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Abstract  
 

Modeling wireless sensor networks for monitoring in biological 
processes 

 
Successful grazing in developed agriculture calls for automated and 

efficient monitoring and control of animals. Monitoring should allow us to 
develop methodologies for detecting individuals with potential health problems, 
and for optimizing the grazing process (e.g. grazing time budget), which 
potentially would have a significant impact on practical farming. Management 
and control of a herd of animals relies on monitoring the herd, which is very 
complicated due to the geographical distribution of the animals in outdoor 
environments, as their behavior is strongly governed by their instincts and needs 
for feed resources. Animal behavior monitoring systems in outdoor 
environments should be able to remotely register relevant behavioral 
parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee 
based wireless sensor network was employed as monitoring system to register 
the behavior of a group of dairy cows in a herd. Only a part of the herd was 
monitored, as monitoring each individual animal in a large herd under practical 
conditions is inefficient in terms of costs. Investigations to show that the 
monitored animals can indeed represent the whole herd were carried out. The 
tagged animals in the herd were equipped with wireless nodes around the neck 
capable of measuring two behavioral parameters: the pitch angle of the neck 
(using accelerometer) and the velocity of the movement of the animal (using 
received signal strength). Fusing the two measured behavioral data resulted in 
an improvement of the classification results regarding the animal behavior mode 
(activity/inactivity), compared to the results achieved by only monitoring one of 
the behavioral parameters. Applying a multiple-model adaptive estimation 
(MMAE) approach to the data resulted in the highest classification success rate 
in comparison to other classification approaches (such as decision tree, fuzzy 
logic classifier and neural network), due to the use of precise forth-order 
mathematical models which relate the feed offer as input to the pitch angle of 
the neck as the output of the model.  

This thesis shows that wireless sensor networks can be successfully 
employed to monitor the behavior of a herd of dairy cows in outdoor 
environments. The approaches used in this thesis can be extended to a variety of 
applications in animal behavior monitoring, modeling and classification. The 
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proposed models describing animal behavior modes can be used to control the 
behavior of herds of animals in terms of the activity of the animals.  
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Synopsis 
 

Vellykket græsning i moderne landbrug kræver automatisering og effektiv 
monitorering og styring af dyrene. Monitoreringen skal sætte os i stand til at 
udvikle metoder til detektering af potentielt sygdomsramte enkeltdyr samt at 
optimere af græsningsprocessen (fx tidsbudgettet for græsningen), som kan 
have betydelig indflydelse på praktisk landbrug. Styring og kontrol af en flok 
dyr er afhængig af en monitorering af flokken, hvilket er meget kompliceret 
pga. den geografiske fordeling af dyrene i udendørs omgivelser, idet deres 
adfærd er stærkt styret af deres instinkter og behov for foder. Systemer til 
monitorering af dyrs adfærd i udendørs omgivelser skal kunne foretage en 
fjernregistrering af relevante adfærdsparametre, da anvendelsen af trådede 
sensorer er upraktisk. 

 I denne afhandling er der anvendt et ZigBee-baseret trådløst 
sensornetværk som monitoreringssystem til registrering af en gruppe 
malkekøers adfærd. Kun en del af flokken blev monitoreret, da monitorering af 
hvert enkelt dyr i en stor flok under praktiske forhold er omkostningsmæssigt 
ineffektiv. Der blev gennemført undersøgelser, der skulle vise, at de 
monitorerede dyr var repræsentative for hele flokken. De mærkede dyr i flokken 
blev udstyret med trådløse enheder fæstnet omkring halsen. Enhederne var i 
stand til at måle to adfærdsparametre: halsens hældningsvinkel (ved brug af 
accelerometer) og dyrenes bevægelseshastighed (baseret på signalstyrken). 
Kombination af de to typer af adfærdsdata resulterede i en forbedring af 
klassifikationsresultaterne mht. dyrenes adfærdstype (aktiv/inaktiv) i forhold til 
resultater opnået ved kun at monitorere en af adfærdsparametrene. Ved 
anvendelse af model adaptive estimation (MMAE) blev der opnået en 
klassifikation med højere succesrate end med andre klassifikationsmetoder (fx 
decision tree, fuzzy logic classifier and neurale netværk), pga. brugen af en 
præcis fjerdeordens matematisk model, som knytter fodermængden som input 
til halsens hældningsvinkel som output af modellen. 
Denne afhandling viser, at trådløse sensornetværk kan anvendes med succes til 
monitorering af en flok malkekøers adfærd i udendørs omgivelser. Metoden, der 
anvendes i denne afhandling, kan udvides til en række anvendelser vedrørende 
monitorering af dyrs adfærd samt til modellering og klassifikation. De fremsatte 
modeller til beskrivelse af dyrs adfærdstyper kan anvendes til at styre en 
dyrefloks adfærd mht. dyrenes aktivitet. 
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This thesis is the result of a three year study of animal (dairy cow) 

behavior monitoring and modeling, which began in February of 2005 aimed at 
developing an autonomous monitoring system capable of registering the 
behavior of a group of dairy cows using wireless sensor networks. The thesis 
documents innovations in the areas of system architecture, wireless sensor 
network implementation, mathematical modeling and system identification 
related to animal behavior monitoring.  

This thesis addresses monitoring and modeling animal behavior in terms 
of activity and inactivity in outdoor environments. Several studies have focused 
on animal behavior monitoring and control inside the barn, but new challenges 
are introduced in outdoor environments, where the habitat areas are larger and 
where the animals are more dynamic. Designing a monitoring system capable of 
remotely registering animal behavior prevents potential disturbances on the 
animal behavior, and is important for animal science studies. It may also help to 
provide a better environment for the animals to live in while optimizing their 
production. 

The main objectives of this thesis are as follows: 
1) Selecting relevant behavioral parameters that by monitoring and 

analysis allow different behavioral modes (e.g. activity or inactivity) 
to be detected.  

2) Providing a monitoring system that can measure and monitor the 
behavioral parameters. 

3) Classify behavioral modes such as active or inactive. A comparison 
can then be made between different behavioral modes of monitored 
animals and productive animals. For instance, the time length that 
each individual animal spends in a specific behavioral mode (e.g. 
active) can be compared with the same time of a high productive 
animal. This comparison can be used as a basis for adjustment of the 
behavioral modes of the low-productive animals. 

In this thesis, pitch angle of the neck and the translational velocity of the animal 
were selected as behavioral parameters based on the fact that when an animal is 
active (grazing or searching for feed), its neck is down and the velocity is 
nonzero, and when inactive (lying down or ruminating), the neck is horizontal 
and the velocity is zero. 

To classify the behavior into various modes such as active or inactive, 
different classification approaches such as decision trees, fuzzy logic classifiers, 
neural network classifiers and a Multiple-Model Adaptive Estimation approach 
(MMAE) were applied to the data.  



 
Chapter 1 

 
 9 

1.1. Motivation and background 
 

Public perception, animal welfare and milk quality call for a continued 
use of grasslands for grazing in dairy farming (Torjusen et al., 2001). To meet 
the public concern, some milk producers offer incentives to dairy farmers if 
they let their dairy cows graze outdoor, but for many farmers this is impossible 
due to livestock management and control problems. Management and control 
relies on monitoring the herd, which is significantly complicated by the inherent 
geographical distribution of the animals in outdoor environments. The 
distribution and the behavior of the animals are mainly governed by their needs 
for feed resources and water. 

Successful grazing in developed agriculture calls for automated and 
efficient monitoring and control of animals. The monitoring should allow us to 
establish a better understanding of animal behavior, to detect individuals with 
potential health problems, and generally to optimize the grazing process (e.g. 
grazing time budget). All things that potentially would have significant impacts 
on practical farming. An important example is the interaction between animals 
and their feed supply. Sustainable management of grassland systems requires 
understanding of the impact of grazing livestock on the vegetation. Behavioural 
models may provide this understanding by accurately modeling feeding 
patterns, meal consumption and timing to predict total feed intake (ASAB, 
2008).  

Feed offer has fundamental impact on the production of the animals. If 
the feed offered to the animals is below a certain amount, their production will 
be affected. This situation can be detected by monitoring the behavior of the 
animals. For instance, if the feed offered to the animals is low, the eating time 
length decreases, as they will spend more time looking for feed. Therefore, the 
relation between the different animal behavioral modes (such as eating or lying 
down) and their production can be achieved by registering daily time budget as 
exemplified in Table 1. 

  
Table 1. Sample daily time budget for dairy cows (milk production association, 2005) 

 
Daily time budget for dairy cows 

Daily behavioral time budget for top-10% of 
cows by milk production 

Activity Time devoted to activity per 
day 

Activity Top 10% average 

Eating 3 to 5 h (9 to 14 meals / day) Eating 5.5 h 
Lying/resting 12 to 14 h Resting 14.1 h 

Social interactions 2 to 3 h Standing 1.1 h 
Ruminating 7 to 10 h Perching 0.5 h 

Drinking 30 min Drinking 20 min 
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Once the time budget table is obtained for each individual animal, its 
behavioral modes and production can be compared to the behavioral modes and 
the production of the high-productive animals of the farm. In the example 
shown in Table 1, the normal eating time length of an individual dairy cow was 
between 3 to 5 hours per day, while the top 10% productive animals of the farm 
ate 5.5 hours per day. Knowledge of the individual time budgets is the basis for 
actions to bring the under performers into a situation where they perform better. 
Monitoring animal behavior in terms of activity can potentially be used as input 
to a control system for controlling the behavior by adjusting for example the 
environment, to optimize behavior relevant for productivity. Registration of the 
automatic monitoring system may also help to reveal individuals with health 
problems and behavior abnormalities through identification of deviations from 
normal behavior. 

Animal behavior modes can be classified according to different standards 
and purposes (Guo et al., 2006). In a hierarchical classification structure as 
shown in Figure 1, the classification is started from the highest layer activities, 
that is, to identify between activity and inactivity modes. Activity and inactivity 
can then be divided into different sub-modes such as eating, ruminating, lying 
down and drinking (Guo et al., 2006).  

 

 
 
 

Figure 1. Hierarchical classification of the behavior of a herd of dairy cows 
 
Achieving the grazing time budget for each individual animal in a herd 

using traditional methods is a time consuming process as relevant animal 
behavioral modes such as eating, lying down and drinking time periods would 
be monitored by the farmer. The effort will naturally increase when the number 

Dairy cow 
behavior  

InactiveActive 

Eating / Grazing Lying down RuminatingDrinking 
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of animals and the spatial distribution increases (i.e. inside the barn or in an 
outdoor environment). Manual registration of such a time budget may also 
potentially disturb the behavior of the animals and as a consequence, in the 
worst case, the productivity of the animal can significantly decrease (Szewczyk 
et al., 2004).  

Consequently, autonomous monitoring system capable of registering 
relevant animal behavior is desirable. The monitoring system should be able to 
precisely monitor the behavior of each individual animal without disturbing 
their behavior. The monitoring system should be robust and flexible enough in 
order to function in a rough environment such as e.g. fields covered by trees.  

In general, animal behavior monitoring systems should be able to 
remotely register relevant behavioral parameters using wireless communication. 
In practice, the use of wired sensors to monitor animal behavior is completely 
impractical due to their natural mobility. Animal behavior monitoring systems 
that are based on RFID tags are short range wireless sensors, which make them 
rather impractical in the large fields. In order to be able to monitor the behavior 
of a herd of animals across a whole field using RFID tags, extra infrastructure 
facilities such as large number of aggregation points (gateways) are required.  

Behavioral parameters such as pitch angle of the neck can not be 
monitored and sensed by the off-the-shelf RFID based monitoring systems. On 
the contrary, the translational velocity can be indirectly estimated from the 
location of the wireless nodes (associated with each cow) monitored using grid 
topology localization approach (Ramadurai et al., 2005). In the grid approach, 
the network space is divided into a uniform grid and the probability of node 
presence is estimated at each square of the grid. The main drawback of this 
method is the need of covering each square of the grid by a gateway. The finer 
and more accurate the grid is, the higher number of gateways are needed.  

Other animal behavior monitoring systems based on Bluetooth or WiFi 
are practical in outdoor environments and large fields but high energy 
consumption and long network joining time are their main drawbacks. 
Therefore, a low-cost low-power monitoring system that can fulfill the 
requirements (such as the ability to handle a large number of nodes per network, 
the ability to identify new incoming wireless nodes without the necessity of 
restarting the whole network) is needed. 

The monitoring system which is the basis for this dissertation benefits 
from a ZigBee based wireless sensor network. It is a low cost system that is 
equivalent to Bluetooth or WiFi based monitoring systems with mesh 
networking capability, with lower power consumption, shorter network joining 
times, higher networking capability and with a relatively long range of 
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communication (in outdoor environments) and with self healing and self 
configuring characteristics.  

 
1.2. Previous work 
 
This section will address previous work related to topics that is essential for this 
dissertation. The topics include: 
 
         1.2.1. Behavior parameter monitoring  
 

Various behavioral parameters of different animals have been studied by 
different researchers aimed at achieving more information and deeper insight 
about the behavior of animals under different conditions. This knowledge can 
potentially help animal behavior experts to interpret the behavior and 
consequently predict the animal behavior under certain conditions, such as 
when the animal is in lack of feed, lack of light or under heat stress. For 
instance, the behavior of groups of seabirds under different conditions was 
monitored and studied by Szewczyk et al., (2004). The time period that each 
seabird spent in the nest in different conditions was monitored by a large 
network of wireless sensors in which the temperature and the light of each nest 
was used as the indicator of bird presence inside the nest.  

Combining cameras and distributed, non-invasive sensors with elements 
of computer vision, information technology and artificial intelligence, enabled 
monitoring the effect of new medicine on the behavior of a group of mice in the 
lab (Belongie et al., 2004). The behavior and habits of honeybees and wasps 
were tracked by radio frequency identification (RFID) tags in a wireless sensor 
network in the research carried out by Roberts et al., (2004).  

The spatial distribution of a herd of dairy cows in the barn or in the field 
were tracked and monitored by White et al., (2001), Butler et al., (2004), 
Munksgaard et al., (2005), Braunreiter et al., (2007), Maertens et al., (2007), 
Umstatter et al., (2006), and Schwager et al., (2007). The velocity of the 
movements of animals in the field were monitored and registered by Oudshoorn 
et al., (2006) based on both positions and the velocities of the movements in the 
field. Different behavior modes of dairy cows such as standing and lying down 
when they were in the barn were evaluated by Munksgaard et al., (2005), 
Wilson et al., (2005) and Sallvik et al., (2005).  

Health parameters such as pH of the rumen was measured and monitored 
by Mottram et al., (2006) and Lokhorst et al., (2007) while experiments to 
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measure body temperature using rumen bolus were carried out by Ipema et al., 
(2006).  

 
1.2.2. Monitoring systems 
 
As all these measured behavioral parameters (position, velocity, rumen 

PH, and jaw movements) can potentially represent the animal behavior in terms 
of activity, new perspectives to solve the problem of animal (dairy cow) 
behavior monitoring in terms of activity were introduced by Umstatter et al., 
(2006) and Schwager et al., (2007) by measuring the pitch angle of the neck of 
the animal. It relies on the fact that when the animal is active (grazing or 
looking for the grass), the head is down (slanted neck) and the translational 
velocity of the animal is nonzero while in the inactivity mode such as lying 
down or ruminating, the head is up (horizontal neck) and the velocity of the 
movement is zero. Consequently, the pitch angle of the neck and the velocity 
can be indicators of the behavioral mode in terms of animal activity. 

In order to measure the behavioral parameters such as position, velocity, 
pitch angle of the neck and the pH of the rumen, different methods and 
strategies and consequently different monitoring systems (sensors) have been 
employed by different researchers. For instance, the position of a herd of dairy 
cows in the field was monitored and registered using Global Positioning System 
(GPS) in the experiments carried out by White et al., (2001), Butler et al., 
(2004), Braunreiter et al., (2007), Maertens et al., (2007), Umstatter et al., 
(2006), Oudshoorn et al., (2007) and Schwager et al., (2007). By post 
processing of registered locations from the GPS, the movement velocity was 
estimated by Oudshoorn et al., (2007). Munksgaard et al., (2005) used received 
signal strength (RSS) in a wireless sensor network and estimated the 
translational velocity of a group of dairy cows in a barn. Different behavior 
modes of dairy cows such as standing and lying down in the barn were 
evaluated by Munksgaard et al., (2005) using an accelerometer around the leg 
and a data logger. Sallvik et al., (2005) used video processing combined with a 
RFSU (radio frequency synchronization unit). Herbivore jaw movements to 
detect the grazing behavior were monitored by Ungar et al., (2007) using a 
sound sensor. 

Nagl et al. (2003) designed a remote health-monitoring system for cattle 
that included various sensors, such as a GPS unit, a pulse oximeter, a core body 
temperature sensor, an electronic belt, a respiration transducer and a 
temperature sensor. The system communicated wirelessly with a base station 
via Bluetooth communication protocol. Taylor and Mayer (2004) reported a 
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study regarding a smart and comprehensive animal management system. Each 
animal was equipped with a wireless node (sensor + mote), which could provide 
accurate measurements of the location and health-related information of the 
animal wirelessly. Haapala (2003) tested the performance of radio frequency 
identification (RFID) tags and various readers (gateway) on cattle under 
extremely cold temperature in Finland. Brown-Brandl et al. (2001) tested a 
short-range communication system for measuring core body temperature in 
poultry, beef and dairy cattle. Temperature transmitters were implanted into the 
body of the animals. A CorTempTM miniaturized ambulatory logger received 
the temperature data wirelessly. Test results showed good accuracy, resolution, 
and response time for temperature measurement. Kononoff et al. (2002) used a 
wireless automatic system to record the chewing and ruminating behaviors to 
study the dietary factors affecting normal rumen function of dairy cows. Butler 
et al. (2004) developed a moving virtual fence algorithm for limiting the 
movements of a group of dairy cows in predefined boundaries. Each animal in 
the herd was equipped with a smart collar consisting of a GPS, a PDA, a radio 
unit (WLAN) and a sound amplifier. The animal’s location was determined 
using the GPS and was verified through a measurement of proximity of the cow 
relative to the fence boundary. When the animal approached the perimeter, it 
was presented with a sound stimulus, which drove the animal away from the 
fence. The pitch angle of the neck of a group of dairy cows were measured by 
Schwager et al., (2007) using a magnetometer mounted around the neck of the 
cow. 

 
1.2.2.1 Sensors  
 
Each monitoring system has specific advantages but also problems. GPS 

is a relatively precise sensing system to monitor the location of animals, 
however high energy consumption in addition to frequent connection loss with 
the satellites in environments covered by trees makes it inefficient for animal 
behavior monitoring (Oudshoorn et al., 2006; Schwager et al., 2007). Attaching 
an accelerometer equipped with a data logger to the leg of animals and 
registering the status of the leg in the experiments carried out by Munksgaard et 
al., (2005) demonstrated reliable results but the problem is the use of an offline 
monitoring system. Another drawback of the employed monitoring system by 
Munksgaard et al., (2005) is that the sensors are attached around the leg of the 
animal, and as a consequence, the communication with the aggregation point 
will be lost when the animal lies down. The communication range will also 
significantly decrease when the sensor is covered by mud. Consequently, online 
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low cost low power wireless sensor networks as used by Szewczyk et al., (2004) 
are appropriate. One of the problems introduced in the research carried out by 
Schwager et al., (2007) was the use of magnetometers for measuring the pitch 
angle of the neck as the magnetometers saturates easily in the presence of 
relatively strong magnetic fields. Accelerometers on the other hand are not 
affected by the saturation problem; the main disadvantage of using them is their 
sensitivity to temperature variations. The solution to this problem is addressed 
in this thesis by employing a temperature sensor and calibrating the acceleration 
measurements. The pitch angle of the neck is estimated from the acceleration 
data. A rough estimation of the translational velocity of the animal is achieved 
by post processing the distance estimates measured using received signal 
strength (RSS). 

 
1.2.2.2 Network  
 
In order to aggregate the sensor readings in a wireless sensor network, 

different communication protocols such as ZigBee, Bluetooth, WiFi and radio 
frequency identification (RFID) have been employed in different contributions 
by Polastre, (2004), Roberts et al., (2004), Butler et al., (2004), Munksgaard et 
al., (2005), Szewczyk et al., (2004), Schwager et al., (2007), Ipema et al., (2006) 
and Lokhorst et al., (2007). A brief comparison among the communication 
protocols are presented by Table 2. All these standards use the instrumentation, 
scientific and medical (ISM) radio bands, including the sub-GHz bands of 902–
928MHz (US), 868–870MHz (Europe), 433.05–434.79MHz (US and Europe) 
and 314–316MHz (Japan) and the worldwide acceptable GHz bands of 2.400–
2.4835 GHz (Wang et al., 2006). 
 
