank envelope) for the test function. For example, if the observed test func-
tion is not completely inside the 95% global rank envelope, this corresponds
to a rejection of the null hypothesis at a significance level of 5%. Further-
more, locations where the observed test function falls outside the global rank
envelope reveal possible reasons for rejecting the null model.

In their supplementary material, Myllymäki et al. (2017) discussed two
approaches for calculating test functions that rely on an estimate of the in-
tensity. One approach is to reuse the intensity estimate for the observed point
pattern in calculation of all the test functions, another is to reestimate the in-
tensity for each simulation and then use this estimate when calculating the
associated test function. For the L-function, which is a transformation of K1,
Myllymäki et al. (2017) concluded that the reestimation approach give the
more powerful test. In this paper, we have therefore based all our global rank
envelope tests on that approach.
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1. Introduction and conclusions

Abstract

For modelling the location of pyramidal cells in the human cerebral cortex we suggest
a hierarchical point process in R3. The model consists first of a generalised shot noise
Cox process in the xy-plane, providing cylindrical clusters, and next of a Markov
random field model on the z-axis, providing either repulsion, aggregation, or both
within specified areas of interaction. Several cases of these hierarchical point processes
are fitted to two pyramidal cell datasets, and of these a model allowing for both
repulsion and attraction between the points seem adequate.

1 Introduction and conclusions

The structuring of neurons in the human brain is a subject of great interest
since abnormal structures may be linked to certain neurological diseases (see
Casanova, 2007; Esiri and Chance, 2006; Casanova et al., 2006; Buxhoeveden
and Casanova, 2002). A specific structure that has been extensively studied in
the biological literature is the so called ’minicolumn’ structure of the cells in
the cerebral cortex (see Buxhoeveden and Casanova, 2002; Rafati et al., 2016,
and references therein). Rafati et al. (2016) characterised these minicolumns
as ‘linear aggregates of neurons organised vertically in units that traverse the
cortical layer II–VI, and have in humans a diameter of 35–60 µm and consist
typically of 80–100 neurons’.

1.1 Data

In this paper we analyse the structuring of pyramidal cells, which make up
approximately 75 % to 80 % of all neurons (Buxhoeveden and Casanova, 2002)
and are pyramid shaped cells, where the apical dendrite extends from the top
of the pyramid. Specifically, the paper is concerned with two datasets con-
sisting of the locations and orientations of pyramidal cells in a section of
the third, respectively, fifth layer of Brodmann’s fourth area of the human
cerebral cortex. Here, each location is a three-dimensional coordinate repre-
senting the centre of a pyramidal cell’s nucleolus and each orientation is a
unit vector representing the apical dendrite’s position relative to the corre-
sponding nucleolus.

Figure B.1 shows the two point pattern datasets of 634 and 548 nucleolus
locations which will be referred to as L3 and L5, respectively (for plot of the
orientations for L3, see Møller et al., 2019). Note that the observation window
W for the cell locations is a rectangular region with side lengths 492.70 µm,
132.03 µm, and 407.70 µm for L3 and 488.40 µm, 138.33 µm, and 495.40 µm
for L5. Notice also that the nucleolus locations are recorded such that the
z-axis is perpendicular to the pial surface of the brain. In accordance to the
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minicolumn hypothesis, this implies that the minicolumns extend parallel to
the z-axis.

Figure B.1: Visualisations of the nucleolus locations for datasets L3 (left) and L5 (right).

1.2 Background and purpose

Møller et al. (2019) found independence between locations and orientations
for L3 meaning that the two components may be modelled separately; the
same conclusion has afterwards been drawn for L5. As they also found
a suitable inhomogeneous Poisson process model for the orientations, and
since it is hard by eye to see much structure in the point patterns shown in
Figure B.1, the focus of this paper is on modelling the nucleolus locations. In
particular, we aim at modelling the nucleolus locations for L3 respective L5
by a spatial point process with a columnar structure and discuss to what ex-
tent this relates to the minicolumn hypothesis. Note that for the two datasets
we use the same notation X for the spatial point process, and we view X as a
random finite subset of W.

To the best of our knowledge the so-called Poisson line cluster point pro-
cess (see Møller et al., 2016) is the only existing point process model for
modelling columnar structures. This model was considered by Rafati et al.
(2016) in connection to the pyramidal nucleolus locations, but was not fitted
to data. For each point pattern considered in the present paper, we notice
later that a more advanced model than the Poisson line cluster point process
is needed; below we describe such a model for X.

1.3 Hierarchical point process models

Briefly, we consider a hierarchical model for X (further details are given in
Sections 3–5), noting that the observation window is a product space, W =
Wxy ×Wz, where Wxy is a rectangular region in the xy-plane and Wz is an
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interval on the z-axis. First, we model the point process Xxy given by the
projection of X onto the xy-plane; second, conditioned on Xxy, we model the
vector Xz consisting of the z-coordinates of the points in X. Note that the
dimension of Xz agrees with the number of points in Xxy and is denoted by
n.

The model for Xxy

For Xxy we consider the restriction of a cluster point process to Wxy defined
briefly as follows (further details are given in Sections 4–5). Let Φ ⊂ R2

be a stationary point process with intensity κ > 0, and associate to each
point (ξ, η) ∈ Φ a point process X(ξ,η) ⊂ R3 that is concentrated around
the line in R3 which is perpendicular to the xy-plane, with intersection point
(ξ, η, 0). We refer to X(ξ,η) as the cylindrical cluster associated to (ξ, η). Let
Pxy(X(ξ,η) ∩W) denote the projection onto the xy-plane of the observed part
of the cylindrical cluster. For short we refer to the non-empty Pxy(X(ξ,η) ∩W)
as the projected cluster with centre point (ξ, η). Then we let

Xxy =
⋃

(ξ,η)∈Φ

Pxy(X(ξ,η) ∩W).

Further, conditional on Φ, we assume that the projected clusters are indepen-
dent and each non-empty Pxy(X(ξ,η) ∩W) is distributed as the intersection of
Wxy with a finite planar Poisson process translated by the centre point (ξ, η);
this Poisson process has intensity function aα f , where a is the length of the
interval Wz, α > 0 is a parameter, and f is the probability density function of
a bivariate zero-mean isotropic normal distribution with standard deviation
σ > 0. Thus, ignoring boundary effects, αa is the expected size (or number of
points) of a projected cluster and σ controls the spread of points in a projected
cluster. Specifically, we let first Φ be a planar stationary Poisson process and
second a stationary determinantal point process (Lavancier et al., 2015), since
we observe in the first case a very low expected number of points in a pro-
jected cluster and because in the second case we want a repulsive model in
order to obtain less overlap between the projected clusters.

The special case with Φ a planar stationary Poisson process and Xz a
homogeneous binomial point process (that is, the n points in Xz are in-
dependent and uniformly distributed on Wz) which is independent of Xxy
corresponds to a degenerate case of a Poisson line cluster point process as
considered in Møller et al. (2016). This becomes clear in Section 4.

The model for Xz conditioned on Xxy

We consider several other cases than a homogeneous binomial point pro-
cess for Xz which is independent of Xxy. In general, conditioned on Xxy =
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{(xi, yi)}n
i=1, we propose a Markov random field model, where the condi-

tional probability density function of Xz is of the form

f ((zi)
n
i=1 | (xi, yi)

n
i=1) ∝ γ

sB1,θ1
((zi)

n
i=1 | (xi ,yi)

n
i=1)

1 γ
sB2,θ2

((zi)
n
i=1 | (xi ,yi)

n
i=1)

2 (B.1)

× I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h for 1 ≤ i < j ≤ n),

with notation defined as follows. We consider {(xi, yi, zi)}n
i=1 as a realisation

of X, where (xi, yi) is the xy-point associated to zi, the realisation of the i’th
point in Xz (as a technical detail, unless Xz is a binomial point process, (B.1)
is not invariant under permutations of z1, . . . , zn since we have associated
(xi, yi) to zi, so we cannot view (B.1) as the density of a point process where
we are conditioning on the number of points). Note that the right hand side
in (B.1) is an unnormalised density and e.g. (zi)

n
i=1 is short hand notation for

(z1, . . . , zn). We let I(·) be the indicator function. Further, γ1 > 0, γ2 > 0, and
h ≥ 0 are unknown parameters; if h > 0, it is a hard core parameter ensuring
a minimum distance h between all pair of points in X; for the pyramidal
cell data it seems natural to include a hard core condition since cells cannot
overlap; and when γ1 = γ2 = 1 and h = 0, the conditional model simply
reduces to the homogeneous binomial point process. Furthermore, for k =
1, 2,

sBk ,θk ((zi)
n
i=1 | (xi, yi)

n
i=1) = ∑

1≤i<j≤n
I((xi, yi, zi) ∈ Bk(xj, yj, zj; θk)),

where Bk(x, y, z; θk) ⊂ R3 is an interaction region, with centre of mass (x, y, z)
and a ‘size and shape parameter’ θk, that determines the interaction between
points. It is additionally assumed that the hard core ball, given by the
three-dimensional closed ball of radius h and centre (x, y, z) does not con-
tain B1(x, y, z; θ1) or B2(x, y, z; θ2). Finally, it is assumed that the symmetry
condition

(xi, yi, zi) ∈ Bk(xj, yj, zj; θk) if and only if (xj, yj, zj) ∈ Bk(xi, yi, zi; θk)

and the disjointness condition

B1(x, y, z; θ1) ∩ B2(x, y, z; θ2) = ∅

are satisfied.
These conditions ensure that we can view Xz conditioned on Xxy as a

Markov random field with second order interactions: for 1 ≤ i < j ≤ n,
two z-coordinates zi and zj interact (in Markov random field terminology, zi
and zj are neighbours) if and only if ‖(xi, yi, zi) − (xj, yj, zj)‖ ≤ h (that is,
the hard core condition is not satisfied, which happens with probability 0)
or (xi, yi, zi) lies within the region of interaction of zj given by the union of
B1(xj, yj, zj; θ1) and B2(xj, yj, zj; θ2) (here the symmetry condition is needed
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κ̂ σ̂ α̂a

L3 0.0040 5.45 2.42
L5 0.0021 6.53 3.87

Table B.1: Minimum contrast estimates for the final model of Xxy (the DLCPP model in Sec-
tion 5.1) for the datasets L3 and L5.

to ensure that we can interchange the roles of i and j). The interaction can
either cause repulsion/inhibition or attraction/clumping of the points in X
depending on whether γk < 1 or γk > 1 for k = 1, 2. Thus, apart from the
hard core condition, the model allows for both repulsion and attraction but
within different interaction regions B1 and B2.

The final hierarchical model and results

At the end of the paper (Section 5) we obtain a satisfactory fit of the fol-
lowing hierarchical model, with the following interpretation of the estimated
parameters.

First, the model for Xxy is given as in Section 1.3 where the centre process
Φ is a most repulsive determinantal point process (as detailed in Section 5.1).
The parameter estimates are given in Table B.1, where the estimated expected
cluster size α̂a is much smaller than expected for a minicolumn when restrict-
ing it to the observation window – provided the minicolumn hypothesis is
true; cf. personal communication with Jens R. Nyengaard. So we neither
claim that we have a fitted model for minicolumns nor that the minicolumn
hypothesis is true. Instead we have fitted a model with cylindrical clusters:
from Table B.1 we see, if |Wxy| denotes the area of Wxy, the estimated number
of projected clusters is |Wxy|κ̂, which is approximately 260 for L3 and 142 for
L5; the estimated expected size of a projected cluster is only 2.42 for L3 and
3.87 for L5.

Second, the model of Xz conditioned on Xxy has cylindrical interaction re-
gions as illustrated in Figure B.2, and (B.1) is the pairwise interaction Markov
random field density

f ((zi)
n
i=1 | (xi, yi)

n
i=1) ∝ ∏

1≤i<j≤n
I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h)

×γ
I(‖(xi ,yi)−(xj ,yj)‖≤r1, |zi−zj |≤t1)

1

×γ
I(‖(xi ,yi)−(xj ,yj)‖≤r2, t1<|zi−zj |≤t2)

2 ,

where γ1 > 0 and γ2 > 0 are interaction parameters and 0 < r2 ≤ r1 and
0 < t1 < t2 are parameters which determine the ‘range of interaction’ such
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B1 B2

Figure B.2: Visualisation of the hard core region ball (in dark) and the cylindrical interaction
regions B1 (the cylinder) and B2 (the union of the two elongated cylinders) used in our final
model for L3.

γ̂1 γ̂2 ĥ r̂1 t̂1 r̂2 t̂2

L3 0.41 1.78 6.25 20 11.5 11 35.5
L5 0.51 1.68 6.77 24.25 15.5 14.75 37.25

Table B.2: Pseudo likelihood estimates of the final model (model 5 from Table B.4 in Section 5.2)
for the datasets L3 and L5.

that h <
√

t2
k + r2

k for k = 1, 2. The restrictions on r1, r2, t1, and t2 are em-
pirically motivated by use of functional summaries as detailed in Section 5.2.
The final fitted model have parameter estimates as displayed in Table B.2
where most notably γ̂1 < 1 and γ̂2 > 1. In particular the final fitted model
is in accordance to the empirical findings as noted later when the so-called
cylindrical K-function of Figure B.3 is discussed: we have modelled repul-
sion within stunted cylinders (corresponding to B1) and aggregation within
elongated cylinders (corresponding to B2), see again Figure B.2. Moreover,
the estimated hard core ĥ is greater than 6 µm, which is in accordance with
‘distance between the nucleolus and the membrane of a pyramidal cell’ (per-
sonal communication with Jens R. Nyengaard). Note that the hard core ball
is much smaller than the interaction region B1: 2ĥ (the diameter of the hard
core ball) is about half as small as 2t̂1 (the height of B1). Finally, comparing
Tables B.1–B.2, we note that the two ‘clustering parameters’ 2σ̂ and r̂2 are of
the same order.

In conclusion, for each dataset we have fitted a rather complex hierar-
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chical point process model describing columnar structures of the nucleolus
locations. This model included repulsion between nucleolus locations given
by a hard core condition on a small scale and a stunted cylindrical interac-
tion region on a larger scale, as well as clustering between nucleolus locations
given by an elongated cylindrical interaction region.

1.4 Model fitting

In Møller et al. (2016) parameter estimation for the degenerate PLCPP model
was simply done by a moment based procedure which included minimisa-
tion of a certain contrast between a theoretical second order moment func-
tional summary and its empirical estimate. In the present paper we use a
similar minimum contrast procedure for estimating the parameters of mod-
els for Xxy. For the models of Xz conditioned on Xxy we find it convenient
to use a maximum pseudo likelihood procedure as detailed in Section 5.2.
Moreover, each fitted model is evaluated by considering informative global
extreme rank length (GERL) envelope procedures (Mrkvička et al., 2018; Myl-
lymäki et al., 2017) for various functional summaries.

1.5 Outline

The remainder of this paper explains how we arrive at the final model given
in Section 1.3 after fitting several other models. In Section 2 we introduce
some basic concepts and definitions needed for the models in the subsequent
sections. In Section 3 we investigate how the nucleolus locations deviate from
complete spatial randomness (that is, when X is a homogeneous Poisson pro-
cess), and in Section 4 we also notice a deviation from a fitted degenerate
PLCPP model. Finally, in Section 5 we introduce and fit various generalisa-
tions of the degenerate PLCPP model as briefly described in Sections 1.3–1.4.

2 Preliminaries

The point processes X, Xxy, and Xz introduced above are viewed as the re-
striction to the bounded sets W, Wxy, and Wz of a locally finite point process
Y ⊂ Rd with d = 3, 2, 1, respectively. Briefly speaking, this means that Y is
a random subset of Rd satisfying that YB = Y ∩ B is finite for any bounded
set B ⊂ R3; for a more rigorous definition of point processes, see e.g. Daley
and Vere-Jones (2003) or Møller and Waagepetersen (2004). Below we recall
a few basic statistical tools needed in this paper, using the generic notation Y
for a locally finite point process defined on Rd (apart from the cases above,
we have in mind that Y could also be the centre process Φ from Section 1.3).
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2.1 Moments

For each integer n ≥ 1, to describe the n’th order moment properties of Y,
we consider the so-called n’th order intensity function λ(n) : (Rd)n → [0, ∞)
given that it exists. This means that for any pairwise distinct and bounded
Borel sets B1, . . . , Bn ⊂ Rd,

E
[
n(YB1) · · · n(YBn)

]
=
∫

B1

· · ·
∫

Bn
λ(n)(x1, . . . , xn)dx1 · · ·dxn

is finite, where n(YB) denotes the cardinality of YB.
The first order intensity function λ(1) = λ is of particular interest and

is simply referred to as the intensity function. Heuristically, λ(u)du can be
interpreted as the probability of observing a point from Y in the infinitesimal
ball of volume du centred at u. If the intensity function λ(·) ≡ λ is constant,
then λ|B| = E [n(YB)] for any bounded Borel set B ⊂ Rd, where | · | is the
Lebesgue measure. In this case Y is said to be homogeneous and otherwise
inhomogeneous. Clearly, stationarity of Y (meaning that its distribution is
invariant under translations in Rd) implies homogeneity.

