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Abstract

The European liberalized energy market promotes cheap and reliable elec-

tricity generation. At the same time, governmental policies aim to lower

the environmental impact of such production, encouraging generation from

renewable energy sources, such as wind turbines. Unfortunately the pro-

duction from such sources may vary unpredictably meaning that the desired

level of generation cannot always be achieved upon request. On-demand

production from controllable units, such as thermal power plants, must

change quickly in order to ensure balance between consumer demands and

electricity generation.

Coal-fired power plants represent the largest reserve of such controllable

power sources in several countries. However, their production take-up rates

are limited, mainly due to poor fuel flow control. The project aims to

analyze the difficulties and potential improvements in the control of the

coal grinding process, to allow more flexible production from these units.

In order to do this, a suitable coal mill model is derived and validated.

The model describes the coal circulation inside a mill, the fuel flow, and

the heat balance. The model is used to derive a suitable stabilizing control

law based on Lyapunov theory, which turns out to optimize a generalized

performance index. The controller is verified through simulations and it

is compared to a well-tuned PID-type controller used in the industry, and

shown to give improvements.

In addition optimal supervisory control of coal mills and oil flow to

the burners is investigated. This is a problem of scheduling continuous

producers with discrete phases of operation. The phases are event-driven

and they are governed by time and production constraints. Two solution

approaches are studied: mixed integer linear programing and priced timed

automata. Qualitative analysis of both approaches is performed based on

a number of case scenarios showing that a combination of both methods

could be advantageous. Finally, a supervisory control strategy for the fuel

system in a thermal power plant is outlined and discussed.
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Synopsis

Det liberaliserede europæiske energimarked fremmer billig og p̊alidelig el-

forsyning. Samtidig forsøger statslige institutioner at sænke energiforsynin-

gens indvirkning p̊a miljøet og fremme produktion fra vedvarende energik-

ilder s̊asom vindmøller. Uheldigvis kan produktionen fra s̊adanne kilder

variere uforudsigeligt, hvilket betyder, at den ønskede effekt ikke altid er

tilgængelig. Dette medfører at nu-og-her produktionskapacitet fra kon-

trollerbare enheder, s̊asom termiske kraftværker, hurtigt skal kunne ak-

tiveres for at sikre balance mellem forbrug og produktion.

I de fleste lande i det nordlige Europa udgør kulfyrede kraftværker p.t.

den største reserve af s̊adan kontrollerbar kapacitet; men disse værkers evne

til at køre hurtigt op og ned i last er begrænset, primært p̊a grund af d̊arlig

kontrol over brændselsindfyringen. Dette projekt har til form̊al at anal-

ysere vanskeligheder og mulige forbedringer i reguleringen af kulmøllerne

der h̊andterer indfyringen p̊a førnævnte kraftværker, for derigennem at

sikre en mere fleksibel produktion fra disse enheder. For at opn̊a dette,

er en regulerings-egnet kulmølle-model udledt og valideret. Modellen, som

er baseret p̊a varme- og massebalance, beskriver kulcirkulationen inde i en

mølle og brændselsflowet ud af møllen. Modellen er brugt til at udlede en

stabiliserende kontrol-lov baseret p̊a Lyapunov teori, der viser sig at opti-

mere et generelt performance-index. Regulatoren er testet gennem simu-

leringer og sammenholdt med en veltunet PID-regulator, og viser sig at

have bedre performance

Herudover er optimal supervisory control af kulmøller og olie-flow til

brænderne blevet undersøgt. Dette er et skeduleringsproblem, hvor kontin-

uerte producenter skeduleres i diskrete operationsfaser. Faserne er event-

drevne og underlagt tids- og produktionsmæssige constraints. To mulige

løsninger er blevet undersøgt: Mixed-integer linear programming og priced

timed automata. En kvalitativ analyse af begge fremgangsm̊ader er fore-

taget p̊a basis af en række scenarier, og indikerer at en kombination af

begge metoder kunne være fordelagtigt. Til sidst skitseres og diskuteres en

overordnet kontrolstruktur for brændselsindfyringen i et termisk kraftværk.
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Nomenclature

mc Mass of unground coal on the table [kg]
mpc Mass of pulverized coal on the table [kg]
mcair Mass of pulverized coal carried by primary air [kg]

wc Mass flow of raw coal to the mill [kg/s]
wpc Mass flow of pulverized coal [kg/s]
wout Mass flow of pulverized coal out of the mill [kg/s]
wret Mass flow of coal returning to the table [kg/s]

wair Primary air mass flow [kg/s]
∆ppa Primary air differential pressure [mbar]
Tin Primary air inlet temperature [◦C]
Tout Classifier temperature (outlet temperature) [◦C]
∆pmill Pressure drop across the mill [mbar]
E Power consumed for grinding [%]
Ee Power consumed for running empty mill [%]
ρm Coal moisture [%]

