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Abstract 

This thesis addresses the issues of scheduling of mobile robot(s) at operational levels of 

manufacturing systems. More specifically, two problems of scheduling of a single 

mobile robot with part-feeding tasks and scheduling of multiple mobile robots with 

preemptive tasks are taken into account. For the first scheduling problem, a single 

mobile robot is considered to collect and transport container of parts and empty them 

into machine feeders where needed. A limit on carrying capacity of the single mobile 

robot and hard time windows of part-feeding tasks are considered. The objective of the 

first problem is to minimize the total traveling time of the single mobile robot and 

thereby increase its availability. For the second scheduling problem, a fleet of mobile 

robots is considered together with a set of machines to carry out different types of tasks, 

e.g. pre-assembly or quality inspection. Some of the tasks are non-preemptive while the 

others are preemptive. The considered mobile robots have capabilities to not only 

transport non-preemptive tasks between some machines but also process preemptive 

tasks on other machines. These mobile robots are allowed to interrupt their preemptive 

tasks to carry out transportation of non-preemptive tasks when needed. The objective of 

the second problem is to minimize the time required to complete all tasks while taking 

account of precedence constraints. 

 To deal with each mentioned scheduling problem, each mathematical model is 

first formulated. This allows describing each problem and finding optimal solutions for 

each one.  However, the formulated mathematical models could only be applicable to 

small-scale problems in practice due to the significant increase of computation time as 

the problem size grows. Note that making schedules of mobile robots is part of real-time 

operations of production managers. Hence to deal with large-scale applications, each 

heuristic based on genetic algorithms is then developed to find near-optimal solutions 

within a reasonable computation time for each problem. The quality of these solutions is 

then compared and evaluated by using the solutions of the mathematical models as 

reference points. The results from numerical experiments in this thesis show that the 

proposed heuristics are capable of solving problems of various sizes and more efficient 

than the mathematical models in terms of the objective values when giving the same 

limited computation time. The research results are useful for production managers to 

make decisions at operational levels and the proposed heuristics could be also applied to 

a variety of tasks of not only mobile robots but also automatic guided vehicles.       
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Dansk Resumé 

Denne ph.d.-afhandling omhandler problemer ved skedulering af mobil(e) robot(ter) på 

produktionsniveau i produktionssystemer. Mere præcist undersøges to problemer ved 

skedulering af en enkelt mobil robot med opgaver med fremføring af dele og 

skedulering af flere mobile robotter med opgaver der kan afbryde en allerede igangsat 

opgave. Til det første skeduleringsproblem undersøges en enkelt mobil robot. Denne 

mobile robot skal hente og transportere containere med dele og tømme dem i maskiners 

fødesystem alt efter hvor der opstår behov for dette. En begrænsning i 

transportkapaciteten for den enkelte mobile robot og hårde tidsvinduer på processernes 

eksekvering for fødesystemet for dele undersøges. Målet i første problemstilling er at 

minimere tidsforbruget for den samlede kørte distance for én mobil robot og derved øge 

dens kapacitet og oppetid. I det andet skeduleringsproblem undersøges flere mobile 

robotter sammen med flere maskiner, der udfører forskellige typer af opgaver, fx (for-) 

montage og kvalitetsinspektion. Nogle opgaver er ikke-afbrydende, mens andre kan 

afbryde allerede igangsatte aktiviteter. De undersøgte mobile robotter kan ikke kun 

transportere ikke-afbrydende opgaver mellem maskiner, men kan også udføre proces-

afbrydende opgaver på andre maskiner. Disse mobile robotter må afbryde deres opgaver 

for i stedet at udføre transportopgaver for ikke-afbrydende opgaver, når der opstår 

behov for dette. Målet med det andet skeduleringsproblem er at minimere tidsforbruget 

til at færdiggøre alle opgaver, mens der tages højde for forrangs-begrænsninger. 

For at undersøge de to nævnte skeduleringsproblemer formuleres først en 

matematiske model for hvert problem. Dette giver mulighed for at beskrive hvert 

problem og at finde optimale løsninger for hvert problem. De formulerede matematiske 

modeller er imidlertid kun anvendelige for virkelige problemer af mindre størrelse, da 

beregningstiden øges betydeligt i takt med at problemet bliver større. Man skal huske 

på, at skedulering af mobile robotter foregår som en del af faktisk produktionstid i 

produktionsplanlægning og -kontrol. Følgelig er det nødvendigt ved anvendelse i 

forbindelse med større problemer at udvikle hver heuristik baseret på generiske 

algoritmer for at finde nær-optimale løsninger med fornuftig beregningstid for hvert 

problem. Kvaliteten af disse løsninger sammenlignes og evalueres så ved at bruge de 

matematiske modellers løsninger som referencepunkter. Resultaterne fra numeriske 

eksperimenter i denne ph.d.-afhandling viser, at den foreslåede heuristik kan løse 
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problemer af forskellig størrelse og gøre det mere effektivt end de matematiske 

modeller, baseret på de objektive værdier og med den samme begrænsede 

beregningstid. Forskningsresultaterne er anvendelige for produktionsledere, som kan 

træffe beslutninger på produktionsniveau; og den foreslåede heuristik kunne også 

anvendes i forbindelse med andre typer opgaver end mobile robotter, fx for automatisk 

styrede køretøjer (AGV’er).  
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1. Introduction 

1.1. Background and motivation 

Today’s production systems range from fully automated to strictly manual. While the 

former is very efficient in high volumes but less flexible, the latter has the opposite 

characteristics. However, manufacturers express a need for transformable production 

systems that combines the best of both worlds by using new assistive automation and 

mobile robots (Bischoff, 2010). Mobile robot is a term used to refer to robotic systems 

consisting of a robot arm mounted on a mobile platform which allow performance of 

tasks that require both locomotion and manipulation abilities (Hvilshøj et al., 2012a). 

The concept of mobile robots dates back to 1984 where the MORO was introduced as a 

robot arm installed on a mobile platform navigating freely on the shop floor, delivering 

and handling tools and work pieces (Schuler, 1987). Nevertheless, high system costs 

and lack of processing power prevented its actual use and implementation at that time 

(Hvilshøj et al., 2012a). Since then a lot of research and development of mobile robots 

have been carried out, and now the mobile robot technology is on the edge of its 

breakthrough in the industrial domain. Within this domain, some mobile robots are 

capable of transporting a variety of part types from one location to another location 

(Hvilshøj et al., 2012b) similar to material handling devices, e.g. automated guided 

vehicles (AGVs). In addition, mobile robots have the capabilities to perform more 

advanced tasks at different machines, workstations, or production lines. These tasks 

consist of such processes as: machine tending, pre-assembly, and quality inspection 

(Hvilshøj et al., 2012b). Furthermore, using mobile robots can lead to production 

efficiency gains, e.g. less energy usage or lower tool-changing costs than conventional 

industrial robots fixed to one location (Dang et al., 2013a). The superior capabilities of 

the mobile robots can pave the way for meeting the needs of the transformable 

production systems.  

To utilize mobile robots in an efficient manner requires the ability to properly 

schedule transporting tasks and more advanced tasks with respect to the needs of 

manufacturing factories. Therefore, it is important for scheduling to determine in which 

sequences the mobile robots should process those tasks so that they could effectively 

work while satisfying a number of technological constraints.  
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 Scheduling is a decision-making process that is used on a regular basis in many 

manufacturing and services industries. It deals with the allocation of resources to tasks 

over given time periods and its goal is to optimize one or more objectives (Pinedo, 

2008). The resources and tasks in a manufacturing factory can take many different 

forms. The resources may be machines, tools, material handling devices, and so on in a 

workshop. The tasks may be operations in a production process. Each task may have a 

certain priority level, release date, and due date. The objectives can also take many 

different forms, for instances, the minimization of the completion time of the last task, 

or the minimization of traveling time of material handling devices. In a manufacturing 

environment, the scheduling function often interacts with other systems, e.g. Enterprise 

Resource Planning (ERP) systems, or other functions, e.g. shop floor management 

functions (Pinedo, 2008) as depicted in Figure 1.1. The scheduling function receives 

daily plans from the ERP systems, makes detailed schedules under consideration of 

information given in the daily plans, and puts the detailed schedules into action through 

the shop floor management functions. In other words, the scheduling function has a 

major impact on these systems or functions and vice versa. Therefore, scheduling as a 

decision-making process plays an important role in most of manufacturing and 

production systems and the development of a detailed task schedule helps maintain 

efficiency and control of operations. 

Enterprise Resource 

Planning (ERP)

Shop orders, 

release dates

Scheduling/ 

Rescheduling

Shop floor 

management

Detailed 

schedules
Shop status

Scheduling 

constraints

 

Figure 1.1: Interaction of scheduling function with other systems (Pinedo, 2008) 
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Within the scope of the thesis, the problems of scheduling of a single mobile 

robot and scheduling of multiple mobile robots at operational levels of manufacturing 

systems are considered. For the first scheduling problem, a single mobile robot with a 

manipulation arm is considered to perform part-feeding tasks which are the process of 

loading several components at a time into feeders. The single mobile robot during 

operation has the capability to collect and transport containers of parts and empty them 

into feeders where needed (Hvilshøj et al., 2012a). The limit on carrying capacity of the 

single mobile robot and the hard time windows (Toth and Vigo, 2002) of part-feeding 

tasks are simultaneously considered in the first problem. Because of these constraints, 

the single mobile robot has to serve a set of feeders in more than one route during a 

given planning horizon while still meeting the time windows constraints. This means 

that the number of routes and the sequence which the single mobile robot travels these 

have to be determined in order to minimize its total traveling time and thereby increase 

its availability. Following the single mobile robot case, it is possible to extend the 

research by taking into account multiple mobile robots which help to serve and satisfy 

more production needs. Hence, for the second scheduling problem, a set of mobile 

robots are considered together with a set of machines to execute a number of operations 

of different tasks, e.g. pre-assembly or quality inspection. Some of the tasks are non-

preemptive while the others are preemptive. It means that operations of non-preemptive 

tasks must execute without interruption from its starting time to its ending time while 

operations of preemptive tasks can be interrupted at any time (Yun, 2002; Duša and 

Barták, 2009). During operation, the considered mobile robots have the capabilities to 

not only transport non-preemptive tasks between some machines but also process 

preemptive tasks on other machines by using their manipulation arms. These mobile 

robots are allowed to interrupt their preemptive tasks to perform transportation of non-

preemptive tasks when needed. The objective of the second is to minimize the time 

required to complete all tasks, i.e. makespan while considering precedence constraints.  

So far there have been done a number of researches related to the class of mobile 

robot scheduling problems. However, these related researches have not focused on the 

area of the two described problems. The main novelties of the thesis lie on the fact that: 

(i) the first problem simultaneously considers hard time windows of part-feeding tasks 

and multiple delivery routes in case of the single mobile robot; (ii) the second problem 

takes account of simultaneous scheduling of machines and multiple mobile robots with 

preemptive tasks. The surveyed approaches are not well suited and cannot be directly 
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used to solve the two described problems due to the lack of efficient mechanisms to 

schedule mobile robot(s) with the aforementioned considerations. Hence in the thesis, 

each mathematical model is first formulated which allows describing each problem as 

well as finding optimal solutions for each one. Note that the first problem can be 

considered as a variant of the Asymmetric Traveling Salesman Problem (Reinelt, 1991) 

which belongs to the NP-hard class (Germs et al., 2012). Moreover, the second problem 

can be considered as a variant of the problem of simultaneous scheduling of machines 

and AGVs in which its sub-problems, machine scheduling and AGV scheduling, are 

both known to be NP-hard (Deroussi et al., 2008). Due to the intractability of NP-hard 

nature (Ganesharajah et al., 1998), mathematical approaches could only be applicable to 

small-scale problems in practice because their computation time significantly increases 

when the problem size grows (Gen and Lin, 2008). Note that making schedules of 

mobile robots is part of real-time operations of production managers. Therefore, in order 

to deal with large-scale applications, each heuristic based on genetic algorithms (GA) 

(Goldberg, 1989) is then developed to find near-optimal solutions for each described 

problem. GA is a promising algorithm for the class of the described problems. In GA, 

each individual solution is represented in the form of a finite length string called a 

chromosome. A chromosome is composed of a set of locations known as genes that 

contain discrete values pertaining to a problem solution. Through the use of genetic 

operators such as crossover, mutation, and selection to the chromosomes of selected 

solutions are in a systematic fashion to generate a new generation of solutions moving 

towards the optimization of certain criteria (Gen and Lin, 2008). Compared to other 

optimization methods, the major benefit of GA regards multiple directional searches 

using a set or population of candidate solutions which enables GA to search in several 

directions concurrently. In this way, many paths to the optimum are processed in 

parallel leading to a clear improvement in performance. Since information from many 

different regions is used, GA is also resistant to remain trapped in a suboptimal solution 

and able to move away from it if the population finds better solutions in other search 

areas (Dang and Nielsen, 2013). With these advantages, GA seems to be a proper 

method to find efficient solutions for the described problems. Finally, for each described 

problem, the comparisons between the proposed heuristic and mathematical model in 

terms of objective value and computational time are conducted. These comparisons help 

to evaluate the quality of the near-optimal solutions achieved by the proposed heuristic 

by using solutions of the mathematical model as reference points. 
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1.2. Structure of the thesis  

The thesis consists of two distinct parts. The first part of the thesis presents the research 

results achieved through the PhD project. This part is structured as follows. First, a 

problem of scheduling a single mobile robot for part-feeding tasks of production lines is 

considered (Chapter 2). Second, a problem of simultaneously scheduling of machines 

and multiple mobile robots in a manufacturing system under consideration of some 

preemptive tasks is taken into account (Chapter 3). The common theme of these 

chapters is to describe problems, formulate a mathematical model and develop a 

heuristic based on genetic algorithms to solve problems, and conduct computational 

experiments to demonstrate and compare the performance of the proposed approaches. 

Finally, concluding remarks and a discussion of future works into the research area are 

presented (Chapter 4). The second part of the thesis is a collection of papers submitted 

and published as a part of the research. This part contains nine selected papers. 

1.3. Publications and submission during PhD study 

The papers published and submitted during PhD period including the 

main contributions 

Papers A and B are reprinted versions of the same paper. Only paper B is included 

as the printed version. 

Papers F and G are reprinted versions of the same paper. Only paper G is included 

as the printed version.  

A. Dang, Q.V., Nielsen, I., and Steger-Jensen, K., 2011. Scheduling a single mobile 

robot for feeding tasks in a manufacturing cell. Proceedings of International 

Conference Advances in Production Management System, Stavanger, Norway. 

B. Dang, Q.V., Nielsen, I., and Steger-Jensen, K., 2012. Mathematical formulation 

for mobile robot scheduling problem in a manufacturing cell. In: J. Frick, B. 

Laugen, eds. APMS 2011, IFIP AICT 384. Springer-Verlag Berlin Heidelberg, 

pp. 37–44. 

C. Dang, Q.V., Nielsen, I., and Steger-Jensen, K., 2013. Scheduling a single mobile 

robot incorporated into production environment. In: P. Golinska, eds. 

EcoProduction & Logistics, EcoProduction. Springer-Verlag Berlin Heidelberg, 

pp. 185–201. 

D. Dang, Q.V., Nielsen, I., and Bocewicz, G., 2012. A genetic algorithm-based 

heuristic for part-feeding mobile robot scheduling problem. In: J.M.C. 



 

6 

Rodríguez, eds. Trends in PAAMS, AISC 157. Springer-Verlag Berlin 

Heidelberg, pp. 85–92. 

E. Dang, Q.V., Nielsen, I., Steger-Jensen, K., and Madsen, O., 2013. Scheduling a 

single mobile robot for part-feeding tasks of production lines. Journal of 

Intelligent Manufacturing. DOI: 10.1007/s10845-013-0729-y. 

F. Dang, Q.V., Nielsen, I., and Steger-Jensen, K., 2012. Multi-objective mobile 

robot scheduling problem with dynamic time windows. Proceedings of 

International Conference Advances in Production Management Systems, Rhodes 

Island, Greece. 

G. Dang, Q.V., Nielsen, I., and Steger-Jensen, K., 2013. Multi-objective genetic 

algorithm for real-world mobile robot scheduling problem. In: C. 

Emmanouilidis, M. Taisch, D. Kiritsis, eds. APMS 2012, Part I, IFIP AICT 397. 

Springer-Verlag Berlin Heidelberg, pp. 518–525.  

H. Dang, Q.V., Nielsen, I., Bøgh, S., and Bocewicz, G., 2013. Modelling and 

scheduling autonomous mobile robot for a real-world industrial application. 

Proceedings of IFAC Conference on Manufacturing Modelling, Management 

and Control, Saint Petersburg, Russia, Volume 7, Part 1, pp. 2098-2103. 

I. Dang, Q.V., and Nielsen, I., 2013. A methodology for implementation of mobile 

robot in industrial application. Robotics & Computer-Integrated Manufacturing 

(submitted). 

J. Dang, Q.V., and Nielsen, I., 2013.  Simultaneous scheduling of machines and 

mobile robots. In:  J.M. Corchado et al., eds. PAAMS 2013 Workshops, CCIS 

365. Springer-Verlag Berlin Heidelberg, pp. 118–128.  

K. Dang, Q.V., and Nielsen, I., 2013. Scheduling of machines and mobile robots in 

FMS. The International Journal of Advanced Manufacturing Technology 

(submitted). 

Additional research and contributions completed during PhD period 

 Dang, Q.V., Nielsen, I., and Yun, W.Y., 2013. Replenishment policies for empty 

containers in an inland multi-depot system. Maritime Economics & Logistics, 

Volume 15, Issue 1, pp. 120–149. 

 Bocewicz, G., Nielsen, P., Banaszak, Z., and Dang, Q.V., 2013. Multimodal 

Processes Cyclic Steady States Scheduling. In:  J.M. Corchado et al., eds. 

PAAMS 2013 Workshops, CCIS 365. Springer-Verlag Berlin Heidelberg, pp. 

73–85. 

 Bocewicz, G., Banaszak, Z.A., Nielsen P., and Dang, Q.V., 2013. Multimodal 

processes rescheduling. In: C. Emmanouilidis, M. Taisch, D. Kiritsis, eds. 

APMS 2012, Part I, IFIP AICT 397. Springer-Verlag Berlin Heidelberg, pp. 

534–541. 
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 Nielsen, I., Nielsen, P., and Dang, Q.V., 2012. Decision support for multi-

criteria project portfolio evaluation. Journal of Operations and Logistics (under 

review). 

 Bocewicz, G., Nielsen P., Banaszak, Z.A., and Dang, Q.V., 2012. Cyclic steady 

state refinement: multimodal processes perspective. In: J. Frick, B.T. Laugen, 

eds. APMS 2011, IFIP AICT 384. Springer-Verlag Berlin Heidelberg, pp. 18–26. 

 Bocewicz, G., Banaszak, Z.A., Nielsen P., and Dang, Q.V., 2012. Multimodal 

processes rescheduling. Proceedings of International Conference Advances in 

Production Management Systems, Rhodes Island, Greece. 

 Bocewicz, G., Nielsen P., Banaszak, Z.A., and Dang, Q.V., 2011. Cyclic steady 

state refinement: multimodal processes perspective. Proceedings of 

International Conference Advances in Production Management Systems, 

Stavanger, Norway. 

 Dang, Q.V., Nielsen, I., and Yun, W.Y., 2011. Policies for positioning empty 

containers in an inland multi-depot system. Proceedings of International 

Conference on Industrial Engineering and System Management, Metz, France, 

pp. 66–75.  
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2. Single mobile robot with part-feeding tasks 

2.1. Introduction 

In this chapter, a problem of scheduling of a single mobile robot which performs part-

feeding tasks of production lines is addressed. Part-feeding is one of the most suitable 

industrial applications in which the mobile robot collects and transports containers of 

parts and empties them into the feeders. The mobile robot has to be scheduled in order 

to prevent stoppage due to lack of parts in the production lines. A method based on the 

characteristics of feeders and inspired by the (s, Q) inventory system (Silver et al., 

1998) is thus applied to determine time windows for the part-feeding tasks of the mobile 

robot. The capacity of the mobile robot, which is a limited number of containers of parts 

the mobile robot can carry at a time, is also considered. The performance criterion is to 

minimize the total traveling time of the mobile robot for a given planning horizon and 

thereby increase its availability. Note that making decision on which sequence the 

mobile robot should perform tasks is part of real-time operations. This gives the added 

requirement that the best sequences of tasks must be obtained quickly. Moreover, the 

complexity of the problem rapidly rises as the mobile robot has to serve more feeders 

and/or work in a longer planning horizon. Therefore, in this chapter the focus is on 

developing a computationally efficient approach, namely a GA-based heuristic for 

scheduling part-feeding tasks of the mobile robot. A mixed-integer programming (MIP) 

model is also developed to assess the performance of the proposed heuristic. In the next 

section, the literature survey will be carried out as part of theoretical foundations 

relating to this research. 

2.2. Survey of literature 

The problem of scheduling part-feeding tasks of the mobile robot has been modeled in 

several respects comparable to the Traveling Salesman Problem (TSP) or Asymmetric 

Traveling Salesman Problem (ATSP) (Reinelt, 1991). However, the problem is similar 

to but not identical to the TSP or ATSP due to some additional constraints which the 

problem possesses. Several approaches and models for exact or heuristic algorithms 

have been proposed to address problems of this type. Carpaneto and Toth (1980) present 

a branch-and-bound algorithm for the ATSP based on the sub-tour elimination approach 
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or the Hungarian algorithm. They discuss a new selection procedure for the sub-tour to 

be split and the ordering of the arcs in the selected sub-tour. A similar approach is 

presented by Syslo et al. (1983). This approach is based on the Hungarian algorithm and 

reduces the original distance matrix till an optimal solution is obtained. It is shown that 

the execution time is strongly dependent on the problem instance and increases with the 

size of the network. Miller and Pekny (1991) survey methods such as branch-and-bound 

and several heuristics for solving large TSP problems. A branch-and-bound algorithm is 

presented with computational results and is found to perform well for some classes of 

problems. The branch-and-bound methods (Carpaneto et al., 1995) for the ATSP use the 

assignment problem as a relaxation. The effectiveness of the methods derives from 

reduction procedures and parametric solution of the relaxed problems associated with 

the nodes of the branch decision tree. Turkensteen et al. (2008) introduce a branch-and-

bound algorithm for the ATSP using the upper tolerances values of arcs in the 

corresponding assignment problem instance to determine which arcs should be 

excluded. The class of tolerance-based algorithms is better in solving difficult instances 

than the algorithm presented in e.g. Carpaneto et al. (1995). Germs et al. (2012) then 

enhance this approach by incorporating lower tolerances, corresponding to additional 

costs of a solution with a connecting arc, into the branch-and-bound search process. 

Ascheuer et al. (1993) present a cutting plane approach to the sequential ordering 

problem which is similar to the robot task-sequencing problem and find minimum cost 

paths subject to precedence constraints. They outline a Linear Programming framework 

and discuss polynomial time separation algorithms for obtaining the solutions. The 

problem of order-picking in a rectangular warehouse of Automated Storage and 

Retrieval System is addressed by Ratliff and Rosenthal (1983). It is shown to be a 

solvable case of the TSP and they present an algorithm for picking an order in minimum 

time. Edan et al. (1991) present a near-minimum task-planning algorithm for a fruit 

harvesting robot to find near-optimal-time path between the N given fruit locations. The 

sequence of motions for the harvesting robot is obtained by solving the TSP using the 

geodesic distance. Dang et al. (2012) propose an MIP model to obtain the optimal 

feeding sequence of a mobile robot in a manufacturing cell. However, the performance 

of the MIP model is not evaluated and compared with other methods. For small task-

scheduling problems, the aforementioned techniques can be used to find the optimal 

solutions of the problems. Nevertheless, they tend to get computationally intractable for 

large and complex problems (Maimon et al., 2000).  
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Larger problems call for heuristic solutions (Maimon et al., 2000). The heuristic 

approaches that are frequently applied to robot task-scheduling problems include: the 

nearest-neighbor rule in which the robot travels to the nearest pickup point from its 

current position (Han et al., 1987), the closest insertion algorithm which causes the 

smallest increase in the length of the sequence (Askin and Stanridge, 1993), and 

dispatching rules (e.g. First-Come-First-Served) which serve the tasks in chronological 

order (Suárez and Rosell, 2005). The above listed heuristics have shown good results 

and are computationally fast. Another set of heuristic solutions including ant colony 

optimization, simulated annealing, tabu search, neural network and genetic algorithm 

has been used to solve combinatorial optimization problem such as TSP, ATSP or robot 

task-scheduling problems. Tsai et al. (2004) discuss using ant colony system to solve 

the TSP, while López-Ibáñez and Blum (2010) apply the ant colony optimization 

technique to deal with the TSP with time windows (TSPTW). Ohlmann and Thomas 

(2007) describe a variant of simulated annealing incorporating a variable penalty 

method to solve the TSPTW, while Geng et al. (2011) deal with the TSP based on an 

adaptive simulated annealing with greedy search. Carlton and Barnes (1996) present a 

robust tabu search approach to the TSPTW. Landrieu et al. (2001) present tabu search 

and probabilistic tabu search for single vehicle pickup and delivery problem. Hurink 

and Knust (2002) propose a tabu search algorithm for scheduling a single robot in a job-

shop environment. Hasegawa et al. (2002) develop two types of searching methods 

based on tabu search and neural networks for solving large scale TSPs. Maimon et al. 

(2000) present a neural network approach successfully implementing the robot task-

sequencing problem. Among the heuristics proposed in previous work, genetic 

algorithms (GA) have been widely used in solving TSP or ATSP because GAs have a 

global search ability and can easily be implemented (Chen and Chien 2011). Chatterjee 

et al. (1996) propose a GA with an asexual reproduction plan through a generalized 

mutation operator that can be applied to TSP. Moon et al. (2002) present an efficient 

GA with a topological sort and a new crossover operation to solve the TSP with 

precedence constraints. Snyder and Daskin (2006) combine a GA with a local tour 

improvement heuristic and encoded solution using random keys for solving the 

generalized TSP. Liu and Zheng (2009) present an improved GA with reinforcement 

mutation to solve the TSP. Choi et al. (2003) propose a GA that extends the search 

space by purposefully generating and including infeasible solutions to solve ATSP. 

Xing et al. (2008) present a novel hybrid approach incorporating a GA improved on 
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both crossover and mutation operators and some optimization strategies such as 

immigration, local and global optimization for the ATSP. Chen and Tseng (1996) and 

Zacharia and Aspragathos (2005) introduce methods based on GAs and innovative 

encoding to determine the optimal sequence of robot’s task points that is considered an 

extension to the TSP. Dang et al. (2013a) present the bartender concept to incorporate a 

mobile robot into production and discuss the problem of scheduling the mobile robot 

under consideration of environmental consciousness concerning the usage of battery 

energy on transportation on the shop floor. 

There have been carried out a number of researches related to the class of mobile 

robot scheduling problem. However, little attention is paid to the problem of scheduling 

a single mobile robot with time windows, restricted capacity and multiple tasks having 

to be carried out during a planning horizon despite its important application in practice, 

e.g. part-feeding tasks. In this problem, a number of tasks with time windows have to be 

satisfied by the mobile robot. Nevertheless, due to the limit on carrying capacity, after 

satisfying some tasks, the robot has to return to a warehouse (base) to load parts so that 

it can serve other tasks in the next route and so on (a route is from the warehouse, to 

locations of tasks, and back to the warehouse). In other words, the robot has to travel on 

a number of routes to perform tasks. The surveyed approaches are not well suited and 

cannot be directly used to solve this problem due to the lack of a mechanism handling 

both time windows and multiple delivery routes in case of the single mobile robot. It is 

thus necessary to develop a proper and efficient method to deal with this problem. 

2.3. Problem Description 

The work is developed for a real cell that produces parts for the pump manufacturing 

industry at a factory in Denmark. Figure 2.1 shows a typical layout of a manufacturing 

cell in which the interaction between a mobile robot and machines on production lines is 

taken into account. 
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Figure 2.1: Layout of a manufacturing cell 

Before assigning the mobile robot to the production environment, the 

manufacturing cell has one or several production lines which consist(s) of multiple 

machines. Feeders are designed to automatically supply parts to these machines. Pallets 

or boxes, which contain the parts, are placed next to these feeders. Part-feeding, the 

process of loading many parts at a time into feeders from the pallets or boxes, is a 

manually performed, non-value adding manufacturing task, and quite often disruptive 

(in-between and periodic) for production workers. Furthermore, when workers forget to 

fill the feeders, this may lead to stopping the production lines. A strategy that can 

reduce the dependence on human intervention for the part-feeding tasks is using a 

mobile robot instead of humans. However, to utilize the robot in this scenario requires 

changing the work environment and carefully scheduling part-feeding tasks of the 

mobile robot (Dang et al., 2013a). 

To meet the stated requirement, the bartender concept (Hvilshøj et al., 2012b) is 

implemented. This concept helps to structure the way how the mobile robot carries out 

the part-feeding tasks in the production environment. This concept also serves as a basis 

to model the problem of scheduling part-feeding tasks of the mobile robot and can be 

applied to different sizes of the problem. In this concept, every feeder is assigned the 

following characteristics: maximum level, minimum level, and feeding time per part to 

machine. Furthermore, instead of scattered pallets or boxes containing parts next to the 

feeders, a central warehouse (a bar) is created to gather different parts into one area. An 
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operator (the bartender) put parts into small load carriers (SLCs) which are placed in the 

warehouse. The number of parts inside each SLC is equal to the difference between 

maximum level and minimum level of parts of the feeder in which that SLC is emptied. 

During operation, the mobile robot will retrieve and carry one or several SLCs 

containing parts from the warehouse, move to feeder locations, empty all parts inside 

SLCs, return to the warehouse to unload all empty SLCs and take new filled SLCs. 

Each feeder has to be served a number of times in order to keep the production line in 

operation. The mobile robot thus has a set of subtasks possessing time windows to carry 

out for each feeder during a planning horizon. In order to accomplish all the movements 

with the smallest consumed amount of the battery energy and thereby increase the 

availability of the mobile robot, the total traveling time of the mobile robot must be 

considered. Note that making decisions on which sequences the mobile robot should 

supply parts to the feeders is part of the real-time operations of production planners. It 

means that the best solution must be quickly obtained at the beginning of production 

shifts or during the shifts due to some errors in a manufacturing cell (e.g. machine 

breakdown) or changes in a manufacturing cell’s conditions (e.g. cycle time of 

production lines). Moreover, as the problem is NP-hard, computation time exponentially 

grows with the size of the problem (e.g. larger number of feeders, longer planning 

horizon). It is hence necessary to develop a computationally effective algorithm, namely 

a GA-based heuristic, to sequence the part-feeding tasks in order to minimize the total 

traveling time of the mobile robot while satisfying a number of practical constraints. It 

is also necessary to formulate a mathematical model which allows describing the 

presented problem. Solutions found by the mathematical model can be used as reference 

points to quantify the scale of benefits achieved by the GA-based heuristic. 

2.4. Mathematical formulation 

In this section, an MIP model is developed to determine an optimal sequence in which 

the mobile robot visits n feeders to process part-feeding tasks. All part-feeding tasks, 

corresponding to deliveries of SLCs, are known in advance. A method to protect against 

shortage of parts over a replenishment lead time is also presented to determine the time 

windows of the part-feeding tasks. This method is based on the (s, Q) inventory system 

(Silver et al., 1998) where a fixed quantity Q is ordered whenever the inventory position 

drops to the reorder point s or lower. Hard time window scenario (Toth and Vigo, 2002) 
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is considered in this case. It means that all part-feeding tasks carried out by the mobile 

robot can only begin within their time windows. The mobile robot is based at a central 

warehouse and a limit on the carrying capacity of the mobile robot is imposed. In the 

following subsections, assumptions, notations, time windows and the formulation of the 

MIP model are given.  

Assumptions 

 A mobile robot with a manipulation arm is taken into account in a disturbance 

free environment. 

 The mobile robot can carry one or several SLC(s) at a time. 

 All tasks are periodic, independent, and assigned to the same mobile robot. 

 Working time and traveling time of the mobile robot between any pair of 

locations, where either one of the locations could be a feeder or the warehouse, 

are known. 

 The feeding time per part to the machine of a feeder is known and constant. 

 All feeders of machines have to be fed up to maximum levels and the mobile 

robot starts from the warehouse at the initial stage. 

Notations 

N : set of all tasks (N = {0, 1, 2, …, n} where 0: task at the warehouse) 

ni : number of times task i has to be executed 

R : set of routes (R = {1, 2,…, Rmax}, Rmax = Σ ni, ∀i ∈ N \{0}) 

eik : release time of subtask k of task i 

dik : due time of subtask k of task i 

pi : periodic time of task i 

wi : working time of mobile robot at location of task i 

tij : traveling time of mobile robot from location of task i to location of task j 

ci : feeding time per part to machine of feeder i 

vi : minimum level of parts in feeder i 

ui : maximum level of parts in feeder i 

Qm : maximum number of SLCs could be carried by mobile robot 

T : planning horizon 

Decision variables 
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1 if robot travels from location of task  with subtask  to location of task  with

    subtask  in route 

0 otherwise

   

  

jlr

ik

i k j

l rx




 

  

yik : route index to which subtask k of task i belongs 

sik : starting time of subtask k of task i 

Time windows 

The (s, Q) inventory policy is used with the defined characteristics of the feeders to 

determine the hard time windows of the part-feeding tasks as shown in Figure 2.2, 

Equation (1), (2), and (3) below.  

0 1ie 2id 2ie 3ie2id 3id

Number of parts in feeder i

iu

iv

Time

release time due time

periodic time
ip

 

Figure 2.2: Time windows of part-feeding tasks based on the (s, Q) inventory system 

 pi = (ui – vi)ci, ∀i ∈ N \ {0} (1) 

 eik = eik-1 + pi, ∀i ∈ N \ {0}, k ∈ {1, 2, ..., ni}, ei0 = 0 (2) 

 dik = eik + (vi – 0)ci, ∀i ∈ N \ {0}, k ∈ {1, 2, ..., ni} (3) 

 Because of the periodic characteristics of the tasks for feeder i whose periodic 

time is calculated as in Equation (1), a number of subtasks must be carried out. The 

number of subtasks of task i is defined as: /i in T p    . The mobile robot must start 

processing a subtask k of task i within the associated hard time window of that subtask. 

It means that the mobile robot is not allowed to arrive at feeder i after the upper bound 

of the time window. If the mobile robot arrives at feeder i before the lower bound of the 

time window, it will wait to begin service. The lower bound of the time window, or 

release time of subtask k of task i, is set to the time when the number of parts inside 
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feeder i drops to a certain level vi (Equation (2)). The upper bound of the time window, 

or due time of subtask k of task i, is defined to the time when there are no parts in feeder 

i (Equation (3)). 

Mixed-integer programming model 

The formulation of the MIP model for the presented problem is described as follows. 

The objective function (4) minimizes the total traveling time of the mobile robot. 

Constraint (5) ensures that the starting time of any subtask of a task satisfies the time 

window of that subtask. Constraints (6) and (7) ensure that the mobile robot starts from 

the warehouse at the initial stage. Constraint (8) eliminates the sub-tours among 

subtasks of tasks, where Z is a subset of ZT, where ZT is a set of all subtasks of tasks at 

feeders and the warehouse. Constraints (9) and (10) ensure that a subtask of a task is 

completed exactly once. Constraint (11) forbids the mobile robot to load a higher 

number of SLCs than its maximum capacity in the number of SLC Qm. Constraint (12) 

handles the traveling time requirements between any pair of subtasks of tasks, where L 

is a given sufficiently large constant. In case two subtasks of the same task or different 

tasks are connected but are not in the same route, the mobile robot should visit the 

warehouse to unload empty SLCs and load filled ones. Constraint (13) assigns a subtask 

of a task to a route and constraint (14) guarantees an ascending sequence of route 

indices for subtasks of tasks. Constraints (15) and (16) imply the types of variables. In 

the following, the MIP model is given. 

Objective function: 
1 1

min 
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ij ik
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\{0}, {1,2,..., }ii N k n    (5) 

1

01

\{0} 1

1 
jn

jl

j N l

x
 

    (6) 

01

\{0} 1

1
jn

jlr

j N l r R

x
  

    (7) 

( , ),( , )

-1jlr

ik

i k j l Z

x Z


  , , {( , ) | \{0}, {1,2,..., }}T T ir R Z Z Z i k i N k n        (8) 

1

1
jn

jlr

ik

j N l r R

x
  


 

\{0}, {1,2,..., }ii N k n    (9) 



 

17 

1

1
in

jlr

ik

i N k r R

x
  


 

\{0}, {1,2,..., }jj N l n    (10) 

1 \{0} 1

ji
nn

jlr

ik m

i N k j N l

x Q
   

    r R   (11) 

   0 0 01jlr jlr

ik i ij ik ik jl ik i j ij jl

r R r R

s w t x L x y y t w t t s
 

   
             
   

   (12) 

 , , {1,2,..., }, {1,2,..., }i ji j N k n l n     

1

in
jlr

jl ik

i N k r R

y r x
  

 
 

\{0}, {1,2,..., }jj N l n    (13) 

jlr

jl ik ik

r R

y y x


 
 

, , {1,2,..., }, {1,2,..., }i ji j N k n l n     (14) 

 0,1jlr

ikx 
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: positive integer variableiky
 

\{0}, {1,2,..., }ii N k n    (16) 

 The MIP model contains a number of decision variables that are constrained to 

have only integer values; for instance, in the presented problem the decision variable 

jlr

ikx  to determine the sequence of tasks is equal to either 0 or 1. Integer variables make 

optimization problems non-convex and thus far more difficult to solve (Gormley and 

Eisner, 2013). Computer memory and computational time may rise exponentially as the 

size of problem increases with more added integer variables. Dang et al. (2013b) have 

shown that the MIP model found the optimal solution within about 5 seconds for a 

problem instance with 6 subtasks of part-feeding tasks and 864 integer variables, but 

about 6 hours for another problem instance with 10 subtasks of part-feeding tasks and 

4000 integer variables. Hence, in practice the MIP model could be applicable only to 

small-scale problems, e.g. a real case of one production line with 4 feeders which has 

been tested at a factory of a Danish company (Hvilshøj et al., 2012b). In other words, 

the MIP model may be limited to apply to large-scale problems where the mobile robot 

can serve more production lines, i.e. more feeders, and near-optimal solutions should be 

achieved within a reasonable computational time. Thus, it is necessary to use another 

class of methods to deal with the large-scale problems. Although some of the methods 

are presented in the literature review, GA seems to be a proper and efficient approach to 

solve the presented problem in the large-scale cases. Therefore, a heuristic based on the 

GA will be developed in the next section. 
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2.5. Genetic-algorithm based heuristic 

In this section, a genetic algorithm is employed to develop a heuristic. The developed 

heuristic allows converting the presented problem so that near-optimal solutions can be 

found. The genetic algorithm-based heuristic as shown in Figure 2.3 is composed of the 

following main steps: genetic representation and initialization; constraints handling and 

fitness evaluation; genetic operators consisting of selection, crossover, and mutation; 

termination criteria. 

Initialization
Constraints 

Handling
Fitness Evaluation Selection

CrossoverMutation

(First 

generation)

Termination? Best solution
YesNo

 

Figure 2.3: Flowchart of genetic algorithm-based heuristic 

Genetic presentation and initialization 

For the problem under consideration, the natural path representation (Potvin, 1996) is 

used to represent a chromosome or a solution, which represents an ordering of subtasks 

of tasks of the mobile robot as shown in Figure 2.4. Each gene in the chromosome 

consists of two factors. The first factor refers to a task while the second factor implies a 

subtask of that task. The original length of the chromosome is equal to the total number 

of subtasks of part-feeding tasks added to the first subtask of warehouse task (1 + Σni). 

1,1 ...2,1 1,2 3,1 i,k j,l...0,0
 

Figure 2.4: Genetic representation 

For the initial generation, the first factors of genes on a chromosome are 

randomly filled with tasks at feeders. The frequency of a task is the number of times 

which that task has to be executed. The second factors of genes having the same first 

factor/same task are filled in ascending order of subtasks of that task. 

Constraints handling and fitness evaluation 

After initialization or crossover and mutation operations, chromosomes are adjusted to 

be valid and their fitness values are calculated. A valid chromosome should satisfy the 

two constraints: time windows of subtasks of tasks and limit on the carrying capacity 

Qm of the mobile robot. For the first constraints, starting time of a subtask of a task 
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should be in-between release time and due time of that subtask. The second constraint 

requires that the mobile robot does not serve more subtasks than the number of SLCs it 

is carrying. A method of handling these constraints is developed and applied to each 

chromosome in the initial and descendant generations as shown in Figure 2.5 along with 

the description below:  

Step 1: Rearrange genes possessing the same first factor (task) in ascending 

order of their second factor (subtask). Note that, Step 1 is not employed in the 

initial generation due to the outcome of the initialization procedure. 

Step 2:  Temporarily rearrange genes considering only time windows. 

Step 2.1: Compute starting time and check the satisfaction of time 

window constraints for gene (j, l) at position p preceded by gene (i, k) at 

position p – 1. 

sjl = sik + wi + tij × 1{i ≠ j} 

If sjl ≤ djl then sjl = sik + wi + tij × 1{i ≠ j} or sjl = ejl × 1{sjl ≤ ejl}, and 

check if p is the last position on the chromosome. If not, then go 

to Step 2.6. If so, then go to Step 3. 

Otherwise, go to Step 2.2. 

Step 2.2: Considering genes from position 1 to the position p on the 

chromosome, make a set A of positions of genes whose due times are 

greater than that of gene (j, l). 

Step 2.3: Insert gene (j, l) to a position pa randomly selected from set A. 

Step 2.4: Re-compute starting times and check the satisfaction of the time 

windows constraints for genes from the position pa to the position p.  

If starting time of any gene from the position pa to the position p 

does not satisfy its time window, then check if all positions in set 

A are selected. If not, then go back to Step 2.3. If so, then go to 

Step 2.5. 

Otherwise, check if p is the last position on the chromosome. If 

not, then go to Step 2.6. If so, then go to Step 3. 

Step 2.5: Discard the chromosome, generate a new one instead and go 

back to Step 1. 

Step 2.6: Move to the next gene at position p + 1 on the chromosome (p 

← p + 1) and go back to Step 2.1. 
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Step 3: Rearrange genes considering limit on carrying capacity of the robot and 

time windows. 

Step 3.1: Assign the maximum number of SLCs Qm to the actual number 

of SLCs, denoted as Q, carried by the robot in a route (Q ← Qm). 

Step 3.2: Considering gene (0, k’), which is a subtask of a warehouse 

task, at a position q on the chromosome, insert gene (0, k’ + 1) at position 

q + Q + 1. Note that, the chromosome length is increased by one unit 

after each insertion. 

Step 3.3: Re-compute starting times and check the satisfaction of the time 

windows constraints for next Qm genes. 

If starting time of any gene among the next Qm genes does not 

satisfy its time window, then go to Step 3.4. 

Otherwise, check if (length of chromosome – (q + Q + 1)) ≤ Qm. 

If not, then go back to Step 3.1. If so, then go to Step 3.8. 

Step 3.4: Considering genes from position 1 to position p’ of a gene (j’, 

l’) which does not satisfy its time window among the next Qm genes, 

make a set B of positions of genes whose due times are greater than that 

of gene (j’, l’).  

Step 3.5: Swap gene (j’, l’) with a gene at a position pb randomly selected 

from set B. 

Step 3.6: Re-compute starting times and check the satisfaction of time 

windows constraints for genes from the position pb to the position p’. 

