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Abstract
The purpose of the present Ph.D. project is to investigate correlation between the mi-
crostructure variability and transverse mechanical properties. The material considered
here is a polymer based unidirectional composite with long cylindrical �bers, and the
transverse properties can be analysed by considering a plane cross section. Then the
microstructure appears as circular inclusions embedded in a matrix.

In order to perform this correlation a stress analysis method is established and it is
possible to determine the stress �eld in a composite containing multiple randomly dis-
persed �bers. The method takes into account the stress interaction between �bers using
a superposition scheme.

To determine the stress intensity factors for cracks situated among the �bers an inter-
action procedure is proposed. The procedure takes all interaction e�ects into account,
and transmission factors, which relate the pressure distribution on the crack face with
the interacting stresses, are derived.

A crack growth procedure, which includes both matrix and interface cracking, is estab-
lished. For matrix cracking a well known fracture criterion is applied and for interface
cracking a criterion based on the strain{energy density is proposed. Critical values must
be given for the strength of both the matrix and the interface.

The microstructure variability is described by applying di�erent statistical parameters.
The degree of clustering is indicated by the nearest neighbour distance and the distinction
between various distributions is performed by introducing functions belonging to the
spatial statistics. Four distinct types of �ber distributions are generated within a unit
cell, which is exposed to various boundary conditions.

Stress �eld calculations for the four distinct types of distributions can be correlated with
the dispersion of �bers. The stress �eld inside the �bers is dependent on the ratio between
the mean nearest neighbour distance and the mean nearest neighbour orientation. Peaks
of the local stress components around the �bers, which are partly responsible for the
nucleation of cracks, are also a�ected by the distribution of �bers.

Variation of the fracture toughness of the material is estimated by applying a correlation
function, which relates the stress intensity factor of a macrocrack with the exact position
of the neighbouring �bers. Di�erent distributions can be discriminated both with respect
to the type of distribution and within the distribution type itself by applying the function.

By applying a crack nucleation procedure the stress intensity factor of a macrocrack
located in the vicinity of the �ber distribution is estimated as microcracks initiate at
the interface between the matrix and the �bers. In this procedure the load is gradually
increased until microcracks appear at all interfaces, and during this load increase the
stress intensity factor is calculated. Particular con�gurations of �ber may change the
fracture toughness, but the nucleation of cracks reverses the e�ect.

The strength of interfaces is estimated by analysing the crack paths in real microstruc-
tures and comparing the roughness of the fracture pro�le with the corresponding nume-
rical models, for which the strength of the interface is changed.
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Abstrakt
Formlet med dette Ph.D. projekt er at undersge korrelationen mellem mikrostrukturers
forskelligartighed og de transverse mekaniske egenskaber. Det undersgte materiale er en
polymerbaseret ensrettet komposit med lange cylindriske �bre. De transverse egensk-
aber analyseres ved at betragte et plant tvrsnit, og mikrostrukturen fremstr derved som
cirkulre inklusioner omgivet af matrixmateriale.

For at undersge denne korrelation er en metode for spndingsanalyse etableret. Det
muliggr bestemmelse af spndingsfeltet i en komposit, som indeholder multiple tilfldigt
fordelte �bre. Metoden medtager spndingsinteraktionen mellem �bre ved anvendelse af
superposition.

For at bestemme spndingsintensitetfaktorer for revner placeret mellem �brene er en
interaktionsprocedure foreslet. Proceduren medtager alle interaktionse�ekter, og der
er udledt en transmissionsfaktor, der relaterer spndingsfordelingen p revneaderne med
interaktionsspndingerne.

Der er etableret en revnevkstprocedure, der inkluderer bde matrix- og interfacerevner.
For matrixrevner er et kendt brudkriterie anvendt. For interfacerevner er der foreslet et
kriterie, som er baseret p tjningsenergidensitet. Kritiske vrdier skal angives for styrken
af bde matrix og interface.

Mikrostrukturens forskelligartighed beskrives ved at anvende forskellige statistiske para-
metre. Graden "clustering" er angivet ved nearest neighbouring distance, og adskillelsen
mellem forskellige fordelinger er udfrt ved introduktion af funktioner tilhrende rumlig
statistik. Fire forskellige typer af �berfordelinger er genereret i en enhedscelle, der er
udsat for forskellige randbetingelser.

Spndingsfeltberegninger for de �re forskellige typer af fordelinger kan korreleres med
fordelingen af �bre. Spndingsfeltet i �brene afhnger af forholdet mellem mean nearest

neighbour distance ogmean nearest neighbour orientation. Maxima af lokale spndingskomponenter
omkring �brene, som er delvist skyld i dannelsen af revner, er ogs pvirket af fordelingen
af �bre.

Variationen af brudsejheden af et materiale er estimeret ved at anvende en korrelations-
funktion, der relaterer spndingsintensitetfaktorene af en makrorevne med den eksakte
position af nrliggende �bre. Ved at anvende funktionen kan forskellige fordelinger ad-
skilles bde med hensyn til typen af fordeling og indefor fordelingstypen selv.

Ved at anvende en revnedannelseprocedure er spndingsintensitetfaktoren af en makro-
revne, placeret i nrheden af en �berfordeling, estimeret, mens mikrorevner initieres ved
interfacet mellem matrix og �brene. I denne procedure er belastningen gradvist get, in-
dtil mikrorevner forekommer i alle interfaces, og undervejs er spndingsintensitetfaktoren
beregnet. Specielle kon�gurationer af �bre kan ndre brudsejheden, men dannelsen af
mikrorevner reverserer e�ekten.

Styrken af interfaces er estimeret ved at analysere revnestien i virkelige mikrostruk-
turer og sammenligne ruheden af brudpro�let med tilsvarende numeriske modeller, hvor
styrken af interfacet er ndret.
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Introduction

I
n the recent years the investigation of composite materials has received more atten-
tion in the �eld of micromechanics because it is recognized that the microstructure

inuences the properties of the material. Furthermore, understanding the mechanism
on a microstructural level leads inevitably to an understanding of the mechanism on a
macrostructural level. The interest for micromechanics is also enhanced by the develop-
ment of experimental equipment as well as possibility for fast numerical analysis.

For unidirectional composites with long �bers, which are the subject for the present work,
the transverse properties are very much a�ected by constitution of the microstructure.
In this case the constituents of the microstructure are �bers dispersed in the matrix
material but also the existence of cracks inuences the response of the material. In order
to perform quantitative analysis, it is necessary to establish methods, which can provide
information about characteristic parameters of the materials, and the methods must take
into account the constitution of the microstructure.

The microstructural inuence on the mechanical properties arises due to the interaction
between the constituents in the composite material, and the amount of interaction is
determined by their relative position. In order to simplify the analysis it is usually
assumed that the microstructure has some form of regularity (�g. 0.1) or that �bers and
cracks are sparsely distributed.

(a) (b)

Figure 0.1: Regular and non{regular distribution of �bers.

This makes it reasonable to create a repetitious unit cell containing a part of a �ber,
one �ber, or a few �bers, which is made representative for the whole microstructure.
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8 Introduction

An elaborated analysis may then be performed on the material using simpli�ed models.
The simpli�ed models are su�cient as long as the interaction e�ects do not vary in the
microstructure for the regular distributions or as long as the interaction e�ects between
inclusions and cracks are insigni�cant for the dilute distributions.

In general the microstructure is not regular but more random. The random dispersion
of inclusions and cracks leads to a strong local interaction in areas of the microstructure
where the distances between the inclusions are small. As for the regular distributions it is
not reasonable to include only a few �bers in the analysis and the unit cell concept must
be re{de�ned in order to include enough �bers so that the whole microstructure may be
represented. The number of �bers needed in the unit cell depends on microstructure and
the desired information.

The relatively limited knowledge of how the distribution of �bers and cracks inuences the
transverse properties of the materials makes it interesting to investigate the correlation
between the microstructure variability and the response of the materials. In order to
perform this type of investigation it is imperative to apply a method, which is able
to determine the stress �eld in a material with randomly dispersed �bers as well as
determining the stress intensity factors for cracks situated among these �bers. As a �rst
attempt it is reasonable to model the material with �nite elements, as commercial �nite
element programs facilitate both the possibility for geometric modelling and numerical
calculation. But as a large number of �bers in the re{de�ned unit cell may become
necessary it renders the �nite element modelling very di�cult and leads to an increase of
the computational time as the number of �bers is increased. Therefore, is it necessary to
develop another approximate, numerical method, which takes into account the interaction
e�ects.

As it is an enormous task to analyse all random constitutions of composite materials
it is reasonable to classify their morphology and only consider a few representative mi-
crostructures. The randomness can be nearly complete random and also to some extent
orderly, and the classi�cation can be performed by applying various statistical descrip-
tors, which take into account the exact position of constituents. Materials with a very
high concentration of inhomogenities are less a�ected by the distribution than materi-
als with low concentration. Therefore, the correlation between the mechanical properties
and the geometrical arrangement of the microstructure is only performed on a few typical
dilute con�gurations of �bers and cracks.

Related Work

Spatial distribution of point patterns is described by Rieply [24] by applying a second

order intensity function. The function is clearly able to di�erentiate between various
dispersions of points. In Pyrz [18], [19] and [20] the function is used in the description of
�ber distributions in unidirectional composites. Points are represented by �ber centres
and the function is able to distinguish between various �ber arrangements. Furthermore,
the nearest neighbour distances and Dirichlet cell tesselation are used in the description
of �ber distributions, and separation between distributions is performed by calulating the
cumulative distribution of distances and cell areas, respectively. These latter descriptors
have also been presented by Everett and Chu [5] in order to characterize composite
microstructures. Applying spatial descriptors to the distribution of �bers is very useful
and provides quantitative information about microstructure.



Introduction 9

The interaction problem between a macrocrack and neighbouring microcracks is solved
in Meguid et al. [14] using �nite elements. Various con�gurations are considered and re-
gions of the material are seen to amplify the stress intensity factors, and in other regions
it is reduced. Also in Lam and Phua [11] and Lam and Wen [12] various con�gura-
tions are analysed, but the problems are now reduced to a system of singular integral
equations. Hori and Nemat-Nasser [6] solved di�erent problems using the method of

pseudotractions. Kachanov [9] introduced a superpostion technique where cracks are
analysed in an arbitrary arrangement. Applying this technique the interaction problem
between a macrocrack and an array of microcracks is solved in Kachanov et al. [10]. The
methods, which take into account the interaction between cracks, make it possible to
analyse a large variety of crack arrangements and thus estimate the fracture toughness
of materials.

The interaction problem between an inclusion and a crack is presented in Erdogan et

al. [4]. The solution is obtained through a system of singular integral equations. Using
the similar method Lam and Wen [13] considered the interaction problem of an inclusion
and arbitrarily located cracks. Interaction between randomly dispersed �bers and a
crack is analysed in Pijaudier-Cabot and Ba�zant [17]. A procedure is developed and
applied for various con�gurations of a crack situated among the �bers. The method of
pseudotractions is applied for randomly dispersed �bers and cracks by Horii and Nemat-
Nasser [7]. These methods allow to include the interaction between �bers and cracks and
contributes also to the fracture toughness estimation.

Brockenbrugh et al. [2] found that the �ber distributions a�ect the plastic response of
a metal{matrix composite. The analysis is performed using �nite elements where the
unit cell for random microstructures is assumed to contain a large number of �bers.
Pyrz [21] showed that a correlation exists between the dispersion of �bers and the fractal
properties of fracture pro�les of composite materials. Axelsen og Pyrz [1] applied a
method based on Pijaudier-Cabot and Ba�zant's �ber{crack interaction procedure and
Kachanov's crack{crack superpostion technique. An estimate of the fracture toughness
for various dispersion of �bers is given for a composite material where interface cracks
nucleate. The load carrying capacity is correlated with the disorder of a two{phase
material in Pyrz and Bochenek [22] and [23]. A discrete model based on Dirichlet cell
tesselation is developed and it allows for crack nucleation. The correlation between the
microstructure variability and the mechanical properties is useful as it contributes to the
quanti�cation of composite materials on a microstructural level.

Outline

In chapter 1 the fundamental ideas of the stress analysis method are presented. The
method is able to determine the stress �eld in an in�nitely extented solid exposed to
uniform tractions at the remote boundaries and with randomly dispersed inclusions. It
is based on a superpostion scheme where the interaction e�ect between the inclusions is
taken into account and an iterative procedure is established in order to solve the problem.

Chapter 2 contains the derivation of the interaction scheme for multiple inclusions and
cracks. Stress intensity factors of cracks situated among randomly dispersed inclusions
can be determined with the method. The interaction e�ect enters the solution through
transmission factors, which account for the interacting stress �eld from a crack to an
inclusion or another crack. The solution can be found directly, although the iterative
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procedure stated in chapter 1 also enters the method.

Chapter 3 presents a procedure for crack growth in a composite material containing
multiple inclusions and cracks. Both crack growth in the pure matrix and at the interface
between the �bers and the matrix are considered. An iterative procedure is established
to account for the combined crack evolution.

Chapter 4 presents various methods to quantify the morphology of a microstructure. The
re{de�ned unit cell is established on basis of zone of inuence calculations. Statistical
descriptors are applied to typical classes of �ber distributions and their ability to describe
the constitution of a microstructure is investigated.

Chapter 5 correlates the distribution of �bers with the local stress �eld. Typical classes
of �bers distributions are presented and they serve as representative con�gurations. The
stress �eld inside the �bers is correlated with the microstructure variability. The local
stress �eld around the �bers is determined in order to analyse sensitivity of various
con�gurations of �bers towards crack initiation at the interphase. Microstructures from
real materials, which are manufactured under various conditions, are also investigated.

Chapter 6 provides information as to how the distribution of �bers a�ects the crack para-
meters. The problem considered consists of a crack situated in the vicinity of dispersed
�bers, and an estimate of short{range and long{range interaction is given. On basis of
the stress �eld for the single inclusion problem a direct correlation function is established.
The function relates the stress intensity factor of a crack with the neighbouring dispersion
of �bers.

Chapter 7 deals with the problem of how the fracture toughness of material is a�ected if
interface cracks nucleate. As in chapter 6 the con�guration consists of a crack, located in
the vicinity of dispersed �bers. A procedure for crack initiation, which allows to analyse
the deterioration of the material, is developed. The fracture toughness is determined for
various con�gurations and is seen to change depending on the nucleation of cracks.

Chapter 8 is devoted to the description of crack trajectories of percolating cracks. Typical
�ber distributions are considered, and cracks are initiated at the edge of the observation
window. The cracks are then allowed to extend through the microstructure and depend-
ing on the distribution of �bers the crack path changes. By investigating the crack path
in real microstructures the strength of the interface is estimated.



Chapter

1

Stress Analysis Method

T
he determination of the local stress �eld in a composite material is of interest when
considering the microstructure's inuence on the transverse mechanical properties.

Stress analysis methods, which can be applied, are limited by the composition and com-
plexity of the composite, e.g. spatial distribution and shape of the inclusions. For
composites with long cylindrical �bers embedded in a matrix material and aligned unidi-
rectionally the analysis may be performed on a plane section perpendicular to the �ber
direction. Thus the analysis may be reduced to a two{dimensional problem consisting of
a matrix with circular inclusions.

The spatial distribution of inclusions is normally assumed to have some form of regularity
or the inclusions are assumed to be sparsely distributed. Due to the regularity of the
distribution the inclusions will be exposed to the same amount of interaction, and a unit
cell only needs to contain a small part of the distribution. The simpli�ed unit cell is then
assumed to be representative throughout the microstructure. For the sparse distribution
it is assumed that the inclusions are not exposed to any interaction and also in this
case a simple unit cell may be created. These types of unit cells make it possible to
apply both analytical and numerical stress analysis methods as the problem is relatively
simple. When the distribution of inclusions is assumed to be random, the inclusions are
not exposed to the same amount of interaction, and creating a unit cell with only a small
part of the distribution is not adequate. Therefore, the unit cell must be re{de�ned so
that it contains enough �bers to be representative for the microstructure and it must
account for the varying interaction between the inclusions.

Due to the complexity of the problem it cannot be solved analytically. Only numerical
methods are applicable. The methods must be able to determine the stress �eld in a plane
solid containing multiple inclusions, which are randomly dispersed. As a �rst attempt
the problem can be solved using �nite element modelling but as it is necessary to include
a large number of inclusions the �nite element method is inexpedient to apply and the
computational time increases immensely when the number of inclusions is increased.
Therefore, another numerical method is applied. This method is based on determining
the eigenstresses within the inclusions based on a superposition scheme using an iterative
procedure.

The main problem of determining the stress �eld in an elastic solid containing ran-
domly dispersed inclusions is to include the interaction e�ects between inclusions. The

11



12 1.1. Stress Field for One Inclusion

problem with one inclusion in an in�nite solid may be solved analytically using the com-
plex potential theory by Muskhelishvili [16] or the Eshelby solution (Mura [15]). Yu
and Sendeckyj [27] applied the complex potential theory and calculated numerically the
stress �eld in an in�nite plane elastic solid containing multiple circular inclusions. The
distribution of inclusions may be random although overlap of inclusions is not permitted.
Horii and Nemat-Nasser [7] presented an approximate method to calculate the stress and
strain �eld in a linearly elastic, homogeneous solid, which contains multiple randomly
distributed defects of arbitrary shape. The technique is called the method of pseudotrac-

tions and takes the interaction e�ects between the defects into account. The method
rests upon superposition of subproblems. Pijaudier-Cabot and Ba�zant [17] also consid-
ered the interaction between multiple, randomly distributed inclusions and solved the
problem by extending the solution for a single inclusion into multiple inclusions. The
latter method is applied in the following.

In section 1.1 of this chapter an iterative procedure for calculating the stress �eld in a
solid with only one inclusion is presented as this constitutes the basic idea for the stress
analysis method. Results from the procedure are compared with the analytical solution.
In section 1.2 the method is extended to include multiple inclusions using superposition
of subproblems. Stress �eld calculations are compared with corresponding �nite element
results.

1.1 Stress Field for One Inclusion

In order to establish a stress analysis method for multiple inclusions the solution for a
single inclusion is needed and consists in the following of a calculation of the stress �eld
in a solid containing a circular inclusion. As mentioned both analytical and numerical
solutions may be applied to this problem and the methods are not easily transformed into
a method for multiple, randomly distributed inclusions. For this purpose a numerical
method has been presented by Pijaudier-Cabot and Ba�zant [17]. As for the Eshelby
solution the eigenstrain analogy is also applied but contrary to this solution where the
Eshelby tensor is solved, an iterative procedure derived. In this procedure the �rst step
is to �nd the stress �eld inside the inclusion. Then this information is used to �nd the
stress �eld at any point outside the inclusion. In the following the method is derived in
details and compared with analytical results.

The problem consists of determining the stress �eld in an in�nitely extented plane solid
containing a circular inclusion and subjected to unidirectional uniform tractions �1

1 at
the remote boundaries (�g. 1.1).

The matrix and inclusion materials are perfectly linear elastic with sti�ness Dm and Da

respectively. The interface between the inclusion and the matrix is assumed perfect and
no other defects are assumed to exist. The boundary curve of the inclusion is denoted
by �a and radius of the inclusion is R.

When applying tractions to the solid with elastic sti�ness di�ering from the inclusion
it will lead to a disturbance of the applied stress �eld �1 due to the presence of the

1The following notation is used. � and "" in boldface denote a vector containing the non{bold com-

ponents � and " respectively. For convenience the notation �� is also used where the overbar denotes a

matrix. Upper case roman letters in boldface denote a matrix and lower case letters in boldface denote

a vector. Non{bold letters are just scalars.
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σ

σ

2R

Γa

Figure 1.1: In�nitely extented plane solid containing a circular inclusion and exposed to

uniform tractions at the remote boundaries.

inclusion. The disturbed stress �eld is denoted �a and the corresponding strains from
the applied and disturbed stress are denoted by ""1 and ""a, respectively. Hooke's law
for the inclusion and matrix may be written as:

�1 + �a = Da(""1 + ""a) inside �a (1.1)

�1 + �a = Dm(""1 + ""a) outside �a (1.2)

By applying the theory of eigenstrains and eigenstresses to the problem, referred to as
the equivalent inclusion method, it is assumed that the solid is homogeneous with elastic
sti�nessDm everywhere but the area occupied by the inclusion contains eigenstrains�"".
The problem may now be rewritten as:

�1 + �a = Dm(""1 + ""a ��"") inside �a (1.3)

�1 + �a = Dm(""1 + ""a) outside �a (1.4)

The necessary condition for equivalency between equations 1.1 and 1.3 reads:

Da(""1 + ""a) = Dm(""1 + ""a ��"") inside �a (1.5)

Rearranging this equation and substituting the actual strains ""1 + ""a with "" lead to:

Dm�"" = (Dm �Da)"" inside �a (1.6)

This equation is written in terms of strains but it is necessary to write it in terms of
stresses so "" is substituted with D�1

a � and Dm�"" with ��:

�� = (Dm �Da)D
�1
a � inside �a (1.7)

where � is the actual stress �eld inside the inclusion and �� is the eigenstress or the
unbalanced stress �eld which is contained within the actual stress �eld. Equation 1.7 is
the basic equation in the method and instead of solving it directly through the Eshelby
tensor it is solved iteratively. Examining the equation it is noticeable that�� is assigned
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the opposite sign if the inclusion material is sti�er than the matrix material and vice
versa.

The components of sti�ness matrix D for an isotropic material in plane stress are calcu-
lated as:

D =

2
64

E
1��2

�E
1��2

0
�E
1��2

E
1��2

0

0 0 2E
2(1+�)

3
75 (1.8)

and for plane strain:

D =

2
664

E(1��)
(1+�)(1�2�)

�E
(1+�)(1�2�)

0
�E

(1+�)(1�2�)
E(1��)

(1+�)(1�2�)
0

0 0 2E
2(1+�)

3
775 (1.9)

where E is Young's modulus and � is Poisson's ratio. The stress and strain vectors are
written as:

� =

8><
>:

�x
�y
�xy

9>=
>; "" =

8><
>:

"x
"y
"xy

9>=
>; (1.10)

Equation 1.5 may be visualized from the following analogy where the elasticity pro-
blem of the heterogeneous solid is transformed into an equivalent elasticity problem of a
homogeneous solid (�g. 1.2).

= +

σ σ

σ σ

a

a a

Γ

Γ Γ

pa

Heterogeneous Homogeneous

∆ σ
inside

Figure 1.2: Equivalency between a heterogeneous and a homogeneous solid.

