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ENGLISH SUMMARY 

Cancer patients are associated with a greater risk of developing venous 

thromboembolism (VTE) than the general population. Multiple myeloma (MM) is a 

cancer that forms in the bone marrow and terminates in an increased VTE-risk. Its 

asymptomatic precursor, also known as monoclonal gammopathy of undetermined 

significance (MGUS), also have an increased VTE risk, although with slightly 

reduced intensity. The underlying mechanisms required to elucidate the amplified 

thrombosis formation lacks a conversant understanding, but may include increased 

levels of blood inflammatory and coagulation factors, hyperviscosity, acquired 

activated protein C resistance, and treatment.  Recently, extracellular vesicles (EVs), 

small submicron particles with a lipid bylayer released from various cells, have been 

found to carry procoagulant phospholipids (PPL) and tissue factor (TF), the main 

initiator of the coagulation system. Investigation of EVs and their potential role in 

hemostasis is challenging due to their size and heterogeneity and they have proven 

difficult to isolate and analyze without interference from other blood components. 

Limited knowledge exists on the potential role of EVs in the disease-related VTE-risk 

of MM and MGUS. Therefore, this thesis focused on three studies, where 

hypercoagulability in MM and MGUS was evaluated, and a prospective model for 

investigation of procoagulant EVs were optimized and applied. 

In sudy 1, we document hypercoagulability in platelet-free plasma from both MM and 

MGUS patients, where thrombin generation, PPL activity, and microvesicle-

associated TF activity are increased. Some of the MM patients also exhibited 

increased levels of cell-free deoxyribonucleic acid indicative of neutrophil 

extracellular trap formation. Thrombin generation did not reveal any clear changes 

during and after anti-myeloma treatment. In study 2, we optimized a model for 

isolation of EV subpopulations from healthy subjects through differential 

ultracentrifugation and subsequent investigation of their procoagulant properties. We 

demonstrated that the isolated EVs were capable of increasing thrombin generation 

and PPL activity. In study 3, we identified increased levels of different EV 

subpopulations in MM patients. We found elevated TF and PPL activity related to 

EVs, possibly the larger microvesicles, in MM patients compared to healthy controls. 

After the first course of treatment, the procoagulant effect of the EVs diminish, 

especially in the patients eligible for high-dose chemotherapy with autologous stem 

cell support. 

The results presented in this thesis contribute to the standardization of methods, 

together with its related analytical pitfalls, related to the investigation of procoagulant 

EVs. Our studies contributes to the understanding pertaining to the the complexity of 

the hypercoagulability associated with MM and MGUS, and, along with other 

scientific contributions, address the possible need for personalized 

thromboprophylaxis in MM. We highlight the potential role of procoagulant EVs in 
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this disease-related hypercoagulability and perhaps in the increased VTE-risk that 

MM patients hold. 
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DANSK RESUME 

Det er kendt, at patienter med kræft i noget hyppigere grad udvikler venøs 

tromboemboli (VTE) end den generelle befolkning. Myelomatose (MM), er en 

kræftsygdom i knoglemarven, som øger risikoen for at udvikle VTE markant. 

Monoklonal gammopati af ukendt signifikans (MGUS), et asymptomatisk forstadie 

til MM, har ligeledes en forøget risiko for udvikling af VTE, dog ikke i lige så høj 

grad. Nogle af de mulige mekanismer, der er med til at forårsage den øgede 

trombedannelse, inkluderer øgede mængder af blodets inflammations- og 

koagulationsproteiner, hyperviskositet, aktiveret protein C resistens og anti-

myelomatosebehandling. I de seneste år har der været en stigende interesse i 

ekstracellulære vesikler (EV), som er små partikler, der udskilles af flere forskellige 

celletyper. EVs har en dobbelt lipidmembran og det har vist sig, at de er bærere af 

prokoagulante fosfolipider (PFL) og proteinet tissue factor (TF), som er den primære 

igangsætter af koagulationssystemet. Undersøgelsen af EV og deres potentielle rolle 

i hæmostase er udfordrende af natur pga. deres størrelse og heterogenitet. De er tilmed 

svære at isolere og analysere uden interferens fra andre af blodet komponenter. Meget 

lidt er beskrevet omkring EV og deres mulige rolle i den sygdoms-relaterede risiko 

for VTE i MM og MGUS. Dette ph.d.-projekt er baseret på tre studier, hvor vi 

undersøgte hyperkoagulabilitet i MM og MGUS samt optimerede og andvendte en 

model til undersøgelse af prokoagulante EV.   

I studie 1 fandt vi tydelige tegn på hyperkoagulabilitet i trombocyt-frit plasma fra både 

MM og MGUS patienter. Dette omfatter øget trombingenerering, PFL-aktivitet og 

mikrovesikel-associeret TF-aktivitet. Nogle MM patienter havde også et øget niveau 

af celle-frit deoxyribonukleinsyre, hvilket kan antyde dannelse af neutrofile 

ekstracellulære fælder. Behandling af myelomatose syntes ikke have nogen tydelig 

indflydelse på trombingenereringen. I studie 2 optimerede vi en model til at isolere 

EV fra raske kontrolpersoner ved brug af differential ultracentrifugering med henblik 

på videre undersøgelse af deres prokoagulante egenskaber. De isolerede EV viste sig 

egnede til at fremme både thrombingenerering og PFL-aktivitet. I studie 3 

identificerede vi forskellige populationer af EV i MM patienter. De isolerede EVs, 

mestendels de større af slagsen, fra MM patienter viste sig at fremme TF- og PFL-

aktivitet i modsætning til EV fra raske kontrolpersoner, der ingen effekt havde. Efter 

første behandling reduceredes den prokoagulante effekt af EV, specielt i den gruppe 

af MM patienter, der var egnede til højdosis kemoterapi med stamcellestøtte. 

Resultaterne i denne ph.d.-afhandling bidrager til standardiseringen af metoder til 

undersøgelse af prokoagulante EV og de problemstillinger der følger med disse. Vores 

studier bidrager også til forståelsen af den kompleksitet den hyperkoagulabilitet, som 

MM og MGUS associeres med, og kan, sammen med andre videnskabelige bidrag, 

ydermere adressere det potentielle behov for personaliseret tromboseprofylakse i 

MM. Vi belyser samtidig de prokoagulante EV’s rolle i den sygdomsrelaterede 
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hyperkoagulabilitet og muligvis i den øgede risiko for tromboser, som MM patienter 

har. 
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Reading guide 

Three papers are listed on the following page, which is the product of the three studies 

that was intended for this Ph.D thesis. This page is followed by an Abbreviations list 

that summarizes all the abbreviations introduced in parantheses throughout the thesis. 

The chapters 1, 2 and 3 will cover the fundamental background and topics related to 

the three papers. Chapter 1 provides for a description of the patient groups 

investigated in this thesis, namely multiple myeloma and its precursor monoclonal 

gammopathy of undetermined significance. Chapter 2 describes hemostasis and the 

underlying mechanisms that may lead to thrombosis due to the comorbidity of both 

multiple myeloma and monoclonal gammopathy of undetermined significance. 

Chapter 3 introduces extracellular vesicles and their emerging role as important 

‘players’ in coagulation and potential contributors to thromboembolic complications 

in pathological conditions such as cancer. 

The hypotheses and aims of the three studies of the thesis are introduced in Chapter 

4 and the methodological setup behind the studies are elaborated in Chapter 5. 

The outcomes of each study are summarized in short in Chapter 6 with referral to the 

papers attached in the Appendix section. Chapters 7 and 8 unfolds in a discussion of 

the scientific and clinical outcomes of the thesis and ends in a conclusion. 

At the end of Chapter 9 with perspectives, there is a full list of references.  
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Chapter 1. Multiple myeloma 

Plasma cell disorders 

The term plasma cell disorders refers to a group of disorders characterized by 

disproportionate proliferative growth of one clonal plasma cell1. A product of the 

clones is abnormal monoclonal proteins secreted in excess. The abnormal proteins are 

the second common denominator for the plasma cell disorders, and are often, referred 

to as paraproteins or M-proteins. The M-proteins are detectable in the blood and urine 

as either monoclonal intact immunoglobulins, immunoglobulin fragments and/or free 

light and/or heavy chains. The severity of gammopathies vary from completely benign 

to malignant conditions, which can be asymptomatic or (more or less) symptomatic 

diseases1. The benign version of the disorders is the asymptomatic and mostly non-

progressive condition called monoclonal gammopathy of undetermined significance 

(MGUS). Malignant plasma cell disorders are categorized as either asymptomatic or 

symptomatic, but both are progressive stages. Smouldering myeloma is 

asymptomatic, but the plasma cell clones have evolved into an aggressive subtype. If 

the clones further evolve, the disease progresses to the stage of symptomatic and more 

aggressive version called multiple myeloma (MM) requiring treatment. Ultimately, 

and only in rare occasions, the multiple myeloma may evolve into the most malignant 

stage of plasma cell leukemia2. 

Epidemiology 

MM is a relatively uncommon form of cancer and for normal individuals, the average 

lifetime risk of developing MM is below 1%. However, in some parts of the world, 

ethnicity is a major contributor to increased risk of MM3. It is the second most frequent 

cancer of the hematological cancers, where it comprises approximately 10-20% of all 

new cases4,5. In 2016, it was estimated that approximately 25,000-30,000 new cases 

of MM will be detected annually6–8. In a worldwide perspective, MM is accountable 

for roughly 1% of all new cases of cancer per year and is the cause of 1% of all cancer-

related deaths each year9. Age is a risk factor for MM and therefore it is a disease of 

the elderly, where the representative median age is between 65 to 70 years6,10. It 

seldom occurs in people less than 30 years of age3,11. The prevalence of MM is 

expected to escalate over time, since the life expentacy of the general population will 

increase12. Other known risk factors are family history of multiple myeloma or a 

personal history of MGUS. Immunodeficiency and autoimmune diseases have also 

been suggested as other risk factors, but the underlying data is contradictory and the 

coherence is left unresolved13. In 99% of the cases, MM is preceded by the 

premalignant MGUS disorder14. MGUS is a rather common condition and accounts 

for more than 3% of the general white population with an age of 50 years or more15. 

Although patients with MGUS do not require treatment, they may be at continuous 
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risk of progression. Each year, 1% progress, usually to one of several malignant 

conditions that require treatment, among these are MM16,17.  

Pathophysiology/Pathogenesis 

MGUS resembles MM by having clonal plasma cells infiltrating the bone marrow and 

secrete M-proteins into the blood, however, to a much lesser extent1. The multistep 

process leading MGUS to MM is complex and even though the etiology on some 

points are well-documented, it is poorly understood on others. The transition into MM 

requires several oncogenic events to occur in both the plasma cells and in the bone 

marrow microenvironment. These events include cytogenetic alterations that promote 

e.g. immunoevasion, drug resistance, increased osteolytic activity, dysregulation of 

the cell cycle, and apoptosis18–22. The stage of MM is chacterized as a clonal B-cell 

neoplasm, where terminally differentiated monoclonal B-cells, i.e. the clonal plasma 

cells, undergo clonal expansion and invades the bone marrow at multiple sites (hence 

the name). Here, they continue proliferating and secreting increased levels of M-

proteins23–26.   

Clinical features and diagnosis 

The diagnosis of MGUS and MM is based on three criteria: concentration of M-

protein in the blood, the amount of clonal plasma in the bone marrow, and the extent 

of organ damage. Bone pain is the one of the most common features of MM affecting 

more than 70% of the patients. The pain arises from osteolytic lesions and increased 

bone breakdown propagated by the cancerous plasma cells that secretes factors that 

activate the osteoclasts to break down the bone faster than normal, thus skewing the 

bone remodeling balance27,28. In the aftermath of increased bone breakdown, 

hypercalcemia arises. Hypercalcemia is a common complication in MM at diagnosis, 

but this frequency has recently decreased probably due to a faster and earlier 

diagnostic approach10,29. Hypercalcemia can lead to renal insufficiency, which occurs 

in approximately one out of four patients. It has been documented that free light chain 

proteinuria can also contribute to this30. Another common clinical feature of MM is 

anemia that is evident in 40-70% of MM cases10,31. The anemia can in part be 

attributed to the invasion of plasma cells in the bone marrow, but also be due to 

changes in the cytokine environment, resulting in impaired erythropoiesis32. MM 

patients are at increased risk getting infections, mainly due to 

hypogammaglobulinemia and renal insufficiency33,34. It has been reported that 

infection is responsible for approximately half of the MM-related deaths35. Other 

clinical features may include amyloidosis and protein loss, especially albumin. 

Suspicion of MM should be aroused when a patient present with one or more of the 

above mentioned clinical features. Particularly hypercalcemia, renal insufficiency, 

anemia, and bone lesions (CRAB-features) are important in the distinction between 

MGUS, smouldering myeloma, and MM. The International Myeloma Working Group 
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(IMWG) released in 2003 (with updates in 2014) a subset of recommended diagnostic 

criteria for MM and these are now used in the diagnosis MGUS, smouldering 

myeloma, and MM36,37. The IMWG criteria are listed in Table 1.  

Table 1. Diagnostic criteria for diagnosis og MGUS, smouldering myeloma, 

and multiple myeloma. 

MGUS Smouldering myeloma Multiple myeloma 

M-protein (type IgG or 

IgA) in serum < 30 g/L 

or 

M-protein in urine < 500 

mg/day 

and 

< 10% clonal plasma 

cells in the bone-marrow 

and 

No symptoms or no 

CRAB criteria met 

and 

No basis for other B-cell 

disease, primary AL-

amylidose, or light 

chain/heavy chain or 

immunoglobulin-

associated tissue damage 

 

M-protein (type IgG or 

IgA) in serum > 30 g/L 

 

and/or 

 

M-protein in urine ≥ 500 

mg/day 

 

and/or 

 

≥ 10% clonal plasma 

cells in the bone-marrow 

 

and 

 

No symptoms or no 

CRAB criteria met 

M-protein in serum 

and/or urine regardless 

of concentration* 

 

and 

 

≥ 10% clonal plasma 

cells in the bone-marrow 

or plasmacytoma in 

histological biopsy from 

cancerous tissue 

 

and 

 

One or more CRAB-

criteria met 

*In case of non-secretory myeloma, M-protein in the blood or urine are undetectable, however, 

free light chains are detectable in irregular ratios. 

Classification 

The prognostic assessment of MM is tricky by nature, since the disease is 

heterogeneous. A significant reason for this the underlying chromosomal anomaly and 

can be ascribed to cytogenic alterations that can identify patients at high risk38,39. 