2.2 Functional summaries

In order to determine an appropriate model for an observed point pattern, we
consider functional summaries, which reflect/summarise different properties
of the point pattern and are useful for model fitting and control. The main
examples are considered below.

To summarise the second order moment properties, it is custom to con-
sider the pair correlation function (PCF), g, which is defined as the ratio of
the second and first order intensity function, that is,

g(x1, x2) =
λ(2)(x1, x2)

λ(x1)λ(x2)
, x1, x2 ∈ Rd.

Heuristically, g(x1, x2) can be interpreted as the probability of simultaneously
observing a point from X in each of the two infinitesimal balls of volume
dx1 and dx2 centred at respectively x1 and x2 relative to the probability of
independently observing a point in the two infinitesimal balls. The PCF is
said to be stationary when (with abuse of notation) g(x1, x2) = g(x1 − x2)
and isotropic when g(x1, x2) = g(‖x1 − x2‖).

If the PCF is stationary, it is closely related to the so-called second order
reduced moment measure, K, given by

K(B) =
∫

B
g(x)dx,

where B ⊂ Rd is a Borel set (see Møller and Waagepetersen, 2004). If Y is
stationary and B has centre of mass at the origin of Rd, then λK(B) can be
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interpreted as the expected number of further points falling within B given
that Y has a point at the origin; and when considering scalings of B, we refer
to B as a structuring element. The simplest example occurs when B is a ball
centred at the origin and with radius r > 0; then K(r) = K(B) becomes
the K-function introduced by Ripley (1976); and often we instead consider a
transformation of the K-function, which is called the L-function and defined
by L(r) = (K(r)/ωd)

1/d, where ωd is the volume of the d-dimensional unit
ball. In particular, if Y is a stationary Poisson process, then L(r) = r.

For detecting cylindrical structures, Møller et al. (2016) introduced the
cylindrical K-function which corresponds to K(B) when B is a cylinder of
height 2t, base-radius r, and centre of mass at the origin. Note that Ripley’s
K-function depends only on one argument, r, while the cylindrical K-function
depends both on r, t, and the direction of the cylinder. However, when d =
3 and since the minicolumns are expected to extend along the z-axis, we
only consider cylinders extending in this direction, effectively reducing the
number of arguments to two.

We will also consider the commonly used F-, G-, and J-functions when
performing model control; see van Lieshout and Baddeley (1996) for defi-
nitions. Briefly, if Y is stationary, F(r) is the probability that Y has a point
within distance r > 0 from a fixed location in Rd; G(r) is the probability that
Y has another point within distance r > 0 from an arbitrary fixed point in Y;
and J(r) = (1− G(r))/(1− F(r)) when F(r) < 1.

The functional summaries will in the following be used both for model fit-
ting as described in Section 2.3 and for model checking using GERL envelope
procedures as mentioned in Section 1.4. In the GERL envelope procedure, the
distribution of the empirical functional summary under the hypothesis of in-
terest is estimated by simulations. The procedure is a refinement of the global
rank envelope procedure (Myllymäki et al., 2017), where it is recommended
to use 2499 simulations for a single one-dimensional functional summary
and at least 9999 simulations for a single two-dimensional functional sum-
mary (Mrkvička et al., 2016). However, we consider a concatenation of the
L-, G-, F-, and J-functions, as well as the cylindrical K-function in which case
Mrkvička et al. (2017) recommend using more simulations. Particularly for
a concatenation of k one-dimensional summary functions they recommend
using k× 2499 simulations. We do however have a different setup since we
are concatenating both one- and two-dimensional summary functions. For
the GERL envelope procedure, Mrkvička et al. (2018) suggest that a lower
number of simulations may be enough. Therefore, we use 9999 simulations.
Since we consider a concatenation of one- and two-dimensional functional
summaries, we ensure that each of the functional summaries are weighted
equally in the GERL envelope test by evaluating them at the same number of
arguments (Mrkvička et al., 2017). Specifically we consider 642 r-values for
each of the L-, G- F-, and J-functions and a square grid over 64 r-values and
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64 t-values for the cylindrical K-function.

2.3 Minimum contrast estimation

For parametric point process models, minimum contrast estimation is a com-
putationally simple fitting procedure introduced by Diggle and Gratton (1984)
that is applicable when a closed form expression of a functional summary, T,
exists. The idea is to minimise the distance from the theoretical function T to
its empirical estimate T̂ for the data. Specifically, if T depends on the param-
eter vector θ and is a function of ‘distance’ r > 0 (as for example in case of
Ripley’s K-function), the minimum contrast estimate of θ is given by

θ̂ = argminθ

∫ rmax

rmin

∣∣T(θ, r)q − T̂(r)q∣∣p dr, (B.2)

where rmin < rmax, q, and p are positive tuning parameters. General recom-
mendations on q are given in Guan (2009) and Diggle (2014), when T(r) =
g(r) or T(r) = K(r). Unless otherwise stated, we let p = 2, q = 1/4, rmin = 0,
and rmax be one fourth of the shortest side length of the relevant observation
window (the rectangular window Wxy in our case).

When the PCF has a closed form expression, alternative estimation pro-
cedures can be used, including the second order composite likelihood (see
Guan, 2006; Waagepetersen, 2007), adapted second order composite likeli-
hood (see Lavancier et al., 2018), and Palm likelihood (see Ogata and Katsura,
1991; Prokešová et al., 2016; Baddeley et al., 2016).

3 Complete spatial randomness

The most natural place to begin our point pattern analysis is by testing
whether a homogeneous Poisson process X with intensity λ > 0 (we then
view Y as a stationary Poisson process with the same intensity), also called
complete spatial randomness (CSR), adequately describe each nucleolus point
pattern dataset. Recall that this means that n(X) is Poisson distributed with
parameter λ|W| and conditional on n(X) the points in X are independent
and uniformly distributed within W. Even when CSR is not an appropriate
model, deviations from the model can be useful for determining whether the
points of a homogeneous point pattern tend to e.g. attract or repel each other.

The CSR model is fully specified by its intensity, which naturally is es-
timated by n(X)/|W|, which is equal to 2.37× 10−5 for L3 and 1.63× 10−5

for L5. For this fitted model Figure B.3 summarises the results of the GERL
envelope procedure based on the concatenation of the empirical L-, G-, F-,
J-, and cylindrical K-functions as discussed in Section 2.2. Particularly, the
left column depicts the part concerning the empirical functional summaries
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L̂(r) − r, Ĝ(r), F̂(r), and Ĵ(r) along with the corresponding 95% envelope.
The right column depicts the empirical cylindrical K-function along with the
areas at which it falls outside the 95% envelope. It is observed that the em-
pirical functional summaries L̂, F̂, and Ĵ fall strictly outside the envelope for
midrange values of r in a manner that indicates repulsion between points at
this range. For small and large r-values the observed point patterns resem-
ble the Poisson process. This behaviour could suggest a kind of clustering,
where clusters of points from a Poisson process are somewhat separated.
The separation of these clusters seems to be more pronounced for L3 than for
L5. Further, in the right column of Figure B.3, the empirical cylindrical K-
function falls above the upper global rank envelopes for cylinders that have
a height larger than approximately 35 µm for both datasets and a base radius
of approximately 5 µm to 15 µm for L3 and 5 µm to 20 µm for L5. Further-
more, the observed cylindrical K-functions falls below the lower 95% GERL
envelope for cylinders with a height of approximately 10 µm to 30 µm and
a base radius larger than 5 µm. Hence, for elongated cylinders extending in
the z-direction, we tend to see more points in the data than we expect under
CSR, while for stunted cylinders we tend to see fewer points. This seems to
be in correspondence with columnar structures where the columns extend in
the z-direction.
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Figure B.3: Results of the GERL envelope procedure under CSR based on a concatenation of the
empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of the one-dimensional
empirical functional summaries for the data (solid line) together with 95% envelopes (grey re-
gion); for ease of visualisation, the functions have been scaled. Right: empirical cylindrical
K-function (grey scale) where shaded vertical/horizontal lines indicate that the function falls
above/below the 95% envelope. The white line indicates the values for which the cylinder
height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for the
dataset L5.
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4 The degenerate Poisson line cluster point pro-
cess

Møller et al. (2016) presented the so-called Poisson line cluster point process
(PLCPP) which is useful for modelling columnar structures. Specifically, we
consider a degenerate PLCPP Y ⊂ R3 constructed as follows.

1. Generate a stationary Poisson process Φ = {(ξi, ηi)}∞
i=1 ⊂ R2 with

finite intensity κ > 0. Each point (ξi, ηi) ∈ Φ corresponds to an
infinite line li in R3 which is perpendicular to the xy-plane, that is,
li = {(ξi, ηi, z) | z ∈ R}.

2. Conditional on Φ, generate independent stationary Poisson processes
L1 ⊂ l1, L2 ⊂ l2, . . . with identical and finite intensity α > 0.

3. Generate point processes X1, X2, . . . ⊂ R3 by independently displacing
the points of L1, L2, . . . by the zero-mean isotropic normal distribution
with standard deviation σ > 0.

4. Finally, set Y =
⋃∞

i=1 Xi and X = YW .

Some comments to the construction in items 1–4 are in order.
In the general definition of the PLCPP in Møller et al. (2016), the lines

l1, l2, . . . are modelled as a stationary Poisson line process. That is, the lines
are not required to be perpendicular to the xy-plane nor does the Poisson
line process need to be degenerate (meaning that the lines are not required to
be mutually parallel). Further, the dispersion density (used in item 3) can be
arbitrary. However, the construction is still such that Y becomes stationary.
Furthermore, it turns out that it does not matter whether we consider a three-
dimensional normal distribution for displacements in in item 3 or a bivariate
normal distribution with displacements of the xy-coordinates for the points
of L1, L2, . . ..

Returning to the degenerate PLCPP of items 1–4, we imagine that each
Xi is a cylindrical cluster of points around the line li, where these cylindrical
clusters are parallel to the z-axis. Furthermore, the interpretation of the pa-
rameters κ, α, and σ in terms of a Poisson cluster point process is similar to
that in Section 1.3 except that we now also consider lines not intersecting W:
if Y as defined by items 1–4 is restricted to a subset S ⊂ R3 bounded by two
planes parallel to the xy-plane, for specificity S =

{
(x, y, z) ∈ R3 | z ∈Wz

}
,

this restricted point process can be seen as a (modified) Thomas process (see
Thomas, 1949; Møller and Waagepetersen, 2004) on R2 along with indepen-
dent z-coordinates following a uniform distribution on Wz.

To see this, first note that conditional on Φ = {(ξi, ηi)}∞
i=1 and for all i =

1, 2, . . ., Xi is a Poisson process in R3 with intensity function λi((x, y, z)) =
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κ̂ σ̂ α̂a

L3 0.027 2.86 0.36
L5 0.0085 4.58 0.95

Table B.3: Minimum contrast estimates of the degenerate PLCPP.

α f (x− ξi, y− ηi), where f is the probability density function of the bivariate
isotropic normal distribution given in item 3. In turn, this implies that Y con-
ditioned on Φ is a Poisson process in R3 with intensity function ∑∞

i=1 λi((x, y, z)).
Further, since λi(x, y, z) = λi(x, y) does not depend on z for all i = 1, 2, . . .,
the projection of YS onto the xy-plane, Pxy(YS), conditioned on Φ is a Pois-
son process with intensity a ∑∞

i=1 λi(x, y), where a is the length of the interval
Wz. Since Φ is a stationary Poisson process, Pxy(YS) is a Thomas process
with centre process intensity κ and expected cluster size αa (that is, the ex-
pected number of points in Xi ∩ S). Finally, from items 2–4 it follows that the
z-coordinates of Xz are independent and uniformly distributed on Wz, and
they are independent of Xxy.

Consequently, simulating X = YW is straightforwardly done by simu-
lating a Thomas point process (on a larger set than Wxy in order to avoid
boundary effects) along with independent uniform z-coordinates on Wz. For
simulating the Thomas point process we apply standard software from the
R-package spatstat (Baddeley et al., 2016). Similarly, fitting a degenerate
PLCPP to a realisation of X is simply a matter of fitting a Thomas process
to the point pattern consisting of the xy-coordinates of the points in that
realisation. Since the K-function of the Thomas process has a closed form
expression, the model can be fitted using minimum contrast estimation with
T(r) = K(r) in (B.2). Table B.3 summarises the parameter estimates, where
most notably the expected cluster size α̂a is < 1 for both L3 and L5. Un-
derstanding each cylindrical cluster within W as (a part of) a minicolumn,
‘these parameter estimates result in very unnatural models for the datasets,
since each minicolumn within W is expected to consist of less than one point’
(personal communication with Jens R. Nyengaard).

Despite the fact that the fitted degenerate PLCPP models are somewhat
unnatural and hardly can be interpreted as a model with (hypothesised)
minicolumnar structures, GERL envelope procedure based on a concatena-
tion of the F-, G-, and J-functions show that the Thomas process suitably fit
the projected locations with a p-value of 0.76 for L3 and 0.87 for L5. How-
ever, results from the concatenated GERL envelope procedure described in
Section 2.2 indicated that the model did not suitably describe the three-
dimensional nucleolus locations with a p-value of 10−4 for both L3 and L5.
Specifically, Figure B.4 shows the empirical cylindrical K-function and in-
dicates where it deviates from the 95% envelope. Clearly, the model does
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Figure B.4: Empirical estimates of the cylindrical K-function (grey scale) where shaded verti-
cal/horizontal lines indicate that the function falls above/below the 95% GERL envelope under
the fitted degenerate PLCPP and based on the concatenation described in Section 2.2. The white
line indicates the values for which the cylinder height is equal to the base diameter. Top: results
for the dataset L3. Bottom: results for the dataset L5.

account for some of the columnarity of the data as opposed to CSR, but the
empirical cylindrical K-function for L3 still falls above the 95% envelope. Fur-
thermore, the empirical cylindrical K-function for both datasets falls below
the 95% envelope similar to what was seen under CSR, indicating a lack of
regularity, which in fact is supported by the one-dimensional functional sum-
maries (not shown). This could suggest that the cylindrical clusters should
be more distinct; motivating us to generalise the degenerate PLCPP model as
in the following section.

5 A generalisation of the degenerate PLCPP

As some but not all features of the data were explained by the degenerate
PLCPP fitted in Section 4, we propose in this section two generalisations as
follows.

1. The centre process Φ is a planar stationary point process.

2. Xz conditioned on Xxy follows a Markov random field model.

The first modification is straightforward and for this specific application we
chose a repulsive centre process to obtain more distinguishable cylindrical
clusters; this is detailed in Section 5.1. Further, the assumption of station-
arity of Φ is made in order to apply a similar minimum contrast estimation

67



Paper B.

procedure as in Section 4, so implicitly we make the assumption that the
PCF or the K-function is expressible on closed form. For the second mod-
ification we suggest a conditional model inspired by the multiscale point
process and particularly the Strauss hard core point process (see e.g. Møller
and Waagepetersen, 2004) which will allow for further repulsion or even ag-
gregation between the points; this is detailed in Section 5.2.

5.1 A determinantal point process model for the centre points

Consider a point process Y ⊂ R3 specified by items 1–4 in Section 4 with
the exception that the centre process Φ now is an arbitrary stationary pla-
nar point process. Then, recalling the notation from Section 4, Pxy(YS) is a
planar Cox process (see Møller and Waagepetersen, 2004) and even a planar
generalised shot-noise Cox process (see Møller and Torrisi, 2005) driven by
the random intensity function Λ(x, y) = a ∑∞

i=1 λi(x, y) for (x, y) ∈ R2. More-
over, Pxy(YS) corresponds to the Thomas process, but with a different centre
point process (unless of course Φ is a stationary Poisson process).

In this section we focus on the case where Φ is a stationary determinantal
point process (DPP; see Lavancier et al., 2015), in which case we will refer to Y
as the determinantal line cluster point process (DLCPP). A DPP is defined in
terms of its n’th order intensity function for n = 1, 2, . . .: let C : R2×R2 → C

be a function and λ(n) the n’th order intensity function of Φ, then Φ is called
a DPP with kernel C if

λ(n)(x1, . . . , xn) = det[C](x1, . . . , xn) for n = 1, 2, . . ., x1, . . . , xn ∈ R2,

where det[C](x1, . . . , xn) is the determinant of the n× n matrix with (i, j)’th
entry C(xi, xj). For further details on DPPs, we refer to Lavancier et al. (2015)
and the references therein. When Φ is a DPP, we call Pxy(YS) a determinan-
tal Thomas point process (DTPP). The DTPP is discussed to some extent in
Møller and Christoffersen (2018), where a closed form expression of its PCF
is found. Thus, the DLCPP can be fitted by fitting a DTPP to the projected
data using a minimum contrast procedure (see Section 2.3).

