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ENGLISH SUMMARY 

Phosphorus (P) is a non-renewable resource and should be recovered when possible. One place to recover P 
could be from the digesters in wastewater treatment plants (WWTPs) which, depending on the size of the plant, 
receive large quantities of P each day. Polyphosphate accumulating organisms (PAOs) are organisms utilized 
in the enhanced biological phosphorus removal (EBPR) process in WWTPs and these microorganisms, storing 
P, are transferred from activated sludge and into digesters where P is released.  

In this study it was investigated how the transfer from activated sludge into digesters would affect viability, 
substrate uptake and P release from known PAOs. A mass balance of the P pools found in the WWTPs was 
also conducted to get a better understanding of the P-pools available and an indication of how much of the P 
was stored in known PAOs. This was all done in an effort to better understand and optimize the recovery of P 
from WWTPs. 

The survival of PAOs transferred from activated sludge into mesophilic and thermophilic digesters, was 
investigated with surveys in Danish WWTPs and digesters (Hansen et al., 2019a, 2019b). The surveys 
compared abundance of PAOs and potentially substrate competing glycogen accumulating organisms (GAOs) 
in activated sludge, with the abundance in the associated meso- and thermophilic digesters. The surveys 
showed decrease in abundance in almost all microorganisms investigated with a few exceptions showing a 
small increase in abundance in digesters. To confirm these results, long-term anaerobic batch experiments 
were conducted. Activated sludge high in Tetrasphaera PAO abundance and Ca. Accumulibacter PAO 
enriched sludge, was incubated under conditions mimicking meso- and thermophilic digester conditions and 
the survival of detectable known PAOs and GAOs was investigated using both 16S rRNA amplicon sequencing 
and fluorescent in situ hybridization (FISH). The results showed that Tetrasphaera, Dechloromonas, Ca. 
Accumulibacter and the polyphosphate containing organism Ca. Microthrix all decreased under digester 
conditions, but that 16S rRNA amplicon sequencing detected cells when they could not be detected with FISH. 
Both meso-and thermophilic digester conditions affected the PAOs ability to take up substrate negatively and 
P was released without an apparent uptake of substrate. Especially Ca. Accumulibacter was very sensitive to 
an increase in temperature when transferred to digester conditions and released all P instantly, when transferred 
to thermophilic digester conditions. The studies also showed that higher temperature resulted in faster and 
higher P release and an increased risk of P precipitation after a shorter period of anaerobic incubation. Room 
temperature anaerobic incubation without substrate addition lead to P-release comparable to the those observed 
under digester conditions. Therefore, prolonged anaerobic incubations in storage tanks before digesters should 
be taken into consideration, since it could cause P-release and precipitation in pipes, leading to operational 
problems. From these studies it was suggested that part of the P-recovery from WWTPs could be moved from 
the digesters and into storage tanks, placed before the digester, to minimize precipitation in pipes, precipitation 
in the digesters and increase dewaterability of the sludge before the digester. 

In the P mass balance study (Petriglieri et al., 2019), the different pools of P found in a WWTP was investigated 
and it was found that most P was chemically bound and may not be available for P-recovery. A big fraction of 
the P was also found to be contained as poly-P in PAOs, primarily Ca. Accumulibacter, Tetrasphaera and 
Dechloromonas. Up to 50% of poly-P was stored in microorganisms not yet identified.     
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DANSK RESUME 

Fosfor (P) er en ikke fornybar ressource og bør genindvindes når der er muligt. Et sted P kunne genindvindes 
kunne være fra rådnetanke på renseanlæg som, afhængig af størrelsen på anlægget, modtager store mængder 
af P hver dag. Poly-fosfat akkumulerende organismer (PAOer) er organismer der bliver udnyttet i den 
biologiske forfor fjernelses (EBPR) proces i renseanlæg og disse mikroorganismer, der lagrer P, overføres fra 
aktivt slam til rådnetanke hvor P frigives.  

I dette studie blev det undersøgt, hvordan overførslen fra aktivt slam til rådnetanke ville påvirke overlevelse, 
substrat optag og P frigivelse fra kendte PAOer. En massebalance over de forskellige P fraktioner fundet i 
renseanlæg blev også lavet for at få en bedre forståelse for hvilke fraktioner der var til rådighed og en indikation 
af hvor meget P var opbevaret i kendte PAOer. Alt dette blev gjort for at opnå en bedre forståelse og optimering 
af genindvinding af P fra renseanlæg.  

