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Preface 
This Ph.D.-thesis consists of a literature review and three research papers. Study I was carried out at 

the Orofacial Laboratory at University of Toronto, Canada January 2004 to July 2004. Studies II 

and III were carried out at Center for Sensory-Motor Interaction at Aalborg University, in the period 

from 2002 – 2006.  

 

Study I 

Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons 

in the first cervical dorsal horn. Mørch, CD; Hu, JW; Arendt-Nielsen, L; B. J. Sessle. European 

Journal of Neuroscience. Volume: 26. Issue: 1. Pages: 142-154. Jul 2007 

doi:10.1111/j.1460-9568.2007.05608.x 

 

Study II 

Nociceptive withdrawal reflexes evoked by uniform-temperature laser heat stimulation of large skin 

areas in humans. Mørch C.D., Andersen O.K., Graven-Nielsen T., Arendt-Nielsen L. Journal of 

Neuroscience Methods. Volume: 160. Issue: 1. Pages: 85-92. Published: Feb 15 2007 

doi:10.1016/j.jneumeth.2006.08.014 

 

Study III 

Modulation of heat evoked nociceptive withdrawal reflexes by painful intramuscular conditioning 

stimulation. Andersen O.K., Mørch C.D., Arendt-Nielsen L. Experimental Brain Research. Volume: 

174. Issue: 4. Pages: 775-780. Published: Oct 2006 

DOI: 10.1007/s00221-006-0674-5 
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List of abbreviations 
AMH: mechanically and heat-sensitive A-fiber nociceptors 

C1: first cervical 

C2: second cervical  

C2/C3: the neck 

CMH: mechanically and heat-sensitive C fiber nociceptors 

COR: cornea 

DH:  dorsal horn 

EMG: electromyography 

Fos-LI: fos-like immunoreactivity 

HRP: horseradish peroxidase  

MAS: masseter 

NWR: nociceptive withdrawal reflex 

PAG: periaqueductal gray  

PAW: the forepaw 

RF: mechano-receptive field  

SHO: shoulder 

SLN: superior laryngeal nerve 

TMJ: temporomandibular joint 

UCC:  upper cervical spinal cord 

V1: ophthalmic 

V2: maxillary 

V3: mandibular 

Vc: subnucleus caudalis 

VPL:  ventroposterolateral nucleus  

VPM: ventroposteromedial nucleus  

XII:  hypoglossal 
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1 Introduction 

Pain has been defined as “an unpleasant sensory and emotional experience with actual or potential 

tissue damage, or described in terms as such” (Merskey and Bogduk, 1994). It has also been 

emphasized that pain is a personal experience that depends on genetic differences, past experience, 

anxiety, expectation etc. However, specific aspects of pain can be conceptualized (Loeser and 

Melzack, 1999).  

The difference between the concepts of nociception and the perception of pain must be appreciated. 

Nociception is in general thought of as the detection of actual or potential tissue damage by 

transducers in the periphery and the transmission of the information through the nervous system.  

Perception of pain, on the other hand, is not necessarily evoked by a nociceptive input and 

nociceptive input does not necessarily evoke pain. In e.g. phantom limb pain the nociceptors are 

transected but years after the amputation 50 % of the patients still report pain (Melzack, 1990). Pain 

may be categorized according to the persistence as transient, acute or chronic. Transient pain is 

evoked by activity in the nociceptors and prompts the individual to avoid the noxious stimulation. 

Acute pain is evoked by a substantial insult to the tissue, but may cease before the tissue is 

completely healed. Chronic pain outlasts the healing of the injury and may persist for months and 

years (Loeser and Melzack, 1999).  

1.1 The Nociceptive system 

The stimulation that may cause tissue damage is said to be noxious and the primary afferent fibers 

that mediate nociception are termed nociceptors (Willis, 1985). Several different stimulation 

modalities can activate the nociceptive system and cause a painful sensation. Thermal stimulation, 

either heat over 43 – 45 ºC, or cold at 3 – 20 ºC (Franz and Iggo, 1968), strong mechanical 

stimulation, and chemical stimulation by analgesic substances may activate the nociceptive system 

and cause pain. Noxious stimulation depolarizes free nerve endings of the afferent fibers in the 

tissue. How this depolarization occurs is not well understood, however several trans-membrane 

proteins have been shown to cause depolarization of the nerve membrane, e.g. heat-sensitive 

vanilloid receptors, (Caterina et al., 1997), cold-sensitive menthol or icilin receptors (Montell, 

2003), mechano-sensitive osmotic receptors (Liedtke et al., 2000) etc. If the depolarization is strong 

enough to generate action potentials, these travel through the nociceptive nerve fiber, to the central 

nervous system.  
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The afferent fibers are classified according to their conduction velocity, which basically reflects the 

thickness and degree of myelinization of the fibers. Afferent fibers innervating the skin are Aα/β-

fibers which are thick myalinated fast conducting (36 – 120 m/s), Aδ-fibers which are thin 

myalinated slow conducting fibers (4 – 36 m/s) and C- fibers that are thinner unmyalinated even 

slower conducting fibers (0.4 – 2.0 m/s) (Burgess and Perl, 1973). Nociceptive information is 

mainly transmitted by Aδ- and C-fibers, but not all Aδ- and C-fibers are mediating nociceptive 

information as some respond to cold, warm or tactile stimualtion. Afferent fibers innervating 

muscle tissue are termed group I/II fibers corresponding to Aα/β-fibers, group III fibers 

corresponding to Aδ-fibers and group IV fibers corresponding to C-fibers. Nociceptive heat 

sensitive afferents in primate have been classified into three types based on their response properties 

to heat stimuli. Two types of mechanically and heat-sensitive A-fiber nociceptors (AMH) 

nociceptors have been reported. Type I AMHs are relatively insensitive
 
to heat stimuli (threshold 

>53 °C) but respond with a long latency (10 s) (Treede et al., 1995;Treede et al., 1998). Type II 

AMHs are sensitive
 
to heat (threshold ~46 °C) and respond briskly with a short latency (0.12 s) 

(Treede et al., 1995;Treede et al., 1998). The third group consists of mechanically and heat-

sensitive C fiber nociceptors (CMH) (Tillman et al., 1995) responding to warm stimulation 

(threshold 41 °C) with a short response latency (0.10 s). High-threshold mechanoreceptive 

nociceptors
 
do not respond to heat stimuli (Treede et al., 1995).  

 

The nucleus of the afferent fibers innervating the somatic tissue of the body is located in the dorsal 

root ganglion and project to the dorsal horn (DH) of the spinal cord. Most afferents supplying the 

craniofacial tissue have their cell nucleus located in the Gasserian (trigeminal) ganglion but the 

nucleus of some of the craniofacial proprioceptors of the muscles and joints have their nucleus 

located in the trigeminal mesencephalic nucleus (Sessle, 2000). Thus, sensory information is 

mediated through afferent nerve fibers through the spinal or Gasserian ganglion into the spinal cord 

or brainstem. Here, the primary afferent fibers may ascend or descend and give off collaterals to 

terminate more rostral or caudal in the spinal cord or brainstem. The primary afferent fibers of the 

spinal cord ganglion terminate mainly in the DH. The DH is a laminated structure where the Aδ- 

and C- primary afferents mainly terminate in laminae I, II, V, and VI (Willis, 1985). Likewise, the 

Aδ- and C- primary afferents of the Gasserian ganglion terminate in the trigeminal brainstem 

sensory nuclear complex (Sessle, 2000). The trigeminal brainstem sensory nuclear complex is 
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usually subdivided into the principal sensory nucleus and the spinal tract nucleus, which is further 

divided into the oralis, interpolaris, and caudalis subnuclei. The most caudal of these, the 

subnucleus caudalis (Vc), resembles the laminated structure and function of the spinal cord DH, and 

is for therefore often termed the medullary DH. The medullary DH is thought to play a major role in 

processing the craniofacial nociception (Hu et al., 1981;Sessle, 2000). The upper cervical spinal 

cord (UCC) includes the first cervical (C1) and second cervical (C2) spinal segment (Hu et al., 

2005). The DH of the UCC constitutes a transmission zone between the Vc and the rest of the spinal 

cord. The nociceptive primary afferents synapse onto second order interneurons of the spinal and 

medullary DH. The interneurons are classified according to their cutaneous response properties into 

three main types. The two nociceptive types of neurons are the nociceptive specific (NS) neurons 

that only respond to noxious stimuli and the wide dynamic range (WDR) neurons that respond to 

both noxious and non-noxious stimuli, with an increasing discharge rate as the intensity of the 

stimulus increases (Price et al., 1976;Hu et al., 1981). The third non-nociceptive type is the low-

threshold mechanoreceptive neurons that respond to non-noxious stimuli only. The NS neurons are 

driven by nociceptive afferents whereas both nociceptive and non-nociceptive afferents converge 

onto the WDR neurons. The medullary and UCC DH receive afferent information from the 

trigeminal nerve, from several of the cranial nerves, and from the upper cervical nerves (Hu et al., 

2005). This extensive convergence is a feature that distinguishes the medullary and UCC DH from 

the lower spinal DH, where convergence is more sparse, though it is recognized (Sessle et al., 

1986;Hoheisel et al., 1993;Mense, 1994).  

 

Some nociceptive neurons in the spinal cord and trigeminal nucleus send axons that project to 

various brain regions. In the medulla, ascending nociceptive projections terminate in the reticular 

formation (Peschanski and Besson, 1984;Lima, 1990). Many spinal and trigeminal nociceptive 

neurons also project to structures in the midbrain, especially the periaqueductal grey (PAG) and 

adjacent regions (Yezierski, 1988). 

The thalamus is the main target of ascending nociceptive pathways (Willis, 1985). Many 

nociceptive neurons in the spinal cord project to the ventroposterolateral nucleus (VPL), and those 

in the trigeminal nucleus project to the ventroposteromedial nucleus (VPM) of the thalamus 

(Giesler et al., 1976;Peschanski and Besson, 1984). Nociceptive information is transmitted from the 

thalamus to the cerebral cortex. The somatotopically precise input arriving in the VPL and VPM is 
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conveyed specifically to the primary somatosensory cortex, while nociceptive input reaching the 

intralaminar nuclei is transmitted to several cortical areas (Willis, 1985). 

 

The noxious afferent information may also result in a withdrawal movement of the stimulated limb. 

Such nociceptive withdrawal reflex (NWR) is a spinal reflex that protects the body from possible 

traumatic insults. The reflex is mediated through a polysynaptic connection in the spinal cord that 

activates motor neurons in the ventral horn and ultimately a set of muscles. The muscles are 

activated in such a way that the movement most likely will move the insulted tissue from the 

potential harm. The NWR has played a major role in the study of the nociceptive physiology and 

pain since their description was presented by Sherrington (1910). Sherrington (1910) described the 

NWR as a flexion of the ipsilateral limb and an extention of the contralateral limb following 

cutaneous or deep nerve stimulation of the frog, cat, and dog. Several years later the NWR was 

studied in humans (Eklund et al., 1959;Kugelberg et al., 1960;Grimby, 1963). The NWR has been 

proposed as a tool in the study of pain as several studies have shown a correlation between the 

NWR size and the intensity of pain caused by the stimulation eliciting the NWR (Willer, 

1977;Willer and Bussel, 1980;Garcia-Larrea et al., 1989) (Study II).  

 

The NWR is modulated by several sources of afferent input e.g. skin, muscles, tendons and joint as 

well as supra-spinal control (Schomburg, 1990). The afferents mediating this sensory information 

was termed „flexor reflex afferents‟ and are characterized as the afferents that may elicit the flexion 

reflex (Lundberg, 1979). This idea was based upon spinal interneuron recordings showing 

convergence from different afferents excitatory and inhibitory post synaptic potentials (Hongo et 

al., 1966). Therefore, the NWR does not always reflect the perception of pain intensity, but reflects 

the convergence of afferent input onto neurons in the reflex pathway. For instance, during walking 

the NWRs are dependent on the stage of the gait cycle (Spaich et al., 2004), and in an upper limb 

grapping task the NWRs are dependent on the state of motion (Serrao et al., 2006). In animal 

studies, it has been shown that there is a correlation between the DH neurons and the single motor 

units after noxious electrical stimulation (Jankowska and Roberts, 1972a;Jankowska and Roberts, 

1972b;Brink et al., 1983;Morgan, 1998;You et al., 2003). This indicates that the flexor afferents 

converge before or at the DH neurons that were recorded in these studies. In the orofacial area, the 

general protective reflex in the perioral area is the jaw opening reflex (Dubner et al., 1978) and the 

blink reflex that protects the eye (Ellrich et al., 1997a). The jaw-opening reflex is often evaluated as 
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exteroceptive suppression, also called a silent period, of the electromyography (EMG) activity 

during sustained
 
voluntary contraction of the masseter (MAS) or temporalis muscle. The jaw-

opening is rarely recorded directly in human studies because opening of the jaws is attained by 

gravitational pull in the lower jaw and activation of the jaw opening muscles (e.g. the digastric 

muscle) that are difficult to record from. Electrically evoked silent periods are usually divided into a 

short latency and long latency reflex (Cruccu et al., 1987). It has been argued that the long latency 

jaw-opening reflex is a nociceptive reflex, although not purely nociceptive (Ellrich et al., 1997b). 

The DH neuron recordings and NWR recordings prove a valuable window into the nociceptive 

physiology and sensory convergence at the level of the spinal cord. 

 

 

1.2 Aim of the Ph.D. project 

 

Figure 1. Schematic illustration of convergence in the sensory system investigated in the Ph.D. thesis. In study I 

nociceptive first cervical (C1) dorsal horn (DH) neurons of the rat was recorded, after stimulation of the 

Cutaneous, Muscle, joint, Dural, and visceral stimulation. In study II a new method to elicit nociceptive 

withdrawal reflexes (NWR) by radiant heat was presented. In study III the modulation of heat evoked NWRs by 

muscle stimulation was studied.  
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The aim of this Ph.D. project was to investigate the sensory convergence in human and animal 

experimental settings (Figure 1). Therefore, the convergence pattern of several cutaneous, deep, 

dural and visceral afferent sources was investigated in an electrophysiological study of nociceptive 

C1 DH neurons in rats (study I). Similar electrophysiological studies of nociceptive DH neurons are 

not feasible in human studies. Therefore, two studies of the NWR were performed (study II and III). 

Study II was set up to develop a novel approach to evoke NWRs by a natural and nociceptive 

specific heat stimulus, and to characterize the stimulus response-relations and the organization of 

these NWRs. Transient muscle pain was applied as conditioning stimulus of the NWR at different 

time intervals to investigate a possible facilitation of the NWR by muscle afferents caused by a 

convergence of cutaneous and muscle afferents (study III).  

2 Animal models of trigeminal and upper cervical 

convergence 

Animal models are often used in research of the nociceptive system (Le Bars et al., 2001). Though 

direct inquiry of possible pain is not available, important information about the nervous system still 

can be achieved; information that is not accessible in human experimental settings. In the following, 

some animal models that have been used to evaluate sensory convergence are discussed. Emphasis 

will be on sensory convergence in the craniofacial area, because sensory convergence and central 

sensitization has been proposed as the neurophysiologic basis for the spread and referral of pain in 

several craniofacial disorders (Sessle, 2000) such as temporomandibular disorder (Dworkin et al., 

1990), whiplash (Munglani, 2000), angina pectoris (cardiac pain) (Foreman, 1999;Foreman, 2000), 

and headache (Bogduk, 2001;Bartsch and Goadsby, 2003b). Sensory convergence is pronounced in 

the craniofacial area as afferent information from both the trigeminal and cervical area projects both 

to the Vc and the UCC.  