In the heterogeneous solid the material properties for the inclusion di�er from the ma-
trix and the stress �eld may be described by equations 1.1 and 1.2. In the equivalent
homogeneous solid the material properties are the same for both the inclusion and the
matrix but in addition an unbalanced stress �eld is introduced inside the area enclosed
by the boundary contour �a. Due to the unbalanced stress �eld tractions pa exist at the
boundary and the stress �eld may be described by equations 1.3 and 1.4. These tractions
create a disturbance of the stress �eld in the solid and may be written as:

pa = ����na =

"
��x ��xy
��xy ��y

#
na on �a (1.11)
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where na is a unit outward normal to the boundary curve �a of the inclusion. The stress
�eld may be written as:

� = �
� ��� inside �a (1.12)

� = �
� outside �a (1.13)

where �� is an equilibrium stress �eld when the sti�ness of the inclusion Da is changed
to Dm, and the tractions pa at the interface �a and the remote boundary tractions �1
are acting. Thus �� is the stress �eld including the disturbance and � is the stress �eld,
which also includes the eigenstress inside the inclusion.

As seen from �gure 1.2, the unknown parameter in the equivalent problem is ��. To
determine this an iterative procedure is applied. The idea of the iterative procedure is
to calculate the stress �eld inside the inclusion using the existing value of ��. When
the new stress �eld is known, the unbalanced stress �eld is recalculated. The procedure
is repeated until the change of the stress �eld becomes small enough.

As a starting point in the iterative procedure the stress �eld � in the solid is assumed to
be equal to the applied tractions �1. Uniform tractions are applied in the y-direction:8><

>:
�x
�y
�xy

9>=
>; =

8><
>:

0
�1
0

9>=
>; (1.14)

The unbalanced stress �eld inside the inclusion is then obtained from equation 1.7. The
tractions pa are obtained from equation 1.11, in which the unit outward normal to the
circular contour is na = fcos�; sin�gT . To determine the stress �eld produced by the
tractions pa in a homogeneous solid the theory of a concentrated force applied at a point
in an in�nite homogeneous elastic space is used (Muskhelishvili [16]). The stress �eld
may be written as a function of two analytical functions of the complex variable z = rei�:

�x + �y = 2(�(z) ��(z))

�x � i�xy = �(z) + �(z)� z�0(z)�	(z) (1.15)

For a concentrated force applied at a point O the functions �(z) and 	(z) are (�g. 1.3):

�(z) =
Px + iPy

2�(1 + �)

1

z

	(z) =
�(Px � iPy)

2�(1 + �)

1

z
(1.16)

where

� =

(
(3� �)=(1 + �) for plane stress
3� 4� for plane strain

(1.17)

The functions �(z) and 	(z) are inserted into equation 1.15 and by solving this with
respect to the stress components the normal and shear stresses due to a concentrated
force at a point (xP ; yP ) in the global cartesian coordinate system become:

�Px =
�Px cos �
2�r(1 + �)

(4 sin2 � � 3� �) +
Py sin �

2�r(1 + �)
(4 sin2 � � 5 + �)
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O

Figure 1.3: Coordinate system for the concentrated forces.

�Py =
�Px cos �
2�r(1 + �)

(�4 sin2 � � 1 + �) +
Py sin �

2�r(1 + �)
(�4 sin2 � + 1� �) (1.18)

�Pxy =
�Px sin �
2�r(1 + �)

(4 sin2 � � 3� �) +
Py cos �

2�r(1 + �)
(�4 sin2 � + 1� �)

r (�g. 1.4) is the vector connecting the point (xP ; yP ), at which Px and Py are applied,
and the point (x; y), at which the stresses are calculated. The angle � is angular deviation
between the direction of Px and r.

(x    ,y    )

(x    ,y    )

a a

p     ds

p     dsa2

a1

α
R P P

(x,y)

r

θ

y

x

Figure 1.4: Geometry used to calculate the stress �eld at a point (x; y) due to interface

tractions pa.

To apply this theory to the inclusion problem the boundary curve �a is subdivided into
segments of length ds, and the tractions pa are replaced by concentrated forces pads per
unit thickness. This means that at any angle �, a set of two concentrated forces pa1ds
and pa2ds acts along x and y direction, respectively. The vector r and its length r are
expressed as:

r = f(x� xa �R cos�); (y � ya �R sin�)g

r =
q
(x� xa �R cos�)2 + (y � ya �R sin�)2 (1.19)

where (xa; ya) represents the centre of the inclusion. Instead of expressing � explicitly,
which leads to non{periodic function, it will be expressed implicitly in the form:

cos � =
r � v
rv

sin � =
r̂ � v
rv

(1.20)



Chapter 1. Stress Analysis Method 17

where v = f1; 0gT is a unit vector in the x direction. Px and Py in equation 1.18 are
replaced by pa1ds and pa2ds respectively, � is substituted with �m (subscript denotes
Poisson's ratio for matrix) and r, sin � and cos � are substituted as in equations 1.19
and 1.20. The stress �eld is calculated at a point inside the inclusion (Eq. 1.18) and
superposed along �a. This results in the stress �eld �a caused by the tractions pa on
the interface �a:

�a =

I
�a

8><
>:

�Px
�Py
�Pxy

9>=
>; ds (1.21)

As the inclusion is circular, the length ds is expressed as Rd�. The integration is per-
formed numerically using a trapezoidal rule. The new stress �eld inside �a in the homo-
geneous solid is obtained by:

�
� = �1 + �a (1.22)

The stress �eld � inside �a in the heterogeneous solid is found from equation 1.12 using
the old value of ��. The new, unbalanced stress �eld �� is calculated using equa-
tion 1.7, and tractions pa are recalculated from equation 1.11. The calculations are
repeated until the change of pa becomes small enough. The change is determined on the
basis of the norm:

jjpajj =
I
�a

jpaj ds (1.23)

where jpaj is the length of the vector pa equal to
q
p2a1 + p2a2 and ds is again substituted

by Rd�. The convergence criterion is:

jjpajjk+1

jjpajjk
� 1 � e (1.24)

where k is the iteration number and e is a given small, acceptable error. The iterative
procedure is summarized in Table 1.1.

The procedure converges quite rapidly to the analytical solution (Muskhelishvili [16] and
appendix A) which also can be seen from the following example.

The ratio between Young's moduli for the inclusion and matrix material is Ea=Em = 23,
Poisson's ratio for the inclusion material is �a = 0:3 and Poisson's ratio for the matrix
material is �m = 0:35. The accepted error is taken to be e = 0:0001, the radius of
the inclusion is R = 10 points2. The tractions applied at the boundaries are �1 =
f0; 1; 0gT N/mm2 and plane strain is assumed. The procedure converges to the analytical
solution with the given precision of the stress components after 9 iterations (Tab. 1.2).

After convergence is reached, the uniform stress �eld � inside the inclusion is known
(Eq. 1.12) and the stress �eld at any point outside the inclusion may now be deter-
mined. This is done by calculating the unbalanced stress �eld from equation 1.7 using
the calculated stress �eld inside the inclusion. Then the tractions on the interface �a are
calculated from equation 1.11. Given any coordinate outside the inclusion equations 1.21,
1.22 and 1.13 can be used to determine the stress �eld. The solution is an approximation
to the analytical solution and its accuracy depends on the numerical integration and the
number of iterations. In order to visualize the results the �y stress component is shown
in �gure 1.5.

2Points are related to scaleable pixels of an image screen and are scaled depending on magni�cation.
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Table 1.1: The iteration procedure for one inclusion.

initial state �
(0) = �1

��
(0) = (Dm �Da)D

�1
a �

(0)

p
(0)
a = ����(0)na

iterations k = 1; 2; � � �

�
(k)
a =

H
�a
�
P (k�1) ds

�
�(k) = �1 + �

(k)
a

�
(k) = �

�(k) ���
(k�1)

��
(k) = (Dm �Da)D

�1
a �

(k)

p
(k)
a = ����(k)na

stop iteration when jjpajj(k+1) = jjpajj(k) � 1 � e

end

Table 1.2: Iterative process for one inclusion.

k �x=�1 �y=�1 �xy=�1 ecal

1 -0.0753 1.2931 0.0 0.30369
2 -0.1194 1.3848 0.0 0.07800
3 -0.1393 1.4150 0.0 0.02520
4 -0.1474 1.4253 0.0 0.00874
5 -0.1505 1.4290 0.0 0.00312
6 -0.1517 1.4303 0.0 0.00113
7 -0.1522 1.4308 0.0 0.00041
8 -0.1523 1.4309 0.0 0.00015
9 -0.1524 1.4310 0.0 0.00005

1.2 Stress Field for Multiple Inclusions

Contrary to the solution for a single inclusion the stress �eld interaction between the
inclusions must be taken into account. The basic idea of accounting for this interaction
is to determine the stress �eld inside an inclusion as before but also include the interacting
stress �eld from the neighbouring inclusions. More precisely the problem is divided into
a number of subproblems corresponding to the number of inclusions (�g. 1.6).

In each subproblem the heterogeneous solid is substituted with a homogeneous solid
where an unbalanced stress �eld has been introduced. But as opposed to the single
inclusion problem also the interacting stresses from the remaining inclusions are added
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Figure 1.5: �y stress component for a single inclusion.

+ ∆σ Γ + Σσinside j

= +..+

=

Γj

Γj

Da

Dm

pj

Figure 1.6: Superposition scheme for the plane solid containing multiple inclusions.
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to the stress �eld inside the area covered by the inclusion. In order to establish a method,
which accounts for these interaction e�ects the iterative procedure for the single inclusion
is extended.

Now the problem consists of an in�nitely extented plane solid containing multiple inclu-
sions, which may be randomly dispersed and subjected to unidirectional uniform trac-
tions �1 at the remote boundaries. The solid contains N inclusions all of circular shape,
and the boundary curves for the inclusions are denoted �j where j = 1; � � � ; N . All the
inclusions have the same elastic sti�ness Da and the matrix has the elastic sti�ness Dm.
Radii of the inclusions are all equal to R.

In this case, the basic equation for the single inclusion problem (Eq. 1.7) is applied for
each inclusion:

��j = (Dm �Da)D
�1
a �j j = 1; � � � ; N (1.25)

These unbalanced stresses at each inclusion introduce tractions at the boundaries �j of
the inclusions:

pj = ����jnj j = 1; � � � ; N (1.26)

Similar to equation 1.12 the resulting stress �eld for each inclusion is determined as:

�j = �
�
j ���j inside �j (1.27)

where ��j is the equilibrium stress �eld where the homogeneous solid is exposed to trac-
tions pj for j = 1; � � � ; N and the applied tractions at the remote boundaries. Thus, the
equilibrium stress �eld is calculated as:

�
�
j = �1 +

NX
i=1

�ij j = 1; � � � ; N (1.28)

where �ij is the stress �eld at the j'th inclusion as if the i'th inclusion is alone in the
matrix. If j = i, the uniform stress �eld inside the j'th inclusion itself is calculated. If
j 6= i, the i'th inclusion is alone in the matrix and the stress �eld at the j'th inclusion is
calculated. The interacting stresses �ij are calculated as:

�ij =

I
�i

�
P
ij ds j = 1; � � � ; N (1.29)

where �P
ij are the stress components from equation 1.18. This stress �eld varies over

the region covered by the j'th inclusion but it is only calculated at the centre point.
The stress �eld in all the inclusions is asummed uniform and this is an approximation.
The errors in the approximation become insigni�cant the larger the distance between the
inclusions becomes. The extended iterative procedure is shown in table 1.3.

As a starting point �ij is calculated using a standard solution for one inclusion from
the complex potential theory (Muskhelishvili [16] and appendix A) and the resulting
stress �eld is �j = �

�
j as ��j = 0. The resulting stress �eld at each inclusion �j is

used to calculate the unbalanced stress �elds in all the inclusions using equation 1.25.
The tractions pj at each contour of the inclusions are found using equation 1.26. This
is the initial state of the iterative procedure and the iterations start with calculating
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Table 1.3: The iteration procedure for multiple inclusions.

initial state �
�(0)
j = �1 +

PN
i=1 �

(0)
ij

�
(0)
j = �

�(0)
j

��
(0)
j = (Dm �Da)D

�1
a �

(0)
j

p
(0)
j = ����

(0)
j nj

iterations k = 1; 2; � � �
PN

i=1 �
(k)
ij =

PN
i=1

H
�i
�
P (k�1)
ij ds

�
�(k)
j = �1 +

PN
i=1 �

(k)
ij

�
(k)
j = �

�(k)
j ���

(k�1)
j

��
(k)
j = (Dm �Da)D

�1
a �

(k)
j

p
(k)
j = ����

(k)
j nj

stop iteration when jjpj jj(k+1) = jjpj jj(k)�1 � e

each line is calculated for j = 1; � � � ; N

end

the interacting stress �elds �ij from all inclusions acting upon the j'th inclusion using
equation 1.29. The stress �elds ��j are recalculated using equation 1.28. The resulting
stress �elds �j inside the inclusions are found using equation 1.27. The calculations are
repeated until the change of pj becomes small enough for all N inclusions. The change
is determined on the basis of the norm expressed by equation 1.24.

When convergence is reached the stress �elds inside the inclusions may be used to calcu-
late the stress �eld in the matrix. Knowing the resulting stress �eld in all inclusions, the
unbalanced stress �eld and tractions at the boundaries of the inclusions are easily cal-
culated. The tractions are included in equation 1.29 where j represents the coordinates
of the point in the matrix at which the stress �eld should be calculated. The �nal stress
�eld is determined by equation 1.28.

For the purpose of comparison the stress �eld calculated with the presented iterative
procedure is compared with the �nite element method for the arrangement of inclusions
shown in �gure 1.7.

The same material parameters as in section 1.1 are used, and the stress �eld is calculated
along the x axis placed between two inclusions above and one inclusion below. The
uniform tractions at the remote boundaries correspond to a unit overall stress. Plane
stress is assumed and for the three stress components the results from two methods seem
to be consistent.
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Chapter

2

Determination of Stress Intensity Factors

T
he method of determining the stress intensity factors for cracks existing in a com-
posite material, where they interact with each other as well as interact with the

surrounding inclusions, may be performed in a straight forward manner. It is necessary
to account for the interaction e�ects which arise between the inclusions and cracks in
order to obtain the stress �eld distribution along the crack faces, and a superposition
scheme needs to be established.

The distribution of both inclusions and cracks is of vital importance for the determination
of stress intensity factors. Unit cells for ordered distributions need only to contain a small
area of a distribution whereas unit cells for disordered distributions need to cover a larger
area. Therefore, the method needs to account for the interaction e�ects from multiple
inclusions and cracks.

Contrary to the stress analysis method presented in chapter 1 where the stress �eld
is determined through an iterative process, the interacting stress �eld on a crack is
determined directly by applying an averaging technique for the interacting pressure dis-
tributions. The stress analysis method is one of the basic elements in the method and
is used to include the stress �eld disturbance from the inclusions. The direct solution
includes the use of a transmission factor, which accumulates the amount of interaction
only depending on the material properties and the geometrical arrangement of inclusions
and cracks.

The literature devoted to fracture mechanics and determination of stress intensity factors
is very comprehensive and in the following only works closely related to the present
work will be quoted. Erdogan et al. [4] presented a method to determine the stress
intensity factors for an arbitrarily oriented crack situated in a composite material with
sparsely distributed, circular inclusions, i.e. only one inclusion and one crack need to
be considered. The method is based on superposition of two problems. One problem,
which simply determines the stress �eld in the matrix as if only the inclusion is present
and the solid is exposed to an external load. The second problem takes into account
the interaction e�ect between the inclusion and the crack as if the only external load
is at the crack line. The superposition leads to a system of singular integral equations,
which are solved numerically. Kachanov [9] presented a method of stress analysis in an
elastic solid with multiple randomly distributed cracks using a superposition scheme.
The key assumption in Kachanov's methods is to neglect the variation of stresses on

23
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a crack and thus assume uniform average tractions on a crack. Pijaudier-Cabot and
Ba�zant [17] considered the interaction between a crack and an inclusion and a crack
and multiple randomly distributed inclusions. The method provides information about
the stress �eld and stress intensity factors. Hu et al. [8] considered multiple void{crack
interaction. They used a superposition technique to divide the problem into a number
of single{hole and single{crack problems, and as analysis tool they applied the method

of pseudotractions.

In this chapter a superposition scheme, which accounts for the interaction between in-
clusions and cracks, is derived and discussed in detail. In section 2.1 the stress intensity
factors for two interacting cracks in a solid are determined and this includes the derivation
of the transmission factor for the particular case of two cracks. In section 2.2 the stress
intensity factors are determined for the case of one crack and one inclusion. This also
includes derivation of the transmission factor for this particular case. In section 2.3 the
superposition scheme is extended to include the interaction between multiple inclusions
and cracks using the basic elements of crack{crack and crack{inclusion{crack interaction.
During the derivation examples are presented in order to illustrate the method.

2.1 Stress Intensity Factors for Two Cracks

In order to introduce the idea of the superposition scheme a simple example with two
interacting cracks is presented in the following. Besides being explanatory, the crack{
crack interaction is also one of the fundamental parts in the superposition scheme for
multiple inclusions and cracks. It includes the derivation of the direct transmission

factor denoted by �D, which, in the case of two cracks, accounts for the interaction on
one crack given the pressure at the other crack. The stress intensity factors for the case
of two collinear cracks are determined using the superposition scheme and compared
with results from an analytical solution. The derivation of the superposition scheme is
based on the type of crack interaction which Kachanov [9] proposed.

The problem to be solved consists of two cracks located in an in�nitely extented plane
solid which is exposed to unidirectional uniform tractions �1 at the remote boundaries.
The crack location is arbitrary both with respect to inter{position and the angle at
which the cracks are rotated. The crack faces are denoted by �1 and �2 and the cracks
have distinct lengths. The problem is substituted with superposition of two subproblems
(�g. 2.1).

The �rst subproblem consists of an in�nite continuous solid exposed to tractions at
the remote boundaries. The second subproblem consists of the two cracks located in an
in�nite solid with traction free remote boundaries but with applied pressure distributions
at the crack faces corresponding to the �rst subproblem. An equilibrium equation for
each crack may then be written as:

��0ni + pi = 0 on �i i = 1; 2 (2.1)

The �rst subproblem is easily solved by calculating the stress �eld ��0 at the imaginary
crack lines in their local coordinate system. The second subproblem is solved by dividing
it into two additional subproblems each containing only one crack (�g. 2.2).

In each of these new subproblems the cracks are loaded with the yet unknown pressures
~p1 and ~p2. The unknown pressure distributions consist both of the applied pressure
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Figure 2.1: Superposition scheme for two interacting cracks located in an in�nite solid.
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Figure 2.2: Superposition scheme for the crack{crack interaction problem.

calculated by equation 2.1 and interaction terms:

~p1 = p1 + p2;int on �1

~p2 = p2 + p1;int on �2 (2.2)

The pressure p2;int is the interacting pressure on crack 1 from the unknown pressure ~p2 of
crack 2 and vice versa for p1;int. It is assumed that the interacting pressure p2;int arises
due to an average pressure distribution on crack 2 h~p2i = hp2i+ hp1;inti = p2 + hp1;inti
(the brackets h i denote averaging over �i). Then, the interacting pressure may be written
as a function of the average pressure distribution. The unknown pressure on both crack
1 and 2 is now written as:

~p1 = p1 + p2;int(h~p2i) on �1

~p2 = p2 + p1;int(h~p1i) on �2 (2.3)

As the interacting pressure depends on an average pressure distribution it is suitable to
introduce a transmission factor. This factor relates the average pressure distribution on
one crack to the interacting pressure distribution on the other crack. Introducing the
transmission factor leads to:

~p1 = p1 +�D

21h~p2i on �1

~p2 = p2 +�D

12h~p1i on �2 (2.4)

The transmission factor is a full 2� 2 matrix and is derived as follows. The interacting
stress �eld on crack 1 may be written as:

��1 = ��t
21h~p2;xi+ ��n

21h~p2;yi on �1 (2.5)
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where h~p2;xi and h~p2;yi are the components of the average pressure distribution h~p2i on
crack 2. ��t

21 and ��n
21 are "standard" stress �elds generated along the imaginary crack

line of crack 1 due to a unit uniform pressure distribution at crack 2 for tangential and
normal loading, respectively (appendix B). ��1 is transformed into the local coordinate
system for crack 1 denoted by a prime. In order to express the interacting pressure on
crack 1 the transformed stress �eld is multiplied by a unit outward normal n1 = f0; 1gT
to crack 1:

p2;int = ��01n1

= ��t0

21n1h~p2;xi+ ��n0

21n1h~p2;yi

=

(
�txy
�tyy

)0
21

h~p2;xi+
(
�nxy
�nyy

)0
21

h~p2;yi

=

"
�txy �nxy
�tyy �nyy

#0
21

(
h~p2;xi
h~p2;yi

)

= �D

21h~p2i (2.6)

The transmission factor only depends on the geometrical arrangement of cracks and it
may be calculated independently of the magnitude of the uniform pressure h~p2i. Given a
point along the imaginary crack line of crack 1 the interacting pressure may now be deter-
mined. The direct transmission factor �D

21 represents the crack(2){crack(1) interaction
type and similar to this derivation the transmission factor �D

12 may be expressed.

One way to solve the problem is to average the unknown pressures in equations 2.4 so
that the only unknown vectors are h~p1i and h~p2i. This constitutes four equations with
four unknowns and this is easily solved, but as a large number of cracks may be needed
in the unit cell, equations 2.4 are solved using another approach. In this solution it
is assumed as �rst order interaction that the unknown pressure used to calculate the
interacting pressure equals the applied tractions. The pressure distribution on crack 1
becomes:

~p1 = p1 +�D

21hp2i on �1 (2.7)

By calculating the unknown pressure distribution in this way an error arises because
all of h~p2i has not been accounted for. The average pressure on crack 1 now becomes
h~p1i = hp1 +�D

21hp2ii = hp1i+ h�D

21ihp2i. This creates an additional pressure on crack
2 equal to �D

12(hp1i+ h�D

21ihp2i) and this again creates an additional pressure on crack 1
equal to �D

21h�D

12i(hp1i+h�D

21ihp2i). This term accounts for the second order interaction
and it is added to equation 2.7 and the pressure distribution for both crack 1 and 2 may
now be written as:

~p1 = p1 +�D

21hp2i+�D

21h�D

12i(hp1i+ h�D

21ihp2i) on �1

~p2 = p2 +�D

12hp1i+�D

12h�D

21i(hp2i+ h�D
12ihp1i) on �2 (2.8)

The process may be extended to include higher order interactions but their magnitude
is insigni�cant even for small distances between cracks.

It is now possible to calculate the non{uniform pressure distribution on the cracks
knowing the applied tractions and the geometrical arrangement of the cracks. Being
able to determine the pressure distribution on the crack faces the stress intensity factors
for both mode I and II crack opening may be determined using the following singular
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integrals:

KI(�c) =
1p
�c

Z c

�c

s
c� x

c� x
~p � n dx on �i (2.9)

KII(�c) =
1p
�c

Z c

�c

s
c� x

c� x
~p � n̂ dx on �i (2.10)

where c is the half crack length, n is a unit outward normal to the crack faces and ~p is
the non{uniform pressure on the crack faces.