Overlevelsen af PAOer overført fra aktivt slam til mesofile og termofile rådnetanke blev undersøgt ved 
kortlægning af danske renseanlæg (Hansen et al., 2019b, 2019a). Kortlægningen sammenlignede forekomsten 
af PAOer og potentielt konkurrerende glykogen akkumulerende organismer (GAOer) i aktivt slam med 
forekomsten i efterfølgende meso- og termofile rådnetanke. Kortlægningen viste fald i forekomst ved næsten 
alle mikroorganismer undersøgt med få undtagelser der viste en stigning i forekomsten i rådnetankene. For at 
bekræfte disse resultater, blev lang tids batcheksperimenter udført. Aktivt slam med høj forekomst af 
Tetrasphaera PAO og beriget slam med Ca. Accumulibacter PAO, blev inkuberet under forhold der 
efterlignede meso-og termofile rådnetanks forhold og overlevelsen af kendte PAOer og GAOer blev undersøgt 
med både 16S rRNA amplicon sekventering og fluorescerende in situ hybridisering (FISH). Resultaterne viste 
at Tetrasphaera, Dechloromonas, Ca. Accumulibacter og den polyfosfatholdige Ca. Microthrix alle faldt i 
forekomst under rådnetanks forhold, men at 16S rRNA amplicon sekventering detekterede celler som ikke 
blev detekteret med FISH. Både meso-og thermofile rådnetanks forhold påvirkede PAOers evne til at optage 
substrat negativt og P blev frigivet uden nogen synlig optag af substrat. Især Ca. Accumulibacter var meget 
sensitiv over for temperatur forøgelsen, ved overførsel til rådnetanks forhold og frigav alt P med det samme, 
ved overførsel til termofil rådnetanks forhold. Studierne viste også at højere temperaturer, resulterede i 
hurtigere og højere P frigivelse samt en højere risiko for P udfældning, efter en kortere periode med anaerob 
inkubering. Rumtemperatur anaerob inkubering uden substrat tilsætning førte til P frigivelse der var 
sammenlignelig med dem observeret under rådnetanks forhold og forlænget anaerob inkubering i opbevarings 
tanke før rådnetankene, skal derfor tages med i overvejelserne, da dette kan lede til P-frigivelse og udfældning 
i rør og dermed skabe operationelle problemer. Fra disse studier blev det foreslået at P-genindvinding bør 
flyttes fra rådnetankene hen til opbevaringstankene, placeret direkte efter beluftningstankene, for at minimere 
udfældning i rør, udfældning i rådnetankene og give bedre afvanding af slammet til rådnetankene.  

I P massebalance studiet (Petriglieri et al., 2019), blev de forskellige P fraktioner i renseanlæg undersøgt og 
det meste P fundet som kemisk bundet P og er derfor muligvis ikke til rådighed for genindvinding. En stor 
fraktion af P blev også fundet som poly-P i PAOer, hovedsageligt Ca. Accumulibacter, Tetrasphaera og 
Dechloromonas. Op til 50% af poly-P var i POAer endnu ikke identificeret.                          
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OBJECTIVES OF THE PHD PROJECT 

This project was a part of the ReCoverP project funded by Innovation Fund Denmark and took place from 
2015 to 2019, in cooperation with universities and companies. The overall goal of the PhD project was to 
investigate the fate of known key PAOs when transferred from activated sludge, into meso- and thermophilic 
digesters and what would happen in regard to survival, phosphorus release and activity, with the goal of 
recommending optimization in regard to phosphorus recovery. The different P species in activated sludge was 
investigated to get a better understanding of the different P pools, available for recovery. 

The specific objective of the papers in this thesis: 

 

Paper 1 To describe the fate of known PAOs when transferred from activated sludge to thermophilic 
digesters, and how this affects the survival of the PAOs, the phosphorus release and the activity.  

Paper 2 To describe the fate of known PAOs when transferred from activated sludge and into mesophilic 
digesters, and how it affects the survival of the PAOs, the phosphorus release and the activity.   

