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|Abstract:  
 
     High-Technological solutions of today are characterized by complex dynamical models. A 
lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are 
powerful models for distributed embedded systems design where discrete controls are applied 
to continuous processes. Hybrid systems are also an important modeling class for nonlinear 
systems because a wide variety of nonlinearities are either piecewise-affine (e.g., a saturated 
linear actuator characteristic) or can be approximated as hybrid systems. The complexity of 
verifying and assessing general properties of hybrid systems, designing controllers and 
implementations is very high so that the use of these models is limited in applications where 
the size of the state space is large. To cope with complexity, model reduction is a powerful 
technique. 
    This thesis presents methods for model reduction and stability analysis of hybrid/switched 
systems. Methods are designed to approximate hybrid/switched systems to low order models 
which adequately describe the behavior of the switched systems. Three frameworks for 
model reduction of switched systems are proposed which are based on the notion of the 
generalized gramians. Generalized gramians are the solutions to the observability and 
controllability Lyapunov inequalities. In the first framework the projection matrices are 
found based on the common generalized gramians. This framework preserves the stability of 
the original switched system for all switching signals while reducing the subsystems of the 
switched systems.  The first framework is computationally efficient due to the construction of 
a single projection for all subsystems. This framework is used for switched controller 
reduction and it is shown that the stability of the closed loop system is guaranteed to be 
preserved for arbitrary switching signal. To compute the common generalized gramians 
linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In 
order to solve the problem of conservatism, the second framework is presented. In this 
method the projection matrices are constructed based on the convex combinations of the 
generalized gramians. However this framework is less conservative than the first one, it does 
not guarantee the stability for all switching signals. The stability preservation is studied for 
this reduction technique. The third framework for model reduction of switched systems is 
based on the switching generalized gramians. The reduced order switched system is 
guaranteed to be stable for all switching signal in this method. This framework uses stability 
conditions which are based on switching quadratic Lyapunov functions which are less 



 
 
 
 

 

conservative than the stability conditions based on common quadratic Lyapunov functions. 
The stability conditions which are used for this method are very useful in model reduction 
and design problems because they have slack variables in the conditions. Similar conditions 
for a class of switched nonlinear systems are derived in this thesis. The results are used for 
output feedback control of switched nonlinear systems. Model reduction of piecewise affine 
systems is also studied in this thesis. The proposed method is based on the reduction of linear 
subsystems inside the polytopes. The methods which are proposed in this thesis are applied to 
several numerical examples.    
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1. | Introduction 
 
 
     In today’s technological world with a growing demand for methods to model, to analyze, 
and to understand complex dynamical systems, this thesis presents methods for model 
reduction and stability analysis of hybrid/switched systems. Methods are designed to extract 
reduced order models that adequately describe the behavior of the switched systems. 
     This chapter describes the motivation of this work followed by an overview of the state of 
the art within model reduction, stability of switched systems and model reduction of hybrid 
/switched systems. The focus of the overview is on the methods which are related to the 
contributions of this work. The outline of this thesis is presented at the end of this chapter.  

 

1.1  Motivation 

 
The ever-increasing need for accurate mathematical modeling of physical as well as artificial 
processes leads to models of high complexity. These complex models are usually developed 
to understand the system, for diagnostic purposes or to be used for control design. To 
maintain tractability, efficient computational prototyping tools are required to replace such 
complex models by simpler models which capture their dominant characteristics. This need 
arises partly from limited computational, accuracy, or memory capabilities. Due to this fact, 
model reduction methods have become increasingly popular over the last two decades [1]-[3]. 
Such methods are designed to obtain a reduced order state space model that adequately 
describes the behavior of the system in question.  
A lot of real world systems have inherent hybrid and switched structure. Hybrid systems 
include both continuous-time and discrete-event components, and are an important modeling 
class for many applications. For example, the dynamics of many industrial processes can be 
modeled as evolving in continuous-time at the lower level (of the physical system or artificial 
processes) being driven by discrete-event logical components that impose mode switching at 
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the higher level. Switched linear systems and Piecewise-affine (PWA) systems are special 
classes of hybrid systems. A switched linear system is a hybrid system which consists of 
several linear subsystems and a rule that orchestrates the switching among them. This class of 
hybrid systems are accurate enough to represent many practical engineering systems with 
complex dynamics [4]. In Piecewise-affine (PWA) the continuous dynamics within each 
discrete mode are affine and the mode switching always occurs at very specific subsets of the 
state space that are known a-priori. PWA systems are also an important modeling class for 
nonlinear systems because a wide variety of nonlinearities are either piecewise-affine (e.g., a 
saturated linear actuator characteristic) or can be approximated as piecewise-affine functions. 
Due to the ubiquitous nature of hybrid systems, there is a growing demand for methods to 
model, analyze, and to understand this class of dynamical systems.  
      In a lot of fields, some or all of the subsystems of the hybrid systems are large complex 
mathematical models. On the other hand, most of the methods that are proposed so far for 
control and analysis in hybrid and switched systems theory are suffering from high 
computational burden when dealing with large-scale dynamical systems. Because of the 
weakness of standard model reduction techniques in dealing directly with hybrid structure 
without sacrificing essential features and also pressing needs for efficient analysis and control 
of large-scale dynamical hybrid and switched systems, it is necessary to study model 
reduction of hybrid and switched systems in particular. 
     The reduction method should respect hybrid structure and preserve main features while 
approximates a hybrid dynamical system. Stability is an essential property that has to be 
preserved in the process of model reduction [5]. This motivates the research community to 
study stability conditions and to develop stability conditions which are more convenient to be 
preserved in the reduction process.  This problem is more challenging for hybrid/switched 
systems.  
       Model reduction of hybrid/switched systems finds applications in different areas. These 
include simulation and control of large-scale structures, circuit simulation and synthesis, 
reachability analysis, safety verification, and simulation and control of micro-electro-
mechanical systems, to name but a few.   
In the sequel an overview of the results on model reduction, stability of switched systems and 
in particular model reduction of switched systems is presented.  
 

1.2  State of the Art and Background 

 



 
 

 3

The focus of this thesis is on model reduction frameworks for hybrid systems which possibly 
preserve the stability of original hybrid systems in the process of reduction. Model reduction 
methods and stability of hybrid/switched systems are important areas in this work. In the 
following an overview on model reduction methods with more stress on gramian based 
reduction techniques is presented. The classes of hybrid systems which are of interest in this 
thesis are presented along with some stability results in the literature. Finally, the state of art 
of model reduction of hybrid/switched system is described.   
 

1.2.1  Model Order Reduction 

Model reduction is an approach to overcome the problem of complexity in dynamical 
systems. The goal in model order reduction is to produce a low dimensional system that has 
almost the same response characteristics as the original system with less storage requirements 
and lower evaluation time. The resulting reduced model might be used to replace the original 
system as a component in a larger simulation or to design a low dimensional controller 
suitable for real time applications.  
Over the past two decades, model reduction methods have become increasingly popular [1]-
[3]. The largest group of model order reduction algorithms applies to linear systems. 
Consider a dynamical system with realization: 

                                                  : ( , , , )G A B C D ,                                                         (1.1) 

where  G  is transfer matrix with associated state-space representation: 

                        
( ) ( ) ( ), ( ) ,

( ) ( ) ( ),

nx t Ax t Bu t x t

y t Cx t Du t

   


 


                                      (1.2)    

where    is either the derivative operator   
( )

( )
df t

f t
dt

      , t    or the shift    

( ) ( 1)f t f t    , t .      
      The goal of model reduction is to approximate dynamical systems described by (1.2) 
with: 
 

                      
ˆ ˆ ˆ( ) ( ) ( ), ( ) ,

ˆ( ) ( ) ( ),

k
r r

r r

x t A x t B u t x t

y t C x t D u t

   


 




                                 (1.3) 

    

where  k n and the outputs ( )y t and ( )y t are close to each other in some sense. 

Furthermore, system properties, like stability should be preserved and reduction procedure 
should be computationally stable and efficient. 
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Model reduction techniques for linear systems or more precisely linear time invariant (LTI) 
systems are divided into two broad categories, namely moment matching based techniques 
and singular value decomposition (SVD) based methods.  
In moment matching based methods, the focus is on matching the coefficients of the Taylor 
(or McLaurin) series of the transfer matrix. Given the expansion of original transfer matrix 

around 0s : 

                                 2 3
0 0 1 2 3( )G s s m m s m s m s       ,                               (1.4) 

 

where lm  are the moments. The reduced order model is obtained by matching  k moments of 

the original model and the reduced model with the form: 
 

                                    2 3
0 0 1 2 3( )r r r r rG s s m m s m s m s       ,                                   (1.5)   

i. e. r i im m   , 1 , 2,...,i k , where k n  .                                                                        

  
       Moment matching based methods like Krylov subspace method can be implemented 
iteratively, which are numerically very efficient, but these do not automatically preserve 
stability and have no guaranteed error bound for approximation[1],[2],[6]. 
The second group of model reduction algorithms is the family of SVD-based reduction 
methods. Unlike moment matching based method, SVD-based reduction methods have 
guaranteed error bounds for approximation, and guarantee that the stability of the original 
system will be preserved in the reduced order model [1][2]. 
       One of the model reduction methods from this category that is well-known is balanced 
model reduction first introduced in [7] and later in [8].To apply balanced reduction, first the 
system is transformed to a basis where the states which are difficult to control are 
simultaneously difficult to observe. This is achieved by simultaneously diagonalizing the 
controllability and the observability gramians, which are solutions to the reachability and the 
observability Lyapunov equations. The reduced model is obtained by truncating the least 
observable and controllable states in the balanced structure.  
Gramians for continuous time systems are given from the following Lyapunov equations: 
 

                                              
* *

* *

0,

0,

AP PA BB

A Q QA C C

  

  
                                                     (1.6) 

 
and for discrete time systems from: 
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* *

* *

0,

0,

APA P BB

A QA Q C C

  

  
                                                     (1.7) 

 

For stable A ,controllable ( , )A B and observable ( , )A C these equations have a unique positive 

definite solutions P  and Q  , called the controllability and observability gramians. In 

balanced reduction, first the system is transformed to the balanced structure in which 
gramians are equal and diagonal: 
 

                                    
11

1

( ,..., ),

,

qk q k

q

j
j

P Q diag I I

k n

 



 


                                                        (1.8)                 

where 1i i   and they are called Hankel singular values. 

   The reduced model is easily obtained by truncating the states which are associated with 

the set of the least   Hankel singular values. Applying the method to stable, minimal G , if we 

keep all the states associated with (1 )m m r   , by truncating the rest, the reduced model 

rG will be minimal and stable and satisfies[1][2]: 

                                                 
1

2
q

r j
j r

G G 


 

   .                                                   (1.9) 

Balanced truncation has been improved from different viewpoints and several model 
reduction techniques have been proposed based on the idea of balanced truncation [2].The 

balancing methods introduced above try to approximate the full-order model G  over all 

frequencies. However, in many applications we are only interested in a certain frequency 
range. This problem leads to the so-called frequency weighted balancing method [1],[2]and 

[9]-[13]. In this method input weight ( )iW s  and output weights ( )oW s are used in the 

reduction process to make the weighted error: 

                                                     ( )( ( ) ( )) ( )i r oW s G s G s W s


  ,                                 (1.10) 

small. 
       The frequency weighted balanced which was first proposed in [9][10] provides more 
accurate approximation compared to ordinary balanced truncation. Stability of the reduced 
order model is not guaranteed in case of a two-sided weighting for this method. To tackle the 
stability problem a new technique was proposed in [11] which uses only strictly proper 
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weights. The method was modified in [12] to allow for proper weights. A new frequency 
weighted balancing method to modify Enns’ method in [13]. The method guarantees stability 
and yields a simple error bound. 
      In many cases the input and output weights are not given. Instead the problem is to reduce 
the model over a given frequency range [1],[2]. This problem can be attacked directly by 
balanced reduction within frequency bound, which was first proposed in [14] and then 
modified in [2] to preserve the stability of the original system and provide an error bound for 

approximation. In this method, the controllability gramian 1 2( , )P   and observability 

gramians 1 2( , )Q   within frequency range 1 2[ , ]  are defined as:  

                                       1 2 2 1

1 2 2 1

( , ) ( ) ( ),

( , ) ( ) ( ),

P P P

Q Q Q

   
   

 
 

                                              (1.11)                   

where: 

                    

1 * * 1

* 1 * 1

1
( ) : ( ) ( ) ,

2
1

( ) : ( ) ( ) .
2

P Ij A BB Ij A d

Q Ij A C C Ij A d









   


   


 



 



   

   




                                (1.12) 

Similar method for model reduction of linear systems within bounded frequency was 
proposed in [15] and the modification on this method was discussed in [16].   
    In several applications we are interested in approximating the dynamical system within a 
specified time interval. This problem was addressed in [14]. Controllability 

gramian 1 2[ , ]P t t and observability gramians 1 2[ , ]Q t t in this method are defined as: 

 

                                   

2

1

2

1

1 2

1 2

[ , ] : ,

[ , ] : ,

T

T

t A T A

t

t A T A

t

P t t e BB e d

Q t t e C Ce d

 

 












                              (1.13) 

 
Similar to the frequency domain approach, this method is modified in [2] to preserve the 
stability of original system and to provide for approximation error bound. The balanced 
model reduction within specified time interval is more accurate than ordinary balanced 
reduction technique within the time interval which the method is applied. 
The methods which we have surveyed so far all keep the absolute approximation error small. 
However there are reduction methods which are trying to keep the relative error small rather 
than absolute error. The balanced stochastic truncation approach belongs to the family of 
relative error methods [17], which is an SVD-based algorithm. In contrast to absolute error 
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methods like the ordinary balanced truncation, the balanced stochastic truncation method has 
the main advantage in   provision of a uniform approximation of the frequency response of 
the original system over the whole frequency domain, and particularly, in preservation of 
phase information [2]. For example, for a minimum-phase original system, the balanced 
stochastic approximation is also minimum-phase. This is not generally true for the absolute 
error methods [18]. 

    Let ( )G s be MIMO square transfer matrix with a minimal sate space realization described 

in (1.2). If D  is nonsingular it is possible to compute the left spectral factor ( )s of 

( ) ( )TG s G s  satisfying:                     

                                        ( ) ( ) ( ) ( )T Ts s G s G s    .                                                  (1.14) 

                     

The state space realization of G  is called a balanced stochastic realization if: 

 

                                      
11

1

( ,..., ),

,

q

G
c o k q k

q

j
j

W W diag I I

k n

  



 


                                            (1.15) 

        

where  G
cW  is the controllability gramian of ( )G s , the matrix oW  is the observability 

gramian of ( )s  and i is the thi  Hankel singular value of the stable part of the so-called 

“phase matrix” 1( ) ( ( )) ( )TF s s G s   . The singular values in (1.15) are ordered 

decreasingly [2],[18],[22]. The rest of the algorithm is the same as ordinary balanced 
reduction. The bound for relative error for this reduction method is obtained as: 

 

                                 1

1

1
( ) 1

1

q
i

r
i r i

G G G






 


  

  .                                             (1.16) 

Similar to frequency domain balanced truncation, frequency-domain balanced stochastic 
truncation was proposed to improve the accuracy [19][20].   
    One of the methods that have been developed based on balanced model reduction is the 
method based on the generalized gramian [21]. In this method, Lyapunov inequalities (rather 
than Lyapunov equations) are solved to compute generalized gramians. The physical 
interpretations of generalized gramians are similar to ordinary gramians. Generalized 
gramians were used to devise a technique for structure preserving model reduction methods 
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in [22]. Generalized Gramians for continuous time systems are given by the solutions of the 
Lyapunov inequalities: 
 

                                           
* *

* *

0,

0,

g g

g g

AP P A BB

A Q Q A C C

  

  
                                                  (1.17) 

 
and for discrete time systems by: 
 

                                                
* *

* *

0,

0.

g g

g g

AP A P BB

A Q A Q C C

  

  
                                                 (1.18) 

This linear matrix inequality (LMI) approach to the model reduction problem is 
particularly useful when some structures need to be preserved in the process of model 
reduction.   Controller reduction is a typical example of this type of problems.  

   
     Most of the studies related to model reduction presented so far have been devoted to linear 
case and just few methods have been proposed for nonlinear cases. Nonlinear model 
reduction in the general case is a challenge. The most popular methods are proper orthogonal 
decomposition (POD) method, trajectory piecewise linearization (TPWL) reduction 
technique and nonlinear balanced model reduction methods.  In TPWL, nonlinear model is 
approximated by piecewise linear model along a trajectory. In this method for different 
simulating input, different simulating trajectories are obtained which leads to different 
reduced order models[23],[24].In POD, we need to compute snapshots from the nonlinear 
system. Singular value decomposition (SVD) is made from the correlation matrix and then a 
global basis is derived for projection [25]-[28]. Two approaches have been proposed as 
nonlinear extension of balanced model reduction. The first approach is based on empirical 
gramians. The empirical observability and controllability gramians are derived from several 
snapshot series with representative inputs and initial values. The global basis for reduction is 
derived by balancing these empirical gramians[29][30]. The second method for nonlinear 
balanced model reduction is based on controllability and observability function. These 
functions can be obtained from PDEs of Lyapunov and Hamilton-Jacobi type. Singular value 
functions which are nonlinear state-space extension of the Hankel singular values in the 
linear case play an important role in this method[31][32]. Snapshots or input information are 
not needed in this reduction method but it is computationally very expensive.  One of the 
nonlinear reduction methods which is similar to linear balanced model reduction is the 



 
 

 9

method which was proposed in[33][34]. This method has been devised for model reduction 
of so-called    -systems and is based on diagonally dominant generalized gramians.  -
systems are a class of discrete-time switched nonlinear systems of the form: 

                                         
( 1) ( ( )) ,

( ) ( ( )) ,

x k A x k Bu

y k C x k Du

   
   

                                             (1.19) 

where ( ) nx k  is the state, ( ) py k  is the output and ( ) mu k   is input. A , B , C and D  

are matrices of appropriate dimensions.  Furthermore: 

                                         

1

2

( ( ))

( ( ))
( ( )) :

( ( ))n

x k

x k
x k

x k

 
   
 
 
  


,                                                   (1.20)                   

where: 

                   : : , , ( ) ( )OL s t s t s t            .                          (1.21) 

In some literature, systems with this description have been called  -systems [35],[36]. 

The standard saturation and the hyperbolic tangent (popular activation function in neural 
networks) are examples of this type of nonlinearities [33]-[39]. The discrete-time recurrent 
artificial neural network is a special case of  -systems [35]-[38]. Furthermore, results 
related to this class of nonlinear systems have potential applications in the classical problems 
related to uncertain nonlinearities such as Lur’e systems [39]. 
    Gramians which are used for reduction of such systems are the solutions to Lyapunov 
inequalities: 
 

                                        
* *

* *

0,

0,

APA P BB

A QA Q C C

  

  
                                           (1.22) 

where P and Q are positive diagonal dominant matrices i. e. : 

                                     
* 0 ,

, ,ii ij
j i

P P

p p i


  
  

                                              (1.23) 

 
 

                                       
* 0 ,

, .ii ij
j i

Q Q

q q i


  
  

                                            (1.24) 
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    The procedure to find the reduced-order model is similar to the balanced truncation for a 
linear system using generalized gramians. Main difference is that, the balanced-like model 
needs to be transformed back in the end of procedure. It is because the original system by no 
means is input–output equivalent to balanced-like  -systems in general. Therefore, it cannot 
be said to be a balanced realization of the original  -systems and simply truncating the 
former does not result in an approximant of the latter. For this reason this model reduction 
method is only described as the “model reduction via a balanced system” rather than the 
“balanced truncation”. More details are discussed in [33][34]. 
 

1.2.2   Hybrid Systems and Stability 

 
Hybrid systems are complex systems which exhibit both discrete event dynamics as well as 
continuous dynamics. Hybrid dynamics provide a convenient framework for modeling 
systems in broad range of applications. Some examples are: continuous motions which may 
be interrupted by collisions, electrical circuits with switches or diodes, and control of 
chemical reactions by valves and pumps. In this part, mathematical definitions for some 
important classed of hybrid systems are presented followed by some results from stability 
theory for hybrid systems. Stability is an important property which should be preserved under 
reduction. Therefore stability conditions for switched systems play an important role in this 
thesis.  
 

Hybrid Systems 

 
    Switched systems and piecewise affine systems are two important classes of hybrid 
systems. A switched system is composed of a family of dynamical systems and a rule that 
governs the switching among them: 
 
 

                                
( ) ( ( ), ( )), ( ) ,

( ) ( ( ), ( )),

nx t F x t u t x t

y t G x t u t




  





                                      (1.25)    

where    is either the derivative operator   
( )

( )
df t

f t
dt

      , t   or the shift    

( ) ( 1)f t f t    , t , ( ) nx t  is the state, ( ) py t  is the output, ( ) mu t   is the input, 
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and 0:      is the switching signal that is a piecewise constant map of the time. 

 is the set of discrete modes.    
     Switched linear systems are accurate enough to represent many practical engineering 
systems with complex dynamics. They are relatively easy to handle compared to nonlinear 
switched systems and many powerful tools from linear analysis are applicable to cope with 
them. A switched linear system is mathematically described by: 

  

                         ( ) ( )

( ) ( )

( ) ( ) ( ),
:

( ) ( ) ( ),
t t

t t

x t A x t B u t

y t C x t D u t
 

 

     
                                 (1.26) 

where ( ) nx t  is the state, ( ) py t  is the output, ( ) mu t   is the input, and 
0:      is the switching signal that is a piecewise constant map of the time.  is 

the set of discrete modes. For each i , iA , iB , iC , iD are matrices of appropriate 

dimensions. The indicator function is defined as: 
 

                    
1, when the switched system is described

( ) :  by the i  mode matrices (A ,B ,C ,D )

0, otherwise.

th
i i i i i

t

 



                               (1.27) 

 
The switched system (1.26) can also be written as the following using indicator function: 

 

                      1

1

( ) ( ( ) ( )),

:

( ) ( ( ) ( )).

K

i i i
i

K

i i i
i

x t A x t B u t

y t C x t D u t

 








 

 
  




                                   (1.28) 

 
    
    One of the other important classes of hybrid systems which has been studied extensively in 
the literature is a class of piecewise affine systems. Piecewise-affine (PWA) systems are a 
special class of hybrid systems in that the continuous dynamics within each discrete mode are 
affine and the mode switching always occurs at subsets of the state space that are known a-
priori. PWA systems are also an important modeling class for nonlinear systems because a 
wide variety of nonlinearities are either piecewise-affine or can be approximated by 
piecewise-affine functions. This class is equivalent to many other classes of hybrid systems 
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such as mixed logical dynamical systems, linear complementary systems, and max-min-plus 
scaling systems and thus form a very general class of linear hybrid systems [41]. 

     Let J  be a finite index set and # J is cardinality of J . A polyhedral set P  in n  is the 

intersection of a family of closed half spaces { | , }n
j j jH x x N a    for n

jN  and ja   

,where j J and .,. is scalar product in n , i.e. : j
j J

P H 



 . The polyhedral set P can be 

expressed by the inequality (1.29) to be understood components wise: 

                                               { | }nP x Nx a    ,                                                        (1.29) 

where 1 #[ ... ]T T T
JN N N , 1 #[ ... ]T

Ja a a .  

Let { | }jK P j I  be a polyhedral Complex with the index set I .  

: n
j

j I

K P


   . 

Let E be any polyhedral set ( n  inclusively). A piecewise linear partition of E is a 

polyhedral complex K such that E K .The elements of K are called cells.  

: { | dim( ) }iK P K P i   . 

 Piecewise affine systems are dynamical systems in full dimensional cells nK of linear 

partition associated to a quadruple ( , , , )E K U S , where E  is a polyhedral set (a polytope) in 
n , K  is a piecewise affine partition of E , U  is a polyhedral set (of admissible inputs) 

in m , and { : }p nS s P K   is a family of piecewise affine systems: 

                                                 
,

:
.

p p p

p
p p

x A x B u a
s

y C x D u

  
  


                                            (1.30)  

 
Stability of Switched Systems 

 
Over the last decade problem of stability analysis for hybrid/switched systems has received a 
lot of attention [42],[43]. The stability issues of such switched systems give rise to several 
interesting and challenging mathematical problems and include several interesting 
phenomena. Two interesting observations are: 
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 when all the subsystems are exponentially stable, the switched systems may have 
divergent trajectories for certain switching signals [44], [45]. 

 one may switch between unstable subsystems to make the switched system 
exponentially stable [44], [45]. 

 
    The stability of switched systems depends not only on the dynamics of each subsystem but 
also on the properties of switching signals. Therefore, the results in the context of stability 
analysis for switched systems can be divided into two types of problems. One is the stability 
analysis of switched systems with arbitrary switching signal and the other one is stability 
analysis of switched system with restricted switching signal. 
 

Stability Analysis for Switched Systems: Arbitrary Switching Signal 
 
       In a lot of applications, switching information and therefore switching signal is not 
available. The stability of such systems needs to be studied without any restriction on the 
switching signal.  
       The existence of a common quadratic Lyapunov function for all subsystems assures the 
quadratic stability of the switched system. The problem of finding a common quadratic 
Lyapunov function can be expressed as linear matrix inequality (LMI). To find a common 
quadratic Lyapunov function, Lyapunov inequalities need to be solved. There exists a 
common quadratic Lyapunov function for linear switched system, if there exists: 
 

                                     * 0, n nP P P    ,                                         (1.31) 

such that 

                                               * 0,i iA P A P                                                   (1.32) 

 
for the continuous-time systems, or 
 

                                                        * 0,i iA PA P                                                             (1.33) 

 
for discrete-time cases are satisfied. A common quadratic Lyapunov function is: 
 

                                                              *( )V x x Px .                                                        (1.34) 
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Note that quadratic stability is a special class of exponential stability, which implies 
asymptotic stability.   
    There have been several research works focused on the problem of determining algebraic 
conditions on the subsystems matrices to assure the existence of common quadratic 
Lyapunov function [45],[46]. For example, in  [47], [48], a necessary and sufficient condition 
for the existence of a common quadratic Lyapunov function for the second order bimodal 
systems has been proposed. The results are based on stability of the pencil of matrices. The 
pencil of matrices is defined as: 

                                            1 2 1 2( , ) (1 )A A A A      ,                                (1.35) 

where [0,1]  .  

These conditions can be summarized in the following theorem. 
 

Theorem 1: [47]–[49] Let 2 2
1 2,A A   be Hurwitz. The following conditions are 

equivalent: 
 

1. There exists a common quadratic Lyapunov function for the bimodal switched 

system with 1 2,A A  as the two subsystems matrices. 

