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Abstract

Speech communication can be challenging for people with a hearing loss, es-
pecially in noisy environments that resemble the well-known cocktail-party
situation. A hearing loss often leads to a reduced ability to understand speech
and therefore requires a greater listening effort for the hearing impaired lis-
tener to understand speech, particularly in noisy environments. Hence, it
can be highly stressful and exhausting for the hearing impaired listener to
participate in noisy events where one is expected to follow conversations.

Hearing aids are electronic devices that help reduce the impact of a hear-
ing loss. Hearing aids cannot fully compensate a hearing loss, but in many
cases, they can provide support by improving the audibility and speech intel-
ligibility in noisy environments. A modern hearing aid is typically equipped
with at least two microphones to pick-up sound. Based on spatial-temporal
filtering, i.e. beamforming and temporal filtering, a hearing aid can sup-
press the noise as a function of its location and its spectral content. How-
ever, in order to achieve optimal and robust noise reduction performance,
the parameters of the spatial-temporal filter, e.g. noise field statistics must
be provided. Since, noise is often highly non-stationary and might involve
competing speakers, the noise statistics need to be estimated online as they
are constantly changing.

In this thesis, we propose that better noise reduction can be achieved
by taking advantage of behavioral patterns between the hearing aid user
and a target speaker who are engaged in a conversation. For example, we
demonstrate that these behavioral patterns can provide crucial information
about where the desired talker is located. These cues could for example be
conversational turn-taking behavior between the user and the target talker.
Specifically, we demonstrate how to 1) utilize a prior distribution on the tar-
get direction to design robust beamformers, 2) utilize the user’s own voice to
identify and suppress competing speakers, and 3) exploit an expected conver-
sational turn-taking behavior between the user and target speaker to identify
the target speaker in situations with many competing speakers.
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Resumé

Talekommunikation kan være udfordrende for mennesker med høretab, spe-
cielt i støjfyldte omgivelser der minder om den velkendte cocktail-party situ-
ation. Et høretab kan ofte føre til en reduceret evne i at forstå tale, og derfor
kræves der ofte en større lytteindsats fra den hørehæmmede i at forstå tale i
støjfyldte omgivelser. Dermed kan det være yderst stressende og udmattende
for en hørehæmmet at deltage i støjfyldte begivenheder, hvor det er forventet
at følge og forstå samtaler.

Høreapparater er elektroniske enheder, der kan hjælpe med at reducere
effekten af et høretab. Høreapparater kan ikke kurere et høretab, men i man-
ge tilfælde kan de hjælpe med at forbedre hørbarhed og taleforståelighed i
støjfyldte miljøer. Et moderne høreapparat er typisk udstyret med to mikro-
foner til at opfange lyd. Baseret på rumlig-tidslig filtrering, dvs. beamforming
og tidsfiltrering, kan et høreapparat dæmpe baggrundsstøjen som funktion
af støjens lokation og dets spektrale indhold. For at opnå optimal og robust
støjreduktionsperformance, skal parametrene af det rumlige-tidslige filter vi-
des. Støj er dog ofte yderst ustationært og kan involvere uønskede samtidige
talere. Derfor skal parametrene såsom støjstatistikker, estimeres online, da
støjen kan ændrer sig hurtigt.

I denne afhandling undersøger vi om bedre støjreduktion kan opnås ved
at tage fordel af adfærdsmønstre mellem en høreapparatsbruger og en ønsket
taler, når de er engageret i en samtale sammen. For eksempel, forstiller vi at
disse adfærdsmønstre kan give afgørende information om, hvor den ønske-
de taler befinder sig. Disse adfærdsmønstre kunne for eksempel komme fra
brugerens øje-retning eller turtagningsmønstre i samtaler. Helt konkret, un-
dersøger vi hvordan man kan 1) udnytte en prior sandsynlighedsfordeling af
den ønsket tale retning til at designe robuste beamformers, 2) udnytte bruge-
rens egen-stemme til at identificere og dæmpe uønskede samtidige talere og
3) udnytte et forventet turtagningsmønster mellem en bruger og en ønsket
taler til at identificere hvem den ønskede taler er i situationer med mange
uønskede samtidige talere.
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Introduction

Our hearing is without doubt one of our most important senses and is cru-
cial for speech communication which a majority of humans use for expressing
thoughts and emotions. The auditory system is constantly stimulated by the
sound and speech that surrounds us every day. Exposure to speech is par-
ticularly important during infancy and early childhood, where the auditory
system will mature to perceive speech, which will make it easier to learn
spoken language [1–3]. The inability to understand spoken language can im-
pact later education, employment, and social relations for children. Likewise,
hearing impairments that arise later in life that reduce speech perception can
negatively impact social life. Several types of hearing impairments can for-
tunately be treated to some degree with hearing assistive devices such as
hearing aids. Although, hearing aids cannot restore a normal hearing, they
can increase audibility, improve speech understanding, and reduce the lis-
tening effort in noisy environments [1, 4]. To do so, many modern hearing
aids have access to at least two microphones and a sound processor to de-
ploy advanced signal processing algorithms to reduce the background noise,
perform hearing loss compensation, and reduce acoustic feedback [4, 5].

In Part I of this thesis, we will introduce background material which are
essential for this thesis, regarding auditory perception and sound processing
used in hearing aids. Each of these elements encompasses a large range
of aspects, which we cannot cover in this Introduction. However, they will
serve as a motivation for the research presented in the papers in Part II of
this thesis. In Sec. 1, we introduce the basics of the human hearing sense,
the consequences of hearing impairment, and hearing aids. In Secs. 2, 3
and 4, we introduce the multichannel noise reduction algorithms and their
parameter estimation commonly used in hearing aids, respectively. Finally
in Sec. 5, we motivate and summarize the scientific contributions presented
in Part II of this thesis.

3



1 Introduction to Hearing Loss

A hearing impairment can occur at any time in life, but becomes increasingly
common with age [5, 6]. Early symptoms related to hearing impairment
are usually mild, e.g., sounds becoming more faint. Furthermore, a hearing
impairment usually does not appear over night but may start mildly and
then gradually worsen over time, which makes it more difficult to notice.
Although, a hearing impairment may not appear life-threatening, hearing
impairments are known to reduce quality-of-life [7–9] and potentially cause
health issues, e.g., depression and dementia [10, 11]. Many people with mild
hearing loss may still be able to participate in normal conversations in quiet
and less noisy environments without any help from hearing aids. Since a
hearing loss rarely appears over night, a person with a hearing loss may have
adapted to the hearing loss. For example, during face-to-face communication,
a person with a hearing loss may have learned to efficiently use lip-reading
to understand speech better [1]. However, there exist situations which can
become overwhelmingly difficult for the person with a hearing loss to partic-
ipate and follow conversations in. These environments typically resemble the
well-known cocktail-party situation, where the speech signal of the talker-of-
interest is contaminated by noise and undesired competing speakers, which
are known to severely degrade speech intelligibility, especially for persons
with a hearing loss [12, 13]. In particular, for a person with hearing loss, such
situations may be stressful, unpleasant, and mentally exhausting. Over time,
the person with hearing loss may choose to completely avoid these environ-
ments, potentially leading to social isolation [1].

1.1 The Hearing Sense

A hearing loss can be caused by many different problems in the auditory sys-
tem. This section serves as a brief introduction to the human auditory system
and types of hearing losses related to it. From a simplified point-of-view, the
ear is the organ responsible for converting the acoustic vibrations in the air
to electrical pulses sent to the brain in order to perceive these vibrations as
being sound [1]. From a very simplified perspective, the ear is comparable
to a "biological microphone", whereas the brain is the "processor" responsible
for making sense of electrical signals sent from the ear organ.

The peripheral part of the ear organ consists of the outer ear, middle ear,
and inner ear. The visible part of the ear is the outer ear which consists
of the pinna and the ear canal [1, 14]. The shape of the pinna differs from
person to person and helps us localize sound sources [1, 14]. The ear canal
is essentially a tube with a length of approximately 2.5 cm and a varying
diameter in the order of 0.7 cm and has a resonance frequency at around
3 kHz which happens to be in the spectral region of importance for speech

4



1. Introduction to Hearing Loss

perception [1]. After the sound wave has traveled through the ear canal, it
reaches the ear drum which translates the acoustic signal into mechanical
movements, i.e., vibrations. The vibrations are carried through the middle
ear which amplifies the vibrations before reaching the inner ear. The middle
ear consists of the ossicles namely the hammer, anvil, and stirrup [1, 13].
The stirrup is attached to the oval window, a membrane which serves as
the entrance to the inner ear. The cochlea is in the inner ear and can be
divided into three ducts or "chambers" filled with fluid namely the vestibular
ramp, cochlea duct, and the tympanic ramp [1, 13]. The vibrations of the
oval window lead to pressure differences between the tympanic ramp and
the cochlea duct which are separated by the basilar membrane. The pressure
differences create fluid waves which cause the basilar membrane to vibrate.
The inner hair cells of the inner ear are located in the organ of Corti which is
connected to the basilar membrane. Vibrations in the basilar membrane cause
the hair cells to deflect and release neurotransmitters which in turn induce
electrical pulses on the auditory nerve. The electrical pulses are transmitted
via the auditory nerve through various relay stations to the brain [1, 13].

1.2 Consequences of a Hearing Loss

People with a hearing impairment might not seek medical treatment before
they experience poor audibility and speech understanding. The person with
a hearing loss may only notice that sounds and speech are becoming more
faint, and it becomes difficult to participate in conversations in noisy envi-
ronments. A hearing loss can be due to one or multiple problems in the
ear organ, where some are reversible, while others can cause a permanent
hearing loss. A temporary and reversible hearing loss could for example be
caused by an infection in the middle-ear and is actually relatively common
amongst children [5]. These types of hearing losses are generally less severe
and often result in a mild hearing loss. A permanent hearing loss can, for
example, be caused by long exposure to noise, age-related hearing loss, and
health conditions such as genetic disorders, Meniere’s disease, head traumas,
and some viral infections [1, 5]. These types of hearing losses cannot be re-
stored to normal hearing and are caused by a permanent damage of parts
of the ear organ. For example, long exposure to noise can damage the outer
and/or inner hair cells in the cochlea, which results in reduced audibility and
sensitivity to sounds.

A hearing loss can be described in overall terms such as mild, moderate,
severe, and profound hearing loss [15]. A mild hearing loss is defined as an
overall loss of 10 to 35 dB in hearing sensitivity, a moderate hearing loss is
in the range 35 to 70 dB, a severe hearing loss is between 70 dB to 90 dB
and a profound hearing loss is greater than 90-100 dB [1]. The sensitivity
determines the ability to perceive just-noticeable sound pressure levels. It
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is closely related to the hearing threshold which indicates the lowest sound
level where sound is detectable. A loss in sensitivity is typically measured
by a pure-tone audiogram, i.e., the sound pressure level of pure tones that
is necessary for a subject to notice their presence [1]. However, a hearing
loss is usually more complicated than reduced sensitivity and also involves
e.g. reduced frequency resolution, reduced dynamic range, etc. For a more
complete overview of different complications related to hearing losses see
[13]. Frequency resolution refers to the ability of the auditory system to
distinguish between frequency components in sounds. As the hearing loss
worsen, the critical bandwidth of the auditory system [16] widens, which
creates larger leakage of energy between the auditory frequency bands and
hence can cause larger spread of masking [13]. In other words, sound energy
which is present at one frequency reduces the sensitivity to sounds of other
frequencies. The dynamic range refers to the perceivable range in loudness.
It is defined as the range in sound level between the hearing threshold (i.e.
the threshold in-quiet) and the uncomfortable loudness level [13]. A reduced
dynamic range causes an abnormal growth of perceived loudness for increas-
ing sound pressure level. A reduced temporal resolution can have a negative
impact on speech perception as speech is formed by vowels and consonants
in quick successions, hence making it difficult to distinguish them [13]. Fi-
nally, binaural localization refers to the ability to localize sounds with both
ears. A reduced ability to localize sounds can make it more difficult to follow
conversations in complex environments with many talkers. In these situa-
tions, lip-reading can be helpful to understand speech, but this requires the
ability to localize the talker and turn the head towards the talker.

In many situations, a conversation occurs in a noisy environment. Perhaps
the most difficult situations to follow conversations in, involve the presence of
competing speakers such as in so-called cocktail-party problems [12]. Noise
and competing speech is known to severely degrade the intelligibility of a de-
sired speech signal and it usually requires a significantly higher listening ef-
fort to understand speech which may cause fatigue [17–19]. Since people with
a hearing loss already have a reduced ability to understand speech, cocktail-
party environments can be highly unpleasant and uncomfortable [1, 12, 17].
One cause for reduced speech intelligibility in noisy environments is due to
energetic masking of the desired speech signal by the noise [12, 20, 21] . Noise
refers to any unwanted sounds that have a disturbing effect on the desired
speech and includes competing speakers, i.e. unwanted speakers. Due to the
redundancy of speech signals, most people are able to deduce what is being
said if a few phonemes are being masked by noise, but it usually comes at
the cost of higher listening effort and cognitive load [17]. It is therefore not
difficult to imagine that a hearing loss can make it extremely difficult to make
sense of speech in noise. Another type of masking is informational masking,
which occurs when a noise source disturbs the attention of the listener [12].
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2. Hearing Assistive Devices

This can for example be a competing speaker who is talking at the same time
as the target speaker and causes a large listening effort. Hearing loss already
causes poor audibility and difficulties in simple environments where peo-
ple with normal hearing find it easy understand speech. The overall goal of
hearing aids is therefore to restore as much as possible, the lost audibility of
the person with a hearing loss, but also suppress the noise and competing
speakers in order to decrease the listening effort in noisy environments [4].

1.3 Turn-taking during conversations

In many situations, people with normal hearing communicate seamlessly
through speech even in noisy environments. However, a hearing loss can
make speech understanding challenging in environments that otherwise
would be simple for normal hearing. Speech communication is typically
face-to-face and can involve two or more conversational partners. There are
several behavioral patterns and cues that are established when people engage
in conversations [22]. These behavioral patterns and cues can potentially hint,
where the auditory attention of the conversational partner is focused. One
of the most apparent behavioral patterns that exists across language and cul-
ture, is the presence of turn-taking [23, 24]. Turn-taking is a social behavioral
mechanism where conversational partners coordinate taking turns in talking
and listening. It is generally considered socially adept to follow the mecha-
nism of turn-taking in conversations. Breaking the turn-taking mechanism by
talking, while the communication partner is talking, can be considered rude.
On the other hand, being silent when the conversational partner expects you
to talk can be considered socially awkward. The overall behavioral pattern in
turn-taking is that conversational partners should avoid long speech overlap
and speech gaps as much as possible [24]. Another behavioral pattern that
can indicate the attention of the conversational partner is the eye-gaze. For
example, it is common that the eyes of a person are gazing towards the con-
versational partner. Especially in noisy environments, lip-reading requires
that the eyes are gazing towards the face of the conversational partner [22].

2 Hearing Assistive Devices

The goal of hearing aids is not necessary to completely restore the normal
hearing sense, but to reduce the negative consequences of hearing impair-
ment. Hearing aids come in various styles and are chosen based on the
user’s needs. For example, some hearing aid styles can be placed in the
ear canal making them barely visible, while others are placed behind the
ear which allows the hearing aid to be larger and, hence, potentially offer
improved hearing loss compensation and noise reduction, e.g. via higher
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Fig. 1: Different style of hearing aids from Oticon: Behind-the-ear (BTE), receiver-in-the-ear
(RITE), mini-receiver-in-the-ear (miniRITE), in-the-ear (ITE), in-the-canal (ITC), completely-in-
canal (CIC), invisible-in-canal (IIC).

amplification and more microphones with greater spatial separation. Hear-
ing aid styles that are placed in the ear include in-the-ear (ITE), in-the-canal
(ITC), and completely-in-canal (CIC). ITE styles are placed at the entrance of
the ear canal whereas ITC and CIC styles are placed in the ear canal with CIC
placed deepest in the ear canal. Hearing aids that are placed behind the ear
include behind-the-ear (BTE) and receiver-in-the-ear (RITE). The BTE and RITE
hearing aids have their shells, including microphones and electronics placed
behind the pinna. However, they have different loudspeaker placements. For
BTE hearing aids, the loudspeaker is placed on the hearing aid device be-
hind the pinna and the sound from the loudspeaker is directed through a
plastic tube into the ear canal. RITE hearing aids are a hybrid between a BTE
and ITC hearing aids. The microphones and electronics are placed behind
the pinna, but the loudspeaker is placed in the ear canal. The RITE hearing
aid is arguably one of the most popular hearing aids. They usually come
with two microphones per device allowing more advanced sound processing
compared to one microphone ITE, ITC, and CIC hearing aids.

To help restore audibility and improve speech understanding, modern
hearing aids use advanced signal processing algorithms to compensate for
the hearing loss by improving audibility and suppress background noise
which can improve speech intelligibility [4]. A summary of the basic elements
of a hearing aid is shown in Fig. 2. A typical modern hearing aid has one or
multiple microphones. In order to process the microphone signals with a dig-
ital sound processor, the electrical signals need to be sampled and converted
from continuous-time into discrete-time using a analog-to-digital converter
(ADC). The discrete-time signal is fed into a sound processor, which typically
consists of one or more digital processors which process the discrete-time
signal. After processing, the discrete-time signal is converted back to con-
tinuous time-domain with a digital-to-analog converter (DAC), then played
back through the loudspeaker.
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2. Hearing Assistive Devices

Analog-to-digital 
converter (ADC)

Digital-to-analog 
converter (DAC)

Multichannel noise 
reduction

Hearing loss 
compensation

Feedback 
cancellation

Sound Processor

Fig. 2: Simplified overview of the sound processing system in hearing aids. A typical modern
hearing aid consists of an ADC which samples the signal to discrete-time which is fed into the
sound processor for sound processing. The output of the digital sound processor is converted
back into an analog signal which is played back through a loudspeaker. The sound processing
system of hearing aids typically consists of multichannel noise reduction, hearing loss compen-
sation, and feedback cancellation.

2.1 Overview of Signal Processing in Hearing Aids

The sound processing system in hearing aids is responsible for manipulat-
ing the sound such that audibility, speech intelligibility, and quality are im-
proved. The sound processing algorithms implemented in hearing aids, cf.
Fig. 2, can be divided into three categories namely 1) noise suppression, 2)
hearing loss compensation, and 3) feedback cancellation [4, 5, 25]. A brief
summary of the function of each block is explained in the following.

Multichannel Noise Reduction

Noise reduction is particularly crucial for hearing aid users in noisy envi-
ronments where speech understanding is poor. The goal of multichannel (or
multi-microphone) noise reduction is therefore to enhance the desired speech
signal, while attenuating the background noise in order to improve speech
intelligibility and quality. This is typically achieved by processing the signal
to increase the signal-to-noise ratio (SNR) using spatial and spectro-temporal
filters. More details on these types of filters are given in Sec. 3.

Hearing Loss Compensation

After noise reduction, hearing loss compensation algorithms are applied to
restore the audibility at the target signal, cf. Fig. 2,. Hearing loss compen-
sation includes amplification, compression and limitation of the sound level
[4, 5, 25]. Since the hearing loss is highly individual, the pure-tone audio-
gram of a hearing aid user may serve as input information for the hearing
loss compensation algorithms [5]. The hearing loss compensation algorithm
restores lost hearing sensitivity by amplifying sounds and ensuring that the
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Fig. 3: A typical multichannel noise reduction system, consists of an analysis filter bank that
transforms the microphone signals into the time-frequency domain for processing. The synthesis
filter bank transforms the processed signal back to the discrete-time domain.

processed sound remains within the auditory range of the user, using a com-
pressor and limiter [4, 5, 25].

Feedback Cancellation

Hearing aid microphones are typically placed relatively close to the loud-
speaker - when combined with a potentially large signal amplification in the
hearing aid, an unstable acoustic feedback loop may be created. This unsta-
ble system creates a clearly audible "howling" sound, which may completely
mask the target signal - it may even be audible to people standing next to the
hearing aid user. The problem with acoustic feedback becomes increasingly
severe, if the hearing aid user needs large amounts of sound amplification.
Furthermore, popular types of ear domes, i.e. the silicon tip attached at
the end of the hearing aid, such as "open ear domes" are more prone to cause
acoustic feedback as sound can leak more easily to the microphones [4]. Since
acoustic feedback reduces the intelligibility of speech and significantly low-
ers the sound quality, feedback cancellation algorithms are introduced, which
aim to reduce the effect of acoustic feedback by designing adaptive filters that
minimize the feedback [4].

3 Multichannel Noise Reduction

In this thesis, we primarily focus on the multichannel noise reduction system
in hearing aids. In particular, the papers in Part II cover topics within the area
of multichannel noise reduction. Therefore, this section serves an an intro-
duction to the multichannel noise reduction as implemented in hearing aids.
The signal processing chain typically starts with an analysis filter bank and
ends with a synthesis filter bank as depicted in Fig. 3 [4, 5]. The analysis filter
bank is used to transform the time-domain microphone signals into the time-
frequency domain for sound processing. The synthesis filter bank is used to
transform the processed time-frequency domain signal back to the discrete-
time domain. Often, the analysis filter bank is based on the short-time Fourier
transform (STFT) and the synthesis filter bank is based on the inverse short-
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3. Multichannel Noise Reduction

time Fourier transform (iSTFT) [4, 5]. Let x̃m(n) ∈ R, m ∈ {1, . . . , M} denote
the noisy time-domain signal picked up by the m’th microphone where n
is the discrete-time index. The time-frequency domain representation of the
noisy speech signal, i.e. the output of the analysis filter bank, is given by

xm(k, l) =
Nwin−1

∑
n=0

ψa(n)x̃m(n + lD)e−2π jk n
Nwin , xm(k, l) ∈ C, (1)

where, j =
√
−1, k is the frequency bin index, l is the frame index, Nwin is the

window length, ψa(n) is the analysis window function, and D is the window
overlap size. For synthesis, the iSTFT is given as

ỹm(n + lD) =
1

Nwin

Nwin−1

∑
k=0

ψs(k)ym(k, l)e2π jk n
Nwin , (2)

where ym(k, l) ∈ C is the processed signal in the time-frequency domain,
ψs(n) is the synthesis window function, and ỹm(n + lD) ∈ R is the processed
time-domain signal. In this case, the square-root Hann window function is
often used as analysis and synthesis windows with a window overlap of 50%
in order to reduce aliasing artifacts and to assure perfect reconstruction of
the input signal in the case that the "process signal" stage does not alter the
signal [26].

3.1 Overview of Multichannel Noise Reduction

A typical multi-channel noise reduction system consists of a beamformer and
a post filter [27]. The beamformer is able to attenuate sounds as a function
of direction (i.e., it is a spatial filter). Beamformers are very effective at sup-
pressing undesired sound sources located at positions in the environment
different from the position of the desired talker [28]. Beamformers are typ-
ically implemented as a linear combination of noisy microphone signals in
the time-frequency (TF) domain:

z(k, l) =
M

∑
m=1

w∗m(k, l)xm(k, l), (3)

where ∗ denotes the complex conjugate of a complex variable, and wm(k, l) ∈
C denotes the beamforming weight for the m’th microphone. For brevity,
vector notation is often used such that x(k, l) = [x1(k, l), ..., xM(k, l)]T ∈ CM,
w(k, l) = [w1(k, l), ..., wM(k, l)]T ∈ CM, and z(k, l) = [z1(k, l), ..., zM(k, l)]T ∈
CM. In vectorized form, the output of the beamformer can therefore be writ-
ten as

z(k, l) = wH(k, l)x(k, l), (4)
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where H denotes the Hermitian transpose. Well-designed beamformers are
able to improve speech intelligibility and quality in noisy environments,
due to their ability to attenuate noise components that are present in time-
frequency tiles where target speech is present [4].

A single-channel spectro-temporal filter, i.e., a post-filter, is then applied
to remove any remaining residual noise. The post-filter is typically a scalar
gain g(k, l) ∈ R that is applied at the output of the beamformer for each
frequency bin according to:

y(k, l) = g(k, l)z(k, l). (5)

Post-filters are particularly known to improve speech quality and can de-
crease the perceived loudness of background noise improve and listening
effort by attenuating noise in noise dominant time-frequency tiles [4, 5].

3.2 Signal Model of Speech in Noise

The most well-known beamformers are formulated based on a signal model
of the acoustic environment. In this section, we introduce the multichannel
signal model that is commonly used to model a single target speech signal
in noise. For each time-frequency tile, we assume that there is a maximum
of one target speech signal present at a time. In the presence of speech in
a time-frequency tile, the noisy speech signal received at the microphones is
modeled using two signal components, namely a desired speech signal and
a noise component [27]. The noise can essentially be any undesired sound
signal such as reverberation, restaurant background noise, and competing
speakers, etc. As before, let x̃m(n) be the received signal at the m’th micro-
phone, and let s̃′(n) be the clean target signal as measured at the location of
the sound source. Let ãm(n) be the acoustic impulse response from the target
sound source location to the m’th microphone, and let ṽm(n) be the additive
noise at the m’th microphone. The signal model may then be expressed as

x̃m(n) = s̃′(n) ∗ ãm(n) + ṽm(n). (6)

The STFT is applied to transform the signal to the time-frequency domain
such that:

xm(k, l) = s′(k, l)am(k, l) + vm(k, l) (7)

where the equivalence between (6) and (7) holds strictly, under the assump-
tion that the STFT window length is longer than the length of the impulse
response ãm(n) in (7) [29]. For relatively short window lengths, e.g., 256 sam-
ples at a sample rate of 16 kHz, this narrow-band approximation may not
hold true in realistic environments where the reverberation time is likely to
be longer than the window length. However, this issue can be overcome by
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3. Multichannel Noise Reduction

redefining the signal model using relative transfer functions (RTFs) [30]. It
is common to define the signal-of-interest as the desired speech signal at a
pre-selected reference microphone in contrast to the desired speech signal as
received at the location of the sound source. Under this redefinition, we de-
fine s(k, l) = s′(k, l)a1(k, l) to be the target speech signal, where, without loss
of generality, microphone ’1’ is selected as the reference microphone. The
difference between retrieving s(k, l) and s′(k, l) is that head and torso effects,
which are important for signal quality and naturalness, are captured in s(k, l)
but not in s′(k, l). The signal model is now

xm(k, l) = s(k, l)
am(k, l)
a1(k, l)

+ vm(k, l), m = 1, ..., M, (8)

where dm(k, l) , am(k,l)
a1(k,l) is often referred to as the RTF from the reference mi-

crophone to the m’th microphone [27, 30]. Let d(k, l) = [1, d2(k, l)..., dM(k, l)]T

be the RTF vector, then the signal model becomes

x(k, l) = s(k, l)d(k, l) + v(k, l), (9)

where d(k, l) is considered deterministic, while s(k, l), v(k, l), and, hence,
x(k, l) are considered random vectors. Linear MMSE estimators of s(k, l)
are typically functions of the first- and second-order statistics of the ran-
dom terms in (8). The first order statistics of x(k, l), s(k, l), and v(k, l) are
typically assumed to be zero-mean [31]. The second order statistics are the
power spectral density (PSD) of s(k, l), and the (spatial) cross power spectral
density (CPSD) matrix of x(k, l) and v(k, l) [27]. The CPSD matrix of x(k, l)
is defined as Cx(k, l) , E

[
x(k, l)xH(k, l)

]
which is referred to as the noisy

speech CPSD matrix. Under the assumption that the target signal and the
noise are uncorrelated, the noisy speech CPSD matrix is given as

Cx(k, l) = Cs(k, l) + Cv(k, l). (10)

Using the assumption that d(k, l) is deterministic, the target CPSD matrix
Cs(k, l) can be expressed as Cs(k, l) = λs(k, l)d(k, l)dH(k, l). Furthermore,
the noise CPSD matrix Cv(k, l) is decomposed (without loss of generality)
into Cv(k, l) = λv(k, l)Γv(k, l), where λv(k, l) = E

[
|v1(k, l)|2

]
is the noise

PSD at the reference microphone index and Γv(k, l) , Cv(k, l)/λv(k, l) is the
normalized noise CPSD matrix, where the first diagonal element of Γv(k, l) is
equal to ’1’ [32]. The noisy speech CPSD matrix then becomes

Cx(k, l) = λs(k, l)d(k, l)dH(k, l) + λv(k, l)Γv(k, l). (11)

3.3 Beamforming Methods for Hearing Aids

This section will cover beamforming methods that are commonly used in
hearing aids. These beamformers are typically low in complexity and per-
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form robustly in most acoustic environments. The beamformers that are cov-
ered in this section are the delay-and-sum beamformer (DSB) [28], minimum
power distortion-less response (MPDR) beamformer [27, 33], minimum vari-
ance distortion-less response (MVDR) beamformer [34], and the multichannel
Wiener filter (MWF) [28]. The beamformer coefficients of these beamformers
are found through solving a constrained optimization problem of the general
form:

ŵ(k, l) = arg min
w(k,l)

f (w(k, l))

subject to g(w(k, l)) = 0,
(12)

where f (w(k, l)) is a cost function reflecting noise reduction performance,
and g(w(k, l)) is a constraint function. An overview of cost functions, con-
straint functions, and expressions for the corresponding solutions to (12)
are given in Table 1. The DSB, MPDR, and MVDR beamformers have a
distortion-less constraint, i.e., wH(k, l)dH(k, l)− 1 = 0, which ensures that the
beamformer 1) does not alter the magnitude and phase of the target speech
signal when it originates from a pre-selected direction, and 2) the solution to
(12) is not the trivial solution w(k, l) = 0.

f (w) g(w) ŵ
DSB ||w||22 wHd− 1 d

||d||22
MPDR wHCxw wHd− 1 C−1

x d
dHC−1

x d

MVDR wHCvw wHd− 1 C−1
v d

dHC−1
v d

MWF E
[
|s−wHx|2

]
0 C−1

x cxs

Table 1: List of beamformers with cost functions f (w), constraint functions g(w), and their
solutions ŵ. The frequency and frame indices (k, l) have been omitted for brevity.

3.3.1 Delay-and-sum beamformer

The DSB only requires the RTF vector, and can be shown to achieve optimal
noise reduction performance, in the special case, when the noise is spatially
white, i.e., the noise CPSD matrix is a scalar times an identity matrix [35, 36].
The DSB does not adapt to the noise field of the acoustic environment, hence
it is mostly well-suited for attenuating microphone self-noise which may be
considered uncorrelated across microphones, and spatially weakly correlated
noise components from the environment [36].

3.3.2 Minimum power distortion-less response beamformer

The MPDR beamformer seeks to minimize the noisy speech signal power,
while ensuring that signals arriving from the location encoded in d(k, l) re-
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3. Multichannel Noise Reduction

Fig. 4: The generalized sidelobe canceller (GSC) structure, which consists of a fixed beamformer,
target cancelling beamformer, and adaptive noise cancellers. The noise cancellers can optionally
be made as adaptive filters.

main distortion-less [36]. Compared to the DSB, the MPDR beamformer
is more effective at suppressing spatially correlated noise such as interfer-
ing point sources or diffuse noise fields [36]. However, mismatches in the
RTF vector d(k, l), can lead to severe distortion and attenuation of the target
speech signal for the MPDR beamformer [34].

3.3.3 Minimum variance distortion-less response beamformer

The sensitivity to RTF vector mismatches in the MPDR can be reduced by the
closely related MVDR beamformer [34]. The MVDR beamformer is similar
to the MPDR beamformer, but requires the noise CPSD matrix, Cv(k, l), to
be known. It can easily be shown that the MVDR and MPDR beamform-
ers return the identical solution of ŵ(k, l), when the target speech and noise
are assumed uncorrelated, the true RTF vector is known in advance, and
true CPSD matrices of Cx(k, l) and Cv(k, l) are known. However, these as-
sumptions are generally not satisfied in practice, and the MVDR beamformer
typically reveals more robust performance than the MPDR beamformer [34],
e.g. less target speech distortion. This is especially apparent in situations
where there is a mismatch between the assumed RTF vector and the actual
RTF vector which may lead to suppression of the target speech signal.

3.3.4 Multichannel Wiener filter

The MWF beamformer is the multichannel extension to the well-known
single-channel Wiener filter (discussed i Sec. 3.4). The MWF is a linear min-
imum mean-square-error (LMMSE) estimator of the target speech DFT coef-
ficient s(k, l) [28]. In contrast to the other beamformers, the MWF does not
involve a distortion-less constraint implicitly. The MWF beamformer can be
expressed as the the matrix-vector product between the noisy speech CPSD
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matrix and the cross CPSD vector between the noisy and target speech signal
as shown in Table 1. However, it can be shown that the MWF beamformer can
be decomposed into an MVDR beamformer followed by a Wiener post-filter1

under the standard assumption that the noisy signal consists of exactly one
target signal in noise that is uncorrelated with the target [28]. Specifically, the
decomposed MWF beamformer is given as

wMWF(k, l) = wMVDR(k, l) · gWF(k, l), (13)

where gWF(k, l) is the Wiener gain.

