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ENGLISH SUMMARY 

Thermoelectricity is a renewable technology with good potential to convert the vast 

existent amount of waste heat worldwide into electrical energy. Since the 1950s, 

significant research effort has been made to increase the initial efficiency of the 

thermoelectric modules from 1.5% – 2% to its present 5% – 10% in the commercial 

devices and ~20% in research. Moreover, the current research focuses on a 

multitude of potential thermoelectric (TE) materials to cover all the temperature 

availabilities from room temperature to >1000°C. 

This thesis investigates two types of commercial TE modules: the widespread 

Bi2Te3 with ~5% conversion efficiency but temperature limited to 250°C and 

calcium-manganese oxide (CMO) with ~0.4% conversion efficiency that can cover 

a wider temperature range from room temperature to >1000°C. The first part of the 

work is focused on acquiring the electrical parametric characterization (I-V and P-V 

curves) of the oxide module using a commercial apparatus and the typical constant 

temperature method. Such one-module characterizations are generally used to 

predict the behaviour of multiple-module TEG integrated into applications.  

Depending on the application, research shows that the temperature variations on the 

hot side of TE modules can reach 5°C/s or higher. It is known that hill-climbing 

maximum power point tracking (MPPT) algorithms (e.g. Perturb&Observe – P&O) 

have difficulties in accurately tracking the maximum power point (MPP) in rapidly 

changing conditions. Moreover, without the existence of TEG simulators, it is 

difficult to accurately quantify the dynamic MPPT efficiency. In this thesis, the 

static and dynamic MPPT efficiency of typical TEG systems were investigated 

using a developed TEG emulator. The electrical characterization of the CMO was 

used to form a 30-module TEG in order to match the I-V characteristic to the 

converter’s efficient operating point. The 30-module TEG was modelled using a 

programmable DC power supply connected through a commercial non-inverting 

buck-boost converter to a resistive load. The MPPT static and dynamic efficiencies 

were analysed for different case scenarios related to conditions existent in practical 

TEG applications.  

So far, the theoretical MPP in TEG systems is set according to the maximum power 

transfer theorem and met when the load resistance is matched to that of the TEG. 

However, this condition is formed from a purely electrical point of view and it does 

not consider any thermal interactions in the TEG system. This thesis reveals 

through experimental analysis that the Peltier effect can maximize the power 

generated by a TEG system resulting in the existence of a real MPP higher than the 

one predicted by the theory. By changing the operating point of the TE device (i.e. 

set voltage higher than half of open circuit voltage), less current flows though the 
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module. Because of the current change, the Peltier effect is less pronounced and the 

thermal conductivity of the device is reduced. The heat flux through the module is 

therefore decreased which leads to an increase in the temperature difference across 

the device and a higher power output. This concept was first investigated on a one-

module test fixture and afterwards on a developed TEG hot gas system using Bi2Te3 

modules. Results show that the power generated by the TEG system can increase up 

to 8% by positively manipulating the Peltier effect.  

Even though research mostly focuses on developing more efficient TE 

materials/modules, this work reveals a novel approach to maximize the power 

generated by a TEG system only by changing the operating point of the TEG. 

However, the conditions for the TEG to operate at the real MPP vary mainly 

dependent on the heat flux through the TEG. Nevertheless, the thermal transient of 

the Peltier effect and its outcome on the TEG system are slow (i.e. minutes) and fast 

MPPT methods (typical response in ms) do not allow the system to thermally react 

to any electrical changes. This means that proper MPPT algorithms need to be 

designed to be compatible with the real MPP operation of TEG systems and to 

account for the beneficial but slow Peltier effect.  

  



V 

DANSK RESUME 

 

Thermoelektricitet er en vedvarende teknologi med gode muligheder for at 

omdanne den eksisterende store mængde spildvarme på verdensplan til elektrisk 

energi. Siden 1950'erne, er der sket en betydelig forskningsindsats for at øge den 

oprindelige effektivitet af termoelektriske moduler fra 1,5% – 2% til nuværende 5% 

– 10% i kommercielle enheder og ca. 20% på laboratorieniveau. Desuden fokuser 

den nuværende forskning på en lang række potentielle termoelektriske (TE) 

materialer til at dække alle temperaturer fra stuetemperatur til over 1000°C. 

Denne afhandling undersøger to typer af kommercielle TE moduler: den udbredte 

Bi2Te3 med ca. 5% virkningsgrad, men temperaturer begrænset til 250°C og 

calcium-manganoxid (CMO) med ca. 0,4% virkningsgrad, der kan dække et bredt 

temperaturområde fra stuetemperatur til over 1000°C. Den første del af arbejdet er 

fokuseret på at erhverve den elektriske parameter-karakterisering (I-V og P-V 

kurver) af oxid modulet ved hjælp af et kommercielt apparat, der benytter den 

typiske konstant-temperatur metode. Sådanne ét-moduls karakteriseringer anvendes 

generelt til at forudsige opførslen af flere moduler integreret i en TE generator 

(TEG) applikation. 

Afhængig af anvendelsen, viser forskning, at temperaturvariationerne på den varme 

side af TE-moduler kan komme op på 5°C/s eller højere. Det er kendt, at hill-

climping Maximum Power Point Tracker (MPPT) algoritmer (f.eks. Perturb & 

Observer - P&O) har problemer med præcis sporing af maximum power point 

(MPP) under hurtigt skiftende forhold. Desuden, uden eksistensen af TEG 

simulatorer, er det vanskeligt nøjagtigt at kvantificere den dynamiske MPPT 

effektivitet. I denne afhandling blev den statiske og dynamiske MPPT effektivitet af 

typiske TEG-systemer undersøgt ved hjælp af en dertil udviklet TEG emulator. Den 

elektriske karakterisering af CMO-modulet blev anvendt til at danne en 30-moduls 

TEG for at matche I-V karakteristikken for konverterens effektive arbejdspunkt. 30-

moduls TEG’en blev modelleret ved hjælp af en programmerbar DC 

strømforsyning tilsluttet via en kommerciel non-inverting buck-boost konverter til 

en resistiv belastning. MPPT statiske og dynamiske virkningsgrader blev analyseret 

for forskellige cases relateret til eksisterende praktiske forhold i TEG-applikationer. 

Hidtil er det teoretiske MPP i TEG-systemer bestemt ud fra teorien om maksimal 

effektoverførsel, der finder sted, når last-resistansen matcher resistansen af TEG-

systemet. Denne betingelse er dog dannet ud fra et rent elektrisk synspunkt, og der 

tages ikke højde for termiske interaktioner i TEG-systemet. Denne afhandling viser 

gennem eksperimentel analyse, at Peltier-effekten kan maksimere effekten 
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genereret af et TEG-system, hvilket betyder i, at der findes en reel MPP, der er 

højere end den bestemt af teorien. Ved at ændre arbejdspunktet af TE-enheden (dvs. 

sætte spændingen højere end halvdelen af tomgangsspændingen), løber der mindre 

strøm gennem modulet. På grund af den aktuelle ændring, er Peltier-effekten 

mindre udpræget og den termiske ledningsevne af enheden er reduceret. 

Varmefluxen gennem modulet er derfor reduceret, hvilket medfører en stigning i 

temperaturforskelen over enheden og en højere effekt. Dette koncept blev først 

undersøgt på en enkelt-modul prøveopsætning og bagefter på et udviklet TEG varm 

gas system ved hjælp Bi2Te3 moduler. Resultater viser, at effekten genereret af 

TEG- systemet kan stige op til 8% ved aktivt at reducere Peltier-effekten. 

Selvom forskning for det meste fokuserer på at udvikle mere effektive TE 

materialer/moduler, viser dette arbejde en ny tilgang til at maksimere effekten 

genereret af et TEG-system kun ved at ændre arbejdspunktet af TEG’en. 

Betingelserne for at få TEG’en til at operere på det rigtige MPP varierer 

hovedsageligt med varmestrømmen gennem TEG’en. Ikke desto mindre er den 

termiske respons af Peltier-effekten og derved resultatet på TEG-systemet langsom 

(dvs. minutter), og hurtige MPPT metoder (typisk reaktion i ms) tillader ikke 

systemet termisk at reagere på eventuelle elektriske ændringer. Det betyder, at de 

rette MPPT-algoritmer skal være kompatible med den reelle MPP operation af 

TEG-systemer og tage højde for den gavnlige, men langsomme Peltier-effekt. 
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CHAPTER 1. INTRODUCTION 

This chapter first analyses the current state of the world energy and the potential 

for thermoelectric waste heat recovery in the form of background and motivation of 

the PhD thesis. Afterwards, the objectives are presented along with the main 

contributions and a summary of the thesis outline.     

1.1. BACKGROUND AND MOTIVATION 

Nowadays, more energy is wasted than used. Figure 1-1 shows the global energy 

flow diagram made available online by Lawrence Livermore National Laboratory. In 

2011, the world used ~534EJ of energy of which 54% was accounted as losses and it 

means that not all the consumed energy is put to use. The unused energy is mainly 

discharged as thermal losses into the atmosphere. Between 2007 and 2011, the 

energy consumption increased by 9% and the energy losses by 16%. Recent 

predictions forecast continuous growth in the amount of waste heat i.e. 6.8% 

between 2016 and 2022.   

The enormous percentage of rejected energy is due to the inefficient conversion of 

other necessary processes. Even worse, the losses from non-renewable energy 

sources i.e. fossil fuels are the major cause of greenhouse gas emissions. To 

diminish the negative impact on the environment, increasing renewable energy 

production has been a worldwide target for the last decade.  

Thermoelectric (TE) technology is a relatively new and promising technology 

considered to recover the waste heat and convert it to useful electrical energy. This 

technology could cover a broad range of applications from ultra-low power to high-

power large scale industrial applications (1). The electrical energy is produced when 

a TE device is exposed to a temperature difference. The amount of power production 

is dependent on the magnitude of the temperature gradient ΔT across the device, but 

also on the corresponding hot and cold temperatures (Th and Tc). Although it is an 

emerging technology, potential TE applications are intensively studied (2-5). 

Thermoelectric generators (TEGs) have significant opportunities in large scale 

industrial applications due to the high quantities of available thermal energy 

discharged as waste heat. 

The quality of the waste heat (e.g. temperature, density, accessibility) varies with the 

source emanating it. In many industrial processes, dilution air is added to reduce the 

exhaust temperature. The gaseous industrial waste heat at 150°C represents a low-

quality heat which makes it an inefficient source for TE conversion. The majority of 

TEGs present better efficiency when operating at higher hot side temperatures 

(>300°C). Medium to high temperature large scale industrial applications such as  
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furnaces, cement works, steel plants and engines (485°C to 1400°C) can offer 

significant commercial potential to TEG developers due to their suitable heat 

quality and  high operational efficiency of the energy recovery process.  

The first TEG was built in 1942 in the former Soviet Union and had a conversion 

efficiency of 1.5% – 2% (1). Between 1950s and the 1990s, the efficiency of the TE 

modules was still below 5% and the progress of improving the materials’ figure-of-

merit was slow. The modules were based on Bi2Te3, PbTe and SiGe with usage in 

small niche applications, mainly space and military missions. After 1990, the 

interest in TE energy generation was renewed and significant progress was 

achieved in device efficiency improvements, diversification of materials and 

applications (6). 

TE power generation is achieved by combining the four unit TEG system: TE 

module(s), hot side heat exchanger, cold side heat sink and power control, as seen 

in Figure 1-2. 

 

Figure 1-2 Simplified TEG system – main four units. 

The main advantage of thermoelectricity over other renewable technologies (e.g. 

wind turbines) is the fact that the energy conversion is accomplished by a non-

moving device that allows a silent operation. The device presents high reliability 

when used on more constant heat sources and exhibit long lifetime comparable to 

other technologies (e.g. PV panels, wind turbines). For example, the TE modules 

used on the Voyager spacecraft lunched in 1977 are still operational and expected to 

be so until 2025 when they will no longer supply enough power to operate any of 

the instruments (7). The use of TEGs is still limited to mainly small-scale 

applications where the primary concerns are not costs and efficiency, but reliability, 

low noise, vibration free or remote operation of the devices. At the same time, TEG 

systems are being integrated into industrial applications for the opportunity to 

gather valuable practical knowledge until advances in TE materials are achieved. 

Hot side heat exchanger

Cold side heat sink

TEG

Power Control

Waste heat
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The conversion efficiency of the laboratory TE modules may reach 20%, but 

commercial parts have a figure of merit ZT of unity and only reach 10% efficiency. 

Figure 1-3 presents the efficiency of a few energy conversion processes and the TE 

efficiency for different ZT values up to the maximum theoretical ZT = ∞ given by 

the Carnot limit (ηCarnot = (Th - Tc)/Th). Even though large efforts have been made to 

improve the ZT of materials, progress is slow. The TEG efficiency is currently not 

high enough to compete against the more mature and established technologies i.e. 

based on the Rankine cycle, but can be comparable to solar thermal plants and some 

of the PVs. However, the small physical size of a TEG makes it an attractive power 

source in some applications. A 56mm x 56 mm x 4.5mm TEG (e.g. TE-MOD-

22W7V-56 from TEGpro or 2411G-7L31-15CX1 from Custom Thermoelectric) 

can produce over 20W and when coupled to an appropriate power converter, it 

provides sufficient energy for a wide range of processes or computational tasks.  

 

Figure 1-3 Efficiency levels of common energy conversion technologies compared to TE 
potential for different figure-of-merit values. The data are presented for the heat source 
temperature range 0°C to 1400°C and considering a constant cold side temperature of 25°C 
(8).        

Even though in the future TE technology may not hold a large share of the installed 

renewable energy, it certainly has good potential to produce energy from the 

already available waste heat especially when the TEG system costs become more 

competitive. Continuous research and optimization is invested in any potential 

viable renewable technology and thermoelectricity is no exception. The 
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optimizations brought at material, module and system levels have always the same 

two main end targets: minimized system costs and maximized power output. 

Maximization of power output from a TEG system is a theme that runs throughout 

this thesis. 

For most TEG systems, the dominant costs are for ceramic plates and heat 

exchangers. Breakeven system costs are constantly analyzed and predictions are 

made when the TEG systems will reach these targets (9,10). However, cheaper 

manufacturing techniques are necessary as well as mass production to reduce 

system costs. More recently, a new technology that uses thermal spray for oxide 

module construction is under research. It is said that the spray technology has the 

potential to significantly reduce system costs and become competitive with the 

organic Rankine cycle (ORC). The cost for ORC systems is approx. €5–7/W (11). 

In terms of TE materials, the current market is dominated by modules manufactured 

from Bi2Te3 alloys. The modules exhibit acceptable performance at reasonable 

costs. Most improvements brought to the material remain at research level because 

of the additional costs involved that make them unfit for production. The best 

commercial TEGs barely reach 10% conversion efficiency. Other relatively new 

materials such as oxides are regarded as potential candidates, but the device 

efficiency is <1%. 

The use of Bi2Te3 devices in practical applications is currently limited at a 

maximum hot side temperature of around 250°C – 330°C. Above this temperature, 

the efficiency of the Bi2Te3 module decreases. For this reason, low temperature and 

low cost solders are used in manufacturing the devices. This temperature limitation 

of Bi2Te3 devices impedes the coverage of the broad range of possible TEG 

integrated applications. Therefore, the challenge for the future is to use new 

materials that could cover a wider temperature range to take advantage of the full 

spectrum of available waste heat. Even though currently oxide modules have low 

efficiency, they are considered potential TE devices that are able to cover the 

temperature requirements. In this project, commercially available Bi2Te3 and 

calcium-manganese oxide (CMO) modules will be investigated at their full 

operating temperature range.  

To still make use of the relatively good efficiency of the Bi2Te3 modules and the 

high temperature capabilities of oxide modules, a cascade combination of the two is 

possible. The oxide hot side is placed on the hot side heat exchanger, the cold side 

of the oxide is coupled with the hot side of the Bi2Te3 and the cold side of the 

Bi2Te3 is positioned on the cold side heat sink, as shown in Figure 1-4. One 

constraint for the cascade module is to keep the temperature at the interface 

between the two materials lower than the maximum limit for Bi2Te3. Even with this 

limitation, the power generated by the cascade module is higher compared to each 

of the two devices, albeit at higher cost. 
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Hot side

Cold side

Power Control

Bi2Te3 layer 

oxide layer 

T1' 

T2' 

T3' 

T1'  > T2'  > T3' 

ceramic plate

ceramic plate

gel pad

 

Figure 1-4 Diagram for the cascade calcium-manganese oxide and Bi2Te3 TE module. 

The waste heat availabilities for TEG generation are fluctuating, but not according 

to consumer power demands. The electrical energy surplus can be stored into 

batteries. However, the TEG systems implemented in remote areas (e.g. desert) can 

be affected by harsh environmental conditions that can compromise the battery 

capacity. In these situations, there is a need for energy harvesters that can power the 

electronics in the system and that do not rely on batteries.  

Such applications are low-power (tens of µW to mW) and usually involve powering 

wireless sensor systems for measurement or control, e.g. seismic monitoring, 

weather or military surveillance. TE devices are used for energy harvesting and are 

able to completely power the system from a few °C temperature gradients and as 

low as 0.6°C (12). Instead of batteries, capacitors are used to provide the necessary 

intermittent power. DC-DC converters are used to boost the voltage generated by 

the module to the level required by the sensor. Control algorithms are often avoided 

in low power application due to their additional power consumption. This also 

means that the internal module impedance cannot be matched to the impedance of 

the load and the system does not perform at its maximum power point (MPP). 

However, the main constrain in TE harvesting under low temperature gradients is 

maximizing the output voltage of the module for the system to be active. TE 

modules for harvesters are usually constructed from a large number of pellets to 

have high open-circuit voltages. At the same time, harvester TEGs have very large 

internal resistance and therefore generate low output power. Today’s converters for 

harvesters are able to start from as little as 20mV (e.g. LTC3108 from Linear 

Technology).   

For any other TEG application, the best choice for energy storage remains the 

battery. Even though, the temperature gradients can reach up to a few hundreds °C, 

the low conversion efficiency of the TEGs limit the power generation capabilities. 
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During periods when this temperature is below the operating threshold, batteries are 

used to provide power to the loads.  

When charging the batteries, the power control unit is composed of a DC-DC 

converter that operates the TEG at its MPP to extract the maximum available 

power. This operation is called maximum power point tracking (MPPT) and can be 

performed with various existing control algorithms.  

The conversion efficiency from TEGs to the loads depends on the equivalent 

converter and MPPT efficiencies, and it is not ideal. Part of the power is lost 

because of the parasitic components of the DC-DC converters and another small 

percentage is lost because of the inability of the control methods to continuously 

and perfectly track the MPP. This means that only a percentage of the power 

extracted from the TEGs is delivered to the loads or stored into the battery. The 

long-standing target of the MPPT efficiency is to reach the ideal 100% or come as 

close as possible. This can be achieved by adapting the design of the converter and 

control algorithm to match the existing operating input conditions to the load 

requirements. In this project, the focus will be on the optimization of the TEG 

power generation from the control perspective. 

For many years, electrical engineers attempted to design and model power 

electronics for TEG systems. The general focus was on experimentally testing the 

power converters and control methods using a TEG emulation consisting of a 

voltage source in series with a resistor instead of an actual TEG (4,13-19). This 

method mimics the important electrical characteristics of a TEG, but clearly 

disregards the thermal dynamics present in the actual TEG systems (order of 

minutes) which are significantly higher than the electrical response speed from the 

electronic part (order of nanoseconds). The thermal transients play a significant role 

especially in testing the dynamic efficiency of MPPT algorithms which need to be 

optimized according to the actual conditions of the desired TEG application.   

The second most used TEG test system is composed of a controlled electrical heater 

that gives the hot side temperature to the TEG (20-24). This method gives a degree 

of freedom to the user to control the thermal transients on the hot part of the TEG 

which do not necessarily reflect the thermal behaviour of a real TEG system. 

A TEG system is composed of various parts and materials with different thermal 

conductivities. The waste heat source and the thermal characteristics of the heat 

exchanger dictate the rate of temperature change on the hot side of the TEG during 

transients. At the same time, the rate of change in the cold side temperature is 

influenced by the thermal characteristics of the cooling system. The thermal 

interactions of these components are important to be considered when designing the 

TEG power conditioning system to ensure its compatibility when placed in the 

actual application. 
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A further complication arises due to the way the thermal conductivity of the TEG 

itself varies with the current flowing through the device. This phenomenon is 

caused by the Peltier effect. Any current change in the module can lead to either a 

positive or negative Peltier effect over the system. This behaviour, in conjunction 

with the non-linear voltage/ power characterization of the TEG leads to significant 

difficulty in finding the real MPP of a TEG system. This is discussed further in 

Chapter 5. 

Acquiring the electrical and thermal parameters of TE devices is usually performed 

with controllable apparatus built for research purposes. One example is the test 

fixture presented in Chapter 5 where the pressure applied to the TEG system is 

automatically adjusted using feedback control for any changes of the input settings. 

Additionally, the apparatus can maintain a set temperature difference across the 

module or a specific heat flux through the TEG depending on the user preferences. 

Such options are not found in practical TEG applications. The modules in TEG 

integrated systems are fixed at a specific pressure which varies with the temperature 

gradient across the devices. The hot-side temperature or the heat flux is given by 

the heat source and it is uncontrollable. Moreover, the TEG systems are also 

influenced by other uncontrollable parameters such as the environment (e.g. 

atmospheric pressure, humidity). These environmental effect influence the 

operation of TEGs integrated into applications which will be shown and discussed 

in Chapter 6.   

For this reason, the concept of maximizing the power generated by a TEG system 

needs to be validated not only by a test apparatus, but also by a system that 

resembles as much as possible the real TEG application. A hot gas system was 

constructed and described in Chapter 6 with the purpose of analyzing the real MPP 

in TEG systems.   

1.2. PROJECT OBJECTIVES 

Current TEG systems are temperature limited by the commercial low temperature 

Bi2Te3 modules and power limited by MPPT control methods initially designed for 

PV systems. The MPPT algorithms are derived from consideration of the constant 

temperature operation of the TEG systems which all have the common issue of 

masking the parasitic Peltier effect which can vary the output power generation of 

TEGs. The Peltier effect can be manipulated by the fast electrical changes in TE 

modules however it has a slow thermal effect on the TEG systems. This thermal 

effect has been so far disregarded by the MPPT algorithms for TEG systems 

because they were initially designed for PV systems which are not affected by 

thermal component interactions.  Moreover, experimental investigation of the 

dynamic MPPT efficiency is also limited because of the lack of TEG simulators 

that can record the necessary data.  
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In order to improve the overall power generation of the TEG systems, the following 

challenges need to be overcome: 

 How can the I-V characteristic of the TEG be matched to the converter’s 

efficient operating point?   

 How can the dynamic MPPT efficiency of TEG systems be experimentally 

investigated?  

 Can a TEG system generate more power than the limit set by the maximum 

power transfer theorem? 

 How much influence does the Peltier effect have on the TEG power 

generation? 

Based on the above mentioned challenges, the main objectives of the PhD project 

are:     

i. Parametric characterization of commercially available oxide TE modules for 

high temperature applications. 

ii. Design of a TEG emulator to investigate control algorithms for constant 

temperature operation. 

iii. Static and dynamic efficiency analysis of control algorithms using the designed 

TEG emulator and temperature profiles of realistic TEG applications. 

iv. Constant heat parametric characterization of TE modules compatible with 

realistic conditions from TEG applications.   

v. Experimental investigation of the Peltier effect potential in maximizing the 

power generated by TEG systems operating in constant heat condition. 

vi. Validation of the MPP that incorporates the positive Peltier effect on a viable 

TEG application (hot gas system).  

1.3. THESIS OUTLINE 

The thesis is presented as a monograph structured into 7 chapters as follows: 

Chapter 2 Theory of thermoelectric devices describes the basic thermoelectric 

effects, the TE device operation and an overview of the components that summarize 

a TEG system. This information is vital in understanding the contents of this thesis.    

Chapter 3 Current state of the art covers general information and explanations 

about trends in TE materials with focus on Bi2Te3 and oxides, temperature profiles 

of actual TEG systems, followed by module and overall system design 

characteristics and considerations.  
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Chapter 4 TEG emulator for MPPT testing presents the design and 

implementation of an oxide-based TEG emulator. The emulator was designed to 

eliminate the limitation to steady-state testing of TEG equivalents consisting of 

voltage sources with series resistors. A step-by-step description of modeling the 

emulator is given. Afterwards, steady-state and dynamic MPPT efficiencies are 

analyzed.  

Chapter 5 Constant heat characterization of TEGs presents the constant heat 

parameter characterization of a TE module using a test fixture compatible with the 

conditions of the actual TEG integrated applications. Moreover, experimental 

results demonstrate that the Peltier effect can be manipulated to have a positive 

outcome on the power generation of TEG systems.  

Chapter 6 MPP in Constant heat TEG systems describes the design of a hot gas 

system build for testing TE modules with operating conditions consistent with those 

of real TEG applications. Furthermore, a TE device was tested in constant heat and 

the experimental results validate the necessary additional conditions to the 

maximum power transfer theorem for the TEG system to operate at its real MPP.   

Chapter 7 Conclusions and future work summarize the general conclusion of the 

thesis and suggest possible future work.  

1.4. ORIGINAL CONTRIBUTIONS 

The original contributions of the PhD project are as follows: 

 A high temperature parametric constant temperature characterization of an 

oxide-based TEG using a commercial test system. 

 Design and implementation of a TEG emulator using a programmable DC 

power supply for power electronics testing. 

 Static and dynamic MPPT efficiency analysis using the TEG emulator for 

various test case scenarios, including rapidly changing temperature profile 

acquired from real application data. 

 Heat loss characterization for the TEG measuring system. 

 A constant heat characterization method for TEGs compatible with realistic 

conditions of TEG applications. 

 Additional conditions for controlling the TEG systems that includes the Peltier 

effect to operate at the real MPP compared to the MPP at matched impedances 

(i.e. “theoretical” MPP). 
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 Experimental validation of the TEG system power increase using a controllable 

test apparatus for TEG parametric characterization. 

 Experimental verification of the existence of the real MPP using a hot gas 

system for TEG integration that can be correlated to a viable TEG application. 

1.5. LIST OF PUBLICATIONS 

Part of the work carried out in this thesis has been published as follows: 

1.5.1. JOURNAL PAPERS 

[J1] Man, E. A., Sera, D., Mathe, L., Schaltz, E., Rosendahl, L., Dynamic 

performance of maximum power point trackers in TEG systems under rapidly 

changing temperature conditions, published in Journal of Electronic Materials, 

2016. 

[J2] Man, E. A., Schaltz, E., Rosendahl, L., Rezaniakolaei, A., Platzek, D., A high 

temperature experimental characterization procedure for thermoelectric generator 

modules under transient conditions, published in Energies, 2015.  

1.5.2. CONFERENCE PAPERS 

[C1] Man, E. A., Schaltz, E., Rosendahl, L., Thermoelectric generator power 

converter system configurations: A review, published in the proceedings of the 11th 

European Conference on Thermoelectrics, ECT 2013. 

[C2] Man, E. A., Sera, D., Mathe, L., Schaltz, E., Rosendahl, L., Thermoelectric 

generator emulator for MPPT testing, published in the proceedings of the ACEMP-

OPTIM-Electromotion International Conference, IEEE Press, 2015. 

1.5.3. AWARD 

The Outstanding Application Paper Award was received at the International/ 

European Conference on Thermoelectrics (ICT & ECT 2015) held in Dresden 

Germany for the article “Dynamic performance of maximum power point trackers 

in TEG systems under rapidly changing temperature conditions”. 
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CHAPTER 2. THEORY OF 

THERMOELECTRIC DEVICES 

This chapter covers basic thermoelectric theory starting at the material level with 

the thermoelectric effects, continues with the performance analysis of modules and 

finishes with overall information regarding TEG systems.   

2.1. INTRODUCTION TO THERMOELECTRIC PHENOMENA 

Charge carriers are particles that move freely in a material and have the ability to 

transport heat and electric charge. In semiconductors, electrons and holes are the 

charge carriers. The electric current is driven by electrons in n-type materials and 

by holes in p-type materials. The movement of holes and electrons requires energy 

and when they recombine, the energy is released. The energy removal is equivalent 

to a cooling effect, whereas the released energy is in the form of heat (25).  

A thermocouple is the basic TE unit and it consists of a pair of dissimilar metals or 

n-type and p-type semiconductor elements, electrically connected in series usually 

by conducting copper strips. A TE module is composed of more thermocouples in 

series electrical connection and coupled thermally in parallel between ceramic 

substrates. The device can operate either as a heat pump (for cooling or heating) or 

as an electrical generator. Only the power generation mode of the TEGs will be 

further investigated in this thesis. 