Paper 3 To get a better understanding of the phosphorus distribution in activated sludge and elucidate 
how much of the phosphorus could be attributed to known PAOs, unknown PAOs, bound in 
inorganic and organic form.    
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GENERAL INTRODUCTION 

PHOSPHORUS A LIMITED RESOURCE 

Phosphorus is a valuable and limited resource, essential for the production of fertilizer and thereby food. It has 
been pointed out by media and the scientific community, that phosphorus can cause eutrophication in aquatic 
environments when applied to fields, but the coming shortage of fertilizer has not been much debated. Current 
estimates indicate that in 50-100 years all phosphorus that can be extracted from mineswill be used (Cordell 
et al., 2009; Gilbert, 2009; Melia et al., 2017). Another problem is the lack of political control with the 
phosphorus mines, and currently the biggest mines are in Morocco and Western Sahara, with high political 
tension.   

Different initiatives have been suggested to minimize the consumption of phosphorus, these include: banning 
phosphorus in detergents, minimizing food waste, recovering phosphorus from food waste, and recovering 
phosphorus from waste such as wastewater. Recovering phosphorus form wastewater has certain benefits: it 
will help meet legislations, reduce eutrophication in receiving water bodies, may be an income for the 
wastewater treatment plants, and minimize the need for mining of phosphorus.    

Different techniques have been developed to recover phosphorus: sludge can be burned and phosphorus 
recovered chemically, chemicals can be used on the wet sludge, and lastly the sludge can be used directly as a 
fertilizer on the fields (Environmental Protection Agency, 2013). One of the problems with using this fertilizer 
directly on the fields is the risk of polluting the soil with different contaminants: heavy metals, pesticides, 
pharmaceuticals, nanoparticles, hormones, drugs and pathogens. The risk of introducing some of these into the 
fields have led to public concern and in many countries, using sludge as a fertilizer is illegal (Melia et al., 
2017).  

Another way to recover phosphorus from  wastewater centers around the enhanced biological phosphorus 
removal (EBPR) process in combination with utilization of digesters.  

PHOSPHORUS RECOVERY AND SLUDGE HANDLING 

Different approaches are used when it comes to utilizing the phosphorus in wastewater sludge. In Denmark it 
is common practice to use digested sludge from WWTPs as a fertilizer directly on the fields (Jensen and Jepsen, 
2005), but in most countries, such as Germany and the United States, this practice is banned. Rising concern 
regarding ground water pollution and the risk of pathogens and pharmaceuticals in the crops is pressing the 
WWTPs to find other solutions to handle the sludge. In Germany and in WWTPs in Denmark where the sludge 
is considered too contaminated to be distributed on fields, the sludge is incinerated and either used as landfill 
or stored temporarily. Different methods can be used to extract the phosphorus from the ashes including 
chemical extraction and electrical separation (Schaum et al., 2007; Viader et al., 2017). Common for both 
methods is that they require chemicals to dissolve the ashes, which is costly and the methods are not yet ready 
for full scale plants. Enhanced biological phosphorus removal in combination with digesters is another more 
economical way of removing and potentially recovering phosphorus.        
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ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL AND DIGESTERS 

Removal of phosphorus from the liquid phase of wastewater, without use of chemical precipitations, is 
achievable through the enhanced biological phosphorus removal (EBPR) process. In activated sludge, 
microorganisms able to take up and store phosphorus as poly-phosphate, poly-phosphate accumulating 
organisms (PAO), remove the phosphorus from the liquid phase and store it in the biomass. The biomass can 
later be removed and the water discharged to receiving water bodies without the risk of eutrophication. The 
process is an asset to the wastewater treatment plant since it reduces the cost of removing phosphorus from the 
wastewater without the addition of costly chemicals. By trapping phosphorus in the biomass, potential recovery 
of the phosphorus is also possible. It is estimated that 15-25% of the phosphorus demand in Denmark can be 
met if phosphorus was to be recovered from Danish WWTPs (Environmental Protection Agency, 2013).     

The EBPR process utilizes shifts between anaerobic and aerobic zones, to remove P in the liquid phase of 
wastewater (Fig. 1.1).  The anaerobic tank, often placed right after the first settling step, is where PAO take up 
volatile fatty acids (VFAs) and replenish polyhydroxyalkanoate (PHA) storage. In the subsequent aerobic tank, 
PHA is converted to energy and poly-P and glycogen is formed. After secondary settling, some of the P-rich 
sludge is transported back to the anaerobic tank, to seed with PAO, and the rest is transported to the anaerobic 
digester.   