If the starting time of any gene from the position pb to the position 

p’ does not satisfy its time window, then check if all positions in 

set B are selected. If not, then go back to Step 3.5. If so, then go 

to Step 3.7. 

Otherwise, go to Step 3.1. 

Step 3.7: Decrease Q by one unit (Q ← Q – 1), and check if Q is 0. If not, 

then go back to Step 3.2. If so, go back to Step 2.5. 

Step 3.8: Insert gene (0, k*) representing the final subtask of a warehouse 

task at the end of the chromosome. 



 

21 

Compute starting time 

of gene (j,l) at 

position p

Move to next gene (p 

← p + 1)

Yes

No

Make set A of 

positions of genes (1 

→ p): eik > ejl  

Insert gene (j,l) to a 

position pa selected 

from set A

Recompute starting 

times of genes 

(pa → p)

Satisfy 

time windows 

(pa → p)?

No

Yes

Discard and generate 

a new chromosome

All positions in 

set A selected?

Yes

No

Rearrange genes 

based on their factors

No

Yes

Assign Qm to the 

actual number of 

SLCs Q (Q ← Qm)

Insert gene (0,k’+1) at 

position q+Q+1 (gene 

(0,k’) at q)

Recompute starting 

times of next Qm 

genes

Satisfy time 

windows (next Qm 

genes)?

[Length –

(q+Q+1)] ≤ Qm?

Make set B of 

positions of genes  (1 

→ p’): eik > ej’l’   

Swap gene (j’,l’) with 

a gene at pb selected 

from set B 

Recompute starting 

times of genes 

(pb → p’)

Satisfy 

time windows 

(pb → p’)?

All positions in 

set B selected?

Decrease Q by one 

unit (Q ← Q – 1)
Q = 0?

Satisfy 

time windows 

(p)?

p is the last 

position?

No (e.g., gene (j’,l’) at p’)

Yes

No

Yes

NoYes

No

Yes

Yes

No

Insert gene (0,k*) for 

the final subtask of 

warehouse task

Stop

Step 3Step 2Step 1

 

Figure 2.5: Flowchart of handling constraints 

Following the method of handling constraints, the fitness evaluation will take 

place. The fitness value of a chromosome is equal to the total traveling time of the 

mobile robot, Σtij, where i, j are the first factors of genes on the chromosome. 

Genetic operators 

Selection, crossover and mutation are three main genetic operators. For selection, 

various evolutionary methods can be applied to this problem. (μ + λ) selection is used to 

choose chromosomes for reproduction. Under this method, μ parents and λ offspring 

compete for survival and the μ best out of the set of offspring and old parents, i.e. the μ 

lowest in term of the total traveling time, are selected as the parents of the next 

generation. This selection mechanism guarantees that the best solutions up to now are 

always in the parent generation (Dang et al., 2013b).  



 

22 

Crossover operator generates offspring by combining the information contained 

in the parent chromosomes so that the offspring will have the desirable features from 

their parents. The Roulette-wheel selection is used in the algorithm, which selects 

probabilistically the parent chromosomes based on their fitness values (Ho and Ji, 2004; 

Moon et al., 2006). Then, different crossover operators can be used on the selected 

parent chromosomes. These are represented by the path presentation, e.g. partially-

mapped crossover (PMX), cycle crossover (CX), order crossover (OX), order-based 

crossover (OBX), and position-based crossover (PBX) (Tsujimura and Gen, 1999; Lin 

et al., 2006). Although the crossover operators may affect the efficiency of the search 

process, the quality of solutions is often reasonably close. In the experiment, OX will be 

used to generate an offspring as described below. Genes which represent subtasks of the 

warehouse task are removed before two cut points are randomly chosen on the parent 

chromosomes. The string between these cut points in one of the parents is first copied to 

the offspring. The remaining positions are then filled by considering the sequence of 

genes in the other parent starting after the second cut point. When reaching to the end of 

the offspring, the sequence continues at position 1. The OX operates with probability 

Pc. Figure 2.6 illustrates the OX procedure. 

2,1 1,32,2 1,2 3,1 2,3 3,21,1

1,1 2,31,2 3,1 2,2 3,2 1,32,1

– 1,3– 1,2 3,1 – ––

Parent 1:

Parent 2:

Offspring:

substring selected

2,2 1,32,3 1,2 3,1 3,2 2,11,1
 

Figure 2.6: Example of order crossover procedure 

Whenever an offspring is produced, it undergoes a mutation operator which is 

applied with probability Pm. The mutation selects two genes within the offspring at 

random and then swaps these genes to produce heterogeneous chromosomes. This 

procedure avoids premature convergence of the GA-based heuristic. Note that offspring 

produced after crossover and mutation operations might not be valid. Therefore, they 

have to be adjusted by using the method of handling constraints described above. 
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Termination criteria 

Termination criteria are employed to determine when the GA-based heuristic should be 

stopped. On the one hand, computation time plays an important role in practice because 

taking decisions on which sequences the robot should serve feeders is a part of the real-

time operations of production planners. In other words, the best solution is required to 

be quickly obtained. Therefore, if the best solutions over generations do not converge, 

the maximum computation time (CTm) would be used to stop the run. On the other hand, 

if the best solution does not improve over a number of consecutive generations (Gc), it 

would not be valuable to continue searching. The up-to-date best solution is then 

returned as the near-optimal solution. However, it should be noted that high-quality 

local optima might exist (in case of existing feasible solutions) due to the combinatorial 

nature of the problem (Dang et al., 2013b). 

2.6. Numerical examples and comparisons 

To examine the performance of the MIP model and GA-based heuristic, a case study 

including two different demonstrations has been investigated with real data of Grundfos 

A/S, a Danish company which is one of the world’s leading pump manufacturers. A part 

of Grundfos production facilities, CR (compression ratio) 1-2-3 impeller line at CR 

factory, has been used to implement these demonstrations. An extension of the case 

study considering several reasonable assumptions has been also conducted to make the 

evaluation of both approaches more convincing. Finally, various problem instances are 

randomly generated and tested in order to provide more persuasive evidence of the 

performance of the proposed heuristic. The MIP model has been coded and solved by 

the mathematical modelling language ILOG CPLEX, while the proposed heuristic has 

been programmed in VB.NET. All the experiment run on a PC having an Intel® Core i5 

2.67 GHz processor and 4 GB RAM. 

Case Study 

The chosen area for the case study is the CR 1-2-3 impeller production line shown in 

Figure 2.8 that manufactures impellers for the CR pumps. The CR line consists of a 

warehouse and four feeders that have to be served by the mobile robot. The warehouse 

is indexed 0 and the feeders are indexed from 1 to 4 (N = {0, 1, 2, 3, 4}) and named 

Back Plate, Van Feeder 1, Van Feeder 2, and Front Plate respectively. Furthermore, 
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different feeders are filled by different types of parts, namely back plates for feeder 1, 

vanes for feeder 2 and 3 and front plates for feeder 4. To produce an impeller on the CR 

1-2-3 line, these three types of parts are automatically assembled. The impeller consists 

of six vanes with three from feeder 2 and the other three from feeder 3, one front plate 

from feeder 4 and one back plate from feeder 1. Figure 2.7 shows the different parts of 

an impeller, while Figure 2.8 particularly illustrates the production area where the case 

study has been implemented. The safety fences and warning signs are used as depicted 

in Figure 2.8 to ensure that no people enter the area as well as to prevent the mobile 

robot leaving that area while the demonstrations are taking place. 

 

Figure 2.7: Different parts of an impeller produced on the CR 1-2-3 line 

 

Figure 2.8: CR 1-2-3 impeller production line 
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 The following data is taken from the Manufacturing Execution System (a 

computerized system located between the ERP and process control system, and used in 

management of entire manufacturing processes including equipment, personnel, and 

support services) as well as real tests on the shop floor of the CR factory. This data is 

used as input for two demonstrations of the case study. The average number of parts per 

SLC fed to feeder 1 or 4 is 125 (approximately 2 kg/SLC), while the average number of 

parts per SLC fed to feeder 2 and 3 is 1100 (approximately 1 kg/SLC). The maximum 

levels, minimum levels, and feeding time/part to machines of feeders are given in Table 

2.1. The feeding time/part to machines of feeders are derived from the cycle time of the 

CR 1-2-3 line of 4.5 seconds (Reuther et al., 2010). Specifically feeders 1 and 4 feed 

machines with one back plate and one front plate every 4.5 seconds while feeders 2 and 

3 feed machines with one vane every 1.5 seconds (3 vanes for every 4.5 seconds). The 

working times of the robot at the feeders are given in Table 2.2 and Table 2.3 shows the 

travelling times of the robot from locations to locations (feeder 0 means the warehouse). 

Table 2.1: Maximum levels, minimum levels, and feeding time per part to machines of feeders 

Feeder/Task 1 2 3 4 

Maximum level (part) 250 2000 2000 250 

Minimum level (part) 125 900 900 125 

Feeding time/part (second/part) 4.5 1.5 1.5 4.5 

Table 2.2: Working times of robot at locations (seconds) 

Feeder/Task 0 1 2 3 4 

Working time of robot 90 42 42 42 42 

Table 2.3: Traveling times of robot from locations to others (seconds) 

                  To feeder 

From feeder 
0 1 2 3 4 

0 0 34 37 34 40 

1 39 0 17 34 50 

2 35 17 0 35 49 

3 34 33 35 0 47 

4 36 47 48 46 0 

In the initial design, the mobile robot has the capability to carry up to three SLCs 

at a time while performing part-feeding tasks at the feeders. Hence, two different 

demonstrations of the case study have been investigated corresponding to the two 

maximum numbers of SLCs, Qm = 2 and Qm = 3, and with the planning horizon T of 

approximately 45 minutes due to the battery limit of the robot. The parameters pi, eik, 
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and dik are respectively calculated based on Equation (1), (2), and (3) with the data in 

Table 2.3. As a result, the total number of subtask of part-feeding tasks is 10 and the 

number of decision variables is 4040 in each demonstration of the case study. For GA 

parameters, Dang et al. (2013b) carried out statistical analyses to examine the effect of 

these parameters on the efficiency of the proposed heuristic and also to set the values 

for these parameters. By performing the statistical analyses, Dang et al. (2013b) proved 

that population size (Np), Pc, Pm, Gc, and CTm affect the objective values of the proposed 

heuristic and set Np, Pc, Pm, Gc, and CTm to be 100, 0.8, 0.1, 100, and 60, respectively.  

In each demonstration of the case study, two cases of the MIP are investigated 

for comparing the performances with the GA-based heuristic. The first case is carried 

out when giving the same maximum computation time CTm (60 seconds) as the GA-

based heuristic while the second case is performed without limit on the computation/run 

time. Table 2.4 gives solutions of the MIP and proposed heuristic on the objective value 

and computation time (in seconds) for the demonstrations at the CR factory. The cells 

containing a “–” symbol indicate that the results of the corresponding problems cannot 

be obtained by using the corresponding approach. From Table 2.4, it can be seen that 

when giving the same maximum computation time CTm as the GA-based heuristic, the 

MIP is not able to find any feasible solution. In contrast the proposed heuristic found 

solutions for the demonstrations (objective values of 504 seconds/8.4 minutes in D-1 

and 396 seconds/6.6 minutes in D-2). These objective values found through the heuristic 

are greater than those found by the MIP when the run time of the MIP is unlimited. 

However, the differences are only about 3% and this is deemed to be an acceptable 

error. Furthermore, the computation time shows that use of the MIP is too time-

consuming whereas the proposed heuristic significantly faster obtains near-optimal 

solutions (approximately 6 hours in D-1 or 2.3 hours in D-2 as opposed to less than a 

second). It also reveals that the higher maximum numbers of SLCs the robot can carry, 

the less it has to travel around the manufacturing cell (8.4 minutes with Qm of 2 as 

opposed to 6.6 minutes with Qm of 3). Sequences of part-feeding tasks found by the 

heuristic are depicted using Gantt charts in Figure 2.9. 

Table 2.4: Solutions of the case study under MIP and GA-based heuristic 

Demo Qm 

MIP (limited to CTm) MIP (unlimited) GA-based heuristic Penalty of the 

heuristic (%) vs. 

MIP (unlimited) 
Objective 

value (s) 

Computation 

time (s) 

Objective 

value (s) 

Computation 

time (s) 

Objective 

value (s) 

Computation 

time (s) 

D-1 2 – – 488 21589.34 504 <1 3.28 

D-2 3 – – 384 8377.27 396 <1 3.13 
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Figure 2.9: Gantt charts for the solutions of two demonstrations of the case study 

To make the evaluation more convincing, the case study is extended by 

assuming that the robot has the capability of carrying up to 4 SLCs at a time and the 

battery limit of the robot allows it to work up to 8 hours (a full production shift). Further 

comparisons of the objective value and computation time for the MIP and GA-based 

heuristic are presented in Table 2.5. Note that in this extended experiment, the MIP is 

solved under consideration of the maximum computation time CTm as the GA-based 

heuristic. The objective values and computation times of the proposed heuristic are the 

average of 30 runs. The total number subtask of all tasks and number of decision 

variables are also given. From Table 2.5, it can be seen that the proposed heuristic has 

the capability of solving larger problems while the MIP cannot find any feasible 

solution for problems of this scale. It also shows that in case of full production shift of 8 

hours, the proposed heuristic is able to find the best solutions in less than 30 seconds. 
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Moreover, the standard deviation of the objective value is quite small in comparison 

with the average. The GA-based heuristic, therefore, demonstrates efficiency in solving 

the larger problems. 

Table 2.5: Comparison between MIP and GA-based heuristic for extension of the case study 

Qm 
T 

(hour) 

Total 

subtasks 
of tasks 

Number of 

variables 

MIP GA-based heuristic 

Objective 

value (s) 

Computation 

time (s) 

Objective value (s) Computation time (s) 

Average Std. Dev. Average Std. Dev. 

2 

1 16 16448 – – 827 0 0.35 0.04 

2 32 131200 – – 1596 2 1.16 0.10 

4 66 1150248 – – 3205 39 5.01 1.37 

8 136 10062368 – – 6738 70 25.09 7.28 

3 

1 16 16448 – – 648 7 0.34 0.06 

2 32 131200 – – 1231 17 1.32 0.27 

4 66 1150248 – – 2615 44 4.96 0.99 

8 136 10062368 – – 5667 83 16.46 3.98 

4 

1 16 16448 – – 628 4 0.31 0.06 

2 32 131200 – – 1206 6 1.05 0.15 

4 66 1150248 – – 2497 30 4.24 1.21 

8 136 10062368 – – 5223 85 15.49 2.36 

Computational experiments 

In this section, the performance of the proposed heuristic will be tested on a large 

number of problem instances. 20 problems are generated with different numbers of 

feeders, maximum numbers of SLCs, planning horizons and other system parameters. 

The number of feeders and the maximum number of SLCs are randomly generated in 

the ranges of [3, 20] and [2, 4], respectively. The planning horizons in hours are 1, 2, 4, 

and 8 (corresponding to an eighth, a quarter, half, and full of the production shift). The 

maximum and minimum levels of parts in feeders are respectively uniformly distributed 

within the ranges of [500, 2000] and [100, 1000] while feeding time/part to machines of 

feeders (in seconds) are generated in the interval [1.5, 6.5]. The working times of the 

robot in seconds at feeders and the warehouse are respectively distributed within the 

range of [40, 60] and [80, 100] while the traveling times of the robot in seconds are 

generated in the interval [20, 60]. Note that the time/cost matrices of the generated 

traveling times should satisfy the triangle inequality. The comparisons between the MIP 

and GA-based heuristic for 20 randomly generated problems are presented in Table 2.6. 
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Similar to the extension of the case study, the MIP is solved under consideration of the 

maximum computation time CTm as the GA-based heuristic. The objective values and 

the computation times of the proposed heuristic are the average of 30 runs. General 

information for these 20 problems is also shown in Table 2.6. 

Table 2.6: Comparison between MIP and GA-based heuristic for 20 randomly generated problems 

No. 
No. of 
feeders 

Qm 
T 

(hour) 

Total 

subtasks 

of tasks 

Number 

of 

variables 

MIP GA-based heuristic 

Objective 

value (s) 

Computation 

time (s) 

Objective  

value (s) 

Computation 

time (s) 

Average 
Std. 

Dev. 
Average 

Std. 

Dev. 

1 7 3 1 10 4040 790 60.00 377 9 0.22 0.04 

2 15 2 1 25 62600 – – 986 14 1.52 0.19 

3 6 2 1 15 13560 – – 775 10 0.29 0.03 

4 3 4 1 6 888 184 4.93 184 0 0.14 0.08 

5 16 3 1 36 186768 – – 1120 22 2.61 0.39 

6 5 2 2 28 87920 – – 1287 7 0.76 0.15 

7 11 3 2 53 595720 – – 1657 33 4.00 0.84 

8 10 4 2 44 340912 – – 1006 31 2.78 0.50 

9 4 3 2 13 8840 811 60.00 428 0 0.18 0.01 

10 18 4 2 70 1372280 – – 2156 47 39.72 5.34 

11 15 3 4 106 4764488 – – 3504 76 28.83 6.07 

12 12 4 4 99 3881592 – – 2998 59 14.61 1.98 

13 9 4 4 84 2371152 – – 2229 38 5.97 0.91 

14 19 3 4 115 6083960 – – 4732 33 60.00 0.00 

15 11 2 4 92 3115120 – – 4070 28 30.73 3.58 

16 8 3 8 113 5772040 – – 4498 79 13.18 2.29 

17 13 2 8 154 14609672 – – 6696 71 42.89 7.47 

18 17 4 8 200 32000800 – – 7342 95 60.00 0.00 

19 14 3 8 170 19652680 – – 6249 83 48.75 5.08 

20 20 4 8 220 42592880 – – 8071 99 60.00 0.00 

It can be observed from Table 2.6 that the GA-based heuristic is superior to the 

MIP for large problems. The MIP found feasible solutions for problem instances 1, 4, 

and 9. However, the solutions found by the MIP are much worse than those found by 

the proposed heuristic (except problem instance 4 in which both approaches found the 

optimal solution).  In addition, the MIP cannot find any feasible solution for the other 

problems. The GA-based heuristic, by contrast, is able to find best solutions for all 20 

problem instances. As the size of the problem increases especially the total subtasks of 

all tasks, the computation time of the proposed heuristic becomes longer. The results 

also show that with the same planning horizon, the same or nearly the same number of 
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feeders, the less maximum number of SLCs the robot can carry, the more difficult it is 

for the proposed heuristic to generate feasible sequences of part-feeding tasks, thus the 

longer computation time it may require to obtain best solutions (e.g. problem instances 

12 and 15). Furthermore, in terms of the objective value, the standard deviation is quite 

small in comparison with the average. These results provide more persuasive evidence 

to prove that the GA-based heuristic performs effectively. 

2.7. Conclusions 

This chapter presents the results of a study of the novel problem of scheduling a single 

mobile robot in order to perform part-feeding tasks on production lines. The robot has 

been assigned to the production by applying the bartender concept. To accomplish all 

tasks in a planning horizon within the allowable limit of battery capacity and power, it is 

important for production planners to determine feeding sequences which minimize the 

total travelling time of the robot. This must be done while taking into account a number 

of practical constraints. The main novelty of this research lies in the simultaneous 

consideration of hard time windows of part-feeding tasks and multiple delivery routes in 

case of the single mobile robot. An MIP model to find exact optimal solutions for the 

problem is developed. Due to the NP-hard nature of the problem, this solution approach 

is only applicable to small-scale problems with few feeders and short planning horizon. 

To deal with large-scale applications, a GA-based heuristic is then proposed to find 

near-optimal solutions. The quality of these solutions could then be evaluated by using 

the MIP solutions as reference points to quantify the scale of benefits. The results of the 

real case study shows that use of the MIP is too time-consuming whereas the proposed 

heuristic is significantly faster in finding near-optimal solutions. Further experiments 

provide persuasive evidence that the proposed heuristic is capable of solving problems 

of various sizes and more efficient than the MIP in terms of the objective value when 

giving the same maximum computation time. It can be also observed that the larger 

number of SLCs the mobile robot can carry, the easier the proposed heuristic can 

generate feasible sequences and the less computation time may be required to obtain the 

best solution. 

So far, this chapter has only taken into account a single mobile robot with the 

capability of transporting material. In fact, a fleet of mobile robots working together in a 

manufacturing system can also be considered. In addition to transporting, these mobile 
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robots possess the capability of carrying out more advanced tasks, e.g. machine tending, 

pre-assembly, and quality inspection at different machines, workstations, or production 

lines. Furthermore, mobile robots are flexible enough to switch from one type of tasks, 

e.g. transporting tasks to another type of tasks, e.g. pre-assembly tasks. Therefore, it is 

possible to extend the research by considering multiple mobile robots which help to 

serve and satisfy more production needs. In the next chapter, this case will be taken into 

account.
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3. Multiple mobile robots with preemptive tasks 

3.1. Introduction 

Despite the fact that in Chapter 2 a mobile robot scheduling problem has been solved, 

only one mobile robot and one type of tasks, i.e. part-feeding, have been investigated. 

The major advantage of mobile robots is that it is possible to configure them for various 

industrial tasks. This means mobile robots can have enough flexibility to switch from 

one type of tasks to another. Furthermore, a fleet of mobile robots can be considered, 

which helps to serve and satisfy more production requirements. Therefore, within the 

scope of this chapter, a problem of simultaneous scheduling of machines and multiple 

mobile robots in a flexible manufacturing system (FMS) (Buzacott and Yao, 1986) is 

addressed. The FMS consists of a number of operations of different tasks processed on a 

set of machines and a set of mobile robots. Some are non-preemptive tasks which 

require the mobile robots to perform transportation of materials/parts between some 

machines. Meanwhile, the others are preemptive tasks which are processed by the 

mobile robots on the other machines. During operation, it is possible to assign the 

mobile robots to transportation of non-preemptive tasks while these mobile robots are 

processing preemptive tasks. The performance criterion is to minimize the makespan. 

As making schedules of machines and mobile robots is part of real-time operations, it is 

required to quickly find the best schedules. In addition, the complexity of the problem 

rapidly increases with the number of tasks and mobile robots. Thus in this chapter, a 

computationally efficient method, namely a GA-based heuristic, is developed to solve 

the problem. A mixed-integer programming (MIP) model is also formulated to evaluate 

the performance of the proposed heuristic. In the next section, the related research will 

be surveyed.             

3.2. Survey of literature 

The problem of simultaneous scheduling of machines and mobile robots in an FMS has 

been modeled in several respects comparable to the joint scheduling problems of 

machines and AGVs. However, it is different from the problems concerning AGVs in 

the sense that besides transporting tasks, mobile robots are capable of carrying out 

manufacturing tasks on the shop floor level. Moreover, they are flexible enough to 
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switch between manufacturing tasks and transporting tasks. Several approaches and 

models for exact or (meta-)heuristic algorithms have been proposed to address problems 

of this type. Exact methods are mainly used for the research of simple or particular FMS 

(Deroussi et al., 2008). Blazewicz et al. (1991) study the model of an FMS considering 

both machine and vehicle scheduling, and then propose a dynamic programming 

approach to construct optimal production and vehicle schedules. This FMS is later 

formulated in MIP by Bilge and Ulusoy (1995). According to the authors, the resulting 

model is intractable in practice due to its nonlinearity and its size. Caumond et al. 

(2009) study the linear formulation of an FMS considering the maximum number of 

jobs, limited input/output buffer capacities, empty-vehicle trips and no-move-ahead 

trips concurrently. However, only one AGV is taken into account as a special case of 

the general FMS. For small and medium scheduling problems, the aforementioned 

techniques can guarantee the optimal solutions. Nevertheless, they are not practical for 

large and complex problems because the computation time is often too long, e.g. many 

hours or even many days (Khayat et al., 2006; Gen and Lin, 2008).  

Heuristic methods are well adapted to study most of the FMS. On the one hand, 

some works are dedicated to simplified forms of the material handling system of the 

FMS considering only one transport device. As illustration, Soylu et al. (2000), Hurink 

and Knust (2002), Lacomme et al. (2005) propose, respectively, neural network, tabu 

search, and heuristic branch-and-bound approaches for scheduling of the FMS based on 

a single AGV or transport robot. On the other hand, many works are undertaken on the 

FMS scheduling with multiple AGVs. Ulusoy and Bilge (1993) and Bilge and Ulusoy 

(1995) propose an iterative method based on the decomposition of the master problem 

into the two sub-problems: machine scheduling and vehicle scheduling. A heuristic 

algorithm generates machine schedules to solve the first problem. A solution heuristic 

based on sliding-time-window approach is introduced to find feasible solutions to the 

vehicle scheduling problem given the machine schedules. Ulusoy et al. (1997) deal with 

the problem of concurrent scheduling of machines and AGVs by proposing a genetic 

algorithm which provides a suitable coding scheme to represent both dimensions of the 

search space: operation sequencing and AGV assignment. Abdelmaguid et al. (2004) 

introduce a hybrid method which is composed of a GA for scheduling of machines and 

a heuristic for scheduling of vehicles. Reddy and Rao (2006) present a hybrid multi-

objective GA to solve the simultaneous scheduling of machines and AGVs in an FMS 

in which makespan, flow time, and tardiness are performance criteria. Jerald et al. 
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(2006) address the problem of simultaneous scheduling of parts and AGVs in an FMS 

environment using adaptive GA. Lin et al. (2006) model an AGV system by using 

network structure and propose an effective evolutionary approach for solving a kind of 

AGV problems. Deroussi et al. (2008) describe an efficient neighboring system which is 

implemented into three different meta-heuristics and a new solution representation 

based on vehicles rather than machines. Lacomme et al. (2013) introduce a framework 

based on a disjunctive graph to modelize the joint scheduling problem and on a memetic 

algorithm for machines and identical AGVs scheduling.  

Although a number of researches related to the class of mobile robot scheduling 

problems have been done, the problem of simultaneous scheduling of machines and 

mobile robots with preemptive tasks in an FMS has received little focus in the literature. 

The considered mobile robots in this problem have the capabilities to not only transport 

non-preemptive tasks between some machines similar to material handling devices but 

also processing preemptive tasks on other machines by using their manipulation arms. 

These mobile robots are allowed to interrupt their processing tasks to do transportation 

of non-preemptive tasks when needed. These facts constitute the main novelty of the 

problem. The surveyed approach are not well suited and cannot be directly used to solve 

this problem due to the lack of a suitable mechanism for scheduling and routing mobile 

robots in relation to scheduling machines while taking into account preemptive tasks. 

Thus, it is necessary to develop a proper and efficient method to deal with this problem.   

3.3. Problem Description 

Flexible manufacturing systems are highly automated production systems capable of 

producing a variety of part/component types. Such manufacturing system originally 

includes intelligent and flexible machines, automated storage and retrieval systems, and 

material handling devices such as AGVs or robots. Furthermore, the development of 

automation technology has significantly changed the manufacturing equipment on the 

shop floor. With these changes, mobile robots have been designed and manufactured so 

that they can combine the flexibility of service robots, e.g. AGVs, with the efficiency of 

industrial robots, i.e. dedicated and fixed robots in industry. This enables these mobile 

robots not only to transport parts/components to machines but also to operate machines 

to process tasks. Thus, they have been widely employed in not only small companies, 

which have focus on exact applications and a small range of products, but also large 
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companies, which can diversify their applications in a longer term and larger range. For 

instance in a pump parts manufacturing system, a mobile robot is assigned to carry out a 

pre-assembly task, and during that operation it also has to transport and feed material 

into some production lines when needed. In this chapter, the coordination between 

mobile robots and machines in an FMS is considered. Figure 3.1 below shows a typical 

layout of the FMS with mobile robots. 

Machine Station 1

Robot 

Controller

Operator

Machine Station 2

Charging 

Station

Machine Station 3

Machine Station 4

Machine Station 5

Mobile Robot 1

Mobile Robot 2

 

Figure 3.1: Typical layout of the FMS with mobile robots 

The FMS consists of a number of tasks processed on a set of machines, and a set 

of mobile robots. These tasks are classified into two types which are non-preemptive 

and preemptive. Each non-preemptive task consists of a set of operations that cannot be 

interrupted, i.e. each operation in this type must be executed without interruption from 

its starting time to its ending time (Yun, 2002). On the other hand, each preemptive task 

considered in this chapter has only one operation that can be interrupted at any time to 

let some other operations execute. There is no restriction on the number of interruptions 

or on the duration of an interruption. During operation, the non-preemptive tasks require 

mobile robots to transport materials/parts between some machines while the preemptive 

tasks need the participation of mobile robots in the processing on the other machines. 

Each mobile robot may carry out the transportation of different non-preemptive tasks, 

but it is assigned to process only one preemptive task on a specific machine. As being 

occupied by a preemptive task, a mobile robot may be invoked for transportation of a 

non-preemptive task at some points in the scheduling period. This mobile robot will 
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pause processing of the preemptive task, carry out transportation of the non-preemptive 

task, and go back to processing the preemptive task if the preemptive task has not been 

finished. In practice, e.g. in a pump parts manufacturing factory, production operators 

may set the maximum number of operations of non-preemptive tasks which mobile 

robots can transport each time being away from their preemptive tasks. This prevents 

the mobile robots from leaving their preemptive tasks for a long period of time, which 

may lead to the cancellation of these tasks due to some practical issues on the shop 

floor. To some extent, this also helps to increase the utilization of these mobile robots. 

Within the scope of this study, any mobile robot is set to come back to its processing 

machine after each achieved transportation. An example illustrating such preemption 

case is given in Figure 3.2. The objective is to find a schedule that minimizes the time 

required to complete all tasks, i.e. makespan.  
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Oij
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Non-preemptive task

Preemptive task

Empty trip

Loaded trip

Okl Okl

 

Figure 3.2: Illustration of a preemption case 

To enable the construction of a schedule of machines and mobile robots, the 

following assumptions are made.  

 Each task is available at the beginning of the scheduling period. 

 The first operation of each task is available at a machine at the beginning of the 

scheduling period. 

 Each operation sequence of each task (the route of each part type) is available 

before making scheduling decisions. 

 Each mobile robot can transport only one kind of parts at a time. 

 There is sufficient input and output buffer space at each machine. 

 Traveling time is only machine-dependent and deterministic.  
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 Loading and unloading time are included in the traveling time of loaded trips.  

 Processing time is deterministic. 

Note that making schedules of machines and mobile robots is part of real-time 

operations of production planners. It means that the best solutions should be quickly 

obtained. Moreover, as the problem is NP-hard, the computation time exponentially 

grows with the size of the problem (e.g. larger number of operations of tasks and mobile 

robots). It is thus necessary to develop a computationally effective algorithm, namely a 

GA-based heuristic, to schedule machines and mobile robot in order to minimize the 

makespan while satisfying a number of practical constraints such as precedence and 

resource (machines and mobile robots) constraints. It is also necessary to formulate a 

mathematical model which allows describing the presented problem. Solutions found by 

the mathematical model can be used as reference points to quantify the scale of benefits 

achieved by the GA-based heuristic.  

3.4. Mathematical formulation 

In this section, an MIP model is formulated to determine an optimal schedule for the 

problem of simultaneous scheduling of machines and mobile robots with preemptive 

tasks. The notations and formulation of the MIP model are given in the following. 

Notations 

i, i’, i* : index of tasks 

j, j’, j* : index of operations 

k :  index of mobile robots 

N : set of non-preemptive tasks 

P : set of preemptive tasks 

M : set of machines 

R :  set of mobile robots 

Om : set of operations of non-preemptive tasks to be performed on machine m 

oij : the j-th operation of task i 

Tij :  transportation of operation oij 

ni : number of operations for task i 

pij :  processing time of operation oij 

tij,i’j’ : traveling time from machine of operation oij to machine of operation oi’j’ 
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Decision variables 

T : time required to complete all tasks  

p

ijs  : starting time of operation oij 

t

ijs  : starting time of transportation Tij 

' '

' '

1  if operation  precedes operation 

0  otherwise


 


ij i j

iji j

o o
y   

' '

' '

1  if transportation  precedes transportation 

0  otherwise

ij i j

iji j

T T
z


 


 

1  if robot  carries out transportation  for operation 

0  otherwise

ij ij

ijk

k T o
x


 


 

Mixed-integer programming model 

The formulation of the MIP model for the presented problem is described as follows. 

The objective function (1) minimizes the makespan T. Constraints (2) and (3) represent 

the operation non-overlapping constraints which imply that a machine cannot process 

more than one operation at a time, where L is a very large number. Constraints (4) and 

(5) represent the mobile robot non-overlapping constraints which imply that a mobile 

robot cannot perform more than one transportation task at a time. Constraint (6) ensures 

that the transportation of an operation could only start after the predecessor of that 

operation finishes. Constraint (7) ensures that an operation could only start after the 

transportation of that operation completes. Constraint (8) ensures that the transportation 

of an operation is carried by only one mobile robot. Constraints (9) and (10) ensure that 

completion time of non-preemptive operations (operations of non-preemptive tasks) and 

preemptive operations (operations of preemptive tasks) respectively cannot exceed the 

makespan T. Constraints (11) and (12) imply the types of variables. The MIP model is 

given in the following: 

Objective function: minimize T (1) 

Subject to: 

' ' ' ' ' '  p p

ij i j iji j i js s Ly p  ( , ),( ', ') ,  mi j i j O m M  (2) 

 ' ' ' '1   p p

i j ij iji j ijs s L y p  ( , ),( ', ') ,  mi j i j O m M  (3) 

 ' ' ' ' 1, , * * * *, ' '1t t

i j ij iji j ij ij ij i j i j i js s L z t t t        (4) 
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', ' , 2,..., , ' 2,..., , * , * 1      i ii i N j n j n i P j  

' ' ' ' ' 'iji j i j ij ijk i j kz z x x   
', ' , 2,..., , ' 2,...,i ii i N j n j n     (5) 

, 1 p t

ij ij i js p s  , 1,..., 1   ii N j n  (6) 

1, t p

ij ij ij ijs t s  , 2,...,   ii N j n  (7) 

1


 ijk

k R

x  , 1,...,   ii N j n  (8) 

 p

ij ijs p T  , 1,...,   ii N j n  (9) 

 * * * * * *, 1 1, , * *

2

in
p

i j i j ijk i j ij ij ij ij i j

i N j

s p x t t t T 

 

      * , * 1,i P j k R     (10) 

 ' ' ' ', , 0,1ijk iji j iji jx y z  
', ' , 1,..., , ' 1,..., ,    i ii i N j n j n k R  (11) 

, 0p t

ij ijs s  , 1,...,   ii N j n  (12) 

The MIP model contains a number of decision variables that are constrained to 

have only integer values; for instance in the presented problem the decision variables

ijkx , ' 'iji jy , and ' 'iji jz  equal either 0 or 1. Integer variables make optimization problems 

non-convex and thus far more difficult to solve (Gormley and Eisner, 2013). Computer 

memory and computation time may rise exponentially as the size of problem increases 

with more added integer variables. Thus in practice the MIP model could be applicable 

only to small-scale problems. In other words, the MIP model may be limited to apply to 

large-scale problems where the mobile robots can carry out more tasks. Therefore, it is 

necessary to use another class of methods to solve the large-scale problems. Among 

some of the methods presented in the survey of literature, GA seems to be a proper and 

efficient approach to deal with the presented problem in the large-scale cases. Hence, a 

heuristic based on GA will be developed in the next section.    

3.5. Genetic algorithm-based heuristic 

In this section, GA is employed to develop a heuristic, which is allowed to convert the 

presented problem to the way that near-optimal solutions could be found. The GA-based 

heuristic shown in Figure 3.3 includes the following main steps: genetic representation; 

initialization; decoding operator and fitness evaluation; genetic operators consisting of 

crossover, mutation, and selection; reparation operator; termination criteria. 
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 procedure: GA-based heuristic

 input: Tasks, operations, machines, robots, processing times, traveling times

            GA parameters

 output: the near-optimal schedule of machines and mobile robots

 begin

g ← 0;

initialize P(g) by initialization routine;

decode and evaluate P(g) by decoding and fitness evaluation routine;

while (not terminating condition) do

create C(g) from P(g) by crossover and mutation routines;

repair and check feasibility by reparation routine;

decode and evaluate C(g) by decoding and fitness evaluation routine;

select P(g + 1) from P(g) and C(g) by selection routine;

end
 end

 

Figure 3.3: Procedure of GA-based heuristic 

Genetic representation 

For the problem under consideration, a solution can be encoded by a chromosome 

representing non-preemptive operation sequencing and mobile robot assignment. It 

means that each gene in the chromosome is made up of two parts. The first part refers to 

a non-preemptive operation on a specific machine that is assumed to be scheduled at its 

earliest starting time. The second part identifies a mobile robot carrying out the 

transportation of that operation. In case the first part of a gene contains the first 

operation of a task, the second part of that gene will be zero (0) indicating that the first 

operation of the task does not need to be transported by a mobile robot. It is because the 

first operation of each task is assumed to be available at a machine at the beginning of 

the scheduling period as mentioned above. The chromosome length equals the total 

number of non-preemptive operations of tasks. Figure 3.4 illustrates a chromosome of 

an example problem with 5 operations of 2 tasks, 3 machines, and 2 mobile robots. 

1 2Task

1 22 3 1Operation

M1 M3M3 M2 M1Machine

21,0 13,111,0 22,2 12,2Chromosome
 

Figure 3.4: Illustration of a feasible chromosome 
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Initialization 

Random chromosomes are generated for providing solutions to the initial population. A 

chromosome is constructed of gene by gene. The first part of each gene is assigned an 

eligible operation (an operation is said to be eligible if all its predecessors are assigned). 

If that eligible operation is the first operation of any task, zero is assigned to the second 

part of the gene. Otherwise, one of the mobile robots is randomly chosen to complete 

the gene. If the chromosome is not yet complete, the eligible set of operations is updated 

and the process continues. Figure 3.5 shows the procedure of the initialization method. 

Procedure: Initialization

Begin

D ← {opi|opi: first operations of all tasks};

R ← {1,...,nr};   //nr: number of mobile robots;

Repeat

Select an operation opi ∈ D;

If (opi is the first operation of any task) Then

Assign opi to 0;   //opi does not need to be transported

Else

Assign opi to a mobile robot r ∈ R; 

D ← D/{opi};

If (successor of opi exists) Then

D ← D ⋃ {successor of opi};

Until (D ≔ ∅)

End
 

Figure 3.5: Procedure of initialization method 

Decoding operator and fitness evaluation 

After initialization or reparation routines, chromosomes are decoded and their fitness 

values are calculated. The decoding operator is mainly composed of the decoding of 

operation scheduling and decoding of mobile robot assignment. Theoretically, the 

scheduling of operations is similar to the job shop scheduling problem (Pinedo, 2008). 

Therefore, the decoding of non-preemptive operation scheduling is carried out under 

consideration of the predecessor and the last operation processed on the predefined 

machine of each operation. Furthermore, before the processing of an operation can start, 

it has to be transported to the predefined machine by an assigned mobile robot. This 

invokes the decoding of mobile robot assignment. During this step, some information 

(e.g. total amount of processing time and/or completion time) of the preemptive 
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operation performed by the mobile robot is also updated. In general, a schedule for 

preemptive operations is determined through the non-preemptive operation sequencing. 

Following the decoding operator, the fitness evaluation will take place. The fitness 

value of a chromosome is equal to the maximum completion time of non-preemptive 

and preemptive operations. The decoding operator and fitness evaluation are illustrated 

by the following procedure in Figure 3.6 along with a detailed description below. 

Input information of a gene

(non-preemptive, preemptive 

operation, robot, machine)

Need robot for 

transportation?

Schedule non-preemptive 

operation on machine

Derive information of robot 

assigned to transport 

non-preemptive operation

Need to update 

information of preemptive 

operation?

Yes

Update information of 

preemptive operation 

processed by robot

Yes

Last gene on chromsome?

All preemptive operations 

finished by robots?

Update information of 

unfinished preemptive 

operations of robots

Calculate fitness value of 

chromsome

No

No

Yes

No

No

Yes

 

Figure 3.6: Procedure of decoding operator and fitness evaluation 

Step 1: Input information of a gene.  

  op ← operation at gene i in a chromosome (non-preemptive operation) 

  pd ← predecessor of operation op in the task sequence 

  mc ← machine processing operation op 

  mr ← mobile robot transporting operation op 
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 om ← operation processed by mr (preemptive operation) 

Check if there is a need for transportation of operation op (check if mr ≠ 

0). If so, then go to Step 2. If not, then go to Step 4. 

Step 2:  Derive information of mobile robot mr which is assigned to transport 

operation op.  

   ld ← destination of last trip of mobile robot mr 

   sr ← machine where mobile robot mr processes operation om 

   md ← machine processing predecessor pd 

   d1, d2, d3 ← traveling time between ld and sr, sr and md, md and mc 

   mt: time mobile robot mr arrives at machine md 

   ft: time mobile robot mr arrives at machine mc processing operation op 

 Step 2.1: Check if (finish time of last trip of mr + d1 + d2) < completion 

time of pd). If so, then mt ← completion time of pd. If not, then mt ← 

finish time of last trip of mr + d1 + d2. 

Step 2.2: Compute ft ← mt + d3. Update destination of last trip of mr ← 

mc. Update finish time of last trip of mr ← ft. 

Check if mt = completion time of pd. If so, then go to Step 3. If not, then 

go to Step 4. 

Step 3: Update information of operation om processed by mobile robot mr 

 Check if total working time of mr < processing time of om. If not, then 

go to Step 4. If so, then check if (processing time of om – total working 

time of mr) > completion time of pd – (finish time of last trip of mr + d1 

+ d2). 

If so, then update total working time of mr ← total working time 

of mr + completion time of pd – (finish time of last trip of mr + d1 

+ d2). 

Otherwise, then update completion time of om ← finish time of 

last trip of mr + d1 + (processing time of om – total working time 

of mr), and total working time of mr ← processing time of om. 

Step 4: Schedule operation op on machine mc 

  st: starting time of operation op  

 Step 4.1: Check if the number of scheduled operations on mc > 0. If not, 

then st ← 0. If so, then st ← completion time of last operation scheduled 

on mc. 
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Step 4.2: In case mr ≠ 0, check if st < ft (time mobile robot mr arrives at 

machine mc).  If so, then st ← ft. 

Step 4.3: Compute completion time of operation op ← st + processing 

time of op. Then check if gene i is last gene in the chromosome.  

If not, go back to Step 1.  

Otherwise, check if all preemptive operations are finished. If not, 

then go to Step 5. If so, then go to Step 6. 

 Step 5: Update information of unfinished preemptive operations.  

If any mobile robot mr has not finished processing operation om, then 

update completion time of om ← finish time of last trip of mr + d1 + 

(processing time of om – total working time of mr), and total working 

time of mr ← processing time of om. 

Step 6: Compute the fitness value of the chromosome (maximum completion 

time of all non-preemptive and preemptive operations). 

Genetic operators 

Genetic operators mimic the process of heredity of genes to create new offspring at each 

generation. The operators, in essence, are used to alter the genetic composition of 

chromosomes and expected to yield improved offspring. Crossover, mutation, and 

selection are three main genetic operators (Lin et al., 2006). 

 Crossover operator generates offspring by combining the information contained 

in the parent chromosomes so that the offspring will have desirable features from their 

parents. The Roulette-wheel selection is used in the algorithm, which probabilistically 

selects the parent chromosomes based on their fitness values (Goldberg, 1989). Owing 

to the nature of the considered minimization problem, the higher the makespan is, the 

less fitness a chromosome should show. Let F(p) denote the fitness value under the 

solution represented by parent p, then F’(p) = max{F(p)|1 ≤ p ≤ Np} – F(p) where Np is 

population size. The expected probability of parent p to be selected is given by 

F’p/∑F’p. Several crossover operators have been used for permutation representation, 

e.g. two-point crossover, uniform crossover (Abdelmaguid et al., 2004), partially-

mapped crossover, order crossover, and position-based crossover (Lin et al., 2006). 