As an example the stress intensity factors are calculated for the con�guration of two
collinear cracks shown in �gure 2.3. An analytical solution exists for this particular case.
The stress intensity factor KI is normalized with respect to the stress intensity factor
KI0 for a crack in an in�nite, homogeneous solid, in which KI0 = �1

p
�c.

K /KI I0
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Figure 2.3: Stress intensity factor for a con�guration with two collinear cracks.

The stress intensity factors calculated with the presented superposition scheme are com-
pared with the exact results (Tada et al. [26]). The calculated stress intensity factors
slightly underestimate the exact results at the inner crack tip. If the interaction e�ects
are not included, the stress intensity factors are equal to one.

2.2 Stress Intensity Factors for One Inclusion and One

Crack

Another fundamental part of the superposition scheme for multiple inclusions and cracks
is the interaction between one inclusion and one crack. It also includes the derivation
of a transmission factor and in this case it accounts for the crack{inclusion{crack inter-
action. The crack creates an interacting stress �eld inside the inclusion and this again
creates an interacting pressure distribution on the crack face. This type of transmission
factor is referred to as the indirect transmission factor denoted by �I . Results from the
superposition scheme are compared with results from other similar methods. The basic
idea in the superposition scheme was stated by Pijaudier-Cabot and Ba�zant [17] but as
it will be seen later in this section, the method is improved giving more accurate results.

The in�nitely extented plane solid, which now consists of both an inclusion and a crack,
is subjected to unidirectional, uniform tractions �1 at the remote boundaries. The
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matrix and inclusion materials of the solid are linear elastic with sti�ness Dm and Da

respectively. The crack length is 2c, the radius of the inclusion is R and the crack may
be oriented arbitrarily with an angle �. The boundary curve of the crack and inclusion
is denoted �c and �a respectively. Similar to the problem with two cracks presented in
the previous section, the problem is divided into two subproblems (�g. 2.4).

=2R

2c θ

σ σ

σ σ

Γa

Γc cp+

Figure 2.4: Superposition scheme for a crack interacting with an inclusion.

The �rst subproblem in the superposition scheme consists of the solid containing only the
inclusion and loaded by the remote tractions. This problem can be solved by applying
the iterative procedure from section 1.1. The second subproblem in the superposition
scheme consists of the solid containing the inclusion and the crack with traction free
remote boundaries but a pressure distribution corresponding to the �rst subproblem has
been applied to the crack face. By superposition of the two problems, an equilibrium
condition for the crack face �c may be written as:

��0nc + pc = 0 on �c (2.11)

where ��0 is the stress �eld solution of the �rst subproblem calculated in the transformed
local coordinate system at the imaginary crack face, and nc = f0; 1gT is the outward
normal to �c. In the second subproblem the pressure distribution on the crack surface
�c causes interface tractions on the inclusion surface �a and this causes an interacting
stress �eld on the crack surface �c. The problem will be solved by dividing it into two
other subproblems and applying another superposition scheme (�g. 2.5).

= +pc pc

pca

~

Figure 2.5: Superposition scheme for crack{inclusion{crack interaction problem.

In the �rst subproblem the solid without the inclusion is loaded by the yet unknown
pressure distribution ~pc at the crack surface �c. This causes a stress �eld ��c inside the
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imaginary inclusion, which results in interface tractions pca = ����cna on the contour
�a. In the second subproblem the solid without any crack but with the inclusion is
loaded by the tractions pca. This causes an interacting pressure distribution pac on the
imaginary crack surface �c. Superposition of the two subproblems yields:

pc = ~pc + pac on �c (2.12)

It is assumed that the interacting pressure distribution pac depends on the average pres-
sure distribution h~pci and similar to the problem with two cracks a transmission factor
is introduced. The transmission factor relates the interaction which h~pci causes due to
the presence of the inclusion. Equation 2.12 may now be rewritten as:

pc = ~pc + pac (h~pci) = ~pc +�I

cach~pci on �c (2.13)

Also in this case the transmission factor is a full 2� 2 matrix and is derived as follows.
The stress �eld generated by a uniform load of unit intensity at the crack line is expressed
in appendix B. From this the stress �eld inside the imaginary inclusion is:

��c = ��t
ch~pc;xi+ ��n

c h~pc;yi (2.14)

where h~pc;xi and h~pc;yi are the unknown components of the average pressure distribution
h~pci for shear and normal loading, respectively. ��t

c and ��n
c are the "standard" stress

components from the crack for mode II and mode I loading respectively. ��c is averaged
inside the contour �a, i.e. the stress �eld is calculated at a number of points inside the
imaginary inclusion and h��ci is the average value of these quantities. This implies that
the stress �eld inside the inclusion is assumed to be uniform. The unbalanced stress �eld
is calculated according to equation 1.7:

��
0
c = (Dm �Da)D

�1
a h�0ci

= (Dm �Da)D
�1
a (h�t0

c ih~pc;xi+ h�n0

c ih~pc;yi)
= ��

t0

c h~pc;xi+��
n0

c h~pc;yi (2.15)

where the prime indicates that the stress �eld has been transformed into the local coordi-
nate system of the inclusion. The interacting tractions on the boundary �a are calculated
according to equation 1.11:

pca = ����0cna

= ����t0

c nah~pc;xi � ��n0

c nah~pc;yi
= sth~pc;xi+ snh~pc;yi (2.16)

The vectors st and sn may be calculated knowing the geometrical arrangement of the
inclusion and the crack and the material properties. The two components of pca are:

(
pca;x
pca;y

)
=

(
stxh~pc;xi+ snxh~pc;yi
styh~pc;xi+ sny h~pc;yi

)
(2.17)

The components pca;x and pca;y are multiplied by ds resulting in the concentrated forces
pca;xds and pca;yds which act along the x and y direction, respectively. Inserting them
into equation 1.18 leads to:

��P = F1pca;xds+ F2pca;yds (2.18)
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where F1 and F2 are expressed as:

F1 =

"
� cos �

2�r(1+�)
(4 sin2 � � 3� �) � sin �

2�r(1+�)
(4 sin2 � � 3� �)

� cos �
2�r(1+�)

(�4 sin2 � � 1 + �) � sin �
2�r(1+�)

(4 sin2 � � 3� �)

#

F2 =

"
sin �

2�r(1+�)
(4 sin2 � � 5 + �) cos �

2�r(1+�)
(�4 sin2 � + 1� �)

sin �
2�r(1+�)

(�4 sin2 � + 1� �) cos �
2�r(1+�)

(�4 sin2 � + 1� �)

#
(2.19)

Inserting the right hand side terms from equation 2.17 into equation 2.18 leads to:

��P = (F1s
t
x + F2s

t
y)h~pc;xids+ (F1s

n
x + F2s

n
y )h~pc;yids (2.20)

The stress �eld caused by the interface tractions pca is found by superposing components
of equation 2.20 along the contour �a:

��a
c =

I
�a

��P ds

= h~pc;xi
I
�a

(F1s
t
x + F2s

t
y)Rd�+ h~pc;yi

I
�a

(F1s
n
x + F2s

n
y )Rd�

= Jth~pc;xi+ Jnh~pc;yi (2.21)

The stress �eld ��c
a may now be calculated along the crack line and the interacting

pressure distribution is determined as:

pac = ��a0

c nc = Jtnch~pc;xi+ Jnnch~pc;yi =
"
J txy Jnxy
J tyy Jnyy

#(
h~pc;xi
h~pc;yi

)
= �I

cach~pci (2.22)

The transmission factor may be calculated knowing the position of the inclusion and
the crack. Once �I

cac is determined it may be used to calculate the interacting pressure
distribution at any point of the crack. The transmission factor �I

cac represents in this
particular case the crack(c){�ber(a){crack(c) interaction type.

In order to determine the uniform pressure distribution h~pci it is assumed that the
pressure distribution in equation 2.13 is uniform:

hpci = h~pci+ h�I

cacih~pci
= (I+ h�I

caci)h~pci on �c (2.23)

where I is a 2 � 2 identity matrix. Averaging �I

cac over the crack line gives an average
interacting pressure. Replacing pc with ���0nc the unknown uniform pressure h~pci may
be determined as:

h~pci = �(I+ h�I

caci)�1h��0nci (2.24)

The average pressure h��0nci is found by averaging the stress �eld calculated along the
crack line using the theory from section 1.1. The unknown non{uniform pressure dis-
tribution ~pc may now be calculated from equation 2.13 where pc is determined from
equation 2.11:

~pc = ��0nc ��I

cach~pci (2.25)

The non{uniform pressure distribution, which takes into account the interaction from
the inclusion, may now be inserted into equations 2.9 and 2.10 in order to determine the
stress intensity factors for both mode I and II crack opening.

Figure 2.6 and 2.7 show a comparison of stress intensity factors between three methods,
Pijaudier-Cabot and Ba�zant's method, Erdogan's method and the improved method
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presented here. Two situations are considered; a radial crack where the stress intensity
factors are calculated at both crack tips, and a tangential crack where the stress intensity
factors are identical at both crack tips due to the symmetry. The material properties are
the same as in section 1.1 and R=c = 2, � = 0.
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Figure 2.6: Stress intensity factors for a radial crack.
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Figure 2.7: Stress intensity factors for a tangential crack.

The comparison shows that for a radial crack the calculation procedure turns out to
be very accurate. The stress intensity factors for the tangential crack show that for
b=c < 5 or b < 2:5R the presented calculation procedure diverges from the other results.
Erdogan's solution is assumed to be the most accurate and the results from this method
also coincide with �nite elements results. Thus comparing the calculation procedure
presented here with the procedure that Pijaudier-Cabot and Ba�zant presented, the results
are improved.

Figure 2.8 shows the stress intensity factors for a radial crack as in �gure 2.6 for various
crack orientation angles. Rotation angle is de�ned as shown in �gure 2.4. The crack is
located at b=c = 4. The calculations are compared with �nite element results showing
good agreement in the entire spectrum of the crack orientation angle.
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Figure 2.8: Stress intensity factors for various crack orientation angles for a radial crack

with b=c = 4.

2.3 Stress Intensity Factors for Multiple Inclusions and

Cracks

The superposition scheme for multiple inclusions and multiple cracks needs to include
additional types of interaction e�ects. These interaction e�ects enter the superposition
scheme so that the pressure distribution on the cracks accounts for the exact distribution
of inclusions and cracks. The superposition scheme results in a uni�ed strategy where
various types of interaction e�ects explicitly may be determined. The basic idea for
solving the problem is to combine the solutions of two existing methods. One of the
methods, which considers the interaction between multiple cracks, has been presented
by Kachanov [9] and is to some extent explained in section 2.1. The other method,
which considers the interaction between multiple inclusions and one crack, was stated
by Pijaudier-Cabot and Ba�zant [17] and is explained in sections 1.1, 1.2 and 2.2. The
combination between the method states the solution for multiple inclusions and cracks.

The types of interaction e�ects presented in the previous sections only apply for particular
situations, two cracks and one inclusion { one crack, respectively. The additional types
of interaction e�ects, which need to be included, are presented later in this section. All
of them involve derivation of the transmission factors but the derivations are omitted in
this section as they are similar to the previous derivations. A numerical example with a
con�guration containing four inclusions and one crack is analysed. The stress intensity
factor for the crack is determined using both the method based on the superposition
scheme and the �nite element method.

The in�nitely extented plane solid, which now consists of multiple inclusions and cracks,
is subjected to unidirectional, uniform tractions �1 at the remote boundaries. The
inclusions have all the same sti�ness Da and the matrix has the sti�ness Dm. The solid
contains N1 circular inclusions of radius R. The boundary curves are denoted �i where
i = 1; � � � ; N1. The solid also contains N2 cracks, each with distinct lengths and crack
orientation angles denoted by 2ci and �i, respectively. The boundary curves for the
cracks are denoted �i where i = N1 + 1; � � � ; N1 + N2. Both the inclusions and cracks
may be randomly located although overlap is not permitted. The problem is solved using
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a superposition scheme composed of an initial and a subsidiary problems (�g. 2.9).

= +

Original problem Initial problem Subsidiary problem

Figure 2.9: Superposition scheme for interaction between multiple inclusions and cracks.

The initial problem consists of the solid containing only the multiple inclusions. The
subsidiary problem consists of the solid with traction free remote boundaries, but with
tractions corresponding to the stress �elds from the initial problem applied at each crack
face. The superposition of the initial and subsidiary problem may be written as:

��0ni + pi = 0 on �i i = N1 + 1; � � � ; N1 +N2 (2.26)

The initial problem may be solved using the iterative procedure presented in section 1.2.
To solve the subsidiary problem it is divided into N2 subproblems (�g. 2.10).

= + +

Subsidiary problem

. . .

Subproblem 1 Subproblem N2

Figure 2.10: Superposition scheme for the subsidiary problem.

For each of the subproblems the interaction e�ect from both inclusion and imaginary
cracks must be taken into account. In the previous sections the interaction e�ect is
determined on the basis of two kinds of interaction. The �rst one considers the direct
interaction between cracks and the second one, called indirect interaction, takes all other
interaction e�ects between inclusions and cracks into account.

Direct Interaction:

The principles of the direct interaction between cracks are explained in section 2.1. The
problem is solved using the �rst and second order interaction e�ects. The procedure
needs to be expanded to include the interaction e�ects between multiple cracks. The
basic idea is to superpose the interacting pressure distribution on one crack from the
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other neighbouring cracks. The �rst and second order interaction e�ects are illustrated
in �gure 2.11 where the direct interaction is of interest.
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Γ

Γ
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j

Γ

Γ

Figure 2.11: First and second order direct interactions.

The procedure in the derivation of the transmission factor between two cracks is the
same for all cracks and it only depends on the geometrical arrangement of cracks. Thus
the transmission factor �D

ji represents the interacting pressure distribution on the i'th
crack due to a unit uniform load on the j'th crack. In order to express the interacting
pressure pD

i on the i'th crack from the direct interaction the e�ects are superposed and
are written as:

pD

i =
N1+N2X
j=N1+1

j 6=i

(�D

jihpji+�D

jih�D

iji(hpii+ h�D

jiihpji)) on �i (2.27)

where pj is the pressure distribution on the j'th crack determined from equation 2.26.
Equation 2.27 represents the extension of equation 2.8 to the case of many cracks.

Indirect Interaction:

The principles of the indirect interaction are also presented previously but contrary to
section 2.2 new interactions terms are included. Furthermore, the superposition scheme
must be applied for multiple inclusions and cracks. Figure 2.12 shows the types of
interaction, which are included in the indirect interaction scheme.

The indirect interaction scheme consists of the interaction from a second entity (inclusion
or crack) and a third entity which a�ects the second one. The interaction type is named
as follows:

1. crack(i){inclusion(j){crack(i)

2. crack(i){inclusion(k){inclusion(j){crack(i)

3. crack(i){crack(k){inclusion(j){crack(i)

4. crack(i){inclusion(k){crack(j){crack(i)

5. crack(i){crack(j){crack(i)

6. crack(i){crack(k){crack(j){crack(i)

The letter in the brackets corresponds to the boundary curves � and entities with the
letter "i" denote �rst entity, the letter "j" denotes second entity, the letter "k" denotes
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Figure 2.12: Indirect interaction scheme for multiple inclusions and cracks.

third entity. The crack(i){inclusion(j){crack(i) interaction type corresponds to the theory
presented in section 2.2, but in this case it must be applied for multiple inclusions and
cracks. The crack(i){crack(j){crack(i) interaction type is identical to the second order
term in the direct interaction scheme so this is omitted in the following.

Interaction type 1 sums up the interaction e�ects on the i'th crack from all the inclusions
acting as second entity:

pI;1

i =
N1X
j=1

�I;1

ijih~pii on �i (2.28)

where h~pii is the yet unknown pressure distribution on the i'th crack and the �I;1
iji

is the transmission factor which accounts for the interaction that arises when the
pressure distribution on �i creates interface tractions on �j and this returns an
interacting pressure distribution on �i.

Interaction type 2 sums up the interaction e�ects on the i'th crack from all the inclusions
where the inclusions act both as second and third entities:

pI;2

i =
N1X
j=1

N1X
k=1
k 6=j

�I;2

ikjih~pii on �i (2.29)

The inequality k 6= j is necessary as otherwise it is identical to interaction type 1.

Interaction type 3 sums up the interaction e�ects on the i'th crack from all the inclusions
where the inclusions act as second entity and the cracks act as third entity:

pI;3

i =
N1X
j=1

N1+N2X
k=N1+1

k 6=i

�I;3

ikjih~pii on �i (2.30)
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In this case the inequality k 6= i is introduced in order to avoid that the i'th crack
becomes the third entity.

Interaction type 4 sums up the interaction e�ects on the i'th crack from all the cracks
where the cracks act as second entity and the inclusions act as third entity:

pI;4

i =
N1+N2X
j=N1+1

j 6=i

N1X
k=1

�I;4

ikjih~pii on �i (2.31)

The inequality j 6= i is introduced in order to avoid that the i'th crack becomes
the second entities.

Interaction type 6 sums up the interaction e�ects on the i'th crack from all the cracks
where the cracks act both as second and third entity:

pI;6

i =
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=N1+1
k 6=i;k 6=j

�I;6

ikjih~pii on �i (2.32)

The inequality k 6= i is introduced in order to avoid that the i'th crack becomes
the third entity, the inequality j 6= i is introduced in order to avoid that the i'th
crack becomes the second entity and the k 6= j makes sure that the second and
third entity are di�erent.

In each of the �ve interaction types the transmission factor needs to be derived separately
as it applies for the particular interaction case. Combining all the terms in this indirect
interaction scheme leads to:

pI

i =
N1X
j=1

N1+N2X
k=1
k 6=i

�I

ikjih~pii+
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=1

k 6=i;k 6=j

�I

ikjih~pii on �i (2.33)

The interaction pressure distribution pI

i constitutes the total indirect interaction and it
is similar to the interaction term in equation 2.13.

By adding the direct and indirect interaction leads to the following equation which is
similar to equation 2.12:

pi = ~pi + pD

i + pI

i

= ~pi +
N1+N2X
j=N1+1

j 6=i

(�D

jihpji+�D

jih�D

iji(hpii+ h�D

jiihpji))

+
N1X
j=1

N1+N2X
k=1
k 6=i

�I

ikjih~pii+
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=1

k 6=i;k 6=j

�I

ikjih~pii on �i (2.34)

To determine the uniform pressure distribution h~pii it is necessary to average equa-
tion 2.34:

hpii =

2
6664I+

N1X
j=1

N1+N2X
k=1
k 6=i

h�I

ikjii+
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=1

k 6=i;k 6=j

h�I

ikjii

3
7775 h~pii+ hpD

i i on �i (2.35)
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The unknown average pressure distribution may then be determined as:

h~pii =

2
6664I+

N1X
j=1

N1+N2X
k=1
k 6=i

h�I

ikjii+
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=1

k 6=i;k 6=j

h�I

ikjii

3
7775
�1

(hpii � hpD

i i) on �i (2.36)

where hpii, which also is to be determined in hpD

i i, is equal to h��0nii. Having found the
uniform pressure distribution it is now possible to determine the non{uniform pressure
distribution on the i'th crack:

~pi = pi � pD

i � pI

i

= ���0ni +
N1+N2X
j=N1+1

j 6=i

(�D

jih��0nji+�D

jih�D

iji(h��0nii+ h�D

jiih��0nji))

�

2
6664
N1X
j=1

N1+N2X
k=1
k 6=i

�I

ikji +
N1+N2X
j=N1+1

j 6=i

N1+N2X
k=1

k 6=i;k 6=j

�I

ikji

3
7775 h~pii on �i (2.37)

The stress intensity factors are determined using equation 2.9 and 2.10.

The present method is compared with the �nite element method. The con�guration
consists of four inclusions in a symmetrical arrangement around a crack (�g. 2.13). Ma-
terial parameters correspond to those used in the previous sections. The radius of the
inclusions is R and the crack length 2c where R=c = 2. The stress intensity factors for
both mode I and II are calculated at the crack tips. As the con�guration is symmetric
only stress intensity factors for one crack tip are depicted.

K  /K

K  /K

I

II

I0

I0

FEM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 5 6 7
b/c

σ

σ

b

b
R

I

II

Figure 2.13: Comparison of stress intensity factors between the presented method and

the �nite element method.

The results from the two methods are consistent for b=c > 5 or b < 2:5R. This also goes
for one inclusion and one crack. With a smaller ratio between Young's moduli of the
inclusion and matrix material, the divergence of the results is less pronounced.
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The procedure for the determination of the stress intensity factors of randomly dispersed
cracks situated among randomly dispersed inclusions is in the following recapitulated:

{ The stress components at each imaginary crack line are calculated using the itera-
tive procedure of stress analysis as in section 1.2.

{ The transmission factors for the di�erent interaction types, both direct and indirect,
are derived in similar way as for equations 2.6 and 2.22

{ The uniform pressure distribution on each crack face is determined by applying the
averaging technique (Eq. 2.36).

{ The non{uniform pressure distribution may then be calculated from equation 2.37.

{ The stress intensity factors are then determined from equations 2.9 and 2.10.
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3

Crack Growth Analysis

T
he crack growth in a �brous composite material is of very complex nature as the
material has an inhomogeneous microstructure. For the crack growth in the plane

cross section perpendicular to the �ber direction cracks may develop in the pure matrix,
at the interface between the matrix and the inclusions and through the inclusions. The
description of these types of damage may be more or less comprehensive, e.g. the crack
growth in the pure matrix is relatively simple to describe if the material is assumed to
be perfectly homogeneous. However, considering the matrix on a microscale level the
material appears to be inhomogeneous and the crack growth may be di�cult to describe.
Also if the crack tip meets an obstacle such as a void or an impurity, it may abruptly
change its path and maybe also split into two crack paths. Thus it is very di�cult to
predict the real crack growth in a composite material if all factors must be taken into
account and a simpli�cation of the problem is necessary.

In order to estimate the crack path in the material with multiple inclusions and cracks,
simple techniques are applied. These techniques may not be su�cient to predict the
exact crack evolution in a real material but adequate to indicate a tendency and may
lead to a characterization of crack growth depending on dispersion of inclusions and
cracks. A complete and thorough investigation seems to be an enormous task for such a
complex problem. It may lead to more accurate results, but not necessarily more useful
results. Only two types of cracking are considered in the present crack growth analysis;
pure matrix cracking without branching and interfacial cracking between the matrix and
inclusions. Multiple cracks are considered as well, and adequate crack growth criteria
are applied in order to determine the crack trajectories.

The prediction of crack growth plays an important role in the design of real structures.
For composite materials, which are inhomogeneous, the crack growth is of much more
complex nature than for conventional materials. Experiments (Daniel et al. [3]) show
that during transverse loading of ceramic matrix composites the microcracks start to
grow from the �ber-matrix interface as a radial crack. Also interface cracking occurs
and the �nal crack path consists both of matrix and interface cracks, connected to each
other. Sih [25] presented a method, in which the strain{energy{density factor is used
to determine the crack extension under combined stress �eld, in which the crack is
allowed to develop in an arbitrary direction. The stress intensity factors for both mode
I and II are used to calculate the strain{energy{density factor. To determine whether
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the cracks extend or not, the strain{energy{density factor is compared with a material
dependent critical value. Zhu and Achenbach [28] presented a model where the crack
growth is analysed for two scenarios; radial matrix cracking occurs �rst followed by
interface cracking and vice versa. The interface is modelled with spring elements so
that sti�ness properties of the interface layer may be varied. The crack growth in the
matrix is determined on the basis of a tensile stress criterion and at the interface the
strain{energy{density criterion is used.