2. The matrix pencils 1 2( , )A A and 1
1 2( , )A A

  are Hurwitz. 

3. The matrices 1 2A A and 1
1 2A A do not have any negative real eigenvalues. 

     
     This necessary and sufficient condition is difficult to be generalized for higher dimensions. 

For a pair of n  dimensional matrices a necessary condition has been derived in the following 

theorem [48][50]: 
 

Theorem 2: [48],[50] Let 1 2, n nA A   be Hurwitz. A necessary condition for existence of 

common quadratic Lyapunov function is that 1 1 2( , )A A A  and 1
1 1 2( ( , ))A A A

 do not have 

any negative real eigenvalues for all [0,1]  . 

 
    There are several results on necessary and sufficient conditions for stability of switched 
systems with more than two subsystems. In [51], a tensor condition was introduced as a 
necessary condition for the existence of a common quadratic Lyapunov function for a 
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switched system consisting of a finite number of thn  order LTI systems. The tensor condition 

was shown to be necessary and sufficient when the switched system only contains a pair of 
subsystems. The problem of finding necessary and sufficient conditions for the existence of a 
common quadratic Lyapunov function for general cases of higher order and more than two 
modes remains an open problem[42]. 
    It is worth mentioning that linear matrix inequality (LMI) for finding common quadratic 
Lyapunov function is computationally expensive to solve particularly for the large number of 
discrete modes. The existence of a common quadratic Lyapunov function is only a sufficient 
condition for the stability of switching systems and it is not necessary. There are examples of 
stable switched systems which do not have a common quadratic Lyapunov function [46] 
(Chapter 2). The existence of a common quadratic Lyapunov function for stability analysis 
could be conservative. To solve this problem, the conditions based on switched quadratic 
Lyapunov functions have received some attention [52],[53]. The switched quadratic 
Lyapunov functions are in the form: 
 

                                                  *
( )( ) tV x x P x  ,                                                      (1.36) 

equivalently, using indicator function: 

                           *

1

( ( )) ( ) ( ( ) ) ( ), ( )
K

n
i i

i

V x t x t t P x t x t


   .                              (1.37) 

 To check the existence of the switched quadratic Lyapunov functions, linear matrix 
inequalities need to be solved. In the sequel, a theorem on stability analysis based on 
switched quadratic Lyapunov functions is proposed: 
 
Theorem 3 [52]: The following statements are equivalent: 
 

1. There exists a Lyapunov function of the form (1.37) whose difference is negative 
definite, proving asymptotic stability of discrete-time switched system: 

                                
1

( 1) ( ( ))
K

i i
i

x t A x t


    .                                           (1.38) 

 

2. There exist K symmetric matrices, 1 2, ,..., KP P P  satisfying: 
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*

0, ( , ) .i i j

j i j

P A P
i j K K

P A P

 
    

  
                                     (1.39) 

         
 Lyapunov function is given by: 
 

                   *

1

( ( )) ( ) ( ( ) ) ( ), ( )
K

n
i i

i

V x t x t t P x t x t


   .                                 (1.40) 

3. There exist K  matrices 1 2, ,..., KS S S  which are symmetric and K  matrices, 

1 2, ,..., KG G G  ,satisfying:  

 

                         
* * *

0, ( , ) .i i i i i

i i j

G G S G A
i j K K

AG S

  
    

  
                                (1.41) 

Lyapunov function is given by: 
 

                   * 1

1

( ( )) ( ) ( ( ) ) ( ), ( )
K

n
i i

i

V x t x t t S x t x t 



   .                                  (1.42) 

These conditions are less conservative than the conditions based on common quadratic 
Lyapunov functions. These conditions are suitable for design problems because of the slack 
variables.    

The conditions in Theorem 3 are only sufficient conditions. There are some results on 
necessary and sufficient conditions for stability of discrete-time switched systems. Theorem 4 
presents a necessary and sufficient condition for asymptotic stability of discrete-time 
switched systems. 

 Theorem 4 [54]: A switched linear system ( )( 1) ( )tx t A x t  , where 

( ) 1 2{ , ,..., }t NA A A A  , is asymptotically stable under arbitrary switching signal if and only if 

there exists a finite integer n , such that: 

 

                                                   
1 2

... 1,
ni i iA A A


                                                    (1.43) 

 

for all n -tuple  ( ) 1 2{ , ,..., }t NA A A A  , where 1,2,...,j n . 

Stability Analysis for Switched Systems: Restricted Switching Signal 
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 In a lot of examples, the stability under arbitrary switching signal may fail while switched 

system is stable with restricted switching signal. Restriction on switching signal may arise 
naturally from the physical constraints of the system. In some cases, one may have some 
knowledge about possible switching logic in a switched system. This knowledge may imply 
restrictions on the switching signals. For example, there must exist a certain bound on the 
time interval between two successive switchings. With such kind of a priori knowledge about 
the switching signals, it is possible to derive stronger stability results for a given hybrid 
system. The goal is to provide an answer to the question regarding what restrictions should be 
put on the switching signals in order to guarantee the stability of switched systems. The 
restrictions on switching signals may be either time domain restrictions or state space 
restrictions. It can be shown that it is always possible to maintain stability when all the 
subsystems are stable and switching is slow enough, in the sense that dwell time is 

sufficiently large [55]. d
 is called the dwell time of a switching signal if the time 

interval between any two consecutive switchings is no smaller than d .  

If one occasionally have a smaller dwell time between switching, it does not affect the 
stability provided that does not occur too frequently. This concept is captured by the concept 
of “average dwell-time” in [56].  

a
 is called the average dwell time of a switching signal ( )t , if: 

                                             0( , )
a

t
N t N





  ,                                              (1.44) 

holds for all 0t   and some scalar 0 0N   , where ( , )N t  denotes the number of mode 

switches of a given switching signal ( )t over the interval ( , )t  . If all the subsystems are 

stable then the switched system remains stable provided that the average dwell time is 
sufficiently large [56]. 

    The stability analysis with restricted switching signal has been also studied in the 
framework of multiple Lyapunov functions (MLF). The basic idea is that multiple Lyapunov 
or Lyapunov-like functions, which may correspond to each single subsystem or certain region 
in the state space, are concatenated together to produce a non-traditional Lyapunov function. 
Multiple Lyapunov functions may not be monotonically decreasing along the state 
trajectories, may have discontinuities and be piecewise differentiable [44], [57], [58]. 
   There are several results on stability based on multiple Lyapunov functions. In [44], the 
Lyapunov-like function is decreasing when the corresponding mode is active and does not 
increase its value at each switching instant. 
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    Less conservative results can be obtained, if the switching signals are restricted in such a 
way that, at every time when we switch from a certain subsystem, its corresponding 
Lyapunov-like function value is smaller than its value at the previous exiting time, then the 
switched system is asymptotically stable [59]. The Lyapunov-like function may increase its 
value during a time interval, only if the increment is bounded by certain kind of continuous 
functions [60].  
   In stability analysis based on the multiple Lyapunov function, it is important to construct 
suitable family of Lyapunov-like functions. Piecewise quadratic Lyapunov functions are 
suitable candidates because the conditions for their existence can be formulated as linear 
matrix inequality (LMI) problems.   

   Consider the state space partition with regions 1 2 3{ , , ,..., }N    .These regions are 

defined a priori to restrict switching signals. The goal is to find LMI conditions for the 

existence of quadratic Lyapunov-like functions of the form of *( )i iV x x Px , assigned to each 

region i . This Lyapunov-like function needs to satisfy the following conditions [61]: 

 

1. There exist constant scalars 0i i   , such that: 

                             2 2
( ) 0i i ix V x x      ,                                      (1.45) 

        hold for all ix  . 

2. ( ) 0iV x  , for all 0, ix x  . 

 

3. * *
j ix P x x Px for ,i j i jx     . The region ,i j stands for the states 

        where the trajectory passes from i  to j . 

   These constrained linear matrix inequalities can be replaced by LMI conditions without 

constraints using a technique called S -procedure[62]. 

Assume that each region has a quadratic representation or can be approximated in quadratic 
form: 

                                                     * 0i ix x Q x   ,                                                   (1.46) 

 

and regions ,i j can be expressed or approximated by: 

                                                       *
, , 0i j i jx x Q x   .                                             (1.47) 

 



 
 

 19

The following theorem is the result of S -procedure: 

 

Theorem 5 [63]: A switched linear ( ) ( )x t A x t is stable if there exist symmetric 

matrices iP and scalars 0  , 0  , 0i  , 0i  , 0i  and , 0i j  ,such that: 

                                           *

, ,

,

,

.

i i i i i

i i i i i i

j i j i j i

I Q P I Q

A P P A Q I

P Q P

   




    
    
  

                                               (1.48) 

are satisfied. 

Stabilization 
The problem of stabilization of switched system is a basic problem in theory of stability 

for hybrid systems which received a lot of attention. Most of the work in this context has 
focused on quadratic stabilization. A switched system is called quadratically stabilizable if 
there exist switching signals which stabilize the switched system with a quadratic Lyapunov 
function. It is well-known that a necessary and sufficient condition for a bimodal switched 
linear system to be quadratically stabilizable is the existence of a stable convex combination 
of the two subsystems’ matrices. 

 

Theorem 6: [64] A bimodal switched linear system ( ) ( )ix t A x t , 1,2i  , is quadratically 

stablizable if and only if there exist a stable matrix in the pencil of subsystems’ matrices 

1 2( , )A A . 

    The generalization of this theorem for switched linear systems with more than two discrete 
modes is stated in the sequel. 
 

Theorem 7: [61] A switched linear system ( ) ( )ix t A x t , 1, 2,...,i N , is quadratically 

stablizable if there exist a stable matrix in the convex combination of subsystems’ matrices 

1

N

i i
i

A A 


  ,where
1

1, [0,1]
N

i i
i

 


  . 

 
    The existence of a stable convex combination matrix is only sufficient for switched linear 
systems with more than two modes. There are examples for which no stable convex 
combination matrix exists, yet the system is quadratically stabilizable for a particular 
switching signal [45]. 
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1.2.3   Model Reduction of Switched/Hybrid Systems 

 
           Complexity involved in analysis and control of large-scale hybrid dynamical systems 
has motivated the study of model reduction for hybrid systems in the last few years [65]-[73]. 
However there are not so many research reported in the literature.   The study of model 
reduction problem for switched systems of Markovian type was among the first efforts in this 
context [72].  
A jump linear system of Markovian type is described as: 

                            
( 1) ( ( )) ( ) ( ( )) ( ),

:
( ) ( ( )) ( ) ( ( )) ( ),

x k A k x k B k u k

y k C k x k D k u k

 
 

  
   

                      (1.49) 

where ( )k is a discrete homogeneous Markov chain on {1, 2,..., }S N with transition 

probability matrix , ,[ ( )]i j i j Sk   , and ,i j is defined as 

                                 , ( ( 1) ( ) )i j P k j k i         ,                                               (1.50) 

where: ,
1

1
N

i j
j




 . 

 In Markov jump systems, the transition probabilities of the jumping process are important 
and so far, almost all the issues on Markov jump system have been investigated assuming the 
knowledge of transition probabilities. The likelihood to obtain the complete knowledge on 
the transition probabilities is questionable and the cost is probably high [73]. Due to this fact 
other efforts for model reduction of hybrid systems focused on other types of dynamical 
systems rather than switched systems of Markovian type.   
 Piece-wise affine (PWA) systems are one of the important subclasses of hybrid systems. 
PWA systems consist of affine dynamical systems on polyhedral subspace of state-space. The 
reduction of affine systems on polytopes was studied in[66]. It was shown that the dimension 
of the state space can be affinely reduced due to non-observability if and only if a subspace of 
the classical unobservable subspace, characterized using the normal vectors of the exit facets, 
is nontrivial. Let ps be a finite-dimensional linear time invariant affine system on a full 

dimensional polytope NX   :  

                                                 
,

:
.

p p p

p
p p p

x A x B u a
s

y C x D u b

  
   


                                       (1.51) 

        

Let  1,2,...,iF F i k  be the set of all exit facet of this system and assume 
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that  N T
i i iF X x n x     . For 1,2,...,i k : 

: ker( )T
i iW n , 

1
: ker( )

k

i k
i

W W N


  , 

where: 1 2: ( , ,..., )T k n
k kN n n n    and finally: 

                                 1: ker(( ), ( ),...., ( ) ( ))T T T T T T N T T T
p k p k p kV C N A C N A C N .                       (1.52) 

It was shown in [66] that reduction of the dimension of the state polytope X  is possible, 
using an affine transformation, provided that {0}V  . This result provides an exact reduction. 

While exact reduction is very elegant, the class of systems for which this procedure applies is 
quite small. This method only considers observability for investigating the importance of 
states to discard. 
The method presented in [65] deals with the abstraction of both continuous and discrete parts 
of hybrid dynamical systems, and uses balanced residualization for reduction of the 
continuous part. Application of the method to switched systems may not preserve stability, 
and non-elegant behavior may arise for general hybrid systems because of approximation 
error and possible guard/reset map overlap.    
The problem of model reduction for discrete switched system is addressed in several papers 
[67]-[71]. In [67], two different approaches are proposed to solve this problem. The first 
approach casts the model reduction problem to a convex optimization problem, which solves 
the model reduction problem by using a linearization procedure. The second one, based on 
the cone complementarity linearization idea, casts the model reduction problem to a 
sequential minimization problem subject to linear matrix inequality constraints. Both 
approaches have their own advantages and disadvantages concerning conservatism and 
computational complexity. These optimization problems will be very hard (if not infeasible) 
to solve for a large scale system. Not only this method is restricted to discrete time switched 
systems, it does not provide any hint about the number of states which is suitable to retain 
before reduction. Similar methods have been developed for more general classes of discrete 
time switched systems in [68]-[71]. In [69] and [70], this problem is investigated for discrete-
time switched systems under average dwell time switching rather than arbitrary switching. 
 

1.3  Outline of the Thesis 
     This thesis is a collection of publications and it is divided into two parts; an 

introduction, overview of the contributions and the contributions themselves. Part one has 
already been begun with an introduction and state of the art in Chapter 1. The summery of 
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contributions will be presented in Chapter 2. Part one closes with some conclusions on the 
work and suggestions for future work in Chapter 3. The publications made during this PhD 
project which are appended in part two are listed below. 
 
Paper A [74]: In this paper, a general method for model/controller order reduction of 
switched linear dynamical systems is presented. The proposed technique is based on the 
common generalized gramian framework for reduction. This paper is the extended version of 
the conference papers [75] and [76]. The method in this paper preserves that stability for all 
switching signal.   
 
Paper B [77]: In this paper, a method for model order reduction of switched linear dynamical 
systems is presented. The method uses convex generalized gramian which is a convex 
combination of the generalized gramians. This framework is less conservative than the 
method in paper A. Stability preservation under model reduction is also studied for the 
method in this paper  
 
Paper C [78]: A general framework for model order reduction of discrete-time switched 
linear dynamical systems is presented in this paper. This method is based on switching 
generalized gramians and it preserves the stability of switched systems under reduction.   
 
Paper D [79]: Reduction of an affine system inside the polytope is studied in this paper. The 
challenges for approximate reduction of this class of systems are discussed.   
 
Paper E [80]: In this paper a method for stability analysis for a class of switched nonlinear 
system is proposed. This method is motivated by needs for stability conditions which can be 
preserved under reduction and also are suitable for design problems.     
 
Paper F [81]: Output feedback design for a class of switched nonlinear systems is discussed 
in this paper along with some improvements on stability results of the Paper E. This shows 
how the proposed stability conditions can be used for design problems. 
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2. | Summary of Contributions 
           
        The contributions of this thesis are in the form of several publications in the context of 
model reduction and stability analysis for hybrid systems. These contributions are highlighted 
in this chapter.  
 
1. Common Generalized Gramian Framework for Switched Model/ Controller 
Reduction 
Paper A presents a general method for model/controller order reduction of switched linear 
dynamical systems. The proposed technique is based on the generalized gramian framework 
for model reduction. It is shown that different classical reduction methods can be developed 
into generalized gramian framework. Balanced reduction within specified frequency bound is 
developed within this framework. In order to avoid numerical instability and also to increase 
the numerical efficiency, generalized gramian based Petrov-Galerkin projection is 
constructed instead of the similarity transform approach for reduction. The framework is 
developed for switched controller reduction. To the best of our knowledge, there is no other 
reported result on switched controller reduction in the literature. The method preserves the 
stability under arbitrary switching signal for both model and controller reduction. 
Furthermore it is applicable to both continuous and discrete time systems for different 
classical gramian based reduction methods.  The performance of the proposed method is 
illustrated by numerical examples. 
 
2. Convex Generalized Gramian Framework for Model Reduction of Switched 
Systems 

In paper B, a method for model order reduction of switched linear dynamical systems is 
presented which uses convex generalized gramian rather than common generalized gramian. 
Convex generalized gramian is a convex combination of the generalized gramians. It is 
shown that different classical reduction methods can be developed into the generalized 
gramian framework for model reduction of linear systems and further for the reduction of 
switched systems by construction of the convex generalized gramian. Balanced reduction 
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within specified frequency bound is taken as an example which is developed within this 
framework. This framework is less conservative than the method based on common 
generalized gramian. In this paper also in order to avoid numerical instability and to increase 
the numerical efficiency, convex generalized gramian based Petrov-Galerkin projection is 
constructed instead of the similarity transform approach for reduction. It is proven that the 
method preserves the stability of the original switched system at least for stabilizing 
switching signal. Some discussions on the coefficient of the vertices of the convex variables 
are presented. The method is illustrated by numerical examples. 

 
3. Model Reduction of Switched Systems based on switching gramian 

A method for model order reduction of discrete time switched linear systems is presented 
in paper C. The proposed technique uses switching generalized gramians. It is shown that 
different classical reduction methods can be developed into the generalized gramian 
framework for model reduction of linear systems and further for the reduction of switched 
systems. Discrete time balanced reduction within specified frequency interval is taken as an 
example which is developed within this framework. It is proven that the proposed reduction 
framework preserves the stability of the original switched system. The method is less 
conservative compared to methods based on convex or common generalized gramians. 

 
4. On exact/approximate reduction of dynamical systems on linear partitions 

Order reduction problem for dynamical systems living on piecewise linear partitions is 
addressed in paper D. This problem is motivated by analysis and control of hybrid systems. 
The technique presented is based on the transformation of affine dynamical systems inside 
the cells into a new structure and it can be applied for both exact reduction and also 
approximate model reduction. In this method both controllability and observability of the 
affine system inside the polytopes are considered for the reduction purpose. The framework 
is illustrated with a numerical example.  

 
5. Stability analysis for a class of switched nonlinear systems 
Stability analysis for a class of switched nonlinear systems is addressed in this paper. Two 
linear matrix inequality (LMI) based sufficient conditions for asymptotic stability are 
proposed for switched nonlinear systems. These conditions are analogous counterparts for 
switched linear systems which are shown to be easily verifiable and suitable for design 
problems. 

 
6. Stability analysis for a class of switched nonlinear systems 



 
 

 26

The problem of output feedback control for a class of switched nonlinear systems is 
addressed in this paper. Two conditions for output feedback controller synthesis based on the 
proposed stability conditions are presented.  These conditions are based on conditions for 
stability analysis for switched linear systems which are shown to be easily verifiable and 
suitable for design problems. 
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3. | Conclusions and Future Works 
 
         Methods for model reduction and stability analysis of hybrid/switched systems are 
presented in this thesis. Three frameworks for model reduction of switched systems are 
proposed which are based on the notion of the generalized gramians. Generalized gramians 
are the solutions to the observability and controllability Lyapunov inequalities. To compute 
the generalized gramians linear matrix inequalities (LMI’s) need to be solved. In the 
frameworks based on common generalized gramian and switching generalized gramians the 
stability of the original switched system is guaranteed to be preserved for all switching 
signals while the switched system is reduced.  Order reduction problem for dynamical 
systems living on piecewise linear partitions is also studied in this thesis. The conditions for 
stability which can be preserved under projection are important in model reduction of 
switched systems. Motivated by this, conditions for stability analysis and control of a class of 
switched nonlinear systems are proposed in this thesis. These conditions are suitable for 
design problems because they have slack variables. A technique for output feedback control 
design based on these conditions is proposed. The methods which are proposed in this thesis 
are applied to several numerical examples. There are several directions for further research in 
model reduction of hybrid systems. Some of these ideas are listed bellow: 
  

 Lyapunov equation based reduction of switched systems: LMI based model 
reduction is computationally more expensive compared to the methods which 
require solving Lyapunov equations. Finding the generalized gramians for some 
classes of switched system by solving the Lyapunov equations rather than LMI’s 
can reduce significant amount of computations. This can improve the proposed 
methods for model reduction of switched system for particular classes of switched 
systems.    

 Switched controller reduction: A method for switched controller reduction 
based on switching generalized gramian can be developed. The method is similar 
to the method which has been proposed based on common generalized gramian 
for switched controller reduction and it will be less conservative.  

 
 Model reduction of switched  -systems: Developing a framework to reduce 

switched nonlinear systems is an interesting topic. The idea is to devise a 
reduction framework based on the generalized gramians which uses the stability 
conditions which have recently proposed in this these.  

 Partitioning the state-space for reduction: The idea is to partition the state-
space such that the resulting hybrid system is reducible with suitable 
approximation error.   

 



 
 

 28

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 29

REFERENCES 

[1] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Advances in Design and 
Control, SIAM, Philadelphia, 2005. 

[2] S. Gugercin and A. Antoulas “A survey of model reduction by balanced truncation and some new 
results” International Journal of Control, 77, pp.748–766, 2004. 

[3] Y. Chahlaoui and P. van Dooren. “A collection of benchmark examples for model reduction of 
linear time invariant dynamical systems”. SLICOT Working Note, 2002. 

[4] Z. SUN, S.S. GE, Switched linear systems. Control and design. Communications and Control 
Engineering. London: Springer, 2005. 

[5] A. Yousefi and B. Lohmann “A note on stability in model reduction” International Journal of 
Systems Science, 40, pp. 297-307, 2009. 

[6] E.J. Grimme. Krylov Projection Methods for Model Reduction. Ph.D. Thesis, University of 
Illinois, Urbana-Champaign, 1997. 

[7] C. T., Mullis, and R. A., Roberts,  “Synthesis of minimum round off noise fixed point digital 
filters.” IEEE Transactions on Circuits and Systems, CAS-23, pp.551–562, 1976. 

[8] B. C. Moore “Principal component analysis in linear systems: Controllability, observability, and 
model reduction. “IEEE Transaction Automatic Control, 26, 17–32, 1981. 

[9] D. F. Enns. Model Reduction for Control System Design, PhD Thesis, Stanford University, 1984. 
[10] D.F. Enns, “Model Reduction with Balanced Realizations: An Error Bound and a Frequency 

Weighted Generalization” , IEEE Conference on Decision and Control, Las Vegas,USA, pp.127-
132, 1984. 

[11] C.-A., Lin, and T.-Y., Chiu, “Model reduction via frequency weighted balanced realization.” 
Control Theory and Advanced Technology, 8, pp. 341–351, 1992. 

[12] V. Sreeram, B. D. O. Anderson “Frequency weighted balanced reduction technique: a 
generalization and an error bound.” IEEE Conference on Decision and Control, New Orleans, 
Louisiana, USA, pp. 3576-3581, 1995. 

 
[13] G. Wang, V. Sreeram, and W. Q. Liu, “A new frequency weighted balanced truncation method and 

an error bound.” IEEE Transactions on Automatic Control, 44, pp.1734–1737, 1999. 
[14] W. Gawronski and J.-N. Juang, “Model reduction in limited time and frequency intervals”, 

International Journal of System Science, 21, pp. 349-376, 1990. 
[15] A. Zadegan and A. Zilouchian, “Model reduction of large-scale discrete plants with specified 

frequency-domain balanced structure,” Journal of Dynamical Systems, Measurement and Control. 
127, pp. 486-498, 2005. 

[16] H. R. Shaker and R. Wisniewski, “Discussion on Model Reducion of Large-scale Discrete Plants 
with Specified Frequency-domain Balanced Structure” Journal of Dynamic Systems, Measurement 
and Control, 131, 2009. 

[17] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control, Prentice Hall, 1996. 



 
 

 30

[18] A. Varga, “On stochastic balancing related model reduction” IEEE International conference on 
Decision and Control, Sydney, Australia, pp. 2385-2390, 2000. 

[19] H. R. Shaker, “Frequency-Domain Balanced Stochastic Truncation for Continuous and Discrete 
Time Systems” International Journal of Control, Automation and Systems, 6, pp. 180-185, 2008. 

[20] H. R. Shaker, “Frequency-Domain Generalized Singular Perturbation Method for Relative Error 
Model Order Reduction” Journal of Control Theory and Applications, 7, pp. 57-62, 2009. 

[21] G. E. Dullerud and E G. Paganini. A course in robust control theory : a convex approach. Springer, 
New York, 2000. 

[22] Li Li and F. Paganini, “Structured Coprime Factor Model Reduction based on LMIs",  Automatica, 
41, 145-151, 2005. 

[23] M. Rewienski, A trajectory piecewise-linear approach to model order reduction of nonlinear 
dynamical systems, PhD Thesis, Massachusetts Institute of Technology, 2003. 

[24] M. Rewienski, M. and J. White, ‘A trajectory piecewise-linear approach to model order reduction 
and fast simulation of nonlinear circuits and micro machined devices’, IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, 22, pp.155–170, 2003. 

[25] H. Aling, R. L. Kosut, A. Emami-Naeini, J. L. Ebert, “Nonlinear Model Reduction with 
Application to Rapid Thermal Processing,” IEEE International conference on Decision and 
Control, 4, pp. 4305-4310,1996. 

[26] J. Chen, S-M. Kang, “Model-order reduction of nonlinear MEMS devices through arc length-based 
Karhunen-Loeve decomposition,” IEEE International Symposium on Circuits and Systems, 2, 2001, 
pp. 457-460. 

[27] M. Rathinam, L. R. Petzold, “An iterative method for simulation of large scale modular 
systemsusing reduced order models,” IEEE International conference on Decision and Control, 5, 
2000, pp. 4630-5. 

[28] M. Rathinam, L. R. Petzold, “An iterative method for simulation of large scale modular systems 
using reduced order models,” IEEE International conference on Decision and Control, 5, 2000, pp. 
4630-5. 

[29] S. Lall, J. E. Marsden and S. Glavaski “Empirical Model Reduction of Controlled Nonlinear 
System” , IFAC World Congress, pp. 473-478, 1999. 

[30] S. Lall, J. E. Marsden and S. Glavaski “A Subspace Approach to Balanced Truncation for Model 
Reduction of Nonlinear Control Systems” International Journal of Robust and Nonlinear Control, 
12, pp. 519-535, 2002. 