Table 2. Comparison between wireless LAN, Bluetooth and ZigBee, (Wang et al., 2006) 

Feature  WiFi (IEEE 802.11b)  Bluetooth (IEEE 
802.15.1)  

ZigBee (IEEE 
802.15.4)  

Radio  DSSS  FHSS  DSSS  
Data rate  11 Mbps  1 Mbps  250 kbps  
Nodes per master  32  7  64,000  
Slave enumeration 
latency  Up to 3 s  Up to 10 s  30 ms  

Data type  Video, audio, graphics, 
pictures, files  

Audio, graphics, 
pictures, files  Small data packet  

Range (m)  100  10  70  
Extendibility  Roaming possible  No  Yes  
Battery life  Hours  1 week  >1 year  

Feature  WiFi (IEEE 802.11b)  Bluetooth (IEEE 
802.15.1)  ZigBee (IEEE 802.15.4)  
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Using radio signals with a lower frequency leads to a longer transmission 
range and a stronger capability to penetrate through walls and glass, but the 
absorption rate will also be higher with lower frequencies. Radio waves with 
higher frequencies are easier to scatter; therefore effective communication range 
for signals carried by a high frequency radio wave may not necessarily be 
shorter than that by a lower frequency carrier at the same power rating.  

Bluetooth (IEEE 802.15.1) is a wireless protocol that is used for short-
range communication. It uses the 2.4 GHz, 915 and 868MHz radio bands to 
communicate at 1 Mbit between up to eight devices and was used for localizing 
a group of dairy cows inside the barn using received signal strength (position by 
post processing using triangulation) in the research carried out by Munksgaard 
et al., (2005).  

WiFi networks use radio technologies (IEEE 802.11) to provide fast, 
reliable and secure connectivity. WiFi networks can be used to connect 
computers to each other, to the internet and to wired networks. WiFi works in 
unlicensed 2.4 GHz (802.11b/g), and 5 GHz (802.11a/h) with 11 Mbits 
(802.11b) or 54 Mbits (802.11a/g). 

ZigBee (IEEE 802.15.4) is a wireless protocol that is used for low data 
rate connectivity among relatively simple devices that consume minimal power 
and typically connect over short distances. It is ideal for monitoring, control, 
automation, sensing and tracking applications for home, medical and industrial 
environments and has been used for animal behavior monitoring purposes in the 
researches carried out by Szewczyk et al., (2004) and Ipema et al., (2006).  

After measuring animal behavior parameters using wireless sensors, the 
behavioral parameters need to be aggregated and sent to infrastructures facilities 
for further processing. Nodes memory in a wireless sensor network is a very 
scarce resource because some of the functionalities must be available all the 
time, therefore, the memory should be used most efficiently. The measured data 
by wireless node can be potentially processed at the local memory of the node 
(Szewczyk et al., (2004)), but it should not affect other necessary applications 
running on the node due to lack of memory.  

 
1.2.3. Classification and behavior modeling  
 
Different classification methods to classify animal behavior have been 

employed in different studies. A K-means classifier was applied to the data of 
location and the pitch angle of the neck of a herd of cattle to classify their 
behavior into two modes, active and inactive, in the research carried out by 
Schwager et al., (2007) and Guo et al., (2006). Decision trees were applied to 



 
Chapter 1 

 
 17 

the data of the pitch angle of the neck of a herd of sheep in the investigations of 
Umstatter et al., (2006). In this thesis, the same approach is applied to the data 
of the pitch angle of the neck and the velocity of the movement of a group of 
dairy cows. In addition, a very simple threshold method is used to classify the 
behavior into two modes as active and inactive. Fuzzy logic and neural network 
classifiers are also applied to the data of the pitch angle of the neck and the 
translational velocity. In addition a Multiple-model adaptive estimation 
(MMAE) approach is applied. In order to detect different behavioral modes and 
the transition among them (e.g. from activity to inactivity or vice versa) using 
the MMAE approach, one or several models describing different behavioral 
modes are required (Ferreira and Waldmann, (2007)). Such a model should be 
able to simulate the actual animal behavior as precise as possible. Among all the 
relevant models introduced in the literature able to model behavior of animals, 
entity and group mobility models received considerable attention due to their 
simplicity (Camp et al., 2004; Ting et al., 2007; Chang & Liao, 2004; Yoon et 
al., 2005; Blakely & Lowekamp, 2004; Bai & Helmy et al., 2005; Sommer, 
2007). The entity mobility models are classified into two groups defined by a 
high degree of freedom and a low degree of freedom models respectively 
(Camp et al., 2004). High degree of freedom mobility models such as random 
walk, random waypoint, random direction and Gauss-Markov mobility models 
and low degree of freedom models such as freeway and city section mobility 
models as described by Camp et al., (2004), Chang & Liao, (2004) and Yoon et 
al., (2005) are briefly presented below.  

 
1.2.3.1 Random walk mobility model 

 
The random walk mobility model, also known as Brownian motion, was 

developed by Einstein to resemble the chaotic movement of entities observed in 
nature (Camp et al., 2004). In the random walk mobility model, the entity 
moves from its current location to a new location by randomly choosing a 
direction and a speed from a predefined range, known as [0,2π] and [minimum-
speed, maximum-speed] respectively. A new direction and speed will be chosen 
either at a constant time interval or after a constant distance being traveled. If 
the entity reaches the boundary of the area in which is able to move, it will 
bounce off the border with a predetermined angle (sommer, (2007)). 

The random walk mobility model is a memory-less model due to 
independency of the current speed or direction to the past measurements. This 
characteristic can generate unrealistic movements such as sudden stops and 
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sharp turns, which infrequently happens in animal behavior science (Oudshoorn 
et al., 2006).  

 
1.2.3.2 Random waypoint mobility model 

 
The main difference between the random waypoint mobility model and 

the random walk mobility model is that pause intervals between changes in 
speed and direction are included. After the pause interval expires, the entity 
chooses a new set of coordinates by choosing a random speed and direction 
(Camp et al., 2004, Sommer et al., 2007, Bai & Helmy et al., 2005).  

 
1.2.3.3 Random direction mobility model 

 
The random direction mobility model performs like the random walk or 

random waypoint mobility models; however an entity would only pause and 
change speed and direction when it hits the border of the area. As opposed to 
the random walk and random waypoint, the random direction model distributes 
an entity’s movement equally around the area (Camp et al., 2004, Sommer et 
al., 2007). 

 
1.2.3.4 Gauss-Markov mobility model 

 
The Gauss-Markov mobility model was designed to vary the level of 

randomness of the movement using only one tuning parameter. In this model, 
each entity is initially assigned a given speed and direction. At fixed time 
intervals, the speed and direction for each entity are updated and new 
movements occur. The new speed nS  and direction nd  at time instance thn  is 

calculated using the values at time instance thn )1( −  and a random variable as 
described by Eq. (1) (Prabhakaran & Sankar, 2006). 
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The variable α  is the tuning parameter with the upper and lower limit set 

as one and zero respectively ( 10 ≤≤ α ). S  and d are constants representing 



 
Chapter 1 

 
 19 

the mean value of the speed and direction as ∞→n . Finally 
1−nxS  and 

1−nxd  
are two random variables chosen from a Gaussian distribution. If α  is set to 
zero, the movement is totally random and thereby equivalent to Brownian 
motion while linear motion is obtained by setting α  equal to one. Values 
between zero and one correspond to different degrees of random movements.  

The Gauss-Markov mobility model is capable of reducing the sudden 
stops or sharp turns encountered in the random walk and the random waypoint 
mobility models because an entity’s past velocity and direction has been taken 
into account when a new speed or direction is assigned (Chang & Liao, (2004), 
Prabhakaran & Sankar, (2006)). 

Based on animal behavior studies, a group of dairy cows rarely walk 
randomly, however, their behavior and their spatial distribution are mainly 
governed by food resources (Bishop-Hurley et al., 2007; Oudshoorn et al., 
2007). The main drawback of representing the behavioral data using random 
models (Brownian motion) is not considering the influence of feed offer on the 
behavioral data. Taking into account that the feed offer can strongly affect 
animal behavior and the input to the random models (e.g. Brownian motion) is 
white noise, models that can include the effect of feed offer as input on the 
behavioral modes are preferred. Consequently, in order to estimate the models 
that could relate the feed offer to the behavioral parameters, different system 
identification techniques (Ljung, 1988) can be applied to the data representing 
pitch angle of the neck and the feed offer.  

 
 
1.2.3.5 Model identification  
 
System identification is the process of developing or improving a 

mathematical representation of a physical system using experimental data 
(Juang, 1988). The analysis could be performed in the frequency domain or the 
time domain. For a long time, frequency domain identification and time domain 
identification were considered as competing methods to solve the same problem 
which was building a model for a linear time-invariant (LTI) dynamic system. 
At the end, the frequency domain achieved a bad reputation because the 
transformation from time domain to frequency domain is prone to leakage 
errors where noiseless data in the time domain resulted in noisy frequency 
response function (FRF) measurements (Zhang et al., 2005). However, it has 
been shown that exactly the same problem could occur in the time domain. It 
was also been shown that by extending the models, a full equivalence exist 
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between both domains (Zhang et al., 2005). Once this equivalence between both 
domains was established, the question was raised whether there is any 
difference between them. It is important to notice that although both domains 
carry exactly the same information, it might be simpler to represent the 
information in one domain compared to the other domain because the same 
information are represented differently (Zhang et al., 2005). 

Among different time domain identification techniques such as 
correlation analysis, state space modeling, black-box modeling and time series 
analysis (MATLAB, 2007), state space modeling is widely used (Tiano et al., 
2007; Elkaim et al., 2002; Juang, 1988). Robust numerical properties and 
relatively low computational complexities make the state space model very 
practical (Elkaim, 2002). Describing a system by a set of first-order differential 
equations, rather than by one or more thn -order differential equations could be 
another reason. Another advantage of state space model analysis over other 
methods is the quick estimation process because only two parameters (the poles 
and the input delay) must be identified.  

Depending on various applications, different types of state space 
modeling could be utilized. Based on projection techniques in Euclidean space, 
subspace identification methods (SIMs) have been one of the main topics of 
research in system identification (Gevers, 2003). Several representative 
algorithms have been published, including canonical variate analysis (CVA, 
Larimore, 1983; 1990), numerical algorithm of subspace state space system 
identification (N4SID, Van Overschee and De Moor, 1994) and multivariate 
output-error state space (MOESP, Verhaegen, 1994). The asymptotic properties 
of these subspace algorithms have also been investigated in the past decade and 
consistency conditions of the estimates have been identified (Deistler et al., 
1995; Peternell et al., 1996; Jansson and Wahlberg, 1998; Bauer et al., 1999; 
Bauer and Jansson, 2000; Knudsen, 2001). Subspace identification methods 
have many advantages compared to prediction error method, such as simplicity 
in parameterization, better numerical reliability and modest computational 
complexity. However, they also have certain drawbacks. One is that subspace 
identification methods may give biased estimate for errors-in-variables; another 
is that many subspace identification methods do not work on closed-loop data 
(Ljung and McKelvey, 1996; Forssell and Ljung, 1999), even though the data 
satisfy identifiability conditions for prediction error methods. Another time 
domain identification technique is the observer Kalman filter identification 
(OKID) algorithm developed to model large space structures (Juang & 
Longman, 1995). The original algorithm was developed to include residual 
whitening and several advances in the model realization algorithms (Phan et al., 
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1992). The OKID algorithm minimizes the error in the observer, which will 
converge to the true Kalman filter for the data set used, given that the true world 
process is corrupted by zero-mean white noise. 

To be numerically efficient and robust with respect to measurement noise 
and in the presence of nonlinearities is an important characteristic of the OKID 
approach (Tiano et al., 2007; Elkaim, 2002). In addition, minimizing the effect 
of neglected dynamics of the system in question is another advantage of the 
OKID (Phan, & Juang, 1992; Juang, & Longman, 1995). The OKID approach 
has been implemented in variety of applications such as unmanned ships (Tiano 
et al., 2007), underwater vehicles (Ferriera et al., 2007) and flexible space 
structures (Juang, 1988). Taking all the mentioned advantages of OKID 
approach over other methods into consideration, this method is employed in this 
thesis to identify the model of the animal behavior in terms of activity and 
inactivity. 

The OKID approach requires relevant input and output data to identify 
the underlying models that can describe animal behavioral modes (activity or 
inactivity) without needing a priori knowledge about the dynamics of the 
behavior. As the behavioral modes can be controlled by feed offer (Table 1), the 
feed offer is considered as the input to the underlying models and the pitch 
angle was selected as the output of the model. 
 
1.3. Contributions 
 
This thesis represents the sum of a number of different contributions in the area 
of animal behavior monitoring. As a thesis, it represents an application study 
using input from disciplines within wireless communication, mathematical 
modeling (system identification) and signal processing. The main contributions 
are: 

• Conception, design and experimental demonstration of a wireless 
sensor network based remote monitoring system capable of monitoring 
animal (dairy cows) behavior parameters (Nadimi et al., 2007) such as 
pitch angle of the neck and the translational velocity of the animal. The 
appropriate communication protocol (ZigBee) for monitoring animal 
behavior in outdoor environments was selected and implemented 
(Nadimi et al., 2007; Nadimi et al., 2008 (a); Nadimi et al., 2008 (b); 
Nadimi et al., 2008 (c)).  

• Conception and introduction of new behavioral parameters to be 
measured as a basis for an indication of animal activity and inactivity 
followed by fusion of the behavioral parameters i.e. the pitch angle of 
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the neck and the translational velocity of the animal (Nadimi et al., 
2007; Nadimi et al., 2008 (a); Nadimi et al., 2008 (b)). 

• Proof of two extensions, one supporting that measuring the grazing time 
in an specific part of the field may be used to accurately estimate the 
grazing time in the whole field (Nadimi et al., 2008 (a)). Another 
extension supports that by monitoring the behavior of a part of the herd 
(23% of the herd in this thesis) may provide an indication of the 
behavior of the whole herd (Nadimi et al., 2008 (a)).  

• Deployment of the methodology to identify precise mathematical 
models describing animal behavior in terms of activity or inactivity 
(Nadimi et al., 2008 (c)) with the pitch angle of the neck and the feed 
offer as output and input of the model respectively (Nadimi et al., 2008 
(c)). Models were identified providing accurate results in terms of 
cross-correlation between the output and the residuals as well as cross-
correlation between the input and the output residuals (Nadimi et al., 
2008 (c)). 

• Description and deployment of various classification methods to 
classify the animal behavior in terms of activity and inactivity. 
Applying a simple threshold method (Nadimi et al., 2007), decision 
trees, fuzzy logic and neural network classifier (Nadimi et al., 2008 (b)) 
and Multiple-Model Adaptive Estimation (MMAE) approach to the data 
(Nadimi et al., 2008 (c)). 

• Conception and design of different experiments (Nadimi et al., 2007, 
Nadimi et al., 2008 (a), Nadimi et al., (2008) (b)) to validate the results 
by means of manual registrations, observations and deployment of 
monitoring systems. 

 
1.4. Thesis outline 
 

This thesis is a collection of papers that represent various steps taken to 
achieve a robust and remote monitoring system to register animal behavior 
parameters and to model and classify the behavior in terms of behavioral modes 
(active or inactive). 

Chapter 1 contains the introduction, motivations and background. The 
potential application domains that can benefit from this thesis are presented. 
Previous work including state of the art is also presented and contributions and 
general overview of this thesis is stated. 
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Chapter 2 presents the system layout, some details of the monitoring 
system, and the preliminary results stating that wireless sensor networks could 
be successfully employed to monitor the animal behavior by registering the 
pitch angle of the neck of the animal together with received signal strength 
(RSS) measurements. In this chapter, simple thresholds are used as criteria for 
classifying the animal behavior into two modes. One threshold is applied to the 
pitch angle measurements and another threshold is applied to the measurement 
of the velocity of the animal.   

Chapter 3 describes strip crop grazing and the registration of pasture time 
in a specific area of the field. This chapter also includes the proof of two 
extensions: an area extension where knowledge about animal presence in a 
limited area is used to predict animal presence in a larger extended area. The 
other extension aims at determining the whole herd presence based on 
registration of a subset of tagged animals. Solving a specific problem regarding 
packet loss using data post processing is also described in this chapter.  

Chapter 4 covers the modeling of the animal parameter (pitch angle of the 
neck and velocity) using a simple Brownian motion model. The performance of 
different classification approaches such as decision trees; fuzzy logic and neural 
network classifier are presented as well. The chapter aims at demonstrating that 
the behavior of the whole herd could be described by a common mathematical 
model as the behavior of some animals were used to predict the behavior of 
other animals in the herd.  

Chapter 5 details time domain system identification techniques applied to 
behavior monitoring. The performance of a Multiple-Model Adaptive 
Estimation approach (MMAE) is studied. As the MMAE approach requires 
mathematical models describing the behavior, system identification techniques 
were used to identify the underlying models of the animal behavior. Taking 
advantages and drawbacks of different identification methods into account, an 
Observer Kalman filter Identification (OKID) methodology is selected. As each 
model requires inputs and outputs, the pitch angle of the neck was selected as 
the output of the model while the feed offer was chosen as the input to the 
model.  

Chapter 6 states the conclusions of this thesis along with 
recommendations for further work. 
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Abstract 
 
The pitch angle of the neck of the cow using a 2-axis accelerometer has been 
measured and the movement velocity was estimated using received signal 
strength, both in a wireless sensor network. Classification based on activity 
(grazing, looking for the grass) and inactivity (lying down, standing) has been 
successfully accomplished. The results have been confirmed by manual 
registration and by GPS measurements. 
 
Keywords: behavior classification, wireless sensor networks, received signal 
strength, Kalman filter, moving window.  
 
Introduction  
 
Novel distributed wireless sensor networks can provide data that allow 
monitoring the motion of individual animals or herds of animals. In this sense, 
the knowledge of the herd behavior phases (lying down, grazing etc.) can be 
classified by measuring relevant animal behavior parameters such as the pitch 
angle of the neck, position and the movement velocity of the animals in the 
field. Such behavior classification is potentially useful as management tools in 
grazing and production optimization (Oudshoorn et al., 2006). 
The general behavior of a herd of animals is well known by farmers but not so 
well documented. Different aspects of the animals’ behavior have been studied 
by different researchers. The positions of cows being in the field were tracked 
and monitored by Butler et al. (2004) while Oudshoorn et al. (2006) made their 
investigation based on the positions and the velocities of the movements in the 
field. Observations of feeding, drinking, and standing behavior change over the 
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period around calving were studied by Gupta et al. (2005). Different behavior 
phases of dairy cows such as standing and lying when they are in the barn were 
evaluated by Munksgaard et al. (2005) and Wilson et al. (2005). However, none 
of these references addressed an online monitoring system that classifies the 
behavior of the cows when they are in the field.  
In order to monitor herd behavior, data relevant to their behavior should be 
measured, aggregated, processed and finally sent through a network to 
infrastructure facilities. In animal science applications, the natural mobility of 
the herd makes wireless sensor networks the perfect candidate for such 
monitoring of animal behavior parameters. A herd of animals differs in many 
ways from man-made system of mobile robots because the behavior of each 
individual is governed by unpredictable natural instincts and the environment in 
which it is placed (e.g. motion patterns influenced by food sources). 
Motion parameters can be measured using different types of sensors and 
consequently different strategies. GPS is the most popular system employed in 
outdoor application to register position (Butler et al. (2004), Oudshoorn et al. 
(2006)) but energy consumption makes it impractical in many applications. 
Munksgaard et al. (2005) classified cows’ behavior in two phases as standing or 
lying down using an accelerometer attached to the leg of the cow and an offline 
data logger in a barn which causes problems addressed in their paper, while 
Umstatter et al. (2006) used an offline pitch-roll sensor around the neck. Sallvik 
et al. (2005) used video processing combined with signal strength, and WiFi 
was employed as the wireless communication protocol.  
The main objective of the present paper is to address online robust behavior 
classification using a wireless sensor network. To fulfill the objective, ZigBee 
was implemented as the wireless communication protocol and each node was 
equipped with an accelerometer in order to measure the pitch angle of the neck. 
The nodes were also programmed to measure received signal strength (RSS) 
allowing the distance between sensors and gateway to be estimated. The 
displacement (and by post processing the velocity) using received signal 
strength (RSS) was estimated afterwards.  
The organization of this paper is as follows: section 2 presents the 
problem and a short review on wireless sensor networks. Section 3 
describes materials and methods that have been used to classify the 
behavior phases. Section 4 describes the experimental setup and results 
and finally, the conclusions are presented. 
 
Problem Statement & Background 
Problem statement 



Section 2.2: Problem statement & background 

 
32 

In this paper, the problem of online robust behavior classification using a 
wireless sensor network has been addressed. The main problems reported in the 
research done by Umstatter et al. (2006) in which an offline pitch-roll sensor 
was employed were: 

• 1) Local, non-representative peaks may occur because only the 
minimum value of the pitch angle of the neck is recorded during each 
sampling interval.  

• 2) Disability of online measuring.  
These two problems can make the classification unreliable therefore they are 
addressed in this paper and solved by using a moving average window together 
with velocity estimation using RSS. The third problem which occasionally 
happens in monitoring moving nodes in outdoor environments using wireless 
sensor networks is packet loss. An efficient solution to the packet loss problem 
is to predict the lost states using a Kalman filter which is presented in this paper. 
 