2.1 Anatomical investigation of afferent fibers  

One approach to study sensory convergence is to investigate the projection of afferent input to the 

central nervous system. Generally, sensory information is processed at specific locations in the 

central nervous system in a somatotopic manner. Hence, adjacent afferent sources are processed at 

adjacent locations in the sensory cortex and a map of the peripheral tissue is described in the 

sensory cortex accordingly. This map is possibly better known as the homunculus man. A similar 

pattern is observed in the spinal and medullary DH.  
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2.1.1 Horseradish peroxidase   

Transganglionic transport of horseradish peroxidase (HRP) has been introduced as a method to 

trace the projection of afferent nerves and thus to ascertain the central representation of peripheral 

receptive fields (Grant et al., 1979;Mesulam and Brushart, 1979). HRP injected to the trigeminal or 

C2 ganglions produced labeling in the C1 DH (Pfaller and Arvidsson, 1988), and a systematic study 

of the oral and facial nerves confirmed an „onion-like‟ representation of the facial skin in the 

trigeminocervical complex, where rostral areas are represented rostrally in the subnucleus 

interpolaris, and more caudal areas are represented more caudally in the UCC (Shigenaga et al., 

1986). HRP tracing of the corneal afferents (van Ham and Yeo, 1996), MAS afferents  (Dessem and 

Luo, 1999), and the superior laryngeal nerve (SLN) afferents (Nomura and Mizuno, 1983) showed 

projection to the C1 DH. This indicated a convergence of several trigeminal and cervical afferent 

sources in the C1 DH. The HRP technique labels a broad spectrum of afferent fiber thicknesses, and 

not specifically the nociceptive afferents. Therefore, a method that labels nociceptive neurons more 

specifically may be preferred.  

2.1.2 Fos-like immunoactivity 

Fos-like immunoreactivity (Fos-LI) was introduced by Hunt et al. (1987) as a method to stain 

neurons involved in processing nociceptive input. After a noxious stimulation the immediate early 

gene c-fos is expressed in neurons responding to the stimulation (Morgan and Curran, 1989). The c-

fos gene encodes the Fos protein that regulates “downstream” expression of other genes, most likely 

the preprodynorphin gene (Draisci and Iadarola, 1989;Hunter et al., 1995). The following increase 

in dynorphin probably induces antinociceptive action.  

 

The Fos-LI staining method has been used extensively and proven a valuable tool in the 

investigation of the nociceptive system. Fos-LI neurons in the spinal cord DH and medullary DH 

are in general located in laminae I-II and V-VI and X (Hunt et al., 1987). However, the specific 

location of Fos-LI neurons depends on the stimulated afferent source. In general a somatotopic 

organization has been shown in the spinal and medullary DH. But, an overlap of Fos-LI neurons has 

been shown in the C1 DH, where stimulation of both trigeminal and cervical afferent sources 

produced Fos-LI. Noxious stimulation of the skin innervated by any of the 3 main branches of the 

trigeminal nerve, have shown that Fos-LI cells are located mainly in lamina I and V of the C1 DH 

(Strassman and Vos, 1993;Zhou et al., 1999). Furthermore, noxious corneal stimulation has shown 
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Fos-LI in the Vc/C1 transition (Lu et al., 1993) and in the C1 (Strassman and Vos, 1993;Meng and 

Bereiter, 1996), mainly in the lateral part of lamina I. Noxious mechanical dural stimulation 

revealed Fos-LI mainly in laminae I and V of the C1 DH (Strassman et al., 1994), and electrical 

stimulation of the dura revealed Fos-LI mainly in lateral part of laminae I and II (Kaube et al., 

1993). Noxious stimulation of deep structures in the trigeminal and cervical area also evoked Fos-

LI in the C1 DH by noxious stimulation of the trapezius and splenius muscles (Kalezic et al., 2004), 

the temporomandibular joint (TMJ) (Hathaway et al., 1995;Zhou et al., 1999), the MAS muscle 

(Imbe et al., 1999), the tongue (Strassman and Vos, 1993), and the hypoglossal (XII) nerve 

(Bereiter et al., 2000) evoked Fos-LI mainly in the laminae I and V. These findings indicate a 

substantial overlap of afferent nociceptive input to the C1 DH (Figure 2). Although the Fos-LI 

displays activity at single cell resolution it is not possible to derive if the noxious afferent input 

converges on common neurons or if the neurons are simply located in the same general areas of the 

C1 DH without any functional overlap.  

 

Figure 2. Neurons in the C1 spinal cord exhibited Fos-like immunoreactivity following noxious stimulation of 

skin areas innervated by the ophthalmic (V1), maxillary (V2), and mandibular (V3) branch of the trigeminal 
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nerve, the cornea (COR) (Strassman and Vos, 1993), dura (Strassman et al., 1994), the masseter (MAS) muscle 

(Imbe et al., 1999), the temporomandibular joint (TMJ) (Zhou et al., 1999), and hypoglossal (XII) (Bereiter et al., 

2000) showing a substantial afferent convergence. The figure illustrates an overlap of afferent fibers from e.g. 

V1, dura, and COR in the lateral aspects of the lamina I. Comparisons between the studies should be done with 

caution as different stimulation modalities were used; complete Freund’s adjuvant, thermal, mechanical pinch 

and electrical stimulation. 

 

Fos-LI has proved to be a strong tool in the study of nociception, but some caution should be taken 

in the interpretation of the results. Some of the neurons in the pain pathway, although activated, do 

not show Fos-LI and all stained neurons are not necessarily nociceptive neurons (Harris, 1998). 

Anaesthetics and sedatives are known to be potent inhibitors of fos induction under certain 

circumstances (Hunt et al., 1987;Sonnenberg et al., 1989), and the distribution of Fos-LI depends on 

the modality of the noxious stimulation (Lima et al., 1993).  

 

Anatomical investigation of afferent projection such as the HRP and Fos-LI to the spinal cord and 

not the least the upper cervical part, have provided valuable and detailed descriptions of activated 

areas. However, the anatomical studies cannot reveal possible convergence onto single neurons; 

only indicate an overlap in areas activated by afferent input. Furthermore, the anatomical studies 

cannot provide short-lasting dynamic information about the activity in the nervous system. 

Electrophysiological studies can provide such information, though it is more cumbersome to apply.  

 

2.2 Electrophysiological indications of sensory convergence in the C1 

DH 

Electrophysiological studies have shown afferent convergence onto DH neurons throughout the 

spinal cord (Hoheisel and Mense, 1990) and medullary DH (Sessle et al., 1986). In the UCC 

afferent input from both trigeminal and cervical areas has been shown. Many of the UCC neurons 

receive a wide range of convergent input form afferent sources such as the skin (Hu et al., 2005), 

the cornea (COR) (Meng et al., 1997), and also deep structures such as the tongue, innervated by 

the XII nerve (Hu et al., 2005), the TMJ (Cairns et al., 2001a). Furthermore, electrophysiological 

studies have shown dural input to the UCC (Burstein et al., 1998;Yamamura et al., 1999;Malick et 

al., 2000;Bartsch and Goadsby, 2003b). Neurons activated by visceral stimulation have been 

recorded in the UCC (Foreman, 1999), as electrical stimulation of the phrenic nerve fibers above 
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the heart (Razook et al., 1995;Chandler et al., 1998), the vagal and sympathetic fibers (Chandler et 

al., 1996) and the SLN which is a branch of the vagal nerve, (Hu et al., 1981;Chandler et al., 1996), 

and to intrapericardial injections of algogenic chemicals (Qin et al., 2001) have been shown to 

evoke responses in neurons in the UCC.  

 

Although, these studies have shown afferent convergence onto common interneurons in the UCC, 

only 2 or 3 afferent sources have been investigated in each study. A systematical investigation of 

input form several afferent sources onto interneurons in the in rostral part of the medullary DH of 

the cat has been reported (Sessle et al., 1986). Study I of the present thesis aimed at a systematic 

investigation of the convergent afferent input from several cutaneous, deep, dural, and visceral 

afferent sources onto nociceptive C1 DH neurons in the rat.  

2.2.1 Stimulation and recording of C1 DH neurons  

In study I, neurons were recorded from the C1 DH and electrolytic lesions confirmed the loci to be 

within the C1 DH according to the anatomical landmarks (Molander et al., 1989). The neurons were 

classified as nociceptive WDR or NS according to their cutaneous response properties (Price et al., 

1976;Hu et al., 1981;Hu, 1990). Gentle mechanical stimulation (< 5 mg) was applied to the COR 

and dura, and noxious mechanical stimulation (~100 g) was applied to the TMJ (Cairns et al., 

2001c). The sizes of the cutaneous mechano-receptive field (RF) were compared before and after 

the electrical stimuli were applied to evaluate possible expansion of the RF. Electrical stimulation 

was applied to 6 cutaneous sites; above the eye innervated by the ophthalmic trigeminal branch 

(V1), below the eye innervated by the maxillary trigeminal branch (V2), posterior to the corner of 

the mouth innervated by the mandibular trigeminal branch (V3), posterior to the ear in the area of 

the second and third cervical dermatomes (C2/C3), the shoulder (SHO), and the forepaw (PAW). 

Furthermore, electrical stimulation was applied to the COR, the dura after a partial craniotomy, the 

exposed C2 nerve, the XII nerve, SLN, the TMJ, and the MAS muscle. The responsiveness to 

stimulation of these afferent sources was assessed (Figure 3).  
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Figure 3. Electrical stimulation was applied to 6 cutaneous sites (solid arrows); above the eye innervated by the 

ophthalmic trigeminal branch (V1), below the eye innervated by the maxillary trigeminal branch (V2), posterior 

to the corner of the mouth innervated by the mandibular trigeminal branch (V3), posterior to the ear in the area 

of the second and third cervical dermatomes (C2/C3), the shoulder (SHO), and the forepaw (PAW). 

Furthermore, electrical stimulation was applied to 7 non-cutaneous sites (dashed arrows); the cornea (COR), the 

dura, the exposed second cervical (C2) nerve, the hypoglossal (XII) nerve, superior laryngeal nerve (SLN), the 

temporomandibular joint (TMJ), and the masseter (MAS) muscle.  

 

Glutamate (0.5 M, 10 µl, pH 7.0) was injected to the tongue, MAS muscle, neck muscle (splenius 

cervicis), or intrapericardially, or dripped onto the dura. Glutamate has been shown to have an 

algesic effect (Yu et al., 1996;Cairns et al., 2001c). Furthermore, towards the end of some 

experiments, 0.5 ml 3.5% acetic acid was slowly (~5 s) injected intraperitoneally. 

2.2.2 Cutaneous afferent input  

Several electrophysiological studies have reported C1 DH neurons with cutaneous RF that includes 

the facial region and the C2 and C3 dermatomes (Burstein et al., 1998;Yamamura et al., 

1999;Malick et al., 2000;Foreman, 2000) and outside the trigeminal and cervical areas (Smith et al., 

1991;Chandler et al., 1996;Chandler et al., 1998;Clement et al., 2000). However, no neurons were 
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found with RF outside the craniofacial area and only few neurons responded to electrical 

stimulation of the SHO and PAW in Study I (Table 1).   

2.2.3 Corneal afferent input 

Neurons in the C1 DH have been shown to respond to noxious corneal stimulation and that corneal 

sensitive neurons also have cutaneous RF (Meng et al., 1997;Hirata et al., 1999;Malick et al., 

2000;Hirata et al., 2004)(study I). Evidently, study I found a significant correlation between the 

responsiveness to COR and V1 stimulation, which confirmed previous studies describing neurons 

receiving both V1 and COR input (Meng et al., 1997;Hirata et al., 1999;Malick et al., 2000;Hirata et 

al., 2004). 

2.2.4 Dural afferent input 

Electrophysiological studies have indicated an even distribution throughout the C1 DH of neurons 

responding to dural stimulation (Burstein et al., 1998;Malick et al., 2000) (study I), though neurons 

in the Vc responding to dural stimulation seems to concentrate in the ventrolateral area (Burstein et 

al., 1998).  

Patients with primary headaches often report pain that involves the front of the head; the V1 nerve 

branch territory. However, the pain may in due time exceeds the trigeminal territory to the back of 

the head which is innervated by the greater occipital nerve (Anthony, 1992;Bartsch and Goadsby, 

2003b). Study I showed correlation between V1 and Dura, which is in accordance with previous 

studies  showing neurons responding to both dural and cutaneous stimulation of the V1 (Burstein et 

al., 1998;Yamamura et al., 1999;Bartsch and Goadsby, 2002;Bartsch and Goadsby, 2003a). 

Convergence along with sensitization of central neurons in Vc (Burstein et al., 1998), in C1 (Study 

I), and in C2 (Bartsch and Goadsby, 2002) provide a neurophysiologic basis for the clinical 

phenomenon of spread and referred pain by which pain originating from an affected tissue is 

perceived as originating from a distant area (Ruch, 1947). In cervicogenic headache, pain spreading 

to the back of the head may be originating from the structures innervated by the C1 to C3 spinal 

nerves, and include the upper cervical synovial joints, the upper cervical muscles, the C2-3 disc, the 

vertebral and internal carotid arteries, and the dura mater of the upper spinal cord, and posterior 

cranial fossa (Bogduk, 2001). This was supported by study I showing similarities in responsive 

areas of the C1 DH following stimulation of the dura and C2/C3. 
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2.2.5 Deep afferent input  

C2 nerve 

A wide spread distribution of neurons responding to stimulation of the C2 nerve and injection of 

glutamate to the splenius cervicis muscle (innervated by the posterior primary rami of the inferior 

cervical spinal nerves) evoked responses in nociceptive C1 DH neurons (Study I).  

TMJ 

Studies have shown that injection of mustard oil into the TMJ evoked Fos-LI mainly in the 

superficial layers of the C1 DH but also few neurons in deeper layers (Hathaway et al., 1995;Zhou 

et al., 1999), whereas electrophysiological recordings showed a more widespread distribution 

throughout the C1 DH (study I). Study I showed correlation between TMJ and V2, although the 

TMJ is innervated by the maseteric and auticulotemporal branches of the V3 nerve (Davidson et al., 

2003).  

MAS muscle 

More than half of the neurons responded to intra muscular electrical stimulation of the MAS 

muscle, whereas only one third responded to microinjection of glutamate into the MAS muscle 

(study I). It has been shown that injection of glutamate into the MAS muscle activated muscle 

afferents in rats, and that the same concentration evoked a painful sensation in humans (Cairns et 

al., 2001b). Anatomical studies have shown that the noxious stimulation of MAS projects to the 

intermedial part of lamina I of the C1 DH (Imbe et al., 1999;Dessem and Luo, 1999), whereas the 

present electrophysiological study found a more widespread distribution of MAS sensitive 

nociceptive C1 DH neurons (study I). The responsiveness to V3 cutaneous and MAS muscle 

stimulations was found to be correlated and their response pattern to C-fiber input were also similar 

(Study I). This complied with the fact that the MAS muscle is innervated by the masseteric branch 

of the V3 nerve. 