Moreover, in 1975, Durie and Salmon introduced a staging system for MM that was 

designed to define the tumor burden and survival based on common clinical features40. 

This system became obsolete after the introduction of the International Staging 

System (ISS) with improved reproducability, where the quantitative levels of β2-

microglobulin play an important role41,42, see Table 2. Previously, the 5-year survival 

rate in multiple myeloma was around 20% with a range of survival spanning from a 

couple of years to more than 10 years. However, since the beginning of the century, 

the survival rate has increased in parallel to the increasing effectiveness of treatment6.  
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Table 2. The International Staging System for multiple myeloma 

Stage I Stage II Stage III 

Serum β2-microglobulin 

< 3.5 mg/L and albumin 

≥ 3.5 g/dL 

Neither stage I or III, 

meaning either: 

Serum β2-microglobulin 

3.5 to < 5.5 mg/L 

irrespective of the serum 

albumin levels 

 

or 

 

Serum β2-microglobulin 

< 3.5 mg/L but serum 

albumin <3.5 g/dL 

Serum β2-microglobulin 

≥ 5.5 mg/L 

Median survival is 62 

months* 

Median survival is 44 

months* 

Median survival is 29 

months* 

*These data are adapted from Greipp et al41. 

Treatment 

Today, MM patients receive different treatment regimens based on their age, general 

health situation, eligibility to future stem cell transplantations, and cancer 

aggressiveness (genetic type).  Autologous stem cell transplantation (ASCT) has a 

risk of toxic (even fatal) complications, thus many patients are not candidates for such 

a treatment due to comorbidities. Several countries use an age limit as a deciding 

factor in the decision process to offer a patient ASCT and high-dose chemotherapy 

(HDCT) or not43. Furthermore, several protocols for treatment of MM, using various 

combinations of drugs, exists across the world. Lately, the consensus regarding 

treatment regimens are becoming more consistent.  

The common anti-myeloma treatment regimen for patients eligible for ASCT include 

induction therapy, HDCT with stem cell support, consolidating treatment (if needed), 

and maintenance therapy (if needed). The general consensus is to prime with a three-

drug induction therapy beforehand, rather than two-drug regimens44,45. Bortezomib is 

typically one of the drugs used, as it increases the overall survival46. Generally, an 

early HDCT (typically using high-dose melphalan) with ASCT is recommended to 

improve treatment response (see Table 3/appendix) and postpone disease 

progression47,48. The primary treatment of MM for patients ineligible for ASCT 

consists of several multidrug combinations. Usually, the treatment is a combination 

of corticosteroids (dexamethasone or prednisone) and non-chemotherapy drugs, like 
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immunomodulatory imide drugs (iMiDs), and proteasome inhibitors. The 

combinations vary from melphalan and prednisone in combination with thalidomide, 

lenalidomide, or bortezomib (MPT, MPL, and MPV, respectively) to 

lenalidomide/revlamide in combination with dexamethasone. Lenalidomide in 

combination with dexamethasone is associated with an increased overall survival and 

progression free survival compared to the other regimens49. However, when using 

lenalidomide or thalidomide, thromboprofylactic treatment is recommended, due to 

the increased risk of developing thrombosis50. In contrast, other studies report of 

higher overall survival for the MPV regimen compared to the one using lenalidomide 

and dexamethasone51. This may be a result of the  addition of bortezomib to the MPV 

regimen, which has shown to improve overall survival and postpone disease 

progression, although at the cost of increased neurotoxicity52. Novel proteasome 

inhibitors and iMiDs have been investigated and it has been reportet that these agents 

increase the tolerability and clinical outcome. Furthermore, newer targeted therapies, 

like the monoclonal antibody daratumumab, are showing great potential in regards of 

treatment response and remission status and have a lower toxicity level53.  

Table 3. Multiple myeloma response criteria (modified from IMWG) 

Stringent complete 

response (sCR) 

CR as defined below 

Normal FLC ratio 

Absence of clonal plasma cells in bone marrow by 

immunohistochemistry or 2- to 4-color flow 

cytometry 

Complete response (CR) 

No M-protein detectable in serum or urine by 

electrophoresis or immunofixation 

< 5% plasma cells in bone-marrow 

No soft tissue plasmacytomas 

Very good partial 

response (VGPR) 

M-protein detectable in serum or urine by 

electrophoresis or immunofixation 

≥ 90% reduction in serum M-protein and urine M-

protein < 100 mg/day 

Partial response (PR) 

50% reduction of serum M-protein and reduction in 

daily urinary M-protein by ≥ 90% or to < 200 

mg/day 

If serum and urine M-protein are not measurable, a 

≥ 50% decrease in the difference between involved 
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and uninvolved FLC levels is required in place of 

the M-protein criteria 

If serum and urine M-protein are not measurable, 

and free light assay is also not measurable, ≥ 50% 

reduction in bone-marrow plasma cells is required 

in place of M-protein, provided baseline percentage 

was ≥ 30% 

In addition to the above criteria, if present at 

baseline, ≥ 50% reduction in the size of soft tissue 

plasmacytomas is also required 

Stable disease (SD) Not meeting criteria for CR, VGPR, PR, or PD 

Progressive disease (PD) 

Increase of 25% from lowest response value in any 

of the following: 

~ Serum M-protein (absolute increase must be ≥ 0.5 

g/dL), and/or 

~ Urine M-protein (absolute increase must be ≥ 200 

mg/day), and/or 

~ Only patients without measurable serum and 

urine M-protein levels: the difference between 

involved and uninvolved FLC levels (absolute 

increase must be ≥ 10 mg/dL) 

~Only in patients without measurable serum and 

urine M-protein levels and without measurable 

disease by FLC levels, bone marrow plasma cell 

percentage (absolute percentage must be ≥ 10%) 

Definite development of new bone lesions or soft 

tissue plasmacytomas or definite increase in the 

size of existing bone lesions or soft tissue 

plasmacytomas 

Development of hypercalcemia (corrected serum 

calcium > 11.5 mg/dL or 2.65 mmol/L) that can be 

attributed solely to the plasma cell proliferative 

disorder 

 

Consequences of multiple myeloma 

While the anti-myeloma treatments improve, but the prevalence of MM rises, it is 

important to take care of other complications that accompanies MM resulting in 
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serious consequences and increased mortality. Many patients experience symptoms 

like fatique, bone pain, dehydration and increased frequency of infections. However, 

the more serious complications vary from neurologic disorders (e.g. like dementia), 

pathologic fractures, organ failure, bleeding abnormalities, to severe infections among 

others54. A devastating complication of MM is venous thromboembolism (VTE) that 

additionally contributes to the increased morbidity and mortality in these patients. It 

is moreover evident that the risk of VTE is prevalent in patients with MGUS55,56. In 

this PhD project, the mechanisms and associative role of VTE in patients with MM 

and MGUS will be addressed in detail in the next section of the thesis.  
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Chapter 2. Venous thromboembolism 

Introduction 

Centuries ago, both Richard Wiseman and Rudolf Virchow separately contributed to 

the fundamental understanding of venous thrombosis and pulmonary embolism57. 

Their work culminated in the advent of three major factors potentially contributing to 

the risk of thrombosis. The triad, entitled Virchow’s triad, describes three vital risk 

factors, namely hypercoagulability, endothelial dysfunction (vessel wall injury), and 

hemodynamic changes (blood stasis/turbulence)57,58. Today, VTE is the world’s one 

of the most frequent cardiovascular disorders, resulting in a significant reduction in 

quality of life to eventual termination in death59,60. Hospitalization is believed to be 

responsible for more than 50% of the cases of VTE, allegedtly due to surgery, 

inflammation, and immobilization that are directly associated with two of three factors 

in Virchow’s triad, namely vessel wall injury and blood stasis61. Hypercoagulability, 

the third factor, is associated with underlying diseases, e.g. inflammatory diseases and 

cancer62.  

The hemostatic system 

The role of the hemostatic system is to repair and keep the vessels intact in the 

cardiovascular system. Under certain circumstances, like VTE events, the vital blood 

flow to the different organ systems are impaired and a subset of complex hemostatic 

processes are set in motion to enact bleeding arrest and repair in case of vascular 

injury63. In this section, the general processes of blood clotting will be introduced, 

followed by a more detailed description of several key mechanisms that regulate the 

hemostatic system under normal and pathological situations. 

The process of blood clotting  

The process of blood clotting is divided into primary, secondary, and tertiary 

hemostasis and in general, it covers platelet aggregation, coagulation, and 

fibrinolysis64. The primary hemostasis is the phase, where damaged endothelial cells 

secrete von Willebrand factor (vWF) that binds to exposed collagen, platelets are 

recruited and they adhere to vWF at the site of injury and becomes activated due to 

stimulus through several endothelial and subendothelial adhesioin proteins. The 

activated platelets begin to adhere to each other and the primary platelet plug is 

formed65,66. In secondary hemostasis, the end product is cross-linked fibrin that acts 

as stabilizer for the primary platelet plug in case of more severe vessel damage. The 

formation of fibrin is highly dependent on the initiation of the blood coagulation 

system. Coagulation is comprised of two different pathways, namely the intrinsic, 

extrinsic, that share a common pathway, where several coagulation factors (F) interact 
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through a series of reactions67. The primary initiator of secondary hemostasis is tissue 

factor (TF) in the extrinsic pathway that will initiate a sequence of tenase reactions 

leading to an initial burst of thrombin generation (TG)68. Through several positive 

feedback mechanisms involving the intrinsic, common pathway, and activated 

platelets, TG will rapidly increase, ultimately resulting in the conversion of fibrinogen 

to fibrin. Fibrin will polymerize and form a fibrin clot that strengthens the platelet clot 

formed during primary hemostasis63. In a normal person, minor injuries are common 

and hemostasis is a constant ongoing process, but the process is also constantly halted 

or reverted by of coagulation inhibitors. However, if the clot formation were to remain 

after succesfull vessel repair, the vasculature bed would be constantly obstructed with 

blood clots. Therefore, fibrinolysis occurs to break down the fibrin clots and this phase 

is known as tertiary hemostasis. Tertiary hemostasis covers the dissolution of the 

fibrin clot through protease activity exerted by plasmin69. At the beginning of any 

vessel injury, the fibrinolysis is inhibited by thrombin, but once the damage is reduced 

or repaired, TG declines and the fibrinolytic processes are initiated. In short, 

plasminogen is converted to plasmin at the site of injury and thus the fibrin clot is 

dissolved. The hemostatic processes are highly complex and if a situation of vascular 

injury or arrest arises, many factors are involved to restore normal flow of blood and 

repair of subendothelial and endothelial tissue.  

Endothelial cells and leukocytes 

The endothelium that line the tunica intima of all blood vessels serve as the first ‘gate 

keeper’ between the blood and the surrounding tissue. It consists of endothelial cells 

that help regulate the extravasation and blood fluidity and smooth muscle cells that 

facilitate vasoconstriction and -dilation70. In case of inflammation, endothelial cells 

help recruit leukocytes to the site and increase the leukocyte infiltration71. Under 

normal conditions, they serve as anti-coagulants through platelet inhibition with 

prostacyclin and nitric oxide72. The endothelial cells further inhibit coagulation 

activity by secreting tissue factor pathway inhibitor (TFPI) and the three endothelial 

receptors thrombomodulin (TM), endothelial protein C receptor (EPCR), and 

protease-activated receptor 1 (PAR-1). PAR-1 that are involved in activated protein 

C cleavage of activated FV (FVa) and activated FVIII (FVIIIa)72,73. In case of vascular 

injury endothelial cells exert important procoagulant features. If stimulated by 

vasoactive agents, e.g. histamine or thrombin, shear fluid stress or inflammatory 

cytokines, the endothelial cell release so-called Weibel-Palade bodies to the blood. 

These organelles mainly contain vWF that binds to exposed collagen and are 

important for platelet adhesion to the endothelium, but also P-selectin and E-selectin 

involved in platelet rolling prior to adhesion72,74.  

Platelets 

When vessel injury occurs, the platelets are exposed to subendothelial matrix proteins 

that makes them adhere to the site of injury, either directly or indirectly. The direct 
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adhesion to the endothelium happens via the cell surface receptors like glycoprotein 

(GP) VI and integrin α2β1, which both binds to collagen75. Indirect platelet adhesion 

is mediated by the GP1b-IX-V receptor complex on platelets binding to the collagen-

bound vWF secreted by the endothelial cells76,77. The binding of platelets to the 

subendothelial matrix proteins also activates the platelets. The activation of plateles 

induces change of shape, degranulation, membrane flipping, release of procoagulant 

extracellular vesicles (EVs), and increases cell signaling78. In this phase, the platelets 

increase in size by becoming elongated with cytoplasmic extensions due to 

cytoskeletal reorginazation of the actin filaments79. Simultaneously, the anionic 

phospholipid, phosphatidylserine (PS), is flipped, from mainly being exposed on the 

inner membrane leaflet, to the outer through flippase activity80. Owing to its negative 

charge, PS is the platform on which the coagulation cascade occurs and thus, is 

essential for the secondary hemostasis81. The platelets also contain cytoplasmic 

granules that they release upon activation. The granules, α-granules being the most 

abundant, contain various proteins involved in hemostasis and inflammatory 

processes, e.g. fibrinogen, FV, FVIII, vWF, and P-selectin82. The platelets also secrete 

dense granules that contain adenosine diphosphate (ADP), thromboxane A2, and 

serotonine, capable of activating other thrombocytes83. Furthermore, the intracellular 

calcium levels increase resulting in increased cell signaling, which too is important 

for recruitment of additional platelets, but also for the binding of fibrinogen to the 

GPIIb/IIIa receptor that allows platelets to aggregate to one another84. Platelet 

recruitment and aggregation create the platelet plug, which in most cases is sufficient 

to stop bleeding in small vessels, but if the trauma is more severe, secondary 

hemostasis involving tenase activity, complex formation, and fibrin generation, is 

required. 