Background 
Location systems in outdoor environment have been a research interest in the 
last years. The methods for locating a target in a geographic area based on 
received signal can be classified in three different groups (Duarte-Melo and Liu, 
(2003)): 

• Time of arrivals (TOA) algorithms 
• Angle of arrivals (AOA) algorithms 
• Received signal strength (RSS) algorithms 

In order to get an accurate estimate of the distance between nodes based 
on TOA and AOA algorithms, additional localization hardware such as 
bi-directional antenna and high precision clock synchronization is 
required while RSS algorithms are based on the fact that a radio signal 
attenuates with increasing distance from the emitter. If the emitted power 
is known, measuring the incoming power at the receiver, the distance 
between the transceiver and receiver can be estimated. Nevertheless, the 
medium exerts a substantial influence on the arriving signal power: 
obstacles attenuate the signal and produce reflections. Other signals or 
even the reflections of the signal of interest may interfere with the 
emitted signal, which alters the signal’s power (Arias et al., 2004). In 
order to estimate the distance from RSS values, range measurements 
should be done, i.e. estimating the distance between two nodes, given the 
signal strength received by one node from the other. RF-based signal 
strength measurements are usually prone to inaccuracies and errors and, 
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hence, calibration of such measurements is inevitable before using them 
for localization. For this algorithm to work, extensive preliminary field 
measurements and calibrations were carried out as discussed in the 
following. 
 
Materials and Methods 
 
Materials 
MPR2400 Micaz sensor motes from Crossbow were used for the experiments in 
this paper. They have a Chipcon CC2420 radio, which uses 2.4 GHz IEEE 
802.15.4/ZigBee RF transceiver with MAC support and provides a received 
signal strength indicator (RSSI) output that is sampled by an 8-bit ADC. 
MTS310 sensor boards which are equipped by 2-axis accelerometer were used 
to measure the pitch angle of the neck of the cow. TinyOS was running on the 
motes and Sensor-MAC (S-MAC) was used for communication. The RSS data 
and the accelerometer readings were encapsulated in the same packet. This 
designed packet structure can solve the problem reported by Nielsen et al. 
(2005) in which two different packet structures were used to disseminate the 
data of RSS and acceleration. If each sensor disseminates two kinds of packets 
for the relevant data, for instance one for RSS and the other one for 
acceleration, losing one of them make the other packet useless. The sampling 
rate for the packet dissemination was chosen as 1 Hz (Nadimi et al., 2006). 
The CC2420 radio supports up to 255 different transmission power levels and 
allows for a programmable transmission frequency. In order to minimize the 
number of variables in the experiment, the RF transmission frequency and the 
transition power were respectively fixed at a single frequency band and at the 
maximum transmission power. 
 
Methods  
Applying Kalman filter to RSS and acceleration measurements 
 
As mentioned earlier, received signal strength at the gateway is different from 
transmitted signal strength, due to attenuation and several noise factors. The 
Kalman filter method can be used to calculate an improved RSS estimate, by 
reducing the influence of the measurement noise component. Due to high rate 
energy absorption in outdoor applications, packets either arrive or are lost 
within a sampling period following a Bernoulli process. A Kalman Filter, 
however, still provides estimates in case of intermittent observations (Sinopoli 
et al., 2004). With these assumptions, the Kalman filter equations are as 
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follows: 
 

• Time update equations:                      
            kkk xx ˆˆ 1 ϕ=−

+        (1) 
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where k  is the time instant, −

kx̂ , kx̂  are a priori and posteriori state estimate 

respectively, −
kP  , kP are a priori and posteriori estimate of error variance 

respectively, and kK  is the Kalman gain. kQ  is the process noise covariance 
and kR  is the measurement noise covariance. kγ is the arrival sequence which is 
modeled by a Bernoulli process (1 if arrived; 0 if lost). The process has been 
modeled by a discrete time Wiener process. 
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where, ),0( kk QNw ∈ is the zero mean process noise and ),0( kk RNv ∈ is the 
zero mean measurement noise. kH and kϕ are set to 1 independently of time 
( k ). Kalman filter with intermittent observation estimates the lost states due to 
the packet loss and reduces the effect of measurement noise. 
 
Acceleration measurements analysis 
The behavior of the cows is classified into two different phases, active (grazing, 
looking for grass) and inactive (lying down, standing). In the active period, the 
cows are grazing or looking for the grass so the neck of the cow is down and the 
movement velocity is nonzero while in inactive phase, the neck of the cow is 
almost horizontal and the movement velocity is zero. Measuring the pitch angle 
of the neck of the cow together with the movement velocity is the basis for the 
behavior classification. 
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To measure the pitch angle of the neck,θ , a 2-axis accelerometer was installed 
around the neck of the cow (Figure 1). Equation relating acceleration and pitch 
angle can be simply calculated using inverse sine and cosine functions using the 
fact that the accelerometer measures the components of the gravity acceleration 
parallel to the yx − plane. Based on the measurements of the pitch angle of the 
neck and the results from Umstatter et al. (2006), the range of θ  is between -70 
to -40 degrees when the cow is grazing or looking for the grass and between -30 
to 0 when the cow is lying or standing where 0 is horizontal. Considering the 
time length of lying down is an important factor for classification. During the 
grazing period, cows move their heads upwards with certain intervals and 
thereby made the pitch angle readings close to zero during very short periods of 
time (Umstatter et al., 2006). To avoid classifying these events as parts of lying 
or standing phases, the data were low-pass filtered using a moving average 
window. Figure 2 shows the graph of pitch angle after using a moving window 
with the length of 1000 seconds (placed symmetrically around the time instant 
of interest). The window length was chosen less than the length of inactive 
period to be sure that these periods would be detected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RSS measurement analysis 
In order to get an accurate estimate of the distance between nodes based on 
received signal strength, extensive preliminary field measurements and 
calibrations were carried out. Figure 3 shows the graph of signal strength versus 

Figure 1. Wireless node around the 
neck of the cow 

Figure 2. Pitch angle of the neck. The 
data from wireless sensor network curve 
is compared to the manual registration 
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distance for one of the nodes. The received power level can be converted to a 
distance estimate by using a radio wave propagation model (Kotanen et al., 
2003). A simple log-distance model was used: 
 

)4log(20)log(20log10 πλ −+++−= RxTxRxTx GGPPdn   (7) 
 
In equation (7), [ ]dBmPTx and [ ]dBmPRx are the transmitted and received power 
levels, respectively. [ ]dBiGTx and [ ]dBiGRx are antenna gains of the transmitter 
and the receiver respectively. [ ]mλ  is the wavelength, and [ ]md is the distance 
between transmitter and receiver. The exponent n is assumed to attain a value 
of 2 for outdoor environments. Calculating antenna gain in equation (7) is not a 
simple procedure so instead of equation (7), a propagation model has been fitted 
to the experimental data. In this model, the last four terms in equation (7) were 
combined into one constant α  (equation 8) which was estimated by 
minimization the sum of squared differences between the experimental RSS and 
the modeled RSS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. RSS vs. distance for 
fitted propagation model and 
experimental data. 

Figure 4. Displacement using RSS 
method. The threshold indicates the 
activity and inactivity phases.  
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α+−= RxTx PPdlog20       (8)  
 
Using equation (8) and the moving average filtered RSS values (window length 
of 1000 seconds), the graph of estimated distances walked per sampling time 
versus time has been shown in Figure 4. The definition of distance walked over 
one sampling interval (displacement) and the distance from the gateway is 

Figure 5. The comparison between distance walked estimated by RSS 
                ( d ) and measured by GPS ( xΔ ). The distance between the node 
                and the gateway is estimated as ( dr +1 ) using RSS and measured 

                as 2r using GPS 

Figure 6. Distance from the gateway 
measured by GPS vs. estimated by 
RSS. 

Figure 7. Displacement Measured 
by GPS vs. estimated by RSS 

5 10 15 20 25 30
5

10

15

20

25

30

35

distance estimated by RSS (meter)

di
st

an
ce

 m
ea

su
re

d 
by

 G
P

S
 (m

et
er

)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

displacement estimated by RSS (meter)

di
sp

la
ce

m
en

t m
ea

su
re

d 
by

 G
P

S
 (m

et
er

)

Base 
station  

Position 
before 

Real Position 
after moving 

Monitored 
Position after 
moving (RSSI)

r1 

r2 

d 

Δx 



Section 2.4: Experimental setup and results 

 
38 

illustrated in Figure 5.  
Each cow was equipped with a GPS as a reference (Figure 1) to measure the 
position and the distance walked by the cow at each sample time. Figure 6 
shows the measured distance by GPS between the cow and the gateway versus 
the distance estimated by RSS algorithm. The distance walked by the cow over 
each sample interval measured by GPS and estimated by RSS is presented in 
Figure 7. 
 
Experimental setup and Results 
 
Experimental setup 
The experiment was done during 3 days with 4 cows. The experiment was 
carried out 5 hours per day as an average. Each cow was equipped with a 
wireless node and a GPS as a reference. The shape of the field was rectangular 
( 3560× meters). Each day, new field with new grass was provided for the 
cows. The gateway was installed in the middle of one of the longest sides. 
Manual registration of the behavior was carried out as well. 
Results 
Table 1 presents the results of classification based on the measurements of pitch 
angle, velocity and both together. Success rate is determined by comparing the 
results of manually registered behavior with the monitored results from wireless 
nodes together with the introduced thresholds in Figure 2 and Figure 4. 3 hours 
observations in 3 different time intervals per day for each cow were 
accomplished. The classification success rate in Table 1 when both pitch angle 
and velocity have been employed was considered as a successful classification 
if both pitch angle and velocity have classified the behavior correctly. The 
average success rate to classify both active and inactive periods during the 
experiment was 80% while for classifying in terms of duration of the activity 
was 74%. Figure 8 shows the results of the classification based on proposed 
method for one of the cows. As it can be seen from Figure 8, in the active 
period, the pitch angle is in the range of -70 to -30 and the velocity is nonzero 
while in inactive period, the neck is almost horizontal and the velocity is close 
to zero (less the threshold in Figure 4). The distance between the nodes and the 
gateway using RSS was overestimated when compared to the distance 
determined by GPS (Figure 6) because the fitted propagation model (Equation 
8), overestimated the distance as a total. In contrast to distance, the estimated 
walked distance using RSS algorithm (Figure 7) is an underestimation of the 
measured GPS displacement by principle shown in Figure 5. 
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Table 1. The comparison between classification success rates based on pitch angle, walked distance per 
sampling interval and both. 
  Day 1   Day 2  

Sensor 
No# 

Success rate 
of 

classification 
only based on 

pitch angle 

Success rate 
of 

classification 
only based on 

velocity 

Success rate 
of 

classification 
based on 

pitch angle 
and velocity 

Success rate 
of 

classification 
only based on 

pitch angle 

Success rate 
of 

classification 
only based on 

velocity 

Success rate 
of 

classification 
based on pitch

angle and 
velocity 

1 88% 88% 88% 100% 100% 100% 

2 100% 91% 91% 65% 70% 61% 

3 100% 71% 71% 79% 100% 79% 

4 100% 85% 85% 65% 100% 65% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion  
 
A 2-axis accelerometer was used to estimate the pitch angle of the neck of the 
cow while signal strength in a wireless sensor network was used to estimate 
movements of the cows. Data for pitch angle as well as movement estimation 
was transmitted through a wireless sensor network. Based on these estimates, 
the cows’ behavior could be successfully classified as either active (grazing, 
looking for the grass) or inactive (lying down, standing). The results have been 

Figure 8. Behavior classification based on pitch angle measurements  
               and walked distance estimate using RSS algorithm.  
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confirmed by manual registration and by GPS measurements. 
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Abstract  
The problem of online monitoring of cows’ presence and pasture time in an 
extended area covered by a strip of new grass using wireless sensor networks 
has been addressed. The total pasture time in the extended area was estimated 
by measuring the pasture time in a specific part of that area called the gateway 
connectivity area where sensor nodes mounted on the cows could communicate 
directly with a gateway. Packet loss causes a node that was present in the 
connectivity range of the gateway frequently to be classified as an absent node. 
Therefore, a moving average window with optimal window length and 
threshold was designed to minimize the misclassification. As the measured 
pasture time in the gateway connectivity area was an underestimation of the 
total pasture time in the extended area, an area based correction factor, same for 
all individual animals was applied.  
As only 23% of the animals in a herd were equipped to be monitored by sensor 
nodes, investigations to evaluate if the monitored number of animals could 
represent the whole herd were of great importance. To accomplish the 
investigations, the number of monitored cows by sensor nodes and the total 
number of cows (with and without sensor nodes) in the extended area were 
counted manually each minute over a period of three hours during three days. 
Pearson chi-square test of goodness of fit showed that the number of cows in the 
extended area was normally distributed. Furthermore, a statistical test showed 
that the mean number of monitored cows in the extended area and the mean of 
total number of cows in the extended area corresponded with the percentage of 
monitored cows by sensor nodes in the herd (23%). 
 
Keywords: Wireless sensor networks; ZigBee; Packet delivery performance; 
Received signal strength; Pearson chi-square test; Animal presence monitoring; 
Pasture time. 
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I. 0BINTRODUCTION 
 
Public perception, animal welfare, and milk quality call for a continued use of 
grasslands for grazing in dairy farming (Torjusen et al., 2001). To meet the 
public concern some milk producers offer incentives to dairy farmers if they let 
their dairy cows graze, but for many farmers this is impossible due to livestock 
management and control problems. Management and control relies on 
monitoring of the herd, which is significantly complicated by the inherent 
distribution of the animals as well as the outdoor location. Successful grazing in 
developed agriculture calls for automated and efficient monitoring and control 
of the animals. The monitoring should allow us to establish a better 
understanding of animal behavior, detect individuals with potential health 
problems, and generally optimize the grazing process, all things that potentially 
would have a significant impact on practical farming.  
The general behavior of a herd of animals is well known by farmers but not so 
well documented. Different aspects of animal behaviour have been studied by 
different researchers. The position of animals in the field were tracked and 
monitored by White et al. (2001), Schwager et al. (2007) and Butler et al. 
(2004) while Oudshoorn et al. (2007) made investigation based on the positions 
and the velocities of the movements in the field. Different behavior phases of 
dairy cattle were evaluated by Munksgaard et al. (2005), Wilson et al. (2005), 
Nadimi et al. (2007) and Bishop-Hurley et al. (2007). None of these references, 
however, addressed an online monitoring system that registers the time that 
animals spent in specific areas of the field. Such information would be useful in 
strip crop grazing systems, where the animals are offered a controllable section 
of e.g. new grass at regular intervals (Oudshoorn and Nadimi, 2007). The total 
number of animals roaming in a particular area of the field and their total 
pasture time in that area can be an indicator of the grass quality, and quantity 
and may help determine the right time to provide access to a new strip. From a 
strip crop grazing point of view, the question is if we can set up an automatic 
monitoring system that can identify animals present in the new strip, determine 
how long time they spend there and based on that say something about the need 
for a new strip of grass. In addition it is interesting to investigate if the whole 
herd has to be monitored or if a subset of the herd can be used as an indicator of 
the need for new feed. Monitoring only a subset of a herd might be more 
economical and practical. 
The most popular system for outdoor localization is based on the Global 
Positioning System (GPS) (Butler et al. 2004 and Oudshoorn et al. 2007) but 
energy consumption and cost makes it difficult to apply in practical farming. In 
addition satellite connection loss has been reported frequently in the research 
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done by Oudshoorn et al. (2007). A simpler alternative is based on radio 
frequency identification (RFID) tags (Ng et al., 2005). Locating RFID readers 
strategically in the field allow animals entering a specific area to be registered. 
The main drawbacks of RFID technology are the relatively short 
communication range (1-2 m ) and the fact that the devices are passive limiting 
future extensions such as temperature and motion monitoring. Monitoring 
relatively large extended areas (1800-3000 2m ) using RFID tags also demand a 
significant infrastructure. A more natural candidate for an online monitoring 
framework is based on wireless sensor network technology.  By providing each 
animal with a sensor node, which incorporates computation, sensing, and 
wireless networking capabilities allows relevant health parameters and location 
to be collected at regular intervals on each individual. Information can flow 
across the group as in a modern communications network, using low-power 
radios with well-designed protocol stacks thereby extending the communication 
range of system significantly at no extra cost. This permits data to be aggregated 
across the network and forwarded to control and management systems. Local 
computational capabilities on the individual sensor node allow complex filtering 
and triggering functions, and application or sensor-specific data compression 
algorithms. The application of sensor networks for animal monitoring was 
addressed by Szewczyk et al. (2004), Wang et al. (2006), Bishop-Hurley et al. 
(2007), Nadimi et al. (2007) and Schwager et al. (2007).  
The objectives of this research were to demonstrate registration of pasture time 
in a specific area (a strip with new grass) using a ZigBee (Szewczyk et al. 2004) 
based wireless sensor network and single hop connectivity. Another objective 
was to prove two extensions: An area extension where knowledge about animal 
presence in a limited area is used to predict animal presence in a larger extended 
area. The other extension aims at determining the whole herd presence based on 
registration of a subset of tagged animals. Yet another objective was to solve a 
specific problem regarding packet loss using data post processing. 
Each node in the network was programmed to transmit data when located within 
communication range of a gateway in the area with new grass as illustrated by 
Figure 1. 
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The principle is single hop connectivity that is the gateway only registers 
presence when a specific node is within the communication range and actively 
participates in handshaking communication (Lewis, 2004). In this research, 
multi hop connectivity as used in modern communication networks was not 
utilized. 
As the area defined by the communication range does not necessarily cover the 
same area as the new grass strip, an area based correction factor was applied to 
the measured time in the gateway connectivity area to estimate the total pasture 
time in the new grass strip.  
Most researches (e.g. White et al. 2001, Butler et al. 2004, Munksgaard et al. 
2005, Nadimi et al. 2007 and Oudshoorn et al. 2007) only monitored a portion 
of a herd of animals but the monitored behavior was generalized to the whole 
herd without any reliable proof. However, it is of great importance to 
demonstrate that the monitored subset of a herd can represent the whole herd. In 
the present paper, a statistical test is suggested to determine if the number of 
monitored animals in the new grass strip could represent the whole herd. 
The remainder of this paper is organized as follows. Section 2 describes 
materials and methods that have been used to monitor the pasture time and 
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animal presence in an extended area. Section 3 describes the experimental setup 
and results and finally, the conclusions are presented. 
 

II. MATERIALS & METHODS 
Materials 
 
MPR2400 Micaz sensor motes from Crossbow were used for the experiments in 
this paper. They have a Chipcon CC2420 radio, which uses 2.4 GHz IEEE 
802.15.4/ZigBee RF transceiver with MAC support. TinyOS was running on the 
motes. In order to register the absolute time when the nodes were within range 
of communication with the gateway, the gateway was programmed to register 
the arrival time of the packets disseminated by the nodes as a time stamp in the 
received packet. When a node desired to transmit a message, handshaking 
protocols with the destination node were used to improve reliability. The 
destination and gateway transmitted alternately as follows: request to send, 
ready to receive, send message, message received. The sampling rate for the 
packet dissemination was chosen as 1 Hz (Nadimi et al. 2006). 
The CC2420 radio supports up to 255 different transmission power levels and 
allows for a programmable transmission frequency. In order to minimize the 
number of variables in the experiment, the RF transmission frequency was fixed 
at a single frequency band (2.48 GHz) while the transmission power (1 
milliwatt) was selected to ensure that the nodes were able to communicate with 
the gateway only in a certain area, i.e. a part of the new grass strip (gateway 
connectivity area). 
 
Methods 
 
Outdoor wireless communication channels as used in this work are inherently 
unreliable and the effect of packet loss can not be neglected. Here, the basic 
idea is to use arrival of packets as the only indicator for classifying nodes as 
being within or outside the gateway communication range. Packets 
disseminated by each sensor node contained the identification number (node ID) 
of the node. The packet arrival time was registered by the gateway and indicated 
the presence of the node within the communication range of the gateway at that 
time instant. In order to minimize misclassification due to packet loss in the 
presence of obstacles, a moving average window was applied to packet arrival 
sequence. An optimization problem was set up to find the optimal window 
length and the optimal threshold for classification. 
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Estimation of window length and threshold value  
Packet delivery performance  
 

Once the nodes were deployed, each of them followed a sequence of 
instructions to gather information about its surroundings and to transmit data 
packets toward the gateway. Intermittent communication due to poor 
connectivity with the transceiver, presence of obstacles as an interferer and 
general unreliability in the communication channels caused loss of packets. As 
an example, packet delivery performance for one of the nodes in the 
communication range of the gateway is represented in Figure 2 in which 1 is an 
indicator of packet arrival and 0 indicates packet loss. The packet loss in this 
example was 312 out of 1000 packets or 31.2%. 
As it can be seen from Figure 2, it would lead to a high misclassification rate if 
packet loss was taken as an indication of the cow being outside the 
communication range of the gateway. Therefore a moving average window and 
a threshold operation were employed to minimize misclassification, i.e. if the 
average of the packet delivery values in a window around a given time instant 
was larger than a given threshold; the cow was classified as being within the 
communication range of the gateway at that time instant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Example of packet delivery performance in the network 
when the sensor node is within the communication range of the 
gateway. 1 indicates packet arrival and 0 indicates packet loss. 
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To calculate the optimal window length and threshold value, another 
experiment was carried out in which the gateway was programmed to measure 
the received signal strength (RSS) of the incoming packets to estimate the 
distance between sensor nodes and the gateway. Assuming that the RSS 
distance estimate is used as ground truth and based on packet delivery 
performance, an optimization problem for estimation of the optimal window 
length and the threshold could be formulated. The following sections present the 
details of the approach applied. 
 