3.3.5 Generalized sidelobe canceller structure

The MPDR and MVDR (and MWF) beamformers can be decomposed into
a set of orthogonal beamformers and implemented using the generalized
sidelobe canceller (GSC) structure which is shown in Fig. 4 [37–39]. The
GSC structure consists of an upper branch and a lower branch. The upper
branch in Fig. 4 projects the noisy speech signal onto the target subspace
using a fixed beamformer wFBF(k, l). The fixed non-adaptive beamformer
ensures the distortion-less constraint on the target speech signal. The lower
branch projects the noisy speech signal onto the noise subspace using a so-
called blocking matrix B(k, l) [27] where each column vector of the blocking
matrix can be considered as target canceling beamformers. Target cancelling
beamformers in B(k, l) are followed by the noise cancelers h(k, l), which seek
to minimize the residual noise in the fixed beamformer branch. The GSC
filter weights can then be expressed as [27, 40]:

wGSC(k, l) = wFBF(k, l)− B(k, l)h(k, l), (14)

where B(k, l) ∈ CM×M−1 is the blocking matrix where column vectors are
linear-independent a target canceling beamformer. The output of the GSC
structure is given as

zGSC(k, l) = wH
FBF(k, l)x(k, l)− hH(k, l)BH(k, l)x(k, l)

= zFBF(k, l)− hH(k, l)ztc(k, l)
(15)

where zFBF(k, l) is the output of the fixed beamformer and ztc(k, l) ∈ CM−1

is the output of the M− 1 target canceling beamformers. The output of the
target canceling beamformers ideally only contain signal components related
to the noise v(k, l) but are unrelated to the target signal. Hence, the noise
canceller are designed to minimize the power of the residual noise at the
output of the fixed beamformer [27, 40]. This minimization can be expressed

1A Wiener post-filter refers to a single-channel Wiener filter being applied at the output of
the MVDR beamformer.
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in terms of minimizing the MSE between the output of the fixed beamformer
and the output of the noise canceller i.e. [37]

arg min
h(k,l)

E
[
|wH

FBF(k, l)x(k, l)− hH(k, l)BH(k, l)x(k, l)|2
]

. (16)

The closed-form solution to (16) is given by

hGSC,1(k, l) =
(

BH(k, l)Cx(k, l)B(k, l)
)−1

BH(k, l)Cx(k, l)wFBF(k, l). (17)

It can be shown that hGSC,1(k, l) is identical to the MPDR beamformer when
setting wFBF equal to the DSB and by inserting (17) into (14) [40]. To obtain
the MVDR beamformer, Cx(k, l) is substituted with Cv(k, l) in (17) i.e.

hGSC,2(k, l) =
(

BH(k, l)Cv(k, l)B(k, l)
)−1

BH(k, l)Cv(k, l)wDSB(k, l). (18)

The GSC structure has desirable properties related to computational com-
plexity and adaptive constrained optimization [27]. For example, MVDR
beamformers should be adaptive as noise statistics can change over time in
realistic environments e.g. due to changing acoustic environments and head
movements of the user.

The GSC structure is more convenient to implement as an adaptive sys-
tem, as it only requires minimization of an unconstrained optimization prob-
lem, whereas the original problem posed by the MVDR beamformer has a
linear constraint [27, 41].

3.4 Post-filtering Techniques

Post-filter techniques include methods ranging from heuristically motivated
techniques such as spectral subtraction [42–46] to statistical-model based
methods, e.g., relying on the minimum mean-square error [31, 45, 47–52]. The
spectral-subtraction method has existed for several decades and is amongst
the earliest single-channel speech enhancement techniques [50]. It can be
shown that the spectral-subtraction method is a maximum likelihood es-
timator of the clean speech PSD under complex Gaussian assumptions of
the target and noise DFT coefficients [31, 48]. It is based on estimating the
clean speech magnitude spectrum by subtracting the noise spectrum from
the noisy speech spectrum. For each time-frequency tile, an estimate of the
noise spectrum is obtained during speech absence and subsequently used to
estimate the clean speech spectrum during speech presence. The estimated
clean speech spectrum is then used to compute the post-filter gains, which
are applied by point-wise multiplication with the noisy STFT coefficients. Al-
though, the spectral subtraction method is straightforward to implement and
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computationally cheap, it has a tendency to create undesired sound artifacts
such as musical noise [31].

The LMMSE estimator of the clean speech DFT i.e. the Wiener filter (or
Wiener gain in the frequency domain), is often seen used in the context of
post-filtering. Let gwf(k, l) be the Wiener gain, then the optimization problem
of the LMMSE estimator of the clean speech DFT is formulated as [50]

gWF(k, l) = arg min
g(k,l)

E
[
|s(k, l)− g(k, l)z(k, l)|2

]
, (19)

where z(k, l) = s(k, l) + vres(k, l) is the output of the MVDR beamformer and
vres(k, l) is the residual noise after applying the MVDR beamformer to the
noisy microphone signal. The solution to (19) is given by:

gWF(k, l) =
E[s∗(k, l)z(k, l)]

E[|z(k, l)|2] . (20)

It is often assumed that the clean speech signal and residual noise are uncor-
related, which results in the more common form of the Wiener filter given
as

gWF(k, l) =
E[|s(k, l)|2]
E[|z(k, l)|2] =

λs(k, l)
λs(k, l) + λvres(k, l)

, (21)

where λvres(k, l) is the PSD of the residual noise after the beamformer. The
Wiener filter may also be expressed as a function of signal-to-noise ratio
(SNR), i.e.,

gWF(k, l) =
SNR(k, l)

1 + SNR(k, l)
, (22)

where SNR(k, l) , λs(k,l)
λvres (k,l) is the SNR of the output signal of the beamformer.

4 Parameter Estimation

In practice, the parameters of the beamformer and the post-filter are un-
known and must therefore be estimated from the noisy microphone signals.
Parameters that need to be estimated include the noisy speech CPSD matrix
Cx(k, l), the noise CPSD matrix Cv(k, l), and target RTF vector d(k, l). Pa-
rameters such as the target PSD λs(k, l) and residual noise PSD λvres(k, l) can
be estimated through Cx(k, l), Cv(k, l), and d(k, l). In many practical noisy
environments, these parameters must be estimated online. In particular, the
noisy and noise CPSD matrix are likely time-varying. In many situations,
d(k, l) is also a time-varying parameters. e.g., because the position of the tar-
get speaker changes over time, because the target position changes or due to
head movements of the hearing aid user.
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4. Parameter Estimation

4.1 Noise Estimation and Voice Activity Detection

Noise in realistic environments is often non-stationary, i.e., the noise statistics
change over time. Hence, it is important that the noise reduction system
is able to track these changes to ensure good performance. In many cases,
estimation of the noise statistics is done using a voice activity detector (VAD).
The task of the VAD is to detect time-frequency tiles where target speech is
present (or absent). The VAD is particularly crucial for estimation of the noise
statistics, since the VAD can inform the noise reduction system to update the
noise statistics during speech absence. A first order recursive update is often
used for this purpose, i.e.,

Cv(k, l) =

{
αCv(k, l − 1) + (1− α)x(k, l)xH(k, l) if speech absent,
Cv(k, l − 1) otherwise,

(23)

If the VAD decision is binary, the conventional approach is to estimate the
noise statistics during speech absence and reuse the most recent noise esti-
mate during speech presence [27].

However, the decision of speech presence or absence involves uncertainty,
and hence noise statistics may be updated using a speech presence prob-
ability (SPP) estimate instead [27, 39, 53–55]. The SPP VAD has a similar
function as the binary VAD, but returns a probability value between 0 and 1
that describes the a posteriori probability that speech is present in a partic-
ular time frequency tile given the noisy observation. The SPP is commonly
used to control the adaptation factor α, used in the recursive estimation of
the noise statistics of (23), such that when the SPP is close to zero the noise
reduction algorithm rapidly updates the noise statistics, whereas a SPP close
to one means that the noise statistics should remain constant [39, 53–58].
Specifically, in this case the smoothing factor α is in (23) controlled by the
SPP estimator. Estimation of the SPP is typically formulated as a binary hy-
pothesis test, where H0 is the hypothesis that speech is absent, and H1 is
the hypothesis that speech is present [46]. We estimate the probability that
hypothesis H1 is true given observations x(k, l), i.e., P(H1|x(k, l)). To obtain
P(H1|x(k, l)), we use Bayes theorem such that

P(H1|x(k, l)) =
1

1 + Λ(k, l)
, (24)

where Λ(k, l) is the generalized likelihood ratio given as [48]

Λ(k, l) =
P(H0) f (x(k, l)|H0)

P(H1) f (x(k, l)|H1)
. (25)

In (25) P(H0) and P(H1) are prior probabilities of speech being absent and
present in a particular TF tile, respectively, and f (x(k, l)|H0) and f (x(k, l)|H1)
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are likelihood functions under H0 and H1. The SPP based estimator of the
noise CPSD matrix is given as [57]

Cv(k, l) = α̂(k, l)Cv(k, l − 1) + (1− α̂(k, l))x(k, l)xH(k, l), (26)

where α̂(k, l) is a smoothing factor obtained through the estimated SPP. For
example, α̂(k, l) may be estimated as [57]

α̂(k, l) = β + (1− β)P(H1|x(k, l)). (27)

where 0 < β < 1 is a constant and set close to 1 if the noise is a slowly
time-varying process [53, 57]. The concept of using SPPs to update the noise
statistics originates from the single-channel speech processing world, and is
often derived under complex Gaussian signal assumptions [53]. It is however,
possible to generalize the concept of SPP to the multichannel case [56, 57].

However, some SPP methods may depend on a noise tracking algorithm
in the initialization to obtain an initial estimate of the noise statistics [57]. One
common approach to track the noise is using minimum statistics methods
[59]. These methods do not rely on a VAD to track the background noise
but instead use the assumption that the noise can be estimated by tracking
the minimum level of the noisy speech [59]. This approach works well in
many situations where the background noise is slowly time-varying, e.g., car
noise. However, the approach can suffer from underestimation of the noise
level leading to less noise reduction and potentially also more musical noise
unless a bias compensation algorithm is used [59].

The binary VAD, SPP VAD, and noise tracking algorithm discussed above
are, however, not able to update the noise statistics when speech is surely
present. Until now, the methods we have outlined are based on an estimate
of the noise statistics when speech is absent, i.e., (26), and use the estimated
noise statistics for noise reduction when speech becomes present. However,
methods exist that are able to update the noise statistics even during speech
presence. Specifically, these methods often rely on an assumption about the
structure of the noise CPSD matrix or on the target RTF vector assumed being
known [60–65]. For example, one may assume that the noise CPSD matrix
has the form as presented in (11) according to

Cv(k, l) = λv(k, l)Γv(k, l0), (28)

where l0 denotes the time index of the most recent noise-only time-frequency
tile. The model in (28) implies that the spatial distribution of the noise, at a
time instant l0 prior to speech activity remains constant during speech activ-
ity, but the noise PSD λv(k, l) is time-varying [60]. If the target RTF vector is
known, a blocking matrix can formed and used to cancel the target speech
and estimate the noise PSD during speech presence. These approaches do
obviously not influence the performance of the MVDR beamformer as the
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structure of the noise CPSD matrix captured by Γv(k, l0) remains unchanged
and the MVDR beamformer is immune to scalings of Γv(k, l0) [61]. However,
since the noise PSD λv(k, l) is estimated during speech presence, this can lead
to improved noise reduction performance in the post-filter, particularly when
the noise is highly non-stationary [60, 61].

4.2 RTF vector estimation

In addition to the noise CPSD matrix Cv(k, l), the RTF vector d(k, l) is an-
other parameter that generally needs to be estimated. It is often assumed for
hearing aid applications that the target speaker is located in front of the hear-
ing aid user [66], and hence the RTF vector associated with frontal direction
(i.e. 0◦) of the user is often used. However, this assumption can potentially
lead to severe performance degradation and speech distortion, for example
if the target is located to the sides or the rear of the hearing aid user. In
worst cases, the beamformer will suppress the target. Furthermore, a RTF
vector mismatch can have severe consequences for methods that rely on the
target RTF vector for noise PSD estimators. Therefore, RTF vector estimation
is crucial to ensure both good beamforming and post-filter performance.

RTF vector estimation can either be done directly or through direction-of-
arrival (DOA) estimation. Direct RTF estimators are usually based on com-
puting the target RTF vector from observations of the noisy speech signal and
estimates of the noise CPSD matrix. Amongst the common methods are the
covariance subtraction method [67], the eigenvalue decomposition method
[67], and the covariance whitening method [68]. All three methods typically
require an estimate of the noise CPSD matrix in order to estimate the target
RTF vector. The other main class of approaches is to use a DOA estimation
algorithm. RTF estimation based on DOA estimation, i.e., first estimates the
angle to the target speakers with respect to the front direction, and then maps
the estimated location to an RTF vector. For example, if the target speaker
is localized at 180◦, i.e. directly towards the rear, the RTF vector associ-
ated with the rear direction is used. For simple array geometries and under
free-field assumptions it is possible, to derive a mathematical expression of
the mapping from a DOA to an RTF vector. However for hearing aid ap-
plications,where the microphones are placed on a human head, an accurate
representation of the mathematical function is rarely available for hearing aid
applications, hence the mapping from a DOA to a RTF vector is performed
using a pre-defined RTF vector dictionary such as in [69].
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5 Scientific Contributions

In this section, we outline some of the research challenges that are present
in the area of multichannel noise reduction for hearing aid systems. The
research challenges are used as motivation for the research topics, which will
be the theme of the remaining part of this thesis. We then outline the scientific
contributions that are presented in part II in the thesis.

5.1 Research Challenges

Although significant advances have been made in the area of speech enhance-
ment and noise reduction, people with a hearing loss still find it difficult to
communicate in noisy environments with hearing aids [70]. Some of the
most challenging acoustic environments which a multichannel noise reduc-
tion system can face are environments with competing speakers, i.e. the
so-called cocktail party problem [12]. There are several aspects that make
environments with competing speaker particularly difficult. First, spectral
features of the target speech can often not be used to distinguish the target
sound from the competing speakers since they tend to be similar. Secondly,
speech is highly non-stationary, meaning that "noise statistics" representing a
competing speaker would require fast adaptation of the noise statistics, that
may render many of the conventional VAD and SPP estimators less effec-
tive. This is because the statistics of a competing speaker can change rapidly
such that the estimated statistics quickly become outdated. This, in turn, can
lead to over- and underestimation of the noise statistics when target speech
is present which results in under- and over-suppression, respectively of the
noise.

Similarly, estimation of the RTF vector becomes significantly more difficult
in environments with competing speakers. Essentially, RTF vector estima-
tion faces the same issues as noise estimation - it is difficult to discriminate
between the target RTF vectors and competing speaker RTF vectors. One
approach to improve target RTF estimation is to provide prior information
about the target RTF vector [71]. For example, one may assume that the tar-
get speaker is in a known position (e.g. frontal) or a known spatial region
(e.g. the frontal half-plane). In practice, the difficulty in distinguishing com-
peting speakers from the target speaker may cause existing noise reduction
systems to treat competing speakers as if they were desired sound sources,
meaning that they would not be suppressed to avoid the risk of accidentally
suppressing a desired speech signal. Therefore, multichannel noise reduction
in current hearing aids is still mostly efficient in handling simple acoustic en-
vironments where the noise field and noise statistics change at a slower rate
than speech signals do.
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5.2 Research topics

In this thesis, we envision noise reduction systems for hearing aid systems
which try to retrieve information from the hearing aid user in order to work
better. For example, the noise CPSD matrix and RTF vector estimation could
potentially be improved if the user provided information about, for example,
the target source location or information about the background noise. An
active involvement of the user is usually less desirable, e.g., if the user needs to
adjust the noise reduction settings of the hearing aid through a smartphone.
Such approaches may be simple from an algorithm point of view, but the
hearing aid user has to spend time and energy, and might find it inconve-
nient to make such manual adjustments. Instead, we hypothesize that cues
about the target can be extracted from the user’s natural behavior during
conversations. These include additional modalities besides sound that may
indicate the position of the target speaker relative to the user head-direction
and can provide crucial information to the noise reduction system about the
location of the target in a multi-talker situation [22]. Furthermore, the users’
own voice may provide information about the absence or presence of target
speech by exploiting the so-called turn-taking mechanism which takes place
in most natural conversations. Specifically, the target is likely to be absent
when the own voice is present and vice versa. Overall, the research presented
in this thesis revolves around the general topic of noise reduction systems for
hearing aids which exploit side information which may be assumed available
a priori or which may be gathered from the hearing aid user. Specifically, we
focus on noise reduction systems, which:

1. Use prior information of the target location to improve noise reduction
performance. The proposed algorithms are general in the sense that
they do not rely on any assumptions about the origin of the this prior
knowledge. This could, e.g., be achieved from explicit manual user
feedback or by additional sensors, e.g., accelerometers and cameras.

2. Exploit the user’s own voice activity to improve noise estimation and
competing speaker identification.

5.3 Contributions

The main body and research contributions follows in part II of this thesis.
Part II consists of a collection of five accepted peer-reviewed papers. Paper
[A-C] are conference papers whereas paper [D-E] are journal papers. The
papers that form part II of this thesis are as follows:

[A] P. Hoang, Z. -H. Tan, J. M. de Haan, T. Lunner and J. Jensen, "Robust Bayesian
and Maximum a Posteriori Beamforming for Hearing Assistive Devices," 2019
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
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[B] P. Hoang, Z. -H. Tan, T. Lunner, J. M. de Haan and J. Jensen, "Maximum Like-
lihood Estimation of the Interference-Plus-Noise Cross Power Spectral Density
Matrix for Own Voice Retrieval," ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP)

[C] P. Hoang, Z. -H. Tan, J. M. de Haan and J. Jensen, "Joint Maximum Likelihood
Estimation of Power Spectral Densities and Relative Acoustic Transfer Functions
for Acoustic Beamforming," ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP)

[D] P. Hoang, Z.-H. Tan, J. M. de Haan, and J. Jensen, “Multichannel Speech En-
hancement with Own Voice-Based Interfering Speech Suppression for Hearing
Assistive Devices,” IEEE/ACM Trans. Audio Speech Lang. Process. 2022.

[E] P. Hoang, Z.-H. Tan, J. M. de Haan, and J. Jensen, “The Minimum Overlap-Gap
Algorithm for Speech Enhancement,” IEEE Access, 2022.

A more in detail summary of the papers are given in the following part
of this section.

[A] Robust Bayesian and Maximum a Posteriori Beamforming for Hearing
Assistive Devices

In paper A, we propose a Bayesian and maximum a posterior (MAP) beam-
former to improve the robustness against situations where the target DOA
is unknown but a prior distribution of the target DOA is given, e.g., from
other external sensors such as cameras and accelerometers. We use the prior
distribution in a Bayesian framework, where we assume that the noisy signal
is distributed according a multivariate complex circular symmetric Gaussian
distribution. The proposed Bayesian and MAP beamformers are compared
against other multichannel noise reduction methods used for hearing aids
in terms of segmental SNR and extended short-time objective intelligibility
(ESTOI).

[B] Maximum Likelihood Estimation of the Interference-Plus-Noise Cross
Power Spectral Density Matrix for Own Voice Retrieval

In paper B, we propose a maximum likelihood estimator of the interference-
plus-noise CPSD matrix to improve own voice pick-up for telephony appli-
cation in headsets and hearing aids. The situation, we consider consists of an
own voice source, an interferer (e.g. a competing speaker), and background
noise, where the statistics of the competing speaker are unknown. We model
the noise CPSD matrix to include an interferer such that the interference-
plus-noise CPSD matrix is given as

Cqv(k, l) = λq(k, l)dq(k, l)dH
q (k, l) + Cv(k, l). (29)

24



5. Scientific Contributions

We assume that the RTF vector of the own voice source is known and time-
invariant, and an oracle own voice VAD is given. These assumptions can be
motivated by the fact that 1) the location of the microphone array relative
to the own voice source location remains approximately fixed in a hearing
aid or headset application, and 2) the distance between the own voice source
and the microphone array can be considered closer than the between the own
voice source and an interferer. The proposed method is able to update both
the interferer statistics and noise statistics while, own voice is present in con-
trast to conventional noise estimation methods. This is highly important since
interferer signal can be highly non-stationary, particularly if the interferer is
a competing speaker. Our simulation results also indicate the proposed esti-
mation of the interference-plus-noise CPSD matrix performs either on par or
significantly better than conventional methods, especially in those situations
where the interferer is highly non-stationary and dominant.

[C] Joint Maximum Likelihood Estimation of Power Spectral Densities and
Relative Acoustic Transfer Functions for Acoustic Beamforming

In paper C, we derive the joint maximum likelihood estimators of the target
and noise PSDs, and the target RTF vector, given an estimate of the normal-
ized CPSD matrix. Among the findings, we show that the well-known co-
variance whitening method is in fact a maximum likelihood estimator of the
target RTF vector. We also show that the target and noise PSDs can be found
from the eigenvalues of the whitened noisy speech CPSD matrix. We use
the jointly estimated parameters to implement MWF beamformers and im-
plement a SPP based on the estimated parameters. We evaluate the proposed
multichannel noise reduction system in simulations against similar methods
where the noise reduction algorithm is particularly good at handling situa-
tions where a pre-defined dictionary of target RTF vectors are not given in
advance.

[D] Multichannel Speech Enhancement with Own Voice-Based Interfering
Speech Suppression for Hearing Assistive Devices

Paper D can be seen as an extension of paper B, i.e. using the own voice
activity to provide cues on what is desired and undesired. In this situa-
tion, we consider an own voice source, a target speaker, a competing speaker,
and noise. Only the own voice RTF vector and the normalized CPSD matrix
of the background noise is known. However, the RTF vectors of the target
speaker and the competing speaker need to be estimated. The location of
the target speaker and competing speaker can, in principle, be completely
arbitrarily positioned. Hence, this situation will cause a conventional noise
reduction system to perform poorly since there is typically no way to de-
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cide which of them is target. In this paper, we propose a noise reduction
system that exploits the own voice activity to discriminate between the tar-
get speaker and the competing speaker. We assume that the user and the
target speaker are engaged in a conversation, and hence take turns. Specifi-
cally, during own voice presence we assume that the target speech is absent.
Hence, we estimate the RTF vector and PSD of the competing speaker. When
the user’s own voice is absent, we assume that the target speech may be-
come present. To estimate the competing speaker and noise statistics, we
propose maximum likelihood estimators of these. We compare the proposed
methods with conventional beamforming systems in simulation, where the
results show that the proposed methods perform significantly better than the
conventional beamforming system in situations with a dominant competing
speaker.

[E] The Minimum Overlap-Gap Algorithm for Speech Enhancement

In paper E, we address the problem of enhancing a target speaker in an
environment of multiple competing speakers. To this day, there exists a lim-
ited number of methods that are able to enhance the talker-of-interest when
multiple speakers are present in the noisy speech. In particular, exists deep
learning methods for separating the speakers into candidate speakers, but
there is usually no way of telling which one of the speakers is the target. In
fact, one could argue that without additional prior knowledge, it is impos-
sible to decide which of the speakers is the target speaker. We propose, a
speech enhancement paradigm which addresses this problem and is able to
effectively solve this problem. The speech enhancement paradigm consists of
three elements which are speech separation, speaker ranking, and enhance-
ment. The speech separation system separates the mixture of multiple talkers
from the noisy speech signal into candidate speakers, where each candidate
speaker represents a talker present in the environment. The speaker ranking
is performed by the proposed algorithm which ranks the candidate talkers
according to how likely they are of being the talker of interest. Finally, the en-
hancement is a linear combination of the candidate talkers whose coefficients
are determined by the ranking algorithm. In this paper, we also propose
methods for ranking the candidate talker based on the turn-taking behavior
between a user and a conversational partner, i.e., the target speaker. In con-
trast to most existing schemes, the proposed speaker ranking algorithms only
relies on microphone signals, which is highly desirable since current hearing
aids do not have access to more sophisticated sensors, e.g. EEG and cameras
(see Sec. 5.2). We demonstrate the proposed speech enhancement paradigm
and the speaker ranking algorithm in hearing aid applications in simulation
experiments. We find that they are highly effective and provide a signifi-
cant improvement over conventional noise reduction systems in multi-talker
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environments.

6 Future Research and Direction

The research presented in this thesis has covered the potential use of the
user’s own voice, conversational turn-taking, and prior knowledge about the
target source to improve noise estimation and target RTF vector estimation.
However, there are several aspect that we did not cover in this thesis that
could be of potential interest for future research.

6.1 Beyond microphones

In this thesis, the proposed methods for estimating noise and target source,
were primarily based on the noisy speech signals picked up by microphones.
However, in principle, other sensor besides microphones can be used to im-
prove estimation of noise and target statistics. Since, hearing aids are in
constant development, future hearing aids might have access to more sophis-
ticated sensors such as in-ear electrodes and cameras [72–75]. Accessibility
to other sensor signals will allow sensor fusion and can potentially improve
noise reduction performance considerably. For example, access to the user’s
eye-gaze from cameras faced towards the user’s eyes [76] can be used as a
cue to detect where the target speaker is located in very noisy environments.

6.2 Behavior-controlled noise reduction

Obviously, the use of the user’s own voice to discriminate between the target
speaker and the competing speakers only works if the user is actively partic-
ipating in a conversation with the target speaker. However, there are many
situations where the user most of the time takes the role of a listener. For
example, during conversations which involve multiple people, the hearing
aid user might not actively participate in the conversation. Also, some users
may simply be less talkative, and tend to engage in conversations less often.
Therefore, other behavioral characteristics of the user could be involved in
order to obtain a more robust discrimination between the target speaker and
competing speakers. Examples include the use of eye-gaze behavior [72] and
features in EEG signals obtained from electrodes, e.g., placed at/in the ear of
the user [72, 73].

One may also analyze the behavior of the candidate target speakers and
develop a discriminator function to distinguish between the target speaker
and competing speakers. For example, one could envision the use of cam-
eras, mounted on the hearing aid user to form an audio-visual enhancement
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system [74, 77], which could analyze which person(s) are gazing and talking
to the user.

6.3 Determining multiple talkers-of-interest exploiting turn-
taking

In paper D and E, we assume that there is only one target speaker. However,
in many situations a group of people engaged in the same conversation can
all be considered as potential targets. Neither paper D and E can handle
situations with more than a single target efficiently and therefore it would be
of interest to generalize the methodology to situations with multiple targets.
For example, one may examine the turn-taking behavior in conversations
between not only two but multiple talkers.

6.4 Exploring the speech enhancement paradigm proposed in
paper E

The proposed speech enhancement paradigm in paper E consists of the three
processing stages: speech separation, speaker ranking, and speech enhance-
ment. It can be referred to as the separation, ranking, and enhancement (SRE)
paradigm. The SRE paradigm can efficiently solve the multi-talker situations
with multiple competing speakers and a single target speaker, which is often
considered as an otherwise extremely difficult situation to solve. However,
we believe that the proposed instance of the paradigm might only be the
first of several to come. For example, we believe that performance can be
improved beyond what is reported in paper E by the use of more advanced
deep learning algorithms. Specifically, complex conversational patterns be-
tween the user and the talkers of interest can hypothetically be learned by a
deep learning algorithm to make better predictions of who the conversational
partner is.

28



References

References

[1] C. Elberling, K. Worsoe, B. Diemer, and Oticon Foundation, Fading sounds: about
hearing and hearing aids. Herlev, Denmark: Bording A/S, 2006, oCLC: 180767009.

[2] J. R. Hurford, “The evolution of the critical period for language acquisition,”
Cognition, vol. 40, no. 3, pp. 159–201, Sep. 1991.

[3] A. R. Luria and F. I. Yudovich, Speech and the development of mental processes in
the child: an experimental investigation, ser. Penguin papers in education. Har-
mondsworth: Penguin, 1971.

[4] H. Dillon, Hearing aids, 2nd ed. Sydney: Boomerang Press [u.a.], 2012, oCLC:
803977183.

[5] G. R. Popelka, B. C. J. Moore, R. R. Fay, and A. N. Popper, Hearing Aids. Cham:
Springer International Publishing : Imprint: Springer, 2016, oCLC: 967694134.

[6] Q. Huang and J. Tang, “Age-related hearing loss or presbycusis,” European
Archives of Oto-Rhino-Laryngology, vol. 267, no. 8, pp. 1179–1191, Aug. 2010.

[7] C. D. Mulrow, C. Aguilar, J. E. Endicott, R. Velez, M. R. Tuley, W. S. Charlip, and
J. A. Hill, “Association Between Hearing Impairment and the Quality of Life of
Elderly Individuals,” Journal of the American Geriatrics Society, vol. 38, no. 1, pp.
45–50, Jan. 1990.

[8] C. Carabellese, I. Appollonio, R. Rozzini, A. Bianchetti, G. B. Frisoni, L. Frattola,
and M. Trabucchi, “Sensory Impairment and Quality of Life in a Community
Elderly Population,” Journal of the American Geriatrics Society, vol. 41, no. 4, pp.
401–407, Apr. 1993.

[9] J. E. Crews and V. A. Campbell, “Vision Impairment and Hearing Loss Among
Community-Dwelling Older Americans: Implications for Health and Function-
ing,” American Journal of Public Health, vol. 94, no. 5, pp. 823–829, May 2004.

[10] R. F. Uhlmann, “Relationship of Hearing Impairment to Dementia and Cognitive
Dysfunction in Older Adults,” JAMA: The Journal of the American Medical Associa-
tion, vol. 261, no. 13, p. 1916, Apr. 1989.

[11] C.-M. Li, X. Zhang, H. J. Hoffman, M. F. Cotch, C. L. Themann, and M. R.
Wilson, “Hearing Impairment Associated With Depression in US Adults, Na-
tional Health and Nutrition Examination Survey 2005-2010,” JAMA Otolaryngol-
ogy–Head & Neck Surgery, vol. 140, no. 4, p. 293, Apr. 2014.

[12] A. Bronkhorst, “The cocktail-party problem revisited: early processing and selec-
tion of multi-talker speech.” Atten Percept Psychophys, vol. 77 (5), pp. 1465–1487,
2015.

[13] C. J. Plack, The sense of hearing, third edition ed. London ; New York: Routledge,
Taylor & Francis Group, 2018.

[14] J. O. Pickles, An introduction to the physiology of hearing, 4th ed. London: Emerald,
2012.

[15] W. H. Organization. (2021) Deafness and hearing loss. [Online]. Available: https:
//www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

29

https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss


References

[16] H. Fletcher, Speech and Hearing in Communication, ser. Bell Telephone Laboratories
series. Van Nostrand, 1953. [Online]. Available: https://books.google.dk/
books?id=f4xZAAAAMAAJ

[17] K. L. Payton, R. M. Uchanski, and L. D. Braida, “Intelligibility of conversational
and clear speech in noise and reverberation for listeners with normal and im-
paired hearing,” The Journal of the Acoustical Society of America, vol. 95, no. 3, pp.
1581–1592, Mar. 1994.

[18] P. A. Gosselin and J.-P. Gagné, “Older adults expend more listening effort than
young adults recognizing audiovisual speech in noise,” International Journal of
Audiology, vol. 50, no. 11, pp. 786–792, Nov. 2011.

[19] C. B. Hicks and A. M. Tharpe, “Listening Effort and Fatigue in School-Age Chil-
dren With and Without Hearing Loss,” Journal of Speech, Language, and Hearing
Research, vol. 45, no. 3, pp. 573–584, Jun. 2002.

[20] M. Cooke, M. L. Garcia Lecumberri, and J. Barker, “The foreign language cocktail
party problem: Energetic and informational masking effects in non-native speech
perception,” The Journal of the Acoustical Society of America, vol. 123, no. 1, pp. 414–
427, Jan. 2008.

[21] K. S. Rhebergen, N. J. Versfeld, and W. A. Dreschler, “Release from informa-
tional masking by time reversal of native and non-native interfering speech,” The
Journal of the Acoustical Society of America, vol. 118, no. 3, pp. 1274–1277, Sep. 2005.

[22] L. V. Hadley, W. O. Brimijoin, and W. M. Whitmer, “Speech, movement, and gaze
behaviours during dyadic conversation in noise,” Scientific Reports, vol. 9, no. 1,
p. 10451, Dec. 2019.

[23] H. Sacks, E. A. Schegloff, and G. Jefferson, “A Simplest Systematics for the Orga-
nization of Turn-Taking for Conversation,” Language, vol. 50, no. 4, p. 696, Dec.
1974.

[24] M. Heldner and J. Edlund, “Pauses, gaps and overlaps in conversations,” Journal
of Phonetics, vol. 38, no. 4, pp. 555–568, Oct. 2010.