[31] J. M. A. Scherpen, “Balancing for nonlinear systems,” Systems & Control Letters, 21, pp. 143–153, 
1993. 

[32] K. Fujimoto, J.M.A. Scherpen, Balancing and model reduction for nonlinear systems based on the 
differential eigenstructure of Hankel operators, IEEE International conference on Decision and 
Control, 2001, pp. 3252–3257. 

[33] Y. Chu, and K. Glover, “Bounds of the induced norm and model reduction errors for systems with 
repeated scalar nonlinearities.” IEEE Transaction on  Automatic Control. 44 , pp.471-483, 1999. 



 
 

 31

[34] Y. Chu Control of Systems with Repeated Scalar Nonlinearities, Ph.D. Thesis, University of 
Cambridge, 1998. 

[35] E. D. Sontag, Recurrent neural networks: Some systems-theoretic aspects in Dealing with 
Complexity: A Neural Network Approach, Springer-Verlag, 1997. 

[36] F. Albertini, and E. D. Sontag, ‘State observability in recurrent neural networks’, Systems & 
Control Letters, 22, pp. 235–244, 1994. 

[37] E. Kaszkurewicz and A. Bhaya, “On a class of globally stable neural circuits,” IEEE Trans. 
Circuits and Syst.—I: Fundamental Theory and Appl., 41, pp.171–174, 1994. 

[38] N. Barabanov and D. Prokhorov, “Stability analysis of discrete time recurrent neural networks,” 
IEEE Trans. Neural Networks, 13, pp.292–303, Mar. 2002. 

[39] D. Liu and A. N. Michel, Dynamical Systems with Saturation Nonlinearities: Analysis and Design, 
Lecture Notes in Control and Information Sciences, 195. London, U.K.: Springer-Verlag, 1994. 

[40] Q. Han, A. Xue, S. Liu, and X. Yu, "Robust absolute stability criteria for uncertain Lur'e systems 
of neutral type," International Journal of Robust and Nonlinear Control, 18, pp. 278-295, 2008. 

[41] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. “Equivalence of hybrid dynamical 
models.”  Automatica, 37, pp. 1085– 1091, 2001. 

[42] H. Lin, and P. J. Antsaklis, “Stability and Stabilizability of Switched Linear Systems: A Survey of 
Recent Results”, IEEE Transaction on Automatic Control, 54, pp. 308-322, 2009. 

[43] R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, “Stability criteria for switched and hybrid 
Systems”, SIAM Review, 49, pp.545–592, 2007. 

[44] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and results on the 
stability and stabilizability of hybrid systems”, Proceedings of the IEEE: Special Issue Hybrid 
Systems, 88, pp. 1069–1082, 2000. 

[45] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched linear systems: A Lie-
algebraic condition”, Systems & Control Letters, 37, pp. 117–122, 1999. 

[46] D. Liberzon, Switching in Systems and Control. Boston, MA, Birkhauser, 2003. 
[47] R. Shorten and K. Narendra, “Necessary and sufficient conditions for the existence of a common 

quadratic Lyapunov function for two stable second order linear time-invariant systems,” American 
Control Conference, San Diego,   pp. 1410–1414, 1999. 

[48] R. Shorten, K. Narendra, and O. Mason, “A result on common quadratic Lyapunov functions,” 
IEEE Transaction on Automatic Control, 48, pp. 110–113,  2003. 

[49] R. Shorten and K. Narendra, “Necessary and sufficient conditions for the existence of a CQLF for 
a finite number of stable LTI systems,” International  Journal of Adaptive Control Signal 
Processing, 16, 10, pp. 709–728, 2002. 

[50] R. Shorten, O. Mason, F. O. Cairbre, and P. Curran, “A unifying framework for the SISO circle 
criterion and other quadratic stability criteria,” International Journal of Control, 77, 1, pp. 1–8, 
2004. 

[51] T. Laffey and H. Smigoc, “Tensor conditions for the existence of a common solution to the 
Lyapunov equation,” Linear Algebra and Applications, 420, pp. 672–685, 2007. 



 
 

 32

[52] J. Daafouz, R. Riedinger, and C. Iung, “Stability analysis and control synthesis for switched 
systems: A switched Lyapunov function approach,” IEEE Transaction on Automatic Control, 47, 
pp. 1883–1887, 2002. 

[53] L. Fang, H. Lin, and P. J. Antsaklis, “Stabilization and performance analysis for a class of 
switched systems,” IEEE International conference on Decision and Control, pp. 3265–3270, 2004. 

[54] H. Lin and P. J. Antsaklis, “Stability and persistent disturbance attenuation properties for 
networked control systems: Switched system approach,” International Journal of Control, 78, pp. 
1447–1458, 2005. 

[55] A. S. Morse, “Supervisory control of families of linear set-point controllers—part 1: exact 
matching,” IEEE Transaction on Automatic Control, 41, pp. 1413–1431, 1996. 

[56] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” IEEE 
International conference on Decision and Control, 1999, pp. 2655–2660. 

[57] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE 
Control Systems Magazine., 19, 5, pp. 59–70, 1999. 

[58] A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE 
Transaction Circuits and Systems I, 46, pp. 120–134, 1999. 

[59] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid 
systems,” IEEE Transaction on Automatic Control, 43, pp. 475–482, 1998. 

[60] H. Ye, A.N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE 
Transaction on Automatic Control, 43, pp. 461–474, 1998. 

[61] S. Pettersson and B. Lennartson, “Stabilization of hybrid systems using a min-projection strategy,” 
American Control Conference, pp. 223–228., 2001. 

[62] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and 
Control Theory. Philadelphia, PA: SIAM, 1994. 

[63] S. Pettersson and B. Lennartson, “Hybrid system stability and robustness verification using linear 
matrix inequalities,” International Journal of Control, 75, pp. 1335–1355, 2002. 

[64] M. A. Wicks, P. Peleties, and R. A. DeCarlo, “Switched controller design for the quadratic 
stabilization of a pair of unstable linear systems,” European Journal of Control, 4, pp. 140–147, 
1998. 

[65] E. Mazzi, A. S. Vincentelli, A. Balluchi, and A. Bicchi. “Hybrid system model reduction” IEEE 
International conference on Decision and Control, Cancun, Mexico, 227-232, 2008. 

[66] Luc C.G.J.M. Habets and Jan H. van Schuppen. “Reduction of affine systems on polytopes”, 
International Symposium on Mathematical Theory of Networks and Systems, University of Notre 
Dame, 2002. 

[67] H. Gao, J. Lam, C. Wang “Model simplification for switched hybrid systems” , Systems & Control 
Letters, 55, 1015-1021,2006. 

[68] L. Wu, W. X. Zheng “Weighted H-Infinity model reduction for linear switched systems with time-
varying delay”. Automatica 45, 186-193 ,2009. 

[69] L. Zhang ,  E. Boukas , P. Shi “μ-Dependent model reduction for uncertain discrete-time switched 
linear systems with average dwell time”, International Journal of Control, 82, 2 , 378 – 388,2009. 



 
 

 33

[70] L. Zhang ,  P. Shi “ 2l l Model reduction for switched LPV systems with average dwell time”, 

IEEE Transactions on Automatic Control, 53, 2443-2448, 2008. 

[71] L. Zhang ,  P. Shi , E. Boukas , C. Wang “ H model reduction for switched linear discrete-time 

systems with polytopic uncertainties”, Automatica,  44, 2944-2949, 2008. 

[72] L. Zhang, B. Huang, J. Lam, “ H  model reduction of Markovian jump linear systems”, Systems & 

Control Letters, 50, 103–118, 2003. 
[73] L. Zhang ,  E. Boukas , J. Lam “Analysis and synthesis of Markov jump linear systems with time-

varying delays and partially known transition probabilities”, IEEE Transactions on Automatic 
Control, 53, 2458-2464, 2008. 

[74] H. R. Shaker and R. Wisniewski .“ Generalized Gramian Framework for Model/Controller Order 
Reduction of Switched Systems”, International Journal of Systems Science, 2010. In press.  

[75] H. R. Shaker and R. Wisniewski .“Generalized gramian framework for model reduction of 
switched systems”, European Control Conference, Budapest ,Hungary,2009. 

[76] H. R. Shaker and R. Wisniewski .“ Switched Controller Reduction” IEEE International 
Conference on Control & Automation, Christchurch, New Zealand, 2009. 

[77] H. R. Shaker and R. Wisniewski, "Switched Systems Reduction Framework Based on Convex 
Combination of Generalized Gramians" Journal of Control Science and Engineering, vol. 2009, 
Article ID 710478, 11 pages, 2009. doi:10.1155/2009/710478. 

[78] H. R. Shaker and R. Wisniewski. "Model Reduction of Switched Systems Based on Switching 
Generalized Gramians ", International Journal of Control, Automation and Systems, 2009. 
Submitted. 

[79] H. R. Shaker, R. Wisniewski.  "On Exact/Approximate Reduction of Dynamical Systems Living 
on Piecewise linear Partition”. IMACS IFAC Symposium on Mathematical Modelling - 6th 
MATHMOD, Vienna, Austria,  2009. 

[80] H. R. Shaker and Jonathan P. How "Stability Analysis for a Class of Switched Nonlinear Systems 
", American Control Conference, 2010.  

[81] H. R. Shaker, “Output feedback control for a class of switched nonlinear systems", IET Control 

Theory & Applications , 2009. Submitted. 
[82] S. Solmaz, Robert Shorten, Kai Wulff, Fiacre Ó Cairbre, “A design methodology for switched 

discrete time linear systems with applications to automotive roll dynamics control.” 
Automatica ,44, pp. 2358-2363 ,2008.  

 
 
 
 
 
 
 

 



 
 

 34

 
Contributions 

 
 
Paper A: Generalized Gramian Framework for Model/Controller Order Reduction of Switched 
Systems 
  
Paper B: Switched Systems Reduction Framework Based on Convex Combination of Generalized 
Gramians  
 
Paper C:  Model Reduction of Switched Systems Based on Switching Generalized Gramians 
 
Paper D:  On Exact/Approximate Reduction of Dynamical Systems Living on Piecwise linear 
Partition  
 
Paper E: Stability Analysis for a Class of Switched Nonlinear Systems 
 
Paper F: Output feedback control for a class of switched nonlinear systems 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 36

 
Paper A 

 
 
 

Generalized Gramian Framework for Model/Controller Order Reduction of 
Switched Systems 

 
 
 

 
Hamid Reza Shaker and Rafael Wisniewski 

 
 
 
 
 
 

This paper will be published in: 
 

International Journal of Systems Science 
Taylor & Francis 

Print ISSN: 0020-7721 

 
 



 
 

 37

 

1. Introduction 
     The ever-increasing need for accurate mathematical modeling of physical as well as 
artificial processes for simulation and control leads to models of high complexity, arising 
from high order and/or complex nonlinearities. To maintain tractability, efficient 
computational prototyping tools are required to replace such complex models by simpler 
models which capture their dominant characteristics. Due to this fact, model reduction 
methods have become increasingly popular over the last two decades [1]-[3]. Such methods 
are designed to extract a reduced order state space model that adequately describes the 
behavior of the system in question.  

Low order controllers are preferred over high order controllers due to і) relative ease of 
implementation, іі) relative lower requirements on hardware (i.e. cheaper, simpler and more 
easily available hardware), ііі) relative computational efficiency, and iv) decreased effects of 
computational delay on closed-loop stability and performance. For these reasons controller 
order reduction has received considerable attention in recent years [4]-[7]. 
Most of the studies on order reduction to date have been devoted to linear systems. The few 
methods proposed for nonlinear systems are not strong in comparison to linear reduction 
methods. 

On the other hand, most of the methods that are proposed so far for control and analysis of 
hybrid/switched systems suffer from high computational burden when dealing with large-
scale dynamical systems. This motivated the study of model reduction for hybrid systems [8]-
[17]. The model reduction problem for switched systems of Markovian type was studied in 
[17]. In Markov jump systems, the transition probabilities of the jumping process are 
important and so far, almost all the issues on Markov jump system have been investigated 
assuming the knowledge of transition probabilities. However, the likelihood to obtain the 
complete knowledge on the transition probabilities is questionable and the cost is probably 
high [18]. The method presented in [8] deals with the abstraction of both continuous and 
discrete parts of hybrid dynamical systems, and uses balanced residualization for reduction of 
the continuous part. Application of the method to switched systems may not preserve 
stability, and non-elegant behavior may arise for general hybrid systems because of 
approximation error and possible guard/reset map overlap.   It was shown in [9] that the 
dimension of the state space can be affinely reduced due to non-observability if and only if a 
subspace of the classical unobservable subspace, characterized using the normal vectors of 
the exit facets, is nontrivial. This result does not provide a strong tool for reduction of affine 
systems because it is an exact reduction. While exact reduction is very elegant, the class of 
systems for which this procedure applies is quite small. This method only considers 
observability for investigating the importance of states to discard. The problem of model 
reduction for discrete   switched system is addressed in several papers [10][14]-[16]. In [10], 
two different approaches are proposed to solve this problem. The first approach casts the 
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model reduction problem as a convex optimization problem, which solves the model 
reduction problem by using a linearization procedure. The second one, based on the cone 
complementarity linearization idea, casts the model reduction problem as a sequential 
minimization problem subject to linear matrix inequality constraints. Both approaches have 
their own advantages and disadvantages concerning conservatism and computational 
complexity. These optimization problems will be very hard (if not infeasible) to solve for a 
large scale system. Not only this method is restricted to discrete time switched systems, it 
does not provide any hints about the number of states which is suitable to retain before 
reduction. Similar methods have been developed for more general classes of discrete time 
switched systems in [13]-[16]. In [14] and [15], this problem is investigated for discrete-time 
switched systems under average dwell time switching. 
   In this paper, we propose a method for model reduction of switched systems which can be 
categorized as gramian based model reduction methods.  The balanced model reduction 
introduced in [19] is one of the most common gramian based model reduction schemes.  

To apply balanced reduction, the system is first represented in a basis where the states 
which are difficult to reach are simultaneously difficult to observe. This is achieved by 
simultaneously diagonalizing the reachability and the observability gramians, which are 
solutions to the reachability and the observability Lyapunov equations. Then, the reduced 
model is obtained by truncating the states which have this property. Balanced model 
reduction method is modified and developed from different viewpoints [1],[2]. One of the 
methods that are presented based on balanced model reduction is the method based on the 
generalized gramian [20]. In this method, Lyapunov inequalities (rather than Lyapunov 
equations) are solved to compute generalized gramians. The physical interpretations of 
generalized gramians are similar to ordinary gramians. Generalized gramians are used to 
devise a technique for structure preserving model reduction methods in [21]. 

    We first show that the generalized method in [20] can be extended to various gramian 
based reduction methods. We also modify the method in [21] to avoid numerical instability 
and also to achieve higher efficiency by building Petrov-Galerkin projection based on 
generalized gramians. We propose a method based on the balanced model reduction within 
frequency bound in this framework.  We generalize the framework to model reduction of 
switched systems by solving a system of Lyapunov inequalities to find common generalized 
gramian. We compute Petrov-Galerkin projection based on these common generalized 
gramians. There are several advantages in using common generalized gramians rather than 
ordinary gramians, mainly in stability preservation, structure preservation and computational 
efficiency. Methods based on ordinary gramians have to repeatedly compute the projection 
matrices for gramians of different subsystems. In our framework, we build the projection 
matrices once for all subsystems based on common generalized gramian which is 
computational more efficient. On the other, if we use ordinary gramians the stability of the 
original switched system is not guaranteed to be preserved under reduction.  In our 
framework, the stability of the original switched system is preserved for arbitrary switching 
signal.   
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   In this paper we also propose a technique for switched controller reduction based on the 
generalized gramian framework and Petrov-Galerkin projection which can be considered as 
carry over of the method in [6]. To the best of our knowledge, this is the first result on 
switched controller reduction in the literature.  
   The paper is organized as follows. In the next section we review balanced reduction method 
and the balanced reduction technique based on generalized gramian. Section 2 presents how 
different gramian based methods can be approximated as generalized gramian based 
techniques. Balanced reduction within frequency bound based on generalized gramian is also 
presented in this section. This section ends up with some remarks on numerical 
implementation of the algorithm and Petrov-Galerkin projection for generalized gramian 
based reduction methods is suggested instead of balancing and truncation. Section 3, is 
devoted to develop generalized gramian based reduction method for model reduction of 
switched systems, followed by a brief discussion on stability, feasibility and error bound. 
Section 4 shows how the generalized gramian based method can be applied to switched 
controller reduction followed by some remarks on numerical implementation of the 
algorithm, stability and error bounds.  Section 5 presents our numerical results, and Section 6 
concludes the paper.  

The notation used in this paper is as follows: *M denotes the transpose of matrix if 
n mM   and complex conjugate transpose if n mM  . The norm .


denotes the 

H norm of a rational transfer function. The standard notation , ( , )    is used to denote 

the positive (negative) definite and semidefinite ordering of matrices. 
 

2. Balanced Truncation and Generalized Gramians  
   Balanced truncation is a well-known method for model reduction of dynamical systems 

[1][2].The basic approach relies on balancing the gramians of the systems. For dynamical 
systems with minimal realization: 

                                                 ( ) : ( , , , )G s A B C D ,                                                         (1) 

where  ( )G s  is the transfer matrix with associated state-space representation: 

                                       
( ) ( ) ( ), ( ) ,

( ) ( ) ( ),

nx t Ax t Bu t x t

y t Cx t Du t

   


 

 
                                             (2)                

 
gramians are given by the solutions of the Lyapunov equations: 

                                                  
* *

* *

0,

0.

AP PA BB

A Q QA C C

  

  
                                                        (3) 

 
For stable A , they admit unique positive definite solutions P  and Q  , called the 
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controllability and observability gramians. In balanced reduction, first the system is 
transformed to the balanced structure in which gramians are equal and diagonal: 
 

                                  
11

1

( ,..., ), .
q

q

k q k j
j

P Q diag I I k n 


                                    (4)                     

where 1i i    are called Hankel singular values. 

  The reduced model can be easily obtained by truncating the states which are associated with 
the set of the least   Hankel singular values. Applying the method to stable, minimal ( )G s , if 

we keep all the states associated to (1 )m m r   , and truncate the rest, the reduced model 

( )rG s will be minimal and stable and satisfies[1][2]: 

                                              
1

( ) ( ) 2
q

r j
j r

G s G s 


 

   .                                             (5) 

 
 A closely related model reduction method based on the generalized gramian is presented in 
[20]. In this method, instead of Lyapunov equations (3), the following Lyapunov inequalities 
are solved: 

                                                       
* *

* *

0,

0.

g g

g g

AP P A BB

A Q Q A C C

  

  
                                        (6) 

For stable A , they have positive definite solutions gP  and gQ , called the generalized 

controllability and observability gramians. Note that these gramians are not unique. The rest 
of this model reduction method is the same as the aforementioned balanced truncation 
method, the only difference is that in this algorithm the balancing and truncation are based on 
the generalized gramian instead of ordinary gramian. In this method, we have generalized 
Hankel singular values ( i ) which are the diagonal elements of balanced generalized 

gramians instead of Hankel singular values i . The error bound (5) holds in terms of the 

generalized Hankel singular values ( i ) instead of Hankel singular values ( i ). Note that 

i i  [20]. Therefore the error in balanced reduction based on the generalized gramian is 

lower bounded by the error of ordinary balanced model reduction.   

3. Generalized Gramian Framework for Gramian-based Model 
Reduction Methods  

   In this section, we first present a general framework to build generalized gramian 
analogous of gramian based methods. Then we present generalized balanced reduction within 
frequency bound using this framework, followed by a discussion on numerical 
implementation of the algorithm based on projection. 
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Lyapunov Equations, Lyapunov Inequalities and Reduction 

 
Lemma 1: Suppose A is stable, Y is symmetric and 

                                                     
* 0,

, ,n n

A Y YA

A Y 

 


                                                              (7)                  

holds. Then 0Y  , i.e. Y is positive semi-definite. 
 
Proof: If * 0A Y YA  , there exists 0M   such that: 

* 0A Y YA M    
On the other hand, for any stable A , the unique solution to the preceding is: 

*

0

A AY e M e d  


  . 

In the above structure 0M  , hence: 
0Y   

  
This lemma leads to the following proposition that makes the relation between Lyapunov 
equations and Lyapunov inequalities evident.  
Proposition 1[20]: Suppose A is stable and X is the solution of Lyapunov equation: 

                                               * 0A X XA Q   ,                                                            (8) 

where 0Q  . If a symmetric gX satisfies: 

                                                         * 0g gA X X A Q                                                  (9) 

then: gX X . 

 
Proof: It can be proven easily by subtracting (9)-(8) and applying Lemma 1 
with gY X X  . 

  
Proposition 1 is a direct consequence of Lemma 1, which shows how ordinary gramians can 
be approximated by the generalized gramians. Balanced reduction based on generalized 
gramian which we reviewed in the last section is based on Proposition 1. While this method 
might be less accurate than its gramian based counterpart, the approximation error is still 
bounded.  
By deriving associated Lyapunov equations and relaxing them to inequalities, we can 
readily generalize other gramian based reduction methods in this framework. In the 
following, we propose a generalized version of balanced reduction within frequency bound.  
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Generalized Balanced Reduction within Frequency Bound 

Over the past two decades, a great deal of attention has been devoted to balanced model 
reduction and it has been developed and improved from several viewpoints. Frequency 
weighted balanced reduction method is one of the devised gramian based techniques based 
on ordinary balanced truncation [1],[2],[22]-[24]. In this method, the model reduction is 
biased by frequency- dependent input/output weights. In many cases the input and output 
weights are not given. Instead the problem is to reduce the model over a given frequency 
range [1][2]. This problem can be attacked directly by balanced reduction within frequency 
bound, which was first proposed in [25] and then modified in [2] to preserve the stability of 
the original system and provide an error bound for approximation. In this method, for 
dynamical system (1) the controllability gramian 1 2( , )P   and observability gramians 

1 2( , )Q   within frequency range 1 2[ , ]  are defined as:  

                                                    1 2 2 1

1 2 2 1

( , ) ( ) ( ),

( , ) ( ) ( ),

P P P

Q Q Q

   
   

 
 

                                           (10)               

where: 
 

                                     

1 * * 1

* 1 * 1

1
( ) : ( ) ( ) ,

2
1

( ) : ( ) ( ) .
2

P Ij A BB Ij A d

Q Ij A C C Ij A d









   


   


 



 



   

   




                         (11) 

  
 
In order to show the associated Lyapunov equations, we need some more notations: 

                                             11
( ) : ( )

2
S Ij A d




  





  ,                                               (12) 

                                               
* * *

* * *

( ) ( ) ( ) ,

( ) ( ) ( ) ,

c

o

W S BB BB S

W C CS S C C

  

  

 

 
                                         (13)                

                                                1 2 2 1

1 2 2 1

( , ) ( ) ( ),

( , ) ( ) ( ).
c c c

o o o

W W W

W W W

   
   

 
 

                                           (14)   

              
The gramians satisfy the following Lyapunov equations [1],[2]: 
 

                                       
*

1 2 1 2 1 2

*
1 2 1 2 1 2

( , ) ( , ) ( , ) 0,

( , ) ( , ) ( , ) 0.

c

o

AP P A W

A Q Q A W

     

     

  

  
                                (15)      

               
 This method is modified in [2] to guarantee stability and to provide a simple error bound.  
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    The modified version starts with the following decomposition of 

1 2( , )cW   and 1 2( , )oW   : 

                                     
* *

1 2 1

* *
1 2 1

( , ) : ( ,..., ) ,

( , ) : ( ,..., ) ,

c n

o n

W M M M diag M

W N N N diag N

   

   

  

  
                              (16) 

where: * *
nMM NN I  , 1 10, 0i i i i        . 

 
Note that since 1 2( , )cW   and 1 2( , )oW   are symmetric, decompositions of the form (16) 

exist. Let: 

                                               

1/ 21/2

1

1/ 21/ 2 *
1

ˆ : ( ,..., ,0,...,0),

ˆ : ( ,..., ,0,...,0) .

B M diag

C diag N





 

 




                                 (17) 

where: 

                                                           1 2

1 2

( ( , )),

( ( , )).
c

o

rank W

rank W

  
  



                                            (18) 

 
The modified gramians satisfy the following Lyapunov equations instead of (15): 
 

                                              
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0,

ˆ ˆ ˆ ˆ( , ) ( , ) 0.

AP P A BB

A Q Q A C C

   

   

  

  
                                   (19) 

 
For the generalization, we have the following inequalities: 

                                              
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0,

ˆ ˆ ˆ ˆ( , ) ( , ) 0.

g g

g g

AP P A BB

A Q Q A C C

   

   

  

  
                               (20) 

 
Then the generalized modified balanced reduction within frequency bound can be obtained 

by simultaneously diagonalizing 1 2
ˆ ( , )gP   and 1 2

ˆ ( , )gQ    and truncating the states 

associated to the set of the least generalized Hankel singular values.  

Numerical Issues 

Balanced transformation can be numerically ill-conditioned when dealing with systems 
having some nearly uncontrollable or some nearly unobservable modes. Difficulties 
associated with computation of the required balanced transformation in [26] drew some 
attention toward devising alternative numerical methods [27]. Balancing can be badly 
conditioned even when some states are significantly more controllable than observable or 
vice versa. In this case, it is advisable to reduce the system in the gramian based framework 
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without balancing. The Schur method and square root algorithms provide projection 
matrices to apply balanced reduction without balanced transformation [1],[27]. This method 
can be easily applied to other Gramian based method. In our generalized method, we can 
use the same algorithm by plugging generalized gramians into the algorithm instead of 
ordinary gramians.    

   

4. Model Reduction of Switched System  

     Model Reduction of Switched Systems Based on Generalized Gramians  

 
One of the most important subclasses of hybrid systems is the class of linear switched 

systems. A linear switched system is a dynamical system specified by the following 
equations: 

  

                              ( ) ( )

( ) ( )

( ) ( ) ( ),
:

( ) ( ) ( ),
t t

t t

x t A x t B u t

y t C x t D u t
 

 

    


                                       (21)                 

where ( ) nx t  is the continuous state, ( ) py t  is the output, ( ) mu t   is the continuous 

input, and 0:      is the switching signal that is a piecewise constant map of the 
time.  is the set of discrete modes, and it is assumed to be a finite set. For 
each i , iA , iB , iC , iD are matrices of appropriate dimensions.  

In this section we build a framework for model reduction of switched system described by 
(21). The aim is to find Petrov-Galerkin projectors to project the switched system to a lower 
dimensional subspace.  