For our data we want to obtain a DLCPP with as much repulsion as possi-
ble between the centre lines of the cylindrical clusters. Therefore, we let Φ be
the ‘most repulsive DPP’ (in the sense of Lavancier et al., 2015), which is the
jinc-like DPP given by the kernel C(x1, x2) =

√
ρ/π J1

(
2
√

πρ‖x1 − x2‖
)

/‖x1−
x2‖, where J1 is the first order Bessel function of the first kind and ‖ · ‖ de-
notes the usual planar distance (for more information on this particular DPP,
see Lavancier et al., 2018; Biscio and Lavancier, 2016).

Simulation of the DTPP is done by first simulating a DPP with intensity κ
(on a larger region than Wxy in order to avoid boundary effects), for which we
use the functionality of spatstat, then secondly generating for each cluster a
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Figure B.5: Projection of observed nucleolus locations onto the xy-plane (left) and simulations
from the fitted jinc-like DTPP (right) for the datasets L3 (top) and L5 (bottom).

Poisson distributed number of points with intensity αa, and finally displacing
these points by a bivariate zero-mean isotropic normal distribution.

The parameter estimates of the jinc-like DTPP model were obtained by
minimum contrast with T(r) = g(r); see Table B.1 for the results and the
accompanying discussion in Section 1.3. Despite the expectation under the
minicolumn hypothesis of having much higher values of α̂a than in Table B.1
(see again Section 1.3), simulations of the fitted jinc-like DPP in the xy-plane
seem in reasonable correspondence to the projected data; see Figure B.5. Fur-
thermore, results from the GERL envelope procedure based on a concatena-
tion of the F-, G-, and J-functions do not provide any evidence against the
jinc-like DPP model for the projected points with p-values of 0.67 for L3 and
0.83 for L5.

Since the jinc-like DTPP model fits the projected data well, we proceeded
and added independent uniform z-coordinates on Wz to the simulations,
thereby obtaining simulations of the jinc-like DLCPP. Figure B.6 summarises
the result of the 95% GERL test based on the concatenation of functional sum-
maries as described in Section 2.2. The left column depicts the part of the one-
dimensional functional summaries along with 95% envelopes, while the right
column shows the empirical cylindrical K-function along with shaded regions
that indicate where it deviates from the corresponding envelope. These plots
show that the models do not account for the regularity of the data. This leads
us to our next generalisation in Section 5.2.

5.2 A Markov random field model for the z-coordinates

Motivated by the observations at the end of the previous section, in this sec-
tion we propose to model the z-coordinates conditioned on the xy-coordinates
by a pairwise interaction point process as given in (B.1). Thereby, our hierar-
chical model construction yields a more flexible model for X but we ignore
edge effects in the sense that we have only specified a model for first Pxy(YS)
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Figure B.6: Results of the GERL envelope procedure under the fitted DLCPP based on a con-
catenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of
the one-dimensional empirical functional summaries for the data (solid line) together with 95%
envelopes (grey region); for ease of visualisation, the functions have been scaled. Right: empir-
ical cylindrical K-function (grey scale) where shaded vertical/horizontal lines indicate that the
function falls above/below the 95% envelope. The white line indicates the values for which the
cylinder height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for
the dataset L5.
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and second Xz conditioned on Xxy = Pxy(YS)∩Wxy, thereby ignoring a possi-
ble influence of points in Y \W when (B.1) is used in the latter step (unless it
specifies a binomial point process). This simplification is just made for math-
ematical convenience; indeed it would be interesting to construct a model
taking edge effects into account so that Y becomes stationary, but we leave
this challenging issue for future research. Below we first specify the ingredi-
ents of the conditional probability density function given in (B.1) for various
models and discuss the overall conclusions, next describe how to find pa-
rameter estimates, and finally discuss how well the estimated models fit the
data. Note that although we have not specified a stationary model for Y, it
may still make sense to interpret plots of empirical cylindrical K-functions
and F̂, Ĝ, Ĵ, and L̂-functions, since we have stationarity in the xy-plane and
approximately stationarity in the z-direction (as the density (B.1) is invariant
under ‘translations of (z1, . . . , zn) within Wz’).

In our search for a suitable model for the nucleolus locations, we consid-
ered many special cases of (B.1). Table B.4 summarises five selected models,
where b((x, y, z); r) is the ball with centre (x, y, z) and radius r, and where
c((x, y, z); r, t) and d((x, y, z); r, t) denote the cylinder and double cone, re-
spectively, with centre of mass at (x, y, z), height 2t, base radius r, and ex-
tending in the z-direction. First, we considered model 1 which is a hard core
model if h > 0 and one of the simplest ways of modelling regularity; note
that model 1 with h = 0 is the binomial point process with a uniform density
as considered in Section 4. Though accounting for small distance repulsion,
when fitted to the data, model 1 turned out not to account for the repul-
sion at larger scales. Second, we considered model 2 which is a conditional
Strauss model with a hard core condition (see Møller and Waagepetersen,
2004, and the references therein). For this model the scale of repulsion for
the z-coordinates seemed too great for points with similar xy-coordinates,
and therefore we found it natural to replace the spherical interaction region
with a cylinder, yielding model 3. However, model 3 did not correct the prob-
lem, and continuing with a single region of interaction we next suggested
model 4 with a region given by a cylinder minus a double cone. Model 4
does to a smaller degree penalise the occurrence of points with similar xy-
coordinates. However, this model was not suitable either. Models 1–4 were
discarded by GERL tests with extremely small p-values. Finally, we consid-
ered model 5 which is a more flexible model that allows for both repulsion
and aggregation within cylinder shaped interaction regions, cf. the discussion
in Section 1.3. For simplicity all the models were also considered without a
hard core condition, that is h = 0, but was in every case found inadequate.

The likelihood function corresponding to (B.1) involves a normalising con-
stant which needs to be approximated by Markov chain Monte Carlo meth-
ods. We propose an easier alternative based on the pseudo likelihood func-
tion (Besag, 1975) defined as follows when the data is given by {(xi, yi, zi)}n

i=1 ⊂
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Model γ1 γ2 B1( · ; θ1) B2( · ; θ2) θ1

1 1 1 ∅ ∅ –
2 >0 1 b(·; r) ∅ r > h
3 >0 1 c(·; r, t) ∅ r, t > 0
4 >0 1 c(·; r, t) \ d(·; r, t) ∅ r, t > 0
5 >0 >0 c(·; r1, t1) c(·; r2, t2) \ c(·; r1, t1) r1, t1 > 0

Table B.4: Specific choices of the parameters γ1, γ2, θ1, θ2 and the interaction regions
B1(·; θ1), B2(·; θ2) for five models given by the density (B.1). For each model, a hard core pa-
rameter h ≥ 0 is included. Apart from the specified restrictions, it is required for models 2–5
that B1(·; θ1) 6⊆ b(·; h) (for model 2 this means that r > h as already indicated) and in addition
for model 5 that B2(·; θ2) 6⊆ b(·; h) where θ2 = (r2, t2) with r1 ≥ r2 > 0 and t2 > t1.

W. For i = 1, . . . , n, the i’th full conditional density associated to (B.1) is

f (zi | (z1, . . . , zi−1, zi+1, . . . , zn), (xj, yj)
n
j=1)

= I(‖(xi, yi, zi)− (xj, yj, zj)‖ > h for j 6= i)γs1,i
1 γ

s2,i
2 /ci (B.3)

where we define

sk,i = ∑
j: j 6=i

I
(
(xj, yj, zj) ∈ Bk((xi, yi, zi); θk)

)
, k = 1, 2,

and where the normalising constant is given by

ci =
n−1

∑
k=0

n−1

∑
l=0

γk
1γl

2

∫
Wz

I(‖(xi, yi, z)− (xj, yj, zj)‖ > h for j 6= i)

× I

(
∑

j: j 6=i
I
(
(xj, yj, zj) ∈ B1((xi, yi, z); θ1)

)
= k

)

× I

(
∑

j: j 6=i
I
(
(xj, yj, zj) ∈ B2((xi, yi, z); θ2)

)
= l
)

dz.

To estimate the model parameters we maximise the log pseudo likelihood
given by

LP(γ1,γ2, h, θ1, θ2)

=
n

∑
i=1

log f (zi | {z1, . . . , zi−1, zi+1, . . . , zn}, (xj, yj)
n
j=1).

(B.4)

Clearly, by (B.3) the maximum pseudo likelihood estimate (MPLE) ĥ of h
is the minimum distance between any distinct pair of points (xi, yi, zi) and
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(xj, yj, zj) in the data. This in fact also corresponds to the maximum likeli-
hood estimate. For h = ĥ and for fixed θ1 and θ2, we easily obtain the fol-
lowing. For each of models 2–4, the MPLE of γ1 exists if and only if s1,i 6= 0
for some i, and then the log pseudo likelihood function is strictly concave
with respect to log γ1. For model 5, the MPLE of (γ1, γ2) exists if and only
if s1,i 6= 0 for some i and s2,j 6= 0 for some j, and then the log pseudo like-
lihood function is strictly concave with respect to (log γ1, log γ2). Therefore,
the (profile) log pseudo likelihood can be maximised by a combination of a
grid search over θ1 and θ2 and numerical optimisation with respect to γ1 and
γ2. Table B.2 shows the maximum pseudo likelihood estimates of model 5
for the two datasets, where for the numerical optimisation we used optim (a
general-purpose optimisation function from the R-package stats).

Each of the five models in Table B.4 were fitted to L3 and L5 by finding the
maximum pseudo likelihood estimate, and model checking was performed
using GERL envelope procedures based on the concatenation of functional
summaries as discussed in Section 2.2. For the fitted models, model 5 was
the most appropriate with p-values of 0.34 for L3 and 0.03 for L5 when us-
ing the GERL envelope procedure; the 95% GERL envelope is visualised in
Figure B.7. Thus no evidence is seen against the fitted models summarised
in Table B.2 for L3 while only slight evidence is present for L5. We note
that for both datasets the fitted models are such that B1 is a stunted cylin-
der and models repulsion since γ̂1 < 1, while c(·, r2, t2) is elongated and
B2 models aggregation, since γ̂2 > 1. Hence, when standing in some point
(x1, y1, z1) ∈ X it is less likely to observe a z-coordinate if the correspond-
ing xy-coordinates are similar to (x1, y1). Specifically, if (x1, y1) and (x2, y2)
lies within distance 20 µm for L3 and 24.25 µm for L5, it is less likely to ob-
serve a z-coordinate z2 (associated to (x2, y2)) with |z1− z2| less than 11.5 µm
for L3 and 15.5 µm for L5. Analogously, given that (x1, y1) and (x2, y2) lies
within distance 11 µm for L3 and 14.75 µm L5, it is more likely to observe z2
if |z1 − z2| is in the interval from 11.5 µm to 35.5 µm for L3 or from 15.5 µm
to 37.25 µm for L5.

Finally, note that simulations from each of models 1–5 can straightfor-
wardly be obtained using a Metropolis-Hastings algorithm for a fixed num-
ber of points and given a realisation of the xy-coordinates. Specifically, we
used (Algorithm 7.1 in Møller and Waagepetersen, 2004) but with a system-
atic updating scheme cycling over the point indexes 1 to n, using a uniform
proposal for a new point in Wz and a Hastings ratio calculated from the full
conditional (B.3). We successively updated each point 100 times under the
systematic updating scheme, corresponding to 63400 and 54800 point up-
dates for L3 and L5, respectively.
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Figure B.7: Results of the GERL envelope procedure under the fitted model 5 based on a con-
catenation of the empirical L-, G-, F-, J-, and cylindrical K-functions. Left: concatenation of
the one-dimensional empirical functional summaries for the data (solid line) together with 95%
envelopes (grey region); for ease of visualisation, the functions have been scaled. Right: empir-
ical cylindrical K-function (grey scale) where shaded vertical/horizontal lines indicate that the
function falls above/below the 95% envelope. The white line indicates the values for which the
cylinder height is equal to the base diameter. Top: results for the dataset L3. Bottom: results for
the dataset L5.
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1. Introduction

Abstract

In this paper we consider point processes specified on directed linear networks, i.e. lin-
ear networks with associated directions. We adapt the so-called conditional intensity
function used for specifying point processes on the time line to the setting of directed
linear networks. For models specified by such a conditional intensity function, we
derive an explicit expression for the likelihood function, specify two simulation algo-
rithms (the inverse method and Ogata’s modified thinning algorithm), and consider
methods for model checking through the use of residuals. We also extend the re-
sults and methods to the case of a marked point process on a directed linear network.
Furthermore, we consider specific classes of point process models on directed linear
networks (Poisson processes, Hawkes processes, non-linear Hawkes processes, self-
correcting processes, and marked Hawkes processes), all adapted from well-known
models in the temporal setting. Finally, we apply the results and methods to analyse
simulated and neurological data.

1 Introduction

Point processes on linear networks are important for modelling events or ob-
jects on a real network, such as a road or river network. In recent years there
have been a fair amount of papers on functional summary statistics and mod-
els for point processes specified on linear networks (see Okabe and Yamada,
2001; Ang et al., 2012; Baddeley et al., 2014; McSwiggan et al., 2016; Badde-
ley et al., 2017; Rakshit et al., 2017). Specifically, Okabe and Yamada (2001)
present a network analogue of Ripley’s K-function of which Ang et al. (2012)
suggest a correction that compensates for the geometry of the network, mak-
ing it possible to compare K-functions for different networks directly. For
these K-functions it is required that the point process is second-order pseu-
dostationary, meaning that the intensity is constant and the pair correlation
function depends only on the geodesic distance. However, Baddeley et al.
(2017) discuss the difficulties of finding such point processes, and Rakshit
et al. (2017) discuss using alternative distance metrics and present analogues
of the K-function and pair correlation function wrt. these metrics. Further,
Baddeley et al. (2014) present methods for analysing multitype point pro-
cesses on networks, and McSwiggan et al. (2016) address problems with ex-
isting kernel estimates of the intensity point processes and further develop a
new kernel estimate eluding these problems.

In the present paper we consider directed linear networks, i.e. networks
consisting of line segments with an associated direction. Such directions ap-
pear naturally in some applications, while directions cannot be used, or at
the very least are rather artificial, in other applications. For example, river
networks have a natural direction following the flow of water, while the bidi-
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rectionality of (most) roads means that directed networks are not particularly
useful as models for road networks. Ver Hoef et al. (2006), Garreta et al.
(2010), and Ver Hoef and Peterson (2012) consider Gaussian processes and
covariance functions on so-called stream networks, which are special cases of
directed linear networks. In the present paper, however, we focus on point
processes specified by a modified version of the conditional intensity function
often used for point processes on the time line (see e.g. Daley and Vere-Jones,
2003, Chapter 7, for an introduction to these). On the time line, the condi-
tional intensity is based on conditioning on the past, and for a directed linear
network the directions enable us to modify the notion of past and thereby to
extend the definition of a conditional intensity.

There are many types of data suitable for modelling by a point process
specified by a conditional intensity function on a directed linear network.
One example is the locations of spines along a dendritic tree, where we can
introduce directions going from the root of the tree towards the leaves of the
network. Spines play a role in e.g. memory storage, and changes in the spine
distribution and shape have been linked to neurological diseases (Irwin et al.,
2001). Only a few studies (Jammalamadaka et al., 2013; Baddeley et al., 2014)
model the distribution of spines using point processes on (undirected) linear
networks. Further, these studies only consider the Poisson process and the
multitype Poisson process when spines are classified into types depending
on their shape.

The outline of the paper is as follows: In Section 2 we first define di-
rected linear networks and a number of related concepts, and next what we
mean by a conditional intensity function on a directed linear network. In
Section 3 we derive the likelihood function for a point process specified by
such a conditional intensity function, and in Section 4 we consider two sim-
ulation algorithms. In Section 5 we discuss a method for model checking
based on residuals. In Section 6, using the conditional intensity function, we
define a number of models for point processes on directed linear networks
all inspired from similar models on the time line. In Section 7 we use the pre-
sented models and methods to analyse simulated datasets and a real dataset
consisting of spines along a dendritic tree. Finally, we round off the paper by
considering possible extensions and future research directions in Section 8.