 

Figure 1.1: Schematic overview of a WWTP. 

Anaerobic digestion is a process in which sludge is stabilized, the sludge volume is reduced, and biogas is 
produced (Nizami, 2012). It also helps reduce the amounts of pathogens in the sludge and reduce odors (Appels 
et al., 2008). When sludge from the EBPR process is transferred to the digester, P is transferred from the 
biomass into the liquid phase, which results in reject water with high phosphorus content (Xavier et al., 2014). 
The reject water can then be used in commercial processes, which extract the phosphorus and produce products 
that can be sold by the WWTPs, creating value (further described on page 30).  
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PAOS, GAOS AND PHOSPHORUS RECOVERY 

Two of the most studied types of microorganisms related to the EBPR process are PAOs and the glycogen 
accumulating organisms (GAOs). PAO are responsible for the removal of P from the liquid phase of 
wastewater in the EBPR process and take up different substrates such as VFAs to facilitate the uptake of P. 
GAO do not take up P and store it as PAOs, but they do utilize some of the same substrate as PAO and could 
therefore be competing with PAO. The effect of transferring PAOs and GAOs from the EBPR process into 
digesters has not been studied and the effect on survivability, substrate competition, and P-release could be 
important for optimal P-recovery from digesters.   

POLYPHOSPHATE ACCUMULATING ORGANISMS 

The classic definition of a PAO is a microorganism able to take up P and store it as poly-P under aerobic 
conditions and under anaerobic conditions take up organic carbon from the liquid phase and store it in the form 
of PHA, with the energy from poly-P and glycogen consumption (Comeau et al., 1986). It has now been 
suggested that some PAO are able to ferment substrates more complex than VFAs and they have been termed 
fermenting PAO (fPAO) (McIlroy et al., 2018a). These microorganisms are the workhorses of the EBPR 
process and how they function is of great importance when discussing EBPR and later recovery of P from 
digesters.  

PAO METABOLISM 

 

 

 

 

 

 

Figure 2.1: Simplified model of fPAO and PAO interaction and metabolism. Inspired by (Nielsen et al., 2019). 

In the WWTP classic-PAOs take up carbon substrates under anaerobic conditions, in the form of e.g. simple 
VFAs and store them as intercellular storage compounds. These compounds known as PHAs are polymers 
produced under anaerobic conditions when carbon sources are plentiful (Mino et al., 1998). The amount of 
polymer stored in the cells varies between 30-80% of the total dry weight of the cells (Brandl et al., 1990) and 
the type of PHA produced is dependent on the type of substrate available and the PHA synthase present in the 
microorganism. The presence of PHA in a cell can be examined using Nile Red for staining and visualization 
by microscopy (Spiekermann et al., 1999) and Raman spectroscopy can be used to quantify the amount of 
PHA in the cell (Fernando et al., 2019a). The most studied and simplest PHA is poly-β-hydroxybutyrate (PHB) 
(Khanna and Srivastava, 2005), which is formed from two acetyl-CoA molecules and the second simplest 
molecule is polyhydroxyvalerate (PHV) formed from one molecule acetyl-CoA and one molecule propionyl-
CoA (Mino et al., 1998). The energy needed for the transformation of substrate into PHA comes from the 
consumption of poly-P and partly from the degradation of glycogen.      
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The pathway used for reducing power for the formation of PHA has been discussed for some years, and is still 
ongoing. The two original models used, the Comeau/Wentzel model (Comeau et al., 1986; Wentzel et al., 
1986) and the Mino model (Mino et al., 1987) have discussed whether the tricarboxylic acid cycle (TCA) cycle 
is active under the process. The Comeau/Wentzel model suggested that the TCA cycle was actively used, while 
Minos model suggested that the TCA cycle was inactive, and that reducing equivalents were made from 
degradation of glycogen. Later research have confirmed that glycogen is used, but that some organisms may 
be able to utilize the TCA circle fully, partially, or in split mode (He and McMahon, 2011). 

The pathway which has been used for the production of reducing equivalents through glycogen has also been 
discussed. The two pathways suggested have been the Embden–Meyerhof–Parnas (EMP) pathway and the 
Entner Doudoroff (ED) pathway. The amount of energy produced from the two pathways differ, EMP (3 ATP) 
and ED (2 ATP), and the pathway available will have impact on the amount of energy available for the cell 
(He and Mcmahon, 2011).  