   
Petrov-Galerkin projection for a dynamical system [1]: 
 

                                    
( ) ( ( ), ( )) , ,

( ) ( ( ), ( )) ,

nx t f x t u t x

y t g x t u t

  




 
                                       (22) 

 
is defined as a projection *VW  ,where: * , , ,n k

kW V I V W k n   . 

The reduced order model using this projection is: 
 

                             
*ˆ ˆ ˆ( ) ( ( ), ( )) ,

ˆ( ) ( ( ), ( ))

kx t W f Vx t u t x

y t g Vx t u t

  




 
                                  (23) 

 
We can develop generalized gramian framework for model reduction of switched linear 
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system by finding common generalized controllability/observability gramian related to 
subsystems. To do this we need to solve two systems of Lyapunov inequalities, one for 
finding common generalized controllability gramian and one for common generalized 
observability gramian. The next step can be simultaneous diagonalization of the common 
generalized gramians and balancing and reducing all subsystems based on the common 
generalized Hankel singular values. To improve numerical conditioning and efficiency, we 
use Schur or square root algorithm (instead of balancing) and directly compute Petrov-
Galerkin projection matrices. To clarify the method, we extend generalized balanced 
reduction within frequency bound presented in previous section for model reduction of 
switched linear systems.  
  First we need to find common generalized controllability 

gramian 1 2
ˆ ( , )cgP   by solving the system of Lyapunov inequalities :  

  

                              
* *

1 2 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) 0,

.

cg cgA P P A B B      



   

 

                               (24) 

 
For example in the case of bimodal systems, {1, 2}  , so we have to solve: 

                                 
* *

1 1 2 1 2 1 1 1

* *
2 1 2 1 2 2 2 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0,

ˆ ˆ ˆ ˆ( , ) ( , ) 0.

cg cg

cg cg

A P P A B B

A P P A B B

   

   

   


  
                               (25) 

 

Common generalized observability gramian 1 2
ˆ ( , )cgQ    can be obtained similarly by solving 

the system of Lyapunov inequalities:  

                                    
* *

1 2 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) 0,

.

cg cgA Q Q A C C      



   

 

                           (26) 

 
Similarly, in the case of bimodal systems, {1, 2}  , we have: 

                               
* *

1 1 2 1 2 1 1 1

* *
2 1 2 1 2 2 2 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0,

ˆ ˆ ˆ ˆ( , ) ( , ) 0.

cg cg

cg cg

A Q Q A C C

A Q Q A C C

   

   

   


  
                                (27) 

 

If we plug in 1 2
ˆ ( , )cgP   and 1 2

ˆ ( , )cgQ   to the square root algorithm we can directly 

obtain projectors for reduction. Note that the results are the same as balancing algorithm. A 
merit of the square root method is that it relies on the Cholesky factors of the gramians rather 
than the gramians themselves, which has superior of numerical stability. 
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Stability, Feasibility and Approximation Error  

 
One of the important issues in model reduction is preservation of stability. In other words, 

the question is whether the reduction technique method can preserve the stability of the 
original model in approximation. In the following proposition, we show that the proposed 
framework for model reduction of switched systems is stability preserving.  

 
 
Proposition 2. If the switched system described in (21) is stable, the generalized gramian 

based reduced order model is quadratically stable. 
 
Proof:  
In the proposed method, we have:  
 

                                   

*

*
( ) ( )

*
( ) ( )

( ) ( )

( ) ( )

, , , ,

ˆ ,

ˆ ,
ˆ :

ˆ ,

ˆ ,

n k
k

t t

t t

t t

t t

W V I V W k n

A W A V

B W B

C C V

D D

 

 

 

 

  

 

  








                                           (28)                    

which is a projected switched system (reduced order model). The outcome of square root 
algorithm for projection [1]:  1gP W V   and 1gQ V W  , where 1

k k  is diagonal and 

positive definite. Since gP is common generalized gramian, we have: *
( ) ( ) 0t g g tA P P A   , 

which implies:  
* *

( ) ( )( ) 0t g g tW A P P A W    

On the other hand, 

 
* * * * *

( ) ( ) ( ) ( )

* * * * *
( ) 1 1 ( ) ( ) 1 1 ( )

( )

ˆ ˆ .

t g g t t g g t

t t t t

W A P P A W W A P W W P A W

W A V V A W A A

   

   

  

       
 

   Hence: 

                                                   *
( ) 1 1 ( )

ˆ ˆ 0t tA A     ,                                             (29) 

where  1
k k  is positive definite. Similarly we can show that: 

                                                   *
( ) 1 1 ( )

ˆ ˆ 0t tA A     .                                              (30) 

In stability theory for switched systems, this is a well-known sufficient condition for 
quadratic stability [28]. Hence, reduced order model is guaranteed to be quadratically stable. 

  
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The same results hold, if we use balancing transformation instead of projection. In 

balanced realization based on generalized gramians, after partitioning we have:  
*

*

11 1111 12 11 12

22 2221 22 21 22

* *
11 1111 12 11 21

* *
22 2221 22 12 22

*
11 11 11 11 12

,

0 0
,

0 0

0 0
,

0 0

g g

g g

g g

g g

g g

g g

M A P P A

P PA A A A

P PA A A A

P PA A A A
P PA A A A

A P P A A P

 

   

   

   

   

  

 

      
       
      

     
       
       




*
22 11 21

* *
21 11 22 12 22 22 22 22

,g g

g g g g

P A

A P P A A P P A


   

 
    

 

where 11 11, k k
gP A

 .  

Since gP is the generalized gramian, 0M  . On the other hand, we know If 0M  , all its 

leading square partititions are negative semidefinite. Hence: 
                                                *

11 11 11 11 0g gA P P A   ,                                                  (31) 

11gP is symmetric and positive definite. Therefore the reduced order switched system 

11 1 1( , , , )A B C D    associated with the partitions above satisfy the sufficient condition for 

quadratic stability and is stable. 
Clearly, the presented framework for model reduction of switched system is stability 

preserving. As mentioned, the approximation error for each subsystem is bounded and is 
given in terms of generalized Hankel singular values.  

The system of LMIs in our framework is said to be feasible if common generalized 
gramian exists. In general, existence of a common Lyapunov function is not guaranteed for 
switched systems [28], therefore we cannot expect to find common generalized gramian for 
all linear switched systems. One way to improve the feasibility of the proposed model 
reduction method is using recently proposed extended notion of generalized gramian called 
extended gramian [29].  

   

5. Switched Controller Reduction Method 
    In this section we present a method for switched controller reduction followed by a brief 

discussion on modifications in numerical implementation of the algorithm, studying stability, 
feasibility and approximation error.  

Generalized Gramian Framework for Switched Controller Reduction 

Consider a general switched system with switched controller in the following closed loop 
configuration (see Fig. 1.)   
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( )K s

 
w  
 y u

( )G sz  

 
 

 
 
 
 
 
 
 

Fig. 1.  Closed loop Switched System with Switching Controller 

 
 
In this configuration ( ) : ( , , , )G s A B C D      is n -th order switched system and 

( ) : ( , , , )k k k kK s A B C D     is m -th order switched controller. The transfer matrix from 

w  to z is: 

                                                   : ( , , , )zwT A B C D    ,                                             (32) 

where: 
 

                                                                     

2 2 2

2 22

k k

k k k k

A B L D C B L C
A

B F C A B F D C
       


       

 
   

 ,                                                    (33)                   

 
 

                                                1 2 21

21

k

k

B B L D D
B

B F D
    


  

 
  
 

,                                        (34) 

                                     1 12 2 12[ ]k kC C D D F C D L C           ,                             (35) 

                                                  11 12 21kD D D D F D       ,                                        (36) 

                                     1 1
22 22( ) , ( )k kL I D D F I D D     

                                    (37) 

Note that in the above configuration switched plant ( )G s is partitioned where inputs to 1B   

are the disturbances, inputs to 2B  are the control inputs, output of 1C   are the errors to be 

kept small, and outputs of 2C   are the output measurements provided to the controller. 

The goal is to reduce the controller in the way that the closed-loop behavior is preserved as 
much as possible without sacrificing the stability of the original switched closed loop 
system. To do this, we develop generalized gramian framework for switched controller 
reduction which is inspired by the method in [6] which was proposed for controller 
reduction of linear dynamical systems.  
The procedure is similar to generalized gramian framework for model reduction of 
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switched systems. In the first step, one should find common generalized gramians for 
closed loop switched system. In other words, we solve: 

                                              
* * 0,

,

cg cgA P P A B B   



   

 

                                        (38) 

and also 

                                             
* * 0,

,

og ogA Q Q A C C   



   

 

                                       (39) 

to find the common generalized controllability and observability gramians respectively. 
Due to the fact that we are interested in the reduction of controller in our framework, we 
should find  generalized gramians that have the following structure: 

                                                 1 2( , ) 0cgP diag P P  ,                                                 (40) 

                                                    1 2( , ) 0ogQ diag Q Q  ,                                              (41) 

where  2P and 2Q  are simultaneously balanceable and are compatible with the order of the 

switched controller.  
This can be done by solving Lyapunov linear matrix inequalities using common linear 
matrix inequality (LMI) solvers.  
The last step of the framework is to reduce the controller by balanced truncation of each 
sub-controller based on 2P and 2Q .  

 

Numerical  Algorithm 

In our generalized method for controller reduction, we use the same algorithm as the one 
we have already presented for switched systems with generalized gramians 2P and 2Q  

instead of ordinary gramians. To improve the numerical properties, we use Petrov-Galerkin 
projection to reduce the switched controller.  
 
 

Stability, Feasibility and Approximation Error  

 
One of the important issues in model/controller reduction is preservation of stability. In 

other words, the question is whether the reduction technique method can preserve the 
stability of the original model in approximation. In the following proposition we show that 
the proposed framework for switched controller reduction is a stability preserving method. 
That is, it preserves the stability of the original closed loop system under arbitrary switching.  

 
Proposition 3. If the closed loop system described by (32)-(37) is stable, the closed-loop 

system with reduced switched controller resulting from the proposed algorithm is 
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quadratically stable. 
 
Proof:  
In the proposed method for original closed loop system, we have:  

* * 0,

.

cg cgA P P A B B   



   

 

 

where: 1 2( , ) 0cgP diag P P  . 

Equivalently we have: 

                               
*

2 2 1 1 2 2

*
1 2 21 1 2 21

( ) ( )

( )( ) 0,

k k

k k

A B L D C P P A B L D C

B B L D D B B L D D

         

         

   

  
                      (42) 

and 

                          
*

22 2 2 22

*
21 21

( ) ( )

( )( ) 0,

k k k k k k

k k

A B F D C P P A B F D C

B F D B F D

         

     

   


                     (43) 

On the other hand, from our reduction framework for switched controller using Petro-
Galerkin projection we have: 

  
                                            * , , ,n k

kW V I V W k n                                             (44) 
* *ˆ ˆˆ ˆ: ( , , , )r k k k k k k k kK A W A V B W B C C V D D            

where rK is the projected switched controller (reduced order controller). The outcome of 

square root algorithm for projection[1]: 

                                                               2 1

2 1

,

,

PW V

Q V W

 
 

                                                  (45) 

where 1
k k  is diagonal and positive definite. We know from (43) that: 

*
22 2 2 22( ) ( ) 0k k k k k kA B F D C P P A B F D C             , 

 
which implies:  

                                               
*

22 2

*
2 22

(( )

( ) ) 0.

k k k

k k k

W A B F D C P

P A B F D C W

    

    

 

 
                                 (46) 

On the other hand using (45) and then (44) we have, 
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* *
22 2 2 22

* * *
22 2 2 22

* * *
22 1 1 22

* *
22 1

* *
1 22

(( ) ( ) ) ,

( ) ( ) ,

( ) ( ) ,

( )

(

k k k k k k

k k k k k k

k k k k k k

k k k

k k k

W A B F D C P P A B F D C W

W A B F D C PW W P A B F D C W

W A B F D C V V A B F D C W

W A V W B F D C V

W A V W B F D C

         

         

         

    

    

  

   

    

   

  *

*
22 1 1 22

) ,

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) .k k k k k k

V

A B F D C A B F D C             

 

Hence: 

               *
22 1 1 22

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) 0,k k k k k kA B F D C A B F D C                                      (47)                     

where  1
k k  is positive definite.  

Similar to (33) for the closed-loop system with reduced switched controller we have: 

                       2 2 2

2 22

ˆˆ
.

ˆ ˆˆ ˆ
k k

r

k k k k

A B L D C B L C
A

B F C A B F D C

       


       

 
  

  
                      (48) 

 
It is easy to see from (42) and (47) that for 1 1( , )P diag P  we have: 

                                             * 0r rA P A P   .                                                 (49) 

Note that P is positive definite. Therefore *x Px is the common quadratic Lyapunov 
function for the closed loop switched system with reduced controller.   

We know from stability theory for switched systems that this is a well-known sufficient 
condition for quadratic stability [28]. Hence, reduced order model is guaranteed to be 
quadratically stable.  

  
   As can be seen, the presented framework for controller reduction of switched system is 
stability preserving. The error of approximation for each subsystem of the closed-loop 
switched system is bounded and is given in terms of generalized Hankel singular values of 
the controller. This is the direct result of the [6] for linear controller reduction.   

 In general existence of a common Lyapunov function is not guaranteed for switched 
systems [28]. Therefore we cannot expect to have common generalized gramians for all 
linear switched controllers.  
 

6. Numerical Examples 
      In this section, we apply the proposed methods for reduction of two bimodal switched 
linear systems as well as two switched controllers. The proposed method is not restricted to 
particular number of discrete modes or particular switching signals. Systems are randomly 
generated and the results are shown for randomly generated switching signal.  
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Fifth Order Switched Linear System: 

Consider a randomly generated single-input-single-output switched linear system of the form 
(21): 
 

1

4.23 0.4654 1.305 0.313 1.461

0.4654 4.418 0.8745 0.9324 0.7062

1.305 0.8745 1.839 0.0083 0.6652

0.313 0.9324 0.0083 1.801 0.4979

1.461 0.7062 0.6652 0.4979 2.355

A

  
    
   
 

    
     

, 

2

-5.055  0.4867  0.7761 -3.765 -2.702

0.4867 -3.034 0.0537 0.6768 0.6030

0.7761 0.0537 -1.392 -0.0739 0.8858

-3.765 0.6768 -0.0739 -5.26 -1.886

-2.702 0.603 0.8858 -1.886 -3.909

A

 
 
 
 
 
 
  

, 

1

- 0.1721

- 0.336

0.5415

0

-0.5703

B

 
 
 
 
 
 
  

, 2

-0.5081

0.8564

0.2685

0.625

-1.047

B

 
 
 
 
 
 
  

, 

1 [-1.499 -0.0503 0.553 0.0835 1.578]C  , 

2 [1.536 0.4344 -1.917 0 0]C  , 

1 2 0D D  . 
   This model is reduced to the following third order switched linear model by applying the 
presented method over  1 2, [0.1 ,100]   : 

1

-1.031 0.0061 0.0811

0.1413 1.606 0.7891

0.1708 1.028 2.723
rA

 
    
   

, 2

-0.8714 0.0209 0.1824

-0.153 -1.652 -0.864

0.0540 -0.6046 -2.7
rA

 
   
  

, 

1

-0.4154

0.595

0.7314
rB

 
   
  

, 2

0.315

1.136

2.371
rB

 
   
  

 , 

 1 -0.2443 -1.076 0.1176rC  , 

 2 0.5949 0.5316 -0.5847rC  , 

1 2 0r rD D  . 
Fig. 2 shows the decay rate of the generalized Hankel singular values. The approximation 
accuracy for each subsystem is represented in Fig. 3 and Fig. 4. The step response of the 



 
 

 53

original and reduced order switched systems associated with a randomly generated switching 
signal of Fig.5 is presented in Fig. 6. 

 
Fig. 2.  Generalized Hankel Singular Valuse( i ). 

 
 

 
Fig. 3.  The infinity norm of original transfer matrix of the first subsystem(solid line) and its third order counterpart 

(dotted) over frequency domain  1 2, [0.1,100]   . 
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Fig. 4.  The infinity norm of original of transfer matrix of second subsystem (solid line) and its third order 

counterpart (dotted) over frequency domain  1 2, [0.1,100]   . 

 
 

 
Fig. 5.  Randomly generated switching signal. 
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Fig. 6.  Step response of original switched linear system(solid line) and the reduced order model (dotted). 

 

Fig. 2. shows that most of the input/output information is in three states of the original 
systems. The proposed method  provides accurate results after reduction of 2 states of the 
original system (40% of the states) not only locally (see Fig. 3 and Fig. 4) but also globally 
(see Fig. 6). 

Bimodal Switched linear System of order 100: 

We consider a randomly generated bimodal switched linear system of order 100. This 
example shows that the presented method can be applied to fairly large systems. The original 
system is SISO and it is reduced to 87 using the proposed reduction method over 
 1 2, [1 ,100]   .  

The generalized Hankel singular values are shown in Fig. 7. In this example, the infinity 
norm of the transfer functions of the original subsystems and the reduced counterpart in Fig. 
8 and Fig. 9 are compared to show how well the approximation works locally.  The 
approximation accuracy for each subsystem is represented in Fig. 8 and Fig. 9. The step 
response of the original and reduced order switched systems associated with a randomly 
generate switching signal of Fig.10 is shown in Fig. 11. 
 The results after reduction of 13 states of the original system (13% of the states) are accurate 
locally (see Fig. 8 and Fig. 9) and also globally (see Fig. 11). We already know from 
Proposition 2 that the reduced order switched system is stable. To better represent how the 
reduction method performs from a stability viewpoint, we picked randomly generated 
subsystems that are stable and their poles are close to imaginary axis. Fig. 11 shows that the 
stability of the original systems is preserved even in such situations for which the step 
response of the reduced order switched system follows the step response of the original 
system accurately.    
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Fig. 7.  Generalized Hankel Singular Valuse( i ). 

 
 

 
Fig. 8.  The infinity norm of original transfer matrix of first subsystem (solid line) and its reduced order counterpart 

(dotted) over frequency  domain  1 2, [1,100]   . 
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Fig. 9.  The infinity norm of original transfer matrix of second subsystem (solid line) and its reduced order 

counterpart (dotted) over frequency domain  1 2, [1 ,100]   . 

 
 

 

 
Fig. 10.  Randomly generated switching signal. 
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Fig. 11.    Step response of original switched linear system (solid line) and the reduced order model (dotted). 

 

Fifth Order Switched controller: 

We consider a switched linear of the form (9) for which we have: 

1

3.3428 0.7766 0.1894 0.5820 1.5424

0.7766 1.2319 0.3043 0.3098 0.2189

0.1894 0.3043 0.4807 0.0478 0.3770

0.5820 0.3098 0.0478 0.7472 0.6891

1.5424 0.2189 0.3770 0.6891 1.9965

A

  
   
   
 

  
    

, 

2

-0.6905  0.8334 -0.8545 -1.316 0.1195

-1.113 -0.7869 -1.917 -0.455 1.335

0.748 1.968 -0.7385 -0.1609 -0.0892

-0.8108 0.5693 0.00355 -4.924 -2.485

-0.8452 -1.418 0.2512 -2.278 -1.872

A

 
 
 
 
 
 
  

, 

1

0 0.5581

0.1024 0

1.8490 -1.0816

1.1762 0.0374

0.2678 -1.5963

B

 
 
 
 
 
 
  

, 
2

1.543 -0.3838

-1.931 0.2474

0 0

-0.3468 -0.05512

-0.1662 -0.5688

B

 
  
 
 
 
  

, 

1

-0.2914 0.0921 -0.2622 -0.4689 -2.0424

0.8185 -0.4314 0 -1.2311 0
C

 
  
 

, 

2

-1.78 0 0 0.1578 -0.04066

0.9576 1.125 0 1.059 0
C

 
  
 

, 

1

0 -0.2468

0.2342 0.9183
D

 
  
 

,
2

0 0.208

0.3414 -1.024
D

 
  
 

. 
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A switched bimodal stabilizing 2H  optimal controller ( ) : ( , , , )k k k kK s A B C D     is 

synthesized for the above switched system (see Fig. 1) for which we have: 

1

-0.09566 0.1983 1.476 0.9568 9.094

4.643 2.1 2.024 0.07586 7.579

16.89 3.821 6.688 3.009 32.88

11.72 2.181 5.018 1.812 21.85

0.362 0.222 1.103 2.497 8.707

kA

 
   
   
 

  
      

, 

2

13.98 1.753 0.8545 5.245 0.5049

6.806 2.233 1.917 2.626 1.544

12.42 0.2864 0.7385 2.905 0.2101

3.915 0.9486 0.00355 4.263 2.563

9.733 0.8385 0.2512 0.9021 2.086

kA

   
    
   
 
   
     

, 

1

0.7196

1.371

6.89

3.92

0.5589

kB

 
  
  
 
 

  

2

2.299

1.285

1.495

0.3372

0.5148

kB

 
 
 
 
 
 
  

,
1 2 0k kD D  , 

1 [2.181 0.2198 1.367 1.034 6.196]kC   , 

2 [8.599 0 0 0.7589 0.1955]kC   . 
Fig. 12 shows the decay rate of the generalized Hankel singular values of the switched 
controller. It is clear from Fig. 12 that reduction of the controller to a fourth order switched 
controller should provide accurate results. 
The step response of the original closed loop system and closed loop system with reduced 
order controller of order 4 associated with randomly generate switching signal of Fig.13 is 
presented in Fig. 14. 
We reduce the controller as much as possible i. e. to a first order switched controller. The 
step responses of the original closed loop system and the closed loop system with first order 
switched controller are shown in Fig. 15. These step responses are also associated to 
switching signal shown in Fig. 13. 
According to Fig. 12 it was expected to be less accurate  because too much input/output 
information are lost by omitting 4 states of the switched controller. 
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Fig. 12.  Generalized Hankel Singular Valuse( i ). 

 
Fig. 13.  Randomly generated switching signal. 

 

 
Fig. 14.  Step response of original closed loop system(solid line) and the closed loop system with the reduced 

switched controller of order 4(dotted). 
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Fig. 15.  Step response of original closed loop system(solid line) and the closed loop system with the reduced first 

order switched controller(dotted). 
 

Bimodal Switched controller of order 20: 

We consider a randomly generated bimodal switched linear system of order 20. Similar to the 
previous example, we designed a switched bimodal stabilizing 2H optimal controller for the 

system. The switched controller is of order 20 with the generalized Hankel singular values 
which are shown in Fig. 16. It is clear from Fig. 16 that most of the input/output behavior 
information are embedded in the first two states of the controller. We expect that reduction of 
the controller to the second order switched controller should provide accurate results.  The 
step response of the original closed loop system and closed loop system with reduced second 
order switched controller associated with randomly generated switching signal of Fig.17 is 
shown in Fig. 18. 

 
Fig. 16.  Generalized Hankel Singular Valuse( i ). 
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Fig. 17.  Randomly generated switching signal. 

 
Fig. 18.    Step response of original closed loop system (solid line) and the the closed loop system with the reduced 

second order switched controller(dotted). 
 

7. Conclusion 
   A general framework for model/controller reduction of switched linear dynamical 

systems has been presented. The proposed method is based on the generalized gramian 
framework for reduction which requires solving LMI’s in the reduction procedure. In this 
paper, we have reformulated the frequency domain balanced reduction method into this 
scheme as an example. Other gramian based reduction methods can also be reformulated in 
the proposed generalized method and can be applied for reduction of switched systems as 
well as switched controllers. The method preserves the stability under arbitrary switching 
signals and is applicable to both continuous and discrete time systems.  Due to the fact that it 
uses common generalized gramian, it not only preserves stability but also reduces 
subsystems/sub-controllers in one step using global projection matrices.  One of the 
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drawbacks of the method is that feasible solutions not always exist because it is not always 
possible to find a common Lyapunov function for switched systems. Error is bounded, but it 
is not guaranteed to be always small enough.  
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1. Introduction 

 
The highly complicated models are the response to the ever-increasing need for accurate 
mathematical modeling of physical as well as artificial processes for simulation and control. 
This problem demands efficient automatic computational tools to replace such complex 
models by an approximate simpler models, which are capable of capturing dynamical 
behavior and preserving essential properties of the complex one, either the complexity 
appears as high order describing dynamical system or complex nonlinear structure. Due to 
this fact model reduction methods have become increasingly popular over the last two 
decades [1], [2], [3]. Such methods are designed to extract a reduced order model that 
adequately describes the behavior of the system in question.  
Most of the studies related to model reduction presented so far have been devoted to linear 
case and just few methods have been proposed for nonlinear cases which are not strong 
comparing to linear reduction methods. 
On the other hand, most of the methods that are proposed so far for control and analysis in 
hybrid and switched systems theory are suffering from high computational burden when 
dealing with large-scale dynamical systems. Because of the weakness of standard model 
reduction techniques in dealing directly with hybrid structure without sacrificing essential 
features and also pressing needs for efficient analysis and control of large-scale dynamical 
hybrid and switched systems; it is necessary to study model reduction of hybrid and switched 
systems in particular. This fact has motivated the researchers in hybrid systems to study 
model reduction [15]-[27]. Some works have been focused on ordinary model reduction 
methods that have potential applications in modeling and analysis of hybrid systems [15]-
[19] motivated by reachability analysis and safety verification problem.  Some researches 
address the problem of model reduction of switched and hybrid systems directly [20]-
[27][34][35].  
The model reduction problem for switched systems of Markovian type was studied in [34] 
and further in [35]. The method that has been presented in [20], deals with abstraction of both 
continuous and discrete part of hybrid dynamical systems. This framework uses balanced 
revisualization for reduction of continues part. There is no guarantee for stability preservation 
for switched system in the framework that has been proposed in [20] and it might happen that 
guard approximation and reset maps approximation cause non-elegant behavior due to 
approximation error or possible overlap. In [21] it is presented that the state set can be 
affinely reduced due to non-observability if and only if a subspace of the classical 
unobservable subspace, characterized using the normal vectors of the exit facets, is nontrivial. 
This result does not provide strong tool for reduction of affine systems, as it is an exact 
reduction which is quite restrictive. Exact reduction is very elegant but the class of systems 
for which this procedure can be applied is quite small. This method only considers 
observability for investigating the importance of the states to discard. Although this method 
has been modified in [25] but lots of problems are still open and should be addressed in this 
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context. The paper [22] is concerned with the problem of model reduction for discrete   
switched system. Two different approaches are proposed to solve this problem. The first 
approach casts the model reduction into a convex optimization problem, which is the first 
attempt to solve the model reduction problem by using linearization procedure. The second 
one, based on the cone complementarity linearization, casts the model reduction problem into 
a sequential minimization problem subject to linear matrix inequality constraints. Both 
approaches have their own advantages and disadvantages concerning conservatism and 
computational complexity. These optimization problems will be very hard if not infeasible to 
solve for a large scale system and also they are not always feasible. This method is not only 
just applicable to discrete time switched systems furthermore it does not provide us with any 
hints about the number of states which is suitable to keep prior to the reduction. Similar 
methods have been developed for more general classes of discrete time switched systems in 
[23] [24].  
In [26] we proposed the generalized gramian framework for model reduction of switched 
systems based on common generalized gramians of the subsystems. This framework has been 
developed for controller reduction in [27]. The framework shows to provide satisfactory 
approximations and it preserves the stability of the original system under arbitrary switching 
signal but it is over conservative.   
 In this paper we propose convex generalized gramian based framework for model reduction 
of switched system. This general framework can be categorized as gramian based model 
reduction methods.  Balanced model reduction is one of the most common gramian based 
model reduction schemes. It was presented in [4] for the first time. 