2 Point processes on directed linear networks

2.1 Directed linear networks

Let Li ⊆ Rd, i = 1, . . . , N, denote an open line segment of finite length |Li|,
where Rd denotes the d-dimensional Euclidean space for d ≥ 2. A direction
is associated to each line segment Li, where we denote the endpoints of Li
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ei

ei

Li(t1, t2)

ui(t1)

ui(t2)

L1

L2

L3

L5

L6

L4

Figure C.1: Left: a directed line segment Li with endpoints ei and ei and a partial line segment
Li(t1, t2) starting in ui(t1) and ending in ui(t2). Right: a DALN consisting of the line segments
L1, . . . , L6

by ei, ei ∈ Rd such that the direction goes from ei to ei. Furthermore, we
assume that the line segments do not overlap (but they are of course allowed
to join at their endpoints in order to form a network). Any point that is the
endpoint of at least one line segment is called a vertex. The line segment Li is
an outgoing line segment from the vertex at ei and ingoing at the vertex at ei.
The ith line segment can conveniently be represented by the parametrisation

ui(t) = ei + t
ei − ei
‖ei − ei‖

,

where t ∈ (0, |Li|) and ‖ · ‖ denotes Euclidean distance. Occasionally we
will consider only parts of a line segment, where Li(t1, t2) denotes the set
{ui(t) : t ∈ (t1, t2)} for 0 ≤ t1 ≤ t2 ≤ |Li|. See Figure C.1 for illustrations of
the above concepts.

The union of the line segments is denoted by L∪ =
⋃N

i=1 Li, while the set
of line segments is denoted by L = {Li : i = 1, . . . , N}. The terminology
directed linear network may refer to either L or L∪ depending on the context.

We have used open line segments to build the directed linear network in
order to avoid endpoints being part of multiple line segments. Obviously,
when we later define point processes on networks, this means that there can-
not be any points exactly at the vertices, but since we will anyway consider
only point processes with a diffuse measure, such points would occur with
probability zero.

2.2 Directed paths and partial orders

We define a directed path of line segments going from Li ∈ L to Lj ∈ L, where
i 6= j, in the following way: Let I ⊆ {1, . . . , N} be indices for a subset of L
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with cardinality |I| and i, j ∈ I. Then (Lψ(1), . . . , Lψ(|I|)) is called a directed
path from Li to Lj if ψ : {1, . . . , |I|} → I is a bijection such that ψ(1) = i,
ψ(|I|) = j, and eψ(k) = eψ(k−1) for k = 2, . . . , |I|. In other words, you can
get from any point in Li to any point in Lj following the directions of the
line segments in the directed path. If at least one such directed path exists,
we write Li → Lj. For the DALN in Figure C.1, one possible directed path
from L1 to L4 is (L1, L5, L6, L4), where I = {1, 4, 5, 6} and ψ is specified by
ψ(1) = 1, ψ(2) = 5, ψ(3) = 6, and ψ(4) = 4.

We extend the notion of a directed path to any pair of points in the net-
work: Let u = ui(t1) ∈ Li and v = uj(t2) ∈ Lj for Li, Lj ∈ L (not necessarily
distinct), and let

u→ v if

{
Li → Lj for i 6= j
t1 < t2 for i = j

.

A path from u to v is denoted by pu→v and consists of

(Lψ(1)(t1, |Lψ(1)|), Lψ(2), . . . , Lψ(|I|−1), Lψ(|I|)(0, t2)),

where the first and last line segments have been restricted to points strictly
between u and v. The length of a directed path pu→v is the sum of the
lengths of all line segments on the directed path (with the end line segments
restricted as above) and will be denoted |pu→v|. Further, we let Pu→v denote
the set of all directed paths from u to v. If u → v, the length of the shortest
directed path from u to v is denoted by d→L (u, v), and if u 6→ v then we let
d→L (u, v) = ∞ (except if u = v in which case d→L (u, v) = 0). Note that d→L (·, ·)
is a metric except that it is not symmetric (i.e. it is a quasi-metric).

We restrict attention to a particular class of directed linear networks sat-
isfying that if u → v for any u, v ∈ L∪, then v 6→ u; that is, there are no
directed loops in the network. Such a network is called a directed acyclic lin-
ear network (DALN); two examples of DALNs are shown in Figure C.2. Most
results in this paper depend on this assumption. For a DALN, the relation→
is a strict partial order (i.e. it is non-reflexive, anti-symmetric and transitive)
either on L (when considering line segments) or on L∪ (when considering
points). Furthermore, we often consider special cases of DALNs for which
we use standard terminology from graph theory: A directed linear network
without loops (disregarding directions) is called a tree, and a tree where all
directions go either away from or towards a single vertex (called the root) is
called a rooted tree (or an out-tree when the directions are away from the root
and in-tree when they are towards the root). The right panel of Figure C.2
shows an example of an out-tree, where the root is the vertex at the bottom.

The relation → induces a (not necessarily unique) order on all line seg-
ments in a DALN. Let ω : {1, . . . , N} → {1, . . . , N} be a bijection such that
Lω(i) → Lω(j) whenever i < j, i.e. we get a new ordering of the line segments
Lω(1), . . . , Lω(N) that follows the partial order → whenever it applies to a
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Figure C.2: Two examples of DALNs. These DALNs are also used in the simulation study in
Section 7.1

pair of line segments. Denote the set of all such bijections by Ω. A bijection
ω ∈ Ω can be obtained by picking out an arbitrary line segment, then go
against the directions until we reach a line segment Li where no Lj → Li for
j ∈ {1, . . . , N} (the existence of such a line segment follows since L is finite
and → is a strict partial order). We then let ω(1) = i, such that Lω(1) = Li is
the first line segment in the new ordering of the line segments, and continue
iteratively by considering the network L\{Li}. For the DALN in Figure C.1,
one choice of ω ∈ Ω is ω(1) = 1, ω(2) = 2, ω(3) = 3, ω(4) = 5, ω(5) = 6,
and ω(6) = 4.

While most results in this paper need a choice of ω ∈ Ω, they do not
depend on the actual choice of ω. Throughout the paper, it will be assumed
that some choice of ω has been made whenever needed.

2.3 Point patterns and point processes on linear networks

A point pattern on a linear network is a finite set x ⊂ L∪, and a point process
on a linear network is a stochastic process X whose realisations are point
patterns on the network. If we assume that the network is a DALN, we
can use the order induced by → to specify a point process by a conditional
intensity function as described in Section 2.4.

To describe how points in a point pattern on a directed linear network
are located relative to each other, we adopt further terms from graph theory.
Let x be a point pattern on a directed linear network and x ∈ x. Then the
ancestors of x are the set of points

an(x) = {y ∈ x : y→ x},
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and the parents of x, pa(x) ⊆ an(x), are the ancestors from which there exists
at least one directed path to x containing no other points of x. The descen-
dants and children of x, denoted by de(x) and ch(x), are defined similarly,
just reversing the direction.

2.4 Conditional intensity functions on directed linear net-
works

Let L→i = {Lj ∈ L : Lj → Li} denote the set of line segments with directed
paths to Li ∈ L, and similarly let L∪→i =

⋃
Lj∈L:Lj→Li

Lj denote the union of
these. We now define a point process on L by defining a point process on
each Li conditionally on the points in L→i. First, recall that the conditional
intensity function λ̃∗ of a temporal point process X̃ is given by

λ̃∗(t) =
E[N([t, t + dt])|X̃ t]

dt
,

i.e. the mean number of points N([t, t+ dt]) falling in an infinitesimally small
time interval [t, t + dt] starting at time t conditional on the point process
before time t denoted by X̃ t (see e.g. Daley and Vere-Jones, 2003, for more
details on the conditional intensity function for temporal point processes).
Next, to adapt this concept to directed linear networks, we now let λ̃∗ denote
the conditional intensity function of a temporal point process restricted to
an interval (0, |Li|), and allow it to depend on a point pattern on L→i. The
resulting point pattern on (0, |Li|) is then mapped to Li by ui(t). We call this
a point process with conditional intensity function λ∗(u) for u ∈ Li, where
λ∗(u) = λ̃∗(t) for u = ui(t).

To obtain a point process on L∪, we define a point process with condi-
tional intensity function λ∗ as above recursively on Lω(1), . . . , Lω(N), ω ∈ Ω.
Note that following this order ensures that whenever we define a point pro-
cess on a line segment Li, we have already defined it on L→i, on which we
condition. Further, the conditional intensity does not depend on the specific
choice of permutation ω.

As discussed in Section 2.1, our definition of a directed linear network
does not include the vertices as a part of the network. However, in practice
we may have datasets containing points located exactly on the vertices, e.g.
if the location of the points have been used as vertices when approximating
the true network with line segments (this is indeed the case for the dendrite
data considered in Section 7.2). Each of these points need to be allocated to a
unique line segment such that the conditional intensity is correctly specified.
How to do this depends on the nature of the network L. If L is an out-tree
where the root is of degree 1, we naturally allocate a point falling at the root
to the starting point of the line segment starting in the root. Any other points
falling at a vertex will be allocated the endpoint of the ingoing line segment of
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that vertex. Thus, the line segment going from the root has been extended to
include both endpoints, while any other line segment Li include their second
endpoint ei. Similar modifications can be made to other networks.

2.5 Marks

Often additional information, referred to as marks, are associated with each
point in a point pattern x = {x1, . . . , xn}. Assume that the marks belong
to a space M, which we call the mark space, and that each point xi ∈ x
in the observed point pattern has an associated mark mi ∈ M. That is,
a marked point pattern on a directed linear network is a finite set y =
{(x1, m1), . . . , (xn, mn)} ⊂ L∪ ×M.

To define a marked point process, we let a mark associated with the point
u ∈ L follow a distribution, that may depend both on the location u and
the marked point process on L∪→u = L(t, |Li|) ∪

⋃
Lj→Li

Lj for u = ui(t). The
conditional intensity can then be generalised to the marked case by

λ∗(u, m) = λ∗(u) f ∗(m|u),

where λ∗(u) is the intensity defined in Section 2.4, except that the star now
means that it may depend on marks of points on L∪→u in addition to the points
themselves, and f ∗(·|u) is the conditional density function of the mark given
the points and marks on L∪→u. Note that in the marked case, by a slight
abuse of notation, we let λ∗ denote the conditional intensity function both
depending on the point u and mark m as well as the conditional intensity
function depending only on the point u.

3 Likelihood function

We can obtain a closed form expression for the likelihood function for a point
process on a DALN specified by a conditional intensity function. Firstly,
consider the measure λ1, where λ1(A) is the total length of a measurable
subset A ⊆ L∪. Furthermore, we use the notation x(i) = x ∩ Li and x(→i) =
x ∩ L→i. Finally, assume that the conditional intensity function depends on
some parameter vector, say θ.

Proposition 3.1 . Consider an unmarked point process X on a DALN L spec-
ified by a conditional intensity function λ∗ depending on a parameter vector
θ, and let x be an observed point pattern dataset. Then the likelihood func-
tion is given by

L(θ; x) =

(
∏
x∈x

λ∗(x; θ)

)
exp

(
−
∫

L
λ∗(u; θ)dλ1(u)

)
.
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Similarly, if Y is a marked point process with conditional intensity function
λ∗ depending on θ, and y is an observed marked point pattern, then the
likelihood function is given by

L(θ; y) =

 ∏
(x,m)∈y

λ∗(x, m; θ)

 exp
(
−
∫

L
λ∗(u; θ)dλ1(u)

)
.

Proof. Consider first the unmarked case. Letting ω ∈ Ω, we split the like-
lihood into a product of density functions for the point pattern x(ω(i)) on
each line segment conditional on the points patterns earlier in ω given by
x(ω(1)), . . . , x(ω(i−1)). That is,

L(θ; x) =
N

∏
i=1

f (x(ω(i))|x(ω(1)), . . . , x(ω(i−1)); θ).

Since x(→i) ⊆ ∪i−1
j=1x(ω(j)) and x(ω(i))|x(ω(1)), . . . , x(ω(i−1)) by construction de-

pends only on x(→i), we get that

L(θ; x) =
N

∏
i=1

f (x(ω(i))|x(→ω(i)); θ) =
N

∏
i=1

f (x(i)|x(→i); θ). (C.1)

By definition, a point process on Li specified conditionally on x(→i) by λ∗(u; θ)

is equivalent to a temporal point process specified by λ̃∗(t; θ) on (0, |Li|),
where u = ui(t). Thus, by Daley and Vere-Jones (2003, Proposition 7.2.III),
we get that

f (x(i)|x(→i)) =

 ∏
x∈x(i)

λ∗(x; θ)

 exp
(
−
∫

Li

λ∗(u; θ)dλ1(u)
)

,

which together with (C.1) completes the proof for the unmarked case. The
result for the marked case is proven in a similar manner, using Proposi-
tion 7.3.III instead of 7.2.III in Daley and Vere-Jones (2003).

4 Simulation

There are two general methods for simulating temporal point processes speci-
fied by a conditional intensity function: the inverse method and Ogata’s mod-
fied thinning algorithm. Both algorithms can be modified to work for a point
process on a DALN by simulating the point process on one line segment at
a time following the order given by ω ∈ Ω. So we focus on specifying how
to simulate the point process on a line segment Li conditional on the points
already simulated on L(→i).
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First, we consider the inverse method in the unmarked case. Let u = ui(t)
for t ∈ (0, |Li|), and let

Λ∗(u) =
∫

Li(0,t)
λ∗(v)dλ1(v).

In the inverse method, independent and identically distributed (IID) unit-
rate exponential random variables are simulated and transformed into the
appropriate points on Li by the inverse of Λ∗. More precisely, the algorithm
is as follows:

1. Let j = 0.

2. Repeat:

(a) Generate Yj ∼ Exp(1).

(b) Find t such that Λ∗(ui(t)) = ∑
j
k=0 Yk.

(c) If t < |Li|, let j = j + 1 and xj = ui(t). Else end repeat loop.

3. Output (x1, . . . , xj).

Next, for Ogata’s modified thinning algorithm in the unmarked case, we
use that λ∗(u) = λ̃∗(t) when u = ui(t) and assume that for any t ∈ (0, |Li|),
there exist functions L∗(t) > 0 and M∗(t) ≥ λ̃∗(s) for any s ∈ [t, t + L∗(t)]
(here * means that these functions may depend on the already simulated
point patterns x(→i) and the part of xi in Li(0, t)). The algorithm is as follows:

1. Let t = 0 and j = 0.

2. Repeat:

(a) Calculate M∗(t) and L∗(t).

(b) Generate (independently) T ∼ Exp(M∗(t)) and U ∼ Unif([0, 1]).

(c) If t + T > |Li|, end repeat loop.

(d) Else if T > L∗(t), let t = t + L∗(t).

(e) Else if U > λ̃∗(t + T)/M∗(t), let t = t + T.

(f) Else, let j = j + 1, t = t + T, and xj = ui(t).

3. Output (x1, . . . , xj).

Both the inverse method and Ogata’s modified simulation algorithm can
be extended to the marked case by the following two modifications: First,
insert an extra step such that each time a point has been simulated (and
either kept for Ogata’s modified thinning algorithm or moved for the inverse
method), its mark should be simulated using the mark density f ∗. Second,
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note that any function with a star may depend on both points and marks, not
just points as in the unmarked case.

The following proposition verifies that both of these algorithms produce a
point process on a DALN with the correct distribution in both the unmarked
and the marked case.

Proposition 4.1 . Let ω ∈ Ω and L be a DALN, and produce point patterns on
Lω(1), . . . , Lω(N) recursively using either the inverse method or Ogata’s mod-
ified simulation algorithm. Then the resulting simulation is a point process
on L with conditional intensity function λ∗.

Proof. Consider first the inverse method in the unmarked case used on a
single line segment Li. By Daley and Vere-Jones (2003, Theorem 7.4.I) the
algorithm produces a simulation on (0, |Li|) with conditional intensity λ̃∗

when we consider Λ∗(ui(t)) as a function of t. By the definition of λ∗(u) =
λ̃∗(t) for u = ui(t), we then get a correct simulation on Li.

Consider next Ogata’s modified thinning algorithm in the unmarked case
used on Li. By Ogata (1981) and since λ∗(u) = λ̃∗(t) for u = ui(t), a correct
simulation is produced on Li.

Finally, since we follow the order given by ω, x(→i) has always been simu-
lated, when x(i) has to be simulated, and thus by the above argument each x(i)
is simulated correctly, leading to a correct simulation of x in the unmarked
case.

Turning to the marked case, we note that the above arguments still hold
to prove that the points follow the correct distribution (where Proposition
7.4.IV in Daley and Vere-Jones, 2003, needs to be used for the inverse method,
and the text accompanying Algorithm 7.5.V for Ogata’s modified thinning
algorithm). The proof is completed for the marked case by noting that the
marks are always drawn from the correct distribution.