XII nerve 

In accordance to anatomical studies (Strassman and Vos, 1993;Carstens et al., 1995;Bereiter et al., 

2000), study I showed neurons responding mainly to C-fiber stimulation of the XII nerve in the 

medial part of the C1 DH. Microinjection of glutamate to the tongue only rarely evoked responses 

in the C1 DH neurons (7% in both WDR and NS neurons). Furthermore, it has been shown that 
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electrical XII nerve trunk stimulation evoked more Fos-LI lamina I and II of the UCC than 

intramuscular tongue injection of mustard oil, thus indicating other afferent than the tongue 

musculature afferents travel in the XII nerve (Bereiter et al., 2000). Therefore, the low response rate 

found by glutamate injection of the tongue musculature may be caused both by few tongue 

glutamate receptors, and that tongue muscle afferents are only a subpopulation of the XII nerve. 

The responsiveness to stimulation of the XII nerve and SLN was significantly correlated and the 

difference in response patterns was small. The SLN innervates the larynx and the pharynx whereas 

the XII nerve innervates mainly the tongue, however these nerves seems to evoke similar responses 

in the C1 DH (study I).   

2.2.6 Visceral afferent input 

Previous electrophysiological studies have shown C1 DH neurons responding to electrical 

stimulation of SLN (Hu et al., 1981;Chandler et al., 1996). Approximately one third of the C1 DH 

neurons responded to stimulation of the SLN (Study I). Previous studies of neurons in the Vc 

showed even lower proportions (Hu et al., 1981).  

 

Although, HRP tracing of left inferior cardiac nerve did not show projection more rostral than C8 

(Kuo et al., 1984), stimulation of the vagal nerve afferents originating from the heart or other 

visceral structures, and cardiopulmonary sympathetic afferent fibers (Chandler et al., 1996) and the 

phrenic nerve (Razook et al., 1995;Chandler et al., 1998) evoked responses in the C1 DH neurons. 

However, phrenic fibers innervating diaphragm or abdominal structures either did not affect the C1 

DH or to a lesser degree than phrenic input arising from thoracic structures (Razook et al., 

1995;Chandler et al., 1998). Intrapericardial injections of algogenic chemicals has been shown to 

activate neurons in the C1 DH (Qin et al., 2001), however intrapericardial injections of glutamate 

did not evoke responses in the C1 DH neurons (study 1), indicating that glutamate receptors in the 

pericardial tissue either are not present or not sufficient numerous to evoke responses in the C1 DH 

neurons. Angina pectoris is often described as retrosternal crushing, burning, or squeezing 

characteristic pain, which may radiate to the throat, neck, or ulnar aspect of the left arm, sometimes 

reaching to the little finger. Less often, it radiates to the neck and jaw (Foreman, 1999). Stimulation 

of the phreneic, vagal or sympathetic afferent fibers and chemical stimulation of the heart excites 

spinothalamic tract neurons in the UCC segments of monkeys (Chandler et al., 1996;Chandler et al., 
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1998) and rats (Razook et al., 1995;Qin et al., 2001), indicating that these neurons may be the 

neural basis for the projection of pain to the neck and the jaw areas.  

2.2.7 Stimulus-Response relations 

Neurons in the C1 DH responded to mechanical and electrical stimulation applied to the skin and to 

electrical stimulation of at least one of the deep, dural, and visceral sources (Study I, table 1). Study 

I showed stimulus-response relationship between mechanical stimulation applied to the center of the 

cutaneous RF for both the WDR and NS neurons (Study I, figure 4) showing the capability of the 

neurons to encode sensory information into the noxious range.  

Electrical stimulation normalized to the activation threshold showed a double logarithmic 

relationship with similar correlation coefficients for all afferent sources (Figure 4). Therefore, the 

nociceptive neurons in the C1 DH are capable of encoding afferent information from cutaneous, 

deep, dural, and visceral sources.  

 

 

Figure 4. Stimulus response functions for electrical stimulation of the 6 cutaneous and the 7 non-cutaneous sites. 

The stimulation intensity was normalized to activation threshold of A- and C- fibers. The number of spikes to 5 

stimuli was considered the response. The activation threshold was set to at least 3 responses to 5 electrical pulses; 

therefore some neurons did have few responses below threshold.  The stimulus response relation could be 

approximated by a double logarithmic function. Linear regression of the double logarithmic transformed data 

showed a linear increase (OneWay ANCOVA, P < 0.001). The correlation coefficient was 0.68, 0.65, 0.76, 0.68, 

0.64, 0.50, 0.61, 0.79, 0.67, 0.62, and 0.62 for stimulation of the V1, V2, V3, C2/C3, COR, dura, C2, XII, TMJ, 

MAS and SLN, respectively.  
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2.2.8 Afferent convergence in the craniofacial area.  

Electrophysiological studies of the rostral Vc in cats showed a substantial afferent convergence onto 

nociceptive neurons (Sessle et al., 1986). Sessle et al., (1986) showed a larger number of afferent 

sources converged onto WDR than onto NS neurons, whereas study I did not find such difference 

between WDR and NS neurons in the C1 DH neurons. The reason for the difference between these 

two studies may be species differences but also the difference between the rostral Vc and the C1 

DH.  

 

Electrophysiological studies have shown that neurons in the UCC responding to deep, visceral, or 

dural afferent sources also have cutaneous RFs in the craniofacial area. These neurons may be the 

neurophysiological basis for various painful conditions where pain from one afferent source is also 

perceived as originating from distant cutaneous, deep, or visceral tissue. In temporomandibular 

disorder, pain originating from the TMJ or other deep adjacent areas may spread and be perceived 

from other facial areas innervated by all three branches of the trigeminal nerve (Dworkin et al., 

1990). Afferent convergence from blood vessels and skins may play an important role in headache 

that often manifested with referral pain to the extracranial skin tissue in periorbital or temporal 

region (Piovesan et al., 2003;Bartsch and Goadsby, 2003b). Angina pectoris may result from 

nociceptive cardiac afferent input to UCC neurons and may lead to pain sensation in the neck and 

jaw areas (Foreman, 1999;Foreman, 2000).  

2.2.9 Lack of afferent input caudal to the cervical area 

Study I showed that neurons in the C1 DH responded to afferent input from several trigeminal and 

cervical afferent sources. All neurons responded to cutaneous stimulation of the facial skin in the 

area posterior to the whiskers and generally anterior to the ear. None of the neurons has cutaneous 

RF posterior to the ear. Electrical stimulation readily evoked responses from the cutaneous V1, V2, 

V3 and C2/C3 areas, but rarely from SHO and PAW. Likewise, intraperitoneal injection of ascetic 

acid or intrapericardial microinjection of glutamate did not evoke responses in any of the tested 

neurons. Therefore, it seemed that although nociceptive C1 DH neurons received a wide range of 

afferent input these sources it did not include input caudal to the cervical areas, which was in 

agreement with studies by Hu et al. (2005). However, several previous studies found afferent input 

from areas caudal of the cervical region activating neurons in the C1 (Yezierski and Broton, 

1991;Smith et al., 1991;Razook et al., 1995;Villanueva et al., 1996;Chandler et al., 1996;Chandler 
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et al., 1998;Ness et al., 1998;Chandler et al., 1999;Qin et al., 2001;Qin et al., 2004). There are 

several possible reasons for differences between these studies and the findings by Hu et al. (2005) 

and Study I. The first reason could be species differences since Hu et al. (2005) and study I used 

rats whereas some of earlier studies used cats (Smith et al., 1991) or monkeys (Chandler et al., 

1996;Chandler et al., 1998;Chandler et al., 1999). However, this possibility seems an unlikely 

explanation; although the rat has a limited and unclear C1 dermatomal representation, several of the 

earlier electrophysiological studies (Hathaway et al., 1995;Razook et al., 1995;Burstein et al., 

1998;Yamamura et al., 1999;Malick et al., 2000;Qin et al., 2001;Qin et al., 2004) were carried out 

in rats. Another possible explanation is that the neuronal sample in some of the earlier studies also 

included recordings at sites deeper than laminae I–V of the C1 DH, and sometimes included 

neurons in the ventral horn (Qin et al., 2001;Qin et al., 2004), lateral reticular formation (Ness et al., 

1998) including the subnucleus reticularis dorsalis (Villanueva et al., 1996), and lateral cervical 

nucleus (Yezierski and Broton, 1991). Many neurons in these deep locations typically have RFs 

including half or the whole body (Yezierski and Broton, 1991;Villanueva et al., 1996;Ness et al., 

1998), whereas Vc and C1 DH neurons in lamina I–V have much more restricted RFs (Yamamura 

et al., 1999;Malick et al., 2000). The third explanation may be the use of antidromic activation as 

the searching stimulus in some of the earlier studies that led to the inclusion neurons with large RF 

in the sample. Some of these neurons were indeed recorded outside the DH region (Smith et al., 

1991;Chandler et al., 1996;Chandler et al., 1998;Ness et al., 1998;Chandler et al., 1999;Qin et al., 

2001;Qin et al., 2004). 

2.2.10 Neuron classification based on deep, dural and visceral input  

Classification of the responsiveness of nociceptive DH neurons is usually based on the response 

properties to cutaneous stimulation (Price et al., 1976;Hu et al., 1981;Hu, 1990). Study I revealed a 

substantial afferent input from other structures to C1 DH neurons. It therefore seemed obvious to 

inquire if there were any natural clustering based on the response properties to deep, dural and 

visceral stimulation. Principal component transformation (Hotelling, 1933) and k-means clustering 

of the responsiveness revealed two possible groups of neurons. Neurons in group I had in general a 

lower responsiveness and contained more NS neurons and fewer WDR neurons than group II. This 

indicates that the neurons can be classified according to their deep, dural and visceral 

responsiveness properties, and that the cutaneous response properties only to some extend were 

reflected in this clustering.   
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2.3 Short summary 

Nociceptive neurons in the C1 DH receive excitatory afferent input from trigeminal and cervical 

cutaneous areas, but only sparse afferent input from cutaneous areas caudal to the C2/C3 

dermatome. Furthermore, the nociceptive neurons receive convergent input from cutaneous, 

corneal, deep, dural and visceral sources. Electrical stimulation of several craniofacial structures has 

reviled a stimulus-response relationship indicating that these neurons were capable of encoding 

noxious information from several afferent sources. This indicates that the nociceptive neurons in the 

C1 DH may play an important role in nociceptive integration.    

3 Human models of spinal cord convergence 

Although animal experiments provide great insight into the physiology and pathology of 

nociception the knowledge cannot always be translated directly to the physiology and pathology of 

humans. For instance, it is not readily investigated if nociceptive responses in e.g. DH neurons in 

fact would cause a painful sensation had the animal been awake. Single firings in single second 

order DH neurons are most likely insufficient to evoke a conscious perception of pain. Similar 

problems are evident in all animal studies although pain behavior can be studied. Therefore, 

experimental methods to investigate the healthy human nociceptive physiology as well as 

pathologies of patients are important in order to understand the physiology and treat the pathology 

better. Although some of the methods used in animal experiments obviously can not be applied in 

human experiments there are several ways to investigate the nociception in humans. Especially, 

inquiries about the pain intensity (e.g. VAS) and quality (e.g. McGill questioner) are possible, if 

nociception leads to pain. It should be kept in mind that such inquiries are entirely subjective, as 

pain is subjective. Furthermore, careful instructions must be given to the subjects as to ensure the 

validity of the results. Less subjective methods to study the nociceptive system of humans may be 

desirable. For such purpose several imagining and electrophysiological methods are available. To 

study sensory convergence at the spinal level the NWR is especially interesting as a window into 

nociceptive processing at the spinal level.  

3.1 NWR evoked by natural stimulation  

Most investigations on NWR have used electrical stimulation to activate afferent responses 

(Sandrini et al., 2005). The electrical stimulation can be applied to the surface of the skin in order to 

activate the fibers innervating the skin and subcutaneous layers. In animal studies, the nerve can be 
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exposed by dissection and stimulated directly. Electrical stimulation enables a reliable and transient 

stimulation, where the parameters such as intensity, pulse width, repetitions and timing are easily 

controlled. The advantages of electrical stimulation are numerous, but some disadvantages are also 

evident. It is difficult to determine which afferents are activated. It is especially difficult to avoid 

activating non-nociceptive cutaneous afferents; therefore, electrical stimulation can not be assumed 

to be purely nociceptive. In addition, the electrical stimulation bypasses the receptor endings, so 

inquiries about the transduction mechanisms cannot be made. Furthermore, the afferents are 

activated simultaneously by the electrical pulse. This does probably not resemble natural 

stimulation where the afferent barrage is not synchronized. Therefore, the sensory information 

arriving at the spinal cord DH may not resemble natural stimulation, though the NWR is a natural 

response to a noxious stimulation.  

3.1.1 Mechanical stimulation 

Mechanical stimulation has been used as a natural stimulation to evoke NWR in animal studies (Le 

Bars et al., 2001). Unlike the manual pinch or pressure algometry often used in animal studies 

transient time-locked stimulation must be used to evoke NWR in human subjects. Some methods to 

activate the nociceptive system in a transient and time-locked manner have been proposed, but have 

some deficits. High-energy ultrasound stimulation is able to activate the nociceptive system, but it is 

not known whether the energy is transmitted as mechanical or heat energy (Gavrilov et al., 1977).  

Impact with a small metal slug has also been proposed (Kohlloffel et al., 1991), but there is no 

evidence that it will evoke NWR. The photoacoustic effect, where short laser pulses are converted 

into sound waves in the tissue may be a possible method to apply a transient activation of the 

mechanoreceptors (Doukas and Kollias, 2004), however, substantial parts of the energy may be 

converted into heat, and again there is no evidence that the stimulus can evoke NWR.  

3.1.2 Heat stimulation  

Heat is another stimulation modality used to activate the nociceptive system (Julius and Basbaum, 

2001). Thermodes have been used to apply contact heat stimulation (Nielsen and Arendt-Nielsen, 

1998;Arendt-Nielsen and Chen, 2003), but the mechanical aspect of contact heat has been shown to 

alter the perception of pain (Svensson et al., 1997). More importantly the temperature rise-time is 

too long to evoke NWR, therefore radiant heat stimulation may be preferable to contact heat 

stimulation (Baumgartner et al., 2005). However, temperature at the skin surface can be controlled 

by advanced thermodes (Chen et al., 2001;Casey, 2006). Such a temperature control is rarely 
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provided during laser stimulation, though a system has been developed (Meyer et al., 1976). 

Therefore it is important to control the delivered energy and the background temperature of the skin 

as variation in background temperature may lead to wrong conclusions (Tjolsen et al., 1988).  

 

As a transient stimulation profile is necessary in order to evoke the NWR the temperature increase 

of the skin must be fast. High intensity stimulation is generally needed to allow investigations of 

transient and time critical responses (e.g. NWR, evoked cortical potentials, reaction time etc.). 

Although Hardy (1953) presented a method to evoke reflexes in one paraplegic subject by a focused 

light bulb. Experimental setups using high intensity light bulbs, such as a xenon lamp, may provide 

shot exposure of heat stimulation at high intensity using a shutter to restrict the stimuli. However, 

the broad-spectered visible light is significantly reflected from the skin surface, and blackening of 

the skin may be necessary (Andersen et al., 1994). Laser systems are able to deliver very high 

intensity radiation in a narrow frequency range, and in well defined areas. Therefore, laser 

stimulation seems to be suitable for this purpose (Plaghki and Mouraux, 2003). Each laser is 

characterized by the wavelength of the radiated light. Several different lasers are now commercially 

available even at high power (~100 W) e.g. diode laser in the visible wavelength range, solid state 

lasers such as the YAG and YAP lasers, and gas laser such as the CO2-lasers in the infrared range.  