The pure matrix crack growth is presented in section 3.1 and is determined on the basis of
the strain{energy{density factor (Sih [25]). The interfacial crack growth is presented in
section 3.2 and is predicted on the basis of the strain{energy{density calculated around
the inclusions. In section 3.3 an iterative procedure, which accounts for the crack growth
in the case of multiple matrix and interface cracks, is proposed.

3.1 Crack Growth in the Pure Matrix

In order to determine the crack growth of multiple cracks situated among multiple inclu-
sions the theory of the minimum strain{energy{density (Sih [25]) is applied. The theory
takes into account the mixed mode problem and thus allows cracks to extend in a non{
self{similar manner, i.e. during crack growth the crack may change to another mode.
This property is necessary because the stress �eld at the position of the crack consists of
both normal and shear loading due to the interaction e�ects. This means that the crack
is exposed to normal loading (mode I) and shear loading (mode II). Therefore, the crack
must be allowed to extend in all directions.

The minimum strain{energy{density theory is used in order to determine the crack
growth in the pure matrix where the crack is exposed to the interacting stress �eld.
The strain{energy{density factor may be written as:

S = a11K
2
I + 2a12KIKII + a22K

2
II (3.1)

where

a11 =
1

16�
[(1 + cos �)(�� cos �)]

a12 =
1

16�
sin �[2 cos � � (�� 1)]

a22 =
1

16�
[(�+ 1)(1 � cos �) + (1 + cos �)(3 cos � � 1)]

where KI and KII are the stress intensity factors for mode I and II, � is the shear
modulus related to Young's modulus as E = 2�(1 + �), � is Possion's ratio and � is an
elastic constant, which is (3 � 4�) for plane strain and (3 � �)=(1 + �) for plane stress.
The only unknown factor in equation 3.1 is the angle �. The crack length is 2c, and the
local coordinate system (x0; y0) is attached to it. The angle � measures the orientation
of the crack with respect to a �xed coordinate system (x; y) (�g. 3.1).

The crack extension occurs in the direction, along which the strain{energy{density factor
possesses a stationary (minimum) value @S=@� = 0. The crack initiates when this
minimum value S0 of the strain{energy{density factor reaches a critical value Scr. The
critical value is a material constant related to the fracture toughness of the material
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Figure 3.1: Crack geometry for an inclined crack in tension.

under mixed mode conditions. Thus the criterion provides information on whether the
crack extends or not and in which angle it extends.

In the case of multiple cracks all the stress intensity factors are calculated and the
corresponding minimum strain{energy{density factor S0 is determined for each crack.
It is assumed that the crack with the highest value of S0 is most likely to extend at
�rst. Whether the crack extends or not depends on the magnitude of the Scr. Further
crack growth is then determined from a new analysis where the stress intensity factors
are recalculated including the interaction e�ects from the new crack. As an example of
crack growth the con�guration with two inclusions and one crack is considered (�g. 3.2).

a

2c

R
y

x

2R

Figure 3.2: Con�guration containing two inclusions and one crack.

Unit uniform tractions are applied in the y direction, i.e. normal to the crack surface.
The ratio R=c = 2 and a = c. This con�guration is symmetrical with respect to the
vertical centre axis of the crack. If the con�guration had been symmetrical with respect
to the horizontal centre axis, i.e. a = 0, the crack would only be exposed to normal
loading and thereby only pure mode I would be developed. The material constants are
Ea=Em = 23, �a = 0:3 and �m = 0:35. The variation of the strain{energy{density factor
is calculated at the crack tips and S has its minimum value at an angle �0 = 0:18�

(�g. 3.3a).

Assuming that the minimum value S0 of the strain{energy{density factor exceeds the
critical value Scr the crack starts to grow. The crack extension length �c is estimated by
the following simple relation:

�c = A1(jKI=KI0 j+ jKII=KI0 j)2 (3.2)
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Figure 3.3: (a) Variation of the strain{energy{density factor, (b) the crack path after

crack extension.

where A1 is a constant. After extension the stress intensity factors are calculated at the
new crack tip. To �nd these, KI and KII , for the new crack tip the interaction e�ects
from the �bers are as usual included in the calculation of the stress �eld at the position
of the new crack, but the interaction e�ects from the original crack are not included.
Two sets of stress intensity factors now exist; one set for the crack tip of the original
crack, which did not extend, and one set for the new crack tip. In �gure 3.3b the crack
path is shown for �ve crack extensions where the constant A1 = 0:5mm.

3.2 Crack Growth at the Interface

The determination of interface cracking can be of more complex nature than the pure
matrix cracking as this includes cracking between dissimilar materials leading to oscilla-
ting stress intensity factors and the necessity for exact determination of the stress �eld.
With the method presented in chapter 1 it is possible to calculate the stress �eld at a
very small distance from the interface, but as the method includes an approximation
of uniform stress �eld inside the inclusions, the stress �eld calculated near the interface
will contain an error, which grows when approaching the interface. An error in the
stress �eld will also introduce an error in the calculation of the stress intensity factors.
Therefore, it will not be reasonable to calculate the stress intensity factors at the interface
and use them to determine the crack growth. Instead a method, which compares the
strain{energy{density in a small interface layer with a critical value, is applied.

It is assumed that a small annular layer exists around each inclusion and when crack-
ing occurs it appears at the interface between the small annular layer and the matrix
material, i.e. the interface cracking does not occur between the �ber and the annular
layer. The stress �eld calculation may then be performed at a small distance from the
inclusion corresponding to the thickness of the annular layer and the errors will not be so
pronounced. The thickness of the annular layer as well as the magnitude of the critical
value of the strain{energy{density may be chosen so that the real material is simulated.
The existence of a small annular layer is readily accepted as the suppliers of the com-
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posite materials use coating of the �bers to change the sti�ness and strength properties.
Also during the manufacturing process the two dissimilar materials interact with each
other and create thereby a small interfacial layer. The sti�ness properties for the small
annular layer are in the numerical procedure the same as for the matrix.

The strain{energy{density is calculated using only stress components, which provoke
interface cracking. These are the radial stress component �r leading to mode I crack
opening and shear stress component �r� leading to mode II crack opening. Only non-
negative radial stress components are used in the calculations as negative values lead to
compression between the crack surfaces. The strain{energy{density U is calculated as:

U = �r"r + �r�"r�

= �r(�rD
�
11 + �r�D

�
13) + �r�(�rD

�
31 + �r�D

�
33)

= �2rD
�
11 + �2r�D

�
33 (3.3)

where D�
ij is the compliance and D�

11 = 1=E, D�
33 = 2(1 + �)=E and D�

13 is zero for
isotropic materials. When the strain{energy{density U reaches a material dependent
critical value Ucr, the interface crack propagates. The interface crack model is shown
in �gure 3.4a and the crack is represented by a straight line intersecting the annular
layer. The crack tips are located on the contour of the small annular layer. The strain{
energy{density is calculated at the crack tips and compared with the critical value. The
strain{energy{density is calculated for the con�guration with two �bers and no crack as
a function of the circumferential angle � (�g. 3.4b).
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Figure 3.4: (a) Interface crack model, (b) strain{energy{density as a function of the

circumferential angle �.

The strain{energy{density has its minimum for � � 0� indicating that cracks located
here have less tendency to further crack growth than cracks located at � � 90� where
the strain{energy{density has a maximum. If a crack and more inclusions are present,
the magnitude of the strain{energy{density changes depending on the geometrical ar-
rangement of the crack and inclusions.

The strain{energy{density is calculated in order to determine whether the cracks start
to grow or not but it does not indicate in which direction the cracks develop. This
estimation is made by calculating the principal axes of stress at the crack tips. All stress
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components are used in this calculation and it is assumed that the crack extends in the
direction of the 1st principal axis of stress. An example is shown in �gure 3.5a where the
axes of the local coordinate system with origin at the crack tip are denoted 1 and 2.
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Figure 3.5: (a) Direction of crack extension, (b) crack extension angle � as a function of

the circumferential angle �.

The principal axes of stress are denoted by a prime and it turns out that the crack
extends into the annular layer with an angle �. This angle changes depending on the
position and in �gure 3.5b the direction of the 1st principal axis of stress as a function
of the circumferential angle � is shown. It is obvious that for cracks situated along the
interface where � < 90� the crack extension angle is directed towards the inclusion and
vice versa for � > 90�. This angle changes depending on the local stress �eld, which
again is dependent on the dispersion of inclusions and cracks. Knowing whether the
cracks extends or not and in which direction, only the crack extension length is needed.
It is found by the following simple relation:

�c = A2U (3.4)

where A2 is a constant. As mentioned, the cracks seem to grow into the inclusion
at some locations but as it is assumed that the inclusion is rigid and the crack extends
circumferentially around the inclusions, the method must be adjusted. Consider the case
where the crack tip of a growing crack is located near an inclusion (point a1 �g. 3.6).

At this point the strain{energy{density factor is calculated and compared with Scr. If the
crack extends, the new crack tip will be located at point a2 inside the contour de�ned
by radius A0R. But as this is not permitted the crack tip is moved to point a3. To
determine whether the crack will extend further, the strain{energy{density is calculated
and compared with Ucr. Again if the crack extends, the new crack tip is located at point
a4, but moved to point a5. This procedure continues until the new crack tip is located
outside the annular layer (point a6).

At which angle the growing crack diverges into the matrix depends on the local stress
�eld at the crack tip and this is dependent on the dispersion of inclusions and cracks.
But also the loading direction is a decisive parameter, and therefore the crack is most
likely to diverge at an angle near � = 90�. The fact that the strength of the interface may



Chapter 3. Crack Growth Analysis 45

xx
x

x

xx

x

x

x

x

x

x
x

x x x x x x
x

x
x

x x x

x

x

x xa1
a2

a3 a4

a5

a6

δ δc= c K K( , )I II

δ δc= c U( )

R

A R0

a7

a8

Figure 3.6: Crack trajectory around an inclusion.

be weaker than the strength of the matrix makes it feasible that the crack continues to
develop at the interface of angles beyond 90�. In order to include this behaviour another
criterion is introduced. The criterion states that if the strain{energy{density calculated
at the crack tip is larger than a critical value ~Ucr related to the strength of the interface
then the crack continues along the interface regardless of the 1st principal axis of stress.
By changing the critical value the diverging angle is changed, e.g. to points a7 and a8.
Figure 3.4b indicates for the particular situation without any crack that the diverging
angle approaches 180� when lowering the critical value of the strain{energy{density. As
an example of the inuence of the critical value on the crack path, the case where a crack
is situated in the vicinity of four inclusions aligned along inclined line can be considered
(�g. 3.7).

The crack evolution is seen to change considerably when changing the critical value ~Ucr.
The critical value for real materials may be estimated by observing when the real crack
path coincides with the modelled crack path.

The damage evolution in the con�guration shown in �gure 3.2 may now be determined
by applying the presented two crack growth criteria. Besides the material properties the
following data are used: A0 = 1:15, A1 = 0:5mm,A2 = 9:5�102 mm3/N, Scr = 1:2N/mm,
Ucr = ~Ucr = 1:2 N/mm2. The crack evolution is based on 80 steps and both pure matrix
and interface cracking occur in this case (�g. 3.8).

3.3 Combined Crack Growth

The presented crack growth criteria are implemented in the numerical iterative procedure,
which accounts for the crack growth in a composite material with multiple inclusions and
cracks (Tab. 3.1).

The question whether a matrix or an interface crack starts to grow must, as indicated,
be determined using a self{imposed condition. One condition, which can be used, is to
compare the normalized values S0=Scr and U=Ucr and let the largest one of these values
be decisive for the crack initiation.

Finally, an example consisting of multiple inclusions and cracks is considered. The 48 in-
clusions are dispersed randomly and 10 cracks are initiated among the inclusions (�g. 3.9).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Crack path depending on the critical value; (a) initial con�guration, (b)
~Ucr = 0:1N/mm2, (c) ~Ucr = 0:5N/mm2, (d) ~Ucr = 1:0N/mm2, (e) ~Ucr =
1:5N/mm2, (f) ~Ucr = 2:0N/mm2.
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Figure 3.8: Damage evolution for the con�guration with two cracks.

Table 3.1: The iterative procedure for the crack growth.

initial state Matrix and interface cracks are initiated

Determine the stress �eld and stress intensity factors

iterations

Calculate S0 and U for matrix and interface cracks

Determine max(S0) and max(U)

If S0;max > Scr and Umax > Ucr

{ determine whether a matrix or interface crack starts to grow

by applying a self{imposed condition

If a matrix crack is to extend

{ insert S0;max in equation 3.1 to determine �0

{ determine crack extension length from equation 3.2

If a interface crack is to extend

{ If U > ~Ucr the crack continues immediately at the interface

Else determine 1st principal axis of stress

{ determine crack extension length from equation 3.4

Recalculate stress �eld and stress intensity factors (incl. interaction

from the new crack)

stop iteration when enough new cracks has been initiated

end

The material properties used in the model correspond to glass/epoxy and the input data
are similar to those applied for the con�guration with two �bers (Tab. 3.2).

Both matrix and interface cracks appear in this con�guration and the �nal damage
evolution is based on 250 steps. The computational time increases as new cracks are
created because the interaction from the new cracks must be taken into account.
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Figure 3.9: Damage evolution for the con�guration with 48 inclusions and 10 cracks.

Table 3.2: Input data for the con�guration with 48 inclusions and 10 cracks.

Ea �a Em �m A0 A1 A2 Scr Ucr
~Ucr

[N/mm2] [N/mm2] [mm] [mm3/N] [N/mm] [N/mm2] [N/mm2]

73000 0.3 3174 0.35 1.15 0.5 9:5 � 102 1.2 1.2 1.2
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4

Quanti�cation of the Microstructure

Morphology

H
aving established methods to calculate the stress �eld, the stress intensity factors and
the crack growth for a microstructure consisting of multiple inclusions and multiple

cracks, other features related to the microstructure are now introduced. The analysis
methods presented previously take into account the exact position of inhomogeneities
(inclusions and cracks) but not how the constitution of the microstructure is character-
ized. The characterization may be accomplished by applying spatial statistics to the
dispersion of inhomogeneities. Thus, it is interesting to relate the morphology of the
microstructure to various properties of the material.

Inherent to the features related to the microstructure is the construction of a unit cell
similar to the concept used in �nite element modelling and other corresponding methods.
In these analyses the microstructure is assumed to have some form of regularity and unit
cells need only to include a part of the microstructure. The microstructure is then envi-
sioned as a repetitious structure composed of the unit cells. In case of a disordered mi-
crostructure the unit cell must be enlarged to contain a pattern of inhomogeneities, which
is representative throughout the microstructure of the composite material. Furthermore,
as the microstructure needs to be described by statistical functions and parameters the
unit cell must contain a su�cient number of inhomogeneities.

A feature related to the microstructure, which seems to be of interest, is the morphology
of the microstructure, i.e. the geometrical arrangement of the inclusions and cracks. As
the morphology of real inhomogeneous materials is ambiguous, it calls for methods to
characterize the dispersion of inclusions and cracks. In this way it is possible to recog-
nize and distinguish the di�erent microstructures by means of spatial statistics. Having
methods of characterization, di�erent distributions may be classi�ed so that a particular
microstructure belongs to a pre{de�ned class. The key issue here is that only a few
types of distributions corresponding to the number of classes need to be investigated
in order to predict the response from a given microstructure. By comparing the given
microstructure with the classi�ed microstructures, for which knowledge has been accu-
mulated, it is possible to estimate the properties of the material. This classi�cation is
used to decompose the ambiguity of the microstructure. The method may of course lead
to some uncertainties, but immense time{saving makes it attractive. The di�erent types
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of distributions may include regular distributions, complete random distributions and
everything in between, so it is necessary to select a few types, which are representative
for some unidirectional �brous composite materials. Distributions may be characterized
and di�erentiated from each other by applying statistical descriptors to the geometrical
arrangement of inclusions and cracks.

When calculating the response from a composite material, it is normally assumed that the
dispersion of inhomogeneities has some form of regularity. This implies that all inclusions
are exposed to the same amount of interaction and in order to include the non{regularity
of �bers in real microstructures Brockenbrugh et al. [2] compared the elastic and plastic
response from di�erent regular distributions and a random distribution by use of �nite
element models. The regular distributions were modelled with unit cells containing only
one �ber whereas the unit cell for the random distribution contained several �bers. As a
result they showed that the plastic response was very much a�ected by the arrangement
of inclusions. Therefore the arrangement of inclusions is important when calculating
the properties of composite materials. The �rst step to understand the inuence of
the arrangement of inhomogeneities is to be able to describe the microstructure. In
Pyrz [18] real and simulated microstructures of unidirectional �brous composite materials
are analysed using spatial statistics. Parameters and functions are used to characterize
and distinguish di�erent patterns of �bers. A further characterization of distributions
of �bers by means of statistical descriptors has been carried out in Pyrz [19]. Also a
classi�cation of patterns has been established and analysed. Ways of determining the
range of local geometrical disorder are presented in Pyrz [20] and functions, which take
into account related �eld quantities of the microstructures, are investigated.

In section 4.1 a concept for the unit cell is introduced and the size of it is among other
things determined by considering the interacting stress �eld between inclusions. In sec-
tion 4.2 statistical descriptors, which take into account the local disorder, are applied in
order to distinguish between various microstructures.

4.1 Construction of the Unit Cell

In order to perform the same type of analysis on the di�erent classes of distributions as
well as establishing a uni�ed concept the construction of a unit cell is necessary. The
unit cell must consist of the actual distribution, which is going to be analysed, and it
must be possible to expose the distribution to given boundary conditions. The actual
distribution of inclusions and cracks becomes representative for the whole microstructure
of the material in a statistical sense. Thus, describing the whole microstructure or just the
microstructure contained within the unit cell using statistical functions and parameters
must lead to the same result. The boundary conditions may be given in form of other
inclusions and cracks dispersed outside the actual distribution. The unit cell is then
formed by a sample area, in which the actual distribution is generated, and this area is
surrounded by a boundary area which interacts with the sample area. In the boundary
area inclusions and cracks may be dispersed independently of the actual distribution so
the same boundary conditions can be applied for various actual distributions.

The minimum number of inhomogeneities needed in order to provide statistical data is
approximately 100 and in some of the subsequent analyses the sample area, which is
de�ned as a square array, consists of 512 � 512 points which also limit the number of
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possible locations of inhomogeneities. If 100 inclusions, each of radius 10 points, are
dispersed within the sample area, then the maximum volume fraction is � 12%. Parts
of the inclusions may be located beyond the edge of the sample area but their centres
are contained within the sample area. Therefore, the indicated volume fraction is a
maximum value assuming that no parts of the �ber are beyond the edge of the sample
area. The size of the boundary area may be chosen on the basis of zone of inuence

calculations. Thus knowing how far inclusions must be apart so that the interaction can
be neglected, provides information of the size of the boundary area. A con�guration,
which is of importance in zone of inuence calculations, is the interaction between two
inclusions (�g. 4.1).
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Figure 4.1: Zone of inuence for two inclusions with varying inter{distance and inter{

orientation represented by the �y stress component.

The �y stress component is calculated in one of the inclusions for varying inter{distances
and inter{orientations. For � = 0� corresponding to horizontally aligned inclusions,
the inuence is almost insigni�cant compared to the others where the inuence has the
largest e�ect for � = 90� due to the direction of the applied load. Taking all inter{
orientations into account the inuence is negligible when the ratio between the inter{
distance d and radius of the inclusion R becomes larger than 20. For the unit cell with a
sample area consisting of 512�512 points the boundary area must be at least 200 points
wide. The interaction which arises when several inclusions are located in a row is also
important. Therefore, the zone of inuence between multiple verticaly aligned inclusions
is considered (�g. 4.2).

The �y stress component is calculated in the "0" inclusion when successively adding more
inclusions. In this case the stress component increases when adding more inclusions but
the slope of the curve decreases at approximately i � 8. This means that the distance,
at which the interaction becomes insigni�cant, is d8 = 24R and the boundary area must
be at least 240 points if the sample referred to previously is considered. If the inclusions
are aligned horizontally, a corresponding tendency is found but the e�ect will be less
pronounced.

The zone of inuence calculations provides information which may be used to determine
the size of the boundary area. In this particular case with a sample area consisting of
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the �y stress component in inclusion "0".

512� 512 points the boundary area must be at least 240 points wide on each side of the
sample area so by making the whole area 1024 � 1024 points the conditions are ful�lled
(�g. 4.3).
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Figure 4.3: Unit cell.

Inclusions may now be dispersed randomly within the unit cell and if the same volume
fraction is desired in all parts of the unit cell the number of inclusions in the boundary
area must be 3 times the number of inclusions in the sample area. The size of the unit
cell may of course be chosen in a di�erent way, but the one presented here forms the
basic concept. For radius equal to 10 points the appropriate number of inclusions lies
between 100 - 300. Cracks may also be dispersed in the unit cell and similar zone of
inuence calculations can be performed in order to obtain the acceptable size of the unit
cell.
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4.2 Geometrical Characterization of Point Patterns

The characterization of microstructures may be performed by applying spatial statistics
in which the positions of inclusions and cracks are taken into account. But before the
methods of characterization are presented it is necessary to establish a few representative
classes of distributions. The choice of distribution classes must rest upon a quali�ed
subjective selection and in agreement with Pyrz [20] four classes of distributions are
chosen and are called: regular, hard{core, single cluster and triple cluster (�g. 4.4).

(a) (b)

(c) (d)

Figure 4.4: Distribution classes; (a) regular, (b) hard{core, (c) single cluster, (d) triple

cluster.

The distributions contain approximately 200 inclusions dispersed in the sample area
made of 512 � 512 points. The radius of the inclusions is 10 points and boundary
conditions are not subscribed in this particular case. The distributions represent four
distinct categories, to which some real microstructures may belong in the statistical sense.
Other inhomogeneities may also be represented by the distributions as long as they can
be described by a point pattern. The distributions represent in the following inclusions
described by their centre points. The regular distribution corresponds to the normally
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assumed dispersion of inclusions and is used as reference distribution when comparing
di�erent parameters for the material. The distribution is generated as a square array with
equal distance between inclusions in the vertical and horizontal directions. The inclusions
in the hard{core model are dispersed in such a way that the x and y coordinates are
chosen independently using a uniform, random distribution except that the inclusions are
not allowed to overlap. In the uniform, random distribution each point is equally likely
to be chosen. The single cluster distribution consists of a dense dispersion of inclusions
within an enclosed area (cluster). Inside the cluster the inclusions are dispersed using
the hard{core conditions. Outside the cluster the inclusions are sparsely dispersed using
the hard{core model. The triple cluster has three randomly dispersed clusters in which
inclusions are dispersed using the same procedure as for single cluster but contrary to
this no inclusions are generated outside the clusters and this introduces matrix rich areas.