5 Residual analysis

One way of checking the fit of a model specified by a conditional inten-
sity function is to calculate residuals and check their distribution. Consider
first the unmarked case, and assume that we have observed a point pattern
(x(i),1, . . . , x(i),ni

) on Li for every Li ∈ L, and that we have obtained a fitted
model with conditional intensity function λ̂∗ for this dataset. Let

Λ̂∗(u) =
∫

Li(0,t)
λ̂∗(v)dλ1(v),

where u = ui(t) and t ∈ (0, |Li|). We then calculate the residuals for the
points on Li given by (Λ̂∗(x(i),1), . . . , Λ̂∗(x(i),ni

)), which we (with a slight
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abuse of notation) denote by Λ̂∗(x(i)). If the model is correct, then, by Da-
ley and Vere-Jones (2003, Proposition 7.4.IV), Λ̂∗(x(i)) is a unit-rate Poisson
process on the interval (0, Λ̂∗(ei)), and the residual processes Λ̂∗(x(i)) are
independent for i = 1, . . . , N.

In order to check the fit of the model given by λ̂∗, we need to check
whether the residuals form a Poisson process. The question is now how we
best check this. One possibility is to check each process Λ̂∗(x(i)) separately,
but there may be few points in each Λ̂∗(x(i)) and further, we lose information
on any discrepancies around the junctions. For example, a particularly large
gap around a junction may indicate a discrepancy between the model and the
data, but since this gap will then be divided over several Λ̂∗(x(i)) it may be
hard to discover. A better approach might be to construct a network with the
same connecting junctions as the original network, and place the residuals on
this network. The main complication is that the lengths of the line segments
have changed from |Li| to Λ̂∗(|Li|), so we cannot use the original network,
and indeed the changed lengths may imply that there exists no network in Rd

with the correct line segments lengths and the correct connecting junctions.
However, we can consider this network in a more abstract sense and apply
any method for checking that a point pattern on a network comes from a
unit-rate Poisson process, provided that the method does not rely on a correct
Euclidean geometry of the network.

One method for testing whether the residuals follow a unit-rate Poisson
process model is to perform a global rank envelope test (Myllymäki et al.,
2017) with the empirical geometrically corrected K-function or pair corre-
lation function (Ang et al., 2012) as test function. Note that this approach
effectively ignores the directions present in the network (see Section 8 for
further comments on including directions in the K-function).

Another method is based on interevent distances. To define these for a
directed linear network, first recall that for point processes on the time line
specified by a conditional intensity function, residual analysis often includes
an investigation of the interevent times, i.e. the times between consecutive
points of the residual process. If the proposed model is correct, the residuals
constitute a unit-rate Poisson process which means that the interevent times
are IID exponential variables with mean 1. In practice this can e.g. be checked
visually by considering Q-Q-plots or histograms. For a point pattern x on a
DALN L, we can define a similar concept, the interevent distances, as the set

{d→L (xi, xj) : xi, xj ∈ x, xi ∈ pa(xj)},

that is, the distance(s) to a point from its parent(s). If L is an out-tree there
is at most one parent for each point in x. For a unit-rate Poisson process on
L, the interevent distances that corresponds to the distance between two con-
secutive points on the same line segment are independent exponentially dis-
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tributed variables with mean 1. However, interevent distances going across
the same junction are not independent, since a part of the network is shared
by the intervals corresponding to the interevent distance. One possible so-
lution is to exclude all such interevent distances when comparing interevent
distances to the exponential distribution, but then information around the
junctions is lost. Another solution is to consider all interevent distances and
thus ignoring the dependency (which in practice may occur only for a small
portion of the interevent distances depending on the number of junctions).

Generalizing this to the marked case in a sensible way is tricky. If we focus
on the multivariate case, i.e. when the mark space is finite, some progress can
be made. Assume that we have estimated the conditional intensity function
by λ̂(·, ·), and let

Λ̂∗m(u) =
∫

Li(0,t)
λ̂∗(v, m)dλ1(v)

for a fixed mark m ∈ M. Then all points with mark m on a line segment
Li is transformed using Λ̂∗m to an interval (0, Λ̂∗m(|Li|)). Note in particular
that the intervals have different lengths, so the residuals for points with dif-
ferent marks end up in differently sized networks. By Daley and Vere-Jones
(2003, Proposition 7.4.VI.(a)), the residual processes thus obtained for differ-
ent marks should behave like independent unit-rate Poisson processes pro-
vided the model is fitting well. We can apply the above techniques to each
process separately to check whether these are unit-rate Poisson processes.
Ideally we should also check whether each of these processes are indepen-
dent of each other, but it seems to be hard to make a general test for this,
since the processes are located on different networks.

The fact that points with different marks end up in different networks for
the multivariate case hints at the difficulty in getting anything useful out of
residual analysis for the general marked case. Proposition 7.4.VI.(b) in Daley
and Vere-Jones (2003) can be used in this case, but if we for example have a
continuous mark distribution, typically no marks are equal, so each residual
point will end up in intervals of different lengths, and it is in no way obvious
how to combine this into something useful for model checking.

6 Models

New models for point processes on a DALN specified by a conditional in-
tensity function essentially boils down to giving a mathematical expression
for the conditional intensity function. There is a rich selection of standard
models for temporal point processes that can be expressed using the condi-
tional intensity function. The main problem in adapting them to the case of
a DALN is dealing with the fact that at junctions the network may join sev-
eral line segments and/or split into several line segments. We consider a few
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examples of models here.

6.1 Poisson process

If the conditional intensity function λ∗ is a deterministic non-negative valued
measurable function on L, say λ, that does not depend on points further up
the network, then we get a Poisson process on L with intensity function λ.
For this particular model, the point process does not depend on the direc-
tions and is equivalent to a Poisson process specified on an undirected linear
network (see e.g. Ang et al., 2012).

For a homogeneous Poisson process on L with constant intensity λ, the
maximum likelihood estimate of λ is simply n/|L|, where n is the observed
number of points (this follows from Proposition 3.1).

6.2 Hawkes process

Another common temporal point process is the Hawkes process or self-
exciting process (Hawkes, 1971a,b, 1972; Hawkes and Oakes, 1974). We can
extend it to a DALN using the conditional intensity function

λ∗(u) = µ + α ∑
xi∈x: xi→u

γ(d→L (xi, u)), (C.2)

where µ, α > 0 are parameters and γ is a density function on (0, ∞) that may
depend on additional parameters. In the temporal case the model has the
interpretation that immigrants appear according to a Poisson process with
intensity µ, then each immigrant, say ti, produces a Poisson process of off-
spring with intensity αγ(· − ti), and each offspring produces another Poisson
process of offspring, and so on (Møller and Rasmussen, 2005, 2006). In par-
ticular α can be interpreted as the mean number of offsprings produced by
each point. However, for a DALN containing a diverging junction, that is, a
vertex with in-degree = 1 and out-degree > 1, the offspring process is copied
to each outgoing direction, thus giving many more offsprings in mean. In the
case that there are multiple paths from xi to u only the shortest path count,
meaning that clusters die out if they encounter themselves further down the
network.

If we want a version of the Hawkes process where clusters are split
equally when a diverging junction is met, and superposed when a converg-
ing junction, i.e. a vertex with indegree > 1 and outdegree = 1, is met, we
can let

λ∗(u) = µ + α ∑
xi∈x: xi→u

∑
p∈Pxi→u

gp(xi, u)γ(|p|), (C.3)

where gp(xi, u) = 1/np(xi, u), and np(xi, u) is the product of the number of
outgoing line segments met on each junction on the path p. For this model, α
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Figure C.3: Simulations of Hawkes processes (on the DALN left of Figure C.2) with parameters
specified as follows. Left: µ = 1, α = 0.8 and γ(t) = 5 exp(−5t). Middle: µ = 1, α = 0.8, and
γ(t) = 10 exp(−10t). Right: µ = 1, α = 0.9, and γ(t) = 5 exp(−5t). Width of grey regions are
proportional to the conditional intensity

is the mean number of offspring resulting from each point (or more precisely,
the mean number of offspring is less than or equal to α since the network is
finite, and the offspring processes thus get truncated). Using other functions
gj may give other interpretations that are useful for various datasets.

For u = ui(t), the integrated conditional intensity for (C.2) is given by

Λ∗(u) = µt + α

 ∑
xj∈x: xj→u

Γ(d→L (xj, u))− ∑
xj∈x: xj∈L∪→i

Γ(d→L (xj, ei))

 ,

where Γ is the distribution function associated with γ.

6.3 Non-linear Hawkes process

A non-linear Hawkes process (Brémaud and Massoulié, 1994, 1996) is ob-
tained by inserting the conditional intensity function of the Hawkes process
into a function g : R→ [0, ∞) such as the exponential function, that is,

λ∗(u) = exp

[
µ + α ∑

xi∈x: xi→u
γ(d→L (xi, u))

]
. (C.4)

The non-linear Hawkes process does not have a clustering and branching
structure as the Hawkes process, so the modification done in (C.3) do not
lead to any nice interpretations. On the other hand, if α > 0 the point process
given by the conditional intensity function (C.4) is clustered, if α < 0 it is
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regular, and if α = 0 it is a homogeneous Poisson process, so the model is
rather flexible.

6.4 Self-correcting process

To model regular point patterns on DALNs, we further introduce a modifica-
tion of the self-correcting process from the temporal setting (Isham and West-
cott, 1979). The conditional intensity of a self-correcting process increases ex-
ponentially as the distance to the starting point increases, while it decreases
whenever a point occurs. To adapt such a process to a DALN, we need to
specify a meaningful starting point from which we measure distance. There-
fore, we require that the DALN L has a vertex v0 such that d→L (v0, u) < ∞
for all u ∈ L. Note, for an out-tree, v0 is simply the root of the tree, and for
consistency we use the terminology root for v0 even if the network is not an
out-tree.

Then we specify the self-correcting process by

λ∗(u) = exp {µd→L (v0, u)− α|x ∩ sp(v0, u)|} , (C.5)

where |x ∩ sp(v0, u)| is the number of points from x on the shortest directed
path sp(v0, u) = arg minp∈Pv0→u

|p| from v0 to u, and µ, α > 0 are parameters
controlling the overall intensity and the degree of repulsion. With this defi-
nition, only the points lying on the shortest directed path between v0 and u
affect λ∗(u). For networks with paths of same length joining u1 and u2, the
conditional intensity specified by (C.5) is somewhat ambiguous as sp(u1, u2)
is not necessarily unique. An alternative, that may be more natural for some
applications, is to count events on all paths from v0 to u (and not only on the
shortest directed path). However, if X is specified by (C.5), the restriction of
X to pv0→u for any u ∈ L is a temporal self-correcting process on the interval
(0, |pv0→u|).

Another possible alteration of (C.5), is to substitute the exponential func-
tion with some positive function g.

To obtain an expression for Λ∗, let {xi
1, . . . , xi

ni
} = x ∩ Li(0, t) denote the

ni events falling on the partial line segment Li(0, t), while xi
0 = ui(0) and

xi
ni+1 = ui(t) denote the endpoints of Li(0, t). Then, for u = ui(t),

Λ∗(u) =
c(x, i)

µ

ni

∑
j=0

exp(−αj)
{

exp
[
µd→L (xi

0, xi
j+1)

]
− exp

[
µd→L (xi

0, xi
j)
]}

,

where c(x, i) = exp
{

µd→L (v0, xi
0)− α|x ∩ sp(v0, xi

0)|
}

.

6.5 Marked models

Any of the models in Sections 6.1–6.4 can be extended to the marked set
up. The simplest case is to use so-called independent marks (see e.g. Daley
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Figure C.4: Simulations of self-correcting processes (on the DALN left of Figure C.2) with pa-
rameters specified as follows. Left: µ = 0.8 and α = 1. Middle: µ = 0.4 and α = 0.1. Right:
µ = 0.3 and α = 0

and Vere-Jones, 2003), where the marks are independent of each other and
independent of the points, with the sole exception that a mark is allowed to
depend on the location of the point to which it is associated. More interesting
cases can be made by letting the conditional intensity at u depend on the
marks associated to the points in L→u (this is known as unpredictable marks
if the other independence assumptions mentioned above still hold) and/or
letting the mark associated to a point at u depend on points on L→u and/or
their associated marks.

For an example of a marked point process, consider the Hawkes process
given by (C.2) and assume that we are trying to model a dataset that has K
different types of points, denoted 1, . . . , K. Then the marked Hawkes process
can be defined using the conditional intensity function

λ∗(u, m) = µm + ∑
xi∈x: xi→u

αmi ,mγmi ,m(d
→
L (xi, u)), (C.6)

where for m, m′ ∈ {1, . . . , K} the parameters in the model are given by
µm, αm,m′ > 0, and γm,m′ are density functions on (0, ∞). This generaliza-
tion has a high number of parameters, and for practical use assumptions that
some of these parameters are equal would typically be made.

Similarly, the other models presented in this paper can be extended to
multitype cases or more general marked cases, and the primary difficulty is
producing practically relevant models with nice interpretations and a reason-
ably low number of parameters. Obviously, what this is depends on the data
at hand.
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7 Data Analysis

7.1 Simulated data

To investigate properties of the maximum likelihood estimates for param-
eters in the Hawkes and self-correcting model, we performed a simulation
study using the two DALNs shown in Figure C.2. As results for the two
networks are very similar, we only present results for the DALN to the left
in Figure C.2. In order to investigate increasing-domain asymptotic proper-
ties, we increase the size of the network seven times by 50% each time and
denote the resulting networks by sizes s = 1, . . . , 7. For each s we simulate
1000 Hawkes processes µ = 1, α = 0.8, and γ(t; κ) = κ exp(−κt), where
κ = 5, and 1000 self-correcting processes with µ = 0.4 and α = 0.1 using the
inverse method. For each simulation, the parameters have been estimated
1) jointly, by numerically maximising the log-likelihood simultaneously for
all parameters, and 2) marginally, by fixing all but one parameter at the true
value and then numerically maximising the log-likelihood with respect to the
remaining parameter.

Figure C.5 shows box plots of the joint estimates for the simulated Hawkes
processes; these suggest that the maximum likelihood estimator of (α, µ, κ)
is consistent. Estimating the parameters marginally give similar results (not
shown here) but with a slightly lower empirical variance.

For the simulated self-correcting processes, the joint estimates shown in
Figure C.6–C.7 are clearly positively correlated, and both µ and α are grossly
overestimated. This behaviour may be explained by the way µ and α influ-
ence the conditional intensity in (C.5). Specifically, µ controls how much the
conditional intensity increases as the distance to the root grows, while α de-
termines how much the conditional intensity decreases when a new point is
met. As more points will occur when the distance to the root grows, an in-
crease in µ may to some extent be balanced out by an increase in α. The ridge
seen in Figure C.8, displaying contours of the log-likelihood for one of the
simulations, confirms that it may be hard to identify the true values of α and
µ as the estimates will be chosen somewhere along that ridge. The marginal
estimates, shown in first panel of Figure C.6, are less extreme and on average
closer to the true value. Specifically, fixing α, the marginal estimates of µ
seem unbiased, while fixing µ give positively biased estimates of α but with
a smaller bias as the network grows.

This short simulation study, indicates that the behaviour of the maximum
likelihood estimates are quite model dependent, and thus it may be hard to
say anything about the distribution of these in general. This is discussed
further in Section 8.
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Figure C.5: Results from simulation study: Box plot of joint parameter estimates, µ̂ (top left), α̂
(top right), and κ̂ (bottom), for the simulated Hawkes processes for each network of size s. Here
◦ is the empirical mean of the estimates

98



7. Data Analysis

0.375

0.400

0.425

0.450

1 2 3 4 5 6 7

s

µ̂

0.10

0.11

0.12

0.13

1 2 3 4 5 6 7

s

α̂

0

50

100

150

1 2 3 4 5 6 7

s

µ̂

0

20

40

60

80

1 2 3 4 5 6 7

s

α̂

0

2

4

6

8

1 2 3 4 5 6 7

s

µ̂

0

1

2

3

1 2 3 4 5 6 7

s

α̂

Figure C.6: Box plots of parameter estimates, µ̂ (left) and α̂ (right), for the self-correcting process
on each network of size s. First panel: marginal parameter estimates. Second panel: joint
estimates. Third panel: zoom of second panel. Here ◦ denotes the mean estimate
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Figure C.8: Contours of the log-likelihood for a simulated self-corrected process with µ = 0.4
and α = 0.1

7.2 Dendrite data

In this section we consider a point pattern describing spine locations on an
apical dendrite tree from a mouse neuron. The dendrite tree was first approx-
imated by a linear network in R3 (see Figure C.9). Next, a simplified version
of the network with fewer vertices was obtained by joining edges meeting
at a vertex of degree two. Then the network was embedded in R2 (see Fig-
ure C.9) in order to directly use functionalities from the R-package spatstat
(Baddeley et al., 2016). The embedding preserves distances, entailing that
distance-based analyses on the original network in R3 and the embedded
network in R2 are equivalent. For example, the geometrically corrected net-
work K-function (Ang et al., 2012) is invariant under this kind of embedding.
Letting the dendrite’s attachment point to the cell body be the root vertex of
the network tree, we can naturally consider the network as a DALN by intro-
ducing directions going away from the root (hence the network thus obtained
is an out-tree).