[25] A. Schaub, Digital hearing aids. New York: Thieme, 2008, oCLC: 244290628.

[26] J. Benesty, M. M. Sondhi, and Y. Huang, Eds., Springer handbook of speech process-
ing. Berlin ; London: Springer, 2008, oCLC: ocn190966783.

[27] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A Consolidated
Perspective on Multimicrophone Speech Enhancement and Source Separation,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 4,
pp. 692–730, Apr. 2017.

[28] M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques and
Applications, 2001, oCLC: 990622835.

[29] M. Farmani, “Informed Sound Source Localization for Hearing Aid Applica-
tions,” PhD Series, vol. Technical Faculty of IT and Design, p. Aalborg University,
2017, medium: PDF Publisher: Aalborg University Press.

[30] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beam-
forming and nonstationarity with applications to speech,” IEEE Transactions on
Signal Processing, vol. 49, no. 8, pp. 1614–1626, 2001.

30

https://books.google.dk/books?id=f4xZAAAAMAAJ
https://books.google.dk/books?id=f4xZAAAAMAAJ


References

[31] R. C. Hendriks, T. Gerkmann, and J. Jensen, DFT-domain based single-microphone
noise reduction for speech enhancement: a survey of the state-of-the-art, ser. Synthesis
lectures on speech and audio processing. Williston, VT: Morgan & Claypool,
2013, no. 11, oCLC: 935190351.

[32] A. Kuklasinski, S. Doclo, T. Gerkmann, S. Holdt Jensen, and J. Jensen, “Multi-
channel PSD estimators for speech dereverberation - A theoretical and exper-
imental comparison,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). South Brisbane, Queensland, Australia: IEEE,
Apr. 2015, pp. 91–95.

[33] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceed-
ings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[34] H. Cox, R. Zeskind, and M. Owen, “Robust adaptive beamforming,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1365–1376,
Oct. 1987.

[35] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94,
Jul. 1996.

[36] H. L. Van Trees, Optimum array processing, ser. Detection, estimation, and mod-
ulation theory / Harry L. Van Trees. New York: Wiley, 2002, no. 4, oCLC:
248233642.

[37] K. Buckley and L. Griffiths, “An adaptive generalized sidelobe canceller with
derivative constraints,” IEEE Transactions on antennas and propagation, vol. 34,
no. 3, pp. 311–319, 1986.

[38] J. Bitzer, K. U. Simmer, and K.-D. Kammeyer, “Theoretical noise reduction lim-
its of the generalized sidelobe canceller (gsc) for speech enhancement,” in 1999
IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceed-
ings. ICASSP99 (Cat. No. 99CH36258), vol. 5. IEEE, 1999, pp. 2965–2968.

[39] I. Cohen, “Analysis of two-channel generalized sidelobe canceller (gsc) with
post-filtering,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6,
pp. 684–699, 2003.

[40] L. Griffiths and C. Jim, “An alternative approach to linearly constrained adaptive
beamforming,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 1, pp.
27–34, Jan. 1982.

[41] E. Vincent, T. Virtanen, and S. Gannot, Audio source separation and speech enhance-
ment, 2018, oCLC: 1059285919.

[42] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 27, no. 2, pp. 113–120,
Apr. 1979.

[43] S. Kamath and P. Loizou, “A multi-band spectral subtraction method for en-
hancing speech corrupted by colored noise,” in IEEE International Conference on
Acoustics Speech and Signal Processing. Orlando, FL, USA: IEEE, May 2002, pp.
IV–4164–IV–4164.

31



References

[44] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech corrupted by
acoustic noise,” in ICASSP ’79. IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 4. Washington, DC, USA: Institute of Electrical and
Electronics Engineers, 1979, pp. 208–211.

[45] J. Lim and A. Oppenheim, “Enhancement and bandwidth compression of noisy
speech,” Proceedings of the IEEE, vol. 67, no. 12, pp. 1586–1604, 1979.

[46] R. McAulay and M. Malpass, “Speech enhancement using a soft-decision noise
suppression filter,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 28, no. 2, pp. 137–145, Apr. 1980.

[47] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square
error log-spectral amplitude estimator,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 33, no. 2, pp. 443–445, Apr. 1985.

[48] ——, “Speech enhancement using a minimum-mean square error short-time
spectral amplitude estimator,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 6, pp. 1109–1121, Dec. 1984.

[49] R. C. Hendriks, R. Heusdens, and J. Jensen, “MMSE based noise PSD tracking
with low complexity,” in 2010 IEEE International Conference on Acoustics, Speech
and Signal Processing. Dallas, TX, USA: IEEE, 2010, pp. 4266–4269.

[50] P. C. Loizou, Speech enhancement: theory and practice. Boca Raton, Fla.: CRC Press,
2013, oCLC: 958799095.

[51] R. C. Hendriks and R. Heusdens, “On linear versus non-linear magnitude-
DFT estimators and the influence of super-Gaussian speech priors,”
in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
Dallas, TX, USA: IEEE, 2010, pp. 4750–4753. [Online]. Available: http:
//ieeexplore.ieee.org/document/5495172/

[52] R. Martin, “Speech enhancement based on minimum mean-square error estima-
tion and supergaussian priors,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 5, pp. 845–856, Sep. 2005.

[53] I. Cohen and B. Berdugo, “Noise estimation by minima controlled recursive av-
eraging for robust speech enhancement,” IEEE Signal Processing Letters, vol. 9,
no. 1, pp. 12–15, Jan. 2002.

[54] I. Cohen, “Noise spectrum estimation in adverse environments: improved min-
ima controlled recursive averaging,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 11, no. 5, pp. 466–475, Sep. 2003.

[55] ——, “Optimal speech enhancement under signal presence uncertainty using
log-spectral amplitude estimator,” IEEE Signal Processing Letters, vol. 9, no. 4, pp.
113–116, Apr. 2002.

[56] M. Souden, Jingdong Chen, J. Benesty, and S. Affes, “Gaussian Model-Based
Multichannel Speech Presence Probability,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 5, pp. 1072–1077, Jul. 2010.

[57] M. Souden, J. Chen, J. Benesty, and S. Affes, “An Integrated Solution for Online
Multichannel Noise Tracking and Reduction,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 7, pp. 2159–2169, Sep. 2011.

32

http://ieeexplore.ieee.org/document/5495172/
http://ieeexplore.ieee.org/document/5495172/


References

[58] M. Souden, M. Delcroix, K. Kinoshita, T. Yoshioka, and T. Nakatani, “Noise
Power Spectral Density Tracking: A Maximum Likelihood Perspective,” IEEE
Signal Processing Letters, vol. 19, no. 8, pp. 495–498, Aug. 2012.

[59] R. Martin, “Noise power spectral density estimation based on optimal smoothing
and minimum statistics,” IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 5, pp. 504–512, Jul. 2001.

[60] J. Jensen and U. Kjems, “Maximum Likelihood Based Noise Covariance Matrix
Estimation For Multi-Microphone Speech Enhancement,” EUSIPCO, Aug. 2012.

[61] J. Jensen and M. S. Pedersen, “Analysis of beamformer directed single-channel
noise reduction system for hearing aid applications,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). South Brisbane,
Queensland, Australia: IEEE, Apr. 2015, pp. 5728–5732.

[62] S. Braun, A. Kuklasinski, O. Schwartz, O. Thiergart, E. A. P. Habets, S. Gan-
not, S. Doclo, and J. Jensen, “Evaluation and Comparison of Late Reverberation
Power Spectral Density Estimators,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 6, pp. 1056–1071, Jun. 2018.

[63] Hao Ye and D. DeGroat, “Maximum likelihood DOA estimation and asymptotic
Cramer-Rao bounds for additive unknown colored noise,” IEEE Transactions on
Signal Processing, vol. 43, no. 4, pp. 938–949, Apr. 1995.

[64] A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum Likelihood PSD
Estimation for Speech Enhancement in Reverberation and Noise,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 9, pp. 1599–
1612, Sep. 2016.

[65] R. C. Hendriks, J. Jensen, and R. Heusdens, “Noise tracking using dft domain
subspace decompositions,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 16, no. 3, pp. 541–553, 2008.

[66] A. Kuklasinski, “Multichannel Wiener Filter for Speech Dereverberation in Hear-
ing Aids -Sensitivity to DoA Errors,” in AES Convention, 2016.

[67] M. Taseska and E. A. P. Habets, “Relative transfer function estimation exploit-
ing instantaneous signals and the signal subspace,” in 2015 23rd European Signal
Processing Conference (EUSIPCO). Nice: IEEE, Aug. 2015, pp. 404–408.

[68] S. Markovich-Golan and S. Gannot, “Performance analysis of the covariance sub-
traction method for relative transfer function estimation and comparison to the
covariance whitening method,” in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). South Brisbane, Queensland, Australia:
IEEE, Apr. 2015, pp. 544–548.

[69] M. Zohourian, G. Enzner, and R. Martin, “Binaural Speaker Localization Inte-
grated Into an Adaptive Beamformer for Hearing Aids,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 26, no. 3, pp. 515–528, Mar. 2018.

[70] S. Kochkin, “MarkeTrak V: “Why my hearing aids are in the drawer”,” The Hear-
ing Journal, vol. 53, no. 2, p. 34, Feb. 2000.

[71] K. Bell, Y. Ephraim, and H. Van Trees, “A Bayesian approach to robust adaptive
beamforming,” IEEE Transactions on Signal Processing, vol. 48, no. 2, pp. 386–398,
Feb. 2000.

33



References

[72] A. Favre-Félix, C. Graversen, R. K. Hietkamp, T. Dau, and T. Lunner, “Im-
proving Speech Intelligibility by Hearing Aid Eye-Gaze Steering: Conditions
With Head Fixated in a Multitalker Environment,” Trends in Hearing, vol. 22,
p. 233121651881438, Jan. 2018.

[73] A. Favre-Felix, C. Graversen, T. Dau, and T. Lunner, “Real-time estimation of eye
gaze by in-ear electrodes,” in 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). Seogwipo: IEEE, Jul. 2017,
pp. 4086–4089.

[74] D. Michelsanti, Z.-H. Tan, S.-X. Zhang, Y. Xu, M. Yu, D. Yu, and J. Jensen, “An
Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Sep-
aration,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp.
1–1, 2021.

[75] D. Michelsanti, Z.-H. Tan, S. Sigurdsson, and J. Jensen, “Deep-learning-based
audio-visual speech enhancement in presence of Lombard effect,” Speech Com-
munication, vol. 115, pp. 38–50, Dec. 2019.

[76] S. Thomsen, “Eye-Gaze Steered Beamforming for Hearing Aids,” Master’s thesis,
Aalborg University, Mar. 2022.

[77] Aalborg University and D. Michelsanti, “Audio-Visual Speech Enhancement
Based on Deep Learning,” Ph.d, Aalborg University, 2021.

34



Part II

Papers

35



This page intentionally left blank.



Paper A

Robust Bayesian and Maximum a Posteriori
Beamforming for Hearing Assistive Devices

Poul Hoang, Zheng-Hua Tan, Jan Mark de Haan, Thomas
Lunner, and Jesper Jensen

The paper has been published in
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp.

1-5, 2019.



© 2019 IEEE
The layout has been revised.



1. Introduction

Abstract

Multi-microphone speech enhancement systems often apply beamforming to enhance
one or multiple desired signals in a noisy environment. Common for many beam-
forming methods, is that they require the direction-of-arrival (DOA) of the target
sound source to be known in order to achieve optimal noise reduction performance.
To improve robustness against DOA uncertainty, we propose maximum a posteriori
(MAP) and Bayesian beamformers that are able to take advantage of prior information
on the target direction. We compare the proposed MAP and Bayesian beamformers to
state-of-the-art beamforming methods for noise reduction in hearing assistive devices.
We evaluate the proposed beamformers in isotropic babble noise in terms of segmental
SNR (SSNR) and extended short-time objective intelligibility (ESTOI). Results show
that the proposed methods outperform current state-of-the-art beamformers used for
noise reduction in hearing aids in most scenarios.

1 Introduction

Noise reduction systems in e.g. hearing assistive devices and hands-free com-
munication devices use adaptive beamforming [1–3] to enhance one or multi-
ple desired target signals from a noisy environment. Noise reduction perfor-
mance of beamformers typically used in hearing aid (HA) systems, such as
the minimum variance distortionless response (MVDR) beamformer and the
multichannel Wiener filter (MWF), depends greatly on the robustness of the
direction-of-arrival (DOA) estimation since DOA mismatches can potentially
degrade the speech intelligibility and sound quality [4]. Robust DOA esti-
mation has therefore historically been a significant and important research
topic for multichannel speech enhancement systems [3] and the research area
remains highly active, see e.g. [5, 6] for recent contributions.

In [6] a stochastic maximum likelihood DOA estimator is proposed, which
is used in the context of MVDR beamforming (we will refer to this beam-
former as the ML beamformer). The ML beamformer relies on a novel ML
estimator of the noise cross-power spectral density (CPSD) matrix that as-
sumes that the underlying structure of the inter-microphone noise CPSD ma-
trix in speech absence remains fixed during speech presence [7–9] but can be
updated by a time-varying scalar multiplier. The method in [6], however, do
not incorporate potential any prior information available on the target DOA.

Existing beamforming methods for HAs often make the rather strict as-
sumption that the target is located in a fixed (known) position, e.g. frontal
to the user [4, 7, 10]. Alternatively, they make no prior assumptions about
the target position whatsoever [6]. In practice, some potentially vague prior
information about the target location may be available. For example, for HAs
it may be known a priori that the target is located in the frontal plane with
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respect to the user. Bayesian beamforming [11–13], however, offers an el-
egant framework for incorporating such prior information to form optimal
beamformers under DOA uncertainty,

In this paper, we propose a maximum a posteriori (MAP) and a Bayesian
beamformer based on the noise CPSD matrix model presented in [14] and
derive the likelihood function of the noisy observations. In contrast to [6], we
utilize prior information of the target DOA and derive the a posteriori distri-
bution, which is used for the proposed MAP and Bayesian beamformers. We
moreover demonstrate the advantage of incorporating prior information and
compare the proposed beamformers to competing methods.

2 Signal Model and Assumptions

For a microphone array with M microphones, where each microphone picks
up the sound from the noisy acoustic environment, the noisy observation
xm(t), t ∈N0, at the m’th microphone can be modeled as

xm(t) = s(t) ∗ dm(t, θs) + vm(t), m = 1, ..., M, (A.1)

where we have assumed a single target, ∗ is the convolution operator,
dm(t, θs) denotes the relative impulse response from the target to the mi-
crophone with respect to a pre-selected reference microphone, s(t) is the
target signal at the reference microphone and impinges on the array from
direction θs∈ ]−180◦, 180◦], and the noise, vm(t), is a sum of all undesired
signals e.g. competing speakers, reverberation, and microphone self-noise.
The short-time Fourier transform (STFT) is used to transform xm(t) into the
time-frequency (TF) domain. Let k and n be the frequency bin index and the
frame index respectively. Then the TF domain representation of the noisy
signal, xm(k,n)∈C, is

xm(k, n) = s(k, n)dm(k, n, θs) + vm(k, n). (A.2)

Collect the noisy observations, xm(k, n), in a vector x(k, n) =

[x1(k, n), ..., xM(k, n)]T and define the cross power spectral density (CPSD)
matrix of the noisy signal as Cx(k, n) = E{x(k, n)xH(k, n)}, where E{·} is the
expectation operator. Under the standard assumption that s(k, n) is uncorre-
lated with the noise, Cx(k, n) is given as

Cx(k, n) = λs(k, n)d(k, n, θs)dH(k, n, θs) + Cv(k, n), (A.3)

where Cv(k, n) = E{v(k, n)vH(k, n)} is the noise CPSD matrix with v(k, n) =
[v1(k, n), ..., vM(k, n)]T , λs(k, n) is the target power spectral density (PSD) at
the reference microphone, and d(k, n, θs) = [d1(k, n, θs), ..., dM(k, n, θs)]T is the
relative transfer function (RTF) vector. In many acoustic scenarios, such as car
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cabins or cocktail-party scenarios, the noise CPSD matrix model presented in
[7, 14] can be used to estimate the noise CPSD matrix in speech presence.
The model assumes that the underlying structure of the noise CPSD matrix
observed during speech absence, Cv(k, n0), remains identical during speech
presence. In other words, the signal model in (A.3) may be written as

Cx(k,n)=λs(k,n)d(k,n,θs)dH(k,n,θs)+λv(k,n)Cv(k,n0), (A.4)

where λv(k, n) is a scalar and Cv(k, n0) is the noise CPSD matrix from the
most recent speech absent frame n0.

The performance of a beamformer depends on the estimated DOA, as
DOA mismatches can degrade the performance significantly [4]. In most
acoustic scenarios, the target DOA θs is not known exactly. Instead, it may
be considered as a random variable with probability distribution P(θ). For
example, in a cocktail-party-like environment, the target might be more likely
to arrive from the front rather than from the rear of the HA user. In the
proposed method we assume that P(θ) is a known probability mass function
(PMF) and that θs ∼ P(θ) in order to evaluate the advantage of integrating
prior target location knowledge into the beamformer.

3 Wideband Bayesian and MAP Beamforming

A beamformer is a linear combination of the noisy signal x(k, n) with the
beamformer weights w(k, n) ∈ CM such that the output of the beamformer
is

ŝ(k, n) = wH(k, n)x(k, n). (A.5)

Typically, the beamformer weights are derived through an optimization prob-
lem, e.g. by minimizing the noise output power with a distortionless con-
straint (MVDR beamformer) or minimizing the mean-square-error (MSE) be-
tween the target signal and the estimated one (MWF). While these beam-
formers assume perfect knowledge of the target DOA, a Bayesian beamformer
refers to an optimal beamformer that minimizes the MSE between the target
signal s(k, n) and the estimated target signal ŝ(k, n) under DOA uncertainty
[11].

3.1 Wideband Bayesian beamformer

Let X(k, n) = [x(k, n− N + 1), ..., x(k, n)] ∈ CM×N and X(n) =
[X(1, n), ..., X(K, n)] ∈ CM×NK. To derive the Bayesian beamformer, consider
the minimum mean-square-error (MMSE) estimator of the target signal at a
particular TF tile. The MMSE estimator is the conditional expectation of the
target signal ŝ(k, n) = E{s(k, n)|X(n)} [11] i.e.
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ŝ(k, n) =
∫

C
s(k, n) f (s(k, n)|X(n)) ds(k, n), (A.6)

where f (s(k, n)|X(n)) is the posterior of the s(k, n), given the noisy observa-
tions X(n). As θs is modeled as a random variable with PMF P(θ), the law of
total probability is used to further expand f (s(k, n)|X(n)):

ŝ(k, n)=
∫

C
s(k, n)

I

∑
i=1

P(θi|X) f (s(k, n)|X(n), θi) ds(k, n),

where P(θi|X(n)) is the a posteriori probability of the target direction and
θi ∈ Θ, Θ is a discrete candidate set of directions from which the target can
arrive, and I is the cardinality of Θ. Assuming further that s(k, n) is only
dependent on the noisy observation at frequency bin k [15], it follows that

ŝ(k, n) =
I

∑
i=1

P(θi|X(n))E{s(k, n)|X(k, n), θi},

where E{s(k,n)|X(k,n),θi} =
∫

C
s(k,n) f (s(k,n)|X(k,n),θi)ds(k,n). Assuming that

s(k, n) has a uniform prior [16], it follows that the Bayesian MMSE estimator
of s(k, n) is a linear combination of MVDR beamformers:

wB(k, n) =
I

∑
i=1

P(θi|X(n))wMVDR(k, n, θi), (A.7)

where

wMVDR(k, n, θi) =
C−1

v (k, n0)d(k, n, θi)

dH(k, n, θi)C−1
v (k, n0)d(k, n, θi)

. (A.8)

3.2 Posterior probability of the target direction

In order to derive an expression for the posterior probability P(θi|X(n)),
some key assumptions will be made. First, it is assumed that the noisy ob-
servations x(k, n) are temporally uncorrelated e.g. [6, 11] and distributed
according to a circular symmetric complex Gaussian distribution such that
x(k, n) ∼ NC (0, Cx(k, n, θs)) [11]. Next, x(k, n) is assumed uncorrelated
across frequency i.e. E{x(k, n)xH(j, n)} = 0 for j 6= k, and finally, it is as-
sumed that Cx(k, n, θs) may be modeled according to (A.4). With the first
assumption, the likelihood function of the noisy observations X(k, n) is

f (X(k, n)|θi) =
exp

(
−Ntr

(
Ĉx(k, n)C−1

x (k, n, θi)
))

πMN |Cx(k, n, θi)|N
,

where Ĉx(k, n) = 1
N X(k, n)X(k, n)H is the sample estimate of the noisy CPSD

matrix and tr(·) is the trace operator. We substitute Cx(k, n, θi) with the
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expression found in (A.4), and observe that λs(k, n) and λv(k, n) are un-
known parameters. Closed-form expressions for ML estimators of λs(k, n)
and λv(k, n) are derived in [8, 14]. Inserting these ML estimators λ̂s(k, n, θi)
and λ̂v(k, n, θi) into the likelihood function, we obtain the concentrated like-
lihood function f̄ (X(k, n)|θi) = f (X(k, n)|θi, λ̂s(k, n, θi), λ̂v(k, n, θi)) [14]

f̄ (X(k, n)|θi) = π−MN |λ̂s(k, n, θi)d(k, n, θi)d
H(k, n, θi)

+ λ̂v(k, n, θi)Cv(k, n0)|−N exp (−MN) ,

where | · | denotes the matrix determinant. We may derive a joint concen-
trated likelihood function across frequency bins as

f̄ (X(n)|θi) =
K

∏
k=1

f̄ (X(k, n)|θi). (A.9)

We arrive at the posterior probability using Bayes theorem:

P(θi|X(n)) = c · P(θi) f̄ (X(n)|θi), (A.10)

where c = ∑I
i=1 P(θi) f̄ (X(n)|θi) is a normalization constant and P(θi) is the

target DOA prior. Inserting (A.10) into (A.7) leads to the proposed wideband
Bayesian beamformer.

3.3 MAP beamformer

The MAP beamformer is an MVDR beamformer steered towards the MAP
estimate of the DOA. The DOA is first estimated by

θ̂MAP = arg max
θi

P(θi) f̄ (X(n)|θi), (A.11)

and afterwards used in (A.8) to form an MVDR beamformer.
In order to compute an upper bound performance, an oracle beamformer

was implemented. The oracle beamformer is an MVDR beamformer, which
uses the true DOA, i.e. wMVDR(k, n, θs) cf. (A.8).

4 Experimental Setup

Simulation experiments are conducted where a target speaker is placed in an
approximately isotropic noise field, where the sound is picked up by micro-
phones placed on behind-the-ear (BTE) HAs worn by a HA user. We evaluate
the performance with two different microphone arrays; one where a BTE HA
is placed behind the left ear, and another with two BTE HAs with one placed
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4. Experimental Setup

Fig. A.1: Examples of the a priori distributions, P(θ), for different Pt and θt. On the left figure
Pt = 1 while varying θt, and on the right figure θt = 15◦ while varying Pt.

on each ear of the user. Each BTE HA has two microphones placed at a dis-
tance of 1.3 cm, thus the first array has two microphones while the second
array has four. We assume perfect wireless signal exchange between the HAs
if two are used. Head-related transfer functions are obtained from measure-
ments with HAs placed on a real head and used to derive the RTF vectors
with the front microphone of the left BTE HA used as reference microphone.
The RTF vectors are available with a resolution of 7.5◦ around a circle in the
horizontal plane.

The target signal is speech from a range of different male and female
speakers from the TIMIT corpus [17]. The noise type is babble and speech-
shaped noise (SSN). We construct approximately isotropic babble or SSN
noise fields by letting different speech signals or SSN sequences impinge on
the array from all 360◦

7.5◦ =48 directions. The babble noise is constructed using
speech, while the SSN is created by filtering Gaussian white noise through a
spectral shaping filter.

The duration of an acoustic scene is 5 seconds and for each scene realiza-
tion, new speech signals are randomly chosen as the target and the babble
noise, while new signal realizations are drawn for SSN. For acoustic scene
realizations, the target direction is drawn from a discrete circular distribution
such that θs ∼ P(θ) and is kept fixed during the acoustic scene. We assume
that the circular distribution, with an angular resolution of 7.5◦, is available
as a prior distribution for the Bayesian and MAP beamformers. We choose
to model the circular distribution as a piecewise linear function such that the
target probability, Pt, of arriving from an interval is Pt = P(−θt ≤ θ ≤ θt) as
shown in Fig A.1.

To transform the noisy signal into the TF domain we use the STFT with
a frame length of 256 samples, sampling frequency of 16 kHz, and a square-
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root Hanning window with 50% overlap for analysis and synthesis. The first
second of each acoustic scene has no speech activity in order to initialize the
noise CPSD matrices which are updated by recursive averaging with a time
constant of 50 ms.

5 Results and discussion

To quantify the performance of the beamformers, we use the segmental SNR
(SSNR) [18] and extended short-time objective intelligibility (ESTOI) [19] for
evaluating the noise reduction and speech intelligibility performance respec-
tively. The scores are averaged over 200 realizations for each type of acoustic
scene. The Bayesian and MAP beamformers are compared to the ML beam-
former [6] and a fixed MVDR beamformer which is often used in practical
HA systems [20–22]. In our experiments, the fixed MVDR beamformer is
steered towards 0◦ i.e. the front of the hearing aid user. Finally, to estimate
an upper performance bound, we also compare the performance to an ora-
cle beamformer which for each realization is steered towards the true target
DOA.

In the following, due to space limitations, we show results using four
microphones and acoustic scenes with babble noise. The simulation experi-
ments with SSN and the two microphone array, lead to essentially identical
conclusions, although for two microphones, the width of the beam is wider,
so that the performance difference between the methods is less significant.

5.1 Experiment 1: Varying Pt for fixed θt

In this experiment we vary Pt, while keeping θt fixed, to examine how
changing the certainty of the target arriving from [−θt, θt] affects the beam-
forming performance. We expect that as Pt approaches 1, the advantage
of incorporating the prior distribution in the beamformer, as done for the
MAP and Bayesian beamformers, becomes more significant. We test for
Pt=(1, 0.75, 0.5, 0.35) of the target arriving in the interval [−60◦, 60◦]. With
Pt = 1, the target certainly arrives from [−θt, θt], while for Pt = 0.35 the
distribution becomes uniform i.e. the target is equally likely to arrive from
any direction. To examine the robustness against different SNR levels, the
beamformers are evaluated for SNRs in [−12 dB, 6 dB].

The SSNR and ESTOI scores for the first experiment are reported in Table
A.1. As Pt approaches 1, we observe that the improvement of the Bayesian
and MAP beamformers over the ML beamformer increases. For Pt = 0.35,
the MAP and ML beamformers give identical scores, since the prior distribu-
tion is uniform and the MAP beamformer reduces to the ML beamformer. At
high SNRs, e.g. 6 dB, the Bayesian, MAP and ML beamformers perform ap-

46



6. Conclusion

proximately identically in terms of SSNR, but with the Bayesian beamformer
performing close to the oracle beamformer. At low SNRs, e.g. -12 dB, the
fixed MVDR beamformer performs best in terms of SSNR. The reason for
this is that DOA estimation at such low SNR is very challenging, and that
the fixed MVDR beamformer steers a beam towards a fixed DOA of θ = 0◦,
which is centered in the actual DOA range [−θt, θt] used in the simulation.
However, at higher SNRs, the MAP and Bayesian beamformers always return
a higher SSNR than the fixed MVDR beamformer.

In terms of ESTOI, similar patterns as for the SSNR are observed. The
MAP and Bayesian beamformers perform best when Pt is close to 1 and ap-
proach the oracle beamformer performance at high SNRs. Compared to the
ML beamformer, the greatest improvement is when the SNR is between -6 dB
and 0 dB. For Pt = 0.35, the Bayesian, MAP, and ML beamformers perform
approximately identically.

5.2 Experiment 2: Varying θt for fixed Pt

In the second experiment, Pt is kept fixed at Pt = 1 for θt = (90◦, 60◦, 30◦, 0◦)
to examine the effect of changing the width of the prior distribution. The
results are shown in Table A.2. For θt = 0◦, the target always arrives from
the front, so the fixed MVDR, MAP, and Bayesian beamformers give iden-
tical SSNR and ESTOI scores. As θt approaches 0◦, the SSNR and ESTOI
improvement over the ML beamformer increase and the performance of the
MAP and Bayesian beamformers approaches the performance of the oracle
beamformer. Hence, as expected, when the interval θt of the prior distribu-
tion decreases, the advantage of integrating a prior distribution for the MAP
and Bayesian beamformers becomes more significant.

6 Conclusion

We proposed a beamformer that integrates a priori information about the
potential DOA of the target sound source and utilizes a novel noise CPSD
model to derive the a posteriori distribution for MAP and Bayesian beam-
formers. We compare the proposed beamformers to a state-of-the-art ML
beamformer and fixed-MVDR beamformer commonly used for hearing as-
sistive devices. We demonstrate in simulation experiments the advantage of
having a realistic a priori distribution of the target direction available for the
proposed beamformers. The beamformers were tested on simulated, but real-
istic acoustic scenes with binaural hearing aids. In terms of SSNR and ESTOI
scores, results indicated that the proposed beamformers outperform the ML
beamformer in both low and high SNRs. At high SNRs, they approach the
performance of an oracle beamformer that has access to the true target DOA.
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1. Introduction

Abstract

In headset and hearing aid applications, it is of interest to retrieve the user’s own voice
in a noisy environment, e.g. for telephony applications. To do so, the cross-power
spectral density (CPSD) of the interference-plus-noise is required. In this paper,
a novel maximum likelihood (ML) estimator of the interference-plus-noise CPSD
matrix is proposed. The proposed method is able to estimate the interference-plus-
noise CPSD matrix, even during signal regions with own voice activity. The method
uses a novel procedure for estimating the interference-plus-noise CPSD matrix by
first estimating the interference PSD and afterwards the noise PSD in a maximum
likelihood sense. Simulation experiments, where the proposed method is compared
to other noise CPSD matrix estimators, show that it performs on par or better than
competing methods, particularly, in situation where the interference-to-noise ratio is
large.

1 Introduction

Speech enhancement and noise reduction algorithms are often needed in real-
world audio applications, where noise from the acoustic environment masks
a desired speech signal. Examples include hands-free wireless communica-
tion devices, e.g. headsets, automatic speech recognition systems, and hear-
ing aids (HA) [1]. In particular for applications such as headset communica-
tion devices, where the user’s voice is picked up by the headset microphones
and transmitted to a far-end conversational partner, noise can greatly reduce
sound quality and speech intelligibility making conversations more difficult.

Noise reduction algorithms in multi-microphone devices are often imple-
mented as spatio-temporal filters [1–3]. To find the optimal filter coefficients,
it is usually necessary to know the characteristics of the acoustic environ-
ment, e.g. in the form of spatial, spectral and/or temporal noise and target
statistics. Typically, these statistics are unknown and must be estimated on-
line from the noisy speech signal.
Statistics that are often necessary for multi-microphone noise reduction algo-
rithms include the cross-power spectral densities (CPSDs) of the noise. To
estimate these statistics, a variety of estimators have been proposed, e.g.
[4–9]; see also [3]. In [4, 7] a maximum likelihood (ML) estimator of the
noise CPSD matrix is proposed using the assumption, that the noise CPSD
matrix remains identical up to a scalar multiplier during speech presence.
This estimator performs well, when the structure of the noise CPSD matrix
does not change significantly over signal regions with speech activity. How-
ever, in many realistic acoustic scenes, the underlying structure of the noise
CPSD matrix cannot be assumed fixed, e.g., when a prominent speech-like
interferer is present in the acoustic scene. In this case, many existing noise
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reduction systems fail at efficiently suppressing the interferer, as it is harder
to determine if the target or the interferer is the desired speech.

In this paper we propose a novel maximum likelihood estimator of the
noise CPSD matrix. The method avoids the assumption of a fixed noise PSD
matrix structure made in [4, 7]. It also overcomes the problem of distinguish-
ing the target from competing speakers. Additionally, in cases when the
noise CPSD matrix structure is actually time-invariant, the proposed method
performs as well as existing methods.