The conversion of temperature difference into an electric voltage and viceversa in 

solids is called the TE phenomena and it is based on three different thermoelectric 

effects: Seebeck, Peltier and Thomson. These effects allow the TE devices to work 

in heat pumping or power generation mode (26). 

2.1.1. THE SEEBECK EFFECT 

The Seebeck effect is defined as the creation of an electric potential between two 

joined semiconductors when subjected to a temperature difference. 

When a temperature difference is applied across a thermocouple, the charge carriers 

in the materials are thermally excited and diffuse towards the cold region. The 

diffusion of the carriers across the thermocouple forms a heat flux though each 

material (Qn and Qp). In the case of open-circuit condition, the accumulation of the 
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carriers at the cold junction creates an electric potential between the two terminals 

called the Seebeck voltage VOC and can be expressed using the following formula:  

OCV T   (2-1) 

Where α (V/K) is the Seebeck coefficient and ΔT (K) is the temperature difference 

between the hot and cold sides of the thermocouple. In general, the Seebeck voltage 

for the n- and p- type materials will be different and the resultant is the scalar sum 

of the individual potentials. 

The Seebeck coefficient is quantified as the built up voltage in response to an 

applied temperature difference across the two junctions: 

OCV

T
  


 (2-2) 

The value of α can be either positive or negative depending on the material type and 

its dominant charge carriers (27). Metals and metal alloys were first considered for 

thermoelectric materials, but their Seebeck coefficients are only in the range of few 

to tens of µV/K. Their usage is also limited by the fact that some metals are toxic. 

Another disadvantage to note is their behaviour when operating at high 

temperatures (around 700°C); they can easily oxidize, vaporize or melt. It was only 

after the 1920’s that semiconductors were discovered as better TE material 

candidates with Seebeck coefficients in the range of hundreds of µV/K (28). 

A thermocouple or a TE device acts as a generator when placed in a closed circuit, 

between a heat source and a heat sink that creates the temperature difference. The 

heat source drives the electrons in the n-type material toward the cooler region 

creating a current through the circuit flowing in the opposite direction. The charges 

then cross into the p-type material though the metallic interconnect. The holes in the 

p-type material then flow in the direction of the current. Thus, thermal energy is 

converted into electrical energy.  

2.1.2. THE PELTIER EFFECT 

The Peltier effect is the reverse of the Seebeck effect and it is defined as the 

conversion of current flow into a temperature difference between two dissimilar 

materials. Depending on the direction of the current flow, heat is absorbed at one 

side and released at the other. The Peltier coefficient πP is expressed with the 

formula: 
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P
P

P

I
   (2-3) 

where PP is the amount of heat produced or absorbed and I is the current flowing 

though the circuit.     

 

a) 

 

b) 

 

c) 

Figure 2-1 Two element TE device functioning as  a) power generator b) thermoelectric heat 
pump for cooling and c) thermoelectric heat pump for heating (8). 

A thermocouple or a TE device works as a thermoelectric heat pump (THP) when 

an external power source supplies the electrical excitation in the circuit. Figure 

2-1b) presents how a thermocouple works as a cooler. When a voltage is applied 

across a p-n junction, pairs of electrons and holes will be created near the junction. 

These charge carriers will flow away from the junction. The energy required by the 

charge carriers to move will have a cooling effect on the junction, transporting 

thermal energy Qn or Qp. On the opposite side of the material, the heat is released 

and heats the junctions as the electrons and holes recombine. Though the process of 

heat absorption and release, the conductors aim to return to the equilibrium that 

existed before the current was applied. Reversal of the applied electric polarity 

reverses the direction of the heat transport and the device starts working as a heater 

as shown in Figure 2-1c). 

In thermoelectric power generation, the Peltier effect is considered parasitic because 

it increases the thermal conductivity of the device by pumping heat from the hot to 

the cold side. This heat pumping leads to a decrease in the temperature gradient 

across the device and corresponding reduction in the electric potential established. 

The Peltier impact on the effective thermal resistance of a TE device is dependent 

on the magnitude of the current and varies in a non-linear way. Its effect on system 

design and performance is discussed in more detail in Chapter 5.    
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2.1.3. THE THOMSON EFFECT 

The Thomson effect is defined as the reversible heat that is generated or absorbed in 

a current-carrying homogeneous material when subjected to a temperature 

difference. In contrast with the Seebeck and Peltier effects that are defined for 

junctions between two materials, the Thomson effect is characteristic for single 

conductor. The heat PT absorbed or rejected is proportional to the product of the 

electric current I that flows though the conductor and the temperature gradient ΔT: 

TP I T   (2-4) 

Where τ (V/K) is the Thomson coefficient. 

In TE device modeling, the Thomson effect is often stated to have a minor 

influence compared to the Joule effect and therefore it is usually neglected. 

However, a few researched how this effect impacts the performance of TE modules 

(29,30). Their conclusion was that the Thomson heat can reduce the power 

generated by a module by means of voltage, but does not alter its internal 

resistance. It can have a more significant effect in the case of large temperature 

gradients and therefore some recommend that it should not be neglected (31). 

2.1.4. THE KELVIN RELATIONSHIPS 

The interaction between the Seebeck and Peltier effects is expressed by the Kelvin 

relationship in the following formula: 

P jT   (2-5) 

where Tj is the junction temperature. It indicates that the same materials can be 

employed in both power generation and heat pumping (32).  

The relationship between the Seebeck and the Thomson coefficients is defined as 

follows: 

AVG

d
T

dT


   (2-6) 

Where TAVG is the average temperature of the material. 
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The Kelvin relationships indicate that the three effects exist together in any TE 

device when they are thermally or electrically excited, no matter the operation 

mode (26).    

2.1.5. THE JOULE EFFECT 

Although this effect is not a characteristic specific to TE phenomena, the Joule 

effect should be included because of its correlation between heat and electrical 

energy. The Joule effect is defined as the heat PJ released along the length of a 

conductor when an electric current I is flowing through and can be expressed as:  

2

J condP R I  (2-7) 

where Rcond is the electrical resistance of the conductor. 

Unlike the heating caused by the Peltier effect, the Joule heating is independent of 

the direction of the current flow. In contrast with the Seebeck, Peltier and 

Thompson effects, the Joule effect is thermodynamically irreversible and is 

accounted for as a heat loss (33). 

2.2. FIGURE OF MERIT OF THERMOELECTRIC DEVICES 

The widely accepted parameter that describes the potential performance of TE 

materials and their utility in applications is called the dimensionless figure of merit: 

2 2T T
zT

  

 
   (2-8) 

and depends on the Seebeck coefficient α, thermal conductivity κ, electrical 

conductivity σ or electrical resistivity ρ and the absolute temperature T. 

To be useful in TE applications, materials need to have a large power factor (α
2
σ) 

which means a large Seebeck coefficient and electrical conductivity, and a low 

thermal conductivity. These parameters need to be optimized concurrently to 

maximize the zT of the material. This manipulation can become quite challenging 

because of the parameters’ interdependence, i.e. electrical conductivity 

proportionally dependent on thermal conductivity, but inversely proportional with 

the Seebeck coefficient, as seen also in Figure 2-2.  
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Figure 2-2 Interdependence of the Seebeck coefficient, the electrical and the thermal 
conductivities related to the doping concentration. Trends are modeled for Bi2Te3 (34). 

Low carrier concentration insulators and semiconductors have a large Seebeck 

coefficient but a low electrical conductivity. Because the electrical conductivity is 

inverse proportional to the Seebeck coefficient and both values are desired to be as 

large as possible, a compromise between the two values must be made. A large α 

can be established if a single type of carrier is used (either n or p), otherwise both 

charge carriers will migrate to the cold side, cancelling out the induced voltages 

(34). A high electrical conductivity is also beneficial to minimize the losses caused 

by Joule heating (35).  

A low thermal conductivity signifies a lower rate of heat transfer across the 

materials which ensures a higher temperature difference between the junctions. On 

the contrary, materials that are used for heat sinks have high thermal conductivities 

which allows for a fast heat transfer rate (heat flux) between the hot surface and the 

ambient environment. 

The two components that when added form the thermal conductivity are κe which 

comes from the electrons and holes transporting heat and κl from phonons travelling 

through the lattice. The electrical conductivity and the estimated electronic 

contribution of the thermal conductivity are defined as proportional by the 

Wiedemann–Franz law (36). Because of this law, it is difficult to increase one 

without increasing the other. 
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In other words, a large power factor means that the charge carriers provide an 

efficient heat to electricity conversion and a small thermal conductivity maintains a 

higher temperature difference across the device. 

The power factor maximizes somewhere between common metals and 

semiconductors (Figure 2-2). The peak occurs at carrier concentrations between 

10
19

 and 10
21

 carriers per cm
3
 and corresponds to heavily doped semiconductors 

which are proven to be good TE materials (37). 

An actual TE device is usually constructed from two materials (n-type and p-type) 

and, therefore, their electric and thermal properties differ. For more accurate 

calculations, the figure of merit of a p-n couple that accounts for the TE capacity of 

both materials can be used and is given as: 

 

   

2

p n

2
1 21 2

n n p p

T
ZT

 

   



 
  

 (2-9) 

where the n and p suffixes of the parameters correspond to the n- and p-type 

materials. Although the equation considers both material properties for the 

efficiency calculation, other parasitic contributions that affect the performance of 

the device are ignored (e.g. contact resistance) (38). A simpler option often used is 

to assume that the figure of merit of the material zT equals the one of the device ZT. 

However, ZT ≈ zT is most of the times an unrealistic approximation. For this to 

happen, the temperature must be independent and the n- and p-type TE properties 

need to be matched (34,39). 

Presently, there is no information on the largest value ZT can reach. The theoretical 

maximum of ZT = ∞ is equivalent to the Carnot efficiency which is the theoretical 

limit for any thermal process. Current ZT values are around 1→2 which is not 

enough to compete with the primary technologies such as steam turbines or internal 

combustion engines (Figure 1-3). Harman et al. (40) announced in 2005 one of the 

highest ZT values in research of around 3. Other good figures of merit reported in 

the last decade are in the range of 1.2 ˗ 2.2 at 300°C – 650°C (41). The goal of the 

TE material research community is to obtain ZT values in the range of 3-4 in order 

for the TE materials to have a competitive efficiency and to be suitable for large-

scale applications (42,43). 

Equation (2-8) is limited by the assumption that Z is defined for small temperature 

differences. Min et al. (31) show that the value of ZT calculated at ΔT = 10°C is 

significantly higher than the one obtained for a larger temperature difference (ΔT = 

90°C). Their investigation continued by integrating the Thomson effect and 

proposing the following modified equation for calculating the figure of merit: 
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   (2-10) 

The Thomson effect is most of the time neglected on the assumption that is 

relatively small; however, Min et al. (31) showed that more accurate ZT values 

under large temperature differences can be achieved if this effect is considered.  

2.3. TEG SYSTEMS GENERALITIES 

There are three operating scenarios for TEG systems: (1) constant temperature, (2) 

constant heat and (3) “dynamic” constant heat.  

Constant temperature operation is the most common for TEG system analysis. The 

hot and cold source temperatures are maintained at constant values by varying the 

thermal input power depending on the electrical load changes. The recurrent 

application example of constant temperature operation of TEGs is the electric 

heater used in parameter characterization apparatus. Even TEG manufacturers use 

such test setups to obtain product datasheets.  

One possible hot source for TEG applications that would maintain a constant 

temperature are phase-change materials (PCMs) (44). PCMs integrated into TEG 

systems can release the stored heat at variable rate corresponding to the electrical 

and thermal operating conditions of TE devices. For example, if the load current in 

a TEG system was increased, the thermal conductivity of the module would 

increase and more heat would be pumped from the hot to the cold side. Typically, 

this would lead to a temperature gradient drop across the TEG. However, because 

the thermal conductivity of the TEG was increased, PCMs would release heat at a 

higher rate, maintaining the hot temperature at the same value as before the load 

current change. 

Constant heat operation is less researched, but mostly found in waste heat 

applications. The thermal input power is constant, but the temperatures at both the 

cold and hot side of the TEG are varying depending on the parasitic effects given 

by the load current. A fairly constant heat source example is the Plutonium-238 

(Pu-238) used by the National Aeronautics and Space Administration (NASA) for 

radioisotope TEGs in space applications. This radioactive isotope has a half-life of 

87.7 years. NASA reported 0.8% decay per year which makes Pu-238 a fairly 

constant heat source (7). 

Both NASA and European Space Agency (ESA) are now considering Americium 

241 (Am-241) as alternative heat source for Pu-238 in low power satellite 

applications. Am-241 has a half-life approximately five times that of Pu-238 and it 



CHAPTER 2. THEORY OF THERMOELECTRIC DEVICES 

21 

is less expensive. Hence, Am-241 is an attractive option for long duration flights 

such as the nanosatellites considered for interplanetary missions.  

A deviation of the constant heat operation is the “dynamic” constant heat and it 

means that heat is available from the equivalent application, but the amount varies 

in time shorter than the thermal time constant of the TEG system response. The vast 

majority of the TEG applications operate under these “dynamic” constant heat 

conditions. Application examples include the heat generated by the fire in a stove, 

by the mass flow in the exhaust pipes of vehicles etc. 

2.3.1. COMPONENTS OF THE TEG SYSTEM 

Figure 2-3 represents the general schematic of a practical TEG system which 

consists of the following elements (45):  

 The support structure, also referred to as heat exchanger, is used as housing for 

the modules. The structure holds the modules and the interface materials 

sandwiched together at a specific pressure. The structure material is usually 

modified to absorb as much waste heat as possible to provide a high 

temperature on the hot side of the TEG.  

 TE module or TEG; the size, material and number of modules are chosen 

according to temperature application range and power output required.  

 Heat dissipation system, also called heat sink, enables the heat transmission 

though the modules and maintains a temperature gradient across the module.  

 Power conditioning system, which is the electrical interface that delivers 

processed power from the TEG to the loads. It generally consists of a DC-DC 

converter (with step-up and/or step-down capabilities) and a control algorithm 

to either maximize or stabilize the power delivered to loads.   

 Energy storage device, usually battery, to provide the additional necessary 

power when there is a mismatch between generation and load demand. 
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Figure 2-3 General schematic of TE system. 

In a TEG system not all the available waste heat is transferred to the TE device. 

Moreover, the effectiveness of the heat exchangers impacts the amount of heat 

transferred between the heat source and the TE material. Therefore, the 

performance of a system cannot be predicted based on the efficiency values of the 

modules or the corresponding materials. The efficiency of the commercial modules 

is currently 5% – 10%, but the system efficiency is always less than this. For 

example, in the case of TEG integration on the exhaust pipe of vehicles, the 

alterations to the pipe shape and the additional cooling load and weight lead to 

issues that limit the efficiency of exhaust heat recovery. More precisely, the 

integration of TEGs was initially suspected to increase the vehicle cooling load up 

to 50% and to cause a back pressure increase in the exhaust gas system which could 

increase the fuel consumption (46). Conversely, Kühn et al. investigated the impact 

of the TEG position on the back pressure. They report that the inclusion of the TEG 

system in the exhaust can reduce back pressure if properly implemented. The 

energy extracted from the gas increases its density (through cooling) and, although 

the mass flow rate is preserved, volumetric flow rate (and hence muffler back 

pressure) is reduced.     

Oetringer et al. (46) estimate a 3% potential fuel savings corresponding to a CO2-

emission reduction of 0.8g/100 km for an Opel Ampera with 5% efficiency half-

Heusler modules. The data collected by LeBlanc (47) show 33% efficiency 

decrease from material to system level in automotive exhaust, 32% decrease in 

water heater application and 59% decrease in industrial furnace TEG integration as 

detailed in Figure 2-4.  
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Figure 2-4 Thermoelectric material versus system efficiencies for water heater, automotive 
exhaust and industrial furnace TEG applications (47). 

2.3.2. TEG ELECTRICAL EQUIVALENT  

A standard TE module (Figure 2-5) is formed by connecting a number of n- and p-

type thermoelements electrically in series and thermally in parallel. Each 

thermocouple contains two pellets, one of which is doped to create the p-type pellet 

and the other, the n-type pellet. The elements are linked together usually by small 

copper strips and positioned between two ceramic plates that also serve as electrical 

insulators and thermal conductors.   

A TEG is a solid-state device used to produce electric energy as a result of a 

temperature gradient between its cold and hot sides. Commercial modules are 

available in a wide range of sizes to be compatible with application requirements. 

The pellet size influences greatly the internal electrical and thermal resistances of 

the module as well as the voltage-current rating. A fixed sized module can 

accommodate either a small number of pellets with large cross-sectional area or a 

higher number of pellets with small cross sectional area.  

A module with large cross-sectional area pellets has smaller internal resistance but 

also generates lower voltage and higher current. Multiple modules can be connected 

in series to obtain a higher voltage output, in parallel for higher current or a 

combination of series/parallel to meet both voltage and current demands. From a 

system’s perspective, it is important that the output from the TEG array is matched 

to a) the available heat flux, and b) produces a level of voltage and current that 

enables the power converter to be operated efficiently. Overall, the TEG output 

ratings depend on the number of thermocouples in the module, number of 
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constituent modules, their configuration/connection, the material properties of the 

thermoelements and the temperature gradient.  

The advantages of being noiseless, non-polluting, physically small and having a 

long lifetime make the TEGs attractive for a wide range of applications, both 

domestic and industrial. However, the low efficiency of the generator continues to 

be a widely discussed issue and remains to be improved. 

At constant temperature difference maintained across a TEG, the steady-state 

electrical parameters form almost linear relationships, so to a first approximation, 

the electrical equivalent can be modeled as a DC source in series with an internal 

resistance. Figure 2-6 shows the equivalent electric circuit corresponding to a 

module which consists of a voltage source connected in series to a resistance that 

represents the internal resistance of the generator. For a TEG the voltage and 

internal resistance values are temperature dependent i.e. temperature gradient and 

average temperature respectively, and this is examined in greater detail in Chapter 

4.   

When there is no load connection, VOC of a module is the sum of the Seebeck 

voltages generated by the thermocouples. At load connection, the voltage becomes: 

 load OC teg load loadV V R I where V R I      (2-11) 

 

Rload

I

Rteg

VOC

Thermoelectric generator
 

Figure 2-5 Basic configuration of a TE 
module. 

Figure 2-6 Equivalent electric circuit of 
TEG. 

And the current though the circuit can be written as: 
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The output power can be then formulated as: 

 

 
  



2 2
2 load

load load load load load 2

teg load

R T
P V I R I

R R


 (2-13) 

Often only one module will not provide the necessary power output for the 

application. As a result, more modules are interconnected depending on the load 

requirements and temperature gradient availabilities. A generalised structure of a 

TEG array is illustrated in Figure 2-7 and consists of nt modules with ns connected 

in series and np connected in parallel. The total number of modules in the generator 

array is  t s pn n n .       

 

Figure 2-7 Generalized structure of TEG. 

For this typical configuration, each module is assumed to have the same electrical 

characteristics and subject to the same thermal gradient, therefore the load current 

formula (2-12) becomes: 

,


   


s tegs
load gen

gen load p

n Rn T
I where R

R R n


 (2-14) 

In general for a practical TEG array system, the temperature gradient is not uniform 

for all modules. This results in circulating currents within the array that decrease 

system efficiency and has been extensively examined by Montecucco et al. (48).  

2.3.3. MAXIMUM POWER VERSUS MAXIMUM EFFICIENCY 

The maximum power transfer theorem states that the power produced by a TEG is 

maximized when the ratio m between the load resistance and that of the internal 

module resistance equals unity. In other words, the resistances are matched: 

Rload

Iload
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 (2-16) 

The point at which the TEG generates the highest possible power to the load at a 

given temperature gradient is defined as half of the open-circuit voltage (VOC/2) or 

short-circuit current (ISC/2), and is referred to as the maximum power point (MPP).   

In Figure 2-8 the temperature gradients ΔT1, ΔT2, ΔT3, ΔT4 and ΔT5 represent 

general samples to illustrate the dependency of TEG voltage VTEG on the 

temperature difference. It can be seen that an increase in the temperature difference 

results in an increase in the open-circuit output voltage as well as in the maximum 

output power of the module. The output power reaches its maximum value when 

the output voltage is half of the open-circuit voltage. A MPPT control is necessary 

to repeatedly perform resistance matching between the TEG and the load to extract 

the maximum power. 

 

Figure 2-8 General P-V curves of a TEG for different temperature gradients (22).       

Initial TE theory utilized the matched condition between the load and TEG 

resistance for maximum power and maximum efficiency (49,50). In 1909, a 

separate condition for maximum efficiency ( load tegm R R 1 ZT   ) was derived 

different from the one for maximum power (
load tegm R R 1  ). Since then the 

majority of textbooks and research describe these two separate conditions. These 
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assumptions are valid for the constructed modules. However, Baranovski et al. (50) 

demonstrate that in design stage, the TEG geometry can be optimized to reach 

maximum efficiency and maximum power at the same operating condition:

load tegm R R 1 ZT   . 

2.3.4. THERMAL ANALYSIS OF THE TEG SYSTEM 

The electrical conductivity σ and the thermal conductivity κ of a TE module govern 

the current and heat flow through the device. A low thermal conductivity ensures 

the temperatures of the heat exchangers are preserved at hot and cold junctions 

which maintain larger temperature gradients across the module. A high value of the 

electrical conductivity is desired to minimize the Joule heating.  

At open-circuit condition, there is no current flowing though the device and 

therefore no Peltier effect altering the heat flow. Nor is heat lost due to Joule effect. 

When a load is connected, the heat loss due to Joule effect and the effective thermal 

resistance are influenced by the magnitude of the current. The load current gives 

rise to the unwanted Peltier effect which acts to pump heat from the cold to the hot 

side. The temperature at the hot side decreases, the temperature at the cold side 

increases and, as consequence, the temperature gradient is reduced. A lower 

temperature difference across a module decreases the voltage available at the device 

terminals. Power is proportional to V
2
 and therefore a small change in temperature 

gradient can result in a large power change. Figure 2-9 shows the P-I and V-I curves 

of a Bi2Te3 commercial module. A 50°C change from 100°C to 150°C causes an 

increase of 2.36V of the VOC and 3.32W of the MPP. On the other hand, a change 

from 150°C to 200°C results in a smaller voltage increase (2.2V), but a larger 

power increase (3.46W). 

The total thermal resistance of the TEG system (Ɵsystem) is composed of the thermal 

resistances of the hot and cold thermal masses (Ɵhot, Ɵcold), the interface materials 

on both the hot and cold sides (Ɵh,interface, Ɵc,interface) and the module (Ɵmodule) as 

follows: 

system hot h,int erface mod ule c,int erface cold           (2-17) 

Figure 2-10 shows a typical thermal equivalent circuit of module placed between 

heat source and heat sink. At open-circuit condition, the heat flow though the 

device is governed only by the Fourier law Q = K(Th - Tc). In close circuit 

condition, the ideal heat flow is composed of the Fourier, the Peltier (αITj) and the 

Joule (1/2I
2
R) terms. A small amount of the thermal input power is lost from the 

system through convection and radiation (Qloss in Figure 2-10). Typically, the power 

losses are minimized and therefore they will be excluded from the analysis.  
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Figure 2-9 Rate of output power and voltage change due to temperature gradient change 
(51). 
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Figure 2-10 Equivalent thermal circuit of a TE module placed between heat source and 
heat sink. 

Considering the Thomson effect small and therefore negligible, the equivalent heat 

flow balance equations of the hot and cold junctions are: 

  2

h h h c tegQ IT K T T 1 2 I R     (2-18) 

  2

c c h c tegQ IT K T T 1 2 I R   
 

(2-19) 
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Where K = (κA)/l is the thermal conductance, κ is the thermal conductivity, A is the 

area and l the thickness of the module. 

The thermodynamic efficiency is the ratio of the electrical power generated by the 

TEG Pteg divided by the thermal power Qh at the hot junction:  

teg tegh c

h h teg c

P PQ Qelectrical power to the load

heat power absorbed at the hot junction Q Q P Q


   
   

      
 (2-20) 

Where Qc is the heat removed from the cold side.  

The maximum conversion efficiency of a TEG is thermodynamically limited by the 

Carnot efficiency and it is defined as: 

max ,
  

  
 

H C H C

H C H

T T T T1 ZT 1
T

T 21 ZT T T
  (2-21) 

To determine the efficiency, the heat removed Qc and the power generated by the 

module Pteg need to be accurately measured. However, measuring the heat flow can 

be a difficult task. The alternative method requires the calculation of ZT by 

measuring the Seebeck coefficient, electrical and thermal conductivities. The latter 

needs more coefficient measurements and may be more inaccurate. Both methods 

introduce measurement error and therefore the efficiency calculation is generally a 

difficult parameter to accurately determine.  

2.4. CONCLUSIONS 

The theory presented in this chapter is the basis for the TE topics that will be further 

investigated in this thesis. First, the TE effects were briefly introduced to aid in 

understanding how a TE device operates as a generator or a heat pump. Because 

this thesis focuses only on waste heat recovery, the discussions mostly revolved 

around the TE device operating as generator.  

The current performance limits that TEGs face start at material level due to the 

parameter interdependency of the materials. For this reason, since their discovery, 

the progress in improving the figure of merit of TE modules has been slow, 

especially for the commercial ones. Significant progress in the figure of merit of 

materials and TE devices is necessary to compete with the current more efficient 

and established technologies.  
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The concepts of constant heat and constant temperature were clearly divided. This 

clarification is mostly important as the current module characterization methods 

revolve around constant temperature condition with unlimited thermal input, but the 

actual availability in practical application is the limited heat. In other words, the 

method currently used to determine the TEG characteristics and predict the 

performance of that device integrated in an actual TEG system is faulty.  

A general electrical and thermal description of the components that form a TEG 

system was given. Similar to module level, also at system level, the 

interdependency of all the components seriously affect the efficiency of the TEG 

system leading to a reduced efficiency compared to the one of the TEG. As 

generally recommended, the TE module should not only be regarded as a “black 

box” that generates electrical energy from a temperature gradient input. Designing 

an efficient TEG system proves to be challenging as it requires the engineers to 

deeply understand the interconnected behaviour between the electrical and thermal 

parameters of the system. A complete thermal and electrical analysis of the module 

and the entire system is critical to accurately predict the behaviour of TEG systems 

integrated into applications.    
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CHAPTER 3. CURRENT STATE OF THE 

ART 

This chapter presents the literature review of the thermoelectric subjects that will 

be further investigated in this thesis. First, an update on thermoelectric materials 

and applications is given. Afterwards, the temperature profiles for real systems are 

analyzed, followed by considerations of the performance curves of the modules and 

temperature mismatch impact on efficiency. Finally, discussions conclude with 

various means to optimize the power generation in TEG systems.    

3.1. THERMOELECTRIC MATERIALS AND APPLICATIONS 

Initially, metals and metal alloys were favored as TE materials due to their 

advantage of being good electrical conductors. By the late 1960’s, semiconductors 

with zT values higher than in metals or alloys were discovered, classifying them as 

good TE materials. Semiconductors can offer higher conversion efficiency due to 

their flexibility of changing their material properties and geometry. Among the 

investigated materials, there were bismuth telluride, lead telluride and silicon 

germanium with optimum operating temperatures around 200°C, 600°C and 1100°C 

respectively. 

Waste heat depends on the ambient temperature and can reach high temperatures (> 

1000°C) in absolute terms. There is no single TE material with a high average zT for 

a full application temperature range. Each material type has highest zT values at a 

particular temperature range as shown in Figure 3-1. 

To produce high efficiency TE modules, large zT values for the materials are 

necessary, but not sufficient. Other aspects need to be considered for materials to 

become good TEG candidates, such as cost, availability, environmental impact, 

reliability or large-scale manufacturing capabilities (52). Cost is the second key 

issue after performance in large-scale applications. Materials such as some of the 

skutterudites compounds have in their structure rare earth elements and therefore 

their availability is limited. Most commercial TEGs are made from Bi2Te3, but the 

future price and availability of tellurium is becoming an issue. Lead (Pb) based 

materials ideally will be avoided in future TE device construction because of 

toxicity concerns. However, at present there is nothing commercially available that 

can match their performance. 
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Figure 3-1 State of the art zT n- and p-type materials (34). 

TE modules have to endure periodically changing conditions that can seriously 

affect their reliability. Because of the continuous exposure to thermal cycling, the 

chemical structure of the materials changes. A TE material needs also to have good 

mechanical properties to avoid fracture and breakage when exposed to long-term 

fatigue loading. These mechanical issues lead to the performance decrease of the 

module and ultimately to its destruction (53).  