RSS measurement analysis 
 

In order to convert the received signal strength to an accurate estimate of the 
distance between the gateway and the node, extensive preliminary field 
measurements and calibrations were carried out. Figure 3 shows the graph of 
signal strength versus distance for one of the nodes during calibrations. The 
received power level can be converted to a distance estimate by using a radio 
wave propagation model fitted to the experimental data (Kotanen et al. 2003 
and Nadimi et al. 2007).  
 
  CPPd RxTx +−=log20      (1)
  
where [ ]dBmTxP  and [ ]dBmRxP  are the transmitted and received power levels, 
respectively. [ ]md  is the distance between transmitter and receiver. In this 
model, constant C  represents the antenna gain and wavelength effects and was 
estimated by minimizing the sum of squared differences between the 
experimental RSS and the modeled RSS. As all the nodes have different 
characteristics such as different antenna  
gains or different radios, the graph of received signal strength versus distance 
(Figure 3) is not the same for all the nodes. Therefore, the optimal constant C  
in equation (1) is different from one node to another one (the range varied 
between -60 dBm to -55 dBm). In the present research, the constant C  
calculated for one of the nodes (-56 dBm) was selected as the optimal constant 
representing antenna gain and wavelength effect for all the nodes. This strategy 
tends to diminish precision of the results of each individual node (curve fit and 
estimated distance between nodes and gateway) and consequently the whole 
system. However that is the practical solution to implement a similar monitoring 
system to a large herd of animals with a large number of nodes as it will be time 



Chapter 3 

 
51 

and energy consuming process to estimate the optimal constant C  for all the 
nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To estimate the distance between sensor nodes and the gateway in case of missing RSS 
data due to packet loss, a simple Kalman filter with intermittent observation was 
implemented to the RSS data (Sinopoli et al. 2004). Modeling the data as a discrete time 
Wiener process, the Kalman filter was designed to estimate the states not observed due 
to packet loss. Estimated distances between a sensor node and the gateway during an 
experiment with cows in the field are presented in Figure 4. 
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Figure 3. RSS versus distance for fitted optimal propagation model and 
experimental data. Black curve: propagation model, Blue curve: 
experimental data. Arrows as indicator of error bar (standard deviation) at 
each point. 
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Optimal window length and threshold 
 

The packet arrival sequence )(tγ  ( K,2,1=t  is time (sec); 1)( =tγ  if a packet 
arrived at time t , and 0)( =tγ  otherwise) was filtered by use of a moving 
average window of length WL (odd integer) to obtain a smoothed sequence 

)(tγ ′ : 
 

∑
=

+
+−=′
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1
)

2
1WL(
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1)(

i
itt γγ     (2) 

 
To classify a node as being inside or outside the gateway communication range 
at time t , a threshold T  was introduced, i.e. the node was classified as inside if 

Tt ≥′ )(γ  and outside if Tt <′ )(γ . In order to find the window length, WL 
and threshold, T  that minimized the likelihood that a node was wrongly 
classified (i.e. classified as being within the connectivity range 0r  when it was 
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Figure 4.  Example of estimated distance between 
sensor node and the gateway in field experiment with 
cows.
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not and vice versa) a minimization criterion was defined:  
 

∑= )(min 2

,WL
teJ

T
      (3) 

 
where the classification error )(te  was defined as:  
 

⎩
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⎧ ≤<>≥−

=
otherwise0

))(ˆand)('(or))(ˆand)('(if)('
)( 00 rtrTtrtrTtTt

te
γγγ

         (4) 
 
In equation (4), )(ˆ tr  is the RSS based estimate of the distance between a node 
and the gateway and 0r  (gateway connectivity range) was set to 25 meters 
based on packet reception rate (example in Figure 5). The selected value of  0r  
reflects a compromise: on one hand a large value of 0r  was desired to make the 
covered circle as large as possible; on the other hand 0r  should not be large to 
avoid unreliable classification because of low reception rate at high distances 
from the gateway (Figure 5). Among all the facts which can intensify packet 
loss rate such as environmental condition, distance, relative height between 
transceiver and receiver, transmission power, data rate, packet size and the 
routing protocol; environmental effect and the relative height are mainly the 
factors that caused high rate packet loss. While the experiment and therefore the 
calibration process were accomplished in rainy days in the field (outdoor), low 
reception rate is expected due to high humidity rate where the radio waves can 
be more easily absorbed by the water and the wet grass. As the curve of packet 
reception rate versus relative height between sensor nodes and the gateway 
ascends until a certain relative height and then reaches the steady state, 
relatively short distance between nodes and the ground and the gateway (40 cm) 
could be a reason for high packet loss rate. 
 

Pasture time estimation 
 

In order to monitor the pasture time in the strip of new grass, the field was 
extended by moving a section of the fence. As it is shown in Figure 6, the 
rectangular extended area, Δ  (which is the strip of new grass) was not entirely 
covered by the gateway connectivity area which implies that time spent in that 
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area was not the same as actual pasture time in Δ . Assuming that the 
connectivity between the sensor nodes and the gateway was uniform in all 
directions, the area of connectivity would be a half circle area with radius 0r . 
By registering packet arrival time (time stamp) at the gateway followed by 
moving average filtering and threshold classification, the pasture time in the 
gateway connectivity area could be monitored.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Assuming a uniform distribution over Δ , the pasture time ET  in the extended 
area as a function of pasture time CT  in the gateway connectivity area is given 
by: 
 

CE KTT =          (5) 
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Figure 5. Example of packet reception rate versus distance 
from gateway for a node (no obstacles between node and 
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where constant K  is the ratio of the extended area (Δ ) to the gateway 
connectivity area ( 2

0rπ /2). 
Since the constant K  depended only on fixed geometrical quantities, it was the 
same constant for all individuals in the herd. 

 

 
 
Testing the hypothesis that monitored cows could represent the 
entire herd 

 
To estimate pasture time for the entire herd of cows based on data from the 
monitored subset of the herd (23%), it was assumed that the monitored cows 
could represent the whole herd. The validity of this assumption was examined 
by statistical tests that involved two random variables: 1D , the number of 
monitored cows in the extended area, and 2D , the total number of cows in that 
area. Both of these variables were sampled each minute over three hours by 
manual observation. First, it was tested if the distributions of 1D  and 2D  could 
be approximated by normal distributions. Then it was tested if the ratio between 
the means of 2D  and 1D  was equal to the ratio k  between the total number of 

cows and the number of monitored cows ( 3.47
30 ==k ). If the result of this 
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test was positive, it would indicate that the monitored cows could represent all 
cows in the herd (with respect to pasture time in the extended area).  
 

Test of the normal approximation 
 

Pearson's chi-square test ( 2χ ) is one of a variety of chi-square statistical 
procedures whose results are evaluated by reference to the chi-square 
distribution (Chernoff and Lehmann, 1954). Pearson's chi-square is used to 
assess tests of goodness of fit which establishes whether or not an observed 
distribution differs from a theoretical distribution. Pearson chi-square tests were 
applied to the samples of 1D  and 2D  to evaluate whether the variables were 
normally distributed. 
 

Testing if the monitored cows was a representative sample 
of the herd 
 

In order to evaluate if the monitored subset of the herd could represent the 
whole herd, the following null hypothesis 0H  and alternative hypothesis 1H  
were set up:  

121

120

:
:

μμ
μμ

kH
kH

≠
=

   s.t.  2
2

2
1 σσ ≠  (6) 

 
where 1μ  and 2μ  are the theoretical and unknown mean values of 1D  and 2D  
respectively. 1σ  and 2σ  are the theoretical and unknown standard deviations of 

1D  and 2D  and k  is a constant representing the ratio of the number of 
monitored cows to the total number of cows. In order to define significance 
level (α ), the probability function has been introduced:  
 
 ) trueisreject( 00 HHp=α      (7) 
 
To reject the null hypothesis, modifications to the standard test were required to 
incorporate the ratio k . A modified version of the two-sample t  test was 
applied. The result is a criterion for rejection, vtt ,210 α−>  where vt ,21 α−  is the 

21 α−  quantile in the Student’s t-distribution with v  degrees of freedom. The 
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t-statistics 0t  and the degrees of freedom v  are defined as: 
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In equation (8) and (9), 1y  and 2y  are the sample means of 1D  and 2D , 
respectively while 1s  and 2s  are the sample standard deviations of 1D  and 

2D . The sample sizes for 1D  and 2D  are 1n  and 2n  respectively. 
 

III. EXPERIMENTAL SETUP & RESULTS 
 

Experimental setup 
 
The case study in the presented experiment was a group of dairy cows.  The 
experiment was carried out during 6 days with 30 cows 6 hours per day on 
average. Data from three days of the experiment were used for estimation of the 
optimal window length and threshold of the filter used for the packet arrival 
sequence. The packet arrival sequence from the remaining three days were 
filtered and applied for estimation of pasture time in the strip of new grass. 
During the calibration process, the nodes were placed at fixed distances (1 to 30 
meters far from the gateway) for 5 minutes at each distance. The sampling time 
was set to 1 second and it was expected to receive 300 samples per distance 
while the real number of packets received at each distance is presented by 
packet reception rate in Figure 5. The experimental data in Figure 3 represents 
the mean value of the readings taken at each distance. 
Seven out of 30 cows were equipped with wireless nodes around the neck. The 
node on the collar as well as collar itself was fixed very well to prohibit any 
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slide to right or left side. The antenna pointed the sky in order to have better 
communication between nodes and the gateway. The antenna was ½ wave 
dipole antenna, with an MMCX connector. The gateway was installed 1.2 
meters above the ground in a location as indicated in Figure 1.  
The shape of the extended area was rectangular and the area was 60 meters by 
40 meters while the shape of the gateway connectivity area was a half circle 
with a radius of 25 meters. Each day, a new extended area covered by new grass 
was provided for the cows. Manual registrations of absolute time of day when 
each of the 30 cows was in the extended area and the connectivity area were 
carried out 3 hours per day during 3 days. Furthermore, the number of cows 
roaming in the extended area was registered manually with a sampling interval 
of one minute during different grazing periods (e.g. first grazing period starts 
when the animal enters the field and second grazing period starts after first lying 
down period). 
 
Results and discussion 

 
Pasture time monitoring 
 

Minimizing the cost function in equation (3) resulted in an optimal window 
length and threshold of 155 seconds and 0.388, respectively. The result of 
applying the moving average window with the optimal window length and the 
threshold to the packet delivery performance (Figure 2) is presented by Figure 
7. While the delivery rate in the packet delivery performance was 68.8% (31.2% 
packet loss), applying the optimal window improved the results of packet 
delivery to 92%. Moving average filtering and subsequent classification of 
presence inside or outside the connectivity area were compared to manual 
registrations and resulted in errors as exemplified in Figure 8 and Figure 9 for 
two different nodes. Values of 0 and 1 indicate correct and incorrect 
classification, respectively.  
The percentages of successful classification for the entire experiment are 
presented in Table 1.  
In order to estimate the total pasture time length for each of the monitored cows 
in the extended area using estimated total pasture time length in the gateway 
connectivity area, equation (5) was applied with 44.2=K  as the extended area 
was 2m2400  and gateway connectivity area was 2m74.981 . Statistical 
analysis of the cows’ GPS positions confirmed that they were uniformly 
distributed over the extended area. 
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Table 2 shows the estimated pasture time as percentage of true pasture time for 
all the monitored cows during the experiment. As it can be concluded from 
Table 2, the estimated total pasture time using equation (5) was always an 
underestimation of the real total pasture time. One reason for this could be that 
the packet loss rate was generally higher in this experiment than it was in the 
experiment used for finding the optimal window length and classification 
threshold. Apart from the proposed moving average window, a potential 
solution for the problem of packet loss could be as introduced by Guo et al., 
(2006) in which an onboard flash memory was used in their designed nodes to 
store considerable amounts of data. Stored packets would then be sent to the 
gateway as soon as nodes could communicate to the gateway. However, this 
solution to the problem of packet loss would require extra hardware facilities 
and causes delay in classifying the presence or absence in the communication 
range of the gateway, this relatively short delay will not have a critical influence 
on the performance of the monitoring system.  
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Figure 7. Filtered packet delivery performance by the optimal moving average 
window. The threshold (0.388) is presented by the horizontal line. 
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Figure 8. Classification error for one of the nodes, 
example 1. 
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Figure 9. Classification error for one of the nodes, 
example 2. 
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Normality test for number of cows in the extended area 
 

In order to evaluate whether the total number of cows ( 2D ) in the extended area 
was normally distributed using Pearson chi-square test, contingency tables were 
constructed for data from all days. As an example, Table 3 presents the 
contingency tables for two different datasets containing of total number of cows 
( )1(

2D  and )2(
2D ) in two different grazing periods from the first day. It was 

concluded from the Pearson chi-square test of goodness of fit with 2 degrees of 
freedom that 2D  was normally distributed (hypothesis accepted at a 
significance level of 0.2). 
As presented in Table 3, the estimated mean value of )2(

2D  (total number of 
cows in the extended area during second grazing period) is smaller while the 
estimated variance is larger compared to the estimated mean value and variance 
of )1(

2D  (total number of cows in the extended area during first grazing period) 
with grass offer reduction.  
Pearson chi-square test of goodness of fit was also applied to 1D  and the results 
demonstrated that the distribution of 1D  during first an second grazing period 
( )1(

1D  and )2(
1D ) was Gaussian (hypothesis accepted at a significance level of 

0.2) and the estimated mean value of  )1(
1D  and )2(

1D  was 2.6 and 2.4 
respectively. 
 

Testing the hypothesis that monitored cows could 
represent the entire herd 
 

The results of testing the null hypothesis in equation (6) are shown in Table 4. 
The significance level is chosen equal to 0.2 (Montgomery, 1996). Based on the 
results of the last row in Table 4, it is concluded that the introduced null 
hypothesis can not be rejected. 
 

IV. CONCLUSION 
 
The problem of online monitoring of cows’ presence and pasture time in an 
extended area in the field with new grass has been addressed and solved by 
using wireless sensor networks. The total pasture time in the extended area was 
estimated by measuring the pasture time in the gateway connectivity area where 
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the sensor nodes could communicate directly to the gateway. However, as the 
measured time in the connectivity area underestimated the total pasture time in 
the extended area, an area based correction factor was applied and the results 
showed 79.9% success rate (21.1% error) on average.  
As only 23% of the animals were equipped to be monitored by sensor nodes, 
investigations to evaluate whether the monitored animals could represent the 
whole herd were carried out. Pearson chi-square test of goodness of fit has been 
successfully applied to the datasets containing the number of cows roaming in 
the extended area and the number of cows carrying sensor nodes in the extended 
area. The results of statistical analysis indicated that the datasets were normally 
distributed. 
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The hypothesis was that cows with and without sensor nodes would spend the 
same relative amount of time in the extended area. This hypothesis was 
confirmed by a modified two sample t  test for the expected relation between 
the mean number of cows with sensor nodes in the extended area and the mean 
number of cows totally in the extended area. 
Applying a moving average window with optimal window length and optimal 
threshold could successfully compensate for packet loss between sensor nodes 
and gateway and thereby improve the result of classification as being within or 
outside communication range of the gateway.  
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Abstract 
An in-depth study of wireless sensor networks applied to monitoring of animal 
behavior in the field is provided. Herd motion data such as pitch angle of the 
neck and the movement velocity were respectively monitored by an MTS310 
sensor board equipped with a 2-axis accelerometer and received signal strength 
indicator functionality in a single hop wireless sensor network. Pitch angle 
measurements as well as velocity estimates were transmitted through a wireless 
sensor network based on ZigBee communication protocol. After data filtering, 
the pitch angle measurements together with velocity estimates were used to 
classify the animal behavior into two classes as active and inactive. Considering 
all the advantages and drawbacks of classification trees compared to neural 
network and fuzzy logic classifiers, a general classification tree was preferred. 
The classification tree was constructed based on the measurements of pitch 
angle of the neck and movement velocity of some animals in the herd and was 
used to predict the behavior of other animals in the herd. The results showed 
that there was a large improvement in the classification accuracy if both pitch 
angle of the neck and velocity were employed as predictors in comparison to 
just pitch angle or just velocity employed as the single predictor. The 
classification results proved the possibility of determining a general decision 
rule which can classify the behavior of each individual in a herd of animals. The 
results have been confirmed by manual registration and by GPS measurements. 
Keywords: Received signal strength; Kalman Filter; Kaiser window; ZigBee; 
Wireless sensor network; Classification tree; Behavior monitoring. 
 

I. Introduction 
 
Animal behavior monitoring represents a class of wireless sensor network 
applications with enormous potential benefits for practical farming. In this 
sense, the knowledge of the herd behavior phases (activity, inactivity) can be 
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monitored by measuring relevant behavior parameters. Such behavior 
classification is potentially useful as management tools in grazing and 
production optimization. Furthermore, the behavioral monitoring would allow 
us to establish a better understanding of animal behavior, detect individuals with 
potential health problems, and generally optimize the grazing process.
In order to monitor herd behavior, data relevant to the behavior should be 
measured, aggregated, processed and finally sent through a network to 
infrastructure facilities. In animal science applications, the natural mobility of 
the herd makes wireless sensor networks the perfect candidate for such 
monitoring of animal behavior parameters. Furthermore, wireless sensor 
networks represent a significant advance over traditional invasive methods of 
monitoring. The integration of local processing and storage allows sensor nodes 
to perform complex filtering and triggering functions, as well as to apply 
application-specific or sensor-specific data compression algorithms. Low-power 
radios with well-designed protocol stacks allow generalized communications 
among network nodes, rather than point-to-point telemetry. The computing and 
networking capabilities allow sensor networks to be reprogrammed or retasked 
after deployment in the field. Therefore, monitoring animal behavior parameters 
using wireless sensor networks leads to a flexible and robust monitoring system 
capable of remotely registering the behavior parameters which are of interest.  
A herd of animals differs in many ways from man-made systems of mobile 
robots because the behavior of each individual is governed by unpredictable 
natural instincts and the environment in which it is placed (e.g. motion patterns 
influenced by food sources and water). Therefore, different aspects of animal 
behavior by monitoring variety of behavioral parameters have been studied by 
different researchers. As instance, the position of animals in the field were 
tracked and monitored by White et al., (2001); Butler et al., (2004); Zhang et al., 
(2004); Schwager et al., 2007 and Wark et al., (2007) while Oudshoorn et al., 
(2006) made their investigation based on the positions and the velocities of the 
movements in the field. Different behavior phases of dairy cows such as 
standing and lying down when they were in the barn are evaluated by 
Munksgaard et al., (2005) and Wilson et al., (2005). However, none of these 
references address an online monitoring system based on wireless sensor 
networks that classifies the behavior of the animals when they are in the field.  
The behavioral parameters can be measured using different types of sensors and 
consequently different strategies. GPS is the most popular system employed in 
outdoor applications to register position (Butler et al., 2004; Oudshoorn et al., 
2006 and Schwager et al., 2007) but high energy consumption is one of the 
main drawbacks of such a localization method. Furthermore, satellite 
connection loss in the areas of the field covered by trees has been reported 
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frequently in the research done by Oudshoorn et al., (2006). This makes GPS 
less practical in terms of long-term studies and less reliable for animal 
monitoring in some specific environments.  
Using an accelerometer attached to the leg of animal together with an offline 
data logger inside barn was another approach used in the experiments carried 
out by Munksgaard et al., (2005). They classified cow behavior into two phases 
as moving or stationary, while Umstatter et al., (2006) used an offline pitch-roll 
sensor around the neck. Sallvik & Oostra (2005) used video processing 
combined with RFSU (radio frequency synchronization unit). In the present 
paper, a wireless sensor network was established in which ZigBee was 
implemented as the wireless communication protocol. Each node in the network 
was equipped with an accelerometer in order to measure the pitch angle of the 
neck. The nodes were programmed to measure received signal strength (RSS) 
allowing the distance between wireless sensors and a gateway to be estimated. 
Based on successive distance estimates, the velocity could be estimated.  
In order to fuse the measured behavior parameters (i.e. pitch angle of the neck 
and the movement velocity) and consequently to be able to classify the animal 
behavior into classes as active or inactive, different classification methods such 
as decision trees, fuzzy logic and neural networks have been introduced in the 
literature. Comparing advantages and drawbacks of decision trees compared to 
Fuzzy logic and neural network classifiers made them the best candidate in 
terms of simplicity and accuracy to evaluate the herd behavior and they have 
hence been employed as the classification method.  
The objectives of this paper were to classify the behavior of a herd of animals 
into two classes as active and inactive using the pitch angle measurements of 
the neck of the animal together with the movement velocity estimates in a 
wireless sensor network. Yet another objective was to solve a specific problem 
regarding packet loss using data post processing. 
The remainder of this paper is organized as follows. Problem statement and a 
short review on wireless sensor networks are presented in section 2. Section 3 
describes materials and methods that have been used to classify the behavior 
phases. Section 4 describes the results achieved by this research and finally, the 
conclusions are presented. 
 