To apply balanced reduction, first the system is represented in a basis where the states 
which are difficult to reach are simultaneously difficult to observe. This is achieved by 
simultaneously diagonalizing the reachability and the observability gramians, which are 
solutions to the reachability and the observability Lyapunov equations. Then, the reduced 
model is obtained by truncating the states which have this property. Balanced model 
reduction method is modified and developed from different viewpoints [1],[2]. One of the 
methods that are presented based on balanced model reduction is the method based on the 
generalized gramians instead of gramians[5]. In this method in order to compute the 
generalized gramians , one should solve Lyapunov inequalities instead of Lyapunov 
equations. This method is used to devise a technique for structure preserving model reduction 
methods in [6]. 
In this paper we first show that the generalized method in [5] can be extended to various 
gramian based reduction methods. We also modified the original method in [5] to avoid 
numerical instability and also to achieve more efficiency by building Petrov-Galerkin 
projection based on generalized gramians. We propose a method based on the balanced 
model reduction within frequency bound in this framework.  We generalized the framework 
to model reduction of switched system by constructing Petrov-Galerkin projection based on 
convex generalized gramian which is a convex combination of generalized gramians. We 
restrict convex generalized gramian to take stability preservation into account. The feasibility 
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and also stability preservation of the algorithm is studied. It is shown that the proposed 
framework is less conservative than its previous counterpart in [26].  
 
The paper is organized as follows: In the next section we review balanced reduction method 
and balanced reduction technique based on the generalized gramian. Section 2 presents how 
different gramian based methods can be approximated as generalized gramian based 
techniques. Balanced reduction within frequency bound based on generalized gramian is also 
presented in this section. This section ends up with some remarks on numerical 
implementation of the algorithm and using projection for generalized gramian based 
reduction methods is suggested instead of balancing and truncation. Section 3 is devoted to 
develop convex generalized gramian based reduction method for model reduction of switched 
systems, followed by discussions on stability, feasibility, algorithm parameters and error 
bound.   Section 4 presents our numerical results. Section 5 concludes the paper.  

The notation used in this paper is as follows: *M denotes  
transpose of matrix if n mM   and complex conjugate transpose if n mM  . The norm 

.


denotes the H , norm of a rational transfer function. The standard notation 

, ( , )    is used to denote the positive (negative) definite and semidefinite ordering of 

matrices. 
 

2. Balanced Truncation and Generalized Gramians  
 Balanced truncation is a well-known method for model reduction of dynamical systems, 

see for example [1][2].The basic approach relies on balancing the gramians of the systems. 
For dynamical systems with minimal realization: 

                                           ( ) : ( , , , )G s A B C D                                                           (1) 

where  ( )G s  is transfer matrix with associated state-space representation: 

                         
( ) ( ) ( ), ( )

( ) ( ) ( )

nx t Ax t Bu t x t

y t Cx t Du t

   


 

 
                                   (2)                    

 
 gramians are given by the solutions of the Lyapunov equations: 

                                             
* *

* *

0

0

AP PA BB

A Q QA C C

  

  
                                                       (3) 

 
For stable A , they have a unique positive definite solutions P  and Q  , called the 

controllability and observability gramians. In balanced reduction, first the system is 
transformed to the balanced structure in which gramians are equal and diagonal: 
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11

1

( ,..., )
qk q k

q

j
j

P Q diag I I

k n

 



 


                                            (4)                   

where 1i i   and they are called Hankel singular values. 

  The reduced model can be easily obtained by truncating the states which are associated with 
the set of the least   Hankel singular values. Applying the method to stable, minimal ( )G s , if 

we keep all the states associated to (1 )m m r   , by truncating the rest, the reduced model 

( )rG s will be minimal and stable and satisfies[1][2]: 

                                                  
1

( ) ( ) 2
q

r j
j r

G s G s 


 

                                                (5) 

 
 One of the closely related model reduction methods to the balanced truncation is balanced 
reduction based on the generalized gramian that is presented in [5]. In this method, instead of 
Lyapunov equations (3), the following Lyapunov inequalities should be solved: 

                                                      
* *

* *

0

0

g g

g g

AP P A BB

A Q Q A C C

  

  
                                              (6) 

For stable A , they have positive definite solutions gP  and gQ , called the generalized 

controllability and observability gramians. Note that these gramians are not unique. The rest 
of this model reduction method is the same as the aforementioned balanced truncation 
method, the only difference is that in this algorithm the balancing and truncation are based on 
generalized gramian instead of ordinary gramian. In this method we have generalized Hankel 
singular values ( i ) which are the diagonal elements of balanced gerealized gramians instead 

of Hankel singular values i which are the diagonal elements of balanced standard gramians. 

For the error bound also the same result holds but in terms of  the generalized Hankel 
singular values   instead of  Hankel singular values. It is worth to mention that i i  . 

Therefore the error bound in balanced reduction based on generalized gramian is greater or 
equal than the error bound in ordinary balanced model reduction.   

3. Generalized Gramian Framework for Gramian-based Model 
Reduction Methods  

In this section we present a general framework to build generalized gramian version of 
gramian based methods. Then we present generalized balanced reduction within frequency 
bound within this framework following by some words about numerical implementation of 
the algorithm based on projection.  
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Lyapunov Equations, Lyapunov Inequalities and Reduction 

 
Lemma 1: Suppose A is stable,  Y is symmetric and 

                                              
* 0

, n n

A Y YA

A Y 

 


                                                              (7)                      

is satisfied, then 0Y  , i.e. Y  is positive semi definite. 
 
Proof: If * 0A Y YA  , there exists 0M   such that: 

* 0A Y YA M    
On the other hand, for any stable A , there exists the following unique solution for the 
equation above: 

*

0

A AY e M e d  


   

In the above structure 0M  , hence: 
0Y   

  
This lemma leads to the following proposition that makes the relation between Lyapunov 
equations and Lyapunov inequalities evident.  
Proposition 1[5]: Suppose A is stable and X is the solution of Lyapunov equation: 
                                                      * 0A X XA Q                                                            (8) 

where 0Q  . If a symmetric gX satisfies: 

                                                     * 0g gA X X A Q    ,                                                     (9) 

then: gX X . 

 
Proof: It can be proven easily by subtracting (9)-(8) and applying Lemma 1 
with gY X X  . 

  
Proposition 1 shows how the generalized gramian could be an approximation for ordinary 
gramians. Balanced reduction based on generalized gramian which we reviewed in the last 
section is based on proposition 1.This method might provide less accurate approximation 
than its gramian based counterpart but still the approximation error is bounded.  
It is possible to propose generalized version of other gramian based reduction methods in 
this framework. The only step that we need to take is to derive associated Lyapunov 
equations and their Lyapunov inequalities. In the following we propose generalized version 
of balanced reduction within frequency bound.  
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Generalized Balanced Reduction within Frequency Bound 

Over the past two decades, a great deal of attention has been devoted to balanced model 
reduction and it has been developed and improved from different viewpoints. Frequency 
weighted balanced reduction method is one of the devised gramian based techniques based 
on ordinary balanced truncation [1],[2],[7]-[9]. In this method by using input and output 
weights and stressing on certain frequency range more accurate results can be achieved. In 
many cases the input and output weights are not given and the problem is to reduce the 
model over a given frequency range [1],[2]. This problem can be attacked directly by 
balanced reduction within frequency bound. This method was first proposed in [10] and 
then modified in [2] in order to preserve the stability of the original system and to provide 
an error bound for approximation. In this method, for dynamical system (1) the 
controllability gramian 1 2( , )P   and observability gramians 1 2( , )Q   within frequency 

range 1 2[ , ]  are defined as:  

                                         1 2 1 2

1 2 1 2

( , ) ( ) ( )

( , ) ( ) ( )

P P P

Q Q Q

   
   

 
 

                                               (10)              

where: 
 

                              

1 * * 1

* 1 * 1

1
( ) : ( ) ( )

2
1

( ) : ( ) ( )
2

P Ij A BB Ij A d

Q Ij A C C Ij A d









   


   


 



 



   

   




                           (11) 

  
 
In order to show the associated Lyapunov equations, we need some more notations: 

                    11
( ) : ( )

2
S Ij A d




  





                                                                       (12) 

                    

                                              
* * *

* * *

( ) ( ) ( )

( ) ( ) ( )

c

o

W S BB BB S

W C CS S C C

  

  

  

  
                                       (13)                 

                                                 1 2 2 1

1 2 2 1

( , ) ( ) ( )

( , ) ( ) ( )
c c c

o o o

W W W

W W W

   
   

 
 

                                        (14)   

              
The gramians satisfy the following Lyapunov equations[1],[2]: 
 

                                      
*

1 2 1 2 1 2

*
1 2 1 2 1 2

( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) 0

c

o

AP P A W

A Q Q A W

     

     

  

  
                                  (15)      
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This method is modified in [2] to guarantee stability and to provide a simple error bound. 
The modified version starts with EVD of 1 2( , )cW   and 1 2( , )oW   : 

 

                                  
* *

1 2 1

* *
1 2 1

( , ) : ( ,..., )

( , ) : ( ,..., )

c n

o n

W M M M diag M

W N N N diag N

   

   

  

  
                        (16) 

where: * *
nMM NN I  , 1 10, 0i i i i        . 

 
Note that since 1 2( , )cW   and 1 2( , )oW   are symmetric decompositions in the form (16) 

exist. Let: 

                                     

1/ 21/ 2

1

1/ 21/2 *
1

ˆ : ( ,..., ,0,...,0)

ˆ : ( ,..., ,0,...,0)

B M diag

C diag N





 

 




                                    (17) 

where: 

                                                   1 2

1 2

( ( , ))

( ( , ))
c

o

rank W

rank W

  
  



                                               (18) 

 
The modified gramians satisfy the following Lyapunov equations instead of (15): 
 

                                     
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

AP P A BB

A Q Q A C C

   

   

  

  
                                   (19) 

 
That is all what we need to present the generalized version of this method: 

                                       
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

g g

g g

AP P A BB

A Q Q A C C

   

   

  

  
                               (20) 

 
Then the generalized modified balanced reduction within frequency bound can be obtained 

by simultaneously diagonalizing 1 2
ˆ ( , )gP   and 1 2

ˆ ( , )gQ    then by truncating the states 

associated to the set of the least generalized Hankel singular values.  

Numerical Issues 

Balanced transformation can be ill-conditioned numerically when dealing with the systems 
with some nearly uncontrollable modes or some nearly unobservable modes. Difficulties 
associated with computation of the required balanced transformation in [11] draw some 
attentions to alternative numerical methods [12]. Balancing can be a badly conditioned even 
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when some states are much more controllable than observable or vice versa. It is advisable 
then to reduce the system in the gramian based framework without balancing at all. Schur 
method and Square root algorithm provid projection matrices to apply balanced reduction 
without balanced transformation [1][12]. This method can be easily applied to other 
gramian based reduction methods. In our generalized method we use the same algorithm by 
plugging generalized gramians into the algorithm instead of ordinary gramians.    

   

4. Model Reduction of Switched System  

Model Reduction of Switched Systems Based on Convex Generalized Gramians  

 
One of the most important subclasses of hybrid systems are linear switched systems. 

Linear switched system is a dynamical system specified by the following equations: 
  

                                ( ) ( )

( ) ( )

( ) ( ) ( )
:

( ) ( ) ( )
t t

t t

x t A x t B u t

y t C x t D u t
 

 

    


                                 (21)                    

where ( ) nx t  is the continuous state, ( ) py t  is the continuous output, ( ) mu t   is the 

continuous input, and 0:      is the switching signal that is a piecewise constant 
map of the time.  is the set of discrete modes, and it is assumed to be finite. For each i , 

iA , iB , iC , iD are matrices of appropriate dimensions.  

In this section we build a framework for model reduction of switched system described by 
(21). The aim is to find projection that maps the state-space of a switched system to lower 
dimensional subspace. Definition 1, describes the general definition of Petrov-Galerkin 
projection.  

   
Definition1. Petrov-Galerkin projection for a dynamical system:  
 

                                  
( ) ( ( ), ( )) ,

( ) ( ( ), ( ))

nx t f x t u t x

y t g x t u t

  




 
                              (22) 

 
is defined as a projection *VW  ,where: * , , ,n k

kW V I V W k n     [1]. 

 
 
The reduced order model using this projection is: 

                    
*ˆ ˆ ˆ( ) ( ( ), ( )) ,

ˆ( ) ( ( ), ( ))

kx t W f Vx t u t x

y t g Vx t u t

  




 
                                      (23) 
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In our framework we construct the aforementioned projection based on the convex 
generalized gramian which is defined as following: 

 
Definition2. Convex controllability (observability) generalized gramian for the dynamical 

system (21) is defined as:  

                                                            
1

K

g i gi
i

P 


                                                

(24) 
where   

                                                            
1

1
K

i
i




 , 0
i

                                                  (25) 

giP is generalized controllability (observability) generalized gramian associated to the thi  

subsystem of (21).  
 

 
One easy way to develop generalized gramian framework to model reduction of switched 

linear system is to apply the method locally on each subsystem independently, in other 
words, to reduce each subsystem by generalized gramian reduction method independently. 
Independent reduction of subsystems poses an extra computational burden for construction of 
the independent projection matrices for each subsystem. Therefore it is preferable to 
construct single projection which is capable of reduction of all subsystems in one shot. Due 
to this fact, we introduce convex generalized gramian. Building the projection based on the 
convex generalized gramian enables us to reduce all subsystem in one shot and reduces the 
extra computational burden which the methods based on independent reduction of 
subsystems like the one in [20] suffer from. On the other hand, the elegant structure of 
convex gramian gives us more flexibility to play with the parameters and also to deploy some 
stability results.          

At this point it is possible to develop different gramian based reduction methods into this 
framework for reduction of switched system finding generalized controllability/observability 
gramian for each subsystem, constructing convex controllability/observability generalized 
gramian. The next step can be simultaneous diagonalization  of the convex generalized 
gramian and balancing and reduction of all subsystems based on Hankel singular values of 
the convex generalized gramian. In order to avoid numerical bad conditioning and also to 
increase the efficiency we use Schur or square root algorithm instead of balancing and 
directly Petrov-Galerkin projection matrices can be computed. This procedure is less 
conservative and provides more accurate results.  

In the method that we proposed in [26] the stability of the original switched systems under 
arbitrary switching signal is guaranteed to be preserved which was the main reason for 
conservatism. We can also modify the convex generalized gramian based framework to 
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preserve the stability. We modify the method based on the stability results which are less 
conservative than their counterpart which we used in [26]. This is a compromise between 
stability preservation and feasibility.  The matrix pencil and the convex hull of matrices 
which will be used in the algorithm for this purpose need to be defined.  

 
Definition3.  The matrix pencil 1 2( , )A A  is defined as the one-parameter family of 

matrices 1 2(1 )A A   , [0,1]   [28].  

 
In general this is the convex hull of the family of matrices which is defined as: 

                   0
1 2

1 1

( , ,..., ) : , 1,
n n

n i i i i
i i

Co A A A A A A   

 

 
    
 

                                   (26) 

The procedure is almost the same as what we mentioned before. The only deference is that 
we restrict one of the convex gramians to satisfy: 

                                                 *( ) ( ) 0g gA A                                                     (27)                 

where 1 2( ) ( , )A A A  for bimodal systems. In the case of multimodal switched systems 

a stable ( )A   is picked from 1 2( , ,..., )nCo A A A .      

In order to clarify the method we extend generalized balanced reduction within frequency 
bound that is presented in previous section, for model reduction of switched linear system.  

First we need to find, the generalized controllability gramian , 1 2
ˆ ( , )gP    of each 

subsystem within frequency domain by solving the system of Lyapunov inequalities:  
  

                              
* *

, 1 2 , 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) 0g gA P P A B B        



   

 

                                  (28) 

 
For example in the case of bimodal systems, {1, 2}  , we have to solve: 

                                   
* *

1 ,1 1 2 ,1 1 2 1 1 1

* *
2 ,2 1 2 ,2 1 2 2 2 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

g g

g g

A P P A B B

A P P A B B

   

   

   


  
                                (29) 

The convex controllability gramian within 1 2( , )   frequency bound is computed 

according to Definition.2:              
 

                                                1 2 , 1 2
1

ˆ( , ) ( , )
K

cg i g i
i

P     


                                        (30) 

In (30), we are free to tune [0,1]i  .We can do the same to compute the convex 

observability gramian within 1 2( , )   frequency bound
'

1 2( , )og
   : 
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' '

1 2 , 1 2
1

ˆ( , ) ( , )
K

og i g i
i

Q     


                                                   (31) 

where , 1 2
ˆ ( , )g iQ    is the generalized observability gramian of thi  subsystem within 

frequency domain 1 2( , )  ,i.e. we have: 

                          
* *

, 1 2 , 1 2
ˆ ˆ ˆ ˆ( , ) ( , ) 0g gA Q Q A C C        



   

 

                                     (32) 

If stability preservation is of concern we have to choose ' [0,1]i   such that: 

 

                                 
' '*

1 2 1 2( ) ( , ) ( , ) ( ) 0og ogA A                                              (33) 

 
to be satisfied.  

If we plug 1 2( , )cg
    and 

'

1 2( , )og
    into the square root algorithm, we directly obtain 

projectors for reduction. Note that the results are same as balancing algorithm. A merit of the 
Square Root method is that it relies on the Cholesky factors of the gramians rather than the 
gramians themselves, which has advantages in terms of numerical stability. 

 

Stability, Parameters and Feasibility,  

One of issues in model reduction is preservation of the stability which needs to be studied. 
We need to recall two stability results Theorem.1 and Theorem.2 which is the generalization 
of the first one. 

 
Theorem 1. Switched bimodal dynamical system (21) (i.e. {1, 2}  ) for some switching 

signal is stable iff there exists 1 2( ) ( , )A A A   which is stable[29].   

 
Theorem 2. Switched dynamical system (21) for some switching signal is stable if there 

exists 1 2( ) ( , ,..., )KA Co A A A   which is stable [29]. 

 
 
The proofs for these theorems are by construction, in other words in the proofs the 

switching signal for which the switched system is stable are constructed based on   and 
dynamics of the systems [29].  

 
Proposition2.  Consider 1 2( ) ( , ,..., )KA Co A A A  associated to the 

coefficients 1 2( , ,..., )K    and ˆ( )A  is its reduced order counterpart using convex 
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generalized gramian.  

If  ( )A   is stable then ˆ( )A  is also stable. 

 
Proof:  
In the proposed method, we have:  
 

                                        

*

*
( ) ( )

*
( ) ( )

( ) ( )

( ) ( )

, , ,

ˆ

ˆ
ˆ :

ˆ

ˆ

n k
k

t t

t t

t t

t t

W V I V W k n

A W A V

B W B

C C V

D D

 

 

 

 

  

 

  








                                              (34) 

which is projected switched system (reduced order model). The outcome of Square root 

algorithm for projection[1]:  1cgW V    and 
'

1ogV W   , where 1
k k  is diagonal and 

positive definite. From (33): 
' '*( ) ( ) 0og ogA A     , which implies:  

' '* *( ( ) ( )) 0og ogV A A V      

 
On the other hand, 
 

' '

' '

* *

* * *

* * * *
1 1

* * * *
1 1

1 1

* * * *
1 1

1 1

* *
1 1

1 1

*
1 1

( ( ) ( ))

( ) ( )

( ) ( )

( ) ( )

ˆ ˆ

ˆ ˆ( ) ( )

og og

og og

K K

i i i i
i i

K K

i i i i
i i

K K

i i i i
i i

V A A V

V A W V A V

V A W W A V

V A W W A V

V A W W A V

A A

A A

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

  

   

   

 

 

 

 

   Hence: 

                                           *
1 1

ˆ ˆ( ) ( ) 0A A                                                (35) 

where  1
k k  is positive definite. Hence ˆ( )A  is stable.  
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  
 

This proposition along with the Theorem.1 and Theorem.2 shows that at least for 
stabilizing switching signals which have been used in the proofs of the Theorem.1 and 
Theorem.2 the reduced order dynamical system is stable. 

In the particular scenarios the stability of the original switched system is guaranteed to be 
preserved under arbitrary switching signal. This is shown in Proposition 3.   

 
Proposition3. The Convex Generalized Grammian framework is stability preserving under 

arbitrary switching signal if: 
 

                                                       gi gP P                                                               (36) 

or 
                                                        gi gQ Q                                                             (37) 

 
Proof: 
We have: 

,
1 1 1

( )
K K K

cg i g i i g i g g
i i i

P P P P   
  

        

Similarly: 

' ' ' '
,

1 1 1

( )
K K K

og i g i i g i g g
i i i

Q Q Q Q   
  

        

Assume that (36) is satisfied, the outcome of Square root algorithm for projection[1]:  

1gP W V   and 1gQ V W  , where 1
k k  is diagonal and positive definite. Since gP is 

common controllability generalized gramian: 
*

( ) ( ) 0t g g tA P P A   , 

which implies:  
* *

( ) ( )( ) 0t g g tW A P P A W    

On the other hand, 
* * * * *

( ) ( ) ( ) ( )

* * * * *
( ) 1 1 ( ) ( ) 1 1 ( )

( )

ˆ ˆ
t g g t t g g t

t t t t

W A P P A W W A P W W P A W

W A V V A W A A

   

   

  

     
 

   Hence: 

               *
( ) 1 1 ( )

ˆ ˆ 0t tA A     ,                          

where  1
k k  is positive definite.  

In stability theory for switched system it is well-known sufficient condition for quadratic 
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stability [13]. Hence, reduced order model is guaranteed to be quadratic stable. 
In the case that (37) is satisfied we can prove in a same way starting 

with * *
( ) ( )( ) 0t g g tV A Q Q A V   and using 1gQ V W  which again proves the existence of 

the common Lyapunov function. We show that (27) is also satisfied for all 

1 2( ) ( , ,..., )KA Co A A A  in this case.  

We have: 0

1 1

, 1,
n n

i i i i
i i

A A   

 

     , on the other hand, * 0i g g iA Q Q A  and 

consequently *( ) 0i i g g i iA Q Q A   , knowing that at least one of i ’s must be nonzero we 

have: 

*

1

( ) 0
K

i i g g i i
i

A Q Q A 


   

which implies: 
*

*

( ) ( )

( ) ( ) 0

g g

g g

A Q Q A

A A

 

 



   
 

  
 

Some research has been focused on conditions for finding   which leads to stable 
( )A  which is in general an NP-hard problem [30]-[32].  

Let . be the induced matrix norm , I  identity matrix 

and ( )iA  the matrix measure of iA defined as: 

                                                   
0

( ) i
i

I A I
A lim








 
                                                (38) 

In Proposition 4 we give a general condition which provides us freedom of choosing 
any in our framework.  

 
 Proposition4. For all   associated to  1 2( ) ( , ,..., )KA Co A A A   the original switched 

system described by (21) and its reduced order counterpart using convex gramian is stable for 
stabilizing switching signal if there exists a norm such that: 

                                       ( ) 0iA  , for all 1,...,i K                                              (39)                   

 
Proof:  

0

1 1

( ) , 1,
K K

i i i i
i i

A A    

 

      for all  . Moreover  is convex and 

Re[ ( ( ))] ( ( ))i A A    [33]. Hence we have: 
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1

Re[ ( ( ))] ( ( )) ( . ( )) 0
K

i i i
i

A A A     


                               (40) 

Therefore the sufficient condition for the stability of ( )A  is (39), hence this is also 

sufficient condition for the stability of ˆ ( )A  according to Proposition2.  On the other hand 

Theorem 1 and  Theorem 2 ensure us about the stability of the original and reduced order 

switched system under stabilizing switching sequence when ( )A  and  ˆ ( )A   are stable.  

  
 

Our framework is said to be feasible if (27) is satisfied. This can not be always satisfied; 
One way to improve the feasibility of the proposed model reduction method is using recently 
proposed extended notion of generalized grammian which is called extended grammian [14].  

   

5. Numerical Examples 
In this section we have applied the proposed method for reduction of two bimodal switched 
linear systems. The first example is of order 5 and the second one is of order 25.  

Fifth Order Switched linear System: 

Consider a single-input-single output switched linear of the form (21): 
 

1

-0.9569 -0.1636 0.1179 -0.00943 0.00425

-0.1636 -0.9735 0.255 -0.1064 0.1422

0.1179 0.255 -1.284 0.1509 -0.2352

-0.00943 -0.1064 0.1509 -0.9284  0.1775

0.00425 0.1422 -0.2352  0.1775 -0.8085

A

 
 
 
 
 
 
  

 

2

-0.9347  2.752 0.1713 0.5116 -0.3569

-2.514 -1.746 0.6784 -2.997 -3.009

0.047 -0.8559 -0.6181 -0.1723 -0.2124

 -1.225 2.703 0.3607 -0.9974 -0.6158

-0.4173 3.033 0.4358 -0.2138 -1.01

A

 
 
 
 
 
 
  

 

1

0.1345

0

0.9017

0.07619

0.3617

B

 
 
 
 
 
 
  

, 2

-1.422

0

0.1575

0.3783

0.1787

B

 
 
 
 
 
 
  

 

1 [-2.059 -2.332 -0.3709 1.286 0.557]C   
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2 [1.536 0.4344 -1.917 0 0]C   
1

2

- 0.1802

2.301

D

D




 

In order to reduce the switched system first we construct convex gramians over the frequency 
domain  1 2, [0.1 ,100]    associated with 0.4   , ' 0.49i i   : 

 

1 2( , )

105.6176 3.4651 7.4806 -20.7915 -21.6220

3.4651 60.1041 -1.2246 -9.4240 2.9827

7.4806 -1.2246 116.6340 6.9075 2.8129

-20.7915 -9.4240 6.9075 101.9774 -18.3694

-21.6220 2.9827 2.8129 -18.3694 103.3487

cg
   

 
 
 
 


 





 

 
'

1 2( , )

484.5217 -19.7167 33.3448 -46.3701 -58.1727

-19.7167 394.1394 38.4309 -40.8157 31.0604

33.3448 38.4309 455.2840 34.0563 -35.5232

-46.3701 -40.8157  34.0563 485.5720 3.1139

-58.1727 31.0604 -35.5232 3.1139 526.38

og
   

95

 
 
 
 
 
 
  

 

 
The resulting third order switched linear model by applying the presented method is: 

1

-0.7431 -0.051 0.07166

0.1496 -0.935 0.03146

-0.09937 -0.04228 -1.262
rA

 
   
  

2

-0.7214 0.2683 -0.1391

-0.2549 -0.6095 0.1671

0.3458 -0.04548 -0.7505
rA

 
   
  

 

1

-0.1704

-0.262

-1.317
rB

 
   
  

, 2

1.594

-1.169

-0.1603
rB

 
   
  

 

 1 1.464 -1.157 0.4734rC   

 2 -0.1603 -0.8186 -0.5214rC   

1 2-0.1802, 2.301r rD D   
Fig. 1 shows the decay rate of the generlized Hankel singular values. The step response of the 
original and reduced order switched systems associated to the switching signal of Fig.2 is 
presented in Fig. 3. 
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Fig. 1.  Generalized Hankel Singular Values( i ) 

 
 

 
Fig. 2.  Randomly generated switching signal 
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Fig. 3.  Step response of original switched linear system(solid line) and the reduced order model (dotted). 