The modules used in low temperature TEG applications are primarily made from 

bismuth telluride alloys (Bi2Te3, Sb2Te3 and Bi2Se3) (54-57). For a long time, TEG 

integration on stoves for remote areas subject to prolonged disruptions in electrical 

supply or with no grid connection is a popular low-medium temperature application 

that uses Bi2Te3 modules.  

In 1966, Killander and Bass (58) designed a TEG system integrated in a wood fired 

stove top. They estimated the need of a device able to produce 20W to 40W and 

chose to mount in series two HZ-20 modules from Hi-Z Technology Inc. The rated 

power of a module was 20W at matched load conditions, hot side temperature of 

230°C and 30°C on the cold side. During the day, the temperature of the stove top 

varied between 150°C and 250°C and the heat sink between 60°C and 90°C. The 

power generated by the TEG was only 4W – 7W with a morning peak of 10W. 

Killander and Bass analyzed the lower than expected power generation of their TEG 

system prototype. They observed and discussed the potential problems that caused 

the lower power output, i.e. irregular surface of the of the stove top, lack of MPPT, 

too high cold side temperature and lack of clamping pressure for the system. The 

issues reported by Killander and Bass helped others to search and propose solutions 

to increase the overall system performance, but also broaden the research interest in 

TEG integration on stoves in the following years (59-64). 

Because of their relatively high zT and wide commercial availability, attempts have 

been made to integrate Bi2Te3 modules in medium temperature TEG applications 



CHAPTER 3. CURRENT STATE OF THE ART 

33 

and more specifically in automotive applications. Since the module is temperature 

limited, an additional thermal bypass system was necessary for protection against 

damage at the hot side. However, there is a lot of waste heat recovery potential in 

applications such as car exhausts with temperatures higher than the Bi2Te3 limit (i.e. 

300°C – 600°C for diesel and 500°C – 1000°C for petrol).  

Other materials such as skutterudites and half-Heuslers are being extensively 

investigated as potential TE candidates for exhaust heat recovery, but opinions differ 

on which material is the most suitable. As yet no clear commercially viable 

demonstration has been produced.  

Between 2009 and 2012, the International Energy Agency group under the 

Implementing Agreement for Advanced Materials for Transportation (IEA-AMT) 

performed round-robins (65,66) to assess the potential TE materials for automotive 

applications. The data were collected from eleven laboratories representing six 

countries. The three main material classes were found to be: skutterudites, PbTe (n-

type) and half-Heusler (n-type). Even though skutterudites have high average zT 

values and good mechanical properties, they undergo sublimation and oxidation 

(especially p-type) at high temperatures. For this reason, they were eliminated from 

the study. On the other hand, PbTe has been used in radioisotope thermoelectric 

generators (RTGs) for space missions and exhibits minimal sublimation and 

oxidation. TEGs based on PbTe can exhibit good reliability and long life-time if 

operated under constant temperature gradient. PbTe was dismissed because when 

operated under repeated thermal cycles that are present during service for 

automotive applications, it presents weak mechanical properties and poor thermal 

shock resistance. The remaining candidate was the half-Heusler compound because 

of its strong mechanical properties and thermal stability.   

In contrast, Schock et al. (5) chose skutterudite-based TEGs for integration into a 

heavy-duty truck engine at a working temperature range of 300°C – 600°C. The 

selection criteria for the material were: (a) accommodation of the operating 

temperature range; (b) good mechanical properties, especially high durability; and 

(c) availability.  For these materials, the main issue is protection against sublimation. 

The selection of insulators showed no significant change in the sublimation process 

using gas seal, whereas on aerogel was found to be more promising.     

The first TEG used in space applications was constructed with telluride-based 

materials and was developed by NASA. The modules were composed of PbTe for 

the n-type thermoelements and TAGS1/PbSnTe for the p-type (7). The segmentation 

                                                           
1 Tellurides of antimony, germanium and silver 
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of the p- leg was done to improve the device reliability2. The current target is to 

reduce costs of a mission, which mainly means reducing the Pu-238 use by having 

more efficient TEGs. NASA tasked Jet Propulsion Lab (JPL) and Teledyne Energy 

Systems, Inc. (TESI) to bring n- and p-type skutterudite materials to production 

status for future space missions (67). Am-241 is also a strong contender and has a 

number of advantages over Pu-238, including a longer half-life and being more 

easily screened to protect the power electronics.  

In many applications, the area that can be covered by modules is large and the 

temperature distribution is non-uniform. To take advantage of the available 

temperatures, modules from different materials can be used together. Luo et al. (68) 

simulated the thermoelectric potential recovery from cement rotary kilns using data 

from a kiln operated in China. To avoid interference with the rotation of the kiln, 

TEGs were simulated on a coaxial secondary shell. The heat exchangers were 

proposed to be built from stainless steel with high absorbing coefficient coating to 

recover as much radiant heat as possible. Because of the temperature distribution 

along the longitudinal direction of the kiln, modules from different materials (i.e. 

Bi2Te3 and PbTe) were proposed. Although not explicitly stated by the authors, 

matching the TEG thermal conductivity to the available heat flux per unit area is 

critical if the desired temperature difference is to be achieved. In addition to material 

choice, the system designer also has the pellet height as a tunable parameter for 

system optimization (69).  

3.2. TEMPERATURE PROFILES ANALYSIS FOR TEG SYSTEMS 

The output power dynamics of a module are proportional to the thermal transients of 

the temperature gradient input. Such thermal time constants are necessary to be 

considered when modeling a TEG system. For PV systems, the irradiance varies at a 

fast rate during passing clouds. Control algorithms have difficulties in accurately 

tracking the MPP during such fast transient periods. Because the same control 

methods are used in TEG systems, the issues concerning fast dynamics need to be 

addressed. On the other hand, thermal rates of change are not as fast as irradiation 

changes in PV systems.  

However, TEG systems present an additional challenge not seen in PV systems: the 

interaction between the MPP set-point of the converter and the parasitic Peltier 

effect which leads to a slow response temperature change on the hot and cold side 

heat exchangers. This in turn affects the temperature gradient available across the 

module and hence the available power for extraction by the converter. TEGs respond 

                                                           
2 The desired sublimation rate of TAGS for the corresponding application is crossed above 

400 °C. To avoid temperature limiting the TEG due to sublimation, TAGS was segmented to 

PbSnTe which was able to operate between 400 °C and 700 °C. 
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in a few nanoseconds to changes in current but it may take several minutes for the 

thermal effects to manifest themselves. Response times in ~12 orders of magnitude 

have to be accommodated by the MPPT algorithms for TEG systems to allow the 

system to thermally react to any electrical changes.  

In Table 3-1, a summary of the maximum hot and cold side temperature slopes as 

described in the literature are presented. The slope values are based on an extensive 

literature review on TEGs integrated into real applications. Because the information 

regarding temperature dynamics in TEG system is rather limited, the focus was 

placed on two most common applications – stove and exhaust pipe. The fastest 

temperature slope was found to be 4.8°C/s in a biomass stove (62).  

However, the surface of exhaust pipes is also expected to reach fast temperature 

changes. Unfortunately, TEG on exhaust pipes involve testing using the new 

European driving cycle (NEDC) which does not necessarily reflect one’s way of 

driving. Indeed, the NEDC is widely recognized as being inadequate for the system 

designer to use when planning a TEG system, not least because it tends to 

underestimate the maximum heat flux a system will be subject to, and hence the 

worst-case operating temperature is likely to lead to permanent damage if not 

properly considered. 

By way of example, a gasoline engine on a dynamometer may be operated 

continuously at maximum power output for extended periods of time. When the 

engine switches from idling to full throttle, the exhaust manifold may be seen to 

become a bright red colour in as little as 20 seconds. Assuming the metal to have a 

surface temperature of ~950°C at full load and 150°C at idle, a ΔT of 800°C in 20 

seconds corresponds to a slew rate of 40°C/s. 

The observed rate of change is an order of magnitude faster than that published to 

date, suggesting there are some significant challenges yet to address in peer-

reviewed academic work but that are almost certainly already under investigation by 

the large automotive manufacturers as they develop commercial TEG exhaust gas 

systems.     
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3.3. TEG PERFORMANCE CURVES 

Acknowledge of the electrical parameters of a module are vital for designing the 

overall TEG system (i.e. power conditioning system). Typically, the TEG 

manufacturers provide the necessary data for the TEG in the form of a single power 

figure at a specific ΔT. Because there is no standard method to perform electrical 

characterization of a TE device, the electrical and thermal parameters can differ 

depending on the measurement apparatus and test conditions. The setup and the test 

conditions in which the manufacturers obtain the datasheet values for their modules 

are individual and can vary from those used by users or even in TEG practical 

applications. This means that the expected power generation from a specific module 

at a certain temperature gradient in practice will most probably not follow the 

expected datasheet specifications. For example, testing under vacuum is sometimes 

used to show “improved” TEG parameters. The vacuum significantly decreases the 

convection losses and the power generated by the module will be higher than the 

same module tested under open air. However, placing the TEGs under vacuum is 

seldom used in practical terrestrial TEG applications.  

The data mismatch issue becomes more significant in large-scale applications. In 

this case, a high amount of modules (few hundreds) are used and it can become 

difficult to predict how the system will behave. At least one module should be 

tested using the conditions experienced in the individual application to test for any 

discrepancies to the datasheet.  

Furthermore, the TEG parameters from the datasheets are exclusively obtained in 

constant temperature operation i.e. unlimited heat flux. In reality, the heat source 

available for the TEGs is constant. Therefore, this parameter mismatch will always 

exist until the manufacturers perform the appropriate tests for their modules’ 

datasheets.   

There exist some commercially available measurements systems and many have 

been constructed for research purposes to study the TEG electrical characteristics 

(78-83).  

The first step when characterizing a TE module is to experimentally obtain voltage 

and current values for various electrical loads, as well as for open- and short-circuit. 

Based on these results, the I-V and P-I curves can be plotted. From these 

characteristics, other TEG parameters such as Seebeck coefficient, electrical 

resistance, thermal conductance and ZT can be computed. A typical curve was 

shown in Figure 2-9. 

Pierce and Stevens (84) experimentally compared the TEG parameters using four 

characterization methods available in literature: steady-state, rapid steady-state, 
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Harman and Gao Min’s method. The tests were performed under constant heat 

operation, using a self-made test setup and one module for all four methods. Results 

clearly show undefined discrepancies between the four methods for each calculated 

parameter. The authors assume the mismatches are due to thermal resistance of the 

substrates, electrical contact resistance or Thomson effect, but they do not give a 

precise explanation. The conclusion of this work only strengthens the need for a 

standardized method to perform TEG parameter characterization.   

3.4. TEMPERATURE MISMATCH IMPACT ON POWER 

GENERATION 

Very often in TEG applications, instead of a single module, TEG arrays are 

employed to reach certain power ratings. The modules can be connected electrically 

in series, parallel or a combination of both. For the purpose of the discussion here, 

an array of TEGs is defined as two or more modules connected to a single power 

converter. The total surface area covered by the TEG becomes larger and the 

position of the modules relative to the thermal input power becomes asymmetric. 

For this reason, the modules are prone to experience variable temperature 

distributions. Temperature mismatch situations are mainly caused by thermal 

variability of the heat source but also by other factors such as the uneven 

distribution of the mechanical clamping force among the modules or different 

module thermal conductivity. 

Su et al. (85) explored the surface temperature variation of different heat 

exchangers for automotive waste heat recovery. Temperature readings taken with 

an infrared thermal imaging system show a temperature variation from 286.1°C to 

322.2°C and from 262.2°C to 322.8°C on two types of exhaust pipe heat 

exchangers. These findings are supported by other research on this topic 

(61,72,73,75,86). The investigations confirm that the non-uniform temperature 

distributions are very common in present TEG systems and that researchers are 

working to mitigate the problem mostly by optimization of the heat exchangers.  

The main consequence of an array of modules working at different temperature 

gradients is the fact that some operate at a different I-V point which is not 

necessarily the MPP. This leads to a total output power reduction of the TEG 

compared to the ideal case in which all modules are operating at the same MPP.  

Vadstrup et al. (87) and Montecucco et al. (48) analysed and quantified the power 

loss in series- and parallel- connected modules operating at different temperature 

gradients. In both connection types, there is a significant power drop. Vadstrup et 

al. quantified a power drop of 8.4% for series connection and 16.7% for parallel 

connection relative to the case when modules were individually controlled. 



CHAPTER 3. CURRENT STATE OF THE ART 

39 

Montecucco et al. followed up with 9.22% and 12.90% for the series and parallel 

connection respectively. Furthermore, the results from both studies reflect the same 

conclusion that paralleling modules results in a higher total power reduction. 

Montecucco et al. attribute the cause of higher losses in the parallel-connection to 

the higher current generated by the TEG which leads to higher I
2
R losses in the 

wiring and converter due to the Joule effect. Moreover, the work by Montecucco et 

al. adds information on the position of the operation points on the I-V curve of the 

modules at different temperature inputs and the corresponding thermal efficiencies 

of the system. 

The recurring solution given to avoid power reduction in temperature mismatch 

conditions is the distributed MPPT (DMPPT) configuration which means 

controlling each module independently (88). However, this would involve each 

module to have its own MPPT power converter which would increase the overall 

system costs, weight and size. The addition of converters to each module for 

individual control could present an economical problem in large scale applications 

where cost is the main concern. The extra electronics costs may not be 

economically viable because of the current low TEG system efficiency. At the same 

time, there are no available investigations focusing on the economics of the 

individual module control issue, but a compromise between the numbers of 

modules and converters must be found if this option is chosen to be implemented. 

Min Chen (89) proposes a control concept which involves disconnecting for a 

period of time the modules that reduce the system power generation due to the 

uneven temperature distribution. The control algorithm compares the performance 

of a pre-defined simulation model with the real TEGs and acts upon the modules 

that are underperforming. When the disconnected modules become viable again, 

they are reconnected into the system. The results show that the power losses due to 

temperature mismatch can be reduced using the proposed removal & revival 

method. However, the authors acknowledge that for any parameter change in the 

system, the pre-defined database needs to be updated. For example, degradation of 

TE modules can cause issues of power mismatch between the pre-defined 

combinations of maximum power output and the actual power readings. Moreover, 

the algorithm limits the TEG configuration to series connecting two parallel 

modules as presented in the paper. If both modules in the parallel connection need 

to be disconnected, this would mean an open connection of the entire TEG array 

and the loss of any power generation. Moreover, the algorithm needs significant 

computational resources to monitor and control all modules in real-time. 

Similar to individual module control in series-connected strings, another solution to 

DMPPT presented in PV systems could be applied to TEG systems. It is called 

differential power processing (DPP) and consists of converters connected to 

neighbouring modules (90,91). Compared to each module connected to one 

converter, the DPP configuration has one converter less. Moreover, the converters 
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are rated to only process the small power difference between series-connected 

modules (92). This means slightly better system efficiency and reduced costs 

compared to the case where each module is connected to its individual converter.  

3.5. MAXIMIZING POWER GENERATION FROM TEGS 

A TE device directly connected to a load operates at a specific point on the I-V 

curve which is often not the MPP. At the same time, the power produced by a TEG 

is fluctuating dependent on the temperature gradient across it produced by the waste 

heat source and therefore it cannot deliver a constant power to loads. A DC-DC 

converter interfaced between the TEG and the load can solve these issues. The 

iterative matching of the TEG internal resistance to the virtual load seen by the 

device is performed by a MPPT algorithm that regulates the duty cycle of the 

converter accordingly. This MPPT converter configuration is used to maximize the 

power generated by the TEGs for any operating conditions. MPPTs rely on iterative 

methods, often based on current or voltage measurements, to track the maximum 

operating point of the system. The performance of the algorithms is referred to as 

MPPT efficiency. A basic consideration of this type of system is that the converter 

runs with a short delay between the sampling of the TEG operating point and the 

subsequent adjustment (if any) of the converter operating condition – typically less 

than 1 ms. Present control algorithms do not consider the long-term impact on the 

thermal circuit caused by modification of the electrical operating point. 

3.5.1. DC-DC CONVERTERS IN TEG SYSTEMS 

TEGs have specific features that need to be considered when choosing the converter 

topologies. Most of the time, the voltage level generated by the TEG does not meet 

the load requirements so the converter needs step-up and/or step-down capabilities 

to solve the issue.  

Depending on the design (pellet number, size and thickness), a TE module can 

either produce low voltage and high current or high voltage and low current output. 

The first option is not favourable for DC-DC converter because there is a minimum 

voltage threshold necessary to power the converter’s electronics and operate the 

control algorithm. At the same time, high input current levels can cause significant 

power losses due to Joule heating. In this case, the voltage can be increased by 

connecting more modules in series or using a step-up converter. However, to keep 

relatively high converter efficiency, the conversion ratio is limited. The second 

module design case is more desired for TEG applications. A high voltage 

generation can mean high efficiency step up and/or down converters or less module 

connections to meet the load requirements. 
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The number and connections of the modules used to form a TEG for a practical 

application depends on the waste heat availability and the equivalent hot 

temperature range. The corresponding DC-DC converter is designed to match the 

voltage and current values generated by the TEG and at the same time the load 

demands.       

So-called energy harvesters operating in the mV region have a specific set of 

design issues that will be included here for completeness of this review. 

There are a variety of DC-DC power converter integrated circuits (ICs) designed 

specifically for low power operation (e.g. LTC3108 from Linear Technology, 

BQ25504 from Texas Instruments, SPV1050 from STMicroelectrics). All expect to 

receive a low input voltage (20mV→750mV) which is transformer-coupled to 

achieve a high step-up ratio to between 2.4V and 5V, depending on the IC. MPPT is 

not considered in these converters.  

A typical TEG, such as the commercial Bi2Te3 modules have a low internal 

resistance (few ohms) with many couples (few hundreds) electrically in series to 

develop the highest possible VOC from the lowest ΔT. Once the converter has self-

started, energy extraction from the TEG is possible from either a lower ΔT or close 

to MPP. Ideally a TEG would be specifically designed for the converter IC such 

that its internal resistance equalled the converter’s input impedance at nominal load. 

With the use of commercially available TEGs this is not the case and, for low ΔT, 

the system behaviour is dominated by the VOC. 

For TEGs with high internal resistance (e.g. thin film O-Flexx devices) the opposite 

problem occurs. When the starting threshold voltage is reached, as the converter 

tries to start, the additional current required causes the voltage to collapse and self-

start fails. The failed start-up causes additional heat transfer from the hot to cold 

side heat exchangers due to the parasitic Peltier effect, further delaying the next 

start-up attempt. 

These problems are expected to drive the development of a new range of TEGs with 

internal resistance in the 20Ω to 50Ω region with upwards of 1000 couples devices 

specifically targeting environmental energy harvesting applications. 

In most TEG applications, the temperature varies over a wide range. To process as 

much power as possible from the power source, DC-DC converters need to be able 

to operate over a wide input voltage range. A high conversion ratio of the converter 

means a maximized delivery of the power generated by the source to loads. The 

conversion ratio is altered by several circuit imperfections such as parasitic and 

switching components. Low current ripple is desired at the converter input to avoid 

interference with the control algorithms. Obviously, the converter needs to maintain 
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a high operating efficiency over the entire input voltage range, providing an 

additional challenge to the system designer. 

So far, the most popular DC-DC converters in TEG applications are buck (93), 

boost (61,94), non-inverting buck-boost (51,87,95-98) and boost-cascaded-with-

buck (99-103). These converters are simple, cost-effective, low-weight, easy to 

control and present high-efficiency.  

For TEGs that generate low voltages and high currents (i.e. skutterudites-based), the 

equivalent interleaved topology of the converters can be used (104,105). In this 

way, the magnitude of the input current is reduced by splitting the input current 

among each level of the interleaved configuration. If the current value for each level 

is smaller, the inductances can also be greatly reduced. The only disadvantage of 

this topology is that it requires more power devices which increase the hardware 

costs and the control complexity.   

In energy harvesting applications, the flyback converter is the most popular and 

used to step up the small voltage generated by the harvester (106,107). It offers high 

conversion ratio at a compromise with a lower converter efficiency (<70%) 

compared to the transformerless boost converter used in TEG applications 

(typically >90%). The flyback converter is also used in DMPPT TEG systems to 

process the small amount of power mismatch between series connected TE modules 

(88).    

The buck-boost topology is one of the most attractive choices in TEG integrated 

applications. Maganga et al. (97) used a non-inverting synchronous buck-boost to 

analyse MPPT algorithms for TEG applications. The converter had a nominal 

power of 35W (17.5V and 2A) and reached 88.2% efficiency at 34W input. The 

buck-boost used by Champier et al. (61) to charge a lead-acid battery was 

integrated into a TEG stove application. The efficiency of the converter was in the 

range of 85% - 92% when the TEG produced more than 5W. During a 2h cooking 

experiment, the TEG power varied between 8W and 14.5W and therefore the 

converter had an average efficiency of 90%. Montecucco et al. (51) designed a 

synchronous buck-boost for a wide range of input voltages (3V – 13.5V). The 

efficiency of the converter was tested with a power supply in series with a fixed 

resistor and varied from 78.1% at 1.5W input power to 92.6% at 30.38W.  

In Chapter 4, the buck-boost converter was also used to test the designed TEG 

emulator and the performance of the P&O control algorithm for various operating 

conditions. Because the main focus was on the MPPT efficiency analysis, the 

efficiency of the converter itself was not further investigated.  
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3.5.2. CONTROL ALGORITHMS IN TEG SYSTEMS 

Power management in a system can be split between two main categories: power 

output control of the energy source and converter power output control. The first 

class focuses on optimizing the energy that can be drawn from the renewable power 

sources (i.e. TEGs, PVs) and the latter focuses on maintaining a constant power to 

the loads.  

In case of TEG systems to operate at MPP, the control algorithms need to 

periodically match the input impedance of the converter to the TEG internal 

resistance for any temperature difference variation. The power delivered to the 

loads can be monitored and controlled through a closed loop. Any deviations in the 

load voltage compared to a set-reference create an error. A controller acts upon 

minimizing or eliminating the error by changing the control variable: duty-cycle 

(voltage mode), peak current (current mode) or the switching frequency.  

This thesis focuses on extracting as much power as possible from the TEGs and 

therefore on the first mentioned control category. This class contains either a MPPT 

algorithm that controls directly the duty cycle of the DC-DC converters or a 

combination of MPPT with voltage or current control.  

MPPT methods are based on an iterative approach that varies a system parameter to 

make the TEG deliver the maximum available power to the load. The tasks of the 

MPPT are to detect the power variations of the source and to continuously match 

the converter impedance to the one of the power supply as stated by the maximum 

power transfer theorem. A presumption of the work presented here is that the 

converter is connected to an infinite sink and does not accumulate charge. Thus, the 

converter is always able to operate at the MPP and absorb all available power3. 

A microcontroller or a digital signal processor (DSP) are the usual choices that are 

used to run the control methods and of course, they consume part of the TEG 

generated power to perform the necessary computations. The amount of the power 

used is dependent on the complexity of the control method. A more complex 

algorithm (e.g. P&O) has more mathematical equations compared to e.g. fractional 

open-circuit voltage or short-circuit current (fractional ISC) methods. The former is 

preferred because use of the short-circuit current, even briefly, increases the Peltier 

heat pump effect, affecting system efficiency and increased I
2
R losses in the 

electrical system. For the fractional methods the microcontroller or the DSP 

requires less computational power.  For this reason, in case of applications that have 

                                                           
3 Practically speaking, a large battery is used as the infinite sink and is periodically 

discharged to prevent overvoltage. 
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constant or slowly changing temperature gradients, a lower sampling frequency4 for 

the voltage and current readings can be used (i.e. fsamp = 1Hz) and still maintaining a 

high efficiency MPPT. Furthermore, a control method that has less computational 

burden may be more efficient in terms of microcontroller power consumption.  

The MPP power is calculated based on voltage and current readings at a specific 

sampling frequency using an analog to digital converter (ADC). A compromise 

between a high performance and low-power consumption ADC can be achieved by 

reducing the bandwidth requirements and measuring average current/voltage values 

(108). This means that the usage of the MPPT method becomes optimal for systems 

that have slower changing power sources that the algorithm can track successfully. 

Any sudden variations may not be seen nor followed by the controller because of its 

low bandwidth and as determined by the Nyquist limit.  

In any practical TEG system, the thermal inertia of the hot and cold side heat 

exchangers limits the rate of temperature change and hence undersampling is rarely 

if ever a problem. Large changes in successive sample values can, however, lead to 

a significant transient in the time response of the algorithm which, if not critically 

damped, may lead to considerable loss of system efficiency during the setting time.  

The state of the art MPPT algorithm used in not only in PV but also TEG systems is 

P&O. Because it is a “hill-climbing” algorithm, this method can never reach the 

absolute goal of 100% efficiency. Instead, it will continuously oscillate around the 

MPP even in steady-state conditions. The main issue of P&O is its inability to track 

fast changing transients, no matter the compromise between its sampling frequency 

and the perturbation amplitude. A secondary issue with P&O concerns the 

algorithm’s ability to find the “real” MPP: the required sampling frequency masks 

the beneficial effect in limited heat flux systems of operating slightly to the left of 

the MPP on a typical I-V curve. This is returned to in Chapter 5. 

P&O relies on accurate current and voltage measurements, which are affected by 

electrical noise and may lead to false power calculations. A large enough magnitude 

of the oscillations is necessary for better accuracy of the measurements. Still, a 

tradeoff needs to be ensured, because a too large oscillation can reduce the 

efficiency of the control method and may cause perturbation in the heat flux 

through the system.     

The performance of the incremental conductance (INC) control method has been 

repeatedly compared to the P&O throughout the years. Recently, Dezso et al. (109) 

                                                           
4 Note that during the sampling period no energy is extracted from the TEG and this further 

reduces the overall system efficiency. A 50µs sampling event at 1Hz equates to 0.005% 

efficiency reduction. 
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demonstrated mathematically and experimentally, that both methods share the same 

principle, behaviour and performance and therefore, INC is not a completely 

different MPPT, but a variation of the P&O. The experimental investigation of the 

steady-state and dynamic MPPT for both algorithms reveal efficiency deviations 

below 0.02% and 0.15% respectively. INC is slightly more complex to implement 

digitally than P&O and it cannot be implemented in pure analogue form (110).  

Fractional open-circuit voltage (fractional Voc) is a popular control method in TEG 

systems because of the approximately linear electrical characteristics of the TEGs; 

it is least computationally intensive and does not need current sensing. The 

algorithm measures Voc iteratively and determines the duty cycle based on half of 

the Voc value.  

Compared to the “hill-climbing” algorithms, fractional Voc requires only one 

parameter measurement and lower computational requirements which means less 

power is used by the controller unit on which the MPPT is implemented, and no 

oscillations around the MPP.  

Conversely, to measure the Voc, the energy source needs to be periodically 

disconnected from the load by means of an additional input switch. This repeated 

disconnection can lead to unwanted transients and, as already noted, reduced 

efficiency during dynamic temperature operation. For steady-state operation of the 

input temperature, the frequency of disconnection can be lowered. This reduction is 

not recommended in dynamic operation because it will affect the ability of the 

converter to track changes in the power supply.   

Laird et al. (111) investigated and compared the steady-state performance of P&O 

and fractional Voc at different temperature gradient inputs and various loads. 

Results clearly show that fractional Voc delivers a more stable output voltage than 

P&O.  

The input switch of converters (i.e. buck, buck-boost) can be used to perform Voc 

readings by disconnecting the switch and wait until capacitor charges to Voc. The 

waiting time depends on the size of the capacitor (i.e. tens of µs for a capacitor in 

the order of tens of µF).  

Montecucco et al. (51) proposed a new method to measure the Voc of a TEG, by 

adding an extra switch in series with the input capacitor of the converter. Instead of 

disconnecting with the input switch, this method disconnects the input capacitor for 

a faster Voc acquisition (in the range of ns). This Voc measuring technique is 

however limited to converter topologies that have a switch at the input to avoid 

disrupting the continuous current flow in converters that have an inductor at the 

input (i.e. boost). 
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Due to its popularity, P&O is often the reference for any research that works on 

improving its performance especially in transient operation or simply compared 

with other algorithms. Many experimental results show that the efficiency of this 

algorithm reaches easily ~90% or more.   

Phillip et al. (96) emulated a TEG system model suitable for exhaust pipe 

applications. The simulated steady-state efficiencies at different temperature input 

values for the P&O are reported between 97.10% - 98.19%. Laird et al. (14) 

experimentally tested the P&O algorithm, however, the TEG was implemented by 

using a voltage source in series with a fixed resistor5. This emulation is viable only 

for steady-state testing. The performance characterization of the MPPT algorithm 

showed a maximum of 94.78% efficiency. Kim et al. (94) focused on tuning the 

P&O parameters for a TEG system using an experimental setup with an electrical 

heater for the hot side of the module. They presented simulation and experimental 

results with various sampling periods and perturbation steps. Although they show 

the transient response for the TEG power output for a pulse input, they report only 

the steady state efficiencies for two heater power inputs (87.83% and 90.23%). 