2 Signal Model

We consider an acoustic scene consisting of a user equipped with hearing
aids or a headset with access to M > 2 microphones. The microphones pick
up the user’s own voice in the presence of noise and interfering speakers,
and the noisy signal is sampled into a discrete-time sequence xm(t) ∈ R for
all m = 1, ..., M microphones. Fig. B.1 shows an example situation, where
the user’s own voice signal is denoted s′o(t), and the ambient noise v′e(t). In
this example, a single point-like interferer is present as a competing speaker
v′c(t) arriving from an angle θc. Let xm(t) denote the noisy signal picked up
at microphone m, and let xm(k, n) denote its short-time Fourier Transform
(STFT), where k, n denote a frequency bin and a frame index, respectively.
We vectorize xm(t) such that x(k,n)= [x1(k,n),..., xM(k,n)]T and

x(k,n)= so(k,n)do(k,n)+vc(k,n)dc(k,n,θc)+ve(k,n), (B.1)

where do(k, n) denotes the relative transfer function (RTF) [10] from the users’
mouth to the HA microphones, with respect to a pre-selected reference mi-
crophone. The vector dc(k, n, θc) is the RTF from an interferer arriving from
an unknown direction θc ∈ Θ, where we assume that Θ = θ1, ...θI to the
HA microphones, and where we have used the notation θc , θc(k, n) for
brevity. In other words, the proposed signal model in (B.1) is more general
than examplified in Fig. 1 in that it allows for different interferer angles
in different time-frequency units. Furthermore, so(k, n) and vc(k, n) denote
the own-voice signal and the interferer signal at a pre-selected reference mi-
crophone, respectively. Finally, vc(k, n) is the ambient noise signal at the
microphones. We assume that the own voice RTF vector is time-invariant i.e.
do(k) , do(k, n). This assumption is reasonable, because the microphones of
the headset or hearing aid tend to be located in a fixed position with respect
to the mouth of the user. Moreover, we make the standard assumption that
so(k, n), vc(k, n), and ve(k, n) are mutually uncorrelated random processes
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Fig. B.1: An example acoustic scene where s′o(t) is the own voice. The signal v′c(t) is the speech
signal of a competing speaker arriving from direction θc and v′e(t) is the noise.

meaning that the noisy CPSD matrix, Cx(k, n) = E{x(k, n)xH(k, n)}, is

Cx(k, n) = λs(k, n)do(k)dH
o (k)

+ λc(k, n)dc(k, θc)dH
c (k, θc) + λe(k, n)Γe(k, n)︸ ︷︷ ︸

Cv(n,k)

, (B.2)

where λs(k, n), λc(k, n), and λe(k, n) are power spectral densities (PSDs) of
the own-voice, interference, and noise, respectively. The matrix Γe(k, n) is the
normalized noise CPSD matrix with a value of 1 at the diagonal element cor-
responding to the reference microphone index. We assume that Γe(k, n) is a
known matrix and may be chosen according to prior knowledge or estimated
in noise only regions. The own voice RTF vector do(k) is assumed known
as it can be measured before deployment. The parameters that remain to
be estimated are λc(k, n), λe(k, n), and θc. We derive ML estimators of these
parameters in the following section.

3 Maximum Likelihood Interference-Plus-Noise
PSD Estimation

To estimate the interference and noise PSDs (i.e. λc(k, n) and λe(k, n)) and the
interference direction θc, we first apply an own voice canceling beamformer to
obtain an interference-plus-noise-only signal. The own voice canceling beam-
former is implemented using an own voice blocking matrix Bo(k) ∈ CM×M−1.
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To obtain the own voice blocking matrix, we first find the orthogonal projec-
tion matrix of do(k) and then select the first M − 1 column vectors of the
projection matrix [7]. Let IM×M be an M×M identity matrix and let IM×M−1
denote the first M − 1 column vectors of IM×M. The own voice blocking
matrix is then given as

Bo(k) =

(
IM×M −

do(k)dH
o (k)

dH
o (k)do(k)

)
IM×M−1. (B.3)

The own voice blocked signal, z(k, n), can be expressed as

z(k, n) = BH
o (k)x(k, n)

= vc(k, n)BH
o (k)dc(k, θc)︸ ︷︷ ︸

d̃c(k,θc)

+BH
o (k)ve(k, n)︸ ︷︷ ︸

ṽe(k,n)

, (B.4)

and the own voice blocked CPSD matrix is

Cz(k, n) = E{z(k, n)zH(k, n)}

= λc(k, n)d̃c(k, θc)d̃
H
c (k, θc) + λe(k, n)Γ̃e(k, n).

3.1 Concentrated log-likelihood

In order to derive ML-estimates of λc(k, n), λe(k, n), and θc, we follow
an approach similar to the one presented in [11, 12]. We assume that
the own-voice, interference, and noise are independent and identically dis-
tributed across a short time duration of N frames, and are distributed ac-
cording to a circular symmetric complex Gaussian distribution. Hence, the
blocked own voice-plus-interference signal is also circular symmetric com-
plex Gaussian distributed, i.e. z(k, n) ∼ NC (0, Cz(k, n)). Let Z(k, n) =
[z(k, n− N + 1), ..., z(k, n)] ∈ CM−1×N denote N observations of z(k, n), then
the likelihood of Z(k, n) is

f (Z(k, n)|θi, λc(k, n), λe(k, n)) =

exp
(
−Ntr

(
Ĉz(k, n)C−1

z (k, n, θi)
))

πMN |Cz(k, n, θi)|N
,

(B.5)

where Ĉz(k, n)= 1
N Z(k, n)ZH(k, n) is the sample estimate of Cz(k, n) and tr(·)

is the trace operator. For a given d̃c(k, θi), the ML-estimates of λc(k, n) and
λe(k, n) were derived in [7, 13]. Specifically, the ML-estimator of λe(k, n)
given d̃c(k, θi) is

λ̂e(k, n, θi) =
1

M− 2
×

tr
(

Ĉq(k, n, θi)
(

B̃H
(θi)Γ̃e(k, n)B̃(θi)

)−1
)

,
(B.6)
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where Ĉq(k, n) = 1
N B̃H

(θi)Z(k, n)ZH(k, n)B̃(θi) is the sample CPSD matrix of
the own voice-plus-interference blocked signal and B̃(θi) ∈ CM−1×M−2 is the
own-voice-plus-interference blocking matrix, i.e.

B̃(θi) =

(
IM−1×M−1 −

d̃c(k, θi)d̃
H
c (k, θi)

d̃H
c (k, θi)d̃c(k, θi)

)
IM−1×M−2.

Furthermore, for a given d̃c(k, θi), the ML estimator of the interference PSD
is given by [7, 13]

λ̂c(k, n, θi) =

w̃H(k, n, θi)
(
Ĉz(k, n)− λ̂e(k, n, θi)Γ̃e(k, n)

)
w̃(k, n, θi),

where w̃(θi) is the MVDR beamformer constructed from the blocked own
voice CPSD matrix as follows

w̃(k, n, θi) =
Γ̃−1

e (k, n)d̃c(k, θi)

d̃H
c (k, θi)Γ̃

−1
e (k, n)d̃c(k, θi)

. (B.7)

Inserting the ML estimates λ̂e(k, n, θi) and λ̂c(k, n, θi) into the likeli-
hood function in (D.15), we obtain the concentrated likelihood function
f̄ (Z(k, n)|θi, λ̂c(k, n, θi), λ̂e(k, n, θi)) which we denote as f̄ (Z(k, n)|θi). It can
be shown that the concentrated log-likelihood function is proportional to [13]

ln f̄ (Z(k, n)|θi) ∝

− ln |λ̂c(k, n, θi)d̃c(k, θi)d̃c(k, θi)
H + λ̂e(k, n, θi)Γ̃e(k, n)|.

3.2 ML estimate of λc(k, n), λe(k, n), and θc

We find ML estimates of λc(k, n), λe(k, n), and θc by evaluation the concen-
trated likelihood for a candidate set of vectors d̃c(k, θi), θi ∈ Θ, and choosing
the vector and subsequently the estimates of λc(k, n) and λe(k, n) that maxi-
mize the concentrated likelihood. While the proposed framework is general
and allows potentially different interferers in each time-frequency bin, we
assume here that only one single interferer is present in the acoustic environ-
ment and that the noisy observations across frequency bins are uncorrelated.
Then the wideband concentrated log-likelihood function is [12]

ln f̄ (Z(1, n), ..., Z(K, n)|θi) =
K

∑
k=1

ln f̄ (Z(k, n)|θi), (B.8)

where K is the total number of frequency bins of the one-sided spectrum.
To obtain the ML estimate of the interference direction θ̂c, we maximize the
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wideband concentrated log-likelihood function with respect to θi. As θi be-
longs to a discrete set of directions, the ML estimate of θc is obtained through
an exhaustive search over θi. Finally, to obtain an estimate of the interference-
plus-noise CPSD matrix we insert the ML estimates λ̂c(k, n, θi), λ̂e(k, n, θi)),
and θ̂c into the interference-plus-noise CPSD model, i.e.

Ĉv(k, n) = λ̂c(k, n, θ̂c)dc(k, θ̂c)dH
c (k, θ̂c)

+ λ̂e(k, n, θ̂c)Γe(k, n).
(B.9)

4 Performance Evaluation

To analyse the performance of the proposed ML noise CPSD matrix estima-
tor, we conduct simulation experiments for own voice retrieval in hearing aid
(HA) applications. The proposed estimator is used in combination with a
multichannel Wiener filter (MWF) beamformer [14, sec. 4.3] to retrieve the
own voice. The performance is reported in terms of extended short-time ob-
jective intelligibility (ESTOI) [15] and segmental SNR (SSNR) [16] to estimate
speech intelligibility and noise reduction performance, respectively. The pro-
posed beamformer (MWF-OV) is compared to three other beamformers, 1) a
standard MVDR beamformer, 2) an MWF beamformer, MWF-JP, where the
noise CPSD matrix Cv(k, n) is estimated using [7], and 3) an MWF beam-
former, MWF-LS, where Cv(k, n) is estimated using [17, 18]. The perfor-
mance scores for the unprocessed noisy observations and an oracle MWF
beamformer (MWF-Oracle), where the true signal statistics are known, are
included to obtain an lower and upper bound of performance, respectively.

4.1 Simulation setup

Two behind-the-ear (BTE) HA, each with two microphones separated with
a distance of 1.3 cm, are mounted behind the left and right ear of a real
human, and acoustic transfer functions are measured from the loudspeaker
to the microphones where the loudspeaker was placed at a distance of 1.9
meters and angle of θc to derive the RTF vectors do(k) and candidate vectors
dc(k, θc) for θc = −172.5◦, ..., 180◦. The direction of the competing speaker
is randomized according to a uniform circular distribution for each acoustic
scene.

We simulate an acoustic situation, where a HA user’s own voice is picked
up by the HA microphones in the presence of an interferer in the form of a
competing speaker and ambient noise, c.f. Fig B.1. The clean own voice tar-
get signal so(k, n) and interference signal vc(k, n) are speech signals obtained
from the TIMIT database [19]. The ambient noise types are car and cafeteria
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noise. These natural noise sources were measured with a spherical micro-
phone and transformed in the simulation to reproduce a realistic noise field
at the HA microphones. The speech signals and ambient noise segments are
randomly selected from the database for each new realization of an acoustic
scene.

A number of 150 different acoustic scenes are created to obtain averaged
performance scores. The duration of each acoustic scene is 5 seconds and the
own voice is active during the whole simulation. The sampling frequency
is 16 kHz and for the STFT, a the square-root Hanning window is used for
analysis and synthesis with a window size of 256 samples and an overlap
of 50%. To follow an approach that can be used in practice, we make the
rough assumption that the noise field is approximately isotropic. Hence we
initialize the normalized noise CPSD matrix, Γe(k, n), to be

Γe(k, n) =
1
|Θ| ∑

θc∈Θ
dc(k, θc)dH

c (k, θc), (B.10)

with Θ = {−172.5◦,−165◦, ..., 180◦} and |Θ| = 48. Note that the natural
noise fields used in the simulation do not strictly obey this noise model.

4.2 Experiment 1: Performance when varying INR

In the first experiment, the signal-to-noise ratio (SNR), which is defined as the
ratio between the own-voice power and the interference-plus-noise power, is
fixed at 0 dB. The interference-to-noise ratio (INR), defined as the ratio be-
tween the interference power and the ambient noise power, is varied between
-20 dB to 20 dB in intervals of 5 dB. The purpose of the experiment is to
examine how the power ratio between the competing speaker and noise in-
fluences the performance. The results are shown in Fig. B.2a and Fig. B.2c
for car noise and cafeteria noise, respectively. We observe that the proposed
method outperforms the competing methods significantly, when the INR is
large and for both noise types. Clearly, the proposed explicit modeling of
point-like interferers is highly advantageous in this situation. At low INR
levels, the performance of the proposed method converges to MWF-JP.

4.3 Experiment 2: Performance when varying SNR

For the second experiment, the INR is fixed at 6 dB while varying the SNR
from -20 dB to 20 dB in intervals of 5 dB. In this experiment we examine how
the performance is influenced by varying the SNR. The results are shown in
Fig. B.2b and Fig. B.2d for car noise and cafeteria noise, respectively. With
the proposed method, we observe an improvement in SSNR of 1.6 dB and
3.1 dB at input SNR = 0 dB for cafeteria and car noise, respectively, and an
improvement of 4.0 dB and 6.6 dB at input SNR = −20 dB for cafeteria and
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car noise. The better performance in car noise may be due to the fact that the
underlying N-frame stationarity assumption from section 3.1 is better valid.
Furthermore, the performance improvement increases at lower input SNR.

5 Conclusion

Own-voice retrieval in a noisy environment is of interest in headset and
hearing aid applications. The task of own-voice retrieval may be solved us-
ing multi-channel speech enhancement algorithms. Such algorithms rely on
knowledge of the inter-microphone interference-plus-noise CPSD matrix. In
this paper, we propose a maximum likelihood estimator of the interference-
plus-noise CPSD matrix during own voice signal regions. We conduct simu-
lation experiments for own voice retrieval in a hearing aid application. The
results indicate that the proposed method performs on par or better than
competing methods for estimating the interference-plus-noise CPSD matrix.
The results indicate that the improvement of the proposed method increases
as a function of the interference-to-noise ratio and for lower signal-to-noise
ratios.
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1. Introduction

Abstract

Acoustic beamforming is crucial for many applications where extraction of a target
signal from a noisy environment is required. In order to implement practical beam-
formers, e.g. the multichannel Wiener filter (MWF), estimation of the target and
noise power spectral densities (PSDs), and the relative acoustic transfer functions
(RATFs) is essential. Several methods, e.g. the so-called covariance whitening (CW)
approach, have been proposed for estimating these parameters. However, it seems
largely unknown that the CW approach in fact leads to maximum likelihood (ML) es-
timates of the RATFs. We use historical results to derive joint ML estimates (MLEs)
of the RATFs and PSDs in the context of acoustic beamforming. In addition, based on
the MLEs, we propose a basic VAD framework using concentrated likelihood ratios.
We use the joint MLEs of the PSDs, RATFs, and the proposed VAD to implement
beamformers in a hearing aid application, and compare its performance to competing
methods. Simulation results show that the proposed scheme can outperform compet-
ing methods, in particular in realistic situations where highly accurate prior RATF
knowledge is not available or at higher signal-to-noise ratios.

1 Introduction

Speech is often contaminated by background noise which can make it difficult
for humans or human-to-machine interaction systems to extract verbal infor-
mation when the environment becomes increasingly noisy. Acoustic beam-
forming is often used due to its ability to effectively suppress background
noise [1, 2]. Commonly used beamformers include the minimum variance
distortionless response (MVDR) beamformer and multichannel Wiener filter
(MWF) beamformer [2]. Often, the implementation of these beamformers re-
quires the knowledge of the relative acoustic transfer functions (RATFs) from
the target to the microphones [3, 4] and information about the target and
noise statistics, e.g. power spectral densities (PSDs) [4–6].

Estimation of the RATFs and PSDs is often treated as separate problems,
e.g. [6–8]. As a result, there exists a great variety of contributions on PSD
estimation for known RATFs [5–7, 9], or oppositely, methods that estimate
RATFs for known PSDs [8, 10, 11]. Also, methods exist for jointly estimating
RATF and PSDs, e.g. [12, 13], where RATFs and PSDs are estimated in ML
sense using a dictionary of candidate RATFs. Other methods are based on
speech presence probabilities (SPP) [14–16] to update target and noise statis-
tics. Yet, these methods do not explicitly and jointly estimate the PSDs and
RATFs.

In [17–19], Anderson et. al. used results from [20] to derive ML esti-
mates of parameters in signal models that resemble those used in the multi-
microphone audio processing community, e.g. [4, 6, 12, 13, 21]. Based on
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these historical results, it may be argued that recently proposed methods, e.g.
the covariance whitening (CW) method for RATF estimation [8, 10, 21, 22] is
in fact ML optimal. Moreover, applying the results from [17–19] in a beam-
forming context, enables derivation of a joint ML estimator (MLE) of the PSDs
and RATFs. The fact, which seems largely unknown in the audio processing
community, that this joint estimator is ML optimal allows its use in statistical
procedures, e.g. likelihood-ratios for voice activity detection.

In this paper, we first derive the joint MLEs of the PSDs and RATFs based
on [17–19]. Secondly, we propose a basic VAD framework based on likelihood
ratios from the joint MLEs. The joint MLEs and proposed VAD are compared
in simulation experiments to competing methods. We see that in realistic
situations, where limited a priori information is available on the RATFs or at
higher SNRs, the proposed method can outperform the competing methods.

2 Signal Model

The noisy acoustic signal is picked up by M microphones with arbitrary array
geometry. The signal is transformed into the time-frequency (TF) domain
using the short-time Fourier transform (STFT) with frequency index k and
frame index l. The signal model of the noisy signal, x(k, l) ∈ CM, may be
expressed as [4, 13, 15]

x(k, l) = s(k, l)d(k, l) + v(k, l), (C.1)

where s(k, l) is the target speech at a pre-selected reference microphone,
d(k, l) is the RATF vector with a value of 1 at the reference microphone index
[3, 4], and v(k, l) is the noise vector. We assume that s(k, l) and v(k, l) are
uncorrelated such that the noisy cross-power spectral density (CPSD) matrix,
Cx(k, l) , E{x(k, l)xH(k, l)}, is given as

Cx(k, l) = φs(k, l)d(k, l)dH(k, l) + Cv(k, l), (C.2)

where H is the Hermitian transpose, φs(k, l) is the target PSD at the reference
microphone and Cv(k, l) is the noise CPSD matrix. We assume that the noise
CPSD matrix has the form Cv(k, l) = φv(k, l)Γv(k, l0) during speech presence
[7, 12], where l0 is the most recent speech absent frame index and Γv(k, l0)
is the noise CPSD matrix updated during speech absence and normalized
with respect to the reference microphone. We model x(k, l) as a circularly
symmetric complex Gaussian distributed random vector [23]. Given N ob-
servations of x(k, l), we define the sample noisy CPSD matrix for each TF tile
as R(k, l) = 1

N X(k, l)X H(k, l) where X(k, l) = [x(k, l − N + 1), ..., x(k, l)] is a
data matrix of N noisy observations. The likelihood, parameterized by φs,
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φv, and d, is given as

f (X; φs, φv, d) =
exp

(
−Ntr

(
C−1

x (φs, φv, d)R
))

πMN |Cx(φs, φv, d)|N , (C.3)

where tr(·) and | · | denote the trace and determinant operators, and the
frequency and frame indices are omitted for brevity.

3 Joint Maximum Likelihood Estimation

In this section, we derive the joint MLEs of φs, φv, and d in a beamforming
context. The derivation is based on the results from [17–19].

3.1 Whitening Transform and Eigenvalue Decomposition

The MLEs of φs, φv, and d, rely on a whitening transform of x(k, l). First,
consider the inverse matrix square-root of Γv

Γ
− 1

2
v = UvD−

1
2

v UH
v and Γ

1
2
v = UvD

1
2
v UH

v , (C.4)

where Γ
1
2
v and Γ

− 1
2

v are Hermitian matrices, Uv is a unitary matrix with eigen-
vectors of Γv as columns, and Dv is a diagonal matrix with real-valued and

non-negative eigenvalues of Γv. We define D
1
2
v as the element-wise non-

negative square-root of Dv and D−
1
2

v as the inverse of D
1
2
v . Let C̃x and R̃

be whitened CPSD matrices defined as

C̃x = Γ
− 1

2
v CxΓ

− H
2

v and R̃ = Γ
− 1

2
v RΓ

− H
2

v , (C.5)

Cx = Γ
1
2
v C̃xΓ

H
2

v and R = Γ
1
2
v R̃Γ

H
2

v . (C.6)

In the whitened domain, it follows that

C̃x = φsd̃d̃H + φvI, (C.7)

where I is the identity matrix and d̃ , Γ
− 1

2
v d. The eigenvalue decomposition

(EVD) of C̃x is

C̃x = ŨxD̃xŨH
x = ŨsD̃sŨ

H
s + ŨvD̃vŨH

v , (C.8)

where ŨsD̃sŨ
H
s = φsd̃d̃H . Note that since φsd̃d̃H is a positive semi-

definite rank-1 matrix, φsd̃d̃H has one positive eigenvalue, λ̃s, such that
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D̃s = diag(λ̃s, 0, .., 0). Let ũs,1 be the unit-norm eigenvector corresponding
to the largest eigenvalue λ̃s. Then

λ̃sũs,1ũH
s,1 = φsd̃d̃H , (C.9)

and because ||ũs,1|| = 1, it follows that λ̃s = φs||d̃||2. As the whitened noise
CPSD matrix is φvI, see (C.7), its eigenvalues are all φv, i.e., D̃v = φvI and Ũv
can be chosen as any unitary matrix. Hence, we may express

ŨxD̃xŨH
x = Ũs

(
D̃s + D̃v

)
ŨH

s . (C.10)

Let the EVD of R̃ be R̃ = ŨRD̃RŨH
R and the unitary matrix

Q , ŨH
x ŨR. (C.11)

We now substitute (C.6) and (C.11) into (C.3) to find

f (X; φs, φv, d) =
exp

(
−Ntr

(
C̃−1

x R̃
))

πMN |Γ
1
2
v C̃xΓ

H
2

v |N
(C.12)

f (X; φs, φv, d) =
exp

(
−Ntr

(
D̃−1

x QD̃RQH
))

πMN |Γ
1
2
v ŨxD̃xŨH

x Γ
H
2

v |N
,

where D̃x , D̃x(φs, φv) is a function of φs and φv, and Q , Q(d) is a function
of d only.

3.2 Maximum Likelihood Estimation of the PSDs and RATFs

Let L(φs, φv, d) , log f (X; φs, φv, d) denote the log-likelihood. To derive the
joint MLEs of φs, φv, and d, we maximize L with respect to φs, φv, and d

φ̂s, φ̂v, d̂ = arg max
φs ,φv ,d

L(φs, φv, d). (C.13)

Using (C.12), it can be shown that

L(φs, φv, d) ∝ − log |D̃x| − tr
(

D̃−1
x QD̃RQH

)
. (C.14)

To find the MLE of d, we maximize L(φs, φv, d) with respect to Q(d). Since
Q is unitary by definition, cf. (C.11), the maximization must be performed
over the set Z of unitary matrices, i.e.,

Q̂ = arg max
Q∈Z

− tr
(

D̃−1
x QD̃RQH

)
. (C.15)
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It has been found in [17–19], that the MLE of Q is Q̂ = I. This implies that
ŨH

x ŨR = I, such that the MLE of Ũx is ˆ̃Ux = ŨR and hence the MLE of
ũs,1 is ˆ̃us,1 = ũR,1, where ũR,1 is the eigenvector to the corresponding largest
eigenvalue of R̃. By dewhitening ˆ̃us,1, the MLE of d, i.e. d̂, can therefore be
found as

d̂ =
Γ

1
2
v ũR,1

eHΓ
1
2
v ũR,1

, (C.16)

where e is a unit vector with a value of 1 at the reference microphone index.
Thus, the CW method [8] is also the MLE of d. Note that the MLE of d̂ in the

whitened domain is ˆ̃d = ũR,1 · (eHΓ
1
2
v ũR,1)

−1. Concentrating the likelihood in
(C.14) by inserting Q̂ = I gives

L(φs, φv|d̂) ∝ − log |D̃x| − tr
(

D̃−1
x D̃R

)
= −

M

∑
m=1

log λ̃x,m −
M

∑
m=1

λ̃R,m

λ̃x,m
,

(C.17)

where λ̃R,1 ≥ λ̃R,2 ≥, ...,≥ λ̃R,M are the diagonal elements of D̃R, i.e., the
eigenvalues of R̃. From (C.10) we conclude that λ̃x,1 = λ̃s + φv and λ̃x,m = φv
for m = 2, .., M. Using λ̃s = φs||d̃||2, and expanding λ̃x,m in (C.17) yield

L(φs, φv|d̂) ∝− log
(

φs|| ˆ̃d||2 + φv

)
− (M− 1) log φv

− φ−1
v

M

∑
m=2

λ̃R,m −
λ̃R,1

φs|| ˆ̃d||2 + φv
.

(C.18)

Taking the partial derivative with respect to φs gives

∂L(φs, φv|d̂)
∂φs

= − 1

φs|| ˆ̃d||2 + φv
+

λ̃R,1

(φs|| ˆ̃d||2 + φv)2
, (C.19)

and setting equal to zero, the MLE of φs is found as

φ̂s = (λ̃R,1 − φv)|| ˆ̃d||−2, (C.20)

where || ˆ̃d||−2 = (eHΓ
1
2
v ũR,1)

2. Inserting (C.20) into (C.18) and taking the
partial derivative with respect to φv yields

∂L(φv|φ̂s, d̂)
∂φv

= −(M− 1)φ−1
v + φ−2

v

M

∑
m=2

λ̃R,m, (C.21)

and solving for φv, the MLE of φv is

φ̂v =
1

M− 1

M

∑
m=2

λ̃R,m. (C.22)

Hence, MLEs of d, φs, and φv are given by (C.16), (C.20), and (C.22).
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4 Voice Activity Detection Based on Concentrated
Log-Likelihood ratios

In noise reduction systems, voice activity detectors (VADs) are, e.g. used to
detect noise dominant TF tiles to update the noise structure matrix, Γv. Using
the theoretical results from Sec. 3, we derive a simple log-likelihood ratio
(LLR) based VAD. First, we define two hypotheses regarding voice activity in
a given TF-tile where

H0 : Speech absence

H1 : Speech presence.
(C.23)

Given the noisy observations X, a speech presence probability (SPP)
P(H1|X), can be derived and used to form a binary VAD, i.e.,

VAD =

{
0, if P(H1|X) < γ

1, otherwise,
(C.24)

where γ is a pre-selected threshold. Let P(H0) denote the prior probability
for speech absence, and let β , P(H0)

1−P(H0)
. Then, it can be shown that the LLR

is

LLR = log f (X|H0)− log f (X|H1) + log β. (C.25)

Using Bayes theorem, P(H1|X) may be expressed as

P(H1|X) =
1

1 + exp(LLR)
. (C.26)

Under speech absence (H0), the noisy CPSD matrix is Cx = φvΓv. It can be
shown that the likelihood under H0 is

f (X|H0; φv) =
exp

(
−Nφ−1

v tr
(
RΓ−1

v
))

πMN |φvΓv|N

∝ φ−M
v exp

(
−φ−1

v tr
(
R̃
))

,
(C.27)

where φ−M
v comes from the scalar product property of the determinant.

tr(R̃) = ∑m λ̃R,m is the sum of eigenvalues of R̃. Taking the partial derivative
of the log-likelihood of (C.27) with respect to φv and solving for φv, the MLE
of φv under H0 is

φ̂v|H0
=

1
M

M

∑
m=1

λ̃R,m. (C.28)
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Inserting (C.28) into (C.27), the concentrated log-likelihood under H0 is

log f (X, φ̂v|H0
|H0) =

−MN log π −MN log φ̂v|H0
− N log |Γv| −MN.

(C.29)

The concentrated log-likelihood under H1 is found by inserting (C.16), (C.20),
and (C.22) into the log-likelihood under speech presence (D.15)

log f (X, d̂, φ̂s|H1
, φ̂v|H1

|H1) =

−MN log π − N log |Γv| − N log | ˆ̃Dx|H1
| −MN.

(C.30)

where ˆ̃Dx|H1
is a diagonal matrix whose elements are eigenvalues of the con-

centrated noisy CPSD matrix ˆ̃Cx|H1
under H1. Inserting (C.29) and (C.30) into

the log-likelihood ratio in (C.25) yields

LLR = N log | ˆ̃Dx|H1
| −MN log φ̂v|H0

+ log β. (C.31)

The determinant of ˆ̃Dx|H1
is the product of its eigenvalues, i.e.,

log | ˆ̃Dx|H1
| =

M

∑
m=1

log ˆ̃λx,m|H1

= log(φ̂s|H1
|| ˆ̃d||2 + φ̂v|H1

) + (M− 1) log φ̂v|H1

= log λ̃R,1 + (M− 1) log φ̂v|H1
.

(C.32)

Inserting (C.32) into (C.31), the concentrated LLR is

LLR=N
[
log λ̃R,1+(M−1) log φ̂v|H1

−M log φ̂v|H0

]
+log β, (C.33)

where φ̂v|H1
and φ̂v|H0

are given by (C.22) and (C.28), respectively. We see that
the LLR and consequently the VAD in (C.24) can be expressed as a function
of eigenvalues, λ̃R,m, of R̃ only.

5 Performance Evaluation

In order to demonstrate the efficiency of the joint RATF and PSD estimators as
well as the proposed VAD, we use them in a simple beamforming system for
hearing aids (HAs) and compare it to competing methods that solve similar
problems.
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5.1 Beamforming Methods

5.1.1 Proposed joint maximum likelihood method

The MLEs of the PSDs, and RATF vector, i.e. (C.16), (C.20), and (C.22), are
used to implement an MWF beamformer given as [2]

wMWF =
Γ−1

v d
dHΓ−1

v d
· φs

φs + φv

(
dHΓ−1

v d
)−1 . (C.34)

The proposed VAD using (C.24), (C.26), and (C.33), is used to detect speech
dominated TF tiles, where the MWF beamformer is applied. In noise domi-
nant TF tiles, the output of the beamformer is the unprocessed signal at the
reference microphone attenuated by 20 dB. We refer to the proposed beam-
forming scheme as J-ML.

5.1.2 Dictionary-based maximum likelihood method

The dictionary-based maximum likelihood (D-ML) method proposed in
[12, 24] is similar to J-ML as it uses MLEs of the target and noise PSDs
and the RATF vector. However, the MLE of the RATF vector is based on
maximizing the likelihood function with an exhaustive search of a prede-
fined dictionary of RATF vectors. Hence, the MLEs of the target and noise
PSDs are therefore not identical to those derived in Sec. 3. The D-ML can
be advantageous as it considers only physically plausible RATF vectors, but
may suffer performance degradation because it selects among a finite and
potenially mismatched set of RATF vectors. Hence, we have included two
different implementations of the D-ML to show the effect of the accuracy
of RATF dictionaries. In the first implementation, an accurate dictionary of
RATF vectors is available (referred to as D-ML) where the RATF vectors in the
dictionary are measured on the actual HA users. In practice, however, it is
rare that such person dependent RATFs would be available. Instead, a RATF
dictionary measured on an average head would be used. In the second imple-
mentation, we therefore simulate this more realistic non-person-dependent
setup referred to as D-ML-NP.

The D-ML methods are used in combination with an MWF beamformer
and a VAD obtained from speech presence probabilities estimated from the
likelihood ratios derived in [12]. As for J-ML, the MWF beamformer is ap-
plied in speech dominant TF tiles while a fixed attenuation of 20 dB is applied
in noise dominant TF-tiles.
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5.1.3 Oracle multichannel Wiener filter

For completeness, we also evaluate the performance of an oracle MWF where
the true PSDs and RATF are known.

5.2 Experimental Setup

We conducted two experiments with different microphone arrays. A monau-
ral HA placed on the left ear of the user was used with M = 2 microphones.
The microphone distance is approximately 1.3 cm. In the second experiment,
we used M = 4 microphones and simulated a binaural beamformer. We
assume instantaneous and error-free signal exchange between the HAs.

Acoustic transfer functions (ATFs) from loudspeakers to each microphone
were available to simulate acoustic scenes [25]. The loudspeakers were placed
at a distance of approximately 1.9 m to each microphone and ATFs were mea-
sured at an angular resolution of 7.5◦ on the horizontal axis. The ATFs are
available for the D-ML methods in the form of RATFs at an angular resolution
of 30◦.

An acoustic scene was constructed to consist of one target source in back-
ground noise. The target is speech obtained from the TIMIT database [26],
and the location of the target was randomized uniformly over a circle with
a resolution of 7.5 degrees. The noise was recorded in a busy canteen with
a spherical microphone. The noise recordings were used to reproduce the
identical noise field from the canteen at the HA microphones in the simu-
lation. Additionally, the noise recordings were used to initialize Γv before
the simulation. Experiments with other noise types, e.g. noise measured in
a bar, were also conducted and showed essentially similar results and were
therefore not included in the paper.