Although the crossover operators may affect the efficiency of the search process, the 

quality of solutions is often reasonably close. In the presented experiment, a uniform 
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crossover operating with probability Pc will be used to generate offspring as described 

below. Starting from the first operations on the parents, iteratively, one of the parents is 

randomly selected. The next unconsidered operation of the selected parent becomes the 

next operation on the first offspring while the next unconsidered operation of the other 

parent becomes the next operation of the second offspring. If the mobile robot selected 

for that operation is the same on both parents, then that selection is also made on the 

child; if not, one of the mobile robots of the parents is randomly chosen. Figure 3.7 

depicts the uniform crossover. 

21,0 13,111,0 22,2 12,2

11,0 13,121,0 12,2 22,1

11,0 13,121,0 22,1 12,221,0 13,111,0 12,2 22,2

21,0 13,111,0 22,2 12,2

11,0 13,121,0 12,2 22,1

1

2 3

4 5

1

2 3

4 5

Parent 1

Offspring 1

Parent 2

Parent 1

Offspring 2

Parent 2
 

Figure 3.7: Uniform crossover 

Mutation is a background operator which produces spontaneous random changes 

in various chromosomes (Gen and Lin, 2008). For the current encoding method, there 

are two mutation operators, one for each part of a gene and with a probability Pm. The 

first mutation operator selects two random positions on a chromosome and swaps the 

operations with respect to those positions. Note that the chromosome may be infeasible 

in terms of precedence constraints after this mutation operation. Therefore it has to be 

adjusted by using the reparation operator presented in the next subsection. The second 

mutation operator replaces the mobile robot assignment at a gene with one of the mobile 

robots which is randomly chosen. This may lead to the same mobile robot assignment 

for a particular gene, and aim to prevent the loss of any good assignment. The mutation 

operators are shown in Figure 3.8. 

First 

Mutation

11,0 13,121,0 22,2 12,1

11,0 13,221,0 12,2 22,1

11,0 13,121,0 12,2 22,1

11,0 13,121,0 12,2 22,1

Second 

Mutation

 

Figure 3.8: Mutation operators 
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Selection (reproduction) operator is intended to improve the average quality of 

the population by giving the high quality chromosomes a better chance to get copied 

into the next generation (Lin et al., 2006). Various selection methods can be applied to 

this problem. (μ + λ) selection is used to choose chromosomes for reproduction. Under 

this method, μ parents and λ offspring compete for survival and the μ best out of the set 

of offspring and old parents, i.e. the μ lowest in term of the makespan, are selected as 

the parents of the next generation. This selection method guarantees that the best 

solutions up to now are always in the parent generation (Dang et al., 2013b). 

Reparation operator 

A reparation operator is developed to validate chromosomes with any precedence 

violations after the mutation operator. This operator involves the exchange of the 

locations of operations belonging to the same task such that a valid sequence of 

operations is achieved. 

Termination criteria 

Termination criteria are used to determine when the GA-based heuristic should be 

stopped. Note that making decision on which sequence mobile robots and machines 

should handle tasks is a part of real-time activities of production planners. Therefore, on 

the one hand, if the best solutions over generations do not converge, the maximum 

computation time (CTm) would be used to stop the run. On the other hand, if the best 

solution does not improve over a number of consecutive generations (Gc), it would not 

be valuable to continue searching. The up-to-date best solution is then returned as the 

near-optimal solution. However, it should be noted that high-quality local optima might 

exist because of the combinatorial nature of the presented problem. 

3.6. Numerical experiments and comparison 

To examine the performance of the MIP model and GA-based heuristic, a numerical 

example and computational experiments are conducted in this section. The numerical 

example has first been created to illustrate the results of both approaches. Various 

problem instances are then randomly generated and tested in order to provide more 

persuasive evidence of the performance of the GA-based heuristic. In the experiments, 

the MIP model has been coded and solved by the mathematical modeling language 
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ILOG CPLEX, while the GA-based heuristic has been programmed in VB.NET. All the 

experiments run on a PC having an Intel® Core i5 2.67 GHz processor and 4 GB RAM. 

Numerical example 

An FMS considered in the numerical example consists of 5 tasks (3 non-preemptive and 

2 preemptive tasks) with a total of 9 operations which are carried out on 5 machines. 

Two mobile robots are employed in transporting the non-preemptive tasks between 

some machines and processing the preemptive tasks on the other machines. A layout for 

this example can be seen in Figure 3.1. Table 3.1 gives the assigned machine numbers 

and processing time. This table also shows the precedence constraints among the 

operations in each task, e.g. the second operation of task 1 cannot be carried out before 

the first operation of task 1 is completed. The traveling time of the mobile robots from 

machines to machines are given in Table 3.2.  

Table 3.1: Task description 

Task Operation Machine Mobile robot Processing time (time unit) 

1 11 M1 - 28 

 
12 M3 - 40 

2 21 M2 - 32 

 
22 M1 - 26 

 
23 M3 - 42 

3 31 M2 - 38 

 
32 M3 - 46 

4 41 M4 R1 100 

5 51 M5 R2 90 

Table 3.2: Traveling time of robots from machines to machines (time unit) 

From/To M1 M2 M3 M4 M5 

M1 0 8 8 10 10 

M2 10 0 14 8 10 

M3 8 12 0 10 12 

M4 12 10 12 0 16 

M5 10 10 14 10 0 

To determine GA parameter settings, pilot runs are carried out to decide on the 

values of Np, Pc, Pm, and Gc. Each parameter is tested at three different levels. These are 

respectively: Np (50, 100, 200), Pc (0.4, 0.6, 0.8), Pm (0.05, 0.1, 0.2), Gc (50, 100, 200). 

There are ten observations under each level, and the 30 runs of each parameter are made 

in random. Moreover, the time for each run is limited to CTm of 30. The GA parameters 
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are chosen according to the best results in terms of the objective value and computation 

time obtained with these pilot runs. They are as follows: 100, 0.8, 0.1, 100, and 30 for 

Np, Pc, Pm, Gc, and CTm, respectively. 

 For this numerical example, both MIP model and GA-based heuristic found the 

optimal solution for the problem. The time required to complete all tasks is 164 (time 

units), and the schedule is given as: 21,0 - 11,0 - 12,2 - 22,1 - 31,0 - 23,2 - 32,1. The 

proposed heuristic slightly faster obtains the optimal solution than the MIP model (0.1 

second as opposed to 0.7 second). Figure 3.9 shows the solution on Gantt chart. It can 

be seen from Figure 3.9 that each mobile robot has to interrupt its preemptive task two 

times to carry out transportation of the non-preemptive tasks. For instance, mobile robot 

2 interrupts task 5 the first time to transport task 1 from machine 1 to machine 3, and the 

second time to transport task 2 also from machine 1 to machine 3. These interruptions 

consequently divide the duration of each preemptive task (or operation) into three 

separate parts as shown in the Gantt chart. In general, this numerical example has 

illustrated the results of the proposed approaches. To be able to illustrate the efficiency 

of the proposed approaches in more complex cases, larger-sized problems will be 

investigated in the next section. 

Time0 20 40 60 80 100 120 140 160

M5, R2

M4, R1

M2

M3

M1

21 31

41 (1)

51 (1)

11

12

51 (2)

22

23

51 (3)

41 (2)

32

41 (3)

Non-preemptive task

Preemptive task

Empty trip

Loaded trip

 

 Figure 3.9: Gantt chart for the optimal solution of the numerical example 

Computational experiments 

In this section, the performance of the GA-based heuristic will be tested on a large 

number of problem instances. 20 problem instances are generated with different 

numbers of tasks, operations, machines, mobile robots and other system parameters. 

The number of all tasks and number of operations in each non-preemptive task are 
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randomly generated in the ranges of [5, 20] and [2, 6], respectively. The number of 

machines and mobile robots are respectively distributed within the ranges of [5, 10] and 

[2, 4]. The processing time of non-preemptive and preemptive operations in time unit 

are respectively distributed within the ranges of [25, 50] and [100, 200] while the 

traveling time of mobile robots in time unit are generated in the interval [8, 18]. Note 

that the time/cost matrices of the generated traveling time should satisfy the triangle 

inequality. The problem sizes are shown in Table 3.3. The comparisons between the 

MIP and GA-based heuristic for 20 randomly generated problems are presented in Table 

3.4. For each problem instance, the MIP is solved under consideration of the maximum 

computation time CTm as the GA-based heuristic. The objective values and computation 

times of the proposed heuristic are the average of 30 runs.  

Table 3.3: Problem sizes for 20 randomly generated problems  

Problem 
instance 

Problem size Number of variables 

Number of 
constraints Number of 

tasks 

Number of 

operations 

Number of 

machines 

Number of 

robots 

Integer 

variables 

Continuous 

variables 

Total 

variables 

1 5 12 5 2 74 22 96 154 

2 7 25 6 2 412 48 460 839 

3 6 16 5 2 144 30 174 296 

4 8 30 7 2 592 58 650 1202 

5 7 21 5 2 271 40 311 553 

6 9 33 6 2 719 64 783 1457 

7 10 38 8 2 957 74 1031 1936 

8 11 44 7 3 1901 84 1985 3748 

9 10 40 6 3 1626 76 1702 3204 

10 12 48 7 3 2260 92 2352 4460 

11 13 53 8 3 2736 102 2838 5405 

12 14 62 7 3 4004 120 4124 7930 

13 13 57 9 3 3235 110 3345 6399 

14 15 68 8 3 4739 132 4871 9392 

15 14 59 9 4 4462 112 4574 8743 

16 17 81 10 4 8833 156 8989 17413 

17 16 76 9 4 7880 146 8026 15524 

18 19 94 10 4 12095 182 12277 23894 

19 18 85 9 4 9805 164 9969 19343 

20 20 100 10 4 13823 194 14017 27330 

 

 

 



 

50 

Table 3.4: Comparison between MIP and GA-based heuristic for 20 randomly generated problems 

Problem 

instance 

MIP GA-based heuristic 

Objective 

value  

(time unit) 

Computation 

time (second) 

Objective value (time unit) Computation time (second) 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

1 248 1.76 248 0 0.25 0.03 

2 691 30.00 474 8 0.40 0.08 

3 306 5.38 309 2 0.29 0.04 

4 818 30.00 534 6 0.46 0.06 

5 537 30.00 399 3 0.33 0.05 

6 932 30.00 591 10 0.59 0.13 

7 1031 30.00 629 12 0.62 0.21 

8 1379 30.00 678 18 0.93 0.18 

9 1209 30.00 650 16 0.65 0.11 

10 1544 30.00 702 18 1.04 0.22 

11 1816 30.00 778 20 1.44 0.32 

12 2043 30.00 963 24 1.92 0.33 

13 1850 30.00 803 19 1.70 0.24 

14 2207 30.00 975 24 2.18 0.47 

15 1952 30.00 743 22 1.36 0.22 

16 2876 30.00 1031 29 2.74 0.54 

17 3032 30.00 1015 27 2.04 0.70 

18 3836 30.00 1153 29 4.46 0.83 

19 3050 30.00 1067 31 3.32 0.54 

20 4282 30.00 1239 31 5.33 1.05 

 It can be observed from Table 3.4 that the GA-based heuristic is superior to the 

MIP for large problems. The MIP found feasible (not optimal) solutions within the time 

limit for 18 problem instances. However, these solutions found by the MIP are much 

worse than those found by the GA-based heuristic. Moreover, the computation time 

shows that the proposed heuristic was significantly fast in obtaining the best solutions, 

e.g. approximately 5 seconds for problem instance 20 (the largest-sized problem). For 

the other problems, both MIP and GA-based heuristic found the optimal solution in 

problem instance 1 while the objective value found through the proposed heuristic are 

greater than that found by the MIP in problem instance 3. However, the difference is 

only about 1% and this is deemed to be an acceptable error. Furthermore, in terms of the 

objective value, the standard deviation is quite small in comparison with the average. 

These results provide more persuasive evidence to prove that the GA-based heuristic 

performs effectively. 
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3.7. Conclusions 

This chapter presents the study results of a problem of simultaneous scheduling of 

machines and mobile robots in an FMS. Two types of tasks which are preemptive and 

non-preemptive are taken into account. The mobile robots in this study have capabilities 

to not only transport non-preemptive tasks similar to material handling devices but also 

process preemptive tasks by using their manipulation arms. The main novelty of this 

study lies in the fact that the mobile robot must interrupt their preemptive tasks to carry 

out transportation of non-preemptive tasks when needed. The objective is to minimize 

the makespan while satisfying a number of practical constraints. An MIP model is 

formulated to find optimal solutions for the problem. A GA-based heuristic is then 

proposed to find near-optimal solutions, which can be applied to deal with large-scale 

applications. The quality of the proposed heuristic’s solutions can be evaluated by using 

the MIP solutions as reference points. The results from the numerical experiments show 

that the proposed heuristic is significantly fast to find near-optimal solutions, capable of 

solving problems of various sizes, and more efficient than the MIP in terms of the 

objective value when giving the same maximum computation time. 
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4. Conclusions and future work 

Today there is an increasing need for transformable production systems that possess 

both flexibility and efficiency by using mobile robots. Nevertheless, in order to utilize 

the mobile robots in an efficient manner, it is important to properly schedule the mobile 

robots in relation to the production needs. The aim of this thesis is thus to address the 

scheduling problems of mobile robot(s) at operational levels of manufacturing systems.  

Two problems of scheduling mobile robot(s) are taken into account. The first 

scheduling problem deals with the case of a single mobile robot using its manipulation 

arm to perform part-feeding tasks on production lines. The simultaneous consideration 

of hard time windows of part-feeding tasks and capacity constraints resulting in multiple 

delivery routes in case of a single mobile robot is the main novelty of the first problem. 

The objective is to minimize the total traveling time of the mobile robot so that it can 

accomplish all the movements with the smallest consumed amount of battery energy 

and thereby increase its availability. To solve the first problem, an MIP model is first 

formulated and then followed by developing a GA-based heuristic with an efficient 

mechanism to handle variable length of chromosomes/solutions and time windows. The 

performance of the GA-based heuristic is later evaluated by referring to MIP solutions. 

 The second scheduling problem expands the scope of the first research by taking 

into account the simultaneous scheduling of multiple mobile robots and machines with 

preemptive tasks and non-preemptive tasks in an FMS. The main novelty of the second 

problem is that the mobile robots can interrupt the preemptive tasks to do transportation 

of non-preemptive tasks. The objective here is to minimize the makespan and, at the 

same time, fulfill a number of practical constraints. Similar to the solution methodology 

in the first problem, a mathematical model is formulated and a GA-based heuristic is 

developed with an efficient mechanism to handle preemption cases in order to solve the 

second problem.  

 The presented results of the numerical experiments in the two scheduling 

problems show that the use of mathematical models are too time-consuming while the 

GA-based heuristics are significantly fast to find near-optimal solutions. It can be also 

concluded that the proposed heuristics have the capability to solve problems of various 

size, and more efficient than the mathematical models in terms of the objective values 

when giving the same limited computation time.  
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The two proposed heuristics support production managers in making decisions at 

operational levels. For instance, in practice the heuristic method in the case of single 

mobile robot has been implemented and tested at a real production line of a pump part 

manufacturing company in Denmark. This heuristic method has been embedded in the 

Mission Planner and Controller software to schedule the mobile robot tasks in the 

production line. This heuristic method provided good solutions which helps to maintain 

operation efficiency on the shop floor level. Furthermore, the two heuristics are efficient 

to react to unpredicted circumstances such as machine breakdown or robot breakdown. 

Moreover, they can be applied in a variety of tasks of not only mobile robots but also 

AGVs. 

  The research presented in this thesis offers several avenues of further research 

potentially extending the presented research. One avenue is developing a general model 

which allows mobile robots to carry out multiple transportations before going back to 

their processing tasks. Another avenue for further research is to consider mobile robots 

to transport one or more type(s) of parts to different machines or workstations. Future 

research can also include a general rescheduling mechanisms based on the obtained 

schedules and feedback from the mobile robot fleet and shop floor to deal with real-time 

disturbances such as scraps or lack of materials/parts. 
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Abstract. This paper deals with the problem of finding optimal feeding se-
quence in a manufacturing cell with feeders fed by a mobile robot with manipu-
lation arm. The performance criterion is to minimize total traveling time of the 
robot in a given planning horizon. Besides, the robot has to be scheduled in or-
der to keep production lines within the cell working without any shortage of 
parts fed from feeders. A mixed-integer programming (MIP) model is devel-
oped to find the optimal solution for the problem. In the MIP formulation, a me-
thod based on the (s, Q) inventory system is applied to define time windows for 
multiple-part feeding tasks. A case study is implemented at an impeller produc-
tion line in a factory to demonstrate the result of the proposed MIP model. 

Keywords: Scheduling, Mobile Robot, MIP, Feeding Sequence.  

1 Introduction 

Production systems nowadays range from fully automated to strictly manual. While 
the former is very efficient in high volumes but less flexible, the latter is very flexible 
but less cost-efficient. Therefore, manufactures visualize the need for transformable 
production systems that combines the best of both worlds by using new assistive au-
tomation and mobile robots. With embedded batteries and manipulation arms, mobile 
robots are more flexible to perform certain tasks such as transporting and feeding 
materials, machine tending, pre-assembly or quality inspection at different worksta-
tions of production lines. These tasks have such relatively low level of complexity 
that mobile robots are able to take over. Besides, using mobile robots can lead to less 
energy usage or less tool-changing costs than commonly industrial robots attached to 
a fixed surface. These advantages pave the way for mobile robot to be implemented in 
the transformable production systems. Within the scope of this study, a given problem 
is particularly considered for a single mobile robot which will automate multiple-part 
feeding tasks by not only transporting but also collecting containers of parts and emp-
tying them into the feeders needed. However, to utilize mobile robots in an efficient 
manner requires the ability to properly schedule these feeding tasks. Hence, it is im-
portant to plan in which sequence mobile robots process feeding operations so that 
they could effectively work while satisfying a number of technological constraints.  
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Robot scheduling problem which is NP-hard has attracted interest of researchers in 
recent decades. Dror and Stulman [4] dealt with the problem of optimizing one-
dimensional robot’s service movements. Crama and van de Klundert [1] considered 
the flow shop problem with one transporting robot and one type of product to find 
shortest cyclic schedule for the robot. Afterwards, they demonstrated that the se-
quence of activities whose execution produces one part yields optimal production 
rates for three-machine robotic flow shops [2]. Crame et al. [3] also presented a  
survey of cyclic robotic scheduling problem along with their existing solution ap-
proaches. Kats and Levner [5], [6] considered m-machine production line processing 
identical parts served by a mobile robot to find the minimum cycle time for 2-cyclic 
schedules. Maimon et al. [7] introduced a neural network method for a material-
handling robot task-sequencing problem. Suárez and Rosell [8] dealt with the particu-
lar real case of feeding sequence selection in a manufacturing cell consisting of four 
parallel identical machines. Several feeding strategies and simulation model were 
built to select the best sequence. Most of the work and theory foundation considered 
scheduling robots which are usually inflexible, move on prescribed path and repeated-
ly perform a limited sequence of activities. There is still lack of scheduling a free-
ranging mobile robot which is able to move around within a manufacturing cell to 
process multiple-part feeding tasks consisting of collecting, transporting, and deliver-
ing containers of parts to feeders. The scheduling problem becomes interesting as the 
robot has been coordinated to manufacturing so that robot’s services maintain produc-
tion in the lines. Therefore, in this paper we focus on scheduling a single mobile robot 
for multiple-part feeding tasks whose time windows could be determined based on the 
inventory system (s, Q) as well as predefined maximum and minimum levels of parts 
in feeders. 

The remainder of this paper is organized as follows: in the next section, problem 
statement is described while the mathematical model is formulated in Section 3. A 
case study is investigated to demonstrate the result of the proposed model in Section 
4. Finally, conclusions are drawn in Section 5. 

2 Problem Description 

Fig. 1 below shows a typical layout of the manufacturing cell. In particular, the work 
is developed for a real cell that produces parts for the pump manufacturing industry at 
a factory in Denmark. The cell consists of a central storage known as a part super-
market, a single mobile robot, and several production lines including multiple ma-
chines which are fed by multiple feeders. An operator is responsible to put parts into 
small load carriers (SLCs) which are placed in the storage. The robot will retrieve and 
carry several SLCs containing parts from the storage, move to feeder locations, feed 
all parts inside each SLC to each feeder, then return to the storage to unload all empty 
SLCs and take filled SLCs. Because of the limitation on capacity, the feeders have to 
be served a number of times in order maintain production without any shortage of 
parts. The mobile robot thus has a set of feeding tasks to carry out during a given 
planning horizon. 
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Fig. 1. Layout of the manufacturing cell 

To enable the construction of a multiple-part feeding schedule of the mobile robot, 
the following assumptions are made: an autonomous mobile robot is considered in 
disturbance free environment; the robot is able to carry one or several SCLs at a time; 
all tasks are periodic, independent, and assigned to the same robot; working time and 
traveling time of the robot between any locations, and consuming rates of parts in 
feeders are known; all feeders of machines have to be fed up to maximum levels and 
the robots starts from the storage at the initial stage. In order to accomplish all the 
movements with a smallest consumed amount of battery energy, the total traveling 
time of the robot is an important objective to be considered. Hence, it is important to 
determine in which way the robot should feed the feeders of machines in order to 
minimize its total traveling time within the manufacturing cell while preventing the 
production lines from stopping working. 

3 Mathematical Formulation 

In this study, a mix-integer programming (MIP) model is developed to determine an 
optimal route of the mobile robot visiting a number of locations to process multiple-
part feeding tasks. The model is inspired by well-known traveling salesman problem 
[9] and the (s, Q) inventory system [10]. The latter is applied to define time windows 
for the feeding tasks. In practice, the MIP model can be applied to small-scale prob-
lems with a few numbers of feeders and short planning horizon. Under these scena-
rios, the MIP model is reasonably fast to give exact optimal solutions, which can be 
used as reference points to quantify the scale of benefits achieved by a meta-heuristic 
method further developed. Notations, time windows, and a formulation for the MIP 
model are extensively described in the following subsections. 
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3.1 Notations  

N :   set of all tasks (N = {0, 1, 2, …, n} where 0: task at the storage) 
ni : number of times task i has to be executed 
R : set of all possible routes (R = {1, 2, …, Rmax} where Rmax = Σ ni, ∀i ∈ N \{0}) 
eik : k-th release time of task i 
dik : k-th due time of task i 
pi :  periodic time of task i 
wi : working time of robot at task i location 
tij : traveling time of robot from task i location to task j location 
ci : consuming rate of parts in feeder at task i location 
vi : minimum level of parts in feeder at task i location 
ui : maximum level of parts in feeder at task i location 
Q : maximum number of SLCs could be carried by robot 
T :  planning horizon 

Decision variables: 

1   if robot travels from -th task  location to -th task  location in the route 

0  otherwise
jlr

ik

k i l j r
x

= 
  

yik : route number to which k-th task i belongs 
sik : k-th starting time of task i 

3.2 Time Windows 

Time windows of multiple-part feeding tasks of the mobile robot could be determined 
as shown in Equation (1), (2), and (3) below. 

 pi = (ui – vi)ci, ∀i ∈ N \{0}  (1) 

 eik+1 = eik + pi, ∀i ∈ N \{0}, k = 1 ÷ ni (2) 

 dik = eik + (vi – 0)ci, ∀i ∈ N \{0}, k = 1 ÷ ni (3) 

Task for feeder i whose periodic time is calculated as Equation (1) has a number of 
times/executions /=   i in T p to be performed. The release time of an execution of 

task i is set when the number of parts inside feeder i falls to a certain level vi (Equa-
tion (2)); while the due time of an execution of task i is defined when there are no 
parts in feeder i (Equation (3)). 

3.3 Mixed-Integer Programming Model 

Objective function: 

  
1 1

min                                                           (4)
ji nn

jlr
ij ik

i N k j N l r R

t x
∈ = ∈ = ∈
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The objective function (4) minimizes the total traveling time of the robot. Constraint 
(5) ensures that starting time of an execution of a task satisfies its time window. Con-
straints (6) and (7) indicate that the robot starts from the storage at the initial stage. 
Constraint (8) prevents the robot repeating an execution of a task. Constraint (9) eli-
minates the sub-tours among executions of tasks, where Z is a subset of ZT, where ZT 
is a set of all executions of tasks at feeders and the storage, and Φ denotes and empty 
set. Constraints (10) and (11) force an execution of a task in one route to be done 
exactly one. Constraint (12) forbids the robot to feed more SLCs than the maximum 
number of SLCs Q it allows to carry. Constraint (13) handles the traveling time re-
quirements between any pair of executions of tasks, where L is a given sufficiently 
large constant. In case two executions of the same task or different tasks are con-
nected but they are not in the same route, the robot should visit the storage to unload 
empty SLCs and load filled ones. Constraint (14) assigns an execution of a task to a 
route and constraint (15) guarantees the ascending sequence of route numbers for 
executions of tasks. Constraints (16) and (17) imply the types of variables. 
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4 Case Study 

To examine performance of the MIP model, a case study is investigated at the CR 
factory at Grundfos A/S. The chosen area for this case study is the CR 1-2-3 impeller 
production line which produces impellers for industrial pumps. The CR line consists 
of four feeders that have to be served by the mobile robot. These feeders are indexed 
from 1 to 4 and named Back Plate, Van Feeder 1, Van Feeder 2, and Front Plate re-
spectively. Besides, different feeders are filled by different kinds of parts, namely 
back plates for feeder 1, vanes for feeder 2 and 3, front plates for feeder 4. On the CR 
line, a number of vanes are welded together with back and front plates to produce an 
impeller. Fig. 2 below particularly illustrates the aforementioned production area 
where the proposed model has been implemented in the factory. 

 

Fig. 2. CR 1-2-3 impeller production line 

The maximum number of SLCs carried by the robot is 3. The average number of parts 
per SLC fed to feeder 1 or 4 is 125 (approximately 2 kg/SLC), while the average 
number of parts per SLC fed to feeder 2 or 3 is 1100 (approximately 1 kg/SLC). The 
maximum levels, minimum levels, consuming rates of parts, and working time of the 
robot are given in Table 1, while Table 2 shows traveling time of the robot from one 
location of a task to another (feeder 0 means the central storage). 

Table 1. Maximum, minimum levels, consuming rates, and working time of robot at feeders 

Feeder 0 1 2 3 4 

Maximum level (part) - 250 2000 2000 250 
Minimum level (part) - 125 900 900 125 
Consuming rate (s/part) - 4.5 1.5 1.5 4.5 
Working time of robot (s) 90 42 42 42 42 
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Table 2. Traveling time of robot from one location to another 

Traveling time (s) 0 1 2 3 4 

0 0 43 33 27 48 
1 46 0 29 30 53 
2 32 34 0 36 42 
3 29 26 35 0 40 
4 47 60 46 39 0 

The case study has been investigated during approximately 50 minutes because of the 
limitation on robot batteries. The MIP model has been coded in the mathematical 
modeling language ILOG OPL 3.6. The problem of case study has been run on a PC 
having an Intel® Core i5 2.3 GHz processor and 4 GB RAM. The optimal solution 
obtained is given as: 0 – 1 – 4 – 4 – 0 – 1 – 1 – 4 – 0 – 1 – 2 – 4 – 0 – 3 – 0 , with total 
traveling time being 503 seconds which makes up 16.4 % of the total time. With 4040 
decision variables, the computational time for this case using the proposed model is 
4305 seconds. The detailed solution is shown in Table 3 and Fig. 3 below. 

Table 3. Detailed optimal solution of the case study 

Task Feeder Index of execution Starting time Route 

1 1 1 1030.0 1 
2 4 1 1125.0 1 
3 4 2 1375.5 1 
4 1 2 1687.5 2 
5 1 3 2155.0 2 
6 4 3 2250.0 2 
7 1 4 2549.0 3 
8 2 1 2620.0 3 
9 4 4 2704.0 3 

10 3 1 3000.0 4 

 

Fig. 3. Gantt chart for the optimal solution of the case study 

The above optimal solution is an initial schedule for the robot. That schedule serves as 
an input to a program called Mission Planner and Control (MPC) which is  
implemented in VB.NET. The MPC program is accessed using XML-based TCP/IP 
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communication to command and get feedbacks from the robot. During the practical 
feeding operations at CR 1-2-3 impeller production line, the initial schedule was ex-
ecuted in sequence and it prevented all of feeders running out of parts. Hence, the CR 
line can keep producing impellers without shortage of parts fed from feeders. 

5 Conclusions 

In this paper, a new problem of scheduling a single mobile robot for multiple-part 
feeding tasks in a manufacturing cell is studied. To accomplish all tasks within allow-
able limit of battery capacity, it is important for planners to determine optimal feeding 
sequence to minimize total traveling time of the mobile robot while considering spe-
cific features of the robot and a number of technological constraints. An MIP model is 
developed to find optimal solution for the problem. A particular real case of the im-
peller production line composing of four feeders is described to show result of the 
proposed model. The result was quite properly applied during practical feeding opera-
tions and it demonstrated that all feeders had no shortage of parts. For further re-
search, the complexity of the problem will increase when considering a larger number 
of feeders and/or longer planning horizon. Hence, a meta-heuristic method will be 
taken into account for solving large-scale mobile robot scheduling problems. Besides, 
re-scheduling mechanisms based on obtained schedules and feedback from the shop 
floor will be developed to deal with real-time disturbances. 

Acknowledgments. This work has partly been supported by the European Commis-
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Abstract Eco-production and logistics with environmental consciousness are
playing a larger role in manufacturing firms. They involve scheduling, planning,
developing and implementing manufacturing processes and technologies that are
required not only to keep productivity high but also to respond to the challenges of
issues such as energy conservation and pollution preventions. Facing the central
tension between manufacturing and environmental drivers is difficult, but critical
to develop new technologies, particularly mobile robots, that can be incorporated
into production to achieve holistic solutions. This chapter deals with the problem
of finding optimal operating sequence in a manufacturing cell of a mobile robot
with manipulation arm that feeds materials to feeders. The ‘‘Bartender Concept’’ is
discussed to show the cooperation between the mobile robot and industrial envi-
ronment. The performance criterion is to minimize total traveling time of the robot
with the smallest consumed amount of battery energy in a given planning horizon.
A mixed-integer programming (MIP) model is developed to find the optimal
solutions for the problem. Two case studies are implemented at an impeller pro-
duction line to demonstrate the results of the proposed MIP model.
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1 Introduction

Environmental issue is rapidly emerging as one of the most important topics for
manufacturing decisions (Azzone and Noci 1998). This is mainly driven by the
escalating deterioration of the environment, for examples diminishing raw material
resources, overflowing waste sites and increasing levels of pollution (Gungor and
Gupta 1999). In the industry nowadays, managers take account of improvements in
environmental performance one of the basic competitive edges, alongside lower
costs and higher quality. Environmentally conscious manufacturing, or Eco-
production, is the transformation of materials into useful products through a value-
added process that simultaneously enhances economic well-being and sustains
environmental quality (Darnall et al. 1994). It involves planning, developing, and
implementing manufacturing processes and technologies that are required to not
only keep productivity high but also respond to challenges a variety of issues, such
as energy conservation, pollution preventions, and avoidance of ecological deg-
radation (Sarkis 1995). Besides, today’s production systems range from fully
automated to strictly manual. While the former is very efficient in high volumes
but less flexible, the latter is reversed. Hence, manufactures visualize the need for
new production systems that combines the best of both worlds and considers
environmental impacts by using eco-friendly production technologies such as new
assistive automation and autonomous mobile robots.

Mobile robots have the capability to move around within their environment, and
they are not fixed to one physical location. With embedded batteries and manip-
ulation arms, mobile robots are more flexible to perform certain tasks such as
transporting and feeding materials, machine tending, pre-assembly or quality
inspection at different workstations in a manufacturing cell. Moreover, using
mobile robots can lead to production efficiency gains (for example less energy
usage than commonly industrial robots attached to a fixed surface), better
housekeeping, safer and cleaner facilities. These superior advantages of these
robots pave the way for meeting the need of the aforementioned new production
systems. In this chapter, a given problem is particularly considered for mobile
robots with manipulation arms, which will automate extended logistic tasks by not
only transporting but also collecting containers of parts and emptying them into
the place needed. Feeding operation studied here is a kind of extended logistic
tasks. However, to operate mobile robots incorporated into production environ-
ment requires better inventory control with a central warehouse where supplies
materials or parts for feeding tasks. Furthermore, to utilize mobile robots in an
energy-efficient manner requires the ability to properly schedule this kind of tasks.
Therefore, it is important to implement a specific concept for better working and
environmental order as well as to plan in which sequence the robots process
feeding operations so that they could effectively work while satisfying a number of
technological constraints.

In the survey of the literature on production considering environmental impacts,
Sarkis (1995) presented the environmental problems pertaining to manufacturing

186 Q.-V. Dang et al.



and operation management. The general framework on how to manage
environmentally conscious issues in a manufacturing company is develop and
discussed. Sarkis and Rasheed (1995) also identified and described the basic
elements of an environmental conscious manufacturing strategy and techniques to
enable businesses to pursue that strategy. Azzone and Noci (1998) introduced the
contingency framework, which analyzed whether and how different ‘‘green’’
manufacturing must be deployed and accessed as well. Gungor and Gupta (2010)
discussed the evolution of environmentally conscious manufacturing, which has
taken place in the last decade, and new areas, which have come into focus during
this time. Srinivasan and Sheng (1999a, b) presented a formalized approach
towards integrating environmental factors in process planning which includes
micro-planning and macro-planning. In micro-planning, process, parameter and
common setups were selected for the individual features, while in macro-planning
interactions between features are examined. Krishnan and Sheng (2000) developed
an automatic process-planning agent for CNC machining for minimal environ-
mental impact along major categories. The process planner is designed to interact
with conventional generative planner as an advisory environmental agent. Jin and
Balasubramaniam (2003) integrated the environmentally benign process planning
with fuzzy set theories as fuzzy environmental processing planning can handle the
vagueness and impreciseness associated with the data and can eliminate subjective
decisions. Nielsen et al. (2010) suggested that a widely distributed and semi-
structured network of waste producing and waste collecting/processing enterprises
could improve their planning both by a proposed Decision Support System based
on Constrained Logic Programming, and by implementing RFID technology to
update and validate information. Besides, in the literature on production consid-
ering robot scheduling problem, which is NP-hard, this topic has attracted interest
of researchers in recent decades. Dror and Stulman (1987) dealt with the problem
of defining the best movement decision for a one-dimensional service robot. The
simple simulation experiment was presented to illustrate an increase in production
output with the help of sophisticated decision rules for robot’s movement. Chen
and Su (1995) addressed the problem of scheduling single-gripper gantry robots
whose optimal schedule was developed by analyzing the cycle time formula for
two and three-workstation production lines and then by extending the result for the
problem of scheduling a production line with multiple workstations. Crama and
van de Klundert (1997) considered the flow shop problem with one transporting
robot and one type of product to find shortest cyclic schedule for the robot.
The dynamic programming approach was developed to solve the problem in
polynomial time. Afterwards, they demonstrated that the sequence of activities
whose execution produces one part yields optimal production rates for three-
machine robotic flow shops (Crama and van de Klundert 1999). Crama et al.
(2000) also presented a survey of cyclic robotic scheduling problems, model for
such problems, complexity of solving these problems, and the existing solution
approaches. Kats and Levner (2010, 2011) considered an m-machine production
line processing identical parts served by a mobile robot to find the minimum cycle
time for 2-cyclic schedules. The strongly polynomial algorithm of time complexity
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and the improved algorithm with reduced complexity were proposed. Maimon
et al. (2000) introduced a neural network method for the problem of sequencing
tasks comprising loading and unloading of parts into and from the machines by
material-handling robot. Suárez and Rosell (2005) analyzed the particular real case
of feeding sequence selection in a manufacturing cell consisting of four parallel
identical machines working alternately on two pallets, fed by one robot. Several
feeding strategies and simulation model were built to select the best sequence.
Most of the work and theory foundation considered scheduling robots, which are
usually inflexible, move on prescribed path and repeatedly perform a limited
sequence of activities. Another figure of a mobile robot that has been extensively
studied and in common use today is automated/automatic guided vehicle, but it
still follows markers, reflectors or guided wires on the floor. There is still lack of
scheduling free-ranging mobile robots, which are able to move around within a
manufacturing cell to process extended logistic tasks consisting of collecting,
transporting and delivering parts or components right to places. The problem
becomes interesting, as the robot has to be incorporated into manufacturing so that
robot services maintain production in the lines. The complexity of the problem
rapidly rises to be NP-hard when the robot has to serve more workstations (in one
or several production lines) and/or work in a longer planning horizon. In addition,
environmentally conscious issues, for examples energy conservation and ware-
house management, have not intensively discussed in the production coordinated
with mobile robots. Therefore, in this chapter we consider implementing the
‘‘Bartender Concept’’ for better working environment of the mobile robot and
scheduling that kind of robot for feeding tasks, which could be pre-determined
based on maximum and minimum levels of parts in feeders, so that all of tasks are
completed with a smallest consumed amount of battery energy.

The remainder of this chapter is organized as follows: in the next section, the
‘‘Bartender Concept’’ is discussed to show the cooperation between the robot and
industrial environment. This section also describes the problem statement.
Section 3 presents the formulation of mathematical model, while case studies are
investigated to demonstrate the result of the proposed model in Sect. 4. Finally, the
chapter concludes and draws the future work in Sect. 5.

2 Problem Description and the ‘‘Bartender Concept’’

The automation technology in combination with advances in production
management has dramatically changed the equipment used by manufacturing
companies as well as the issues in planning and control. These changes have led to an
enormous increase in efficiency and flexibility so that progress in term of automation
has become a necessity to survive global competition (Crama and van de Klundert
1999). As a result, highly automated or unmanned production systems have become
more popular in several industrial areas such as chemical and plastics, automotive,
pump manufacturing, etc. A typical automatic production system includes intelligent
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and flexible machines programmed and grouped into cells in such a way that entire
production of each part can be carried out within one of the cells. This machine
pooling helps to reduce material handling activities. Within a manufacturing cell,
material handling is usually performed by one (or several) robots/automatic guided
vehicles or human operator. When the former is the case, the performance of the cell
becomes highly dependent on the interaction between automatic material handling
device(s) and the machine(s) (Crama and van de Klundert 1999).

The relatively small number of machines and material handling device(s) in
flexible cells, along with their high degree of automation make them an ideal envi-
ronment for automated production scheduling. In general, a flexible manufacturing
system with multiple machines, multiple storages, and a single robot transporting
parts in between machines, also between machines and storages or from storages to
feed machines are taken into account. For instances, in an automated printed circuit
board assembling environment, the robot has to transport the boards in-between
insertion machines and also between insertion machines and buffers at the right time
before the adhesive become dry (Maimon et al. 2000), or in car-parts manufacturing
factory, the robot moves a fixed track to load parts into the pallets from the storage
line. The set of move requests (tasks) is assumed to be known in advance, thus the
robot can be considered to have a set of tasks to carry out at each planning point. The
problem is to sequence the tasks, with the objective of minimizing some performance
measure such as the total travel time of the robot. Apart from the total travel time of
the robot, other local performance measures can be considered for this problem such
as the amount of time a task waiting for to be completed by the robot. Alternatively,
completion time of a task could also be modeled as a constraint to ensure that a task is
completed before a certain time. An example of it is in water fabrication facilities in
which time windows for the tasks to be carried out are a consideration (Maimon et al.
2000). Besides, industrial production technology has traditionally focused on
improving the quality and quantity of production with little attention paid to envi-
ronmental and social costs. For instance, fixed industrial robots along with safety
fences, conveyors, and prescribed material flows are ideal for repetitive tasks,
increase manufacturing throughput and quality. However, operating these kinds of
robots have consumed a substantial amount of energy and required high costs of
changeover and worker protections. The growth in environmental consciousness has
led to a significant change in this attitude, and—willingly or otherwise—businesses
and manufacturing are now forced to confront the consequences of their actions
(Sarkis 1995). Modern technologies with automatic material handling devices (e.g.
flexible mobile robots with embedded batteries, manipulation arms and various end-
effectors) incorporated to production offer the promise of gaining benefits of envi-
ronmental consciousness. These kinds of devices or robots might initially be more
expensive than other solutions. However, through additional creations of values and
by a faster adaptation to changes with new levels of robustness, availability, and
completeness of jobs, the alternative solutions could yield an earlier return of
investment, safer and cleaner facilities, lower future costs for disposal and worker
protection, as well as improved product quality and higher productivity of entire
production.
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The automatic material handling devices such as mobile robots can be used in
either fully automated or in-between fully automated and strictly manual pro-
duction systems. Thus, they have been widely employed in not only small com-
panies, which focus on exact application and a smaller range of products, but also
large companies, which can diversify their applications in the longer term and
larger range. However, the increasing market uncertainties and environmental
issues require both small and large series productions to quickly respond to
changing customer demands and implementing environmentally conscious man-
ufacturing. Hence, the companies need to understand how these devices could be
used to meet those requirements. Within the scope of this study, the interaction
between one of the automatic material handling devices, a mobile robot, and
machines in a cell, which focuses on a class of robotic scheduling, is considered
under environmental consciousness. Figure 1 shows a typical layout of the man-
ufacturing cell. In particular, the work is developed for a real cell that produced
parts or components for the pump manufacturing industry at a factory in Denmark.

Before coordinating a mobile robot to industrial environment, the manufacturing
cell has one or several production lines, which consists of multiple machines. Feeders
are designed to automatically supply parts or components to these machines. Pallets
or boxes, which contain the parts, are placed next to these feeders. Multiple-parts
feeding that is the process of loading many parts at a time into feeders from the pallets
or boxes is manually performed, non-value adding manufacturing task, and quite
often disruptive (in-between and periodic) for production workers. In case that the
workers forget to fill the feeders with parts, this may lead to a serious problem of
stopping the production lines. A strategy that can reduce the dependence of the

Fig. 1 Illustration of the ‘‘Bartender Concept’’ in the manufacturing cell
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multiple-part feeding tasks on human intervention is having a mobile robot taking
over parts of what humans used to do. However, to utilize the autonomous mobile
robot in this scenario requires changing the working environment in the former stage
and carefully planning in the latter stage.

The ‘‘Bartender Concept’’ is implemented to meet the requirement of the former
stage as well as to make multiple-part feeding tasks performed by the mobile robot
more flexible and complete. In this concept, instead of scattered pallets or boxes
containing parts next to the feeders, a warehouse (the bar) is created to gather
different parts into one area. An operator (the bartender) puts parts into small load
carriers (SLCs) which are placed in the warehouse. The robot retrieves and carries
these SLCs, moves to each feeder and feeds all parts inside a SLC to each feeder, then
returns to the warehouse to unload all empty SLCs and take filled SLCs if needed. It
can be seen that the benefits obtained by applying the ‘‘Bartender Concept’’ include
safer, cleaner facilities and better opportunities for process control.

In the latter stage, with the restructured production environment, the feeders
have to be served a number of times in order to keep producing all of products, so
the robot has a set of multiple-parts feeding tasks to carry out during production
time of products. The number of these feeding tasks is mainly influenced by the
number of parts, or the total weight of parts, inside a SLC that the robot is able to
carry. The more parts, or the heavier, the robot transports each time the fewer tasks
it has to perform in a given planning horizon and vice versa. In order to accomplish
all the movements with the smallest consumed amount of battery energy, the total
traveling time of the robot is an important objective to be considered. Hence, it is
crucial to determine in which way the robot should supply the feeders of machines
with parts in order to minimize its total traveling time within the manufacturing
cell while preventing the production lines from stopping working. A mathematical
formulation is developed to achieve this objective in the next section.