Champier et al. (61) present well-structured results starting with simulation, 

experimental testing of the MPPT with voltage source as TEG emulator and 

subsequently, the TEG system integration into a stove application. Both simulation 

and experimental characterization show a >99% efficiency of the P&O, but no 

efficiency results are reported for the stove application. 

The experimental investigation of any MPPT algorithm is indispensable before it 

can be implemented in real systems; however the efficiency values are difficult to 

acquire, especially in dynamic operation. Specifically for this situation, 

programmable power supplies that can emulate the behaviours of renewable power 

sources (i.e. PVs) have been developed. Reference (98) describes the analysis of the 

instantaneous and average efficiency of a standard P&O using an innovative oxide-

based TEG emulator developed using a Solar Array Simulator. 

So far, there are no MPPT algorithms reported in literature specifically developed 

for TEG systems operating under constant thermal power that take into account the 

slow thermal response of the system. Based on the constant heat TEG experimental 

analysis from Chapter 5 and Chapter 6, it is proposed that such an algorithm 

requires performing three additional functions: 

                                                           
5 This approach also fails to replicate the reactive components (especially capacitance) in the 

actual TEG system that, due to oscillatory behaviour after a voltage transient, may affect the 

accuracy of the Voc sample obtained. 
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I. The algorithm must be able to track high heat exchanger slew rates 

accurately (so must be able to accommodate transients without oscillatory 

behaviour). 

II. The algorithm must be able to account for the very slow thermal response 

of the hot and cold side heat exchangers as a consequence of operating at a 

fraction of Voc which does not correspond to that predicted by 

conventional application of the maximum power transfer theorem. 

III. The algorithm must incorporate a computationally efficient method of 

combining both electrical and thermal system time constants to enable 

tracking of the real MPP. 

3.5.3. ENERGY STORAGE DEVICE 

The purpose of the energy storage device is to provide the additional necessary 

energy when there is a mismatch between generation and load demand. Usually, 

such a device is a battery or a supercapacitor.  

The charging current of a battery is less than or equal to a maximum permissible 

value, defined by the C rating. This current is provided by the converter and varies 

with the temperature gradient on the TEG. The battery voltage depends on the 

charging current and its state of charge.  

In a battery charging application, a MPPT algorithm is used to deliver the 

maximum available charging current but below the rated value. The voltage battery 

is also monitored so as not to exceed a specific value which corresponds to the 

overcharging condition. In this case, the charging current needs to be reduced. After 

the battery is fully charged, the current is kept to a low value known as the “holding 

charge”. This is typically 0.001 of the C rating.   

Montecucco et al. (93) used a similar battery charging approach as Koutroulis and 

Kalaitzakis (112). The concept was used for a 12V lead-acid battery in a TEG 

system. The MPPT algorithm becomes active when the battery voltage reaches 

10.2V. Each time the battery voltage reaches the overcharge limit, the charge 

current is decreased as a fraction of the charge capacity and the voltage is thus kept 

between 10.2V – 14.4V. The process is repeated until the battery is fully charged. 

Afterwards, the current is reduced to a few milliamperes and the battery is 

maintained at a floating voltage. 

In general, the maximum battery charging voltage has a temperature dependence 

and for temperatures other than 20°C a convection factor of -0.003V per all °C 

should be used for lead-acid battery types. 
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3.6. CONCLUSIONS 

The current state of the art was presented for TE devices that operate as electrical 

generators with waste heat as source. The chapter has examined a range of materials 

suited to different temperature ranges and their corresponding figure of merit ZT. 

Their long-term stability and factors affecting their inclusion in a range of practical 

and economically viable applications has also been reviewed.  

Considerations of how the method used to characterize TEG modules differs from 

actual usage, where the available heat flux is limited, shows that the design 

engineer faces several different challenges in translating a paper design into a well-

performing system. 

The historical application of MPPT algorithms, originally derived for PV systems to 

TEG systems, has been examined in some detail. Moreover, a number of TEG-

specific issues have been identified that limit the performance of these current 

control methods. 

Finally, the importance of matching the TE materials to both the heat flux and the 

electronic power converter such that the whole system is properly balanced has 

been explored for both steady-state and transient conditions. 

The chapter concludes with a discussion of the different factors that affect the 

overall system efficiency. Related topics such as embedded energy storage and its 

proper charging by the power converter are also briefly mentioned. 

The academic and industrial interest in TEG systems from small to large scale 

applications is growing. Following this trend, this thesis contributes to the existing 

knowledge by presenting original research addressing the following topics:   

1. Determination of TE properties: a method was developed to extrapolate the 

electric and thermal properties of TE modules based on a few steady-state 

readings at different temperature gradient for constant temperature and constant 

heat operation. 

2. Emulation of thermoelectric generator: A TEG emulator was designed and 

implemented to improve the classical voltage source in series with resistor 

connection. The emulator mainly contributes to the dynamic testing of MPPTs 

in TEG systems. 

3. Power generation maximization in TEG systems. A method was developed to 

maximize the power generated by TEG systems compared to the theoretical 

power obtained using the maximum power transfer theorem conditions. 
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The thesis concludes with a critical examination of system performance 

enhancement when the work presented here is applied to a constrained heat flux 

application.  
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CHAPTER 4. TEG EMULATOR FOR 

MPPT TESTING 

This chapter first introduces a constant temperature experimental 

characterization of the electrical parameters of an oxide-based module using a 

commercial system. Afterwards, a TEG emulator is designed based on the oxide 

module data and using a programmable DC power supply. Finally, the P&O 

algorithm was tested on the TEG emulator and the static and dynamic MPPT 

efficiencies analyzed.     

4.1. ELECTRICAL CHARACTERIZATION OF OXIDE-BASED TEG  

The first step in designing a TEG emulator is to obtain the steady-state parametric 

characterization of a real module at different temperature gradients. The thermal 

input power needs to be carefully controlled to maintain a constant temperature on 

the hot side of the device when testing from open-circuit to short-circuit conditions.  

At present, there is no standardised system or method to perform electrical 

characterization of TEGs, therefore the parameters were tested using the steady-state 

method on a commercial system called TEGeta from PANCO GmbH. Figure 4-1  

shows the equivalent block diagram of the system.  

The test setup can perform parameter characterization of one module at a time. It 

consists of a 1kW electrical heater that can reach up to 1000°C, water based cooling 

system, reference blocks for heat flow calculation, two stainless steel plates to 

sandwich the components together and a bottom spring to calibrate the clamping 

pressure. Ten thermocouples (denoted T1 to T10) are placed in the system for 

temperature measurements: one in the heater, one in the cooling block and four in 

each reference block at the distances presented in Figure 4-2. T1 was chosen to be at 

“position 0”. The temperature in the heater can be manually set to a desired value 

and it is controlled using the feedback readings from T1. 

The material used for the reference blocks is homogeneous and therefore the 

temperatures at the hot and cold side of the module under test can be extrapolated 

from the readings of T2 to T5 and T6 to T9 respectively. A more detailed description 

of the TEG setup is published in (113).  



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

52
 

 

Figure 4-1 TEGeta block diagram. 

 

Figure 4-2 Placement of the thermocouples (T2-T9) in the reference blocks. 

A commercial 42mm×42mm CMO-25-42S module was tested at various steady-

state temperatures to acquire the I-V and P-V characteristics using the TEGeta 

system. Tests were carried at 1.3MPa clamping pressure as generally recommended 

by Custom Thermoelectric and the characteristics can be seen in Figure 4-3. The 

green points are the experimental values obtained with the measuring system and the 
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orange line is the curve fitting. The current cooling system for the measuring setup 

is not yet optimized and therefore the cold side temperature was not kept as low as 

possible. Having cold side temperature above 30°C – 50°C on a module that has less 

than 1% conversion efficiency significantly reduces the power output.  

 

Figure 4-3 a) P-V and b) I-V characteristics for CMO-25-42S tested for the following 
temperature gradients ΔT = 134°C, 184°C, 236°C, 289°C, 343°C and 401°C, at 1.3MPa 
clamping pressure. 

The oxide module performed poorly and generated only 0.1W at 134°C across the 

device. The highest temperature gradient that could be obtained with the system was 

401°C where the power output reached ~1W and the VOC was ~2.4V. In case this 

module was placed in a TEG system and if operated at its MPP, it would only output 

~1.2V at 400°C which is usually not enough to activate the switching devices in 

most electronic power converters.  

4.2. TEG EMULATOR 

In contrast with PV systems where the voltage-current relationship is logarithmic, 

TEG exhibit linear electrical characteristics in steady-state for each constant 

temperature gradient maintained across the device. For this reason, the simple way 
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to experimentally emulate a TEG is using a DC power supply as voltage source in 

series with a resistor equivalent to the Seebeck voltage and the internal resistance 

respectively. However, the TEG resistance varies dependent on the average 

temperature between the hot and cold sides of the module. This simple TEG 

emulation is limited to only one steady-state temperature difference input because of 

the fixed resistor value.  

As a standalone unit, a TE device is small in size and has a light weight. As soon as 

it is integrated in a TEG system, the module needs a support structure, heat 

exchanger, heat sink or water/air cooling and some means of applying clamping 

pressure. This last part can pose certain difficulties since the hot and cold side heat 

exchangers have to be pushed together without introducing a thermal short-circuit in 

the system. These significantly increase the overall system volume, weight and 

complexity. For this reason, alternative ways to emulate TEGs such as a power 

supply and a series resistor can offer simplicity and flexibility for power electronics 

testing. 

Currently, there are no TEG simulators available on the market, but there exist 

programmable power supplies that operate as PV simulators. The Keysight E4360A 

is a Solar Array Simulator (SAS) designed to emulate the output characteristics of 

PV strings with the purpose of testing converters and MPPT algorithms without the 

need of the actual PV panels. The SAS is programmed using data from the actual I-V 

and P-V characteristics. Testing the power electronics in both PV and TEG systems 

can be more flexible with a smaller and more compact programmable supply 

compared to the real system. The SAS can accommodate various test conditions and 

most importantly, it offers testing repeatability, which in some cases is a 

requirement. 

The Keysight can be programmed to operate in three different modes:  

1. SAS mode. The SAS uses an internal-based algorithm to approximate the I-

V curve based on a list of four parameters given by the user: open-circuit 

voltage VOC, short-circuit current ISC, voltage at maximum power point on 

curve VMPP and current at the peak point on the curve IMPP. 

2. Table mode. In this mode, the user defines a table containing voltage – 

current points based on which the simulator extrapolates the I-V curve. 

3. Fixed mode. The supply behaves as a standard DC power supply and 

because this operation has been already extensively discussed and 

implemented in literature, it will not be further analysed in this thesis.  

The user can choose in both SAS and Table mode either high resolution option for a 

smother I-V curve generated within 350ms or low resolution for fast I-V curve 

generation within 30ms. 
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The characteristic of the oxide module obtained in 4.1 and presented in Figure 4-3 

will be further used to show the implementation steps of the simulator to operate as 

a TEG. 

4.2.1. CONFIGURATION FOR STEADY-STATE CONDITIONS 

As mentioned before, the easiest way to emulate a TEG in steady-state operation is 

using a power supply and a series resistor. However, to test different temperature 

gradient input conditions, the resistor needs to be manually changed with one that 

matches the resistance of the TEG. No attempt was made to replicate the inductive 

and capacitive reactances inherent in a real TEG system. Although a TEG is 

nominally a DC device, the power converter usually changes the voltage and current 

drawn from the device during MPPT operation and hence these reactive components 

can affect the accuracy of the adjustment process. Sometimes a perfect match cannot 

be made due to limited availabilities in resistor values. The simulator can be 

programmed in both SAS and Table modes to operate in steady-state at different 

temperature levels without the need for manual labour.  

In SAS mode, a set of up to 512 “lists” (i.e. table rows) containing the four 

necessary parameters (VOC, ISC, VMPP, IMPP) can be pre-programmed. Table 4-1 

contains one list with the parameters that the simulator needs to emulate the oxide 

module at 401°C. A dwell time can be set by user and as soon as this time has 

passed, the simulator switches to the next I-V curve (if programmed) from the list 

which is equivalent to a temperature gradient change for the TEG6.  

Table 4-1 Pre-programmed parameter list for simulator to generate I-V curve for oxide TEG 
at 401°C and PMPP = 1.009428W. 

VOC ISC VMPP IMPP 

2.364 1.708 0.854 1.182 

The equations used by the SAS to construct the I-V characteristic can be found in 

Appendix A (114). To emulate a TEG, the VMPP was set as half of the VOC. Figure 

4-4a) shows the I-V and P-V curves of the oxide TEG displayed by the web 

interface of the simulator.  

In Table mode, a point corresponds to a specific voltage V and current I value. A 

minimum of 3 and a maximum of 4000 points can be defined within a table. The 

volatile and non-volatile memories of the simulator can store up to 30 tables. The 

SAS can switch among the tables to emulate a temperature change for the TEG. 

                                                           
6 In this respect, the emulator can offer superior performance to that from a physical TEG 

system: the thermal time constants of the system are for all practical purposes zero. 
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Table 4-2 contains a set of 7 voltage - current points for the oxide module at 401°C. 

The TEG characteristics produced by the SAS are shown in Figure 4-4b).   

Even though in Table mode three sets of voltage – current points might be enough 

for the SAS to construct the P-V characteristics, for a TEG more points are 

necessary. This situation can be expected keeping in mind the SAS is custom made 

for PVs and also that the characteristics of PV and TEG differ. If not enough points 

are defined in the table, the resulting I-V curve will be a combination of the PV and 

TEG characteristics. This happens because the SAS needs to extrapolate the extra 

points to generate the new I-V curve and it is done based on PV equations. 

An accuracy analysis was performed for six different temperature inputs by 

comparing the MPP of the TEG with the power generated by the simulator in both 

SAS and Table modes. The results are shown in Table 4-3 with the calculated 

relative errors. In conclusion, it can be stated that the simulator can accurately 

emulate a TEG in steady-state conditions with relative error lower than 0.25%.   

 

a) 

 

b) 

Figure 4-4 Oxide module I-V and P-V curves configured using Keysight simulator in a) SAS 
mode and b) table mode at ΔT = 401°C (low resolution). 
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Table 4-2 Table with 7 pairs of voltage – current values to emulate an oxide TEG at 401°C 
and PMPP = 1.009428W. 

Current 

(A) 
1.70 1.40 1.10 0.80 0.50 0.20 0.01 

Voltage 

(V) 
0.02 0.43 0.85 1.26 1.68 2.10 2.36 

 

Table 4-3 Comparison between experimentally measured MPP (PMPP) with the MPP 
generated by the simulator in SAS (PMPP,Table) and Table (PMPP,SAS) mode (low resolution). 

ΔT 

(°C) 

PMPP 

(W) 

PMPP,Table 

(W) 

PMPP,SAS 

(W) 

errPMPP,Table 

(%) 

errPMPP,SAS 

(%) 

134 0.109627 0.109662 0.109736 0.0322 0.0997 

184 0.2055 0.2058 0.2058 0.1459 0.1459 

236 0.3425 0.343339 0.342818 0.2453 0.0932 

289 0.5172 0.517914 0.5176 0.1383 0.0776 

343 0.73668 0.738036 0.736542 0.1840 0.0187 

401 1.009428 1.011664 1.009188 0.2215 0.0237 

4.2.2. CONFIGURATION FOR DYNAMIC CONDITIONS 

For dynamic operating conditions, SAS and Table modes can be used by pre-

configuring tables and lists for the corresponding temperature profile that is going to 

be used. Because of the limited number of lists or tables that can be programed into 

the simulator, the TEG can only be tested for a limited temperature range. More 

important, in both cases the change between lists or tables is performed without 

considering any thermal system dynamics.   

A more suitable option for dynamic TEG operation without the above mentioned 

limitations is the use of the simulator in Table mode with offsets. This implies pre-

setting a table with voltage and current points as a reference table. For every 

temperature gradient change it means that the simulator needs to switch to another I-

V characteristic. A program can be designed to calculate the ISC or VOC of the new I-

V curve corresponding to the temperature change. The offset current or voltage 

between the ISC or VOC and those of the reference table is then sent to the simulator 

which updates the new TEG characteristics. Since only the reference table is pre-set 

into the simulator, there are no limitations on the number of offsets that it can 
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change. Therefore, the simulator can frequently switch the TEG characteristics even 

with small increments. Thus, the user can control the timing of the changes and 

include the thermal dynamics of the temperature gradient across the device.  

In table mode, the SAS can accept both positive and negative offset values. 

However, the simulator cannot be used with voltage offsets to perform as a TEG 

because the resulting I-V curve is a combination of the linear TEG characteristic and 

the non-linear PV one. Figure 4-5a) shows the resulting characteristic for a voltage 

offset of Voff  = +0.5V given to the reference table at ΔT = 401°C. However, the 

SAS does not preset this limitation when used with current offsets (Ioff = +0.5A) as 

seen from Figure 4-5b).  

 

a) 

 

b) 

Figure 4-5 Voltage (Voff = +0.5V) and b) current (Ioff = +0.5A) offsets set to a pre-defined 
table for oxide TEG at ΔT = 401°C. 

The information flow chart of the TEG emulator is presented in Figure 4-6. A 

MATLAB/Simulink program was designed to contain the oxide TEG I-V curves 

from Figure 4-3 and the desired profile of the temperature gradient across the 

module. The table with the current and voltage points for the oxide module 

characterization at ΔT = 401°C from Table 4-2 is chosen as the reference.  
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Figure 4-6 Flow chart with implementation of the oxide TEG emulator. 

The option of the rate of temperature change that mimics the thermal dynamics is 

also included in the script.  However, there is a minimum frequency at which the 

SAS can perform the I-V change corresponding to the temperature variation i.e. 

fmin,ΔTchange = 33.33Hz. Generally, thermal dynamics in real TEG systems are slow 

and therefore a 30ms wait time to update the I-V curves does not present a 

limitation. 

The desired gradient temperature profile can be modelled by the user. Each 

temperature change is fed to the lookup table that contains the I-V curves for the 

module. The new ISC value is subtracted from the reference ISC_ref and the offset 

ISC_off is sent to the SAS which updates the new I-V curve accordingly.  

However, performing a current offset change to the reference I-V curve means the 

variation in the value of the internal module resistance is linear which is not the case 

for TEGs. The internal resistance of TEGs varies dependent on the average 

temperature between the hot and the cold side and often can be approximated by a 

second order polynomial.  In other words, the new I-V curves do not overlap with 

the actual TEG characteristics. To overcome this limitation, a new set of current 

offset values can be calculated taking into consideration the TEG resistance values 

also. This solution makes the new I-V curves overlap the real TEG characteristics in 

a limited range around the MPP where the control algorithm usually performs as 

shown in Figure 4-7. The small deviation is considered acceptable since it is 

operation at the MPP that is of interest.  
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Figure 4-7 Real and new offset SAS I-V characteristics of a TEG module composed of 15 
series-connected modules in 2 parallel arrays operating at same MPP for ΔT = {134, 184, 
236, 289, 343, 401}°C. 

4.3. MAXIMUM POWER POINT TRACKING ALGORITHMS 

The goal of MPPT algorithms is to set the TEG system to operate at its optimum 

power output according to the temperature conditions. There exist many control 

algorithms in literature originally developed for PVs, but there are a few that are 

frequently used for TEG systems. The P&O is perhaps the most used hill-climbing 

method due to its simplicity and high efficiency. The INC is another hill-climbing 

algorithm often used instead of P&O with very similar efficiencies, but slightly 

more complex to implement. Both methods require voltage and current 

measurements and significant computational power to perform the MPP search. The 

fractional open-circuit voltage VOC method is less frequently used for PVs because 

their MPPs differ among the various panel technologies. In case of TEGs it is known 

from the maximum power transfer theorem that no matter the material the module is 

constructed from, it will operate at the MPP when the load voltage is at half of the 

open-circuit voltage. For this reason, the fractional VOC method is a very good 

choice for TEG systems and it requires only one voltage measurement (and no 

current measurement) that significantly reduces the computational demand. 

However, as will be shown in Chapter 5, operating the module at the MPP does not 

necessarily mean the system is operating at the MPP.   
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4.3.1. PERTURB & OBSERVE 

The P&O method continuously searches for the MPP on the P-V characteristic at a 

designed step and frequency.  The P&O oscillates around the MPP and so it will 

never achieve 100% efficiency, even if the temperature of the TEG system is in 

completely steady-state. Another issue of the P&O is the poor tracking under rapidly 

changing conditions.  

The flowchart of the P&O is shown in Figure 4-8 where Vref is the desired voltage at 

the source. The algorithm acquires the voltage and current measurements of the 

TEG, calculates the corresponding power and compares it to the power from the 

previous perturbation step. It further compares the current voltage with the previous 

value and finally takes a decision in which direction to perturb next. If the variation 

of the power against voltage dP/dV > 0 then the P&O perturbs on the left of the 

MPP and if dP/dV < 0  it perturbs on the right side. 

START

Sample Ik, Vk

Pk - Pk-1 > 0

Vk - Vk-1 > 0

Decrease Vref Increase Vref

RETURN

Increase Vref Decrease Vref

Vk - Vk-1 < 0

N

N N

Y

YY

 

Figure 4-8 The flowchart of the P&O algorithm. 

Optimization of the P&O involves adjusting the perturbation magnitude and/or the 

frequency according to specific applications. For example, in applications where the 

temperature is constant, a small perturbation step and low frequency are preferred. 

In the case of dynamic applications, the perturbation magnitude or the frequency 

need to be higher than for steady state, to accommodate the total power change 

caused by the temperature variation and the previous perturbation step. In this case, 
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a compromise between perturbation magnitude and frequency needs to be reached 

for the algorithm to achieve high MPPT efficiency.    

4.3.2. INCREMENTAL CONDUCTANCE 

The INC method performs similarly to P&O, even though the INC was designed 

with the purpose of avoiding the P&O drawbacks (115). However, the INC 

algorithm uses the observation that the slope of the P-I curve is zero at the MPP, 

dP/dI > 0 to the left of MPP and dP/dI < 0  to its right. The algorithm tracks the 

MPP by comparing the instantaneous (I/V) and the incremental (dI/dV)  

conductances, according to equation (4-1): 

 d VIdP dV
V I

dI dI dI
    (4-1) 

The performance of the INC method has been repeatedly compared to P&O. Often it 

was reported that the INC performance is superior because of its ability to stop 

perturbing when the MPP is reached i.e. dP/dI = 0. However, this equality is seldom 

obtained as mentioned by (115). For rapidly changing conditions, the INC method 

encounters the same problem as P&O and can track in the wrong direction.  

4.3.3. FRACTIONAL OPEN-CIRCUIT VOLTAGE 

Unlike P&O and INC, the fractional VOC is not a hill-climbing method and it does 

not require TEG current measurements. This method needs only to measure the 

TEG’s open-circuit voltage and set the load voltage to be half of VOC. Typically, the 

converter’s inductor needs to be disconnected from the TEG for a period of time to 

let the input capacitor charge up to VOC before performing the voltage measurement. 

This also can mean that for a few hundreds µs, no energy is transferred from the 

TEG to the converter. Sometimes, an additional switch can be added at the input of 

the converter, before the input capacitor to avoid intermittent converter operation. 

However, there is always an interruption to the energy flow from the TEG to the 

power converter and hence a small impact on the overall system efficiency. 

Overall, the fractional VOC is the most easily implemented control method, cheap 

because it does not need a complicated control system and has low computational 

demand. For most TEG systems the rate of temperature change is slow, therefore 

this method can be most suitable even if used with a low frequency VOC reading.  
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4.4. EXPERIMENTAL ANALYSIS OF MPPT USING THE TEG 

EMULATOR 

The TEG emulator that has been designed and is presented in this chapter has the 

main purpose of aiding in static and dynamic MPPT testing without the requirement 

of the actual complex TEG system.  

The P&O algorithm was selected to be implemented and tested with the TEG 

emulator. Among the three described control methods, only the P&O and INC need 

both voltage and current measurements to perform MPP tracking. Fractional VOC is 

the easiest to implement because it needs only a load voltage setting based on a VOC 

reading. However, a repetitive disconnection of the converter from the emulator to 

measure the VOC is necessary. The converter used for the MPPT analysis does not 

have an extra input switch to perform the disconnection, therefore this method was 

discarded. Furthermore, the P&O and INC algorithms do not interrupt the energy 

flow between the TEG and the converter to perform measurements. Between P&O 

and INC, the choice was P&O because it is easier to implement and it has similar 

behaviour with the INC method. The purpose of the experiment is to show the 

successful operation and MPPT efficiency results of the P&O algorithm on the TEG 

emulator. For this reason no optimization was performed on the control algorithm.  

The SAS unit is limited to 5A and the converter needs a minimum of 5V to operate 

up to a maximum of 42V. A TEG array consisting of two parallel-connected arrays 

each with 15 series-connected modules was used. The temperature gradient that 

satisfies the converter’s minimum voltage requirement of 5V is 134°C where the 

TEG array gives a VOC = 10.76V and ISC = 1.223A. At 401°C temperature gradient, 

the TEG array has VOC = 35.46V and ISC = 3.417A.  

The TEG was modelled into the MATLAB/Simulink program of the emulator based 

on the I-V characteristics of the oxide module. Three assumptions were made: 1) the 

temperature gradient is distributed uniformly across all modules, 2) all modules have 

the same I-V characteristic and, 3) all modules operate at constant temperature.  

4.4.1. SETUP DESCRIPTION AND TEST CONDITIONS 

Figure 4-9 shows the block diagram of the experimental setup consisting of the 

following components: a 600W simulator (E4360A from Keisight), a 400W DC-DC 

buck-boost converter connected to a variable load resistor, a LEM module for 

voltage/current measurements and a PC that runs the MATLAB codes that control 

the SAS and the converter. 
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Figure 4-9 Block diagram of the experimental setup. 

PV technology is more mature and established compared to thermoelectrics and 

there already exists a standard way of testing MPPTs. The EN 50530 (116) standard 

proposes a trapezoidal irradiance profile with different slope values to test the 

MPPTs for different (slow/fast) irradiance change conditions. The fast irradiance 

change test is important as algorithms tend to have difficulties tracking accurately 

the MPP in these conditions.  

For dynamic MPPT investigation, a trapezoidal sequence for the gradient 

temperature input is proposed (Figure 4-10) because it resembles many temperature 

profiles for TEG applications (e.g. stove (58,61,117), biomass boiler (118), car 

exhaust (119,120)).  

As mentioned, the input voltage of the converter is limited at 42V. At 400°C, the 

TEG has an open-voltage of ~35V and the MPP voltage is ~17.5V. The 5V voltage 

threshold is set by the control unit of the converter’s switching components because 

they are powered from the TEG voltage. The TEG operating at a temperature 

gradient of 134°C would provide the necessary 5V to the converter if the MPPT 

control was ideal. However, the P&O is repeatedly perturbing the operation point of 

the converter and could go below the threshold voltage. To satisfy all voltage and 

current limitations of the system during all experiments, the lower and upper limits 

for the temperature gradients were set to 150°C and 400°C respectively. This range 

mostly corresponds to medium temperature TEG applications. 

Based on the literature review of the practical temperature profile for TEG 

applications from section 3.2, three trapezoidal sequences were chosen for 

investigation and are shown in Figure 4-10. The slopes were set to 0.5°C/s, 2°C/s 

and 5°C/s. The last can be used to test MPPTs under rapidly changing temperature 

conditions.  
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The SAS was used in Table mode with current offsets and had a pre-programmed 

table for the TEG at 401°C. It was controlled by using MATLAB via a LAN 

interface. The current offset corresponding to each temperature change was sent by 

the MATLAB program to the SAS at a rate selected by the user.  The converter was 

controlled in real time by the DS1103 dSPACE system based on the P&O algorithm. 

The voltage and current readings of the TEG emulator necessary for the MPPT were 

measured with the LEM module. The MPPT unit outputs the voltage reference for 

the voltage controller which then calculates the duty cycle for the converter.  

 

Figure 4-10 Trapezoidal temperature sequences for dynamic MPPT testing. 

The switching frequency of the converter and the sampling frequency of the control 

system were set to 48kHz. A simple proportional (P) control was added to the 

system to regulate the voltage from the MPPT unit at the same rate as the sampling 

frequency7. The proportional gain of the voltage controller was set to a low value of 

0.01 to avoid enlarging the amplitude of the noise introduced in the system by the 

voltage reading. The voltage perturbation increment was set to 2V. The datasheet of 

the SAS states that it can generate an I-V curve as fast as 30ms (33.33Hz). However, 

during tests, it was observed that occasionally the simulator had issues generating 

the new curves at this rate and some of the curves were omitted. Therefore 50ms 

(20Hz) between each I-V curve was set to avoid SAS operating at its critical lower 

limit for curve generation. This setting was experimentally tested and it was found 

that the SAS experienced no issues in changing the I-V curves. 