Another interesting class of distribution is the Poisson distribution. In this distribution,
points are dispersed in such a way that each position is equally likely to be chosen
regardless of the �nite dimension of inclusions. The inter{point distances form a Poisson
distribution. This type of distribution has no physical interest when dealing with real
microstructures as the inter-point distances may be zero, but as a statistical distribution
it serves as a useful comparison.

Although the di�erent distributions may be characterized and separated visually, it is
also useful to apply statistical descriptors. The statistical descriptors can be various
functions depending on the geometrical arrangement of points. One parameter, which is
of interest, is the inter{inclusion distance and a characterization of this may be performed
by considering the nearest neighbour distance, second{order intensity function and pair

distribution function. These spatial descriptors have been applied in the description of
�brous composite materials by Pyrz [18], [19], [20] and [21] and the following analysis
serves as a presentation of the descriptors. They are applied in the characterization of the
distributions shown in �gure 4.4 and various properties of the descriptors are investigated
in order to verify their ability towards the distinction of point's patterns.

Nearest Neighbour

The nearest neighbour distance for an inclusions is determined by the distance to the
nearest inclusion measured by inclusion centres. Thus, the number of data for a dis-
tribution corresponds to the number of inclusions. For the four classes of patterns the
nearest neighbour distances are determined and the normalized cumulative distributions
of the data are shown in �gure 4.5a.

The cumulative distribution is normalized with respect to the total number of inclusions
and the various distributions are easily distinguished. The triple cluster distribution
has the steepest curve as the inclusions are densely dispersed leading to small nearest
neighbour distances. This also holds for the single cluster distribution. This is caused
by the hard{core distribution outside the cluster, in which the inclusions are sparsely
dispersed. For the regular distribution the nearest neighbour distance is deterministic
and only one distance can be detected. The statistical data are given in form of discrete
values and in order to obtain consistency in the description the cumulative data have
been curve{�tted with the following continuous function:

F (x) = 1� e�m(x�xmin)
n

(4.1)



Chapter 4. Quanti�cation of the Microstructure Morphology 55

20 2030 3040 4050 50
0.0

0.2

0.4

0.6

0.8

1.0

x x

F(x) f(x)

0.00

0.10

0.20

0.05

0.15

0.25

(a) (b)

Regular
Hard-core
Single cl.
Triple cl.

Regular
Hard-core
Single cl.
Triple cl.

[points] [points]

Figure 4.5: The nearest neighbour distances determined for the four classes of patterns

expressed as; (a) normalized cumulative distribution, (b) probability density

function.

where x is the nearest neighbour distance and xmin is the minimum nearest neighbour
distance detected. The parameters m and n are found by the method of least{square
curve{�tting. The function corresponds to the Weibull distribution function. By di�e-
rentiation of equation 4.1 with respect to x:

f(x) = mn(x� xmin)
n�1 e�m(x�xmin)

n

(4.2)

The function f(x) is the probability density function for nearest neighbour distances
(�g. 4.5b). Also, the probability density function is able to distinguish between di�erent
patterns. Here it is seen that the triple cluster distribution has the most frequently
nearest neighbour distance at x � 24 points. For the single cluster and hard{core
distribution the curves are atten out. Again only one distance is possible in the regular
distribution. Having the discrete data and an expression for the probability density, the
statistical moments may be calculated according to table 4.1.

The statistical moments can be used to describe various distributions of data and they
are calculated for the four distribution classes using both the continuous and the discrete
method (Tab. 4.2).

The statistical moments also provide information about the distributions and the four
classes may be distinguished. There is good agreement between the moments calculated
with the continuous and the discrete functions and as expected the mean value of nearest
neighbour distance for the triple cluster distribution is the lowest as inclusions are dis-
persed very close. Another conspicuous observation is that the variance of the single
cluster distribution is larger than for the other distributions. This is caused by the exis-
tence of both a dense distribution inside the cluster area leading to small inter{inclusion
distances and a dilute distribution outside the cluster area leading to large inter{inclusion
distances. For the point's patterns as presented here the determination of the nearest
neighbour distances serves as an informative descriptor.
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Table 4.1: Continuous and discrete functions for determining the statistical moments.

Parameter Continuous Discrete

Mean �

Z +1

�1
xf(x) dx

1

N

NX
j=1

xj

Variance �2
Z +1

�1
(x� �)2f(x) dx

1

N � 1

NX
j=1

(xj � �)2

Standard deviation �
p
�2

p
�2

Mean deviation �m

Z +1

�1
jx� �jf(x) dx 1

N � 1

NX
j=1

jxj � �j

Coe�cient of skewness �
1

�3

Z +1

�1
(x� �)3f(x) dx

1

N

NX
j=1

�
xj � �

�

�3

Table 4.2: Statistical moments for the four distribution types calculated using both con-

tinuous and discrete functions (the latter ones are shown in brackets), dis-

tances are measured in points.

Parameter Regular Hard{core Single cluster Triple cluster

� 36 29.2 (29.7) 28.3 (28.9) 26.3 (26.8)
�2 { 14.3 (14.3) 25.7 (26.4) 6.5 (6.1)
� { 3.8 (3.8) 5.1 (5.1) 2.6 (2.5)
�m { 3.0 (3.0) 3.8 (3.7) 2.0 (2.0)
� { 0.9 (0.9) 1.9 (1.9) 1.3 (1.0)

The second{order intensity function

Another function, which can be used to discriminate di�erent point patterns, is the
second{order intensity function, for which the theoretical derivation is presented in Rip-
ley [24]. The function is de�ned as the number of further points expected to lie within
a distance r of an arbitrary point divided by the number of point per unit area. The
second{order intensity function is written as:

K(r) =
A

N2

NX
k=1

Ik(r)

wk
(4.3)

where A is the sampling area, N is the total number of points in the sample, Ik(r) is the
number of points within a circle with centre at point k and radius r, wk is a correction
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factor, which is calculated as the proportion of the circumference contained within A

to the whole circumference with radius r. The correction factor is included if points
outside the sampling area are not taken into account in the calculation of K(r). The
second{order intensity function calculated for an in�nite Poisson distribution is exactly
�r2. For the four classes of distributions and the Poisson distribution the second{order
intensity function is calculated in order to make a comparison (�g. 4.6).
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Figure 4.6: Second{order intensity function calculated for the four classes of distributions

along with the Poisson distribution.

The second{order intensity function is only calculated for a radius range 0..100 points
and the correction factor is included for the four distributions as no inclusions have been
introduced at the boundary. In the radius range shown the hard{core distribution is very
close to the Poisson distribution as the only di�erence between them is the �nite size
of inclusions in the hard{core model. The shape of the second{order intensity function
for the regular distribution is formed as a "staircase" because only for deterministic dis-
tances of r in equation 4.3 additional inclusions are encountered. For the triple cluster
distribution the second{order intensity function lies above the Poisson distribution be-
cause of the close dispersion of inclusions. Thus, the function Ik(r) encounters relatively
more inclusions for small distances than the other distributions. The second{order in-
tensity function for the single cluster distribution lies between the triple cluster and the
hard{core distribution as it both consists of a dense and a dilute dispersion of inclusions.
To visualize the inuence of the correction factor the second{order intensity function is
calculated for the regular and hard{core distribution with and without the correction
factor (�g. 4.7).

The curves in �gure 4.7a, which lie above the Poisson distribution, correspond to the
second{order intensity function with correction factor and those below without correction
factor. With the correction factor the second{order intensity function goes to in�nitly as
the proportion of the circumference contained within A tends towards zero. Without the
correction factor the function approaches a constant value as additional inclusions for
large radial distance will not be encountered. In �gure 4.7b, where a part of the curve
has been enlarged, the second{order intensity functions with correction factor also lie
above those without. In the enlarged �gure the discrimination between di�erent classes
is much better. The slight declination of the "stairs" in the regular distribution is caused
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Figure 4.7: Second{order intensity function calculated for the regular and hard{core dis-

tributions; (a) for radius range 0::500 points , (b) for radius range 0::100
points.

by the correction factor and the curve without correction factor has straight horizontal
lines.

Pair distribution function

Pertaining the information of the second-order intensity function, a related function is
now introduced. This is the pair distribution function and it is related to the second{
order intensity function as:

g(r) =
1

2�r

dK(r)

dr
(4.4)

The function provides information about the intensity of inter{distances so that local
maxima indicate the most frequent distances and local minima the least frequent dis-
tances. The di�erentiation of the second{order intensity function must be performed
numerically as it is a so-called generalized function which is not analytically di�eren-
tiable. In the numerical di�erentiation the choice of step length is of vital importance
for the result. Therefore, the pair distribution function serves as a measure of the ten-
dency rather than an exact description. Using a step length of 5 points compared to the
512 � 512 points of the sample area the pair distribution function is calculated for the
four classes of distributions and the Poisson distribution (�g. 4.8).

As the second{order intensity function for a Poisson distribution is known analytically
as �r2, the pair distribution function may also be found analytically and this leads to
g(r) = 1. The pair distribution function for the hard{core distribution uctuates closely
around the Poisson distribution as it is a Poisson distribution with the exception that
inclusions have a �nite dimension. The regular distribution should consist of peaks rep-
resenting the deterministic dispersion of points, but due to the numerical di�erentiation
the peaks are broadened. Also because of the slight decline of the second{order inten-
sity function for the regular distribution it has non{zero values between the peaks. The
triple cluster distribution has higher intensity of inter{inclusion distances in the vicinity
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Figure 4.8: Pair distribution function calculated for the four classes of distributions along

with the Poisson distribution.

of r � 30 points than the single cluster distribution and this is caused by high clustering
of inclusions.

An interesting feature of the pair distribution function is that it can be used to detect the
range of local geometrical disorder, i.e. for which values of r the second{order intensity
function and the pair distribution function can be used to describe the disorder of the
dispersion of inclusions. As an example approximately 3000 inclusions are generated
using a hard{core and a cluster model. The latter model consists of 90 cluster areas
(�g. 4.9).

(a) (b)

Figure 4.9: Distributions with approximately 3000 inclusions; (a) hard{core, (b) 90 clus-

ters.

The second{order intensity function and the pair distribution function are only calculated
in the enclosed sample area and by that the correction factor for edge e�ect is avoided. As
stated before, this factor is not consistent for large distances, as the curve diverges from
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the real path. The second{order intensity function is calculated for short{range distances
0..0.2 assuming the sample area to be a unit square, and as previously mentioned the
patterns may be discriminated (�g. 4.10b).
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Figure 4.10: Second{order intensity function calculated for hard{core and cluster dis-

tributions; (a) long{range 0::0:7, (b) short{range 0::0:2.

The function is also calculated for long{range distances 0..0.7 and for this range the
patterns cannot be discriminated (�g. 4.10a). This is caused by the fact that the second{
order intensity function only takes into account the local disorder. To determine the
range of locality the pair distribution function is calculated. The function is calculated
for short{range distances and the two patterns exhibit di�erent behaviour due to the
various degree of clustering (�g. 4.11b).
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Figure 4.11: Pair distribution function calculated for hard{core and cluster distribu-

tions; (a) long{range 0::0:7, (b) short{range 0::0:2.

The local maximum at r � 0:03 for the cluster distribution corresponds to the aggregation
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of inclusions inside the clusters. The local minimum at r � 0:2, which lies below the
Poisson distribution, corresponds to relatively few large inter{inclusion distances. The
function is also calculated for long{range distances and the range of locality may be
determined on the basis of �gure 4.11a where the patterns cannot be discriminated for
r > 0:25. Thus for values of r larger than 0.25 the local disorder described by the
second{order intensity function and pair distribution function will be smeared out.
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Chapter

5

Local Stress Field Correlation with Fiber

Distribution

T
he microstructure variability inuences the response of a composite material and
therefore it is reasonable to include the constitution of the microstructure in analyses

of materials. Field quantities may be determined and correlated with the geometrical
aspects of the microstructure. Stress level distribution in the �bers and local stress
�eld around the �bers are �eld quantities which are of interest. Correlation between
the distribution of �bers and �eld quantities can indicate the sensitivity towards crack
nucleation.

The problem is very complex because it is possible to form an in�nite number of di�e-
rent types of �ber distributions and therefore it is necessary to select only a few types
of distributions in order to decompose the problem and reduce the number of analyses.
Distributions must represent particular types of microstructures as well as cover a wide
range of them. Also the distributions are sampled from a small area out of a whole mi-
crostructure and therefore it is important to investigate the inuence of various boundary
conditions.

The amount of interaction between the individual �bers varies as a consequence of non{
regular arrangements of �bers. Corresponding to the method presented in section 1.2
the stress �eld inside the �bers is assumed constant and the various interaction results in
di�erent stress levels in the �bers. Contrary to the varying stress levels in non{regular
arrangements of �bers the regular arrangements of �bers result in equal stress levels in
the �bers as the amount of interaction on each �ber is the same. The �ber arrangement
also a�ects the local stress �eld in the matrix material as �ber stresses are responsible
for the interaction. Therefore, it is an important parameter in the prediction of response
of a composite material.

It is reasonable to assume that cracks in a stressed material may be created in the vicinity
of the �bers as they introduce a large variation of the local stress �eld. Especially the
maximum values of the local stress �eld around the �bers may create both interface
and matrix cracking. Thus, it is interesting to calculate maxima of the local stress �eld
around each �ber and correlate this information with the geometrical properties of the
microstructure. Then it is possible to indicate a particular �ber arrangement's tendency

63
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to the creation of cracks. A preliminary investigation of this subject has been carried
out in Pyrz [20] where among other things the inuence of �ber arrangements has been
established using the marked correlation function. The function is able to detect the
correlation between the microstructure and quantities attached to the �bers.

In section 5.1 representative �ber distributions are chosen and various boundary condi-
tions are selected. The resulting stress �elds in the �bers are presented in section 5.2
and a correlation between geometrical parameters of the �ber distribution and the stress
�eld distribution is discussed. In section 5.3 the local stress �eld around the �bers is
determined and various arrangements of �bers seem to be more or less susceptible to
crack initiation. Finally in section 5.4 three real microstructures are analysed.

5.1 Selection of Fiber Distributions

The already mentioned four distribution types cover the normally assumed regular dis-
tribution, the almost total random distribution and various degrees of clustering, so
besides representing a few characteristic distributions they also cover the most common
microstructures. A more thorough description of the distribution types is given in sec-
tion 4.2. Both the e�ects of changing the boundary conditions and the volume fraction
are considered in the selection of �ber distributions.

The �bers are distributed within a unit cell as in �gure 4.3 which consists of a boundary
area and a sample area exposed to unidirectional loading. The total area is 1024� 1024
points, the sample area is 512 � 512 points and the �bers are distributed with radius
equal to 10 points. Variation of the boundary conditions and the volume fraction for the
di�erent types of �ber distributions include the generation of four models (Tab. 5.1).

Table 5.1: Distribution models for the di�erent types of �ber distributions.

Sample area Boundary area
Model Volume fraction No. �bers Volume fraction No. �bers

I 0.12 100 0.12 300
II 0.24 200 0.24 600
III 0.24 200 0.12 300
IV 0.24 200 0.24 600

The individual distributions are in the following referred to by the name of distribution
and model number, e.g. single cluster(III) corresponds to single cluster distribution gene-
rated using the concept in model III. The �ber distributions with high volume fraction in
the sample area (model II, III and IV) are similar to the distributions shown in �gure 4.4.
The �ber distributions with low volume fraction in the sample area (model I) are shown
in �gure 5.1 where also the �ber distribution in the boundary area has been applied.

For the regular distribution type with low volume fraction the spacing between �bers
(centre to centre distance) in both horizontal and vertical directions is 51 points and for
high volume fraction the spacing is 36 points. For low volume fraction the single cluster
distribution type has a circular cluster area with a radius of 135 points and contains 60 of
the 100 �bers. For high volume fraction the radius is 170 points and contains 100 of the
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(a) (b)

(c) (d)

Figure 5.1: The four types of �ber distributions with low volume fraction in the sample

area and the applied boundary conditions; (a) regular(I), (b) hard{core(I),

(c) single cluster(I), (d) triple cluster(I).

200 �bers. The triple cluster distribution type for low volume fraction is made of three
equally sized circular cluster areas with radius 100 points containing each a third of the
�bers. For high volume fraction the three cluster areas are of elliptic shape where two
of them have semi{minor and semi{major axes equal to 110 and 145 points respectively,
containing 60 �bers each. The third cluster has semi{minor and semi{major axis equal
to 95 and 225 points respectively, containing 80 �bers. For the hard{core distributions
with high and low volume fraction the �bers are generated with their centres within the
sample area.

Each of the distribution types is supplemented with boundary conditions and in order
to establish a uni�ed concept the �ber distributions generated using the selected model
have the same type of boundary condition. The �ber distributions generated using model
I and III are exposed to the same type of boundary conditions and they are given in form
of a low volume fraction hard{core distribution (�g. 5.2a). Correspondingly, the �ber
distributions generated using model II are exposed to a high volume fraction hard{core
distribution (�g. 5.2b).



66 5.1. Selection of Fiber Distributions

The boundary conditions are generated so that the �bers in the boundary area and
sample area do not intersect. The �ber distributions generated with model IV have all
periodic boundary conditions. In this case the boundary area depends on the actual
distribution in the sample area and the microstructure is characterized as a repetitious
unit cell (�g. 5.3).

Two of the most important parameters describing the geometry of the microstructure
are the nearest neighbour distance and the nearest neighbour orientation. As shown
in section 4.2 the nearest neighbour distance is able to detect the degree of clustering
through the statistical moments and therefore serves as a useful parameter. The e�ect of
the nearest neighbour orientation can be evaluated through the stress �eld distribution
in the �bers. Of course the stress �eld is a�ected by the inter{distances but also by
inter{orientations as seen from �gure 4.1 where di�erent angles between �bers lead to
various stress �elds for equal inter{distances. The calculations of the nearest neighbour
orientation are performed so that the direction perpendicular to the loading direction
corresponds to 0� and the direction parallel to the loading direction corresponds to 90� .
Furthermore, the angles are sampled in the following way:

� =

8>>><
>>>:

� if 0 � � < 90
180� � if 90 � � < 180
� � 180 if 180 � � < 270
360� � if 270 � � < 360

(5.1)

The mean value and the variance of the nearest neighbour distances and orientations
are for all the distributions sampled within the sample area but the boundary area may
interfere at the edge of the sample area (Tab. 5.2).

The mean values and variances of both nearest neighbour distances and orientations
di�er for model II, III and IV because of various boundary conditions although the
sample areas are identical. It may also be noted that the mean value and variance of
distances for the triple cluster distributions are relatively lower than for the others due
to the high degree of clustering. The mean values and variances of distance are higher for
model I than for the other models due to a lower volume fraction, which results in a more
sparsely distributions of �bers. The inter{orientations do not provide any information
regarding the degree of clustering but as seen later it will be very informative for stress
�eld distribution in the �bers. The mean values of nearest neighbour orientation are not
calculated for the regular distributions (model I, II and III) as these are deterministic
and are only inuenced by the various boundary conditions. For the perfectly regular
distribution (model IV) the mean value of orientation is exactly equal to both 0� and
90� due to the equal spacing between �bers.

For all types of distributions and models the same material parameters and remote
loading conditions are used. Thus the ratio between Young's moduli for the �ber and
matrix material is Ea=Em = 23, Poisson's ratio for the �ber material �a = 0:30 and
Poisson's ratio for the matrix material �m = 0:35. The material parameters correspond
to the glass/epoxy composite. The remote loading is equal to unity and plane strain is
assumed in the stress analysis.
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(a) (b)

Figure 5.2: Boundary areas generated with hard{core distribution; (a) low volume frac-

tion (model I and III), (b) high volume fraction (model II).

(a) (b)

(c) (d)

Figure 5.3: Fiber distributions with periodic boundary conditions; (a) regular(IV), (b)

hard{core(IV), (c) single cluster(IV), (d) triple cluster(IV).
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Table 5.2: Mean value and variance of nearest neighbour distances and orientations for

all distributions and models, distances are measured in points and orientations

in degrees.

Nearest neighbour distance Nearest neighbour orientation
Distribution type Mean Variance Mean Variance

regular(I) 48.8 28.1 - -
hard{core(I) 35.2 73.7 50.2 831
single cluster(I) 32.4 95.8 49.3 918
triple cluster(I) 27.0 8.3 49.7 1107

regular(II) 35.5 2.6 - -
hard{core(II) 29.3 12.6 43.3 894
single cluster(II) 28.5 18.7 41.2 1020
triple cluster(II) 26.8 6.0 47.2 1091

regular(III) 35.7 2.0 - -
hard{core(III) 29.0 16.0 47.4 1012
single cluster(III) 29.1 20.3 43.7 1020
triple cluster(III) 26.9 6.0 46.4 1093

regular(IV) 36.0 - 0/90 -
hard{core(IV) 28.6 13.5 46.5 986
single cluster(IV) 28.8 16.5 43.4 1018
triple cluster(IV) 26.9 6.1 46.4 1111

5.2 Fiber Stress Distribution

The stress �eld inside the �bers depends on the local interaction between �bers and the
method presented in section 1.2 accounts for this interaction. The interaction either
increases or decreases the stress �eld inside the �bers relative to the solution for one
�ber.

The stress �eld inside a �ber for varying inter{distances and inter{orientations between
two �bers is shown in �gure 4.1. The stress level for the inter{orientation angle � =
0� is approximately equal to the stress level in the case of only one �ber. Thus, the
interaction between two �bers aligned horizontally is relatively small. For � = 30� the
stress decreases and for � = 60; 90� it increases as compared to the single �ber solution.
Information about the local interaction is provided by the �gure but the possibility of
arranging �bers is numerous and therefore it is necessary to consider other con�gurations.
This is done by calculating the stress �eld for the various types of distribution. The stress
�eld inside the �bers is represented by the von Mises stress and in �gure 5.4 the stress
�eld is shown for distributions generated using model II.

It is obvious that the arrangement of �bers a�ects the stress �eld inside the �bers and
consequently it also a�ects the local stress �eld in the matrix. The regular distribution
of �bers shows only a small variation of the stress �eld as the �bers all are exposed
to the same amount of interaction. Only at the edge of the sample area a disturbance
is observed which is caused by the hard{core �ber distribution in the boundary area.
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Figure 5.4: Von Mises stress plot for the distribution classes, normalized with �1; (a)

regular(II), (b) hard{core(II), (c) single cluster(II), (d) triple cluster(II).

The other three distributions all show varying stress �elds in the �bers and for excessive
clustering of �bers a large variation of the stress level is detected. This may also be
shown by calculating the cumulative distribution function and the probability density
function of the stress �eld distribution inside the �bers (�g. 5.5).