Lv Latent heat of vaporization [J/kg]
Cs Specific heat of a substance [J/(kg oC)] (s: {air, water, coal})
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1 Introduction
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1.6 Overview of the remaining chapters . . . . . . 18

The European energy market undergoes significant changes during the

recent years. Technological changes are necessary due to new governmental

policies enforced in many countries. Their goal is to ensure low production

costs through competition between utility companies (market liberaliza-

tion), and at the same time to reduce the environmental impact of the

generation (market regulation). Sustainable energy sources, such as sun

radiation, water flow or wind are highly desired to be used in the future

instead of fossil-fired power plants. Before this goal is achieved, the role

of conventional power plants is changing, and efforts are made to improve

many aspects of such plants. Due to growing share of electricity generation

from uncontrollable energy sources, such as wind power, the conventional

plants need to ensure the balance between production and consumption.

This introductory chapter gives motivation for the research project

based on problems experienced in the energy industry. The state of the

art is described to explicate the considered problem especially in terms of

physical design of the studied system, the roots of the problems, as well

as the previous developments in the area. Lastly, possible directions for

improvements are indicated and the scientific hypothesis is formulated.
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Introduction

1.1 Electricity generation

A liberalized energy market allows free competition between utility com-

panies pressing them to improve production efficiency in order to reduce

costs. At the same time regulations enforce strict laws which demand envi-

ronment friendly production. These actions stimulate technological changes

in the energy sector, which aim to significantly improve this industry.

The number of wind turbines and small combined heat and power

(CHP) units, which co-generate electricity and district heating, is con-

stantly increasing. Mølbak [2002] mentions that in Western Denmark such

non-controllable power capacity increased from 20% in 1980 to 70% in 2001.

A sudden decrease in energy production for example from wind parks must

be compensated by other (controllable) units, such that the balance be-

tween generation and consumption is restored. Such compensation is called

load balancing of the grid. We associate a term safety of the grid to a situ-

ation where the balancing can be ensured at all times, and there is no risk

of brownouts when supplies fall below demands, or blackouts when supplies

fail completely.

By flexibility of the grid we understand the ability to sustain and handle

load variations caused by changes in the generation or demands. Mølbak

[2002] remarks that the load-following capability of controllable plants be-

comes crucial and it is the most important issue in plant control nowadays.

This means that it is necessary to secure a backup capacity of generation

which is used when customer demands increase. Backup capacity relates

to the ability of increasing the electricity production quickly, such that the

balance is sustained. The necessary capacity can be obtained from hydro

power, which in many countries is limited due to the landscape, or thermal

power plants. With increasing integration of wind generation on the elec-

tricity grid, an important objective for many conventional plants becomes

to adjust the power production quickly, that is ensure the flexibility of the

grid. Studies by Weber et al. [2006] show that at a certain level further

increase of wind power leads to fuel saving, but it does not lead to signifi-

cant reduction in the thermal power plant capacity, which needs to be used

when supply from other sources decreases.

According to Mølbak [2010], the balancing problem can be divided into

power balancing and energy balancing problems. The division is depicted in

Figure 1.1, showing an actual wind park shut-down, which may be caused

by malfunction or simply due to wind speed decrease.

2



Electricity generation

Figure 1.1: Measured power generation from a wind park during a
shut-down and the division into power and energy balance [Mølbak,
2010].

In Denmark, the energy balance is ensured by day ahead Elspot1 and

intra-day Elbas2 power markets that operate with 24 and 1-2 hours time

horizons respectively. Those markets, which are based on forecasts, make

sure that a sufficient number of economically sound units are committed to

electricity generation. When the wind speed is low, the controllable units

and international purchases provide the required production capacity.

A company called EnergiNet.dk3 is responsible for the quality of elec-

tricity, which we called the power balance. In order to fulfill this task it

contracts ancillary services, that reserves and regulates power, from utility

companies. The Manual Regulation Reserve operates with 45 minute hori-

zon ensuring response in 5− 15 minutes, and they are contracted for long

1http://www.nordpoolspot.com/trading/The_Elspot_market/
2http://www.nordpoolspot.com/trading/The-Elbas-market/
3http://www.energinet.dk/EN/Sider/default.aspx

3

http://www.nordpoolspot.com/trading/The_Elspot_market/
http://www.nordpoolspot.com/trading/The-Elbas-market/
http://www.energinet.dk/EN/Sider/default.aspx


Introduction

periods of time with utility companies. Additionally Primary Regulation

Reserve and Automatic Regulation Reserve supported by Frequency Con-

trol, are fast response control capabilities that ensure the precise balance

[Bülow, 2006].