Tissue factor 

In the coagulation cascade, TF is considered the key initiator of coagulation. TF exerts 

it role in the extrinsic pathway, also called the TF pathway, which takes place in the 

secondary hemostasis85. TF, also known as FIII, is a GP consisting of 263/261 amino 

acids that contains three domains: the extracellular domain involved in complex 

formation, the transmembrane domain that serves as anchor in the membrane, and a 

cytoplasmic domain that participate in signal transduction86,87. High levels of TF are 

present in astroglial cells and epithelial cells surrounding organs, and the vascular 

adventitia surrounding blood vessels larger than capillaries88. Other cell types, such 

as smooth muscle cells and endothelial cells, only express noteworthy amounts of TF 

once stimulated by inflammatory proteins89–91. Upon vessel damage, subendothelial 

TF is exposed to the blood by the perivascular fibroblasts. Here, it will form a complex 

with circulating FVIIa and together they form the TF-FVIIa complex68,92. The TF-

FVIIa complex activates FX to the active form (FXa) through tenase reactions, and 

FXa in turn activates the co-factor, FVa, and forms the prothrombinase complex. The 

prothrombinase complex converts the initial burst of prothrombin to thrombin, which 

ultimately will amplify its own production93. Blood-borne TF is mainly found in 
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monocytes and macrophages upon appropriate stimulation. Studies have proclaimed 

that neutrophils and eosinophils also may contribute to this, however, the levels of TF 

in these cell types may be very low and possibly insignificant94. Another main source 

of blood-borne TF is TF embedded in the membrane of circulating microvesicles 

(MVs). TF associated to microvesicles (MVs) will be described in further detail in the 

chapter on EVs. A thruncated soluble version of TF exists too; however, in this form 

TF exerts no coagulation activity95. 

Procoagulant phospholipids 

The main source of procoagulant phospholipids (PPL) is activated platelets, and most 

abundant in a subpopulation of activated platelets, called balloon-shaped platelets96. 

A secondary source of PPL is the circulating MVs that are rich in external PS97. The 

predominant types of PPL are anionic PS and neutral phosphatidylcholine (PC). PPL-

protein interactions on membrane surfaces are essential for blood clotting and may 

restrict the secondary hemostasis to the site of injury and/or inflammation98,99. The 

binding of coagulation proteins to PPL-rich surfaces may also promote anti-

coagulation reactions by inhibiting thrombin formation, e.g. through protein C 

activity100. PPL allows for binding of several coagulation factors, and is essential for 

the formation of several complexes that in turn lead the excess TG. The previously 

described formation of the TF-FVIIa complex is assembled on the anionic PPL 

surfaces when Ca2+ is present101. In turn, the TF-FVIIa complex will convert FVII and 

other proenzymes, like FIX and FX, to their active forms. The active FIX (FIXa) 

creates the tenase complex with FVIIIa on the anionic PPL surface, and is a much 

more potent activator of FX, than the TF-FVIIa complex102. FXa will form another 

complex on the anionic surfaces, namely the prothrombinase complex, with FVa and 

finally convert prothrombin to thrombin in excess. Figure 1 illustrates the tenase 

reactions leading to thrombin generation and the role of anionic PPL surfaces in the 

process. 

 

Figure 1. The complex formation of coagulation factors (F) and the role of phosphatidylserine (PS) 

leading to thrombin formation. The formation of the FVIIa/TF complex activates FIX, FX, and additional 

FVII. Activated FIX form the tenase complex with activated FVIII (which is activated by activated FX) 
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and together they are a potent ativator of FX. FXa forms the prothrombinase complex with FVa and starts 

converting prothrombin to thrombin. The green dots represents PS. TF: Tissue factor. 

Thrombin generation and fibrin formation 

This initial burst of TG is take place on the surface of fibroblasts that is being exposed 

to the blood due to vascular injury. The TF-FVIIa complex generates small initial 

burst of thrombin through intermediate meizothrombin (Mz-IIa), however, this only 

serves to activate platelets and initiate the coagulation cascade103. Once the 

amplification phase is initiated, the coagulation moves from fibroblasts to platelets for 

futher amplification of FXa. In this phase, the initial burst of thrombin and Mz-IIa 

generated activate FXI that in turn will activate FIX104. Simultaneously, thrombin and 

FXa activate the FVIII, the cofactor essential for the tenase complex formation and 

conversion of excess FXa104,105. Thrombin is also responsible for the activation of FV, 

the other vital constituent of prothrombinase complex106. In the next phase, the 

propagation phase, the prothrombinase complex creates a spike in TG, often referred 

to as an ‘explosive’ burst in TG, where more than 90% of the thrombin is generated107. 

More platelets will be activated by the thrombin and release coagulation factors from 

their intracellular stores of granules. The abundance of thrombin generated in the 

propagation phase will cleave fibrinogen to fibrin. Thrombin facilitates the cleavage 

of fibrinogen into fibrin monomers and FXIII, activated by thrombin, facilitates the 

polymerization of the fibrin monomers into fibrin polymer networks through cross-

linking via isopeptide bonds108. To prevent the fibrin clot from being broken down, 

thrombin is also activating thrombin-activatable fibrinolytic inhibitor (TAFI)109. 

Finally, a fibrin clot is created, which help stabilize the platelet plug formed during 

primary hemostasis. Conversely, thrombin may also bind to TM on endothelial cells 

and peripheral blood cells and in turn activates protein C. Protein C then inactivates 

the tenase and prothrombinase complexes, by cleaving FVIIIa and FVa on the anionic 

surfaces110,111 

Fibrinolysis 

The main ‘player’ in fibrinolysis is the enzyme plasmin that is responsible for 

breakdown of the fibrin clot. In response to injury, the damaged endothelial cells 

secrete tissue plasminogen activator (tPA) along with other plasminogen activators to 

the blood. These cleave fibrin-bound plasminogen to plasmin that is co-located to 

fibrin112. In this way, the plasmin specifically lyses and degrades the cross-linked 

fibrin clot alone and not other proteins in the fluidic phase. Several degradation 

products are released to the blood during this process, one of them being D-dimer, a 

laboratory marker for fibrinolysis after recent coagulation activity113. Fibrinolysis is 

regulated by a subset of inhibitors, including the aforementioned TAFI in the clot 

developmental phase109. The two most dominant inhibitors of fibrinolysis is α2-

antiplasmin and plasminogen activator inhibitor-1 (PAI-1) originating from platelet 

granules and the liver112,114. 
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Emerging factors with procoagulant interest 

While the hemostatic processes are divided into three well-defined segments, many 

other factors are believed to influence specific parts of the system. NETosis is a 

process, where nuclear material is released by neutrophil cells to the extracellular 

space. The meshwork consists mainly of DNA coiled around histones, but do also 

include proteins from cytoplasmic granules and together these are referred to as 

neutrophil extracellular traps (NETs)115. The purpose of NETs formation is believed 

to be associated to antimicrobial defence mechanisms where they catch and eliminate 

pathogens116. NET are either formed through a process known as late suicidal 

NETosis that results in death for the neuthrophil, or through early vital NETosis, 

where the neutrophil stay alive and exert other immune-related functions like 

chemotaxis and phagocytosis. During late suicidal NETosis, the neutrophils are 

exposed to prolonged stimuli, e.g. pathogens, interleukins or antibodies, production 

of reactive oxygen species and a downstream cascade of enzymatic conversions, 

involving PAD-4, lead to decondensation of the nucleus and histone citrullination117. 

Simultaneously, neutrophil elastase (NE) and myeloperoxidase are released from 

intracellular granules and enters the nucleus and starts unfolding the chromatin and 

eventually result in disruption of the nucleic membrane118. The chromatin is now 

decorated with cytosolic and granular proteins and are released to the extracellular 

space through a process believed to involve disruption of the cellular membrane118,119. 

Early vital NETosis, on the other hand, is a fast occurring process (within minutes) 

and is closely related to infectious stimuli, like bacteria or complement proteins120. 

The unfolding of chromatin and disruption of the nucleic membrane occurs in a 

similar manner as in late suicidal NETosis120,121. DNA-strands, however, are released 

from the nucleus through nuclear-envelope blebbing, and thus, the nucleus stays 

intact121. The DNA-containing vesicles are then released at the cellular membranes 

and NET formation occurs in the extracellular space121. Recently, NETosis has also 

shown to play a role in noninfectious diseases where it may contribute to cancer 

metastasis, inappropriate coagulation, and thrombosis122,123. For instance, histones H3 

and H4 activate and aggregate platelets and activated platelets release thromboxane 

A2 that triggers NETosis. As a result of this cycle of events, the overall TG increases 

in a platelet-dependent manner124,125. NETs may also bind FXII, which then 

autoactivates through contact activation, and initiates fibrin formation via the intrinsic 

pathway126. Furthermore, neutrophil serine proteases, like NE and cathepsin G, has 

shown to inactivate TFPI by cleaving it and consequently promote the procoagulant 

activity127. NETs may also prevent fibrin degradation through inhibition of tPA128. 

NETs, as the name indicates, can trap other procoagulant factors that circulates in the 

blood. For instance is NETs proposed to trap procoagulant EVs that carry TF and 

PS129,130. EVs and their origin, biogenesis, release mechanisms, and role in the 

coagulation system will be further elucidated in the next chapter. The chapter will be 

concluded with some insight on how to isolate and study EVs, particularly in relation 

to procoagulant extracellular vesicles.    
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Venous thromboembolism in multiple myeloma 

Almost two centuries ago, French physicians Jean-Baptiste Bouillaud and Armand 

Trousseau manifested the first causal association between cancer and thrombosis131. 

Today, it is well-known that cancer is associated with increased risk of VTE and that 

the absolute risk is closely connected to stages of cancer, anti-cancer treatment, and 

type of cancer132,133. The VTE-risk in cancer patients are reported as 4-5 times higher 

than those without. Some cancers entail an even higher risk of developing VTE, e.g. 

lung and gastrointestinal tract cancers133,134. Patients with hematological cancers 

propably have one of the highest VTE-risks, which are reported as high as 28-fold 

increased134. Among the hematological cancers, MM entails a high VTE-risk, as does 

the precursor, MGUS55,135–137. The risk of developing VTE for patients with MM and 

MGUS is highest within the first year after diagnosis56. A large retrospective study 

from 2010 showed, that patients with MM displayed a 7.5-fold increased risk of VTE 

after a one-year follow-up and 4.1-fold increased risk after a 10-year follow-up 

period138. The pathogenesis for the increased MM- and MGUS-specific VTE-risk 

mostly remains unclear. Multiple factors, including interactions between the 

comorbidities, tumor-related factors, and the treatment regimen, have been proposed 

as contributors to the heightened VTE-risk in patients with MM50,139. General risk 

factors for VTE, such as age, surgery, immobilization, underlying chronic conditions, 

inherited thrombophilia and cancer in general, are also of relevance in patients with 

MM135,140. Biochemical risk factors, such as increased vWF, increased FVIII, acquired 

activated protein C resistance, decreased protein S levels, have also been proposed as 

possible candidates capable of inducing hypercoagulability141,142. It has further been 

proposed that the excessive production of the M-component may be associated with 

the procoagulant state in MM141,143,144. So far, no study has detected any valid 

biomarkers for the VTE-risk in MM and MGUS. Cancer treatments in general is a 

known descrete risk factor of VTE145. Anti-myeloma is no exception, especially in the 

early stages of the therapy. Furthermore, therapies that includes the IMiDs, like 

thalidomide and lenalidomide, hightens the risk of thrombotic complications during 

treatment of MM and are therefore typically accompanied by thromboprophylaxis146–

148. A few studies have indicated that EVs, carrying procoagulant factors like TF and 

PPL, are potential candidates for biomarkers in MM-associated VTE-risk and 

hypercoagulability149–151. 
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Chapter 3. Extracellular vesicles 

Discovery and state of the art 

The transfer of information from one cell to another is an important feature for the 

growth and maintenance. Intercellular communication is typically mediated through 

direct cell-to-cell contact or through secretion of signaling molecules for the recipient 

cell to interact with. In recent decades, another option for cells to communicate 

emerged, and this involves the intercellular transfer of EVs. Erwin Chargaff and 

Randolph West described the first signs of EVs in 1946, as pellets, produced through 

ultracentrifugation, exerting procoagulant activity152. Almost 20 years later, Peter 

Wolf, identified vesicular structures through ultracentrifugation and electron 

microscopy, and refers to these as ‘platelet dust’, and shortly after, Harrison Clarke 

Anderson identifies matrix vesicles in regards to calcification processes153,154. It has 

long been known that cells undergoing apoptosis, as part of the tissue homeostasis, 

release apoptotic bodies that are large vesicular structures with a diameter typically 

between 1-5 µm. More recently, the intercellular communication seems to be mostly 

associated with EVs released from healthy cells, which comprise a diameter in the 

range of roughly 40-200 nm. Throughout the years many different types of EVs has 

been identified and their origin varies from many different cell types and body fluids, 

like blood, urine, breast milk, seminal fluid, saliva among others155–159. In 2011, the 

International Society for Extracellular Vesicles (ISEV) was established to accumulate 

data, optimize analyses, increase clinical impact, and unify the nomenclature on the 

topic of EVs. 

Nomenclature, biogenesis, and molecular composition 

Allthough being tiny fragments of their host organism, EVs are complex and highly 

heterogeneous entities in terms of size, protein composition, and origin. This 

undoubtedly do complicate the nomenclature, which are highly reflected in the 

literature. In recent years scientists (and ISEV) have reached some consensus 

regarding the nomenclature. The collective name for all vesicles released by the host 

cells are termed EVs, however, two main EV-subtypes were defined, namely 

exosomes and MVs. These terms were created in light of the origin, genesis, and 

mechanism of release of the EVs, as depicted in Figure 2. Exosomes, that generally 

constitute the smallest of EVs, are assembled in multivesicular bodies (MVBs) that 

fuse with the cell membrane and release its content to the extracellular space. They 

are believed to have a diameter of 40-100 nm and a density ranging from 1.13 to 1.19 

g/mL, but they may also present with a larger diameter that overlaps with that of MVs. 

MVs are believed to present with a diameter > 100-200 nm and a density of 1.25-1.30 

g/mL and is shed from the originating cell through direct budding of the plasma 

membrane160,161. Their size may be as large as 1-2 µm162. Similar to the exosomes, the 
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estimated diameter is not a universal rule, because smaller vesicles of 100 nm in 

diameter may also bud from the cell membrane. Because of overlap in size, it is 

difficult to clearly distinguish between MVs and exosomes on size alone. In order to 

identify specific exosomes or MVs, one must also consider an in-depth analysis of 

e.g. surface proteins or cargo that may point towards a specific biogenesis and release 

mechanism. 

 

Figure 2. Release paths of of exosomes, microvesicles, and apoptotic bodies. Inward budding of the 

plasma membranes create early endosomes. Further inward budding of the membrane of the early 

endosomes form multivesicular bodies, which upon fusion with the plasma membrane releases their content 

of exosomes. Microvesicles is directly formed by an initial outward budding of the plasma membrane and 

are ultimately shed to the plasma. Apoptotic bodies are formed by outward blebbing of the plasma 

membrane as result of the apoptotic dissasembly of dying cells.  