The normalized cumulative and probability density functions are determined by a curve{
�tting procedure similar to the procedure described in section 4.2. Only stress �eld
data within the sample area are included in the calculations. The probability density
function for the regular distribution exhibits a peak{like shape corresponding to identical
interacting stresses. For the other three distributions the shape becomes more broaden
as the �bers become more clustered. Applying the probability density function for both
model I and II the mean value and variance of the von Mises stress distribution may be
calculated according to the statistical moments listed in section 4.2 (Tab. 5.3).

For the regular distribution the mean value of the von Mises stress increases considerably
when increasing the volume fraction. Looking into the problem, the nearest neighbour
orientation is located at 0� and 90� . From �gure 4.1 it is observed that if the �bers are
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Figure 5.5: Distribution of the von Mises stress calculated in the sample area of model

II; (a) normalized cumulative distribution, (b) probability density.

Table 5.3: Mean value and variance of the von Mises stress inside the �bers within the

sample area for the four distributions generated with model I and II, normal-

ized with �1.

Parameter Regular Hard{core Single Cluster Triple Cluster

Mean(I) 1.074 1.044 1.053 1.097
Variance(I) 0.0005 0.0097 0.0056 0.0111

Mean(II) 1.139 1.054 1.057 1.092
Variance(II) 0.0008 0.0083 0.0081 0.0119

Normalized von Mises stress for the single �ber: 1.035

aligned horizontally the interaction is moderate but if the �bers are aligned vertically the
interaction is very inuential. So for higher volume fraction in the regular distribution
where the inter{distances of the vertically aligned �bers become smaller the stress level
increases. Generally for the non{regular distributions the mean value of the von Mises
stress seems to increase when the distributions become more clustered (measured by mean
values of the nearest neighbour distances) both with respect to the type of distribution
and the volume fraction. An exception is the triple cluster distribution where the mean
value decreases for a higher volume fraction. The reason for this behaviour is that not
only the mean nearest neighbour distance a�ects the stress �eld distribution but also the
mean nearest neighbour orientation. Again the combined e�ect can be visualized from
�gure 4.1 where some angles lead to an increase and other angles lead to a decrease of the
stress �eld inside the �bers. For the range of mean nearest neighbour orientations listed
in table 5.2, which is approximately 40� {50�, the e�ect is enhanced for increasing angles
or reduced for decreasing angles. When lowering the angle the stress level decreases and
vice versa. From the nearest neighbour distances a lowering of the mean value leads
to an increase of the stress level. Combining the information of how nearest neighbour
distance and orientation a�ect the stress level, a rough estimate of the inuence of these
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parameters may be given by considering the correlation between the mean value of the
von Mises stress and the ratio between the mean value of the nearest neighbour distance
and the nearest neighbour orientation (�g. 5.6).
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Figure 5.6: Correlation between the mean value of the von Mises stress and the ratio

between the mean value of the nearest neighbour distance and the nearest

neighbour orientation.

The correlation only represents a tendency and several simulations need to be performed
in order to obtain consistent results. In the particular case of the triple cluster distribu-
tion the mean nearest neighbour distance is almost equal for both low and high volume
fraction but the mean nearest neighbour orientation is lower for the high volume fraction.
This results in a smaller ratio between mean nearest neighbour distance and orientation
for the high volume fraction than for the low volume fraction and thus also a small value
of the mean stress �eld.

It must be concluded that the stress �eld distribution is very much a�ected by the
nearest neighbour distance through the volume fraction and the degree of clustering but
an important parameter, which must also be taken into consideration, is the nearest
neighbour orientation.

5.3 Local Stress Field Around the Fibers

The non{regularity of the microstructure leads to a varying stress �eld distribution inside
the �bers. This varying stress �eld distribution adds even more variation to the stress
�eld in the matrix and some areas of the matrix may be exposed to higher stress levels
than other areas. These areas with higher stress levels are more sensitive towards the
creation of cracks, and thus the non{regularity of �ber distributions a�ects the damage
evolution.

It is informative to calculate maxima of the local stresses around each �ber as the stresses
are mainly responsible for the creation of radial and tangential cracks. Thus calculating
the stress �eld in a polar coordinate system with origin at the centre point of each �ber,
the radial stress component �r is related to the tangential or interface cracks and the
tangential stress component �� is related to radial or matrix cracks (�g. 5.7).
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The stress �eld is calculated in a small annular layer around each �ber and the sampling
consists of a registration of maximum values of the tangential and radial stress com-
ponents as well as the angles, at which these maxima are determined. The maximum
values of the tangential stress component for the four types of distributions generated
using model IV are shown in �gure 5.8.

The dots represent the centre of the �bers, the length of the segments indicates the
magnitude of the maximum value and the orientation of the segments shows the angle,
at which the maximum values are determined. Obviously the variation of maximum
values as well as the angles at which they occur are highly dependent on the distribution
of �bers. Thus some arrangements of �bers are more sensitive towards the creation
of cracks than others. In the regular distribution the maximum values only appear at
two distinct locations whereas the other distributions exhibit a larger variation. This
is a result of the interaction where the �bers in the regular distribution with periodic
boundary conditions are exposed to the same amount of interaction and consequently
the local stress �eld around the �bers only varies around the individual �ber. The
corresponding maximum values of the radial stress component are shown in �gure 5.9.

Also in this case the angles in regular distribution appear in two distinct angles and a
larger variation exists for other distributions. However, the variation of the angles is
not as pronounced as for the maximum tangential stress component and as seen later in
this section this is caused by larger variation of the local stress �eld of the radial stress
component.

The cumulative distribution function of maximum values is approximated by the function
in equation 4.1 and the corresponding probability density function is found by di�eren-
tiation of cumulative function. The probability density function of both the tangential
and radial stress component for the four distributions generated by model II is shown in
�gure 5.10.

The maximum values are only determined for �bers within the sample area but are
of course exposed to interaction from the �bers in the boundary area. The regular
distribution forms a probability density function consisting of a peak{like value whereas
the other distributions have more broaden shapes. The shape becomes even more broaden
for increased clustering of �bers due to the large variation of the maximum values. The
mean value of the maximum tangential stress component for the regular distribution is
lower than for the other distributions. Conversely, the mean value of the radial stress
component is higher than the other distributions. This provides some information as to
which type of distribution is most sensitive to the nucleation of cracks. The mean value
and variance of the maximum values of both tangential and radial stresses are shown in
table 5.4.

The mean values of the tangential stress component for the all regular distributions are
considerably lower than for the other distributions. For the other distributions the triple
cluster distributions have the highest mean value. The mean value of radial stress com-
ponent for the triple cluster is also higher than for the other distributions. However, the
regular distributions exhibit higher susceptible to interface cracking than the hardcore
and single cluster distributions for model II, III and IV (high volume fraction). Thus
it may be concluded that matrix cracks are most likely to occur in non{regular distri-
butions and interface cracks are most likely to occur in the high{clustered distributions
followed by the regular distribution. The boundary conditions have some inuence on
the determination of maximum values, as the analysis of model II, III and IV reveals.
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Figure 5.8: Distribution of the maximum tangential stress component for the four distri-

butions, normalized with �1; (a) regular(IV), (b) hard{core(IV), (c) single

cluster(IV), (d) triple cluster(IV).
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Figure 5.9: Distribution of the maximum radial stress component for the four distri-

butions, normalized with �1; (a) regular(IV), (b) hard{core(IV), (c) single

cluster(IV), (d) triple cluster(IV).
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Table 5.4: Mean value and variance of maximum values calculated around �bers within

the sample area for all distributions, normalized with �1.

Tangential stress Radial stress
Distribution type Mean Variance Mean Variance

regular(I) 0.47 0.0003 1.58 0.0017
hard{core(I) 0.57 0.0101 1.60 0.0523
single cluster(I) 0.58 0.0131 1.65 0.0502
triple cluster(I) 0.61 0.0162 1.73 0.0684

regular(II) 0.43 0.0016 1.72 0.0015
hard{core(II) 0.59 0.0098 1.62 0.0467
single cluster(II) 0.60 0.0136 1.64 0.0552
triple cluster(II) 0.64 0.0138 1.74 0.0676

regular(III) 0.42 0.0010 1.73 0.0017
hard{core(III) 0.62 0.0205 1.69 0.0764
single cluster(III) 0.59 0.0114 1.65 0.0481
triple cluster(III) 0.63 0.0142 1.74 0.0675

regular(IV) 0.41 0.0001 1.70 0.0003
hard{core(IV) 0.63 0.0182 1.66 0.0698
single cluster(IV) 0.61 0.0143 1.64 0.0503
triple cluster(IV) 0.66 0.0202 1.75 0.0762

The angles at which the maximum stress components occur are also inuenced by the
non{regularity of the microstructure. Figure 5.11 shows histograms for angles where
maximum tangential stress component occurs. The histograms are presented for regular
and triple cluster distributions generated by model IV.

For the regular distribution the angles are concentrated around two distinct angles
� = 0�; 180� whereas the angles for the triple cluster distribution have much larger varia-
tion. The corresponding angles for the radial stress component are shown in �gure 5.12.
The angles in the regular distribution are concentrated around two distinct angles � =
90�; 270� and this is also the case for the triple cluster distribution with a slightly larger
variation. The reason why the maximum values are concentrated around distinct an-
gles can be visualized by considering the local stress �eld around one �ber where the
interaction from the other �bers is omitted (�g. 5.13).

Maximum values occur at two distinct angles leading to eventual nucleation of cracks
in these positions. The variation of the tangential stress component is not large and
it may easily diverge from the distinct angles due to interaction. On the contrary, a
strong interaction is needed to make the maximum radial stress component diverge from
the distinct angles. This is also seen by comparing the angles from the triple cluster
distribution where a large variation of angles exists for the maximum tangential stress.
In order to characterize this behaviour, the average deviation of angles is calculated as:

�avgd =
1

N

NX
i=1

j(�i � �one)j (5.2)

where �i is the angle at which maximum values occur, �one are the corresponding values
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Figure 5.11: Distribution of registered angles of maximum tangential stress; (a) regu-

lar(IV), (b) triple cluster(IV).
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Figure 5.12: Distribution of registered angles of maximum radial stress; (a) regular(IV),

(b) triple cluster(IV).
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for one �ber and N is the total number of �bers. The average deviation angles of the
tangential and radial stress components for the four distributions are listed in table 5.5.

Table 5.5: Average deviation of angles of the maximum tangential and radial stress com-

ponents, angles in degrees.

Distribution Model I Model II Model III Model IV

Tangential:
regular 2.1 4.9 5.3 0.00
hard{core 21.6 31.7 36.5 36.6
single cluster 28.0 36.3 33.6 36.9
triple cluster 45.0 43.6 42.7 48.9

Radial:
regular 0.10 0.08 0.05 0.00
hard{core 2.35 4.18 3.58 3.75
single cluster 3.30 4.25 4.13 4.16
triple cluster 3.80 5.42 5.28 5.10

The average deviation of angles is a�ected by the type of distribution and the triple
cluster distribution is seen to be the most inuencial. Also the volume fraction a�ects
average deviation angles and it diverges more from the distinct values for �ber distri-
butions with high volume fraction than for �ber distributions with low volume fraction.
It may be concluded that the more clustered a microstructure becomes, the higher the
average deviation angle becomes. The damage evolution in a composite material is then
very much dependent on the arrangement of �bers both with respect to when (variation
of maximum values) and where (variation of angles) the cracks nucleate.

5.4 Analysis of Real Microstructures

Three microstructures sampled from real materials are analysed in the following. The
microstructures are extracted from three specimens made of the same material (Glass/-
Epoxy) but exposed to various manufacturing processes. Thus according to Pyrz [21]
specimen 1 is made with no pressure and specimen 2 and 3 are made with half and full
pressure, respectively. The material properties correspond to those used in simulated
microstructures. The real microstructures are divided into a sample area and a boundary
area (�g. 5.14).

Radius of �bers is 7 points, the sample area is 512 � 512 points and the total area is
768� 768 points. The number of �bers and the volume fraction in the sample area and
boundary area are shown in table 5.6.

The volume fraction of �bers grows when the applied pressure is increased and the
distribution of �bers changes. In order to discriminate the microstructures the second{
order intensity function is calculated for the three distributions. The curve, which lies
above the other curves corresponds to the microstructure from specimen 1, which is the
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Figure 5.14: The three real microstructures; (a) no pressure, (b) half pressure, (c) full

pressure, (d) second{order intensity functions.

Table 5.6: Volume fraction and number of �bers for the microstructures of three real

materials.

Sample area Boundary area
Specimen Volume fraction No. �bers Volume fraction No. �bers

1 0.20 333 0.21 454
2 0.21 351 0.19 408
3 0.24 415 0.25 533

most aggregated (�g. 5.14d). For specimen 2 and 3 the function is not able to make any
considerable distinction. The microstructures from specimen 1 and 2 seem to consist of
matrix rich areas and areas with a dense distribution of �bers. The microstructure from
specimen 3 is more or less similar to the hard{core distribution with a slight tendency
to clustering. The nearest neighbour distances and orientations were calculated for the
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real microstructures and the results are shown in table 5.7.

Table 5.7: Mean value and variance of nearest neighbour distances and orientations for

the real microstructures, distances are measured in points and orientations in

degrees.

Nearest neighbour distance Nearest neighbour orientation
Specimen Mean Variance Mean Variance

1 20.5 12.5 48.6 683
2 20.1 7.6 38.8 693
3 19.4 5.4 41.2 705

The mean value of the nearest neighbour distances for the three distributions is compa-
rable although the volume fraction is di�erent and both specimen 1 and 2 are more clus-
tered than specimen 3. The more dense distribution of �bers in specimen 3 is indicated
by a lower variance. As for the simulated microstructures the stress �eld distribution
in the �bers as well as the maximum tangential and radial stress components and the
corresponding angles were calculated (Tab. 5.8).

Table 5.8: Di�erent parameters calculated for the three real microstructures, stresses are

normalized with �1 and angles are in degrees.

Parameter Specimen 1 Specimen 2 Specimen 3

Fiber stress:
mean 1.030 1.033 1.025
variance 0.010 0.012 0.011

Max. tangential stress:
mean 0.64 0.62 0.659
variance 0.021 0.022 0.026

Max. radial stress:
mean 1.61 1.59 1.59
variance 0.050 0.048 0.053

Avg. dev. angle:
tangential 26.1 25.2 29.0
radial 4.59 3.86 4.16

For the microstructure with high volume fraction the mean value of the stress �eld dis-
tribution is smaller than the other two. In the same manner as the results for simulated
microstructures are found, the correlation between nearest neighbour distances and ori-
entations and stress �eld distribution may be performed. Comparing the results from
material 1 and 3 it is obvious that a correlation exists. They have approximately the
same mean value of distances and material 3 has smaller mean value of orientations re-
sulting in a lower mean stress level. This is not so obvious when comparing material 2
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with the other materials. Although the simple calculation of nearest neighbour distances
and orientations does not provide a full quanti�cation of these real microstructures it
still serves as an informative parameter. The calculation of maximum tangential and
radial stresses shows no particular dissimilarity between the three real materials.
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6

Fiber Distributions' Inuence on Crack

Parameters

F
ibrous composite materials start to deteriorate in form of microcracks in the matrix
material, debonding between the matrix material and the �bers etc. when load is

applied. The geometry of the microstructure is responsible for the formation of failures
because the fracture phenomena are highly localized. As the variety of damage mecha-
nism is large, a complete solution of the problem is very di�cult to obtain so in order
to understand the problem some of the damage mechanisms need to be investigated
separately.

The determination of the stress intensity factors for cracks situated among multiple �bers
depends on the relative inter{position between �bers and cracks. In particular the nearest
�bers and cracks have the strongest inuence, referred to as short{range interaction.
Fibers and other cracks not near to the crack are not very inuential referred to as
long{range interaction. The localization of the problem makes it di�cult to perform any
statistical analysis of randomly dispersed �bers and cracks e�ect on the stress intensity
factors. Thus it is not reasonable to set up guidelines, which are able to predict the stress
intensity factors for a crack situated among a randomly chosen distribution of �bers and
microcracks if they do not take into account the relative position of the entities.

In order to explain the interaction e�ect some elementary problems are considered. They
provide information as to how particular arrangement of �bers leads to toughening of the
material and other arrangements tend to soften the material. The zone of inuence may
be estimated by setting up simple models and by doing that the limit for short{range
and long{range interaction may be determined.

In some particular con�gurations of �bers and cracks it is possible to correlate the stress
intensity factors with di�erent �ber distributions using only geometrical descriptors. Due
to the localization of the phenomena the �bers, which are closest to the crack, have the
largest e�ect and must therefore also be accounted for. A function, which is able to attach
the stress intensity factor to a particular arrangement of �bers, may be established.

In section 6.1 various scenarios of crack{�ber con�gurations are considered and used
to obtain information on how the stress intensity factors change due to the interaction
e�ect. In section 6.2 the �ber distribution's inuence on the stress intensity factor is

81
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quanti�ed by applying a function, which accounts for the pattern arrangement. Finally
in section 6.3 the correlation between the geometrical arrangement of �bers and the stress
�eld inside the �bers is analysed.

6.1 Stress Intensity Factors for Various Fiber{Crack Con-

�gurations

The exact position of a crack relative to the position of �bers is decisive for the determi-
nation of stress intensity factors because of the stress �eld introduced by the existence of
the �bers. Therefore it is of interest to examine various �ber{crack con�gurations. Some
con�gurations may lead to shielding and some to enhancement of the fracture toughness,
i.e. decrease or increase of the stress intensity factors. The following analysis is devoted
to various scenarios consisting of elementary �ber{crack con�gurations.

Scenario 1

In the �rst scenario the e�ect of three particular alignments of �bers is investigated and
the zone of inuence for �bers interacting with a crack is estimated. The con�gurations
are shown in �gure 6.1.
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Figure 6.1: Stress intensity factors for the three �ber{crack con�gurations; horizontal,

diagonal(45�), vertical.

The analysis is performed in such way that the initial con�guration consists of two shaded
�bers. For this con�guration the mode I stress intensity factor is calculated. Due to the
symmetrical arrangement of �bers the mode II stress intensity factor is zero. For each
of the three analyses a pair of �bers is successively added in horizontal, diagonal or
vertical direction, respectively. The ratio between the radius of �bers and the crack
length is R=c = 2. Both the horizontal and vertical distances between the centre of
the crack and the centre of the shaded �bers are 3R. The other �bers are positioned
in the horizontal, diagonal and vertical direction by adding to the coordinates of the
shaded �bers (i3R; 0), (i3R; i3R) and (0; i3R), respectively. The stress intensity factors
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are calculated for successively added pair of �bers and i represents the number of added
pairs, i.e. i = 0 corresponds to the con�guration consisting of the two initial �bers.

When adding �bers in the horizontal and diagonal direction the stress intensity factor
decreases and tends to a constant value after addition of more than 10 �bers. The
stress intensity factor becomes higher than 1 when adding �bers in the vertical direction.
The asymptotic value of the curve must be found for a larger number of �bers than
the one shown in the �gure. Thus the various positions of �bers inuence the stress
intensity factor and some con�gurations are seen to toughen the material while other
con�gurations make the material more vulnerable to crack propagation. The zone of
inuence is larger in the loading direction than in the other directions.

Scenario 2

In the second scenario an asymmetric con�guration is analysed and it consists of a crack
situated between two small clusters of �bers at various positions (�g. 6.2).
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Figure 6.2: Stress intensity factors for an asymmetric �ber{crack con�guration.

The crack is moved in the vertical direction leading to an asymmetric �ber{crack inter-
action. The ratio between the radius of �bers and the crack length is R=c = 2. For y = 0
the horizontal and vertical distances between the centre of the crack and the centre of the
two nearest �bers are 3:5R and 3R, respectively. The horizontal and vertical distances
between the centre of the nearest �bers and the centre of the other �bers are 1:3R and
2:2R, respectively. The mode I and II stress intensity factors are calculated at each posi-
tion of the crack. For y = 0, which corresponds to the symmetrical case, the mode I stress
intensity factor has its maximum and decreases for y 6= 0. This decrease is explained by
the strong inuence from the nearest �ber, which lowers the stress intensity factor at this
particular position and thus increases the fracture toughness. In the symmetrical case
the mode II stress intensity factor is equal to zero. In the asymmetric con�gurations for
y 6= 0 the mode II stress intensity factor becomes non{zero. A consequence of non{zero
mode II stress intensity factor is that the crack branches o� if it was to extend. Thus,
the asymmetric con�guration will contribute to an irregular crack path.
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Scenario 3

In the third scenario the shielding/enhancement phenomenon is investigated and the
con�guration consists of a crack which is situated near three clusters of �bers (�g. 6.3).
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Figure 6.3: Stress intensity factors for a shielding/enhancement �ber{crack con�gura-

tion.

The two outer clusters are moved in the horizontal direction in order to obtain an en-
hancement e�ect. The ratio between the radius of �bers and the crack length is c=R = 3.
The horizontal and vertical distances between the crack centre and the nearest �ber in
the middle cluster are 7:3R and 0, respectively. The corresponding distances for the outer
clusters for x = 0 are 6:5R and 4R, respectively. The inter{�ber centre distances in the
middle cluster are 2:2R and 1:3R in the horizontal and vertical direction. The opposite
distances apply for the outer clusters. The mode I stress intensity factor is calculated
for each step of x. The shielding occurs for x < 1:2R whereas the fracture toughness is
enhanced for 1:2R < x < 8:6R. As expected, the position of the clusters may lead to
both increase and decrease of the stress intensity factor due the stress �eld introduced
by the �bers. Thus roughly speaking, �bers, which are situated above or below a crack,
lead to an increase of the stress intensity factor whereas �bers situated beside the crack
lead a decrease of the stress intensity factor.

Scenario 4

In the fourth scenario another shielding/enhancement phenomenon is investigated and
the con�guration consists of a crack, which is situated near two �bers (�g. 6.4).

The �bers are moved along the arc of a circle, which has its centre at the crack tip. The
ratio between the radius of �bers and the crack length is c=R = 4. The distance between
the crack tip and the centre of the �bers is 3:3R. The mode I stress intensity factor is
calculated for various �ber positions along this circular path represented by the angle
�. The �bers lead to an enhancement of the fracture toughness for 62� < � < 118� and
shielding for all other angles.
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Figure 6.4: Stress intensity factors for a shielding/enhancement �ber{crack con�gura-

tion.

Scenario 5

In the �fth scenario two similar con�gurations are considered and the �rst con�guration
consists of a crack located in front of a cluster containing 26 �bers (�g. 6.5).
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Figure 6.5: Stress intensity factors for the con�guration where a cluster is located in

front of a crack.