 

Fig. 1. shows that most of the input/output information is in three states of the original 
systems. The proposed method  provides accurate results after reduction of 2 states of the 
original system (40% of the states). 

Bimodal Switched linear System of order 25: 

Consider bimodal switched linear system of order 25. The original system is SISO and it is 
reduced to 14, 17, 18 and 19 using the proposed reduction method over  1 2, [0.001 ,1000]   .  

The generlized Hankel singular values are shown in Fig. 4. 
The step responses of the original and reduced order switched systems associated to the 
switching signal of Fig.5 is shown in Fig. 6 – Fig. 9 . 
 In this example also we represent the infinity norm of transfer function of the original 
subsystems and the reduced counterpart which is of order 19 in Fig. 10 and Fig. 11 to show 
how accurate the approximation works locally.  As we expected by reduction of more states 
we loose more input-output information in reduced order dynamical system and it leads to 
less accurate approximation. The quality of the approximation is highly dependent of the 
decay rate of singular values.  
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Fig. 4.  Generalized Hankel Singular Valuse( i ) 

 

 
Fig. 5. switching signal 
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Fig. 6.    Step response of original switched linear system (solid line) and the reduced order model which is of order 

19(dotted). 

 
Fig. 7.    Step response of original switched linear system (solid line) and the reduced order model which is of order 

18(dotted). 
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Fig. 8.    Step response of original switched linear system (solid line) and the reduced order model which is of order 

17(dotted). 

 
Fig.9 .    Step response of original switched linear system (solid line) and the reduced order model which is of order 

14(dotted). 
 
 

 



 
 

 87

 
 

Fig. 10.  The infinity nom of original of transfer matrix of first subsystem (solid line) and its reduced order 
counterpart of order 19(dotted) over frequency domain  1 2, [0.001,1000]   . 

 
Fig. 11.  The infinity nom of original of transfer matrix of second subsystem (solid line) and its reduced order 

counterpart of order 19(dotted) over frequency domain  1 2, [0.001,1000]   . 

 
 

 

6. Conclusion 
A general framework for model order reduction of switched linear dynamical systems has 
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been presented. In this paper we have reformulated the frequency domain balanced reduction 
method into this scheme but generally various gramian based reduction methods can be 
reformulated in the proposed generalized method easily and can be applied for reduction of 
switched system. The stability issue has been studied in the paper. The method provides 
single projectors for all subsystems which enable us to reduce all of the subsystems in one 
step. It is less conservative then previous method based on common generalized gramian. The 
method is dependent to selection of parameters. This opens a window toward further 
modifications in optimization framework.  
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1. Introduction   
 
Complexity of models are increasing as the response to the ever-increasing need for accurate 
mathematical modeling of physical as well as artificial processes for simulation and control. 
This problem demands efficient automatic computational tools to replace such complex 
models by an approximate simpler models, which are capable of capturing dynamical 
behavior and preserving essential properties of the complex one, either the complexity 
appears as high order describing dynamical system or complex nonlinear structure. Due to 
this fact model reduction methods have become increasingly popular over the last two 
decades [1],[2],[3]. Such methods are designed to extract a reduced order model that 
adequately describes the behavior of the system in question.  
Most of the methods that are proposed so far for control and analysis in hybrid and switched 
systems theory are suffering from high computational burden when dealing with large-scale 
dynamical systems. This fact has motivated the researchers in hybrid systems to study model 
reduction [15]-[28]. Some works have been focused on ordinary model reduction methods 
that have potential applications in modeling and analysis of hybrid systems [15]-[19] 
motivated by reachability analysis and safety verification problem.  Some researches address 
the problem of model reduction of switched and hybrid systems directly [20]-[28].  
The method that has been presented in [20], deals with abstraction of both continuous and 
discrete part of hybrid dynamical systems. This framework uses balanced residualization for 
reduction of continues part. Stability preservation for switched system in the framework is 
not guaranteed and it also might happen that guard approximation and reset maps 
approximation cause overlap. In [21] it is shown that the state set can be affinely reduced due 
to non-observability if and only if a subspace of the classical unobservable subspace, 
characterized using the normal vectors of the exit facets, is nontrivial. This result does not 
provide strong tool for reduction of affine systems, as it is an exact reduction which is quite 
restrictive. Exact reduction is very elegant but the class of systems for which this procedure 
can be applied is quite small. This method only considers observability for investigating the 
importance of the states to discard. Although this method has been modified in [25] but lots 
of problems are still remained open and should be addressed in this context. The paper [22] is 
concerned with the problem model reduction for discrete   switched system. Two different 
approaches are proposed to solve this problem. The first approach casts the model reduction 
into a convex optimization problem, which is the first attempt to solve the model reduction 
problem by using linearization procedure. The second one, based on the cone 
complementarity linearization, casts the model reduction problem into a sequential 
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minimization problem subject to linear matrix inequality constraints. Both approaches have 
their own advantages and disadvantages concerning conservatism and computational 
complexity. These optimization problems will be very hard if not infeasible to solve for a 
large scale system. This method is just applicable to discrete time switched systems and it 
does not provide information about the number of states which is suitable to keep prior to the 
reduction. Similar methods have been developed for more general classes of discrete time 
switched systems in [23] [24].  
In [26] we proposed the generalized gramian framework for model reduction of switched 
systems based on common generalized gramians of the subsystems. This framework has been 
developed for controller reduction in [27]. The framework is shown to provide satisfactory 
approximations and it preserves the stability of the original system under arbitrary switching 
signal but it is over conservative. The method which is reported in [28] is based on the 
convex generalized gramian concept. Although this method is less conservative than its 
counterpart in [27] and by choosing suitable tuning parameters in the algorithm can be more 
accurate but the stability preservation is not guaranteed for all switching sequences in this 
method in general.     
 In this paper we propose framework for model reduction of switched system based on 
switching generalized gramian. This general framework can be categorized as gramian based 
model reduction methods.  Balanced model reduction is one of the most common gramian 
based model reduction schemes. It was presented in [4] for the first time. 

To apply balanced reduction, first the system is represented in a basis where the states 
which are difficult to reach are simultaneously difficult to observe. This is achieved by 
simultaneously diagonalizing the reachability and the observability gramians, which are 
solutions to the reachability and the observability Lyapunov equations. Then, the reduced 
model is obtained by truncating the states which have this property. Balanced model 
reduction method is modified and developed from different viewpoints [1],[2]. One of the 
methods that are presented based on balanced model reduction is the method based on the 
generalized gramians instead of gramians[5]. In this method in order to compute the 
generalized gramians , one should solve Lyapunov inequalities instead of Lyapunov 
equations. This method is used to devise a technique for structure preserving model reduction 
methods in [6]. 
In this paper we first show that the generalized method in [5] can be extended to various 
gramian based reduction methods. We also modified the original method in [5] to avoid 
numerical instability and also to achieve more efficiency by building Petrov-Galerkin 
projection based on generalized gramians. We propose a method based on the balanced 
model reduction within frequency bound in this framework.  We generalized the framework 
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to model reduction of switched system by constructing switching Petrov-Galerkin projection 
based on switching generalized gramian. This framework is developed in a way that 
preserves stability under arbitrary switching signal and furthermore it is a general method in 
the sense that different classical gramian based method can be developed for reduction of 
switched system within this framework.  The feasibility and also stability preservation of the 
algorithm is studied. It is shown that the proposed framework is less conservative than its 
previous counterparts.  
The paper is organized as follows: In the next section we review balanced reduction method 
and balanced reduction technique based on generalized gramian. Section 2 presents how 
different gramian based methods can be approximated as generalized gramian based 
techniques. Balanced reduction within frequency interval based on generalized gramian is 
also presented in this section. This section ends up with some remarks on numerical 
implementation of the algorithm and using projection for generalized gramian based 
reduction methods is suggested instead of balancing and truncation. Section 3 is devoted to 
develop switching generalized gramian based reduction method for model reduction of 
switched systems, followed by discussions on stability, feasibility, algorithm parameters and 
error bound.   Section 4 presents our numerical results. Section 5 concludes the paper.  

The notation used in this paper is as follows: *M denotes  

transpose of matrix if n mM   and complex conjugate transpose if n mM  . The norm 

.


denotes the H , norm of a rational transfer function. The standard notation 

, ( , )    is used to denote the positive (negative) definite and semidefinite ordering of 

matrices. 
 

2. Balanced Truncation and Generalized Gramians  

Balanced truncation is a well-known method for model reduction of dynamical systems, 
see for example [1][2].The basic approach relies on balancing the gramians of the systems. 
For dynamical systems with minimal realization: 

                                                    : ( , , , )G A B C D                                                            (1) 

where  G  is transfer matrix with associated state-space representation: 

                                 
( ) ( ) ( ), ( )

( ) ( ) ( )

nx t Ax t Bu t x t

y t Cx t Du t

   


 


                          (2)    
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where    is either the derivative operator   
( )

( )
df t

f t
dt

      , t    or the shift    

( ) ( 1)f t f t    , t .          

 
Gramians for continuous time systems are given by the solutions of the Lyapunov equations: 

                                                       
* *

* *

0

0

AP PA BB

A Q QA C C

  

  
                                               (3) 

and for discrete time systems by: 
 

                                                 
* *

* *

0

0

APA P BB

A QA Q C C

  

  
                                                     (4) 

For stable A , they have a unique positive definite solutions P  and Q  , called the 

controllability and observability gramians. In balanced reduction, first the system is 
transformed to the balanced structure in which gramians are equal and diagonal: 
 

                                            
11

1

( ,..., )
qk q k

q

j
j

P Q diag I I

k n

 



 


                                              (5)                    

where 1i i   and they are called Hankel singular values. 

  The reduced model can be easily obtained by truncating the states which are associated with 

the set of the least   Hankel singular values. Applying the method to stable, minimal G , if we 

keep all the states associated to (1 )m m r   , by truncating the rest, the reduced model 

rG will be minimal and stable and satisfies[1][2]: 

                                                     
1

2
q

r j
j r

G G 


 

                                                (6) 

 One of the closely related model reduction methods to the balanced truncation is balanced 
reduction based on generalized gramian that is presented in [5]. In this method, instead of 
Lyapunov equations (3), the following Lyapunov inequalities should be solved: 

                                                   
* *

* *

0

0

g g

g g

AP P A BB

A Q Q A C C

  

  
                                                (7) 

For stable A , they have positive definite solutions gP  and gQ , called the generalized 



 
 

 95

controllability and observability gramians. Note that these gramians are not unique. The rest 
of this model reduction method is the same as the aforementioned balanced truncation 
method, the only difference is that in this algorithm the balancing and truncation are based on 
generalized gramian instead of ordinary gramian. In this method we have generalized Hankel 

singular values ( i ) which are the diagonal elements of balanced gerealized gramians instead 

of Hankel singular values i which are the diagonal elements of balanced standard gramians. 

For the error bound also the same result holds but in terms of  the generalized Hankel 

singular values   instead of  Hankel singular values. It is worth to mention that i i  . 

Therefore the error bound in balanced reduction based on generalized gramian is greater or 
equal than the error bound in ordinary balanced model reduction.  In order to achieve more 

accurate results we can find   gP and gQ in (7), such that, they minimize ( )gtr Q  and 

( )gtr P respectively.  

3. Generalized Gramian Framework for Gramian-based Model 
Reduction Methods  

In this section we present a general framework to build generalized gramian version of 
gramian based methods. Then we present generalized balanced reduction within frequency 
bound within this framework following by some words about numerical implementation of 
the algorithm based on projection. 

Lyapunov Equations, Lyapunov Inequalities and Reduction 

 
Lemma 1: Suppose A is stable,  Y is symmetric and 

                                                           
* 0

, n n

A YA Y

A Y 

 


                                                     (8)                   

is satisfied, then 0Y  , i.e. Y  is positive semi definite. 

 

Proof: If * 0A YA Y  , there exists 0M   such that: 
* 0A YA Y M    

On the other hand, for any stable A , there exists the following solution for the equation 
above: 

*

0

( )k k

k

Y A M A




   
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In the above structure 0M  , hence: 

0Y   

  
This lemma leads to the following proposition that makes the relation between Lyapunov 

equations and Lyapunov inequalities evident. Let : n n n n    be the operator which is 

defined as: 

                                                    *
, ( ) :A B X A XA X B                                                  (9) 

Proposition 1: Suppose A is stable and X is the solution of Lyapunov equation: 

                                               *
, ( ) 0A Q X A XA X Q                                                (10)                 

where 0Q  . If a symmetric gX satisfies: 

                                       *
, ( ) 0A Q g gX A X A X Q                                                      (11) 

Then: gX X . 

 

Proof: Subtract (11)-(10) and apply Lemma 1 with gY X X  . 

  
Proposition 1 shows how the generalized gramian could be  an approximation for ordinary 
gramians. Similar to the method in [5], based on Proposition 1, we can propose generalized 
version of different gramian based reduction methods in this framework. This method 
might provide less accurate approximation than its gramian based counterpart but still the 
approximation error is bounded and the reduced model is stable. The only step that we need 
to take is to derive associated Lyapunov equations (10) and the associated Lyapunov 
inequalities (11). In the following we propose generalized version of discrete time balanced 
reduction within frequency interval.  
  

Generalized Balanced Reduction within Frequency Bound 

Over the past two decades, a great deal of attention has been devoted to balanced model 
reduction and it has been developed and improved from different viewpoints. Frequency 
weighted balanced reduction method is one of the devised gramian based techniques based 
on ordinary balanced truncation [1],[2],[7]-[9]. In this method by using input and output 
weights and stressing on certain frequency range more accurate results can be achieved. In 
many cases the input and output weights are not given and instead the problem is to reduce 
the model over a given frequency range [1],[2]. This is problem can be attacked directly by 
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balanced reduction within frequency bound. This method first proposed in [10] and then 
modified in [2] for continuous time systems in order to preserve the stability of the original 
system and to provide an error bound for approximation. In [29], similar method have been 
proposed for discrete-time systems and further improved in [30] to preserve stability and to 
provide computable error bound. In this method, for discrete time dynamical system (1) the 

controllability gramian 1 2( , )P   and observability gramians 1 2( , )Q   within frequency 

range of operation 1 2[ , ]   are defined as:  

                              

2

1

2

1

1 * * 1
1 2

* 1 * 1
1 2

1
( , ) : ( ) ( )

2
1

( , ) : ( ) ( )
2

j j

j j

P I Ae BB I A e d

Q I A e C C I Ae d

  



  



  


  


  

  

  

  




                         (12) 

where:    1 20      . 

Due to the symmetry of the Furier transform the integration is carried out over 1 2[ , ]   and 

2 1[ , ]   ,therefore the gramians are always real. 

 
In order to show the associated Lyapunov equations, we need some more notations: 

                               
2

1

12 1
1 2

1
( , ) : ( )

4 2
jF I I Ae d

 



 
  

 
 

                                  (13)                

                    

                                         * * *
1 2 1 2 1 2( , ) ( , ) ( , )X F BB BB F                                     (14)                

                                             * * *
1 2 1 2 1 2( , ) ( , ) ( , )Y C CF F C C                                 (15)                

              
The gramians satisfy the following Lyapunov equations [29],[30]: 
 

                                        
*

1 2 1 2 1 2

*
1 2 1 2 1 2

( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) 0

AP A P X

A Q A Q Y

     

     

  

  
                                 (16)                

               
This method is modified in [30] to guarantee stability and to provide a simple error bound. 
The modified version starts with Schur decomposition of X andY :  
 

                                     
* *

1 2 1

* *
1 2 1

( , ) ( ,..., )

( , ) ( ,..., )

n

n

X U U U diag U

Y V V V diag V

   

   

  

  
                                 (17)             



 
 

 98

where: * *
nUU VV I  , 1 10, 0i i i i        . 

 

Note that since 1 2( , )X   and 1 2( , )Y   are real and symmetric decompositions in the form 

(16) exist. Let: 

                                              

1/2 1/ 2

1

1/ 2 1/ 2 *
1

ˆ : ( ,..., )

ˆ : ( ,..., )

n

n

B U diag

C diag V

 

 




                                            (18) 

The modified gramians satisfy the following Lyapunov equations instead of (16): 
 

                                          
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

AP A P BB

A Q A Q C C

   

   

  

  
                                   (19) 

 
That is all what we need to present the generalized version of this method: 

                                         
* *

1 2 1 2

* *
1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0

ˆ ˆ ˆ ˆ( , ) ( , ) 0

AP A P BB

A Q A Q C C

   

   

  

  
                                    (20) 

 
Then the generalized modified balanced reduction within frequency bound can be obtained 

by simultaneously diagonalizing 1 2
ˆ ( , )gP   and 1 2

ˆ ( , )gQ    then by truncating the states 

associated to the set of the least generalized Hankel singular values.  

Numerical Issues 

Balanced transformation can be ill-conditioned numerically when dealing with the systems 
with some nearly uncontrollable modes or some nearly unobservable modes. Difficulties 
associated with computation of the required balanced transformation in [11] draw some 
attentions to alternative numerical methods [12]. Balancing can be a badly conditioned even 
when some states are much more controllable than observable or vice versa. It is advisable 
then to reduce the system in the gramian based framework without balancing at all. Schur 
method and square root algorithms provides projection matrices to apply balanced 
reduction without balanced transformation [1][12]. This method can be easily applied to 
other gramian based method. In our generalized method we can use the same algorithm by 
plugging generalized gramians into the algorithm instead of ordinary gramians.     
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4. Model Reduction of Switched System  

Model Reduction of Switched Systems Based on Convex Generalized Gramians  

 
One of the most important subclasses of hybrid systems are Linear switched systems[13]. 

Linear switched system is a dynamical system specified by the following equations: 
  

                                  ( ) ( )

( ) ( )

( ) ( ) ( )
:

( ) ( ) ( )
t t

t t

x t A x t B u t

y t C x t D u t
 

 

     
                                     (21)                

where ( ) nx t  is the state, ( ) py t  is the output, ( ) mu t   is the input, and 
0:      is the switching signal that is a piecewise constant map of the time.  is 

the set of discrete modes, and it is assumed to be finite. For each i , iA , iB , iC , iD are 

matrices of appropriate dimensions. The indicator function is defined as: 

                                 
1, when the switched system is described

( ) by the i  mode matrices (A ,B ,C ,D )

0, otherwise

th
i i i i i

t

 



                             (22) 

 
The switched system (21) can also be written as following using indicator function: 

                            1

1

( ) ( ( ) ( ))

:

( ) ( ( ) ( ))

K

i i i
i

K

i i i
i

x t A x t B u t

y t C x t D u t

 








 

 
  




                                 (23) 

 
In this section we build a framework for model reduction of switched system described by 

(21). The aim is to find projection that maps the state-space of a switched system to lower 
dimensional subspace. Definition 1, describes the general definition of Petrov-Galerkin 
projection.  

   
Definition1. Petrov-Galerkin projection for a dynamical system:  
 

                             
( ) ( ( ), ( )) ,

( ) ( ( ), ( ))

nx t f x t u t x

y t g x t u t

  





                                     (24) 
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is defined as a projection *VW  ,where: * , , ,n k
kW V I V W k n     [1]. 

 
 
The reduced order model using this projection is: 

                           
*ˆ ˆ ˆ( ) ( ( ), ( )) ,

ˆ( ) ( ( ), ( ))

kx t W f Vx t u t x

y t g Vx t u t

  





                                  (25) 

In our framework we construct the aforementioned projection based on the switching 
generalized gramian which is defined as following: 

 
Definition2. Switching controllability (observability) generalized gramian for the 

dynamical system (21) is defined as:  

                                                 ,
1

( ) ( )
K

g i g i
i

t t P


   ,                                                   (26) 

where ,g iP is controllability (observability) generalized gramian associated to the thi  mode of 

(21).  
 
In order to develop generalized gramian framework to model reduction of switched linear 

system the generalized gramian reduction framework can be applied locally on each 
subsystem to reduce each subsystem independently. As opposed to ordinary gramians, the 
generalized gramians are not unique, therefore we can choose the generalized gramians for 
subsystems such that the reduction framework preserves important properties of the original 
system such as stability.  

At this point it is possible to develop different gramian based reduction methods into this 
framework for reduction of switched system finding generalized controllability/observability 
gramian for each subsystem, constructing switching controllability/observability generalized 
gramian. The next step can be simultaneous diagonalization  of the switching generalized 
gramian and balancing and reduction of all subsystems based on Hankel singular values of 
the switching generalized gramian in each mode. In order to avoid numerical bad 
conditioning and also to increase the efficiency we use Schur or square root algorithm instead 
of balancing and directly Petrov-Galerkin projection matrices can be computed. This 
procedure is less conservative and provides more accurate results.  

In the method that we proposed in [26] the stability of the original switched systems under 
arbitrary switching signal is guaranteed to be preserved due to existence of common - 
function. This was the main reason for conservatism. In our new framework the generalized 
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gramians are computed such that the existence of piecewise quadratic Lyapunov function for 
the switched system is guaranteed and the stability of the reduced switched system is 
guaranteed consequently.  In following we first propose our general framework for model 
reduction of switched system. 

Let the observability gramian iQ and the controllability gramian iP  corresponding a 

general gramian based method for each subsystem is derived as the solution to the following 
Lyapunov equation: 

                                                         , ( ) 0
i iA M iQ                                                         (27) 

                                                      * ,
( ) 0

i i
iA N

P                                                            (28) 

where iM  , iN  are positive semi-definite.  

In order to develop the gramian based reduction method for switched system which preserves 

the stability of the original system, the switching controllability generalized gramian ( )cg t  

and switching controllability generalized gramian ( )og t are obtained: 

                                                          ,
1

( ) ( )
K

cg i g i
i

t t P


                                                   (29)                 

                                                          ,
1

( ) ( )
K

og i g i
i

t t Q


                                                   (30) 

where the generalized observability gramian ,g iQ  and the generalzed controllability gramian 

,g iP are the solutions to:  

                                                     * ,,
( ) 0

i i
g iA N

P   

                                                     , ,( ) 0
i iA M g iQ                                                              (31) 

                                                    *
, , 0i g j i g iA Q A Q   

 For all i . 

The next step is to simply construct Petrov-Galerkin projection for each subsystem based on 
the switching gramians in each mode.  

In the following in order to clarify the proposed general framework we extend generalized 
balanced reduction within frequency interval that is presented in previous section, for model 
reduction of switched linear system.  

First we need to find, the generalized controllability gramian , 1 2
ˆ ( , )g iP    and the 

generalized observability gramian , 1 2
ˆ ( , )g iQ   for each subsystem within frequency domain 
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satisfying (31) for all ,i j K .  In other words, the following LMI’s need to be solved: 

  

                                   * *
, 1 2 , 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0i g i i g i i iA P A P B B                                      (32) 

                                      * *
, 1 2 , 1 2

ˆ ˆ ˆ ˆ( , ) ( , ) 0i g i i g i i iA Q A Q C C                                 (33) 

                                              *
, 1 2 , 1 2

ˆ ˆ( , ) ( , ) 0i g j i g iA Q A Q                                   (34) 

The switching generalized gramians are: 

                                                  , 1 2
1

( ) ( )( ( , ))
K

cg i g i
i

t t P  


                                             (35)                

                                                 , 1 2
1

( ) ( )( ( , ))
K

og i g i
i

t t Q  


                                             (36)                 

If we plug ( )cg t  and ( )og t  into the square root algorithm we can directly obtain 

projectors associated to all subsystems for reduction. Note that the results are the same as 
balancing algorithm. A merit of the square root method is that it relies on the Cholesky 
factors of the gramians rather than the gramians themselves, which has advantages in terms 
of numerical stability. 

Stability and Feasibility,  

One of the important issues in model reduction is preservation of the stability which needs 
to be studied. In our proposed framework the stability of the original switched system is 
guaranteed to be preserved. In order to prove the stability preservation first we need to recall 
a theorem on stability of discrete time switched system from [31][32].   

 

Theorem 1. If there exist K  symmetric matrices 1 2, ,..., KS S S  for discrete time 

dynamical system (21), satisfying:  

                          
*

0 ( , )i i j

j i j

S A S
i j K K

S A S

 
    

  
                                      (37)   

then the switched system is asymptotic stable and the Lyapunov    function is give by: 

                                         *

1

( , ( )) ( ) ( ( ) ) ( )
K

i i
i

V t x t x t t S x t


  .                                     (38) 

 
 

This theorem propose a sufficient condition for stability of switched system based on 
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existence of the piecewise quadratic Lyapunov function for switched system which is less 
conservative than the condition for stability based on common Lyapunov function (See [31] 
and [32] for more details and proofs).   
In the following proposition we show that our reduction framework for reduction of switched 
system is stability preserving. 

 
Proposition2.  If the discrete-time switched system described in (21) is stable, the 

generalized gramian based reduced order model is guaranteed to be asymptotic stable. 
 

Proof:  
In the proposed method, we have:  
 

                                     

*

*

*

, , ,

ˆ

ˆ

ˆ

ˆ

n k
i i k i i

i i i i

i i i

i i

i i

W V I V W k n

A W AV

B W B

C C V

D D

  

 












                                     (34) 

which is projected system matrices associated to the reduced order switched model. 