                                                           
7 Typically a proportional-integral (PI) control is preferred to also eliminate the steady-state 

error. However, no control optimization was further investigated as the focus was the 

validation of the TEG emulator. 
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4.4.2. STEADY-STATE MPPT TESTING 

The steady-state performance of the P&O algorithm was tested for various power 

levels (15%, 50% and 100% of the maximum TEG array power). Because of the 

current limitation of the SAS and the input voltage limitation of the power converter, 

the maximum TEG array power was set to PDC,r  = 30.14W and achieved at ΔT = 

400°C. The formula used to calculate the static efficiencies was taken from the EN 

50530 standard and it is as follows: 

, ,

,

1
MPPTstat DC i DC i sam

iMPP TEG M

U I t
P t

   

  (4-2) 

Where i is the total number of measured samples, UDC,i is the sampled value of 

converter input voltage, IDC,i is the sampled value of converter input current, tM is the 

overall measuring period and Δtsam is the period between two subsequent sample 

voltages.  

A 10 second dwell time was set before each power level measurements to ensure 

steady-state operation of the MPPT. The overall measuring period for each test was 

tM = 50 seconds. Both UDC,i and IDC,i were sampled with Δtsam = 20.83μs. To also 

investigate the SAS resolution effect on the accuracy of the MPPT efficiency, the I-

V curves were set to low resolution first. Tests were carried out for two MPPT 

frequency values (fMPPT1 = 2.5Hz, fMPPT2 = 10Hz) and results are shown in Table 4-4. 

Table 4-4 Measured static efficiencies normalized to the maximum DC power (PDC,r = 
30.14W). 

PDC/PDC,r 

P&O efficiency ηMPPTstat (%) 

fMPPT = 2.5 Hz fMPPT = 10 Hz 

pDC,0.15 = 0.15 92.91 94.18 

pDC,0.50 = 0.5 97.68 98.50 

pDC,1 = 1 98.10 98.58 

The measurements in Table 4-4 were performed with the low resolution option. An 

additional test was performed with the I-V curves were set to high resolution. The 

test was carried out at 400°C corresponding to pDC_1 = 1, fMPPT was set to 2.5Hz and 

the results are shown in Table 4-5. 
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Table 4-5 Steady-state MPPT efficiencies for low/high resolution of the I-V curve at 400°C 
and fMPPT = 2.5Hz. 

Test conditions 

P&O efficiency ηMPPTstat (%) 

Low resolution High resolution 

ΔT = 400°C/  

PMPP,Table = 30.14W 

(pDC,1 = 1) 

98.13 98.74 

Two important conclusions can be drawn when comparing the results from these 

experimental tests. Firstly, looking at Table 4-5 it can be seen that the deviation 

between the MPPT efficiency values for the two resolution settings is significant 

(i.e. 0.61%). This clearly means that the resolution of the I-V curves has an 

important effect on the efficiency value, therefore, if possible, the high resolution 

should be chosen for the TEG emulator for steady-state MPPT testing.     

Secondly, Table 4-4 and Table 4-5 contain the results of two separate tests with the 

same conditions i.e. pDC,1 = 1, fMPPT = 2.5Hz, and low resolution I-V curve setting. 

The efficiency values are 98.10% and 98.13% with a deviation of 0.03%. This 

signifies that the emulator offers repeatability testing with deviations in the 

acceptable range between successive tests of the same control algorithm. 

4.4.3. DYNAMIC MPPT TESTING 

The dynamic MPPT testing was carried out on the trapezoidal sequences with the 

three different slopes: 0.5°C/s, 2°C/s and 5°C/s presented in Figure 4-10. For all 

profiles, the temperature starts from 150°C. After 10s, the temperature rises with a 

slope value up to 400°C, stops for 20s and decreases back to 150°C with the same 

slope. To mimic the temperature dynamics, the rate at which the SAS updates the I-

V characteristic corresponding to a temperature change needs to be faster than the 

MPPT frequency. As mentioned in 4.4.1, the frequency of the temperature change 

was set to 20Hz. The frequency of the P&O was varied from 2.5Hz to 12.5Hz with 

2.5Hz increments.   

The average efficiencies of the P&O in dynamic operation for the three temperature 

sequences were calculated using equation (4-3) and are summarized in Table 4-6. 
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Where i is the total number of measured samples, j is the total number of calculated 

samples, Δtj is the period in which the power PMPP,TEG,j is provided and Δti is the 

period in which UDC,i and IDC,i are sampled. 

Table 4-6 Dynamic MPPT efficiencies for various P&O perturbation frequency and three 
temperature sequences. 

fMPPT 

P&O efficiency ηMPPTdyn (%) 

Temp. seq. 1 

(5°C/s slope) 

Temp. seq. 2 

(2°C/s slope) 

Temp. seq. 3 

(0.5°C/s slope) 

2.5Hz 94.98 95.94 96.24 

5Hz 95.68 96.21 96.46 

7.5Hz 95.85 96.28 96.62 

10Hz 95.92 96.30 96.80 

12.5Hz 95.87 96.07 96.52 

Figure 4-11 and Figure 4-12 present the theoretical MPP and voltage compared to 

the TEG emulator power and voltage respectively and Figure 4-13 shows the 

instantaneous efficiencies. The results are given for fMPPT equal to a) 2.5Hz, b) 5Hz, 

c) 7.5Hz d) 10Hz and e) 12.5Hz. It is generally known that the P&O has more 

difficulties in accurately tracking under rapidly changing conditions, therefore the 

MPPT performance will be further analyzed for the fastest temperature sequence i.e. 

5°C/s slope. 

From Figure 4-7, the voltage change relative to the temperature difference variation 

can be approximated to 100mV/°C. The temperature is varied at a fixed rate (every 

50ms) which is equivalent to 0.25°C and 25mV change. When tMPPT = 400ms (fMPPT 

= 2.5Hz – case a)), the total temperature difference change is 2°C and 200mV for 

every MPPT period. The TEG emulator’s operation voltage range 1 is ~(6V,18V). 

The magnitude of the perturbation is composed of multiplying the fixed perturbation 

step with the proportional constant and the measured voltage (i.e. in the range 

(120mV,360mV)). It can be noticed that there two scenarios:1) at lower TEG 

voltage values, the set perturbation magnitude is smaller than the magnitude of the 

voltage caused by the temperature difference change and 2) larger at higher TEG 

voltage values. In contrast, when fMPPT = 12.5Hz (case e)), the total temperature 

difference change is 0.4°C and 40mV8 for every MPPT period which means the 

                                                           
8 All calculations were made for one MPPT period. The MPPT frequency and the frequency 

at which the temperature difference is changed are not synchronized. However, this does not 

affect the assumptions described.  
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perturbation magnitude is always higher than that caused by the temperature change 

for the full sequence.  

For any power change caused by the temperature gradient larger than that caused by 

the voltage perturbation, the P&O interprets the change as an effect of its action. 

Depending on the direction of the previous perturbation, the algorithm has two 

options to either perturb in the right or the wrong direction. In case of a ramped 

change in the temperature such as the trapezoidal sequence (Figure 4-12), the 

algorithm cannot recover the correct direction until the temperature change stops. 

This can happen when the MPPT frequency is too low and the total power change 

caused by the temperature change is more significant than the change caused by the 

perturbation. The effect can be also noticed in Figure 4-12, more significant on the 

rising slope of the trapezoidal temperature sequence. For all perturbation frequency 

values, the P&O simply cannot track the rapidly changing temperature and only 

oscillates around the theoretical TEG voltage. The amplitude and frequency of these 

oscillations are dependent on the MPPT frequency9. At lower P&O frequency, the 

amplitude of the oscillations is higher, which significantly affects the average 

efficiency on the rising temperature part, as shown in Figure 4-13a).       

During the falling slope the tracking difficulties of the P&O become less significant. 

Fewer oscillations can be noticed whatever the direction of the perturbation, the 

output power drops continuously due to the decrease in the input temperature 

difference. More tracking difficulties can be observed at low MPPT frequencies 

where the power change due to the input temperature drop is more significant. 

Slightly more oscillation around the theoretical voltage can be noticed in case of 

higher MPPT frequencies. In this case, the power drop caused by the temperature 

input is smaller and depending on the previous power sample and its location on the 

P-V curve, the algorithm can detect a slight power increase. However, this erroneous 

tracking is most probably rectified in the next few iterations.  

 

 

                                                           
9 Generally, the oscillations around the theoretical voltage value are dependent on both the 

magnitude and the frequency of the perturbation. However, in these experiments, the 

perturbation magnitude was fixed at 2V and only the effects of variable perturbation 

frequencies were investigated.  
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Figure 4-11 Ideal MPP power (blue) and TEG emulator output power (red) analyzed for 
fMPPT a) 2.5Hz, b) 5Hz, c) 7.5Hz d) 10Hz, and e) 12.5Hz for ramp rate of 5°C/s. 
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Figure 4-12 Ideal MPP voltage (blue) and TEG emulator output voltage (red) analyzed for 
fMPPT a) 2.5Hz, b) 5Hz, c) 7.5Hz d) 10Hz and e)12.5 Hz. 
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Figure 4-13 Instantaneous P&O efficiencies for fMPPT a) 2.5Hz, b) 5Hz, c) 7.5Hz d) 10Hz and 
e) 12.5Hz. 

Overall, the most significant tracking issues of P&O are during ramped increase in 

the temperature input and, as expected, the results validate this assumption. If the 

MPPT frequency is too small (i.e. 2.5 Hz), then the P&O will oscillate far away 

from the actual MPP causing a significant efficiency drop than can be seen in the 

instantaneous efficiency plot in Figure 4-13a). The average efficiency results from 

Table 4-6 show that the lowest efficiencies are achieved for the temperature 

sequence 1. This effect was also expected, as the P&O has more tracking difficulties 

the higher the dynamics of the temperature and sequence 1 has the fastest slope 

(5°C/s).  

In case the temperature profile of a TEG application is similar to a sequence of 

trapezoidal-like pattern, the high drop in the instantaneous efficiency on the rising 

temperature parts could lead to a serious drop in the average MPPT efficiency. 

However, this issue is generally improved by optimizing the MPPT algorithm 

specific to particular system and application.  
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For all the temperature sequences, the highest efficiency values are found at a MPPT 

sampling frequency of 10Hz. To increase the MPPT efficiency, a PI controller needs 

to be used instead of the proportional one to eliminate the steady state error.  

To assess the repeatability of the results, three extra tests were carried for fMPPT = 

2.5Hz. The P&O efficiencies were 95.6215%, 95.7535% and 95.7181% respectively 

which means a maximum deviation of 0.132%.   

Using the low resolution option and the fastest temperature sequence (5°C/s slope), 

the P&O loses its tracking ability below 2.5Hz. At high resolution, the MPPT was 

still able to track at a frequency of 1Hz. This option may be more useful for TEG 

applications where the temperature changes less than 5°C/s so a smaller frequency 

for the MPPT method can be chosen and tracking accuracy can be improved. 

However, because the SAS in high resolution option limits the temperature change 

at 2.85Hz (equivalent to 350ms), only MPPT frequency lower than this value can be 

used to still emulate dynamic operation.   

4.5. CONCLUSIONS 

Thermoelectric technology is still at its beginning stage and further work is 

necessary for this technology to become mature and competitive. For example there 

is still no standard way of acquiring the characteristics of TEG modules or specific 

requirements for testing the TEG systems like the EN 50530 standard for PV 

systems. 

This chapter has presented the commercial mechanical apparatus used to test a TEG 

module. The electrical characterization of a calcium-manganese oxide module was 

performed at various temperatures. These data were then used to define the 

parameters of a 30W TEG array assured to be isothermal. Such characterizations are 

useful for testing MPPT converters were having an actual module is optional.  

Further, the chapter described an approach to design and model a TEG emulator for 

static and dynamic MPPT testing of TEG system with the present available devices 

for PV systems. The designed TEG emulator can facilitate the extra dynamic MPPT 

efficiency investigation that was so far limited when the power electronics of a TEG 

system were experimentally tested using a DC supply in series with a fixed resistor 

instead of the actual TEG.  

Three popular control methods were investigated: P&O, INC and fractional VOC. 

P&O tracks in a similar hill-climbing way like INC, but it is easier to be digitally 

implemented. Compared to fractional VOC, P&O algorithm does not disconnect the 

converter from the TEG hence it does not interrupt the energy transfer between the 
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two. Therefore, the standard P&O was chosen for efficiency testing using the TEG 

emulator.  

The EN 50530 standard for PVs was used as reference to propose the trapezoidal 

temperature sequence for the dynamic analysis and the equations for the efficiency 

calculations. Different power levels were used to investigate the static P&O 

performance. For dynamic MPPT testing, three trapezoidal sequences with different 

slopes were used. Results validate the expected poor tracking of the P&O at low 

frequencies (2.5Hz) and fast changing temperature conditions (5°C/s slope). 

However, the target of designing a TEG emulator for controlled power electronics 

testing was achieved and validated. Moreover, it has been established that the TEG 

emulator system can achieve repeatability of the results.   

Nevertheless, the programmable power supply used in the TEG emulator design is 

individual to solar panels. This means that it presents a series of restrictions when 

used as a TEG. The SAS limitations were identified and suggestions were given how 

to adapt the apparatus for various TEG application requirements (e.g. table and SAS 

mode for limited temperature range testing or table mode with offsets for unlimited 

temperature range testing).  

Dynamic efficiency is yet a difficult parameter to calculate because the MPP of a 

TEG system operates most of the times differs from the predicted theoretical one. 

However, the TEG simulator was able to generate the theoretical MPP with a 

relative error of less than 0.25%. This means that the apparatus could be 

successfully used to predict TEG system performance, but similar to the PV 

programmable supply, a device should be constructed for TEG system with the 

appropriate equations. The thermal interactions between the components of the TEG 

system could be included by the user in the MATLAB program that runs the 

simulator. 
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CHAPTER 5. CONSTANT HEAT 

CHARACTERIZATION OF TE 

MODULES 

This chapter first presents the experimental electrical and thermal parameter 

characterization of the TE device in constant heat corresponding to the conditions 

present in practical TEG systems. The experimental validation was then performed 

to show that manipulation of the Peltier effect can have a positive impact on the 

performance of TEGs relative to the performance set by the maximum power 

transfer theorem. 

5.1. THEORETICAL ANALYSIS OF THE MPP IN TEG SYSTEMS 

The maximum power transfer theorem states that the MPP for a TE module is 

reached when the load resistance is matched to that of the TE device. This equality 

is achieved when the load voltage is equal to half of the VOC of the TEG. The work 

carried out in this chapter will show that there is a missing condition for the theorem 

to be also true at the system level. The “theoretical” MPP according to the maximum 

power transfer theorem is the same as the “real” MPP only when the TEG system is 

operated under constant temperature condition. This means that the system runs 

with an unlimited heat source available, and the gradient across the device is kept 

constant, independent of the Peltier effect due to current changes though the system 

modifying the module’s thermal conductivity.  

In practical TEG applications, the available heat is limited. This means the TEG 

system is operating at constant thermal input rather than constant temperature, 

referred to as constant heat.  In this case the Peltier effect can cause significant 

changes in temperature gradient which further affect the power generated by the 

TEG and hence, the MPP.  

5.2. MAXIMIZING POWER GENERATION THROUGH PELTIER 

EFFECT  

To date, little research effort has focused on the constant heat operation of a TEG 

system. Most of those concentrated on assessing the existing parameter 

characterization of modules or developing new methods (84,121). The MPPT 

control in the TEG system is still performed with the algorithms developed for PV 

systems (i.e. P&O, INC, fractional VOC). These algorithms completely disregard the 
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slow system impact of the Peltier effect that appears almost instantaneous when 

current starts flowing through the TE module. Standard algorithms are designed to 

track the MPP at a minimum time period of ~1 second whereas the Peltier effect 

may need many minutes for the system to reach steady-state. By iteratively 

searching or setting the MPP voltage at half of the VOC, the algorithms do not allow 

the Peltier effect to cause relevant changes in the system. However, the Peltier effect 

can cause a positive or negative outcome on the power generation of the system 

depending on how it is manipulated. The Peltier effect is manipulated by adjusting 

the current that flows through the TE module, usually by selecting an operation 

voltage that does not correspond to VOC/2.  

Montecucco et al. (117) investigated through simulation a TEG system operating at 

constant heat. They reduced the Peltier effect to introduce a positive effect in the 

system by making the TEG operate at lower current and better thermal efficiency 

than the constant temperature MPP. The reduced Peltier effect caused a temperature 

gradient increase across the module which in turn led to an increase in the power 

generated by the device and therefore a new MPP, referred to as the real MPP. The 

reason for this behaviour is that the TEG power output varies proportionally to V
2
 

whereas the current varies linearly with V (as explained in 2.3.4). At different values 

in thermal input power to the TEG system, the corresponding voltage fraction at the 

MPP was found to be at different percentage of the VOC.  

Presently in the literature, there is no clear information on the exact percentage of 

VOC the TEG should operate at to reach the real MPP, or experimental validation of 

the real MPP. Hence, the potential of the Peltier effect to influence the power 

generation of a TEG system operating in constant heat was investigated using test 

apparatus developed at The University of Glasgow (83).  

5.3. DESCRIPTION OF THE TEST SETUP 

The TEG measuring system used for the experimental characterization is shown in 

Figure 5-1 and it is able to test one TE module at a time. To better understand the 

TEG fixture side, the block diagram of its architecture is presented in Figure 5-2. 

The mechanical, thermal and electrical features of the setup will be further explained 

in detail. 

5.3.1. MECHANICAL STRUCTURE 

The system has a stationary heat sink block positioned above the heater block and a 

separate mobile mechanical structure that can be adjusted up to 50 mm vertically. 

This means that the module positioned on top of the heater and the heater block are 

brought towards the cold block.   
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Figure 5-1 TEG measuring system 
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Figure 5-2 Diagram of the test setup used for TE module characterization. 

The hot side is composed of an aluminium heater block with size 40mm x 40mm x 

25mm and thermal conductivity of κAl = 205W/mK. The block is heated using a 

silicon nitride igniter (Glo120-400-370URF) rated at 500W(550°C) and connected 

to a 750W DC power supply unit (Agilent N5750A). The area of the heater was 

chosen to match that of the TE module used for the tests. A larger area heater 

compared to the module would increase losses in the system and a smaller heater 

would not provide temperature uniformity across the TEG. The temperature at the 

interface between the heater and any object (e.g. TE module) is sensed by two 

symmetric thermocouples inserted through the aluminium block and positioned as in 
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Figure 5-3. This way, the temperature distribution across the hot side of the TE 

module could be evaluated10. Because the temperature of the heater may influence 

the temperature reading at the interface between the heater and the module, the 

diameter of the hole (3mm) was made larger than that of the thermocouple (1mm). 

Therefore, the thermocouple did not touch the aluminium block, but only the 

interfaced object.  

40 mm

4
0

 m
m

3 mm
18.5 mm

18.5 mm

8.5 mm 8.5 mm

 

Figure 5-3 Top view of the aluminium heater block and the position of the two hot side 
thermocouples. 

An aluminium water-cooled heat sink block with size 80mm x 80mm x 25mm and 

thermal conductivity of κAl = 205W/mK served as the cold side. The temperature at 

the interface between the heat sink and the TE module was sensed by one 

thermocouple positioned in the middle of the block and inserted through the lateral 

side of the block. Similarly to the hot side, the diameter of the hole in the heat sink 

block was made larger than that of the thermocouple. A chiller unit (Thermal 

Exchange CS-10) regulated the water flow temperature to reach a value set by the 

user between 10°C – 25°C and it was capable of removing 1.3 kW of heat power. 

The water flow was measured by a flow meter and the water temperature was sensed 

at the entry and exit of the heat sink block. All the thermocouples used were K-type 

(TC Direct). 

The system components were supported by a fixed mechanical structure composed 

of top and bottom steel plates connected by four columns (47cm height). A separate 

mobile structure consisting of two steel plates and two columns (32cm height) was 

used for the clamping mechanism. The top steel plate of the mobile structure was 

fixed and the bottom one was mobile. A load cell was positioned between the 

mobile and the stationary structured to measure the clamping pressure applied to the 

TEG. Below the bottom plate, a 179 N/mm spring was placed, connected to a 

stepper-motor. The mobile plate that holds the heater and the TE device is brought 

                                                           
10 During the tests, the temperature difference between the two hot side thermocouple 

readings was <1.2 °C. All calculations were made with the hot side temperature as the 

average temperature between the two hot side temperature measurements.  
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towards the heat sink by the stepper motor. This mobile structure is able to regulate 

the clamping pressure to a value set by user but it can also automatically compensate 

for pressure variations during tests when thermal expansion and contraction occur. 

The pressure feedback control was based on the load cell measurements.  

5.3.2. HEAT ISOLATION 

Between the hot aluminium block and the bottom mobile steel plate, a fumed silica 

board (κMSilica = 0.02W/mK) was used to insulate the heater and to minimize the heat 

conducted through the steel columns. The fumed silica board only partially insulated 

the heater because initially, it was shaped for a larger copper heater block (85mm x 

75mm x 30mm). Therefore, additional insulation was necessary and fibre glass 

(κFibre = 0.04W/mK) was used as shown in Figure 5-2. A vermiculite block with 

thermal conductivity of κVerm = 0.07W/mK was used to provide insulation between 

the water block and the top steel plate. Thermal grease (Electrolube HTC02S) with 

κThermal_grease = 0.9W/mK was used on both sides of the module to reduce the contact 

thermal resistance.   

5.3.3. ELECTRICAL AND CONTROL STRUCTURES 

The thermocouples, the load cell and the flow meter were connected to a data logger 

unit (Agilent 34972A). The module was connected to an electronic load (Agilent 

N3300A) and the heater was controlled by a DC power supply unit. All instruments 

were connected to a computer either through a general-purpose interface bus (GPIB) 

or a universal serial bus (USB). The instruments were controlled by a VEE Pro 

(Agilent) software program and the measurements were automatically recorded to a 

Microsoft Excel sheet.  

The test rig is able to accommodate both constant heat and constant temperature 

operating conditions. To achieve constant heat, the VEE Pro program needs as 

feedback the heater power readings to maintain it to the value set by the user. On the 

other hand, the constant temperature operation is fulfilled based on feedback 

temperature measurements of the hot and cold sides of the module. In both cases, a 

PI control was used to regulate the heater power or the temperature gradient across 

the module. The flow diagram and description of the constant temperature Agilent 

VEE Pro control program can be found in (83). The constant heat program will be 

described in more detail in 5.5.  

5.4. HEAT LOSSES CHARACTERIZATION 

In every TEG system there exist heat losses, no matter how it is insulated. This 

means that not all the heat provided by the heater block is transferred through the 
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TEG, because a part of it is lost to the ambient. To minimize the heat loss to 

ambient, thermal insulating materials can be used around the TEG system (e.g. fibre 

glass, vermiculite). Even so, there still remain losses in the system. To ensure a 

constant heat through a TEG, these residual heat losses need to be known and 

compensated for by the heater. The amount of heat lost varies in a non-linear way 

with the difference in temperature between the heater and the external boundary of 

the heater system. The apparatus described in Figure 5-2 was modified to perform 

the characterization of losses as shown in Figure 5-4.  

The TE module was replaced by a 40mm x 40mm x 25mm vermiculite block. Two 

thermocouples were placed on the hot side and one thermocouple was placed on the 

cold side of the vermiculite block, at the interfaces with the heater and heat sink 

respectively, to provide measurements of these temperatures. Using knowledge of 

the thermal conductivity of the vermiculite, the heat conducted from the heater to the 

heat sink through the vermiculite was calculated using (5-1). The system heat loss 

Qloss was characterized as the difference between the heater power and the heat flow 

through the vermiculite block. 

h c
loss heater vermiculite heater Verm Verm

Verm

T T
Q P Q P A

l



     (5-1) 

Where κVerm = 0.07W/mK, the thermal conductivity of the vermiculite; AVerm = 

0.0016m
2
, the area of the vermiculite block; lVerm = 0.025m, the height of the 

vermiculite block; Th is the temperature measured between the vermiculite block and 

heater; and Tc is the temperature measured between the vermiculite and water block. 

The losses were first characterized for a heater input power range of 2W to 10W 

with 2W increment. The upper limit for the heater power was set to 10W because 

the equivalent heater temperature was recorded as 240°C. The heat loss 

characterization was performed in the temperature range corresponding to the 

commercial Bi2Te3 module chosen to be later tested.  The chiller temperature Tchiller 

was set to 25°C to match the ambient temperature. All measurements were recorded 

after the system reached thermal equilibrium for every set heater power. This 

condition was reached when the difference between the maximum and minimum of 

50 consecutive hot side temperature measurements was <0.1°C. The temperatures at 

the interface between the vermiculite and the heater and heat sink were monitored to 

calculate the heat losses. For each set heater value from 2W to 10W, the 

measurements were recorded after the system reached thermal equilibrium. This test 

is henceforth referred to as Test 1. As the power to the heater increased, more heat 

was transferred through the vermiculite block, therefore both Th and Tc rose as 

shown in Table 5-1.  
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Figure 5-4 Diagram of the laboratory setup for characterization of heat losses in constant 
heat operation. 

 A second test, Test 2, was performed to investigate the influence of Tc on the system 

heat losses. For this test, the chiller temperature was set to 12°C. In this case, for a 

fixed power to the heater, more heat was removed by the heat sink compared to the 

Tchiller = 25°C case, resulting in a slight decrease of Th. At the same time Tc dropped 

significantly, equivalent to the chiller temperature change. The absolute heat loss 

deviation between Test1 and Test2 results remains constant at ~0.04W as the power 

to the heater is changed from 2W to 10W in steps of 2W. However, the relative error 

of the heat losses between the two test cases was 2.2 % at 2 W input and decreased 
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to 0.5% at 10W as shown in Figure 5-5. The heat loss deviation and the relative 

error were calculated using equation (5-2) and (5-3) respectively. 

_ , _ _lossQ Test1 Test2 loss Test1 loss Test2deviation Q Q   (5-2) 

_ _

_
loss

loss Test1 loss Test2

Q

loss Test1

Q Q
err 100

Q


   (5-3) 

If the power losses were to be analytically calculated based on the temperature 

difference (Th -Tc), this would give two different equations because of the significant 

change in the chiller temperature as shown in Figure 5-6. To compensate for heat 

losses in an actual TEG system with multiple equations for every Tc change would 

be impractical. However, it can be observed from Table 5-1 and Figure 5-7 that Th 

was only slightly influenced by the change in the chiller temperature from 25 °C to 

12 °C. Due to the small difference between the heat losses in the two tests and the 

small dependency of Th on large changes of Tc, a heat losses equation was derived 

based only on Th. The influence of Tc was considered negligible, at least for the 

values of Tc likely to be encountered in the laboratory. The losses were thus fitted 

according to Th using a second order polynomial: 

5 2

_  3 10 0.0357losses fit h hQ T T      (5-4) 

The heat loss measurements plotted against Th are shown in Figure 5-8 and the points 

were mathematically fitted using equation (5-4). The use of (5-4) is necessary for 

operating the TEG in constant heat operation. In order to maintain a constant heat 

flux through the module despite any temperature changes introduced by the Peltier 

effect, the heater power needs to include compensation for the thermal losses 

associated with a change in the temperature of the whole apparatus. Equation (5-4) 

will be integrated in the control program that regulates the heater power by 

calculating the compensation required to maintain the desired constant heat flux 

through the TE module.   

The operating temperature range of the chiller used in the experimental setup is 

limited to between 10°C and 25°C. It was found that over this range the relative 

error of the heat loss is less than 2.3%. In practical TEG applications the coolant can 

reach significantly higher temperatures (e.g. the cold side (coolant) temperature for 

car exhaust applications is between 50°C and 90°C, depending on which side of the 

radiator the coolant flow is connected to). Due to the limitation on the chiller 

temperature range, these higher values could not be investigated.  
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Figure 5-5 Relative error of the heat losses between the two test cases Tchiller = 12°C and 
Tchiller = 25°C for heater power range from 2W to 10W. 

 

Figure 5-6 Heat losses plotted against temperature difference for the two test cases Tchiller = 
12°C and Tchiller = 25°C. 
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Figure 5-7 Comparison of the heat losses plotted against Th for the two test cases Tchiller = 
12°C and Tchiller = 25°C. 

 

Figure 5-8 Heat losses characterization plotted against Th with chiller temperature set to 
25°C. 