The ratio between the length of the crack and the radius of �bers c=R = 2 and the cluster
is of circular shape with radius equal to 82.5 points. The crack is moved away from the
cluster in the horizontal direction and in the initial position the distance between the
centre of the cluster and the centre of the crack is 125 points. For this particular type
of con�guration three di�erent distributions of �bers are generated within the cluster in
order to determine the inuence of various arrangements of �bers. During the movement
of the crack the stress intensity factor is determined and in the initial position the stress
intensity factor is inuenced by the exact arrangement of �bers. For larger distances
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between the cluster and the crack the e�ect of the exact position of �bers seems to be
smeared out as there is no di�erence between the results for the three �bers distributions.
Thus, for this particular con�guration the stress intensity factor is independent of the
exact distribution of �bers for x > 200 points. The second con�guration consists of a
cluster of 26 �bers located below a crack (�g. 6.6).
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Figure 6.6: Stress intensity factors for the con�guration where a cluster is located below

a crack.

The similar e�ect is seen for this con�guration, but now the stress intensity factor is not
inuenced by the exact position of �bers for y > 400 points.

The �ve scenarios do not provide a full description of the �ber{crack interaction but
serve more as a illustration of the problem. The results indicate how some �ber{crack
con�gurations lead to an increase of the fracture toughness and other con�gurations to
a decrease of the fracture toughness. Also, some information about the zone of inuence
may be derived from the analyses.

6.2 Fiber Distributions' E�ect on a Neighbouring Macro-

crack

As presented in the previous section the relative position between �bers and cracks is
crucial for the determination of the stress intensity factors. How the stress intensity
factor changes depending on the relative position may be visualized by considering the
stress �eld around a single �ber (�g. 6.7).

In the �gure the �ber is represented by the shaded area and the radius of the �ber is
10 points. Contour lines are used to visualize the stress �eld, which is only calculated
in the matrix material. The stress �eld at the position of a crack is responsible for the
determination of stress intensity factor. Roughly speaking, if a crack or more precise the
crack tip is situated along the stress line for which �y=�1 = 1, the normalized stress
intensity factor equals one. Thus, in this case the existence of a �ber does not seem to
a�ect the fracture toughness of the material. If a crack is situated in the area where
�y=�1 < 1, the stress intensity factor is lower than one and thereby the material is
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Figure 6.7: Stress �eld around a �ber represented by constant stress lines.

toughened due to the �ber. On the contrary, if �y=�1 > 1 the material is soften because
the stress intensity factor is higher than one. Of course the length of the crack enters the
determination of stress intensity factors as an integration is performed over the whole
length (chap. 2) but as a guideline the stress �eld consideration is very useful.

The information of the stress �eld is only valid for one �ber in an in�nite medium but
may be used to derive a quanti�er which is able to correlate the stress intensity factor for
a crack situated in the vicinity of various �ber distributions with the spatial dispersion of
�bers. This quanti�er must take into account both distance and orientation between the
�bers and the crack tip as these two parameters seem to be predominant. The following
expression may be used as a quanti�er:

Q(r) =
q
I(r)

I(r)X
k=1

1

r2k
sgn(�0 � j�kj)

q
j�0 � j�kjj (6.1)

The function Q(r) is called the direct correlation function where I(r) is the number of
�bers within a circle de�ned by radius r and centre at the crack tip (�g. 6.8).

θ
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k
r

y

x

Figure 6.8: Geometry used to calculate the quanti�er.
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rk is the radial distance from the crack tip to the k'th �ber. �k is the angle between the
crack line and the k'th �ber. �0 is the angle between the crack line and a �ber for which
the stress intensity factor is una�ected. According to �gure 6.7 �0 is approximately equal
to 50� measured between the x{axis and the lower left stress line where �y=�1 = 1. The
�y stress �eld is symmetrical both in horizontal and vertical direction.

The quanti�er corresponds to the second{order intensity function and it may be used to
separate di�erent �ber distribution's e�ect on the stress intensity factors. Thus contrary
to the second{order intensity function, which only takes into account the relative position
of �bers, the Q(r) function is related to a particular parameter, in this case the stress
intensity factor. The function includes the parameter �0 indicating the stress line where
�y=�1 equals one. The stress line is based on the knowledge from the single �ber solution
and if other �bers are present the stress line changes due to the interacting stresses. To
include the interacting stresses, parameters which account for the inter{�ber interaction
may be introduced in the Q(r) function.

The signi�cance of the direct correlation function is illustrated by a crack situated in the
vicinity of di�erent �ber distributions. Three categories of distributions are considered;
hard{core, single cluster and triple cluster. The distributions, which include 50 �bers of
radius 10 points, are generated within a sample area of 300� 300 points where the total
area is 400� 400 points. This corresponds to a volume fraction of �bers equal to 17.5%.
The crack is positioned at coordinates (0,200) points with total crack length 2c = 60
points and no �bers are generated in the boundary area. The various distributions are
generated inside the sample area and the stress intensity factors are calculated using
the same material properties as in chapter 5. Three distributions from each category
are shown in the following and for each distribution the direct correlation function is
determined.

Hard{core

Three hard{core distributions are generated using the concept from chapter 4 where the
�bers are dispersed randomly with the condition that �bers do not overlap (�g. 6.9).

The direct correlation function is able to di�erentiate between the three �ber distri-
butions and the related stress intensity factors. Thus, the direct correlation function
increases for an increased fracture toughness and vice versa. On a large scale the three
distributions seem to be similar but observing the local areas near the crack tip a dis-
similarity is detected. It is in these areas that the distribution of �bers has the largest
inuence corresponding to the short{range interaction. This is also accounted for in
the direct correlation function by the factor 1=r2k and the sgn function. In the distri-
bution shown in �gure 6.9a �bers are located closer to the crack tip than in the other
distributions. This particular location results in a lowering of the stress intensity factor.

Single Cluster

In the generation of single cluster distribution the centre point of the cluster is �xed and
�bers are dispersed using the hard{core model both inside and outside the cluster. The
centre points of the clusters in the three single cluster distributions are randomly chosen
(�g. 6.10).
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Figure 6.9: (a)-(c) Various distribution of the hard{core models, (d) direct correlation

function.

The cluster is of elliptic shape where minor and major axes are equal to 175 and 200
points respectively and the number of �bers contained within the cluster is 30. In this
case the direct correlation function is also able to di�erentiate between the three �ber
distributions. The distribution in �gure 6.10a has �bers very close to the crack tip and
in positions, which increase the fracture toughness. As opposed to this the distribution
in �gure 6.10c has the closest �bers located at positions which results in an increase of
the stress intensity factor.

Triple Cluster

The centre points for the clusters in the triple cluster distribution are also randomly cho-
sen but with the condition that the cluster areas are not allowed to overlap. The clusters
each contain a third of the �bers and again three various distributions are generated
(�g. 6.10).

The clusters are of elliptic shape where minor and major axes are equal to 130 and 145
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Figure 6.10: (a)-(c) Various distribution of the single cluster models, (d) direct corre-

lation function.

points, respectively. As in the previous examples a distinction can be made between
the di�erent �ber distributions. For all presented examples it is the short{range interac-
tion, which is decisive for the determination of stress intensity factors. The long{range
interaction has only limited inuence on the stress intensity factors.

6.3 Correlation Between Fiber Arrangements and Fiber

Stresses

The geometrical arrangement of the presented microstructures are correlated with the
von Mises stress inside �bers. The �ber distributions are described in form of the nearest
neighbour distances and orientations (Tab. 6.1).

As expected the nearest neighbour distance indicates the degree of clustering and the
correlation between the �ber arrangement and the stress �eld inside the �bers must take
into account both distance and orientation. Similar to the results shown in �gure 5.6, the
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Figure 6.11: (a)-(c) Various distribution of the triple cluster models, (d) direct correla-

tion function.
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Table 6.1: Mean value and variance of nearest neighbour distances and orientations and

the mean value of von Mises stress inside the �bers, distances are measured

in points, orientations in degrees and stresses are normalized with �1.

N.n. distance N.n. orientation Von Mises stress
Distribution type Mean Variance Mean Variance Mean Variance

hard{core(a) 33.4 47.1 45.2 823 1.046 0.0049
hard{core(b) 33.1 32.7 36.6 767 1.047 0.0043
hard{core(c) 31.5 59.1 46.4 898 1.060 0.0091

single cluster(a) 30.7 57.2 50.6 928 1.076 0.0137
single cluster(b) 32.2 74.4 45.7 957 1.056 0.0070
single cluster(c) 33.1 103.1 44.2 931 1.041 0.0066

triple cluster(a) 27.8 6.5 39.7 1098 1.070 0.0144
triple cluster(b) 28.4 15.8 53.1 1078 1.100 0.0127
triple cluster(c) 26.8 7.1 54.3 1148 1.120 0.0170

relation between the von Mises stress and the ratio between the mean nearest neighbour
distance and orientation is calculated (�g. 6.12).
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Figure 6.12: Correlation between the mean value of the von Mises stress and the ratio

between the mean value of the nearest neighbour distance and the nearest

neighbour orientation for the distributions presented in this chapter and in

chapter 5.

The tendency is also clear in this case and the results correspond very well to the results
from the previous chapter.



Chapter

7

Microstructural Inuence on Fracture

Toughness

A
s mentioned in the previous chapter some arrangements of �bers may change the
stress intensity factor of a neighbouring macrocrack. In the following a similar

investigation is performed in order to analyse the e�ect of microcracks initiating at the
interface between �bers and the matrix.

The con�guration, which is considered here, consists of a macrocrack located in the
vicinity of a �ber distribution. The pattern of �bers itself may change the fracture
toughness of the macrocrack, but how the fracture toughness is a�ected if microcracks
initiate at the interface is also of interest. The initiation of microcracks at the interface is
usually caused by a weaker strength of the interface as compared to the matrix material.
The variation of the stress �eld around the �bers has decisive inuence on microcracks'
initiation sites and their subsequent development (sec. 5.3). Thus, the degradation of the
material happens gradually and in order to perform the analysis, the load range applied
must go from the load level, for which no microcracks are initiated, to the load level, for
which microcracks appear at all interfaces. Various �ber distributions need to enter the
analysis as the exact arrangement a�ects both the fracture toughness and the nucleation
of microcracks. Two types of microcracking are considered; one type which considers
the initiation of interface (tangential) cracks and another type which considers matrix
(radial) cracks. Both types of damage mechanisms are applied to various con�gurations
of �bers and macrocracks and an estimate of the fracture toughness may be given for the
particular con�gurations by determining the stress intensity factor of the macrocrack as
the material deterioates during the load increase.

The problem of estimating the fracture toughness for an array of microcracks in the
neighbourhood of a macrocrack was investigated by Kachanov et al. [10]. They con-
cluded that the exact positions of microcracks are crucial for the determination of stress
intensity factors and various con�gurations may either increase or decrease the fracture
toughness. Pijaudier-Cabot and Ba�zant [17] considered the fracture toughness for various
con�gurations of a crack situated among multiple inclusions. Hu et al. [8] estimated the
shielding/enhancement e�ect on various con�gurations of cracks situated among multiple
voids.

In section 7.1 a procedure, which determines the initiation of cracks is presented. It

93



94 7.1. Crack Nucleation Procedure

involves additional interaction terms in the stress �eld analysis, which arises both from
the macrocrack and the initiated microcracks. In section 7.2 and 7.3 the procedure is
applied for interface and matrix cracks, respectively. Various distributions are analysed
in order to indicate the tendency of how the arrangements of �bers a�ect the fracture
toughness.

7.1 Crack Nucleation Procedure

The con�guration consists of a macrocrack located in the vicinity of a dispersion of
�bers, which have initially perfectly bonded interfaces. As the applied load is increased,
the stress �eld at the interface reaches a critical value, which leads to the nucleation of
cracks. When and where the cracks appear at the interface depends on the local stress
�eld around the �bers, which again is inuenced by the dispersion of �bers and cracks.
It is assumed that cracks initiates at positions where maximum stress occurs and, as in
section 5.3, the tangential stress component leads to matrix cracks and the radial stress
component leads to interface cracks. Only one crack is assumed to initiate at each �ber
and as the initiation of cracks does not occur at the same load level, the load is increased
until cracks appear at all interfaces. During the load increase microcracks initiate at
the interface and it is assumed that the strength of the interface is weaker than the
strength of the matrix so that microcracks initiate rather than the macrocrack extends.
For every load step the stress intensity factor for the macrocrack is calculated and it
is determined whether the fracture toughness is increased or decreased. According to
the method from section 1.2 the stress �eld determination is based on the interaction
from the �bers but both the macrocrack and the microcracks, which initiate during the
load increase, interact with the local stress �eld. Therefore it is necessary to include
additional terms in the stress �eld analysis.

Before the local stress �eld in the matrix is determined the stress �eld in the �bers are
calculated according to the iterative procedure (Tab. 1.3). Then for each load step the
pressure distribution on both the macrocrack and the microcracks is determined using
the theory from section 2.3. The local stress �eld �D at the arbitrary matrix position D
is then determined as:

�D = �1 +
N1X
i=1

�iD +�cDh~pci+
N2X
i=1

�iDh~pii (7.1)

where �iD is the stress �eld at the point D due to unbalanced tractions at the i'th
�ber. The average pressure distributions h~pci and h~pii act at the macrocrack and the
i'th microcrack, respectively. The transmission factors �cD and �iD represent the stress
�eld at the point D due to unit pressure distributions at the macrocrack and the i'th
microcrack. N1 is the total number of �bers and N2 is the number of microcracks
initiated at a given load level. In the initial con�guration where no microcracks exist,
i.e. N2 = 0, the local stress �eld is calculated around the �bers. Maximum value of the
stress component of interest is determined as well as the angle at which the maximum
value occurs. Whether the microcracks initiate or not depends on the critical value of the
stress �eld. The critical value may be related to the strength of the interface and if the
stress component exceeds the critical value a microcrack initiates. As it is not reasonable
to assume that the strength of the interface in the tangential and radial direction is equal,
two critical values are needed. The crack length of the initiated microcrack is determined
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as a function of the local maximum stress �eld:

�cr = Armax(�r)

�c� = A�max(��) (7.2)

where Ar and A� are constants. Microcracks only appear in some of the interfaces and
therefore the load is increased. The stress �eld in the �bers is recalculated and the
pressure distributions on both the macrocrack and the new microcracks are determined.
In the calculation of the local stress �eld the interaction from the new microcracks is
included. The iterative procedure is summarized in table 7.1.

Table 7.1: The iterative procedure for initiation of interface cracks.

initial state Perfect bounding in interfaces

Determine stress �eld inside �bers

Determine pressure distribution on the macrocrack

The stress intensity factor is calculated of the macrocrack

Determine local stress �eld around �bers (incl. interaction from the macrocrack)

Sampling of max(�) and �max around all �bers

iterations

{ If max(�) > �critical ) crack initiation

{ A crack is introduced at �max with length a = a(max(�))

{ The load is increased

{ Determine stress �eld inside �bers

{ Determine pressure distribution on the macrocrack and the new microcracks

{ The stress intensity factor of the macrocrack is calculated

{ Determine local stress �eld around �bers (incl. interaction from the

macrocrack and the new microcracks)

{ Sampling of max(�) and �max around �ber where microcracks

are not initiated

stop iteration when microcracks appear in all �bers

end

The iterative procedure applies both for the initiation of interface and matrix cracks and
in the following an example of interface crack initiation is given. A con�guration with
nine �bers dispersed in a regular arrangement in front of a macrocrack is considered
(�g. 7.1a).

The dispersion of �bers and the macrocrack corresponds to the con�guration shown in
�gure 6.3 for x = 0. The stress �eld inside the �bers is calculated and in �gure 7.1b
it is represented by the von Mises stress where the regularity also is emphasized. The
iterative procedure is applied where the crack length constant Ar = 1:0mm3/N and the
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Figure 7.1: Con�guration with 9 regularly dispersed �bers in the vicinity of a macroc-

rack; (a) model, (b) von Mises stress inside �bers, normalized with �1.

critical value of the interface stress is �r;critical = 2:0N/mm2. Five load steps are needed
to initiate interface cracks at all �bers (Tab. 7.2).

Table 7.2: Iterative process during the load increase.

Load step
Parameter 1 2 3 4 5

�1 [N/mm2] 0.90 1.05 1.20 1.30 1.35
KI=KI0 0.9395 0.9407 0.9457 0.9461 0.9450
KII=KI0 0.0 0.0 0.0003 0.0003 0.0003
Number of cracks 0 2 5 7 9
�r;max(�r;max) [N/mm2] ([�]):
Fiber 1 1.66(270) 1.94(270) 2.06(270) { {
Fiber 2 1.36(295) 1.59(295) 1.81(90) 1.96(90) 2.04(90)
Fiber 3 1.47(90) 1.71(90) 1.91(90) 2.07(90) {
Fiber 4 1.66(90) 1.94(90) 2.06(90) { {
Fiber 5 1.36(65) 1.59(65) 1.81(270) 1.96(270) 2.05(270)
Fiber 6 1.47(270) 1.71(270) 1.91(270) 2.07(270) {
Fiber 7 1.61(95) 1.88(95) 2.04(95) { {
Fiber 8 1.78(90) 2.08(90) { { {
Fiber 9 1.78(270) 2.08(270) { { {

The presence of the �bers lowers the stress intensity factor of the macrocrack, but as the
interface cracks are initiated the stress intensity factor is increased and thus the interface
cracks decrease the fracture toughness. The stress intensity factor for mode II crack
opening becomes non-zero at load step 3 and as shown in �gure 7.2a the con�guration
becomes unsymmetric when an interface crack initiates at �ber 7.

Figure 7.2b shows the crack initiation at load step 5 where interface cracks appear at all



Chapter 7. Microstructural Inuence on Fracture Toughness 97

(a) (b)

Figure 7.2: Nucleation of interface cracks; (a) �1 = 1:20N/mm2, (b) �1 = 1:35N/mm2.

�bers and the iterative procedure is stopped. Both for �ber 2 and 5 the angle, at which
maximum value occurs, changes from load step 2 to 3. This illustrates the e�ect of new
cracks entering the local stress analysis.

7.2 Nucleation of Interface Cracks

In the following various con�gurations and distributions are analysed in order to inves-
tigate the inuence of interface cracks. Four typical con�gurations are simulated and
each of them consists of 50 �bers dispersed in the vicinity of a macrocrack. The �rst
con�guration consists of a macrocrack situated in front of a cluster containing 50 �bers
(�g. 7.3).

The cluster is circular with radius equal to 125 points and the distribution of �bers inside
the cluster is generated using the hard{core model. The ratio between the crack length
and the radius of �bers is c=R = 2. The iterative procedure is applied using the data
shown in table 7.3.

Table 7.3: Data used for the analysis.

Ea �a Em �m A0 Ar �r;critical �1;initial

[N/mm2] [N/mm2] [mm3/N] [N/mm2] [N/mm2]

73000 0.3 3174 0.35 1.15 1.0 2.0 0.9

The dispersion of �bers itself lowers the stress intensity factor of the macrocrack and
thus increases the fracture toughness. During the load increase interface cracks gradually
appear at the interfaces. For the con�guration in �gure 7.3d an enlarged view of a partial
degraded material is shown in �gure 7.4a. The corresponding fully degraded material is
shown in �gure 7.4b.
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Figure 7.3: Four distributions of �bers generated within a cluster in front of a macroc-

rack.
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Figure 7.4: Enlarged view of the the con�guration shown in �gure; (a) partial degraded

(�1 = 1:2N/mm2), (b) fully degraded (�1 = 1:7N/mm2).
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The interface cracks appear in the vicinity of two distinct angles, � = 90�; 270�, cor-
responding to the analysis presented in section 5.3. The deviation from these angles
is caused by the varying interaction which exists in non{regular arrangements of the
�bers. The number of interface cracks and the stress intensity factor at crack tip B are
calculated during the load increase (�g. 7.5).
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Figure 7.5: Number of initiated cracks and normalized stress intensity factors as a func-

tion of the applied load.

All patterns exhibit the same tendency where the stress intensity factor is increased
during the load increase. Thus, the fracture toughness is decreased due to the existence of
the interface cracks. The various distributions have di�erent levels of the stress intensity
factor due to the interaction from the �bers near to the crack tip. Another con�guration,
which is of interest consists of two clusters each containing 25 �bers, which are situated
above and below a macrocrack (�g. 7.6).

Also in this case four distributions are generated and the clusters are of elliptic shape
with semi{minor and semi{major axes equal to 60 and 110 points, respectively. The
ratio between the crack length and radius of the �bers is equal to c=R = 2. In this
con�guration the stress intensity factor of the macrocrack is increased due to the presence
of the �bers. The iterative procedure is applied and the number of interface cracks and
the stress intensity factor at crack tip B are calculated (�g. 7.7).

The opposite e�ect is now seen to be predominant where the nucleation of cracks lowers
the stress intensity factor of the macrocrack. Thus, although the �bers decreased the
fracture toughness the interface cracks are now seen to reverse the e�ect. Finally, two
similar con�gurations are analysed. They consist both of three clusters situated in front
of the macrocrack (�g. 7.8).

The clusters each consist of a third of the 50 �bers and are of circular shape with radius
equal to 65 points. The only di�erence between the con�gurations is that the two outer
clusters are shifted with respect to the middle cluster. The iterative procedure is applied
and the number of interface cracks and the stress intensity factor at the crack tip B are
calculated (�g. 7.9).

Both con�gurations increase the fracture toughness by the presence of the �bers but as
interface cracks are initiated, the fracture toughness is decreased. The relatively high
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Figure 7.6: Four distributions of �bers dispersed in two clusters situated above and below

a macrocrack.
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Figure 7.8: Similar con�gurations with three clusters situated in front of a macrocrack.
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Figure 7.9: Number of initiated cracks and normalized stress intensity factor as a func-

tion of the applied load.

increase of the stress intensity factor for the con�guration in �gure 7.8b at load level
�1 = 1:3N/mm2 is a result of the �bers very near to the crack tip. Thus, when interface
cracks initiate at these �bers the interaction e�ect is very inuencial.

7.3 Nucleation of Matrix Cracks

The following analysis accounts for the initiation of radial cracks. Only two con�gura-
tions are considered corresponding to the arrangements in �gure 7.3a and 7.6a. In the
iterative procedure the crack length constant A� = 2:5mm3/N and the critical radial
stress ��;critical = 0:6 N/mm2. An enlarged view of the �rst con�guration is shown in
�gure 7.10a where matrix cracks have been initiated.

As the cracks may interfere with the neighbouring �bers the crack may need to be reduced
until it does not coincide with other �bers (�g. 7.10b). Again the iterative procedure is
applied and the number of matrix cracks and the stress intensity factor at crack tip B
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(a) (b)

Figure 7.10: (a) Enlarged view of the �ber distribution showing radial cracks, (b) e�ect

of reduced crack length.

are calculated during the load increase (�g. 7.11).
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Figure 7.11: Number of initiated cracks and normalized stress intensity factor as a func-

tion of the applied load (the solid line corresponds to the con�guration in

�gure 7.3a and the dashed line corresponds to �gure 7.6a).

The initiation of matrix cracks has almost no e�ect on the stress intensity factor of the
macrocrack. Thus, either the exact position of the matrix cracks does not a�ect the
stress intensity factor or the interaction e�ects are cancelled.