First, we tested whether the spine locations can be described by a ho-
mogeneous Poisson model with estimated intensity n/|L|, where n = 341
is the number of spines and |L| = 876 µm is the total network length. The
empirical geometrically corrected K-function (we return to the issue that this
K-function ignores directions in Section 8), K̂, may be used as a test function
in a global rank envelope test (Myllymäki et al., 2017), where a Monte Carlo
approach is applied for approximating the distribution of the test function
under the null model. The global rank envelope procedure both give critical

101



Paper C.

bounds for the test function as well as an interval going from the most liberal
to the most conservative p-value of the associated test. The p-interval associ-
ated with the global rank envelope test for the homogeneous Poisson model
is (0, 0.0096), indicating that the model is not appropriate. Distances r, for
which K̂(r) falls outside the critical bounds (also called a global rank enve-
lope) shown in Figure C.10, reveal possible reasons for rejecting the model;
in this case K̂(r) falls above the envelope for r-values up to approximately
50 µm, indicating clustering at this scale.

To model the clustering, we next consider the dendrite tree as a directed
network and fit a Hawkes model, where we let γ in (C.2) be the density of
an exponential distribution with parameter κ. The three parameters, µ, α and
κ, are estimated by numerically optimizing the log-likelihood. The resulting
estimates are µ̂ = 0.11, α̂ = 0.84, and κ̂ = 0.073. According to Section 5, we
can check whether the model adequately describe our data by looking at the
residuals. Again, we use the global rank envelope procedure with K̂ as test
function, but now for testing whether the residuals follow a unit-rate Poisson
model on the transformed network. The resulting 95%-global rank envelope,
shown in Figure C.10, has an associated p-interval of (0, 0.0068). However,
the only discordance detected between the residuals and the unit-rate Poisson
model with the global rank envelope is for r-values less than 1 µm. This may
indicate that there is a small-scale repulsion between the spines, which is not
accounted for in the Hawkes model.

In Figure C.11, a Q-Q-plot of all interevent distances in the residual pro-
cess is shown along with labels indicating whether the interevent distance
is across a junction or not. Regardless of whether we include these crossing
interevent distances or not, the distribution of the interevent distances seems
to deviate only slightly from the exponential distribution with mean 1.
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Figure C.9: Left: projection of the approximated dendrite tree onto R2. Right: a distance-
preserving embedding of the network into R2. Here ◦ identify the root of the dendrite tree,
while • (left) and (right) are spine locations
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Figure C.10: K̂(r)− r (solid curve) for the observed spine locations (left) and the residuals from
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8 Extensions and future research

In this final section we consider extensions and modifications of the models
and methods as well as future research directions.

Recall that the so-called geometrically corrected K-function is introduced
in Ang et al. (2012) for analysing point processes on linear networks, and
among other things, this can be used for analysing a point pattern dataset
for example to determine whether the points are more clustered or more reg-
ular than a homogeneous Poisson process. This information is relevant for
choosing an appropriate model for modelling a dataset. For example, the
Hawkes process in Section 6.2 is more clustered than a homogeneous Pois-
son process, the self-correcting process in Section 6.4 is more regular, and
the non-linear Hawkes process in Section 6.3 can be both. We used this in
Section 7.2 for checking whether the residual process behaved like a Pois-
son process as is expected if an adequately well-fitting model has been used
for modelling the data. However, for a directed linear network the depen-
dence structure is completely changed, and as a consequence the appropriate
concepts of clustering and regularity are also changed. While the (undi-
rected) geometrically corrected K-function certainly gives a good idea of the
amount of clustering and regularity, the development of a directed geometri-
cally corrected K-function is useful for quantifying such concepts in a more
appropriate manner. We leave this as an object of future research.

Essentially a linear network consists of a superposition of line segments
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in Rd, but in Anderes et al. (2017) they have been generalized to graphs with
Euclidean edges, which extends the linear network in various ways to include
curve segments, crossing (but unconnected) segments, etc. Such a generaliza-
tion can rather easily be made to directed linear networks to obtain a directed
version of graphs with Euclidean edges, and all results in the present paper
immediately extends to this case (we have only avoided making this exten-
sion to avoid a more cumbersome notation in this paper).

Furthermore, Anderes et al. (2017) also consider two different metrics on
graphs with Euclidean edges: the shortest path metric, i.e. the length of the
shortest path along the edges of the graph, and the resistance metric, i.e.
the metric corresponding to the resistance in an electrical network (see also
Rakshit et al., 2017, for use of various metrics on linear networks). We note
that the quasi-metric d→L is the natural directed counterpart of the shortest
path metric, and it would be the natural choice for modelling many kinds of
point pattern data on a directed linear network. However, any other quasi-
metric on L can be used as a basis for building models on directed linear
networks and may be relevant for practical applications where d→L is not
appropriate.

The results in Section 7.1 suggest that at least in some cases the maxi-
mum likelihood estimator has nice asymptotic properties. Specifically, the
maximum likelihood estimates for the Hawkes processes seem unbiased and
consistent, while the estimates in the self-correcting process are strongly bi-
ased and correlated. A proper development of asymptotic theory in the line
of Ogata (1978) and Rathbun (1996) is important to establish properties of the
maximum likelihood estimator for point processes specified by a conditional
intensity function on a directed linear network.

Section 7.2 presents a very short analysis of a dendrite dataset using the
conditional intensity function to build a point proces model on a directed
linear network. The main purpose of this is to illustrate that the models and
methods can be applied to real data. As a future research direction we plan to
make a much more thorough analysis of the presented dendrite dataset and
other similar datasets, where we will also model the spine types as marks,
and derive practical results from the models with biological relevance.
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1. Introduction

Abstract

Dendritic spines, which are small protrusions on the dendrites of a neuron, are of
interest in neuroscience as they are related to cognitive processes such as learning
and memory. We analyse the distribution of spine locations on six different dendrite
trees from mouse neurons using point process theory for linear networks. Besides
some possible small-scale repulsion, we find that one of the spine point pattern data
sets may be described by an inhomogeneous Poisson process model, while the other
point pattern data sets exhibit clustering between spines at a larger scale. To model
this we propose an inhomogeneous Cox process model constructed by thinning a
Poisson process on a linear network with retention probabilities determined by a
spatially correlated random field. For model checking we consider network analogues
of the empirical F-, G-, and J-functions originally introduced for inhomogeneous
point processes on a Euclidean space. The fitted Cox process models seem to catch the
clustering of spine locations between spines, but also posses a large variance in the
number of points for some of the data sets causing large confidence regions for the
empirical F- and G-functions.

1 Introduction

Point patterns on linear networks arise in a broad range of fields, where the
network for example represents roads, a river network, or a dendrite tree.
This paper focuses on the latter type of data: the left panel in Figure D.1
shows six linear networks each representing a dendrite tree from a mouse
neuron grown in vivo. On the dendrites small protrusions called spines
are found that among other things help transmitting electrical signals to the
soma. In neuroscience, the behaviour of spines are of interest as changes
can be linked to changes in cognitive processes. The spine locations can be
viewed as a point pattern on the dendrite tree and thus analysed using point
process theory for linear networks.

Over the last two decades, methods for analysing point patterns on linear
networks have been developed. Particularly, a network analogue of Ripley’s
K-function was first presented in Okabe and Yamada (2001) and later mod-
ified and extended to the inhomogeneous case in Ang et al. (2012). When
defining the K-function, Ang et al. (2012) required that the underlying point
process model fulfils an invariance property called second-order pseudo-
stationarity (an analogue to second-order intensity-reweighted stationarity
as introduced in Baddeley et al., 2000). This property is fulfilled whenever
the pair correlation function is isotropic, i.e. when it only depends on the
shortest path distance. Baddeley et al. (2017) showed that certain construc-
tions, e.g. special types of Cox point processes that lead to point processes in
the Euclidean space with an isotropic pair correlation function rarely result in
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second-order pseudo-stationary point processes when adapted to linear net-
works. Even without the requirement of pseudo-stationarity, there are only
a limited number of point process models available for linear networks. For
point processes on directed acyclic linear networks, Rasmussen and Chris-
tensen (2019) presented both regular and clustered models defined by a gen-
eralisation of the conditional intensity function for temporal point processes.
Anderes et al. (2017) supplied a list of valid isotropic covariance functions for
connected linear networks that can be used to construct Cox point processes,
particularly log Gaussian Cox processes (LGCPs; see also Møller et al., 1998).

Only few studies use point process theory to analyse the behaviour of
spines: treating the dendrite tree as a directed tree, Rasmussen and Chris-
tensen (2019) analysed one of the six spine point pattern data sets (hereafter,
the ‘spine data’) from Figure D.1. The distribution of spines (and their shape)
have further been investigated using point process theory in Jammalamadaka
et al. (2013) (testing a homogeneous Poisson process model) and Baddeley
et al. (2014) (using multitype Poisson process models to account for the shape
classification) for in vitro grown neurons. Based on the network K-function,
Jammalamadaka et al. (2013) concluded that a homogeneous Poisson process
model seems adequate to describe the spine locations. However, Jammala-
madaka et al. (2013) also stated that their results for the in vitro setting are
unlikely to hold in an in vivo setting.

Instead of Poisson process models, this paper suggests a new class of Cox
process models on a linear network. Such a model applies for an undirected
graph and is not a LGCP, but its construction still exploits a Gaussian ran-
dom field so that the covariance functions from Anderes et al. (2017) become
useful. Moreover, seemingly for the first time in connection to point pro-
cess model fitting on linear networks, we demonstrate the use of minimum
contrast and composite likelihood estimation procedures. Finally, we intro-
duce new empirical summary functions and demonstrate their usefulness for
model checking.

The paper is organised as follows. The spine data is described in more de-
tail in Section 2 along with the general notion of a linear network. In Section 3
we discuss existing as well as our new summary functions for point processes
on linear networks; these are used for analysing the spine locations in Sec-
tion 4. We initially suggest to model the spine locations by an inhomogeneous
Poisson process model in Section 4.1, but due to clustering between spines
we propose in Section 4.2 an inhomogeneous Cox process model. Lastly, we
discuss in Section 5 possible extensions and future research directions.

112



1. Introduction

0 50 100 200
0

50
10

0
15

0
20

0
●

D
en

dr
ite

 1
●

0 50 100 200

0
50

10
0

15
0

20
0

●

D
en

dr
ite

 2

●

0 50 100 200

0
50

10
0

15
0

20
0

●

D
en

dr
ite

 3

●

0.1 0.3 0.5

0.1 0.3 0.5

0.1 0.3

0 50 100 200

0
50

10
0

15
0

20
0

●

D
en

dr
ite

 4

●

0 50 100 200

0
50

10
0

15
0

20
0

●

D
en

dr
ite

 5

●

0 50 100 200

0
50

10
0

15
0

20
0

●

D
en

dr
ite

 6

●

0.1 0.3 0.5

0.1 0.3

0.1 0.3

Figure D.1: Spine data sets for dendrite 1 to 6 (from top to bottom), where each main branch
is coloured black and the side branches grey and the ◦ marks the vertex closest to the den-
drite’s attachment to soma. Left: projection of the original three-dimensional network onto a
plane. Middle: spine locations on the simplified networks embedded in R2 so that distances are
preserved. Right: non-parametric kernel intensity estimates.
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2 Dendritic spine data

Figure D.1 shows six examples of a linear network. Specifically, a linear
network is a union L =

⋃N
i=1 Li of a finite number N of line segments Li ⊂ Rd,

d ≥ 2, with finite length and intersecting only at the end points. A linear
network may also be viewed as a graph consisting of a set of vertices and
a set of weighted edges, where the edges coincide with the line segments
L1, . . . , LN , the vertices correspond to the end points of these line segments,
and the weight of an edge is the length of the corresponding line segment.

Throughout this paper the distance between two points u, v ∈ L is mea-
sured by the shortest path distance and is denoted by dL(u, v). For the spine
data, the linear network L is a tree, meaning that there is only one path
between any pair of points in L. Naturally, in other applications more com-
plicated networks than a tree occur in which case we may need to take more
care when choosing the distance metric dL (see Section 5 for details).

The linear networks visualised in the left column of Figure D.1 are ap-
proximations of the underlying apical dendrite trees which were extracted
from six different mouse neurons grown in vivo. The vertices of each of the
linear networks are described by three-dimensional coordinates which repre-
sent a spine location or another point chosen to obtain the approximation. To
simplify each of the networks, for any pair of edges meeting at a vertex with
degree two, we replace the two edges and the vertex with one single edge,
and to preserve distances within the network, we let the weight of the new
edge be the sum of the two old edges. Note that this transformation of the
original linear network into a simpler one, relies on the fact that the linear
network forms a tree. Further, to utilise the functionalities of the R-package
spatstat (Baddeley et al., 2016), we embed the simplified network in R2 in a
way that also preserves distances. The simplified and embedded versions of
the networks are shown in the middle column of Figure D.1 along with the
spine locations. As the models and tools we use in Section 4 to analyse the
spine data do not directly depend on the three-dimensional coordinates but
on distances, we can without loss of information consider the spine locations
as a point pattern on the simplified and embedded network.

The spine data origin from six neurons, with two neurons from each of
three different mice. The numbering of the dendrites is as follows: dendrite
1 and 2 come from mouse no. 1; dendrite 4 and 5 from mouse no. 2; and
dendrite 3 and 6 from mouse no. 3.

For each dendrite tree, we talk about two subsets: the main branch and
the side branches. Main branch refers to the tree’s stem, while side branches
constitute the rest of the tree. Figure D.1 shows which parts of the origi-
nal trees and the simplified embedded trees belong to the main branch and
which to the side branches. In the following, L = Lm ∪ Ls denotes the whole
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dendrite tree, where Lm is the main branch, and Ls is the union of the side
branches. Further, nm and ns denote the number of spines on Lm and Ls,
respectively. Lastly, we let |B| denote the size of B ⊆ L or more precisely
the total length of the (partial) line segments constituting B ⊆ L; note that
|L| = |Lm|+ |Ls|. Table D.1 summarises the number of spines and sizes for
each dendrite tree.

Dendrite nm ns |Lm| |Ls| ρ̂m ρ̂s

1 51 72 212 µm 202 µm 0.240 0.356
2 36 145 204 µm 430 µm 0.176 0.337
3 69 63 211 µm 202 µm 0.328 0.312
4 33 308 225 µm 652 µm 0.134 0.477
5 34 83 286 µm 450 µm 0.119 0.184
6 30 62 178 µm 250 µm 0.168 0.248

Table D.1: Number of spines, length, and intensity estimates for the main and side branches
separately.

3 Point processes on linear networks

The six spine point pattern data sets are modelled as realisations of six point
processes defined on the six dendrite trees. In general, by a point process
X on a linear network L we mean a random finite subset of L; we use this
generic notation throughout this paper. In this section we consider summary
functions useful for analysing point processes on linear networks, including
the introduction of new empirical summary functions.

3.1 Summary functions for first and second-order moment
properties

We assume that X has intensity ρ, that is, for B ⊆ L,

E n(X ∩ B) =
∫

B
ρ(u)dLu < ∞, (D.1)

where n(X ∩ B) is the number of points from X falling in B and dL denotes
integration with respect to one-dimensional arc-length along L. Intuitively,
ρ(u)dLu is the probability of X having a point in an infinitesimal small subset
of L that contains u and has size dLu. If the intensity ρ(·) ≡ ρ is constant,
we say that X is homogeneous; otherwise X is said to be inhomogeneous. In
case of homogeneity, ρ is the expected number of points per unit length.
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We also assume that X has pair correlation function g, that is, for disjoint
A, B ⊂ L,

E {n(X ∩ A)n(X ∩ B)} =
∫

A

∫
B

g(u, v)ρ(u)ρ(v)dLu dLv < ∞.

We can interpret g(u, v)ρ(u)ρ(v)dLu dLv as the joint probability that two in-
finitesimal small regions around u and v of size dLu and dLu, respectively,
each contains a point from X.

If the pair correlation function only depends on the shortest path distance,
we say that it is isotropic and write g(u, v) = g0{dL(u, v)}. When X has an
isotropic pair correlation function, the (geometrically corrected network) K-
function introduced by Ang et al. (2012) can be expressed as

K(r) =
∫ r

0
g0(s)ds, r ≥ 0. (D.2)

Alternatively, K(r) may be written as an expectation with respect to a Palm
distribution, see Ang et al. (2012, Theorem 3). If the K-function or the pair
correlation function is expressible on closed form, we can use a minimum
contrast or composite likelihood procedure to estimate the model parameters;
this is described further in Section 4.2.