Each performance score in our experiments is an average over 20 different
realizations of acoustic scenes. The duration of an acoustic scene is 5 seconds
and a different target speech source, target position, and noise source real-
ization were used for each scene.

The sampling frequency is 16 kHz and a square-root Hann window with
a length of 256 samples was used for analysis and synthesis in the STFT with
an overlap of 128 samples. The number of observations used to form the
likelihood function is N = 10 and the prior probabilities used to form the
likelihood ratios for J-ML and D-ML were adjusted to make both methods
perform as good as possible.

5.3 Simulation Results

The beamforming performance is reported in Fig. C.1 as extended short-
time objective intelligibility (ESTOI) [27] and perceptual evaluation of speech
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Fig. C.1: Beamforming performance in acoustic scenes with a single-target source and canteen
noise.

quality (PESQ) [28] scores.
For the M = 2 experiment, the proposed method, J-ML, performs well

at higher SNRs, while performing on par with the D-ML methods at lower
SNRs. In particular, comparing J-ML to the more realistic D-ML-NP method,
reveals the disadvantage of relying on a dictionary of RATF vectors as the
SNR increases.

For the M = 4 experiment, results suggest better performance with J-ML
at higher SNRs, whereas D-ML and D-ML-NP tend to work better at low
SNRs. The results indicate that the prior knowledge of the RATF vectors
provided by the dictionary, improves robustness at low SNRs. Conversely,
at higher SNRs, we see that the dictionary of the D-MLs becomes a restric-
tion, because the RATF vector must be selected as an element of the RATF
dictionary, which generally does not reflect the actual position of the target
source.
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6 Conclusion

In this paper, we derived joint maximum likelihood estimators (MLEs) of
the target and noise power spectral densities and relative acoustic transfer
functions (RATF). Elements of the derived joint MLEs are based on historical
results that appear largely unknown to the audio processing community. Fur-
thermore, we proposed a basic voice activity detector (VAD) based on speech
presence probabilities estimated by concentrating likelihood ratios with the
joint MLEs.

We apply the joint MLEs and VAD in a multichannel Wiener filter beam-
former and compare it to state-of-the-art beamformers whose parameters
were estimated using RATF dictionaries. Results indicate that the proposed
method can outperform the dictionary-based methods in situations with high
SNRs and realistic situations where mismatches are present in the RATF dic-
tionary.
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1. Introduction

Abstract

Enhancement of a desired speech signal in the presence of competing or interfering
speech remains an unsolved problem, as it can be hard to determine which of the
speech signals is the one of interest. In this paper, we propose a multichannel noise
reduction algorithm which uses the presence of the user’s own voice signal, e.g. dur-
ing conversations with the target speaker, as an asset to efficiently identify interfering
speech and noise. Specifically, following the typical speech pattern in natural conver-
sations, the presence of an own voice may indicate the absence of the target speech,
hence undesired speech and noise can be identified and estimated during own voice
presence.

In contrast to conventional noise reduction systems, the proposed noise reduction
systems use the user’s own voice to identify interfering speech that otherwise could
be confused with the target speech. We demonstrate the performance of the proposed
noise reduction systems in a comparison against state-of-the-art noise reduction sys-
tems in terms of beamforming performance for hearing assistive devices. The results
show that the proposed beamforming scheme in particular outperforms state-of-the-
art methods in terms of ESTOI and PESQ in situations with a target speaker and a
strong interfering speaker.

1 Introduction

Spoken language is for most people their primary way of communicating
in many social situations. Speech, however, may become challenging to un-
derstand, when the acoustic environment becomes increasingly noisy. Espe-
cially, when the acoustic environment is contaminated with many competing
speakers or interferers, speech intelligibility is often poor.

One of the purposes of hearing assistive devices (HADs), e.g. hearing aids
(HAs), is to increase speech intelligibility and quality by reducing the back-
ground noise. This is commonly achieved with the use of noise reduction
algorithms such as beamformers, when multiple microphones are accessi-
ble [1–3]. Examples of well-known beamformers are the minimum-variance
distortion-less response (MVDR), the multichannel Wiener filter (MWF) and
the linear constrained minimum variance (LCMV) beamformers [2–4]. Im-
plementation of these beamformers is often done in the time-frequency (TF)
domain and the parameters required are typically noise statistics, e.g. the
noise cross power spectral density (CPSD) matrix [3] and the relative acous-
tic transfer function (RATF) vector of the target source[4]. These parameters
are, however, rarely known in real-world situations and therefore have to be
estimated.

One approach to estimate the noise CPSD matrix is to use noise domi-
nant TF tiles to update the noise CPSD matrix, and use the resulting estimate
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during speech presence, e.g. [5]. Detecting noise dominant TF tiles requires
a voice activity detector (VAD) or, more generally, speech presence proba-
bilities (SPPs) estimated from the noisy microphone signals. Multichannel
methods for estimating the speech presence probability have been proposed
in [6–11]. These methods update the noise CPSD matrix in a soft-decision
manner using a multichannel extension of the minima controlled recursive
average procedure in [12, 13]. These methods may perform less well if only
few noise dominant TF tiles can be identified or if the noise is highly non-
stationary during speech dominated TF tiles. To overcome this issue, sev-
eral methods have been proposed to update the noise statistics using speech
dominant TF tiles as well. For example, methods presented in [14–21] are
maximum likelihood estimators (MLEs) of the noise CPSD matrix under the
assumption that the spatial coherence of the noise field remains fixed during
speech presence. As a consequence, these methods may perform less well
when the spatial properties of the noise field change during speech presence.
An example where this occurs, is when a non-stationary interfering source,
e.g. a competing speaker emerges in the noise field. In [22], an MLE of the
interference-plus-noise CPSD matrix was proposed to handle situations with
strong interfering speech and noise. However, the method requires that the
target RATF vector is known in advance.

Accurate target localization and target RATF vector estimation are crucial
for beamformers to steer the acoustic beam towards the target speaker [4].
In acoustic scenarios with interfering speakers, target RATF vector estima-
tion can be particularly difficult. The problem of identifying a target speaker
amongst a set of interfering speakers and background noise is essentially ill-
posed: without any additional information, it is very difficult to single out
the target speaker from the set of active speakers. Hence, in order to identify
the target speaker, existing methods have applied various prior knowledge.
For example, the widely used steered-response methods [3, ch. 8] implicitly
rely on the assumption that the target source is closer in distance, and hence
more powerful, than other sound sources. These methods identify the target
source by directing beamformers to all possible directions, and selecting the
beamformer with the highest output power. However, in many practical sit-
uations the target speech need not to be loudest, and systems based on this
assumption will fail. Other methods rely on prior assumptions of the target
location e.g. the methods presented in [23–25]. In HAD applications, the
target location is often assumed frontal relative to the user [15, 25, 26]. This
assumption is motivated by the observation that for face-to-face conversa-
tion, where the HAD-user uses eye-contact and lip-reading, the target source
is often located in the frontal half-plane with respect to the user. However,
also this assumption is not always valid, e.g., in situations, where the HAD
user is unable to look at the target (e.g., when driving a car). Finally, other
RATF vector estimation methods, e.g. [10, 27, 28], can perform well in simple
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situations where the target source is present in background noise, but where
no interfering speakers are present, cf. Fig. D.1a1.

Unfortunately, in more complex acoustic situations, where one or more
interfering speakers are simultaneously present, cf. Fig. D.1b, estimation of
the noise CPSD matrix and the target RATF vector can be difficult tasks. The
presence of interferers can make it difficult to determine the target speaker,
particularly when the interferer is voice-like. A voice-like interferer can make
voice activity detection difficult as it is hard to distinguish between desired
and interfering speech. This can result in interference and noise statistics
being captured poorly and degrade the noise reduction performance signifi-
cantly. Recent proposed methods can potentially help identifying the target
speaker by decoding the direction of the user’s auditory attention [30] or the
user’s eye-gaze direction [31, 32] with the use of EEG signals or eye-trackers.
However, these methods require the use of additional sensors which may not
be available for the speech enhancement system. Other situations that can
be particularly difficult for existing noise reduction systems to handle are
conversations between the user and a target speaker. The situation is further
complicated, if an interfering speaker is present during the conversation be-
tween the user and a target speaker, cf. Fig. D.1c. The presence of the own
voice signal will leave few instances of noise dominant TF tiles making the
SPP-based methods ineffective.

In this paper, we propose a method which solves these problems by using
the presence of the user’s own voice signal as an asset. Specifically, we use
the fact that the presence of own voice signal often indicates the absence of
the target signal due to the avoidance of speech overlap between the user
and the target speaker[33–35]. Additionally, the absence of own voice may
indicate the presence of a target signals.

The proposed method relies on the assumption that any sound source
during own voice presence is of no interest to the user, and can hence be
regarded as interfering signals. Therefore, statistics related to the interfer-
ence and noise can be updated during own voice activity as shown in Fig.
D.1d. To demonstrate the idea, we consider the situation where only a sin-
gle interfering speech source may be present. This problem is already very
challenging to solve with state-of-the-art methods, as it is difficult to decide
which of sound sources is target and which is the interfering speaker. How-
ever, the proposed method can in principle be extended to handle multiple
interfering speakers such that any speaker during own voice presence is con-
sidered undesired. The acoustic situation, we specifically seek to solve in this
paper, is the presence of a target speaker, the user’s own voice, an interfering
speaker, and noise. Such a situation can be regarded as particularly diffi-
cult to solve with the current state-of-the-art methods due to the interfering

1Speech signals used in the figures are from the speech database in [29]
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speaker and the very few instances, where noise dominates the noisy signal.
As shown in Fig. D.1d, the proposed systems identify the interferer during
own voice, i.e. estimate the interferer RATF vector and use this estimate to
support the implementation of a beamforming system during target speech
presence. Specifically, the estimated interferer RATF vector from own voice
presence is used during own voice absence (presumably target presence) to
support the estimation of the interference-plus-noise CPSD matrix and target
RATF vector. The estimated interference-plus-noise CPSD matrix and target
RATF vector are then used in an MWF beamformer to suppress the interferer
and noise.

The paper is structured as follows. In Sec. 2, the signal model of the
microphone signals is presented. In Sec. 3, the MLEs of the interference and
noise PSDs, and interference and target RATFs, are presented respectively.
Sec. 4 presents the simulation setup and evaluates the proposed noise reduc-
tion algorithm in simulation experiments. Finally, in Sec. 5, a conclusion of
the results is given.

2 Multi-Microphone Signal Model

We consider a HAD with M microphones placed in an arbitrary array ge-
ometry. The considered acoustic situation is depicted in Fig. D.2. Each
microphone picks up sound from the acoustic environment, and the signals
are then sampled into a discrete-time sequence xm(n) for m = 1, .., M. The
acoustic scene consists of an own voice signal, s′o(n), a target signal, s′t(n),
interfering speech signal s′q(n), and noise denoted as v(n). We assume, for
simplicity, the presence of a single interferer per TF tile.

Let ho,m(n), ht,m(n), and hq,m(n) denote the acoustic impulse response
(AIR) from the own voice, target, and interferer respectively to the m’th mi-
crophone. The signal model of the observed noisy signal is then

xm(n) = ∑
j∈{t,o,q}

s′j(n) ∗ hj,m(n) + vm(n), (D.1)

where ∗ denotes the linear convolution operator. The proposed noise re-
duction algorithm is derived and implemented in the TF domain using the
short-time Fourier transform (STFT) with window function ψ(n), window
size Nwin, and overlap Nov. The STFT of the noisy signal is [1, 36]

xm(k, l) =
Nwin−1

∑
n=0

xm(n + lNov)ψ(n)e
−2πik n

Nwin , (D.2)

where i=
√
−1, k and l denote the frequency bin and frame index, respec-

tively. We define x(k, l) = [x1(k, l), ..., xM(k, l)]T as an M× 1 complex vector
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Fig. D.2: Example of an acoustic scene with an own voice s′o(n), target s′t(n), interference s′q(n),
and noise v(n) where the microphones are mounted on the user’s head. The acoustic impulse
response from the j’th source (j ∈ {t, o, q}) to the m’th microphone is denoted as hj,m(n).

containing the noisy TF observations for all M microphones. In the TF do-
main, the signal model becomes

x(k, l)= ∑
j∈{t,o,q}

s′j(k, l)hj(k, l)+v(k, l), (D.3)

where hj(k, l) and v(k, l) are the stacked acoustic transfer functions (ATFs)
and noise, respectively. We assume that the AIRs are shorter than the STFT
analysis window ψ(n) [37]. The signals s′j(k, l) for j ∈ {t, o, q} denote the
speech signals of the target, own voice, and interferer at their respective lo-
cations. Let m∗ denote a pre-selected reference microphone, then we may
normalize the ATFs with respect to the reference microphone such that

x(k, l)= ∑
j∈{t,o,q}

sj(k, l)dj(k, l)+v(k, l), (D.4)

where

dj(k, l) =

[
h1,j(k, l)

hm∗ ,j(k, l)
, ...,

hM,j(k, l)
hm∗ ,j(k, l)

]T

, (D.5)

is the RATF vector [38] and sj(k, l) is the j’th signal as captured at the refer-
ence microphone.
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We assume that the presence of the own voice signal and the target sig-
nal are mutually exclusive. This assumption is based on the conversational
model in [34], where interlocutors in conversations avoid speech overlaps
and pauses. This assumption is supported by results found in human exper-
iments in [33, 35, 39]. These results suggest that interlocutors during conver-
sations avoid speech overlap and pauses in noisy environment. Hence, the
signal model may be divided to reflect two situations, namely, 1) when own
voice is present and target is absent,

x(k, l)=so(k, l)do(k, l)+sq(k, l)dq(k, l)+v(k, l), (D.6)

and 2) when the target is present, but own voice is absent

x(k, l)=st(k, l)dt(k, l)+sq(k, l)dq(k, l)+v(k, l). (D.7)

In the sequel, we omit the frequency bin and frame index, e.g. x , x(k, l), for
brevity.

2.1 Multichannel Wiener filter beamforming

The task of the beamformer is to retrieve the target speech st, while suppress-
ing the interference and noise. The output of a linear beamformer is given by
[3]

y = wH x, (D.8)

where w is the vector of beamformer weights. The multichannel Wiener filter
(MWF) is the linear minimum mean square error (LMMSE) estimator of the
target signal with beamformer weights wMWF which are found by solving the
following optimization problem [3]:

wMWF = arg min
w

E
[
|st −wHx|2

]
, (D.9)

where H is the Hermitian transpose. Assuming that st, sq and v are uncorre-
lated random variables, the MWF can be shown [3] to be dependent on the
target RATF dt, the target power spectral density (PSD) λt = E

[
|st|2

]
, and the

interference-plus-noise CPSD matrix, Cqv. The interference-plus-noise CPSD
matrix is defined to be

Cqv = E
[
(sqdq + v)(sqdq + v)H

]
= λqdqdH

q + Cv,
(D.10)

where λq = E
[
|sq|2

]
is the interference PSD and Cv = E

[
vvH] is the noise

CPSD matrix. Then the MWF beamformer can be expressed as [3]

wMWF =
C−1

qv dt

dH
t C−1

qv dt
· λt

λt + (dH
t C−1

qv dt)−1
, (D.11)
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where the first factor is known as the minimum variance distortion-less re-
sponse (MVDR) beamformer and the second factor is known as the single-
channel post Wiener filter. We see that the MWF beamformer in the form of
(D.11) requires dt, dq, λt, λq, and Cv to be known and in the following, we
propose methods to estimate these parameters for each time-frequency tile
by exploiting the own voice of the user. For simplification, we assume that
the noise, v, is a time-varying random process and that its CPSD matrix can
be expressed as Cv = λvΓv. Here, Γv is a known noise CPSD matrix which is
normalized with respect to the reference microphone and obtained from the
most recent noise-only observation [14].

2.2 Target and interference identification

During own voice presence, we estimate dq. Following (D.6), the noisy CPSD
matrix during own voice is modeled as

Cx = λododH
o + λqdqdH

q + λvΓv, (D.12)

and likewise, during own voice absence, we assume that target is present cf.
(D.7), such that the noisy CPSD matrix is modeled as

Cx = λtdtdH
t + λqdqdH

q + λvΓv. (D.13)

In applications such as HADs, the microphone array is commonly mounted
in a fixed position on the user’s head. Therefore, the acoustic transfer func-
tion, do, from the user’s mouth to the microphones can be considered ap-
proximately time-invariant. This allows offline estimation of the own voice
RATF vector do, which can be used during online deployment of the noise
reduction algorithm. Additionally, the microphones are placed close to the
user’s mouth hence the own voice signal can be considerably louder than the
target and interference speech signals, especially at lower frequencies, when
the own voice is active [40, p. 251]. For these reasons, we consider the own
voice RATF vector, do, as known and assume that an own voice activity de-
tector (OVAD) is available. The estimated dq is then used during own voice
absence (but target presence) to estimate the remaining parameters dt, λt, λq,
and λv per TF tile and the resulting MWF beamformer can then be applied.

In practice, it may occur that the signal models in (D.12) or (D.13) are
violated, for example due to speech overlap and gaps. A worst case exam-
ple is speech overlap between the user and the target speaker. Such situa-
tions can potentially lead to suppression of the target, as the target might be
identified as the interfering speaker. One potential solution is to use several
seconds of noisy observations during own voice presence. Since speech over-
laps between the user and the target are often short and brief (e.g. 250 ms)
[33, 34, 41], increasing the number of observations from own voice presence
can reduce the likelihood of the target being identified as interference.
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Algorithm 1 MWF beamformer with proposed target and interference iden-
tification.
Input: do.

1: if own voice is present then
2: Estimate dq.
3: else if own voice is absent then
4: Estimate dt, λt, λq, and λv given dq.
5: Form the interference-plus-noise CPSD matrix

Cqv = λqdqdH
q + λvΓv.

6: Compute the MWF beamformer weights wMWF in (D.11).
7: Apply the beamformer y = wH

MWF x.
8: end if

Furthermore, the use of own voice to identify an interfering speaker can
be generalized to multiple interfering speakers. Specifically, any speakers
that are present for minimum duration during own voice presence can be
considered undesired. A potential procedure could for example involve a
model-order selection algorithm e.g. minimum description length, Akaike or
Bayesian information criterion to first determine the number of interfering
speakers [42, 43]. This is then followed by an estimation procedure of the
RATF vectors for all the interfering speakers and finally estimation of the
interference-plus-noise CPSD matrix.

The proposed noise reduction scheme is summarized in Fig. D.3 and as
pseudo-code in Algorithm 1.

3 Maximum Likelihood Estimation

In order to implement MWF beamformers for the considered acoustic situa-
tion, the parameters dq, dt, λt, λq, and λv must be estimated. In the following,
we present several MLE-based schemes for estimation of the parameters of
interest.

It is widely known that MLEs of the RATF vectors and PSDs perform well
when used in a beamforming context e.g. in [10, 14, 18, 22]. Comparative
and theoretical performance of these estimators, e.g. in terms of Cramer-Rao
bounds, have been derived and presented in [15, 17, 18, 44]. Let us first note
that the signal model in (D.12), where do and Γv are assumed known, and
the signal model in (D.13) where dq and Γv are assumed known, both can be
written in the following general form

C , C(λ1, λ2, φ, d1) = λ1d1dH
1 + λ2d2dH

2 + φΓ. (D.14)
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Hence, finding estimates of the parameters of interest for both (D.12) and
(D.13), corresponds to finding MLEs of λ1, λ2, φ, and d1 in (D.14). In par-
ticular, let λ̂1, λ̂2, φ̂, and d̂1 denote the MLEs of these parameters. Then
for (D.12), we estimate the interference RATF vector as d̂q = d̂1, (the MLEs
λ̂q = λ̂1, λ̂o = λ̂2, and λ̂v = φ̂ are nuisance parameters and, hence, not used
in the subsequent steps). Similarly, when own voice is absent, the parameters
of (D.13) are given by d̂t = d̂1, λ̂t = λ̂1, λ̂q = λ̂2, and λ̂v = φ̂.

We assume that the noisy observations, x, are complex Gaussian dis-
tributed [10, 16, 18] such that the likelihood for N observations of x, X =
[x1, ..., xN ], is

f (X; λ1, λ2, φ, d1) =
exp

(
−Ntr(C−1R)

)
πNM|C|N , (D.15)

where R = 1
N XX H , | · | is the determinant operator, and tr(·) denotes the

trace operator. Furthermore, we assume that d1 is an element of a pre-defined
dictionary D = {d(1), d(2), ..., d(ND)}, where ND is the dictionary size [10].
The MLEs can be found by solving the optimization problem

arg max
λ1,λ2,φ,d1∈D

log f (X; λ1, λ2, φ, d1). (D.16)

Closed-form solutions for this optimization problem seem not to exist [44].
Instead, we use a numerical approach to solve (D.16) in Sec. 3.1 which in-
volves a two-dimensional search. In Secs. 3.2 and 3.3, we adapt MLEs from
[22] and [19] to estimate λ1, λ2, φ, and d1. The estimators in [22] and [19] are
not strictly MLEs of the problem posed in (D.16). However, they are compu-
tationally much less expensive as they only involve a one-dimensional search
and – as we show – to perform essentially on par with the true computational
comples MLEs of (D.16) in terms of speech enhancement performance.

3.1 Joint ML using grid search

Let us rewrite equation (D.14) as

C = λ1d1dH
1 + φ

(
λ2

φ
d2dH

2 + Γ

)
,

= λ1d1dH
1 + φΦ(ψ(φ)),

(D.17)

where ψ(φ) = λ2
φ , and Φ (ψ) , ψd2dH

2 + Γ. For notational convenience, we

define ψ , ψ(φ). For a given value of ψ, closed-form MLEs of λ1 and φ exist,
while conditioned on d1 and d2 [15, 19]. Hence, conditioned on d1 and d2,
estimating the remaining parameters λ1, φ, and ψ involves a one-dimensional
search procedure over ψ or implicitly λ2. In principle any numerical solver,
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e.g. a grid-search or gradient ascent method, can be used to solve the op-
timization problem. However, as a proof of concept, we use a grid-search
based solver as the grid is only over ψ and d1. The grid-search procedure
can be simplified to be over the dictionary, Ψ = {ψ(1), ..., ψ(Nψ)}, where Nψ

denotes the cardinality of Ψ. Obviously, for a sufficiently fine grid, Ψ, the
proposed approach will return estimates arbitrarily close to the true MLE.

The first step in the procedure is to obtain an MLE for φ for a particular
grid point, ψ ∈ Ψ, while conditioned on d1 and d2. To do so, we define the
MVDR beamformer with distortion-less constraint on d1,

w(ψ, d1) = Φ−1(ψ)d1

(
dH

1 Φ−1(ψ)d1

)−1
. (D.18)

Furthermore, let

Q(ψ, d1) = I− d1wH(ψ, d1), (D.19)

where I is the identity matrix. The MLE of φ is then given by [19]

φ̂(ψ, d1) =
1

M− 1
tr
(

Q(ψ, d1)RΦ−1(ψ)
)

, (D.20)

where R = 1
N XX H is the sample noisy CPSD matrix, and the MLE of λ1 is

[19]

λ̂1(ψ, d1) = w(ψ, d1)
H (R− φ̂(ψ, d1)Φ(ψ)

)
w(ψ, d1). (D.21)

The MLEs, φ̂ and λ̂1, are then used to concentrate the log-likelihood in (D.16),
such that the optimization problem is reduced to

ψ̂, d̂1 = arg max
ψ∈Ψ,d1∈D

log f (X, φ̂, λ̂1; ψ, d1). (D.22)

Given the MLE ψ̂, the MLE of λ2 can be found as

λ̂2(ψ̂, d̂1) = φ̂(ψ̂, d̂1) · ψ̂. (D.23)

The whole procedure is summarized in Algorithm 2.
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Algorithm 2 Joint ML using grid search

Input: Ψ = {ψ(1), ..., ψ(Nψ)}, D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: for i = 1, 2, ..., ND do
2: for j = 1, 2, ..., Nψ do

3: Compute w(ψ(j), d(i)
1 ) using (D.18).

4: Compute Q(ψ(j), d(i)
1 ) using (D.19).

5: Estimate φ̂(ψ(j), d(i)
1 ) using (D.20).

6: Estimate λ̂1(ψ
(j), d(i)

1 ) using (D.21).

7: Evaluate log f (X, φ̂, λ̂1; ψ(j), d(i)
1 ) using (D.22) and (D.15).

8: Compute λ̂2(ψ
(j), d(i)

1 ) = ψ(j) · φ̂(ψ(j), d(i)
1 ).

9: end for
10: end for
11: Find i∗ and j∗ that maximize log f (X, φ̂, λ̂1; ψ(j), d(i)

1 ).

12: The joint MLEs are then φ̂(ψ(j∗), d(i∗)
1 ), λ̂1(ψ

(j∗), d(i∗)
1 ), λ̂2(ψ

(j∗), d(i∗)
1 ), and

d̂1 := d(i∗)
1 .

3.2 ML in the blocked domain

As an alternative to the joint ML method, which requires a two-dimensional
dictionary search, we propose in the following a simpler ML estimation pro-
cedure in the blocked domain [16, 44]. Specifically, the MLEs are not guar-
anteed to be ML optimal for the problem posed in (D.16), but have been
demonstrated to perform well in terms of beamforming performance in [22].
The ML estimation of the parameters in (D.14), i.e. λ1, λ2, φ, and d1, in the
blocked domain is adapted from [22] and consists of two stages. The first
stage is ML estimation of λ1 and φ conditioned on d1 in the blocked domain
of d2dH

2 , i.e. the null-space of d2dH
2 . The second stage is ML estimation of

λ2 where the MLEs of λ1 and φ conditioned on d1 are used to concentrate
the log-likelihood in (D.16). The rationale behind this ML estimation in the
blocked domain, is to simplify the estimation problem by canceling one of
the speech components with a blocking matrix B. Specifically, the speech
components λ2 and d2 are eliminated in the first stage by projecting x to the
null-space of d2dH

2 . In the second stage, only λ1, φ, and d1 remain and are
estimated using the MLEs in [19].
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3.2.1 ML estimation of λ1 and φ

To map the noisy observations into the blocked domain, we form a blocking
matrix, which cancels the λ2d2dH

2 term from (D.14). The blocking matrix, B,
is given as [22]

B =

(
IM×M −

d2dH
2

dH
2 d2

)
IM×M−1. (D.24)

where IM×M is an M × M identity matrix and IM×M−1 is the first M − 1
column vectors of IM×M. Applying the blocking matrix to the input vector
BHx, the CPSD matrix in the blocked domain is

C̃ = BHCB = λ̃1d̃1d̃H
1 + φ̃Γ̃, (D.25)

where C is the CPSD matrix from (D.14), Γ̃ = BHΓB, and d̃1 = BHd1. The
parameters to estimate in (D.25) are the blocked domain PSDs λ̃1 and φ̃, and
the RATF vector d̃1. The CPSD matrix in (D.25) has a form that is identical
to the CPSD matrix in (D.17). Therefore, estimating λ̃1, φ̃, and d̃1 follows
a similar procedure as found in Sec. 3.1. In the first stage, the likelihood
function in the blocked domain is

f (X̃; λ̃1, φ̃|d̃1) =
exp

(
−Ntr(C̃−1R̃)

)
πNM|C̃|N

, (D.26)

while conditioned on d̃1, and X̃ = BHX and R̃ = BHRB. The optimization
problem is

arg max
λ̃1,φ̃

log f (X̃; λ̃1, φ̃|d̃1). (D.27)

In the following, the MLEs of λ̃1 and φ̃ are adaptations of the MLEs derived
in [19]. The ML estimate of φ̃ can be shown to be a function of an MVDR
beamformer in the blocked domain with a distortion-less constraint on d̃1
[19] i.e.

w̃1(d̃1) = Γ̃−1d̃1

(
d̃1

H
Γ̃−1d̃1

)−1
, (D.28)

and

Q̃1(d̃1) = IM−1×M−1 − d̃1w̃H
1 (d̃1), (D.29)

where IM−1×M−1 is an M− 1×M− 1 identity matrix. The MLE of φ in the
blocked domain is [19]

ˆ̃φ(d̃1) =
1

M− 2
tr
(

Q̃1(d̃1)R̃Γ̃−1
)

, (D.30)

where R̃ = BHRB and the MLE of λ1 is [19, 22]

ˆ̃λ1(d̃1) = w̃H
1 (d̃1)

(
R̃− ˆ̃φ(d̃1)Γ̃

)
w̃1(d̃1). (D.31)
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Algorithm 3 ML in the blocked domain

Input: D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: Obtain the blocking matrix B from (D.24)
2: Compute blocked domain Γ as Γ̃ = BHΓB
3: for i = 1, 2, ..., ND do
4: d̃(i)

1 = BHd(i)
1

5: Compute w̃1(d̃1
(i)
) in (D.28).

6: Compute Q̃1(d̃1
(i)
) in (D.29).

7: Estimate φ̂(d̃1
(i)
) using (D.30).

8: Estimate λ̂1(d̃1
(i)
) using (D.31).

9: Set Φ̂(d(i)
1 ) := λ̂1d(i)

1 (d(i)
1 )H + φ̂Γ

10: Compute w2(d
(i)
1 ) in (D.35).

11: Compute Q2(d
(i)
1 ) in (D.36).

12: Estimate γ̂(d(i)
1 ) using (D.37).

13: Estimate λ̂2(d
(i)
1 ) using (D.38).

14: Evaluate log f (X, λ̂1, λ̂2, φ̂; d(i)
1 ) in (D.41) using (D.15)

15: end for
16: Find i∗ = arg max

i
log f (X, λ̂1, λ̂2, φ̂; d(i)

1 )

17: The joint MLEs are then φ̂(d(i∗)
1 ), λ̂1(d

(i∗)
1 ), λ̂2(d

(i∗)
1 ), d̂1 := d(i∗)

1 .

3.2.2 ML estimation of λ2

Given ˆ̃λ1(d̃1) and ˆ̃φ(d̃1), these may be inserted into the noisy CPSD matrix
in (D.14) such that it becomes

C(λ2, d1) = λ2d2dH
2 +

(
ˆ̃λ1d1dH

1 + ˆ̃φΓ
)

= λ2d2dH
2 + Φ̂(d1),

(D.32)

where Φ̂(d1) =
ˆ̃λ1d1dH

1 + ˆ̃φΓ. For ML estimation of the remaining parameter,
λ2, we introduce the parameter γ such that the noisy CPSD matrix is

C(λ2, d1, γ) = λ2d2dH
2 + γΦ̂(d1), (D.33)

which ensures that (D.33) has a form identical to (D.25), and, hence, the MLEs
of γ and λ2 can be found similarly. The optimization problem is

arg max
λ2,γ

log f (X; λ2, γ|Φ̂(d1)), (D.34)
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where the likelihood function is conditioned on Φ̂(d1), and has the form as
in (D.15). To estimate λ2 and γ, first we form the MVDR beamformer with
distortion-less constraint on d2

w2(d1) = Φ̂(d1)
−1d2

(
d2

HΦ̂(d1)
−1d2

)−1
, (D.35)

such that

Q2(d1) = IM×M − d2wH
2 (d1). (D.36)

Then the MLE of γ is [19]

γ̂(d1) =
1

M− 1
tr
(

Q2(d1)RΦ̂(d1)
−1
)

, (D.37)

and the MLE of λ2 is [19]

λ̂2(d1) = wH
2 (d1)

(
R− γ̂(d1)Φ̂(d1)

)
w2(d1). (D.38)

The introduction of the variable γ̂(d1), means that the MLE of λ1 and φ
becomes

λ̂1(d1) =
ˆ̃λ1(d1) · γ̂(d1), (D.39)

and

φ̂(d1) =
ˆ̃φ(d1) · γ̂(d1). (D.40)

Finally, the MLE of d1 is found by evaluating the log-likelihood for each
d1 ∈ D, and choose the one that maximizes the log-likelihood i.e.

d̂1 = arg max
d1∈D

log f (X, λ̂1, λ̂2, φ̂; d1). (D.41)

The ML procedure in the blocked domain is summarized in Algorithm 3.

3.3 Unconstrained Joint ML

Let D , [d1 d2] and Λ(λ1, λ2) = diag(λ1, λ2). Then the CPSD matrix in
(D.14) can be written as

C(d1, Λ) = DΛDH + φΓ. (D.42)

Note that the signal model is only identical to the one in (D.14) if Λ is a
diagonal matrix. For known matrices D and Γ, MLEs of Λ and φ were de-
rived in [19]. However, the MLEs presented in [19] do not guarantee that
the estimate of Λ is a diagonal matrix. The MLEs in [19], therefore, are not
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necessary maximum likelihood for the problem posed in (D.16). Neverthe-
less, as demonstrated in the simulation experiment in Appendix A, using the
diagonal elements of the MLE of [19] works essentially as good as the joint
ML method from Sec. 3.1.