Chapter

8

Trajectories of Percolating Cracks

T
he damage evolution in a composite material is of very complex nature. Some
damage mechanisms may be analysed properly by simplifying and decomposing the

problem into well{de�ned subproblems. The aim of the present analysis is to investigate
how various types of �ber distributions a�ect the crack path of a percolating crack.

The problem considered here consists of a crack, which is located at the edge of a mi-
crostructure and the crack is then allowed to extend through the microstructure. The
distribution of �bers inuences the local stress �eld in the matrix and consequently it also
inuences the development of cracks. The crack path becomes irregular as it develops
through the microstructure and in accordance with chapter 3 the crack path may consist
of both pure matrix cracking and interface cracking. The irregularity of the crack path
for the various distributions can be described by characteristic parameters. Comparing
the characteristic parameters for crack paths the inuence of the �ber distribution type
may be given.

Real microstructures containing percolating cracks are analysed and the crack paths are
measured and compared with corresponding numerical models. As seen in chapter 3
the crack path in the numerical models can be altered by changing a critical value of
the interface strength. Thus, an estimate of the strength of the interface may be given
by comparing the characteristic parameters for crack paths in real microstructures with
crack paths in numerical models where the critical values for the strength of the interface
have been altered.

Pyrz and Bochenek [22] investigated the crack propagation in a two{phase material by
discretization of the microstructure and applying a truss model. Gradually the damage
evolution appears as the load is increased and �nal damage state consists of micro-
cracks and a percolating crack. They correlated the load carrying capacity with various
types of �ber distributions. A further extension of the analysis is presented in Pyrz and
Bochenek [23].

In section 8.1 the crack growth in four types of simulated microstructures is analysed
in order to estimate how the distribution of �bers a�ects crack path parameters. In
section 8.2 the crack growth in real microstructures is analysed numerically in order to
estimate the strength of the interface.
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8.1 Percolating Cracks in Simulated Microstructures

In order to analyse how the dispersion of �bers a�ects the crack path, four types of
distribution are applied. For each of them a crack is initiated at various positions along
the edge of the microstructure. The four types of microstructures correspond to those
presented in chapter 5; regular(II), hard{core(II), single cluster(II) and triple cluster(II).
The distributions are generated using model II so the microstructures consist of a sample
area, which contains the actual �ber distribution, and a boundary area, which contains
a hard{core �ber distribution similar for the four types of microstructures. Three pos-
sible locations of initial cracks are selected for the regular distribution and �ve possible
locations are selected for other distributions (�g. 8.1).
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Figure 8.1: The positions of the initial cracks; (a) regular(II), (b) hard{core(II), (c) single

cluster(II), (d) triple cluster(II).

The cracks are analysed separately as they extend through the sample area. The crack
propagation is determined according to the theory presented in chapter 2 and 3. By ap-
plying this theory, interaction e�ects from all �bers are included. For the distributions
used here, each crack step includes interaction e�ects from 800 �bers. This demands
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considerable computational time and in order to reduce the time, locality criteria are
introduced. The zone of inuence for particular con�gurations is investigated in ap-
pendix C and an estimate of the locality is given by applying two criteria. The �rst
criterion gives the range of locality ri for the determination of the local stress �eld, and
the second one gives the range of locality rc for the determination of crack{�ber{crack
interaction. Another important parameter is the critical value ~Ucr (sec. 3.2) represent-
ing the strength of the interface. The parameter allows to change the crack path and
must therefore be constant for all analyses. The data used in the analysis are shown in
table 8.1.

Table 8.1: Data used for the analysis.

Ea �a Em �m A0 A1 A2
~Ucr ri rc

[N/mm2] [N/mm2] [mm] [mm3/N] [N/mm2] [points] [points]

73000 0.3 3174 0.35 1.15 2.0 2.0 1.0 200 150

The number of crack steps needed to percolate the sample area is approximately 110 and
the crack paths now appear as fracture pro�les (�g. 8.2).

With the exception of the regular distribution the crack paths are not easily distinguished
and therefore various descriptors are applied (Tab. 8.2).

Table 8.2: Fracture parameters for the various crack paths, lengths are measured in

points and angles in degrees.

Distribution Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 Mean

Roughness:
regular(II) 1.000 1.131 1.118 { { 1.083
hard{core(II) 1.086 1.093 1.087 1.091 1.091 1.090
single cluster(II) 1.037 1.061 1.083 1.092 1.074 1.069
triple cluster(II) 1.127 1.114 1.070 1.082 1.092 1.097

Mean crack length:
regular(II) 2.11 1.84 1.85 { { 1.93
hard{core(II) 2.18 2.06 2.13 2.04 2.15 2.11
single cluster(II) 2.33 2.20 2.12 2.03 2.15 2.17
triple cluster(II) 2.00 1.95 2.18 1.92 2.22 2.05

Crack angle:
regular(II) 0.7 24.4 22.7 { { 15.9
hard{core(II) 18.5 18.8 18.6 18.5 19.7 18.8
single cluster(II) 9.8 15.6 16.6 17.6 16.8 15.3
triple cluster(II) 22.0 21.2 15.9 18.0 19.1 19.2

The roughness is de�ned as the ratio between the actual crack curve divided by its
projection. Thus if there was no interaction, the roughness parameter would be equal to
1 and the more irregular the crack path the higher the roughness parameter becomes.
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(a) (b)

(c) (d)

Figure 8.2: Crack paths in the distributions; (a) regular(II), (b) hard{core(II), (c) single

cluster(II), (d) triple cluster(II).

This also corresponds to the roughness calculated for the four distributions where the
triple cluster has the highest mean value. Crack 1 in the regular distribution is a straight
line because of the symmetry and correspondingly the roughness parameter is equal to
1. It is of course crucial for the crack path where the crack is initiated and in particular
the clustered distributions are very sensitive. Except from the regular distribution the
mean value of the crack lengths for the triple cluster is lowest and correspondingly the
mean value of the crack angles is the highest. The reason for this is that the stress �eld
varies much more in a clustered distribution.

The analysis clearly shows that the distribution of �bers a�ects the crack path and as it
might be expected the clustered distribution tends to have a more irregular path.
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8.2 Percolating Cracks in Real Microstructures

In order to investigate the damage evolution in real material a specimen made of car-
bon/epoxy has been exposed to an unidirectional load and the microstructure is inves-
tigated. The specimen made as a symmetric laminate with eight layers, four layers in
the loading direction and four layers transverse to the loading direction. Areas of the
microstructure in the transverse layers containing a percolating crack have been sampled
with respect to the �ber centres and the crack path. The �ber centres and the crack
path have been measured using an image analysis system. A corresponding numerical
model is generated by applying the measured �ber centres and a crack is initiated at the
edge of the microstructure. The crack is allowed to extend through the microstructure
and compared with the crack path in the real microstructure (�g. 8.4).

The crack growth path in modelled microstructures is determined as in the previous
section. However, it does not coincide with the crack path in the real material. It should
not be expected that they coincide as the crack path in the real material is inuenced
by several other parameters. Instead it is more reasonable to compare the roughness of
the fracture pro�les. The roughness for the real microstructures is found by measuring
the crack path using crack lengths comparable to the simulated models. The roughness
for the corresponding distributions in the numerical analysis depends on the critical
value ~Ucr. The mean value together with upper and lower bounds of the roughness are
determined for the three distributions (�g. 8.3).

Roughness

Ucr
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Figure 8.3: Mean value of roughness for the real and modelled crack paths using various
~Ucr.

The roughness of the modelled distributions varies depending on ~Ucr and it is assumed
that this critical value may be estimated by comparing the results from the real and
modelled microstructures. The results coincide for ~Ucr = 1:5N/mm2 leading to an
indication of the critical value. Thus, the procedure may be utilized to determine the
strength of interfaces if the critical value can be related to the strength.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.4: Real microstructures with real and modelled crack paths with ~Ucr =
1:5N/mm2.



Conclusions

T
he aim of the present work is to investigate the correlation between the microstruc-
ture variability and the mechanical properties of a material. In the present work the

microstructure variability has been envisioned as di�erent types of �ber distributions.
The mechanical properties are stress �eld in the �bers, local stress �eld in the matrix,
stress intensity factors and crack growth. To obtain information of the mechanical prop-
erties it was necessary to develop a stress analysis method as well as a method for the
determination of stress intensity factors. Also, in order to separate the various distribu-
tion of �bers in a non{visual manner it was necessary to apply a statistical description.
In the following some of the most important conclusions of this work are summarized.

Analysis Method

The stress analysis method for determining the stress �eld in a solid containing multiple
randomly dispersed inclusions has been derived in chapter 1. The method is solved using
an iterative procedure where the interaction between the inclusions is superpositioned.
The stress �eld determination is formulated analytically but solved through numerical
integration. The main assumption and the disadvantage of the method are that the
stress �eld within the �bers is uniform. Of course this introduces some inaccuracy in the
results but comparing the usefulness of the present method with e.g. the �nite element
method makes it preferable to utilize in the present context. The geometrical modelling
in the presented stress analysis method only consists of applying the centre coordinates
of the �bers along with the radius. Thus, when increasing the number of �bers the pre{
processing does not become more troublesome contrary to the �nite element method.
The analysis part consisting of the iterative procedure is relatively fast with respect to
the computational time but the time is of course increased when the number of �bers
is increased. The output from the iterative procedure is given by uniform stress �elds
within the �bers and the local stress �eld in the matrix may then be determined.

A method to determine the stress intensity factors for cracks situated among randomly
dispersed inclusions is established in chapter 2. Both mode I and II crack opening are
considered as the stress �eld introduces both normal and shear loading on the crack
faces. The crack length and orientation may be arbitrary and the distribution of cracks
may be random although they are not allowed to intersect. Furthermore, the relative
inter{position between the cracks and also between �bers and cracks cannot be too small
as this introduces an error in the calculation of the stress intensity factors. The method
takes into account all interaction e�ects between �bers and cracks and these are included
in transmission factors. Thus, by determining the stress interactions the stress intensity
factors can be solved directly.
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Proper crack growth criteria in a composite material containing randomly dispersed
inclusions have been presented in chapter 3. Two damage modes are investigated in
the method; pure matrix cracking and interface cracking. The crack growth criterion
applied for the pure matrix cracks includes the stress intensity factors for both mode I
and II crack opening, so that the crack may extend in a non{self{similar manner. The
crack growth criterion applied for interface cracks does not include the determination of
the stress intensity factors as the cracks are too close to the inclusions and consequently
the stress intensity factors contain a considerable error. Instead, the criterion is based
on the strain{energy{density. Thus, if the strain{energy{density at the crack tip of an
interface crack is larger than a critical value related to the strength of the interface the
crack starts to grow. The crack path is seen to be very much a�ected by the magnitude
of the critical value. To account for both pure matrix cracking and interface cracking for
multiple crack growth an iterative procedure has been proposed. To determine whether
a matrix, or an interface crack starts to grow a self{imposed criterion must be applied.

Methods to establish a unit cell and to quantify the morphology of a microstructure are
presented in chapter 4. The size of the unit cell is determined by distances at which the
the stress interaction between �bers can be neglected. The unit cell consists of a sample
area in which the actual �ber distribution is generated and a boundary area in which
�bers are generated in order to apply boundary conditions to the actual �ber distribution.
The degree of clustering of a microstructure may be determined by considering the
information of nearest neighbour distances. Data for the nearest neighbour distances are
curve{�tted with a continuous function and statistical moments are determined using
both the discrete data and the continuous function. For approximately 200 �bers the
discrete data is in agreement with the continuous function. The microstructure can also
be quanti�ed by applying the second{order intensity function and its derivative; the pair
distribution function. Both functions are able to distinguish between various types of
�ber distributions but they are only applicable for a limited range of the microstructure.
Thus, the functions indicate the range of geometrical disorder and for a sample window
larger than 0.25, having the total area of the sample equal to a unity, both functions
coincide for various types of distributions.

Results of the Investigations

The stress �eld in a composite material with randomly dispersed �bers is correlated
with the actual distribution of �bers in chapter 5. Distinct types of �ber distributions
are generated and exposed to various boundary conditions. Both the mean value and
variance of the nearest neighbour distance and orientation are determined for di�erent
distributions. The nearest neighbour distance indicates the degree of clustering whereas
the nearest neighbour orientation is crucial for the interacting stress �eld. By comparing
the mean value of the von Mises stress inside the �bers with the ratio between the mean
nearest neighbour distance and orientation a correlation is detected. An indication of
how the distribution of �bers a�ects the crack initiation is performed by determining
the local stress �eld around the �bers. Peak values of stresses are calculated and the
clustered distributions are the most sensitive towards the nucleation of cracks.

How the fracture toughness is a�ected by the con�guration of �bers and a crack is
presented in chapter 6. Some con�gurations increase the stress intensity factor and
other decrease it. Thus, by rearranging the �bers the fracture toughness may be changed.
The short{range interaction is estimated by determining how far away �bers must be



Conclusions 111

so that the interacting stress can be neglected. Long{range interaction is estimated
by considering when the exact position of �bers becomes non{inuential on the stress
intensity factor. A function, which relates the stress intensity factor with the dispersion
of �bers, is established. The function is called direct correlation function and is able to
distinguish various distributions' inuence on the fracture toughness, not only for various
types of distributions but also within the particular type of distribution.

Degradation of the material through nucleation of microcracks is investigated in chap-
ter 7. Con�gurations consisting of a macrocrack located in the vicinity of a �ber dis-
tribution are considered. Load is applied to the con�guration and gradually increased
until microcracks appear at all interfaces. During the load increase the stress intensity
factor of the macrocrack is calculated. Both the interactions from the macrocrack and
the initiated microcracks are included in the stress �eld calculation. Two crack types
are considered; interface and matrix cracks. For interface cracks the con�gurations in-
vestigated show that the fracture toughness is changed. Thus, in a con�guration where
the presence of the �bers results in a decrease of the fracture toughness the nucleation of
the interface cracks is seen to reverse the e�ect and increase the fracture toughness. For
matrix cracks initiating at the interface, the fracture toughness seems to be una�ected
by the nucleation of microcracks.

The crack growth in various types of �ber distributions is presented in chapter 8. Cracks
are initiated at the edge of a microstructure at di�erent positions and the cracks are
then allowed to extend through the microstructure. The crack path is described by the
roughness parameter and for clustered distributions the roughness is higher than for the
non{clustered distributions. The crack path in real materials is measured and compared
with the corresponding numerical model. The paths are not exactly similar as the damage
evolution in a real material is a�ected by many other parameters than the numerical
method is able to account for. Therefore, the roughness parameter of modelled and real
microstructures is selected for comparison. By changing the strength of the interface in
the numerical model the crack path changes and consequently the roughness is altered.
Comparing the roughness for various strengths of the interface with the roughness from
the real material, an estimate of the strength of the real material is given.

General Remarks

The present work contributes to the knowledge and understanding of how the mor-
phology of multi{phase materials a�ects the mechanical behaviour. The work does not
represent a complete description of the problem, but it provide information of the ten-
dency. A complete description also seems unattainable as the mechanical behaviour in
real materials is inuenced by many other parameters.

In particular, the correlation between the stress intensity factors of cracks situated among
each other and between �bers is a very complex problem. The pressure distribution on
the crack faces is highly localized and therefore it is di�cult to relate the descriptors
of the microstructure distribution to crack parameters. For stress �eld analysis in a
microstructure consisting of �bers and no cracks the problem is less localized. Therefore,
the correlation between the type of distribution and stress �eld is more easily obtained.
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Further Work

A further extension of the work presented in this report is reasonable as other mechanical
properties are a�ected by the distribution of �bers. Thus, it would be interesting to
consider the non{linear behaviour of the material which is much more sensitive to the
details of the microstructure than the pure linear behaviour.

Many other con�gurations of �bers and cracks may also be considered as the ones pre-
sented here do not cover all possibilities.
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Appendix

A

Analytical Solution for One Inclusion

T
he single inclusion problem may be solved both with analytical and numerical meth-
ods. Two of the analytical methods are the Eshelby method (Mura [15]) and a

method based on complex potential theory (Muskhelishvili [16]). In the Eshelby method
it is assumed that the material properties of both the inclusion and the matrix are equal
but the inclusion contains eigenstrains. This creates tractions at the boundary of the
inclusion resulting in a disturbance of the stress �eld in the matrix. The eigenstrains are
related to the Eshelby tensor and this can be solved for various shapes of the inclusion.
The method based on complex potential theory is also derived by assuming an internal
pressure inside the inclusion and it is derived in this appendix. The Eshelby method
may be applied for three dimensional problems whereas the other method only applies
for two dimensional problems.

The problem consists of determining the stress �eld in an in�nitely extented plane solid
containing a circular inclusion and subjected to unidirectional uniform tractions at the
remote boundaries (�g. A.1). Radius of the inclusion is R and the coordinate system
used has its origin in the center of the inclusion. Young's moduli are Ea and Em for the
inclusion and the matrix, respectively, and the corresponding Poisson's ratios are �a and
�m.
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Figure A.1: In�nitely extented plane solid containing one inclusion.
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The elastic equilibrium in the matrix is written as two analytical functions of the complex
variable z = rei�:
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and the elastic equilibrium inside the inclusion is:
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where �m, m, �m, �a, a, and �a are real constants to be determined. In complex
potential theory the stress �eld may be written as a function of two analytical functions:

�x + �y = 2(�0(z)� �0(z))

�x � i�xy = �0(z) + �0(z)� (z�00(z) +  0(z)) (A.3)

The stress �eld in the matrix and in the inclusion may be solved by inserting equa-
tions A.1 and A.2 into equation A.3, respectively. The real constants are determined by
applying the boundary conditions between the inclusion and the matrix. In cartesian
coordinates the stress �eld in the matrix is:
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where the real constants become:

�m =
�2(�a � �m)

�m + �a�m
m =

�m(�a � 1)� �a(�m � 1)

2�a + �m(�a � 1)
�m =

�a � �m

�m + �a�m
(A.5)

The stress �eld in the inclusion is:

�x = �1
�a + �a

2
�y = �1

�a � �a

2
�xy = 0 (A.6)

where

�a =
�a(�m + 1)

2�a + �m(�a � 1)
a = 0 �a =

�a(�m + 1)

�m + �a�m
(A.7)

The elastic constants, which enter in the equations, are de�ned as:

�m =
Em

2(1 + �m)
�a =

Ea

2(1 + �a)
(A.8)

�m =
3� �m

1 + �m
�a =

3� �a

1 + �a
(A.9)

The stress �eld in the inclusion and the matrix may now be calculated given the material
properties, geometry and the applied load.



Appendix

B

Standard Stress Field for Line Loads

I
n the superposition scheme for determining the stress intensity factors a pressure
distribution is applied at the imaginary crack faces. This corresponds to line loads

applied in an in�nite solid. Such a problem may be solved in various ways and one of
these methods, which was applied by Kachanov [9], is to introduce standard stress �elds.

The problem consists of an in�nite plane solid where a uniform load has been applied
along a straight line. In the local coordinate system of this line the uniform load is
divided into load components in the x and y direction. The load component in the x
direction corresponds to tangential loading of the crack leading to mode II crack opening.
The load component in the y direction corresponds to normal loading of the crack leading
to mode I crack opening. The standard stress �eld makes it possible to determine the
stress �eld anywhere in the solid due to both mode I and II loading of the crack knowing
the magnitudes of the applied load components.

The stress �eld generated by a uniform load of unit intensity for mode I loading (standard
stress �eld �n):

�nx = I2 � 8y2I4 + 8y4I6

�ny = I2 + 6y2I4 � 8y4I6

�nxy = 2(�yI3 + xyI4 + 4y3I5 � 4xy3I6)

The stress �eld generated by a uniform load of unit intensity for mode II loading (stan-
dard stress �elds �t):

�tx = 2(3yI3 � 3xyI4 � 4y3I5 + 4xy3I6)

�ty = 2(�yI3 + xyI4 + 4y3I5 � 4xy3I6)

�txy = I2 � 8y2I4 + 8y4I6

The notations in the above equations are:

I2 = 4l2
1p

�(
p
�+

p
� +

p
)

I3 = 2l3
p
 �p

�

�3=2
p
�
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I4 = 2l2
p
�+

p


�3=2
p
�

I5 =
l3

2

3
p
�(

p
�+

p
)2

�p
 �p

�
�
+ �(3=2 � �3=2)

�5=2(�)3=2

I6 =
l2

2

(�3=2 + 3=2)� + 3
p
�(

p
�+

p
)3

�5=2(�)3=2

where

� = (x� l)2 + y2

� = 2(x2 + y2 � l2)

 = (x+ l)2 + y2

� = � + 2
p
�

x and y are the distances from the center of the straight line to the point, at which the
stress �eld is calculated. l corresponds to a half crack length that is l = c.



Appendix

C

Estimation of Local Range Parameters

T
he methods presented in the previous chapters are all implemented in numerical
procedures and may therefore be solved variously depending on the input data such

as accuracy of the numerical integrals, number of interaction terms, how many inclusions
and cracks interact with a particular inclusion etc. All these inputs must be taken into
consideration before making any analysis of di�erent distributions. The necessity of these
consideration is caused by the desire for having time-saving numerical procedures and at
the same time enough statistical data. It is obvious that if the accuracy of the integrals
is very precise and all interaction e�ects are taken into account the calculation time for
the patterns is very long.

Local Interaction Parameters

One way to reduce the calculation time is to introduce a local e�ect parameter. This
parameter gives the range of local interaction in such way that if the parameter is very
large, all �bers and cracks interact with each other. Setting the parameter to a smaller
value only neighbouring �bers and cracks interact. The parameter sets the radial distance
from one �ber or crack and all other �bers and cracks within this distance are included
in the interaction scheme. The problem is only to decide the magnitude of the local
parameter.

In section 4.1 the zone of inuence for various �ber arrangements is calculated. Here the
stress inside the �bers is calculated and the variation of the strees �eld may be neglected
for inter{�ber distances larger than 200 points. This leads to the conclusion that when
determining the stress �eld in a solid containing multiple �bers (section 1.2) the local
interaction parameter must be at least 200 points.

Another way of estimating the magnitude of the parameter is to calculate the stress
intensity factor for a crack situated among di�erent �ber arrangements (�g. C.1). The
crack is approximately situated in the middle of the patterns and the length of the crack
is 2c where the ratio between radius of �bers and the crack length is R=c = 2. The
stress intensity factor is calculated for various magnitudes of the local e�ect parameter
(�g. C.2). It is seen that the stress intensity factors for the regular distribution stabilize
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(a) (b)

Figure C.1: One crack situated among two di�erent �ber arrangements; (a) regular, (b)

hardcore
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Figure C.2: Normalized stress intensity factors for; (a) regular arrangement, (b) hard-

core arrangement.

for r > 150 points whereas they stabilize for the hardcore distribution for r > 80 points.
Therefore, the local interaction parameter must be at least 150 points when calculating
the stress intensity factors.
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