3 Mathematical Formulation

In this study, a mix-integer programming (MIP) model is developed to determine
optimal route of the mobile robot visiting a number of feeders to process multiple-
parts feeding tasks. The model is inspired by well-known vehicle routing problem
in which all the feeders (customers) corresponding to SLCs deliveries are known
in advance. The (s, Q) inventory system (Silver et al. 1998) is applied to deter-
mined time-windows for part-feeding tasks. The upper bound of time window is
set on the time when the number of parts inside a feeder drops to a certain level s,
while the lower bound is defined on the time when there is no part in the feeder.
The task for each feeder must start within an associated time window and the robot
must remain at the feeder location during service. Soft time windows can be
violated, while hard time windows do not allow the robot to arrive at a feeder after
the latest time to begin service. In the latter case if it arrives before the feeder is
ready to begin service, it waits (Toth and Vigo 2002). We will concentrate on hard
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time window scenarios in this model. The robot is based at a single warehouse and
the capacity restriction of the robot is imposed. The certain number of parts Q is
predefined to fill feeders where the robot visits each time.

MIP problem consists of some of decision variables that are constrained to have
only integer values. Integer variables make an optimization problem non-convex,
and therefore far more difficult to solve. Memory and solution time may expo-
nentially rise as the size of the problem increases with more added integer vari-
ables. Therefore, in practice the MIP model can be applied to small-scale problems
with a few numbers of feeders, products and short planning horizon. Under these
scenarios, the MIP model is reasonably fast to give exact optimal solutions, which
can be used as reference points to quantify the scale of benefits achieved by a
meta-heuristic method further developed. Moreover, this MIP model attempt to
minimize total traveling time of the robot; in other words, minimize battery energy
consumption that is one of the important aspects of ecological production. Con-
sequently, by saving battery energy for non-value added transportation of parts
around shop floor, the mobile robot is able to take full advantage of flexible
characteristics to perform other tasks at other workstations that leads to higher
productivity of the entire production. Assumptions, notations and formulation for
the MIP model are extensively described in the following subsections.

3.1 Assumptions

• A fully automatic mobile robot is taken into account in disturbance free
environment.

• The robot can carry several SLCs at a time.
• All tasks are periodic.
• All tasks are assigned to the same robot.
• All tasks are independent which means that there are no precedence constraints.
• Working time and traveling time of the robot between any two locations, in

which either one of the locations can be a feeder or warehouse place, are known.
• Consuming rate of parts in a feeder is known.
• All of feeders of machines have to be fed up to maximum level and the robot

starts from the warehouse at the initial stage.

3.2 Notations

N: set of all task (0: index of task at the warehouse)
ni: total number of times which task i has to be executed
R: maximum number of route R ¼

P
ni; 8i 2 Nnf0gð Þ

eik: k-th released time of task i
dik: k-th due time of task i
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pi: period time of task i
wi: working time per SLC of task i
tij: traveling time of robot from task i location to task j location
ci: consuming rate of parts in feeder at task i location
vi: minimum level of parts in feeder at task i location
ui: maximum level of parts in feeder at task i location
Q: maximum number of SLCs that can be carried by the robot

Decision variables :

xjlr
ik ¼

1 if robot travels from k-th task i location to l-th task j location in the route r

0 otherwise

(

yik: route number in which k-th task i belongs
Sik: k-th starting time of task i

3.3 Mixed-Integer Programming Model

Objective function: min
X

i2N

Xni

k¼1

X

j2N

Xnj

l¼1

X

r2R

tijx
jlr
ik ð1Þ

Subject to:

pi ¼ ui � við Þci 8i 2 Nnf0g ð2Þ

eikþ1 ¼ eik þ pi 8i 2 Nnf0g; k ¼ 1� ni ð3Þ

dik ¼ eik þ ðvi � 0Þci 8i 2 Nnf0g ð4Þ

eik� sik� dik 8i 2 Nnf0g; k ¼ 1� ni ð5Þ

X

j2Nnf0g

Xnj

l¼1

xjl1
01 ¼ 1 ð6Þ

X

j2Nnf0g

Xnj

l¼1

X

r2R

xjlr
01� 1 ð7Þ

X

i2N

Xni

k¼1

xikr
ik ¼ 0 8r 2 R ð8Þ
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X

r2R

xjlr
ik � Zj j � 1 8i; j 2 N; k ¼ 1� ni; l ¼ 1� nj; i 6¼ j; Z � ZT ; Z 6¼ U ð9Þ

X

j2N

Xnj

l¼1

X

r2R

xjlr
ik ¼ 1 8i 2 Nnf0g; k ¼ 1� ni ð10Þ

X

i2N

Xni

k¼1

X

r2R

xjlr
ik ¼ 1 8j 2 Nnf0g; l ¼ 1� nj ð11Þ

X

i2N

Xni

k¼1

X
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The objective is to minimize the total traveling time of robot. Constraints (2), (3), and
(4) set period time of each task, released time and due time of each execution of each
task, respectively. Constraint (5) ensures that starting time of each execution of each task
satisfies its time window. Constraints (6) and (7) indicate that the robot starts from the
warehouse at the initial stage. Constraint (8) prevents the robot repeating an execution of
one task. Constraint (9) eliminates the sub-tours among executions of tasks, where Z is a
subset of ZT, where ZT is a set of all executions of tasks at feeders and the warehouse, and
U denotes and empty set. Constraints (10) and (11) force each execution of each task in
one route to be done exactly once. Constraint (12) forbids the robot to feed more SLCs
than the maximum number of SLC Q it allows to carry. Constraint (13) handles the
traveling time requirements between any pair of executions of tasks, where L is a given
sufficiently large constant. In case two executions of the same task or different tasks are
connected but they are not in the same route, the robot should visit the warehouse to
unload empty SLCs and load filled ones. Constraint (14) assigns each execution of each
task to a route and constraint (15) guarantees the ascending sequence of route numbers
for executions of tasks. Constraints (16) and (17) imply the types of variables.
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4 Case Studies

To examine performance of the MIP model, case studies are investigated at the CR
factory at Grundfos A/S. The chosen area for the case studies is the CR 1-2-3
impeller production line that produces impellers for the CR products. The CR line
consists of a warehouse and four feeders that have to be served by the mobile
robot. The warehouse is indexed 0 and the feeders are indexed from 1 to 4
(N = {0, 1, 2, 3, 4}) and named Back Plate, Van Feeder 1, Van Feeder 2, and
Front Plate respectively. Besides, different feeders are filled by different kinds of
parts, namely back plates for feeder 1, vanes for feeder 2 and 3, front plates for
feeder 4. To produce an impeller on the CR 1-2-3 line, three types of parts, which
consist of six vanes (with three vans from feeder 2 and the other three vans from
feeder 3), one front plate from feeder 4 and one back plate from feeder 1, are
automatically assembled. The design weights of vane, front plate and back plate
are 1 g, 50 g, and 50 g per part respectively. Figure 2 shows the different parts of
an impeller, while Fig. 3 particularly illustrates the aforementioned production
area where the presented model has been implemented. It can be seen that the
safety fences and warning signs are used as described in Fig. 3 to ensure that no
people enter the area as well as to prevent the mobile robot leaving that area while
the implementation is taking place.

The average number of parts per SLC fed to feeder 1 or 4 is 125 (approximately
2 kg/SLC), while the average number of parts per SLC fed to feeder 2 or 3 is 1100
(approximately 1 kg/SLC). The maximum and minimum levels and consuming
rate of parts in each feeder are given in Table 1, while Tables 2 and 3 show
working time of robot at each task’s location and traveling time of robot from one
task’s location to another (feeder 0 means the warehouse).

In the early design, the mobile robot has capability of carrying up to three SLCs
at a time to perform multiple-part feeding tasks at the feeders. Therefore, two case
studies were investigated corresponding to two maximum numbers of SLCs
(Q = 2 and Q = 3) that can be carried once by the robot. These cases were
executed during approximately 50 min because of robot’s battery limitation. The
parameters pi, eik, and dik are respectively computed from (2), (3), and (4) in the
section 3.3.

The MIP model has been coded and solved by the mathematical modeling
language ILOG OPL 3.6 which is a sophisticated and computationally efficient
solver that can handle linear programming problems with hundreds of thousands of
variables and mixed-integer linear programming problems with tens of thousands
of variables. Using this modeling language is particularly advantageous for
development of new models and for documentation of models that are subjected to
potential changes (Chang et al. 2001). Both case studies have 4040 decision
variables including 4000 integer variables xik

jlr, 20 integer variables yik and 20
variables sik. The problem of the case studies have been run on a PC that has Intel
Core 2 Duo CPU and 2.2 GHz processor (2 GB RAM).
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Fig. 2 Different parts of an impeller produced on the CR 1-2-3 line

Fig. 3 CR 1-2-3 impeller production line

Table 1 Maximum and minimum levels and consuming rat of parts in feeders

Feeder 1 2 3 4

Maximum level ui (part) 250 2000 2000 250
Minimum level vi (part) 125 900 900 125
Consuming rate ci (sec/part) 4.5 1.5 1.5 4.5
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4.1 Case Study 1

The first case considered that the mobile robot could only carry up to two SLCs at
a time during its performance. The optimal solution obtained from this case is
given as x01

411 = x41
022 = x02

112 = x11
122 = x12

033 = x03
423 = x42

433 = x43
044 = x04

134 = x13
055

= x05
445 = x44

145 = x14
066 = x06

216 = x21
316 = x31

077 = 1, the others xik
jlr = 0 and

y01 = y41 = 1, y02 = y11 = y12 = 2, y03 = y42 = y43 = 3, y04 = y13 = 4,
y05 = y44 = y14 = 5, y06 = y21 = y31 = 6 which form the entire route 0 - 4 - 0 -
1 - 1 - 0 - 4 - 4 - 0 - 1 - 0 - 4 - 1 - 0 - 2 - 3 - 0, with the total traveling time being
624 s which makes up 20.8 % of the total time. The detailed solution is sum-
marized in Table 4 and Fig. 4 below.

4.2 Case study 2

The second case considered that the mobile robot could carry up to three SLCs at a
time during its performance. The optimal solution obtained from this case is given as
x01

411 = x41
111 = x11

121 = x12
022 = x02

422 = x42
432 = x43

132 = x13
033 = x03

443 = x44
044 = x04

144=

x14
314 = x31

214 = x21
055 = 1, the others xik

jlr = 0 and y01 = y41 = y11 = y12 = 1,
y02 = y42 = y43 = y13 = 2, y03 = y44 = 3, y04 = y14 = y31 = y21 = 4 which
form the entire route 0 - 4 -1 - 1 - 0 - 4 - 4 - 1 - 0 - 4 - 0 - 1 - 3 - 2 - 0, with the total
traveling time being 543 s which constitute of 18.1 % of the total time. The detailed
solution of the case is summarized in Table 5 and Fig. 5 below.

These above optimal solutions of the case studies 1 and 2 are initial schedules for
the mobile robot. The initial schedule serve as inputs to a program called Mission
Planner and Control (MPC), which is implemented in VB.NET. The Mission Planner
and Control program is accessed using XML-based TCP/IP communication to
command and get feedbacks from the robot, and interact with ERP system of the
company. By integrating the mobile robot into the general enterprise network, it is
possible to plan and control globally, as the mobile robot become a resource on
the same level as corresponding manufacturing device. During the practical

Table 2 Working time of robot at feeders

Feeder 0 1 2 3 4

Working time wi (sec) 90 42 42 42 42

Table 3 Traveling time of
robot from one feeder
location to another

Traveling time tij (sec) 0 1 2 3 4

0 – 49 44 43 38
1 49 – 58 45 58
2 46 58 – 35 48
3 42 43 35 – 47
4 44 56 47 46 –
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multiple-parts feeding operations at CR 1-2-3 impeller production line, the mobile
robot was able to continuously pick/place SLCs from/to the warehouse and empty
them into the different feeders so that the initial schedules were executed in sequence
and they prevented all offeeders running out of parts. Hence, the CR 1-2-3 production
line can keep manufacturing impellers without shortage of parts that are fed from
feeders.

From those case studies, it reveals that the higher maximum number of SLCs
the robot can carry, the less traveling time it has; in other words, the less battery
energy it consumes. It can be also observed that the robot only visits the central
warehouse 3 times in the second case as opposed to 5 times in the first one.
Because of fewer times on visiting the warehouse, the robot can also save its
battery energy from the work consisting of unloading all empty SLCs and loading
newly filled SLCs there. Consequently, when the mobile robot gains less energy
usage, it can perform multiple-part feeding tasks in a longer planning horizon, or
move to other workstations with its ability to automatically change various end-
effectors in order to serve other types of tasks, for examples single part feeding,
pre-assembly, machine tending, quality inspection, process execution during its
idle time if required. These apparently lead to more sustainable production, higher
productivity, and demonstrate the superior characteristics of mobile robots to
industrial robots, which are attached to a fixed surface, or automatic guided
vehicles, which follow markers, reflectors, guided wires on the floor in the context
of environmentally conscious manufacturing.

5 Conclusions and Further Research

In this chapter, a new problem of scheduling a single mobile robot, which is incor-
porated into production lines considering environmental consciousness, to perform
multiple-parts feeding tasks is studied. In order to reduce the human interventions
and intensively utilize the mobile robot, the ‘‘Bartender Concept’’ was implemented
to restructure the working environment. Benefits obtained from that implementation

Table 4 Detailed optimal
solution of the case study 1

Feeder/Task Index of execution Starting time (sik) Route

4 1 810.0 1
1 1 1125.0 2
1 2 1378.5 2
4 2 1687.5 3
4 3 1935.0 3
1 3 2250.0 4
4 4 2510.0 5
1 4 2608.0 5
2 1 2923.0 6
3 1 3000.0 6
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consist of safer, cleaner facility layout, and better opportunities for process control.
Besides, to accomplish all the tasks within allowable limit of battery capacity, it is
important for mission planners to determine optimal feeding sequence to minimize

Fig. 4 Gantt chart for the optimal solution of the case study 1

Table 5 Detailed optimal solution of the case study 2

Feeder/Task Index of execution Starting time (sik) Route

4 1 1027.0 1
1 1 1125.0 1
1 2 1378.5 1
4 2 1687.5 2
4 3 2152.0 2
1 3 2250.0 2
4 4 2497.5 3
1 4 2812.5 4
3 1 2923.0 4
2 1 3000.0 4

Fig. 5 Gantt chart of the optimal solution of the case study 2
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total traveling time of the mobile robot while taking into account specific features of
the robot and a number of technological constraints.

A new mix-integer programming model was developed to find optimal solution
for the problem. This model could be coded and solved by using the mathematical
modeling language ILOG OPL 3.6 which is advantageous for development of new
scenarios due to potential changes of dynamic production environment. The pro-
posed model can be applied in practice with small-scale problems with a few
numbers of feeders, products and short planning horizon. The particular real cases
of the impeller production line composing of four feeders were described to show
result of the proposed model. The result was quite properly applied during prac-
tical feeding operations and it demonstrated that all feeders had no shortage of
parts fed to the production line. Furthermore, it can be seen from the real cases that
along with the flexible characteristic of the mobile robot, if it has higher ability to
carry more number of SLCs at a time, it can save time on transporting parts around
the shop floor and working at the central warehouse. Consequently, this can lead to
eco-efficiency gains such as less energy usage, more sustainable production and
higher productivity, as well as demonstrate the superior characteristics of mobile
robots to fixed industrial robots or automatic guided vehicles.

For further research, the complexity of the problem categorized as being NP-hard
will increase when considering a large number of feeders and/or long planning
horizon. Hence, a meta-heuristic method will be taken into account for solving the
large-scale problem of mobile robot scheduling. Besides, during the implementation
of the real case studies at the shop floor, different interruptions occasionally hap-
pened because of various reasons such as losing communication between the robot
and the MPC program, failure of the robot to picking/placing SLCs from/to the
central warehouse or empty SLCs at the feeders, even stopping the production
line due to scrap materials. These interruptions require the MPC program to have the
robust ability to recover the system state before errors and then re-schedule the
remaining tasks based on obtained schedules and feedback from the shop floor.
Hence, a re-scheduling mechanism with an integrated real-time discrete event
simulation model might be developed to deal with these aforementioned real-time
disturbances. Moreover, multi-objectives function concerning environmental
impacts to improve eco-production and logistics could be considered for future work.
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A Genetic Algorithm-Based Heuristic for  
Part-Feeding Mobile Robot Scheduling Problem 

Quang-Vinh Dang, Izabela Ewa Nielsen, and Grzegorz Bocewicz* 

Abstract. This present study deals with the problem of sequencing feeding tasks 
of a single mobile robot with manipulation arm which is able to provide parts or 
components for feeders of machines in a manufacturing cell. The mobile robot has 
to be scheduled in order to keep machines within the cell producing products 
without any shortage of parts. A method based on the characteristics of feeders 
and inspired by the (s, Q) inventory system, is thus applied to define time win-
dows for feeding tasks of the robot. The performance criterion is to minimize total 
traveling time of the robot in a given planning horizon. A genetic algorithm-based 
heuristic is developed to find the near optimal solution for the problem. A case 
study is implemented at an impeller production line in a factory to demonstrate the 
result of the proposed approach. 

Keywords: Scheduling, Mobile Robot, Genetic Algorithm, Part Feeding. 

1   Introduction 

Today’s production systems range from fully automated to strictly manual. While 
the former is very efficient in high volumes but less flexible, the latter is reversed. 
Therefore, manufactures visualize the need for transformable production systems 
that combines the best of both worlds by using new assistive automation and mo-
bile robots. A given problem is particularly considered for mobile robots with ma-
nipulation arms which will automate extended logistic tasks by not only transport-
ing but also collecting containers of parts and emptying them into the place 
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needed. In that context mobile robots play the role of agents [12], attempting to 
reach their goals while following rules specific for a given production system. So, 
the considered systems are treated as multi-agent ones in which each robot can be 
seen as an autonomous object capable to undertake decisions about moving, feed-
ing, emptying containers and completing operations, etc. 

Feeding operation studied in this paper is a kind of extended logistic tasks. 
However, to utilize agents in an efficient manner requires the ability to properly 
schedule these feeding tasks. Hence, it is important to plan in which sequence 
agents’ process feeding operations so that they could effectively work while satis-
fying a number of technological constraints. 

Robot scheduling problem has attracted interest of researchers in recent dec-
ades. Crama and van de Klundert [1] considered the flow shop problem with one 
transporting robot and one type of product to find shortest cyclic schedule for the 
robot. Afterwards, they demonstrated that the sequence of activities whose execu-
tion produces one part yields optimal production rates for three-machine robotic 
flow shops [2]. Crame et al. [3] also presented a survey of cyclic robotic schedul-
ing problem along with their existing solution approaches. Dror and Stulman [5] 
dealt with the problem of optimizing one-dimensional robot’s service movements. 
Kats and Levner [7, 8] considered m-machine production line processing identical 
parts served by a mobile robot to find the minimum cycle time for 2-cyclic sche-
dules. Maimon et al. [9] introduced a neural network method for a material-
handling robot task-sequencing problem. Suárez and Rosell [11] built several 
strategies and simulation model to deal with the real case of feeding sequence se-
lection in a manufacturing cell consisting of four identical machines. Most of the 
work and theory foundation considered approaches for scheduling robots which 
are usually inflexible, move only on fixed path and repeatedly perform a limited 
sequence of activities. There is still lack of approaches for scheduling mobile ro-
bots which are able to move around within a manufacturing cell to process ex-
tended logistic tasks with specific time windows and limitation in carrying capaci-
ty of mobile robots. Such a problem is modeled in several respects comparable to 
Asymmetric Traveling Salesman Problem (ATSP) in which the traveling time/cost 
might be different in two directions of a path. In addition, the ATSP belongs to 
NP-complete class [8] in which the required computational time exponentially 
grows with the size of the problem. Therefore, in this paper we focus on develop-
ing a computationally efficient heuristic, namely genetic algorithm-based heuristic 
for scheduling of mobile robot for feeding tasks which could be predetermined 
based on characteristics of feeders. 

The remainder of this paper is organized as follows: in the next section, prob-
lem description is described while a genetic algorithm-based heuristic is presented 
in Section 3. A case study is investigated to demonstrate the result of the proposed 
algorithm in Section 4. Finally, conclusions are drawn in Section 5. 

2   Problem Description 

The work is developed for a real cell that produces parts for the pump manufactur-
ing industry at a factory in Denmark. The manufacturing cell consists of a central 
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warehouse, a single mobile robot (an agent), multiple machines which form  
production lines and feeders which are designed to automatically supply parts to 
these machines. The robot carries one or several small load carriers (SLCs) con-
taining parts from the warehouse, moves to feeder locations, empty all parts inside 
SLCs to feeders, then returns to the warehouse so as to unload all empty SLCs and 
take filled SLCs. Each feeder (or task), which possesses its own characteristics 
such as maximum, minimum levels and consuming rate of parts, has to be served a 
number of times in order to keep manufacturing products, so the robot has a set of 
sub-tasks possessing time windows to carry out on each feeder during planning 
horizon. The manufacturing cell considered can be seen as an agent system that 
can be easily extended to the multi-agent one. 

To enable the construction of a feeding schedule for the mobile robot, the fol-
lowing assumptions are made: a fully automatic mobile robot is considered in dis-
turbance free environment; the robot can carry several SLCs at a time with limita-
tion in payload; all tasks are periodic, independent, and assigned to the same 
robot; working time and traveling time of the robot between any two locations, in 
which either one of the locations could be a feeder or warehouse, are known; con-
suming rate of parts in a feeder is known; all feeders of machines have to be fed 
up to maximum level and the robot starts from the warehouse at the initial stage. 

In order to accomplish all the movements with a smallest consumed amount of 
battery energy, the total traveling time of the robot is an important objective to be 
considered. Concerning computational time of the problem belonging to NP-
complete class, it exponentially grows with the size of the problem (i.e. longer 
planning horizon, larger number of feeders). It is therefore necessary to develop a 
computationally effective algorithm that determines in which way the robot should 
supply the feeders with parts in order to minimize its total traveling time within 
the manufacturing cell while satisfying a number of technological constraints. 

3   Genetic Algorithm-Based Heuristic 

Among many meta-heuristics, genetic algorithm, a well-known method, is applied 
to develop a heuristic, shown in Figure 1, which is allowed to convert the afore-
mentioned problem to the way that a near optimal solution could be found. The 
genetic algorithm-based heuristic consists of the following steps: (i) genetic repre-
sentation and initialization, (ii) adjustment mechanism and fitness evaluation, (iii) 
selection, and (iv) crossover and mutation. 

 

 

Fig. 1 Flow chart of the genetic algorithm-based heuristic 

Initialization Termination?Adjustment 
Mechanism Best solution

Selection

Fitness 
Evaluation

CrossoverMutation

Yes

No



88 Q.-V. Dang, I. Ewa Nielsen, and G. Bocewicz
 

(i) Genetic Representation and Initialization 

For the problem under consideration, a solution can be represented by a chromo-
some as shown in Figure 2. Each gene in a chromosome consists of two parts. The 
first part is the index of a task (feeder) while the second one implies the index of 
sub-task of that task. The length of each chromosome is total number of sub-tasks 
of all tasks which the mobile robot has to perform during the planning horizon.  

 

 

Fig. 2 Genetic representation 

For initial generation, genes on a chromosome are randomly filled with sub-
tasks of all tasks until the end of length of that chromosome. 

(ii) Adjustment Mechanism and Fitness Evaluation 

After initialization or crossover and mutation operations, chromosomes are ad-
justed to be valid and then calculate their fitness values. A valid chromosome 
should satisfy two constraints about time windows of sub-tasks and capacity Q of 
the robot. For the first constraint, the start time of a sub-task of a task should be 
in-between release time and due time of that sub-task which could be determined 
by maximum level, minimum level and consuming rates of parts, while the second 
constraint requires the robot not to serve number of sub-tasks greater than number 
of SLCs it is carrying. An adjustment mechanism as below is applied to each 
chromosome in the initial generation or descendant so as to take these constraints 
into account. 

Step 1: For each task, rearrange its sub-tasks in ascending order of their indices 
Step 2: Rearrange considering time windows of all sub-tasks 

Step 2.1: Compute start time of the current sub-task. If start time of the 
current sub-task satisfies its time window then move to the next 
sub-task; otherwise go to step 2.2 

Step 2.2: Considering from the first sub-task to the current sub-task, make 
a list of candidates of sub-tasks whose release times are greater 
than that of the current one 

Step 2.3: Select randomly a candidate from the list 
Step 2.4: Insert the current sub-task to the position of the selected candi-

date 
Step 2.5: Re-compute start times of the sub-tasks from the position of the 

selected candidate. If all start times of the sub-tasks satisfy their 
time windows then go to step 3; otherwise go back to Step 2.3. 
If none of candidate is selected then discard this chromosome, 
generate a new one instead and go back to Step 1 
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Step 3: Rearrange considering capacity of the robot and time windows 

Step 3.1: From the latest sub-task at the warehouse after every Q sub-
tasks, add another sub-task at the warehouse of the robot. 

Step 3.2:  Re-compute start times of the next Q sub-tasks from the newly 
added sub-task at the warehouse. If all start times of Q sub-
tasks satisfy their time windows then go back to Step 3.1; oth-
erwise go to Step 3.3 

Step 3.3: Q = Q - 1 and go back to Step 3.1. If Q = 0 then discard this 
chromosome, generate a new one instead and go back to Step 
1. Note that the decrease of Q occurs only in the current loop, 
it will turn back to its predetermined value in the new loop. 

Following the adjustment mechanism, the fitness evaluation will be taken place. 
The fitness value of a chromosome equals the total traveling time which the mo-
bile robot moves from location of the first sub-task to location of the last one. 

(iii) Selection 

Various evolutionary methods can be applied to this problem. (µ  + λ) selection is 
used to choose chromosomes for reproduction. Under this method, µ  parents and λ 
offspring compete for survival and the µ  best out of the offspring and old parents, 
in other words, the µ  lowest in terms of the total traveling time, are selected as the 
parents of the next generation. Such selection mechanism guarantees that the best 
solutions up to now are always in the parent generation. 

(iv) Crossover and Mutation 

Crossover and mutation are main genetic operators. A crossover generates 
offspring by combining the information contained in the chromosomes of parents 
so that new chromosomes will have the good features of the parents’ chromo-
somes. The Roulette-wheel selection is used in the algorithm, which probabilisti-
cally selects chromosomes of parents based on their fitness values (Goldberg, 
1989). Genes on the selected chromosomes, which represent sub-tasks at the 
warehouse, are removed before recombination. An offspring then is generated 
with order crossover (OX) described as follow. Two cut points to be randomly 
chosen on the parent chromosomes. The string between these cut points in the first 
parent are first copied to the offspring. The remaining positions are filled by con-
sidering the sequence of genes in the second parent starting after the second cut 
point (when reaching to the end of chromosome, the sequence continues at posi-
tion 1) [10]. The order crossover acts with probability Pc. After crossover, some 
offspring undergo mutation operator which is applied with probability Pm. The op-
eration of mutation selects two positions within a chromosome at random and then 
inverts the substring between these two positions to produce heterogeneous chro-
mosomes to avoid premature convergence of the algorithm. 
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4   Case Study 

To examine performance of the proposed algorithm, a case study is investigated at 
the CR factory at Grundfos A/S. The chosen area for this case study is the CR 1-2-
3 impeller production line which produces impellers for the CR products. The CR 
line consists of four feeders that have to be served by the mobile robot. Besides, 
different feeders are filled by different kinds of parts, namely back plates for feed-
er 1, vanes for feeder 2 and 3, front plates for feeder 4. On the CR line, a number 
of vanes are welded together with back and front plates to produce an impeller. 
Fig. 3 below particularly illustrates the aforementioned production area. 
 

 

Fig. 3 CR 1-2-3 impeller production line 

The maximum number of SLCs carried by the robot is 2. The average number 
of parts per SLC fed to feeder 1 or 4 is 125 (approximately 2 kg/SLC), while the 
average number of parts per SLC fed to feeder 2 or 3 is 1100 (approximately 1 
kg/SLC). The maximum, minimum levels, consuming rate of parts and working 
time of robot at feeders are given in Table 1, while Tables 2 shows traveling time 
of robot from one location of feeder to another (feeder 0 means the warehouse). 

Table 1 Maximum, minimum levels, consuming rate, and working time of robot at feeders 

Feeder/Task 0 1 2 3 4 

Maximum level (part) - 250 2000 2000 250 

Minimum level (part) - 125 900 900 125 

Consuming rate (sec/part) - 4.5 1.5 1.5 4.5 

Working time of robot (sec) 90 42 42 42 42 
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5   Conclusions 

In this paper, a new problem of scheduling a single mobile robot which performs 
part-feeding tasks is considered. To accomplish all tasks in the planning horizon 
within allowable limit of battery capacity, it is important to determine feeding se-
quences which minimize total traveling time of the mobile robot while taking into 
account a number of practical constraints. A genetic algorithm-based heuristic was 
developed to find near optimal solutions for the problem. The particular real case 
of an impeller production line was described to demonstrate the result of the pro-
posed heuristic. The result showed that the proposed heuristic was significantly 
fast to obtain the near optimal solution. The solution is useful to managers for  
decision making at an operational level and the approach could be also applied in 
variety of tasks of not only mobile robots but also automatic guided vehicles. 

The presented approach provides a solid framework that enables to model and 
evaluate scheduling tasks of multi-agent systems. For further research, re-
scheduling mechanisms based on obtained schedules and feedback from the mobile 
robot fleet and shop floor should be developed to deal with real-time disturbances 
such as broken-down machines or unexpected shortage of parts of feeders.  
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Abstract This study deals with the problem of sequencing
feeding tasks of a single mobile robot which is able to pro-
vide parts for feeders of machines on production lines. The
mobile robot has to be scheduled in order to stoppage from
lack of parts in the production line. A method based on the
characteristics of feeders and inspired by the (s, Q) inven-
tory system, is thus applied to define time windows for the
feeding tasks of the robot. The capacity of the robot is also
taken into consideration. The performance criterion is to min-
imize total traveling time of the robot for a given planning
horizon. A genetic algorithm-based heuristics is presented
which results in a significant increase in the speed of find-
ing near-optimal solutions. To evaluate the performance of
the genetic algorithm-based heuristic, a mixed-integer pro-
gramming model has been developed for the problem. A case
study is implemented at an impeller production line in a real
factory and computational experiments are also conducted to
demonstrate the effectiveness of the proposed approach.

Keywords Scheduling ·Mobile robot ·Genetic algorithm ·
MIP · Part feeding

Introduction

Today’s production systems range from fully automated to
strictly manual. While the former is very efficient in high
volumes but less flexible, the latter has the opposite charac-
teristics. However, manufacturers express a need for trans-
formable production systems that combines the best of both
worlds by using new assistive automation and mobile robots.

Q.-V. Dang · I. Nielsen (B) · K. Steger-Jensen · O. Madsen
Department of Mechanical and Manufacturing Engineering,
Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark
e-mail: izabela@m-tech.aau.dk

Mobile robots have the capability to move around within their
environments and are not fixed to one physical location. With
embedded batteries and manipulation arms, mobile robots
are more flexible and able to perform various tasks at differ-
ent workstations of production lines. The tasks include such
processes as: transporting and feeding materials, machine
tending, pre-assembly or quality inspection. Moreover, using
mobile robots can lead to production efficiency gains such as
less energy usage or lower tool-changing costs than typical
industrial robots fixed to one location. The superior abili-
ties of these robots pave the way for meeting the needs of
the aforementioned new production systems. In this paper, a
particular problem is considered. The problem consists of a
single mobile robot with a manipulation arm which will per-
form part-feeding tasks by collecting and transporting con-
tainers of parts and emptying them into feeders where needed.
To utilize the mobile robot in an efficient manner requires
the ability to properly schedule these part-feeding tasks in
relation to the needs of a given production line. Hence, it
is important to plan in which sequences the mobile robot
processes part-feeding tasks so that it could effectively work
while satisfying a number of technological constraints.

The problem of scheduling a single mobile robot for part-
feeding tasks has previously been modeled as a variant of
the Asymmetric Traveling Salesman Problem (ATSP). The
ATSP belongs to the class of NP-hard combinatorial opti-
mization problem (Germs et al. 2012). The main novelty
of this research is that the problem simultaneously consid-
ers hard time windows of tasks and the limitation of carry-
ing capacity on the single mobile robot. Because of these
constraints, the robot has to serve a set of feeders in more
than one route during a given planning horizon while still
meeting the time window constraints. This means that the
number of routes and the sequence which the robot travels
these, has to be determined in order to minimize its total
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traveling time. Note that making decision in which sequence
the robot should perform tasks is part of real-time operations.
This gives the added requirement that the best sequences of
tasks must be obtained quickly. Moreover, the complexity of
the problem rapidly rises when the robot has to serve more
feeders and/or work in a longer planning horizon. Therefore,
in this paper focus is on developing a computationally effi-
cient approach, namely GA-based heuristic for scheduling
part-feeding tasks of the mobile robot. The time windows of
these part-feeding tasks are determined based on character-
istics of the feeders and the (s, Q) inventory system (Silver
et al. 1998). To evaluate the performance of the proposed
heuristic, a mixed-integer programming (MIP) model is also
presented.

The remainder of this paper is organized as follows. In
the next section, the theoretical foundation of the research
is described. The problem description is presented in third
section and the mathematical model of the problem is for-
mulated in fourth section. The solution methodology for the
formulation using a GA-based heuristic is discussed in fifth
section. Sixth section illustrates the results of a case study,
using real-world data from a Danish production company,
from the proposed heuristic and compares its performance
with that of the MIP model. Computational experiments are
also conducted in this section. Finally, conclusions and future
research directions are drawn in last section.

Theoretical foundations

The problem of scheduling part-feeding tasks of the mobile
robot has been modeled in several respects comparable to
the Traveling Salesman Problem (TSP), but it is differ-
ent from the typical TSP in the sense that the traveling
time/cost might be different in two directions of a path. The
problem hence is similar to but not identical to the ATSP
because of some additional constraints which the problem
possesses. Several approaches and models for exact or heuris-
tic algorithms have been proposed to address problems of this
type. Carpaneto and Toth (1980) present a branch-and-bound
algorithm for the ATSP based on the sub-tour elimination
approach or the Hungarian algorithm. They discuss a new
selection procedure for the sub-tour to be split and the order-
ing of the arcs in the selected sub-tour. A similar approach
is presented by Syslo et al. (1983). This approach is based
on the Hungarian algorithm and reduces the original distance
matrix till an optimal solution is obtained. It is shown that the
execution time is strongly dependent on the problem instance
and increases with the size of the network. Miller and Pekny
(1991) survey methods such as branch-and-bound and sev-
eral heuristics for solving large TSP problems. A branch-and-
bound algorithm is presented with computational results and
is found to perform well for some classes of problems. The

branch-and-bound methods (Carpaneto et al. 1995) for the
ATSP use the assignment problem as a relaxation. The effec-
tiveness of the methods derives from reduction procedures
and parametric solution of the relaxed problems associated
with the nodes of the branch decision tree. Turkensteen et al.
(2008) introduce a branch-and-bound algorithm for the ATSP
using the upper tolerances values of arcs in the corresponding
assignment problem instance to determine which arcs should
be excluded. The class of tolerance-based algorithms is better
in solving difficult instances than the algorithm presented in
e.g. Carpaneto et al. (1995). Germs et al. (2012) then enhance
this approach by incorporating lower tolerances, correspond-
ing to additional costs of a solution with a connecting arc, into
the branch-and-bound search process. Ascheuer et al. (1993)
present a cutting plane approach to the sequential ordering
problem which is similar to the robot task-sequencing prob-
lem and finds minimum cost paths subject to precedence con-
straints. They outline a Linear Programming framework and
discuss polynomial time separation algorithms for obtaining
the solutions. The problem of order-picking in a rectangular
warehouse of Automated Storage and Retrieval System is
addressed by Ratliff and Rosenthal (1983). It is shown to be
a solvable case of the TSP and they present an algorithm for
picking an order in minimum time. Edan et al. (1991) present
a near-minimum task-planning algorithm for a fruit harvest-
ing robot to find near-optimal-time path between the N given
fruit locations. The sequence of motions for the harvesting
robot is obtained by solving the TSP using the geodesic dis-
tance. Dang et al. (2011) propose an MIP model to obtain the
optimal feeding sequence of a mobile robot in a manufactur-
ing cell. However, the performance of the MIP model is not
evaluated and compared with other methods. For small task-
scheduling problems, the aforementioned techniques can be
used to find the optimal solutions of the problems. Never-
theless, they tend to get computationally intractable for large
and complex problems (Maimon et al. 2000).

Larger problems call for heuristic solutions (Maimon et al.
2000). The heuristic approaches that are frequently applied
to robot task-scheduling problems include: the nearest-
neighbor rule in which the robot travels to the nearest pickup
point from its current position (Han et al. 1987), the closest
insertion algorithm which causes the smallest increase in the
length of the sequence (Askin and Stanridge 1993), and dis-
patching rules (e.g. First-Come-First-Served) which serve
the tasks in chronological order (Suárez and Rosell 2005).
The above listed heuristics have shown good results and are
computationally fast. Another set of heuristics including; ant
colony optimization, simulated annealing, tabu search, neural
network and genetic algorithm has been used to solve com-
binatorial optimization problem such as TSP, ATSP or robot
task-scheduling problems. Tsai et al. (2004) discuss using
ant colony system to solve the TSP, while López-Ibáñez and
Blum (2010) apply the ant colony optimization technique to
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deal with the TSP with time windows (TSPTW). Ohlmann
and Thomas (2007) describe a variant of simulated annealing
incorporating a variable penalty method to solve the TSPTW,
while Geng et al. (2011) deal with the TSP based on an
adaptive simulated annealing with greedy search. Carlton
and Barnes (1996) present a robust tabu search approach
to the TSPTW. Landrieu et al. (2001) presents tabu search
and probabilistic tabu search for single vehicle pickup and
delivery problem. Hurink and Knust (2002) propose a tabu
search algorithm for scheduling a single robot in a job-shop
environment. Hasegawa et al. (2002) develop two types of
searching methods based on tabu search and neural networks
for solving large scale TSPs. Maimon et al. (2000) present
a neural network approach successfully implementing the
robot task-sequencing problem. Among the heuristics pro-
posed in previous work, genetic algorithms (GA) have been
widely used in solving TSP or ATSP because GAs have a
global search ability and can easily be implemented (Chen
and Chien 2011). Chatterjee et al. (1996) propose a GA with
an asexual reproduction plan through a generalized muta-
tion operator that can be applied to TSP. Moon et al. (2002)
present an efficient GA with a topological sort and a new
crossover operation to solve the TSP with precedence con-
straints. Snyder and Daskin (2006) combine a GA with a
local tour improvement heuristic and encoded solution using
random keys for solving the generalized TSP. Liu and Zeng
(2009) present an improved GA with reinforcement mutation
to solve the TSP. Choi et al. (2003) propose a GA that extends
the search space by purposefully generating and including
infeasible solutions to solve ATSP. Xing et al. (2008) present
a novel hybrid approach incorporating a GA improved on
both crossover and mutation operators and some optimiza-
tion strategies such as immigration, local and global opti-
mization for the ATSP. Chen and Tseng (1996) and Zacharia
and Aspragathos (2005) introduce methods based on GAs
and innovative encoding to determine the optimal sequence
of robot’s task points which is considered as an extension to
the TSP. Dang et al. (2012b) present the bartender concept
to incorporate a mobile robot into production and discuss
the problem of scheduling the mobile robot under consider-
ation of environmental consciousness concerning the usage
of battery energy on transportation in the shop floor.

Although much related research has been completed, the
problem of scheduling a single mobile robot with time win-
dows, restricted capacity and multiple tasks have to be carried
out during a planning horizon has received surprisingly little
attention in the literature despite its important application in
practice, e.g. part-feeding tasks. In this problem, a number of
tasks with time windows have to be satisfied by the mobile
robot. However, due to the limitation on carrying capacity,
after satisfying some tasks, the robot has to return to a ware-
house/base to load parts so that it can serve other tasks in
the next route and so on (a route is from the warehouse,

to locations of tasks, and back to the warehouse). In other
words, the robot has to travel on a number of routes to per-
form tasks. The surveyed approaches are not well suited and
cannot be directly used to solve this problem due to the lack
of a mechanism handling both time-window and capacity
constraints in case of the single robot. In the other previ-
ous work, Dang et al. (2012a) present a heuristic based on
GA to solve the problem of sequencing feeding tasks. How-
ever, the heuristic is developed with a simple mechanism to
adjust chromosomes, and the result of a randomly generated
and simple numerical example is presented without rigorous
comparisons with other methods. Therefore, in this paper an
MIP model is first formulated to find optimal solutions for
the problem. The MIP model is improved with some signif-
icant modifications from that in Dang et al. (2011). How-
ever, due to NP-hard nature of the problem the MIP model
could only be applicable to small-scale problems in practice
as its computation time significantly increases as the problem
size grows. Hence, in order to deal with real-world applica-
tions, a heuristic based on GA, a promising algorithm to this
class of problems with its powerful implicit parallelism and
global search ability, is then extensively developed with an
advanced constraint handling operator to effectively handle
chromosomes so as to find near-optimal solutions. The qual-
ity of these solutions are then compared and evaluated by
using the MIP solutions as reference points in a real-world
case study and computational experiments.

Problem description

Automation technology in combination with advances in pro-
duction management has dramatically changed the equipment
used by manufacturing companies as well as the challenges
in planning and control. With these changes, highly auto-
mated and unmanned production system have become more
popular in several industries such as chemical and plastic,
automotive, pump manufacturing, etc. A typical automatic
production system includes intelligent and flexible machines
and material handling device(s) grouped into cells in such
a way that the entire production of a product can be carried
out within one cell (Crama et al. 2000). In general a flexible
manufacturing system with multiple machines, multiple stor-
ages and autonomous robots are taken into account. These
autonomous robots are capable of transporting and feed-
ing materials, tending machine, pre-assembling or inspect-
ing quality. Thus, they have been widely employed in not
only small companies, which focus on exact applications
and a smaller range of products, but also large companies,
which can diversify their applications in a longer term and
larger range. For instances in an automobile parts manufac-
turing factory, a robot moves along a fixed track to load parts
into pallets from a storage line. Likewise in an automated
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Fig. 1 Layout of the manufacturing cell

printed circuit board assembling factory, a robot has to trans-
port the boards in-between insertion machines and buffers
at the right time before the adhesive become dry (Maimon
et al. 2000). Within the scope of this study, the interaction
between a mobile robot and machines on production lines
within a cell(s) is considered. Figure 1 below shows a typical
layout of the manufacturing cell. The work is developed for
a real cell that produces parts for the pump manufacturing
industry at a factory.

Before assigning the mobile robot to the production envi-
ronment, the manufacturing cell has one or several produc-
tion lines which consist(s) of multiple machines. Feeders are
designed to automatically supply parts to these machines.
Pallets or boxes, which contain the parts, are placed next
to these feeders. Part-feeding, the process of loading many
parts at a time into feeders from the pallets or boxes, is a
manually performed, non-value adding manufacturing task,
and quite often disruptive (in-between and periodic) for pro-
duction workers. Furthermore, when workers forget to fill
the feeders, this may lead to stopping the production lines.
A strategy that can reduce the dependence on human inter-
vention for the part-feeding tasks is using an autonomous
mobile robot instead of humans. However, to utilize the robot
in this scenario requires changing the work environment and

carefully scheduling part-feeding tasks of the robot (Dang et
al. 2012b).