In [19], the MLE for φ is derived by first defining the linearly constrained
minimum variance (LCMV) beamformer with distortion-less constraints on
d1 and d2,

W(d1) = Γ−1D
(

DHΓ−1D
)−1

, (D.43)

where W(d1) ∈ CM×2 and

Q(d1) = I−DWH(d1). (D.44)

Then the MLE of the noise PSD is given as [19]

φ̂(d1) =
1

M− 2
tr
(

Q(d1)RΓ−1
)

, (D.45)

and the ML estimate of Λ is then [19]

Λ̂(d1) = WH(d1)
(
R− φ̂(d1)Γ

)
W(d1). (D.46)

We propose to find, the estimates of λ1 and λ2 as the main diagonal of Λ̂(d1),
i.e. λ̂1 = Λ̂1,1 and λ̂2 = Λ̂2,2. Finally, in order to estimate d1, we concentrate
the log-likelihood with the MLEs of Λ(d1) and φ(d1), and search over the
dictionary D until the element that returns the highest log-likelihood is found
i.e.

d̂1 = arg max
d1∈D

log f (X, Λ̂, φ̂; d1). (D.47)

The unconstrained ML procedure is summarized in Algorithm 4. We have
compared the three proposed algorithms in terms of speech enhancement
performance in Appendix A. Our experiments demonstrate that the pro-
posed algorithms essentially perform on par in terms of ESTOI and PESQ.
3 and Algorithm 4 perform marginally better than Algorithm 2 in terms of
PESQ score, however slightly worse in terms of ESTOI score. This is possi-
bly due to a slightly more aggressive noise reduction for Algorithm 3 and
Algorithm 4 than Algorithm 2. This leads to higher PESQ scores but at the
cost of more speech distortion and lower ESTOI scores. For this reason, we
choose to leave Algorithm 2 out of the evaluation in Sec. 4.4, although Al-
gorithm 3 and 4 do not solve the initial problem posed in (D.16). However,
since Algorithm 2 requires a two-dimensional search, Algorithm 2 is likely
much more computationally complex compared to Algorithm 3 and 4. The
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Algorithm 4 Unconstrained joint ML

Input: D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: for i = 1, 2, ..., ND do
2: Define Di , [d(i)

1 d2]

3: Compute W(d(i)
1 ) in (D.43).

4: Compute Q(d(i)
1 ) in (D.44).

5: Estimate φ̂(d(i)
1 ) using (D.45).

6: Estimate Λ̂(d(i)
1 ) using (D.46).

7: Evaluate log f (X, Λ̂, φ̂; d(i)
1 ) in (D.47)

8: end for
9: Find i∗ = arg max

i
log f (X, Λ̂, φ̂; d(i)

1 )

10: The joint MLEs are then λ̂1 = Λ̂1,1(d
(i∗)
1 ), φ̂(d(i∗)

1 ), λ̂2 = Λ̂2,2(d
(i∗)
1 ), d̂1 :=

d(i∗)
1 .

experiments in Sec. 4.4 furthermore reveal that the real-time factor of Algo-
rithm 4 is 9.46, Algorithm 3 is 4.98, and Algorithm 2 is 153.46. Although, we
did not perform code optimization, the real-time factors give an indication of
the computation complexity of the proposed methods and favors Algorithm
4 and 3 over Algorithm 2.

3.4 Robust wideband estimation of the RATF vector

The proposed MLEs estimate the interferer and target RATF vectors indepen-
dently over frequency bins. This approach allow multiple target and interfer-
ers in the acoustic scene, as long as a maximum of one target and interferer
is present for a given TF tile. However, for acoustic sound sources, it is plau-
sible to assume that the location of the target is identical across frequency.
Therefore, in order to improve performance, estimation of the RATF vector
can be done jointly over frequency hence made more robust [10, 25]. The
joint MLE of d1 is

arg max
i∈{1,2,...,|D|}

K

∑
k=1

log f (X(k), λ̂1(k), λ̂2(k), φ̂(k); d(i)
1 (k)), (D.48)

where |D| is the cardinality of D. Hence, the concentrated log-likelihood for
a particular dictionary index i is added across frequency, where i corresponds
to a location of the sound source.
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4 Performance Evaluation of Proposed Beamform-
ing Systems

The proposed MLEs in Sec. 3 are evaluated in terms of beamforming perfor-
mance when implemented into noise reduction systems. The beamforming
performance of the proposed systems is found through simulation experi-
ments where the task is to retrieve a target speech signal contaminated with
interfering speech and noise. We compare the proposed methods against
state-of-the-art methods which solve similar problems but do not explicitly
model the presence of the own voice and interferer. The parameter estima-
tion of the PSDs and RATF vectors used in the proposed noise reduction
systems are based on Algorithm 3 and Algorithm 4 in Sec. 3 and used in an
MWF beamformer, Algorithm 1, as shown in Fig. D.3. We refer to the noise
reduction systems based on Algorithm 3 as ML-BD and Algorithm 4 as UML.

4.1 Acoustic impulse response and sound databases

4.1.1 Acoustic impulse response database

Acoustic impulse functions (AIRs) are used to simulate the sound waves
propagating from sound sources to the HA microphones. The AIRs were
measured in an acoustic setup consisting of a circular loudspeaker array with
a radius of 1.9 meters placed in an acoustically damped room [45]. A human
HA user was seated in the center of the array during the measurements wear-
ing two behind-the-ear (BTE) HAs; one placed on each ear. Each HA has a
front and rear microphone separated by 1.3 cm. The AIRs mostly depend
on the head and torso acoustics while reverberation has been removed by
truncating the AIRs.

All M=4 microphones are used in a binaural HA configuration for the
simulations. A direct implementation - as used in our simulations - of the
MWF beamformers for a binaural HA configuration will result in a "noise
collapse" [46]. In other words, all noise sources will sound as if they were
originating from the target location. This is obviously important for a binau-
ral HA application. However, several methods have been developed to mask
or avoid this unwanted perceptual effect, e.g., [46–48]. Such methods are
outside the scope of the present paper.

We assume instantaneous and error-free signal exchange between the left
and right HAs. The AIRs were sampled at a horizontal resolution of 7.5
degrees with 0◦ defined as the frontal direction from the HA user’s point of
view, and the azimuth is counterclockwise rotating. Hence, the dictionary of
AIRs contains AIRs from 48 different directions. The own voice AIRs were
measured using a mouth reference microphone placed in front of the HA
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user’s mouth. The HA user was asked to read a text up loud, and the AIRs
from the own voice reference point to the HA microphones were measured
[45].

In Sec. 4.5, AIR mismatches are simulated by using two different sets of
AIR dictionaries measured on two different human heads. One dictionary is
used to simulate the acoustic scene, while the other is used as a dictionary in
the noise reduction systems.

The RATF dictionary used for the proposed algorithms is obtained by
transforming the AIR dictionary using (D.5). The frontal microphone of the
left ear HA is used as the reference microphone.

4.1.2 Speech and noise databases

Speech signals used for the own voice, target, and interference, are obtained
from the TIMIT database [49]. Speech pauses are removed with an energy-
based VAD to minimize the influence of speech gaps in the evaluation. We
do not simulate speech gaps caused by conversation pauses. However, the
acoustic scene still include situations where neither the own voice nor the
target speech are present in a TF tile due to speech being sparse in the TF
domain. Hence, there are TF-tiles where own voice or target speech is absent
even if they are detected present.

The noise database used in the simulation is recordings of noise found
in realistic acoustic environments (e.g. a busy canteen and car cabin). The
recordings of the noise are made with a spherical microphone array to accu-
rately capture the noise field as measured at a reference point of the spherical
microphone array. The captured noise is then transformed and convolved
with the AIRs, such that the resulting noise field at the HA microphones in
the simulation is identical to the one measured with the spherical microphone
array [50].

4.2 Simulation of acoustic scenes

4.2.1 Target and noise levels

We define the input signal-to-interference-plus-noise ratio (SINR) as the ra-
tio between the average target speech power and the average interference-
plus-noise power. The target speech and interference-plus-noise power are
computed prior to convolving the signals with the AIRs. The interference-to-
noise ratio (INR) is defined similarly as the ratio between the average inter-
fering speech power and the average noise power prior to convolving with
the AIRs. The own voice and target speech are set to have equal power prior
to convolving with the AIRs.
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4.2.2 Target and interferer locations

The target RATF vector is randomly drawn from the dictionary of RATF vec-
tors. Each RATF vector is associated with a direction and the RATF vectors
are drawn from a uniform distribution where the set of possible outcomes
is {-90◦, -82.5◦, ..., 90◦}. Hence, the target is located in the frontal half-plane
as the HA user in realistic situations is likely to be facing the target speaker
[15, 26]. The RATF vector for the interfering speech is randomly selected to
be from the directions 75◦ or 225◦ and with this choice, the target speech and
interfering speech are allowed to overlap in direction, when both the target
speaker and interfering speaker are arriving from 75◦.

4.2.3 Simulation settings

The sampling frequency of the simulation is 16 kHz. We used (1) to simulate
the noisy microphone signals. The STFT and inverse STFT are used to trans-
form the microphone signals into the time-frequency domain. A square-root
Hanning window with a window size of 256 samples is used as analysis and
synthesis windows. The window overlap is 128 samples. All algorithms in
the evaluation have access to an oracle generic VAD that is able to perfectly
detect regions with speech absence (i.e. frames with neither own voice, target,
nor interfering speech). Since the generic VAD does not require to distinguish
between own voice, target, nor interfering speech, this significantly simplifies
the task of designing a robust VAD. The generic VAD is used to initialize Γv
from noise-only region before any speech activity. Furthermore, an oracle
OVAD is used in the evaluation for the proposed algorithms. The OVAD
can detect the presence of own voice per frame but not per TF-tile. When
own voice is detected absent, the proposed algorithms assume the presence
of target speech. The duration of an acoustic scene is 5 seconds and Γv is ini-
tialized in a no-speech region before the beginning of the acoustic scene. The
own voice is active in the first 2.5 seconds, followed by 2.5 seconds of own
voice absence where the target is active to simulate a conversation. The inter-
fering speaker is active during the whole 5 second simulation. Each reported
performance score is an average over 40 acoustic scenes.

The HA user may occasionally rotate the head during conversations [33].
However, such head rotation were not implemented in our simulations. In
practice, one might use other sensors e.g. accelerometers on board the HAD
to detect or measure head rotations. After such detection, the noise reduc-
tion system may then compensate for the head-rotations or resort to a simpler
baseline algorithm such as the one presented in [14] to increase robustness.
Moreover, the target and interferer locations are fixed during the simulations.
The proposed algorithms can in principle handle situations with moving tar-
gets, since the target RATF vectors are estimated for each TF-tile indepen-
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dently. Similarly, the proposed algorithms can handle moving interferers,
but only during own voice regions. Moving interferers during own voice
absence can potentially cause issues, but robustness against such situations
can be increased by hypothesis testing. Specifically, if the noisy observations
during own voice absence poorly match the interference-plus-noise CPSD
matrix estimated from own voice presence (due to a moving interferer), hy-
pothesis testing can help detecting these and resort to a simpler signal model
to increase robustness e.g. (D.49).

A summary of the different acoustic settings for the experiments is given
in Table D.1 with references to the figures where the results are reported.

Number of mics 4 4 4
Noise type Canteen Car noise Canteen
AIR mismatch No No Yes
Figure Fig. D.4 Fig. D.5 Fig. D.7

Table D.1: Simulation settings used in the evaluation.

4.3 Baseline noise reduction systems

We compare the proposed system variants to recent state-of-the-art methods
used for beamforming in HADs. These methods solve the problem of en-
hancing a single-target in noise using an MWF beamformer [10, 14]. More
advanced techniques presented in [23, 51] can handle multiple speakers but
require additional information about the target location or target speech ac-
tivity. We do not assume that the noise reduction systems have access to such
information and therefore these methods were not included in the evaluation.
The state-of-the-art methods we have included in the evaluation are:

4.3.1 MWF beamformer with ML PSD estimation assuming frontal target

In the context of HADs, the target speaker is often assumed to be frontal with
respect to the HA user [15, 26]. The MWF beamforming scheme presented
in [14, 15] is used as a baseline method for MWF beamformers that assume
frontal targets. For this particular method, the noisy CPSD matrix is modeled
as

Cx = λtdtdH
t + λvΓv, (D.49)

where dt is the RATF vector associated with the frontal direction. The PSDs
λt and λv are replaced by ML estimates and used to implement an MWF
beamformer as in Fig. D.3 during the remaining 2.5 seconds of an acoustic
scene with target presence. The method is referred to as ML-FRONTAL.
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4.3.2 MWF beamformer with ML PSD and target RATF estimation

The method proposed in [10] generalizes the method in [14, 15] by including
ML estimation of the target RATF vector. The noisy CPSD matrix is modeled
as in (D.49), but the frontal RATF vector dt is replaced by an estimated RATF
vector. The log-likelihood function is denoted as log f (X; λt, λv, dt) and is
parameterized by λt, λv, and dt. These parameters are estimated by solving:

arg max
λt ,λv ,dt∈D

log f (X; λt, λv, dt). (D.50)

The estimated λt, λv, dt are similarly used to implement an MWF beam-
former. We refer to this method to as ML-DOA. The baseline methods have
access to a generic VAD to detect speech absence where neither own voice, in-
terfering, nor target speech are present. The generic VAD is used to initialize
Γv. In contrast to the propose methods, the baseline methods do not exploit
the own voice to assume the target absence during own voice presence.

As a reference for upper bound performance, an "oracle" MWF beam-
former, where all parameters for the MWF beamformer are known, is in-
cluded.

4.4 Simulation results for canteen and car noise

Beamforming performance is evaluated in terms of estimated speech intel-
ligibility using ESTOI [52] and in terms of speech quality using PESQ [53].
Performance is reported as a function of SINR to compare the robustness
towards different noise level and as a function of INR to compare the ro-
bustness against the presence of interfering speech. When evaluating the
performance as a function of INR, the SINR is fixed to 0 dB to simulate a
reasonable noisy acoustic scene. Similarly, when evaluating the performance
as a function of SINR, the INR is chosen to be fixed at 6 dB to maintain the
presence of a fairly strong interfering speaker.

The beamforming performance in canteen noise is shown in Fig. D.4 and
performance for car noise is shown in Fig. D.5. By visual inspection, we
see that the proposed methods i.e. ML-BD and UML perform well in the
presence of an interfering speaker. At high INRs, the proposed methods out-
perform both ML-FRONTAL and ML-DOA significantly. This observation
indicates that the proposed methods are more efficient at identifying and
suppressing interfering speech due to the use of the user’s own voice. Sam-
ple spectrograms of the beamformer outputs are also shown in Fig. D.6 for
a visual comparison between ML-FRONTAL and UML. We only show the
baseline method ML-FRONTAL as the target is located at 0◦ which is the
best case scenario for ML-FRONTAL. ML-BD is also omitted from Fig. D.6 as
it shows very similar patterns to UML. The spectrograms show that the pro-
posed algorithms suppress the interfering speaker more efficiently than the
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Fig. D.4: Beamforming performance in canteen noise.
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Fig. D.5: Beamforming performance in car noise.

104



4. Performance Evaluation of Proposed Beamforming Systems

0
0.

5
1

1.
5

2
2.

5
02468

Frequency[kHz]

(a
)

N
oi

sy

0
0.

5
1

1.
5

2
2.

5
02468

(b
)

En
ha

nc
ed

:M
L-

FR
O

N
TA

L

0
0.

5
1

1.
5

2
2.

5
02468

(c
)

En
ha

nc
ed

:U
M

L

0
0.

5
1

1.
5

2
2.

5
02468

Ti
m

e
[s

]

Frequency[kHz]

(d
)

C
le

an
ta

rg
et

sp
ee

ch

0
0.

5
1

1.
5

2
2.

5
02468

Ti
m

e
[s

]

(e
)

R
es

id
ua

ln
oi

se
:M

L-
FR

O
N

TA
L

0
0.

5
1

1.
5

2
2.

5
02468

Ti
m

e
[s

]

(f
)

R
es

id
ua

ln
oi

se
:U

M
L

Fi
g.

D
.6

:
Sp

ec
tr

og
ra

m
s

of
th

e
no

is
y,

cl
ea

n
ta

rg
et

,
an

d
pr

oc
es

se
d

si
gn

al
s

fr
om

a
si

ng
le

re
al

iz
at

io
n

of
th

e
ex

pe
ri

m
en

t
in

Se
c.

4.
4.

Th
e

in
te

rf
er

er
is

a
co

m
pe

ti
ng

sp
ea

ke
r

an
d

th
e

ba
ck

gr
ou

nd
no

is
e

is
ca

nt
ee

n
no

is
e.

Th
e

IN
R

is
se

tt
o

12
dB

,a
nd

th
e

SI
N

R
is

0
dB

.T
he

ta
rg

et
lo

ca
ti

on
is

in
th

e
fr

on
t(

0◦
),

an
d

th
e

in
te

rf
er

in
g

sp
ea

ke
r

is
lo

ca
te

d
at

75
◦ .

Th
e

fig
ur

es
sh

ow
th

e
sp

ec
tr

og
ra

m
s

of
th

e
la

st
2.

5
se

co
nd

s
of

an
ac

ou
st

ic
sc

en
e

w
it

h
ta

rg
et

pr
es

en
ce

.
Fi

g.
D

.6
a

an
d

Fi
g.

D
.6

d
sh

ow
th

e
no

is
y

an
d

cl
ea

n
ta

rg
et

si
gn

al
s

at
th

e
re

fe
re

nc
e

m
ic

ro
ph

on
e,

re
sp

ec
ti

ve
ly

.
Fi

g.
D

.6
b

an
d

Fi
g.

D
.6

e
sh

ow
th

e
ou

tp
ut

of
th

e
M

W
F

be
am

fo
rm

er
us

in
g

M
L-

FR
O

N
TA

L,
w

he
re

Fi
g.

D
.6

b
sh

ow
s

th
e

pr
oc

es
se

d
si

gn
al

an
d

Fi
g.

D
.6

e
sh

ow
s

th
e

pr
oc

es
se

d
in

te
rf

er
en

ce
-p

lu
s-

no
is

e
co

m
po

ne
nt

s
on

ly
(i

.e
.w

it
ho

ut
th

e
ta

rg
et

).
Fi

g.
D

.6
c

an
d

Fi
g.

D
.6

fs
ho

w
th

e
ou

tp
ut

of
th

e
M

W
F

be
am

fo
rm

er
us

in
g

U
M

L,
w

he
re

Fi
g.

D
.6

c
sh

ow
s

pr
oc

es
se

d
si

gn
al

an
d

Fi
g.

D
.6

f
sh

ow
s

th
e

pr
oc

es
se

d
in

te
rf

er
en

ce
-p

lu
s-

no
is

e
co

m
po

ne
nt

s
on

ly
.

105



Paper D.

baseline methods while preserving the target speech. This can be seen in Fig.
D.6e and Fig. D.6f where a comparison reveals that the interfering speaker is
almost completely canceled using UML in contrast to ML-FRONTAL.

Another notable observation in Fig. D.4 and Fig. D.5 is that, the ML-DOA
method return a very poor ESTOI and PESQ score when the INR is high.
This is due to large amounts of target speech distortion as a consequence of
the interfering speech mistakenly being identified as the target speech. In
severe situations, e.g. when the INR is 12 dB, the performance of ML-DOA
approaches the performance of the noisy signal.

ESTOI and PESQ scores of the proposed methods and the state-of-the-art
methods, ML-DOA, are close at low INRs (see left panels in Fig. D.4 and Fig.
D.5). To analyze these performance differences, we conduct pairwise t-tests
[54] with Bonferroni corrected significance levels. The null-hypothesis is that
the mean ESTOI score between two selected methods is identical for a given
INR. We choose a significance level of α = 0.05 before Bonferroni correction.

For canteen noise in Fig. D.4, we compare ML-DOA with ML-BD and
UML. The pairwise t-tests reveal no significant difference at -12 dB and -6 dB
INR for ESTOI and -12 dB dB INR for PESQ. For car noise in Fig. D.5, no
significant difference is observed at -12 dB INR for ESTOI when comparing
ML-DOA with ML-BD and UML. In terms of PESQ, the comparisons reveal
that all pairwise comparisons for ML-DOA with ML-BD and UML are signif-
icant. The results for car noise, suggest that the proposed methods perform
much better in comparison to the state-of-the-art methods, when the noise is
approximately isotropic and stationary. A possible explanation is that detec-
tion and suppression of weak interferers at low INRs, is substantially easier
in these noise fields for the proposed noise reduction systems.

We also examined the performance in situation where the target location
is fixed to the front of the user (0◦) and known to the beamforming systems.
These situations may occur when the user steers the beamformer by rotating
the head. However, we did not include these results as they lead to similar
conclusions to the experiments with unknown target locations. This is due to
the proposed algorithms being able to identify and suppress the interfering
speaker more efficiently than the baseline methods.

In summary, the evaluation and statistical tests suggest that both pro-
posed noise reduction systems, i.e. ML-BD and UML, have a significantly
advantage over state-of-the-art methods in situations where a strong inter-
ferer is present. Additionally, we may conclude that the proposed systems,
also perform on pair with state-of-the art in situations with weak interferers.

4.5 Simulation results with AIR mismatch and reverberation

In real-world scenarios, the AIRs of the RATF dictionary may not match the
actual AIRs, and the microphone signals may be contaminated by reverbera-

106



4. Performance Evaluation of Proposed Beamforming Systems

0

0.2

0.4

0.6

0.8

1

ES
TO

I

−12 −6 0 6 12
1

1.5

2

2.5

3

3.5

4

INR [dB], (SINR = 0 dB)

PE
SQ

−12 −6 0 6 12

SINR [dB], (INR = 6 dB)

Fig. D.7: Performance in canteen noise and AIR mismatch.

tion in addition to noise. Both phenomena can potentially have a degrading
impact on the beamforming performance of the proposed algorithms. To
examine the robustness of the proposed algorithms, we therefore evaluate
them against AIR mismatch and reverberation. We perform two experiments
where the first experiment examines the robustness against AIR mismatch,
and the second experiment examines the robustness against reverberation.

4.5.1 Simulation with AIR mismatch

In the first experiment, AIR mismatches can arise due to non-personalized
RATF dictionaries. For example, the RATF dictionary may be measured on a
different head than the HA user. To simulate such AIR mismatch, we use two
sets of AIR databases fitted and measured on two arbitrarily chosen human
heads. One is used to simulate the acoustic scene, and the other is used as
a non-personalized RATF dictionary for the parameter estimation and MWF
beamformer in the noise reduction systems.

Fig. D.7 and Fig. D.8 show the results for canteen noise and car noise,
respectively. As expected, mismatches in the RATF dictionary cause perfor-
mance degradations for all methods. Generally, the difference in mean ESTOI
score between methods is smaller than the experiments in Sec. 4.4.
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Fig. D.8: Performance in car noise and AIR mismatch.

As in Sec. 4.4, we perform pairwise t-tests with Bonferroni corrected
significance levels. We compare the proposed algorithms with ML-FRONTAL
and ML-DOA. Statistically significant differences are primarily observed at
high INRs, where ML-BD performs better than any of the baseline methods.
At lower INRs, there are no strong indications that any of the noise reduction
systems perform differently than the other.

4.5.2 Simulation with reverberation

In the second experiment, we use reverberant AIRs to simulate reverberation
on the target and interference sources. The AIRs are measured in a listening
room with physical dimensions L x W x H = 7.9 m x 6.0 m x 3.5 m. The
reverberation time in the room is approximately T60 = 150 ms. The clean
target and clean interference signals are convolved with reverberant AIRs to
simulate the room reverberation. The canteen and car noise already contain
natural reverberation from the environment they were measured in, hence we
did not convolve the reverberant AIRs with the noise. We did not have ac-
cess to a reverberant own voice transfer function, and therefore used the dry
own voice transfer function in the simulation. We used an RATF dictionary
obtained from the dry AIRs for the noise reduction systems.

Figs. D.9 and D.10 show performance results for canteen noise and car
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Fig. D.9: Beamforming performance in canteen noise and reverb.

noise, respectively. Generally, all noise reduction systems suffer substantial
performance degradation when the target and interference signals are rever-
berant. In canteen noise, we measure no strong statistical difference between
the noise reduction systems except for ML-BD which performs better than
ML-FRONTAL and ML-DOA at 12 dB INR. In terms of PESQ, the results
are more decisive and seem to favor ML-BD which is statistically significant
better than the baseline methods for INRs between 0 to 12 dB. In car noise,
ML-BD performs significantly better than the baseline methods between -6
dB to 12 dB INR both in terms of ESTOI and PESQ. However, UML did not
perform statistically significantly differently than any of the baseline meth-
ods.

Our evaluations with AIR mismatch and reverberation seem to favor ML-
BD over UML and the baseline methods. However, despite reduced perfor-
mance in these situations compared to the results in Sec. 4.4, it is worth
pointing out that the overall conclusion remains: The proposed methods, in
particular ML-BD, perform significantly better than the baseline methods in
situations with a prominent interfering speaker and perform on par with the
baseline methods in the absence of an interfering speaker.
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Fig. D.10: Beamforming performance in car noise and reverb.

5 Conclusion

In this paper, we propose multichannel noise reduction systems for hearing
assistive devices (HADs). The proposed noise reduction systems can solve
the problem of enhancing a target speech contaminated by noise and strong
interfering speech, which is often considered difficult to solve for existing
systems. We rely on the HAD user’s own voice to identify interfering speech
during own voice presence, but target absence. Furthermore, the multichan-
nel Wiener filter (MWF) is used to retrieve the target speech and we propose
three maximum likelihood estimation methods to estimate the target, inter-
fering speech, and noise statistics needed for the MWF beamformer.

The proposed noise reduction systems are compared to state-of-the-art
methods in terms ESTOI and PESQ to examine estimated speech intelligibil-
ity and speech quality. Simulation results indicate that the proposed noise
reduction systems are able to outperform the state-of-the-art methods partic-
ularly in situations with a prominent interfering speaker.
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A. Speech Enhancement Performance Evaluation of the Maximum Likelihood
Estimators
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Fig. D.11: Beamforming performance in situations with target, interferer, and noise with known
target RATF vector.

A Speech Enhancement Performance Evaluation
of the Maximum Likelihood Estimators

In this appendix, we evaluate the speech enhancement performance of the
MLEs presented in Sec. 3. The purpose of this evaluation is to show that the
performances of ML-BD (Algorithm 3, and UML (Algorithm 4, see Sec. 3.2)
are close to identical to the joint MLEs in 3.1 (J-ML). This result is of particular
interest as the MLEs for ML-BD and UML only require a one-dimensional
search over d1 and hence potentially a much lower computational complexity.

For simplicity, the target RATF vectors are assumed known and the eval-
uation is focused on speech enhancement performance. Although the tar-
get RATF vectors are assumed known for this evaluation, results can still
give a sufficient indication on how ML-BD, UML, and J-ML compares. The
comparison is made in terms of ESTOI and PESQ as a function of signal-to-
interference-plus-noise ratio (SINR).

For this experiment, the setup is similar to the one presented in Sec. 4
but with the target and interferer RATF vector known to the noise reduction
systems.

Fig. D.11 shows performance in terms of for ESTOI and PESQ as a func-
tion of SINR with the INR fixed to 6 dB. The unprocessed signal and the
output of an oracle MWF with known target and noise statistics are also eval-
uated to indicate lower and upper performance bounds. Each performance
score per SINR is averaged over 50 realization of acoustic scenes.

From Fig. D.11, we see that J-ML, ML-BD, and UML perform almost
identically without large differences. Furthermore, they perform close to
the oracle MWF. We observe that J-ML performs slightly better than UML
and ML-BD in terms of ESTOI but slightly worse in terms of PESQ. This is
possibly due to UML and ML-BD having a slightly more aggressive noise
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suppression than J-ML which translates to marginally higher PESQ score at
the cost of speech distortion and lower ESTOI score.

An evaluation of the runtime of the algorithms, showed that the real-time
factors were 9.46 for UML, 4.98 for ML-BD, and 153.46 for J-ML. We see that J-
ML has a significantly higher real-time factor compared to UML and ML-BD.
This is partly due to the choice of the grid resolution used in J-ML as a high
grid resolution will increase the real-time factor. Lowering the grid resolution
will decrease the real-time factor but can result in performance degradation.
It should also be noted that the implementation of the algorithms are not
code optimized, but the real-time factors can still give a rough indication of
computational complexity when comparing the proposed methods.

Because of the insignificant difference between J-ML, ML-BD and UML,
we omit J-ML in the evaluation in Sec. 4 due to its high computational com-
plexity. However, if J-ML was chosen to be included in the evaluation in Sec.
4, similar performance to ML-BD and UML would be expected.
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1. Introduction

Abstract

In this paper, we propose a novel speech enhancement paradigm which can effectively
solve the problem of retrieving a desired speech signal in a multi-talker environment.
The proposed speech enhancement paradigm involves a three-step procedure consist-
ing of separation, ranking, and enhancement. First, a speech separation system –
which could be a conventional spatial filter bank or more advanced separation sys-
tems – separates mixtures of speech signals captured by microphones into speech
signals from candidate speakers. Next, novel ranking algorithms – proposed in this
paper – are applied to determine the talker-of-interest amongst the separated speech
signals. Finally, the speech signal of the talker-of-interest is estimated as a linear
combination of the separated signals, whose weights are determined by the ranking
algorithms. We propose ranking algorithms, which exploit turn-taking patterns be-
tween conversational partners in order to determine the talker-of-interest amongst
competing speakers. Unlike some existing solutions, our ranking algorithms do not
require access to additional sensors, e.g., EEG electrodes, cameras, etc., but only
rely on microphone signals. Specifically, the proposed algorithms rank the separated
speech signals based on the probability of speech overlaps and gaps with the user’s
own voice. The speech signal with highest ranking is the talker with minimum prob-
ability of speech overlap and gap with the user’s own voice. The proposed ranking
algorithms are shown highly effective at determining the talker-of-interest, since con-
versational partners, i.e., the user and the talker-of-interest, behaviorally avoid speech
overlaps and gaps. We evaluate the proposed speech enhancement paradigm in two
practical hearing aid related applications, where the objective is to enhance a speech
signal of a conversational partner in a multi-talker environment. The results of the
evaluation demonstrate that the proposed speech enhancement systems in both appli-
cations significantly outperform conventional speech enhancement systems.

1 Introduction

The cocktail party problem is often regarded as one of the most difficult sit-
uations any speech enhancement system may encounter. The complexity in
the acoustic environment is vast and its composition may include multiple
competing speakers, music, reverberation, and noise. Solving the cocktail
party problem, i.e., the speech signal(s)-of-interest, i.e. the target signal(s), is
commonly the goal for speech enhancement systems in applications such as
hearing assistive devices (HADs) and speaker-phone systems. The enhance-
ment system in these applications is crucial for many humans as they rely
on the aid to communicate more efficiently in noisy environments, particu-
larly when competing speech and noise become dominant. However, achiev-
ing effective suppression of loud competing speech and noise remains a re-
markably difficult problem to solve even with the most recent state-of-the-art
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speech enhancement systems.
The problem of interest in this paper is to enhance a conversational part-

ner, i.e., the talker-of-interest, in the presence of multiple competing speakers
and noise. The competing speakers are obviously undesired and can po-
tentially be louder than the conversational partner. In order to be able to
enhance the conversational partner in such multi-speaker situations, any en-
hancement system faces the question: "Who is the user listening and talking
to?". The traditional speech enhancement paradigm for single-microphone
systems involves estimation of temporal statistics of the conversational part-
ner and noise for implementation of linear filters. For the multiple micro-
phone case, beamformers are often implemented and typically require esti-
mation of the direction-of-arrival (DOA) and/or spatio-temporal statistics of
the conversational partner and noise [1–5]. However, the presence of mul-
tiple speakers poses a great estimation challenge, since the conversational
partner and competing speakers are often indistinguishable from an acoustic
perspective. In worst case scenarios, speech enhancement algorithms might
in fact suppress the conversational partner and enhance competing speech.
For example, current DOA estimators such as SRP-PHAT [6], maximum like-
lihood [7, 8], and deep learning-based DOA estimators [9], are not able to
robustly handle a conversational partner in a multi-speaker environment,
without additional a priori information on the conversational partner’s loca-
tion or voice activity. Consequently, these DOA estimators will indecisively
switch between the candidate speakers as being the conversational partner
leading to an enhanced signal of unacceptable intelligibility and quality.

In this paper, we propose a speech enhancement paradigm that can ef-
ficiently identify the conversational partner in a multi-speaker environment
and retrieve the desired speech signal. The paradigm is described through
the three step-procedure as shown in Fig. E.1.