 

When laser light is emitted to the skin some of the light will be reflected while the rest is 

transmitted through the surface. The proportions of transmitted light depend on the wavelength of 

the light. The transmitted light is then absorbed in the skin layer or transmitted through the layer. 

The energy of the absorbed light is converted into heat and thus contributed to an increase in 

temperature. The transmitted light will be passed directly on to deeper layers or scattered along the 

path (Hardy et al., 1956). The light will reemerge form the surface if scattering of the light bend the 

path more that 90º, and thus add to reflection. In a small volume of the skin the intensity of the 

transmitted light IT  can be expressed as a function of the absorption coefficient, µ, as 

  0 expTI I x  ,  

where I0 is the intensity of the light entering the volume and x is the length of the path that the light 

travels through the volume
1
. In general, µ is a material constant that depends on the wavelength of 

the light (Hardy and Muschenheim, 1934). The skin is inhomogeneous and therefore µ is variable 

through the skin for light in the visible and near infrared range (< 2 µm). In the infrared range the 

                                                 
1
 If the volume is small, x is the dimension of the volume as scattering will be neglectable.   
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light is almost exclusively absorbed in water and since the water content is approximately 

homogeneous in the skin below the striatum corneum µ can be approximated to be constant. 

Furthermore, in the infrared range the human skin acts almost as a perfect black body (Hardy, 

1934), and therefore none of the incident radiation is reflected from the surface.  

 

The CO2-laser emits light at a wavelength of 10.6 µm. At this wavelength µ is approximately 

200cm
-1 

(Haimi-Cohen et al., 1983). From the equation it is seen that the transmission is reduced to 

1/e (37%), at a depth of 50µm. Therefore, most of the energy is absorbed in the superficial layers 

reasonably close to the nociceptors that are located approximately 200 ± 170 µm below the surface 

(Tillman et al., 1995). For these reasons the CO2-laser, as introduced by Mor and Carmon (1975),  

has proven suitable for the study of pain (Arendt-Nielsen and Bjerring, 1988a;Arendt-Nielsen and 

Bjerring, 1988b). However, solid state lasers such as thulium-YAG (wavelength 2.01µm; µ = 28cm
-

1
) (Spiegel et al., 2000) or YAP (wavelength 1.34µm; µ < 20cm

-1
) (Iannetti et al., 2004) may be 

more suitable for activation of nociceptors as the energy from these lasers is absorbed closer to the 

nociceptors (Baumgartner et al., 2005). However, assuming that µ is constant throughout the skin 

for infrared absorption most energy will be absorbed in the superficial parts of the skin according to 

the equation above disregarding the value of µ. For review of heat stimulation please refer to 

Plaghki and Mouraux (2003) 

Models for heat transfer during and after radiation of infrared pulses have been developed and 

tested (Buettner, 1951;Hendler et al., 1958), and has been applied to infrared laser stimulation 

(Haimi-Cohen et al., 1983;Bromm and Treede, 1983).     

3.1.3 Heat evoked NWR 

Heat evoked NWRs have been studies in animal models (e.g. (Burke et al., 1971;Behrends et al., 

1983;Schomburg and Steffens, 1986). However, NWR are not easily evoked by heat stimulation in 

human subjects, and therefore the reports of heat evoked NWR in healthy human volunteers are 

few. Half a century ago Hardy (1953) presented a study where NWRs were evoked in one 

paraplegic subject by radiant heat. Several years later, Willer et al. (1979) reported a study where 

the heat was applied to the lateral edge of the dorsum of the foot (sural nerve territory) and the 

NWR was assessed as the EMG recorded from the tibialis anterior and biceps femoris muscles. 

Although an Argon laser was used, the authors suggested that a CO2-laser would have been 

preferable had it been available (Willer et al., 1979). Campbell et al. (1991) reported a study where 
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they applied radiant heat to the dorsal forearm using a tungsten halogen projector lamp and assessed 

NWR responses as the EMG response recorded from the biceps muscle. In study II a method was 

developed to apply radiant heat supplied by a CO2-laser to a large area and thereby activating a 

large number of afferents which utilized spatial summation (Nielsen and Arendt-Nielsen, 1997). 

Furthermore, the laser beam was rapidly moved during stimulation in a pattern creating a „top-hat-

like‟ spatial stimulation intensity profile in contrast to the Gaussian profile delivered by unfocused 

or expanded CO2-laser beams (Figure 5). The Gaussian profile has a maximum where high 

temperature may cause skin damage (Arendt-Nielsen and Chen, 2003). By stimulation with the top-

hat-like profile high temperatures may be achieved in a larger area without causing skin damage 

and still activate a sufficient amount of nociceptors to elicit a NWR response. It has been suggested 

that power densities over 0.35W/mm
2
 should be avoided (Beydoun et al., 1993). However, this 

estimation is done for Gaussian profiles and may be higher for top-hat-like spatial intensity profiles.  

 

 

Figure 5. Energy density following laserstimualtion. Radiating a laser beam through a ‘scannerhead’ makes it 

possible to move the laser beam rapidly around in any pattern (e.g. A) during stimulation. This will enable 

stimulation with a ‘top-hat-like’ energy density profile (B). Alternatively, a stationary Gaussian energy density 

profile (C) can be expanded in order to stimulate a larger area, but will result in a high temperature at the 

center. 

In study II, heat was applied to the dorsum of the foot and the front of the lower leg with a CO2-

laser and EMG was recorded from the iliopsoas, quadriceps vastus lateralis, biceps femoris, tibialis 

anterior, and soleus muscles. Poor correlation was found between heat intensity and the EMG 

responses of iliopsoas, quadriceps vastus lateralis, biceps femoris, and tibialis anterior muscles, 

whereas no correlation was found for soleus muscle. The correlation between the heat intensity and 
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the perceived pain intensity was also significantly, but poorly, correlated (linear regression, P < 

0.05, R = 0.53), which resembles the result from Campbell et al. (1991). In contrast to laser 

stimulation of the lower limbs it is possible to elicit nociceptive protective craniofacial reflexes 

using brief (< 40 ms) pulses applied to a small (< 1 cm
2
) perioral cutaneous area (Ellrich et al., 

1997b;Cruccu and Romaniello, 1998;Romaniello et al., 2002). The jaw-opening reflex can be 

observed  as single silent period of ongoing MAS muscle activity following Th:YAG-laser (Ellrich 

et al., 1997b)  or CO2-laser (Cruccu and Romaniello, 1998) stimulation resembling the long latency 

silent period following electrical stimulation, as both are assumed to be mediated by nociceptive 

A- afferents. Heat evoked nociceptive reflexes seems to be more readily evoked in the craniofacial 

area compared to the extremities. Comparing the laser evoked cortical potential following 

stimulation of the foot, hand and perioral skin showed progressively smaller amplitudes at distal 

areas (Cruccu et al., 1999). Cruccu et al. (1999) speculated that longer afferent conductance routes 

may temporally disperse the afferent barrage of the spinal cord DH nociceptive neurons and thus 

cause weaker laser evoked cortical potentials. Furthermore, the perception threshold of laser 

stimulation was found to be lower for facial compared to stimulation of the extremities. This was 

explained by a possible denser afferent innervation. The temporal dispersion and less dense 

innervation of the extremities may explain the difficulties in evoking NWR in the extremities by 

heat stimulation. Therefore, larger area was stimulated to compensate for the lower innervation 

density in the lower limb compared to the facial areas in study II.     

3.2 Organization of the NWR 

Already the early studies of the NWR indicated that the reflex may not be a stereotype flexion 

reflex as originally described by Sherrington (1910). Hagbarth (1960) observed a flexion reflex 

when stimulating the limb electrically, but not when stimulation was applied above the extensor 

muscles. Furthermore, Grimby (1963) systematically studied the dependency of the site of 

stimulation on the sole of the foot, and observed a dorsiflexion of the ankle when stimulation the 

front of the foot, but a plantar flexion when stimulating the foot towards the heel. Similar results 

were found by Hagbarth in both humans (Hagbarth, 1960) and cats (Hagbarth, 1952). The 

stereotyped flexor reflex organization of NWRs was further challenged by Schouenborg and 

Kalliomaki (1990), who showed that muscles in the hindlimb of rats could be activated by noxious 

stimulation in a restricted area specific for each muscle. These specific areas were termed „reflex 

receptive fields‟, and interestingly not only flexor muscles but also extensor muscles had such 
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reflex receptive fields (Schouenborg et al., 1994). The combination of muscles and their reflex 

receptive fields was shown to constitute a system where the reflex movement optimally removed 

the stimulated skin area away from the stimulation (Schouenborg and Weng, 1994). Each muscle or 

synergistic muscles and their reflex receptive fields were termed a module and the NWR was 

proposed to have a modular organization (Schouenborg et al., 1994). Such a modular organization 

of the NWRs has also been shown in humans (Andersen et al., 1999;Sonnenborg et al., 

2000;Sonnenborg et al., 2001). The human studies were all performed by electrical stimulation and 

showed that the NWR is organized so that a noxious stimulation of the foot would remove the 

stimulated area away from harm by an appropriate movement, e.g. plantarflexion for heal 

stimulation and dorsiflexion for fore foot stimulation at the sole of the foot.   

3.2.1 Natural stimulation e.g. mechanical and heat.  

The modular organization has also been shown when reflexes were evoked by natural stimulation in 

animal studies. Evidence for a modular organization of reflexes has been obtained in rats for 

mechanical (Schouenborg and Kalliomaki, 1990) and  radiant heat (Weng and Schouenborg, 1996) 

stimulation applied to plantar and to some extend the dorsal side of the hind paw. Furthermore 

radiant heat applied to the tail of the rat evoked a movement directed away from the stimulus  

(Cleland and Bauer, 2002). A possible modular organization of the NWR in the cat has been 

investigated. Heat evoked NWR could be evoked in non-flexor-muscles (Schomburg et al., 2000), 

and a modular organization of the NWR was shown following mechanical pinch stimuli (Levinsson 

et al., 1999). Study II did not show a modular organization of the heat evoked NWR in humans; 

however, the stimulated sites may have been located within the same reflex receptive field. Another 

explanation may be that a possible modular organization of the NWR is less pronounced on the 

dorsal side compared to the plantar side of e.g. the foot (Clarke and Harris, 2004).  

The differences between plantar and dorsal side.  

Two similar studies have shown a modular organization of electrically evoked responses both 

plantar (Andersen et al., 1999) and dorsal (Sonnenborg et al., 2001) stimulation of the foot. 

However, NWR evoked at the dorsal side had lower thresholds, were „smaller‟, and did not show as 

clear modular organization as NWR evoked at the plantar side for the foot. Other human studies 

have shown differences in reflex activities evoked by laser stimulation of the plantar or dorsal of the 

hand (Romaniello et al., 2004), and withdrawal movement analysis showed that modular 

organization of reflexes are most readily seen when stimulation was applied to the plantar side of 
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the foot (Clarke and Harris, 2004). In study II, radiant heat stimulation applied to the dorsum of the 

foot did not show a modular organization of the NWR, and no plantar flexion as responses in the 

soleus muscle was sparse. However, a study investigating the organization of the heat evoked 

reflexes evoked from the plantar side of the foot is difficult to design as the plantar skin is glabrous 

and therefore contain type I AMHs and CMHs, but not type II AMHs. As described in section 1.1, 

type I AMHs have long response delay, and the conduction velocity of the CMHs is low. This 

results in a late arrival of afferent information of these nociceptors to the spinal cord that is not 

capable of eliciting NWR. The type II AMHs, that are only located in the hairy skin, have short 

response latencies and relatively fast conduction velocity, resulting in a sufficiently short response 

delay to evoke NWR (study II). 

 

In a study performed to indirectly reveal the role of heat sensitive afferents in the organization of 

nociceptive reflexes, a conditioning radiant heat stimulation was applied and the reflexes were 

evoked by electrical stimulation of the tibial nerve (Ellrich et al., 2000). Independent of whether the 

heel, the forefoot, or the dorsum of the foot was conditioned an increase in the reflex size of both 

the biceps femoris and tibialis anterior muscles was observed which is not in compliance with a 

modular organization of the reflexes. This may indicate that a modular organization of the NWR 

can be demonstrated by electrical stimulation, but not heat stimulation in humans.   

3.3 Convergence of muscle afferents to the reflex pathway 

Several studies have shown that cutaneous and muscle afferents converge onto common 

interneurons in the spinal cord or medullary DH (Kniffki et al., 1981;Sessle et al., 1986;Hoheisel 

and Mense, 1990) (Study I). In the craniofacial area, experimental MAS muscle pain reduced the 

degree of silent period suppression following perioral cutaneous CO2-laser (Romaniello et al., 2002) 

or electrical (Wang et al., 1999) stimulation. The convergence of muscle and e.g. cutaneous 

afferents onto common spinal or medullary DH may along with central sensitization form the neural 

basis for referred pain. Muscle pain may be associated by referred pain (Sinclair D.C. et al., 1948), 

where pain is perceived from the muscle that receives noxious stimulation, but also from distant 

parts of the body including the skin. Experimentally, intramuscular injection of hypertonic saline 

into the tibilais anterior muscle has been shown to produce pain in the injected muscle but also in 

the dorsal aspects of the ankle joint (Graven-Nielsen et al., 1997a).  
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3.3.1 Modulation of the NWR by tonic noxious muscle stimulation 

In a pilot study performed to study the interaction between muscle afferents and AMHs, radiant heat 

was applied to the dorsum of the foot and frontal lower leg before, during, and after muscle pain in 

the tibialis anterior muscle. However, the reflexes were not significantly modulated by the muscle 

pain (Figure 6), although a similar study using electrical stimulation to evoke NWR did show an 

increase of the initial part of the reflexes (Andersen et al., 2000). In the pilot study, the NWR was 

evoked by heat stimulation and thus activation of the type II AMHs. These nociceptors may exhibit 

an adaptational behavior that may not have been completely avoided by long inter- stimuli time 

intervals. Therefore, the nociceptors may have adapted to the heat stimulus during the pre- muscle 

pain test stimuli. This may have caused the difference between the study of Andersen et al. (2000) 

and the pilot study. However, there were no significant differences between VAS scores before, 

during, and after muscle pain, although the VAS score to Argon laser stimulation has been shown to 

increase during muscle pain (Graven-Nielsen et al., 1997b). Furthermore, there were no differences 

between the NWR evoked at different sites, although one site was at a small part of the skin 

between the first and second metatarsal that, like the tibialis anterior muscle, is innervated by the 

deep peroneal nerve (Lawrence and Botte, 1995), one was at the anterior aspect of the ankle where 

referred pain are commonly observed (Graven-Nielsen et al., 1997a) and two others sites that were 

not directly associated with referred pain. However, previous studies have shown pain ratings 

depending on the location of the stimulation site in relation to the referred pain area (Graven-

Nielsen et al., 2002;Ge et al., 2003).  

 

Figure 6. The effect of tonic muscle pain on CO2-laser scanning evoked reflexes. The radiant heat evoked reflexes 

of two groups of subjects; one group perceiving referred pain and one group that did not perceive referred pain. 
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Radiant heat stimulation was applied before injection of hypertonic saline to the tibialis anterior muscle, during 

the perception of pain in the tibialis anterior muscle and 15 minutes after pain perception was no longer 

reported. The electromyography (EMG) responses were normalized to the pre-pain response and calculated as 

the mean over the four stimulation sites and three stimulation intensities. The group of subjects that experienced 

referred pain was compared to the group that did not experience referred pain, however there was no significant 

difference between these groups neither when the muscle pain was perceived nor after the perception of pain had 

vanished, nor were the any differences before during and after muscle pain (ANOVA; n.s.). 