To meet the stated requirement the bartender concept is
implemented. This also serves to make the part-feeding tasks
performed by the robot more flexible and complete. In this
concept every feeder is assigned the following characteris-
tics: maximum level, minimum level and part-feeding rate to
machine. Furthermore, instead of scattered pallets or boxes
containing parts next to the feeders, a central warehouse
(a bar) is created to gather different parts into one area. An
operator (the bartender) put parts into small load carriers
(SLCs) which are placed in the warehouse. The number of
parts inside each SLC is equal to the difference between max-
imum level and minimum level of parts of the feeder in which
that SLC is emptied. During operations, the robot will retrieve
and carry one or several SLCs containing parts from the ware-
house, move to feeder locations, empty all parts inside SLCs,
return to the warehouse to unload all empty SLCs and take
new filled SLCs. Each feeder has to be served a number of
times in order to keep the production line in operation. The
robot thus has a set of subtasks possessing time windows
to carry out for each feeder during the planning horizon.
In order to accomplish all the movements with the smallest
consumed amount of battery energy and thereby increase the
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availability of the robot, the total traveling time of the robot
must be taken into account. Note that making decisions on
which sequences the robot should supply parts to the feed-
ers is part of the real-time operations of production planners.
It means that the best solution must be quickly obtained at
the beginning of production shifts or during the shifts due
to errors in a manufacturing cell (e.g. machine breakdown)
or changes in a manufacturing cell’s conditions (e.g. cycle
time of production lines). Moreover, as the problem is NP-
hard, computation time exponentially grows with the size
of the problem (e.g. larger number of feeders, longer plan-
ning horizon). It is therefore necessary to develop a compu-
tationally effective algorithm, namely a GA-based heuristic,
to sequence the tasks in order to minimize its total traveling
time while satisfying a number of technological constraints.
To evaluate the performance of the proposed heuristic, an
MIP model is formulated in the next section.

Mathematical formulation

In this section, a mixed-integer programming (MIP) model
is developed to determine an optimal sequence in which the
mobile robot visits n feeders to process part-feeding tasks.
All feeding tasks, corresponding to deliveries of SLCs, are
known in advance. A method based on the (s, Q) inventory
system (Silver et al. 1998), to protect against shortage of parts
over a replenishment lead time, is also presented to deter-
mine the time windows of the part-feeding tasks. Hard time
windows scenario (Toth and Vigo 2002) will be taken into
account in this model. The robot is based at a central ware-
house and a limitation on the carrying capacity of the robot is
imposed. The MIP model contains a number of decision vari-
ables that are constrained to have only integer values. Integer
variables make optimization problems non-convex and thus
far more difficult to solve. Memory and solution time may
rise exponentially as the size of problem increases with more
added integer variables. Therefore, in practice the MIP model
could be applicable only to small-scale problems with few
feeders on production line(s) and a short planning horizon—
i.e. few tasks to schedule. For these scenarios, the MIP model
will give optimal solutions which could be used as refer-
ence points to quantify the scale of benefits achieved by the
GA-based heuristic (further developed in Genetic algorithm-
based heuristic section). Assumptions, notations, time win-
dows and the formulation of the MIP model are given in the
following subsections.

Assumptions

• An autonomous mobile robot with a manipulation arm is
taken into account in a disturbance free environment.
• The robot can carry one or several SLC(s) at a time.

• All tasks are periodic, independent and assigned to the
same robot.
• Working time and travelling time of the robot between

any pair of locations, in which either one of the locations
could be a feeder or the warehouse, are known.
• The part-feeding rate to the machine of a feeder is known

and constant.
• All feeders of machines have to be fed up to maximum

levels and the robot starts from the warehouse at the initial
stage.

Notations

N : set of all tasks (N = {0, 1, 2, . . . , n} where 0: task at the
warehouse)

ni : number of times task i has to be executed
R: set of all possible routes (R = {1, 2, . . . , Rmax }, Rmax=

�ni ,∀i ∈ N\{0})
eik : release time of subtask k of task i
dik : due time of subtask k of task i
pi : periodic time of task i
wi : working time of robot at location of task i
ti j : travelling time of the robot from location of task i to

location of task j
ci : part-feeding rate to machine of feeder i
vi : minimum level of parts in feeder i
ui : maximum level of parts in feeder i

Qm : maximum number of SLCs could be carried by robot
T : planning horizon

Decision variables:

x jlr
ik =

⎧
⎪⎪⎨

⎪⎪⎩

1 if robot travels from location of task i with
subtask k to location of task j with
subtask l in route r

0 otherwise

yik : route index to which subtask k of task i belongs
sik : starting time of subtask k of task i

Time windows

A (s, Q) inventory policy is used with the defined character-
istics of the feeders to determine the hard time windows of
the part-feeding tasks as shown in Fig. 2, Eqs. (1), (2), and
(3) below.

pi = (ui − vi ) ci , ∀i ∈ N\ {0} (1)

eik = eik−1+ pi , ∀i ∈ N\ {0} , k ∈ {1, 2, . . . , ni } , ei0=0

(2)

dik = eik+(vi−0) ci , ∀i ∈ N\ {0} , k ∈ {1, 2, . . . , ni } (3)
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Fig. 2 Time windows of
part-feeding tasks based on the
(s, Q) inventory system

Because of the periodic characteristics of the tasks for
feeder i whose periodic time is calculated as in Eq. (1) a
number of subtasks must be carried out. The number of sub-
tasks of task i is defined as: ni = �T/pi�. The robot must
start processing a subtask k of task i within the associated
hard time window of that subtask. It means that the robot
is not allowed to arrive at feeder i after the upper bound of
the time window. If the robot arrives at feeder i before the
lower bound of the time window it will wait to begin service.
The lower bound of the time window, or release time of sub-
task k of task i , is set to the time when the number of parts
inside feeder i drops to a certain level vi [Eq. (2)]. The upper
bound of the time window, or due time of subtask k of task
i , is defined to the time when there are no parts in feeder i
[Eq. (3)].

Mixed-integer programming model

Objective function: min
∑

i∈N

ni∑

k=1

∑

j∈N

n j∑

l=1

∑

r∈R

ti j x jlr
ik (4)

Subject to:

eik ≤ sik ≤ dik ∀i ∈ N\{0}, k ∈ {1, 2, . . . , ni } (5)

∑

j∈N\{0}

n j∑

l=1

x jl1
01 = 1 (6)

∑

j∈N\{0}

n j∑

l=1

∑

r∈R

x jlr
01 ≤ 1 (7)

∑

(i,k),( j,l)∈Z

x jlr
ik ≤ |Z | − 1 ∀r ∈ R, ∀Z ⊆ ZT ,

ZT = {(i, k)|i ∈ N\{0}, k ∈ {1, 2, . . . , ni }} (8)

∑

j∈N

n j∑

l=1

∑

r∈R

x jlr
ik = 1 ∀i ∈ N\{0}, k ∈ {1, 2, . . . , ni } (9)

∑

i∈N

ni∑

k=1

∑

r∈R

x jlr
ik = 1 ∀ j ∈ N\{0}, l ∈ {1, 2, . . . , n j }

(10)

∑

i∈N

ni∑

k=1

∑

j∈N\{0}

n j∑

l=1

x jlr
ik ≤ Qm ∀r ∈ R (11)

sik +
(

wi + ti j

∑

r∈R

x jlr
ik

)

− L

(

1−
∑

r∈R

x jlr
ik

)

+ (
y jl − yik

)× (
ti0 + w0 + t0 j − ti j

) ≤ s jl

∀i, j ∈ N , k ∈ {1, 2, . . . , ni }, l ∈ {1, 2, . . . , n j } (12)

y jl=
∑

i∈N

ni∑

k=1

∑

r∈R

r × x jlr
ik ∀ j ∈N\{0}, l∈{1, 2, . . . , n j }

(13)

y jl ≥ yik

∑

r∈R

x jlr
ik ∀i, j ∈ N , k ∈ {1, 2, . . . , ni },

l ∈ {1, 2, . . . , n j } (14)

x jlr
ik ∈ {0, 1} ∀r ∈ R, ∀i, j ∈ N , k ∈ {1, 2, . . . , ni },
l ∈ {1, 2, . . . , n j } (15)

yik : positive integer variable ∀i ∈ N\{0},
k ∈ {1, 2, . . . , ni } (16)

The objective function (4) minimizes the total traveling
time of the robot. Constraint (5) ensures that the starting
time of any subtask of a task satisfies the time window of
that subtask. Constraints (6) and (7) ensure that the robot
starts from the warehouse at the initial stage. Constraint (8)
eliminates the sub-tours among subtasks of tasks, where Z
is a subset of ZT , where ZT is a set of all subtasks of tasks at
feeders and the warehouse. Constraints (9) and (10) ensure
that a subtask of a task is completed exactly once. Constraint
(11) forbids the robot to load a higher number of SLCs than
its maximum capacity in the number of SLC Qm . Constraint
(12) handles the traveling time requirements between any
pair of subtasks of tasks, where L is a given sufficiently large
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Fig. 3 Flowchart of genetic algorithm-based heuristic

Fig. 4 Genetic representation

constant. In case two subtasks of the same task or different
tasks are connected but are not in the same route, the robot
should visit the warehouse to unload empty SLCs and load
filled ones. Constraint (13) assigns a subtask of a task to a
route and constraint (14) guarantees an ascending sequence
of route indices for subtasks of tasks. Constraints (15) and
(16) imply the types of variables.

Genetic algorithm-based heuristic

In this section a genetic algorithm, a search method using the
principle of biological evolution (Goldberg 1989), is used to
develop a heuristic. The developed heuristic allows convert-
ing the presented problem so that near-optimal solutions can
be found. The genetic algorithm-based heuristic shown in
Fig. 3 consists of the following main steps: genetic repre-
sentation and initialization; constraints handling and fitness
evaluation; genetic operators including selection, crossover
and mutation; termination criteria.

Genetic presentation and initialization

For the problem under consideration, the natural path repre-
sentation (Potvin 1996) is used to represent a chromosome
or a solution, which represents an ordering of subtasks of
tasks of the robot as shown in Fig. 4 below. Each gene in the
chromosome consists of two factors. The first factor refers to
a task while the second factor implies a subtask of that task.
The original length of the chromosome is equal to the total
number of subtasks of part-feeding tasks added to the first
subtask of warehouse task (1+�ni ).

For the initial generation, the first factors of genes on a
chromosome are randomly filled with tasks at feeders. The
frequency of a task is the number of times which that task
has to be executed. The second factors of genes having the
same first factor/same task are filled in ascending order of
subtasks of that task.

Constraints handling and fitness evaluation

After initialization or crossover and mutation operations,
chromosomes are adjusted to be valid and their fitness val-
ues are calculated. A valid chromosome should satisfy the
two constraints: time windows of subtasks of tasks and lim-
itation on the carrying capacity Qm of the robot. For the
first constraints, starting time of a subtask of a task should
be in-between release time and due time of that subtask. The
second constraint requires the robot does not serve more sub-
tasks than the number of SLCs it is carrying. An approach
of handling these constraints is developed and applied to
each chromosome in the initial or descendant generations as
shown in Fig. 5 along with the description below.

Step 1: Rearrange genes possessing the same first factor
(task) in ascending order of their second factor (sub-
task). Note that, Step 1 is not employed in the initial
generation due to the outcome of the initialization
procedure.

Step 2: Temporarily rearrange genes considering only time
windows.

Step 2.1: Compute starting time and check the satisfac-
tion of time window constraints for gene ( j, l)
at position p preceded by gene (i, k) at position
p − 1.

s jl = sik + wi + ti j × 1{i 	= j}
If s jl ≤ d jl then s jl = sik +wi + ti j × 1{i 	= j} or
s jl = e jl × 1{s jl≤ejl}, and check if p is the last
position on the chromosome. If not, then go to
Step 2.6. If so, then go to Step 3.
Otherwise, go to Step 2.2.

Step 2.2: Considering genes from position 1 to the posi-
tion p on the chromosome, make a set A of
positions of genes whose due times are greater
than that of gene ( j, l).

Step 2.3: Insert gene ( j, l) to a position pa randomly
selected from set A.

Step 2.4: Re-compute starting times and check the sat-
isfaction of the time windows constraints for
genes from the position pa to the position p.
If starting time of any gene from the position pa

to the position p does not satisfy its time window,
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Fig. 5 Flowchart of handling constraints

then check if all positions in set A are selected.
If not, then go back to Step 2.3. If so, then go to
Step 2.5.
Otherwise, check if p is the last position on the
chromosome. If not, then go to Step 2.6. If so,
then go to Step 3.

Step 2.5: Discard the chromosome, generate a new one
instead and go back to Step 1.

Step 2.6: Move to the next gene at position p + 1 on the
chromosome (p← p + 1) and go back to Step
2.1.

Step 3: Rearrange genes considering limitation on carrying
capacity of the robot and time windows.

Step 3.1: Assign the maximum number of SLCs Qm to the
actual number of SLCs, denoted as Q, carried by
the robot in a route (Q ← Qm).

Step 3.2: Considering gene (0, k′), which is a subtask of a
warehouse task, at a position q on the chromo-
some, insert gene (0, k′+1) at position q+Q+1.
Note that, the chromosome length is increased
by one unit after each insertion.

Step 3.3: Re-compute starting times and check the satis-
faction of the time windows constraints for next
Qm genes.
If starting time of any gene among the next Qm

genes does not satisfy its time window, then go
to Step 3.4.
Otherwise, check if [length of chromosome—
(q + Q+ 1)]≤ Qm . If not, then go back to Step
3.1. If so, then go to Step 3.8.

Step 3.4: Considering genes from position 1 to position
p′ of a gene ( j ′, l ′) which does not satisfy its
time window among the next Qm genes, make a
set B of positions of genes whose due times are
greater than that of gene ( j ′, l ′).

Step 3.5: Swap gene ( j ′, l ′) with a gene at a position pb

randomly selected from set B.
Step 3.6: Re-compute starting times and check the satis-

faction of time windows constraints for genes
from the position pb to the position p′.
If the starting time of any gene from the position
pb to the position p′ does not satisfy its time
window, then check if all positions in set B are
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selected. If not, then go back to Step 3.5. If so,
then go to Step 3.7.
Otherwise, go to Step 3.1.

Step 3.7: Decrease Q by one unit (Q ← Q−1), and check
if Q is 0. If not, then go back to Step 3.2. If so,
go back to Step 2.5.

Step 3.8: Insert gene (0, k∗) representing the final subtask
of a warehouse task at the end of the chromo-
some.

Following the approach of handling constraints, the fitness
evaluation will take place. The fitness value of a chromosome
is equal to the total travelling time of the robot, �ti j , where
i, j are the first factors of genes on the chromosome.

Genetic operators

Selection, crossover and mutation are three main genetic
operators. For selection, various evolutionary methods can be
applied to this problem. (μ+ λ) selection is used to choose
chromosomes for reproduction. Under this method, μ par-
ents and λ offspring compete for survival and the μ best out
of the set of offspring and old parents, i.e. the μ lowest in
term of the total travelling time, are selected as the parents
of the next generation. This selection mechanism guarantees
that the best solutions up to now are always in the parent
generation (Dang et al. 2012a).

Crossover operator generates offspring by combining the
information contained in the parent chromosomes so that the
offspring will have the desirable features from their parents.
The Roulette-wheel selection is used in the algorithm, which
probabilistically selects the parent chromosomes based on
their fitness values (Ho and Ji 2004; Moon et al. 2006).
Owing to the nature of the considered our minimization prob-
lem, the higher the total travelling time of the robot, the less
fitness a chromosome should show. Let TR(p) denote the
total travelling time of the robot under the solution repre-
sented by parent p. The fitness value of parent p is defined
as: Fp = max {T R(p) : 1 ≤ p ≤ Np} − T R(p) where Np:
population size. The expected probability of parent p to be
selected is Fp/�Fp.

There are many different crossover operators that can be
used on chromosomes. These are represented by the path
presentation, e.g. partially-mapped crossover (PMX), cycle
crossover (CX), order crossover (OX), order-based crossover
(OBX), and position-based crossover (PBX) (Tsujimura and
Gen 1999; Lin et al. 2006). Although the crossover operators
may affect the efficiency of the search process, the quality of
solutions is often reasonably close. In the presented experi-
ment, OX will be used to generate an offspring as described
below. Genes which represent subtasks of the warehouse task
are removed before two cut points are randomly chosen on the
parent chromosomes. The string between these cut points in

Fig. 6 Example of order crossover procedure

one of the parents is first copied to the offspring. The remain-
ing positions are then filled by considering the sequence of
genes in the other parent starting after the second cut point.
When reaching to the end of the offspring, the sequence con-
tinues at position 1. The OX operates with probability Pc.
Figure 6 illustrates the OX procedure.

Whenever an offspring is produced, it undergoes a muta-
tion operator which is applied with probability Pm . The muta-
tion selects two genes within the offspring at random and then
swaps these genes to produce heterogeneous chromosomes.
This procedure avoids premature convergence of the GA-
based heuristic. Note that offspring produced after crossover
and mutation operations might not be valid. Therefore they
have to be adjusted by using the approach of handling con-
straints described above.

Termination criteria

Termination criteria are employed to determine when the
GA-based heuristic should be stopped. On the one hand,
computation time plays an important role in practice because
taking decisions on which sequences the robot should serve
feeders is a part of the real-time operations of production
planners. In other words, the best solution is required to be
quickly obtained. Therefore, if the best solutions over gener-
ations do not converge, the maximum computation time CTm

would be used to stop the run. On the other hand, if the best
solution does not improve over Gc consecutive generations,
it would not be valuable to continue searching. The best solu-
tion up to now is then returned as the near-optimal solution.
However, it should be noted that high-quality local optima
might exist (in case of existing feasible solutions) because of
the combinatorial nature of the problem.

Numerical examples

To examine the performance of the MIP model and GA-
based heuristic, a case study and computational experiments
are conducted in this section. However, before carrying out
these cases, the statistical analysis to evaluate and set parame-
ter values of the GA-based heuristic is first presented. Then,
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the case study including two different demonstrations has
been investigated with real data of Grundfos A/S, a Danish
company which is one of the world’s leading pump man-
ufacturers. A part of Grundfos production facilities, CR
(compression ratio) 1-2-3 impeller line at CR factory, has
been used to implement these demonstrations. The extension
of the case study considering several reasonable assump-
tions has been also conducted to make the evaluation of
both approaches more convincing. Finally, various prob-
lem instances are randomly generated and tested in order
to provide more persuasive evidence of the performance
of the proposed heuristic. The MIP model has been coded
and solved by the mathematical modelling language ILOG
CPLEX, while the proposed heuristic has been programmed
in VB.NET. All the experiment run on a PC having an
Intel�Core i5 2.67 GHz processor and 4 GB RAM.

Statistical analysis of GA parameters

The GA parameters have effects on the efficiency of the GA-
based heuristic. The statistical analysis is hence carried out
with a randomly generated problem instance to examine the
effects and set the values for these parameters. The statisti-
cal analysis concerned Np, Pc, Pm, Gc, and CTm (μ and λ

are not included in this analysis because μ and λ are depen-
dent on Np and Pc, in other words, μ is the population size
Np while λ is the average number of offspring Pc × Np).
Each parameter is tested at four different levels. These are
respectively: Np (50, 100, 150, 200), Pc (0.4, 0.6, 0.8, 1.0),
Pm (0.05, 0.1, 0.15, 0.2), Gc (50, 100, 150, 200), and CTm

in seconds (15, 30, 45, 60). There are ten observations under
each level. The 40 runs of each parameter are made in random
order to prevent the effects of unknown nuisance variables.
In order to determine if a parameter has effect on the objec-
tive value of the proposed heuristic, the analysis of variance
(ANOVA) is performed to test the null hypothesis H0 which
is that there are no differences in means of objective val-
ues at all four levels of the parameter. In addition, to set a
value for a parameter, the averages and standard deviations
of the objective value and computation time at four levels
of the parameter, which have been obtained from the test of
40 runs, are considered. By comparing the averages to each
other under consideration of the standard deviations, the most
appropriate value of the parameter can be set. For instance,
Table 1 shows the ANOVA for parameter Np while Table 2
shows the averages and standard deviations of the objective
value and computation time at the four levels of Np.

As seen from Table 1, since F = 8.207 > 2.866, we
reject H0 and conclude that means of objective values dif-
fer; that is, the population size Np significantly affects the
objective value of the proposed heuristic. It also can be seen
from Table 2 that there is a considerable improvement in
the average of the objective value when Np increases from

Table 1 Analysis of variance (ANOVA) for population size Np

Source of
variation

SS df MS F P value F0.05,3,36

Np 26,099 3 8,700 8.207 0.0003 2.866

Error 38,161 36 1,060

Total 64,260 39

Table 2 Objective value and computation time at four levels of popu-
lation size Np

Np Objective value (s) Computation time

Average SD Average SD

50 2,108 35 0.928 0.185

100 2,061 29 2.161 0.497

150 2,049 32 3.110 0.753

200 2,044 34 4.907 1.075

50 to 100. However, only slight improvements in the objec-
tive value are achieved with much more computation time
when Np increases from 100 to 150 and 200. Furthermore,
the standard deviation of the objective value at Np of 100
is better than the other values of Np. The value of Np is
hence set to be 100. By performing the statistical analyses
in the same manner for the other parameters, it also proved
that Pc, Pm, Gc, and CTm affect the objective values of the
proposed heuristic, and the values of Pc, Pm, Gc, and CTm

are set to be 0.8, 0.1, 100, and 60, respectively (for details
see Appendix). These parameter values are used in the “Case
study” and “Computational experiments” sections.

Case study

The chosen area for the case study is the CR 1-2-3 impeller
production line shown in Fig. 8 that manufactures impellers
for the CR pumps. The CR line consists of a warehouse and
four feeders that have to be served by the mobile robot. The
warehouse is indexed 0 and the feeders are indexed from 1
to 4 (N = {0, 1, 2, 3, 4}) and named Back Plate, Van Feeder
1, Van Feeder 2, and Front Plate, respectively. Furthermore,
different feeders are filled by different types of parts, namely
back plates for feeder 1, vanes for feeder 2 and 3 and front
plates for feeder 4. To produce an impeller on the CR 1-2-3
line these three types of parts, are automatically assembled.
The impeller consists of six vanes with three from feeder
2 and the other three from feeder 3, one front plate from
feeder 4 and one back plate from feeder 1. Figure 7 shows
the different parts of an impeller, while Fig. 8 particularly
illustrates the production area where the case study has been
implemented. The safety fences and warning signs are used
as depicted in Fig. 8 to ensure that no people enter the area
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Fig. 7 Different parts of an impeller produced on the CR 1-2-3 line

Fig. 8 CR 1-2-3 impeller production line

as well as to prevent the mobile robot leaving that area while
the demonstrations are taking place.

The following data are taken from the Manufacturing
Execution System (MES) as well as real tests on the shop
floor of the CR factory. This data is used as input for two
demonstrations of the case study. The average number of
parts per SLC fed to feeder 1 or 4 is 125 (approximately
2 kg/SLC), while the average number of parts per SLC fed
to feeder 2 and 3 is 1,100 (approximately 1 kg/SLC). The
maximum levels, minimum levels, and part-feeding rates to
machines of feeders are given in Table 3. The part-feeding
rates to machines of feeders are derived from the cycle time
of the CR 1-2-3 line of 4.5 s (Reuther et al. 2010). Specif-
ically feeders 1 and 4 feed machines with one back plate
and one front plate every 4.5 s, while feeders 2 and 3 feed
machines with one vane every 1.5 s (3 vanes for every
4.5 s). The working times of the robot at the feeders are

Table 3 Maximum levels, minimum levels, and part-feeding rates to
machines of feeders

Feeder/task 1 2 3 4

Maximum level (part) 250 2,000 2,000 250

Minimum level (part) 125 900 900 125

Part-feeding rate (second/part) 4.5 1.5 1.5 4.5

Table 4 Working times of robot at locations (seconds)

Feeder/task 0 1 2 3 4

Working time of robot 90 42 42 42 42

given in Tables 4, and 5 shows the travelling times of the
robot from locations to locations (feeder 0 means the ware-
house).
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In the initial design, the mobile robot has the capability
to carry up to three SLCs at a time while performing part-
feeding tasks at the feeders. Hence, two different demonstra-
tions of the case study have been investigated corresponding
to two maximum numbers of SLCs, Qm = 2 and Qm = 3,
and with the planning horizon T of approximately 45 min
due to the robot’s battery limitation. The parameters pi , eik ,

Table 5 Traveling times of robot from locations to others (seconds)

From feeder To feeder

0 1 2 3 4

0 0 34 37 34 40

1 39 0 17 34 50

2 35 17 0 35 49

3 34 33 35 0 47

4 36 47 48 46 0

and dik are respectively calculated based on Eq. (1), (2), and
(3) with the data in Table 3. As a result, the total number of
subtask of part-feeding tasks is 10 and the number of deci-
sion variables is 4,040. In each demonstration of the case
study, two cases of the MIP are investigated for compar-
ing the performances with the GA-based heuristic. The first
case is carried out when giving the same maximum compu-
tation time CTm (60 s) as the GA-based heuristic while the
second case is performed without limitation on the compu-
tation/run time. Table 6 gives solutions of the MIP and pro-
posed heuristic on the objective value and computation time
(in seconds) for the demonstrations at the CR factory. The
cells containing a “–” symbol indicate that the results of the
corresponding problems cannot be obtained by using the cor-
responding approach. Sequences of part-feeding tasks found
by the heuristic are depicted using Gantt charts in Fig. 9.

From Table 6, it can be seen that when giving the same
maximum computation time CTm as the GA-based heuristic,
the MIP is not able to find any feasible solution. In contrast

Fig. 9 Gantt charts for the solutions of two demonstrations of the case study
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Table 6 Solutions of the case study under MIP and GA-based heuristic

Demo Qm MIP (limited to CTm ) MIP (unlimited) GA-based heuristic Penalty of the heuristic (%)
versus MIP (unlimited)

Objective
value (s)

Computation
time (s)

Objective
value (s)

Computation
time (s)

Objective
value (s)

Computation
time (s)

D-1 2 – – 488 21,589.34 504 <1 3.28

D-2 3 – – 384 8,377.27 396 <1 3.13

Table 7 Comparison between MIP and GA-based heuristic for extension of the case study

Qm T (hour) Total subtasks
of tasks

Number of
variables

MIP GA-based heuristic

Objective
value (s)

Computation
time (s)

Objective value (s) Computation time (s)

Average SD Average SD

2 1 16 16, 448 – – 827 0 0.35 0.04

2 32 131, 200 – – 1, 596 2 1.16 0.10

4 66 1, 150, 248 – – 3, 205 39 5.01 1.37

8 136 10, 062, 368 – – 6, 738 70 25.09 7.28

3 1 16 16, 448 – – 648 7 0.34 0.06

2 32 131, 200 – – 1, 231 17 1.32 0.27

4 66 1, 150, 248 – – 2, 615 44 4.96 0.99

8 136 10, 062, 368 – – 5, 667 83 16.46 3.98

4 1 16 16, 448 – – 628 4 0.31 0.06

2 32 131, 200 – – 1, 206 6 1.05 0.15

4 66 1, 150, 248 – – 2, 497 30 4.24 1.21

8 136 10, 062, 368 – – 5, 223 85 15.49 2.36

the proposed heuristic found solutions for the demonstrations
(objective values of 504 s/8.4 min in D-1 and 396 s/6.6 min
in D-2). These objective values found through the heuristic
are greater than those found by the MIP when the run time of
the MIP is unlimited. However, the differences are only about
3 % and this is deemed to be an acceptable error. Furthermore,
the computation time shows that use of the MIP is too time-
consuming while the proposed heuristic significantly faster
obtains near-optimal solutions (approximately 6 h in D-1 or
2.3 h in D-2 as opposed to less than a second). It also reveals
that the higher maximum numbers of SLCs the robot can
carry, the less it has to travel around the manufacturing cell
(8.4 min with Qm of 2 as opposed to 6.6 min with Qm of 3).

To make the evaluation more convincing, the case study is
extended by assuming that the robot has the capability of car-
rying up to 4 SLCs at a time and the battery limitation of the
robot allows it to work up to 8 h (a full production shift). Fur-
ther comparisons of the objective value and computation time
for the MIP and GA-based heuristic are presented in Table 7.
Note that in this extended experiment, the MIP is solved
under consideration of the maximum computation time CTm

as the GA-based heuristic. The objective values and com-
putation times of the proposed heuristic are the average of
30 runs. The total number subtask of all tasks and number
of decision variables are also given. From Table 7, it can be
seen that the proposed heuristic has the capability of solv-
ing larger problems while the MIP cannot find any feasible
solution for problems of this scale. It also shows that in case
of full production shift of 8 h, the proposed heuristic is able
to find the best solutions in <30 s. Moreover, the standard
deviation of the objective value is quite small in comparison
with the average. The GA-based heuristic, therefore, demon-
strates efficiency in solving the larger problems.

Computational experiments

In this section, the performance of the proposed heuristic will
be tested on a large number of problem instances. 20 prob-
lems are generated with different numbers of feeders, maxi-
mum numbers of SLCs, planning horizons and other system
parameters. The number of feeders and the maximum num-
ber of SLCs are randomly generated in the ranges of [3, 20]
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Table 8 Comparison between MIP and GA-based heuristic for 20 randomly generated problems

No. Number
of feeders

Qm T (hour) Total subtasks
of tasks

Number
of variables

MIP GA-based heuristic

Objective
value (s)

Computation
time (s)

Objective value (s) Computation time (s)

Average SD Average SD

1 7 3 1 10 4, 040 790 60.00 377 9 0.22 0.04

2 15 2 1 25 62, 600 – – 986 14 1.52 0.19

3 6 2 1 15 13, 560 – – 775 10 0.29 0.03

4 3 4 1 6 888 184 4.93 184 0 0.14 0.08

5 16 3 1 36 186, 768 – – 1, 120 22 2.61 0.39

6 5 2 2 28 87, 920 – – 1, 287 7 0.76 0.15

7 11 3 2 53 595, 720 – – 1, 657 33 4.00 0.84

8 10 4 2 44 340, 912 – – 1, 006 31 2.78 0.50

9 4 3 2 13 8, 840 811 60.00 428 0 0.18 0.01

10 18 4 2 70 1, 372, 280 – – 2, 156 47 39.72 5.34

11 15 3 4 106 4, 764, 488 – – 3, 504 76 28.83 6.07

12 12 4 4 99 3, 881, 592 – – 2, 998 59 14.61 1.98

13 9 4 4 84 2, 371, 152 – – 2, 229 38 5.97 0.91

14 19 3 4 115 6, 083, 960 – – 4, 732 33 60.00 0.00

15 11 2 4 92 3, 115, 120 – – 4, 070 28 30.73 3.58

16 8 3 8 113 5, 772, 040 – – 4, 498 79 13.18 2.29

17 13 2 8 154 14, 609, 672 – – 6, 696 71 42.89 7.47

18 17 4 8 200 32, 000, 800 – – 7, 342 95 60.00 0.00

19 14 3 8 170 19, 652, 680 – – 6, 249 83 48.75 5.08

20 20 4 8 220 42, 592, 880 – – 8, 071 99 60.00 0.00

and [2, 4], respectively. The planning horizons in hours are
1, 2, 4, and 8 (corresponding to an eighth, a quarter, half, and
full of the production shift). The maximum and minimum
levels of parts in feeders are respectively uniformly distrib-
uted within the ranges of [500, 2,000] and [100, 1,000] while
part-feeding rates to machines of feeders (in seconds) are
generated in the interval [1.5, 6.5]. The working times of the
robot in seconds at feeders and the warehouse are respectively
distributed within the range of [40, 60] and [80, 100] while
the traveling times of the robot in seconds are generated in the
interval [20, 60]. Note that the time/cost matrices of the gen-
erated traveling times should satisfy the triangle inequality.
The comparisons between the MIP and GA-based heuristic
for 20 randomly generated problems are presented in Table 8.
Similar to the extension of the case study, the MIP is solved
under consideration of the maximum computation time CTm

as the GA-based heuristic. The objective values and com-
putation times of the proposed heuristic are the average of
30 runs. General information for these 20 problems is also
shown in Table 8.

It can be observed from Table 8 that the GA-based heuris-
tic is superior to the MIP for large problems. The MIP found
feasible solutions for problem instances 1, 4, and 9. However,
the solutions found by the MIP are much worse than those
found by the proposed heuristic (except problem instance
4 in which both approaches found the optimal solution). In
addition, the MIP cannot find any feasible solution for the
other problems. The GA-based heuristic, by contrast, is able
to find best solutions for all 20 problem instances. As the
size of the problem increases especially the total subtasks
of all tasks, the computation time of the proposed heuristic
becomes longer. The results also show that with the same
planning horizon, the same or nearly the same number of
feeders, the less maximum number of SLCs the robot can
carry, the more difficult it is for the proposed heuristic to
generate feasible sequences of part-feeding tasks, thus the
longer computation time it may require to obtain best solu-
tions (e.g. problem instances 12 and 15). Furthermore, in
terms of the objective value, the standard deviation is quite
small in comparison with the average. These results provide
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more persuasive evidence to prove that the GA-based heuris-
tic performs effectively.

Conclusion

This paper presents the results of a study of the novel
problem of scheduling a single mobile robot in order to
perform part-feeding tasks on production lines. The robot
has been assigned to the production by applying the bar-
tender concept. This permits the part-feeding tasks to be
properly performed by the robot. To accomplish all tasks
in a planning horizon within the allowable limit of bat-
tery capacity and power, it is important for production
planners to determine feeding sequences which minimize
the total travelling time of the robot. This must be done
while taking into account a number of practical constraints.
The main novelty of this research lies in the simultane-
ous consideration of hard time windows of tasks and lim-
itation of carrying capacity on the single mobile robot. A
mixed-integer programming model to find exact optimal
solutions for the problem was developed. Due to the NP-
hard nature of the problem this solution approach is only
applicable to small-scale problems with few feeders and a
short planning horizon. A genetic algorithm-based heuris-
tic was then proposed to find near-optimal solutions. The
quality of these solutions could then be evaluated by using
the MIP solutions as reference points to quantify the scale
of benefits. The real case study at an impeller production
line and more computational experiments were described
to demonstrate the effectiveness of both approaches. The
results of the case study showed that use of the MIP was
too time-consuming while the proposed heuristic was sig-
nificantly faster in obtaining near-optimal solutions. Further
experiments provided persuasive evidence that the proposed
heuristic is capable of solving problems of various sizes
and more efficient than the MIP in terms of the objective
value when giving the same maximum computation time.
It can be also observed that the larger number of SLCs
the robot can carry, the easier the proposed heuristic can
generate feasible sequences and the less computation time
may be required to obtain the best solution. These solu-
tions are useful to managers for decision making at oper-
ational levels and the proposed heuristic could be also be
applied in a variety of tasks of not only mobile robots but
also automatic guided vehicles or unmanned aerial vehicles.
For further research, a general model of scheduling multiple
mobile robots should be considered. This will also include
a rescheduling mechanisms based on the obtained schedules
and feedback from the mobile robot fleet and shop floor.
This will enable to deal with real-time disturbances such
as machine breakdown or unexpected shortage of parts of
feeders.
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Appendix

• Probability of crossover Pc (Tables 9, 10).

The average and standard deviation of the objective value
is the best when Pc is equal to 0.8 or 1.0. However, only
slight improvement on the objective value is achieved with
longer computation time when Pc increases from 0.8 to 1.0.
The value of Pc is hence set to be 0.8.

• Probability of mutation Pm (Tables 11, 12).

There are improvements on the average of the objective
value when Pm increases from 0.05 to 0.2. However, these

Table 9 ANOVA for Pc

Source of variation SS df MS F P value F0.05, 3,36

Pc 15,158 3 5,053 4.673 0.0074 2.866

Error 38,922 36 1,081

Total 54,080 39

Table 10 Objective value and computation time at four levels of Pc

Pc Objective value (s) Computation time

Average SD Average SD

0.4 2,099 35 0.980 0.258

0.6 2,077 36 1.232 0.218

0.8 2,053 29 2.103 0.528

1.0 2,051 30 2.470 0.611

Table 11 ANOVA for Pm

Source of
variation

SS df MS F P value F0.05,3,36

Pm 17,827 3 5,942 5.235 0.0042 2.866

Error 40,862 36 1,135

Total 58,689 39

Table 12 Objective value and computation time at four levels of Pm

Pm Objective value (s) Computation time

Average SD Average SD

0.05 2,107 36 1.034 0.353

0.10 2,088 31 2.100 0.294

0.15 2,073 39 2.691 0.467

0.20 2,049 29 3.904 0.807
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Table 13 ANOVA for Gc

Source of variation SS df MS F P value F0.05,3,36

Gc 10,609 3 3,536 4.924 0.0057 2.866

Error 25,855 36 718

Total 36,464 39

Table 14 Objective value and computation time at four levels of Gc

Gc Objective value (s) Computation time

Average SD Average SD

50 2,090 31 0.865 0.188

100 2,058 24 1.393 0.312

150 2,055 24 1.668 0.261

200 2,047 27 2.136 0.256

Table 15 ANOVA for CTm

Source of
variation

SS df MS F P value F0.05,3,36

CTm 548,131 3 182,710 22.560 2× 10−8 2.866

Error 291,556 36 8,099

Total 839,687 39

Table 16 Objective value and computation time at four levels of CTm

CTm Objective value (s) Computation time

Average SD Average SD

15 6,382 119 15 0

30 6,185 69 30 0

45 6,118 87 45 0

60 6,077 77 60 0

improvements are minor in comparison with the increase of
the computation time. Furthermore, the standard deviations
of the objective value at Pm of 0.1 and 0.2 are better than the
other values of Pm . The value of Pm is hence set to be 0.1.

• No-improvement consecutive generations Gc (Tables 13,
14).

Similar to the case of Np, the value of Gc is set to be 100.

• Maximum computation time CTm (Tables 15, 16).

There are considerable improvements on the average of
the objective value when CTm increases from 15 to 60 s
(the best average is achieved at CTm of 60). Furthermore,
the standard deviation of the objective value at CTm of 60
is better than the other values of CTm except the case of
30. Note that the value of CTm is set based on the improve-

ments on the objective value because the ANOVA of CTm

shows that this parameter strongly affects the objective value
(F = 22.560 > 2.866). The value of CTm is hence set to be
60 (a problem instance of larger size is randomly generated
to test CTm).
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Abstract. This paper deals with the problem of scheduling feeding tasks of a 
single mobile robot which has capability of supplying parts to feeders on 
production lines. The performance criterion is to minimize the total traveling 
time of the robot and the total tardiness of the feeding tasks being scheduled, 
simultaneously. In operation, the feeders have to be replenished a number of 
times so as to maintain the manufacture of products during a planning horizon. 
A method based on predefined characteristics of the feeders is presented to 
generate dynamic time windows of the feeding tasks which are dependent on 
starting times of previous replenishment. A heuristic based on genetic algorithm 
which could be used to produce schedules in online production mode is 
proposed to quickly obtain efficient solutions. Several numerical examples are 
conducted to demonstrate results of the proposed approach. 

Keywords: Multi-objective, Scheduling, Mobile Robot, Genetic Algorithm. 

1 Introduction 

The automation technology in combination with advances in production management 
has dramatically changed the equipment used by manufacturing companies as well as 
the issues in planning and control. With these changes, highly automated and 
unmanned production systems have become more popular in several industrial areas, 
e.g., automotive, robot, and pump manufacturing [3]. An automatic production system 
consists of intelligent and flexible machines and mobile robots grouped into cells in 
such a way that entire production of each product can be performed within one of the 
cells. With embedded batteries and manipulation arms, mobile robots are capable of 
performing various tasks such as transporting and feeding materials, tending 
machines, pre-assembling, or inspecting quality at different workstations. They have 
been thus employed in not only small companies which focus on exact applications 
and a small range of products, but also large companies which can diversify 
applications in a longer term and larger range. Within the scope of this study, a given 
problem is particularly considered for a single mobile robot which will automate part-
feeding tasks by not only transporting but also collecting containers of parts and 
emptying them into the feeders needed. However, to utilize mobile robots in an 
efficient manner requires the ability to properly schedule feeding tasks. Hence, it is 
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important to plan in which sequence mobile robots process feeding operations so that 
they could effectively work while satisfying a number of practical constraints. 

The problem of scheduling part-feeding tasks of the mobile robot has been 
modeled in some respects comparable to the Asymmetric Traveling Salesman 
Problem (ATSP) which belongs to the class of NP-hard combinatorial optimization 
problems [7]. Among heuristic approaches, Genetic Algorithm (GA) has been widely 
used in the research areas of TSP, ATSP, or robot task-sequencing problems. Liu and 
Zheng [10], Moon et al. [12], and Snyder and Daskin [13] discussed about using GAs 
to solve TSP, while Choi et al. [2] and Xing et al. [14] proposed GAs to deal with 
ATSP. Zacharia and Aspragathos [15] introduced a method based on GA and an 
innovative encoding to determine the optimal sequence of manipulator’s task points 
which is considered an extension to the TSP. Beside genetic algorithms, Bocewiz [1] 
presented the knowledge-based and constraint programming-driven methodology in 
planning and scheduling of multi-robot in a multi-product job shop taking into 
account imprecise activity specifications and resource sharing. Hurink and Knust [9] 
proposed a tabu search algorithm for scheduling a single robot in a job-shop 
environment considering time windows and additionally generalized precedence 
constraints. Maimon et al. [11] also presented a neural network approach with 
successful implementation for the robot task-sequencing problem.  

Although there are many related research, the problem of scheduling a single 
mobile robot with dynamic time windows and restricted capacity where multiple 
routes have to be carried out has surprisingly received little attention in the literature 
despite its important applications in practice, e.g. part-feeding task. Such a task must 
be executed a number of times within time windows which are dependent on starting 
times of the previous executions of that task, hence, the term, dynamic time windows. 
The objectives of minimizing the total traveling time of the robot and the total 
tardiness of the tasks are taken into account to support the global objective of 
maximizing system throughput. The existing approaches are not well suited and 
cannot be directly used to solve the problem. Thus, in this paper, a heuristic based on 
GA, a possibly promising approach to the class of multi-objective optimization, is 
developed to find efficient solutions for the problem. The advantageous feature of GA 
is the multiple directional and global search by maintaining a population of potential 
solutions from generation to generation. Such population-to-population approach is 
useful to explore all non-dominated solutions of the problem [6].  

The remainder of this paper is organized as follows: in the next section, problem 
statement is described while a genetic algorithm-based heuristic is presented in 
Section 3. Numerical examples are conducted to demonstrate results of the proposed 
approach in Section 4. Finally, conclusions are drawn in Section 5. 

2 Problem Statement 

The work is developed for a cell which produces parts or components for the pump 
manufacturing industry at a factory in Denmark. The essential elements considered in 
the manufacturing cell consist of an autonomous mobile robot with limitation on 
carrying capacity, a central warehouse designed to store small load carriers (SLCs), 
and multiple feeders designed to automatically feed parts to machines of production 
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lines. Besides, every feeder has three main characteristics including maximum level, 
minimum level, and part-feeding rate to machine. In operation, the robot will retrieve 
and carry one or several SLCs containing parts from the warehouse, move to feeder 
locations, empty all parts inside SLCs, then return to the warehouse to unload empty 
SLCs and load filled ones. To maintain the manufacture of a quantity of products 
during a given planning horizon, the feeders (tasks) have to be replenished a number 
of times, the robot consequently has a set of subtasks of tasks to be carried out within 
time windows. Such a time window of a subtask of a task could be only determined 
after starting time of the previous subtask of that task. Fig. 1 below shows a layout of 
the described manufacturing cell. 