The ability to transport acetate into the cells at the cost of P comes from the presence of P transporters. The 
inorganic phosphate transporter (Pit) is a transporting protein, which sends P over the cell membrane along 
with a stabilizing metal ion (Mg2+) and a proton (H+). This generates a proton motor force (PMF) that can be 
used for the transport of acetate into the cell. Another way to transport P in and out of the cell is through the 
high affinity specific phosphate transport system (Pst). The Pst system is composed of several proteins and 
requires ATP to transport P, it is a far more complex system than the Pit transporter  (Hendrik, 1997; Saunders 
et al., 2007). 

As PAO is transferred to anoxic/aerobic conditions, the PHA stored under anaerobic conditions is oxidized to 
produce ATP and the energy from ATP is used for production of biomass and replenishment of poly-P and 
glycogen (Smolders et al., 1994). 

DIFFERENT PAOS 

Candidatus Accumulibacter is an example of a classical PAO, which has been believed to be responsible for 
most of the P removal in EBPR systems. Ca. Accumulibacter is able to take up substrates such as acetate, 
propionate, pyruvate, glutamic acid, store them as PHA and form glycogen (Kong et al., 2004). The limited 
number of substrates Ca. Accumulibacter is able to take up makes them dependent on other microorganisms 
able to ferment, such as Tetrasphaera. Ca. Accumulibacter has been reported to be present in EBPR systems 
in different abundance, from 1.0-10.8% of bio-volume in Danish WWTPs (Nielsen et al., 2010) to 13-18% in 
Australian EBPR systems (Zilles et al., 2002). The difference in Ca. Accumulibacter abundance could be found 
in the use of different probes for FISH, and it is recommended that the genus FISH probe PAO651 is used, 
since overestimation of Ca. Accumulibacter has been attributed to the traditional probes PAOmix also targeting 
the GAO Propionvibrio (Albertsen et al., 2016; Gregory R. Crocetti et al., 2000). Ca. Accumulibacter has been 
separated into two major groups (I and II) based on the sequenced polyphosphate kinase 1 (ppk1) gene (He et 
al., 2007). These two genotypes are suggested to be able to take up P along with doing denitrification. Clade I 
is only able to reduce nitrate along with taking up P, while clade II is able to convert nitrite and take up P.   
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Figure 3.1: FISH image of Ca. Accumulibacter. Orange cells are Ca. Accumulibacter and green cells are other cells in 
the biomass.   

Tetrasphaera is a non-classical PAO able to store phosphate, but does not produce the storage compounds 
PHA and glycogen (Fernando et al., 2019a). In Danish WWTPs Tetrasphaera is the most abundant PAO and 
is observed to constitute up to 20-30% of the microbial community based on both amplicon sequencing and 
FISH analysis (Herbst et al., 2019; Kristiansen et al., 2013). In a survey of 32 full-scale EBPR plants, divided 
over 32 countries, it was shown that Tetrasphaera was more abundant than Ca. Accumulibacter in most plants 
(Nielsen et al., 2019). Tetrasphaera is able to ferment (Herbst et al., 2019) and could be producing products, 
e.g. acetate, that could be used by classic PAOs such as Ca. Accumulibacter (Nielsen et al., 2010). 
Tetrasphaera also have the advantage over classic PAO that they are able to grow under anaerobic conditions 
(Nielsen et al., 2019). Substrates that Tetrasphaera is able to take up include amino acids and glucose (Ricardo 
Marques et al., 2017). Besides being able to ferment, Tetrasphaera is different from classic PAO in its lack of 
storage compounds. Tetrasphaera is not able to store PHA (Kong et al., 2005) and they do not store glycogen, 
even though they have the metabolic potential for it (Fernando et al., 2019a). Tetrasphaera has, like Ca. 
Accumulibacter, the genetic potential to do nitrification (Kristiansen et al., 2013; Marques et al., 2018).  
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Figure 4.1: FISH image of Tetrasphaera cells. Orange cells are Tetrasphaera and green cells are other cells in the 
biomass. 