II. Problem statement & background 
 
Problem statement 
In this paper, the problem of online robust classification of the animal behavior 
using a wireless sensor network has been addressed. The main deficiencies 
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reported in the research done by Umstatter et al., (2006), Nadimi et al., (2007) 
and Schwager et al., (2007) were: 

• Local, non-representative peaks may occur because only the minimum 
value of the pitch angle of the neck was recorded during each sampling 
interval. (Umstatter et al., 2006) 

• Disability of online measuring. (Umstatter et al., 2006) 
• Simple-non robust classification method. (Nadimi et al., 2007) 
• High energy consumption method to estimate the behavior of animals 

(Schwager et al., 2007) 
The first two problems can make the classification results unreliable. Therefore 
they are addressed in this paper and solved by using a Kalman filter and 
weighted moving average window together with velocity estimation using RSS 
measurements. As the simple threshold method (two dimensions classification 
tree) used in the research carried out by Nadimi et al., (2007) made the 
classification non robust and in order to reduce the risk of an improper 
classification, decision trees, fuzzy logic and neural network classification 
methods have been applied. Consequently, decision tree due to its simplicity for 
training, accuracy and applicability was chosen as the most suitable 
classification approach. 
To employ a low-cost and low-power monitoring system, wireless sensor 
networks have been implemented in the present research, therefore the 
deficiency (high energy consumption) introduced in the research carried out by 
Schwager et al., (2007 ) is addressed.  
In order to address the problem of packet loss which occasionally occurs in 
monitoring moving nodes in outdoor environments using wireless sensor 
networks, an efficient solution is proposed by predicting the lost states using a 
Kalman filter which is presented in this paper. 
 
Background 
Location systems in outdoor environments have been a research interest in the 
last years. The methods for locating a target in a geographical area based on 
received signal can be classified in three different groups of which the latter was 
studied in this paper. 
 

• Time of arrivals (TOA) algorithms 
These algorithms measure the time a signal needs to travel from a beacon to the 
target node. As distances in pasture fields are not very big, the relative 
resolution acquired using radio signals is very poor. However, other kinds of 
signals, such as sound with a smaller wavelength are easier to track (Harter et 
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al., 1999; Priyantha et al., 2000; Ward et al., 1997), so the radio interface may 
be used to synchronize the network nodes, and the sound signal to measure 
distances. The precision of these methods is very good, but it requires some 
additional hardware, in order to produce and detect the sound signal. 
 

• Angle of arrivals (AOA) algorithms 
These algorithms measure the direction, the arriving signal comes from. Using 
the laws of sine and cosine, the position of the target node can be calculated 
(Arias et al., 2004). The hardware needed may be quite complex, as it requires 
either a mechanical system that moves the antenna or an antenna array, whose 
radiation pattern can be altered electronically. 
 

• Received signal strength (RSS) algorithms 
In order to get an accurate estimate of the distance between nodes based on 
TOA and AOA algorithms, additional localization hardware in terms of 
antennas or high precision clock synchronization is required. However, RSS 
algorithms are based on the fact that a radio signal attenuates with increasing 
distance from the emitter. If the emitted power is known, measuring the 
incoming power at the receiver, the distance between the transceiver and 
receiver can be estimated. Nevertheless, the medium exerts a substantial 
influence on the arriving signal power; obstacles attenuate the signal and 
produce reflections. Other signals or even the reflections of the signal of interest 
may interfere with the emitted signal, which alters the signal’s power (Arias et 
al; 2004). In order to estimate the distance from RSS values, range 
measurements should be done, i.e. estimating the distance between two nodes, 
given the signal strength received by one node from the other. Signal strength 
measurements are usually prone to inaccuracies and errors and, hence, 
calibration of such measurements is inevitable before using them for 
localization. For this algorithm to work, extensive preliminary field 
measurements and calibrations were carried out as discussed in the following. 
 

III. Materials and methods 
 
Materials 
MPR2400 Micaz sensor motes from Crossbow were used for the experiments in 
this paper. They have a Chipcon CC2420 radio, which uses a 2.4 GHz IEEE 
802.15.4/ZigBee RF transceiver with MAC support and provides a received 
signal strength indicator (RSSI) output that is sampled by a 10-bit ADC. An 
MTS310 sensor board equipped with a 2-axis accelerometer and a temperature 



Chapter 4. 

 
75 

sensor was used to measure the pitch angle of the neck of a cow. The 
temperature sensor was used to calibrate the accelerometer readings as the 
digital output of the accelerometer (duty cycle) can be varied by temperature 
drifts. Consequently, to use the accelerometer as a dual-axis tilt sensor to 
measure the pitch angle of the neck of the cow, the raw accelerometer ADC 
readings were converted to acceleration measurements (Analog device, 2007).  
TinyOS operating system was running on the motes (Gay et al., 2007). The RSS 
data and the accelerometer readings together with the temperature 
measurements were encapsulated in the same packet. This designed packet 
structure solve the problem reported by Nielsen et al., (2005) in which two 
different packet structures were used to disseminate the data of RSS and 
acceleration. If each sensor disseminates two kinds of packets, for instance one 
for RSS and the other one for acceleration, losing one of them make the other 
packet useless. The selected sampling rate for the packet dissemination was 1 
Hz (Nadimi et al., 2006). Multiple sensor nodes sent sensor readings to a base 
station or aggregation point in the network (gateway) using many to one routing 
protocol. 
The CC2420 radio supports up to 255 different transmission power levels and 
allows for a programmable transmission frequency. In order to minimize the 
number of variables in the experiment, the RF transmission frequency and the 
transition power were respectively fixed at a single frequency band (2.48 GHz) 
and at the maximum transmission power (1 mW). 
The case study in this experiment was a group of dairy cows. The experiment 
was carried out during 3 days with 4 cows 6 hours per day as an average. Each 
cow was equipped with a wireless node and a GPS as a reference around the 
neck (Figure 1). During the calibration process, the nodes were placed at fixed 
distances (1–30m far from the gateway) for 5 minute at each distance. The 
sampling time was set to 1 second and it was expected to receive 300 samples 
per distance. As without any energy budgeting, MPR2400 Micaz nodes 
operating at 100% duty cycle can approximately operate for seven days 
(Polastre, 2003), normal AA batteries with a conservative estimate of 2200 
mAh total capacity was utilized which provided enough power for each sensor 
node during the whole experiment (3 days).  
The shape of the field was rectangular ( 4080× meters). Each day, a new field 
with new grass was provided for the cows. The gateway was installed in the 
middle of one of the longest sides. Manual registration of the behavior was 
carried out as well. 
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Methods 
RSS and acceleration measurements filtering 
When data travel along unreliable communication channels in a large, wireless 
sensor network, the effect of communication delays and loss of information 
cannot be neglected. This problem is addressed here using separate discrete 
Kalman filters for RSS and acceleration observation where the arrival of 
observation packets is modeled as a random process. The statistical 
convergence properties of the state error covariance have been studied, showing 
the existence of a critical value for the arrival probability of the observations, 
beyond which a transition to an unbounded state error covariance occurs. Due to 
high rate energy absorption in outdoor applications, packets either arrive or are 
lost within a sampling period following a Bernoulli process with parameter 

10 ≤≤ λ (packet arrival probability). A Kalman Filter, however, still provides 
estimates in case of intermittent observations (Sinopoli et al., 2004). With these 
assumptions, the Kalman filter equations for scalar states and measurements are 
as follows: 
 

• Time update equations:                      

Node 

GPS 

Figure 1. Wireless node and GPS around the neck 
 

Y

X
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• Observation updates equations 
            −−= kkkkk PHKP )1( γ       (3) 

            )ˆ(ˆˆ −− −+= kkkkkkk xHzKxx γ      (4) 

           1TT )( −−− += kkkkkkk RHPHHPK     (5) 
 
where K,2,1,0=k  is the time instant, −

kx̂  and kx̂  are a priori and posteriori 

state estimate which a state could either be RSS or acceleration. −
kP  and kP  are 

a priori and posteriori estimate of error variance, and kK  is the Kalman gain. 

kQ  is the process noise covariance, kR  is the measurement noise covariance. 

kγ  is the arrival sequence which is common for the RSS filter and the 
acceleration filter and is modeled by a Bernoulli process (1 if arrived; 0 if lost). 
The underlying process (pitch angle of the neck and the movement velocity) has 
been assumed as a discrete time Wiener process described by equations (6) and 
(7) in the state space form. 
 
  kkkk wxx +=+ ϕ1       (6) 

kkkk vxHz +=       (7) 
 
where, kx  is the true (unknown) state, kz  is the RSS measurements or 
acceleration measurements if the packet arrives, ),0( kk QNw ∈  is the process 
noise and ),0( kk RNv ∈  is the measurement noise ( kw  and kv  are 
independent). kH  and kϕ  are set to 1 independently of time ( k ). To estimate 
the states, separate scalar filters for RSS and acceleration has been employed. 
As the Kalman filter is designed to handle intermittent observations, it will 
estimate the states not observed due to the packet loss and thereby reduce the 
effect of measurement noise. 
The existence of a critical value cλ  for the arrival probability of the observation 
update has been shown by Sinopoli et al., (2004), such that for cλλ > , the 
mean state covariance [ ]kPΕ  is bounded for all initial conditions and for 
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cλλ ≤  the mean state covariance diverges for some initial condition. A lower 

bound λ , and upper bound λ  can be found for the critical probability cλ , i.e; 

λλλ ≤≤ c . The lower bound can be expressed in closed form while the upper 
bound is the solution of a linear matrix inequality (LMI). In some special cases 
when kH  is invertible or kϕ  has a single unstable eigenvalue, the two bounds 
coincide, giving a tight estimate. Since kH  is set to 1, the critical arrival 
probability can be expressed as (Sinopoli et al., 2004): 
 

 2
11 pc −=λ   ))(eigmax( kp ϕ=     (8) 

 
As the average value of λ  was 0.7 in the present study and 0=cλ  for a 
discrete time Wiener process, the inequality cλλ >  was fulfilled.  
During the grazing period, the head moves upwards with certain intervals and 
thereby make the pitch angle readings close to zero during very short periods of 
time (Umstatter et al., 2006). To avoid classifying these events as parts of an 
inactivity phase, the Kalman filtered data were further filtered using a weighted 
moving average window. In order to select an appropriate window, the 
properties of different common windows such as Rectangular, Bartlett, 
Hanning, Hamming, Blackman and Kaiser Window have been considered. The 
two main criteria to measure the performance of different windows are (Ashan, 
2003): 

• Smearing reduction or spectral resolution improvement which can be 
achieved by reduction of the main lobe width in frequency domain 

• Leakage reduction or amplitude resolution improvement which can be 
achieved by side lobe reduction 

The first property is the ability of the filter to separate signals whose 
frequencies are nearly the same while the second property is the capability of 
separating unequal amplitudes in order to prevent that low amplitude peak 
drowns in the leakage of the higher amplitude peak. To fulfill the criteria, 
narrow main lobe width and low side lobe amplitude is required. While these 
two conditions can not be met simultaneously, the trade off between the main 
lobe width and side lobes’ amplitudes can be quantified by a Kaiser window 
represented by (Oppenheim et al., 1999): 
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where )(0 ⋅I  is the zeroth order modified Bessel function of the first kind. The 
real parameter α  which determines the shape of the window is set to 0.5 and 
the integer N  gives the length of the window ( 1+N  points). The window 
length was chosen less than the length of typical inactive periods to be sure that 
these periods would be detected ( 1000=N , i.e. 0.278 h).  
 
Acceleration measurements analysis 
In the active period, the animals are grazing or looking for grass so their necks 
are down and the movement velocities are nonzero. In the inactive phase, the 
necks are almost horizontal and the movement velocities are zero. Therefore 
measuring the pitch angle of the neck together with the movement velocity is 
chosen as the basis for the behavior classification. 
To measure the pitch angle of the neck, the MTS310 sensor board was installed 
around the neck. In order to convert the raw accelerometer ADC readings to the 
acceleration measurements, the values of bias and sensitivity of each sensor by 
orienting the accelerometer axis towards the gravity axis (+1g and -1g) have 
been calculated. Furthermore, the relationship between acceleration and pitch 
angle is based upon inverse sine and cosine functions using the fact that the 
accelerometer measures the components of the gravity acceleration parallel to 
the local coordinate system (X-Y plane) of MTS310 sensor board (Figure 1). 
Figure 2 shows an example of the graph of pitch angle after using a moving 
window placed symmetrically around the time instant of interest. 
 
RSS measurement analysis 
In order to get an accurate estimate of the distance between nodes based on 
received signal strength, extensive preliminary field measurements and 
calibrations were carried out. Figure 3 shows the graph of signal strength versus 
distance for one of the nodes for a typical outdoor setup in field. The 
experimental data in Figure 3 represents the mean value of the readings taken at 
each distance. The received power level can be converted to a distance estimate 
by using a radio wave propagation model (Kotanen et al., 2003). A simple log-
distance model was used: 
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)4log(20)log(20log10 πλ −+++−= WLRxTxRxTxe GGPPdn            (10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where [ ]dBmTxP  and [ ]dBmRxP  are the transmitted ( dBm0 ) and received 
power levels (RSS), respectively. [ ]dBiTxG  and [ ]dBiRxG  are antenna gains of 
the transmitter and the receiver. [ ]mWLλ  is the wavelength, and [ ]md  is the 
distance between transmitter and receiver. The exponent en  is assumed to attain 
a value of 2 for outdoor environments (Kotanen et al., 2003; Nadimi et al., 
2007). Calculating the antenna gain in equation (10) is not a simple procedure 
so a propagation model has been fitted to experimental data. In this model, the 
last four terms in equation (10) were combined into one constant C  (see 
equation 11) which was estimated by minimizing the sum of squared 
differences between the experimental RSS and the modeled RSS. 
 

CPPd RxTx +−=log20                 (11) 
 
As all the nodes have different characteristics such as different antenna gains or 

X

Figure 2. Pitch angle of the neck passed through 
Kalman – Kaiser Filter 
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different radios, the graph of received signal strength versus distance (Figure 3) 
is not the same for all the nodes. Therefore, the optimal constant C in Equation 
(11) is different from one node to another one (the range varied between −60 
dBm to −55 dBm). In the present research, the constant C calculated for one of 
the nodes (−56 dBm) was selected as the optimal constant representing antenna 
gain and wavelength effect for all the nodes. This strategy tends to descend 
precision of the results of each individual node (curve fit and estimated distance 
between nodes and gateway) and consequently the whole system. However, that 
is the practical solution to implement a similar monitoring system to a large 
herd of animals with a large number of nodes as it will be time and energy 
consuming process to estimate the optimal constant C for all the nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using equation (11), distance kd  between the cow node and the gateway could 
be estimated for each time instant k , and furthermore the change in distance 
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Figure 3. RSS versus distance for fitted optimal propagation model and 
experimental data. Black curve: propagation model, Blue curve: 
experimental data. Arrows as indicator of error bar (standard deviation) at 
each point. 
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during each sampling interval could be estimated as 1−−= kkk ddD . This 
distance change was taken as a rough estimate of the distances walked by the 
cow during the sampling interval. An example of estimated distances walked 
per sampling interval (velocity) versus time has been shown in Figure 4. A 
comparison between estimated and true distance walked over one sampling 
interval (displacement) is illustrated in Figure 5.  
Based on the methodology used in this research to estimate the velocity using 
RSS, if an animal walks in a circle around the gateway, the velocity will be 
estimated as zero. However attention needs to be drawn to the fact that this case 
can rarely happen, as animal behavior studies have demonstrated that cows use 
to walk straight forward (Oudshoorn et al. 2007). To prove the visual 
observation that cows rarely move on a circle, the position of cows in the field 
was registered by GPS and was sampled every 60 seconds (Figure 6). Based on 
GPS registrations and the equations of half circles (see Figure 6), it was 
demonstrated that three consecutive locations were not on a same circle. The 
mentioned drawback of the method would only become relevant in a large field 
where the half circles far from the gateway turn to straight lines. In this 
experiment the size of the field was chosen as 8040×  meters and the radius of 
the largest half circle was 40 meters.  
In order to verify the estimated distance using received signal strength, a GPS 
(Figure 1) was employed to measure the position and the distance of wireless 
nodes from the gateway. Figure 7 (upper graph) shows the measured distance 
by GPS between one of the nodes and the gateway versus the distance estimated 
by the RSS approach. Furthermore, Figure 7 (lower graph) presents the distance 
of a node from gateway measured by GPS and estimated by RSS measurements 
versus time. The distance between the nodes and the gateway using RSS was 
overestimated when compared to the distance determined by GPS as it can be 
seen from the fitted curve to the scattered data in Figure 7 because the fitted 
propagation model (Equation 11), overestimated the distance as a total. In 
contrast to distance, the estimated walked distance using RSS algorithm is an 
underestimation of the measured GPS displacement as it is presented in Figure 
5. 
 
Behavior classification based on classification trees  
In nonlinear least squares fitting and other parametric approaches, it is supposed 
that the relationship between the response and the predictor is known or can be 
identified based on the data. Suppose instead, that the relationship is unknown 
and there is no need to identify a specific relationship. In that case a 
nonparametric type of regression fitting approach can be applied.  
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Figure 4. Estimated distance walked per 
sampling interval 
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Figure 6. Registered position of cows movement in the field (Black *) and 
half circles centered on the gateway (Blue curves). 
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One such approach is based on trees (Breiman, 1998). Classification trees are 
used to predict membership of cases or objects into classes of a categorical 
dependent variable from measurements of one or more predictor variables. The 
goal of classification trees is to predict or explain responses of a categorical 
dependent variable. The flexibility of classification trees makes them a very 
attractive analysis option. Classification trees use a “white box” decision rule if 
a given result is provided by a model and the explanation for the result is easily 
replicated by simple math, while an artificial neural network or a fuzzy logic 
classifier uses a black box model in which the explanation for the results can be 
excessively complex for a decision maker to comprehend. Another drawback of 
neural network or fuzzy classifiers is the slow process of training (Schetinin et 
al., 2004). 
Figure 8 shows a sample classification tree fitted to a training set. For each 
branch node, the left child node corresponds to the points that satisfy the 
condition and the right child node corresponds to the points that do not satisfy 
the condition. Descriptive statistics (mean value) for the observations falling 
into each terminal node is represented at the terminal node. Assuming animal 
activity as a class represented by 1 and inactivity as another class represented by 
0 forms the value at each terminal node as the likelihood that the observation 
belongs to that category class. The animal would then be classified as active or 
inactive if the likelihood at each terminal node was larger or smaller than 0.5 
respectively. 
The training sets and the validation sets were chosen randomly among all the 
registered data sets. The training set was constructed by predictors (velocity, 
pitch angle) and responses (behavior phase). The data of predictors were 
registered by individual wireless nodes in which each node was associated with 
an animal and the responses were registered manually. The main purpose of the 
classification method presented in this paper is to construct a general tree which 
could predict the behavior of the animals in the training set as well as animals in 
the validation set. The validation set was chosen as the data set of registered 
behavior of animals which were not involved in the training set.  
A tree as exemplified by Figure 8 having many branches may overfit the 
training set and introduces uncertainties regarding prediction of new unseen 
data. Some of the lower branches may be strongly affected by outliers and other 
artifacts of the training set and therefore, the discrimination between some of 
the predictors would be less than the resolution. It would be preferred to find a 
simpler tree that avoids this problem of overfitting.  
Pruning is basically an estimation problem in which the best tree size is 
estimated based on the error cost. Accuracy is computed by counting the 
misclassifications at all tree nodes. Then, the tree is pruned by computing the 
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estimates following the bottom-up approach (post-pruning). The resubstitution 
estimate of the error variance for this tree and a sequence of simpler trees are 
then computed. Because this estimation probably underestimates the true error 
variance, the cross-validation estimation is computed next. The cross-validation 
estimate provides an estimate of the pruning level needed to achieve the best 
tree size. Finally, the best tree is the one that has a residual variance that is no 
more than one standard error above the minimum values along the cross-
validation line (Figure 9). 
Scatter plots of velocity versus pitch angle labeled by activity and inactivity 
achieved by the performance of the optimal (pruned) classification tree and by 
the results of the manual observations are presented in Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Classification tree based on training set with data from 6 individual 
nodes. At the terminal nodes, an inactive mode is represented by 0 and an active 
mode is represented by 1. 
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Figure 9. Optimized classification tree based on training set after 
pruning. At the terminal nodes, an inactive mode is represented by 0 
and an active mode is represented by 1.
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Figure 10. Scatter plot of velocity versus pitch angle labeled by activity 
(Black .) and inactivity (Blue *) achieved by the classifier (pruned decision 
tree). The gray dashed area is the representative of inactivity obtained by the 
manual observation. The other part of the velocity-pitch angle plane 
represents the activity.
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IV. Results 
 