The release of EVs from cells require certain different stimuli dependent on cell of 

origin. Platelets release EVs upon activation and this may be triggered through direct 

binding to thrombin or collagen163,164. Endothelial cells activated by cytokine 

stimulation, e.g. tumor necrosis factor-α (TNF-α), or through interaction with reactive 

oxygen spicies may also secrete EVs165,166. Molecules released by bacteria, e.g. 

liposaccharide, stimulate dendritic cells to release EVs167. B, T, and natural killer cells 

can release EVs upon activation of cell surface receptors168. A fundamental trigger 

mechanism for the release of EVs, however, seem to be the accumulation or ‘spike’ 

of intracellular calcium levels169,170. Other known stimulants include factors like 

hypoxia, complement stimulation, irradiation, changes in pH, and cellular stress171,172. 

Cancer cells also secrete EVs upon stimulation, e.g. as a response to anti-cancer 

treatment, to aid the cancer cells in exerting certain malignant features, like metastasis, 

angiogenesis, and avoiding immunodetection among others173,174.  
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Exosomes 

Exosomes are formed within the endosomal network, where the process starts with 

endosome formation through inward budding of the MVB. Late endosomes undergo 

invagination of their membranes resulting in multiple intraluminal vesicles (ILVs)175. 

The process of ILV-formation highly depends on the endosomal sorting complex 

required for transport (ESCRT) complex176,177. The ESCRT complex is a multifaceted 

protein machinery that is specialized in promotion of the membrane budding process, 

cargo sorting, and formation of the MVBs. The complex constitutes four separate 

proteins, ESCRTs 0 through III, and is involved in sorting and incorporation of 

receptors and other endosomal membrane proteins as well as engulfment of cytosolic 

proteins into the ILVs176,177. Lipids and tetraspanins facilitate other ESCRT-

independent sorting pathways that participate in the receptor sorting and cargo 

selction process. The tetraspanins, e.g. CD81, are found in omnipresent tetraspanin-

enriched-microdomains and helps in the compartmentalization of several receptors 

and membrane-associated signaling molecules178,179. The lipid-dependent pathway 

depends on formation of lipid rafts that serves as convertion site for sphingomyelin to 

ceramide through sphingomyelinases. The ceramide-enriched domains causes inward 

bending of the endosomal membranes180,181.  

The constitutive elements of exosomes are largely dependent on the cell of origin. 

According to ExoCarta and EVpedia, they include more than 4000 proteins, 200 

lipids, 2000 mRNAs and miRNAs182,183. However, some proteins are more prominent 

than others and several of these are often used as markers to identify exosome 

populations. The tetraspanins CD9, CD63, CD81, and CD82, which are involved in 

cell penetration, adhesion, and fusion, are examples of such proteins184. Other markers 

used to identify exosome populations include proteins involved in exosomal release, 

e.g. tumor susceptibility gene 101 (TSG101) and Alix, or heat shock proteins (HSP) 

involved in antigen-related activity, e.g. HSP70184.  Exosomes released by many cells 

have a high content of cholesterol, sphingomyelin, and ceramides, but a low content 

of PC.  

Microparticles 

MVs are not formed in the endosomal network in the cytoplasm of cells, but is 

generated through shedding of the cell membrane185. Much is still unknown about the 

mechanisms behind the biogenesis of MVs, but several underlying mechanisms have 

been proposed. MV formation is facilitated by ‘budding’ of the plasma membrane and 

requires several diverse and localized changes in the membrane structure to occur. 

This includes reorganization of lipid and protein composition that alters the membrane 

curvature and rigidity and finally involves the actin-myosin compartment of the 

cytoskeletal network186. The plasma membrane is under normal circumstances 

constituted by an extracellular and a cytoplasmic leaflet, i.e. the outer and inner leaflet, 

respectively. The two leaflets are very different in their electrostatic potential due to 
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their lipid composition. PC and sphingomyelin are enriched on the outer leaflet, 

whereas PS, phosphatidylinositol, and phosphoinositides predominatly are found in 

the inner leaflet187,188. An important step in the formation and release of MVs is 

breaking the asymmetry between the outer and inner leaflet. This process is facilitated 

by translocase activity, where adenosine triphosphate (ATP)-dependent flippases and 

floppases and ATP-independent scramblases are the most important categories of 

proteins80,189. The flippases mainly translocate phospholipids from the outer to the 

inner leaflet, the floppases translocate in the reverse direction, and scramblases act as 

bidirectional translocators through random phospholipid distribution80,187. The final 

fission and release from the cell membrane rely on kinase-mediated (e.g. calpain) 

cleaving of the cytoskeletal compartments and an ATP-dependent contraction 

facilitated by the actin-myosin machinery180. ADP-ribosylation factor 6 (ARF6), as 

well as several Rho guanosine triphosphate enzymes (GTPases). Particularly Ras 

homolog family member A (RhoA), plays an important role in phosphorylating a 

kinase system at the neck of the budding vesicle that leads to activation of actin-

myosin machinery180,190.  

The sorting of protein and nucleic acid cargo in MVs is a complex and selective 

process that is driven through oligomerization and recruitment of proteins in the 

cytoplasm. ARF6 is one of the proteins that drives selective recruitment of cargo 

proteins. It is important in the process of incorporating integrins and major 

histocompatibility complex I (MHC-I) into the MVs191. The lipid composition of MVs 

are rather unique, especially due to the PS on the outside of the vesicle membrane, but 

other lipids like sphingolipids, acylcarnitines, and fatty acid esters are enriched in 

MVs192. Some suggestions to proteins present on medium and large EVs include some 

actinins, mitofilin and HSPs, like GP90193. Nevertheless, the current understanding of 

the protein and lipid composition of MVs, and how it relates to the plasma membrane 

of the originating cell, is vaguely described in contrast to the exosomes.  

Biological properties and functions 

EVs are a way for cells to communicate with another through transfer of signaling 

molecules that alter functionality the recipient cell. Some of the functions EVs exert 

include neuron-glial communication, stem cell tissue repair, and immune 

modulation194–197. The way EVs act as messengers may be exerted through several 

mechanisms. They can release their cargo directly to the extracellular space, stimulate 

through direct cell surface receptor binding, fuse with the recipient cell, or undergo 

internalization through endocytosis185,198,199. Cell-to-cell communication via EVs is 

highly dependent on the protein composition on the surface of the EVs. Specific 

surface receptors and ligands are responsible for the binding to intended binding site, 

be it either specific recipient cells or the extracellular matrix. Upon binding to their 

designated targets, they may induce intracellular communication through various 

pathways, but the binding may also prompt for internalization of the EVs199. In order 

to release nucleic acids or proteins of cytoplasmic origin into the recipient cells, the 



HYPERCOAGULABILITY IN MULTIPLE MYELOMA AND MONOCLONAL GAMMOPATHY OF UNDETERMINED 
SIGNIFICANCE 

42 

EVs must release their content by means of membrane fusion or endocytosis200. The 

bilipid layer of EVs is what makes them suitable as ‘shuttles’ for transport of 

functional and informative molecules. This is especially important for transport of 

informative nucleic acids, like mRNA and miRNA, that otherwise would be quickly 

degraded in the blood before reaching their destination201. The knowledge of the 

mechanisms behind where EVs are designated deliver information and how this 

occurs is still lacking and warrents caution when interpreting the communicative 

function of  EVs180,200. In addition to cell communication, another important function 

of EVs is to eliminate unwanted molecules from the cells, such as amyloid proteins 

and modified RNA202,203. This role is further reflected in the rapid clearance of EVs 

from the circulation. The estimated half-life of EVs in blood are reported to be 

approximately 2 minutes, whereafter they are cleared from the body through the liver, 

spleen, and lungs204. EVs that are released from infected cells or cells affected by 

stressfull conditions, e.g. hypothermia, heat shock, hypoxia and oxidative stress, are 

thought to be involved in the trafficking of abnormal proteins and RNA content, 

including various viruses and prions205–207. In the past decades, EVs have been 

detected in many diseases and in several of these, specific EV populations, associated 

to the underlying disease, have been identified, e.g. cardiovascular diseases, metabolic 

diseases, infectious diseases, and neurological disorders208–211. EVs possess several 

pro-cancer abilities, like aiding in tumor progression and increased proliferation. EVs 

that contain growth factors and cytokines have shown to support angiogenesis, 

whereas EVs containing TF may aid the cancer cells in proliferation, immunoevasion 

and apoptosis, and support invasion, and angiogenesis212,213. However, another 

consequence of TF-bearing EVs is their procoagulant potency and a conceivable link 

to thrombosis. 

Procoagulant extracellular vesicles 

Knowledge of the role of EVs in coagulation and development of thrombosis has 

lately increased markedly. Especially the MVs are of interest as significant ‘players’ 

in the hemostatic system, due to their biogenesis involving externalization of anionic 

phospholipids to the outer leaflet of the membrane. Of the externalized phospholipids, 

it is mostly PS that exert procoagulant activity by facilitating tenase complex binding, 

see Figure 3. Most MVs are PS-exposing, especially those secreted from activated 

platelets, but MVs that are PS-negative have been detected214,215. Other MVs carry TF 

in the membrane and these mainly released by monocytes and to some extent 

neutrophils. Endothelial cells, leukocytes and platelets has been reported to express 

TF, but the there is some controversy on this topic94,97,216. The MVs carrying only PS 

are believed to have limited procoagulant activity (see Figure 3) and since they 

typically are released by activated platelets, they also carry receptors for vWF and 

collagen97. Therefore, they are also referred to as ‘mini-platelets’, and may have an 

intended purpose in hemostasis. The MVs that carry TF promote coagulation through 

the extrinsic pathway and are typically released after vessel injury to trigger blood 

coagulation and maybe clot growth as an alternate source of TF to aid in triggering 
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coagulation after injury97,216. Monocyte-derived MVs that contain both PS and TF are 

believed to exert highest level of procoagulant activity. They may be contributors to 

not only hemostasis, but also thrombosis and especially under pathological 

circumstances97. It has been suggested that MVs may exert procoagulant properties 

by other means than the extrinsic pathway. This include involvement of the intrinsic 

coagulation cascade in a FXI- and FXII-dependent manner217–219. However, the main 

understanding of EVs and their role in hemostasis and VTE can be generally attributed 

to TF and PS. EVs have also been described as having anti-coagulation abilities, 

because they can carry inhibitory proteins like TFPI, protein C, and protein S. This 

shed light on the complexity of the role that EVs have in terms of coagulation and 

further points out the delicacate balance that the hemostatic system offers. Many types 

of cancer cells express high levels of TF on their surface and that many cancer patients 

have increased levels of circulating TF220,221. If this is a directly connected (the cancer 

cells secreting TF via MVs) or indirect (systemic response to the cancer) is obviously 

interesting topic in many types of cancer. Not much research has been made on 

procoagulant EVs in MM. Auwerda et al.149 demonstrated procoagulant MV in MM 

patients, although without linking the MVs directly to the cancer cells. TF-production 

in clonal plasma cells have been described222, so it is an apparent to ask if there may 

be a connection between MM cancer cells and procoagulant EVs. 

 

Figure 3. The procoagulant properties of extracellular vesicles (EVs). EVs carry various different cargo, 

e.g. lipids, and nucleic materials, that are encapsuled by a double-lipid membrane. Transmembrane tissue 

factor (TF) and phosphatidylserine (PS) embedded on the outer leaflet of the membrane is the two major 

contributors to EV-mediated procoagulant activity, especially in microvesicles. EVs positive for TF or PS 

have a role in hemostasis and may enhance coagulation, whereas EVs positive for both TF and PS may play 

a more pronounced role in both hemostasis and thrombosis. 
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Investigation of extracellular vesicles 

The investigation of EVs offers complexibility and comes along with a subset of 

preanalytical and analytical challenges and important considerations to make. EVs are 

secreted by many cells in the human body and therefore reside in several different 

human fluids, like urine, cerebrospinal fluid etc. Nevertheless, a very common source 

of EVs is the blood and typically is drawn from the antecubital vein using 

venipuncture, tourniquet, vacuum blood collection tubes, and a small diameter needle. 

Different types of processed blood samples exist, but serum and plasma is the most 

commonly studied blood source for EVs dependening on downstream choice of 

analyses. Serum, for instance, is believed to contain a great proportion of EVs secreted 

by activated platelets in the clotting procces occurring during the sampling process, 

which should be considered in respect to some functional analyses. Some issues 

regarding blood sample collection and handling involve the use of a tourniquet, the 

size of the needle, and vacuum tubes among others, since this may lead to endothelial 

damage and hemolysis. The temperature, agitation, and duration at which the blood 

samples are exposed to prior to plasma extraction may also affect the EV quantity and 

integrity. It is further recommended to snap-freeze samples for long-time storage of 

samles at maximum -80°C and avoid frequent freeze-thaw circles. It is therefore 

crucial that external factors like these are taken into consideration if they are not to 

interfere with and obliterate the original purpose of an investigation.  

Since most human sample types are heterogenous mixtures of cells, EVs, proteins, 

lipoproteins etc., most analyses of EVs require further isolation in order to effectively 

determine the composition of different EV-subpopulations and their physiological 

properties. This can be achieved through several isolation techniques, which all have 

advantages and disadvantages in regards to the downstream analysis plan.  

Isolation 

Most research on EVs is using conditioned cell culture meadia, but the commonly 

used source for high-yield EV-isolation from body fluids is plasma, namely the type 

of plasma called platelet-free plasma (PFP)223. PFP is achieved though a double 

centrifugation at 2,500 × g for 15 minutes224. Purification of EVs from PFP and similar 

sample types can be time-consuming and usually include some loss of EVs as well as 

co-isolation of contaminants, like lipoproteins, protein aggregates and remnants of 

dead cells. Furthermore, some isolation techniques prompt for aggregation of EV and 

proteins, which will further complicate characterization and functional analysis of the 

EVs. The most frequently used methods for isolation of EVs from any fluid includes 

size exclusion chromatography (SEC), density gradient centrifugation, and filtration, 

but the most commonly used is ultracentrifugation and differential ultracentrifugation 

(DUC)223. Less commonly used isolation techniques include affinity, fluorescence 

liquid chromatographic separation. Some study limitations like sample volume and 

complexity, makes other isolation techniques, e.g. magnetic bead separation, to be 
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preferred over others. Because many of these techniques have some advantages and 

limitations in specific applications, many researchers use a combination of two or 

more isolation techniques. DUC may cause EVs to aggregate with one another or 

contaminants like lipoproteins and protein aggregates and it fail to isolate distinct size-

dependent EV populations. Density gradient centrifugation may remove almost all 

protein contaminants, but co-isolates lipoproteins and remnants of similar density, not 

to mention that it is a time-consuming procedure223. SEC is a quick isolation technique 

that in contrast to the centrifugation techniques do not induce aggregation and damage 

of EVs and proteins. It may, however, often result in co-isolation of other vesicular 

structures, protein aggregates, and remnants of similar density and size223. 