                   1

1

ˆ ˆˆ ˆ( ) ( ( ) ( ))
ˆ :

ˆ ˆˆ( ) ( ( ) ( ))

K

i i i
i

K

i i i
i

x t A x t B u t

y t C x t D u t

 








 

 
  




                                (35) 

  

We know ,g iQ is the generalized observability gramian and the original switched system 

satisfy (31), therefore: 
                          

                                   *
, , ,0, 0i g i g i i g iA Q A Q M Q                                  (36)                         

                                           *
, , 0i g j i g iA Q A Q                                                (37) 

which lead to: 

                          
*

, ,

, ,

0 ( , )g i i g j

g j i g j

Q A Q
i j K K

Q A Q

 
    

  
                                            (38) 
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based on the Schur complement inequality. The original system is asymptotic stable 

according to theorem 1 and if we find  K  symmetric matrices which satisfy (37) for the 

reduced order switched system, the reduced order switched model will be stable as well. 
From (36) and (37) we have: 

                                  * *
, ,( ) 0i i g i g i i iV A Q A Q M V                                                       (39) 

                                         * *
, ,( ) 0i i g j i g i iV A Q A Q V                                                       (40) 

  

On the other hand, the outcome of square root algorithm for projection is[1]:  ,g i i i iP W V   

and ,g i i i iQ V W  , where k k
i

  is diagonal and positive definite and we have:  

* *
, ,

* * * *
, ,

* * * * *

* * * *

( )

( ) ( )

i i g i g i i i

i i g i i i g i i i i i

i i i i i i i i i i i i

i i i i i i i i

V A Q A Q M V

V A Q AV V Q V V M V

V A W W AV V W V M V

W AV W AV V M V

 

  

    

   

 

Hence: 
* *ˆ ˆ 0i i i i i i iA A V M V     

and consequently: 

                                             *ˆ ˆ 0i i i iA A                                                       (41) 

 

Let *
,:ij i g j iV Q V  , therefore *

,g j i ij iQ W W  . We have from (40): 

* *
, ,

* * *
, ,

* * * *
,

*

( )

ˆ ˆ

i i g j i g i i

i i g j i i i g i i

i i i ij i i i i g i i

i ij i i

V A Q A Q V

V A Q AV V Q V

V A W W AV V Q V

A A

 

 

  

  

 

Hence: 

                                                       *ˆ ˆ 0i ij i iA A                                                  (42) 

Note that: * 0ij ij     and ii i   . 

Let j ijS   and i iS   , according to Theorem 1. The reduced order switched model (35) 

is stable under arbitrary switching sequence.   

  
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Our framework is said to be feasible if (36)-(37) are satisfied. These can not be always 

satisfied; but the framework is much less conservative comparing to its counterparts in [26] 
and [27]. One way to improve the feasibility of the proposed model reduction method is 
using recently proposed extended notion of generalized grammian which is called extended 
grammian [14].   

5. Numerical Examples 

In this section we have applied the proposed method for reduction of two bimodal switched 
linear systems. The first example is of order 7 and the second one is of order 25.  

7th  Order Switched linear System: 

Consider a single-input-single output switched linear of the form (21): 

1

-0.334 0.3046 -0.03543 -0.07088 0.1474  -0.2414 -0.07635

 0.1292  -0.05956  -0.03945 0.2164  -0.3475 -0.1074 -0.2008

-0.1205 -0.02622 -0.115 -0.1031 -0.05692 -0.1377 0.02162

-0.1308 0.01855 -0.1999 -0.6649 -0.1376 -0.0985 -0A  .072

-0.09125  -0.3183  -0.04991 0.1481 -0.2894 -0.1928  0.02208

-0.3358 0.08599 -0.05365 0.08062  0.07906  -0.3054 0.01544

-0.1247 -0.1874 0.0197  -0.01706  0.02899 -0.01897 0.1089

 
 
 
 
 
 
 
 
 
 
 

 

2

0.02764  0.2331 -0.3819 0.1918  0.1083  -0.0531 0.412

0.2406 -0.5743  0.06595 0.275 -0.1156 0.3873 0.3771

-0.3711 0.07406 -0.3554 0.09365  0.2317 0.02326 0.3513

0.129 0.2794 0.1674 0.3015  0.1313 0.09701 -0.05687

0.1283  -0.11

A 
53 0.2107 0.1169 0.2967 0.3146 -0.2963

-0.01531 0.385 -0.02076 0.09491 0.3066 0.2628 -0.2449

0.4385 0.3797 0.3264 -0.09338 -0.2908 -0.2239 0.3117

 
 
 
 
 
 
 
 
 
 
 

 

1

0

0

0

-0.07866  

  -0.6817

-1.025

-1.234

B

 
 
 
 
 

  
 
 
 
 
 

, 2

-0.1497  

0

0

1.535

0

-1.347

0.4694

B

 
 
 
 
 

  
 
 
 
 
 

 

1 [0 0 0.0558 0 -0.465 0.371 0.7283]C   

2 [-0.9036 0 -0.6275 0.5354 0.5529 -0.2037 -2.054]C   
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1

2

0

0.1326

D

D




 

 In order to reduce the switched system we solve LMI’s (32)-(34) to compute the switching 

gramians over the frequency domain  1 2, [0.0001 ,1]   . The switching observability 

generalized gramian is computed by solving (33) and (34): 
2

, 1 2
1

( ) ( )( ( , ))og i g i
i

t t Q  


   

where 
,1 1 2

ˆ ( , )                  

432.3740 -2.0884 36.5183 22.1324 -26.9003 27.7670 5.6355

-2.0884 474.9520 -15.9972 0.2649 32.5495 -23.7194 2.1711

 36.5183 -15.9972 426.6650 3.4264 -9.5463 7.0706 -19.7154

22.1324 0.2649 3.4264

gQ   

462.4184 8.0981 20.2084 9.2145

-26.9003 32.5495 -9.5463 8.0981 425.7597 29.0492 -0.5272

27.7670 -23.7194 7.0706 20.2084 29.0492 424.6442 -4.5798

5.6355 2.1711 -19.7154 9.2145 -0.5272 -4.5798 437.7793

 
 
 
 
 
 
 
 
 
  

 

 
,2 1 2

ˆ ( , )                    

438.1188 -1.8337 37.8168 18.3223 -32.8578 25.2266 14.1855

-1.8337 474.0864 -15.9894 2.5844 29.8504 -25.6838 7.0294

37.8168 -15.9894 427.4084 5.2123 -10.4245 6.8873 -20.0638

18.3223 2.5844 5.2

gQ   

123 457.5497 15.1847 24.8077 9.0909

-32.8578 29.8504 -10.4245 15.1847 434.9824  34.4873 -14.7420

 25.2266 -25.6838 6.8873  24.8077 34.4873 431.6313 -16.5326

14.1855 7.0294 -20.0638 9.0909 -14.7420 -16.5326 456.5890























  

The switching controlability generalized gramian ( )cg t is computed similarly by solving 

(32). The resulting fourth order switched linear model by applying the presented method is: 

1

-0.7885 0.03459 -0.1212  -0.1066

0.1418 -0.5086 -0.3072 -0.1373

 -0.008041 0.2888 -0.5294  -0.04207

-0.05953 -0.07607 -0.1193  0.2978

rA

 
 
 
 
 
 

2

 -0.9483 0.01865 -0.01575 -0.02349

0.01436 0.9308 0.04869  -0.005533

0.01945  0.04652 -0.9376 0.04768

-0.03012  0.03389 -0.03229 0.7319

rA

 
 
 
 
 
 
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1

0.4763

-1.272

-0.6668

-2.061

rB

 
 
 
 
 
 

, 2

0.2252

0.3751

0.26

0.5943

rB

 
 
 
 
 
 

  

 2 0.9824 -2.738 -0.5533 -0.9583rC   

 1 -0.155 -0.072 0.01531  0.1706rC   

1 20, 0.1326r rD D   

Fig. 1 shows the generlized Hankel singular values of the first subsystem and Fig. 2 shows 
the generalized Hankel singular values of the second subsystem. The step response of the 
original and reduced order switched systems associated to the switching signal of Fig.3 is 
presented in Fig. 4. 

 
Fig. 1.  Generalized Hankel Singular Valuse( i ) of the first subsystem 
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Fig. 2.  Generalized Hankel Singular Valuse( i ) of the second subsystem 

 

 
Fig. 3.  Randomly generated switching signal 
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Fig. 3.  Step response of original switched linear system(solid line) and the reduced order model (dotted). 

 

Fig. 1. and Fig. 2 show that most of the input/output information is in four states of the 
original systems. The proposed method provides accurate results after reduction of 3 states of 
the original system (42.8 % of the states). 

 

Bimodal Switched linear System of order 25: 

Consider bimodal switched linear system of order 25. The original system is SISO and it is 

reduced to 17 using the proposed reduction method over  1 2, [0.001 ,1000]   .  

The generlized Hankel singular values are shown in Fig. 4 and Fig. 5. 
The step responses of the original and reduced order switched systems associated to the 
switching signal of Fig.6 is shown in Fig. 7. 
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Fig. 4.  Generalized Hankel Singular Valuse( i ) of the first subsystem 

 

 
Fig. 5.  Generalized Hankel Singular Valuse( i ) of the first subsystem 
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Fig. 5. switching signal 

 

 
Fig. 6.    Step response of original switched linear system (solid line) and the reduced order model which is of order 

17(dotted). 
 

 
 



 
 

 112

6. Conclusion 

A general framework for model order reduction of switched linear dynamical systems has 
been presented. In this paper we have reformulated the frequency domain balanced reduction 
method into the generalized gramian framework but generally various gramian based 
reduction methods can be reformulated in the proposed framework easily and can be applied 
for reduction of switched system. It is proved that the proposed framework preserves the 
stability of the original system. The method is much less conservative then previous method 
based on common generalized gramian. The method can be further extended for reduction of 
switching controllers and   for closed loop model reduction with embedded switching which 
will be addressed in the future works.    

 

REFERENCES 

[1] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Advances in Design and Control, SIAM, 
Philadelphia, 2005. 

[2] S. Gugercin and A. Antoulas. A survey of model reduction by balanced truncation and some new results. 
International Journal of Control,77:748–766, 2004. 

[3] Y. Chahlaoui and P. van Dooren. A collection of benchmarks examples for model reduction of linear time 
invariant dynamical systems.SLICOT Working Note, 2002. 

[4] B. C. Moore. Principal component analysis in linear systems: Controllability, observability, and model 
reduction. IEEE Trans. on Automatic Control, 26(1):17–32, 1981. 

[5] G. E. Dullerud and E G. Paganini. A course in robust control theory : a convex approach. Springer, New York, 
2000. 

[6] Li Li and F. Paganini, “Structured Coprime Factor Model Reduction based on LMIs",  Automatica,  Vol.41, 
pp:145-151, 2005. 

[7] D.F.Enns, Model Reduction with Balanced Realizations: An Error Bound and a Frequency Weighted 
Generalization, Proceedings of the 23rd IEEE Conference on Decision and Control, Las Vegas, 1984, pp.127-
132. 

[8] G. Wang, V. Sreeram, and W. Q. Liu, A New Frequency Weighted Balanced Truncation Method and an Error 
Bound, IEEE Transactionson Automatic Control, vol. 44, pp. 1734-1737, 1999.  

[9] V. Sreeram, and A. Ghafoor, "frequency Weighted Model Reduction Technique with Error Bounds", American 
Control Conference, 2005, Portland, OR, USA.  

[10] W. Gawronski and J.-N. Juang, Model reduction in limited time and frequency intervals, International Journal 
of System Sci., Vol. 21(2), pp. 349-376, 1990.  

[11] A. J. Laub, M. T. Heath, C. C. Page, and R. C. Ward, “Computation of balancing transformations and other 
applications of simultaneous diagonalization algorithms, IEEE Trans. Automat. Contr., vol. AC-32, pp. 115-
122, 1987. 

[12] M.G. Safonov, R.Y. Chiang, A Schur method for balanced-truncation model reduction, IEEE Trans. Automat. 
Control AC-34 (1989) 729-733 

[13] D. Liberzon. Switching in Systems and Control. Birkhauser, Boston, 2003. 



 
 

 113

[14] H. Sandberg, “Model Reduction of Linear Systems Using Extended Balanced Truncation,” American Control 
Conference, 2008, Seattle, Washington, USA. 

[15] P. Tabuada, A. Ames, A. A. Julius, and G. J. Pappas, “Approximate reduction of dynamical systems”, Systems 
and Control Letters, 57(7):538-545, 2008. 

[16] P. Tabuada, A. Ames, A. A. Julius, and G. J. Pappas, “Approximate reduction of dynamical systems”, IEEE 
Conference on Decision and Control, San Diego, CA, December 2006. 

[17] Z. Han and B. H. Krogh. "Reachability analysis of hybrid systems using reduced-order models." American 
Control Conference, 2004. 

[18] H. R. Shaker “Frequency-Domain Balanced Stochastic Truncation for Continuous and Discrete Time Systems” 
International Journal of Control, Automation, and Systems, vol. 6, no. 2, pp.180-185, 2008 

[19] H. R. Shaker and R. Wisniewski .“Discussion: “Model reduction of large-scale discrete plants with specified 
frequency-domain balanced structure”,  ASME Int. J. of Dynamic Systems, Measurement and control, 2008, In 
Press. 

[20] E. Mazzi, A. S. Vincentelli, A. Balluchi, and A. Bicchi. “Hybrid system model reduction” IEEE Int. Conf. on 
Decision and Control, 2008. 

[21] Luc C.G.J.M. Habets and Jan H. van Schuppen. Reduction of affine systems on polytopes. In Proceedings of 
the International Symposium MTNS ,2002. 

[22] H. Gao, J. Lam, C. Wang “Model simplification for switched hybrid systems” Systems & Control Letters, Vol. 
55, No. 12. 2006, pp. 1015-1021. 

[23] Ligang Wu, Wei Xing Zheng “Weighted H-Infinity  model reduction for linear switched systems with time-
varying delay”. Automatica 45(1): 186-193 (2009) 

[24] Lixian Zhang ,  El-Kebir Boukas , Peng Shi “μ-Dependent model reduction for uncertain discrete-time 
switched linear systems with average dwell time”, Int. J. of Control, Vol. 82,No.2 , 2009 , PP. 378 – 388. 

[25] H. R. Shaker and R. Wisniewski .“On exact/approximate reduction of dynamical systems living on piecewise 
linear partition”, 6th Int. Conf. on Mathematical Modelling ,Vienna,Austria,2009. 

[26] H. R. Shaker and R. Wisniewski .“Generalized gramian framework for model reduction of switched systems”, 
European Control Conference, Budapest ,Hungary,2009. 

[27] H. R. Shaker and R. Wisniewski .“ Switched Controller Reduction” IEEE International Conference on Control 
& Automation, Christchurch, New Zealand, 2009. 

[28] H. R. Shaker and R. Wisniewski .“ Switched Systems Reduction Framework Based on Convex Combination of 
Generalized Gramians”, Journal of Control Science and Engineering, 2009.  

[29] D. Wang and A. Zilouchian, “Model reduction of discrete linear systems via frequency domain balanced 
realization,” IEEE Trans. Circuits Syst. I, Fund. Theory Appl., vol. 47, no. 6, pp. 830–837, 2000. 

[30] A. Ghafoor, and V. Sreeram, Model Reduction via Limited Frequency Interval Gramians, IEEE Transactions 
on Circuits and Systems- Part I, Vol. 55, 2008.  

[31] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis for switched systems: A 
switched Lyapunov function approach,” IEEE Trans. Autom. Control, vol. 47, no. 11, pp. 1883–1887, Nov. 
2002. 

[32] H. Lin   , P.J. Antsaklis, “Stability and Stabilizability of Switched Linear Systems: A Survey of Recent 
Results” IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 308-322, Feb.2009. 

 
 
 
 



 
 

 114

 
 

Paper D 
 
 

On Exact/Approximate Reduction of Dynamical Systems Living on 
Piecewise linear Partition 

  

 
 
 

 
Hamid Reza Shaker and Rafael Wisniewski 

 
 
 
 
 
 

This paper is published in: 
 
 

Proceedings of IMACS IFAC Symposium on Mathematical Modelling - 6th 
MATHMOD, Vienna, Austria,  2009 

ISSN : 978-3-901608-35-3 
 
 



 
 

 115

 
 
 

 

1 Introduction 

Over the past two decades model reduction has become an ubiquitous tool in a variety of 
application areas and, accordingly, a research focus for many mathematicians and engineers 
[1]. Most of the methods that are proposed so far for control and analysis of hybrid and 
switched systems are suffering from high computational burden when dealing with large-
scale dynamical systems. This fact has motivated the researchers in hybrid systems to study 
model reduction. Because of the weakness of nonlinear model reduction techniques and also 
pronounced needs for efficient analysis and control of large-scale dynamical hybrid and 
switched systems; it is essential to study model reduction of hybrid and switched systems in 
particular. One of the most important classes of hybrid systems which has been studied 
extensively in the literature is a class of piecewise affine systems. This class is equivalent to 
many other hybrid system classes such as mixed logical dynamical systems, linear 
complementary systems, and maxmin-plus-scaling systems and thus form a very general 
class of linear hybrid systems. To our knowledge the only available study in the context of 
reduction of affine systems in the literature is the work done by Habets and Schuppen [2] 
which has considered the problem of the exact reduction due to non-observability. Model 
reduction problem for dynamical systems which are defined on piecewise linear partitioning 
is addressed in this paper. Our presented work is generalization and modification of the 
method in [2]. It is easy to show that in our method if we restrict our attention just to 
reduction due to non-observability the method also provides the same results as [2]. The 
technique presented is based on the transformation of affine dynamical systems inside the 
cells to a new structure and it can be applied to both exact reduction and also approximate 
model reduction. In this framework both controllability and observability of the affine system 
inside the polytopes are considered for reduction purpose. The paper is organized as follows: 
In the next section we review some definitions and notions which clarify our problem 
formulation. Section 3 presents the main contribution of this paper. In this section we show 
the technique to transform affine dynamical systems inside the cells to a new structure in 
which switching information and input/output relation information are embedded. This 
section ends up with some remarks on reduction which is the step after transformation.  
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Section 4 presents our numerical results followed by a brief discussion. Section 5 concludes 
the paper. 

2 Linear Partitions, Affine Systems and Reduction 

Let J  be a finite index set and cardinality of J is # J  . A polyhedral set P  in n  is the 

intersection of a family of closed half spaces { | , }n
j j jH x x N a    for n

jN  and ja   

, where j J and .,. is scalar product in n , i.e. : j
j J

P H 



 . The polyhedral set P can be 

expressed by the inequality (1) to be understood components wise: 

                                                { | }nP x Nx a                                                            (1) 

where 1 #[ ... ]T T T
JN N N , 1 #[ ... ]T

Ja a a .  

Let { | }jK P j I  be a polyhedral Complex with the index set I .  

: n
j

j I

K P


    

Let E be any polyhedral set ( n  inclusively). A piecewise linear partition of E is a 

polyhedral complex K such that E K .The elements of K will be called cells.  

We define : { | dim( ) }iK P K P i   . The class of dynamical systems that we deal with in this 

paper is the class of affine dynamical systems living on full dimensional cells nK of linear 

partition associated to a quadruple ( , , , )E K U S , where E  is a polyhedral set (a polytope) in 
n , K  is a piecewise affine partition of E , U  is a polyhedral set (of admissible inputs) 

in m , and { : }p nS s P K   is a family of piecewise affine systems: 

                                                   : p p p

p
p p

x A x B u a
s

y C x D u

  
  


                                                        (2)  

The problem that we address is the reduction of this class of dynamical systems. In model 
reduction the goal is to reduce the order of dynamical systems, input/output behaviour must 
be preserved when the reduction is in the exact sense. Approximate reduction keeps the 
input/output behaviour close to the original system while we reduce the order of dynamical 
system. 
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3 Reduction Framework for Affine Systems on Linear Partitions  

Our framework has two main steps. First, the system should be transformed to a new 
structure which contains the switching information and is suitable for reduction. Second main 
step is the reduction part. In this step we can check if the system is reducible in exact sense 
and if it is we can reduce it. We can also apply linear model reduction techniques at this point 
for approximate reduction. The system can be retransformed to the structure (2) at the end.      

3.1 Transformation  

In the following we first transform ps  into a new structure. In this structure input/output 

information and also switching information is embedded. We can apply linear reduction 
methods easily to the new structure and it can be retransformed to the original structure after 
reduction. If we introduce the new input vector: 

                                                         :p
p

u
W

a

 
  
 

                                                      (3) 

the transformed system will be: 

                                                    : p p p
p

p p p

x A x B W
s

y C x D W

  
  


                                                    (4)                  

where : 

                                                              
[ ]p p

p p

B B I

D D O



   
                                                       (5) 

Transformation to this structure makes sense because the reduction procedure has nothing to 

do with the vector of inputs and it is obvious that based on the dimension of pa we can 

recover the new constant vector in the reduced system. 

The next step is to find a way to embed the switching information to the structure; in other 
words information of the cell in which our affine system is defined (1), this will help us to 
pay attention to the importance of the states which are probably not important from local 
input/output maps but they are actively involved the switching conditions. The idea is to 
define new output and using the advantage of exact/approximate preservation of input-output 
behaviour in model reduction. 

In other words, for the structure (4) we define a new output vector: 
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                                                    :new

y
Y

Nx

 
  
 

                                                      (6)                   

Hence we have: 

                                              p p
new p

C D
Y x W

N O

  
    
   

,                                                       (7) 

which gives us new ,C D matrices. This new structure can be retransformed to the original 

structure after reduction by partitioning based on the length of the vector Nx  and the original 

output. 

The transformed LTI systems contain state contribution in local input/output behaviour and 
their contribution to the switching actions. 

3.2 Order Reduction 

At this point, we are in position to use several results from linear system theory regarding 
conditions for exact reduction and also methods to find appropriate projection for exact/ 
approximate reduction. In the case of exact reduction, applying ordinary 
controllability/observability tests for LTI systems on the aforementioned transformed system 
provides us with conditions for exact reducibility. In these propositions for exact reduction 
we have conditions on the rank of controllability/observability matrices of the transformed 

system and consequently conditions on affine system matrices and N .One can also approach 

the problem using Grammians which leads the same results. It is also straightforward to find 
appropriate projection to remove the states due to non-observability or non-cotrollability [3]. 
In the case of approximate reduction after transformation of the affine system to the 
aforementioned structure one can use different reduction techniques such as balanced 
reduction techniques and then it is possible to recover the original structure of the system by 
partitioning the system based on original output and input. Although this method provides 
satisfactory approximate results but in approximate reduction a lot of other issues arise which 
needs more investigations and further research in this context.                                          

4 Illustrative Example  

In this section we illustrate the proposed framework with a numerical example. Consider a 
randomly generated dynamical system:  
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 

-1.119 0.2557 -0.01542 1.444

0.2557 -1.892 0.1438 0

-0.01542 0.1438 -1.889 0.6232

0.799 0.9409 0.9921

x x u

y x

    
                
  


 

which is defined on the cell:  

1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

x

   
   
   
   
   
     

 

This dynamical system is linear i. e. 0pa   therefore defining new input (3) is not needed in 

this case and we can skip this step. The transformed system will be: 

                 

-1.119 0.2557 -0.01542 1.444

0.2557 -1.892 0.1438 0 ,

-0.01542 0.1438 -1.889 0.6232

0.799 0.9409 0.9921 0

1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 0

new

x x u

y x u

   
       
      

   
   
   
    
   
   
        



                                   (8)                    

If we calculate the observability matrix, we can see that it is a full column rank matrix 
therefore the system is not reducible in the exact sense due to non-observability.  The rank of 
controllability matrix is 3 which shows, the associated system is not reducible in the exact 
sense due to non-controllability. In order to apply balanced truncation for approximate 
reduction we first should transform (8) to the balanced realization.                                                           

The associated singular values are: {1.2594, 0.0920, 0.0014} . If we reduce the system to the 

second order system and retransform the original structure we have:  

                                                    

 

-1.034 0.01587 1.614

-0.7875 -2.046 0.6135

0.5064 -0.46

x x u

y x

    
     

    
 


                               (9) 

with the switching inequality:  
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0.8679 0.0655 0

0.0892 -0.2289 0

0.2731 0.2993 0

-1.2302 -0.1359 1

x

   
   
   
   
   
   

                                              (10)                            

 

In Fig.1 the states for both reduced and original systems are shown in terms of time. The 
solid line shows the switching signal which is 1 when the dynamical system hits the facet and 
switching occurs. As we can, both systems hit the facet and switch almost simultaneously at 
0.0495.  This Figure confirms that approximation provides us with accurate results regarding 
the switching time. Fig.2 shows that approximate reduction also preserve input/output 
behaviour quite well.  In general for exact reduction this framework works very well but in 
the case of approximate reduction some other issues should be taken into account such as 
stability preservation. It might happen that the framework can not keep the stability of 
original hybrid system. Although the accuracy of the method inside the cell is quite well 
depending on the dynamics outside of the cell it might also happen that the approximation in 
the neighbourhood and outside of the cell is not satisfactory. These problems need further 
investigation and research to be done.     

 

 

Figure 1. Left: reduced system( 1x :dotted, 2x :dash dotted, switch: solid ) Right: original 

system( 1x :dotted, 2x :dash dotted, , 3x :dashed ,switch: solid) 
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Figure 2. Step response of reduced system (dotted) and original system(solid) 

 

5 Conclusion 

Model reduction problem for dynamical systems which are defined on piecewise linear 
partitioning was addressed in this paper. The method compromises generalization and 
modification of [2]. The technique presented is based on the transformation of affine 
dynamical systems inside the cells to a new structure and it can be applied for both exact 
reduction and also approximate model reduction. In the case of exact reduction the method 
works very well. Although in the approximate reduction numerical results are satisfactory but 
still several issues like stability preservation, guard overlaps need to be studied. 
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1. Introduction 
        Hybrid and switched dynamical systems received a lot of attention over the last decade 
due to their capability for mathematical modeling of physical systems as well as man-made  
systems [1]. There is a growing demand in industry for methods to model, analyze, and 
control hybrid and switched dynamical systems. 

Among different problems in this field, a lot of research has been devoted to the study of 
the stability of switched and hybrid systems [1][3]. Most of the methods which have been 
proposed so far for stability analysis of hybrid systems are devoted to switched linear 
systems. The stability of switched systems under arbitrary switching signal is guaranteed by 
the existence of a common Lyapunov function. In the linear case, many approaches have 
been presented to construct common Lyapunov functions. The problem is more complicated 
for switched nonlinear systems and relatively fewer results have been reported in this context. 
The existence of a common Lyapunov function is only sufficient for the stability of switched 
systems and can be rather conservative. There are examples of systems that do not posses a 
common Lyapunov function, but are stable under arbitrary switching signals. Due to the 
conservatism of the methods for stability analysis which are based on the common Lyapunov 
function, some attention has been paid to a less conservative class of Lyapunov functions, 
called switched quadratic Lyapunov functions [2],[12]. In this paper, we propose sufficient 
stability conditions based on switched quadratic Lyapunov functions for a class of switched 
nonlinear systems. The conditions are similar to their counterpart in [2] for switched linear 
systems. These linear matrix inequalities (LMI) conditions are easy to check and suitable for 
controller synthesis.     