5.5. TEG CHARACTERIZATION IN CONSTANT HEAT 

OPERATION 

The experimental setup from Figure 5-4 was changed to accommodate TEG 

parameter characterization by removing the vermiculite block and replacing it with a 

40mm x 40mm TE module as shown in Figure 5-2. Two Bi2Te3 modules with 
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different pellet sizes were chosen for the experimental tests: GM250-241-10-12 

(lpellet = 1.2mm) and GM250-241-10-16 (lpellet = 1.6mm). 

At the present, the accepted method of characterizing TE modules and predicting 

their behaviour when integrated into an application is by obtaining their electrical 

and thermal characteristics with experimental setups that operate in constant 

temperature. Typically the module is placed between a temperature controlled heater 

and a water- or air-cooled heat sink. The equipment typically enables the 

components to be compressed at a fixed or variable set pressure for improved 

thermal contact. The results produced usually consist of steady-state I-V and P-V 

characteristics of the TEGs at several temperatures from which the full behaviour of 

the TE device for the application specific temperatures can be extrapolated. 

Using this technique, the temperature difference across the module is kept constant 

while it is characterized at a specific temperature and variable load current (i.e. 

open-circuit to short-circuit conditions). This method is primarily focused on 

maintaining a constant temperature difference. The amount of heat input is usually 

not monitored or a parameter of interest although occasionally a manufacturer may 

provide the module’s efficiency.  

This TEG characterization approach is of limited utility to the system designer: it 

does not correlate with the actual operating conditions of the TEG in its intended 

application. The distinct characteristic of processes that release waste heat and are 

compatible with TEG integration is the limited thermal flux available.  Under such 

conditions, only the thermal energy would remain constant and not the module 

temperature. For example, Pu-238 used for RTGs in space applications generates a 

constant 0.39 W/g of heat as the thermal source for the TE devices. The heat 

generation is affected by the degradation of the Pu-238 during its half-life but it is 

independent of the load current change in the TEG system. This feature is specific 

but universal to TEG applications used in waste heat recovery.    

A TE module operating as a generator in constant heat is significantly influenced by 

the magnitude of the Peltier effect. To illustrate this effect, a constant heat 

characterization was performed on the two Bi2Te3 modules (GM250-241-10-12, 

GM250-241-10-1611) and the results are presented in Figure 5-9. 

The maximum heat flux through the GM250-241-10-16 module that gives ~250°C 

on the hot side is ~110W and therefore it was chosen as the limit. Because the 

GM250-241-10-12 has lower pellet length and therefore higher thermal 

conductivity, the heat flux through this module was limited at 130W. 

                                                           
11 European Thermodynamics Ltd. 
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Figure 5-9 Temperature difference change from open-circuit to short-circuit test for 110W 
constant power to the TEG. 

Both modules were first tested at 110W constant heat flow and the electrical load 

conditions were varied from open-circuit to short-circuit. For each load current 

change, the system was left to reach thermal equilibrium before the temperature 

measurements were recorded.  In this way, the variable influence of the Peltier effect 

was observed.  

Initially, no current was flowing through the device and the temperature gradient 

across the TEG was measured at 160.4°C (GM250-241-10-12) and 212.3°C 

(GM250-241-10-16). The load voltage was then fixed at 75%, 50% and 25% of the 

initial VOC reading. Finally, the modules were short-circuited and the temperature 

difference across the devices corresponding to short-circuit condition was 109.4°C 

(GM250-241-10-12) and 149.4°C (GM250-241-10-16). In other words, a change 

from no load current to full load current caused a drop in the temperature difference 

across the modules of 51°C (GM250-241-10-12) and 62.9°C (GM250-241-10-16). 

The results clearly show the substantial influence of the load current value on the 

thermal efficiency of the TEG system. 

To obtain the constant heat P-V and I-V characteristics of the modules, a control 

program was developed in Agilent VEE Pro and its flow diagram is shown in Figure 

5-10. 
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Figure 5-10 Flow diagram of the Agilent VEE Pro program to obtain the I-V and P-V 
characteristics in constant heat operation 

At the beginning, the program asks the user to set the values of the desired clamping 

pressure (Ppressure) and the heater power (Pheater). The variable that aids in setting the 

voltage of the electronic load Vpercent is initialized to zero. The load value is changed 

based on a VOC measurement, the variable Vpercent and the following equation in the 

program:  

set _ el _ load OC percent OCV V 0.2 V V     (5-5) 

The VOC is measured and the voltage of the electronic load is set according to (5-5). 

In the first cycle, Vpercent = 0 which means that Vset_el_load = VOC corresponding to the 

open-circuit constant heat test at a specific constant heat input.  

After the voltage to the electronic load is set, the program takes all the 

measurements from the data logger, the electronic load and the power supply. The 
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first parameter checked by the program is the clamping pressure. The measurement 

is compared to the value set at the beginning of the program and regulated 

accordingly using a PI controller. The heater power follows, and similarly, the 

measured value is compared to the set one and the difference is fed to a PI controller 

that minimizes the error between the two values. 

Afterwards, the program checks if thermal equilibrium has been reached. This was 

programed to happen when the difference between the maximum and minimum of 

50 consecutive hot side temperature measurements is <0.1°C. When this condition is 

met, the corresponding measurements are recorded into the Excel sheet. 

After each cycle, Vpercent is increased with 1.25 until it reaches the value 5. This 

means that one constant heat I-V characteristic will be fitted based on five measured 

points taken at Vset_el_load = {VOC, 75% VOC, 50% VOC, 25% VOC, 0}. 

All tests were performed at a clamping pressure of 1MPa. In order to assess the 

amount by which the module ΔT varied with the heat flux through the device from 

open- to short-circuit, the heat flow through the TE device was varied from 30W to 

130W for GM250-241-10-12 and to 110W for GM250-241-10-16 in steps of 20W to 

obtain the P-V and I-V characteristics.  

The thermal transient due to the Peltier effect on the temperature gradient of the 

system is slow (i.e. minutes), and hence the system was left to reach steady-state and 

only after equilibrium was reached were the measurements recorded. The electrical 

P-V and I-V characteristics obtained from the TE modules in constant heat operation 

are shown in Figure 5-11a+b and Figure 5-12a+b (solid lines). In order to evaluate 

the repeatability of the measurements, the constant heat characterization for GM250-

241-10-12 was repeated and the second set of results are shown in Figure 5-11a+b 

with dashed lines. The variance between the results from both tests was less than 

2.5%; this was judged to show that the measurement system offers acceptable 

precision and consistency.    
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Figure 5-11 a) Output power versus output voltage and b) output current versus output 
voltage for GM250-241-10-12. The module was tested two times in constant heat starting at 
30W to 130W with 20W increments (cycle 1 – solid line, cycle 2 – dashed line). 
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Figure 5-12 a) Output power versus output voltage and b) output current versus output 
voltage for GM250-241-10-16. The module was tested in constant heat starting at 30W to 
110W with 20W increments. 
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Figure 5-13 shows the steady-state VOC measurements and the ΔT variation with the 

heater power. In this case there is no current flowing through the module and hence 

no Peltier effect. For any fixed temperature difference, the VOC value is similar for 

both modules. The small difference is cause by the likewise small difference in the 

Seebeck coefficient between the two modules (later shown in Figure 5-16).    

 

Figure 5-13 Open-circuit voltage for modules GM250-241-10-12 (solid line) and GM250-
241-10-16 (dased line)  in constant heat operation 

The VOC values were fitted based on the temperature gradient ΔT using a second 

order polynomial as shown in equation (5-6).  

2

OC _ fitV 0.00009 T 0.1096 T 0.4366      (5-6) 

The mathematical fitting used for (5-6) is based on the temperature gradient range 

from the experimental measurements of the GM250-241-10-12 module (i.e. ΔTMIN 

@ 30W= 47.22°C and ΔTMAX @ 130W = 184.4°C). This allows an improved 

approximation of the VOC values between these limits of 47.22°C and 184.4°C. 

However, below ΔTMIN, the precision of the calculated VOC decreases slightly (e.g., 

at ΔT = 0°C, the predicted VOC is -0.4366V whereas the real value is obviously 0V). 

Moreover, using (5-6), the differences between the measured values and those 
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acquired from the mathematical fitting were found to be less than 0.6% as illustrated 

in Figure 5-14. A second order polynomial (equation (5-7)) with zero intercept (i.e. 

ΔT = 0°C and VOC_fit = 0V) would results in overall larger differences between the 

measured and calculated VOC values (Figure 5-15). Analysis of the VOC values for 

the GM250-241-10-16 followed the same trend, therefore, equation (5-6) was used 

to calculate the VOC values. 

2

OC _ fitV 0.00006 T 0.1016 T     (5-7) 

 

Figure 5-14 The relative error between measured VOC and calculated VOC based on 
mathematical fitting (equation (5-6)) at constant heat flow through the GM250-241-10-12 
module from 30W to 130W. 

 

Figure 5-15 The relative error between measured VOC and calculated VOC based on 
mathematical fitting (equation (5-7)) at constant heat flow through the GM250-241-10-12 
module from 30W to 130W. 
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Based on the constant heat measurements taken for the modules, various parameters 

can be determined. Using the VOC readings, the composite (p- and n- combined) 

Seebeck coefficient variation with temperature of the modules can be estimated and 

is presented in Figure 5-16. The curve is typical of that for Bi2Te3. The variation in 

the internal resistance with temperature is plotted in Figure 5-17 and the thermal 

conductivity of the device was computed for both short-circuit and open-circuit 

cases shown in Figure 5-18. As expected, the module with higher pellet length has a 

higher internal resistance but lower thermal conductivity. 

 

Figure 5-16 The Seebeck coefficient of the TE modules GM250-241-10-12 and GM250-241-
10-16.   

 

Figure 5-17 The internal resistance of the TE modules GM250-241-10-12 and GM250-241-
10-16 in constant heat operation. 
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Figure 5-18 Thermal conductivity of the GM250-241-10-12 and GM250-241-10-16 modules 
for open- and short-circuit conditions and constant heat operation. 

The experimentally obtained values of the thermal conductivity in open- and short 

circuit are presented in Table 5-2 for GM250-241-10-12 and Table 5-3 for GM250-

241-10-16. 

Table 5-2 The variance in the thermal conductivity at open- and short-circuit for the GM250-
241-10-12. 

QTEG 

(W) 

Open-circuit Short-circuit 

Tavg_oc 

(°C) 

Tc_oc 

(°C) 

κoc 

(W/mK) 

Tavg_sc 

(°C) 

Tc_sc 

(°C) 

κsc 

(W/mK) 

30 49.28 25.95 1.285485 41.89 26 1.886792 

50 66.39 27.45 1.284117 52.68 27.38 1.976187 

70 82.76 28.81 1.297456 64.19 28.84 1.97975 

90 98.08 30.27 1.327272 75.23 30.25 2.000811 

110 111.86 31.66 1.371537 86.39 31.65 2.009527 

130 124.45 33 1.421604 96.86 33 2.036772 
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Table 5-3 The variance in the thermal conductivity at open- and short-circuit for the GM250-
241-10-16. 

QTEG 

(W) 

Open-circuit Short-circuit 

Tavg_oc 

(°C) 

Tc_oc 

(°C) 

κoc 

(W/mK) 

Tavg_sc 

(°C) 

Tc_sc 

(°C) 

κsc 

(W/mK) 

30 59.23 25.95 1.014138 47 26 1.605938 

50 82.26 27.45 1.02623 62.24 27.38 1.613713 

70 103.20 28.81 1.058464 77.41 28.84 1.621304 

90 121.48 30.27 1.110085 92.22 30.25 1.633677 

110 137.60 31.66 1.16815 106.16 31.65 1.660946 

Often in TEG simulations, the thermal conductivity is considered variable with the 

average temperature and the measurements are taken from a constant temperature 

test. Table 5-2 and Table 5-3 present experimental values for the thermal 

conductivity in both open- and short-circuit cases at various heat flow values for two 

Bi2Te3 with different pellet size. These values can be used to extrapolate more 

accurate value of the thermal conductivity for any test-case simulations. The I-V and 

P-V characteristics of a TE device along with experimental measurements of the 

Seebeck coefficient, internal resistance and thermal conductivity provide essential 

information to system designers on the performance of a TE device integrated into 

applications.  

5.6. MPP IN CONSTANT HEAT OPERATION 

Performing a constant temperature characterization on a TE module requires 

maintaining the temperature gradient across the device fixed at a specific value, 

independent of the load variation. Figure 5-19 shows such a characterization using 

the GM250-241-10-12 module at ΔT = 154°C. In constant temperature conditions, 

the MPP is reached when the load voltage is set as half of the VOC as stated by the 

maximum power transfer theorem. During such a TEG performance 

characterization, the heat flux through the TEG system varies as the load conditions 

are changing from open- to short-circuit as shown in Figure 5-20. When performing 

the measurements, first, the power to the heater is automatically set to 120W to 

maintain ΔT = 154°C in open-circuit condition. As the current through the system 

increases, the heater power increases as well to compensate for the additional heat 

pumped through the module due to the Peltier effect. At short-circuit, the heater 

power reaches 160W. In waste heat applications, the amount of the available heat is 

limited and therefore, as previously discussed, it would not change sufficiently to 

maintain a constant temperature gradient across the TEG module(s) in an integrated 

system. In order to properly investigate actual performance in a practical system, a 
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TE module needs to be characterized under constant heat conditions rather than the 

more usual constant temperature conditions.  

 

Figure 5-19 P-V and I-V curves for the GM250-241-10-12 module in constant temperature 
condition at ΔT = 154°C. 

 

Figure 5-20 Heater power variation with output current value change for the GM250-241-10-
12 module in constant temperature condition at ΔT = 154°C. 

Figure 5-21 shows a) output power versus the temperature gradient at 130W 

constant heat and b) output current versus output voltage at constant temperature. 

The graphs will be used to better explain the influence of the Peltier effect on the 

TEG system and its MPP. The theoretical MPP according to the maximum power 

transfer theorem was first analysed. The heat flow through the TEG was maintained 

at 130 W and the voltage was set accordingly (β1 = V1/VOC1 = 0.5). At thermal 

equilibrium, the output power was recorded as PMPP_1 = 4.98W and the temperature 
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gradient across the module was ΔT1 = 150.5°C. This point is plotted on the power 

curve of the module in Figure 5-21a) with green. The equivalent constant 

temperature I-V characteristic of the MPP at ΔT1 = 150.5°C is plotted in Figure 

5-21b) with green. Looking at the power curve, it can be clearly seen that PMPP_1 = 

4.98W is not the MPP. The real MPP was found at PMPP_1 = 5.08W and 

corresponding to ΔT2 = 154.7°C (magenta in Figure 5-21). The MPP condition for 

130 W constant heat coincides to β2 = V2/VOC2 = 0.56.     

The main difference between the two conditions β1 = 0.5 and β2 = 0.56 is the value 

of the current flowing though the module. By continuously setting β2 = 0.56, the 

value of the voltage will always be higher than in the case of β1 = 0.5. This also 

means, the current value is smaller when β2 = 0.56 compared to β1 = 0.5. As 

explained by Montecucco et. al (48,117), when a TEG is operating at a smaller 

current than ISC/2, the Peltier effect decreases and the thermal efficiency of the 

system increases. The overall outcome is a larger temperature gradient across the 

module and hence a different MPP compared to the case when β1 = 0.5. 

Similarly, the MPP of all the constant heat measurements shown in section 5.5 were 

analysed. Results show that the fraction between the optimum voltage and VOC (β) 

varies with the heat flow through the module in a non-linear way as presented in 

Figure 5-22. At small heat flow through the module (i.e. 30W), β = 0.61 and as the 

heater power increases, β slowly decreases towards the theoretical β = 0.5. The 

GM250-241-10-12 module is limited at 250°C which corresponds to 150W heat (β ≈ 

0.56) and for this reason the device cannot be experimentally tested to investigate at 

which heat value β converges to 0.5.  

The β values for the GM250-241-10-16 module were experimentally obtained and 

plotted in Figure 5-23. Figure 5-22 and Figure 5-23 show that the β values are 

similar for both modules and follow the same non-linear trend: higher β value at low 

heat flux values through the TEG (QTEG) and lower β value at large QTEG. 
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Figure 5-21a) Output power versus temperature gradient (constant heat) and b)output 
current versus output voltage (constant temperature). The green “theoretical” MPP1 point 
corresponds to the green I-V curve plotted for the condition when the output voltage is half of 
VOC. The magenta MPP2 point corresponding to the magenta I-V curve is the real MPP point 
at 130W. 
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Figure 5-24 shows the a) I-V, b) P-V and c) ΔT-V curves obtained at 130W constant 

heat through the GM250-241-10-12 module. MPPT control algorithms in TEG 

systems such as fractional VOC repeatedly measure the open-circuit voltage and set 

the optimum voltage at β1 = 0.5 as being the optimal operating condition for the 

TEG. Looking at Figure 5-24a), “Point 1” corresponds to the VOC = 16.67V 

measurement at ΔT = 182.89°C. The fractional VOC method would first set the 

voltage to Vset = 8.335 V, i.e. half of VOC. At the same time, current will start 

flowing through the module and the Peltier effect would slowly cause a temperature 

gradient drop across the device. The MPPT would continue to set the voltage as half 

of the VOC, but because the temperature gradient is decreasing, the instantaneous VOC 

will follow the same trend. “Point 2” is equivalent to the voltage (Vset = 6.95V) set 

by the MPPT when the system reaches thermal equilibrium which gives PMPP = 

4.98W. “Point 3” is the instantaneous VOC reading of the set voltage from “Point 2”. 

As previously shown, using only the voltage condition of the maximum power 

transfer theorem is not sufficient to reach the optimum operating point of a TEG 

system. Starting from the same “Point 1” and repeatedly setting the voltage as Vset = 

0.56VOC, the steady-state “Point 4” would give the actual optimum power PMPP = 

5.08W that the TE device can generate. “Point 5” is the instantaneous VOC reading 

corresponding to “Point 4”. 

Hill-climbing algorithms such as P&O or INC would oscillate around “Point 2”. In a 

practical TEG system these control methods usually regulate the voltage at least 

once per second. This short time would not be sufficient for the Peltier effect to have 

a noticeable impact on the temperature gradient across the module and the hot- and 

cold side heat exchangers. Due to the iterative positive – negative oscillations every 

two consecutive perturbations, the small Peltier effect would be effectively cancelled 

out. Therefore, the hill-climbing MPPTs in TEG systems would never reach the real 

MPP potential i.e. “Point 4”. 

Because the theoretical MPP given by the maximum power transfer theorem has 

been taken as reference, there are presently no available MPPT algorithms that 

search for the real MPP in TEG systems. Development of MPPT algorithms that 

take into consideration the actual behaviour of the heat flow in the system (i.e. 

limited heat) are necessary to improve the power extraction from TEGs. In this 

chapter, it was demonstrated that in the case of 130W constant heat, setting the 

module at β = 0.56 instead of β = 0.5 gives a 1.91% increase in the power generated 

by a single TEG module.  
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Figure 5-24 a) I-V, b) P-V and c) ΔT-V constant heat characteristics of the module that show 
the MPP (Point 2 - magenta) set by β = 0.5 and the MPP (Point 4 - green) set by β = 0.56. 
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The conversion efficiency of both modules operating at the real MPP (i.e. β values 

from Figure 5-22 and Figure 5-23), calculated using equation (2-20), is shown in 

Figure 5-25. 

 

Figure 5-25 Conversion efficiency of the GM250-241-10-12 and GM250-241-1016 modules. 

Table 5-4 contains, for 30W to 130W constant heat flow (GM250-241-10-12) and to 

110W (GM250-241-10-16), the calculated percentage of the additional power than 

can be generated by the TE modules if the thermal conductivity is manipulated 

accordingly (β ≠ 0.5). Results show between 1.91% and up to 5.31% extra power 

can be generated by the TEGs compared to the conditions set by the maximum 

power transfer theorem.  
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Table 5-4 Comparison between the power generated with the conditions from the maximum 
power transfer theorem (β = 0.5) and the power generated using the Peltier effect to decrease 
the thermal conductivity of the module (β ≠ 0.5) for 30W to 130W constant heat flow. 

QTEG 

(W) 

GM250-241-10-12 GM250-241-10-16 

PMPP,β=0.5 

(W) 

PMPP,β≠0.5 

(W) 

errPMPP 

(%) 

PMPP,β=0.5 

(W) 

PMPP,β≠0.5 

(W) 

errPMPP 

(%) 

30 0.3699 0.3875 4.77 0.5307 0.5583 5.20 

50 0.9591 1.0101 5.31 1.3736 1.4421 4.98 

70 1.8138 1.9081 5.19 2.4766 2.5813 4.22 

90 2.7708 2.8827 4.03 3.7312 3.8584 3.41 

110 4.0509 4.1947 3.54 5.0577 5.1911 2.63 

130 4.9816 5.0769 1.91 - - - 

5.7. CONCLUSIONS 

The prevailing practise of academia and industry to match TE module parameter 

characterization conditions to those available in practical TEG systems can lead to 

major discrepancies in predicting the system performance.  

The standard constant temperature TEG parameter characterization completely 

disregards the variation of the heat flow with the load current. In this chapter it was 

shown that using such a characterization method, the heat flow though the TEG 

system increased 33% (120W to 160 W) to maintain a constant temperature across 

the TE device when changing from open-circuit to short-circuit conditions. If these 

conditions were compared to a TEG system, then that 33% increase would not 

naturally happen just because the current through the system changed. Instead, 

because of the increased current and the Peltier effect, more heat would be pumped 

from the hot to the cold side and therefore the temperature gradient across the 

module would decrease. It was shown that at 110W constant heat flow, the Peltier 

effect can cause a significant 51°C or 62.9°C temperature drop across a TE module 

(depending on the pellet length). 

This chapter offers a TEG constant heat characterization that complies with the 

practical behaviour of TEG system (i.e. limited heat). To date, the standard MPPT 

control methods (i.e., P&O, fractional VOC etc.) have been used in TEG systems. 
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However, the algorithms were designed and tested for constant temperature 

conditions corresponding to the maximum power transfer theorem and with no 

allowance made for the influence of the Peltier effect. It was experimentally 

demonstrated that the performance of the TEG systems can be improved by 

manipulating the Peltier effect to have a positive impact on the overall thermal 

efficiency of the system. Results showed between 1.91% and 5.31% system output 

power increase when operated at the real MPP rather than the theoretical MPP.  
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CHAPTER 6. MPP IN CONSTANT HEAT 

SYSTEMS 

This chapter describes the developed hot air system with features similar to 

potential TEG applications and is intended to test TE modules in constant heat 

operation. Moreover, experimental results are shown to validate the hypothesis that 

the TEG system can generate more power when operated with different conditions 

than that predicted by the maximum power transfer theorem. 

6.1. HOT GAS TEG SYSTEM 

To properly asses the influence of the Peltier effect on the possible maximization of 

a TEG system power output, an apparatus able to reproduce the operating conditions 

of TEGs integrated into an application is necessary. Such a system was constructed 

at the University of Glasgow and is shown in Figure 6-1. The system is able to 

reproduce the operating conditions of a TEG application with hot air as the 

equivalent of the heat source.  

The general concept behind the hot air system is that the heat source for the TE 

modules is obtained by using an inlet fan operating at a set frequency, blowing 

ambient air into a heater plate with electrical heaters attached. The air flows through 

the heater plate holes and the blow-though heaters attached to the plate. The role of 

this plate is to heat the ambient air flowing from the fan towards the TEG heat 

exchanger. The hot air heats the aluminium heat exchanger where the TE modules 

are placed. Downstream of the heat exchanger the air is exhausted to the laboratory. 

6.2. MECHANICAL SIDE 

The mechanical structure for the hot air flow path is formed from standard stainless 

steel insulated chimney sections into which are inserted a pair of circular- to square- 

section cone pieces that mate with an anodized aluminium heat exchanger. The TE 

modules are placed on this heat exchanger. The chimney sections consist of smaller 

inner cylinder shaped plates (175mm diameter) and larger outer plates (225mm 

diameter). The gap between the inner and outer plates was filled with Rockwool 

insulation (κRockwool = 0.033W/mK) to minimize the heat losses.  
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The diagram of the heater side of the hot gas system is shown in Figure 6-2. A 12V 

PWM-controlled inlet fan (OD1238-12HB-VXC from Orion) provides the variable 

air flow to the system. The air is blown into a 100mm-long cylinder-shaped plenum 

which establishes a uniform positive pressure behind the heater plate. Air then 

passes through a set of 27 hollow metalized alumina igniters (PSx-6-240-B from 

FKK Co.,Ltd.) into a 400mm-long mixing region. Each igniter is rated at ~300W 

(1050°C) and are held horizontally in a 6.35mm-thick aluminium heater plate using 

¼” BSP brass bushes, as shown in the photos of Figure 6-3. Initial testing of the 

heater unit (Figure 6-4) revealed a tendency of the heater plate to over-heat. 

Therefore, 31 additional holes where made in the plate, of which 27 holes are to 

allow air flow through the plate to prevent it from over-heating and 4 for mounting 

mineral-insulated stainless steel thermocouples. The thermocouples measure the 

temperature of the mounting plate and the temperature of the hot air positioned at 

250mm, 400mm and 570mm from the heaters. The last was positioned to measure 

the hot air temperature at the entry of the aluminium heat exchanger. A fifth 

thermocouple is fitted in the incoming air stream to measure the ambient 

temperature. The heaters were supplied from a 415V / 3-phase star-connected supply 

with 9 igniters connected per phase and controlled using three commercial phase 

controller modules (Crydom MCPC2425C). The load on each phase is monitored 

using Murata digital power meters.  

 

Figure 6-2 Schematic of the heater side of the hot gas system where the ambient air is heated. 

 The hot air exits from the 250mm x 120mm anodised aluminium (hot-side) heat 

exchanger and is exhausted through a standard chimney bird guard cowl placed after 

a 90° bend. Air emerging from the system is dispersed by two 12V / 120mm 4 wire 

PWM fans to avoid hot-spots on the ceiling above the apparatus. These fans 

conform to the Intel 4 wire fan specification and run continually at approx. ½ speed 

when the PWM control input is at 0%, ensuring there is always adequate dispersal of 

the hot air leaving the test rig. 

 The cold side heat exchanger of the TEG is composed of a 70mm x 70mm x 35mm 

aluminium water block with an internal labyrinth as shown in Figure 6-5.The 

labyrinth structure provides better water distribution and increased surface area in 

the heat exchanger to transfer the heat conducted through the TEG from the hot side 
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to the coolant. The temperature of the water entering the system is maintained at 

10°C–11°C by a chiller unit (Thermal Exchange CS-45) capable of removing up to 

4.3kW of heat. 

a) b) 

Figure 6-3 a)Front view and b) side view of the heater plate with blowing-air type igniters 
attached. 

 

Figure 6-4 Initial testing of the heaters and the additional holes made to the heater plate 
from Figure 6-3 to prevent from over-heating. 
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Figure 6-5 TEG cold side heat exchanger with labyrinth view for water path. 

6.3. ELECTRICAL AND CONTROL SIDE 

In order to control and monitor the hot gas system an electronic controller has been 

built to interface the Agilent 34980A data acquisition and control (DAQ) unit 

(Figure 6-6) to the power electronics. The unit includes the following functions: 

1. Voltage to duty cycle conversion for the inlet fan. A voltage provided by 

the DAQ is used to modulate the duty cycle of a 25kHz TTL-compatible 

signal. This PWM signal in turn controls the rotation speed of the fan from 

0Hz to 168Hz. 

2. A watchdog timer is connected to the tacho output of the inlet fan. In the 

event pulses are not measured from the fan the unit assumes a fault and cuts 

power to the heater phase controllers. The DAQ also reads the tacho. 

3. A second voltage to duty cycle conversion for the exhaust dispersal fans. 

These fans conform to the Intel 4 wire fan specification. The DAQ can set 

the PWM duty cycle and read back the fans’ tacho frequencies, which are 

averages in the DAQ control program. 

4. Phase control of each bank of 9 heaters. The DAQ sets a control voltage 

which modulates the half-sine conduction angle of solid state control 

relays. Each phase is separately switched from a common modulation 

signal and a Murata power meter is connected to each phase to show the 

power being supplied to the heaters. 
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Figure 6-6 The data acquisition and control unit of the hot gas system. 

There are a total of 10 K-type thermocouples placed around the hot air system to 

measure and monitor specific spot temperatures. All are connected to the DAQ. The 

thermocouples are positioned as follows:  

 At the inlet of the system’s input fan to measure the ambient temperature. 

 Four thermocouples inside the plenum measure the temperatures of the 

heater plate, at 250mm, 400mm and 570mm away from the heater plate. 

The latter is positioned at the inlet of the TEG hot-side heat exchanger.  

 Inside the metal of the hot heat exchanger immediately upstream of the area 

where the TE module was positioned. 