Characterization 

The process of quantitation and characterization of EVs opens a door to numerous 

different optical and non-optical techniques, many of which cannot stand alone in 

concluding quantity or specific EV subpopulations. A comprehensive survey was 

published by Gardiner et al.223 describing the different common and less commonly 

tools used for characterization of EVs. Some methods are more often used than others 

and these include western blotting (WB), single-particle tracking methods, electron 

microscopy, and flow cytometry (FC), but like the isolation techniques they all come 

with specific advantages and limitations in relation to their application. Less 

commonly used techniques include protein assays, atomic force microscopy, enzyme 

linked immunosorbent assays, and procoagulant assays. In the category of electron 

microscopy techniques, transmission electron microscopy (TEM) is often used to 

detect and verify the presence of vesicular shapes encapsuled in a membrane 

according to the principle of ‘seeing is believing’. This method is sensitive to 

contaminants like lipoproteins, protein aggregates, and apoptotic bodies and 

immunogold labeling with specific antibodies against EV-markers or functional 

molecules often accompany TEM225. The most common method for single-particle 

tracking used is the nanoparticle tracking analysis (NTA) that covers both quantitation 

and size determination of particles in the sample with a diameter range of 

approximately 10-200 nm. Unfortunately, NTA do not only measure EVs, but also 

lipoproteins and protein aggregates, and can therefore not stand alone when used to 

analyze EV sizes and concentrations226,227. FC is often used in the quantitative and 

qualitative of EVs, but struggles to detect the smaller of EVs228. FC also allows for 

fluorescence detection of antibodies against specific EV-surface markers, thus 

describing various types of EVs. The conventional WB method is commonly used to 

detect specific proteins associated to the general markers for exosomes or MVs or 

specific subpopulations of EVs related to origin, function and/or disease223. When 

using WB though, it may be difficult to distinguish whether bands are detected 

because of co-isolation of proteins or not. Many use protein assays, like the 

bicinchoninic acid assay, to support other analyses, but this is also sensitive to protein 

contaminants. Some antibody micro arrays, like the EV Array229,230, are used to 

identify specific EV-populations based on surface markers, like tetraspanins, PS or 
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TF. In relation to PS and TF, some techniques exist to identify PS- and TF-positive 

EVs and their potential procoagulant effect.  

Functional investigation of procoagulant extracellular vesicles 

Procoagulant EVs have been described in various diseases, including sepsis, diabetes, 

and not least cancer231–233. Most of the techniques used to study procoagulant activity 

of EVs resolves around coagulation assays used for investigation of plasma 

coagulation and many of these methods are not optimized for functional investigation 

of EVs and lack nuances. The calibrated automated thrombogram (CAT) is a global 

coagulation test that utilize plasma samples to depict TG. Even though a specialized 

trigger kit has been developed for CAT for the purpose of investigating MV-mediated 

TF activity, the likeliness of other influential factors in the plasma affecting the results 

is highly plausible. The PPL assays too, uses plasma to identify MV-associated PPL 

activity, but may likely also measure PPL from other sources like residual 

thrombocyte fragments and apoptotic bodies or PS trapped in NETs. However, both 

the CAT and PPL assays is believed to have potential in detecting EV-mediated 

procoagulant activity if they were combined with some kind of EV purification. Some 

studies have investigated similar concepts and ideas and showing its promising 

results231,234–237. Regardless, the concept still warrants further investigation and 

validation in order to achieve any evident clicical application. Other more EV-

oriented coagulation assays have emerged throughout the years. Wang et al. described 

an stand-alone FXa-dependent assay capable of measuring MV-associated TF in EVs 

isolated by ultracentrifugation of plasma238. Connor et al. described a method to detect 

MV-associated PPL activity in EVs pelleted from through ultracentrifugation239. In 

general, the investigation of procoagulant EVs require a meticulous combination of 

more than one method for both identification of procoagulant markers and functional 

analysis of EV-mediated procoagulant activity. 
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Chapter 4. Thesis Objectives 

The underlying mechanisms that lead to hypercoagulability in cancer is complex and 

commonly multifactorial. Typically, a myriad of factors is out of balance and interacts 

with each other and other components of the hemostatic system. Eventually, it can 

lead to the development of thrombotic events, like deep vein thrombosis or pulmonary 

embolism. Recently, EVs have been identified as one such factor with procoagulant 

potential that may contribute to the increased VTE risk in cancer, especially in 

hematological cancers, like multiple myeloma. This gave rise to the following 

questions: 

 Cancer patients, including MM, are in general at higher risk of developing VTE, 

but is it possible to detect individuals at high risk and administer 

thromboprophylactic treatment? 

 Why do MM patients develop VTE and is it possible to detect hypercoagulability 

in these patients? 

 If so, is this the hypercoagulability affected by procoagulant EVs and in what 

manner? 

Therefore, the overall objective of the thesis has been to demonstrate a procoagulant 

state in patients with MM and MGUS for the purpose being able to administer 

thromboprophylaxis. We hypothesise that: 

Patients with MM and MGUS have increased procoagulant activity in the blood 

compared to healthy subjects.  

and 

Elevated blood levels of procoagulant EVs exist in patients with MM in 

comparison to healthy subjects. 

To investigate this, three studies with separate aims have been designed: 

Study 1: To investigate the extent of hypercoagulability in plasma from patients with 

MGUS and MM at diagnosis and during two diverse anti-myeloma threatment 

regimens for the MM patients.  

Study 2: To establish a model for isolation of EVs in plasma using DUC including a 

following assessment and validation of the model using quantitative and qualitative 

analyses. Furthermore, the procoagulant properties of the isolated EVs were 

investigated using several functional coagulation assays.  
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Study 3: To investigate the procoagulant activity of EVs in patients with MM using 

the model from study 2. 
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Chapter 5. Materials and methods 

Study population 

In this thesis, a total of 38 patients with MM and 19 patients with MGUS were 

recruited to the project at Department of Hematology at Aalborg University Hospital. 

The patients was diagnosed according to the guidelines published by the IMWG240. 

None of the enrolled patients had a history of VTE or other malignancy and received 

no anti-coagulation drugs at the time of the enrollment. At enrollment, the patients 

had their relative plasma cell levels in the bone marrow counted, lytic skeletal lesions 

assessed, and were staged according to the ISS41. The MM patients had a mean age of 

71 years with a range of 40-87 and an approximate gender distribution of 50%. The 

MGUS patients had a mean age of 72 years ranging from 41-85) and had an 

approximate 50% gender distribution.  

The first blood MM samples were drawn before initiation of treatment with biological 

drugs. Figure 4 illustrates the blood sampling procedure for the two treatment 

regimens the MM patients were assigned to. Patients younger than 70 years of age 

and in general good health were considered eligible for HDCT with ASCT in which 

case they were treated with a VCD induction therapy followed by HDCT with ASCT. 

Patients older than 70 years of age were regarded ineligible for ASCT and therefore 

received conventional therapy, mainly MPV. The treatment response were recorded 

in relation to the IMWG myeloma response criteria241 everytime a sample was 

collected. 

As control group, 34 healthy volunteers provided blood samples. The age and gender 

of the control subjects had a similar age and gender distribution as the patient groups, 

presenting with a gender distribution of approximately 50% of each gender, but with 

a mean age slightly lower (63 years, range 56-67) than the patient groups.  
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Figure 4. An overview of the blood sampling procedure of patients with multiple myeloma. After 

having submitted a blood sample at diagnosis, the patients submit blood samples at different time points 

dependent on their treatment regimen. Patients receiving conventional therapy (mainly melphalan-

prednisone-bortezomib) submitted blood samples at 3-, 6-, and 12-month follow-ups. Patients eligible for 

high-dose chemotherapy (HDCT) and autologous stem cell transplantation (ASCT) submitted samples after 

an induction therapy consisting of bortezomib, cyclophosphamide, and dexamethasone (VCD) and after 

their HDCT+ASCT treatment. Thereafter, they submitted blood samples at their 6- and 12-month follow-

up. 

Study 1 

All 38 MM patients, 19 MGUS patients and 34 healthy control subjects were included 

in this study. Two MM patients were excluded due to following rediagnosis to 

smouldering myeloma. Five patients did not finish their treatment sampling schedule; 

four died from sepsis and one from unknown reasons. Two additional patients left the 

study due to sevevere illness and loss to follow-up. 

Study 2 

Twelve healthy volunteers provided blood samples for this methodological study. 

Study 3 

Twenty of the MM patients were included in this study. These had a mean age of 72 

years (range 40-84) and 55% were males. The twenty control subjects included for 

this study presented with a mean age of 64 years (range 56-67) and 55% were males.  

Ethical considerations 

The local scientific ethics committee of the North Denmark Region approved the 

protocol, approval N-20130075. Blood samples from patients MM patients, MGUS 
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patients, and healthy controls as described by research protocol linked to the approval 

number. Since the blood samples from patients with MM were collected in relation to 

the ongoing diagnosis and treatment, the same intravenous access (antecubital fossa) 

was used, which means that no additional needle prick necessary. The recruitment of 

patients with MGUS and controls, on the contrary, required the individual persons to 

attend to a blood collection, solely with purposes related to this study. Due to the small 

volume of blood collected, enrolment in the study was not considered to be of any 

significant risk for the patients and control subjects. 

Sample collection and preparation 

All blood samples was collected by routine venipuncture from the median cubital vein 

at the outpatient clinic at the Department of Clinical Biochemistry, Aalborg 

University Hospital, through a BD Vacutainer Blood Collection Set (Becton 

Dickinson, Franklin Lakes, NJ, USA) with a 21-gauge needle, butterfly and 

tourniquet. The first couple of millilitres of blood was collected in a separate tube, 

which was discarded because of the activating effect of the tourniquet and potential 

fibroblast contamination242. The blood was collected in 6 ml 0.105 M (3.2%) buffered 

trisodium citrate BD Vacutainer (Becton Dickinson) and PFP was extracted through 

doublecentrifugation at 2,500 × g for 15 minutes at room temperature carefully 

leaving 1 cm above the buffy coat as suggested by Lacroix et al.224. The PFP was then 

aliquoted for the different analyses and frozen at -80°C until further analysis. For the 

investigation of procoagulant EVs in study 2 and 3, two different types of standard 

pooled plasma (SPP) was created from the blood of one healthy donor. SPP was 

collected similar to the procedure described above, but the second SPP batch was 

collected in 4.5 ml specialized tubes containing corn trypsin inhibitor (CTI) tubes 

(Haematologic Technologies, Essex Junction, VT, USA) with a final CTI 

concentration of 50 µg/ml once the tube is filled with blood. This is referred to as 

SPP+CTI. 

Routine blood tests 

For samples collected from patients in both study 1 and 3 routine blood analyses were 

included. These analyses comprises standard hemoglobin, erythrocyte, leukocyte and 

platelet count on a Sysmex XN 9000 system (Sysmex Corporation, Kobe, Japan). 

Albumin, C-reactive protein (CRP), calcium, and total protein concentrations were 

measured using the Cobas 8000 C702 module (Roche Diagnostics, Basel, Schweiz). 

Furthermore, organ specific markers like carbamide, creatinine, pt-estimated 

glomerular filtration rate, and alanine-aminotransferase (ALAT) levels were 

measured on the Cobas 8000 C702 module (Roche Diagnostics) to indicate signs of 

end-organ damage. Coagulation-related analyses include international normalized 

ratio (INR), activated partial thromboplastin time (APTT), factor FVIII, protein C, 

fibrinogen, D-dimer, and antithrombin, which all were measured using the ACL TOP 

500 CTS (Instrumentation Laboratory Company, Bedford, MA, USA). Measurement 
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of serum M-protein was performed by gel electrophosresis on a Hydrasys 

Electrophosresis Unit (Sebia, Lisses, France) or capillary electrophoresis using the 

Capillaris 2 Flex Piercing system (Sebia) in order to detect M-protein phenotype and 

any fluctuations during and after the different treatment steps in the designated 

regimens. Concentrations of free light chain levels were determined by turbidimetry 

using a SpaPlus analyzer (AH Diagnostics, Tilst, Denmark). 

Isolation of extracellular vesicles 

Study 2 

The purpose of study 2 was to set up and validate an EV isolation model, using PFP 

from healthy volunteers, before moving on to testing the patient samples. EVs were 

isolated in two steps using DUC on an Avanti J-30i ultracentrifuge with a JA-30.50 

rotor and k-factor 280 (Beckman Coulter, Brea, CA, USA). 1 ml PFP was centrifuged 

at 20,000 × g (20K) for 30 minutes at 4°C, the supernatant was removed and the pellet 

resuspended in 200 µl SPP. The supernatant was then centrifuged at 100,000 × g 

(100K) for one hour at 4°C, after which the new supernatant was removed and the 

pellet resuspended in 200 µl SPP. These pelleted EV suspensions are referred to as 

unwashed pellets, while another batch of samples were subjected to an additional 

washing step in phosphate-buffered saline (PBS), see Figure 5. In this setting, both 

20K and 100K pellets were resuspended in 1 ml PBS after removal of the supernatant 

and then re-centrifuged at the same settings depending on the pellet type. A batch of 

pellets were resuspended in 200 µl SPP+CTI for following analysis of the influence 

intrinsic coagulation.  

  
Figure 5. The procedure for EV isolation through differential ultracentrifugation. Plasma was 

centrifugated to pellet EVs in the bottom of the spin tubes. The supernatant was gently removed from the 

tube (at a slight angle to avoid pipetting away the pellet material) and the pellet was resuspended in an equal 

amount of phosphate-buffered saline (PBS). The pellet, now dissolved in PBS, was re-centrifuged at the 

same settings and the supernatant removed in the same way. Finally, the pellet was resuspended in either 

standard pool plasma (SPP) or PBS depending on the downstream analysis. 

Study 3 

EVs were isolated in the same manner as described for study 2, except all samples 

were subjected to a washing step prior to the resuspension in SPP. 
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Characterization of extracellular vesicles 

Nanoparticle tracking analysis 

NTA was used to determine the size and concentration distribution of particles, in the 

isolated EV pellets in both study 2 and 3. The machinery used was the LM10-HS 

system with a 405 nm laser (Malvern Instruments, Malvern, UK) attached to a Luca-

DL EMCCD camera (Andor Technology, Belfast, UK). The software used was the 

3.0 version of the Nanosight NTA software (Malvern Instruments). To determine the 

optimal capture settings, 0.1 µm Silica Microspheres (Polysciences, Hirchberg, 

Germany) were applied. The capture settings used in both study 2 and 3 were camera 

level 10, detection threshold 2, and blur 9 × 9. A total of five videos with a duration 

of 30 seconds each was recorded and analyzed for every single sample. 