 

Besides the direct convergence of muscle and cutaneous afferents onto interneurons in the reflex 

pathway, two different mechanisms may be involved in muscle pain modulation of the reflexes; 

central hyperexcitability and descending inhibition. High intensity (C-fiber) stimulation has been 

shown to produce a prolonged increase in the excitability of flexion reflexes in spinalized animals 

(Wall and Woolf, 1984;Laird et al., 1995). Central hyperexcitability evoked by chemical (Hu et al., 

1992) or electrical (Cook et al., 1987) noxious muscle stimulation may be associated with an 

expansion of cutaneous RF and formation of new deep tissue RFs in rats (Hoheisel et al., 1993). 

Therefore, referred pain may be a consequence of convergence of e.g. cutaneous and muscle 

afferents onto common interneurons and a hyperexcitability of these interneurons following the 

nociceptive barrage from muscle afferents (Mense, 1994;Arendt-Nielsen and Svensson, 2001). 

However, the appearance of new cutaneous RFs occurred after minutes in the animal studies 

(Steffens and Schomburg, 1993) but referred pain appears after seconds in human experiments 

(Graven-Nielsen et al., 1997a), which may be explained by difference between animal and human 

experimental models. 

Descending pathways inhibit nociceptive responses after long lasting noxious muscle stimulation 

(Gjerstad et al., 1999). This decrease in responsiveness may be related to diffuse noxious inhibitory 

controls (Le Bars et al., 1979) in which noxious stimulation of distant tissue decreases the 

responsiveness of the nociceptive pathway (Schouenborg and Dickenson, 1985;Hu, 1990;Xian-Min 

and Mense, 1990;Falinower et al., 1994). In humans, similar depression of the reflex excitability by 

remote thermal noxious stimulation has been shown (Willer et al., 1984;Willer et al., 1989). 

Therefore, the tendency to reduced size of the NWR in the pilot study may reflect a counteraction of 

any central hyperexcitability and an activation of the descending inhibitory pathways both caused 

by the induced muscle pain and both acting on neurons in the spinal cord where cutaneous and 

muscle afferents converge. The modulation caused by muscle pain seems to depend on the 
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particular experimental setup and the stimulation modality applied. It is likely that the induced pain 

affect a dynamic balance between excitatory and inhibitory modulation of the NWR. 

3.3.2 Sensory convergence of homotopic transient stimuli 

Several studies have shown that radiant heat stimulation may modulate electrically evoked NWR. 

Noxious heat stimulation applied by xenon lamp radiation of the blackened sole of the foot has 

shown a facilitation of the electrically evoked NWR, and thus showing a convergence between 

cutaneous A- and C- fibers (Andersen et al., 1994). In a conceptual similar study, Plaghki et al. 

(1998) applied non-noxious heat stimulation at the dorsum of the foot and elicited NWR by 

electrical sural nerve stimulation. The NWR was facilitated at latencies that indicated both A and 

C fiber mediated heat sensitive afferent convergence onto the spinal cord neurons. Radiant heat 

applied to the sole of the foot to condition NWR evoked by electrical stimulation of the medial 

plantar (Ellrich et al., 1998) or tibial (Ellrich et al., 2000) nerve also showed a facilitation of the 

NWR. However, in the craniofacial area the electrically evoked long latency silent period was 

reduced by painful heat conditioning stimulation applied to the cheek (Andersen et al., 1998). 

3.3.3 Modulation of the NWR by phasic conditioning stimulation 

The design of study III followed the ideas of Andersen et al. (1994) and Plaghki et al. (1998), in that 

simultaneous arrival at the spinal cord of afferent input was achieved by varying the conditioning-

test time-interval. To study the influence of muscle pain on the NWR tonic muscle stimulation may 

be undesirable due the possible activation of supraspinal control mechanisms and central 

hyperexcitability as described above. Phasic activation of muscle nociceptive muscle afferents (type 

III and IV) can be achieved by intramuscular electrical stimulation. Although intramuscular 

electrical stimulation provides controllable timing and intensity, non-nociceptive muscle afferents 

(type I and II) are activated alongside. Furthermore, electrical stimuli evoke muscle contraction that 

may evoke a mechanical afferent component. Also, repeated high-intensity intramuscular electrical 

stimulation may cause muscle fatigue. Still, conditioning the NWR by intramuscular electrical 

stimulation provides better opportunity to control the conditioning-test interval.  

In study III, facilitation of the heat evoked reflexes was seen when the conditioning (intramuscular 

electrical stimulation) was applied 275 ms and 300 ms after the onset of the test (radiant heat) 

stimulation. Thus, at these intervals the heat evoked reflexes were significantly larger than the 

unconditioned heat evoked reflexes. The transduction delay of the type II AMHs was estimated to 

be 40 ms in accordance to Bromm and Treede (1984), the afferent conduction delay was estimated 
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to 40 ms, and a temperature that could activate the nociceptors were assumed to be achieved at the 

end of the 200 ms pulse. Therefore, the earliest possible afferent input was assumed at 280 ms after 

stimulation onset. However, the latency of the heat evoked reflexes was seen at 354 ± 9 ms. The 74 

ms difference may be assigned to central delay, and efferent conduction time from the ventral horn 

to the semitendinosus muscle, but also an overestimate of the conduction velocity of the Type II 

AMHs (Burgess and Perl, 1973) or an underestimate of the transduction time as it has been 

estimated to 70 ms (Plaghki et al., 1998). 

 

The facilitation found in study III was similar to that observed in studies where electrically evoked 

NWR were modulated by painful (Andersen et al., 1994) and non-painful (Plaghki et al., 1998) 

radiant heat stimulation. Surprisingly, in a study similar to study III, NWR evoked electrical 

stimulation of the sural nerve was depressed by a brief conditioning intramuscular electrical 

stimulation of the tibialis anterior when the conditioning was applied 15 ms to 1500 ms before the 

test stimulus (Ge et al., 2006). Conditioning stimulation applied to the contralateral tibialis anterior 

muscle and the contralateral trapezius muscles also attenuated the NWR, therefore the main reason 

for the reflex inhibition was assumed to be activation of descending inhibition (Ge et al., 2006). 

Furthermore, presynaptic inhibition induced by activation of group I and II muscle afferents (Rossi 

et al., 1999;Knikou and Conway, 2005) by conditioning the ipsilateral tibialis anterior muscle may 

also cause inhibition when the test stimulus was applied soon after the conditioning stimulation. 

The facilitation observed were at negative conditioning-test time-interval values in study III and 

may therefore have occurred before the inhibition reported by Ge et al. (2006). Another reason for 

the difference may be that heat stimulation of the dorsum of the foot evoked reflexes in 42 % of the 

control trials in study III, whereas electrical stimulation of the sural nerve evoked reflexes following 

every stimulation (Ge et al., 2006), even though the stimulation was applied at two times pain 

threshold in both studies. Heat stimulation applied at two times pain intensity was just around the 

reflex threshold, whereas electrical stimulation at two times pain threshold was well above the 

reflex threshold. Therefore, the conditioning may have provided sufficient additional afferent input 

to the reflex pathway to facilitate the heat evoked NWR (floor effect). Furthermore, the electrical 

stimulation may have evoked a highly synchronized afferent input from a wide range of afferent 

fiber, whereas heat stimulation evoked a natural barrage of only heat sensitive afferents.    
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The functional effect of the facilitation of the heat evoked NWR by noxious muscle stimulation, 

could be to protect the anterior part of the lower leg. However, the heat evoked reflex was not 

facilitated by ongoing muscle pain (pilot study), that presumably resembles muscle soreness more 

than the transient electrical stimulation (study III). This may be related to activation of the 

inhibitory systems e.g. diffuse noxious inhibitory control (Bars et al., 1979) evoked by tonic but not 

transient muscle stimulation as described in section 3.3.1.  

 

A study investigating the central effect of visceral nociception, lower limb NWRs were not affected 

by painful dilation of the esophagus (Drewes et al., 2003). However, sensitization of the esophagus 

by acid perfusion significantly increased the NWRs. Furthermore, after the sensitization painful 

dilation of the esophagus decreased the NWRs showing a complex interaction between visceral and 

cutaneous nociception in healthy human subjects. Correspondingly, Bouhassira (1998) showed that 

transient rectal stimulation facilitated the NWRs of the lower limb whereas tonic rectal stimulation 

inhibited the NWRs in the lower limb. These findings correspond to the present findings where 

tonic muscle pain possibly inhibited the NWRs whereas transient muscle pain facilitated the NWRs 

(Study III).  

 

Animal studies have shown that stimulation of persistent ongoing pain in deep structures was 

associated with activity of the ventrolateral PAG and resulted in passive emotional coping 

(hyporeactivity and vasodepression), whereas cutaneous stimulation was associated with activity in 

the lateral PAG and resulted in active emotional coping (fight-flight) (Keay and Bandler, 

1993;Keay et al., 1994;Clement et al., 2000). However, it has been shown that also noxious 

inescapable cutaneous stimulation was associated with activity in the ventrolateral PAG, resembling 

the response to deep muscle pain (Keay et al., 2001). Therefore, regional activation of the PAG may 

be associated by the escapability of the noxious stimulation rather than the stimulation modality per 

se. This may reflect differences between the tonic and transient muscle pain on heat evoked NWR 

(Study III).   

3.3.4 NWR evoked by intramuscular electrical stimulation 

Studies of spinal cord injured subjects has shown that strong phasic activation of the tibialis anterior 

muscle afferents itself was capable of evoking withdrawal responses (Hornby et al., 2004), likewise 

cutaneous stimulation may also evoke reflexes in areas not observed in spinal intact subjects 
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(Kugelberg et al., 1960;Schmit et al., 2003;Andersen et al., 2004). In study III, significant EMG 

response was observed in the semitendinosus muscle in 10 % of the trials following intramuscular 

stimulation of the tibialis anterior muscle (Figure 7). The intramuscular electrical stimulation may 

directly have activated group III and/or IV muscle afferents thereby evoked the NWR as these 

afferents have been reported to belong to the flexor reflex afferents (Eccles and Lundberg, 1959). 

The mean latency of the response was 125 ms which was somewhat longer than latencies observed 

following cutaneous stimulation e.g. 70 ms (Andersen et al., 2000). This probably indicated that the 

group III muscle afferents are slower conducting than the cutaneous A fibers. Alternatively, the 

intramuscular stimulation may have evoked the reflex indirectly as the stimulation caused 

contraction of the tibialis anterior muscle and therefore a perturbation of the ankle joint. In spinal 

cord injured subjects, both plantar- and dorsi- flexion of the ankle has been shown to evoke a multi-

joint reflex resembling the flexor reflex (Schmit et al., 2000). In decerebrated cats, free nerve 

endings innervated by group II, III, and IV muscle afferents but neither Golgi tendon organ nor 

spindle afferents (Cleland and Rymer, 1990) have been proposed to be responsible for reflexes 

(Schmit et al., 2000). Such reflexes is often called the clasp-knife reflex (Rymer et al., 1979), and is 

followed by an inhibition at long stretches (Cleland et al., 1990). Whether the reflex response was 

evoked directly by electrical stimulation of muscle afferents or indirectly by the joint perturbation, 

these findings supported the notion that group II-IV muscle afferents belong to the flexor reflex 

afferents.   

  

 

Figure 7. Electrical intramuscular stimulation of the tibialis anterior evoked withdrawal response. The grand 

mean of all trial rectified EMG responses recorded in the semitendinosus muscle is displayed, although only 10% 

of the trials showed a significant response as defined in Study III.    
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3.4 Short summary 

The NWR has been used to study the nociceptive system at the spinal level in humans. These NWR 

have usually been evoked by electrical stimuli which may not resemble natural stimuli. The present 

thesis presented a new method where heat was uniformly applied to a large skin area by a scanning 

of a CO2-laser beam. This provided a method to activate heat nociceptors sufficiently to evoke 

NWR and thus provides a method for investigation NWR to natural noxious stimuli. The method 

was used to study the correlation between nociceptive cutaneous afferents and muscle afferents. The 

present studies showed a facilitation of the heat evoked NWR by transient but not tonic muscle 

pain, indicating afferent convergence at the spinal level that may be modulated by descending 

control mechanisms.  

4 Future perspectives  

The convergence of several afferent sources in the trigeminal and cervical territories onto 

nociceptive C1 DH neurons was investigated in the present thesis in rats. Systematical 

investigations of DH neurons the remaining of the spinal cord have not been performed. Such 

investigations, although cumbersome, may provide information and deeper understanding of the 

spinal processing of nociceptive information and the complex nature of pathologic pain. However, 

Sessle et al. (1986) systematically investigated the sensory convergence in nociceptive and non-

nociceptive DH neurons cats.  

Uniformly application of heat to a large skin area by a scanning of a CO2-laser beam proved to be a 

useful method to elicit NWR and to investigate sensory convergence in humans. However, only 

evoked reflexes in 1 out of 3 stimuli at the highest intensity that did not cause tissue damage. 

Further development of the system may enable even higher response rates. Stimulation by other 

infrared laser e.g. YAG, YAP or diode lasers will provide radiation that penetrates deeper into the 

skin and may raise the temperature closer to the heat sensitive nociceptors than the CO2-laser 

radiation (Plaghki and Mouraux, 2003;Baumgartner et al., 2005). Furthermore, the radiation of the 

YAG, YAP or diode lasers may readily be mediated through optic fibers, and thus a more flexible 

system may be developed.  

The present thesis presented a method to elicit NWR by activation of Type II AMHs. Nilsson et al. 

(1997) presented a method to specifically activate nociceptive afferents by intra-epidermal electrical 

stimulation applied through small electrodes. This method has been used to treat itch (Nilsson et al., 

1997), to study the analgesic effect (Nilsson and Schouenborg, 1999), and to study long term effects 
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of specific nociceptive stimulation (Klein et al., 2004). The evoked cortical potentials the intra-

epidermal stimulation has also been investigated e.g. (Inui et al., 2002). However, it is not know if 

the intra-epidermal electrical stimulation is capable of eliciting NWR.  