In the first step, the noisy microphone signals are fed into a speech sep-
aration system to separate mixtures of speech signals into individual source
signals/components, which we refer to as candidate speakers. Example
of speech separation systems include beamforming systems which separate
speech using beams steered in different directions, or deep neural network
(DNN) based separation algorithm e.g. uPit [10, 11] and TasNet [12, 13].
Some applications allow microphones to be placed physically on the candi-
date talker, in which case the separation is trivial.

In the second step, the separated candidate speakers are ranked accord-
ing to their likelihood of being the conversational partner. Existing rank-
ing strategies may involve additional sensor signals and prior knowledge to
support the decision of estimating the conversational partner channel after
speech separation. As an example, beamforming systems in HADs often
rank, or simply assume, the frontal speaker as the most likely conversational
partner [2]. However, unfortunately, the user may not always face the con-
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versational partner in all situations, which leads to a loss of performance. Al-
ternatively, estimated candidate speakers may be ranked using EEG-signals,
retrieved from EEG-electrodes placed on the scalp of the user, to detect the
user’s attention on conversational partner, EOG-signals to estimate eye-gaze
from in-ear electrodes, and cameras to track eye-movements and estimate
eye-gaze [14–18]. While these signals have the potential to support the de-
cision of determining the talker-of-interest, they require additional sensors
which increase equipment cost, increase wearing inconvenience, and likely
also increase computational cost and power consumption. These trade-offs
make acquisition of EEG, EOG, and visual signals impractical for small de-
vices such as HADs where power consumption and wearing inconvenience
matters for the end user.

Finally, the last step involves enhancement of the conversational partner
signal. The enhanced signal is formed as a linear combination of the sep-
arated speech signals where the weights are determined from the speaker
ranking algorithm.

Additionally, we propose a method to the ranking problem in Fig. E.1,
which does not require additional sensors apart from microphones. A
microphone-only system is highly desirable from a practical perspective, both
due to the cost of additional sensors and from a algorithm complexity per-
spective. Our method is based on exploiting the conversational behavior
between the user and the conversational partner. We use the so-called turn-
taking behavior between two conversational partners [19–23] to rank the can-
didate speakers according to the talker which is most likely the user’s con-
versational partner. Specifically, the method analyses the speech overlaps and
gaps between the user and a candidate speaker to quantify turn-taking, and
then selects the speaker with minimum probability of speech overlap and
gap with the user as the talker-of-interest.

This paper is organized as follows. Sec. II introduces the basics of con-
versation and turn-taking behavior and its potential use in ranking the can-
didate speakers and determining the talker-of-interest. In Sec. III, we derive
our minimum overlap-gap (MOG) method and propose statistical models of
speech overlap and gap behavior between a user and a conversational part-
ner. Based on the statistical model, we propose an extension, namely, the
Bayesian MOG (BMOG) algorithm. In Sec. IV, we describe the estimation
of the parameters for the proposed statistical models of turn-taking from
datasets of real conversations. We use the statistical models to derive the
theoretical performance of the (B)MOG algorithm. Finally in Sec. V, we eval-
uate the performance of the proposed speech enhancement paradigm and
(B)MOG algorithms in two speech enhancement applications.
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2. Speech interaction in conversations

2 Speech interaction in conversations

Determining the talker-of-interest and ranking the candidate speakers are
needed for the proposed speech enhancement paradigm and can be an ex-
tremely difficult problem to solve. We propose to rank the candidate talker
using the turn-taking model presented in [19]. Human interaction is a group
of behavioral mechanisms that are taught since childhood to use when en-
gaged in conversations to structurize exchange of information [20]. Address-
ing and turn-taking mechanisms found in conversations are examples of in-
teraction management between conversational partners [20].

Addressing is used by the addressee, i.e., the talking person, to indicate
whom the speech is directed to. For example, humans may use gaze, ges-
tures, and speech to indicate the conversational partner. Strong indicators
are typically head pose and eye-gaze which potentially could be utilized by
speech enhancement systems to determine the talker-of-interest [20]. How-
ever, measuring the head pose and eye-gaze would usually require additional
sensors such as accelerometers, electrodes, or cameras for applications such
as HADs.

The turn-taking mechanism is another type of interaction management
and is universal across cultures and languages. Turn-taking is used to struc-
turize conversations. Turn-taking is used to coordinate who should speak
next and when, to ensure that only one speaker is talking at a time, while
others remain silent. Conversational partners may occasionally overlap and
gap in conversations, but these are often of short duration such as when the
listener responds the talker by saying "yes" or "uh hm" [19, 24]. In order to
maintain rapid turn-taking, listeners also try to predict the end of a speech
utterance of their conversational partner to minimize speech overlap and gap.

We use the turn-taking model in [19] to model a) the conversational be-
havior between the user and the conversational partner, and b) the voice
activity pattern between the user and a competing speaker. We may describe
a) and b) in terms of four voice activity states.

S1 : Conversational partner/competing speaker speaks while user is
silent.

S2 : User speaks while conversational partner/competing speaker is
silent.

S3 : Conversational partner/competing speaker and user are both
silent.

S4 : Conversational partner/competing speaker and user are both
speaking.
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State S1 and S2 are turns of the conversational partner/competing speaker
and user, respectively, while state S3 is referred to as gaps or pauses and state
S4 is referred to as overlaps [19, 24, 25]. In [24] it was found that 77% of all
recorded conversations between a user and a conversational partner were in
state S1 or S2, 19.2 % belonged to state S3, and 3.8% were in state S4. For
a user and a competing speaker, the proportion of time spent in each state,
may be argued to be significantly different compared to a user and a con-
versational partner. Specifically, a larger proportion of speech overlaps and
gaps would be expected between a user and a competing speaker, since the
turn-taking mechanisms would not exist. In addition, when the conversa-
tional partners are exposed to noisy environments, the proportion of time
spend in each state changes, with overlaps becoming more common as the
noise level increases. In [26] it was found that in very noisy environments
the proportion of time spent in state S1 or S2 decreased from 70% at a noise
level of 54 dB SPL to 50% at 78 dB SPL, S3 increased from 8% at 54 dB SPL to
24% at 78 dB SPL, and for S4 from approximately 22% at 54 dB SPL to 26%
at 78 dB SPL, where normal conversation breaks down. A possible reason for
these observations is that conversational partners insist on maintaining rapid
turn-taking during conversations, resulting in poorer timing and prediction
of their partners end of a turn, hence increasing the proportion of overlaps
and gaps.

These results indicate that humans rely significantly on turn-taking to
maintain normal conversations even in very noisy environments as conver-
sations otherwise would break down. Although speech overlaps and gaps
become more frequent in noisy environments, these conversational patterns
remain robust in noisy condition and the turn-taking patterns between a user
and a conversational partner would presumably still be significantly differ-
ent than the voice activity patterns between a user and a competing speaker.
Hence, in the following we propose a method that exploits these turn-taking
patterns to determine the talker-of-interest in a multi-talker environment.

3 The Minimum Overlap-Gap Algorithm

In this section, we derive the proposed algorithm for ranking the candidate
speakers using expected turn-taking patterns. Our primary focus in this sec-
tion is the task of ranking the speakers by their likelihood of being the con-
versational partner, i.e. the Ranking block in Fig. E.1.

First, the speech separation system separates mixtures of speech signals
into individual discrete time-sequences si(n), i = 0, 1, ..., I, where s0(n) is the
user’s own voice, and the remaining si(n), i = 1, ..., I are the I candidate
speech signals. For each speech signal si(n), a binary output αi(n) of voice
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activity detector (VAD) is defined as

αi(n) =

{
1, if si(n) contains speech at time n
0, if si(n) contains no speech at time n.

(E.1)

where α0(n) is the user’s own voice VAD (OVAD). We assume that αi(n)
represents the actual speech activity of the various speech sources – as we
demonstrate in Sec. 5.5, the proposed ranking and enhancement system work
well, even when αi(n) are estimated from sources separated with a practical
beamforming system. Fig. E.2 shows an example of VAD outputs a real
conversation between the user and the conversational partner in addition to
two competing speakers. The outputs of the VADs are used to determine the
voice activity state between the user and a candidate speaker i i.e.

S1 : if α0(n) = 0 and αi(n) = 1.

S2 : if α0(n) = 1 and αi(n) = 0.

S3 : if α0(n) = 0 and αi(n) = 0.

S4 : if α0(n) = 1 and αi(n) = 1.

As discussed in Sec. 2, conversational partners use turn-taking when en-
gaged in a conversation. A consequence of the turn-taking mechanism is
that conversational partners avoid speech overlaps and gaps, i.e., they min-
imize the proportion of time spent in state S3 and S4. In the following, we
use this observation to propose an algorithm exploiting this to determine the
talker-of-interest.

3.1 Minimum probability of speech overlap and gap

The paradigm presented in Fig. E.1 ranks the candidate speakers using their
voice activity patterns, prior to the enhancement. The proposed algorithm
selects the speaker with minimum probability of speech overlap and gap re-
lated to the user’s own voice as the talker-of-interest. We refer to this method
as the Minimum Overlap-Gap (MOG) algorithm. Let Ai(n), i = 0, 1, ..., I be
Bernoulli random variables of the VADs and let αi(n), i = 0, 1, ..., I be their
corresponding realizations. The probability of a speech overlap and speech
gap between the user’s own voice and candidate speaker i, is denoted as
PA0 Ai (α0(n) = 1, αi(n) = 1) and PA0 Ai (α0(n) = 0, αi(n) = 0), respectively.
The MOG algorithm selects the speaker with minimum probability of over-
laps and gaps:

îMOG(n) = arg min
i∈{1,...,I}

1

∑
k=0

PA0 Ai (α0(n)= k, αi(n)= k), (E.2)
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Fig. E.2: Speech signals with VAD outputs plotted on top of real conversations between the own
voice and the conversational partner. The two top plots are conversations between a user and a
conversational partner (target). The two bottom plots are competing speakers unrelated to the
conversation between the user and the conversational partner.
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where îMOG(n) is the estimated conversational partner channel index and
minimizing the cost in (E.2) is equivalent to minimizing the occurrences of
the states S3(n, i) and S4(n, i), i.e. gaps and overlaps, respectively. Alter-
natively, the optimization problem may also be formulated as maximizing
the probability of mutual exclusion between the binary sequences α0(n) and
αi(n) (see Appendix A.1) i.e.

îMOG(n)=arg max
i∈{1,...,I}

1

∑
k=0

PA0 Ai (α0(n)= k, αi(n)=1−k). (E.3)

Furthermore, as shown in Appendix A.2, solving (E.3) is also equivalent to
finding the candidate speaker index, which maximizes the mean-square-error
(MSE) between the user own-voice VAD (OVAD) and candidate speaker’s
VAD, i.e.,

îMOG(n)=arg max
i∈{1,...,I}

E
[
(A0(n)− Ai(n))

2
]

. (E.4)

Note that the optimization problem is bounded in [0, 1] as A0(n) and Ai(n)
are binary values. The definition of the MOG algorithm in (E.4) is a maxi-
mization of the MSE between two binary sequences and is thus computation-
ally simple.

3.2 Bayesian MOG for probability-based speaker ranking

Probability-based ranking of the candidate speakers can provide additional
insights compared to the MOG algorithm in (E.4) which only identifies a sin-
gle talker-of-interest. In this approach, a posterior probability is estimated
for each candidate speaker which quantifies the uncertainty of a candidate
speaker being the talker-of-interest. This information can be particularly use-
ful for a speech enhancement system, for example, to adjust the level of noise
suppression.

3.2.1 Statistical models of the sum of squared error

One approach to derive posterior probabilities for each candidate speaker,
is to statistically model the distribution of overlaps and gaps between 1) a
user and a conversational partner, and 2) a user and a competing speaker,
and then use Bayes theorem to estimate the probabilities. To model the sta-
tistical distribution of overlaps and gaps, we introduce the random variable
Zi(n), which represents the squared error between the own voice VAD and
the candidate speaker VAD:

Zi(n) = (A0(n)− Ai(n))2, (E.5)
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where Zi(n), A0(n), and Ai(n) are Bernoulli random variables. The random
variable Zi(n) quantifies if A0(n) and Ai(n) are overlapping or gapping, i.e.,
when Zi(n) = 0, or not. We define the sum of squared errors (SSEs) as

Φi(n) =
n

∑
k=n−N+1

Zi(k), (E.6)

where N is the number of past observations of Zi(n) upon which the deci-
sion will be based. The SSE quantifies the total amount of observed overlaps
and gaps within N observations. Low SSEs indicate large amounts of over-
laps and gaps between A0(n) and Ai(n), whereas high SSEs indicate small
amounts of overlaps and gaps. It is also worth noting that N is related to the
integration time, which we define as

Tint = N · fs,vad, (E.7)

where fs,vad is the sampling frequency of the VADs. The integration time Tint,
is easier interpreted than N as it also accounts for the sampling frequency of
the VADs.

In order to model the distribution of Φi(n), we use that Φi(n) is a sum
of N Bernoulli distributed random variables. For independently and iden-
tically distributed Zi(n), then Φi(n) follows a binomial distribution. How-
ever, preliminary experiments with natural conversations have shown that
observations of Φi(n) have a higher dispersion than a binomial distribution,
hence the binomial distribution is too restrictive to explain the observations.
Instead, we have found that a beta-binomial distribution provides a signifi-
cantly better fit than the binomial distribution. The beta-binomial distribu-
tion is parameterized by N and two shaping parameters γ and β and its
probability mass function (PMF) is given as

pΦi (φi; γ, β, N) =

(
N
φi

)
B(φi + γ, N − φi + β)

B(γ, β)
. (E.8)

B(·, ·) is the Beta-function parameterized by γ and β, and(
N
φi

)
=

N!
φi!(N − φi)!

, (E.9)

denotes the binomial coefficient. In the remaining part of the paper, we use
the PMF notation pΦi (φi; γ, β, N) , p(Φi = φi; γ, β, N) for brevity. First,
we statistical model Φi when the user is engaged in a conversation and af-
terwards model Φi for the interaction between the user and a competing
speaker. Hence, the first statistical distribution pΦi (φi; γt, βt, N) is fitted to
observations of SSEs between a user and conversational partner engaged
in a conversation, where the subscript t denotes that the shaping param-
eters are related to the true conversational partner. The second distribution

128



3. The Minimum Overlap-Gap Algorithm

05010
0

15
0

Histogram
T i

nt
=

2
s

T i
nt
=

10
s

T i
nt
=

30
s

0
50

10
0

15
0

20
0

0

0.
51

1.
5
·1

0−
2

SS
E

PMF

0
20

0
40

0
60

0
80

0
1,

00
0

01234

·1
0−

3

SS
E

0
50

0
1,

00
0

1,
50

0
2,

00
0

2,
50

0
3,

00
0

0

0.
51

1.
52

·1
0−

3

SS
E

U
se

r/
co

nv
er

sa
ti

on
al

pa
rt

ne
r

U
se

r/
co

m
pe

ti
ng

sp
ea

ke
r

Fi
g.

E.
3:

H
is

to
gr

am
s

of
K

=
50

0
ob

se
rv

at
io

ns
of

SS
Es

fr
om

re
al

co
nv

er
sa

ti
on

s
ar

e
sh

ow
n

in
th

e
up

pe
r

pl
ot

s.
T

he
bo

tt
om

pl
ot

s
sh

ow
be

ta
-b

in
om

ia
l

di
st

ri
bu

ti
on

s
w

he
re

th
e

pa
ra

m
et

er
s

ar
e

fo
un

d
fr

om
th

e
ob

se
rv

at
io

ns
.

In
al

l
pl

ot
s

th
e

bl
ue

co
lo

r
de

no
te

s
th

e
co

nv
er

sa
ti

on
al

pa
rt

ne
r

an
d

th
e

re
d

co
lo

r
de

no
te

s
th

e
co

m
pe

ti
ng

sp
ea

ke
r.

129



Paper E.

pΦj(φj; γv, βv, N) is fitted to observations of SSEs between a user and compet-
ing speakers, where the user and competing speaker are engaged in different
conversations.

3.2.2 Hypothesis testing

In order to estimate probabilities for each candidate speaker, we define I
hypotheses

Hi: Candidate speaker i is the conversational partner, and the remain-
ing I − 1 speakers are competing speakers for i = 1, ..., I.

Under Hi, it follows that Φi is distributed according to pΦi (φi; γt, βt, N) and
Φj for j 6= i, is distributed according to pΦj(φj; γv, βv, N), i.e.

Φi ∼ pΦi (φi|Hi) , pΦi (φi; γt, βt, N)

Φj ∼ pΦj(φj|Hi) , pΦj(φj; γv, βv, N) for j 6= i.
(E.10)

For each time n, we observe realizations, φk, of Φk for all k = 1, ..., I. Assum-
ing that Φk, are statistically independent, the likelihood function conditioned
on Hi is given by

pΦ1,...,ΦI (φ1, ..., φI |Hi) =
I

∏
k=1

pΦk (φk|Hi)

= pΦi (φi|Hi) ∏
j∈I\i

pΦj(φj|Hi)

= pΦi (φi; γt, βt, N) ∏
j∈I\i

pΦj(φj; γv, βv, N),

(E.11)

where I = {1, ..., I} is the set of candidate speaker indices, and I\i denotes
the set of competing speakers under hypothesis Hi, i.e. I excluding the
element i. Using Bayes theorem, the posterior probability of Hi is given by

P(Hi|φ1, ..., φI) =
P(Hi)pΦ1,...,ΦI (φ1, ..., φI |Hi)

pΦ1,...,ΦI (φ1, ..., φI)

=

P(Hi)pΦi (φi; γt, βt, N) ∏
j∈I\i

pΦj(φj; γv, βv, N)

I
∑

k=1
P(Hk)pΦk (φk; γt, βt, N) ∏

l∈I\k
pΦl (φl ; γv, βv, N)

,
(E.12)

where P(Hi) is the prior probability of the conversational partner being chan-
nel i. This method of estimating the posterior probability is referred to as the
Bayesian MOG algorithm.
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4 Parameter Estimation from Conversational
Speech Database

To implement the Bayesian MOG (BMOG) algorithm in (E.12), the shaping
parameters γt, βt, γv, and βv for the statistical models pΦ(φ; γt, βt, N) and
pΦ(φ; γv, βv, N) are estimated from speech databases containing real conver-
sations. Next, using the estimated statistical models, we analyze the theoret-
ical speaker ranking performance of the MOG algorithm in terms of misclas-
sification rate.

4.1 Setup and speech database

4.1.1 Conversational speech database

In order to estimate the shaping parameters γt, βt, γv, and βv, we use the
speech database in [27] which contains dialogues between 19 pairs of native-
Danish talkers recorded during a task dialog experiment. The participants
had normal hearing and were coupled into pairs to collaborate solving Di-
apixUK tasks [28]. DiapixUK is spot-the-difference tasks where partners were
given two almost identical cartoon pictures with a few differences. The par-
ticipants were not allowed to view each others pictures, but had to solve
the DiapixUK task by exchanging descriptions of their picture through ver-
bal communication. The partners were placed in different sound booths and
communicated through headphones and head-worn microphones. The ex-
periment had four test conditions: 1) native language (Danish) and no noise,
2) native language (Danish) and babble noise, 3) second language (English)
and no noise, and 4) native language (English) and babble noise.

4.1.2 Voice activity detection

The presence of speech in the signal sj(n) is determined by a binary VAD
which produces an output sequence αj(n) = {0, 1} for either of the speakers
in the dialogue. For voice activity detection, we used the robust voice ac-
tivity detector (rVAD) proposed in [29] applied to the essentially noise-free
dialogue recordings. The input to rVAD is L consecutive samples of si(l) with
sampling frequency fs. The output of rVAD is a sequence of N voice activity
decisions αi(n) at sampling frequency fs,vad = 100 Hz. Version rVAD2.0 was
used in this paper and can be found in [30].

4.2 Parameter Estimation for the Beta-Binomial Distribution

We used the speech data set recorded in a quiet condition and in Danish
language for parameter estimation. The speech signals are sampled at 22.05
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kHz but downsampled to 16 kHz for compatibility with rVAD. In order to
collect observations of the SSEs for a user and a conversational partner, we
used the following procedure:

1. Select an integration time Tint, e.g. Tint = 10 seconds, where the inte-
gration time is related to N by N = Tint

fs,vad
.

2. Divide the speech signals into non-overlapping segments with length
Tint.

3. Apply the rVAD on the speech signals of conversational partners.

4. Compute the SSE from the VAD outputs using (E.6).

To gather observations of the SSE between the user and a competing
speaker, we perform a similar procedure, but instead of choosing a matching
conversational pair, we randomly choose two non-conversational speakers to
form a pair and compute the SSE. Histograms and fitted beta-binomial dis-
tribution of SSEs between a user and a conversational partner, as well as a
user and a competing speaker are shown in Fig. E.3 for different integra-
tion times. Clearly and as expected, the separability between pΦ(φ; γt, βt, N)
and pΦ(φ; γv, βv, N) becomes greater as Tint becomes larger. The dispersion
of SSE becomes smaller for both distributions as Tint increases. The shaping
parameters γt, βt, γv, and βv are functions of Tint.

4.2.1 Parameter estimation of γt, βt, γv, and βv given Tint

For each Tint, the parameters γt, βt, γv, and βv are estimated using obser-
vations of the SSEs. The observations of SSEs are denoted as φ

(k)
t and φ

(k)
v ,

k = 1, ..., K, respectively, where the subscript t denotes the SSE between the
user and conversational partner, v is the SSE between the user and a compet-
ing speaker, and K is the total number of observations. Each observation of
φ
(k)
t and φ

(k)
v are assumed independent. The parameters are found numeri-

cally using maximum likelihood estimation such that

γ̂t(Tint), β̂t(Tint) = arg max
γt ,βt

K

∏
k=1

pΦ(φ
(k)
t ; γt, βt, N)

and

γ̂v(Tint), β̂v(Tint) = arg max
γv ,βv

K

∏
k=1

pΦ(φ
(k)
v ; γv, βv, N),

where Tint = N · fs,vad. In order to provide simple models of γt, βt, γv,
and βv, scatter plots of estimated shaping parameters for different Tint are

132



4. Parameter Estimation from Conversational Speech Database

shown in Fig. E.4. We choose to describe the shaping parameters using a
power model. Let h̃(Tint; a, b) be the general form of a power model with
parameters a and b:

h̃(Tint; a, b) = a · Tb

int. (E.13)

This model can be useful for implementation of the BMOG algorithm for
any Tint, and to facilitate the theoretical performance evaluation of the MOG
algorithm in Sec. 4.3. To estimate the parameters a and b of the power model,
we use a non-linear least squares procedure with the general form of

â, b̂ = arg min
a,b

J

∑
j=1

[
h̃
(
T(j)

int ; a, b
)
− ĥ
(
T(j)

int
)]2

, (E.14)

where ĥ
(
T(j)

int
)

is an estimated shaping parameter, i.e., either γ̂t(Tint), β̂t(Tint),
γ̂v(Tint), or β̂v(Tint), and J is the total number of data points for each ML es-
timated shaping parameter. We minimize (E.14) numerically. The estimated
power model parameters are summarized in Table E.1. Fig. E.4 shows that
the fitted power models provide an excellent fit to the ML estimated shaping
parameters as a function of Tint.

γ̃t(·; â, b̂) β̃t(·; â, b̂) γ̃v(·; â, b̂) β̃v(·; â, b̂)
â 2.5091 0.8522 0.7736 0.8057
b̂ 0.7879 0.7817 0.9727 0.9681

Table E.1: Power model parameters for modeling the estimated shaping parameters of the beta-
binomial distributions.

4.3 Theoretical Performance of the MOG algorithm

In this section, we analyze the theoretical performance of the MOG algo-
rithm and compare it with performance achieved through simulations. Two
quantities that have a significant impact on the performance of the MOG al-
gorithm, are the number of candidate speakers, I, and the integration time
Tint. Increasing the number of candidate speakers will increase the solution
search space, hence increase the a priori risk of choosing a wrong candidate
as the target speaker. Decreasing the integration time Tint will lead to higher
variance in the estimation of the SSEs in (E.6).

The misclassification rate is used to measure the performance of the
MOG algorithm and is defined as the probability of classifying a competing
speaker as the conversational partner. We denote the misclassification rate as
P(E = 1; I, Tint) where E ∈ {0, 1} is a Bernoulli random variable with E = 1
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Fig. E.4: Shaping parameters of the beta-binomial distribution as a function of Tint. The blue
data points are obtained from maximum likelihood estimation for different Tint. The red curves
are fitted power models on the blue data points.

representing a misclassification. To derive an expression for the misclassifica-
tion rate, we define P (Φt > Φv,1, ..., Φt > Φv,I−1) as the probability of correct
classification, where Φt denotes the SSE between the user and conversational
partner, and Φv,j is the SSE between the user and the j’th competing speaker.
The misclassification rate is then given by

P(E = 1; I, Tint) = 1− P (Φt > Φv,1, ..., Φt > Φv,I−1) .

In Appendix A.3, we show that the misclassification rate of the MOG algo-
rithm can be expressed as

P(E = 1; I, Tint) =

1−
N

∑
φ=1

pΦ(φ; γt, βt, N)PI−1
Φ (φ− 1; γv, βv, N),

(E.15)

where PΦ(φ − 1; γv, βv, N) is the cumulative distribution of pΦ(φ −
1; γv, βv, N) which is given by

PΦ(φ− 1; γv, βv, N) =
φ−1

∑
κ=0

pΦ(κ; γv, βv, N). (E.16)
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(a) MOG: Theoretical misclassification rate
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Fig. E.5: Probability of misclassifying the conversational partner as a function of the number
of competing speakers Nc and integration time Tint. The theoretical performance of the MOG
algorithm is shown in Fig. E.5a. The simulated MOG performance using the datasets L1/no
noise and L2/babble noise is shown in Fig. E.5b and Fig. E.5c.

For verification, we compare the theoretical misclassification rate given
by (E.15) with the misclassification rate achieved with the MOG algorithm in
simulations as seen in Fig. E.5. From Fig. E.5b, we clearly see a close match
between the theoretical and simulated misclassification rates, where the con-
versational partners are speaking in Danish without any noise stimuli. Like-
wise, a close match between the theoretical and simulated misclassification
rate can be seen in Fig. E.5b, where the conversational partners are speak-
ing in English (second language) with babble noise as noise stimuli. The
close match indicates that the fitted statistical models are able to generalize
to unseen conditions.
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5 Evaluation in Speech Enhancement Applications

In this section, we demonstrate the use of MOG and BMOG for solving prob-
lem of enhancing a conversational partner in a multi-talker environment, us-
ing the speech enhancement paradigm of Fig. E.1. In particular, we use
MOG/BMOG to rank the candidate speakers according to how likely they
are to be the conversational partner. In Secs. 5.1 and 5.2, we outline the prac-
tical implementation of the MOG and BMOG algorithms and in Sec. 5.3, we
present the reference/baseline speaker ranking methods that will be used in
our experiments. In Secs. 5.4 and 5.5, we demonstrate the use of the proposed
speech enhancement systems in two different applications for HADs.

5.1 Speech enhancement system using speaker ranking

Fig. E.6 shows an example of the speech enhancement paradigm of Fig.
E.1 employing multiple microphones. In many situations, the microphone
signals consist of a mixture of speech signals (including target and po-
tential competing speakers) and noise from the environment. The unpro-
cessed microphone signals are denoted as xm(n) for m = 1, ..., M, where
M is the number of microphones and n is the discrete-time index. Let
x(n) = [x1(n), ..., xM(n)]T be the noisy microphone signals stacked in a vec-
tor, which is processed by a speech separation system. The speech separa-
tion system separates the microphone signals into estimated speech signals
ŝ(n) = [ŝ0(n), ŝ1(n), ..., ŝI(n)]T . Next, voice activity detection is applied to
each of the separated signals, ŝi(n), i = 1, ..., I. A speaker ranking algorithm,
e.g., MOG or BMOG, ranks the conversational partner by assigning a ranking
score to each candidate speaker. Finally, in the example system in Fig. E.6,
the enhancement of the conversational partner is achieved simply as a linear
combination of the separated speech signals ŝ(n). The weights are found us-
ing a gain function which maps the ranking score to a gain value for each
separated speech signal. A straightforward gain function for the MOG al-
gorithm, is to set the gain to a value of ’1’ to the estimated conversational
partner channel, and a value of 0 < gmin < 1 for the remaining channels, i.e.,

gj(n) =

{
1, if j = î
gmin, otherwise.

(E.17)

where î is the estimated channel of the conversational partner. It might occur
that a competing speaker is estimated as being the conversational partner
which can lead to severe loss in speech enhancement performance. It can
also disrupt an ongoing conversational between a user and a conversational
partner if the speaker ranking algorithm suddenly changes the estimated
conversational partner. To increase the robustness, a minimum gain gmin can
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be applied such that a small amount of speech from all candidate speakers
are always let through. Likewise, gmin can be made as a function of n, such
that gmin = 1 in the initial phase of a conversation, and gradually decreases
towards a minimum value when the conversation has been established.

Another approach, specifically for the BMOG algorithm, is to use the
estimated posterior probabilities as weights for the linear combination such
that

gj(n) = max (gmin, P(Hi|φ1, ..., φI)) . (E.18)

A potential advantage of the posterior probability as a gain function is similar
to that of introducing gmin > 0 in (E.17): It reduces perceptual switching
artifacts and limits the effect of target loss in case of misclassification. For
both approaches, the estimated conversational partner signal is

ŝt(n) =
I

∑
i=1

gj(n)ŝi(n). (E.19)

5.2 Implementation of the MOG and BMOG algorithms

In order to implement the MOG algorithm in (E.4), we estimate the MSE as
the average square-error between α0(n) and αi(n) over integration time Tint.
The MOG estimate of the conversational partner index then becomes

î = arg max
i∈{1,...,I}

n

∑
k=n−N+1

(α0(k)− αi(k))
2 . (E.20)

Implementation of the BMOG algorithm is a two-step procedure. First, the
shaping parameters are computed for beta-binomial distributions given Tint
using (E.13) and TABLE E.1, which may be done offline. Secondly, the pos-
terior probabilities P(Hi|φ1, ..., φI) are computed. To do so, the likelihood
function in (E.11) is computed in the logarithmic domain for numerical sta-
bility. For this purpose, we first define the variable ψi as:

ψi , P(Hi)pΦi (φi; γt, βt, N) ∏
j∈I\i

pΦj(φj; γv, βv, N). (E.21)

The natural logarithm of ψi is

ln ψi = ln P(Hi) + ln pΦi (φi; γt, βt, N)

+ ∑
j∈I\i

ln pΦj(φj; γv, βv, N). (E.22)

Substituting (E.21) into (E.12) gives

P(Hi|φ1, ..., φI) =
ψi

I
∑

k=1
ψk

.
(E.23)
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Using the logarithm function on both sides yields

ln P(Hi|φ1, ..., φI) = ln ψi − ln

(
I

∑
k=1

ψk

)
, (E.24)

where

ln

(
I

∑
k=1

ψk

)
= ln ψ1 + ln

(
1+

I

∑
j=2

e(ln ψj−ln ψ1)

)
. (E.25)

The posterior probability can be found by inserting (E.21), (E.22), and (E.25)
into (E.24) and applying the exponential function exp(·) to (E.24). The imple-
mentation of the BMOG algorithm is summarized in Algorithm 5.

Algorithm 5 Implementation of the BMOG algorithm.

Input: αi(n) for i = 0, 1, ..., I. Set the parameters Tint, N =
⌊

Tint
fs,vad

⌋
, and

P(Hi)∀i.
1: Compute the shaping parameters γ̂t(Tint), β̂t(Tint), γ̂v(Tint), β̂v(Tint) us-

ing (E.13) and TABLE E.1.
2: Compute the SSEs using (E.6) to obtain φi(n) for all i.
3: Compute the log-likelihoods

ln pΦi (φi(n); γ̂t(Tint), β̂t(Tint), N),

ln pΦi (φi(n); γ̂v(Tint), β̂v(Tint), N),

for all i using (E.8).
4: Compute ln ψi(n) in (E.22) for all i.
5: Compute the log posterior probabilities from (E.24).
6: Use the exponential function exp(·) on (E.24) to obtain the posterior prob-

ability in (E.23).

5.3 State-of-the-art methods for speaker ranking

The idea of using turn-taking to detect conversations between two speakers
has been explored in [31–33] but was not used in the context of enhancing a
conversational partner of a user as presented in Fig. E.1. In [31], the presence
of a conversation between two speakers was quantified using mutual infor-
mation between the user’s and candidate speakers’ voice activity sequences.
The normalized cross-correlation function was later proposed as a quantifier
of conversations in [32]. Both methods can be compared to the MOG/BMOG
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algorithms in a fair manner, since all methods require access to VAD se-
quences for each speaker and they return a cost that can be used for ranking
the candidate speakers.