Western blotting 

In study 2 and 3, WB was used to detect specific EV, cell, and lipoprotein markers in 

the EV suspensions. Proteins were separated using a MiniProtean Electhrophoresis 

System and MiniProtean TGXTM 4-15% gels (Bio-Rad Laboratories, Hercules, CA, 

USA). Prior to separation, the EV suspensions were lysed with 2x Laemmli Sample 

Buffer (Bio-Rad Laboratories) and boiled for 5 minutes at 95°C. The separated 

proteins were transferred to Amersham Hybond P 0.20 PVDF blotting membranes 

(GE Healthcare, Little Chalfont, UK) and blocked with a 5% (w/v) skim milk blocking 

buffer for one hour. To detect EVs, a primary monoclonal mouse antibody against 

CD9 (clone M-L13, BD Phar- mingen, San Diego, CA, USA) was used in a 1:1000 

dilution in blocking buffer. Monoclonal human antibodies against CD38 

(daratumumab; Jannsen-Cilag A/S, Birkeroed, Denmark) were used for detection of 

plasma cell marker, i.e. also the MM cells. In order to verify co-isolation of 

lipoproteins, a monoclonal mouse antibody against apolipoprotein B (clone F2C9, 

Thermo Scientific, Waltham, MA, USA) were applied. All primary antibodies were 

diluted 1:1000 in blocking buffer. Secondary antibodies against the corresponding 

primary antibodies were all horseradish peroxidase conjugated and detected using a 

Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare, Chicago, 

IL, USA) and a PXi 4 system and GeneSys software version 1.5.4.0 (Syngene, 

Cambridge, UK). 

Protein quantitation 

In order to address the issue of possible co-isolation and contamination with plasma 

proteins in study 2, the Pierce BCA Protein Assay Kit (Thermo Scientific, Waltham, 

MA, USA) was used and read at wavelength 562 nm Fluostar Optima (BMG Labtech, 

Ortenberg, Germany). Additionally, a modified version of the activated partial 

thromboplastin time test (HemosIL and SynthASil, Instrumentation Laboratory, 
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München, Germany) was run on an ACL TOP 500 CTS system (Instrumentation 

Laboratory) to detect any co-isolation of FVIII. 

Transmission electron microscopy and immunogold labelling 

TEM was performed in study 2 and 3 to visualize vesicular structures and detect EV 

subpopulations through immunogold labeling with antibodies against CD9 and CD38. 

The method in use is similar to previous studies243,244. Samples were loaded on 

carboncoated and glow discharged 400 mesh nickel grids (SPI supplies, Chester, PA, 

USA) for 30 seconds. They were then stained in one drop of 1% (w/v) 

phosphotungstic acid (Ted Pella, Caspilor AB, Lindingö, Sweden) at pH 7.0 and left 

to dry bloting on filter paper. Vizualization of vesicle-like structures was performed 

on a JEM-1010 transmission electron microscope (JEOL, Tokyo, Japan) operated at 

60 keV. Images were captured with an electron-sensitive CCD camera (KeenView, 

Olympus, Tokyo, Japan). The use of a grid-size replica (2,160 lines/mm) and the 

ImageJ 1.50r software (NIH, Bethesda, MD, USA) achieved size-determination of the 

vesicles. Prior to labelling of EVs, the samples attached to the nickel grids were 

washed three times in PBS and subsequently blocked with 0.5% ovalbumin (Sigma- 

Aldrich, St. Louis, MO, USA) in PBS. Primary antibodies against CD9 (clone M-L13, 

BD Biosciences ) and CD38 (daratumumab; Jannsen-Cilag A/S) diluted 1:50 in 0.5% 

ovalbumin-PBS for 30 minutes at 37°C. Then, the samles were washed again and 

incubated with 10 nm gold-conjugated goat anti-mouse secondary antibodies (British 

BioCell, Cardiff, UK) in a 1:25 dilution in 0.5% ovalbumin-PBS. After a final 

washing step, the samples were incubated with 1% cold fish gelatin (Sigma-Aldrich) 

for 30 minutes, stained with phototungstic acid as described above prior and finally 

vizualized. 

Coagulation analyses 

Calibrated automated thrombogram 

The TG assay used was the well-known and universal test, CAT, that has been 

described previously by Hemker et al245. In this test 80 µl sample were mixed 20 µl 

prewarmed trigger reagent containing TF and/or PPL. Coagulation was initiated at 

zero time by adding 20 µl FluCa buffer containing Ca2+ and fluorogenic substrate 

(FluCa kit, Thrombinoscope B.V., Maastricht, the Netherlands). The reaction was 

measured with an automated Fluoroscan Ascent (Thermo Scientific, Waltham, MA, 

USA). Thrombin Calibrator (Thrombinoscope B.V.) containing a fixed concentration 

of thrombin-α2-macroglobulin complex, was mixed with the samples, read, and used 

to calibrate each sample. 
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Study 1 

In study 1, PFP were analyzed for TG using the PPP-low trigger reagent 

(Thrombinoscope B.V.) containing 1 pM TF and 4 µM PPL. 

Study 2 

In study 2, four different trigger setups were used, in order to identify one or more 

suitable for investigating procoagulant EVs. Three commercial trigger reagents were 

used: PPP-low, containing 1 pM TF and 4 µM PPL; MP containing 4 µM PPL; PRP 

containing only 1 pM TF (Thrombinoscope B.V.); and the last setup was without 

addition of any trigger reagent. The samples analyzed for TG were the EV pellets 

resuspended in SPP or SPP+CTI. 

Study 3 

In study 3, EV pellets resuspended in SPP were analyzed for TG using the PRP trigger 

reagent (Thrombinoscope B.V.), containing only 1 pM TF. 

Circulating cell-free deoxyribonucleic acid assay 

The quantitation of cf-DNA was measured in PFP in study 1, as a surrogate measure 

for NETs, previously described by Lee et al246. DNA was labeled by mixing 100 µl 

PFP 1:10 with PBS and then add 100 µl fluorogenic substrate containing 4 µM 

SYTOX Green Nucleic Acid Stain (Thermo Fisher Scientific) followed by 5 minutes 

of incubation at 27°C. After incubation, the reaction was read with a 485/520 filter set 

in a FluoStar Optima (BMG Labtech, Ortenberg, Germany) with the Optima software 

version 2.20R2. UltraPure Calf Thymus DNA (Invitrogen, Carlsbad, CA, USA) was 

used to generate a standard curve for cf-DNA quantification and normal PBS was used 

to remove background noise. 

Procoagulant phospholipid activity assay 

The STA-Procoag PPL kit (Stago, Asnières, France) is FXa-based clotting assay that 

were used to asses PPL-related coagulation activity. 25 µl sample, diluted 1:1 in 

Owren-koller buffer (Stago), is mixed with PPL-free plasma (Stago). Coagulation was 

initiated with 100 µl trigger reagent containing 0.001 IU FXa and 0.025 M CaCl2. The 

reaction was measured on an automated STA-Compact (Stago) in accordance with the 

protocol from the manufacturer. 

Study 1 

In study 1, PPL activity was measured in PFP. 
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Study 2 and 3 

In study 2 and 3, EV pellets resuspended in SPP were analyzed for PPL activity. 

Microvesicle tissue factor assay 

The modified MV-TF assay used in study 2 and 3 were based on a method described 

by Wang et al238. Before measurement of MV-associated TF activity commenced, 600 

µl plasma was diluted in HBSA buffer containing 137 mM NaCl, 5.38 mM KCl, 5.55 

mM glucose, 10 mM HEPES, and 0.1% (w/v) bovine serum albumin. The mixture 

was then centrifuged at 20,000 × g for 15 minutes at 4°C to spin down MVs. After 

removing the supernatant, the pellets were washed once in HBSA, whereafter the 

pellets were resuspended in 180 µl HBSA. The MV pellet suspensions were incubated 

with monoclonal mouse anti-CD142 antibody (clone HTF-1, BD Pharmingen) or IgG 

from mouse serum (Sigma-Aldrich) for 15 minutes. To trigger coagulation, 50 μL 

HBSA containing 10 mM CaCl2, 73 nM FX (Enzyme Research Laboratories, South 

Bend, IN, USA) and 2.4 nM factor VIIa (Enzyme Research Laboratories) was added 

and the samples were left to incubate at 37˚C. After two hours of incubation the 

coagulation was stopped by adding a HBSA stop solution, containing 25 mM EDTA 

and 25 µl buffer, containing 4 mM Pefachrome FXa 8595 (Pentapharm, Basel, 

Switzerland) was added for another 15 minutes of incubation at 37°C. The reaction 

was detected using a Fluostar Optima (BMG Labtech) at absorbance 405 nm. To 

finally calculate the MV-TF activity, a standard curve was created using Innovin 

(Siemens Healthcare, Erlangen, Germany). 

Statistics 

In all three studies, Mann-Whitney U test or Student’s t-test was used to find 

significance dependent on the type of distribution. Correlations analysis between 

different analytical outcomes were performed using the Pearson correlation 

coefficient. For the comparison of differences during the different treatment regimens 

in study 1, Wilcoxon matched-pairs signed rank test was applied. In study 2, 

differences between washed and unwashed pellets were identified using the paired 

samples t-test. All statistical analysis throughout the three studies were performed 

using the IMB SPSS Statistics 23 software (SPSS, Chicago, IL, USA) and/or Graph 

Pad Prism 6 and 7 (GraphPad Software, La Jolla, CA, USA). 
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Chapter 6. Results 

Study 1 

Prothrombotic abnormalities in patients with multiple myeloma and monoclonal 

gammopathy of undetermined significance 

Thøger Nielsen, Søren Risom Kristensen, Henrik Gregersen, Elena Manuela 

Teodorescu, Jonas Ellegaard Nielsen and Shona Pedersen 

Hypercoagulability in MGUS and MM 

Thrombin generation 

Significantly increased TG was detected in both MGUS and MM, depicted by an 

increase in ETP (approximately doubled) and peak height (approximately four times 

higher) when compared to control subjects. Lagtime and time-to-peak were 

significantly reduced to almost half the time in both MGUS and MM.  

Procoagulant phospholipid activity 

The PPL activity in were increased in MGUS and MM, however, with the most 

significant increase in the latter. The PPL clotting time was by 46% for the MGUS 

patients and by 61% for the MM patients. 

Microvesicle-associated procoagulant activity 

The only significant TF activity associated to MVs were detected in the MM patients, 

which presented with higher heterogeneity compared to the MGUS patients and 

control group. The MGUS showed an insignificant trend, where some MGUS patients 

had increased levels of TF activity in comparison to the control group. Almost none 

of the control subjects had any detectable level of TF activity. No correlation between 

MV-associated TF activity and TG was detected.  

Cell-free deoxyribonucleic acid 

The levels of cf-DNA in plasma were only found to be significantly increased in MM 

patients with a median increase of 73 ng/ml (42%). This increase may result from the 

heterogeneity that the MM patients hold, where some individual patients reached 

levels 10 times higher than the lowest in the group.  
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Effect of treatment on the global coagulation in MM 

Overall, we did not find any apparent effects of the conventional treatment or HDCT 

with ASCT on thrombin generation. When a comparison between the few patients that 

finished a whole sample collection schedule were made, some minor differences were 

detected. Lagtime and time-to-peak were slightly increased after VCD induction in 

the HDCT+ASCT group. For the conventional treatment group, peak height increased 

slightly after 6 months and ETP increased slightly after 12 months. 

Study 2 

Investigation of procoagulant activity in extracellular vesicles isolated by 

differential ultracentrifugation 

Thøger Nielsen, Anne Flou Kristensen, Shona Pedersen, Gunna Christiansen and 

Søren Risom Kristensen 

Published in Journal of Extracellular Vesicles, Volume 7, March 2018, Pages 

1454777 

Isolation and characterization of extracellular vesicles 

Size and quantity of isolated particles 

After applying the isolation procedure on plasma samples from control subjects, the 

cencentration of particles measured with NTA in the pellet suspensions were reduced 

to between 5-8% of that in the original plasma. The mean particle size increased by 

40% from plasma (85 nm) to the 20K pellets (119 nm) and by 25% to the 100K pellets 

(109 nm). The fraction of particles larger than 100 nm in size was close to 50% in 

both 20K and 100K pellets. There were slightly more particles above 200 nm in size 

in the 20K pellets. TEM images confirmed the presence of several EV-like structures. 

Many smaller vesicle-like structures were also identified in the unwashed pellets, 

many of which resided in proximity of the larger ones. 

Surface proteins 

Several CD9-positive EV-like structures were identified in both 20K and 100K pellets 

through immunogold-labeling. WB further confirmed this though detection of CD9 in 

both pellet types.  

Protein contaminants 

WB revealed the presence of apolipoprotein B in the isolated pellets, especially the 

20K pellets. The overall protein content in the pellets was measured to be between 

1200-2200 µg/ml.  
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Effect of washing the pellets 

After washing of the pellets with a PBS washing step, the particle levels decreased by 

37-38% in the both 20K and 100K pellets. However, the mean size increased by 33% 

in the 20K pellets and by 19% in the 100K pellets. Moreover, the fraction of particles 

below 100 nm in size shrink from more than 50% on average in all pellets, to less than 

10% in the 20K pellets and ~30% in the 100K pellets. Apolipoprotein B content was 

not detectable by WB after washing and the protein content reduced by more that 

88%. No co-isolation of FVIII was detected in 20K or 100K pellets. We found little 

to no effect on TGA results between washed and unwashed pellets resuspended in 

SPP. 

Procoagulant activity exerted by extracellular vesicles 

Effect of extracellular vesicles on thrombin generation 

Overall, an increased TG was observed in SPP spiked with with EVs from 20K and 

100K pellets, however, the results varied for each type of different trigger stimuli 

used. When using no trigger reagent or the MP reagent (4 µM PPL), TG seemed to 

increase independent on pellet type used, but the effect was difficult to evaluate due 

to high inter-individual variation. Using PRP (1 pM TF) as trigger reagent, TG is 

noticeably increased in both pellet types, but with the greatest effect in the 20K pellets. 

When using PPP-low (1 pM TF and 4 µM PPL) as trigger reagent, the procoagulant 

effect of the 20K pellets disappear in contrast to the 100K pellets that remained 

elevated.  