Table 1 represents the results of behavior classification in which the ground-
truth was achieved by manual observation carried out during the experiment. 
The procedure consisting of training, pruning and validation was performed 6 
times. Each time, 6 randomly chosen datasets out of the 8 were used for training 
and pruning while the remaining 2 datasets were used for validation. It is 
assumed that each dataset was associated with an animal therefore the dataset 
associated with cow )4,3,2,1(=a in day )2,1(=q  was defined as aqT  or '

aqT  in 
case that dataset was used in training set or in validation set respectively.  
The measurements of pitch angle and velocity were used as predictors and the 
behavior classified as activity or inactivity was used as the response. It can be 
concluded from the table that a general classification tree as shown in Figure 9 
constructed by the data from a subset of cows could predict the behavior of 
other cows with high classification success rate. Similar classification tables 
have been achieved by only considering the pitch angle or velocity as the 
predictor but the classification results showed much lower success rates in 
comparison to the results of Table 1. Constructing the tree only based on pitch 
angle measurements as the predictor showed that the classification tree could 
predict the behavior with 55% success rate while the velocity as the unique 
predictor could classify the behavior with 43% accuracy on average.  
Based on manual registration and GPS measurements, cow2 associated with 
node2 was the most active cow (92% of time active) in the group. It can be seen 
in the Table 1, the classification success rate is minimum when the data of cow2 
is not considered for training the tree. Cow1, on the other hand, was the most 
inactive cow in the group (83% of time active) and hence has limited effect on 
training the tree.  
As the evaluation criterion most used for a classifier is the error rate (the ratio of 
the number of falsely classified samples to the whole number of samples), this 
rate has been calculated for the pruned decision tree shown by Figure 9, a 
trained fuzzy logic classifier and a trained neural network classifier. 
Furthermore, the classification cost in terms of number of nodes or neurons 
were taken as well into account.   
While a simple classification tree with 4 terminal nodes could classify the 
behavior with error rate of 16.76 % on average, the same data sets were 
imported to the fuzzy logic classifier and the error rate of 19.32% was achieved 
by 70 trained epochs and in the case of linear neural network classifier, the error 
rate of 18.65% was achieved by 100 neurons. 
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Table 1. Classification success rate using cross validation method, representing the 
accuracy to predict the behavior of some cows using the behavior of other cows in the 
same herd 

trainT  validationT   
Classification success rate 

 
T11,  T21, T31, T12 ,T22 ,T42 

T´41 
T´32 

83.2% 
80% 

 
T11 ,T21, T31, T22, T32, T42 

T´41 
T´12 

80.5% 
95.1% 

 
T11, T21, T41, T22, T32, T42 

T´31 
T´12 

82% 
93.4% 

 
T11, T31, T41, T12, T32, T42 

T´21 
T´22 

71.8% 
70.2% 

 
T21, T31, T41, T12, T32, T42 

T´11 
T´22 

84.3% 
72.6% 

 
T21, T31, T41, T22, T32, T42 

T´11 
T´12 

90.3% 
95.5% 

 
 

V. Conclusions 
 
Pitch angle measurements as well as movement velocity estimation were 
successfully transmitted through a wireless sensor network and were used to 
classify the animal behavior into two classes as active and inactive. The 
proposed Kalman filter could handle the problem raised by packet loss due to 
intermittent observation by estimating the lost states. The problem of non 
representative local peaks due to head movements during grazing period were 
addressed and robustly solved by a Kaiser window.  Classification trees showed 
advantages over neural network and fuzzy logic classifiers therefore a general 
classification tree was preferred. The classification tree was constructed based 
on the measurements of pitch angle of the neck and the movement velocity. The 
results showed that there was a large improvement in the classification accuracy 
if both pitch angle of the neck and velocity were employed as predictors in 
comparison to just pitch angle or just velocity employed as the single predictor. 
The results suggest that a classification tree for behavior classification was a 
compromise between active and less active cows. In spite of this, it seemed that 
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success rate of at least 70.2% could be achieved. The results have been 
confirmed by manual registration and by GPS measurements. 
To confirm or reject this percentage, a study including more cows during more 
days is necessary. The classification results proved the possibility of 
determining a general decision rule (model) which can classify the behavior of 
each individual in a herd of animals. Consequently, the achieved behavioral 
model could then be used for further control purposes such as behavioral 
control. However the classification results showed an improvement compared to 
the results achieved by other studies, some key challenges such as a more robust 
wireless sensor network, with less percentage of packet loss, and more precise 
methods to estimate the movement velocity are required.  
 
 
 

Reference 
 

Analog device dataste (2007). ADXL202JE accelerometer data sheet. 
Arias J; Zuloaga A; Lazaro J; Andreu J; Astarloa A. (2004). Malguki: an 

RSSI based ad hoc location algorithm. Journal of Microprocessors 
and Microsystems, Vol. 28, pp. 403-409. 

Ashan S; T. (2003). Optimal window design. Journal of IEEE potentials, 
Vol21, Issue 5, pp. 39-43 

Breiman L. (1998). classification and regression tree. Boca Raton, Fla.: 
Chapman & Hall/CRC. 

Butler Z; Corke P; Peterson R; Rus D. (2004). Networked Cows: Virtual 
Fences for Controlling Cows. International Conference on Robotics 
and Automation, (ICRA)  

Elnahrawy E; Li X; Martin R P (2004). “The Limits of Localization 
Using Signal Strength: A Comparative Study”, in Proceedings of 
the First IEEE International Conference on Sensor and Ad hoc 
Communications and Networks (SECON). 

Gay D; Levis P; Culler D (2007). Software Design Patterns for TinyOS. 
ACM Transactions on Embedded Computing Systems (TECS), 
Vol. 6, Issue 4. 

Harter A; Hopper A; Steggles P; Ward A; Webster P. (1999). The 
anatomy of a context-aware application, Mobile Computing and 
Networking, pp. 59–68. 



Chapter 4  

 
91 

Kotanen A; Hannikainen M; Leppakoski H; Hamalainen T D (2003). 
Experiment on local positioning with Bluetooth. Information 
Technology: Coding and Computing [Computers and 
Communications], 2003. Proceedings. ITCC 2003. International 
Conference, pp. 297 - 303 

Munksgaard L; Jensen, M.B; Herskin, M.S; Levendahl, P; 2005. The 
need for lying time in high producing dairy cows. Proc. 39th Int. 
Congress of the ISAE, Kanagawa, Japan, 38. 

Nadimi E S; Bak T; Izadi-Zamanabadi R (2006). Monitoring animals and 
herd behavior parameters using a wireless sensor network. 
Proceedings of XVI CIGR world congress. Book of abstracts, pp. 
415-416. 

Nadimi E S; Søgaard H T; Oudshoorn F W; Blanes-Vidal V; Bak T 
(2007). Monitoring Cow Behavior Parameters based on Received 
Signal Strength using Wireless Sensor Networks. 3rd European 
conference on precision livestock farming. Greece. 

Nielsen C; Kracht S; Svenstrup M. 2005. Localization using received 
signal strength indicator. Report, Aalborg University. 

Oppenheim A V; Schafer R W; Buck J R (1999). Discrete-time signal 
processing. Upper Saddle River, N.J.: Prentice Hall. ISBN 0-13-
754920-2. 

Oudshoorn F; Kristensen T; Nadimi E S (2006). Dairy cow defecation 
and urination frequency and spatial distribution related to time 
limited grazing, accepted in the journal of livestock production 
sciences.

Polastre J. (2003) Design and Implementation of Wireless Sensor 
Networks for Habitat Monitoring. Master’s thesis, University of 
California, Berkeley. 

Priyantha N B; Chakraborty A; Balakrishnan H (2000). The Cricket 
Location-Support System, Mobile Computing and Networking, 
pp.32–43. 

Sallvik K; Oostra H.H. 2005. Automatic Identification and Determination 
of the Location of Dairy Cows, Precision Livestock Farming ‘05, 
edited by S. Cox. 

 Schetinin V; Fieldsend J E; Partridge D; Krzanowski W J; Everson R M; 
Bailey T C; Hernandez A (2004). The Bayesian Decision Tree 



References  

 
92 

Technique with a Sweeping Strategy. International Conference on 
Advances in Intelligent Systems - Theory and Applications, Centre 
de Recherche Public Henri Tudor, Luxembourg-Kirchberg, 
Luxembourg, November, 2004. 

Schwager M; Anderson M. D.; Butler Z; Rus D (2007). Robust 
classification of animal tracking data, Computers and Electronics in 
Agriculture, Vol. 56, Issue 1, pp. 46-59. 

Sinopoli B; Schenato L; Franceschetti M; Poolla K; Jordan M.I; Sastry 
S.S. 2004. Kalman filtering with intermittent observation. IEEE 
transaction on automatic control, Vol. 9, pp. 1453-1464. 

Szewczyk R; Osterweil E; Polastre J; Hamilton M; Mainwaring A; 
Estrin, D. 2004. Habitat monitoring with sensor networks. Journal 
of Communications of the ACM, Vol.47, issue 6, pp.34-40.  

Umstatter C; Waterhouse A; Holland J. 2006. An automated method of 
simple behavior classification as a tool for management 
improvement in extensive systems. 4th international workshop on 
smart sensors in livestock monitoring. Book of abstracts, pp.57-58 

Ward A; Jones A; Hopper A. (1997). A new location technique for the 
active office. IEEE Personal Communications, pp.42–47. 

Wark T; Crossman C; Hu W; Guo Y; Valencia P; Sikka P; Corke P; Lee 
C; Henshall J; Prayaga K; O’Grady J; Reed M; Fisher A. (2007). 
The Design and Evaluation of a Mobile Sensor/Actuator Network 
for Autonomous Animal Control. Proceedings of the 6th 
international conference on Information processing in sensor 
networks. pp. 206 – 215; ISBN: 978-1-59593-638.  

White S L; Sheffield R E; Washburn S P; King L D; Green J T (2001). 
Spatial and Time Distribution of Dairy Cattle Excreta in an 
Intensive Pasture System, journal of ENVIRON. QUAL, Vol.30, 
November-December 2001. 

Wilson S C; Dobos R C; Fell L R (2005). Spectral analysis of feeding 
behavior of cattle kept under different feedlot conditions”. Journal 
of Applied Animal Welfare science. 

Zhang P; Sadler C. M; Lyon A. S; Martonosi M. (2004). Hardware 
Design Experiences in ZebraNet. Proceedings of the 2nd 
international conference on Embedded networked sensor systems. 
pp. 227 – 238. ISBN: 1-58113-879-2  



 
CHAPTER 5 
 
 
 
 
Observer Kalman filter identification 
and multiple-model adaptive estimation 
for classifying animal behavior using 
wireless sensor networks 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Section 5.1: Introduction 

 
94 

Observer Kalman filter identification and multiple-model 
adaptive estimation for classifying animal behavior using 

wireless sensor networks 
 

E. S. Nadimia,b,* , H. T. Søgaardc, T. Bakb 

 
aResearch Center Bygholm, Department of Agricultural Engineering, 

Aarhus University, Denmark 
bDepartment of Electronic Systems, Automation and Control, Aalborg 

University, Denmark 
Engineering College of Aarhus, Aarhus, Denmark 

 
Abstract:  
The identification of a mathematical model capable of precisely describing the 
behavior of animals given input such as feed has great potential for behavioral 
control purposes. Such models will provide a prediction capability which is 
fundamental to any closed loop control of the behavior e.g. control the feeding. 
This paper investigates the problem of mathematically modeling animal 
behavior that is feeding activity or feeding inactivity of dairy cattle given feed 
dry matter. The observer-Kalman filter identification method was successfully 
applied to input-output data and two models representing the hypothesis that 
animals are actively feeding and the hypothesis that animals are inactive were 
identified. The input and output of each of the identified models was feed dry 
matter offer and the pitch angle of the neck respectively. The pitch angle of the 
neck of the animal was successfully measured and aggregated by a ZigBee-
based wireless sensor network. Two forth-order models describing the dynamics 
of an animal in the active and inactive behavior modes showed precise 
performance in terms of prediction error, cross correlation function between 
residual and the output as well as cross correlation between residual and the 
input with 97% confidence interval. Each of the two models describes different 
biological behavior hypothesis (active and inactive) and a multiple-model 
adaptive estimation approach was applied to determine the likelihood of each of 
the two models being the correct model for a specific input of dry matter feed. 
The minimum achieved classification success rate was 79.7% and the average 
success rate was 87.2% for the whole experiment. In order to qualify the results 
of the presented research, more experiments with longer time periods including 
bigger herds of animals are required, however the results showed great 
improvement compared to the results of other studies. 
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1. Introduction: 
Modeling of animal behavior plays a fundamental role in the design of systems 
for monitoring and controlling animal behavior. Such systems can potentially 
have a significant impact on practical farming by improving animal welfare and 
livestock management. Appropriate models may be used as predictors in a 
closed loop setup, where feed is automatically made available based on set 
references for feeding activity. If e.g. cows do not exhibit an active feeding 
behavior for sufficient amount of time, optimal production require that more 
feed be made available to increase the time they spend feeding. If the time they 
spend actively feeding can be predicted as a basis of the available feed, this may 
be used to adjust the feeding process automatically. Although different aspects 
of animal behavior are well known by scientists, it is worth noting that the 
problem of controlling the behavior of a herd of animals by controlling the 
environment (e.g. the feed) is still far from being resolved in an optimal way. 
One of the main reasons for that is that the dynamic behavior of animals and 
their interaction with the surrounding is very complex and difficult to model 
mathematically in a reliable way that is suited for on-line applications.  
Among all different aspects of animal behavior which have been studied by 
different researchers (Szewczyk et al., 2004; Wilson et al., 2005; Guo et al., 
2006; Munksgaard et al., 2006; Bishop-Hurley et al., 2007; Oudshoorn et al., 
2007; Nadimi et al., 2007; Schwager et al., 2007), grazing behavior has got 
special attention due to close correlation to animal welfare, productivity and 
farm management (Wang et al., 2006). 
In order to be able to study and control the grazing behavior dynamics, a model 
which could precisely generate the same pattern as actual behavior must be 
achieved. Such a model (random walk mobility model, random waypoint 
mobility model, random direction mobility model and Gauss-Markov mobility 
model) can be found in literature as in Camp et al., 2002. While all these models 
mainly focus on the motion characteristics (random speed and random 
direction), a new perspectives to solve the problem of online monitoring of 
grazing behavior were introduced by Nadimi et al., 2007 and Schwager et al., 
2007. In order to evaluate the grazing behavior, parameters such as the pitch 
angle of the neck of animal in addition to the motion characteristics were 
registered by wireless sensor networks. In the research carried out by Nadimi et 
al., 2007 the pitch angle of the neck was modeled by a discrete time Wiener 
process and subsequently translated to a behavioral mode (active or inactive). 
Lack of deterministic inputs (time series) in the Wiener process as well as 
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inaccurate achieved results led to inapplicability of Wiener process for further 
control purposes. Therefore a model of the grazing behavior in terms of activity 
and inactivity taking the pitch angle of the neck into account as output and 
providing the information of an input (i.e. dry matter offer) into the model 
would be of interest.  
The Observer Kalman filter identification (OKID) method is one of the time 
domain techniques relevant for this problem as no a priori knowledge of the 
system is needed. Input-output data is sufficient, and a pseudo-Kalman filter 
state estimator is produced making it very useful for control applications 
(Elkaim, 2002). Furthermore, the technique has been proven to be numerically 
efficient and robust with respect to measurement noise and even in the presence 
of mild nonlinearities (Tiano et al., 2007). Thus in the present research, the 
OKID method has been applied and two different state space models that 
describe the animal dynamics in terms of pitch angles of the neck were 
identified. The use of two models reflects observations on animals that indicate 
significant differences in the neck pitch dynamics given the behavioral mode of 
the animal. An animal grazing is moving its head up and down in a periodic 
manner, whereas the dynamics of the head movement of an animal resting etc. 
has much lower frequency content. The two models reflect this observation by 
assuming two different hypotheses. One model reflects the hypothesis that the 
animal is grazing, while the other reflect the hypothesis that the animal is not 
grazing. To determine the likelihood of a given model and thereby hypothesis 
being the correct, the models are fused with a multiple-model adaptive 
estimation approach (Bak, 2000; Ferreira & Waldmann 2007). The two dynamic 
models combined with multiple-model adaptive estimation allow a 
classification of the activity mode of the animal into grazing or non-grazing.  
Different classification methods such as decision trees, fuzzy logic, neural 
networks, K mean classifier and multiple-model adaptive estimation (MMAE) 
have been implemented in different applications (Bak 2000, Bar-shalom and 
Fortmann 1988, Ormsby 2003, Nadimi et al., 2007, Ferreira and Waldmann 
2007, Schwager et al., 2007). To the authors’ best knowledge, among the 
classification methods, MMAE has not been implemented in animal behavior 
studies. One reason for that could be lack of reliable and suitable models 
describing the dynamic behavior of animals. In the MMAE method the 
likelihood of a number of independent dynamic models are continuously 
evaluated based on their prediction accuracy. 
The remainder of the paper is organized as follows. The mathematical basis of 
the observer Kalman filter identification approach will be presented in Section 
2. Section 3 is dedicated to the mathematical formulation of multiple-model 
adaptive estimation approach to evaluate the likelihood of animal behavioral 
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mode (activity and inactivity). The experimental set up and materials employed 
in this research are described in section 4. In section 5, the results of system 
identification and classification using OKID method and MMAE approach are 
presented respectively. At the end, the conclusions and the discussions of the 
study are represented.  
 

2. Observer Kalman filter identification method 
To perform system identification, several methods have been developed over 
the years (Ljung 2000). Observer Kalman filter identification (OKID) is a time 
domain technique with several advantages for the specific application addressed 
in this paper. First, OKID technique assumes that the system in question is a 
discrete linear time invariant (LTI) state space system. Second, only input and 
output data to formulate the model is required and no a priori knowledge of the 
system is needed. Third, the OKID method produces a pseudo-Kalman state 
estimator, which is very useful for control applications and at last, the truncation 
errors are small, thus even in the case of model order error, the results of that 
error will be minimal (Elkaim, 2002). 
Consider a system described by an LTI discrete time multiple-input, multiple-
output (MIMO) state space model of the form: 
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with input vector mRku ∈)( , output vector pRky ∈)( , state vector 

nRkx ∈)( , and system matrices nnRA ×∈ , mnRB ×∈ , npRC ×∈  and 
mpRD ×∈ . 

The identification problem consists of determining the minimal state space 
realization using input-output discrete data { } mN
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which means that the dimension of state space vector ( n ) as well as system 
matrices DCBA ,,,  have to be identified. According to the OKID algorithm 
(Juang, 1994), to artificially increase the damping of the system, an observer is 
applied to state Eq. (1), by using an observer gain matrix pnRG ×∈ . 
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Therefore the state space model presented in Eq. (1) can be rewritten as 
equation below: 
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where in Eq. (3), )(kv  is an extended input vector. The matrix G  can be 
chosen to make A  as stable as desired, under an observability condition, i.e. all 
the eigenvalues of the modified system can be arbitrarily placed inside the unit 
circle. Eq. (3) is an observer equation if the state vector )(kx  is considered as 
an observer state vector, therefore the Markov parameters of the system in Eq. 
(3) will be referred to as observer Markov parameters (Tiano et al., 2007). 
To select the observer gain matrix G  such that all the eigenvalues of A  are 
placed inside the unity circle, a P  step ahead predictor for output vector in 
response to arbitrary initial conditions and input values could be formulated as 
Eq. (4). 
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In Eq. (4), Y  is a set of L  predicted output values, V  is extended input matrix 
and θ  is the vector of observer Markov parameters (Juang, 1994). 
Assuming that the input is persistently exciting, the observer Markov 
parameters can be determined as follows: 
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[ ] +== VYPθθθθθ L210      (5)  
 
where +V  is the pseudo-inverse of V  and kθ  is defined as in Eq. (6). 
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In order to have a unique solution, all the rows of V  must be linearly 
independent. Furthermore, to minimize any numerical error due to the 
computation of the pseudo-inverse, the rows of V  should be chosen as 
independently as possible (Juang, 1994). As a result, the maximum value (upper 
bound of the order of the deadbeat observer) of the prediction horizon ( P ) can 
be described as in Eq. (7). 
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Once the vector of observer Markov parameters has been identified, the system 
matrices ( DCBA ,,, ) and the order of minimum realization can be determined. 
For this purpose, the eigensystem realization (ERA) could be employed in 
which the generalized Hankel matrix composed of observer Markov parameters 
should be formed as in Eq. (8). 
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in which ss  should be chosen much larger than the expected state vector 
dimension ( n ). Factorization of the block data matrix using singular value 
decomposition in Eq. (8) for 1=k  would result in an equation as presented in 
Eq. (9). 
 

TSRH ∑=)0(        (9)   
 
where the columns of matrices R  and S  are orthonormal and ∑  is a 
rectangular matrix as presented in Eq. (10). 
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While the diagonal elements of n∑  correspond to the robustly controllable and 
observable system state components, the other singular values are correspondent 
to the measurement noise (Tiano et al., 2007). Therefore, to eliminate the high-
frequency contamination, the measurement data should be pre-filtered before 
any model parameters could be identified. Assuming that the true system could 
be represented by )(sH , A good estimation of the state vector dimension ( n ) 
should qualify certain condition as introduced by Eq. (11). 
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Taking Eq. (9) to (11) into consideration, the Eq. (9) can be rewritten as 
follows: 
 

T
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where matrices nR  and nS  are constructed by the first n  columns of R  and S  
respectively. Hence, the estimation of system matrices can be achieved as 
presented in Eq. (13). 
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in which the definition of matrices rE  and mE  are shown in Eq. (14). 
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Using Eq. (13) and (14), the observer gain matrix G  and system matrices 
( CBA ,, ) can be obtained (Juang, 1994).  
Another straight forward approach to identify system matrices using observer 
Markov parameters could be obtained by the general relationship between the 
actual system Markov parameters and the observer Markov parameters by 
inducing Eq. (2), (5) and (8) as described in Eq. (15). 
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Applying the Eigensystem Realization Algorithm (ERA) to the system Markov 
parameters would consequently result in achieving the system matrices (Elkaim, 
2002). 
 