 Inside the metal of the hot heat exchanger immediately downstream of the 

area where TE module was positioned. 

 To measure the air temperature at the outlet of the hot heat exchanger. 

 The inlet and outlet temperature of the coolant water for the cold side. 

The outputs of the TEG device were connected to an electronic load (Agilent 

N3300A). Both Agilent instruments are connected through GPIB to a PC and 

controlled by a VEE Pro program interfaced with Microsoft Excel to log the 

measurements.   

The inlet and dispersal fan speed is PWM controlled based on a voltage input signal 

set by the user via the DAQ. This means that for each voltage reference value, the 

fan runs at an equivalent speed. A test was performed for both the inlet and dispersal 

fans to acquire the correlation between the set voltage and the frequency values from 

the fans’ tacho outputs. The fans were connected to the data logger to perform the 

frequency measurements. The voltage was varied starting from 0V up to 8V which 

was found to be equivalent to the upper limit for the fan speed. The input voltage-

output frequency results for the inlet and dispersal fans are shown in Figure 6-7 and 
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Figure 6-8 respectively.  The measured data was mathematically fitted using second 

order polynomials: equation (6-1) corresponds to the inlet fan and equation (6-2) to 

the dispersal fans. Both equations were then integrated into the VEE control 

program of the hot air system therefore, instead of setting the voltage reference for 

the fan control, the user can set the desired fan frequency. 

 

Figure 6-7 Inlet fan output frequency versus voltage reference of the PWM control 
(measurements and mathematical fitting). 

 

Figure 6-8 Dispersal fan output frequency versus voltage reference of the PWM control 
(measurements and mathematical fitting). 

The dispersal fans were specifically chosen to have continuous operation. It can be 

seen from Figure 6-8 that even with no control signal, the fan is running at 50Hz. 
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The main reason of the fan choice was system protection i.e. to evacuate the hot air 

not to over-heat the heater place or the heat exchangers and to avoid hot-spots in the 

celling in case the system is malfunctioning.   

2

ref ,inlet fan,inlet fan,inletV 0.0001 f 0.0672 f    (6-1) 

2

ref ,dispersal fan,dispersal fan,dispersalV 0.0007 f 0.2141 f 8.3071     (6-2) 

The heaters were controlled using commercial microprocessor based phase angle 

controllers (Crydom MCPC2425C). The value of the heater power is calculated 

based on a control voltage set by the user. A set of tests was performed to 

investigate the heater power values corresponding to a control voltage range of 0V–

11V for various inlet fan frequencies (20Hz to 160Hz in steps of 20Hz). During 

testing it was noticed that when the dispersal fans were operating at a higher speed, 

the evacuation of the hot air from the system was restricted due to increased 

backpressure at the chimney cowl. To avoid over-heating the system, the dispersal 

fan frequency was set to 60Hz. At lower inlet fan frequencies (e.g. 20Hz–40Hz), the 

heater plate reached ~300°C at a phase control voltage of 4V and 5V respectively. 

To avoid over-heating and damaging the heater plate, the control voltage range at 

lower input fan frequencies was limited depending on the temperature reading of the 

heater plate (maintained <300°C).  

The power consumption of the igniters is dependent on the mains voltage value as 

described in the datasheet (345W@AC240V, 315W@AC230V, 295W@AC220V). 

Moreover, the power consumed by individual igniter may slightly vary due to 

manufacturing tolerances. No attempt was made to measure individual heater 

powers: visually observing the heater plate with the heaters at full power showed all 

were glowing at a similar brightness and colour – interpreted to mean the power 

being dissipated by each was also similar. The 3-phase power values were measured 

in two different ways: 1) using AC power meters (ACM20-2-AC1-R-C from Murata 

Power Solutions) fitted to the control unit and 2) with a universal three-phase power 

analyzer (PM300 from Voltech). The power measurements were logged only after 

the system reached thermal equilibrium i.e. the tolerance of the last 50 heater plate 

temperature readings was <1°C. For each fan frequency and control voltage settings, 

the heater power was recorded and the data is presented in Figure 6-9. The cosine 

component in the power transfer function due to the linear phase angle adjustment 

can be clearly seen. The maximum heater power reached was 8849W – display and 

8821W power analyzer with ffan,inlet = 160Hz and Vheater,control = 11V. The data set for 

each inlet fan frequency was mathematically fitted using second and third order 

polynomials, and the equations ((6-3),(6-4)) were integrated into the hot air system 

VEE control program. Therefore, the user can set the desired heater power directly 

and not by setting a control voltage value. The control program reads the inlet fan 
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setting and uses the corresponding heater power equation to calculate the equivalent 

voltage reference value.     

2

heater ,control1 1 heaters,set 2 heaters,set 3V a P a P a      (6-3) 

3 2

heater ,control2 1 heaters,set 2 heaters,set 3 heaters,set 4V b P b P b P b        (6-4) 

The coefficient values corresponding to equation (6-3) and (6-4) are shown in Table 

6-1and Table 6-2 respectively. 

Table 6-1 Polynomial coefficient values of the second order fitting of the heater power 
against voltage control for inlet fan output frequency range 20Hz–100Hz. 

Inlet fan output 

frequency (Hz) 

Polynomial coefficients 

a1 a2 a3 

20 -0.0000002 0.0017 1.4628 

40 -0.0000002 0.0017 1.3926 

60 -0.0000001 0.0013 1.5655 

80 -0.00000005 0.0011 1.6669 

100 -0.00000001 0.0009 1.7347 

Table 6-2 Polynomial coefficient values of the third order fitting of the heater power against 
voltage control for inlet fan output frequency range 100Hz–160Hz. 

Inlet fan output 

frequency (Hz) 

Polynomial coefficients 

b1 b2 b3 b4 

120 0.00000000001 -0.0000002 0.0013 1.5736 

140 0.00000000004 -0.0000005 0.0021 1.0585 

160 0.00000000003 -0.0000003 0.0018 1.2613 
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Figure 6-9 Total heater power against control voltage for the inlet fan output frequency 
range of 20Hz to 160Hz in steps of 20Hz.  

6.4. TEST CONDITIONS 

The operation of a practical TEG system at the real MPP described in Chapter 5 was 

further experimentally investigated using the hot gas system. As previously 

described in Chapter 5, the tests were performed using 40mm x 40mm modules: 1) 

GM250-241-10-16 rated at 7.3W electrical power output, 145W heat flow through 

module and 2) GM250-241-10-12 rated at 9.3W electrical power output, 185W heat 

flow through module. The test fixture was specifically designed to test only one TE 

module. Therefore, the size of the hot-side heat exchanger was chosen to be 40mm x 

40mm and heated by only one igniter rated at 500W (550°C).  

The hot-side heat exchanger integrated in the hot air system was designed at 250mm 

x 120mm x 120mm to provide enough space for multiple module integration and 

heated with 27 igniters each rated at 300W(1050°C). Because of the larger size of 

the heat exchanger in the hot air system compared to that of the test fixture 

described in Chapter 5, but also the different ratings and quantity of igniters used, 

more heat flux was designed to flow through the hot gas heat exchanger. Therefore, 
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the 62mm x 62mm GM250-127-28-10 module was chosen for further testing: it is 

rated at 28.3W electrical power output and capable of removing up to 560W of heat. 

The module was placed between the aluminium heat exchanger heated by the hot 

gas system and a water-cooled aluminium heat sink, compressed by a 115mm (free 

length) spring with a rate of 135N per mm of compression to give a clamping 

pressure of 1MPa. The apparatus is shown in Figure 6-10.  

Spring Top plate

Water inletWater outlet

Cold side heat 

exchanger

Hot side heat 

exchanger
TEG

 

Figure 6-10 The TEG structure integrated into the hot air system’s top side heat exchanger  

A heat transfer paste with κpaste = 10W/mK was used as thermal interface material 

between the module, the heat exchanger and the heat sink to improve the heat 

transfer. The water temperature was maintained at a nominal 10°C with a hysteresis 

of 0°C and +1°C. In other words, the chiller would operate until the water reached 

10°C, at which point cooling would be turned off but the circulator pump would 

continue to run. Heat flux through the TEG would then cause the coolant to start to 
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warm up and when its temperature reached 11°C the chiller would restart and then 

cool the water back to 10°C, and so on. 

To investigate the power generated by the TE device operating at different 

percentages of the VOC, an electronic load was connected to the module (N3300A 

Agilent). The control of the hot gas system and the electronic load was performed 

using Agilent VEE. The flow diagram of the designed control program is shown in 

Figure 6-11.  

 

Figure 6-11 Flow diagram of the Agilent VEE Pro program that controls the hot air system 

In addition to power measurement, the electronic load was also used to measure the 

output current and voltage. At Th = 250°C and Tc = 30°C, the short-circuit current of 

the GM250-127-28-10 reaches 16.4A, as mentioned in the datasheet. Therefore, two 

paralleled 6 mm
2
 40A wires were used to connect the module to the electronic load 

and their length was kept as short as possible (~2m). The current and voltage 

measurements were performed using 4-wire remote sensing to eliminate the effect of 

the voltage drop across the wires and achieve more accurate readings. The 

uncorrected voltage drop across the wires was 0.1V. At ΔT = 210°C and at MPP, the 
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GM250-127-28-10 module generated 6.37A and 24.23W. This means that 0.637W 

were lost in the wires that connect the module to the electronic load.  

At programme initiation the Agilent VEE control program asks the user to set the 

desired inlet and dispersal fan frequencies (ffan,inlet, ffan,dispersal), the  total power to the 

heaters (Pheater) and the β value, where β is the fraction of the open circuit voltage in 

the range 0 ≤ β ≤ 1. Once running, the programme repeatedly measures the VOC 

value, sets the operating voltage according to (6-5) and sends the voltage references 

for the fans and heaters which are calculated as explained in section 6.3. Thermal 

equilibrium in the heater is defined to be when the temperature of the heater plate 

reaches steady-state. After this, the TEG voltage and current are measured and the 

results are logged into an Excel sheet. 

set OCV V   (6-5) 

6.5. EXPERIMENTAL VALIDATION OF THE REAL MPP IN TEG 

SYSTEMS 

The tests carried on the hot gas system aim to evaluate the TE module power 

generation and the temperature variations of the hot-side heat exchanger by 

changing the value of β.  

For the initial test, the main fan frequency was set to 80Hz to avoid over-heating the 

aluminium plate that holds the heaters and, at the same time, to reach ~250°C on the 

TEG heat exchanger. To meet these conditions, the corresponding total power to the 

heaters was set to 6.7kW. The measured total power to the heaters during the 

experiments was 6.695W±40W. The heaters present a low cold resistance at start-up 

(44.64Ω@AC240V) and to avoid large in-rush currents, the total power to the 

heaters was gradually increased to 6.7kW. The equivalent steady-state temperature 

of the heat exchanger (i.e.~230°C) was reached with the TEG open-circuited. 

Thermal equilibrium was considered reached when the difference between the 

maximum and the minimum of the previous 50 measurements was below 2°C.  

The range of β was set between 0.5 and 0.6 with steps of 0.01. Afterwards, two 

additional TEG output power points were acquired for β = 0.45 and β = 0.65. The 

hot gas system temperature readings and the TEG output voltage and current 

measurements were acquired every 5s. The experiment duration for each β value 

was 1800s and sufficient to perform the measurements with the system in thermal 

equilibrium.  

Because of the hysteresis in water temperature control between 10°C and 11°C, this 

1°C temperature variation caused an equivalent change in the power generated by 
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the TE module (Figure 6-12). Therefore, the value of the TEG output power for each 

β was averaged over 800s out of 1800s as shown in Figure 6-12. This method 

excluded the power transient period after the β change from the averaging process.  

Taking into consideration the TEG power analysis against β from section 5.6 (Figure 

5-22 and Figure 5-23) and the set operating conditions, the TEG was expected to 

generate at its MPP between 0.5 < β < 0.56. The average output power of the 

GM250-127-28-10 module plotted against β values are shown in Figure 6-13 

(orange line – Test I). Results show that at β = 0.5 the power generated by the 

module is 24.4W. However, it can be observed that this is not the point when the 

module is producing the maximum power and the condition is met when β = 0.53 

(Pteg = 24.7W). 

The results from Test I, presented in Figure 6-13 with orange colour, show a power 

deviation from the expected trend at β = 0.54. The test for β = 0.54 was repeated 

with the same input conditions (i.e. ffan,inlet = 80Hz and Pheater = 6.7kW) and even 

though the temperature of the hot- and cold-side heat exchangers were maintain at 

the same values as the first test, the average power generated by the TE module 

varied. The expected average power concluded from the first test results with β = 

0.54 was in the range 24.62W and 24.7W. The actual average power from the first 

test was 24.54W and from the second test 24.37W. Up to 25°C temperature variation 

was observed in the mixing region and ~4°C at the inlet of the heat exchanger 

between the two tests. However this temperature mismatch or other changes in the 

ambient environment12 could have been sufficient to cause a variation in the power 

generated by the TE module. 

Measurement anomalies are bound to occur especially in large systems with un-

controlled parameters that can be easily influenced by changing ambient 

environmental conditions and the hot gas system used is no exception. In the case of 

the hot air system, only the power to the heaters and the fan frequency can be 

controlled by the user. The control of these parameters is useful not only to avoid the 

heater plate to over-heat, but also to achieve a desired temperature on the hot-side 

heat exchanger and maintain it at a lower values than the maximum limit imposed 

by the TE device. No feedback mechanism is employed to attempt to stabilize the air 

temperature in the apparatus to maintain the set point. 

Moreover, because the heaters are grid-connected, the input power to the heaters is 

only maintained in a specific range around the desired value (i.e. ±2%Pheaters_set) 

dictated by the uncontrollable connection and disconnection of loads elsewhere on 

the 415V circuit in the building. Nor can phase voltage imbalance be compensated 

for. The mass flow rate in the plenum is not presently measured by the system 

                                                           
12 The two tests were carried out on different days with different ambient temperature, 

atmospheric pressure and humidity. 
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although this may be added in the future. The hot air temperature inside the system 

is also uncontrolled (other than by the heater power set point) and can be influenced 

by ambient environmental changes e.g. air humidity and pressure.  

 

Figure 6-12 TEG output power variation caused by the hysteresis control of the chiller and 
the averaging process of the TEG output power. 

 

Figure 6-13 Average TEG output power against β with Pheater = 6.7kW, ffan,inlet = 80Hz and 
ffan,dispersal = 60Hz. 

For example, the hot air system was operated in different days of the week with the 

same input conditions: ffan,inlet = 80Hz, ffan,dispersal = 60Hz and Pset = 6.7kW. Despite 

the unchanged conditions set by the user, a 70°C variation in the temperature of the 

hot air at the outlet of the heat exchanger was noticed.  This temperature change was 

mainly attributed to the absolute atmospheric pressure (the effect of air density on 
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fan mass flow rate is well known), and the air humidity to a lesser extent. During the 

first test, the humidity level was below 20% and the hot gas temperature settled at 

200°C whereas the next time the hot air was operated, the humidity level was 90% 

and the hot air reached 270°C. Therefore, the tests corresponded to a period of 

atmospheric “high” and “low” pressure respectively. This is the dominant effect in 

affecting the hot air temperature since there is a significant change in the mass flow 

rate through the system. 

As explained in Chapter 5, when the electrical operating conditions of the module 

change (i.e. TEG current value), this means its thermal conductivity changes and 

therefore more or less heat is transferred through the module. A change in the 

amount of the heat removed from the hot heat exchanger would cause a temperature 

variation on the hot-side heat sink. During tests with the hot gas system, no 

significant variations were observed in the hot heat exchanger temperature when β 

was changed in steps of 0.01. In this case, the temperature stagnation is not 

necessarily an abnormality. The size of the heat exchanger used in the test fixture in 

Chapter 5 was 40mm x 40mm (for one module) whereas the size of the hot air heat 

exchanger was designed larger (250mm x 120mm) to accommodate up to 24 such 

modules. Moreover, only one TE device was used to remove heat from the hot air 

heat exchanger which is clearly not enough to cause significant changes in the 

temperature caused by its small thermal conductivity variation.  

To further investigate the heat exchanger temperature issue a second test was 

performed. The input parameters remained unchanged, but before each β change, the 

module was maintained in open-circuit for 1800s. The TEG output power values 

against β are shown in Figure 6-13 with blue colour.  The second set of results 

shows a similar trend in power variation with β compared to the results from the first 

test. The first test results reveal a TEG output power measurement issue at β = 0.54 

and based on the initial results, the maximum power output was seen at β = 0.53. 

The second test showed that the actual MPP was achieved at β = 0.54 (Pteg = 

24.24W). 

Variations in the hot heat exchanger were observed in the second tests between 

open-circuit and at load conditions. During open-circuit the temperature varied 

between 231°C – 234°C whereas at load, the temperatures dropped in the range 

225°C – 229°C. Accurate temperature measurements for the duration of a specific 

test are difficult to acquire in such large partially-controlled systems where the 

uncontrollable parameters can influence the readings. One reason the heat exchanger 

temperature at the beginning of the test was 231°C and 234°C at the end of the test 

was the ambient temperature in the laboratory which increased from 29°C to 34°C. 

Another cause for this variation can be attributed to the irregular change in the 

power to the heaters which are grid-connected.  
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In Chapter 5 (Figure 5-22 and Figure 5-23) it was shown the trend of the 

corresponding β values and the heat flux through the module to achieve system MPP 

operation. At lower heat flux values (e.g. 30W) the value of β for the GM250-241-

10-12 module was higher (i.e. ~0.6) whereas for large heat flux (e.g. 130W) β had a 

value of 0.56. The maximum heat flow though the GM250-127-28-10 module stated 

in the datasheet is 566W and this value was achieved with the conditions set for Test 

I and Test II of Figure 6.12. The corresponding value of β at MPP was found to be 

0.54 which validates the initial results from Figure 5-22 and Figure 5-23 taking into 

account the different heat flow limits of the modules (566W GM250-127-28-10, 

186W GM250-241-10-12 and 145W GM250-241-10-16). 

To further validate the concept of the variable β depending on the heat flux, a third 

test was performed with the following test conditions: ffan,inlet = 40Hz, ffan,dispersal = 

60Hz  and Pheaters = 1kW. In this case, the hot heat exchanger temperature reached 

~60°C and the heat flux through the module was calculated as ~150W. Because the 

value of β at MPP was expected to be >0.6, the TEG power was measured for the β 

range of 0.5 to 0.65 in steps of 0.01. For each β, the current, voltage and 

temperatures were measured each 5s over a period of 1800s. Between each β 

change, the module was open-circuited for 1800s. The results of Test III are 

presented in Figure 6-14. The maximum power output from the TEG is achieved 

when β = 0.62. 

 

Figure 6-14 Average TEG output power against β with Pheater = 1kW, ffan,inlet = 40Hz and 
ffan,dispersal = 60Hz. 

The predicted TEG output power increase with variable β over the standard 

conditions set by the maximum power transfer theorem was in the range 1.91% – 

5.31% (Table 5-4). The result of Test II show a power increase of 2.56% i.e. from 

1,7

1,72

1,74

1,76

1,78

1,8

1,82

1,84

1,86

1,88

1,9

0,5 0,52 0,54 0,56 0,58 0,6 0,62 0,64

TE
G

 o
u

tp
u

t 
p

o
w

e
r 

(W
)

β

Test III



CHAPTER 6. MPP IN CONSTANT HEAT SYSTEMS 

131 

23.63W at β = 0.5 to 24.24W at β = 0.54. Moreover, Test III presents an impressive 

8.36% power increase from 1.74W at β = 0.5 to 1.89W at β = 0.62. 

6.6. OPTIMAL RESISTANCE RATIO FOR CONSTANT HEAT 

OPERATION  

Current studies (49,50) debate the fact that the maximum power conditions for TEG 

systems is in fact also when 
load tegR R 1 ZT  . These affirmations are made 

based on TEG testing in constant temperature conditions. Min (121) investigated 

both constant temperature and constant heat cases. The following conclusions were 

reached: the two separate conditions hold in constant temperature and 
load tegR R 1  

is valid for both maximum power and efficiency in constant heat operation.  

As demonstrated in this thesis, the power generated by the TEG system can be 

increased by manipulating the Peltier effect and depending on the heat flux through 

the module, an optimal β value can be calculated. In what will follow, an attempt 

will be made to tie the current research affirmations regarding the maximum power 

condition to the data experimentally obtained throughout this thesis. 

The ratio between Rload and Rteg can be calculated for the GM250-241-10-12 and 

GM250-241-10-16 modules based on the constant heat parametric characterization 

performed in Chapter 5 using the test fixture. The same can be done for the GM250-

127-28-10 used on the hot gas system. The ratio can be calculated in two different 

ways: 1) mathematically based on the acquired β values and 2) from the measured 

current and voltage values. 

First method implies that the optimum β value at the corresponding heat flux 

through the TEG is known. The measured load voltage Vload is the same as Vset and 

defined as: 

load OCV V  (6-6) 

The voltage drop across the internal resistance of the TEG Vload is described by the 

difference between the open-circuit voltage VOC and Vload: 

teg OC loadV V V   (6-7) 
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Inserting (6-6) into (6-7), it gives: 

 teg OCV 1 V   (6-8) 

From the electrical model of a TE module, it is known that the internal TEG 

resistance is modelled in series with the load resistance, therefore same current 

flows through both: 

teg load

teg load

V V
I

R R
 

 
(6-9) 

By replacing (6-6) and (6-8) into (6-9), the ratio between Vload and Vteg depending on 

the optimum β is established: 

load

teg

R

R 1






  
(6-10) 

The second method to calculate Rload /Rteg is based on the voltage and current 

measurements measured with the electronic load. The load resistance is first 

calculated by dividing the measured load voltage to the current value. The voltage 

drop across the internal resistance of the TEG equals the difference between VOC and 

Vload. Therefore, Rteg is found by dividing Vload to the current value. The results for 

both methods are shown in Table 6-3 and are in good agreement among each other. 
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For each module, it can be notice that the highest Rload /Rteg value is at the lowest 

heat flux through the module with the highest β value. A low heat flux through the 

module also means a small temperature gradient.  

The actual ZT of Bi2Te3 modules has a smaller value at lower temperature, peaks at 

T 100 C  and decreases afterwards, as shown in Figure 3-1. Considering the 

research hypothesis that 
load tegR R 1 ZT  , for the GM250-241-10-12 module at 

30W and 130W heat flux, the ZT values would be 1.56 and 0.65 respectively. These 

results do not correspond to the general ZT trend shown in Figure 3-1. Moreover, 

the ZT value of the commercial modules does not exceed unity. Using the constant 

heat parameter characterization from Chapter 5 and (6-11), the ZT was calculated 

and plotted in Figure 6-12. The ZT values of the GM250-241-10-12 module are in 

the range of 0.39-0.45. The results for the hypothetical load tegR R 1 ZT  were 

plotted against the Rload /Rteg values calculated based on the experimental results 

carried on in this thesis and shown in Figure 6-16. 

2

teg

teg teg

T
ZT

R K




 
(6-11) 

Where αteg is the Seebeck coefficient of the module, Rteg the internal resistance, Kteg 

the thermal conductance and T the average temperature across the module. 
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Figure 6-15 Calculated ZT values for the GM250-241-10-12 module based on the constant 
heat parameter characterization 
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Figure 6-16 Theoretical load tegR R 1 ZT  plotted against the experimentally obtained 

Rload /Rteg values calculated for GM250-241-10-12 module.  

It can be clearly seen that the two results are not equal or similar and follow 

opposite trends. Therefore, it can be concluded that the present research condition 

for maximum power load tegR R 1 ZT  does not hold for the case of constant heat 

characterization of TEGs. Much work still needs to be done to deeply understand 

the Peltier effect over the TEG systems when attempting to use it to maximizing the 

power output.     

6.7. CONCLUSIONS 

It is generally know that the performance of TE modules integrated into application 

is always less than the predicted performance based on one-module 

characterization. This TEG performance decrease is mainly due to the difference 

between the controllable test apparatus and the uncontrollable environmental 

factors that affect the actual systems. This chapter describes in detail the design of a 

hot gas test rig developed at the University of Glasgow with the purpose of 

validating TEG integration at the system level. Not only that the system is 

equivalent to a real TEG application (i.e., car exhaust pipe) but it is also partially-

controlled to allow one or multiple TE device testing.  
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The main effect of the TEG thermal conductivity manipulation by means of 

changing the operation voltage/current is its potential operation at a higher MPP 

than the theoretical one predicted by the maximum power transfer theorem.  The hot 

gas system was used to test this concept which was first validated in Chapter 5 

using a simple one-module test apparatus.  

The test results achieved using the GM250-127-28-10 module on the hot has system 

clearly show the existence of the real MPP when the set voltage is different than 

half of the VOC. The value of β identified for MPP operation varied in the range 0.54 

– 0.62, depending on the module size and the heat flow through it. The work by 

(49) predicts peak system power will occur at the maximum power point of the 

system defined by load tegR R 1 ZT   and experiments conducted in this chapter 

show that this hypothesis does not hold for constant heat operation. Since ZT is 

TEG-specific and varies with absolute temperature, the implications for MPPT 

algorithms are profound: existing methods do not adequately accommodate the long 

thermal settling times varying β requires to reach equilibrium. 

The test results on the hot gas system show how even 1°C change in the TEG cold-

side temperature can cause a variation of up to 3% in the power generated by the 

module. The increased sensitivity is expected due to the lower temperature effect on 

the Carnot efficiency. Therefore, in a TEG system, one design consideration to 

maximize the power generated by the TEG is the cold-side heat exchanger. Not 

only should the materials used for the heat sinks have high thermal conductivity to 

allow the heat to be removed from the TEG, but also in case of liquid-cooled heat-

exchangers, the temperature of the liquid should be kept as low as possible. In the 

case of air-cooled heat exchangers, the control of the air temperature is mostly 

restricted by the ambient environment.       

An important matter tackled in this chapter and relevant not only to TEG systems 

but systems in general was the power losses associated with wiring interconnects. 

This topic is often ignored in research but can have a high impact on the power 

generated by TEGs especially those that produce high current levels. Choosing the 

correct wires and reducing the length as much as possible can prevent false readings 

and reduce wiring losses. Use of 4-wire measurement techniques can reduce the 

observed error but cannot compensate for ohmic losses in the conductors. For 

vehicular applications where the mass of the system is a primary consideration, 

heavy cables are contrary to the design objectives and hence the system designer 

needs to carefully assess the tradeoff between power loss in wiring vs. the use of 

many TEGs in series to increase the operating voltage of the array, but at the 

expense of lost power in the array due to temperature mismatch. 

Nevertheless, the main topic of this chapter focused on demonstrating the existence 

of a new MPP higher than that predicted by the maximum power transfer theorem 
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conditions. This was shown and has been validated experimentally. The obvious 

finding is that design engineers should pay attention to the interconnected electrical 

and thermal features of TEG system and how they can be designed to operate at 

MPP. Clearly, the classical MPPT algorithms developed for PV systems and 

currently used in TEG systems are not sufficient for MPP operation. Demonstrating 

an increase in power output of nearly 10% whilst simultaneously reducing the heat 

flux reaching the cold side is a highly significant finding. There remains much work 

to do in designing autonomous algorithms that can effectively exploit this finding. 
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CHAPTER 7. GENERAL 

CONCLUSIONS 

In this chapter the general conclusions of the thesis are summarized and 

suggestions for possible future work are given. 

7.1. CONCLUSIONS 

Overall, this thesis investigates possible methods to predict the potential efficiency 

of TEG integrated applications and offers information to be considered during the 

design, construction and testing of TEG systems for output power maximization.  

Chapter 4 introduced an approach to design and model a TEG emulator for MPPT 

efficiency analysis. Dynamic MPPT efficiency is difficult to accurately calculate 

due to lack of TEG simulators. The TEG emulator was constructed using a 

programmable power supply (PV simulator) controlled to operate as a TEG using 

MATLAB based on the constant temperature parametric characterization of an 

oxide module. The performance of the TEG emulator was shown using the P&O 

algorithm and various test case scenarios: 1) three trapezoidal temperature profiles 

constructed based on literature research, 2) variable MPPT frequencies and 3) two 

resolution options (low/high) of the simulator.  

The advantages of using a TEG emulator were addressed, however, improvements 

are necessary to be able to accurately predict the potential of TEG systems. On the 

other hand, it is a simple and accurate solution to test the operation and 

performance of the power electronics used in the TEG system.  

It is later shown in Chapter 5 that constant temperature characterization does not 

comply with existing conditions of TEG applications. Therefore, it is indicated that 

this method to be avoided in the future as it is partly the cause for false prediction 

of the TEG system potential.  