Analysis of TG in pellets resuspended in SPP containing CTI showed that no TG 

occurred using no trigger reagent or the MP trigger reagent. The addition of CTI 

seemed not to influence TG measured with PRP or PPP-low, except for eliminating 

the procoagulant effect of the 100K pellets observed in the PPP-low setup. 

When measuring TG in the original plasma, from which the pellets were isolated, and 

the corresponding supernatants after the DUC isolation procedure, a significant 

reduction in TG was observed. 

Effect of extracellular vesicles on procoagulant phospholipid activity 

Analysis of PPL activity demonstrated a significant effect of the pellets. 20K pellets 

reduced the PPL clotting time by almost 50%, whereas the 100K pellets reduced the 

PPL clotting time by almost 20%. The PPL activity correlated with the TG measured 

with the PRP trigger reagent, but this effect disappeared when the trigger was replaced 

with PPP-low trigger reagent (also containing PPL). Furthermore, the PPL activity 

correlated to the mean particle size, with the highest PPL activity in pellets with the 

largest mean particle size. Similar to the analysis of TG, PPL activity was reduced in 

the supernatants after pellet isolation from the original plasma of the control subjects.  
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Study 3 

Extracellular vesicle-associated procoagulant phospholipid and tissue factor 

activity in multiple myeloma 

Thøger Nielsen, Søren Risom Kristensen, Henrik Gregersen, Elena Manuela 

Teodorescu, Gunna Christiansen and Shona Pedersen 

Published in PLoS ONE, Volume 14, January 2019, Pages e0210835 

Isolation and characterization of extracellular vesicles 

Nanoparticle tracking analysis 

Overall, significantly more particles were found in the pellets from MM patients 

compared to the control group, where the 20K pellets contained the most particles. In 

both the control group and the patient group, the 20K pellets had the highest mean 

particle size, although the difference between the tro pellet types was most 

pronounced for the MM patients. In general, the 20K pellet from the MM patients had 

the highest fraction of particles above 100 nm and above 200 nm in size.  

Transmission electron microscopy, immunogold-labeling and western blotting 

TEM images revealed EV-like structures in all pellet types from both patients and 

control subjects. Moreover, CD9-positive EVs were detected in both 20K and 100K 

pellets from control subjects and MM patients, but most distinct in the 20K pellets of 

the MM patients. A rough estimation revealed that the CD9 content was 3-6 fold 

increased in MM pellets when compared to those of the control subjects. CD38-

positive EV populations detected in both control and MM pellets, but it was most 

pronounced in those from MM patients.  

Procoagulant extracellular vesicle activity in multiple myeloma  

Thrombin generation 

The measured effect of EVs on TG was found only to be present in the 20K pellets 

from the MM patients. Here, peak height was more than doubled and ETP increased 

by almost 50% compared to the control pellets. Furthermore, both lagtime and time-

to-peak decreased by approximately 30%. 

Procoagulant phospholipid activity assay 

The PPL activity was increased only in the 20K pellets of the MM patients, where the 

reduction in PPL clotting time was nearly 50%.    
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Microvesicle-tissue factor assay 

In line with study 1, most control subjects showed no detectable MV-TF activity. Most 

of the MM patients, however, showed increased MV-TF activity with some 

individuals depicting a marked increase compared to the rest. 

Effect of treatment on procoagulant extracellular vesicle activity 

After receiving anti-myeloma treatment the procoagulant activity of EVs in the 20K 

pellets of MM decreased. It seemed that patients receiving VCD induction therapy, 

prior to their HDCT with ASCT, had a more distinct response compared to the MM 

patients receiving conventional therapy. This was, for the conventional group, 

depicted in a lowered almost 30% lower ETP and peak height and almost no reduction 

in lagtime and time-to-peak. In contrast, the VCD group had a 56% lower ETP, 42% 

lower peak height, and an approximately 30% increased lagtime and time-to-peak. 

Furthermore, the VCD group had a significant and almost complete reduction in PPL-

clotting time compared to a modest response in the conventional group. Both 

treatment groups also showed an insignificant trend of reduction in their particle 

concentration post-treatment, especially in the VCD group having their fraction of 

particles above 200 nm in size almost cut in half. 
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Chapter 7. Discussion 

The aim of this thesis was to investigate the hypercoagulability present in patients 

with MM and MGUS and any possible association to an increased VTE-risk. We 

aimed to investigate several procoagulant factors potentially responsible for this 

hypercoagulability at diagnosis and throughout the treatment period. Furthermore, we 

aspired to optimize and validate a model that would allow for a proficient 

investigation and concise exploration into the role of procoagulant EVs. Eventually, 

we would use the model to explore any procoagulant activity of EVs in the MM 

patients. 

We found that patients with MGUS and MM displayed hypercoagulability, consisting 

of increased TG and PPL activity. MM patients had increased levels of cf-DNA, as 

an indication of NETs. Treatment of multiple myeloma did not seem to have a 

significant impact on TG in any of the treatment arms and NETs levels seemed to drop 

to normal levels. We optimized a model for effective investigation of procoagulant 

EVs from plasma and found that procoagulant EV activity were present in MM at 

diagnosis, but that this activity decreased after the first treatment with most effect in 

patients receiving VCD induction therapy prior to HDCT and ASCT. 

The topic of the first part of the discussion revolves around the mehods of choice. It 

will entail an assessment of the methods chosen to test for coagulation abnormalities 

in the different studies. It further elaborates the main issues and thought processes 

behind the systematic optimization of a model for isolation and functional analysis of 

procoagulant EVs performed in study 2 and 3. The second part of the discussion 

entails the investigation and comparison of hypercoagulability in plasma from MGUS 

and MM, and healthy controls (study 1). This comprises the role of NETs, TF and PS, 

particularly in relation to procoagulant EVs (study 3). The discussion of 

hypercoagulability in patients with MM will entail the assessment of different anti-

myeloma treatments and their potential role in hypercoagulability and possible VTE-

risk. 

Methods of choice 

Thrombin generation 

The choice to use a TG assay in the analysis of hypercoagulability was based on its 

capability to depict a global evaluation of the hemostatic system, including 

information about the initiation of coagulation, amplification and propagation, and 

resolution phases. We measured TG with CAT, because it is proficient in 

demonstrating changes in most coagulation factors and the effect of anti-coagulant 

treatments and it is an acceptably standardized method245,247. It has been used 
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frequently to detect hypercoagulability in several instances, including investigation of 

acute deep vein thrombosis and thromboembolism248–250. Several commercial reagent 

kits are available with different concentrations of TF and PPL that theoretically can 

be used to demonstrate different changes of PPL and TF activity in plasma samples. 

For all samples collected in the MEXO study, the centrifugation protocol used was 

recommended by Lacroix et al.224 and the product is considered to be PFP. Since there 

is no kit available for PFP, our choice was to use the PPP-low reagent with 1 pM TF 

and 4 µM PPL to analyze our plasma samples. The CAT method has previously been 

used to investigate procoagulant properties of EVs, and a commercially available 

reagent exists, the MP kit (short for microparticle) containing only 4 µM PPL. Gheldof 

et al.235 used CAT with the MP kit to demonstrate procoagulant activity of MVs from 

a cultured breast cancer cell line. In study 2, where we investigated procoagulant 

effect of EVs in healthy subjects, the concentrations TF and PPL used to trigger the 

reaction was definitely of importance and not simply chosen. We were, however, not 

able to achieve any reliable data on MV-associated procoagulant activity, when we 

used no trigger reagent or the MP reagent in these healthy volunteers, because of high 

inconsistency and absence of TG when tested with addition of CTI. Luddington et 

al.251 show that addition of CTI can be used for investigation of low concentrations of 

external triggering TF, which nevertheless is consistent with our findings. We observe 

no TG in in plasma with CTI, until we use a reagent containing 1 pM TF or more. 

Furthermore, we learned that adding too much external PPL via the trigger reagent 

would conceal or diminish a big part of the procoagulant effect of EVs (presumably a 

majority of the PPL activity). These observations was the basis for the decision to use 

PRP kit with only 1 pM TF for investigation of procoagulant activity of EVs 

resuspended in SPP. 

Procoagulant phospholipid assay 

The procoagulant phospholipids, essential for binding of the tenase and 

prothrombinase complexes, is mainly residing on activated platelets and MVs. When 

we tested PFP with a procoagulant phospholipid assay, we expected the source for 

PPL activity to be almost purely MV-associated and without any interference from 

activated platelets. A commonly used method to detect PS-positive MVs is FC with 

Annexin V that binds PS, but this method measures the number of PS-positive MVs 

(not activity) and may furthermore have limitations in detecting the smallest of MVs 

that also may bud from the cell membrane252,253. Several alternative PPL activity 

assays are also frequently used to assess the MV-associated PPL activity in plasma253. 

We used the clot-based STA-Procoag-PPL kit due to its simplicity and reproducibility 

and it has been shown that it correlates well with FC with Annexin V254. The PPL 

activity assay depicts the total plasma PPL activity and cannot distinguish whether 

large and/or small EVs. We included the assay in study 2 and 3 to measure the total 

PPL activity, but also to check for correlation other EV-related measures, e.g. mean 

particle size or concentration. 
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Cell-free DNA marker for neutrophil extracellular traps 

Since NETs is an emerging factor of interest in regards to thrombosis and is capable 

of trapping MVs carrying PS and/or TF, we included the quantification of cf-DNA as 

a surrogate measure for NETs levels. Previously, microscopic techniques using 

antibodies against constituents of NETs were the typical method of choice for 

investigating NETs, but most studies using this approach required a preceding 

isolation of the neutrophils255. Real-time PCR-, ELISA-, and FC-based methods can 

be applied to investigate cf-DNA or NETs components, like myeloperoxidase or 

neutrophil elastase (NE), in body fluids256–258. Lately, the fluorescent nucleic acid 

stains for cf-DNA has more frequently been used as a surrogate measure of NETs in 

serum and plasma259,260. The method is time-efficient and relatively easily 

standardized, but should be interpreted with caution, because it measures cf-DNA 

without defining the source, i.e. the cause of cell death or cell of origin255. We find the 

method relatively stable with a control population showing homogenous levels of cf-

DNA that for the most part was around 200 ng/ml. The litterature has been reporting 

levels of approximately 10-200 ng/ml dependent on preanalytical preparations246,261. 

How much of the quantitated cf-DNA that in fact is associated to NETs is unclear and 

should therefore be evaluated with caution.  

Microvesicle-associated tissue factor activity assay 

An MV-TF activity assay was included in both study 1 and 3 since it was designed 

for measurement of MV-associated TF activity. Two MV-TF activity assays exists 

(kinetic and end-point), but they seem to have issues regarding sensitivity when 

measuring low levels of TF (e.g. comparing patients to healthy controls)262,263. In 

addition, it has also been documented that the MV-TF activity in healthy subjects are 

below the limit of detection for this assay, thus rendering a comparison between 

healthy and pathological samples challenging264,265. We adapted an MV-TF activity 

assay from the Chapel Hill group238. This assay did prove issues in detecting TF 

activity in many of the samples, especially in the control group. Therefore, the results 

of this analysis was difficult to compare to our other analyses and serve exclusively 

be used to identify individual patients with high MV-TF activity. A shortcoming of 

the method is the lack of sensitivity, but recently a study was published describing 

how to improve the sensitivity of the MV-TF method without loss of specificity266. 

We chose, in parallel to the MV-TF assay, to isolate EVs from plasma from both 

patients and controls for procoagulant analysis of EVs with other coagulation tests 

and characterization tools. 

Isolation of extracellular vesicles 

Since there are many opinions on how to isolate EVs most efficiently, it can be 

difficult to find a model that fits all downstream analysis. Initially, we applied the PFP 

extraction procedure recommended by Lacroix et al224, which was performed at room 
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temperature to avoid platelet activation (and thereby additional EV secretion), and to 

ensure a platelet-free medium for EV isolation. We then chose to investigate the 

strenghts and limitations of a DUC-based EV isolation technique, since it theoretically 

enables for isolation of more distinct MV and exosome subpopulations. Furthermore, 

it would enable us to resuspend the isolated EVs directly in a set amount of SPP, 

which we needed for our downstream coagulation analyses. The requirement for 

resuspension of the isolated EVs in SPP impeded any thoughts of including a SEC 

separation. That way, the EVs would presumably be diluted to an extent where we 

would be unable to measure their procoagulant properties with our selected panel of 

coagulation assays. Filtration was excluded based on the putative loss of material (e.g. 

clotting of the filter) and potential risk that the procedure may disrupt the integrity of 

the EVs and distort their functional abilities. Instead of including an additional 

isolation technique, we added a washing step to the DUC procedure. As recommended 

by Therý et al.267, washing of the pellets achieved through DUC in equal volumes of 

PBS is an almost unavoidable step to include, due to the complex nature of plasma. 

The washing of the pellet should potentially remove many smaller contaminants, like 

protein aggregates and lipoproteins. It is well known that many lipoproteins overlap 

in size and density with EVs and are known as a major constituent of the total amount 

of particles measurable in plasma samples227. Therefore, we also included several 

characterization tools to investigate the extent of coisolation of protein aggregates and 

lipoproteins. 

Characterization of extracellular vesicles 

While NTA frequently is used to quantitate EVs in different mediums, we included it 

well aware that it may serve as a rough estimate EV quantity and size due to its 

sensitivity towards contaminating factors. We assumed that washing of the pellet 

would increase the validity of the particle concentrations and sizes measured in the 

20K and 100K pellets. NTA revealed an overlap between the two pellet types, but did 

also show an increase in median particle size, especially after the washing step. The 

considerable particle size overlap of particles between 100-200 nm in size is similar 

to findings by Kowal et al.193 made on cell culture supernatants. After washing o the 

quantity of particles in the pellets decreased by approximately 95% and most of the 

particles removed are from the fraction <100 nm in size. This indicates, that we 

propably were removing many lipoproteins and maybe small exosomes that we would 

not expect would contribute significantly to procoagulant EV activity. We determined 

that the particle levels measured using NTA would not be suitable to standardize the 

amount of EVs resuspended in SPP from each patient or control, because surely the 

NTA measurements was still influenced by some contaminants. WB was mainly 

introduced in the studies to confirm the presence of CD9- and CD38-positive EV 

populations and verify the removal of some apolipoprotein. WB is a tool frequently 

used to detect, e.g. tetraspanin-enriched EVsand, it is suited for spotting relevant 

contaminants193. However, without a valid standardization of the amount of EV-

material loaded onto the gel, the differences between samples should only be used to 
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make a rough relative estimation with caution. To support the findings of WB, TEM 

and immunoelectron labeling were applied as a ’seeing is believing’ tool, in a similar 

manners as others235,268,269. TEM and immunogold labeling of EVs was not used to 

estimate the amount of CD9- and CD38-positive EVs, but both TEM and WB was 

also used to confirm the effect of washing on the contaminating protein aggregates 

and lipoproteins. In general, the optimization of an EV isolation model partly achieved 

some size and phenotypical separation of EV populations with reduced amounts of 

contaminants, and the EVs showed clear signs of procoagulant activity. 