 

Fig. 1. Layout of the manufacturing cell 

To enable the construction of a feeding schedule for the mobile robot, assumptions 
are considered as follows: 

• The robot can carry one or several SLC(s) at a time. 
• All tasks are periodic, independent, and assigned to the same robot. 
• Working time, traveling time between any pairs of locations of the robot, and part-

feeding rate to machine of a feeder are known. 
• All feeders of machines must be fed up to maximum levels and the robot starts 

from the ware house at the initial stage. 

In order to accomplish all the movements with a smallest consumed mount of battery 
energy, the total traveling time of the robot is an important objective to be considered. 
Apart from that, another performance measure is the amount of time a feeder has been 
waiting to be replenished by the robot. Alternatively, due time of a time window of a 
feeding task could be considered soft constraint, i.e. schedules that do not meet this 
constraint are taken into account. In addition, making decisions on which way the 
robot should provide parts to feeders is a part of real-time operations of production 
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planners. Moreover, concerning the problem belong to NP-hard class, computation 
time exponentially grows with the size of the problem (e.g. larger number of feeders). 
It is therefore necessary to develop a computationally effective algorithm, namely 
GA-based heuristic, which determines in which sequence the feeders should be 
supplied so as to minimize the total traveling time of the robot and the total tardiness 
of feeding tasks while satisfying a number of practical constraints. 

3 Genetic Algorithm-Based Heuristic 

In this section, genetic algorithm, a random search method taking over the principle of 
biological evolution [8], is applied to develop a heuristic which is allowed to convert 
the aforementioned problem to the way that efficient solutions could be found. The 
GA-based heuristic shown in Fig. 2 comprises of the following components: genetic 
representation and initialization; constraint handling and fitness assignment; genetic 
operators including selection, crossover, and mutation; termination criteria. 

 

Fig. 2. Flow chart of GA-based heuristic 

3.1 Genetic Representation and Initialization 

For the problem under consideration, a solution can be represented by a chromosome 
of non-negative integers 0, , , … , , … ,  which is an ordering of part-feeding tasks 
of the robot where , , : feeder index; , ,   1 ; : number of feeders. The 
original length of a chromosome is equal to the total number of subtasks of tasks 
added the first subtask of task at the central warehouse (1 ∑ ; : number of 
subtasks of task i). 

For the initial generation, genes on a chromosome are randomly filled with tasks at 
feeders. The frequency of such a task is the number of subtasks of that task, in other 
words, number of times that tasks has to be executed. 

3.2 Constraint Handling and Fitness Assignment 

After initialization or crossover and mutation operations, chromosomes are handled to 
be valid and then assigned fitness values. A valid chromosome should satisfy two 
constraints of limitation on carrying capacity Qm of the robot and time windows of 
subtasks of part-feeding tasks. For the first type of constraints, to guarantee the robot 
not to serve more number of feeders than number of SLCs carried in one route, the 
subtasks of task at the warehouse represented by zeroes are inserted into a 
chromosome after every Qm genes starting from the first gene. For instances, if the 
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limitation on carrying capacity of the robot is two SLCs of parts, the chromosome 
should be restructured to be 0, , , 0, … ,0, , , 0, … ,0 . 

The second type of constraints requires a subtask of a task to be started after 
release time and completed by the due time of that subtask, if possible. As mentioned, 
due time constraints are considered soft constraints. They thus could be modeled as an 
objective of the total tardiness of part-feeding tasks. The release time and due time 
could be determined as shown in Equation (1) and (2) below. , 1 , 1   (1), 1 , 1  (2)

where , , : release time, due time, and starting time of subtask k of task i 
 , , : maximum level, minimum level of parts of feeder i, and part-

feeding rate to machine of feeder i 

After constraint handling procedure, the objectives of the total traveling time of the 
robot and the total tardiness of part-feeding tasks are calculated one after another for 
every chromosome in the population. A weighted-sum fitness function F is then used 
to assign a fitness value to each chromosome as shown in Equation (3) where  is 
traveling time of the robot from one location to another,  is working time of the 
robot per SLC at feeder i, and  is the weighted coefficient. 

 ∑ , 1 ∑ max 0, /2,  (3) 

3.3 Genetic Operators 

Selection, crossover, and mutation are three main genetic operators. For selection, 
various evolutionary methods could be applied in this problem. (μ + λ) selection is 
used to choose chromosomes for reproduction. Such selection mechanism guarantees 
that the best solutions up to now are always in the parent generation [4-5]. 

Crossover operator generates offspring by combining the information contained the 
parent chromosomes so that the offspring inherits good features from their parents. 
The Roulette-wheel selection is used to select the parent chromosomes based on their 
weighted-sum fitness values. Order crossover (OX) [6] operated with probability Pc 
will be employed to generate an offspring as follows. Genes having zero values are 
removed before two cut points are randomly chosen on the parent chromosomes. A 
string between these cut points in one of the parent chromosomes is first copied to the 
offspring, the remaining positions are then filled according to the sequence of genes 
in the other parent starting after the second cut point. When an offspring is produced, 
it undergoes insertion mutation [6] with probability Pm which selects a gene at 
random and inserts it in a random position. 

3.4 Termination Criteria 

Termination criteria are employed to determine when the GA-based heuristic should 
be stopped. Note that making decisions on which sequences the robot should serve 
feeders is a part of real-time operations of production planners. Therefore, on the one 
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hand if the best solutions over generations do not converge to a value, the maximum 
generation Gm would be used to stop the run. On the other hand, if the best solution 
does not improve over Gc consecutive generations, it would not be valuable to 
continue searching. 

4 Numerical Examples 

The performance of the GA-based heuristic will be tested on several problem 
instances in this section. Three problems, which are as similar to the real-world case 
as they can be, are generated with difference number of feeders (namely 3, 5, and 10 
feeders), and other system parameters such as limitation on carrying capacity, 
working time, traveling time of the mobile robot, planning horizon, and 
characteristics of feeders. The robot is designed to carry up to 3 SLCs at a time to 
perform part-feeding tasks during a given planning horizon of one hour 
(corresponding to an eighth of a full production shift). The maximum and minimum 
levels of parts of feeders are respectively distributed within the ranges of [300, 2000] 
and [100, 1000] while part-feeding rates in seconds are in-between the interval [1.5, 
4.5]. The working times of the robots in seconds at feeders and the warehouse per 
SLC are respectively distributed within the range of [40, 60] and [25, 40] while the 
traveling times of the robot in seconds are in-between the interval [20, 60]. Note that 
the cost matrix of the generated traveling times should satisfy the triangle inequality. 

For GA parameters, the population size, Pc, Pm, Gm, and Gc are set to be 100, 0.6, 
0.2, 500, and 100, respectively. The weighted-sum fitness function F (Equation 3) 
will be calculated using one of three different values of the weight coefficient , 
namely, 0.2, 0.5, and 0.8. The proposed heuristic has been coded in VB.NET, and all 
the problem instances run on a PC having an Intel® Core i5 2.67 GHz processor and 
4 GB RAM. The results for three randomly generated problems in combination with 
three values of the weighted coefficient  are presented in Table 1 below. 

Table 1. The best solutions of three generated problems 

Problem 
No. of 
feeder 

No. of 
subtasks 
of tasks 

Weighted 
coefficient 

( ) 

Total traveling 
time of robot 

(second) 

Total tardiness 
of tasks  
(second) 

Computation 
time  

(second) 

1 3 11 0.2 432 0 0,49 
   0.5 432 0 0,63 
   0.8 428 6 0,41 

2 5 24 0.2 706 0 1,00 
   0.5 690 4 1,12 
   0.8 682 15 1,10 

3 10 42 0.2 1564 0 2,52 
   0.5 1542 22 2,70 
   0.8 1528 55 2,40 
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The total traveling time of the robot, total tardiness of tasks, and computation time 
shown in Table 1 are the average of 10 runs. It can be observed that as the weighted 
coefficient  increases, two objectives of each problem instance have opposite trends 
where the total traveling time of the robot decreases and the total tardiness of tasks 
increases. In other words, as saving battery energy allowing the robot to be utilized in 
a longer duration is more important, the robot has a tendency to travel less and vice 
versa. Similar explanation is also applicable to the total tardiness of part-feeding 
tasks. Such kinds of solutions in Table 1 are non-dominated solutions for which no 
improvement in any objective function is possible without sacrificing the other 
objective function. It also shows that when the size of the problems grows, the 
computation time of the GA-based heuristic becomes longer, but it is still acceptable 
(i.e., the largest problem size with 10 feeders and the coefficient  of 0.5 requires 2.7 
seconds in average to find the efficient solution). These results provide evidence to 
prove that the GA-based heuristics could be used to produce efficient schedules 
within reasonable time in online production mode. 

The above solutions are initial schedules for the robot. These schedules serve as 
input to a Mission Planner and Control (MPC) program which is accessed by using 
XML-based TCP/IP communication to interact with the robot, Manufacturing 
Execution System (MES), and the module of GA-based heuristic. In practice, there 
might be some errors in manufacturing such as machine breakdown, or changes in 
manufacturing conditions such as characteristics of feeders (e.g. minimum levels of 
parts), or carrying capacity of the robot. These events will be reported by the MES so 
that the MPC program can update current states of the shop floor and then call the 
heuristic module to reschedule part-feeding tasks of the robot. By relaxing the last 
assumption mentioned in Section 2, the proposed heuristic in turn will use the current 
states as new input, re-optimize to get alternative schedules, and send these schedules 
back to the MPC program. 

5 Conclusions 

In this paper, a problem of scheduling a single mobile robot to carry out part-feeding 
tasks of production lines is studied. To maintain the manufacture of products, it is 
important for planners to determine feeding sequences which minimize the total 
traveling time of the robot and the total tardiness of the feeding tasks while taking into 
account a number of practical constraints. The main novelty of this research lies in the 
consideration of dynamic time windows and limitation on carrying capacity where 
multiple routes have to be performed by the single mobile robot. A genetic algorithm-
based heuristic was proposed to find efficient solutions for the problem. The results in 
the numerical examples showed that the proposed heuristic is fast enough to be used 
to generate efficient schedules compromising the objectives in online production 
mode. The heuristic may be also used to produce alternative schedules in rescheduling 
scenarios when there might be some errors or changes in manufacturing conditions. 
Moreover, the heuristic could be considered to deal with more performance criteria 
according to requirements of planners, and by investigating different scenarios with 
various weighted coefficients of those criteria, it can specify which schemes are more 
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beneficial for the manufacturing. For further research, a general model of scheduling 
multiple mobile robots should be considered together with rescheduling mechanisms 
to deal with real-time disturbances. 
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Abstract: The paper deals with a real-world implementation of an autonomous industrial mobile robot 

performing an industrial application at a pump manufacturing factory. In the implementation, the multi-

criteria optimization problem of scheduling tasks of a mobile robot is taken into account. The paper 

proposes an approach composing RI��D�PRELOH�URERW�V\VWHP�GHVLJQ��³/LWWOH�+HOSHU´���DQ�DSSURSULDWH�DQG�

comprehensive industrial application (multiple-part feeding tasks), an implementation concept for 

industrial environments (the bartender concept), and a real-time heuristics integrated into Mission 

Planning and Control software to schedule the mobile robot in the industrial application. Results from the 

real-world implementation VKRZ�WKDW�³/LWWOH�+HOSHU´�LV�FDSDEOH�RI�VXFFHVVIXOO\�VHUYLQJ�IRXU�SDUW�IHHGHUV�

in three production cells within a given planning horizon using the best schedule generated from the real-

time heuristics. The results also demonstrated that the proposed real-time heuristics is capable of finding 

the best schedule in online production mode.  

Keywords: Robotics, Modelling, Scheduling, Heuristics, Pumps. 

�

1. INTRODUCTION 

The shift in paradigm from mass production to customized 

production and the resumption of production in wage-

LQWHQVLYH� FRXQWULHV� KDYH� FUHDWHG� QHHGV� IRU� ÀH[LELOLW\��

transformability and cost-HI¿FLHQF\��HVSHFLDOO\�LQ�WKH�¿HOG�RI�

automation and robotics (Jovan et al., 2003). Robots are 

widely used in industry to perform 4D tasks; dumb, 

dangerous, dull, and/or dirty. Therefore, industrial robotics 

forms an essential part of the manufacturing backbone, but 

WKH� URERWV� RI� WRGD\� DUH� UDWKHU� LQÀH[LEOH�� DV� WKH\� DUH� RIWHQ�

dedicated and in ¿[HG�positions (High Level Group, 2006). 

To improve this, mobile robots with manipulation arms, 

which have the capability of moving around within the 

manufacturing environment and are not fixed to one physical 

location, could be employed. Moreover, it is possible for 

mobile robots to adapt to changing environments and perform 

a variety of tasks. Therefore, mobile robot technology holds 

great potential in the manufacturing industries (EUROP, 

2009). 

Despite considerable attention within the manufacturing 

domain, real-world implementations of mobile robots have 

been limited (Stopp et al., 2003; Katz et al., 2006; Datta et 

al., 2008; Hentout et al., 2010) although the needs for 

transIRUPDEOH� DQG� ÀH[LEOH� DXWRPDWLRQ� are present (Hvilshøj 

and Bøgh, 2011). In addition, the problem of planning and 

scheduling the tasks of mobile robots in the real-world 

industrial applications has received little attention in the 

literature (Maimon et al., 2000; Hurink and Knust, 2002; 

Zacharia and Aspragathos, 2005). Although, this problem 

could be modelled in some respects comparable to the 

Travelling Salesman Problems (TSP) which belongs to the 

class of NP-hard combinatorial optimization problems, the 

surveyed approaches are not well suited and cannot be 

directly used to solve this problem. Therefore, new initiatives 

are required to realize industrial acceptance and maturation of 

the autonomous industrial mobile robots. 

In general, the mobile robot technology finds most suitable 

applications within the logistic area (transportation and part 

feeding). The logistics tasks are either very suited for mobile 

robots (easily manageable work pieces) or out of scope 

(unmanageable work pieces, e.g. due to large size and/or 

weight). In contrast, pre-assembly, inspection and process 

execution tasks are generally not suited for the current state 

of mobile robots. Often, these tasks are tailored for human 

operators and not suited for automation, because they require 

dexterous manipulation skills and/or experience. Other 

application categories look promising, e.g. machine tending 

and cleaning but they are either few in numbers or low in 

suitability score. In addition, some application categories are 

generally out of scope, e.g. maintenance, repair and overhaul, 

as these tasks require handling of large parts (e.g. injection 

moulds) or task execution in inaccessible areas (e.g. the 

backside of manufacturing equipment). In summary, mobile 

robot technology, DW� LWV�FXUUHQW� VWDJH��¿QGV� its most suitable 

applications within the logistic area, moves towards assistive 

tasks, and in the future more service and other non-

production-related tasks.  
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Overall, the necessary mobile robot technologies (hardware 

and software) exist at a mature level. One significant reason 

that no autonomous mobile robots have yet been 

implemented in industrial environments is that research in the 

right applications have not been carried out. In this paper, the 

mobile robot technology is transferred from laboratory 

experiments to a real-world environment and application by 

proposing an approach consisting of: 

x a mobile robot system design (Little Helper), 

x an appropriate and comprehensive industrial application 

(multiple-part feeding), 

x an implementation concept for industrial environments 

(the bartender concept), and 

x a real-time heuristics to schedule the mobile robot in the 

industrial application. 

The paper is organized as follows. Section 2 presents a 

methodology supporting the mobile robot technology within 

real-world manufacturing environments. Section 3 describes 

the necessary preparation and customization steps for the 

multiple-part feeding implementation at a company which 

produces pumps. Section 4 presents results from the 

conducted implementation in term of system performances. 

Finally, the paper concludes and discusses options for future 

work within the field of autonomous industrial mobile robots 

in Section 5. 

2. METHODOLOGY 

2.1 Little Helper 

TKH�DXWRQRPRXV�LQGXVWULDO�PRELOH�URERW�³/LWWOH�+HOSHU´ was 

developed by Hvilshøj and Bøgh (2011). The overall vision is 

shown in Fig. 1, which depicts a typical work schedule. 

³/LWWOH�+HOSHU´�FDQ�EH�XVHG�IRU�YDULRXV�PDQXIDFWXULQJ�WDVNV��

e.g. carrying tasks, preparatory and/or post-processing tasks, 

and even pre-assembly, quality inspection, and machine 

tending. Furthermore, the mobile robot is able to work fully 

automatic in a full shift of a working day��,Q�WKLV�ZD\��³/LWWOH�

+HOSHU´� EHFRPHV� D� ÀH[LEOH� DXWRPDWLRQ� WHFKQRORJ\�� ZKLFK�

contributes to the realization of transformable production 

systems. 

W
ar

eh
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u
se

 A
W

ar
eh

o
u

se
 B

Workstation 1

Warehouse 2

Warehouse 3

06.00 ± 06.30: feed all 

workstations with parts

06.30 ± 09.30: pre-assembly at 

workstation 3

09.30 ± 10.00: feed workstation 1 

with needed parts

10.00 ± 10.30: feed workstation 2 

with needed parts

10.30 ± 13.30: pre-assembly at 

workstation 3

13.30 ± 14.00: feed workstation 1 

with needed parts

14.00 ± 14.30: feed workstation 2 

with needed parts

14.30 ± 17.30: pre-assembly at 

workstation 3

18.00 ± 19.00: transport products 

to warehouse A

19.00 ± 20.00: transport products 

to warehouse B  

Fig. 1. A typical work day of a mobile robot. 

7KH�³/LWWOH�+HOSHU´�V\VWHP�GHVLJQ�shown in Fig. 2 relies on 

standardized, industrially accepted and commercial-off-the-

shelf (COTS) hardware components and software packages, 

ZKLFK�RIIHU�VLJQL¿FDQW�VDYLQJV�LQ�SURFXUHPHQW��GHYHORSPHQW�

DQG� PDLQWHQDQFH�� ,Q� DGGLWLRQ�� ³/LWWOH� +HOSHU´� GHSHQGV� RQ�

mass customization principles, in terms of modularization, 

product families and product platforms. The architecture 

consists of different modules (basic building blocks) such as 

mobile platform, vision, robot manipulator, and tooling with 

pre-defined interfaces and skills/actions. In this way, it is 

possible to configure the mobile robot for versatile industrial 

applications and/or environments. 

Path planning

Obstacle avoidance

...

Grasp

Release

...

Skills/

actions

Module

Interfaces: 

mechanical, 

electrical, 

mechatronics, 

software and 

man-machine

Manipulation

Arm movement

...

Acquire image

Process image

...

Mobile 

Platform
Tooling

Robot 

Manipulator
Vision

 

Fig. 2. A modular autonomous industrial mobile robot system 

(the first ³/LWWOH�+HOSHU´�SURWRW\SH�. 

2.2 Multiple-part feeding 

Currently, the most suitable process for the mobile robot is 

multiple-part feeding which is the task of loading several 

parts or components at a time into feeders (e.g. step feeders) 

and/or machines (e.g. turning-milling machines). Typical 

manufacturing facilities consist of several automatic 

production lines, where the feeding of parts or components is 

manually performed. Multiple-part feeding is a non-value 

adding manufacturing task and it is quite often disruptive (in-

between and periodic) for the factory workers. Therefore, 

automation of multiple-part feeding holds great industrial 

potential. Utilizing autonomous mobile robots will make 

multiple-part feeding tasks more flexible and complete. 

2.3 The bartender concept 

Multiple-part feeding task is to some extend similar to 

material handling: pickup 7� transportation 7 empty at 

feeder 7 transportation 7 place. At the same time they 

differ in other aspects, e.g. the parts to be handled, the feeders 

to be serviced, and the workstations to be localized. To 

address this, the bartender concept is proposed for solving 

multiple-part feeding tasks by mobile robots (Fig. 3). 
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Fig. 3. Illustration of the bartender concept. 

In the bartender concept, a central warehouse (a bar) is 

created to gather different needed parts into one area. An 

operator (the bartender) puts parts into small load carriers 

(SLCs) which are placed in the warehouse. The use of SLCs 

simplifies the manipulation tasks as different parts can be 

handled by the same robot tool. The SLCs are equipped with 

QR codes (XVHG� IRU� LGHQWL¿FDWLRQ and pose estimation) 

corresponding to the product numbers, which assist the robot 

to pick up the right parts. When a production line needs parts, 

the robot is requested via a wireless network, and then it 

retrieves and carries SLCs containing parts from the central 

warehouse, moves to feeder, empties all parts inside SLCs, 

and returns to the warehouse to unload all empty SLCs. The 

schedule of multiple-part feeding tasks of the robot is based 

on features of the feeders (maximum, minimum levels of 

parts, and part-feeding rate to production line) and data from 

the Manufacturing Execution System (MES). 

The bartender concept is not a direct competitor to dedicated 

material handling systems, like the use of Kanban together 

ZLWK� FRQYH\RU� EHOWV� DQG� $*9¶V�� .,9$� V\VWHPV�� HWF�� 7KH�

bartender concept must be understood as part of the general 

mobile robot concept where the robot is able to perform a 

wide variety of manufacturing tasks. In the context of 

multiple-part feeding, the mobile robot is capable of 

performing other tasks, while waiting between the periodic 

feeding tasks, e.g. quality control, pre-assembly, machine 

tending�� HWF�� 7KLV� FRQWULEXWHV� WR� WKH� UHDOL]DWLRQ� RI� D� ÀH[LEOH�

and transformable production system. 

2.4 Real-time heuristics 

In the bartender concept, to accomplish all the movements 

with the smallest consumed mount of battery energy, the total 

travelling time of the mobile robot is a critical objective. 

Apart from that, another performance measure is the amount 

of time feeders have been waiting to be replenished by the 

robot. In addition, making decisions on which sequence the 

robot should provide parts to feeders is part of the real-time 

operations of production planners. Therefore, in this section, 

genetic algorithm (GA), a random search approach taking 

over the principle of biological evolution (Goldberg, 1989), is 

applied to develop a real-time heuristics which converts the 

problem of scheduling multiple-part feeding tasks of the 

mobile robot in a manner that ensures best solutions can be 

found. Let P(t) and C(t) be parents and offspring in the 

generation t, respectively. The general implementation 

structure of the GA-based real-time heuristics is described in 

Fig. 4 as follows:  

procedure: GA-based heuristic 

input: system data (planning horizon, feeder features) 

  robot data (working time, travelling time, max SLC) 

  GA parameters 

output: the best sequences of feeding tasks 

begin 

 t Z 0; 

 initialize P(t) by random initialization routine; 

 check the feasibility and repairing by constraint handling routine; 

 evaluate P(t) by fitness assignment routine; 

 while (not terminating condition) do 

  create C(t) from P(t) by order crossover and insertion mutation routines; 

  check the feasibility and repairing by constraint handling routine; 

  evaluate C(t) by fitness assignment routine; 

  select P(t + 1) from P(t) and C(t) by (ä + ã) selection routine; 

  t Z t + 1 

 end 

end  

Fig. 4. Structure of GA-based real-time heuristic. 

x Genetic representation: a solution can be represented by a 

chromosome of non-negative integers (0, i, j��«��i��«��k) 

which is an ordering of multiple-part feeding tasks of the 

robot where i, j, k: feeder index; i, j, k Ð {1, ���«��n}; n: 

number of feeders. The original length of a chromosome 

LV�HTXDO� WR� WKH� WRWDO� QXPEHU�RI� UHTXHVWV�RI� WDVNV� ��ni; ni: 

number of requests of task i). 

x Initialization: for the initial generation, genes on a 

chromosome are randomly filled with tasks at feeders. 

The frequency of a task is the number of requests of that 

task, in other words, the number of times that tasks has to 

be executed (Dang et al., 2012). 

x Constraint handling: after initialization or crossover and 

mutation routines, chromosomes are handled or repaired 

to be valid. A valid chromosome should satisfy two 

constraints on the limitation on carrying capacity Qm of 

the robot and time windows of requests of the feeding 

tasks. For the first type of constraints, to guarantee the 

robot serves no more feeders than SLCs carried in one 

route, the task at the warehouse represented by zeroes (0) 

are inserted into a chromosome. The second type of 

constraints requires a request of a feeding task to start 

after release time and completed by the due time of that 

request, if possible. However, due time constraints are 

considered soft constraints and are thus modelled as an 

objective of the total tardiness of feeding tasks (which is 

shown in fitness assignment). The release and due time 

are determined as shown in Equation (1) and (2) below, 

while the constraint handling procedure is shown in Fig. 

5. 

rik = sik-1 + (ui ± vi)ci, i Ð {1, ���«��n}; k Ð ^������«��ni}(1) 

dik = rik + vici, i Ð ^������«��n}; k Ð ^������«��ni}           (2) 

where rik, dik, sik: release time, due time, starting time of 

request k of task i 

            ui, vi, ci: maximum level, minimum level of parts 

of feeder i, and part-feeding rate to 

production line of feeder i 
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3. PREPARATION AND CUSTOMIZATION 

3.1 The CR 1-2-3 impeller line 

The chosen area for the real-world implementation is the CR 

1-2-3 impeller production line that manufactures impellers 

for the CR pumps. The CR line consists of a warehouse and 

four feeders that have to be served by the mobile robot. The 

warehouse is indexed 0 and the feeders are indexed from 1 to 

4 (N = {0, 1, 2, 3, 4}) and named Back Plate, Van Feeder 1, 

Van Feeder 2, and Front Plate respectively. Furthermore, 

different feeders are filled by different kinds of parts, namely 

back plates for feeder 1, vanes for feeder 2 and 3, and front 

plates for feeder 4. To produce an impeller on the CR 1-2-3 

line, these three types of parts, which consists of six vanes 

with three from feeder 2 and the other three from feeder 3, 

one front plate from feeder 4 and one back plate from feeder 

1, are automatically assembled. Fig. 7 particularly illustrates 

the aforementioned production area where the real-world 

implementation has been carried out. 

 

Fig. 7. The CR 1-2-3 impeller production line. 

3.2 3D simulation and customization 

Before testing the bartender concept at the CR 1-2-3 impeller 

line, 3D simulation and experiments were carried out. 3D 

simulations in DELMIA Robotics were used to virtually 

GH¿QH� DQG� WHVW� PDQLSXODWLRQ�� JUDVSLQJ� VWUDWHJLHV�� DQG� WKH�

transportation of SLCs. In addition, the 3D simulations were 

XVHG�IRU�YHULI\LQJ�WKDW�WKH�³/LWWOH�+HOSHU´�SURWRW\SH�LV�DEOH to 

keep up with the production schedule and cycle time at the 

CR 1-2-3 impeller line. In general, the 3D simulations proved 

very effective in the design phase, especially as a link 

between academia and industry. 

Based on the requirements from the CR1-2-3 impeller line, 

and the results from the 3D simulations and laboratory 

experiments, it is necessary to customize the mobile robot 

system and the industrial environment as shown in Fig. 8. 

x &XVWRPL]DWLRQ� RI� ³/LWWOH� +HOSHU´: a) gripper: compliant 

with the utilized SLCs; b) SLC rack: enable the robot to 

carry and transport several SLCs at a time; c) vision: 

implement standard algorithms for QR identification. 

x Customization of the industrial environment: a) safety: 

use fences and warning signs to ensure that no people 

enter the area as well as to prevent the mobile robot 

leaving the area; b) navigation and localization: place 

reflector landmarks at the workstations; c) warehouse: 

customize the warehouse to have two tables with four 

slots on each table. 

 

Fig. 8. CXVWRPL]DWLRQ� RI� ³/LWWOH� +HOSHU´� DQG� WKH� LQGXVWULDO�

environment. 

4. REAL-WORLD IMPLEMENTATION 

The system of the mobile robot and the MPC was tested for a 

period of three days at the CR 1-2-3 impeller production line. 

The overall goal was to acquire experience on what actually 

happens when the mobile robot is moved outside the 

laboratory and into a real-world manufacturing environment. 

Based on this, it is possible to find guidelines for future 

improvements within the system. 

2YHUDOO�� WKH� WHVW�ZLWK�³/LWWOH�+HOSHU´�DQG� WKH�03&�VRIWZDUH�

was a success. The longest successive execution time was 

about 45 minutes of continuous part feeding. ³/LWWOH�+HOSHU´�

was able to continuously pick and place SLCs from/to the 

warehouse and empty them into different feeders of the CR 

1-2-3 impeller line based on the best schedule generated from 

the proposed real-time heuristics of Mission Planning and 

signal information from the OPC servers. The best solution, 

depicted by the Gantt chart in Fig. 9, is given: 0 - 4 - 1 - 0 - 4 

- 1 - 0 - 4 - 3 - 0 - 1 - 1 - 0 - 4 - 2 - 0, with total travelling 

time of 10.7 minutes and no tardiness in part feeding. The 

best solution was obtained within a second; hence, the 

proposed real-time heuristics also demonstrated its capability 

of finding the best solution in online production mode. 
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Fig. 9. Gantt chart for the best solution of the test. 

In this real-world implementation, a load of 59 per cent was 

SXW�RQ�WKH�³/LWWOH�+HOSHU´�SURWRW\SH��About 40 per cent of the 

run time was spent on moving the mobile platform between 

feeders or travelling time (75 per cent of maximum speed and 

acceleration), while the remainder was spent on moving the 

robot manipulator or working time (60 per cent of maximum 

speed and acceleration). Owing to safety and robustness 

issues, the test was not executed with maximum speeds and 

acceleration on the various subsystems of the mobile robot.  

The other performance characteristics of the mobile robot are 

listed as follows: a) mobile platform accuracy: ± 10 mm; b) 

effective platform payload: 50 kg; c) manipulation accuracy 

(vision guided): ± 1 mm; d) effective manipulator payload: 2 

kg; e) continuous runtime (battery): 4 hours. 

5.  CONCLUSION AND FUTURE WORK 

This paper investigates the potential of mobile robots based 

on a COTS system design, a general implementation concept 

for multiple-part feeding (the bartender concept), and a real-

time heuristics integration into the MPC to schedule mobile 

robots in the industrial application. The system and concept 

have been evaluated in a real-world case study at an impeller 

SURGXFWLRQ� OLQH� ZLWK� WKH� PRELOH� URERW� SURWRW\SH� ³/LWWOH�

+HOSHU´��7KH�PDLQ�SXUSRVH�LV�WR�DFTXLUH�H[SHULHQFH�RQ�ZKDW�

actually happens when a mobile robot is moved outside the 

laboratory and into a real-world manufacturing environment. 

Based oQ� WKLV�� LW� LV� SRVVLEOH� WR� ¿QG� JXLGHOLQHV� IRU� IXWXUH�

research and developments within mobile robots.  

Overall, the real-world implementation at the impeller 

production line was a success, as the experiments showed 

that the mobile robot was capable of performing a meaningful 

industrial task. The system and concept only demand minor 

changes to the environment, most importantly putting parts 

into SLCs instead of pallets. Furthermore, the real-time 

heuristic approach proved valuable as the best schedule of the 

mobile robot could be found in a new environment within 

seconds. The performance and robustness of the system can 

in many ways be improved, e.g. by shifting towards an 

integrated framework and/or improving the interaction 

between the subsystems (modules).  

Based on the experience gained from the conducted test at the 

manufacturing environment, the immediate challenges that 

need to be solved for mobile robots to become a feasible and 

mature technology are: increase of performance (efficiency) 

and robustness (error recovery) of the total system (robot and 

MPC), increase of the system capability (e.g. handling of 

more complex manufacturing tasks), and increase of system 

safety (human-machine-interaction).  

For future work, ³/LWWOH� +HOSHU´� LV� being improved to 

perform more advanced tasks such as pre-assembly, quality 

inspection and machine tending, while the MPC considers the 

problem of planning and scheduling a fleet of mobile robots 

in the manufacturing environment of these advanced tasks. 
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Abstract. The paper deals with the problem of the implementation of an autonomous industrial 

mobile robot in real-world industrial applications. The paper proposes a methodology for 

implementation consisting of: a mobile robot system design (Little Helper prototype), an 

appropriate industrial application (multiple-part feeding), an implementation concept for the 

industrial application (the Bartender Concept), a mathematical model, and a genetic algorithm-

based heuristic. In the methodology, the mathematical model is proposed to formulate and find 

optimal solutions for the mobile robot scheduling problem which is described based on the 

implementation concept. This mathematical method is however only applicable to small-scale 

problems. A genetic algorithm-based heuristic is then proposed to find near-optimal solutions. A 

real-world demonstration at an impeller production line in a real factory and computational 

experiments are conducted to demonstrate the effectiveness of the proposed methodology. 

Keyword: robotics; industrial application; scheduling; heuristics 

1 Introduction 

Today’s manufacturing system ranges from mass production to customized 

production. The former has efficiency in high volumes but lacks flexibility. The 

latter however has opposite characteristics. Therefore, there is a need for a 

transformable system that combines the advantages of these two by using assistive 

automation and robotics. In industry, robots have been widely used to perform 4D 

tasks, namely dumb, dangerous, dull, and/or dirty. Industrial robotics thus 

becomes an essential part of the manufacturing backbone. However, the robots are 

rather inflexible as they are often dedicated and fixed [13]. One way to improve 

this is the use of mobile robot, an interdisciplinary technology extending the 

prospective application of industrial robotics by combining locomotion 

capabilities with manipulation abilities. Task flexibility and robotic mobility are 

two main advantages that mobile robots bring to industrial applications. 

Moreover, mobile robots are able to adapt to changing environments and perform 



 

a variety of industrial tasks. The tasks include such processes as: transporting 

materials, machine tending, pre-assembly or quality inspection. Therefore, the 

mobile robot technology holds great potential in the manufacturing industries. 

Mobile robot is a term used to refer to robotic systems including a robot 

arm mounted on a mobile platform, extended by a vision and tooling system, 

respectively. The concept of mobile robot first appeared in 1984 [24]. However, at 

that time its use and implementation were still limited due to high system costs 

and lack of processing power. Much research has been carried out since then, and 

until recently there have been many on-going mobile manipulation works within a 

variety of fields, e.g. professional service, domestic service, space, military, and 

industry. Autonomous industrial mobile robots, in particular, operate in structured 

environments. They however require a higher level of operational efficiency, e.g. 

in terms of speed, accuracy, robustness, and task planning and scheduling to be 

suitable for industrial applications. Hence, mobile robots combine the flexibility 

of service robots with the efficiency of industrial robots. 

Despite the fact that manufacturers express a need for transformable and 

flexible automation [21], the real-world implementations of mobile robots have 

been limited [7,12,27]. Furthermore, the necessary technology components are, to 

a large extent, commercial off-the-shelf (COTS) components. In the field of 

industrial mobile robots, the major focus has been driven to the optimization of 

the individual technologies, especially robot motion, perception, and grasping of 

objects [17], while little attention has been paid to the use and application of these 

robots. Therefore, new initiatives are required in order to realize industrial 

acceptance and maturation of mobile robots. 

In general, the mobile robot technology finds most suitable applications 

within the logistic area. The logistics tasks are either very suited for mobile robots 

(easily manageable work pieces) or out of scope (unmanageable work pieces, e.g. 

due to large size and/or weight). In contrast, pre-assembly, inspection, and process 

execution tasks are generally not suited for the current state of mobile robots. 

These tasks are often tailored for human operators and not suited for automation, 

because they require dexterous manipulation skills and/or experience. Other 

application categories look promising, e.g. machine tending and cleaning but they 

are either short in numbers or low in suitability score. Moreover, some application 

categories are generally out of scope, e.g. maintenance, repair, and overhaul, as 



 

these tasks require handling of large parts (e.g. injection moulds) or task execution 

in inaccessible areas (e.g. the backside of manufacturing equipment). In summary, 

the mobile robot technology at its current stage finds most appropriate 

applications within the logistic area, specifically transportation and part feeding. 

However, to utilize the mobile robot in an efficient manner requires the ability to 

properly scheduling part feeding tasks in relation to the needs of given production 

lines. Hence, it is important to schedule in which sequences the mobile robot 

processes part feeding tasks so that it could effectively work while satisfying a 

number of practical constraints. 

The problem of scheduling part feeding tasks of the mobile robot has been 

modelled in several respects comparable to the Asymmetric Travelling Salesman 

Problem (ATSP) which belongs to the class of NP-hard combinatorial 

optimization problem [10]. However, the problem is not identical to the ATSP 

because of some additional constraints which the problem possesses. Several 

approaches and models for exact or heuristic algorithms have been proposed to 

address problem of this type. Carpaneto et al. [2], Turkensteen et al. [28], Germs 

et al. [10] present branch-and-bound algorithm for solving the ATSP. Edan et al. 

[8] introduce a near-minimum task-planning algorithm for a fruit harvesting robot 

to find near-optimal-time path between the N given fruit locations. It is shown to 

be a solvable case of the Travelling Salesman Problem (TSP). Ascheuer et al. [1] 

present a cutting plane approach to the sequential ordering problem similar to the 

robot task-sequencing problem and finds minimum cost paths subject to 

precedence constraints. Dang et al. [4] propose a mixed-integer programming 

(MIP) model to obtain the optimal feeding sequence of a mobile robot. However, 

the performance of the MIP model is not evaluated and compared with other 

methods. For small task-scheduling problem, the aforementioned techniques can 

be used to find the optimal solutions of the problems. Nevertheless, they tend to 

get computationally intractable for large and complex problems [20]. Larger 

problems call for heuristic solutions. The heuristic approaches that are frequently 

applied to TSP, ATSP, or robot task-scheduling problems include: simulated 

annealing [9,23], tabu search [14], neural network [20], and genetic algorithm 

(GA) [3,19,22,26,29]. Zacharia and Aspragathos [30] introduce methods based on 

GAs and innovative encoding to determine the optimal sequence of robot’s task 

points which is considered as an extension to the TSP. 



 

Although much related research has been completed, the problem of 

scheduling a mobile robot with time windows, restricted capacity, and multiple 

tasks carried out during a planning horizon has received little attention in the 

literature despite its important application, e.g. part feeding tasks. In this problem, 

a number of tasks with time windows should be satisfied by the mobile robot if 

possible. A soft time window scenario allowing violating the upper bound 

constraints will be considered. Moreover, due to the limit on carrying capacity, 

after satisfying some tasks, the mobile robot has to return to a warehouse/based to 

load parts so that it can serve other tasks in the next route and so on (a route is 

from the warehouse, to locations of tasks, and back to the warehouse). The 

objectives of minimizing the total travelling time of the robot and the total 

tardiness of tasks are taken into account to support the global objective of 

maximizing system throughput. The surveyed approaches are not well suited and 

cannot be directly used to solve this problem due to the lack of a mechanism 

handling both soft time window and capacity constraints in case of the single 

robot. In the previous work, Dang et al. [6] present an MIP model and a heuristic 

based on GA to solve the problem of sequencing feeding tasks. However, these 

methods are developed to deal with the single objective function and hard time 

window scenario. Furthermore, the heuristic in [6] may be unable to find feasible 

solutions due to the mechanism of replacing infeasible chromosomes (solutions) 

with randomly generated ones. In this paper, a mathematical model with the 

determination of time windows and a GA-based heuristic with a suitable and 

advanced constraint handling operator are developed in order to particularly solve 

the mobile robot scheduling problem. 

Overall, the necessary mobile robot technologies (hardware and software) 

exist at a mature level. The reason that no autonomous mobile robots have yet 

been implemented in industrial environments is that research in the right 

applications have not been carried out. In this paper, the mobile robot technology 

is transferred from laboratory experiments to real-world environment and 

applications by proposing a methodology consisting of: 

 a mobile robot system design (Little Helper), 

 an appropriate industrial application (multiple-part feeding), 

 an implementation concept for industrial environments (the Bartender 

Concept) and the concept-based scheduling problem description, 



 

 a mathematical model to formulate the scheduling problem and find the 

optimal schedule of multiple-part feeding tasks of the mobile robot, 

 a genetic-algorithm based heuristics to schedule multiple-part feeding 

tasks of the mobile robot in the industrial application. 

The paper is organized as follows. Section 2 presents a methodology 

supporting the mobile robot technology within real-world manufacturing 

environments. Section 3 describes the preparation steps for a multiple-part feeding 

demonstration at a company which produces pumps. Section 4 illustrates the 

results of the demonstration using real-world data from a Danish production 

company, from the genetic-algorithm based heuristic and compares its 

performance with that of the mathematical model. Computational experiments are 

also conducted in this section. Finally, the paper concludes and discusses options 

for future works in Section 5. 

2 Methodology 

2.1 Mobile robot system design 

The autonomous industrial mobile robot, Little Helper, was modelled and 

developed by Hvilshøj and Bøgh [15]. Little Helper can be used for various 

manufacturing tasks, e.g. carrying, preparatory, and post-processing tasks, even 

pre-assembly, quality inspection, and machine tending. Furthermore, the mobile 

robot is able to work fully automatic in a third shift of a working day [16]. In this 

way, Little Helper becomes a flexible automation technology, which contributes 

to the realization of transformable production systems. 

The Little Helper system design shown in Fig. 1 relies on standardized, 

industrially accepted, and COTS hardware components and software packages, 

which offer significant savings in procurement, development, and maintenance. In 

addition, Little Helper depends on mass customization principles, in terms of 

modularization, product families, and product platforms. The architecture consists 

of different modules (basic building blocks) such as mobile platform, vision, robot 

manipulator, and tooling with pre-defined interfaces and skills/actions. In this 

way, it is possible to configure mobile robot for versatile industrial applications 

and/or environments. 
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Fig. 1 A modular mobile robot system 

2.2 Industrial application 

Currently, the most suitable process for the mobile robot is multiple-part feeding 

which is the task of loading several parts or components at a time into feeders 

(e.g. step feeders). These feeders are designed to automatically supply parts to 

machines of one or several production line(s) in a typical manufacturing cell. 

Multiple-part feeding is manually performed, non-value adding manufacturing 

task and quite often disruptive (in-between or periodic) for production workers. 

Furthermore, when the workers forget to fill the feeders, this may lead to stopping 

the production lines. Therefore, automation of multiple-part feeding holds great 

industrial potential. Utilization of the mobile robot instead of humans can reduce 

the dependence on human intervention and make multiple-part feeding tasks more 

flexible and complete.     

2.3 Implementation concept and scheduling problem description 

Multiple-part feeding task has many similarities to material handling (pickup, 

transportation, empty at feeder, transportation, and place), but at the same time 

they differ in other aspects, e.g. the parts to be handled, the feeders to be serviced 

and the workstations to be localized. To address these, the Bartender Concept is 

proposed for solving multiple-part feeding tasks by the mobile robot (see Fig. 2). 
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Fig. 2 Illustration of the Bartender Concept 

In this concept every feeder is assigned the following features: maximum 

level, minimum level, and part-feeding rate to machine. Furthermore, a central 

warehouse (a bar) is created to gather different parts into one area. An operator 

(the bartender) puts parts into small load carriers (SLCs) which are placed in the 

warehouse. The number of parts inside each SLC is equal to the difference 

between maximum level and minimum level of parts of the feeder in which that 

SLC is emptied. The use of SLCs simplifies the tasks as different parts can be 

handled by the same robot tool. The SLCs are equipped with QR codes (used for 

identification and pose estimation) corresponding to the product numbers which 

assist the mobile robot to pick up the right parts. When the mobile robot is 

requested via a wireless network, it will retrieve and carry one or several SLCs 

containing parts from the warehouse, move to feeder locations, empty all parts 

inside SLCs, and return to the warehouse to unload all empty SLCs. Each feeder 

has to be served a number of times in order to keep the production line in 

operation. The mobile robot thus has a set of requests possessing time windows to 

carry out for each feeder during the planning horizon. In order to accomplish all 

the movements with the smallest consumed amount of battery energy and thereby 

increase the availability of the mobile robot, the total travelling time of the mobile 

robot must be taken into account. Furthermore, the mobile robot is allowed to start 

processing a request at a feeder after the upper bound of the time window of that 

request. Hence, another important performance measure is the amount of time 

feeders have been waiting to be replenished by the mobile robot, i.e. the tardiness 



 

of tasks. Note that making decisions on which sequences the mobile robot should 

provide parts to feeders is a part of real-time operations of production planners. It 

means that the best solution must be quickly obtained at the beginning of 

production shifts or during the shifts due to errors in a manufacturing cell (e.g. 

machine breakdown) or changes in a manufacturing cell’s conditions (e.g. cycle 

time of production lines). Moreover, as the problem is NP-hard, computation time 

exponentially grows with the size of the problem (e.g. longer planning horizon, 

larger number of feeders). It is therefore necessary to develop a computationally 

effective algorithm, namely a GA-based heuristic, to sequence the tasks in order 

to minimize a weighted objective of the total travelling time of the mobile robot 

and the total tardiness of the tasks while satisfying a number of practical 

constraints. To evaluate the performance of the proposed heuristic, an MIP model 

is formulated in the next section. 