Other putative PAO include Dechloromonas, Tessaracoccus, Candidatus Obscuribacter and Microlunatus. 
Dechloromonas and Tessaracoccus are often found in rather high abundance in WWTPs (Nielsen et al., 2019; 
Stokholm-Bjerregaard et al., 2017). 

Another microorganism that is not considered a PAO, but is taking up P, is Ca. Microthrix. Ca. Microthrix is 
a filamentous bacteria often associated with foaming and bulking problems in WWTPs (Rossetti et al., 2005). 
Ca. Microthrix store poly-P but they do not cycle it under anaerobic/ aerobic conditions like PAOs. It has been 
suggested that Ca. Microthrix use it to supply energy under anaerobic conditions for the uptake and storage of 
lipids  (Blackall et al., 1995; McIlroy et al., 2013). Other microorganisms could potentially be storing P, but 
these are so far unknown.  
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Figure 5.1: FISH image of Ca. Microthrix cells. Orange cells are Ca. Microthrix and green cells are other cells in the 
biomass.   

GLYCOGEN ACCUMULATING ORGANISMS 

Microorganisms able to take up glycogen and other substrates found in the WWTP, but not cycle P are known 
as glycogen accumulating organisms (GAO). These microorganisms do not store poly-P, cannot make a PMF 
from transporting P out of the cells, and therefore get most of their energy from glycogen (Oehmen et al., 
2007). It is believed that these microorganisms are competing with PAO for substrate and could potentially 
take important substrate from PAO in the digesters, if both PAO and GAO survive the transition to digesters, 
thereby minimizing the amount of substrate ready to be traded for internal poly-P. 

 

GAO METABOLISM 

 

 

 

 

Figure 6.1: Simplified model of fGAO and GAO interaction and metabolism. Inspired by (Nielsen et al., 2019). 
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Besides the lack of poly-P accumulation, GAO metabolism is very similar to PAO metabolism. Under 
anaerobic conditions VFAs e.g. acetate is taken up and transformed into acetyl-CoA along with the degradation 
of glycogen to produce propionyl-CoA. These two compounds are condensed and transformed into PHA (Zeng 
et al., 2002). Under aerobic conditions PHA is oxidized, glycogen in restored and biomass is produced (Liu et 
al., 1994; Zeng et al., 2003). The lack of poly-P storage in GAO make them unable to utilize it for building up 
a PMF, this is instead done by efflux of protons through ATPase in the membrane (Saunders, 2005).    

DIFFERENT GAOS 

A survey carried out by Nielsen et al., (2019), shows the abundance of different GAOs, distributed over 12 
countries and 5 continents. The two genera Micropruina and Defluviicoccus were most abundant, with Ca. 
Competibacter coming in at fourth place. The genus Competibacter is a classic GAO able to store both PHA 
and glycogen (Kong et al., 2006; Oehmen et al., 2004). Studies do not seem to agree on the use of the EMP 
pathway for glycolysis or the ED pathway. A newer study by Mcilroy et al., (2013) have shown that some Ca. 
Competibacter species have the genomic potential to use both the EMP and the ED pathway, but that some 
genes for the transformation of products from the glycogen catabolism to the start products in the ED pathway 
was missing. Further studies using e.g. proteomics are needed to elucidate this.  

Micropruina, the most abundant GAO in Danish WWTPs, is a fermenting GAO with the ability to take up 
sugars and amino acids and produce VFAs such as acetate and lactate, that can be used by non-fermenting 
GAO and PAO. Like the fermenting PAO Tetrasphaera it does not store PHA and glycogen (McIlroy et al., 
2018b). It is able to utilize acetate, propionate, pyruvate, and succinate and grow at 20-30°C (Shintani et al., 
2000).  