Hypercoagulability in MGUS and MM  

Our findings in study 1 supported our hypothesis that patients with MM and MGUS 

have increased procoagulant activity in the blood compared to healthy subjects. We 

find that TG, measured in plasma drawn from MGUS and MM patients at diagnosis, 

was markedly increased compared to healthy subjects. In addition, we find that both 

patient groups have markedly increased PPL activity, however, only MM patients 

show tendencies of increased MV-TF activity and increased levels of NETs. 

Throughout anti-myeloma treatment, we find little or no effect of the treatment on the 

hypercoagulable state observed at diagnosis. Our data indicated that elevated TF and 

PPL activity, especially associated to EVs, may play a role in the MM-related 

hypercoagulability, but this effect is lowered after the first cycle of treatment, thus 

supporting our second hypothesis that MM in comparison to healthy subjects have 

elevated blood levels of procoagulant EVs. 

Procoagulant factors in MGUS and MM 

The elevation of TG that we demonstrated in MM and MGUS at diagnosis, indicate 

that parts of the global coagulation system is out of balance and in turn may be a 

contributor to the reported VTE-risk associated to both conditions55,56,137. Few studies 

have described TG in MM or MGUS. Two studies described little to no difference in 

TG in plasma from MM patients when compared to healthy controls270,271, whereas 

another study reported an unexpected attenuation of TG in MM compared to healthy 

subjects150. One study finds ETP and peak thrombin increased in both MGUS and 

MM, with the largest increase in the latter272. An issue to address regarding the lack 

of consensus may be found in the pre-analytical and analytical choices made. Firstly, 

all studies use platelet-poor-plasma, which presumably do contain more residual 

platelets in comparison to PFP. Secondly, two studies use the PPP reagent, which 

contains 5 pM TF instead of 1 pM. Together, these factors may hide a potential 

increase in TG like the one we observed in our study 1. One study finding an increase 

in TG uses the same TGA setup as we do, using the PPP-low reagent, suggesting that 

lower levels of triggering TF increases the assay sensitivity to differences between 

healthy subjects and patients. MGUS patients presented with increased TG, although 

not as prominent as the MM patients, which is in line with the findings of Crowely et 

al.272. The same is the case with plasma PPL activity, which raises the question if 
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MGUS and MM may possibly share some underlying mechanisms that cause 

hypercoagulability. Whether this truly is due to shared features in pathophysiology of 

the underlying diseases or progression mechanisms associated to cancer that affects 

the coagulation systems may have clinical value. MGUS, being asymptomatic, is a 

condition typically detected through hospital visits regarding other conditions. 

Therefore, some may have some other underlying conditions that may influence our 

results. Nevertheless, these are speculations and not questions we can answer in this 

thesis. 

NETs are known to be expressed more in some tumors, like lung cancer, but otherwise 

the knowledge of NETs in cancer development is sparse. Recently, it was proposed 

that the tumor environment induces NETs release from neutrophils, where they may 

play a role in adherence and activation of platelets273. In regards to MM, almost no 

knowledge has been published on the subject. A study reported low levels of 

citrullinated histone H3, another surrogate measure for NETs, in MM suggesting that 

NETs play a minor role in MM-related VTE-risk274. Our analysis of cf-DNA showed 

that approximately one third of the MM patients had elevated levels at diagnosis. This 

could indicate that NETs do have a role in MM-related hypercoagulability for some 

individual patients, but the absence of VTE hinders any further conclusion . Some of 

the cf-DNA measured may also be footprints from excess cellular decay or apoptosis 

related to MM or comorbidities.  

Extracellular vesicle mediated procoagulant activity in MM 

In study 1, increased plasma PPL activity in most MM patients indicates presence of 

procoagulant PS-positive MVs. No correlation was evident between PPL activity and 

TG, which could indicate that other blood coagulation factors are also contributing to 

the increased TG. Furthermore, the increased MV-TF activity also indicate the 

presence of procoagulant TF-positive EVs in many of the patients. This did not 

correlate to TG, but the effect of the MV-related TF activity may likely have been 

hidden by the TF from the trigger reagent. 

The results on EV ‘spiking’ in SPP indicated that MM is associated with procoagulant 

EVs, likely in the shape of MVs containing TF and PS. A subpopulation of CD9-

positive EVs were most abundant in the procoagulant fraction, i.e. 20K, suggesting 

that the majority of EVs, including the larger procoagulant MVs, possibly are isolated 

in this fraction, whereas the remainder, propably the smallest and non-procoagulant 

EVs and contaminating factors may constitute a considerable part of the 100K 

fraction. To our knowledge, the impact of procoagulant EVs in MM is an almost 

unexplored subject. Auwerda et al.149 has previously demonstrated an increased MV-

associated TF activity in MM using a FXa-based method on EVs isolated in a similar 

manner as our 20K pellets. Due to both different preanalytical procedures and EV-

isolation deviations, a direct comparison of the results is complicated. Fotiou et al.275 

reported on an overall increased PPL-clotting time in plasma of MM patients similar 
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to our findings on the subject, but do not include any profound analysis of the impact 

of procoagulant EVs in their paper. 

Specific procoagulant phenotypes of cancer cells showing over-expression of TF and 

PS has also been described276,277. The procoagulant cancer cells are also known to 

secrete EVs containing TF and PS278–280. Several studies report that procoagulant EV-

activity exists in various types of cancers, underlining that the procoagulant EVs are 

an inevitable factor to consider in cancer-related hypercoagulability and VTE risk281. 

As a therapeutic target for MM, CD38 is overexpressed on MM cells and most likely 

on some EVs secreted from these cells282. It is being investigated if CD38 positive 

EVs released from MM cells is another mechanism to avoid immunodetection among 

other cancer features283, but no reported connection between CD38-positive EVs and 

EV-related procoagulant activity in MM exist. In line with this, we found that most 

CD38 was present in the isolates containing the majority of small EVs (i.e. 100K 

pellets), which suggests that the procoagulant activity of EVs we observe is not linked 

directly to CD38-positive EVs from MM cells. Yet, the procoagulant EV activity may 

be linked to cancer EVs that do not contain CD38. It is also feasible that other cancer-

induced effects (e.g. inflammation and altered protein metabolism) is connected to the 

EV-mediated hypercoagulability we observe in MM.  

None of the patients developed VTE in their period of participation in the MEXO-

project, which unfortunately make it impossible to substantiate any connection 

between procoagulant EVs and MM-related VTE-risk. However, we demonstrate that 

MM patients do have increased EV-mediated procoagulant activity, but with a 

considerable variation among patients. Auwerda et al.149 touches the subject of a 

possible connection between MV-TF activity and VTE in MM patients, just like 

procoagulant EVs and the association to the VTE-risk has been described in several 

other cancer types. This emphasizes the general knowledge that cancer in it self entails 

a significant risk of VTE possibly caused by many factors, where procoagulant EVs 

only represents one of its many risk-associated arms.  

Anti-myeloma treatment and its implications on coagulation 

Our data on coagulation activity during treatment suggest that neither MPV nor 

HDCT+ASCT treatment have any significant impact on plasma TG. Even though 

some anti-myeloma regimens are associated with increased VTE risk, this observation 

is in line with others reporting no effect of treatment on TG in MM284. There is, 

however, some controversy on the topic. Another group showed a minor increase in 

TG in patients receiving mainly IMiDs and they suggest velocity index as an indicator 

of hypercoagulability, but neither ETP nor peak thrombin were increased271. Recently, 

Leiba et al. suggested that TG may serve as a potential predictor of VTE by 

demonstrating increased TG in MM patients with a future thrombotic event compared 

to those without270. In this case, more than 80% of their observed thrombotic events 

occurred during treatment with IMiDs, which potentially may be part of the cause. In 
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the past decade, the VTE-associated IMiDs are getting replaced with drugs like 

bortezomib that is less thrombogenic285. This is the case for more than 75% of the 

patients receiving conventional therapy in our study 1, which may also explain why 

we detect no treatment-related hypercoagulability.  

We futher found that individual patients have high levels of cf-DNA at the time of 

diagnosis, but these almost diminished to the same level as the other patients had after 

being treated with MVP or HDCT with ASCT. This suggest that there may be a 

connection between treatment and decreasing levels of NETs, but whether this 

connection is direct/indirect or related to NETs-associated procoagulant activity 

remains to be determined. Even though no published data on NETs in MM exist, it is 

known that cancer cell-induced NETs are connected to cancer progression286. 

Therefore, it may be feasible that the reduction in cf-DNA we observe in MM patients 

simply is due to a decrease in stimuli from cancer cells that are killed in response to 

treatment. 

In study 3, we demonstrated a distinct procoagulant effect of EVs isolated from 

plasma from MM patients. This effect did conversely diminish markedly after the 

initial treatment phase, but most apparent in the group receiving VCD induction 

therapy. A similar trend was observed by Auwerda et al. in MM patients after 

treatment149. The reduction of procoagulant activity of EVs we observed seems to be 

related to the larger MVs, but also the cancer. Maybe they originate from MM cells 

or they are a result of the systemic response to the cancer. It is likely that the reduction 

of procoagulant activity is connected to the overall state of health of the MM patients 

that is generallty increasing (reflected by treatment response), particularly in patients 

receiving VCD.  

Overall, our data suggest that the anti-myeloma treatment used in our study is not 

worsening the hypercoagulable state detected in MM patients at diagnosis. 

Nevertheless, we were not able to identify individual patients with elevated VTE-risk 

during treatment, which may benefit from thrombopropfylaxis, without data from any 

patients who developed VTE.  
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Chapter 8. Conclusions 

Overall, the studies suggest rejection of our null hypotheses by indicating that 

hypercoagulability do exist in patients with MGUS and MM and that this 

hypercoagulability, to some extent, can be attributed to procoagulant EVs. 

In study 1, we found evidence of hypercoagulability in patients with MGUS and MM 

related to TG and PPL activity, suggesting that some connection between the 

underlying diseases and the increased procoagulant activity exist. Some MM patients 

have increased levels of cf-DNA and MV-associated TF activity at diagnosis, which 

indicates that both NETs and MVs may have a role in the MM-related 

hypercoagulability. During and after anti-myeloma treatment, TG for the most part 

remains unchanged. This trend is also applicable for cf-DNA levels except for a few 

deviating patients that stabilize during and after onset of treatment.  

In study 2, we optimized a DUC-based model for isolation of EVs intended for 

downstream coagulation analysis. We learned that a single washing step would 

remove a major part of the co-isolated contaminants, e.g. lipoproteins and protein 

aggregates, without pronounced loss of EV-material. We were able to identify a 

subpopulation of EVs positive for CD9 and that the isolated EVs were capable of 

altering coagulation in a procoagulant direction when analyzed with a combination of 

CAT and PPL activity assay. Our findings also suggested a connection between size 

of EVs and procoagulant activity, i.e. the larger MVs exerted increased procoagulant 

activity. 

In study 3, we find evidence of CD9- and CD38-positive EV subpopulations. 

Furthermore, we found a procoagulant population of EVs, most likely MVs, which 

attributed to hypercoagulability through increased TF and PPL activity in MM 

patients. The procoagulant EVs possibly have a connection to the cancer cells, directly 

or indirectly, but presumably not through CD38-positive EVs. The EV-mediated 

procoagulant activity decreases after onset of anti-myeloma treatment. The effect is 

particularly evident in MM patients receiving VCD induction therapy, and suggests 

association to the overall health improvement of the patients in response to the 

therapy.  
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Chapter 9. Perspectives 

Since the recognition of EVs as important bearers of various biologically active 

molecules and their potential roles in numerous diseases, the interest in the field has 

eversince grown and advanced, especially after the founding of ISEV in 2012 and the 

establishment of guidelines to advance the understanding and research of EVs. 

However, EV research is still a young field of research and much attention is directed 

towards standardization of methodology in regards to EV isolation, characterization 

and functional analysis200,263. Members of both ISEV and The International Soceity 

on Thrombosis and Haemostasis have also recognized the need for development and 

optimization of methods that are suited for investigation of EVs and their role in 

hemostasis and thrombosis287,288.  

Issues of method optimization and advancement for EV research has also been a major 

topic in this thesis. Although, several tools have been developed for EV isolation they 

all have pros and cons in regards to the purpose of subsequent investigation plans. We 

utilized a DUC model and initiatives from already existing protocols to create our own 

version suitable for our methods of choice for coagulation testing. However, it is very 

likely that we can refine our EV isolation procedure, e.g. in regards to centrifugation 

duration and before or after SEC/magnetic bead separation. Moreover, we could 

possibly refine our methods for characterization of EVs to get a deeper understanding 

of the origin of the EVs, and if and how they relates to the cancer. This may be 

achieved through reassessment of EV- and disease markers, choice of antibodies, or 

by including techniques like FC and cryo electron microscopy, that currently also are 

being developed and optimized for EV investigation. 

The investigation of EVs and their role in relation to hypercoagulability and VTE in 

cancer steadily improving, but procoagulant EVs in MM is a rather undescribed 

chapter, except for the paper from Auwerda et al.149. Unfortunatly, can neither they 

nor we link procoagulant EVs to VT-risk. Just as it applies for studies with limited 

availability of patients, the lack of VTE events in our studies pose a problem from an 

investigative point of view. Future investigations on the matter may call for further 

biobanking of MM samples, a possibly a re-evaluation of inclusion critera, and a solid 

analysis plan for efficient analysis with loss of sample quality and comparability. The 

same considerations do also concern the investigation of treatment effect on 

hypercoagulability, since MM is a patient group with a high drop-out potential due to 

the high mean age and variable disease stages. 

TF-positive EVs are also becoming interesting target in regards to development of 

novel medicines289. For MM, a potential candidate already exists in daratumumab 

(anti-CD38 immunetherapy against plasma cells), which are used more often in anti-

myeloma treatment due to promising treatment response. To investigate whether the 
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therapy activates the immune system to taget EVs from cancers cells and how it affects 

the procoagulant activity of EVs may be of clinical value. 

We believe that some of these considerations may help advance the investigation of 

procoagulant EVs in MM, elucidate their possible relatioship to VTE-incidence and 

aid in identifying patients that may benefit from an early thromboprophylactic 

measures.  
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