2.4 Mathematical model 

In this section, an MIP model is developed to determine an optimal sequence in 

which the mobile robot visits n feeders to process multiple-part feeding tasks. All 

feeding tasks, corresponding to deliveries of SLCs, are known in advance. A 

method based on the (s, Q) inventory system [25], to protect against shortage of 

parts over a replenishment lead time, is also presented to determine the time 

windows of the multiple-part feeding tasks. A soft time windows scenario 

allowing violating the upper bound will be taken into account in this model. The 

mobile robot is based at a central warehouse, and a limit on the carrying capacity 

of the mobile robot is imposed. The MIP model contains a number of decision 

variables that are constrained to have only integer values. Integer variables make 

optimization problems non-convex and thus far more difficult to solve. Memory 

and solution time may rise exponentially as the size of problem increases with 

more added integer variables. Therefore, in practice the MIP model could be 

applicable only to small-scale problems with few feeders on production line(s) 

and a short planning horizon, i.e. few tasks to schedule. For these scenarios, the 

MIP model will give optimal solutions which could be used as reference points to 

quantify the scale of benefits achieved by the GA-based heuristic (further 

developed in Section 2.5). Assumptions, notations, time windows, and the 

formulation of the MIP model are given in the following subsections. 



 

2.4.1 Assumptions 

 An autonomous industrial mobile robot is considered in a disturbance free 

environment. 

 The mobile robot can carry one or several SLC(s) at a time. 

 All tasks are periodic, independent, and assigned to the same robot. 

 Working time and travelling time of the mobile robot and the part-feeding 

rate to the machine of a feeder are known and constant. 

 All feeders of machines are fed up to the maximum levels, and the mobile 

robot starts from the warehouse at the initial stage. 

2.4.2 Notation 

N : set of all tasks (N = {0, 1, 2, …, n} where 0: task at the warehouse) 

ni : number of times task i has to be executed 

R : set of all possible routes (R = {1, 2, …, Rmax}, Rmax = Σ ni, ∀i ∈ N \{0}) 

pi : periodic time of task i 

wi : working time of robot at location of task i 

tij : travelling time of robot from location of task i to location of task j 

ci : part-feeding rate to machine of feeder i 

vi : minimum level of parts in feeder i 

ui : maximum level of parts in feeder i 

Qm : maximum number of SLCs could be carried by robot 

T : planning horizon 

Decision variables: 

1 if robot travels from location of task  (request ) to location of task  

    (request ) in route 

0 otherwise

   

  




 



jlr

ik

i k j

l rx  

yik : route index to which request k of task i belongs 

eik : release time of request k of task i 

dik : due time of request k of task i 

sik : starting time of request k of task i 

2.4.3 Time windows 

A (s, Q) inventory policy is used with the defined features of the feeders to 

determine the time windows of the multiple-part feeding tasks as shown in Fig. 3. 
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Fig. 3 Time windows of multiple-part feeding tasks based on the (s, Q) inventory system 

Because of the periodic characteristic of the task for feeder i whose 

periodic time is calculated by  i i i ip u v c  , a number of requests must be carried 

out. The number of requests of task i is given by /i in T p    . The mobile robot 

should start processing a request k of task i within the associated time window of 

that request if possible. It means that the mobile robot is allowed to arrive at 

feeder i after the upper bound of the time window (or the due time). In other 

words, the due time constraints are considered as soft constraints. Thus, these 

constraints can be modelled as an objective of the total tardiness of tasks. Note 

that a late arrival of the mobile robot at feeder i causes a shift in the time windows 

of the next requests of task i. If the mobile robot arrives at feeder i before the 

lower bound of a time window (or the release time), it will wait to begin service. 

The release time of request k of task i is set to the time when the number of parts 

inside feeder i drops to a certain level vi. The due time of request k of task i is 

defined to the time when there are no parts in feeder i. The release time and due 

time of a request of a task are determined by Constraints (2) and (3) presented in 

the following MIP model. 

2.4.4 Mixed-integer programming model 

Objective function: 
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The objective function (1) minimizes a weighted objective of the total 

travelling time of the mobile robot and the total tardiness of tasks being 

sequenced, where α is the weighted coefficient. Constraints (2) and (3) determine 

the release time and due time of a request of a task respectively while constraint 

(4) guarantees that a request of a task is started after the release time of that 

request. Constraints (5) and (6) ensure that the mobile robot starts from the 

warehouse at the initial stage. Constraint (7) eliminates the sub-tours among 

requests of tasks, where Z is a subset of ZT, where ZT is a set of all requests of 



 

tasks at feeders and the warehouse. Constraints (8) and (9) ensure that a request of 

a task is completed exactly once. Constraint (10) forbids the mobile robot to load 

a higher number of SLCs than its maximum capacity in the number of SLC Qm. 

Constraint (11) handles the travelling time requirements between any pair of 

requests of tasks, where L is a given sufficiently large constant. In case two 

requests of the same task or different tasks are connected but are not in the same 

route, the mobile robot should visit the warehouse to unload empty SLCs and load 

filled ones. Constraint (12) assigns a request of a task to a route, and constraint 

(13) guarantees an ascending sequence of route indices for requests of tasks. 

Constraints (14) and (15) imply the types of variables. 

2.5 Genetic algorithm-based heuristic 

In this section a genetic algorithm, a search approach taking over the principle of 

biological evolution [11], is used to develop a heuristic. The GA-based heuristic 

allows converting the problem of multiple-part feeding tasks of the mobile robot 

so that near-optimal solutions can be found. Let P(g) and C(g) be parents and 

offspring in the generation g, respectively. The procedure of the GA-based 

heuristic shown in Fig. 4 is composed of the following main steps: genetic 

representation and initialization; constraint handling and fitness assignment; 

genetic operators including crossover, mutation and selection; termination criteria. 

 procedure: GA-based heuristic

 input: system data (planning horizon, feeder features)

            robot data (working time, travelling time, max SLC)

            GA parameters

 output: the near-optimal schedule of multiple-part feeding tasks

 begin

g ← 0;

initialize P(g) by random initialization routine;

repair and check feasibility by constraint handling routine; 

evaluate P(g) by fitness assignment routine;

while (not terminating condition) do

create C(g) from P(g) by order crossover and swap mutation routines;

repair and check feasibility by constraint handling routine;

evaluate C(g) by fitness assignment routine;

select P(g + 1) from P(g) and C(g) by (μ + λ) selection routine;

end
 end

 

Fig. 4 Procedure of GA-based heuristic 

2.5.1 Genetic representation and initialization 

For the problem under consideration, the path representation is used to encode a 



 

chromosome/solution which represents an ordering of requests of tasks of the 

mobile robot as follows: (0, i, j, …, i) where i, j: feeder/task index; i, j ∈ {1, 2, …, 

n}. If a task is requested more than once, different genes on a chromosome may 

contain the same task index. The original length of a chromosome is equal to the 

total number of requests of all tasks added to the first request of the warehouse 

task (1 + Σni).  

For the initial generation, tasks are placed into genes on a chromosome at 

random. The frequency of a task is the number of requests of that task, in other 

words, the number of times that task has to be executed. 

2.5.2 Constraint handling and fitness assignment 

After the initialization or crossover and mutation operations, chromosomes are 

repaired to handle the two constraints: limit on the carrying capacity Qm of the 

mobile robot and time windows of requests of tasks. The first constraints require 

that the mobile robot does not serve more requests of tasks than the number of 

SLCs it is carrying. The second constraints require a request of a task to be started 

within the release time and the due time of that request, if possible. As mentioned, 

due time constraints are considered as soft constraints. Thus, they can be modelled 

as an objective of the total tardiness of tasks in the fitness assignment. An 

approach of handling these constraints is developed and applied to each 

chromosome in the initial and descendant generations as shown in Fig. 5 along 

with the description below. 

Step 1: Compute release times and due times of the genes on the 

chromosome containing the first requests of different tasks. 

Step 2: Assign the maximum number of SLCs Qm to the actual number of 

SLCs, denoted as Q, carried by the mobile robot in a route (Q ← Qm). 

Step 3: Compute starting times and check the satisfaction of time windows 

constraints for the next Q genes. 

If starting time of any gene among the next Q genes is not satisfied 

its time window, then go to Step 4. 

Otherwise, update release times and due times of the genes (on the 

chromosome) which contain the next requests of the tasks on these 

Q genes, then go to Step 9. 



 

Step 4: Considering genes from position 1 to position p of a gene i which 

is not satisfied its time windows among the next Q genes, make a set D of 

positions of genes whose due times are greater than that of gene i. 

Step 5: Insert gene i to a position pd randomly selected from set D. 

Step 6: Re-compute starting times and check the satisfaction of time 

windows constraints for the genes from the position pd to position p. 

If starting time of any gene from the position pd to position p is not 

satisfied its time window, then check if all positions in set D are 

selected. If not, then go back to Step 5. If so, then go to Step 7. 

Otherwise, update release times and due times of the genes (on the 

chromosome) which contain the next requests of the tasks on the 

genes from the position pd to position p, then go to Step 9. 

Step 7: Decrease Q by one unit (Q ← Q – 1) and check if Q is 0. If not, 

then go back to Step 3. If so, then go to Step 8. 

Step 8: Select the value of Q and the insertion carried out in Step 5 which 

results in the minimum tardiness. 

Step 9: Considering the gene (0) of the last warehouse task at position pw 

on the chromosome, insert another gene (0) of the warehouse task at 

position pw ← pw + Q + 1. Note that, the chromosome length is increased 

by one unit after each gene (0) insertion.  

Step 10: Determine if the constraint handling approach for the 

chromosome ends. 

If chromosome length – pw > 0, then check if chromosome length – 

pw ≥ Qm. If so, Q ← Qm. If not, Q ← chromosome length – pw. Then 

go back to Step 3. 

Otherwise, end the constraint handling approach. 

Following the approach of handling constraints, the fitness assignment is 

carried out. The objectives of the total travelling time of the mobile robot and the 

total tardiness of multiple-part feeding tasks are calculated one after another for 

every chromosome in the population. A weighted fitness function F is then used 

to assign a fitness value to each chromosome as: F = α∑(travelling time of the 

mobile robot) + (1 - α)∑(tardiness of tasks). 
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Fig. 5 Constraint handling approach 



 

2.5.3 Genetic operators 

Genetic operators mimic the process of heredity of genes to create new offspring 

at each generation [18]. In essence, the operators are used to alter the genetic 

composition of chromosomes and expected to yield improved offspring. 

Crossover, mutation, and selection are three main genetic operators. 

Crossover operator generates offspring by combining the information 

contained in the parent chromosomes so that the offspring will have the desirable 

features from their parents. The Roulette-wheel selection is used in the algorithm, 

which probabilistically selects the parent chromosomes based on their fitness 

values. Let F(p) denote the fitness value under the solution represented by parent 

p, then F’(p) = max{F(p)|1 ≤ p ≤ Np} – F(p) where Np: population size. The 

expected probability of parent p to be selected is given by F’p/∑F’p.  

Different crossover operators can be used on chromosomes represented by 

the path presentation, e.g. partially-mapped crossover (PMX), cycle crossover 

(CX), order crossover (OX), order-based crossover (OBX), and position-based 

crossover (PBX) [18]. Although the crossover operators may affect the efficiency 

of the search process, the quality of solutions is often reasonably close. In the 

presented experiment, OX operating with probability Pc is applied to generate an 

offspring as described below. An example illustrating the OX procedure is also 

shown in Fig. 6. 

Step 1: Remove genes (0) representing the warehouse tasks on the parent 

chromosomes.  

Step 2: Select two cut points on the parent chromosomes at random.  

Step 3: Copy the substring between these cut points from one of the 

parents into the corresponding positions of the offspring.  

Step 4: Fill the remaining positions of the offspring by considering the 

sequence of genes on the other parent starting from the second cut point. 

When reaching to the end of the offspring, the sequence continues at 

position 1. Note that during this process, a gene containing a task on the 

other parent will not be considered if the number of times that task is 

placed into the offspring is already equal to the number of requests of that 

task. 



 

2 12 1 3 2 31

Offspring:

substring selected

3 12 1 3 1 22

1 33 2 1 1 22

Parent 1:

Parent 2:

 

Fig. 5 Example of the OX procedure 

Whenever an offspring is produced, it undergoes a mutation operator 

which is applied with probability Pm. The mutation selects two genes within the 

offspring at random and then swaps these genes to produce heterogeneous 

chromosomes. This procedure avoids premature convergence of the GA-based 

heuristic. Note that the offspring produced after crossover and mutation 

operations are repaired by using the constraint handling approach before they are 

evaluated by the fitness assignment. 

 For selection operator, various evolutionary methods can be applied to 

this problem. (μ + λ) selection is used to choose chromosomes for the next 

generation. Under this method, μ parents and λ offspring compete for survival, and 

the μ best out of the set of offspring and old parents, i.e. the μ lowest in term of 

the fitness value, are selected as the parents of the next generation.  

2.5.4 Termination criteria 

Termination criteria are used to determine when the GA-based heuristic should be 

stopped. On the one hand, computation time plays an important role in practice 

because making decision on which schedule the mobile robot should carry out 

tasks is a part of the real-time operations of production planners. Therefore, if the 

best solutions over generations do not converge, the maximum computation time 

CTm would be used to stop the run. On the other hand, if the best solution does not 

improve over Gc consecutive generations, it would not be valuable to continue 

searching. The best solution up to now is then returned as the near-optimal 

solution. 



 

3 Preparation 

3.1 CR 1-2-3 impeller production line 

The full-scale and real-world demonstration is investigated at the CR 1-2-3 

impeller line that produces impellers for the CR pumps. The CR line consists of 

three production cells and four standard industrial step feeders where three types 

of parts (six vanes, one back plate, and one front plate) are assembled to an 

impeller. The CR line is characterized as a semi-structured environment and all 

communication, e.g. PLC-based signals or XML-based messages, can be 

transmitted via wireless network. These make a suitable demonstration site for 

implementing the mobile robot. Fig. 7 below depicts the CR production area 

where the real-world demonstration has been carried out. 

 

Fig. 7 CR 1-2-3 impeller production line at a pump manufacturer 

3.2 Simulation and customization 

Before the real-world demonstration at the CR line, 3D simulations and 

experiments were carried out. 3D simulation is a powerful tool for exploring 

what-if scenarios and for providing valuable information in advance when 

implementing flexible and autonomous technologies in industrial environment. 

3D simulations in DELMIA Robotics were used to virtually define and test 

manipulation and grasping strategies, as well as virtually design and test the 



 

mobile robot gripper, the storage of SLCs at the warehouse and transportation of 

SLCs on the mobile robot. Furthermore, the 3D simulations were used to verify 

that the mobile robot prototype is able to keep up with the production schedule at 

the CR line. In general, the 3D simulations proved very effective in the design 

phase, especially as link between academia and industry. In parallel, experiments 

of critical aspects, e.g. QR localization and grasping of SLCs, were conducted in 

different laboratory facilities [16]. 

Based on the requirements from the CR line and the results from the 3D 

simulations and laboratory experiments, it is necessary to customize the mobile 

robot system and the industrial environment. This is realizable based on the 

modular architecture of the mobile robot. The main customization steps are shown 

in Fig. 8. 

 Customization of the mobile robot: a) tooling: design and use a robot 

gripper compliant with the utilized SLC; b) SLC rack: enable the mobile 

robot to carry and transport several SLCs at a time; c) vision: use a 

mounted camera to acquire images containing QR codes on SLCs and 

implement standard algorithms for QR identification and localization.  

 Customization of the industrial environment: a) safety: use fences and 

warning signs to ensure that no one enters the demonstration area as well 

as prevent the mobile robot leaving that area; b) navigation and 

localization: place reflector landmarks at the workstations; c) warehouse: 

customize the SLC storage consisting of two tables with four slots on each 

table. 



 

 

Fig. 8 Customization for the real-world demonstration 

3.3 Mission planner and controller 

Another important part of the real-world demonstration is the interaction and 

communication between the mobile robots and the manufacturing system or shop-

floor operators. By integrating the mobile robot into the general manufacturing 

network, it is possible to plan and control globally, as the mobile robot becomes a 

resource on the same level as corresponding manufacturing device. A program 

named Mission Planner and Controller (MPC) was developed to handle this 

integration. 

The MPC consists of two main modules: Mission Planner (MP) and 

Mission Controller (MC). The MP module, into which the GA-based heuristic 



 

(the decision-making nucleus) is integrated, is responsible for quickly generating 

best schedules under considerations of practical constraints. The MC module has 

responsibility for transforming generated schedules into real schedules/executions 

based on the feedback from the mobile robot. First, the input data is derived from 

a shop-floor operator or from Manufacturing Execution System (MES). Then, the 

MP module uses the input data to generate the best schedule which serves as an 

input to the MC module (this best schedule is also shown to the operator). Next, 

the MC module uses XML-based TCP/IP communication via a wireless network 

to command the mobile robot to execute tasks in succession according to the best 

schedule and feedback from the mobile robot. In practice, there might be some 

unexpected events such as errors in manufacturing cell (e.g. machine breakdown) 

or changes in manufacturing condition (e.g. cycle time of production lines). These 

events will be reported by the MES so that the MC module is able to update 

current status of the shop floor and then call the MP module to reschedule feeding 

tasks of the mobile robot. The MP module will in turn use the current status as 

new input, re-optimize to find an alternative schedule, and send this schedule back 

to the MC module for real executions [5]. Fig. 9 below depicts the overall 

structure of the MPC and its communication with the MES and mobile robot.  

Mission Planner and Controller

Operator/MES

Input data

OPC Servers

Mission 

Controller

Mission 

Planner

Schedule/Plan

Task feedback

Task feedback

Equipment 

information/status

Equipment information/status

Mobile Robot

Signal 

information

Task command

Data (rescheduling)

Schedule/Plan

 

Fig. 9 The overall structure and communication of the MPC 

4 Numerical Experiments 

To examine the methodology, specifically the performance of the MIP model and 

GA-based heuristic, a real-world demonstration and computational experiments 

are conducted in this section. The real-world demonstration including two 



 

different cases has been investigated with real data of Grundfos A/S, a Danish 

company which is one of the world’s leading pump manufacturers. The extension 

of the demonstration considering several reasonable assumptions has been also 

conducted to make the evaluation of the proposed approaches more convincing. 

Finally, various problem instances are randomly generated and tested in order to 

provide more persuasive evidence of the performance of the proposed approaches. 

In the experiments, the MIP model has been coded and solved by the 

mathematical modelling language ILOG CPLEX, while the GA-based heuristic 

has been programmed in VB.NET. All the experiments run on a PC having an 

Intel® Core i5 2.67 GHz processor and 4 GB RAM. 

4.1 Real-world demonstration 

The methodology was tested for a period of three days at the CR 1-2-3 impeller 

production line. The following data are taken from the MES as well as real tests 

on the shop floor of the CR factory. This data is used as input for two cases of the 

demonstration. The average number of parts per SLC fed to feeder 1 or 4 is 125 

(approximately 2 kg/SLC), while the average number of parts per SLC fed to 

feeder 2 and 3 is 1100 (approximately 1 kg/SLC). The maximum levels, minimum 

levels, and part-feeding rates to machines of feeders are given in Table 1. The 

part-feeding rates to machines of feeders are derived from the cycle time of the 

CR line of 4.5 seconds [16]. Specifically feeders 1 and 4 feed machines with one 

back plate and one front plate every 4.5 seconds, while feeders 2 and 3 feed 

machines with one vane every 1.5 seconds (3 vanes for every 4.5 seconds). The 

working times of the mobile robot at the feeders are given in Table 2, and Table 3 

shows the travelling times of the mobile robot from locations to locations (feeder 

0 means the warehouse). 

Table 1 Maximum levels, minimum levels and part-feeding rates to machines of feeders 

Feeder/Task 1 2 3 4 

Maximum level (part) 250 2000 2000 250 

Minimum level (part) 125 900 900 125 

Part-feeding rate (second/part) 4.5 1.5 1.5 4.5 

Table 2 Working times of robot at locations (seconds) 

Feeder/Task 0 1 2 3 4 

Working time of robot 110 42 42 42 42 

 



 

Table 3 Travelling times of robot from locations to others (seconds) 

                  To feeder 

From feeder 
0 1 2 3 4 

0 0 50 58 45 34 

1 49 0 56 48 59 

2 58 56 0 32 45 

3 42 49 32 0 42 

4 34 60 44 42 0 

In the initial design, the mobile robot has the capability to carry up to three 

SLCs at a time while performing the multiple-part feeding tasks at the feeders. 

Hence, two different cases of the demonstration have been investigated 

corresponding to two maximum numbers of SLCs, Qm = 2 and Qm = 3, and with 

the planning horizon T of approximately 35 minutes due to the robot’s battery 

limit. In each case of the demonstration, the total number of requests of the 

multiple-part feeding tasks is 8, and the number of decision variables is 2112. 

Furthermore, two situations of the MIP are investigated for comparing the 

performances with the GA-based heuristic. The first situation is carried out when 

giving the same maximum computation time CTm as the GA-based heuristic while 

the second situation is performed without limit on the computation/run time. The 

weighted coefficient α is set to be 0.2 because the first objective of minimizing the 

total travelling time of the robot is less important than the second objective of 

minimizing the total tardiness of the tasks. For GA parameters, pilot runs have 

been utilized to decide on the values of Np, Pc, Pm, Gc, and CTm. Each parameter is 

tested at four different levels. These are respectively: Np (50, 100, 150, 200), Pc 

(0.4, 0.6, 0.8, 1.0), Pm (0.05, 0.1, 0.15, 0.2), Gc (50, 100, 150, 200), and CTm in 

seconds (15, 30, 45, 60). There are ten observations under each level, and the 40 

runs of each parameter are made in random. The best performance of the GA-

based heuristic in terms of the weighted objective value and computation time is 

obtained at 100, 0.8, 0.1, 100, and 60 for Np, Pc, Pm, Gc, and CTm, respectively. 

Table 4 gives solutions of the MIP and GA-based heuristic on the weighted 

objective value (in seconds) and computation time (in seconds) for the 

demonstration at the CR line. Sequences of the multiple-part feeding tasks found 

by the heuristic are depicted using Gantt charts in Fig. 10. 
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Fig. 10 Gantt charts for the solutions of two cases of the demonstration 

From Table 4, it can be seen that when giving the same maximum 

computation time CTm as the GA-based heuristic, the MIP found feasible 

solutions for the two cases of the demonstration. However, the solutions found by 

the MIP are much worse than those found by the proposed heuristic. Even in case 

1 the solution found by the MIP incurs a tardiness of 723.9 s/12.1 min while the 

solutions found by the heuristic do not incur any tardiness of tasks. The weighted 

objective values found through the heuristic are greater than those found by the 

MIP when the run time of the MIP is unlimited. However, the differences are only 

about 5%, and this is deemed to be an acceptable error. Furthermore, the 

computation time shows that use of the MIP is too time-consuming while the 

heuristic significantly faster obtains near-optimal solutions (approximately 4 

hours in case 1 or 1.3 hours in case 2 as opposed to less than a second). It also 

reveals that the higher maximum numbers of SLCs the robot can carry, the less it 

has to travel around the production cell (561 s/9.4 min with Qm of 2 as opposed to 

418 s/7 min with Qm of 3). 



 

Practically, the demonstration on the shop floor of the CR factory was a 

success. The mobile robot prototype was able to continuously pick and place 

SLCs from/to the warehouse and empty them into different feeders of the CR line. 

This sequence of serving feeders was practically based on the near-optimal 

schedules (with no tardiness) generated from the GA-based heuristic in the MP 

module and then sent through the MC module of the MPC. The main performance 

characteristics of the mobile robot in the demonstration are listed as follows: a) 

mobile platform accuracy: ± 10 mm; b) effective platform payload: 50 kg; c) 

manipulation accuracy (vision guided): ± 1 mm; d) effective manipulator payload: 

2 kg. 

4.2 Computational experiments 

In this section, the performance of the MIP model and GA-based heuristic will be 

tested on a large number of problem instances. Firstly, the demonstration is 

extended by assuming that the mobile robot has capability of carrying up to 4 

SLCs at a time, and the battery limit of the mobile robot allows it to work up to 8 

hours (a full production shift). Further comparisons of the weighted objective 

value and computation time for the MIP and GA-based heuristic are presented in 

Table 5. Note that in this extended demonstration, the MIP is solved under 

consideration of the maximum computation time CTm as the GA-based heuristic. 

The objective values and computation times of the proposed heuristic are the 

average of 30 runs. The cells containing a “–” symbol indicate that the results of 

the corresponding problems cannot be obtained by using the corresponding 

method. The total number of requests of all tasks and number of decision 

variables are also given. From Table 5, it can be observed that the proposed 

heuristic has the capability of solving larger problems while the MIP cannot find 

any feasible solution for problems of this scale. It also shows that in case of full 

production shift of 8 hours, the proposed heuristic is able to find the best solutions 

in less than 40 seconds. Furthermore, the standard deviation of the weighted 

objective value is quite small in comparison with the average. The GA-based 

heuristic, therefore, demonstrates efficiency in solving the larger problems. 
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Secondly, 10 problems are generated with different numbers of feeders, 

maximum numbers of SLCs, planning horizons, and other system parameters. The 

number of feeders and the maximum number of SLCs are randomly generated in 

the ranges of [3, 10] and [2, 4], respectively. The planning horizons in hours are 2, 

4, and 8 corresponding to a quarter, half, and full of the production shift. The 

maximum and minimum levels of parts in feeders are respectively uniformly 

distributed within the ranges of [500, 2000] and [100, 1000] while part-feeding 

rates to machines of feeders (in seconds) are generated in the interval [1.5, 6.5]. 

The working times of the robot in seconds at feeders and the warehouse are 

respectively distributed within the range of [40, 60] and [100, 120] while the 

travelling times of the robot in seconds are generated in the interval [30, 70]. Note 

that the time/cost matrices of the generated travelling times should satisfy the 

triangle inequality. The comparisons between the MIP and GA-based heuristic for 

10 randomly generated problems are presented in Table 6. Similar to the 

extension of the demonstration, the MIP is solved under consideration of the 

maximum computation time CTm as the GA-based heuristic. The objective values 

and computation times of the proposed heuristic are the average of 30 runs. 

General information for these 10 problems is also shown in Table 6. 

It can be seen from Table 6 that the GA-based heuristic is superior to the 

MIP for large problems. The MIP found feasible solutions for problem instances 1 

and 3. However, the solutions found by the MIP are much worse than those found 

by the proposed heuristic. Furthermore in problem instances 1 and 3, the solutions 

found by the MIP incurs tardiness while those found the proposed heuristic do not 

incur any tardiness. For the other problems, the MIP cannot find any feasible 

solution. The GA-based heuristic, by contrast, is able find best solutions for all 10 

problem instances. These best solutions do not incur tardiness except problem 

instance 10. Moreover, in terms of the objective value, the standard deviation is 

quite small in comparison with the average. These results provide more persuasive 

evidence to prove that the GA-based heuristic performs effectively. 
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5 Conclusions 

The paper studies the problem of implementation of an autonomous industrial 

mobile robot in a real-world application. The multi-criteria optimization problem 

of scheduling tasks of the mobile robot is also considered. The main novelties of 

this research lie in the transfer of the mobile robot technology from laboratory 

experiments to real-world applications and in the scheduling problem with the 

simultaneous consideration of soft time windows of tasks and limit on carrying 

capacity of the mobile robot. A methodology was proposed to assign the mobile 

robot to the production environment. This methodology consists of a mobile robot 

system design (Little Helper prototype), a suitable industrial application (multiple-

part feeding), an implementation concept for industrial environment (the 

Bartender Concept), an MIP model, and a GA-based heuristic. The MIP model is 

used to find exact optimal solutions for the problem of scheduling multiple-part 

feeding tasks of the mobile robot. Due to the NP-hard nature of the scheduling 

problem, this mathematical method is only applicable to small-scale problems 

with few feeders and a short planning horizon. A genetic algorithm-based 

heuristic was then proposed to find near-optimal solutions. The quality of these 

solutions could then be evaluated by using the MIP solutions as reference points 

to quantify the scale of benefits. The real-world demonstration at an impeller 

production line and more computational experiments were described to 

demonstrate the effectiveness of the methodology, specifically the MIP model and 

GA-based heuristic. Overall, the real-world demonstration was a success as the 

experiments showed that the mobile robot was capable of continuously 

performing meaningful industrial tasks. The results of the demonstration also 

showed that use of the MIP was too time-consuming while the proposed heuristic 

was significantly faster in obtaining near-optimal solutions. Further experiments 

provided persuasive evidence that the proposed heuristic is capable of solving 

problems of various sizes and more efficient than the MIP in terms of the 

weighted objective value when giving the same maximum computation time. 

These solutions are useful for decision making at operational levels, and the 

proposed heuristic could be also applied in a variety of tasks of not only mobile 

robots but also automatic guided vehicles or unmanned aerial vehicles. For further 

research, the mobile robot will be improved to perform more advanced tasks such 

as pre-assembly, quality inspection, and machine tending. Consequently, a general 



 

model of scheduling a fleet of mobile robots to perform these advanced tasks 

should be taken into account. 
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Abstract. This paper deals with the problem of simultaneously scheduling ma-
chines and a number of autonomous mobile robots in a flexible manufacturing 
system (FMS). Besides capability of transporting materials between machines, 
the considered mobile robots are different from other material handling devices 
in terms of their advanced ability to perform tasks at machines by using their 
manipulation arms. The mobile robots thus have to be scheduled in relation to 
scheduling of machines so as to increase the efficiency of the overall system. 
The performance criterion is to minimize time required to complete all tasks or 
makespan. A heuristic based on genetic algorithm is developed to find the best 
solution for the problem. A numerical example is investigated to demonstrate 
results of the proposed approach. The implementation of the proposed approach 
in a multi-agent system is also generally described.  

Keywords: Scheduling, Mobile Robots, Genetic Algorithm, FMS. 

1 Introduction 

The automation technology in combination with advances in production management 
has dramatically changed the equipment used by manufacturing companies as well as 
the issues in planning and control. With these changes, highly automated and un-
manned production systems have become more popular in several industrial areas, 
e.g., automotive, chemical, robot, and pump manufacturing. An automatic production 
system consists of intelligent and flexible machines and mobile robots grouped into 
cells in such a way that entire production of each product can be performed within 
one of the cells. Mobile robots capable of moving around within their environment 
and not fixed to one physical location are among various advanced material handling 
techniques that are finding increasing applications in today manufacturing. However, 
besides transporting a variety of part types from one point to another without human 
intervention, mobile robots are more significantly advanced than automated guided 
vehicles (AGVs) in the capability of performing various value-added tasks on differ-
ent machines (or workstations) based on their manipulation arms. The tasks include 
such processes as machine tending, pre-assembly, and quality inspection. Moreover, 
using mobile robots can lead to production efficiency gains such as less energy usage 
or lower tool-changing costs than typical industrial robots. The advanced abilities of 
the mobile robots pay the way for establishing transformable production systems that 
combine the best features of both fully automated and strictly manual manufacturing 
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environments. In this paper, a particular problem is taken into account. The problem 
consists of a number of operations of different tasks which are processed on flexible 
machines. The processes of the operations need the participation of the mobile robots 
which not only transport parts of tasks from one machine to another where needed but 
also perform the operations of tasks on the machines. In that context, mobile robots 
play the role of agents, attempting to reach goals while following rules specific for a 
given production system. The considered systems are thus treated as multi-agents 
ones in which each robot can be seen as an autonomous object capable of undertaking 
decisions about moving, feeding, and completing operations, etc. [6]. However, to 
utilize the systems in an efficient manner requires the ability to properly schedule 
operations of tasks on machines and agents. Hence, it is important to plan in which 
sequence the machines and agents process the operations so that performance criteria 
can be achieved while satisfying a number of practical constraints. 

The problem of simultaneous scheduling of machines and mobile robots has been 
modeled in several respects comparable to the problems of simultaneous scheduling 
of machines and AGVs which have attracted interest of researchers in recent decades. 
Ulusoy and Bilge [13] and Bilge and Ulusoy [2] propose an iterative heuristic based 
on the decomposition of the master problem into two sub-problems. Ulusoy et al. [14] 
describe a genetic algorithm (GA) approach for concurrent scheduling machines and 
AGVs. Abdelmaguid et al. [1] introduce a hybrid method composed of a GA for 
scheduling of machines and a heuristic for scheduling of vehicles. Jerald et al. [10] 
deal with the problem of scheduling of parts and AGVs in an FMS environment using 
adaptive GA. Reddy and Rao [12] present a hybrid multi-objective GA for scheduling 
of machines and AGVs in FMS. Lin et al. [11] model an AGV system by using net-
work structure and propose an effective evolutionary approach for solving a kind of 
AGV problems. Deroussi et al. [8] develop a simple metaheuristic approach in which 
a new solution representation based on vehicles rather than machines to solve the 
problem of simultaneous scheduling of machines and AGVs. Bocewicz et al. [3-4] 
deal with the problem of AGV operation synchronization mechanism in FMSs where 
transport processes can be modeled as a system of cyclic concurrent processes sharing 
common resources, e.g., machines. Bocewicz and Banaszak [5] present a new model-
ing framework enabling to prototype and evaluate multimodal cyclic processes, e.g., 
vehicles, which share common machines while comparing their cyclic steady state.  

Although much related research has been completed, the problem of simultaneous 
scheduling of machines and mobile robots has not yet been studied in the literature. 
Furthermore, the surveyed genetic algorithms to agent-based solutions are not well 
suited and cannot be directly used to solve this problem due to the lack of a suitable 
mechanism to simultaneously assign tasks to machines and mobile robots while tak-
ing into account precedence and routing constraints. In this problem, the considered 
mobile robots have not only the capability of transporting parts of tasks similar to 
other material-handling devices but also the advanced capability of performing tasks 
at destination machines by using their manipulation arms. In other words, after trans-
porting parts of the tasks to the destination machines, the mobile robots have to stay at 
those machines and complete performing the tasks before moving to other places. 
Moreover, this problem is composed of two interrelated decision problems that are 
scheduling of machines and scheduling of mobile robots (or vehicles). Both problems 
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are known to be NP-hard [8] resulting in a more complicated NP-hard problem when 
they are taken into account simultaneously. In that context, our main contribution is to 
develop a computationally efficient heuristic based on genetic algorithm, a promising 
algorithm to this class of problems, so as to find the best solutions for the problem of 
simultaneous scheduling machines and mobile robots. Compared to other optimiza-
tion methods, the major benefit of GA regards multiple directional search using a 
set/population of candidate solutions which enables GA to search in several directions 
simultaneously. In this way, many paths to the optimum are processed in parallel that 
leads to a clear improvement in performance. Furthermore, since information from 
many different regions is used, GA is resistant to remain trapped in a suboptimal solu-
tion and able to move away from it if the population finds better solutions in other 
areas. In this paper, the best solutions achieved by the genetic algorithm-based heuris-
tic are useful for decision making at operational levels and the proposed approach 
enables to model and evaluate scheduling tasks of multi-agent systems. 

The remainder of this paper is organized as follows: in the next section, problem 
description is presented while a heuristic based on genetic algorithm is developed in 
Section 3. A numerical example is conducted to demonstrate results of the proposed 
approach in Section 4. Section 5 generally describes how the proposed approach has 
been implemented and interacted with other components in a multi-agent system. 
Finally, conclusions and future research directions are drawn in Section 6. 

2 Problem Description 

The work is developed for an FMS which products parts or components for the pump 
manufacturing industry at a factory. In the FMS, a set of independent tasks has to be 
processed without pre-emption on a set of machine tools along with a set of identical 
mobile robots (agents). Each task consists of a sequence of operations. Each machine 
and each mobile robot can process only one operation at one time, and each operation 
can be processed by only one machine and one mobile robot at the same time. Note 
that in this FMS processing operations at machines has the participation of mobile 
robots. This results from the mobile robots’ advanced abilities which enable them not 
only to transport parts from one machine to another but also performing operations on 
the machines to which the parts are transported. The considered FMS can be seen as a 
multi-agent system.  

To enable the construction of a simultaneous schedule for the machines and mobile 
robots, assumptions are considered as follows: 

• Each task is available at the beginning of the scheduling period. 
• Each operation sequence of each task (the routing of each part type) is available 

before making scheduling decisions. 
• Each mobile robot can transport only one kind of parts at a time. 
• There is sufficient output buffer space at each machine. 
• Traveling time is only machine-dependent and deterministic. Processing time is 

also deterministic. 
• Such issues as traffic congestions, mobile robot collisions, machine failures, scraps 

are not considered in this paper. 
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Making decisions on scheduling machines and mobile robots simultaneously is a part 
of the real-time activities of production planners. It means that the best solution must 
be quickly obtained at the beginning of (re)scheduling periods. Furthermore, concern-
ing the problem belonging to NP-hard class, computation time exponentially grows 
with the size of the problem, e.g., more number of tasks, machines, or mobile robots. 
It is therefore necessary to develop a computationally effective algorithm, namely a 
GA-based heuristic, which determines in which sequence the machines and mobile 
robots should handle tasks so as to minimize time required to complete all tasks or 
makespan while satisfying a number of practical constraints. 

3 Genetic Algorithm-Based Heuristic 

In this section a genetic algorithm, a broadly applicable search approach imitating the 
evolutionary process in nature, is used to develop a heuristic which is allowed to con-
vert the mentioned problem to the way that best solutions could be found. In GAs, 
each individual solution is represented in the form of a finite length string called a 
chromosome. A chromosome is composed of a set of locations known as genes that 
contain discrete values pertaining to a problem solution. Through the use of genetic 
operators such as crossover, mutation, and selection to the chromosomes of selected 
solutions are in a systematic fashion to generate a new generation of solutions moving 
towards the optimization of certain criteria [9]. The GA-based heuristic shown in Fig. 
1 consists of the following main steps: genetic representation; initialization; decoding 
operator and fitness evaluation; genetic operators including selection, crossover, and 
mutation; repair operator; termination criteria. 

 

Fig. 1. Flow chart of GA-based heuristic 

3.1 Genetic Representation 

One of the main concerns when applying GAs to an optimization problem is to find 
an appropriate coding scheme that transforms feasible solutions into representations 
amenable to genetic search and reversibly decode these representations [1]. For the 
problem under consideration, a feasible solution can be encoded by a chromosome 
representing both operation sequencing and mobile robot assignment. Consequently, 
each gene in the chromosome is made up of two parts. The first part refers to an oper-
ation on a specific machine which is assumed to be scheduled at its earliest starting 
time. The second part identifies the mobile robot that will transport parts from any 
machine to that machine and then perform that operation on that machine. The chro-
mosome length is equal to the total number of operations of all tasks. Fig. 2 below 
illustrates a feasible chromosome of an example problem with 5 operations of 2 tasks, 
3 machines, and 2 mobile robots. 
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Fig. 2. Illustration of a feasible chromosome 

3.2 Initialization 

Random chromosomes are generated for providing solutions to the initial population. 
A chromosome is constructed of gene by gene. Each gene is first assigned an eligible 
operation (an operation is said to be eligible if all its predecessors are assigned). Then, 
one of the mobile robots is randomly chosen to complete the gene. If the chromosome 
is not yet complete, the eligible set of operations is updated and the process continues. 
The pseudocode of the initialization method is given below. 

Procedure: Initialization 
Begin 
 D ← {opi|opi: first operations of all tasks}; 
 R ← {1,...,nr};//nr: number of mobile robots; 
 Repeat 
  Select an operation opi ∈ D; 
  Assign opi to a mobile robot mr  R;  
  D ← D/{opi}; 
  If (successor of opi exists) Then 
   D ← D ⋃ {successor of opi}; 
 Until (D ≔ ∅) 
End 

3.3 Decoding Operator and Fitness Evaluation 

The decoding operator and fitness evaluation are described in the pseudocode below. 

Procedure: Decoding and Fitness Evaluation 
Begin 
 For i = 1 To chromosome_length 
  op ← operation at location i in the chromosome; 
  mc ← machine of op; 
  pd ← predecessor of op in the task sequence; 
  mr ← mobile robot of op; 
  If (pd ≔ ∅) Then st ← 0; 
  Else st ← pd.completion_time; 
  ns ← number of scheduled operations on machine mc; 
  If (ns > 0) Then 
   ls ← last operation scheduled on machine mc; 
   ct ← ls.completion_time; 
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   If (st < ct) Then st ← ct; 
   sr ← mr.last_work_destination; 
  If (pd ≠ ∅) Then md ← machine of pd; 
  Else md ← or; 
  et ← travel time between sr and md; 
  lt ← travel time between md and mc; 
  ft ← Max(pd.completion_time, mr.last_work_time) + et 
                            + lt; 
  If (st < ft) Then st ← ft; 
  op.completion_time ← st + op.processing_time; 
  mr.last_work_time ← op.completion_time; 
  Schedule op on machine mc and mobile robot mr; 
 End 
 Cmax ← Max(opj.completion_time|opj: last operations of 
                                            all tasks); 
End 

3.4 Genetic Operators 

Selection, crossover, and mutation are three main genetic operators. For selection, 
various evolutionary methods can be applied to this problem. (μ + λ) selection is used 
to choose chromosomes for reproduction. Under this method, μ parents and λ 
offspring compete for survival and the μ best out of the set of offspring and old par-
ents, i.e. the μ lowest in term of the makespan, are selected as the parents of the next 
generation. This selection method guarantees that the best solutions up to now are 
always in the parent generation [6-7]. 

Crossover operator generates offspring by combining the information contained in 
the parent chromosomes so that the offspring will have desirable features from their 
parents. The Roulette-wheel selection is first used to select the parent chromosomes 
based on their fitness values. Then, a uniform crossover operated with probability Pc 
will be used to generate offspring as follows. Starting from the first operations on the 
parents, iteratively, one of the parents is randomly selected. The next unconsidered 
operation of the selected parent becomes the next operation on the first offspring 
while the next unconsidered operation of the other parent is the next operation of the 
second offspring. If the mobile robot selected for that operation is the same on both 
parents, then that selection is also made on the child; if not, one of the mobile robots 
of the parents is randomly chosen. Fig. 3 below depicts the uniform crossover. 

Mutation operator produces spontaneous random changes in various chromosomes. 
For the current encoding method, there are two mutation operators, one for each part 
of a gene and with a probability Pm. The first mutation operator selects two random 
positions on a chromosome and swaps the operations with respect to those positions. 
Note that the chromosome may be infeasible in terms of precedence constraints after 
the operation mutation. Hence it has to be adjusted by using the repair operator in 
Section 3.5. The second mutation operator replaces the mobile robot assignment at a 
gene with one of the mobile robots which is randomly chosen. This may lead to the 
same mobile robot assignment for a particular gene, and aim to prevent the loss of any 
good assignment.  
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Fig. 3. Uniform crossover 

3.5 Repair Operator 

A repair operator is developed to validate chromosomes with any precedence viola-
tions after the mutation operators. This operator involves the exchange of locations of 
operations belonging to the same task such that a valid sequence of operations is 
achieved. The following pseudocode describes how the repair operator works. 