The simplest point process model is a Poisson process, which is charac-
terised by that n(X) follows a Poisson distribution with mean given by (D.1)
with B = L and further that the points of X conditioned on n(X) are inde-
pendent and identically distributed, with density proportional to ρ. For a
Poisson process, g ≡ 1 and K(r) = r.

3.2 New empirical summary functions

For estimating the pair correlation function and the K-function we follow Ang
et al. (2012). These empirical summary functions can be used in minimum
contrast or composite likelihood estimation procedures as well as for model
checking. Obviously, if the K-function or pair correlation function have been
used to fit the model, neither should be used to check the adequacy of the
model. Due to the shortage of summary functions for point processes on
linear networks, we may let a simple visual comparison of the observed point
pattern and simulations from the fitted model serve as a model check. It is
needless to say that a more rigorous model checking would be preferred.

Therefore, we now introduce three purely empirical summary functions.
These are obtained by modifying the empirical F-, G-, and J-functions for in-
homogeneous point patterns on a Euclidean space (introduced by van Lieshout,
2011) to linear networks. The modification simply consists of replacing the
Euclidean space with the linear network, introducing the shortest path dis-
tance instead of the Euclidean distance, and adapting the notion of an eroded

116



4. Modelling spine locations

set to linear networks. The functions are then defined as follows. Assume
that the intensity ρ is known or has been estimated by ρ̂ and that ρ̄ =
infu∈L ρ̃(u) > 0, where either ρ̃ = ρ or ρ̃ = ρ̂. For r ≥ 0, let L	r consist
of the points in L with distance greater than r to any vertex of L with degree
one. Furthermore, let H ⊂ L be a finite ‘lattice’. For an observed point pat-
tern X = x, the empirical summary functions F̂, Ĝ, and Ĵ are then defined for
r ≥ 0 by

F̂(r) = 1−
∑v∈H∩L	r ∏u∈x: dL(u,v)≤r

{
1− ρ̄

ρ̃(u)

}
#(H ∩ L	r)

, (D.3)

Ĝ(r) = 1−
∑v∈x∩L	r ∏u∈x\{v}: dL(u,v)≤r

{
1− ρ̄

ρ̃(u)

}
#(x ∩ L	r)

, (D.4)

Ĵ(r) =
1− Ĝ(r)
1− F̂(r)

, (D.5)

where we restrict attention to r-values small enough to ensure that #(H ∩
L	r) > 0 for F̂(r) and that F̂(r) < 1 for Ĵ(r).

In Ang et al. (2012), the K-function and its empirical estimate include
a factor that corrects for the network geometry, such that its shape can be
compared for point patterns on different networks. As it was not obvious to
us how to extend such a correction to F̂, Ĝ, and Ĵ in a meaningful way, our
definitions in (D.3)–(D.5) do not correct for the network geometry. Further,
we do not have any theoretical counterpart to F̂, Ĝ, and Ĵ and therefore their
shapes alone can in general not be used to conclude anything about e.g. the
presence of regularity or clustering. However, F̂, Ĝ, and Ĵ are still useful tools
for providing a so-called global rank envelope; this is a confidence region for
a given test function obtained from simulations under a fitted model (for
details, see Myllymäki et al., 2017). In a global rank envelope procedure, the
shape of the test function for the data is compared to that of the simulations
and Myllymäki et al. (2017) discussed how this provides a test and an interval
with lower and upper bounds given by a liberal and a conservative p-value,
respectively.

4 Modelling spine locations

In this section each of the six data sets is analysed with the aim of finding a
model that adequately describe the spine locations.

4.1 Fitting a Poisson process model

The simplest model we can propose is a Poisson process. To investigate the
behaviour of the spine intensity, we calculated the non-parametric intensity
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estimate suggested by McSwiggan et al. (2016); the resulting estimates are
seen in the right panel of Figure D.1. The spine intensity tend to be higher
on the side branches than on the main branch, except perhaps for dendrite 3.
Therefore, we allowed the intensity of the Poisson process to be different on
the main and side branches, that is, recalling the notation in Section 2,

ρ(u) = ρ
I(u∈Lm)
m ρ

I(u∈Ls)
s , u ∈ L, (D.6)

for non-negative parameters ρm and ρs; here I(·) denotes the indicator func-
tion. The maximum likelihood estimates of the intensity parameters are eas-
ily found and given by

ρ̂m =
nm

|Lm|
, ρ̂s =

ns

|Ls|
, (D.7)

cf. the notation in Section 2. These estimates are shown in Table D.1.
To test whether the proposed inhomogeneous Poisson process model ad-

equately describes the spine locations, we performed global rank envelope
tests using K as test function, cf. Section 3.2. Results from these tests are
shown in Figure D.2. For all dendrites the conservative p-value is below 3%,
suggesting that the fitted Poisson process models do not describe the spine
locations adequately. Specifically, the empirical K-functions for dendrite 2,
4, 5, and 6 fall above the global rank envelopes for certain r-values, indi-
cating that the spines tend to cluster at these distances. Further, for all six
spine data sets the empirical K-function falls below the global rank envelope
for small r-values, indicating a small-scale repulsion between spines. For
dendrite 1 and 3, this small-scale repulsion is the only deviation from the
Poisson process model revealed by the global rank envelope test. Disregard-
ing the small distances (r < 1 µm) for the global rank envelope test with K
as test function, does not change the p-intervals significantly for dendrite 2,
4, 5, and 6. For dendrite 1 and 3 on the other hand, the p-intervals change
from (0.024, 0.040) to (0.048, 0.060) and from (0, 0.019) to (0.160, 0.168), re-
spectively, giving (most clearly for dendrite 3) no evidence against the pro-
posed Poisson process model. Global rank envelopes with a concatenation
of F̂, Ĝ, and Ĵ as test function, and where distances less than 1 µm were dis-
regarded, are shown in Figure D.9 in Appendix C; these do not provide any
evidence against the Poisson process model for dendrite 1 and 3 either.

As the physical scale of the spine data is quite small (the dendrites range
in size from 412 µm to 876 µm, cf. Table D.1) and as there is uncertainty in
the exact choice of the point representing a spine’s location, we must expect
some degree of imprecision and therefore we may not want to put too much
value into the observed small-scale repulsion. In the following we will not
take the small-scale repulsion into account but rather focus on modelling the
large scale clustering.
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Figure D.2: For each spine data set: the empirical K-function for the data minus the K-function
for a Poisson process (solid line) along with 95% global rank envelopes (grey region) based on
2499 simulations from the fitted inhomogeneous Poisson process model; p-intervals for each of
the associated global rank envelope tests are also displayed.

119



Paper D.

4.2 Fitting a Cox process model

In addition to inhomogeneity in the location of spines, Figure D.1 also shows
a tendency to large bare areas where no spines occur. To model this behaviour
we considered a point process model introduced by Lavancier and Møller
(2016) for the Euclidean space, which is easily adapted to a linear network L.
The point process is constructed as a thinning of a Poisson process Y on L
with intensity function ρY, where the retention probabilities are determined
by a random field Π = {Π(u) : u ∈ L} that may be spatially correlated.
That is, the point process is given by X = {u ∈ Y : Π(u) ≥ R(u)}, where
R = {R(u) : u ∈ L} consist of independent uniform random variables on
[0, 1], and where Π and R are independent. Thus X is a Cox point process
driven by the random field Λ = {ρY(u)Π(u) : u ∈ L}. We let

Π(u) = exp
{
−σ2

2

k

∑
j=1

Z2
j (u)

}
, u ∈ L, (D.8)

where k ∈ {1, 2, . . . } and σ2 > 0 are parameters, and Z1, . . . , Zk are IID zero-
mean unit-variance Gaussian random fields with correlation function c. If
c(u, v) = c0{dL(u, v)} depends only on the shortest path distance, we say
that c is isotropic; see Anderes et al. (2017) for a list of isotropic correlation
functions for linear networks. For the spine data, we considered the expo-
nential correlation function, that is,

c(u, v) = exp{−βdL(u, v)}, u, v ∈ L, (D.9)

which is a valid correlation function for any parameter value β > 0 and
any tree network but not necessarily for other kinds of linear networks (see
Section 5 for a comment on this).

We have that E Π(u) = (1 + σ2)−k/2 and

E {Π(u)Π(v)} = {(1 + σ2)2 − (σ2)2c(u, v)2}−k/2,

implying that X has intensity

ρ(u) = (1 + σ2)−k/2ρY(u), u ∈ L, (D.10)

and pair correlation function

g(u, v) =
{

(1 + σ2)2

(1 + σ2)2 − (σ2)2c(u, v)2

}k/2

, u, v ∈ L, u 6= v. (D.11)

If c is isotropic, then g is isotropic and the K-function can be expressed by
(D.2). Closed form expressions of the K-function are given in Appendix A
for c equal to the exponential correlation function and k = 1, . . . , 5.
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Note that for each u ∈ L, σ2 ∑k
j=1 Z2

j (u) in (D.8) follows a σ2χ2-distribution
with k degrees of freedom. That is, the skewness decreases as k increases,
while the range is stretched/compressed depending on the value of σ2. The
larger σ2 is, the more Y is thinned to obtain X and also the more variation
in the thinning probabilities. The pair correlation function in (D.11) is an in-
creasing function of both σ2 and k. When c is given by (D.9), β controls the
correlation of the retention probabilities: the smaller β, the longer range of
correlation in Π and thus larger coherent bare/populated areas in X. Finally,
the pair correlation function decreases towards 1, when β increases.

For the spine data, we still want to model the intensity function by (D.6),
which by (D.10) requires Y to have a similar intensity structure, that is,

ρY(u) = ρ
I(u∈Lm)
Y,m ρ

I(u∈Ls)
Y,s , u ∈ L, (D.12)

for non-negative parameters ρY,m and ρY,s.

Simulation

To perform model checking with global rank envelopes or to carry out simu-
lation studies, we need to be able to simulate point patterns from the model
of interest. Fortunately, it is straightforward to simulate a point pattern on L
from the proposed Cox process model by the following three steps:

(a) Simulate a discretised version of the random field Π by first simulating
the independent Gaussian random fields Zj, j = 1, . . . , k, at chosen grid
locations along the network and then transforming the random fields
according to (D.8) to obtain the retention probabilities.

(b) Simulate a point pattern y from a Poisson process on L with intensity
ρY.

(c) Thin y using the retention probabilities simulated in (a).

Estimation procedure

In the following we describe a procedure for estimating the model parameters
of the proposed Cox process model where. For specificity we consider the
case where c is given by (D.9) and where ρY is given by (D.12).

To begin we assume that k is known, whereas the remaining parameters
are estimated through a two-step procedure (Waagepetersen, 2007; Waagepetersen
and Guan, 2009). In short, we first estimate (ρm, ρs) and then plug in these
estimates in a second-order procedure where (σ2, β) is estimated. Lastly, an
estimate of (ρY,m, ρY,s) can be found by using (D.10).

First, to estimate (ρm, ρs) we use the first order composite likelihood
(Waagepetersen, 2007) which simply corresponds to a Poisson likelihood
yielding the estimates in (D.7).
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Second, as we know explicit formulas for the pair correlation function and
the K-function, we can estimate (σ2, β) using a minimum contrast procedure
(Guan, 2009; Diggle, 2014) or a second-order composite likelihood approach
(Waagepetersen, 2007; Lavancier et al., 2018). The latter is not considered
here but described in Appendix B, where results from a simulation study
comparing the two approaches also can be found. The simulation study
suggests that the minimum contrast procedure provides far more reliable
estimates than the second-order composite likelihood.

For a chosen summary function T(σ2,β) which depends on (σ2, β), the min-
imum contrast estimate of (σ2, β) is given by

(σ̂2, β̂) = arg min
(σ2,β)

∫ ru

rl

{
T̂(r)p − T(σ2,β)(r)

p
}2

dr, (D.13)

where 0 ≤ rl < ru and p > 0 are user-specified tuning parameters, and T̂ is
an empirical estimate of the summary function. In our case, T(σ2,β) is given
by K or g0, and T̂ is given as in Ang et al. (2012). A frequently seen choice
is rl = 0, while general recommendations of ru and p can be found in Guan
(2009) and Diggle (2014) for point patterns on the Euclidean space.

The minimum contrast procedure can easily be extended to include esti-
mation of k too, but a simulation study indicated that it may be difficult to
estimate σ2 and k simultaneously as an increase in k seemingly can be bal-
anced out by an increase in σ2. In practice we may therefore simply make a
choice of k; for simplicity we chose k = 1 in the following. Note that for both
T = K and T = g0 the estimate T̂ in (D.13) depends on the intensity (Ang
et al., 2012); here we simply plug-in the estimated intensity obtained in the
first step of the estimation procedure.

A drawback of using T = g0 is the need of choosing a bandwidth for the
non-parametric kernel estimate ĝ0 presented in Ang et al. (2012). However,
the simulation study in Appendix B suggests that using T = g0 with the de-
fault bandwidth and kernel from the spatstat-package generally performs
better than T = K when fitting the proposed Cox process model. This is con-
sistent with results from a simulation study in Lavancier and Møller (2016)
for point processes on a Euclidean space.

In the simulation study found in Appendix B, we also investigated how
different choices of rl , ru, and p affect the estimates of σ2 and β given by
(D.13). We observed that the choice of ru often is a matter of trade-off between
bias and variance: a large value of ru may entail a large bias, while a small
ru often leads to a greater variance of the estimates. Furthermore, the best
choice of ru seems to be quite depending on what the true underlying model
parameters are. For example, a larger range of correlation in the retention
probabilities, that is, a smaller value of β, requires a larger ru. Naturally we
should also take the size of the network into consideration when choosing
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Dendrite ρ̂Y,m ρ̂Y,s σ̂2 β̂

1 0.312 0.463 0.686 0.037
2 0.275 0.525 1.427 0.020
3 0.328 0.312 5.170× 10−8 30.178
4 0.197 0.701 1.159 0.010
5 0.266 0.413 4.023 0.030
6 0.322 0.474 2.662 0.013

Table D.2: Estimates of ρY,m, ρY,s, σ2, and β for each spine data set.

ru. In the simulation study we found that rl = 0 gives the best estimates,
and that p = 1 or p = 1/2 behave equally well for T = g0, while p = 1/4
is preferred over p = 1/2 for T = K. For parameter values yielding models
close to the Poisson process model, that is, when σ2 is close to zero or β is
large, the estimation procedures were not very successful regardless of the
tuning parameters. This does not come as a surprise as many combinations
of σ2- and β-values yield similar Poisson processes. Lastly, the estimation
procedure seems quite stable with respect to the choice of start parameter
values for the optimisation algorithm (optim in R) used to minimize (D.13).

Model fit and model check

The Cox process model was fitted to each of the spine data sets using the two-
step procedure with k = 1 fixed, cf. Section 4.2. For the minimum contrast
procedure we let T = g0, p = 1, and rl = 0 in accordance with the simulation
results discussed in Section 4.2. Further, we initially let ru = 15 and obtained
a set of initial parameter estimates for each data set. Then we performed
a small simulation study based on 500 simulations from the initially fitted
models to investigate which of ru = 15, 30, 50 results in the best estimates
(in terms of bias and variance) for these specific models. For dendrite 1, 3,
and 6, the initially fitted models are close to the Poisson process case, and as
a consequence the model parameters are hard to estimate regardless of the
choice of ru. However, for dendrite 2, 4, and 5, it seems that ru = 50 is the
best choice. Using ru = 50 for all six data sets, we obtained the parameter
estimates in Table D.2. The fitted model for dendrite 3 is practically a Poisson
process model (in consistency with the conclusions made in Section 4.1) while
the remaining fitted models are not. In Figure D.10 in Appendix C, one
simulation from each of the fitted random fields Π is shown to illustrate
the behaviour of the retention probabilities. For example, σ̂2 is considerably
larger for dendrite 5 than dendrite 1, resulting in more fluctuating retention
probabilities.