5 Summary and conclusion 

Sensory convergence of afferent input to second order neurons in the spinal and medullary DH has 

been shown by anatomical and electrophysiological studies. Animal electrophysiological studies 

investigating the input from a larger number of afferent sources have shown that nociceptive 

neurons on the medullary (Sessle et al., 1986) and C1 (study I) DH receive afferent input from a 

wide range of cutaneous, deep, dural and visceral afferent sources. The central convergence and 

hypersentization of the DH neurons may form the neural basis for several craniofacial pain 

disorders (Sessle, 2000) such as temporomandibular disorder (Dworkin et al., 1990), whiplash 

(Munglani, 2000), angina pectoris (Foreman, 1999;Foreman, 2000), and headache (Bogduk, 

2001;Bartsch and Goadsby, 2003b). In order to study indications of sensory convergence in human 

subjects, the NWR have been used as a window into the nociceptive human physiology at the spinal 

level. A method to evoke pure nociceptive NWR has been developed by applying heat stimulation 

to a large area of the skin of the dorsum of the foot by CO2-laser radiation through a scannerhead 

(study II). Several studies have shown a modular organization of the NWR animals and electrically 

evoked the NWR humans, however a similar modular organization could not be shown for the heat 

evoked NWR on the dorsum of the foot and anterior of the lower leg (study II). The NWR is 

modulated by numerous afferent sources possibly by sensory convergence of afferent activity onto 

second order neurons of the DH (Lundberg, 1979). In animal studies a correlation between DH 

neurons and reflex responses have been shown (Jankowska and Roberts, 1972a;Jankowska and 

Roberts, 1972b;Brink et al., 1983;Morgan, 1998;You et al., 2003). Study III showed facilatory 

modulation of the NWR by varying the time interval between the test stimulus and the conditioning 

muscle stimulus. In this way, electrical muscle conditioning stimulation has been shown to facilitate 

the heat evoked NWR. This indicated convergence of muscle afferents onto neurons in the NWR 

pathway. 
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6 Dansk sammenfatning (Danish Summary) 

 

Undersøgelse af sensorisk konvergens i rygmarven 

 

(Assessment of sensory convergence in the spinal cord) 

 

Smerte er under normale fysiologiske omstændigheder en vigtig oplevelse, som er nødvendig for 

individets overlevelse. Smertesystemets perifere del består af afferente nerver, som bringer 

informationer om mulige trauma fra periferien til rygmarven. En vigtig funktion af somatiske 

smerter er afværgereflekser, hvor den sensoriske information viderebringes til det motoriske 

system, her aktiveres muskler, så legemsdelen fjernes fra det mulige traume. Ligeledes bringes 

informationen om muligt traume til hjernen, hvor oplevelsen af smerte kan opstå. Imidlertid kan 

informationen konvergere på samme neuroner i centralnervesystemet. Denne konvergens har 

betydning for smerteopfattelsen og kan resultere i smertespredning og meddelt smerte. Ligeledes 

kan konvergens resultere i en ændring i afværgereflekserne. Formålet med dette projekt har været at 

undersøge sensorisk konvergens i smertesystemet hos dyr og mennesker. 

 

Afhandlingen bygger på 3 separate videnskabelige arbejder: 

I Convergence of cutaneous, visceral and muscle afferents onto nociceptive dorsal horn 

neurons at the first cervical level. Mørch C.D., Hu H.W., Arendt-Nielsen L., Sessle 

B.J. 

II Nociceptive withdrawal reflexes evoked by uniform-temperature laser heat 

stimulation of large skin areas in humans. Mørch C.D., Andersen O.K., Graven-

Nielsen T., Arendt-Nielsen L. Accepteret af Journal of Neuroscience Methods 

III Modulation of heat evoked nociceptive withdrawal reflexes by painful intramuscular 

conditioning stimulation. Andersen O.K., Mørch C.D., Arendt-Nielsen L. Accepteret 

af Experimental Brain Research  
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I studie I undersøgtes identificerede nociceptive neuroner i den første cervikale del rygmarvens 

baghorn hos rotter. Elektrisk stimulation blev givet til hornhinden, hjernehinderne, den anden 

cervikale nerven, nerven som innerverer tungen (hypoglossus), kæbeledet, kæbemusklen (m. 

masseter) og nerven, som innerverer struben (n. superiolingualis). Ligeledes blev huden stimuleret i 

områderne, som innerveres af første, anden og tredje gren af den trigiminale nerve, huden bag øret 

(innerveret af anden og tredje cervikale nerve), huden over skulderen og huden på forpoten. 

Yderligere blev mikroinjektioner med glutamat givet i tungen, nakkemusklerne, området omkring 

hjertet og dryppet på hjernehinden. Ligeledes blev acetylsyre injiceret i bughulen, for at undersøge 

om de nociceptive neuroner i den første cervikale del af rygmarven modtager nociceptive viscerale 

informationer fra dette område.  

Undersøgelserne viste, at nociceptive neuroner i den første cervikale del af rygmarvens baghorn 

modtager nociceptiv afferent information fra kutane og muskelskeletale organer i det trigiminale 

område, hjernehinde og n. superiolingualis. Undersøgelsen viste også, at elektrisk stimulation af 

disse organer resulterede i en dobbelt logaritmisk stimulus respons funktion, hvilket indikerer, at 

disse neuroner er i stand til at kode og transmittere information om smerte fra alle disse organer. 

Undersøgelsen viste yderligere, at de nociceptive neuroner modtager afferent information fra 

adskillige af disse afferente kilder. Imidlertid modtog de nociceptive neuroner i den første cervikale 

del af rygmarvens baghorn kun ganske sporadisk information fra afferente kilder uden for det 

trigeminiale område. Den substantielle konvergens af trigiminale afferente kilder kan have 

betydning for spredning og meddeling af smerte i forbindelse med smertelidelser i det trigiminale 

område, så som migræne, piskesmæld og kæbebetændelses lignende tilstande.  

 

Undersøgelser af enkelte rygmarvsneuroner hos mennesker er imidlertid ikke en simpel opgave. 

Derfor blev to yderligere studier planlagt for at se på sensorisk konvergens i forbindelse med 

afværgereflekser. Afværgereflekser drives af afferent input gennem et antal neuroner eller netværk 

af neuroner i rygmarven til at udløse et muskelrespons. Idet afværgereflekserne drives af en sådan 

spinal refleksbue, giver de mulighed for at undersøge smertesystemet og specielt i denne 

sammenhæng konvergens i smertesystemet på det spinale niveau. I mange studier udløses 

afværgerefleksen ved elektriske stimulation på huden, hvilket direkte aktiverer nociceptive og non-

nociceptive afferente fibre. Yderligere aktiverer den elektriske stimulation de afferente fibre 

samtidigt, hvilket givetvis medfører et unaturligt synkroniseret input til centralnervesystemet. 

Derfor var formålet med studie II at udvikle en metode til selektivt at stimulere nociceptive 
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receptorer på en måde, der ville udløse afværgereflekser. Til dette formål benyttedes en infrarød 

CO2-laser til varmestimulation af oversiden af foden og forsiden af underbenet. Studiet viste, at 

varmestimulationen kunne udløse reflekser i iliopsoas, quadriceps vastus lateralis, biceps femoris, 

tibialis anterior og soleus musklerne. En lineær stimulus respons sammenhæng sås i alle disse 

muskler undtagen soleus musklen. Dette studie påviste en metode til at udløse rent nociceptive 

afværgereflekser ved hjælp af varmestimulation.  

 

I studie III blev konvergens mellem smertereceptorer i huden og musklerne undersøgt. Til dette 

formål benyttedes metoden til at udløse afværgereflekser (som beskrevet i studie II) ved at stimulere 

oversiden af foden og måle afværgerefleksen i semitendinosus musklen. Elektrisk intramuskulær 

stimulation af tibialis anterior musklen benyttedes til en transient aktivering af smertereceptorer 

muskelen. Tidsintervallet mellem den intramuskulære stimulation og varmestimulationen blev 

varieret mellem -400ms (varmestimulationen givet først) til 8s (den intramuskulære givet 

stimulation først). Når varmestimulationen blev givet 300ms eller 275ms før den intramuskulære 

stimulation, øgedes størrelsen af afværgerefleksen signifikant. Det er derfor sandsynligt, at afferent 

information fra huden ankommer til rygmarven samtidig med afferent information fra musklen ved 

disse tidsintervaller. Den afferente information fra huden og musklerne konvergerer et sted i 

refleksbuen givetvis på nociceptive baghornsneuroner, som beskrevet i studie I. Funktionelt betyder 

faciliteringen af afværgerefleksen med transient muskelsmerte en øget afværgereaktion. Med 

metoden, som blev benyttet i studie III, er det muligt at undersøge sensorisk konvergens på 

rygmarvsniveau hos mennesker. Studier af sensorisk konvergens i smertesystemet kan bidrage til 

forståelse reflekssystemet og smertespredning og meddelt smerte i patologiske tilstande.  



Assessment of sensory convergence in the spinal cord 

43/48 

7 References 
Reference List 

 
 1.  Andersen OK, Graven-Nielsen T, Matre D, Arendt-Nielsen L, Schomburg ED (2000) Interaction between cutaneous and muscle afferent 

activity in polysynaptic reflex pathways: a human experimental study. Pain 84:29-36. 

 2.  Andersen OK, Sonnenborg FA, Arendt-Nielsen L (1999) Modular organization of human leg withdrawal reflexes elicited by electrical 
stimulation of the foot sole. Muscle & Nerve 22:1520-1530. 

 3.  Andersen OK, Svensson P, Ellrich J, Arendt-Nielsen L (1998) Conditioning of the masseter inhibitory reflex by homotopically applied 

painful heat in humans. Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology 109:508-514. 
 4.  Andersen OK, Finnerup NB, Spaich EG, Jensen TS, Arendt-Nielsen L (2004) Expansion of nociceptive withdrawal reflex receptive fields 

in spinal cord injured humans. Clinical Neurophysiology 115:2798-2810. 

 5.  Andersen OK, Jensen LM, Brennum J, Arendt-Nielsen L (1994) Evidence for central summation of C and A[delta] nociceptive activity in 
man. Pain 59:273-280. 

 6.  Anthony M (1992) Headache and the greater occipital nerve. Clinical Neurology and Neurosurgery 94:297-300. 

 7.  Arendt-Nielsen L, Chen AC (2003) Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiologie 
Clinique/Clinical Neurophysiology 33:259-268. 

 8.  Arendt-Nielsen L, Svensson P (2001) Referred muscle pain: basic and clinical findings. Clin J Pain 17:11-19. 

 9.  Arendt-Nielsen L, Bjerring P (1988a) Reaction-times to painless and painful CO2 and argon-laser stimulation. European Journal of 

Applied Physiology and Occupational Physiology 58:266-273. 

 10.  Arendt-Nielsen L, Bjerring P (1988b) Sensory and pain threshold characteristics to laser stimuli. Journal of Neurology Neurosurgery and 

Psychiatry 51:35-42. 
 11.  Bars DL, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, 

supraspinal involvement and theoretical implications. Pain 6:305-327. 

 12.  Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 
2002 Jul ;125 (Pt 7 ):1496 -509 125:1496-1509. 

 13.  Bartsch T, Goadsby PJ (2003a) Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura 

mater. Brain 126:1801-1813. 
 14.  Bartsch T, Goadsby P (2003b) The trigeminocervical complex and migraine: Current concepts and synthesis. Current Pain and Headache 

Reports 7:371-376. 

 15.  Baumgartner U, Cruccu G, Iannetti GD, Treede RD (2005) Laser guns and hot plates. Pain 116:1-3. 
 16.  Behrends T, Schomburg ED, Steffens H (1983) Facilitatory interaction between cutaneous afferents from low threshold mechanoreceptors 

and nociceptors in segmental reflex pathways to [alpha]-motoneurons. Brain Research 260:131-134. 

 17.  Bereiter DA, Bereiter DF, Hirata H, Hu JW (2000) C-fos expression in trigeminal spinal nucleus after electrical stimulation of the 
hypoglossal nerve in the rat. Somatosensory and Motor Research 17:229-237. 

 18.  Beydoun A, Morrow TJ, Shen JF, Casey KL (1993) Variability of laser-evoked potentials: attention, arousal and lateralized differences. 

Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 88:173-181. 
 19.  Bogduk N (2001) Cervicogenic headache: Anatomic basis and pathophysiologic mechanisms. Current Pain and Headache Reports 5:382-

386. 
 20.  Bouhassira D, Sabate JM, Coffin B, Le Bars D, Willer JC, Jian R (1998) Effects of rectal distensions on nociceptive flexion reflexes in 

humans. Am J Physiol Gastrointest Liver Physiol 275:G410-G417. 

 21.  Brink E, Harrison PJ, Jankowska E, McCrea DA, Skoog B (1983) Post-synaptic potentials in a population of motoneurones following 
activity of single interneurones in the cat. J Physiol (Lond) 343:341-359. 

 22.  Bromm B, Treede RD (1984) Nerve-fiber discharges, cerebral potentials and sensations induced by CO2-laser stimulation. Human 

Neurobiology 3:33-40. 
 23.  Bromm B, Treede RD (1983) CO2 laser radiant heat pulses activate C nociceptors in man. Pfl++gers Archiv European Journal of 

Physiology 399:155-156. 

 24.  Buettner K (1951) Effects of extreme heat and cold on human skin.1. analysis of temperature changes caused by different kinds of heat 
application. J Appl Physiol 3:691-702. 

 25.  Burgess PR, Perl ER (1973) Cutaneous mechanoreceptors and nociceptors. (Iggo A, ed), pp 29-78. Berlin: Springer Verlag. 

 26.  Burke RE, Rudomin P, Vyklicky L, Zajac FE, III (1971) Primary afferent depolarization and flexion reflexes produced by radiant heat 
stimulation of the skin. J Physiol (Lond) 213:185-214. 

 27.  Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to 

facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964-982. 
 28.  Cairns BE, Sessle BJ, Hu JW (2001a) Temporomandibular-evoked jaw muscle reflex: role of brain stem NMDA and non-NMDA 

receptors. Neuroreport 12:1875-1878. 

 29.  Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P (2001b) Sex-related differences in human pain and rat afferent discharge 
evoked by injection of glutamate into the masseter muscle. J Neurophysiol 86:782-791. 

 30.  Cairns BE, Sessle BJ, Hu JW (2001c) Characteristics of glutamate-evoked temporomandibular joint afferent activity in the rat. J 

Neurophysiol 85:2446-2454. 

 31.  Campbell IG, Carstens E, Watkins LR (1991) Comparison of human pain sensation and flexion withdrawal evoked by noxious radiant-

heat. Pain 45:259-268. 

 32.  Carstens E, Saxe I, Ralph R (1995) Brainstem neurons expressing c-Fos immunoreactivity following irritant chemical stimulation of the 
rat's tongue. Neuroscience 69:939-953. 

 33.  Casey KL (2006) Laser guns and hot plates revisited. Pain 120:326-327. 

 34.  Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel 
in the pain pathway. Nature 389:816-824. 

 35.  Chandler MJ, Qin C, Yuan Y, Foreman RD (1999) Convergence of trigeminal input with visceral and phrenic inputs on primate C1-C2 

spinothalamic tract neurons. Brain Research 829:204-208. 
 36.  Chandler MJ, Zhang JH, Foreman RD (1996) Vagal, sympathetic and somatic sensory inputs to upper cervical (C-1-C-3) spinothalamic 

tract neurons in monkeys. J Neurophysiol 76:2555-2567. 



Assessment of sensory convergence in the spinal cord 

44/48 

 37.  Chandler MJ, Zhang JH, Foreman RD (1998) Phrenic nerve inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys. 

Brain Research 798:93-100. 

 38.  Chen ACN, Niddam DM, Arendt-Nielsen L (2001) Contact heat evoked potentials as a valid means to study nociceptive pathways in 

human subjects. Neuroscience Letters 316:79-82. 
 39.  Clarke RW, Harris J (2004) The organization of motor responses to noxious stimuli. Brain Research Reviews 46:163-172. 

 40.  Cleland CL, Hayward L, Rymer WZ (1990) Neural mechanisms underlying the clasp-knife reflex in the cat. II. Stretch-sensitive muscular-

free nerve endings. J Neurophysiol 64:1319-1330. 
 41.  Cleland CL, Rymer WZ (1990) Neural mechanisms underlying the clasp-knife reflex in the cat. I. Characteristics of the reflex. J 

Neurophysiol 64:1303-1318. 

 42.  Cleland CL, Bauer RE (2002) Spatial transformations in the withdrawal response of the tail in intact and spinalized rats. J Neurosci 
22:5265-5270. 

 43.  Clement CI, Keay KA, Podzebenko K, Gordon BD, Bandler R (2000) Spinal sources of noxious visceral and noxious deep somatic 

afferent drive onto the ventrolateral periaqueductal gray of the rat. J Comp Neurol 425:323-344. 
 44.  Cook AJ, Woolf CJ, Wall PD, McMahon SB (1987) Dynamic receptive-field plasticity in rat spinal-cord dorsal horn following c-primary 

afferent input. Nature 325:151-153. 