Until the present, the maximum power transfer theorem was universally used to 

define the optimum operating point of a TE module where it would deliver the 

maximum possible power output. However this condition clearly disregards the 

thermal interactions that happen in a TEG system due to any electrical changes and 

the potential that the Peltier effect has in increasing the power output of a TEG. In 

Chapter 5 and Chapter 6 it was experimentally shown that manipulating the 

Peltier effect can be beneficial to the system efficiency and it makes the system 

operate at a higher MPP than the one defined by the maximum power transfer 
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theorem. This can only happen by understanding the valuable thermal influence on 

the electrical operation of a TEG.  

The initial power increase range predicted in Chapter 5 using a test fixture for one-

module parametric characterization was 1.91% – 5.31% compared to the theoretical 

value. The test apparatus was customized to accommodate accurate measurements 

for one module, including heat loss characterization and controllable features (i.e. 

hot and cold site temperatures, clamping pressure). However, this is not the case in 

TEG applications where multiple modules are integrated and the system is not 

controlled. For this reason, a proper characterization of the concept that the Peltier 

effect can maximize the power generated by the TEG system was necessary. This 

was performed using the hot gas system described in Chapter 6 and specifically 

built to resemble a realistic TEG application. Several differences were seen and 

discussed between the test fixture and the hot gas system, but the surprising results 

were the power increase percentages.  

As mentioned, it is typical when using a customized test setup to overestimate the 

results compared to the ones of a real TEG system. In this case, the power increase 

range using the hot gas system was 2.5% – 8.3% which shows that these results are 

in good agreement with the ones presented using the test fixture in Chapter 5. 

Accurate performance predictions are possible when the modules are tested using 

the actual existing conditions in applications (i.e. constant heat operation). Strong 

suggestions for future considerations are given to both industry and research to 

consider this matter. Moreover, MPPT algorithms that comply with the specific 

thermal-electrical interactions in a TEG system should be developed instead of the 

“borrowed” ones from PV systems.               

7.2. FUTURE WORK 

Possible future work can be derived from the topics disused and analysed 

throughout this thesis. The main research directions are as follows: 

Characterization of TE modules for applications: 

 The use of cascaded module such as Bi2Te3 with oxide can cover a wider 

range of TEG application temperatures. 

TEG emulator 

 Implementation of the TEG emulator to operate in constant heat. This 

means that the Peltier should be considered in the MATLAB program that 

controls the SAS. 
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 Addition of the thermal interactions of all the system components. As 

research shows, never the power generated by a TEG system reaches the 

values predicted from one-module testing.  

TEG system control 

 Temperature mismatch for large surface multiple module integration is a 

fact. The DPP concept was originally developed for PV, but it should be 

considered and investigated for TEG systems too. 

 The standard MPPT PV algorithms can no longer be used if the TEG 

system is to be operated at its real MPP. Constant heat MPPT methods for 

TEG systems are necessary that account for the slow thermal variations 

caused due to electrical variations. 

Constant heat parametric characterization 

 Inconsistencies were observed when attempting to correlate the maximum 

power or efficiency point of TEG systems in constant heat to the current 

research theory. Thorough experimental investigations are necessary to 

understand the thermal and electrical interactions caused by the 

manipulation of the Peltier effect to benefit the output power generation. 

Moreover, the actual correlation between ZT and the parameters of the 

module in constant heat needs to be investigated.       

  



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

142
 

 

 

 



 

 

LITERATURE LIST 

(1) Luan W, Tu S. Recent developments of thermoelectric power generation. 

Chinese Science Bulletin 2004;49(12):1212-1219. 

(2) Hendricks T, Choate WT. Engineering scoping study of thermoelectric 

generator systems for industrial waste heat recovery. U.S. Department of Energy, 

2006. 

(3) Hsu C, Huang G, Chu H, Yu B, Yao D. Experiments and simulations on low-

temperature waste heat harvesting system by thermoelectric power generators. 

Applied Energy 2011;88:1291-1297. 

(4) Cao D, Peng FZ. Multiphase multilevel modular DC-DC converter for high 

current high gain TEG application. Energy Conversion Congress and Exposition 

(ECCE), 2010 IEEE 2010. 

(5) Schock H, Brereton G, Case E, D'Angelo J, Hogan T, Lyle M, et al. Prospects 

for implementation of thermoelectric generators as waste heat recovery systems in 

class 8 truck applications. Journal of Energy Resources Technology 

2013;135(2):022001. 

(6) Tian Z, Lee S, Chen G. A comprehensive review of heat transfer in 

thermoelectric materials and devices. Annual Review of Heat Transfer 2014;17. 

(7) Yang J, Caillat T. Thermoelectric materials for space and automotive power 

generation. Mrs Bulletin 2006;31:224-229. 

(8) Markides CN. Low-concentration solar-power systems based on organic 

Rankine cycles for distributed-scale applications: overview and further 

developments. Frontiers in Energy Research 2015;3:47. 

(9) LeBlanc S, Yee SK, Scullin ML, Dames C, Goodsom KE. Material and 

manufacturing cost considerations for thermoelectrics. Renewable and Sustainable 

Energy Reviews 2014;32:313-327. 

(10) ObservatoryNANO. Briefing No. 17 - Thermoelectricity for energy harvesting. 

Seventh Framework Programme June 2011. 

(11) Velez F, Segovia JJ, Martin C, Antolin G, Chejne F, Quijano A. A technical, 

economical and market review of organic Rankine cycles for the conversion of low-

grade heat for power generation. Renewable and Sustainable Energy Reviews 

2012;16(6):4175-4189. 



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

(12) Mullen P, Siviter J, Montecucco A, Knox AR. A thermoelectric energy 

harvesterwith a cold start of 0.6 °C. Materials Today: Proceedings 12th European 

Conference on Thermoelectrics 2015;2(2):823-832. 

(13) Kim RY, Lai JS. A seamless mode transfer maximum power point tracking 

controller for thermoelectric generator applications. IEEE Transactions on Power 

Electronics 2008;23(5):2310-2318. 

(14) Laird I, Lovatt H, Savvides N, Lu D, Agelidis VG. Comparative study of 

maximum power point tracking algorithms for thermoelectric generators. Power 

Engineering Conference, 2008 AUPEC '08 Australasian Universities 2008:1-6. 

(15) Kim S, Cho S, Kim N, Park J. A maximum power point tracking circuit of 

thermoelectric generators without digital controllers. IEICE Electronics Express 

2010;7(20):1539-1545. 

(16) Ni LX, Sun K, Zhang L, Xing Y. A power conditioning system for 

thermoelectric generator based on interleaved boost converter with MPPT control. 

2011 International Conference on Electrical Machines and Systems (ICEMS) 

2011:1-6. 

(17) Ko Ko W, Souvik D, Panda SK. An optimized MPPT circuit for thermoelectric 

energy harvester for low power applications. 8th International Conference on Power 

Electronics - ECCE 2011:1579-1584. 

(18) Laird I, Lu DDC. High step-up DC/DC topology and MPPT algorithm for use 

with a thermoelectric generator. IEEE Transactions on Power Electronics 

2012;28(7):3147 - 3157. 

(19) Yamada H, Kimura K, Hanamoto T, Ishiyama T, Sakaguchi T, Takahashi T. A 

novel MPPT control method of thermoelectric power generation with single sensor. 

Applied Sciences 2013;3:545-558. 

(20) Nagayoshi H, Kajikawa T, Sugiyama T. Comparison of maximum power point 

control methods for thermoelectric power generator. Proceedings ICT '02 Twenty-

First International Conference on Thermoelectrics 2002:450-453. 

(21) Eakburanawat J, Boonyaroonate I. Development of a thermoelectric battery-

chargerwith microcontroller-based maximum powerpoint tracking technique. 

Applied Energy 2006;83(7):687-704. 

(22) Hejtmánek J, Knížek K, Švejda V, Horna P, Sikora M. Test system for 

thermoelectric modules and materials. Journal of Electronic Materials 

2014;43(10):3726-3732. 



CHAPTER 7. GENERAL CONCLUSIONS 

145 

(23) Wang H, McCarty R, Salvador JR, Yamamoto A, König J. Determination of 

thermoelectric module efficiency: a survey. Journal of Electronic Materials 

2014;43(6):2274-2286. 

(24) Tahhan M, Bazzi AM. A uniform temperature test rig for thermoelectric 

generator characterization and testing. Power and Energy Conference at Illinois 

(PECI) 2014:1-5. 

(25) Bell LE. Cooling, heating, generating power and recovering waste heat with 

thermoelectric systems. Science 2008;321(5895):1457-1461. 

(26) Beeby S, White NM editors. Energy harvesting for autonomous systems, 

Chapter 5 - Thermoelectric energy harvesting, by Gao Min. ; 2014. 

(27) Tritt TM editor. Recent trends in thermoelectric materials research I, Chapter I 

Introduction, by Goldsmith, H.J. ; 2001. 

(28) Lasance JM. The Seebeck coefficient. Electronics cooling magazine 2006. 

(29) Chen J, Yan Z, Wu L. Influence of Thomson effect on the maximum power 

output and maximum efficiency of a thermoelectric generator. Journal of Applied 

Physics 1996;79:8823. 

(30) Sandoz-Rosado EJ, Weinstein SJ, Stevens RJ. On the Thomson effect in 

thermoelectric power devices. International Journal of Thermal Sciences 2013;66:1-

7. 

(31) Min G, Rowe DM, Kontostavlakis K. Thermoelectric figure-of-merit under 

large temperature differences. Journal of Physiscs D:Applied Physiscs 

2004;37:1301-1304. 

(32) Apertet Y, Ouerdane H, Goupil C, Lecæur P. Internal convection in 

thermoelectric generator models. Journal of Physics: Conference Series 395 2012. 

(33) Tilley R. Understanding solids: the science of materials, Chapter 15 Thermal 

properties. ; 2004. 

(34) Snyder GJ, Toberer ES. Complex thermoelectric materials. Nature Materials 

2008;7:105-115. 

(35) MacDonald DKC. Thermoelectricity: An introduction to the principles. : 

Dover Publications, inc.; 2006. 



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

(36) Szczech J, Higgins JM, Jin S. Enhancement of the thermoelectric properties in 

nanoscale and nanostructured materials. Journal of Materials Chemistry 

2011;21(12):4037-4055. 

(37) Goupil C, Seifert W, Zabrocki K, Muller E, Snyder GJ. Thermodynamics of 

thermoelectric phenomena and applications. Entropy 2011;13(8):1481-1517. 

(38) Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and 

applications: a bird’s eye view. Mrs Bulletin 2006;31:188-229. 

(39) Snyder GJ. Small thermoelectric generators. Interface 2008:54. 

(40) Harman TC, Walsh MP, Laforge BE, Turner GW. Nanostructured 

thermoelectric materials. Journal of Electronic Materials 2005;34(5). 

(41) Zhao D, Tan G. A review of thermoelectric cooling: materials, modelling and 

applications. Applied Thermal Engineering 2014;66:15-24. 

(42) Ohta H, Sugiura K, Koumoto K. Recent progress in oxide thermoelectric 

materials: p-type Ca3Co4O9 and n-type SrTiO3. CREST, Japan Science and 

Technology Agency 2008. 

(43) Ohtaki M. Oxide thermoelectric materials for heat-to-electricity direct energy 

conversion. Kyushu University Global COE Program Novel Carbon Resources 

Sciences Newsletter 2010;3((Special Issue)). 

(44) Zhang Q, Agbossou A. Phase change material and the thermoelectric effect for 

solar energy harvesting and storage. Proceedings of the ASME/JSME 2011 8th 

Thermal Engineering Joint Conference AJTEC 2011 2011:1-6. 

(45) Vasquez J, Sanz-Bobi MA, Palacious R, Arenas A. State of the art of 

thermoelectric generators based on heat recovered from the exhaust gases of 

automobiles. Proceedings, 7th European Workshop on Thermoelectrics 2002:Paper 

17. 

(46) Oetringer K, Kober M, Altstedde MK. Upgrading hybrid-vehicles with a 

thermoelectric generator. Ecological Vehicles and Renewable Energies (EVER), 

2014 Ninth International Conference on 2014:1-5. 

(47) LeBlanc S. Thermoelectric generators: Linking material properties and 

systemsengineering for waste heat recovery applications. Sustainable Materials and 

Technologies 2014;1-2:26-35. 



CHAPTER 7. GENERAL CONCLUSIONS 

147 

(48) Montecucco A, Siviter J, Knox AR. The effect of temperature mismatch on 

thermoelectric generators electrically connected in series and parallel. Applied 

Energy 2014;123:47-54. 

(49) McCarty R. Thermoelectric power generation design for maximum poiwer: It's 

all about ZT. Journal of Electronic Materials 2013;42(7):1504-1508. 

(50) Baranowski LL, Snyder GJ, Toberer ES. The misconception of maximum 

power and power factor in thermoelectrics. Journal of Applied Physics 

2014;126102. 

(51) Montecucco A, Knox AR. Maximum power point tracking converter based on 

the open-circuit voltage method for thermoelectric generators. IEEE Transactions 

on Power Electronics 2015;30(2):828-839. 

(52) Schönecker A, Pichon PY, König J, Jägle M, den Heijer M, Kraaijveld B. 

Novel process for metal silicide nanostructures regarding cheap and large-scale 

material synthesis. Proceedings of the 11th European Conference on 

Thermoelectrics 2014:43-51. 

(53) Liu L, Sun S, Zhang Q, Zhai P. The mechanical properties of skutterudite 

CoAs3by molecular dynamics (MD) simulation. Journal of Wuhan University of 

Technology-Mater Sci Ed 2008;23(3):415-418. 

(54) Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum 

figure of merit of p -type bismuth telluride-based thermoelectric materials for 

power generation by suppressing intrinsic conduction. NPG Asia Materials 

2014;6(e88):1-8. 

(55) Lee KH, Choi SM, Roh JW, Hwang S, Kim SI, Shin WH, et al. Enhanced 

thermoelectric performance of p-type Bi-Sb-Te alloys by codoping with Ga and Ag. 

Journal of Electronic Materials 2015;44(6):1531-1535. 

(56) Lee GE, Eum AY, Song KM, Kim IH, Lim YS, Seo WS, et al. Preparation and 

thermoelectric properties of n-type Bi2Te2.7Se0.3:Dm. Journal of Electronic 

Materials 2015;44(6):1579-1584. 

(57) Zou P, Xu G, Wang S. Thermoelectric properties of nanocrystalline 

Bi2(Te1xSex)3 prepared by high-pressure sintering. Journal of Electronic Materials 

2015;44(6):1592-1598. 

(58) Killander A, Bass JC. A stove-top generator for cold areas. Thermoelectrics, 

1996 , Fifteenth International Conference on 1996:390-393. 



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

(59) Nuwayhid RY, Rowe DM, Min G. Low cost stove-top thermoelectric 

generator for regions with unreliable electricity supply. Renewable Energy 2003 

2;28(2):205-222. 

(60) Champier D, Bédécarrats JP, Kousksou K, Rivaletto M, Strub F, Pignolet P. 

Study of a TE (thermoelectric) generator incorporated in a multifunction wood 

stove. Energy 2011;36:1518-1526. 

(61) Champier D, Favarel C, Bédécarrats JP, Kousksou T, Rozis JF. Prototype 

combined heater/thermoelectric power generator for remote applications. Journal of 

Electronic Materials 2013;42(7):1888-1899. 

(62) Bannar-Martin L, Manthanwar A, Patel B, Barker D, Morrison A. Portable 

power generation - GlobalTech energy challenge 2013. 2013. 

(63) O’Shaughnessy SM, Deasy MJ, Kinsella CE, Doyle JV, Robinson AJ. Small 

scale electricity generation from a portable biomass cookstove: Prototype design 

and preliminary results. Applied Energy 2013;102:374–385. 

(64) Montecucco A, Siviter J, Knox AR. A combined heat and power system for 

solid-fuel stoves using thermoelectric generators. Energy Procedia 2015;75:597-

602. 

(65) Wang H, Porter WD, Bottner H, Konig J, Chen L, Bai S, et al. Transport 

properties of bulk thermoelectrics — An international round-robin study, Part I: 

Seebeck coefficient and electrical resistivity. Journal of Electronic Materials 

2013;42(4):654-664. 

(66) Wang H, Porter WD, Bottner H, Konig J, Chen L, Bai S, et al. Transport 

properties of bulk thermoelectrics: An international round-robin study, Part II: 

Thermal diffusivity, specific heat, and thermal conductivity. Journal of Electronic 

Materials 2013;42(6):1073-1084. 

(67) Holgate TC. Increasing the efficiency of the multi-mission radioisotope 

thermoelectric generator. Journal of Electronic Materials 2015;44(6):1814-1821. 

(68) Luo Q, Li P, Cai L, Zhou P, Tang D, Zhai P, et al. A thermoelectric waste-

heat-recovery system for Portland cement rotary kilns. Journal of Electronic 

Materials 2015;44(6):1750-1762. 

(69) Baranowski LL, Snyder GJ, Toberer ES. Effective thermal conductivity in 

thermoelectric material. Journal of Applied Physics 2013;113:204904. 



CHAPTER 7. GENERAL CONCLUSIONS 

149 

(70) Brazdil M, Pospisil J. Thermoelectric power generation utilizing the waste heat 

from a biomass boiler. Journal of Electronic Materials 2013;42(7):2198-2202. 

(71) Juanico LE, Rinalde FN, Taglialavore E, Molina M. Development of a portable 

thermogenerator for uncontrolled heat sources. Journal of Electronic Materials 

2013;42(7):1846-1854. 

(72) Karim AM, Federici JA, Vlachos DG. Portable power production from 

methanol in an integrated thermoeletric/microreactor system. Journal of Power 

Sources 2008;179:113-120. 

(73) Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a 

domestic woodstove thermoelectric generator with natural convection cooling. 

Energy Conversion and Management 2005;43:1631-1643. 

(74) Kaasjager ADJ, Moeys GPG. A hot plate solar cooker with electricity 

generation - combining a parabolic trough mirror with a Sidney tube and heat pipe. 

Global Humanitarian Technology Conference (GHTC), 2012 IEEE 2012:6-11. 

(75) Adavbiele AS. Generation of electricity from gasoline engine waste heat. 

International Journal od Energy Technology and Policy 2013;3(5):16-33. 

(76) Hatzikraniotis E. On the recovery of wasted heat using a commercial 

thermoelectric device. Proceedings of the International Congress on Advances in 

Applied Physics and Materials Scienc 2011. 

(77) Anatychuk LI, Luste OJ, Kuz RV. Theoretical and experimental study of 

thermoelectric generators for vehicles. Journal of Electronic Materials 

2011;40(5):1326-1331. 

(78) Rauscher L, Fujimoto S, Kaibe HT, Sano S. Efficiency determination and 

general characterization of thermoelectric generators using an absolute 

measurement of the heat flow. Measurement Science and Technology 

2005;16:1054. 

(79) Takazawa H, Obara H, Okada Y, Kobayashi K, Onishi T, Kajikawa T. 

Efficiency measurement of thermoelectric modules operating in the temperature 

difference of up to 550K. Proceedings of the 25th International Conference on 

Thermoelectrics, 2006 ICT '06 2006:189-192. 

(80) Sandoz-Rosado E, Stevens RJ. Experimental characterization of thermoelectric 

modules and comparison with theoretical models for power generation. Journal of 

Electronic Materials 2009;38:1239-1244. 



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

(81) Anatychuk LI, Havrylyuk MV. Procedure and equipment for measuring 

parameters of thermoelectric generator modules. Journal of Electronic Materials 

2011;42(1292-1297). 

(82) PANCO GmbH. TEGeta — Measurement of Efficiency and Specifications of 

Thermoelectric Power Generators, Manual. 2013. 

(83) Montecucco A, Buckle J, Siviter J, Knox AR. A new test rig for accurate 

nonparametric measurement and characterization of thermoelectric generators. 

Journal of Electronic Materials 2014;42:1966-1973. 

(84) Pierce RD, Stevens RJ. Experimental comparison of thermoelectric module 

characterization methods. Journal of Electronic Materials 2015;44(6):1796-1802. 

(85) Su CQ, Wang WS, Liu X, Deng YD. Simulation and experimental study on 

thermal optimization of the heat exchanger for automotive exhaust-based 

thermoelectric generators. Case Studies in Thermal Engineering 2014;4:85-91. 

(86) Sharp J, Bierschenk J. The prevalence of standard large modules in 

thermoelectric applications. Journal of Electronic Materials 2015;44(6):1763-1767. 

(87) Vadstrup C, Schaltz E, Chen M. Individual module maximum power point 

tracking for thermoelectric generator systems. Journal of Electronic Materials 

2013;42(7):2203-2208. 

(88) Wu H, Sun K, Chen M, Chen Z, Xing Y. Hybrid centralized-distributed power 

conditioning aystem for thermoelectric generator with high energy efficiency. 

Energy Conversion Congress and Exposition (ECCE), 2013 IEEE 2013:4659-4664. 

(89) Chen M. Adaptive removal and revival of underheated thermoelectric 

generation modules. IEEE Transactions on Industrial Electronics 

2014;61(11):6100-6107. 

(90) Shenoy PS, Kim KA, Johnson BB, Krein PT. Differential power processing 

architecture for increased energy production and reliability of photovoltaic systems. 

IEEE Transactions on Power Electronics 2012;28(6):2968-2979. 

(91) Qin S, Cady ST, Dominguez-Garcia AD, Pilawa-Podgurski RCN. A 

distributed approach to MPPT for PV sub-module differential power processing. 

Energy Conversion Congress and Expozition (ECCE), 2013 IEEE 2013:2778-2785. 

(92) Qiu Z, Sun K, Wu H, Huang J, Xing Y. A high efficiency cascaded 

thermoelectricgeneration system with power balancing mechanism. 2015 IEEE 

Applied Power Electronics Conference and Exposition (APEC) 2015:647 - 653. 



CHAPTER 7. GENERAL CONCLUSIONS 

151 

(93) Montecucco A, Siviter J, Knox AR. Simple, fast and accurate maximum power 

point tracking converter for thermoelectric generators. 2012 IEEE Energy 

Conversion Congress and Exposition (ECCE) 2012:2777-2783. 

(94) Kim B, Bun L, Goupil C, Dagues B, Maussion P. Modeling and tuning of 

MPPT controllers for a thermoelectric generator. First International Conference on 

Green Energy ICGE 2014 2014:220-225. 

(95) Nagayoshi H, Maiwa H, Kajikawa T. Power conditioner with variable 

switching control for thermoelectric generator systems. Journal of Electronic 

Materials 2013;42(7):2282-2286. 

(96) Phillip N, Maganga O, Burnham KJ, Ellis MA, Robinson S, Dunn J, et al. 

Investigation of maximum power point tracking for thermoelectric generators. 

Journal of Electronic Materials 2013;42(7):1900-1906. 

(97) Maganga O, Phillip N, Burnham KJ, Montecucco A, Siviter J, Knox AR, et al. 

Hardware implementation of maximum power point tracking for thermoelectric 

generators. Journal of Electronic Materials 2014;43(6):2293-2300. 

(98) Man EA, Sera D, Mathe L, Schaltz E:,L. Dynamic performance of maximum 

power point trackers in TEG systems under rapidly changing temperature 

conditions. Journal of Electronic Materials 2015. 

(99) Kim RY, Lai JS. Aggregated modeling and control of a boost-buck cascade 

converter for maximum power point tracking of a thermoelectric generator. Applied 

Power Electronics Conference and Exposition, 2008 APEC 2008 Twenty-Third 

Annual IEEE 2008:1754-1760. 

(100) Kim S, Cho S, Kim N, Baatar N, Kwon J. A digital coreless maximum power 

point tracking circuit for thermoelectric generators. Journal of Electronic Materials 

2011;40(5):867-872. 

(101) Park J, Kim S. Maximum power point tracking controller for thermoelectric 

generators with peak gain control of boost DC–DC converters. Journal of Electronic 

Materials 2012;41(6):1242-1246. 

(102) Wu H, Sun K, Zhang J, Xing Y. A TEG efficiency booster with buck–boost 

conversion. Journal of Electronic Materials 2013;42(7):1737-1744. 

(103) Park H, Sim M, Kim S. Achieving maximum power from thermoelectric 

generators with maximum-power-point-tracking circuits composed of a boost-

cascaded-with-buck converter. Journal of Electronic Materials 2015;44(6):1948-

1956. 



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

(104) Kim RY, Lai JS, York B, Koran A. Analysis and design of maximum power 

point tracking scheme for thermoelectric battery energy storage system. IEEE 

Transactions on Industrial Electronics 2009;56(9):3709-3716. 

(105) Gao J, Sun K, Ni L, Chen M, Kang Z, Zhan L, et al. A thermoelectric 

generation system and its power electronics stage. Journal of Electronic Materials 

2012;41(6):1043-1050. 

(106) Desai NV, Ramadass YK, Chandrakasan AP. A bipolar ±40 mV self-starting 

boost converter with transformer reuse for thermoelectric energy harvesting. Low 

Power Electronics and Design (ISLPED), 2014 IEEE/ACM International 

Symposium on 2014:221-226. 

(107) Meli M, Dillersberger H. Efficiently harvesting energy from temperature 

differences in order to power wireless systems. Wireless Congress 2014 2014. 

(108) Pilawa-Podgurski RCN, Pallo NA, Chan WR, Perreault DJ, Celanovic IL. 

Low-power maximum power point tracker with digital control for 

thermophotovoltaic generators. Applied Power Electronics Conference and 

Exposition (APEC), 2010 Twenty-Fifth Annual IEEE 2010:961- 967. 

(109) Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R. On the Perturb-and-

Observe and Incremental Conductance MPPT methods for PV systems. IEEE 

Journal of Photovoltaics 2013;3(3):1070-1078. 

(110) Esram T, Chapman PL. Comparison of Photovoltaic Array Maximum Power 

Point Tracking Techniques. IEEE Transactions on Energy Conversion 

2007;22(2):439-449. 

(111) Laird I, Lu DDC. Steady state reliability of maximum power point tracking 

algorithms used with a thermoelectric generator. Circuits and Systems (ISCAS), 

2013 IEEE International Symposium on 2013:1316 - 1319. 

(112) Koutroulis E, Kalaitzakis K. Novel battery charging regulation system 

forphotovoltaic applications. IEE Proceedings - Electric Power Applications 

2004;151(2):191 - 197. 

(113) Man EA, Schaltz E, Rosendahl L, Rezaniakolaei A, Platzek D. A high 

temperature experimental characterization procedure for oxide-based thermoelectric 

generator modules under transient conditions. Energies 2015;8(11):12839-12847. 

(114) Keysight Technologies. Testing terrestrial solar-powered inverters using solar 

array simulation techniques - Application note. 2009. 



CHAPTER 7. GENERAL CONCLUSIONS 

153 

(115) Hussein KH, Muta I, Hoshino T, Osakada M. Maximum photovoltaic power 

tracking: an algorithm for rapidly changing atmospheric conditions. Generation, 

Transmission and Distribution, IEE Proceedings 1995;142(1):59-64. 

(116) CENELEC. European Standard DS/EN 50530 - Overall efficiency of grid 

connected photovoltaic inverters. 2010. 

(117) Montecucco A, Siviter J, Knox AR. Constant heat characterisation and 

geometrical optimisation of thermoelectric generators. Applied Energy 

2015;149:248–258. 

(118) Oku M, Sakoda T, Hayashi N, Tashima D. Basic characteristics of a heat and 

electricity combined generation system using biomass fuel. Renewable Energy 

Research and Application (ICRERA), 2014 International Conference on 2014:222-

228. 

(119) Anatychuk LI, Luste OJ, Kuz RV. Theoretical and experimental study of 

thermoelectric generators for vehicles. Journal of Electronic Materials 

2011;40(5):1326-1331. 

(120) Altstedde MK, Rinderknecht F, Friedrich H. Integrating phase-change 

materials into automotive thermoelectric generators. Journal of Electronic Materials 

2014;43(6):2134-2140. 

(121) Min G. Principle of determining thermoelectric properties based on I–V 

curves. Measurement Science and Technology 2014;25(8):085009 (6pp). 

  

 

  



DESIGN CONSIDERATIONS FOR THERMOELECTRIC POWER GENERATION 

 

APPENDICES 

Appendix A. .......................................................................................................................... 1 

 

 

 

 



CHAPTER 7. GENERAL CONCLUSIONS 

1 

Appendix A.  

The following equations describe an exponential solar cell model and are used by 

the Solar Array Simulator in SAS mode to establish the I-V output characteristics.  
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Where N is a parameter related to the array shunt resistance and RS is the output 

resistance of the solar array.  

The relationship between N, RS, IMPP and VMPP is shown in Figure- A-1. 
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Figure- A-1 The I-V characteristic of a solar cell and the relationship between N, RS, IMPP 
and VMPP. 
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