3. Multiple-model adaptive estimation approach  
While a complex model relies on several assumptions to describe the actual 
system, it can only provide more accurate estimates in very specific situations 
compared to the results achieved by employing several simple models (Bak, 
2000; Ferreira & Waldmann 2007). Multiple-model adaptive estimation 
(MMAE) uses a number of models and calculates the likelihood of each model 
and their combinations to yield the (sub)optimal estimate. Over time, suitable 
models would have high probabilities and therefore dominate the estimates 
(Ferreira and Waldmann 2007). The fundamental basic of MMAE used in the 
present research is shown in Figure 1 (Ferreira and Waldmann 2007). 
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MMAE mainly relies on two assumptions. The first assumption is that the true 
model is among the proposed models and the second one is that the same true 
model has been running since 0=t  (Bak, 2000; Ferreira & Waldmann 2007). 
Let )(kiμ  be the probability that the MMAE method attributes to model 

)2,1( =iM i  at time kt =  given the measurements up to that time 
),,( 0 kk yyY K= (Eq. (16)). 

  
)),(()()( 1−=Δ kikii YkyMpYMpkμ     (16) 

 
The initial probability )0(iμ  that a given model iM  is the correct one is 
defined by a priori information. The updating process from )1( −kiμ  to )(kiμ  
can be achieved using Eq. (17). 

Classification  

 Kalman filter 
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Figure 1. Fundamental basics of MMAE approach.  
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Let the likelihood function )(kjλ  be the conditional probability density 

function  ),)(( 1 jk MYkyp −  that observation )(ky  occurs assuming the 

validity of model jM . The likelihood can be extracted directly from the 

innovation process (residual measurements )(krj ) in the j th Kalman filter 

assuming that it is Gaussian, zero mean and with covariance jS . Therefore, 

)(kjλ  can be defined as follows in Eq. (18) (Bak, 2000; Ferreira & Waldmann 
2007). 
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Using Eq. (17) and (18), the probability )(kiμ  that model iM  is correct is 
updated by using Eq. (19). 
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4. Experimental setup and materials 
The case study in the presented experiment was a group of dairy cows. In order 
to monitor behavior parameters of the herd, MPR2400 Micaz sensor motes from 
Crossbow were employed. They have a Chipcon CC2420 radio, which uses a 
2.4 to 2.48 GHz IEEE 802.15.4/ZigBee RF transceiver with MAC support. 
They include direct sequence spread spectrum (DSSS) radio which is resistant 
to RF interference and provides inherent data security. TinyOS as the operating 
system was running on the motes.  
MTS310 sensor board equipped with a 2-axis accelerometer was employed to 
measure the pitch angle of the neck of each cow. A cow with the head down 
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would nominally register with a pitch angle of -40 degrees and a cow with its 
head upright would register with a pitch angle of -10 degrees. The 
accelerometer readings together with the sensor ID were encapsulated in one 
packet. The selected sampling rate for the packet dissemination was 1 Hz 
(Nadimi et al., 2007). Multiple sensor nodes sent sensor readings to a base 
station or aggregation point in the network (gateway) using many to one routing 
protocol. The gateway was an MIB600 which provided a TCP/IP interface for 
both programming and data communication. 
The CC2420 radio supports up to 255 different transmission power levels and 
allows for a programmable transmission frequency. In order to minimize the 
number of variables in the experiment, the RF transmission frequency and the 
transition power were respectively fixed at a single frequency band (2.48 GHz) 
and at the maximum transmission power (1 mW). The selection of the radio 
channel 26 (associated with frequency band 2.48 GHz) could be justified due to 
the highest packet delivery performance in this radio channel while the 
maximum transmission power was chosen because the maximum 
communication range was achieved. 
The experiment was carried out over 3 days with 4 cows 6 hours per day on 
average. The cows were equipped with wireless nodes around the neck. The 
node on the collar as well as the collar itself was fixed very well to prevent any 
slide to right or left side. 
The antenna pointed to the sky in order to have better communication between 
nodes and the gateway. The antenna was ½ wave dipole antenna, with an 
MMCX connector. The gateway was installed 1.2 m above the ground. The 
shape of the field was rectangular and the area was 60 m long by 40 m wide. 
Each day, a new field with the same dimension (60 m by 40 m) covered by new 
grass was provided for the cows. Manual registrations of the absolute time of 
the day as well as the behavioral mode (active or inactive) of each cow were 
carried out during the whole day. During the experiment, the grass length (dry 
matter offer) was measured in different parts of the field and the average length 
was chosen to express the general grass length and thereby dry matter offer.  
 

5. Results 
 

5.1 OKID identification results 
The OKID method assumes that the system to be identified is LTI. Another 
requirement for the implementation of the OKID method is to have close to 
noise-free data. To reduce the measurement noise of the neck pitch angle 
measurements they were filtered by a low pass filter (rectangular window). The 
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window length ( 3=W  seconds) was chosen in order to be able to capture the 
dynamics of the head movements. Based on field observations and manual 
registrations, the animals move the head with a frequency of 1 Hz during the 
active period. Therefore, to design a low pass filter capable of removing high 
frequency contamination (noise) and keeping the fluctuations of 1 Hz, the 
maximum window length should be 6 seconds ( W

π2 ). Consequently, the 

window length was selected to ensure that the head fluctuations would be 
detected. Applying the designed low pass filter to the pitch angle measurements 
resulted in the filtered data as exemplified by Figure 2 (a). 
In order to properly identify the parameters of the model relating the pitch angle 
of the neck (output) to dry matter offer (input), the input signal should be 
persistently exciting (Ljung and Soderstrom, 1986; Ljung, 1987). 
The input signal was modeled as a ramp signal with an additive random 
process, based on two facts: (1) The manual registrations demonstrated that dry 
matter offer descends with negative slope with increasing time (Oudshoorn et 
al., 2007) and (2) The grazing process is an irregular process, as the animals 
stop grazing time to time. Consequently, a random process was added to the 
ramp signal in such a way that at each time step, the dry matter offer is larger or 
equal than the dry matter offer of the next time step. Therefore, the manual 
registrations of the dry matter offer were resampled and random process with 
mean value (0) and small standard deviation (0.001) compared to the mean 
value and the standard deviation of the input signal, was added to the input 
signal. As a consequence of adding a random signal with mean value (0) to the 
input signal, the identification process would be unbiased (Ljung and 
Soderstrom, 1986; Ljung, 1987). Therefore the input signal was filtered as well, 
by a rectangular window in order to remove the high frequency contamination 
and to ensure that the low frequency components of the measurements of the 
dry matter offer (input) would be kept. The new input signal used in the 
identification process is presented by Figure 2 (b).  
As a single complex model can provide accurate estimates of the system in 
specific situations compared to the results achieved by several simple models, 
the output data set as well as input data set was divided to 2 datasets, one 
representing the active period ( AP ) when the animal is grazing and the other 
one representing inactive period ( IP ) when it is not. The division process of 
the output and input data set were carried out according to the manual 
registration of the behavior as observed during the experiment. Each data set 
representative of activity or inactivity was divided into two subsets for 
identification process ( II IPAP , ) and validation process ( VV IPAP , ). Later on, 
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the OKID method was applied to each data set ( II IPAP , ) and two dynamic 
models were obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the first step in the OKID algorithm, an appropriate prediction horizon ( P ) 
using Eq. (7) should be selected. Taking into account that the system is single-
input single-output (SISO), by implementing Eq. (7), P  has been selected as 30 
samples. 
Identifying the observer Markov parameters of the active and inactive period 
associated with the data sets IAP  and IIP  and forming the Hankel Matrix 
resulted in singular value decomposition as presented by Figure 3. 
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Figure 2. Filtered measurements of the pitch angle of the neck (output of the 
process) using a low pass filter (rectangular window with window length = 3 
sec) (a). Dry matter offer as the input of the process (b). 
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Taking Eq. (11) and Figure 3 into account would reveal that a forth or higher 
order model is in perfect agreement with the input-output data. However, fifth 
or higher order models have been rejected since pole-zero cancellation would 
suggest that it could be a consequence of round-off modeling errors.  
By identifying system matrices, the eigenvalues of the models associated with 
activity and inactivity could be calculated (Figure 4). As a subset of each data 
set ( II IPAP , ) was specified to the identification process, validation process 
was carried out on the other subsets ( VV IPAP , ). The results of the validation 
process are shown by Figure 5 in terms of the difference between model output 
and the measurements (one step ahead prediction error). The absolute mean 
value of the prediction error for the activity period and inactivity period was 1.8 
and 0.6 degrees on average respectively. 
The prediction error time series (cross correlation between residuals and the 
output) of the identified activity state model with 97% confidence interval is 
presented by Figures 6 and 7. The cross correlation of the input and output 
residuals is presented as well (97% confidence interval) by the same Figures (6 
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and 7). It can be confirmed that the identified models showed a good prediction 
capability as the cross correlation functions are within the 97% confidence 
interval.  
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Figure 5. Prediction error achieved in the validation process for 
activity phase (upper) and inactivity phase (lower). 
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Figure 6. Cross correlation function between residuals and the output for the 
activity model (upper). Cross correlation between input and output residuals 

for the activity model (lower). 
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Figure 7.  Cross correlation function between residuals and the output 
for the inactivity model (upper). Cross correlation between input and 

output residuals for the inactivity model (lower).
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5.2 Multiple-model adaptive estimation results 
 
Assuming that the behavioral mode (activity and inactivity) models are 
represented by 1M  and 2M  respectively, MMAE approach has been applied to 

1M  and 2M  to calculate the likelihood of each model and their combination to 
yield the optimal estimate. The initial probabilities )0(1μ  and )0(2μ  that 1M  
or 2M  is the correct model was defined by a priori information. As it was 
observed, all the animals were active when the experiment started therefore the 
initial probabilities )0(1μ  and )0(2μ  were assigned to 0.6 and 0.4 
respectively. Applying Eq. (16) to (19) to the models would result in the 
probability assignment as shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Classification results of activity state using MMAE 
approach. The top figure represents the pitch angle of the neck; the 

figure in the middle is the likelihood function that model 1M  is 
correct while the lowest figure is the likelihood function that model 

2M  is correct. 
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From Figure 8 it can be concluded that when the animal was active, the 
likelihood that model 1M  was the correct model would be larger than 0.5 while 
the likelihood during inactivity period was close to zero. On the other hand, 
when the animal was inactive, the likelihood that 2M  is the correct model 
would be close to one and during activity period, the likelihood would be 
smaller than 0.5. Modifications in the likelihood results as proposed by Ferreira 
& Waldmann 2007 were carried out such that the probabilities larger than 0.5 
was assumed as 1 and the probabilities smaller than 0.5 was assumed as zero. 
As behavioral mode periods of all the animals were registered manually during 
the experiment (ground truth), the pitch angle measurements of all the animals 
as well as dry matter offer were fed into the identified activity ( 1M ) and 
inactivity models ( 2M ) and the results of MMAE approach were achieved and 
summarized by Table 1. Therefore, the classification success rate in Table 1 was 
calculated as the percentage of the correct behavior classification (behavioral 
mode) using MMAE approach compared to the results of manual registrations. 
 

 
Table 1. Classification success rate achieved by the identified models and MMAE 

approach 
          
            Day No 
 
Cow No 
 

 
 

No.1 

 
 

No. 2 

 
 

No. 3 

 
No. 1 

 

 
88.2% 

 
81.5% 

 
86.3% 

 
No. 2 

 

 
89.7% 

 
85.6% 

 
88.4% 

 
No. 3 

 

 
81.5% 

 
80.3% 

 
79.7% 

 
No. 4 

 

 
96.8% 

 
96.1% 

 
92.4% 

 
 
As a result of Table 1, 87.2% success rate was achieved on average which is 
significantly higher compared to the results of other studies (Nadimi et al., 
2007; Schwager et al., 2007, Umstatter et al., 2006); however to confirm the 
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obtained success rate, more experiments should be carried out in which higher 
number of animals are monitored during longer periods of time.  
 
Conclusions 
 
The problem of animal behavior identification in terms of behavioral mode 
(activity and inactivity) using mathematical models has been addressed. The 
observer-Kalman filter identification method was successfully applied to input-
output data and two models representing the hypothesis that animals are 
actively feeding and the hypothesis that animals are inactive were identified. 
The input and output of the identified models was dry matter offer and the pitch 
angle of the neck respectively. The output was successfully measured and 
aggregated by ZigBee-based wireless sensor networks. Many-to-one routing 
protocol was used as the communication protocol between sensor nodes and the 
gateway. Two forth-order models describing behavioral mode showed precise 
performance in terms of prediction error, cross correlation function between 
residual and output as well as cross correlation between residual and the input 
with 97% confidence interval. The achieved models could be potentially 
employed for further control purposes.  
As another objective of the paper was to properly classify the behavior of the 
animals in terms of activity and inactivity using obtained models, multiple-
model adaptive estimation approach has been applied to the input-output data. 
The achieved minimum classification success rate was 79.7% and the average 
success rate was 87.2% for the whole experiment. In order to qualify the results 
of the presented research, more experiments with longer time periods including 
bigger herds of animals are required, however the results showed great 
improvement compared to the other studies. 
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It was the goal of the author that throughout the development of this thesis, the 
design, development and implementation process be sufficiently explained to 
allow the reader to understand and if desired, enable the reader to replicate the 
process that resulted in the experimental validation of the project.  
Indeed, though this thesis describes the process only for a particular 
implementation of the ZigBee based monitoring system on a group of dairy 
cows and mathematically model their behavior, it is hoped that it can act as a 
guide for other applications which apply wireless sensor networks to monitor 
animal behavior.  
 
Conclusions 
 

The problem of animal behavior monitoring and classification in terms of 
behavioral mode (activity and inactivity) using wireless sensor networks has 
been successfully addressed in this thesis. The research carried out can 
potentially result in controlling the animal behavior and consequently 
improving their productivity and welfare.  

Various direct and indirect behavioral parameters (such as location, pH of 
rumen, position of the neck, status of the leg and the translational velocity) are 
capable of representing animal behavior. Some of these parameters can indicate 
the animal behavior in terms of activity and inactivity. Among them, the pitch 
angle of the neck and the velocity of the movement of the animal were selected 
in this thesis as indicators of activity and inactivity due to the simplicity of their 
measurement using non invasive methods and their ability to precisely represent 
the activity.  

In order to measure, aggregate and transmit the behavioral parameters 
(pitch angle of the neck and the velocity of the movement) through a network to 
infrastructure facilities, wireless sensor networks demonstrated considerable 
advantages over other traditional invasive monitoring systems. As using wires is 
impractical in animal behavior monitoring in outdoor environments and the 
presence of human can potentially disturb the animal behavior, a wireless 
remote monitoring system is essential. Among all different wireless based 
monitoring systems (ZigBee, Bluetooth, RFID and WiFi), a ZigBee based 
wireless sensor network was selected as it fulfilled all the necessary 
requirements: bandwidth, short network joining time, long communication 
range, low energy consumption and low cost. The ZigBee based monitoring 
system was successfully employed, although the main disadvantage of its use 
was the relatively high rate packet loss (30% on average) in outdoor 
environments.   
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When the behavioral data traveled along unreliable communication 
channels in the wireless sensor networks, the effect of communication delays 
and loss of information could not be neglected. Consequently, this problem was 
addressed by using separate discrete Kalman filters for the registered behavior 
parameters, in which the arrival of observation packets was modeled as a 
random process. The lost behavioral parameters data were optimally estimated 
by the Kalman filter. 

Monitoring behavioral parameters of each individual animal in a large 
herd is necessary when health parameters need to be registered. When the study 
is focused on activity parameters, monitoring each individual animal is not 
efficient in terms of time, cost and effort. Therefore, in this thesis, which was 
focused on animal activity, only a part of the herd (23% of the animals) was 
equipped with sensor nodes. In order to evaluate whether the monitored animals 
represented the whole herd, investigations relating the whole herd presence and 
the registrations of a subset of tagged animals were carried out, indicating that 
the monitored animals did represent the whole herd in terms of activity.  

Given that the tagged animals represented the whole herd, classification 
of the behavior of the tagged animals into two classes, active and inactive, was 
carried out. Different classification methods were applied to the data (i.e. pitch 
angle of the neck and the translational velocity of the animals). Initially, a 
threshold method was successfully applied to the data using two thresholds 
defined for behavior classification: 

1) A threshold on the pitch angle of the neck (-32 degree). 
2) A threshold on the translational velocity (0.05 1−ms ).   

Implementing the threshold method resulted in 61% classification success 
rate. In order to improve the behavior classification, different classification 
approaches such as decision trees, fuzzy logic and neural network classifiers 
were successfully applied to the data representing the pitch angle of the neck 
and the translational velocity of the animals. The best results in terms of error 
rate and number of nodes were achieved by a pruned decision tree in which both 
the pitch angle and the translational velocity were selected as predictors. 
Another advantage of the decision tree was the use of a white-box model, in 
comparison to fuzzy logic and neural network classifiers (black-box model) in 
which the explanation of the results can be excessively complex for a decision 
maker to comprehend. The classification results achieved by the decision tree 
were improved when both behavioral parameters were utilized as the predictors 
compared to the classification results when only one of the behavioral 
parameters was used as the single predictor. 

Finally, a high performance Multiple-Model Adaptive Estimation 
(MMAE) approach to classify animal behavior into two classes, active and 
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inactive, was applied to the behavioral data. In order to detect different 
behavioral modes (activity and inactivity) and transitions among them using a 
MMAE approach, one or several mathematical models describing different 
behavioral data are required. The pitch angle of the neck and the translational 
velocity were successfully modelled by random mobility models using 
Brownian motions. The main drawback of representing the behavioral data 
using random models (Brownian motion) was not considering the influence of 
feed offer on the behavioral data. Taking into account that the feed offer can 
strongly affect animal behavior and the input to the model in Brownian motion 
is a white noise, models that can include the effect of feed offer as input on the 
behavioral modes are preferred. Consequently, in order to estimate the models 
that could relate the feed offer to the behavioral parameters, different system 
identification techniques were successfully applied to the data of pitch angle of 
the neck and feed offer.  

Among different identification methods, Observer Kalman filter 
identification technique (OKID) showed considerable advantages over other 
methods. For instance, OKID approach requires only input and output data and 
no a priori knowledge about the system is required. OKID approach was hence 
a good candidate and was successfully applied to the data of pitch angle of the 
neck and feed offer. Two forth-order models describing the dynamics of the 
pitch angle data during animal activity and inactivity modes were identified. 
The identified models were then applied to the MMAE approach and resulted in 
animal behavior classification into two classes, active and inactive, with 87.2% 
success rate. This rate was higher compared to the results of other classification 
methods used in this dissertation (decision trees, fuzzy logic, neural network, 
and the threshold methods). Furthermore this rate was higher when compared to 
the results of other methods such as K-means classifier or discriminant analysis 
utilized by other researchers in similar studies. As the normal time length of 
grazing for a herd of dairy cows is on average 3 to 5 hours per day, and the 
optimal grazing time length to have the highest milk production is 5.5 hours, 
maximum error rate of 45% in misclassifying animal behavior in terms of 
activity and inactivity can be considered acceptable (milk production 
association, 2005). Therefore, the classification error rate (12.8%) achieved by 
the MMAE approach in this dissertation was lower than the acceptable error 
rate.  

This thesis showed that wireless sensor networks can be successfully 
employed to monitor the behavior of a herd of dairy cows in outdoor 
environments. The approaches used in this thesis can be extended to a variety of 
applications in animal behavior monitoring, modeling and classification. The 
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proposed models describing animal behavior mode can then be used to control 
the behavior of herds of animals in terms of activity of the animals.  

 
 
Future work   
 

Having elaborated on the results presented in this dissertation, it is 
appropriate to outline potential future work. This is presented in the form of 
future improvements that would potentially enhance the solutions of the 
problem. Many of the suggested improvements are not difficult and only need 
sufficient time. 
 

1. Monitoring system 
 

The current configuration of the monitoring system is such that 
improvements can be made in relation to the following points: 
 

• Packet loss: to design a monitoring system that can handle the 
packet loss problem. Adding flash memory to the wireless 
nodes in order to save the packets that can not be transmitted 
and resend the saved packets after a while can be another 
solution. Furthermore, another potential solution could be using 
handshaking protocol such as in the TCP/IP protocol. 

• Longer range of communication: to design a monitoring 
system that provides longer range of communication. An 
obvious solution would be multi-hop routing protocol. 

• Lower power consumption: to design a monitoring system 
that the power system lasts more than 7 days at 100% duty 
cycle. Potential solutions for that could be changing the routing 
protocol from single-hop connection to multi-hop connection. 
As energy consumption for transmitting a packet in the wireless 
communication has inverse relation with the square of distance, 
the required energy for forwarding a message from a source 
node to the gateway using a wireless node as an intermediate 
relay is half of the energy required for the direct packet 
transmission from the source node to the gateway. Another 
potential solution could be to improve the power supply by 
changing normal AA batteries to solar cells or to rechargeable 
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batteries capable of being charged by the movement of the 
animal. 

 
2. Behavior parameters  
 

The current registered behavioral parameters (pitch angle and velocity) 
have proved to be sufficient for the purpose of behavior monitoring in terms of 
activity and inactivity. However additional improvements could be considered 
as follows: 

 
• Precision: to measure the behavioral parameters more 

accurately. Potential solutions to precisely monitor the velocity 
is to add extra infrastructure to the wireless nodes (such as 
bidirectional antenna, sound systems) or applying high 
precision localization techniques (triangulation). 