 45.  Cruccu G, Inghilleri M, Fraioli B, Guidetti B, Manfredi M (1987) Neurophysiologic assessment of trigeminal function after surgery for 
trigeminal neuralgia. Neurology 37:631-638. 

 46.  Cruccu G, Romaniello A (1998) Jaw-opening reflex after CO2 laser stimulation of the perioral region in man. Experimental Brain Research 118:564-568. 

 47.  Cruccu G, Romaniello A, Amantini A, Lombardi M, Innocenti P, Manfredi M (1999) Assessment of trigeminal small fiber function: Brain 
and reflex responses evoked by CO2-laser stimulation. Muscle & Nerve 22:508-516. 

 48.  Davidson JA, Metzinger SE, Tufaro AP, Dellon AL (2003) Clinical implications of the innervation of the temporomandibular joint. 

Journal of Craniofacial Surgery 14:235-239. 
 49.  Dessem D, Luo P (1999) Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. Experimental Brain Research 

128:451-459. 

 50.  Doukas AG, Kollias N (2004) Transdermal drug delivery with a pressure wave. Advanced Drug Delivery Reviews 56:559-579. 
 51.  Draisci G, Iadarola MJ (1989) Temporal analysis of increases in c-fos, preprodynorphin and preproenkephalin mRNAs in rat spinal cord. 

Molecular Brain Research 6:31-37. 

 52.  Drewes AM, Schipper KP, Dimcevski G, Petersen P, Kaeseler Andersen O, Gregersen H, rendt-Nielsen L (2003) Multi-modal induction 
and assessment of allodynia and hyperalgesia in the human oesophagus. European Journal of Pain 7:539-549. 

 53.  Dubner R, Sessle BJ, Storey AT (1978) The neutral basis of oral and facial function. New York: Plenum press. 

 54.  Dworkin SF, Huggins KH, Leresche L, Vonkorff M, Howard J, Truelove E, Sommers E (1990) Epidemiology of signs and symptoms in 
temporomandibular disorders - Clinical signs in cases and controls. Journal of the American Dental Association 120:273-281. 

 55.  Eccles R, Lundberg A (1959) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97:199-

221. 
 56.  Eklund K, Grimby L, Kugelberg E (1959) Nociceptive reflexes of the human foot the plantar responses. Acta Physiologica Scandinavica 

47:297-298. 

 57.  Ellrich J, Andersen OK, Treede RD, Arendt-Nielsen L (1998) Convergence of nociceptive and non-nociceptive input onto the medullary 
dorsal horn in man. Neuroreport 9:3213-3217. 

 58.  Ellrich J, Bromm B, Hopf HC (1997a) Pain-evoked blink reflex. Muscle & Nerve 20:265-270. 
 59.  Ellrich J, Hopf HC, Treede RD (1997b) Nociceptive masseter inhibitory reflexes evoked by laser radiant heat and electrical stimuli. Brain 

Research 764:214-220. 

 60.  Ellrich J, Steffens H, Schomburg ED (2000) Neither a general flexor nor a withdrawal pattern of nociceptive reflexes evoked from the 
human foot. Neuroscience Research 37:79-82. 

 61.  Falinower S, Willer JC, Junien JL, Le Bars D (1994) A C-fiber reflex modulated by heterotopic noxious somatic stimuli in the rat. J 

Neurophysiol 72:194-213. 
 62.  Foreman RD (1999) Mechanisms of cardiac pain. Annual Review of Physiology 61:143-167. 

 63.  Foreman RD (2000) Integration of viscerosomatic sensory input at the spinal level. Progress in Brain Research 122:209-221. 

 64.  Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol (Lond) 199:319-345. 
 65.  Garcia-Larrea L, Sindou M, Mauguiere F (1989) Nociceptive flexion reflexes during analgesic neurostimulation in man. Pain 39:145-156. 

 66.  Gavrilov LR, Gersuni GV, Ilyinski OB, Tsirulnikov EM, Shchekanov EE (1977) A study of reception with the use of focused ultrasound. 

I. Effects on the skin and deep receptor structures in man. Brain Research 135:265-277. 
 67.  Ge HY, Collet T, Arendt-Nielsen L, Andersen OK (2006) The human nociceptive withdrawal reflex is depressed more via segmental than 

heterosegmental intramuscular painful conditioning stimulation. Pain Submitted. 

 68.  Ge HY, Madeleine P, Wang K, Arendt-Nielsen L (2003) Hypoalgesia to pressure pain in referred pain areas triggered by spatial 
summation of experimental muscle pain from unilateral or bilateral trapezius muscles. European Journal of Pain 7:531-537. 

 69.  Giesler J, Menetrey D, Guilbaud G, Besson JM (1976) Lumbar cord neurons at the origin of the spinothalamic tract in the rat. Brain 

Research 118:320-324. 
 70.  Gjerstad J, Tjolsen A, Svendsen F, Hole K (1999) Inhibition of evoked C-fibre responses in the dorsal horn after contralateral 

intramuscular injection of capsaicin involves activation of descending pathways. Pain 80:413-418. 

 71.  Grant G, Arvidsson J, Robertson B, Ygge J (1979) Transganglionic transport of horseradish peroxidase in primary sensory neurons. 
Neuroscience Letters 12:23-28. 

 72.  Graven-Nielsen T, Gibson SJ, Laursen RJ, Svensson P, Arendt-Nielsen L (2002) Opioid-insensitive hypoalgesia to mechanical stimuli at 

sites ipsilateral and contralateral to experimental muscle pain in human volunteers. Experimental Brain Research 146:213-222. 
 73.  Graven-Nielsen T, Arendt-Nielsen L, Svensson P, Jensen TS (1997a) Experimental muscle pain: A quantitative study of local and referred 

pain in humans following injection of hypertonic saline. Journal of Musculoskeletal Pain 5:49-69. 

 74.  Graven-Nielsen T, Arendt-Nielsen L, Svensson P, Staehelin Jensen T (1997b) Stimulus-response functions in areas with experimentally 
induced referred muscle pain -- a psychophysical study. Brain Research 744:121-128. 

 75.  Grimby L (1963) Normal plantar response - integration of flexor and extensor reflex components. Journal of Neurology Neurosurgery and 

Psychiatry 26:39-50. 
 76.  Hagbarth KE (1952) Excitatory and inhibitory skin areas for flexor and extensor motoneurons. Acta Physiol Scand Suppl 26:1-58. 

 77.  Hagbarth KE (1960) Spinal withdrawal reflexes in the human lower limbs. Journal of Neurology Neurosurgery and Psychiatry 23:222-227. 

 78.  Haimi-Cohen R, Cohen A, Carmon A (1983) A model for the temperature distribution in skin noxiously stimulated by a brief pulse of 
CO2 laser radiation. Journal of Neuroscience Methods 8:127-137. 



Assessment of sensory convergence in the spinal cord 

45/48 

 79.  Hardy JD (1934) The radiation of heat from the human body III. The human skin as a black-body radiator. J Clin Invest 13:615-620. 

 80.  Hardy JD (1953) Thresholds of pain and reflex contraction as related to noxious stimulation. J Appl Physiol 5:725-739. 

 81.  Hardy JD, Muschenheim C (1934) The radiation of heat from the human body. IV. The emission, reflection, and transmission of infra-red 

radiation by the human skin. J Clin Invest 13:817-831. 
 82.  Hardy JD, Hammel HT, Murgatroyd D (1956) Spectral transmittance and reflectance of excised human skin. J Appl Physiol 9:257-264. 

 83.  Harris JA (1998) Using c-fos as a neural marker of pain. Brain Research Bulletin 45:1-8. 

 84.  Hathaway CB, Hu JW, Bereiter DA (1995) Distribution of Fos-like immunoreactivity in the caudal brain-stem of the rat following noxious 
chemical-stimulation of the temporomandibular-joint. Journal of Comparative Neurology 356:444-456. 

 85.  Hendler E, Crosbie R, Hardy JD (1958) Measurement of heating of the skin during exposure to infrared radiation. J Appl Physiol 12:177-

185. 
 86.  Hirata H, Okamoto K, Tashiro A, Bereiter DA (2004) A novel class of neurons at the trigeminal subnucleus interpolaris/caudalis transition 

region monitors ocular surface fluid status and modulates tear production. J Neurosci 24:4224-4232. 

 87.  Hirata H, Hu JW, Bereiter DA (1999) Responses of medullary dorsal horn neurons to corneal stimulation by CO2 pulses in the rat. J 
Neurophysiol 82:2092-2107. 

 88.  Hoheisel U, Mense S (1990) Response behaviour of cat dorsal horn neurones receiving input from skeletal muscle and other deep somatic 

tissues. J Physiol 426:265-280. 
 89.  Hoheisel U, Mense S, Simons DG, Yu XM (1993) Appearance of new receptive fields in rat dorsal horn neurons following noxious 

stimulation of skeletal muscle: a model for referral of muscle pain? Neurosci Lett 153:9-12. 

 90.  Hongo T, Jankowska E, Lundberg A (1966) Convergence of excitatory and inhibitory action on interneurones in the lumbosacral cord. 
Experimental Brain Research 1:338-358. 

 91.  Hornby TG, Tysseling-Mattiace VM, Benz EN, Schmit BD (2004) Contribution of muscle afferents to prolonged flexion withdrawal 

reflexes in human spinal cord injury. J Neurophysiol 92:3375-3384. 
 92.  Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Phych 24:417-441. 

 93.  Hu JW (1990) Response properties of nociceptive and non-nociceptive neurons in the rat's trigeminal subnucleus caudalis (medullary 

dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Pain 
41:331-345. 

 94.  Hu JW, Dostrovsky JO, Sessle BJ (1981) Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). I. 

Responses to oral-facial noxious and nonnoxious stimuli and projections to thalamus and subnucleus oralis. J Neurophysiol 45:173-192. 
 95.  Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A (1992) Stimulation of craniofacial muscle afferents induces prolonged facilitatory 

effects in trigeminal nociceptive brain-stem neurones. Pain 48:53-60. 

 96.  Hu JW, Sun KQ, Vernon H, Sessle BJ (2005) Craniofacial inputs to upper cervical dorsal horn: Implications for somatosensory 
information processing. Brain Research 1044:93-106. 

 97.  Hunt SP, Pini A, Evan G (1987) Induction of C-Fos-like protein in spinal-cord neurons following sensory stimulation. Nature 328:632-

634. 
 98.  Hunter JC, Woodburn VL, Durieux C, Pettersson EKE, Poat JA, Hughes J (1995) C-fos antisense oligodeoxynucleotide increases 

formalin-induced nociception and regulates preprodynorphin expression. Neuroscience 65:485-492. 

 99.  Iannetti GD, Leandri M, Truini A, Zambreanu L, Cruccu G, Tracey I (2004) A-delta nociceptor response to laser stimuli: selective effect 
of stimulus duration on skin temperature, brain potentials and pain perception. Clinical Neurophysiology 115:2629-2637. 

 100.  Imbe H, Dubner R, Ren K (1999) Masseteric inflammation-induced Fos protein expression in the trigeminal interpolaris/caudalis transition 
zone: contribution of somatosensory-vagal-adrenal integration. Brain Research 845:165-175. 

 101.  Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of A[delta] fibers by intra-epidermal needle electrode in humans. 

Pain 96:247-252. 
 102.  Jankowska E, Roberts WJ (1972a) Electrophysiological demonstration of axonal projections of single spinal interneurones in cat. Journal 

of Physiology-London 222:597-&. 

 103.  Jankowska E, Roberts WJ (1972b) Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. Journal of 
Physiology-London 222:623-&. 

 104.  Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-210. 

 105.  Kalezic I, Pilyavskii AI, Maisky VA, Kostyukov AI, Windhorst U, Johansson H (2004) Distinctive pattern of c-fos expression in the feline 
cervico-lumbar spinal cord after stimulation of vanilloid receptors in dorsal neck muscles. Neuroscience Letters 364:94-97. 

 106.  Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and 

upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Research 629:95-102. 
 107.  Keay KA, Clement CI, Depaulis A, Bandler R (2001) Different representations of inescapable noxious stimuli in the periaqueductal gray 

and upper cervical spinal cord of freely moving rats. Neurosci Lett 313:17-20. 

 108.  Keay KA, Clement CI, Owler B, Depaulis A, Bandler R (1994) Convergence of deep somatic and visceral nociceptive information onto a 
discrete ventrolateral midbrain periaqueductal gray region. Neuroscience 61:727-732. 

 109.  Keay KA, Bandler R (1993) Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the 

midbrain periaqueductal grey of the rat. Neuroscience Letters 154:23-26. 
 110.  Klein T, Magerl W, Hopf HC, Sandkuhler J, Treede RD (2004) Perceptual Correlates of Nociceptive Long-Term Potentiation and Long-

Term Depression in Humans. J Neurosci 24:964-971. 

 111.  Kniffki K-D, Schomburg ED, Steffens H (1981) Convergence in segmental reflex pathways from fine muscle afferents and cutaneous or 
group II muscle afferents to [alpha]-motoneurones. Brain Research 218:342-346. 

 112.  Knikou M, Conway BA (2005) Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury. Spinal 

Cord 43:640-648. 
 113.  Kohlloffel UE, Koltzenburg M, Handwerker HO (1991) A novel technique for the evaluation of mechanical pain and hyperalgesia. Pain 

46:81-87. 

 114.  Kugelberg E, Eklund K, Grimby L (1960) An electromyographic study of the nociceptive reflexes of the lower limb - mechanism of the 
plantar responses. Brain 83:394-&. 

 115.  Kuo DC, Oravitz JJ, DeGroat WC (1984) Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using 

retrograde and transganglionic transport of horseradish peroxidase. Brain Research 321:111-118. 
 116.  Laird JMA, de la Rubia PG, Cervero F (1995) Excitability changes of somatic and viscero-somatic nociceptive reflexes in the decerebrate-

spinal rabbit: role of NMDA receptors. J Physiol (Lond) 489:545-555. 

 117.  Lawrence SJ, Botte MJ (1995) The deep peroneal nerve in the foot and ankle - An anatomic study. Foot & Ankle International 16:724-728. 
 118.  Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacological Reviews 53:597-652. 



Assessment of sensory convergence in the spinal cord 

46/48 

 119.  Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones 

in the rat. Pain 6:283-304. 

 120.  Levinsson A, Garwicz M, Schouenborg J (1999) Sensorimotor transformation in cat nociceptive withdrawal reflex system. European 

Journal of Neuroscience 11:4327-4332. 
 121.  Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, AndrejSali, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-

related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525-535. 

 122.  Lima D (1990) A spinomedullary projection terminating in the dorsal reticular nucleus of the rat. Neuroscience 34:577-589. 
 123.  Lima D, Avelino A, Coimbra A (1993) Differential activation of C-Fos in spinal neurons by distinct classes of noxious stimuli. 

Neuroreport 4:747-750. 

 124.  Loeser JD, Melzack R (1999) Pain: an overview. Lancet 353:1607-1609. 
 125.  Lu J, Hathaway CB, Bereiter DA (1993) Adrenalectomy enhances Fos-like immunoreactivity within the spinal trigeminal nucleus induced 

by noxious thermal stimulation of the cornea. Neuroscience 54:809-818. 