5.3.1 Maximum mutual information[31]

The mutual information method is based on finding the candidate speaker
that maximizes the mutual information between the user’s and candidate
speaker’s voice activity sequences

îMMI = arg max
i∈{1,...,I}

1

∑
k=0

1

∑
j=0

PA0 Ai (α0(n) = k, αi(n) = j)

× log
PA0 Ai (α0(n) = k, αi(n) = j)

PA0(α0(n) = k)PAi (αi(n) = k)
,

where all joint and marginal probabilities are sample estimates obtained from
αi(n) over integration time Tint. One problem with the MMI algorithm is
situations where the numerator or denominator of the logarithmic function
becomes zero. These situations might occur if the integration time is short,
e.g., 2 seconds, as there is a risk that the user or candidate speaker i might
be silent within the period of time. In the evaluations, we removed results
where the numerator or denominator of the MMI algorithm becomes zero.

5.3.2 Normalized cross-correlation[32]

Similarly, the normalized cross-correlation (NCC) method is here used to
detect the presence of a conversational partner. The optimization problem of
NCC is formulated as

îNCC = arg max
i∈{1,...,I}

1− min
p∈[r1,r2]

R0,i(p)

2
, (E.26)

where R0,i(p) is the normalized cross-correlation between A0 and Ai at lag
p. r1 and r2 are search region bounds for the lag p. We set p equal to zero in
our evaluation.

5.3.3 Speaker ranking performance

We examine the speaker ranking performance between the proposed MOG
algorithm against MMI and NCC. The performance is reported in terms of
misclassification rate as a function of the number of competing speakers Nc
and integration time Tint. We use speech signals from [27] for the perfor-
mance evaluation. Specifically, we use the subset of the data set containing
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(a) MOG: L2/babble noise
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Fig. E.7: Misclassification rate as a function of the number of competing speakers Nc and inte-
gration time Tint for MOG (proposed), MMI, and NCC. The database used for this evaluation is
from [27] with the subset where all speakers were talking in their second language (L2) in babble
noise.

2-person conversations in second language English (L2) in babble noise. The
speech signals are segmented into segments of length Tint. For each Tint, one
2-person conversation is randomly selected to constitute the user’s own voice
and the user’s conversational partner. A number of Nc arbitrarily chosen
speakers from the data set are selected to constitute the competing speakers.
Fig. E.7 shows the misclassification rate P(E = 1; I, Tint) as a function of Tint
and the number of competing speakers Nc = I − 1 for each ranking algo-
rithm. A comparison between MOG, MMI, and NCC shows that the misclas-
sification rate is significantly lower for the MOG algorithm compared to the
MMI and NCC, particularly, when 1) the integration time is short, and/or 2)
there is a large number of competing speakers. At long integration times, e.g.
40 sec, the difference between the algorithms is smaller. However, the MOG
algorithm consistently performs better than the MMI and NCC algorithms.
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5.4 Application 1: Wireless hearing aid network

In this section, we demonstrate the use of the proposed (B)MOG based speech
enhancement paradigm, cf. Fig. E.1 in a hearing aid (HA) application, in
which the HAs of several users are wirelessly connected. The basic idea is
that multiple HA users can distribute their own voice signal to the other
users’ HAs through a wireless network. This can be useful, e.g., in acous-
tically challenging social gatherings with multiple HA users. The proposed
speech enhancement paradigm can in this situation assist the HA user by first
ranking and then enhancing the estimated conversational partner amongst
the users. 1

The signal model of the sound picked-up by the user’s HA microphone
can be described as

xi(n) = si(n), i = 0, ..., I, (E.27)

where s0(n) is the HA user’s own voice signal as picked-up by the user’s
microphone while si(n) for i = 1, ..., I are the clean speech signals picked up
by the microphones located at the candidate speakers.

5.4.1 Simulation Setup

We reuse the speech database presented in Sec. 5.3.3 for the candidate speak-
ers and own voice signals. We use the data set with conversations in second
language and babble noise, which was not used for estimation of the shap-
ing parameters. Two conversational partners are randomly chosen from the
data set, where one is randomly chosen as the HA user and the other as the
conversational partner for each signal realization. The competing speakers
are chosen from the same data set, but are not conversing with the HA user.
The HA user’s conversational partner is unknown to the speech enhance-
ment systems. We use rVAD 2.0 [29, 30] for voice activity detection and the
sampling frequency of the VAD output is fs,vad = 100 Hz. The integration
time needed for the speaker ranking algorithms, is implemented as sliding
windows with length Tint and with a hop size of 1 sample at sampling fre-
quency fs,vad. The speech enhancement systems used in the evaluation are
referred to as:

• No processing: The speech enhancement system does not apply any
speaker ranking algorithms and simply outputs the sum of all candi-
date speakers.

1In this situation, the separation stage in Figs. E.1 and E.6 is obsolete – microphones are
located on each candidate speaker and allow direct estimation of their voice activity pattern
αi(n); hence, the separation stage is unnecessary.
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• MMI, NCC, and MOG: The MMI, NCC, and the proposed MOG algo-
rithms are used as speaker ranking. The gain function is implemented
as in (E.17).

• BMOG: Posterior probabilities of the conversational partner are esti-
mated using BMOG and used as a gain function for enhancement, cf.
(E.19). The prior probability distribution P(Hi) in (E.12) is set uniform.

5.4.2 Results: Wireless hearing aid network

We evaluate the speech enhancement performance by comparing the en-
hanced conversational partner with the clean speech signal of the conver-
sational partner in terms of ESTOI [34, 35], PESQ [36], and segmental SNR
[37]. We evaluate the speech enhancement systems for Tint = {5, 10, 20, 30} s
and the following number of competing speakers Nc = {1, 2, ..., 10} [s] . The
minimum gain for MMI, NCC, and MOG is set to gmin = 0.01. A minimum
gain of gmin > 0 is necessary for the MMI, NCC, and MOG enhancement
systems to avoid rare situations with a complete suppression of the conver-
sational partner. These situations typically arise at low Tint and results in
undefined PESQ and segmental SNR scores. The minimum gain for BMOG
was set to gmin = 0 as it did not experience similar problems. The results are
shown in Fig. E.8 and each score is averaged over 100 realizations of conver-
sations. Generally, we see a significant improvement in terms of both ESTOI
and PESQ when using MOG and BMOG compared to NCC and MMI. The
improvement is particularly notably at low integration time such as Tint = 5
s and Tint = 10 s. At higher integration times, the improvements become less
prominent with the exception of NCC, which seems to perform the worst. We
note that BMOG seems to perform much better than MOG in terms of PESQ
at Tint = 30. This is due to the minimum gain which is set to 0.01 for MOG
but 0 for BMOG. From our experiments, we have observed that setting the
minimum gain to be above 0 can help NCC, MMI, and MOG perform better
on average at low integration times, e.g., Tint = 5. However, the trade-off
is slightly degraded performance at high integration times as shown in the
results.

From these results, it is clear that speech enhancement systems that use
MOG and BMOG generally outperform the NCC and MMI methods for this
particular application.

5.5 Application 2: Beamforming System in Hearing Aids

In this section, we demonstrate the use of the proposed speech enhance-
ment paradigm in another hearing aid application. Modern hearing aids
are equipped with multiple microphones which allow for implementation of
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acoustic beamformers to enhance the speech signal of a conversational part-
ner of a HA user. However, retrieving the speech signal can be particularly
difficult in situations with multiple competing speakers, because it is hard to
decide who is the conversational partner. Hence, in this application the pro-
posed (B)MOG speech enhancement paradigm is used to efficiently retrieve
the speech signal of the conversational partner amongst several competing
speakers.

First, we model the received signal at the microphones of the HAs. The
user’s and candidate speakers’ speech signals propagate to the microphones
and are simulated using acoustic impulse responses (AIRs). The AIR from the
i’th speaker to the m’th microphone is denoted as hi,m(n) where i = 0, 1, ..., I is
the speaker index, and m = 1, ..., M is the microphone index. The index value
i = 0 is used to denote the user’s index. The AIRs can be decomposed into
hi,m(n) = hi,m′(n) ∗ di,m(n) where ∗ denotes the convolution operator, hi,m′(n)
is the AIR from the i’th speaker to a pre-selected reference microphone m′ ∈
{1, ..., M}, and di,m(n) is the impulse response from the reference microphone
to the m’th microphone also referred to as the relative impulse response. Let
s′i(n) be the received signal of the i’th speaker at the reference microphone,
m′, i.e. s′i(n) = si(n) ∗ hi,m′(n). Then the received signal of the i’th speaker at
the m’th microphone is s′i,m(n) = s′i(n) ∗ di,m(n). We denote vm(n) as being
the noise vector (e.g. ambient noise and microphone self-noise) as received
at the m’th microphone. The noisy signal at the m’th microphone is then
modeled as

xm(n) =
I

∑
i=0

s′i,m(n) + vm(n). (E.28)

5.5.1 Speech separation using beamformers

The received microphone signal, xm(n), is a mixture of clean user and can-
didate speaker signals received at microphone m, s′i,m(n), plus noise vm(n).
Following the speech enhancement paradigm in Fig. E.6, the microphone
signals are first separated into user and candidate speaker signals before ap-
plying speaker ranking. We use the minimum power distortionless response
(MPDR) beamformer to separate the speech signals. The MPDR beamformers
are implemented in the time-frequency domain using the short-time Fourier
transform (STFT) and are for each time-frequency tile computed as [38]

Wi(k, l) =
C−1

x (k, l)Di(k)
DH

i (k)C−1
x (k, l)Di(k)

, Wi(k, l) ∈ CM, (E.29)

where k and l denote the frequency and frame indices, respectively. Cx(k, l) =
E{X(k, l)X H(k, l)} is the cross power spectral density (CPSD) matrix of the
noisy microphone signals and Di(k) = [Di,1(k), ..., Di,M(k)]T , i = 0, 1, ..., I,
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k = 0, 1, ..., K denotes the relative acoustic transfer function (RATF) vector for
the i’th speaker and k’th frequency bin [39, 40]. The m’th element of the RATF
vector is the frequency domain representation of di,m(n). Unfortunately, the
number of candidate speakers and their RATF vectors are seldomly known
in practice. Instead, we use I to denote the number of MPDR beamformers
steered towards a set of I unique and fixed directions in the acoustic en-
vironment. In other words, the spatial filter bank is implemented using a
dictionary of RATF vectors D(k) = {D0(k), D1(k), ..., DI(k)}, k = 0, 1, ..., K,
where we assume that the dictionary is given in advance. Assuming that
each beam contains a maximum of one candidate speaker (i.e., that candidate
sources are sufficiently spatially separated), each beamformer output, ŝ′i(n),
is treated as a candidate speaker signal. The output of each beamformer is

Ŝ′i(k, l) = W H
i (k, l)X(k, l), (E.30)

where Ŝ′i(k, l) is the enhanced signal from direction i, and is treated as a
speech signal from a candidate speaker. The beamformer outputs Ŝ′i(k, l)
are transformed back to the time-domain using the inverse STFT to obtain
ŝ′i(n). The remaining part of the speech enhancement system, i.e., ranking
and enhancement, follows the same procedure as in application 1 in Sec. 5.4.

5.5.2 Simulation of the acoustic scene

We simulate the acoustic scenes to resemble a cocktail party-like scenario
with a HA user engaged in a conversation with a conversational partner.
Such a situation involves the presence of speech signals from the HA user, the
conversational partner, and competing speakers, and the presence of noise
from the environment.

To simulate the received signals at the microphones, we use a database
of AIRs measured in a sound studio where room reverberation has been
removed [41]. The measurement setup consists of a spherical loudspeaker ar-
ray with a HA user seated in the center of the array. The HA user is wearing
a behind-the-ear (BTE) hearing aid on each ear. Each BTE hearing aid has
three microphones where two are placed in a front/rear configuration on the
HA and the third is placed in the ear canal. The microphones are used in
a binaural HA configuration where we assume wireless, simultaneous, and
error-free signal exchange between the left and right HAs. Hence, beamform-
ers are implemented using a the total number of M = 6 microphones. The
AIRs are measured from uniformly spaced positions in the horizontal plane
with respect to the head of the HA user and with a resolution of 7.5◦ result-
ing in AIRs for 48 different angles. We define 0◦ as the frontal direction from
the user’s point-of-view. The own voice AIRs are measured using a mouth
reference microphone placed in front of the HA user’s mouth.
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We use the conversational speech database in [27], as in Application 1, as
speech material in our simulation. Realistic noise measured in a canteen is
used in our simulation. The noise is measured using a spherical microphone
array to accurately capture the noise field [42]. The noise recordings are
transformed and convolved with the AIRs to reproduce the same noise field
as would have been experienced by a HA user in the canteen.

Competing speakers are added to the acoustic scenes. The speech material
for the competing speaker are from the same speech database as in Sec. 5.4
[27]. The speech of the competing speakers is unrelated to the conversation
between the user and conversational partner. We experiment with Nc = 3
and Nc = 5 competing speakers in our evaluation. Increasing the number
of competing speaker to much larger than Nc = 5, results in poorer speech
separation as the beamformers cannot sufficiently suppress the speakers from
other directions. The purpose here is mainly to demonstrate the feasibility
of using (B)MOG ranking in a beamforming context and for a larger number
of competing speakers, other better performing speech separation systems
could be used, e.g., (Conv-)TasNet [12, 13] or Wavesplit [43].

For Nc = 3, the conversational partner is placed randomly in the positions
{0◦, 90◦, 180◦, 270◦}, and the competing speakers are placed at the remain-
ing 3 positions. Similarly for Nc = 5, the conversational partner is placed
randomly in the positions {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}, and the competing
speakers are placed at the remaining 5 positions. The positions of the speak-
ers are fixed for the whole duration of a realization of an acoustic scene. We
do not simulate head-movements of the HA user but these movement can be
compensated with other sensors, e.g., accelerometers in practice. To simulate
the received signals of the speech sources at the microphones, we convolve
the speech signals with the AIRs associated with the direction. The speech
power of each competing speaker is approximately identical to the speech
power of the conversational partner before convolving with the AIRs. Can-
teen noise is added to the acoustic scenes and the SNR is defined as the ratio
between the clean speech power of the conversational partner at the source
location and the power of the background noise. The SNR is set to 12 dB.

The search region of the beamformers, Wi(k, l), is 0◦, 7.5◦, ..., 352.5◦

in the azimuth angle. The RATF dictionary is given as D(k) =
{D0,m(k), D1,m(k), ..., DI,m(k)} where D0,m(n) is the own voice RATF vector.
The elements Di,m(n) i = 1, ..., I are RATF vectors associated with sound
sources impinging from direction θ = (i − 1) · 7.5◦ in the horizontal plane
where θ = 0◦ is the frontal direction with respect to the HA user.

To implement the OVAD/VAD blocks in Fig. E.6, rVAD 2.0 [30] is used
for voice activity detection on the separated speech signals ŝi(n) and the own
voice signal ŝ0(n).

The sampling frequency of the received microphone signals is set to 16
kHz. We use a square-root Hann window with a window size of 256 samples
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Algorithm 6 Beamforming system for application 2.

Input: x(n) = [x1(n), ..., xM(n)]T , Dk = {D1(k), ..., DI(k)}
1: Apply STFT to x(n) to obtain X(k, l) for all k and l.
2: for all i ∈ Θ do
3: for k = 1, 2, ..., K do
4: Estimate the noisy CPSD matrix:

Ĉx(k, l) =
1
L

X(k, l)X H(k, l)

where X(k, j) = [X(k, l − L + 1), ..., X(k, l)].
5: Compute the MPDR beamformer weights, Wi(k, l), using (E.29).
6: Enhance the signal from direction i using (E.30).
7: end for
8: Inverse STFT Ŝ′i(k, l) to obtain ŝ′i(n).
9: end for

10: Estimate voice activity of each candidate speaker αi(n) = VAD
(
ŝ′i(n)

)
.

11: Use a speaker ranking algorithm e.g. Algorithm 5 and compute the gain
function to obtain gi(n).

12: Enhance the conversational partner using (E.19).

for the STFT and inverse STFT. The hop-size is 128 samples.
The beamforming system is summarized in Algorithm 6 in pseudo-code.

5.5.3 Evaluation of the speech enhancement paradigm in beamforming
systems

We evaluate the performance in terms of 1) speaker ranking performance in
Sec. 5.5.4 and 2) speech enhancement performance in Sec. 5.5.5. First, the
speaker ranking in this application is closely related to direction-of-arrival
(DOA) estimation. DOA estimation often arises in beamforming applications
where the goal is to estimate the direction of the talker-of-interest in order to
steer a beamformer. In our context, DOA estimation is related to estimating
the channel of the conversational partner. Hence, the MOG algorithm is in
fact a DOA estimator in this context. Secondly, the speech enhancement
performance will quantify the potential benefit of using the proposed speech
enhancement paradigm in a beamforming context for HAs. The reported
performance scores are averaged from simulations of 40 realizations of the
acoustic scenes for the results in Sec. 5.5.4 and Sec. 5.5.5.

To evaluate the speaker ranking performance, we evaluate the DOA ac-
curacy and the mean-absolute-error (MAE) between the estimated DOA θ̂n
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Fig. E.9: Example of the average output over 24 seconds of the SRP-PHAT algorithm and BMOG
algorithm as a function of direction. The acoustic scene consist of 1 conversational partner and
5 competing speakers in canteen noise. The SRP-PHAT algorithm is not able to distinguish
between the conversational partner and competing speakers, however, the proposed BMOG al-
gorithm (Tint = 10 s) is however effective at locating the conversational partner.
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MOG Tint = 5 Tint = 10 Tint = 20 Tint = 30
Nc = 3 31.60% 46.23% 65.94% 75.03%
Nc = 5 35.54% 48.23% 63.83% 70.97%
MMI
Nc = 3 16.91% 32.69% 51.54% 61.26%
Nc = 5 20.00% 31.77% 49.66% 58.91%
SRP-PHAT
Nc = 3 19.72% 19.72% 19.72% 19.72%
Nc = 5 23.39% 23.39% 23.39% 23.39%

Table E.2: DOA estimation accuracy as a function of integration time Tint and number of com-
peting speakers Nc.

MOG Tint = 5 Tint = 10 Tint = 20 Tint = 30
Nc = 3 60.55◦ 45.41◦ 29.81◦ 22.30◦

Nc = 5 58.58◦ 46.67◦ 30.81◦ 22.39◦

MMI
Nc = 3 79.68◦ 60.35◦ 42.27◦ 33.77◦

Nc = 5 72.90◦ 59.71◦ 43.16◦ 33.17◦

SRP-PHAT
Nc = 3 79.62◦ 79.62◦ 79.62◦ 79.62◦

Nc = 5 77.25◦ 77.25◦ 77.25◦ 77.25◦

Table E.3: Mean-absolute-error of estimated DOA as a function of integration time Tint and
number of competing speakers Nc.

and the true DOA θn of the conversational partner. The DOA accuracy is the
probability of estimating the correct DOA of the conversational partner and
the MAE is estimated as the average absolute error:

ˆMAE =
1
N

N

∑
n=1
|arg

(
exp(j(θn − θ̂n))

)
|, (E.31)

where θn and θ̂n are in radians,
√

j = −1, and arg(·) is the argument of a
complex number. The ˆMAE is averaged over

The speech enhancement performance is reported in terms of ESTOI,
PESQ, and segmental SNR scores to estimate the speech intelligibility, speech
quality, and noise suppression performance of the proposed speech enhance-
ment paradigm, respectively. The ESTOI, PESQ, and segmental SNR scores
are computed using the output of the enhancement system ŝt(n) and the
clean conversational partner speech signal received at the reference micro-
phone index s′t,m′(n).

Our evaluation includes four beamforming systems which are based on
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the speech enhancement paradigm in Fig. E.6. All systems use the same
spatial filter bank of MPDR beamformers for speech separation. We use the
rVAD 2.0 for voice activity detection for all systems. We refer the beamform-
ing systems to as

• SE-Oracle: The beamforming system, SE-Oracle, is used as a reference
system to indicate the upper bound performance if the direction of the
conversational partner is known in advance.

• SE-MMI: The beamforming system, SE-MMI, uses the MMI algorithm
to find the direction of the conversational partner. The output at time n
of SE-MMI is ŝt(n) = ŝ′

îMMI(n)
(n) where îMMI(n) is the DOA estimate of

the conversational partner at time n.

• SE-MOG: The beamforming system, SE-MOG, uses the MOG algo-
rithm to find the direction of the conversational partner. The output
at time n of SE-MOG is ŝt(n) = ŝ′

îMOG(n)
(n) where îMOG(n) is the DOA

estimate of the conversational partner at time n.

• SE-SRP-PHAT: The beamforming system, SE-SRP-PHAT, uses the well-
known SRP-PHAT algorithm [6] to estimate the DOA of the conver-
sational partner. In contrast to the speaker ranking algorithms NCC,
MMI, and MOG, the SRP-PHAT algorithm does not utilize turn-taking
to the candidate speakers related to conversations but instead searches
for the most dominant speaker. The output at time n of SE-SRP-PHAT
is ŝt(n) = ŝ′

îSRP-PHAT(n)
(n) where îSRP-PHAT(n) is the DOA estimate of the

conversational partner at time n.

• SE-BMOG: The beamforming system, SE-BMOG, uses the BMOG al-
gorithm to compute a posterior probability distribution of the direction
of the conversational partner. The output of SE-BMOG at time n is a
linear combination of the separated candidate speakers using the poste-
rior probabilities as weights, i.e., ŝt(n) = ∑I

i=1 P(Hi|φ1, ..., φI)ŝ′i(n). The
prior probability distribution for BMOG was set to be a uniform prior
probability distribution.

We did not include a beamforming system with a NCC-based speaker rank-
ing algorithm as it performed significantly poorer than the other algorithms
in preliminary experiments.

5.5.4 Results: DOA estimation performance in beamforming systems

This section focuses on speaker ranking/DOA performance and not speech
enhancement performance of the complete beamforming system, which is
treated in Sec. 5.5.5. Therefore, BMOG is not included since the output of
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BMOG is a probability distribution and not an estimate of the conversational
partner as the MOG algorithm.

The results for DOA estimation performance in terms of DOA accuracy
and MAE are shown in table E.2 and E.3, respectively. Each score in the table
is an average over 40 realizations of the acoustic scenes.

The MOG algorithm seems to outperform the MMI algorithm consistently
by approximately 15%-points. Similarly, the MAE for the MOG algorithm is
lower than the MAE for MMI and SRP-PHAT for all Tint and Nc. It is also
clear, that the SRP-PHAT algorithm in general struggles in estimating the
conversational partner DOA in a multi-speaker situation which is demon-
strated in Fig. E.9. Essentially, the SRP-PHAT algorithm constantly switches
between the candidate speakers as the estimate of the conversational partner.
The MOG algorithm, however, effectively exploits the turn-taking mechanism
in conversations and is able to detect the conversational partner.

An interesting observation is that the DOA estimation accuracy is slightly
higher for Nc = 5 compared to Nc = 3 at low integration times, e.g., Tint = 5
s. Likewise, the MAE is lower for Nc = 5 compared to Nc = 3 at low inte-
gration times. However, note that the angular distance between the conver-
sational partner and competing speakers becomes larger at Nc = 3 compared
to Nc = 5. That is, for Nc = 3 the speakers are located at {0◦, 90◦, 180◦, 270◦}
whereas for Nc = 5 the speakers are located at {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}.
Therefore, possible explanations of these observations at low integration
times are that 1) the DOA estimates of MMI and MOG become more bi-
ased for Nc = 3, which results in a lower accuracy and 2) MMI and MOG are
more likely to return a higher absolute error for Nc = 3 than for Nc = 5 in
case of a DOA estimation error. However, it is evident from the results, that
the MOG algorithm has significantly higher accuracy compared to MMI and
SRP-PHAT for all combinations of Tint and Nc.

5.5.5 Results: Speech enhancement performance in beamforming systems

The results for beamforming performance are shown in Fig. E.10, which
plots performance scores ESTOI, PESQ, and segmental-SNR as a function of
integration time Tint for different beamforming systems. Cleacly, the MOG
algorithm outperforms the MMI and SRP-PHAT algorithms significantly in
most situations. The results also indicate that the SRP-PHAT algorithm per-
forms slightly worse than the unprocessed signal in multi-speaker environ-
ments unless additional knowledge on the conversational partner is given.
The MMI algorithm also performs slightly worse than the unprocessed sig-
nal in terms of ESTOI at Tint = 5 s and Tint = 10 s as the MMI algorithm can
erroneously estimate a competing speaker as being the conversational partner
for low integration times. The speech enhancement system using the BMOG
algorithm, however, performs best on average across all scores, especially in
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terms of ESTOI and PESQ. This is likely due to a softer gain function based
on the estimated posterior probability, which is less aggressive compared to
the gain function used in the MOG algorithm. The softer gain function trans-
lates to higher ESTOI and PESQ scores, but a slightly lower segmental SNR
score. With long integration times, both speech enhancement systems us-
ing MOG and BMOG are extremely effective at retrieving a conversational
partner in a multi-speaker situation as they perform close to the oracle beam-
former. However, long integration times also require that the conversational
partner stays within the same beam for longer duration, e.g. in a restaurant
where the speakers are seated.

6 Conclusion

In this paper, we have proposed a speech enhancement paradigm using a
speaker ranking algorithm which can effectively retrieve a desired speech
signal in a multi-talker environment. Specifically, the proposed speech en-
hancement paradigm exploits turn-taking behavior to determine the conver-
sational partner amongst a set of candidate talker of a user by finding the
talker with minimum probability of speech overlaps and gaps. The proposed
algorithm only requires access to microphone signals, which is in contrast to
existing methods which require additional sensor inputs, e.g. EEG, cameras,
etc. We demonstrated the proposed speech enhancement paradigm in two
applications, where retrieval of a conversational partner’s speech signal in
a multi-talker environment, is desired. We compared the proposed systems
to current state-of-the-art speech enhancement systems, and results indicate
that the proposed systems significantly outperform the state-of-the-art sys-
tems.

A Appendix

A.1 Proof of minimizing speech overlap and gap, and maxi-
mizing mutual exclusion

In this Appendix, it is shown that minimizing the probability of speech over-
lap and gap is equivalent to maximizing the probability of mutual speech
exclusion between the user’s own voice VAD and candidate speaker’s VAD.
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Specifically, we show that

arg min
i

1

∑
k=0

PA0 Ai (α0= k, αi = k)

= arg max
i

1

∑
k=0

PA0 Ai (α0= k, αi =1−k).

(E.32)

Proof

The sum of the support of PA0 Ai (α0 = k, αi = j) is equal to one such that

1

∑
k=0

1

∑
j=0

PA0 Ai (α0(n) = k, αi(n) = j) = 1. (E.33)

The probabilities are split into the probability of speech overlap and gap, and
the probability of mutual speech exclusion

1

∑
k=0

PA0 Ai (α0(n) = k, αi(n) = k) =

1−
1

∑
j=0

PA0 Ai (α0(n) = j, αi(n) = 1− j).

(E.34)

where the left-hand side is the probability of speech overlap and gap and
the right-hand side is ’1’ subtracted by the probability of mutual speech ex-
clusion. Hence, minimizing the probability of speech overlap and gaps is
equivalent to:

îMOG(n)=arg min
i

1−
1

∑
k=0

PA0 Ai (α0(n)= k, αi(n)=1−k), (E.35)

or maximizing the probability of mutual speech exclusion:

îMOG(n)=arg max
i

1

∑
k=0

PA0 Ai (α0(n)= k, αi(n)=1−k), (E.36)

hence proving the equivalence in (E.32).

A.2 Proof of minimizing speech overlap and gap, and maxi-
mizing mean-square-error

In this Appendix, we show that minimizing the probability of speech overlap
and gap is identical to maximizing the mean-square-error between the own
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voice VAD and the candidate speaker VAD i.e.

arg min
i

1

∑
k=0

PA0 Ai (α0(n)= k, αi(n)= k)

=arg max
i

E
[
(A0(n)− Ai(n))

2
]

.

(E.37)

Proof

The probability of speech overlap and gap is

1

∑
k=0

PA0 Ai (α0= k, αi = k) = PA0 Ai (α0=1, αi =1)

+ PA0 Ai (α0=0, αi =0).

(E.38)

We may then write

PA0 Ai (α0=1, αi =1) + PA0 Ai (α0=0, αi =0)

=
1

∑
k=0

1

∑
j=0

kjPA0 Ai (α0= k, αi = j)

+
1

∑
m=0

1

∑
n=0

(1−m)(1− n)PA0 Ai (α0=m, αi =n)

(E.39)

and using the expectation operator, we have that

E [A0 Ai] =
1

∑
k=0

1

∑
j=0

kjPA0 Ai (α0= k, αi = j)

E [(1−A0)(1−Ai)] =

1

∑
m=0

1

∑
n=0

(1−m)(1− n)PA0 Ai (α0=m, αi =n).

(E.40)

Hence, the probability of speech overlap and gap is

1

∑
k=0

PA0 Ai (α0= k, αi = k) = E [A0 Ai] + E [(1−A0)(1−Ai)]

= 1−E [A0]−E [Ai] + 2E [A0 Ai] .

(E.41)

Since A0 and Ai are Bernoulli random variables, then E [A0] = E
[
A2

0
]

and
E [Ai] = E

[
A2

i
]
, such that the probability of speech overlap and gap is

1

∑
k=0

PA0 Ai (α0= k, αi = k) = 1−E
[
(A0 − Ai)

2
]

, (E.42)
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where E
[
(A0 − Ai)

2] is the mean-square-error (MSE) between A0 and Ai.
We see that the probability of speech overlap and gap is equivalent to 1−
E
[
(A0 − Ai)

2]. Hence, the optimization problem for the MOG algorithm is

îMOG(n)=arg min
i

1−E
[
(A0(n)− Ai(n))

2
]

=arg max
i

E
[
(A0(n)− Ai(n))

2
]

,
(E.43)

which is a maximization of the MSE between the own voice VAD and a can-
didate speaker VAD.

A.3 Expected misclassification rate for MOG

The speaker misclassification rate is defined as the probability of classifying
a wrong candidate speaker as the conversational partner. Using the MOG
algorithm, we consider a misclassification as when Φt is equal to or smaller
than Φv. For a number I of candidate speakers and integration time Tint, the
misclassification rate P(E = 1; I, Tint) is given by

P(E = 1; I, Tint) = 1− P (Φt > Φv,1, ..., Φt > Φv,I−1) ,

where

P (Φt > Φv,1, ..., Φt > Φv,I−1)

=
N

∑
φ=1

pΦ(φ; γt, βt, N)PI−1
Φ (φ− 1; γv, βv, N)

(E.44)

denotes the correct classification rate, and PΦ(φ− 1; γv, βv, N) is the cumula-
tive distribution function of pΦ(φ− 1; γv, βv, N),

PΦ(φ− 1; γv, βv, N) =
φ−1

∑
κ=0

pΦ(κ; γv, βv, N). (E.45)

Proof

First we consider the probability of correct classification under the assump-
tion that Φv,j for all j’s are independent:
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P (Φt > Φv,1, ..., Φt > Φv,I−1)

=
N

∑
φ=1

φ−1

∑
κ1=0
· · ·

φ−1

∑
κI−1=0

pΦ(φ; γt, βt, N)×

pΦ(κ1; γv,1, βv,1, N)× · · · × pΦ(κI−1; γv,I−1, βv,I−1, N)

=
N

∑
φ=1

pΦ(φ; γt, βt, N)
φ−1

∑
κ1=0

pΦ(κ1; γv,1, βv,1, N)× · · · ×

φ−1

∑
κI−1=0

pΦ(κI−1; γv,I−1, βv,I−1, N).

(E.46)

To simplify the expression, we define following cumulative distribution func-
tion

PΦ(φ− 1; γv,j, βv,j, N) =
φ−1

∑
κj=0

pΦ(κj; γv,j, βv,j, N), (E.47)

for all j = 1, ..., I − 1. Inserting (E.47) into (E.46), we have

P (Φt > Φv,1, ..., Φt > Φv,I−1)

=
N

∑
φ=1

pΦ(φ; γt, βt, N)PΦ(φ− 1; γv,1, βv,1, N)× · · · ×

PΦ(φ− 1; γv,I−1, βv,I−1, N).

(E.48)

Assuming that Φv,j are independent and identically distributed such that
γv,j = γv, βv,j = βv for all j, we may simplify to

P (Φt > Φv,1, ..., Φt ≥ Φv,I−1) =

N

∑
φ=1

pΦ(φ; γt, βt, N)PI−1
Φ (φ− 1; γv, βv, N).

(E.49)

As the misclassification rate is

P(E = 1; I, Tint) = 1− P (Φt > Φv,1..., Φt > Φv,I−1) , (E.50)

then inserting (E.49) into (E.50) yields the derived result

P(E = 1; I, Tint) =

1−
N

∑
φ=1

pΦ(φ; γt, βt, N)PI−1
Φ (φ− 1; γv, βv, N).
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