 
3. Experimental validation  

 
The current experimental setup to register the behavioral parameters has 

been performed in different fields with including different herds of dairy cows; 
however different hypotheses in this dissertation could be validated in different 
fields of different sizes, including higher number of animals in the herd due to 
the behavior changes from one herd to another one. 
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TinyOS packet deciphering  
 

One of the first things to do once the wireless nodes are running is to 
figure out how to use them with different applications. There is documentation 
on the TinyOS website about programming the motes using NesC language, but 
figuring out how to get that data to a specific application and what it means can 
be difficult and time consuming process. This subsection is used to explain 
deciphering TinyOS serial packets. It is assumed that the raw data packets from 
the gateway are successfully received (the serial port connected to a MIB510 
Serial Interface board or an Ethernet port using MIB600). Preliminary 
knowledge about the packet structure of TinyOS as presented below is essential:  

1. A TinyOS data packet has a maximum length of 255 bytes. 
2. The raw data packet is associated on both ends by a frame 

synchronization byte of 0x7E. This is used to detect the start and the 
end of a packet from the stream (Thorn, 2005).  

3. The raw data packet utilizes an escape byte of 0x7D. This is essential 
in case a byte of payload data is the same as a reserved byte code, such 
as the frame synch byte 0x7E. In those conditions, the payload data 
will be preceded by the escape byte and the payload data itself will be 
exclusively OR’ed with 0x20 (Thorn, 2005).  

4. On a computer running XP, multiple byte values are byte-swapped in 
the data stream. For example, the 2 byte UART Address field (0x007E) 
will appear as 7E 00 in the byte stream (Thorn, 2005).  

The raw data packet structure is described by Diagram1 and Table1 as follows.  
 

SYNC_BYTE  Packet Type  Payload Data  SYNC_BYTE  

0 1 2...n-1 n 
Diagram 1. General raw data packet structure 

 
 

Table1. Description of the packet type, payload data and the synchronization byte 
(Thorn, 2005) 

Byte #  Field  Description  
0  Packet frame synch 

byte  
Always 0x7E  
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1  Packet Type  There are 5 known packet types:  
• P_PACKET_NO_ACK (0x42) - User packet with no 
ACK required.  
• P_PACKET_ACK (0x41) – User packet. ACK required. 
Includes a prefix byte. Receiver must send a P_ACK 
response with prefix byte as contents.  
• P_ACK (0x40) – The ACK response to a 
P_PACKET_ACK packet. Includes the prefix byte as its 
contents.  
• P_UNKNOWN (0xFF) – An unknown packet type.   

2…n-1  Payload Data  In most cases will be a TinyOS Message of varying length, 
which will be described below.  

n  SYNC_BYTE  Always 0x7E  

 
The payload data is a type of TinyOS message defined by the structure 

TOS_Msg. This data structure is defined as follows:   
 
 

Address  MessageTyp
e  

GroupID  Data 
Length  

Data   CRC   

0 1 2 3 4 5...n-2 n-1   n 
Diagram 2. TOS_MSG data structure 

 
Table 2. TOS_MSG data structure (Thorn, 2005). 

Byte #  Field  Description  
0 - 1  Message Address  One of 3 possible value types:  

• Broadcast Address (0xFFFF) – message to all 
nodes.  
• UART Address (0x007e) – message from a 
node to the gateway serial port. All incoming 
messages will have this address.  
• Node Address – the unique ID of a node to 
receive message.  

2  Message Type  Active Message (AM) unique identifier for the 
type of message it is. Typically each application 
will have its own message type. Examples 
include: AMTYPE_XUART   = 0x00  
AMTYPE_MHOP_DEBUG = 0x03 
AMTYPE_SURGE_MSG  = 0x11 
AMTYPE_XSENSOR    = 0x32  
AMTYPE_XMULTIHOP = 0x33  
AMTYPE_MHOP_MSG = 0xFA  
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3  Group ID  Unique identified for the group of motes 
participating in the network. The default value is 
125 (0x7d). Only motes with the same group ID 
will talk to each other.   

4  Data Length  The length (l) in bytes of the data payload. This 
does not include the CRC or frame synch bytes.   

5…n-2  Payload data  The actual message content. The data resides at 
byte 5 through byte 5 plus the length of the data 
(l from above). The data will be specific to the 
message type. Specific message types are 
discussed in the next section.  

n-1, n  CRC  Two byte code that ensures the integrity of the 
message. The CRC includes the Packet Type plus 
the entire unescaped TinyOS message. 

 
 

The payload data inside a TinyOS message is raw data specified to an 
application. In many cases, particularly applications that use ad-hoc mesh 
networking, the application will use the multi-hop message protocol. 
 
 

Source Address Origin Address Sequence 
Number 

HopCo
unt  

Applicatio
nData  

0 1 2 3 4 5 6 7...n 
Diagram3. Multi-hop message format 

 
Table 3. Details of the multi-hop message format (Thorn, 2005). 

Byte #  Field  Description  
0,1  Source Address  The address of the forwarding node.  

2,3  Origin Address  The address of the node that originated the 
packet.  

4,5  Sequence 
Number  

Used for determining route and calculating 
missed packets  

6  Hop Count  Used for calculating route. Number of nodes 
traversed.  

7…n  Application Data  The specific application data.  

 
 

The Application Data inside a Multi-hop message is raw data specified to 
an application. The format of the data is determined by the Message Type field 
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in byte 2 of the TinyOS message. The application that comes pre-installed on 
the motes from Crossbow is called Surge_Reliable, The data format for the 
Surge_Reliable application is defined in the Surge_Msg structure (Thorn, 
2005). The format of that message is given as follows.   
 
 

Type  Reading  Parent Addr  Sequence  
Number  

Light  Temp  Mag
X 

Mag
Y 

Accel 
X 

Accel 
Y 

RSSI 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Diagram 4. Surge_Msg format  
 
 

Table 4. Details of the Surge_Msg format  
Byte # Field Description 

0 Type The type of message that indicates the action. Known 
values are:  
• SURGE_TYPE_SENSORREADING (0x00) – The 
message contains sensor data.  
• SURGE_TYPE_ROOTBEACON (0x01) –  
• SURGE_TYPE_SETRATE (0x02) – Changes the rate 
a mote will send data.  
• SURGE_TYPE_SLEEP ( 0x03) – Puts the mote to 
sleep. 

  • SURGE_TYPE_WAKEUP (0x04) – Wakes mote.  
• SURGE_TYPE_FOCUS (0x05) – Causes mote to 
chirp. 
• SURGE_TYPE_UNFOCUS (0x06) – Returns mote to 
normal (unfocused mode). 

1-2 Reading Does not appear to be used. 

3-4 Parent Address The address of the Parent Node. 

5-8 Sequence 
Number 

The upper 9 bits represent the battery voltage. The 
remaining bits count the number of packets sent since 
the application was last reset. 

9 Light The raw light sensor reading. 

10 Temp The raw thermistor reading. 

11 Mag X The raw sensor reading for the x-axis magnetometer. 

12 Mag Y The raw sensor reading for the y-axis magnetometer. 

13 Accel X The raw sensor reading for the x-axis accelerometer. 

14 Accel Y The raw sensor reading for the x-axis accelerometer. 

15 RSSI The raw received signal strength indicator reading. 
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Title: Validation of Micaz mote measurements (acceleration) 
 
Objective:  
 

1) To validate the accuracy of acceleration measurements from Micaz 
motes (MTS310) by comparison with measurements from GPS on a 
robotic platform. 

2) The influence of mobility on connectivity issues between wireless 
nodes and the gateway (packet delivery performance).  

 
Schematic: 
 
 
 

 
Figure 1. experimental setup 
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Experiment Description:  
 
Wireless nodes are placed on a robot and data from the robot and nodes are 
collected. The GPS data are analyzed and equivalent accelerations were found, 
which will be compared to similar measurements from the wireless nodes. In 
order to avoid accelerations due to angular velocity of the platform, the platform 
was driven in a strictly linear pattern. The influence of mobility on connectivity 
and thereby accuracy of the node accelerometers was investigated by setting up 
nodes that are not directly on the platform as well as moving the gateway off the 
platform. Two experiments were carried with Configuration A, in order to have 
data from both x and y directions while the gateway was placed on the platform 
(acceleration precision test). Configuration B is only used for investigations of 
the x-direction component of the acceleration with the gateway off the platform 
(mobility and connectivity test).  
Procedure: 
 
Experiment A 
 

1) Install motes on the robotic platform with x-direction of accelerometers 
as indicated in Figure 1, configuration A. Install the gateway (and 
laptop gateway computer) on the platform. Initialize on-board data 
collection. Install mote3 off the platform, at 80 cm height (the typical 
height of the neck of a dairy cow). 

2) Synchronize clocks, between on-board computer and the gateway 
computer by adjusting time on the gateway computer.  

3) Start data collection on the on-board computer of GPS measurements 
(time-tagged) and the wireless sensor network (acceleration of the three 
motes and time-tag). 

4) Drive the robot for 5 min (approximately) on Bremse-banen (asphalt), 
in straight lines (approximately 30-40 meters) with varying 
accelerations. Log data from the wireless nodes on the gateway 
computer and from GPS on the on-board computer. 

5) Turn Mote1 and Mote2 90 degrees, so y-direction is aligned with robot 
forward direction, repeat step 3-4. 

 
Requirements:  
 

1) Number of wireless nodes: 
• 3 nodes  
• One gateway 
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2) Location of the nodes: 

• 2 nodes and the gateway on the platform 
• one node off the platform 
 

3) Direction of the nodes: 
• The antenna pointed the sky in order to have better 

connectivity. 
• The 2 onboard nodes with X-direction component of the 

accelerometer aligned with the direction of the movement of 
the platform 

• The 2 onboard nodes with Y-direction component of the 
accelerometer aligned with the direction of the movement of 
the platform 

 
4) Applications in TinyOS:  

• XSensorMTS300 (single-hop connectivity) 
• TOSBase  
• Xlisten 
 

5) The range of single-hop communication between nodes 
• Up to 50 meters (maximum RF power level) 
 

6) Data transition rate: 
• 1 Hz  
 

7) Time length of the experiment:  
• 5 minutes 

 
 
Experiment B 
 

1) Install motes on robotic platform with x-direction of accelerometers as 
indicated in Figure 1, configuration B. Install the gateway (and laptop 
gateway computer) off the platform, at 80 cm height. Initialize on-board 
data collection. Install mote3 off the platform, at 80 cm height. 

2) Synchronize clocks, between on-board computer and the gateway 
computer by adjusting time on the gateway computer.  
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3) Start data collection on the on-board computer of GPS measurements 
(time-tagged) and the wireless sensor network (acceleration of the three 
motes and time-tag). 

4) Drive the robot for 5 min (approximately) on Bremse-banen (asphalt), 
in straight lines (approximately 30-40 meters) with varying 
accelerations. Log data from wireless nodes on the gateway computer 
and from GPS on the on-board computer. 

 
Requirements:  
 

1) Number of wireless nodes: 
• 3 nodes  
• One gateway 
 

2) Location of the nodes: 
• 2 nodes on the platform 
• The gateway and one node off the platform 
 

3) Direction of the nodes: 
• The antenna pointed the sky in order to have better 

connectivity. 
• The 2 onboard nodes with X-direction component of the 

accelerometer aligned with the direction of the movement of 
the platform 

 
4) Applications in TinyOS:  

• XSensorMTS300 (single-hop connectivity) 
• TOSBase  
• Xlisten 
 

5) The range of single-hop communication between nodes 
• Up to 50 meters (maximum RF power level) 
 

6) Data transition rate: 
• 1 Hz  
 

7) Time length of the experiment:  
• 5 minutes 
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Results: 
Experiment A: 
 
The validation results of the acceleration measurements using wireless sensor 
networks and GPS are presented by Figure 2.  
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Figure 2. Comparison of X-direction component of the acceleration measurement 

(Experiment A). The blue curve is the results of wireless sensor networks and the black 
curve is the result of GPS measurement 

 
 
Experiment B: 
 
The results of packet delivery performance are presented in Figure 3 where 1 is 
an indictor of successful packet delivery and 0 is an indicator of packet loss. 
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Figure 3. Packet delivery performance of wireless sensor network (Experiment B). 

 
 
Title: Experimental setup for animal presence and pasture time 
monitoring  
 
In order to identify whether an animal is within the gateway connectivity area 
(defined in Chapter 3), and to estimate the pasture time length in strips of new 
grass, experiments as presented in the section “experimental set up” in Chapter 
3 were carried out. While only a brief description of the experiments is 
presented throughout the thesis, more details about how the experiments were 
carried out are represented as follows.  
 
 

Test of connectivity 
 

The aim of this experiment was to ensure that by installing wireless nodes 
around the neck of the cows (collar), the nodes could successfully communicate 
with the gateway. This experiment helps at finding out whether the wireless 
nodes could communicate with the gateway in outdoor environments where the 
wet floor and changing the relative height between the nodes and the gateway 
were the main issues. 
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Requirements: 
 
8) Different sources of energy absorption that can attenuate RF waves can 

be introduced in outdoor environments. For instance, the wet grass 
could be one of the sources of RF wave energy absorption. Another 
source of signal attenuation was obstacles between the gateway and the 
wireless nodes. The obstacle could be the body of the animal that was 
placed between a wireless node and the gateway. Therefore, in order to 
evaluate whether the real experiment would succeed, a short 
preliminary experiment for 30 minutes was carried out. 

 
9) Number of cows: 

• 7 cows carrying the nodes  
 

10) Location of the nodes: 
• Attached to the collar around the neck 
 

11) Direction of the nodes: 
• The antenna pointed the sky in order to have better 

connectivity. 
 

12) Applications in TinyOS:  
• XSensorMTS300 (single-hop connectivity) 
• TOSBase  
• Xlisten 
 

13) The range of single-hop communication between nodes 
• Up to 50 meters (maximum RF power level) 
 

14) The dimension of the field:  
• 40×40 2m  
 

15) Data transition rate: 
• 1 Hz  
 

16) Time length of the experiment:  
• 30 minutes 
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Figure4. Experimental setup representing connectivity test 
 
 
 
Monitoring a group of dairy cows in the area covered by new grass  
 
The goals of this experiment were: 
 

1. Estimating the time length that cows spend in the area covered by strips 
of new grass 

 
• Assuming the radius of the communication area between the gateway 

and the wireless nodes as R , and the area covered by strips of new 
grass after moving the fence as A , the probability that a cow enters 
the area covered by strips of new grass could be calculated using 
Bayesian equation as follows: 

 

12

2 P
R
AP ×=

π
  

 

40 m 

GW 

45 m 45 m 

20 m 20 m 



Appendix  

 
134 

where 1P  is the probability that a cow enters into the connectivity range 
of the gateway and P  is the probability that a cow enters into the 
extended area. 1P  could potentially represent: 
1) The time ( 1t ) that each cow spends in the gateway connectivity area  
2) The number of entrance ( 1n ) to the gateway connectivity area 
Furthermore, P  could represent the same parameters as above but in 
the extended area covered by strips of new grass.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure5. Monitoring Cow presence and pasture time  
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2. Evaluating the hypothesis presented in Chapter 3 to demonstrate if the 
tagged animals could represent the whole herd 
• In order to ensure whether the results of monitoring presence of the 

tagged animals in the area covered by strips of new grass could be 
extended to the whole herd, a small herd of cows was monitored in 
the field. 

 
Description:  
 
The experiment was carried out on a small herd of dairy cows. Wireless nodes 
were mounted on the collars attached around the neck of some of the cows. In 
order to verify the results of the experiment achieved from the wireless sensor 
networks, the herd was monitored by a camera installed close to the filed 
(Figure5). The fence was moved to enlarge the field to provide new grass offer 
for the herd, therefore to be able to monitor the location of the cows and 
evaluate whether they are in the gateway connectivity area, the new location of 
the fence and the new gateway connectivity area was painted as an arc on the 
floor (Figure6). The camera was installed on top of one stick almost 2 meters 
high. In order to be able to monitor and detect each tagged animal in the herd 
using the camera, each of them was painted with their identification number 
(the same ID number as their associated wireless node) on the body. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Setup of the experiment 
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Requirements:  
 

1. number of the cows 
• 15 cows totally 
• 7 cows carrying the nodes 
 

2. Size of the field:  
• 180×50 2m  

• Before extension: 100×50 2m  
• After extension: 180×50 2m  

 
3. Applications in TinyOS:  

• XSensorMTS300 (single-hop connectivity) 
• TOSBase  
• Xlisten 
 

4. Location of the nodes: 
• Attached to the collar around the neck 
 

5. Direction of the nodes: 
• The antenna pointed the sky in order to have better 

communication. 
 

6. Camera and 2 meters high stick  
 
7. The range of single hop communication between nodes 

• Up to 50 meters (maximum RF power level) 
 

8. Data transition rate: 
• 1 Hz  
 

9. Time of the experiment:  
• 8 hours per day 
• Manual data registering: 8 hours per day for 5 days. 

 
Results:  
 
As presented in Chapter 3. 
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Monitoring cows in the area covered by new grass (pitch angle of the neck 
& velocity) 
 
The main goal of this experiment was to measure the pitch angle of the neck 
and the velocity of the movement of the animals in the field as described in 
Chapter 4. Therefore, each animal was equipped with a wireless node around 
the neck capable of measuring the pitch angle of the neck using accelerometers 
and the velocity of the movement of the animal using received signal strength 
(RSS).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The experimental setup to measure the pitch angle of the neck and the velocity 

of the movement 
 

 
Requirements: 
 
1) number of cows 

• 4 cows were tagged with wireless nodes and GPS as the 
reference 

 
2) Size of the field:  

• 60×40 2m  
 

3) Employed sensors 

d  

R

GW
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• MTS310 equipped with accelerometer and temperature sensor  
 

4) Applications in TinyOS:  
• XSensorMTS300 (single-hop connectivity) 
• TOSBase  
• Xlisten 
• Java 
 

5) Location of the nodes: 
• Around the neck of the cows 
 

6) Direction of the nodes: 
• The antenna pointed the sky in order to have better 

communication. 
 

7) Camera and 2 meters high stick  
 
8) Four GPS sensors were installed around the neck 

 
9) The range of single hop communication between nodes 

• Up to 50 meters (maximum RF power level) 
 

10) Data transition rate: 
• 1 Hz  
 

11) Time of the experiment:  
• 8 hours per day 
• Data aggregation: 8 hours per day for 5 days. 

 
Results:  
As presented in Chapter 4. 
 
 
Monitoring cows in the area covered by new grass (position & velocity) 

 
The main goal of this experiment was to monitor the behavior parameters 
(position & velocity) of a group of dairy cows using localization methods. 
Along one side of the fence where the gateway was installed, two beacons were 
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also installed. In order to achieve a unique estimation of the location of a node 
using triangulation method, three beacons (including the gateway) is required. 
However with the setup shown in Figure 8, two beacons (including gateway) 
are sufficient because each node would be located to be in two different points 
of the field (symmetric position with the fence as the symmetrical axis), and one 
of them is not acceptable (on the other side of the fence). Therefore, by data 
post processing and limiting the identified located points within the boundaries 
of the field, the incorrect location could be filtered out.   
Description:  

 
The main goal of this experiment was monitoring behavioral parameters 
(location) of a group of dairy cows using triangulation approach.  The velocity 
could then be estimated using data post processing. In order to verify the 
estimated location of the animals using wireless sensor network, each tagged 
animal was also provided with GPS sensors. The whole experiment was 
monitored by camera as well.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Monitoring the position and the velocity of a group of dairy cows using 
triangulation  
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Requirements: 
 
1) number of the cows 

• 10 cows totally 
• 4 cows were tagged with wireless nodes and GPS as the 

reference 
 

2) Number of beacons: 
• Two beacons excluding the gateway on the fence next to the 

gateway 
 

3) Size of the field:  
• 180×50 2m  

• Before extension: 100×50 2m  
• After extension: 180×50 2m  

 
4) Applications in TinyOS:  

• NodeIntegration (single-hop connectivity) 
• io_sw_real2 (local data filtering and triangulation in each 

individual node) 
• Serial Forwarder   
• Java 
 

5) Application in Matlab 
• Kalman filter 
• Monte-Carlo localization 
 

6) Location of the nodes: 
• Around the neck of the cows 
 

7) Direction of the nodes: 
• The antenna pointed the sky in order to have better 

communication. 
 

8) Camera and 2 meters high stick  
 
9) Four GPS sensors were installed around the neck 
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10) The range of single hop communication between nodes 
• Up to 50 meters (maximum RF power level) 
 

11) Data transition rate: 
• 0.1 Hz  
 

12) Time of the experiment:  
• 8 hours per day 
• Data aggregation: 8 hours per day for 5 days. 

 
 

Results:  
The results of the experiment were not satisfactory. The designed wireless 
sensor network was not robust and stable because the wireless nodes could not 
persistently communicate with the beacons. The packet delivery performance 
was very low (20%) and the packet loss rate was high. In this experiment, time 
synchronization between nodes and the beacons was an important issue. The 
preliminary draft of the experiment in small scale was carried out in the lab and 
the results were satisfactory.   
 
Reference 
 
Thorn J., 2005. Deciphering TinyOS serial packets. Octave technical report 
brief B#5-01 
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