 126.  Lundberg A (1979) Multisensory control of spinal reflex pathways. Progress in Brain Research11-28. 
 127.  Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal 

cord and caudal medulla of the rat. J Neurophysiol 84:2078-2112. 

 128.  Melzack R (1990) Phantom limbs and the concept of a neuromatrix. Trends in Neurosciences 13:88-92. 
 129.  Meng ID, Bereiter DA (1996) Differential distribution of Fos-like immunoreactivity in the spinal trigeminal nucleus after noxious and 

innocuous thermal and chemical stimulation of rat cornea. Neuroscience 72:243-254. 

 130.  Meng ID, Hu JW, Benetti AP, Bereiter DA (1997) Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the 
rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, 

and projections to the parabrachial area. J Neurophysiol 77:43-56. 

 131.  Mense S (1994) Referral of muscle pain. APS J 3:1-9. 
 132.  Merskey H, Bogduk N (1994) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Seattle: 

IASP Press. 

 133.  Mesulam M-M, Brushart TM (1979) Transganglionic and anterograde transport of horseradish peroxidase across dorsal root ganglia: A 
tetramethylbenzidine method for tracing central sensory connections of muscles and peripheral nerves. Neuroscience 4:1107-1117. 

 134.  Meyer RA, Walker RE, Mountcastle VB (1976) Laser stimulator for study of cutaneous thermal and pain sensations. Ieee Transactions on 

Biomedical Engineering 23:54-60. 
 135.  Molander C, Xu Q, Riveromelian C, Grant G (1989) Cytoarchitectonic organization of the spinal-cord in the rat. 2. The cervical and upper 

thoracic cord. Journal of Comparative Neurology 289:375-385. 

 136.  Montell C (2003) Thermosensation: Hot findings make TRPNs very cool. Current Biology 13:R476-R478. 
 137.  Mor J, Carmon A (1975) Laser emitted radiant heat for pain research. Pain 1:233-237. 

 138.  Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends in Neurosciences 

12:459-462. 
 139.  Morgan MM (1998) Direct comparison of heat-evoked activity of nociceptive neurons in the dorsal horn with the hindpaw withdrawal 

reflex in the rat. J Neurophysiol 79:174-180. 

 140.  Munglani R (2000) Neurobiological mechanisms underlying chronic whiplash associated pain: The peripheral maintenance of central 
sensitization. Journal of Musculoskeletal Pain 8:169-178. 

 141.  Ness TJ, Follett KA, Piper J, Dirks BA (1998) Characterization of neurons in the area of the medullary lateral reticular nucleus responsive 
to noxious visceral and cutaneous stimuli. Brain Research 802:163-174. 

 142.  Nielsen J, Arendt-Nielsen L (1998) The importance of stimulus configuration for temporal summation of first and second pain to repeated 

heat stimuli. European Journal of Pain 2:329-341. 
 143.  Nielsen J, Arendt-Nielsen L (1997) Spatial summation of heat induced pain within and between dermatomes. Somatosensory and Motor 

Research 14:119-125. 

 144.  Nilsson HJ, Levinsson A, Schouenborg J (1997) Cutaneous field stimulation (CFS): a new powerful method to combat itch. Pain 71:49-55. 
 145.  Nilsson HJ, Schouenborg J (1999) Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin 

cutaneous fibers. Pain 80:103-112. 

 146.  Nomura S, Mizuno N (1983) Central distribution of efferent and afferent components of the cervical branches of the vagus nerve. 
Anatomy and Embryology 166:1-18. 

 147.  Peschanski M, Besson J-M (1984) A spino-reticulo-thalamic pathway in the rat: An anatomical study with reference to pain transmission. 

Neuroscience 12:165-178. 
 148.  Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde 

transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268:91-108. 

 149.  Piovesan E, Kowacs P, Oshinsky M (2003) Convergence of cervical and trigeminal sensory afferents. Current Pain and Headache Reports 
7:377-383. 

 150.  Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and 

biophysics of laser stimulation. Neurophysiologie Clinique/Clinical Neurophysiology 33:269-277. 
 151.  Plaghki L, Bragard D, Bars DL, Willer JC, Godfraind JM (1998) Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant 

heat produced by a laser. J Neurophysiol 79:2557-2567. 

 152.  Price DD, Dubner R, Hu JW (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive 
stimulation of monkey's face. J Neurophysiol 39:936-953. 

 153.  Qin C, Chandler MJ, Jou CJ, Foreman RD (2004) Responses and afferent pathways of C1-C2 spinal neurons to cervical and thoracic 

esophageal stimulation in rats. J Neurophysiol 91:2227-2235. 
 154.  Qin C, Chandler MJ, Miller KE, Foreman RD (2001) Responses and afferent pathways of superficial and deeper C1-C2 spinal cells to 

intrapericardial algogenic chemicals in rats. J Neurophysiol 85:1522-1532. 

 155.  Razook JC, Chandler MJ, Foreman RD (1995) Phrenic afferent input excites C1-C2 spinal neurons in rats. Pain 63:117-125. 
 156.  Romaniello A, Truini A, Galeotti F, De Lena C, Willer JC, Cruccu G (2004) Cutaneous silent period in hand muscle is evoked by laser 

stimulation of the palm, but not the hand dorsum. Muscle & Nerve 29:870-872. 

 157.  Romaniello A, Arendt-Nielsen L, Cruccu G, Svensson P (2002) Modulation of trigeminal laser evoked potentials and laser silent periods 
by homotopical experimental pain. Pain 98:217-228. 

 158.  Rossi A, Decchi B, Ginanneschi F (1999) Presynaptic excitability changes of group Ia fibres to muscle nociceptive stimulation in humans. 

Brain Research 818:12-22. 



Assessment of sensory convergence in the spinal cord 

47/48 

 159.  Ruch TC (1947) Visceral sensation and referred pain. In: Howell's Textbook of Physiology (Fulton J F, ed), pp 385-401. Philadelphia: 

Saunders. 

 160.  Rymer WZ, Houk JC, Crago PE (1979) Mechanisms of the clasp-knife reflex studied in an animal model. Experimental Brain Research 

37:93-113. 
 161.  Sandrini G, Serrao M, Rossi P, Romaniello A, Cruccu G, Willer JC (2005) The lower limb flexion reflex in humans. Progress in 

Neurobiology 77:353-395. 

 162.  Schmit BD, McKenna-Cole A, Rymer WZ (2000) Flexor reflexes in chronic spinal cord injury triggered by imposed ankle rotation. 
Muscle & Nerve 23:793-803. 

 163.  Schmit BD, Hornby TG, Tysseling-Mattiace VM, Benz EN (2003) Absence of local sign withdrawal in chronic human spinal cord injury. 

J Neurophysiol 90:3232-3241. 
 164.  Schomburg ED (1990) Spinal sensorimotor systems and their supraspinal control. Neuroscience Research 7:265-340. 

 165.  Schomburg ED, Steffens H (1986) Synaptic responses of lumbar alpha-motoneurons to selective stimulation of cutaneous nociceptors and 

low threshold mechanoreceptors in the spinal cat. Experimental Brain Research 62:335-342. 
 166.  Schomburg ED, Steffens H, Mense S (2000) Contribution of TTX-resistant C-fibres and A delta-fibres to nociceptive flexor-reflex and 

non-flexor-reflex pathways in cats. Neuroscience Research 37:277-287. 

 167.  Schouenborg J, Kalliomaki J (1990) Functional-organization of the nociceptive withdrawal reflexes.1. Activation of hindlimb muscles in 
the rat. Experimental Brain Research 83:67-78. 

 168.  Schouenborg J, Weng HR (1994) Sensorimotor transformation in a spinal motor system. Experimental Brain Research 100:170-174. 

 169.  Schouenborg J, Weng HR, Holmberg H (1994) Modular organization of spinal nociceptive reflexes - A new hypothesis. News in 
Physiological Sciences 9:261-265. 

 170.  Schouenborg J, Dickenson A (1985) The effects of a distant noxious stimulation on A and C fibre-evoked flexion reflexes and neuronal 

activity in the dorsal horn of the rat. Brain Research 328:23-32. 
 171.  Serrao M, Pierelli F, Don R, Ranavolo A, Cacchio A, Curra A, Sandrini G, Frascarelli M, Santilli V (2006) Kinematic and 

electromyographic study of the nociceptive withdrawal reflex in the upper limbs during rest and movement. J Neurosci 26:3505-3513. 

 172.  Sessle BJ (2000) Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity, and their 
clinical correlates. Critical Reviews in Oral Biology & Medicine 11:57-91. 

 173.  Sessle BJ, Hu JW, Amano N, Zhong G (1986) Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive 

and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 
27:219-235. 

 174.  Sherrington C (1910) Flexion-reflex of the limb, crossed extensionreflex and reflex stepping and standing. Journal of Physiology-

London28-121. 
 175.  Shigenaga Y, Chen IC, Suemune S, Nishimori T, Nasution ID, Yoshida A, Sato H, Okamoto T, Sera M, Hosoi M (1986) Oral and facial 

representation within the medullary and upper cervical dorsal horns in the cat. Journal of Comparative Neurology 243:388-408. 

 176.  Sinclair D.C., Weddell G., Feindel W.H. (1948) Referred pain and associated phenomena. Brain 71:184-209. 
 177.  Smith MV, Apkarian AV, Hodge CJ, Jr. (1991) Somatosensory response properties of contralaterally projecting spinothalamic and 

nonspinothalamic neurons in the second cervical segment of the cat. J Neurophysiol 66:83-102. 

 178.  Sonnenberg JL, Macgregorleon PF, Curran T, Morgan JI (1989) Dynamic alterations occur in the levels and composition of transcription 
factor Ap-1 complexes after seizure. Neuron 3:359-365. 

 179.  Sonnenborg FA, Andersen OK, Arendt-Nielsen L (2000) Modular organization of excitatory and inhibitory reflex receptive fields elicited 
by electrical stimulation of the foot sole in man. Clinical Neurophysiology 111:2160-2169. 

 180.  Sonnenborg FA, Andersen OK, Arendt-Nielsen L, Treede RD (2001) Withdrawal reflex organisation to electrical stimulation of the dorsal 

foot in humans. Experimental Brain Research 136:303-312. 
 181.  Spaich EG, Arendt-Nielsen L, Andersen OK (2004) Modulation of lower limb withdrawal reflexes during gait: A topographical study. J 

Neurophysiol 91:258-266. 

 182.  Spiegel J, Hansen C, Treede R-D (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser 
evoked potentials. Clinical Neurophysiology 111:725-735. 

 183.  Steffens H, Schomburg ED (1993) Convergence in segmental reflex pathways from nociceptive and nonnociceptive afferents to alpha-

motoneurons in the cat. Journal of Physiology-London 466:191-211. 
 184.  Strassman AM, Mineta Y, Vos BP (1994) Distribution of Fos-like immunoreactivity in the medullary and upper cervical dorsal horn 

produced by stimulation of dural blood-vessels in the rat. J Neurosci 14:3725-3735. 

 185.  Strassman AM, Vos BP (1993) Somatotopic and laminar organization of Fos-Like immunoreactivity in the medullary and upper cervical 
dorsal horn induced by noxious facial stimulation in the rat. Journal of Comparative Neurology 331:495-516. 

 186.  Svensson P, Rosenberg B, Beydoun A, Morrow TJ, Casey KL (1997) Comparative psychophysical characteristics of cutaneous CO2 laser and 

contact heat stimulation. Somatosensory and Motor Research 14:113-118. 
 187.  Tillman DB, Treede RD, Meyer RA, Campbell JN (1995) Response of c-fiber nociceptors in the anesthetized monkey to heat stimuli - 

Estimates of receptor depth and threshold. Journal of Physiology-London 485:753-765. 

 188.  Tjolsen A, Berge OG, Kristian Eide P, Broch OJ, Hole K (1988) Apparent hyperalgesia after lesions of the descending serotonergic 
pathways is due to increased tail skin temperature. Pain 33:225-231. 

 189.  Treede RD, Meyer RA, Campbell JN (1998) Myelinated mechanically insensitive afferents from monkey hairy skin: Heat-response 

properties. J Neurophysiol 80:1082-1093. 
 190.  Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for 2 different heat transduction mechanisms in nociceptive primary 

afferents innervating monkey skin. Journal of Physiology-London 483:747-758. 

 191.  van Ham JJ, Yeo CH (1996) The central distribution of primary afferents from the external eyelids, conjunctiva, and cornea in the rabbit, 
studied using WGA-HRP and B-HRP as transganglionic tracers. Experimental Neurology 142:217-225. 

 192.  Villanueva L, Bouhassira D, Le Bars D (1996) The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission 

and modulation of pain signals. Pain 67:231-240. 
 193.  Wall PD, Woolf CJ (1984) Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex 

in the rat. J Physiol 356:443-458. 

 194.  Wang K, Svensson P, Arendt-Nielsen L (1999) Modulation of exteroceptive suppression periods in human jaw-closing muscles by local 
and remote experimental muscle pain. Pain 82:253-262. 

 195.  Weng HR, Schouenborg J (1996) Cutaneous inhibitory receptive fields of withdrawal reflexes in the decerebrate spinal rat. J Physiol 

(Lond) 493:253-265. 
 196.  Willer JC (1977) Comparative-study of perceived pain and nociceptive flexion reflex in man. Pain 3:69-80. 



Assessment of sensory convergence in the spinal cord 

48/48 

 197.  Willer JC, Boureau F, Berny J (1979) Nociceptive flexion reflexes elicited by noxious laser radiant-heat in man. Pain 7:15-20. 

 198.  Willer JC, De Broucker T, Le Bars D (1989) Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J 

Neurophysiol 62:1028-1038. 

 199.  Willer JC, Roby A, Le Bars D (1984) Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic 
nociceptive stimuli. Brain 107:1095-1112. 

 200.  Willer JC, Bussel B (1980) Evidence for a direct spinal mechanism in morphine-induced inhibition of nociceptive reflexes in humans. 

Brain Research 187:212-215. 
 201.  Willis WD (1985) The pain system. (Gildenberg PL, ed), Galveston, Tex: Karger. 

 202.  Xian-Min Y, Mense S (1990) Response properties and descending control of rat dorsal horn neurons with deep receptive fields. 

Neuroscience 39:823-831. 
 203.  Yamamura H, Malick A, Chamberlin NL, Burstein R (1999) Cardiovascular and neuronal responses to head stimulation reflect central 

sensitization and cutaneous allodynia in a rat model of migraine. J Neurophysiol 81:479-493. 

 204.  Yezierski RP (1988) Spinomesencephalic tract - Projections from the lumbosacral spinal-cord of the rat, cat, and monkey. Journal of 
Comparative Neurology 267:131-146. 

 205.  Yezierski RP, Broton JG (1991) Functional properties of spinomesencephalic tract (SMT) cells in the upper cervical spinal cord of the cat. 

Pain 45:187-196. 
 206.  You HJ, Morch CD, Chen J, Arendt-Nielsen L (2003) Simultaneous recordings of wind-up of paired spinal dorsal horn nociceptive neuron 

and nociceptive flexion reflex in rats. Brain Research 960:235-245. 

 207.  Yu X-M, Sessle BJ, Haas DA, Izzo A, Vernon H, Hu JW (1996) Involvement of NMDA receptor mechanisms in jaw electromyographic 
activity and plasma extravasation induced by inflammatory irritant application to temporomandibular joint region of rats. Pain 68:169-178. 

 208.  Zhou QQ, Imbe H, Dubner R, Ren K (1999) Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: 

Implications for persistent orofacial pain. Journal of Comparative Neurology 412:276-291. 
 

 