Defluviicoccus is the third most abundant GAO in Danish WWTPs with an average relative 16S rRNA 
abundance of 0.5%, but was found to constitute up to 13% (Stokholm-Bjerregaard et al., 2017). Defluviicoccus 
is able to produce PHA and glycogen and is able to take up acetate and glucose (Burow et al., 2007; Nobu et 
al., 2014; Wong and Liu, 2007). Several studies have shown Defluviicoccus present in failing EBPR systems 
and even though most Defluviicoccus clusters are tetrad forming organisms (TFO), cluster III have been shown 
to form filaments and could potentially be causing foaming problems in digesters (McIlroy and Seviour, 2009; 
Nittami et al., 2009). Ca. Propioninvibrio was determined to be a GAO in the study by Albertsen et al., (2016). 
Ca. Propionivibrio is a classic GAO able to synthesize both glycogen and PHA. It has a fermentative 
metabolism and is able to produce both acetate and propionate. In activated sludge they have been shown to 
constitute up to 3% of the bio-volume measured with FISH and up to 0.3% relative abundance measured with 
16S rRNA amplicon sequencing, in a survey of 12 different countries (Nielsen et al., 2019). Ca. Propionivibrio 
may have caused overestimation of the PAO Ca. Accumulibacter, since the two 16S rRNA gene sequences are 
97% identical. This has caused FISH probes meant for Ca. Accumulibacter to hybridize with Ca. 
Propionivibrio, and Ca. Accumulibacter has thus been overestimated (Albertsen et al., 2016). 

PAOS IN DIGESTERS 

How PAOs react to the transfer from activated sludge and into digesters will potentially affect how much P is 
available for recovery from the digesters. Not many studies have been carried out regarding PAOs in digesters 
Kirkegaard et al. (2017) did a survey of 32 full-scale mesophilic and thermophilic digesters in Denmark and 
could show that PAO Tetrasphaera, along with poly-P containing Ca. Microthrix, was present in high 
abundance in the digesters. They also showed that digesters with thermal pre-treatment did not contain these 
microorganisms, indicating that they are not native to digesters but were coming with the feed. Findings in this 
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study (Hansen et al., 2019a, 2019b) supported these results and showed that both Tetrasphaera and Ca. 
Microthrix decreased in abundance when activated sludge was exposed to digester conditions. There was some 
discrepancy between 16S rRNA amplicon results and FISH results, where amplicon results showed positive 
signal under thermophilic digester conditions for both Tetrasphaera and Ca. Microthrix, but no signal was 
observed with FISH. The same trend was observed with Ca. Accumulibacter at thermophilic temperature 
(Hansen et al., 2019a) and it was seen that the signal from Ca. Accumulibacter disappeared when anaerobic 
sludge was added to the activated sludge, indicating that the signal observed with amplicon sequencing was 
from DNA contained in dead cells or free DNA that could be digested by anaerobic microorganisms. This 
finding stresses the importance of validating the amplicon results with other methods such as FISH.  

Regarding PAO activity in the digesters, no apparent substrate uptake could be seen with the release of P in 
these experiments (Hansen et al., 2019b, 2019a). This would indicate that the PAO are not actively cycling P 
for substrate, but releasing the P either as a stress response or as they are dying and being degraded.   

 

ACTIVATED SLUDGE COMPOSITION AND DIGESTER TRANSFORMATIONS 

The quantity of  P available for recovery is dependent on many factors with the first being how much P is 
present in the sludge. In incoming wastewater the concentration of P can range from 6-25 g P/ m3 and is up-
concentrated in the activated sludge and the digesters (Mogensen and Comeau, 2008). In Table 1.1 the amount 
of P found in activated sludge in four different EBPR plants in Denmark is listed and varies between 36-50 
mg P/ g SS (Petriglieri et al., 2019). And the amount of P found in digester supernatant can vary between 15-
300 g P/ m3 (Mogensen and Comeau, 2008).  

 

Table 1.1: Concentration of total-P and Mg in activated sludge in Danish EBPR systems (unit in mg/ g SS). Modified 
from (Petriglieri et al., 2019). 

WWTP Total-P Mg 
Lynetten 37.10 ± 1.74 13.44 ± 1.55 

Ejby Mølle 35.85 ± 2.87 10.18 ± 1.92 
Viby 45.18 ± 2.26 8.64 ± 0.28 

Aalborg West 49.68 ± 1.89 14.09 ± 0.43 
 

The amount of P being stored in the activated sludge also depends on the abundance of PAO and which PAOs 
are present in the activated sludge. From this study is was shown that up to 50% of P was found in known 
PAOs while some PAO are still unknown and further research is needed. It was also shown that up to almost 
60% of P is stored as inorganic P, and may therefore not be available for recovery.  
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PHOPHORUS RECOVERY SETUP 

When the activated sludge enters the digester (mesophilic and thermophilic) P is released from the PAOs 
transferred from the activated sludge, and the released P is then available to react with other chemical 
components in the digesters (Hansen et al., 2019b, 2019a). Under the right conditions P reacts in equal parts 
with magnesium (Mg2+) and ammonium (NH4) to form struvite (MgNH4PO4‧6H2O). Different commercial 
setups are available for P recovery from digesters and many produce stuvite as a final product (Table 1.2).   