As discussed in Section 3.2, for the statistical analyses of point patterns on
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Figure D.3: For each spine data set: the concatenation of F̂, Ĝ, and Ĵ for the spine locations
(black solid line) along with 95% global rank envelopes (grey region) based on 2499 simulations
from the fitted Cox process model; p-intervals for each of the associated global rank envelope
tests are also displayed.
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linear networks there is only a limited number of options for model checking,
especially when the K-function or the pair correlation function have already
been used to estimate the model parameters. One simple option is to look
at simulations from the fitted model as in Figures D.11–D.16 in Appendix C.
Comparing these simulations visually to the observed point patterns, it seems
that the simulations mimic the behaviour of the data quite well. For a more
rigorous model checking, we performed global rank envelope tests with a
concatenation of F̂, Ĝ, and Ĵ as test function, where distances less than 1 µm
were disregarded as discussed in Section 4.1; results are shown in Figure D.3.
Except from dendrite 4, where the data curve for Ĵ falls below the global rank
envelope for some of the smaller r-values, the tests do not reveal any evidence
against the fitted models. However, for some of the dendrites (especially
dendrite 6) the global rank envelopes for the part concerning F̂ and Ĝ are
very wide due to a large variance in the number of points.

5 Discussion

As discussed in Section 4.1, the spines seem to posses a small-scale repulsion,
which was not modelled by the Cox process proposed in Section 4.2. To
accommodate the repulsion, the inhomogeneous Poisson process Y used to
build the Cox process could be replaced by an inhomogeneous and repulsive
point process. The simplest case may be to use a dependent thinning as in a
Matérn hard core process of type I (Matérn, 1960; Matérn, 1986): let Ỹ be an
inhomogeneous Poisson process (with constant intensity on the main branch
respectively the side branches), and let

Y = {u ∈ Ỹ : dL(u, v) > h for all v ∈ Ỹ\{u}},

where h > 0 is a hard core parameter; that is, a point in Ỹ is included in Y if
and only if no other point in Ỹ is within distance h. However, it is doubtful
whether an expression for the K-function or the pair correlation function can
be found for such a Cox process model, posing new challenges with respect
to parameter estimation.

To avoid using the rather ad hoc created summary functions F̂, Ĝ, and Ĵ,
it is needed to develop new summary functions for (inhomogeneous) point
processes on linear networks for which we both have a theoretical interpreta-
tion and an estimate that do not depend on the geometry of the network. We
leave this challenging issue for future research.

Rakshit et al. (2017) discussed the importance of how distance is measured
when analysing point patterns on a linear network and they generalised the
K-function to allow the use of any distance metric. In fact, following Anderes
et al. (2017) all methods as well as Poisson and Cox process models in this pa-
per immediately apply for more general linear networks, called graphs with
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Euclidean edges, when the correlation function c is isotropic with respect to
the shortest path distance as well as another metric called the resistance met-
ric. For the dendrite networks or any other tree network, the resistance metric
is equivalent to the shortest path distance. Anderes et al. (2017) showed that
correlation functions that are isotropic with respect to the shortest path dis-
tance only are guaranteed to be valid for a small class of linear networks,
whereas they are valid for any linear network when considering the resis-
tance metric instead. Thus, depending on the network, it may be preferable
to consider the resistance metric over the shortest path distance when spec-
ifying a correlation function. Anderes et al. (2017) provided a list of valid
isotropic covariance functions for graphs with Euclidean edges.
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A Expressions for K

For the Cox point process presented in Section 4.2 with c equal to the expo-
nential correlation function in D.9, the K-function is

K(r) =
∫ r

0

{
1− exp(−2βt)

(1 + 1/σ2)
2

}−k/2

dt. (D.14)

Let α =
(
1 + 1/σ2)−2, then K(r) is given by

1
β

{
log
(√

e2βr − α + eβr
)
− log

(√
1− α + 1

)}
if k = 1,

1
2β

log
(

e2βr − α

1− α

)
if k = 2,

1
β

{√
e2βr − α log

(√
e2βr − α + eβr)− eβr

eβr
√

1− αe−2βr
+

1−
√

1− α log
(√

1− α + 1
)

√
1− α

}
if k = 3,

1
2β

{
α

α− e2βr −
α

α− 1
+ log

(e2βr − α

1− α

)}
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if k = 4, and

1
β

{
α + e−βr(e2βr − α)3/2 log(

√
e2βr − α + eβr)− 4

3 e2βr
√

1− αe−2βr(e2βr − α)

− log(
√

1− α + 1) +
4
3 − α

(1− α)3/2

}
if k = 5.

B Simulation study concerning estimation proce-
dure

B.1 Second order composite likelihood

In Section 4.2 we fitted the parameters of the Cox process models using a
two step procedure involving a minimum contrast procedure for estimating
σ2 and β. Another option is to consider a second order composite likelihood
approach (adapted from Waagepetersen, 2007, to a point pattern on a lin-
ear network). That is, for an observed point pattern x ⊂ L, the maximum
composite likelihood estimate is obtained by maximizing the log composite
likelihood

CL(σ2, β)

=
6=

∑
u,v∈x

w(u, v) log{ρ̂(u)ρ̂(v)g(u, v)} −
∫

L

∫
L

w(u, v)ρ̂(u)ρ̂(v)g(u, v)dLu dLv,

where w is a weight function and 6= over the summation sign means that
u 6= v. We can for example let

w(u, v) = I(dL(u, v) ≤ r0) (D.15)

for some user specified value r0. To estimate (σ2, β), we either directly max-
imise B.1 or alternatively solve the associated estimating equation obtained
by setting the score equal to 0. The score function is in our set-up given by

∇CL(σ2,β) = (D.16)
6=

∑
u,v∈x

w(u, v)
∇g(u, v)
g(u, v)

−
∫

L

∫
L

w(u, v)ρ̂(u)ρ̂(v)∇g(u, v)dLu dLv.

To improve the composite likelihood estimation procedure, Lavancier et al.
(2018) suggested an adaptive version of D.16 where the weight function w
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depends on the model parameters. We may for example let w be the indicator
function given by

w(u, v) = I

(
|g(u, v)− 1|

M(u, v)
> ε

)
, (D.17)

where M(u, v) = maxs∈{u,v}|g(s, s)− 1| and ε ∈ (0, 1) is a small user-specified
number, e.g. ε = 0.01 or ε = 0.05. Note that for an isotropic correlation func-
tion g(u, v) = g0{dL(u, v)}, we have M(u, v) = |g0(0)− 1|. Another weight
function suggested in Lavancier et al. (2018) is

w(u, v) =

{
exp

[
1/{h(u, v)2 − 1}

]
for − 1 ≤ h(u, v) ≤ 1,

0 else,
(D.18)

where h(u, v) = εM(u, v)/{g(u, v)− 1}.
For approximating the double integral in D.16 (or in the adapted version),

note that this is of the form
∫

L

∫
L f (u, v)dLu dLv. We split up the integration

area into the line segments constituting L, that is,∫
L

∫
L

f (u, v)dLu dLv = ∑
i,j

∫
Li

∫
Lj

f (u, v)dLu dLv.

Note that ρ̂(·) for the spine data is constant on any line segment Li (as the
line segment is either fully contained in Lm or Ls). Further, if L is a tree, w
is given by D.15, D.17, or D.18, and g is isotropic, then f (u, v) = f0{dL(u, v)}
depends only on distance; this will ease the approximation of the integral:

∫
Li

∫
Lj

f (u, v)dLu dLv =


∫ |Li |

0

∫ |Lj |
0 f0(di,j + x + y)dx dy if i 6= j,∫ |Li |

0

∫ |Lj |
0 f0(|x− y|)dx dy if i = j,

where di,j = minu∈Li ,v∈Lj dL(u, v). Each of these integrals can then be approx-
imated by Monte Carlo integration using uniform variables on [0, |Li|] and
[0, |Lj|].

B.2 Simulation study

In the following we describe and summarise results from a simulation study
investigating how well σ2 and β are estimated using either the minimum
contrast procedure with T = K or T = g0 (as described in Section 4.2) or the
adaptive composite likelihood procedure using D.17 or D.18. We considered
the network for dendrite 4 and simulated from the Cox process described
in Section 4.2 with different parameter values given in Table D.3 and when
k = 1 was fixed.
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Run no. σ2 β ρY,m ρY,s p for MCE-g (-K) rl ru (σ2
∗ , β∗)

1 5 0.1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
2 5 0.1 0.8 1.2 0.5 (0.5) 0 30 (0.5, 0.5)
3 5 0.1 0.8 1.2 1 (0.25) 0 50 (0.5, 0.5)
4 5 0.1 0.8 1.2 1 (0.25) 0 20 (0.5, 0.5)
5 5 0.1 0.8 1.2 1 (0.25) 0 30 (3, 0.2)
6 5 0.1 0.8 1.2 1 (0.25) 0 30 (0.2, 3)
7 5 0.1 0.3 0.7 1 (0.25) 0 30 (0.5, 0.5)
8 5 0.1 1 1 1 (0.25) 0 30 (0.5, 0.5)
9 5 0.5 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
10 5 1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
11 1 0.1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
12 1 0.5 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
13 5 0.1 0.8 1.2 1 (0.25) 2 ∗ bw 30 (0.5, 0.5)
14 5 0.1 0.8 1.2 1 (0.25) 0.5 ∗ bw 30 (0.5, 0.5)
15 5 0.1 0.8 1.2 1 (0.25) 2 30 (0.5, 0.5)
16 5 0.1 0.8 1.2 1 (0.25) 0.5 30 (0.5, 0.5)

Table D.3: Overview of runs made in the simulation study for the minimum contrast proce-
dures. Here (σ2

∗ , β∗) denote the start parameters for the optimisation algorithm and bw is the
automatically selected bandwidth used to calculate ĝ in spatstat.

For the minimum contrast procedure we investigated different values of
the tuning parameters ru, rl , and p as well as different start parameters for
the optimisation algorithm, see Table D.3. Here run no. 1 is the reference
run from which one (or two) model or tuning parameters are changed at
the time. For run no. 1, we chose σ2 = 5 and β = 0.1 resulting in a model
rather far away from the case of a Poisson process. Note that decreasing
β will increase the range of correlation in the thinning probability, whilst
increasing σ2 will increase the probability of thinning. Thus a small β and
a large σ2 yield a model very different from the Poisson process. For each
choice of model parameters we simulated 500 point patterns and estimated
(σ2, β) using minimum contrast and for a few selected runs we also estimated
(σ2, β) using the adaptive composite likelihood method.

For the adaptive composite likelihood method the integral in D.16 was
approximated using 106 simulations. Estimates of (σ2, β) were found by min-
imising the length of the score over a 100× 100 grid centred around the true
values of σ2 and β. The finer and broader grid, the better, but as a 100× 100
grid was already quite time consuming we settled with that.
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Results using the minimum contrast procedure

In the following we let MCE-K and MCE-g refer to minimum contrast esti-
mation with T = K and T = g0, respectively.

Histograms of the obtained estimates are shown in Figures D.4–D.7. In
general it seems that MCE-g performs better than MCE-K. For parameter
values that result in models close to the Poisson model, neither of the esti-
mation procedures estimate (σ2, β) successfully. For simulations more dis-
tinguishable from Poisson (as for example run no. 1), the MCE-g gives more
satisfactory estimates.

Neither MCE-g or MCE-K seem to be sensitive to the choice of start pa-
rameters for the reference run. Further, for the reference run it seem that
ru = 20 was the best choice, but in general this depend on the model we are
trying to fit and naturally on the size of the network. The best choice of rl
seem to be rl = 0, while p = 0.25 seems preferable over p = 0.5 for MCE-K,
and p = 0.5 and p = 1 perform equally well for the MCE-g. The choice
of ru seem to be important with respect to bias and variance: a too high ru
may lead to a large bias, while a too smale ru may lead to a large variance in
the estimates. It is therefore recommendable to perform a small simulation
study for the specific network and proposed model at hand, such that the
best choice of ru can be made.

Results using the adaptive composite likelihood

For the CLE procedure we restricted ourselves to a small number of runs
as the grid search was very time consuming. Specifically, we simulated 500
point patterns from the Cox process models with the parameters from run
no. 1, 10, and 11 in Table D.3. For each choice of model parameters we
estimated (σ2, β) using both weight functions and ε = 0.05. Further, we also
ran the CLE procedure with ε = 0.01 for the model parameters from run
no. 1. Figure D.8 shows histograms of the resulting estimates. It is clear
that for all three choices of model parameters the grid should be broader in
order to find the parameter values that give the smallest length of D.16 and
that the estimates are worse than the ones obtained by the minimum contrast
procedures. Finally, there is no seemingly advantage of choosing one weight
function over the other or of choosing ε = 0.01 over ε = 0.05.
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Figure D.4: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated point patterns
of models with parameters no. 1–4 in Table D.3 (one set of parameters for each row, starting with
no. 1 in the top). From left to right: estimates of σ2 and β found by MCE-K (column 1 and 2),
followed by estimates of σ2 and β based on MCE-g (column 3 and 4). Dashed line is the true
parameter value, and dotted line is the mean of the estimates. OBS: the histograms have been
truncated such that estimates above 15 for σ2 (column 1 and 3) and 5 for β (column 2 and 4)
have been omitted in the frequency count; in each histogram it is stated how many values were
discarded.
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Figure D.5: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated point patterns
of models with parameters no. 5–8 in Table D.3 (one set of parameters for each row, starting with
no. 5 in the top). From left to right: estimates of σ2 and β found by MCE-K (column 1 and 2),
followed by estimates of σ2 and β based on MCE-g (column 3 and 4). Dashed line is the true
parameter value, and dotted line is the mean of the estimates. OBS: the histograms have been
truncated such that estimates above 15 for σ2 (column 1 and 3) and 5 for β (column 2 and 4)
have been omitted in the frequency count; in each histogram it is stated how many values were
discarded.
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Figure D.6: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated point patterns
of models with parameters no. 9–12 in Table D.3 (one set of parameters for each row, starting
with no. 9 in the top). From left to right: estimates of σ2 and β found by MCE-K (column 1 and
2), followed by estimates of σ2 and β based on MCE-g (column 3 and 4). Dashed line is the true
parameter value, and dotted line is the mean of the estimates. OBS: the histograms have been
truncated such that estimates above 15 for σ2 (column 1 and 3) and 5 for β (column 2 and 4)
have been omitted in the frequency count; in each histogram it is stated how many values were
discarded.
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Figure D.7: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated point patterns
of models with parameters no. 13–16 in Table D.3 (one set of parameters for each row, starting
with no. 13 in the top). From left to right: estimates of σ2 and β found by MCE-K (column 1 and
2), followed by estimates of σ2 and β based on MCE-g (column 3 and 4). Dashed line is the true
parameter value, and dotted line is the mean of the estimates. OBS: the histograms have been
truncated such that estimates above 15 for σ2 (column 1 and 3) and 5 for β (column 2 and 4)
have been omitted in the frequency count ; in each histogram it is stated how many values were
discarded.
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Figure D.8: Results from simulation study using adaptive composite likelihood: estimates of β
and σ2 for model parameters from run no. 1 (first row), 10 (second row), and 11 (third row) with
ε = 0.05 and run no. 1 with ε = 0.01 (fourth row); see Table D.3. The two first columns display
estimates of σ2 and β (in that order) when using the indicator weight function for the CLE
procedure, while estimates in the two right columns are found using CLE with the exponential
weight function. Dashed line is the true parameter value, dotted line is the mean of the estimates.
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C Analysis of spine locations

This Appendix contains figures related to the analysis of the six spine data
sets. Figure D.9 shows 95% global rank envelopes under the fitted inhomo-
geneous Poisson model using a concatenation of F̂, Ĝ, and Ĵ as test function.
Further, Figure D.10 show one simulation of the fitted random field Π for
each network. Finally, each of Figures D.11–D.16 display the data along with
five simulated point patterns from the fitted Cox process model.
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Figure D.9: For each spine data set: the concatenation of F̂, Ĝ, and Ĵ for the spine locations
(black solid line) along with 95% global rank envelopes (grey region) based on 2499 simulations
from the fitted inhomogeneous Poisson model; p-intervals for each of the associated global rank
envelope tests are also displayed.
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Figure D.10: For each dendrite tree, a simulated realisation of the random field Π determining
the retention probabilities in the fitted Cox process models.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure D.11: Upper left corner: observed spine locations on dendrite 1. Remaining: simulated
point patterns from the fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure D.12: Upper left corner: observed spine locations on dendrite 2. Remaining: simulated
point patterns from fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure D.13: Upper left corner: observed spine locations on dendrite 3. Remaining: simulated
point patterns from fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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C. Analysis of spine locations

Data Simulation

Simulation Simulation

Simulation Simulation

Figure D.14: Upper left corner: observed spine locations on dendrite 4. Remaining: simulated
point patterns from fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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Simulation Simulation

Figure D.15: Upper left corner: observed spine locations on dendrite 5. Remaining: simulated
point patterns from fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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C. Analysis of spine locations

Data Simulation

Simulation Simulation

Simulation Simulation

Figure D.16: Upper left corner: observed spine locations on dendrite 6. Remaining: simulated
point patterns from fitted Cox process model. The simulated retention probabilities used to
obtain the point pattern in the upper right corner are shown in Figure D.10.
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