Procedure: Repair Operator 
Begin 
 For i = 1 To chromosome_length - 1 
  opi ← operation at location i in the chromosome; 
  pdi ← predecessor of opi in the task sequence; 
  ex ← True    
  Repeat While (pdi ≠ ∅) And (ex ≔ True) 
   For j = i + 1 To chromosome_length 
    opj ← operation at location j in the chromosome; 
    If (pdi ≔ opj) Then 
     ex ← True; 
     Exchange locations of opi and opj; 

     Update opi at location i and pdi of opi; 
     Exit For 
    Else ex ← False;  
   End 
 End    
End 

3.6 Termination Criteria 

Termination criteria are used to determine when the GA-based heuristic should be 
stopped. Note that making decision on which sequence mobile robots and machines 
should handle tasks is a part of real-time activities of production planners. Therefore, 
on the one hand, if the best solutions over generations do not converge to a value, the 
maximum generation Gm would be used to stop the run. On the other hand, if the best 
solution does not improve over Gc consecutive generations, it would not be valuable 
to continue searching. 
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4 Numerical Example 

In this section, an example problem is generated to examine performance of the GA-
based heuristic. An FMS in the example problem has three machines M1, M2, and 
M3. There independent tasks with a total of seven operations are to be carried out. 
Two identical mobile robots are used to process the operations on three machines. 
The processing times of the operations are given in Table 1. This table also gives the 
precedence constraints among the operations in each task, e.g., the second operation 
of task 1 can be carried out only after the first operation of task 1 is complete. The 
traveling times of mobile robots from one machine to another are given in Table 2. 

Table 1. Processing time of operations of tasks 

Task Operation Machine Processing time 

1 1 M1 30 
 2 M3 42 

2 1 M2 24 
 2 M1 18 
 3 M3 36 

3 1 M2 30 
 2 M3 24 

Table 2. Traveling time of robots from one machine to another 

From/To M1 M2 M3 

M1 0 12 12 
M2 16 0 20 
M3 12 12 0 

 
For GA parameters, the population size of 50 is used and probabilities of crossover 

Pc and mutation Pm are set to be 0.6 and 0.1, respectively. The termination is stop at 
the generation Gm of 200 or if no improvement is made after Gc of 50 generations. 
The proposed heuristic has been programmed in VB.NET and run on a PC having an 
Intel® Core i5 2.67 GHz processor and 4GB RAM. Fig. 4 shows the convergence of 
the best solution of the proposed heuristic. 

The best solution obtained is given as: 21,2 - 11,1 - 12,1 - 31,2 - 22,2 - 23,2 - 32,1. 
The time required to complete all tasks or makespan is 160 time units and the computa-
tion time in this case is less than a second. The best solution of the example problem is 
depicted graphically by a Gantt chart with a small modification made to represent the 
schedules of the mobile robots. As shown in Fig. 5, a row is added to each mobile ro-
bot in order to show time intervals during which a mobile robot is transporting and 
performing its assigned operations. These time intervals are illustrated by non-colored 
bars and colored bars for transporting and performing the assigned operations to/at the 
destination machines, respectively. Note that the time interval needed to complete 
transporting may include part for an empty trip depending on the previous location of 
the mobile robot. This part is represented in the Gantt chart by using a shaded area in 
the non-colored bar, e.g., operation 32 is transported from machine 2 to machine 3 by 
mobile robot 1 at machine 3.  
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Fig. 4. Convergence of the GA-based heuristic 

 

Fig. 5. Gantt chart for the best solution of the example problem 

5 Implementation of Proposed Approach in Multi-agent System 

This section generally describes how the proposed approach has been implemented in 
a multi-agent system and highlights the interactions between difference components. 
The proposed genetic algorithm-based heuristic, the decision-making nucleus, is inte-
grated into the Mission Planning (MP) module of the Mission Planner and Controller 
(MPC). At first, the input data is derived from an operator through a user interface 
provided by the MPC or from Manufacturing Execution System (MES). Then, the MP 
module uses the input data to generate the best schedule/plan which serves as an input 
to the Mission Control (MC) module of the MPC (this best schedule is also shown to 
the operator via the user interface). Next, the MC module uses XML-based TCP/IP 
communication via a wireless network to command mobile robots to execute tasks in 
succession according to the best schedule and feedback from these mobile robots. In 
practice, there might be some unexpected events such as breakdown of machines or 
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mobile robots. These events will be reported by MES or the mobile robots so that the 
MC module is able to update current status of the shop floor and then call the MP 
module to reschedule the machines and mobile robots if needed. The MP module will 
in turn use the current status as new input, re-optimize to find an alternative schedule, 
and send this schedule back to the MC module for execution. Fig. 6 below depicts the 
aforementioned multi-agent system architecture.  

 

Fig. 6. Multi-agent system architecture 

6 Conclusions 

In this paper, a problem of simultaneous scheduling of machines and autonomous 
mobile robots in an FMS environment is studied. To complete all tasks in minimum 
possible time, it is important for production planners to determine in which sequence 
the mobile robots and machines should transport and process operations of tasks 
while satisfying a number of practical constraints. The main novelty of this research 
lies in the consideration of the participation in performing tasks at machines of the 
mobile robots. A genetic algorithm-based heuristic was developed to find the best 
solutions for the problem. An example problem was generated to demonstrate the 
efficiency of the proposed heuristic. The result showed that the proposed heuristic 
was significantly fast to obtain the best solution. The solution is useful for decision 
making at operational levels and the proposed approach provides a solid framework 
that enables to model and evaluate scheduling tasks of multi-agent systems. The im-
plementation of the proposed approach and its interaction with other components in a 
multi-agent system was also generally described and highlighted. For further research, 
lot-sizing procedures for parts with respect to the capacity of the mobile robots should 
be considered as integral part of the optimization process. Furthermore, rescheduling 
mechanisms based on obtained schedules and feedback from the mobile robot fleet 
and machines should be also developed to deal with real-time disturbances. 
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Abstract. This paper deals with the problem of simultaneous scheduling of machines and 

autonomous mobile robots in a flexible manufacturing system (FMS). Two types of tasks, namely 

non-preemptive and preemptive tasks, are considered to be scheduled on flexible machines. The 

mobile robots in this study have the capability of not only transporting non-preemptive tasks 

between some machines similar to material handling devices but also processing preemptive tasks 

on other machines by using their manipulation arms. These mobile robots are allowed to interrupt 

their preemptive tasks to carry out transportation for non-preemptive tasks when needed. The 

performance criterion is to minimize the makespan. A genetic algorithm-based heuristic is 

presented which results in a significant increase in the speed of finding near-optimal solutions. To 

evaluate the performance of the genetic algorithm-based heuristic, a mixed-integer programming 

model has been developed for the problem. A numerical example and computational experiments 

are conducted to demonstrate the effectiveness of the proposed approach. 

Keywords: scheduling; preemption; mobile robots; genetic algorithm; FMS 

1. Introduction 

The automation technology in combination with advances in production 

management has dramatically changed the equipment used by manufacturing 

companies as well as the issues in planning and control. These changes have led 

to an enormous increase in efficiency and flexibility so that the progress of 

automation has become a necessity in global competition. Consequently, highly 

automated and unmanned production systems have become more popular in 

several industrial sectors, e.g. automotive, chemical, robot, and pump 

manufacturing [5]. Typically, an automatic production system consists of 

intelligent and flexible machines grouped into cells in such a way that entire 

production of each part/product can be performed within one of the cells. Within a 

cell, material handling could be performed by automatic guided vehicles (AGVs), 

industrial (fixed) robots, and autonomous mobile robots. Mobile robot is a term 



 

used to refer to robotic systems consisting of a robot arm mounted on a mobile 

platform, which allow performance of tasks that require both locomotion and 

manipulation abilities [12]. Similar to AGVs, mobile robots have the capability of 

moving around within their environment to transport a variety of part types from 

one point to another without human intervention. However, mobile robots are 

more significantly advanced than AGVs in terms of the capability to perform 

various value-added tasks on different machines or workstations based on their 

manipulation arms. The tasks include such processes as machine tending, pre-

assembly, and quality inspection. In contrast to dedicated and/or fixed robots, 

mobile robots are able to bring both task flexibility and robotic mobility to 

industrial applications. Furthermore, using mobile robots can lead to production 

efficiency gains such as less energy usage or lower tool-changing costs than 

dedicated and/or fixed robots. These superior abilities in comparison with AGVs 

and fixed robots pave the way for autonomous mobile robots to find increasing 

applications in today manufacturing.  

In this paper, a problem of simultaneous scheduling of machines and 

mobile robots in a flexible manufacturing system (FMS) is taken into account. 

The FMS consists of a number of operations of different tasks processed on a set 

of flexible machines, and a set of mobile robots. Some of the tasks are non-

preemptive while the others are preemptive. The non-preemptive tasks require the 

mobile robots to transport material/parts between the machines. The preemptive 

tasks are particularly processed based on the interaction between the machines and 

mobile robots. In other words, the mobile robots operate the machines to execute 

these preemptive tasks. When a mobile robot is being occupied by a preemptive 

task and a non-preemptive task invokes transportation at some point in the 

scheduling period, this mobile robot will pause to process the preemptive task, do 

the transportation for the non-preemptive task before going back to processing the 

preemptive task if the preemptive task has not been finished yet. In that context, to 

utilize the system in an efficient manner requires the capability of properly 

scheduling and routing mobile robots in connection with scheduling different 

tasks on machines. This problem could be considered as a variant of the problem 

of simultaneous scheduling of machines and AGVs in which its subproblems, 

machine scheduling and AGV scheduling, are both known to be NP-hard [8]. The 

main novelties of this research are that mobile robots are responsible for not only 



 

transporting non-preemptive tasks but also processing preemptive tasks, and 

mobile robots must interrupt their processing tasks to do transportation for non-

preemptive tasks when needed. The objective is to minimize the makespan Cmax, 

i.e. the time required to complete all tasks. Note that making decision in 

scheduling and routing mobile robots in connection with scheduling machines is 

part of real-time operations. This gives the added requirement that the best 

solutions must be obtained quickly. Furthermore, the complexity of the considered 

problem rapidly rises when the number of tasks and/or mobile robots increases. 

Therefore, in this paper focus is on developing a computationally efficient 

approach, namely GA-based heuristic for the simultaneous scheduling machines 

and mobile robots. To evaluate the performance of the proposed heuristics, a 

mixed-integer programming (MIP) model is also presented.   

The remainder of this paper is organized as follows. In the next section, 

the literature survey of the research is described. The problem description with a 

mixed-integer programming model of the problem is presented in Section 3. The 

solution approach using a GA-based heuristic is developed in Section 4. Section 5 

illustrates the results of the proposed heuristic and compares its performance with 

that of the MIP model. More computational experiments are further investigated 

in this section. Finally, conclusions and future research directions are drawn in 

Section 6. 

2. Survey of literature 

The problem of simultaneous scheduling of machines and mobile robots in an 

FMS has been modeled in several respects comparable to the joint scheduling 

problems of machines and AGVs. However, it is different from the problems 

concerning AGVs in the sense that mobile robots are capable of performing 

manufacturing/production tasks in the shop floor. Several approaches and models 

for exact or (meta-) heuristic algorithms have been proposed to address problems 

of this type. Exact methods are mainly used for the research of simple or 

particular FMS. Blazewicz et al. [3] study the model of an FMS taking into 

account both machine and vehicle scheduling, and then propose a dynamic 

programming approach to construct optimal production and vehicle schedules. 

This FMS is later formulated in mixed-integer programming by Bilge and Ulusoy 

[2]. According to the authors, the resulting model is intractable in practice due to 



 

its nonlinearity and its size. Khayat et al. [14] propose an integrated formulation 

of the combined production and material handling scheduling problems using 

mathematical programming and constraint programming techniques. Caumond et 

al. [4] deal with the linear formulation of an FMS considering the maximum 

number of jobs, limited input/output buffer capacities, empty-vehicle trips and no-

move-ahead trips concurrently. Nevertheless, only one AGV is considered as a 

special case of the general FMS.   

Heuristic methods are well adapted to study most of the FMS. On the one 

hand, some works are dedicated to simplified forms of the material handling 

system of the FMS considering only one transport device. As illustration, Soylu et 

al. [19], Hurink and Knust [11], Lacomme et al. [15] propose, respectively, neural 

network, tabu search, and heuristic branch-and-bound approaches for scheduling 

of the FMS based on a single AGV or transport robot. On the other hand, many 

works are undertaken on the FMS scheduling with multiple AGVs. Ulusoy and 

Bilge [20] and Bilge and Ulusoy [2] propose an iterative method based on the 

decomposition of the master problem into two sub-problems: machine scheduling 

and vehicle scheduling. A heuristic algorithm generates machine schedules to 

solve the first problem. A solution heuristic based on sliding-time-window 

approach is introduced to find feasible solutions to the vehicle scheduling problem 

given the machine schedules. Ulusoy et al. [21] deal with the problem of 

concurrent scheduling of machines and AGVs by proposing a genetic algorithm 

(GA) which provides a suitable coding scheme to represent both dimensions of 

the search space: operation sequencing and AGV assignment. Abdelmaguid et al. 

[1] introduce a hybrid method composed of a GA for scheduling of machines and 

a heuristic for scheduling of vehicles. Reddy and Rao [18] present a hybrid multi-

objective GA to solve the simultaneous scheduling of machines and AGVs in an 

FMS in which makespan, flow time, and tardiness are performance criteria. Jerald 

et al. [13] address the problem of simultaneous scheduling of parts and AGVs in 

an FMS environment using adaptive GA. Lin et al. [17] model an AGV system by 

using network structure and propose an effective evolutionary approach for 

solving a kind of AGV problems. Deroussi et al. [8] describe an efficient 

neighboring system implemented into three different meta-heuristics and a new 

solution representation based on vehicles rather than machines. Lacomme et al. 

[16] introduce a framework based on a disjunctive graph to modelize the joint 



 

scheduling problem and on a memetic algorithm for machines and identical AGVs 

scheduling. 

Although much related research has been completed, the problem of 

simultaneous scheduling of machines and autonomous mobile robots in an FMS 

has not been studied in the literature. The considered mobile robots in this 

problem have the capability of not only transporting non-preemptive tasks 

between some machines similar to material handling devices but also processing 

preemptive tasks on other machines by using their manipulation arms. During 

operations, mobile robots are allowed to interrupt their processing tasks to do 

transportation for non-preemptive tasks when needed. In that context, the 

surveyed approach are not well suited and cannot be directly used to solve this 

problem due to the lack of a suitable mechanism for scheduling and routing 

mobile robots in relation to scheduling machines while taking into account 

precedence and routing constraints. Therefore, in this paper an MIP model is first 

formulated to find optimal solutions for the problem. However, the problem is 

composed of two interrelated decision problems that are machine scheduling and 

mobile robot scheduling. Both problems are known to be NP-hard, resulting in a 

more complicated NP-hard problem as they are considered simultaneously. Due to 

the intractability of NP-hard nature [9], the MIP model could only be applicable to 

small-scale problems in practice because its computation time significant 

increases as the problem size grows. Hence, in order to deal with large-scale 

applications, a heuristic based on GA, a promising algorithm to this class of 

problems, is then developed to find near-optimal solutions for the problem of 

simultaneous scheduling of machines and mobile robots. Compared to other 

optimization methods, the major benefit of GA regards multiple directional 

searches using a set/population of candidate solutions which enables GA to search 

in several directions concurrently. In this way, many paths to the optimum are 

processed in parallel, which leads to a clear improvement in performance. In 

addition, since information from many different regions is used, GA is resistant to 

remain trapped in a suboptimal solution and able to move away from it if the 

population finds better solutions in other areas [6]. Finally, the quality of the near-

optimal solutions achieved by the proposed heuristic are compared and evaluated 

by using the MIP solutions as reference points in a numerical example and 

computation experiments. 



 

3. Problem description 

Flexible Manufacturing Systems are highly automated production systems capable 

of producing a variety of part/component types. An FMS originally includes 

intelligent and flexible machines, automated storage and retrieval systems, and 

material handling devices such as AGVs or robots. However, the development of 

automation technology has significantly changed the manufacturing equipment in 

the shop floor. With these changes, autonomous mobile robots have been 

designed and manufactured so that they can combine the flexibility of service 

robots, e.g. AGVs, with the efficiency of industrial robots, i.e. dedicated and fixed 

robots in industry. This enables these mobile robots not only to transport 

parts/components between machines but also to operate machines to process 

tasks. Therefore, they have been widely employed in not only small companies, 

which focus on exact applications and a smaller range of products, but also large 

companies, which can diversify their applications in a longer term and larger 

range. For instance in a pump parts manufacturing factory, a mobile robot is 

assigned to perform a pre-assembly task, and during that operation it also has to 

transport and feed material into some production lines when needed. In this study, 

the coordination between such mobile robots and machines in an FMS is 

considered. Fig. 1 below shows a typical layout of the FMS.  
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Machine Station 3

Machine Station 4

Machine Station 5

Mobile Robot 1

Mobile Robot 2

 

Fig. 1 Typical layout of the FMS with mobile robots 



 

The FMS consists of a number of tasks processed on a set of machines, 

and a set of mobile robots. These tasks are classified into two types which are 

non-preemptive and preemptive. Each non-preemptive task consists of a set of 

operations that cannot be interrupted, i.e. each operation in this type must execute 

without interruption from its starting time to its ending time [22]. On the other 

hand, each preemptive task considered in this paper has only one operation that 

can be interrupted at any time to let some other operations execute. There is no 

restriction on the number of interruptions or on the duration of an interruption. 

During operations, the non-preemptive tasks require mobile robots to transport 

materials/parts between some machines while the preemptive tasks need the 

participation of the mobile robots in the processing on the other machines. Each 

mobile robot may carry out the transportation for different non-preemptive tasks, 

but it is assigned to process only one preemptive task on a specific machine. 

When being occupied by a preemptive task, a mobile robot may be invoked for 

transportation of a non-preemptive task at some points in the scheduling period. 

This mobile robot will pause to process the preemptive task, carry out the 

transportation for the non-preemptive task, and go back to processing the 

preemptive task if the preemptive task has not been finished yet. In practice, e.g. 

in a pump parts manufacturing factory, production operators may set the 

maximum number of operations of non-preemptive tasks which mobile robots can 

transport each time being away from their preemptive tasks. This prevents the 

mobile robots from leaving their preemptive tasks for a long period of time, which 

may lead to the cancellation of these tasks due to some practical issues in the shop 

floor. To some extent, this also helps to increase the utilization of these robots. 

Within the scope of this study, any mobile robot is set to come back to its 

processing machine after each achieved transportation. An example illustrating 

such preemption case is given in Fig. 2. The objective function is to find the best 

schedules which minimize the makespan, i.e. time required to complete all tasks. 
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Fig. 2 Illustration of a preemption case 

 To enable the construction of a joint schedule of machines and mobile 

robots, the following assumptions are made: 

 Each task is available at the beginning of the scheduling period. 

 The first operation of each task is available at a machine at the beginning 

of the scheduling period. 

 Each operation sequence of each task (the route of each part type) is 

available before making scheduling decisions. 

 Each mobile robot can transport only one kind of parts at a time. 

 There is sufficient input and output buffer space at each machine. 

 Traveling time is only machine-dependent and deterministic. Loading and 

unloading time is included in the traveling time of loaded trips. Processing 

time is also deterministic. 

 Such issues as traffic congestions, mobile robot collisions, machine 

failures, and scraps are not considered in this paper. 

 The joint machines and mobile robot scheduling problem is formulated as 

an MIP model. In addition to some basic operation and machine scheduling 

constraints, the MIP model introduces precedence constraints for transportation of 

non-preemptive tasks in relation to preemptive tasks, constraints for assignment of 

transportation to mobile robots, and constraints for preemptive tasks. The MIP 

model and notations are written in the following: 



 

Notations 

i, i’, i* : index of tasks 

j, j’, j* : index of operations 

k :  index of mobile robots 

N : set of non-preemptive tasks 

P : set of preemptive tasks 

M : set of machines 

R :  set of mobile robots 

Om : set of operations of non-preemptive tasks to be performed on machine m 

oij : the j-th operation of task i 

Tij :  transportation for operation oij 

ni : number of operations for task i 

pij :  processing time of operation oij 

tij,i’j’ : traveling time from machine of operation oij to machine of operation oi’j’ 

Decision variables 

T : time required to complete all tasks  

p

ijs  : starting time of operation oij 

t

ijs  : starting time of transportation Tij 

' '

' '

1  if operation  precedes operation 

0  otherwise
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1  if robot  carries out transportation  for operation 

0  otherwise
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Mixed-integer programming model 

Objective function: minimize T (1) 

Subject to: 
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The objective function (1) minimizes the makespan. Constraints (2) and 

(3) represent the operation non-overlapping constraints which imply that a 

machine cannot process more than one operation at a time, where L is a very large 

number. Constraints (4) and (5) represent the mobile robot non-overlapping 

constraints which imply that a mobile robot cannot carry out more than one 

transportation task at a time. Constraint (6) ensures that the transportation for an 

operation could only start after the predecessor of that operation completes. 

Constraint (7) ensures that an operation could only start after the transportation for 

that operation finishes. Constraint (8) ensures that the transportation for an 

operation is carried by only one mobile robot. Constraints (9) and (10) ensure that 

completion time of non-preemptive operations (operations of non-preemptive 

tasks) and preemptive operations (operations of preemptive tasks) respectively 

cannot exceed the makespan T. Constraints (11) and (12) imply the types of 

variables.  

 The MIP model contains a number of decision variables that are 

constrained to have only integer values. Integer variables make optimization 

problems non-convex and thus far more difficult to solve. Memory and solution 

time may rise exponentially as the size of problem increases with more added 

integer variables. Therefore, in practice the MIP model could be applicable only 

to small-scale problems with a few tasks and/or few machines and/or few mobile 

robots. For these scenarios, the MIP model will give optimal solutions which 



 

could be used as reference points to quantify the scale of benefits achieved by the 

heuristic based on GA which is developed in the next section. 

4. Genetic algorithm-based heuristic 

Ever since GA was introduced, it has emerged as one of the most broadly 

applicable and efficient search procedures for solving various combinatorial 

optimization problems. In general, a GA is referred to as a stochastic artificial 

intelligent technique whose solution search process mimics natural evolutionary 

phenomena [10]. In this section, GA is used to develop a heuristic which is 

allowed to convert the described problem to the way that near-optimal solutions 

could be found. The GA-based heuristic shown in Fig. 3 consists of the following 

main steps: genetic representation; initialization; decoding operator and fitness 

evaluation; genetic operators including crossover, mutation, and selection; 

reparation operator; termination criteria. 

 procedure: GA-based heuristic

 input: Tasks, operations, machines, robots, processing times, traveling times

            GA parameters

 output: the near-optimal schedule of machines and mobile robots

 begin

g ← 0;

initialize P(g) by initialization routine;

decode and evaluate P(g) by decoding and fitness evaluation routine;

while (not terminating condition) do

create C(g) from P(g) by crossover and mutation routines;

repair and check feasibility by reparation routine;

decode and evaluate C(g) by decoding and fitness evaluation routine;

select P(g + 1) from P(g) and C(g) by selection routine;

end
 end

 

Fig. 3 Procedure of GA-based heuristic 

4.1. Genetic representation 

One of the main concerns when applying GAs to an optimization problem is to 

find an appropriate coding scheme that transforms feasible solutions into 

representations amenable to genetic search and reversibly decode these 

representations [17]. For the problem under consideration, a feasible solution can 

be encoded by a chromosome representing non-preemptive operation sequencing 

and mobile robot assignment. It means that each gene in the chromosome is made 

up of two parts. The first part refers to a non-preemptive operation on a specific 



 

machine that is assumed to be scheduled at its earliest starting time. The second 

part identifies a mobile robot performing the transportation for that operation. In 

case the first part of a gene contains the first operation of a task, the second part of 

that gene will be zero (0) indicating that the first operation of the task does not 

need to be transported by a mobile robot. It is because the first operation of each 

task is assumed to be available at a machine at the beginning of the scheduling 

period as mentioned above. The chromosome length equals the total number of 

non-preemptive operations of all tasks. Fig. 4 below illustrates a feasible 

chromosome of an example problem with 5 operations of 2 tasks, 3 machines, and 

2 mobile robots. 

1 2Task

1 22 3 1Operation

M1 M3M3 M2 M1Machine

21,0 13,111,0 22,2 12,2Chromosome
 

Fig. 4 Illustration of a feasible chromosome 

4.2. Initialization 

Random chromosomes are generated for providing solutions to the initial 

population. A chromosome is constructed of gene by gene. The first part of each 

gene is assigned an eligible operation (an operation is said to be eligible if all its 

predecessors are assigned). If that eligible operation is the first operation of any 

task, zero is assigned to the second part of the gene. Otherwise, one of the mobile 

robots is randomly chosen to complete the gene. If the chromosome is not yet 

complete, the eligible set of operations is updated and the process continues. Fig. 

5 below shows the pseudocode of the initialization method. 



 

Procedure: Initialization

Begin

D ← {opi|opi: first operations of all tasks};

R ← {1,...,nr};   //nr: number of mobile robots;

Repeat

Select an operation opi ∈ D;

If (opi is the first operation of any task) Then

Assign opi to 0;   //opi does not need to be transported

Else

Assign opi to a mobile robot r ∈ R; 

D ← D/{opi};

If (successor of opi exists) Then

D ← D ⋃ {successor of opi};

Until (D ≔ ∅)

End
 

Fig. 5 Pseudocode of initialization method 

4.3. Decoding scheme and fitness evaluation 

After initialization or reparation routines, chromosomes are decoded and their 

fitness values are calculated. The decoding scheme is mainly composed of the 

decoding of operation scheduling and decoding of mobile robot assignment. 

Theoretically, the scheduling of operations is similar to job shop scheduling 

problem. Hence, the decoding of non-preemptive operation scheduling is carried 

out under consideration of the predecessor and the last operation processed on the 

predefined machine of each operation. Furthermore, before the processing of an 

operation can start, it has to be transported to the predefined machine by an 

assigned mobile robot. This invokes the decoding of mobile robot assignment. 

During this step, some information (e.g. total amount of processing time and/or 

completion time) of the preemptive operation performed by the mobile robot is 

also updated. In general, a schedule for preemptive operations is determined 

through the non-preemptive operation sequencing. Following the decoding 

scheme, the fitness evaluation will take place. The fitness value of a chromosome 

is equal to the maximum completion time of non-preemptive and preemptive 

operations. The decoding scheme and fitness evaluation are illustrated by the 

following pseudocode in Fig. 6 below. 



 

Procedure: Decoding Scheme and Fitness Evaluation

Begin

      For i = 1 To chromosome_length

op ← operation at location i in the chromosome;

pd ← predecessor of op in the task sequence;

mc ← machine processing op;

mr ← mobile robot transporting op;

om ← operation processed by mr;

ns ← number of scheduled operations on mc;

If (mr = 0) Then   //0: no mobile robot needed for transporting op

st ← 0;

If (ns > 0) Then

 ls ← last operation scheduled on mc;

              ct ← ls.completion_time;

If (st < ct) Then st ← ct;

Else

st ← pd.completion_time;

If (ns > 0) Then

ls ← last operation scheduled on mc;

     ct ← ls.completion_time;

If (st < ct) Then st ← ct;

ld ← mr.last_trip_destination;

sr ← machine where mr processes om;

md ← machine processing pd;

d1, d2, d3 ← traveling time between ld and sr, sr and md, md and mc;

If (mr.last_trip_finish_time + d1 + d2 < pd.completion_time) Then

        mt ← pd.completion_time;

        If (mr.total_working_time < om.processing_time) Then

        If (om.processing_time – mr.total_working_time > 

        pd.completion_time – (mr.last_trip_finish_time + d1 + d2)) Then

   mr.total_working_time ← mr.total_working_time + 

   pd.completion_time – (mr.last_trip_finish_time + d1 + d2);

        Else

   mr.total_working_time ← om.processing_time;

   om.completion_time ← mr.last_trip_finish_time + d1 +

   (om.processing_time – mr.total_working_time);        

Else

        mt ← mr.last_trip_finish_time + d1 + d2; 

ft ← mt + d3; 

If (st < ft) Then st ← ft;

mr.last_trip_destination ← mc;

mr.last_trip_finish_time ← ft;

op.starting_time ← st;

op.completion_time ← st + op.processing_time;

Schedule op on machine mc;

      End

      For mr = 1 To nr   //nr: number of mobile robots

If (mr.total_working_time < om.processing_time) Then

mr.total_working_time ← om.processing_time;

om.completion_time ← mr.last_trip_finish_time + d1 + (om.processing_time – 

mr.total_working_time);   

      End

      Cmax ← Max (Max (opi.completion_time|i = 1...chromosome_length),

    Max (omj.completion_time|j = 1..nr));

End  

Fig. 6 Pseudocode of decoding scheme and fitness evaluation 



 

4.4. Genetic operators 

Genetic operators mimic the process of heredity of genes to create new offspring 

at each generation. The operators, in essence, are used to alter the genetic 

composition of chromosomes and expected to yield improved offspring. 

Crossover, mutation, and selection are three main genetic operators. 

 Crossover operator generates offspring by combining the information 

contained in the parent chromosomes so that the offspring will have desirable 

features from their parents. The Roulette-wheel selection is used in the algorithm, 

which probabilistically selects the parent chromosomes based on their fitness 

values [7]. Owing to the nature of the considered minimization problem, the 

higher the makespan is, the less fitness a chromosome should show. Let F(p) 

denote the fitness value under the solution represented by parent p, then F’(p) = 

max{F(p)|1 ≤ p ≤ Np} – F(p) where Np: population size. The expected probability 

of parent p to be selected is given by F’p/∑F’p. 

Several crossover operators have been proposed for permutation 

representation, e.g. two-point crossover, uniform crossover [1], partially-mapped 

crossover, order crossover, and position-based crossover [17]. Although the 

crossover operators may affect the efficiency of the search process, the quality of 

solutions is often reasonably close. In the presented experiment, a uniform 

crossover operating with probability Pc will be used to generate offspring as 

described below. Starting from the first operations on the parents, iteratively, one 

of the parents is randomly selected. The next unconsidered operation of the 

selected parent becomes the next operation on the first offspring while the next 

unconsidered operation of the other parent becomes the next operation of the 

second offspring. If the mobile robot selected for that operation is the same on 

both parents, then that selection is also made on the child; if not, one of the mobile 

robots of the parents is randomly chosen. Fig. 7 below depicts the uniform 

crossover. 

21,0 13,111,0 22,2 12,2

11,0 13,121,0 12,2 22,1

11,0 13,121,0 22,1 12,221,0 13,111,0 12,2 22,2

21,0 13,111,0 22,2 12,2

11,0 13,121,0 12,2 22,1

1

2 3

4 5

1

2 3

4 5

Parent 1

Offspring 1

Parent 2

Parent 1

Offspring 2

Parent 2
 

Fig. 7 Uniform crossover 



 

Mutation operator produces spontaneous random changes in various 

chromosomes. For the current encoding method, there are two mutation operators, 

one for each part of a gene and with a probability Pm. The first mutation operator 

selects two random positions on a chromosome and swaps the operations with 

respect to those positions. Note that the chromosome may be infeasible in terms of 

precedence constraints after this mutation operation. Hence it has to be adjusted 

by using the reparation operator in Section 4.5. The second mutation operator 

replaces the mobile robot assignment at a gene with one of the mobile robots 

which is randomly chosen. This may lead to the same mobile robot assignment for 

a particular gene, and aim to prevent the loss of any good assignment. 

Selection (reproduction) operator is intended to improve the average 

quality of the population by giving the high quality chromosomes a better chance 

to get copied into the next generation [17]. Various selection methods can be 

applied to this problem. In the presented experiment, (μ + λ) selection is used to 

choose chromosomes for reproduction. Under this method, μ parents and λ 

offspring compete for survival and the μ best out of the set of offspring and old 

parents, i.e. the μ lowest in term of the makespan, are selected as the parents of the 

next generation. This selection method guarantees that the best solutions up to 

now are always in the parent generation [7]. 

4.5. Reparation operator 

A reparation operator is developed to validate chromosomes with any precedence 

violations after the mutation operator. This operator involves the exchange of 

locations of operations belonging to the same task such that a valid sequence of 

operations is achieved. Fig. 8 describes how the repair operator works. 

Procedure: Reparation

Begin

For i = 1 To chromosome_length – 1 

opi ← operation at location i in the chromosome;

pdi ← predecessor of opi in the task sequence;

Repeat While (pdi ≠ ∅ )

For j = i + 1 To chromosome_length

        opj ← operation at location j in the chromosome;

        If (pdi = opj) Then

Exchange locations of opi and opj;

Exit For  

End

End

End  

Fig. 8 Pseudocode of reparation operator 



 

4.6. Termination criteria 

Termination criteria are used to determine when the GA-based heuristic should be 

stopped. Note that making decision on which sequence mobile robots and 

machines should handle tasks is a part of real-time activities of production 

planners. Therefore, on the one hand, if the best solutions over generations do not 

converge, the maximum computation time CTm would be used to stop the run. On 

the other hand, if the best solution does not improve over Gc consecutive 

generations, it would not be valuable to continue searching. The up-to-date best 

solution is then returned as the near-optimal solution. However, it should be noted 

that high-quality local optima might exist (in case of existing feasible solutions) 

because of the combinatorial nature of the problem [7]. 

5. Numerical experiments 

To examine the performance of the MIP model and GA-based heuristic, a 

numerical example and computational experiments are conducted in this section. 

The numerical example has first been created to illustrate the results of both 

approaches. Various problem instances are then randomly generated and tested in 

order to provide more persuasive evidence of the performance of the GA-based 

heuristic. In the experiments, the MIP model has been coded and solved by the 

mathematical modeling language ILOG CPLEX, while the GA-based heuristic 

has been programmed in VB.NET. All the experiments run on a PC having an 

Intel® Core i5 2.67 GHz processor and 4 GB RAM. 

5.1. Numerical example 

An FMS considered in the numerical example consists of 5 tasks (3 non-

preemptive and 2 preemptive tasks) with a total of 9 operations which are carried 

out on 5 flexible machines. Two autonomous mobile robots are employed in 

transporting the non-preemptive tasks between some machines and processing the 

preemptive tasks on the other machines. A layout for this example can be seen in 

Fig. 1. Table 1 gives the assigned machine numbers and processing time. This 

table also shows the precedence constraints among the operations in each task, 

e.g. the second operation of task 1 cannot be carried out before the first operation 

of task 1 is completed. The traveling time of the mobile robots from machines to 

machines are given in Table 2.  



 

Table 1 Task description 

Task Operation Machine Mobile Robot 
Processing Time 

(time unit) 

1 11 M1 - 28 

 
12 M3 - 40 

2 21 M2 - 32 

 
22 M1 - 26 

 
23 M3 - 42 

3 31 M2 - 38 

 
32 M3 - 46 

4 41 M4 R1 100 

5 51 M5 R2 90 

Table 2 Traveling time of robots from machines to machines (time unit) 

From/To M1 M2 M3 M4 M5 

M1 0 8 8 10 10 

M2 10 0 14 8 10 

M3 8 12 0 10 12 

M4 12 10 12 0 16 

M5 10 10 14 10 0 

 To determine GA parameter settings, pilot runs are carried out to decide on 

the values of Np, Pc, Pm, and Gc. Each parameter is tested at three different levels. 

These are respectively: Np (50, 100, 200), Pc (0.4, 0.6, 0.8), Pm (0.05, 0.1, 0.2), Gc 

(50, 100, 200). There are ten observations under each level, and the 30 runs of 

each parameter are made in random. Furthermore, the time for each run is limited 

to CTm of 30 seconds (because making decision in simultaneous scheduling of 

machines and mobile robots is part of real-time operations in the shop floor as 

mentioned). The GA parameters are chosen according to the best results in terms 

of the objective value and computation time obtained with these pilot runs. They 

are as follows: 100, 0.8, 0.1, 100, and 30 for Np, Pc, Pm, Gc, and CTm, respectively. 

 For this numerical example, both MIP model and GA-based heuristic 

found the optimal solution for the problem. The time required to complete all 

tasks is 164, and the schedule is given as: 21,0 - 11,0 - 12,2 - 22,1 - 31,0 - 23,2 - 

32,1. The proposed heuristic slightly faster obtains the optimal solution than the 

MIP model (0.1 second as opposed to 0.7 second). Fig. 9 shows the solution on 

Gantt chart. It can be seen from Fig. 9 that each mobile robot has to interrupt its 

preemptive task two times to carry out transportation for the non-preemptive 

tasks. For instance, mobile robot 2 interrupts task 5 the first time to transport task 

1 from machine 1 to machine 3, and the second time to transport task 2 also from 



 

machine 1 to machine 3. These interruptions consequently divide the duration of 

each preemptive task (or operation) into three separate parts as shown in the Gantt 

chart. In general, this numerical example has been illustrated the results of the 

proposed approaches. However, to make the evaluation more convincing, larger-

sized problems will be investigated in the next section. 
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M4, R1

M2

M3

M1

21 31

41 (1)

51 (1)
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12

51 (2)

22

23

51 (3)

41 (2)

32

41 (3)

Non-preemptive task

Preemptive task

Empty trip

Loaded trip  

Fig. 9 Gantt chart for the optimal solution of the numerical example 

5.2. Computational experiments 

In this section, the performance of the proposed heuristic will be tested on a large 

number of problem instances. 20 problem instances are generated with different 

numbers of tasks, operations, machines, mobile robots and other system 

parameters. The number of all tasks and number of operations in each non-

preemptive task are randomly generated in the ranges of [5, 20] and [2, 6], 

respectively. The number of machines and mobile robots are respectively 

distributed within the ranges of [5, 10] and [2, 4]. The processing time of non-

preemptive and preemptive operations in time unit are respectively distributed 

within the ranges of [25, 50] and [100, 200] while the traveling time of mobile 

robots in time unit are generated in the interval [8, 18]. Note that the time/cost 

matrices of the generated traveling time should satisfy the triangle inequality. The 

problem sizes are shown in Table 3. The comparisons between the MIP and GA-

based heuristic for 20 randomly generated problems are presented in Table 4. For 

each problem instance, the MIP is solved under consideration of the maximum 

computation time CTm as the GA-based heuristic. The objective values and 

computation times of the proposed heuristic are the average of 30 runs.  

 

 



 

Table 3 Problem sizes for 20 randomly generated problems 

Problem 

instance 

Problem size Number of variables 

Number of 

constraints Number 

of tasks 

Number of 

operations 

Number of 

machines 

Number 

of robots 

Integer 

variables 

Continuous 

variables 

Total 

variables 

1 5 12 5 2 74 22 96 154 

2 7 25 6 2 412 48 460 839 

3 6 16 5 2 144 30 174 296 

4 8 30 7 2 592 58 650 1202 

5 7 21 5 2 271 40 311 553 

6 9 33 6 2 719 64 783 1457 

7 10 38 8 2 957 74 1031 1936 

8 11 44 7 3 1901 84 1985 3748 

9 10 40 6 3 1626 76 1702 3204 

10 12 48 7 3 2260 92 2352 4460 

11 13 53 8 3 2736 102 2838 5405 

12 14 62 7 3 4004 120 4124 7930 

13 13 57 9 3 3235 110 3345 6399 

14 15 68 8 3 4739 132 4871 9392 

15 14 59 9 4 4462 112 4574 8743 

16 17 81 10 4 8833 156 8989 17413 

17 16 76 9 4 7880 146 8026 15524 

18 19 94 10 4 12095 182 12277 23894 

19 18 85 9 4 9805 164 9969 19343 

20 20 100 10 4 13823 194 14017 27330 

Table 4 Comparison between MIP and GA-based heuristic for 20 randomly generated problems 

Problem 

instance 

MIP GA-based heuristic 

Objective 

value 

Computation 

time (s) 

Objective value Computation time (s) 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

1 248 1.76 248 0 0.25 0.03 

2 691 30.00 474 8 0.40 0.08 

3 306 5.38 309 2 0.29 0.04 

4 818 30.00 534 6 0.46 0.06 

5 537 30.00 399 3 0.33 0.05 

6 932 30.00 591 10 0.59 0.13 

7 1031 30.00 629 12 0.62 0.21 

8 1379 30.00 678 18 0.93 0.18 

9 1209 30.00 650 16 0.65 0.11 

10 1544 30.00 702 18 1.04 0.22 

11 1816 30.00 778 20 1.44 0.32 

12 2043 30.00 963 24 1.92 0.33 

13 1850 30.00 803 19 1.70 0.24 



 

14 2207 30.00 975 24 2.18 0.47 

15 1952 30.00 743 22 1.36 0.22 

16 2876 30.00 1031 29 2.74 0.54 

17 3032 30.00 1015 27 2.04 0.70 

18 3836 30.00 1153 29 4.46 0.83 

19 3050 30.00 1067 31 3.32 0.54 

20 4282 30.00 1239 31 5.33 1.05 

It can be observed from Table 4 that the GA-based heuristic is superior to 

the MIP for large problems. The MIP found feasible (not optimal) solutions 

within the time limit for 18 problem instances. Nevertheless, these solutions found 

by the MIP model are much worse than those found by the GA-based heuristic. 

Furthermore, the computation time shows that the proposed heuristic was 

significantly fast in obtaining the best solutions, e.g. approximately 5 seconds for 

problem instance 20 (the largest-sized problem). For the other problems, both 

MIP and GA-based heuristic found the optimal solution in problem instance 1 

while the objective value found through the proposed heuristic are greater than 

that found by the MIP in problem instance 3. However, the difference is only 

about 1% and this is deemed to be an acceptable error. Furthermore, in terms of 

the objective value, the standard deviation is quite small in comparison with the 

average. These results provide more persuasive evidence to prove that the GA-

based heuristic performs effectively.   

6. Conclusions 

This paper studies a novel problem of simultaneous scheduling of machines and 

autonomous mobile robots in an FMS. Two types of tasks which are preemptive 

and non-preemptive are taken into account. The mobile robots in this problem 

have capability of not only transporting non-preemptive tasks similar to material 

handling devices but also processing preemptive tasks by using their manipulation 

arms. The main novelty of this research lies in the fact that the mobile robot must 

interrupt their preemptive tasks to carry out transportation for non-preemptive 

tasks when needed. The objective function is to find the best schedules which 

minimize the time required to complete all tasks. This must be done while 

considering a number of technological constraints. A mixed-integer programming 

model to find exact optimal solutions for the problem was developed. Due to the 

NP-hard nature of the joint scheduling problem, in practice this solution approach 



 

is only applicable to small-scale problems with a few tasks, machines, and mobile 

robots. A genetic algorithm-based heuristic was then proposed to find near-

optimal solutions. The quality of these solutions could be then evaluated by using 

the MIP solutions as reference points to quantify the scale of benefits. A 

numerical example and computational experiments were presented to demonstrate 

the effectiveness of both approaches. The results showed that the proposed 

heuristic was significantly fast in obtaining near-optimal solutions. The results 

also provided persuasive evidence that the proposed heuristic is capable of solving 

problems of various sizes and more efficient than the MIP in terms of the 

objective value when giving the same maximum computation time. These 

solutions are useful to managers for decision making at operational levels and the 

proposed heuristic could be also applied in variety of tasks of not only mobile 

robots but also AGVs. For further research, a general model allowing mobile 

robots carrying out more than one transportation task before going back to their 

preemptive tasks should be taken into account. This also includes a rescheduling 

mechanisms based on the obtained schedules and feedback from the mobile robot 

fleet and shop floor. This will enable to deal with real-time disturbances such as 

machine or mobile robot breakdown. 
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