 

Table 2.1: Commercial systems used for recovery of P from digester reject-water. Adjusted from (Environmental 
Protection Agency, 2013). 

Process name Product Placement of unit 
NuReSys® Struvite fertilizer After digester 
Ostara’s Pearl® 
process 

"Crystal Green®" 
fertilizer 

After digester 

Phosnix® Struvite fertilizer After digester 
Airprex® Struvite fertilizer After digester 

 

The commercial setups have the drawback that the unit for recovery is placed after the digester. As was showed 
in (Hansen et al., 2019a, 2019b), this is not the optimal place to recover P, with problems such as increased 
risk of struvite precipitation in the digesters.  From this study, it is suggested that a storage tank is placed right 
after the aeration tank and that activated sludge is stored under anaerobic thermophilic conditions a week or at 
20°C for more than 3 weeks, before reject water is removed, for partial P recovery and dewatered sludge is 
moved to digester for further degradation and P-recovery. 
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CONCLUSION AND FUTURE PERSPECTIVES 

From this PhD study, new knowledge was obtained on PAOs essential for the EBPR process and how transfer 
into meso- and thermophilic digesters affected survival, P-release, and substrate uptake. P-mass balances on 
PAO in the WWTPs was also conducted: 

• Survey of mesophilic digesters in Denmark showed that PAOs and GAOs coming with the feed into 
the digesters do not survive. This was supported by the study of Hansen et al., (2019b) that showed a 
decrease in the PAOs investigated under mesophilic conditions with both 16S rRNA amplicon 
sequencing and FISH analysis.  

• For the survey of Danish thermophilic digesters it was found that all PAO and GAO died upon entering 
the digesters, confirmed with results from Hansen et al., (2019a).  

• In mesophilic batch experiment, it was shown that some PAO such as Tetrasphaera was able to 
withstand the increased temperature for some time and intact cells could still be found after almost 2 
weeks of anaerobic storage. Other PAO such as Dechloromonas and Ca. Accumulibacter quickly 
decreased in abundance and was not detectable with FISH. In regard to P-release and substrate uptake, 
PAOs were not taking up acetate and P was released slowly as cells were degraded. Other P-containing 
species such as Ca. Microthrix were also observed to decrease in abundance through the experiment.  

• In thermophilic batch experiments PAO were all dying and intact cells were not detected at day 2 of 
the experiment. Ca. Microthrix was also observed to quickly decrease in abundance.   

• From the survey of mesophilic and thermophilic digesters, GAO was seen to decrease in abundance 
when going from activated sludge to digesters. The only GAO showing an increase in abundance was 
Micropruina. The increase in relative abundance could not be confirmed in the batch experiment, due 
to low abundance.  

• In Hansen et al., (2019a, 2019b), it was showed that free DNA in samples can be a problem since 
methods such as 16S rRNA amplicon sequencing may sequence fragments of free DNA and give a 
positive signal for organisms not present as living cells. Other methods such as FISH should be used 
to verify the presence of whole cells, but to ensure that cells are still active, other methods such as 
microautoradiography - fluorescent in situ hybridization should be applied.    

• From the P-mass balance it was found that a large fraction, almost 50%, of Poly-P is stored in PAOs 
still not identified. Up to 60% of total P was also found as inorganic P and may therefore not be 
available for P-recovery.  
  

When designing WWTPs for the recovery of P, one should take into account the abundance of different 
key PAOs. From the study it was shown that P is released from the PAO under all conditions and that 
incubation time is key. If storage is needed before sludge enters the digesters, recovery of P could be done 
directly after the storage tank, before sludge enters the digester. If sludge is transported directly into 
digesters, the abundance of different PAOs should be taken into account along with the temperature of the 
digester. The P-mass balance showed that a large fraction of PAOs are still uncharacterized and further 
studies need to be conducted to identify them. This study also shows that 16S rRNA results should be 
supported by other independent techniques, such as FISH, to eliminate false positives from free DNA or 
DNA in dead cells.
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