We study the class of discrete-time switched nonlinear systems of the form: 

                                            ( ) ( )

( ) ( )

( 1) ( ( ))
:

( ) ( ( ))
k k

k k

x k A x k

y k C x k
 

 

     
                                          (1) 

where ( ) nx k  is the state, ( ) py k  is the output and 0: {1, 2,..., }       , is the 

switching signal that is a piecewise constant map of the time index.  is the set of discrete 

modes, which is assumed to be finite. For each i , iA , iC  are matrices of appropriate 

dimensions.  Furthermore: 
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1

2

( ( ))

( ( ))
( ( )) :

( ( ))

i

i
i

i n

x k

x k
x k

x k

 
   
 
 
  


                                             (2) 

where: 

 : : , , ( ) ( )i OL s t s t s t             . 

It is worth mentioning that subsystems with the above description are from the class of so-

called  -systems [4]. In some literature, they have been called   -systems[7][8]. It is clear 

from the description that the nonlinearity of this class of systems is odd and 1-Lipschitz.  The 
standard saturation and the hyperbolic tangent (popular activation function in neural network) 
are examples of this type of nonlinear systems[4][7]-[10]. The discrete-time recurrent 
artificial neural network is a special case of  -systems [7]-[9]. Furthermore, results related 
to this class of nonlinear systems have potential applications in the classical problems related 
to uncertain nonlinearities such as Lur’e systems[11]. 

The notation used in this paper is as follows: *M denotes  

transpose of matrix if n mM   and complex conjugate transpose if n mM  . The 

standard notation , ( , )    is used to denote the positive (negative) definite and 

semidefinite ordering of matrices. 

2. Positive Diagonal Dominant Matrices 

    In this section we recall a definition and results which we will use in the sequel. 
 
Definition 1: A matrix P is said to be positive diagonally dominant  (pdd) if: 

                                               
0 ,

, .ii ij
j i

P

p p i



  


                                                        (3)                  

This definition simply says that a matrix is pdd if it is positive definite and row diagonally 
dominant.  
 

    Lemma 1 [4]: P is pdd if and only if 0P   and there exists a symmetric [ ]ijR r such 

that: 
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0, 0, ,

( 2 ) .
ij ij ij

ii ij ij
j i

r p r i j

p p r i


    
   


                                             (4) 

 
   Lemma 2 [4]: P is pdd if and only if: 
 

                              
* *

0

, , ( ) ( ) .n

P

OL P P    



     
                         (5) 

 
Lemma 2 shows the elegant property of the pdd matrices which is useful for finding 
conditions for quadratic stability of  -systems.    

3. Stability of Switched  - Systems 

     Consider the family of the switched  -systems described in (1). This class of systems 
can also be represented as: 

                                  1

1

( 1) ( ) ( ( ))

:

( ) ( ) ( ( ))

K

i i i
i

K

i i i
i

x k k A x k

y k k C x k










  

 
  




                            (6) 

where: 
 

( )i k  is the indicator function which is defined as: 

                           
1, when the switched system is described

( )  by the i  mode matrices (A ,C ) and

0, otherwise

th
i i i i

k

 



                       (7) 

 
A sufficient condition for stability is the following: 
 
Proposition 1.  The switched system (6) is asymptotically stable under an arbitrary 

switching signal if there exist K symmetric pdd matrices, 1 2, ,..., KP P P  satisfying: 

                                     
*

0 ( , )i i j

j i j

P A P
i j K K

P A P

 
    

  
                                      (8) 
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Proof:  
 Let:  

                         *

1

( , ( )) : ( ) ( ( ) ) ( ), ( )
K

n
i i

i

V k k k k P k k    


                               (9) 

1 2( ) [ ( ) ( ) ( )]Kk k k k     , 

1

( ( )) ( )
K

i i
i

A k k A 


  , 
1

( ( )) ( )
K

i i
i

P k k P 


   

1

( ( )) ( ) ( ( ))
K

i i
i

x k k x k 


    

then: 
 

* *

* *

*

* *

*

( , ( )) ( 1, ( 1)) ( , ( ))

( 1) ( ( 1)) ( 1) ( ) ( ( )) ( )

( ( )) ( ( )) ( ( 1)) ( ( )) ( ( ))

( ) ( ( )) ( )

( ( ))[ ( ( )) ( ( 1)) ( ( )) ( ( ))] ( ( ))

( ( )) ( (

V k x k V k x k V k x k

x k P k x k x k P k x k

x k A k P k A k x k

x k P k x k

x k A k P k A k P k x k

x k P k

 

 



 

  



   



    

    

   



    

 *)) ( ( )) ( ) ( ( )) ( )x k x k P k x k  

 

On the other hand, since: 

1 2, ,..., KP P P  are all pdd and OL   we have from Lemma 2 that:  

* *( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ) 0x k P k x k x k P k x k       

The Schur complement of (8), shows that:  
* ( ( )) ( ( 1)) ( ( )) ( ( )) 0A k P k A k P k       

Therefore: 

( , ( )) 0V k x k  , 

which proves the stability of the switched system(6). 

  
Note that the switched quadratic Lyapunov function is a common Lyapunov function 

when 1 2 ... KP P P   . Therefore, the stability condition based on the switched quadratic 

Lyapunov function generalizes the approaches based on the common Lyapunov function and 
is usually less conservative.  

The next proposition is similar to Proposition 1. In the stability condition of Proposition 2, 
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we have slack variables which makes the proposition more suitable for design problems.   
Proposition2.  The switched system (6) is asymptotically stable under an arbitrary 

switching signal if there exist K symmetric positive diagonal matrices, 1 2, ,..., KS S S  and K  

matrices, 1 2, ,..., KG G G  ,satisfying: 

* * *

0 ( , )i i i i i

i i j

G G S G A
i j K K

AG S

  
    

  
         (10)          

 

Proof:  

From (10), we have: * 0i i iG G S   . Since iS is a positive diagonal matrix, 1
iS  is also the 

positive diagonal, which implies that: * 1( ) ( ) 0i i i i iG S S G S   . Moreover:  
* 1 * 1 *( ) ( )i i i i i i i i i i iG S S G S G S G G G S       . 

Hence: 
* 1 * *

0 ( , )i i i i i

i i j

G S G G A
i j K K

AG S

 
    

  
 

On the other hand: 
 

* 1 * * * 1 * 1

1 1

00

00
ii i i i i i i i j

ji i j j j i j

GG S G G A G S A S

SAG S S S A S

  

 

       
       

            
 

Therefore: 
1 * 1

1 1 0i i j

j i j

S A S

S A S

 

 

 
 

  
 

where 1
iS   and 1

jS  are positive diagonal. 1
iS   and 1

jS  are obviously pdd matrices. From 

Proposition 1, we conclude that the switched system (6) is stable.  
 

  

In Proposition 2, 1 2, ,..., KS S S matrices in general do not have to be diagonal. The only 

restriction is that the inverse of these matrices need to be pdd. 
Note that specifying a matrix to be pdd is LMI (Lemma 1) and therefore to check the 

proposed conditions, we need to solve an LMI.   
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4. Numerical Examples 

In this section the proposed method is applied to two numerical examples: one is a second 
order switched  -system and the other one is a third order switched system.  
 

Second Order Switched  -system: 

Consider a bimodal switched  -system with the system matrices: 

1

-0.3099 -0.6063

-0.6063 0.3684
A

 
  
 

, 2

-0.04904 -0.02485

0.02485 -0.04904
A

 
  
 

. 

The LMI condition (8) is feasible with the solution: 

1

34.5791 -0.5189

-0.5189 35.0735
P

 
  
 

, 2

26.3119 0.0760

0.0760 26.2510
P

 
  
 

, 

with  

1

0 9.4905

9.4905 0
R

 
  
 

 , 2

0 5.7751

5.7751 0
R

 
  
 

. 

Therefore, the switched  -system is stable. The inverse of a two-dimensional pdd matrix is 
always a pdd matrix. This is not always true for higher dimensions. Because of the fact that 

the inverse of a two-dimensional pdd matrix is always a pdd, the following 1S and 2S   satisfy 

(10).  

1

0.0289 0.0004

0.0004 0.0285
S

 
  
 

2

0.0380 -0.0001

-0.0001 0.0381
S

 
  
 

. 

Proposition 2 for second order systems is less conservative than higher order systems and 

1 2, ,..., KS S S  do not have to be diagonal matrices.  

 

Third  Order Switched  -system: 

Consider a third order  -system with the system matrices: 
 

1

-0.06515 -0.4744 0.3041

-0.4744 0.4872 0.3732

0.3041 0.3732 -0.1271

A

 
   
  

,
2

0.04419 0.3155 -0.04247

0.1451 -0.04931 -0.2805

0.2833 -0.01418 0.1554

A

 
   
  

. 

The LMI condition (8) is feasible for this example with the solution: 
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1

16.5100 -0.4733 -1.7526

-0.4733 16.1032 -0.4243

-1.7526 -0.4243 13.3561

P

 
   
  

,
2

14.6794 0.1369 0.1619

0.1369 11.8281 -0.1509

0.1619 -0.1509 12.0436

P

 
   
  

,
1

0 2.5952 3.2349

2.5952 0 2.5707

3.2349 2.5707 0

R

 
   
  

,  

2

0 2.0286 2.0161

2.0286 0 2.1725

2.0161 2.1725 0

R

 
   
  

. 

The switched system is stable under arbitrary switching signals.  
LMI condition (10) is also feasible with the solution: 

1

15.4911 0 0

0 13.4929 0

0 0 16.0713

S

 
   
  

,
2

17.2202 0 0

0 17.2319 0

0 0 17.2063

S

 
   
  

 

1

14.7675 0.4846 1.5626

0.4846 12.2697 0.1082

1.5626 0.1082 15.4927

G

 
   
  

, 
2

16.9289 -0.0223 -0.0117

-0.0223 16.9435   0.0143

-0.0117   0.0143 16.9115

G

 
   
  

 

Therefore Proposition 2 confirms the stability of the switched system under the arbitrary 
switching signals. 

5. Conclusion 

Two LMI-based sufficient conditions for stability analysis of a class of switched nonlinear 
systems are proposed. These conditions are extensions of the LMI-based stability conditions 
for switched linear systems to switched  -systems.  The proposed stability results are based 
on the switched quadratic Lyapunov functions which are usually less conservative than their 
counterparts which are based on common Lyapunov functions. These results can be used for 
controller design problems as well as model reduction of switched nonlinear systems.  
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1. Introduction 

Hybrid and switched dynamical systems received a lot of attention over the last decade 
due to their capability for mathematical modeling of physical systems as well as man-made 
systems [1]. There is a growing demand in industry for methods to model, analyze, and 
control hybrid and switched dynamical systems. Among different problems in this field, a lot 
of research has been devoted to the study of the stability and control of switched and hybrid 
systems [1]-[4]. Most of the methods which have been proposed so far for stability analysis 
of hybrid systems are devoted to switched linear systems. The stability of switched systems 
under arbitrary switching signal is guaranteed by the existence of a common Lyapunov 
function. In the linear case, many approaches have been presented to construct common 
Lyapunov functions. The problem is more complicated for switched nonlinear systems and 
relatively fewer results have been reported in this context. The existence of a common 
Lyapunov function is only sufficient for the stability of switched systems and can be rather 
conservative. There are examples of systems that do not posses a common Lyapunov 
function, but are stable under arbitrary switching signals[1][3][4]. Due to the conservatism of 
the methods for stability analysis which are based on the common Lyapunov function, some 
attention has been paid to a less conservative class of Lyapunov functions, called switched 
quadratic Lyapunov functions [2],[5]. In this paper, we propose sufficient stability conditions 
based on switched quadratic Lyapunov functions for a class of switched nonlinear systems. 
The conditions are similar to their counterparts in [2] for switched linear systems. These 
linear matrix inequality (LMI) conditions are used for controller synthesis. We study the class 
of discrete-time switched nonlinear systems of the form: 

                                  ( ) ( )

( ) ( )

( 1) ( ( )) ,
:

( ) ( ( )) ,
k k

k k

x k A x k

y k C x k
 

 

     
                               (1)                            

where ( ) nx k  is the state, ( ) py k  is the output and 0: {1, 2,..., }      , is the 

switching signal that is a piecewise constant map of the time index.  is the set of discrete 

modes, which is assumed to be finite. For each i , iA , iC  are matrices of appropriate 

dimensions.  Furthermore: 
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1

2

( ( ))

( ( ))
( ( )) :

( ( ))

i

i
i

i n

x k

x k
x k

x k

 
   
 
 
  


,                                            (2) 

                                                                                          

where:  : : , , ( ) ( )i OL s t s t s t             . 

It is worth mentioning that subsystems with the above description are from the class of so-

called  -systems [6],[7]. In some literature, they have been called  -systems [8]-[10]. The 

standard saturation and the hyperbolic tangent (popular activation function in neural 
networks) are examples of this type of nonlinearities [6]-[11],[13]. The discrete-time 
recurrent artificial neural network is a special case of  -systems [10]-[12]. Furthermore, 
results related to this class of nonlinear systems have potential applications in the classical 
problems related to uncertain nonlinearities such as Lur’e systems [14]. 

The notation used in this paper is as follows: *M denotes transpose of matrix if n mM   

and complex conjugate transpose if n mM  . The standard notation , ( , )    is used to 

denote the positive (negative) definite and semidefinite ordering of matrices.  

                                                                                                                                                  

2. Positive diagonal dominant matrices 

In this section we recall a definition and results which we will use in the sequel. 

Definition 1: A matrix P is said to be positive diagonally dominant (PDD) if: 

                                                           

* 0 ,

, .ii ij
j i

P P

p p i


  
  

                                                  (3) 

This definition simply says that a matrix is PDD if it is positive definite and row 
diagonally dominant. A matrix P is said to be inverse positive diagonal dominant (IPDD), if 

1P is PDD.  

    Lemma 1 [6]: P is PDD if and only if 0P   and there exists a symmetric 

[ ]ijR r such that: 
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0, 0, ,

( 2 ), .
ij ij ij

ii ij ij
j i

r p r i j

p p r i


    
   


                                   (4) 

 

   Lemma 2 [6]: P is PDD if and only if: 

        
* *

0,

, , ( ) ( ) .n

P

OL P P    



     
                                               (5)                         

 

Lemma 2 shows the elegant property of the PDD matrices which is useful for finding 
conditions for quadratic stability of  -systems. 

   Lemma 3 [7]: Let P be n n matrix, 2n  . P  is IPDD if : 

0P  , 

                                 
1

,
2 3ij iii j p p

n
  


.                                                    (6)                

Note that Lemma 3 is LMI sufficient condition. Further results on IPDD can be found in 
[7]. 

  

3. Stability of switched nonlinear systems 

Consider the family of the switched  -systems described in (1). This class of systems can 
also be represented as: 

                                          1

1

( 1) ( ) ( ( )),

:

( ) ( ) ( ( )),

K

i i i
i

K

i i i
i

x k k A x k

y k k C x k










  

 
  




                                         (7) 

where: 

( )i k  is the indicator function which is defined as: 



 
 

 135

                        
1, when the switched system is described

( ) by the i  mode matrices (A ,C ) and ,

0, otherwise.

th
i i i i

k

 



                    (8) 

A sufficient condition for stability is the following: 

Proposition 1.  The switched system (7) is asymptotically stable under an arbitrary 

switching signal if there exist K symmetric pdd matrices, 1 2, ,..., KP P P  satisfying: 

                                 
*

0 ( , )i i j

j i j

P A P
i j K K

P A P

 
    

  
.                                       (9)                     

 

Proof:  

 Let:  

                        *

1

( , ( )) : ( ) ( ( ) ) ( ), ( )
K

n
i i

i

V k k k k P k k    


                            (10)                      

1 2( ) [ ( ) ( ) ( )]Kk k k k     , 

1

( ( )) : ( )
K

i i
i

A k k A 


  , 
1

( ( )) : ( )
K

i i
i

P k k P 


  , 

1

( ( )) ( ) ( ( ))
K

i i
i

x k k x k 


   . 

Then: 

* *

* * *

* *

*

( , ( )) ( 1, ( 1)) ( , ( )),

( 1) ( ( 1)) ( 1) ( ) ( ( )) ( ),

( ( )) ( ( )) ( ( 1)) ( ( )) ( ( )) ( ) ( ( )) ( ),

( ( ))[ ( ( )) ( ( 1)) ( ( )) ( ( ))] ( ( ))

( ( )) (

V k x k V k x k V k x k

x k P k x k x k P k x k

x k A k P k A k x k x k P k x k

x k A k P k A k P k x k

x k P

 

 



 

   

   

    

    

    

    

 *( )) ( ( )) ( ) ( ( )) ( ).k x k x k P k x k  

 

On the other hand, since: 

1 2, ,..., KP P P  are all pdd and OL   ,we have from Lemma 2 that:  

* *( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ) 0x k P k x k x k P k x k      . 
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The Schur complement of (9), shows that:  

* ( ( )) ( ( 1)) ( ( )) ( ( )) 0A k P k A k P k      . 

Therefore: 

( , ( )) 0V k x k  , 

which proves the stability of the switched system(7). 

  

Note that the switched quadratic Lyapunov function is a common Lyapunov function 

when 1 2 ... KP P P   . Therefore, the stability condition based on the switched quadratic 

Lyapunov function generalizes the approaches based on the common Lyapunov function and 
is usually less conservative.  

The next proposition is similar to Proposition 1. In the stability condition of Proposition 2, 
we have slack variables which makes the proposition more suitable for design problems.   

Proposition 2.  The switched system (7) is asymptotically stable under an arbitrary 

switching signal if there exist K  matrices 1 2, ,..., KS S S  which are IPDD and K  matrices, 

1 2, ,..., KG G G  ,satisfying: 

                                
* * *

0, ( , ) .i i i i i

i i j

G G S G A
i j K K

AG S

  
    

  
                              (11) 

 

Proof:  

From (11), we have: * 0i i iG G S   . Since iS is IPDD, 1
iS  is PDD, which implies 

that: * 1( ) ( ) 0i i i i iG S S G S   . Moreover:  

* 1 * 1 *( ) ( )i i i i i i i i i i iG S S G S G S G G G S       . 

Hence: 

* 1 * *

0, ( , ) .i i i i i

i i j

G S G G A
i j K K

AG S

 
    

  
 

On the other hand: 
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* 1 * * * 1 * 1

1 1

00

00
ii i i i i i i i j

ji i j j j i j

GG S G G A G S A S

SAG S S S A S

  

 

       
       

            
. 

Therefore: 

1 * 1

1 1 0i i j

j i j

S A S

S A S

 

 

 
 

  
, 

where iS  and jS are IPDD. 1
iS   and 1

jS  are obviously PDD matrices. From Proposition 1, 

we conclude that the switched system (7) is stable.  

  

4. Output feedback control for switched nonlinear system 

Consider the problem of the output feedback design: 

                                          
1

( ) ( ( ) ) ( )
K

i i
i

u k k F y k


  ,                                                (12) 

                                                                                          
for the following switched nonlinear dynamical system: 

                1

1

( 1) ( )( ( ( )) ( )),

:

( ) ( ) ( ( )),

K

i i i i
i

K

i i i
i

x k k A x k B u k

y k k C x k










   

 
  




                           (13) 

where ( ( ))i x k  is defined by (2). The closed loop system is in the form (1) with the system 

matrix:  

                                     
1

( ( )) ( )( )
K

cl i i i i i
i

A k k A B FC 


  .                                        (14)                     

If we apply the stability results from the previous section directly to find output feedback, the 
problem is non-convex.  The following propositions show how to determine stabilizing 
output feedback control for the aforementioned switched systems based on the stability 
results of the last section. These conditions are convex and numerically tractable.  

 

   Proposition 3. If there exist IPDD matrices iS , matrices iU and iV , such that: 



 
 

 138

                 
*( )

0, ( , ) ,i i i i i i

i i i i i j

S A S BU C
i j K K

A S BU C S

 
      

                             (15)                 

and 

                                          ,i i i iV C C S i K   ,                                                    (16) 

                                                                                          
then the output feedback (12) with 

                                                                      1, ,i i iF U V i K                         (17)              

stabilizes (13). 
 

Proof:  

From (16) and (17) we have: 

i i i i iU C FC S i K   .  

Replacing i iU C  by i i iF C S  in (15) , Schur complement leads to: 

                             1 * 1( ) ( ) 0i i i i i j i i i iS A B F C S A B F C                                            (18) 

                                                                                          

iS and jS are IPDD, therefore 1
iS  and 1

jS  PDD which implies that (9) is satisfied 

with 1
i iP S   and 1

j jP S   for the closed loop system. Therefore the closed loop system is 

stable.   

  

The following proposition is based on Proposition 2. Using the slack variables in this 
proposition provides less conservative sufficient conditions for output feedback control 
design.   

   Proposition 4. If there exist IPDD matrices  iS , matrices iG  , iU and iV , such that: 

* *( )
0, ( , ) ,i i i i i i i i

i i i i i j

G G S AG BU C
i j K K

AG BU C S

   
      

                                 (19) 

and 
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                                       , ,i i i iV C C G i K                                                          (20)                

then the output feedback (12) with 

                                   1, ,i i iF U V i K                                             (21)              

stabilizes (13). 
 

Proof:  

From (20) and (21) we have: 

, .i i i i iU C FC G i K    

Replacing i iU C  by i i iFC G  in (19): 

 

* *

* * *

( )

( )
0, ( , ) .

( )

i i i i i i i i i

i i i i i i j

i i i i i i i i

i i i i i j

G G S AG B FC G

AG B FC G S

G G S G A B F C
i j K K

A B F C G S

   
   
   

       

                                      (22) 

Proposition 2 applies and the closed loop system is stable.  

              

5. Numerical examples 

In this section we design output feedback controllers for switched nonlinear systems based 
on Proposition 3 and Proposition 4. The first example is a bimodal system and the second one 
is a switched system with three discrete modes.  

5.1. Bimodal Switched System:  

Consider a switched nonlinear system in the form (13) with the matrices: 
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1

-0.5835 0.5445 -0.2751

0.5445 0.02276 -0.6126

-0.2751 -0.6126 -0.4681

A

 
   
  

, 1

2.768 -0.6573

-0.4953 -1.717

0.4688 1.471

B

 
   
  

,

1

0.6941 0.1134 -1.462

-0.5107 -0.2298 -2.882
C

 
  
 

, 

2

-0.3118 -0.00226 0.1697

-0.00226 -0.2147 -0.06306

0.1697 -0.06306 -0.4528

A

 
   
  

, 2

1.258 0

1.469 0.4757

0.03294 0.3685

B

 
   
  

,

2

2.192 0.9073 -0.5384

0 0.4023 -0.1152
C

 
  
 

. 

LMI sufficient conditions of Proposition 3 are feasible. The corresponding output 
feedback is: 

2

1

( ) ( ( ) ) ( )i i
i

u k k F y k


  , 

where: 

1

0.1042 -0.0616

-0.0616 0.0426
F

 
  
 

 and 2

0.1103 -0.2744

-0.2764 1.1758
F

 
  
 

. 

LMI sufficient conditions of Proposition 4 are also feasible. The designed output feedback 
is with: 

1

0.0979 -0.0641

-0.0643 0.0449
F

 
  
 

 and 2

0.1086 -0.2640

-0.2681 1.1331
F

 
  
 

. 

 

5.2. A switched nonlinear system with three modes 

Consider switched system (13) defined by matrices: 

1

0.02867 -0.1549 -0.1331

0.1983 0.1208 -0.3969

0.0488 0.4157 0.1073

A

 
   
  

, 1

-0.8407 1.952

-0.3495 0.459

0 -0.3993

B

 
   
  

,

1

0 1.307 -0.7917

-0.2803 -0.2844 0.2406
C

 
  
 

, 
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2

0.2602 -0.1601 -0.04529

-0.1661 0.3563 0.004146

0.008821 0.04462 0.141

A

 
   
  

, 2

0 0

0 0.4682

0.3259 0.3259

B

 
   
  

,

2

0.1 0.02382 -0.008758

0.3014 -0.02205 0.9295
C

 
  
 

, 

3

-0.08873 -0.7651 -0.3403

-0.7651 0.08916 -0.2076

-0.3403 -0.2076 0.8621

A

 
   
  

, 3

-0.1734 2.072

-0.01403 0.637

-0.6127 0.07489

B

 
   
  

,

3

1.123 -0.09775 -0.6155

-0.03313 -0.5566 1.605
C

 
  
 

. 

LMI sufficient conditions of Proposition 3 are feasible for this system. The corresponding 
output feedback is: 

3

1

( ) ( ( ) ) ( )i i
i

u k k F y k


  , 

where: 

1

1.3178 0.5831

0.6320 0.4464
F

 
  
 

 , 2

1.1333 -0.4973

-0.5177 0.0998
F

 
  
 

and 3

-0.6917 0.0950

0.0823 0.0888
F

 
  
 

. 

LMI sufficient conditions of Proposition 4 are also feasible. The designed output feedback 
is with: 

1

1.3070 0.4498

0.6341 0.4152
F

 
  
 

, 2

1.2082 -0.4903

-0.4962 0.1125
F

 
  
 

and 3

-0.5856 0.1427

0.0545 0.0761
F

 
  
 

. 

 

5.3. Feasibility   

Numerical experiment suggests that feasible solutions to the output feedback control 
problem using proposition 3 and 4 are more readily found than using the methods based on 
the common Lyapunov function. The sufficient conditions for stability in Proposition 1 and 2 
are less conservative than stability conditions based on the existence of common Lyapunov 
function. However, when dealing with switched systems with a large number of discrete 
modes, finding feasible solution remains a challenge.  The LMI conditions in Proposition 4 
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are less conservative than conditions in Proposition 3 because the equality constraint in 

Proposition 3 restricts iS  while in Proposition 4, the slack variables are restricted instead.  

6. Conclusion 

Two LMI-based sufficient conditions for stabilizing output feedback design are proposed. 
These conditions are based on LMI conditions for stability analysis of a class of switched 
nonlinear systems which are extensions of analogous conditions for switched linear systems, 
to switched  -systems.  The proposed results are based on the switched quadratic Lyapunov 
functions which are usually less conservative than their counterparts based on common 
Lyapunov functions.   
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