Recent advances in control of wind parks are driven by the desire to in-

corporate the renewable energy into power balancing systems. By adjusting

the pitch angle of blades in wind turbines at a wind farm, it is possible to

control the overall power and the quality of the generated electricity. It is

hoped that in the future such parks will be able to balance the production

power. Even in the cases where (nominal) installed generation capacity of

wind parks exceeds demands, there might be situations where it is not pos-

sible to ensure grid balance if the wind speed is very low. In this case low

wind speed means simply that the controllable units must be used. If the

change of the wind speed is sudden and significant, the intra-day markets

need to ensure the balance. Improved flexibility of power generating units

lowers the complexity of such a process and ensures higher safety of the

grid. This means that more renewable sources can be incorporated safely

in the grid.

1.1.1 Importance of thermal power plants

Thermal power plants are responsible for significant parts of electricity gen-

eration throughout the world. With the constantly increasing generation

from renewable forms of energy their role remains valuable, but the opera-

tion conditions are changing. The emphasis is on the dynamical properties

of power plants, as they need to assure the balance between generation and

consumption on the grid, especially in the countries where hydro power can-

not be used. This means that for thermal power plants, it becomes more

important and economically beneficial, to allow for effective production

controllability [Edlund et al., 2008]. Improvements of the existing tech-

nologies are required to ensure better flexibility of the grid and reduction

of emissions, thus performance optimization of individual thermal power

plants is crucial.

Coal-fired units are widely used mostly due to low cost, and because the

resources of coal are large, which allows production for many years [Flynn,

2003]. Coal units are prevalent in many countries, hence, it is desirable

to improve their operation and efficiency. In particular, units that utilize

coal grinders are of high interest as the fuel flow can be adjusted relatively

quickly, however, the complicated nature of the pulverization process is a

4



Coal-fired power plants

bottleneck that could be improved.

1.2 Coal-fired power plants

Primary Air

Secondary

Air

Pulverized

fuel

Turbine

Generator

Transformer

Cooling system

Feed water

Heater

Superheater

Economizer

Flue gas

Ash

Ash

Boiler

Feed water heater

Coal mills

Raw coal

Figure 1.2: Simplified schematics of power production process in
conventional power plant fired with pulverized coal [based on Laudyn
et al., 2007].

The core element of thermal plants is the steam generator called boiler.

Its characteristics influence the plant operation and the maximum gener-

ated power. The principle of operation is relatively simple; a controlled

water flow in the pipes installed in a boiler is heated up and steam is pro-

duced.

There are two distinctive boiler designs used [Kitto and Stultz, 2005].

The most common and simple is equipped with a steam drum, which is the

fixed point of steam separation from water (as depicted in Figure 1.2). The

other type of design, where the exact point of water and steam separation

is unknown, is called once-through steam generator.

Boilers are also categorized with respect to the layout proposed by the

inventor, for example Lamont, Benson, Sulzer, or Ramzin boiler [Laudyn

et al., 2007]. Another distinctions are associated with the steam generation,
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Introduction

namely the temperature of generated steam (superheated or not), or the

pressure of operation (subcritical or supercritical, where boiling no longer

occurs due to high pressure, i.e. above 22.1 MPa) [Kitto and Stultz, 2005;

Laudyn et al., 2007]. For example, many of the modern Benson boilers are

supercritical once-through superheated steam generators.

Thermal plants are categorized with respect to the fuel used to heat

up the boiler, that is fossil fuels, biomass or nuclear reactions. In fossil

fueled plants the combustion and flue gas cooling processes occur in boiler’s

furnace equipped with a set of burners located such that the flames heat

up the boiler uniformly. It should noted that certain plants allow changing

fuels, for example oil and pulverized coal, which gave rise to a study on

optimal fuel selection [Kragelund et al., 2010b,c].

Figure 1.2 shows a simplified schematic of a conventional power plant

equipped with a steam drum boiler with superheater and economizer fired

with pulverized coal. The principle of the Benson boiler design is very

similar. It has the superheater and economizer, but the water instead of

circulating in the boiler passes through the pipes only once, changes into

steam, and finally expands in the high pressure turbine.

The turbine is typically divided into three parts: high-, mid-, and low-

pressure. Similarly, the superheater consists of a few levels in which the

steam is superheated.

The role of the economizer is to preheat the feed water using the lower

temperature flue gas, such that the maximum heat is recovered, making

the steam generation process more effective.

An additional element that is sometimes used, but is not included in

Figure 1.2, is called a reheater. The steam that flows from the higher

pressure turbine to the lower pressure turbine, passes through the boiler,

extracting additional heat from the flue gas.

After passing through the turbines, the steam is condensed. The result-

ing water is cooled down in water towers or in large water reservoirs, such

as the sea, a bay, lake, or river. The turbine is mounted to the shaft of a

rotating generator, which is connected to the grid through a transformer.

1.2.1 Plant control

There are four control modes typically employed in power plants [Kitto and

Stultz, 2005]. We discuss them briefly in order to indicated the influence

of fuel control on the overall plant operation.

6
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Boiler-following control

The firing rate of the boiler is controlled to follow the turbine

response. The turbine control valve is positioned according to the

megawatt load to provide adequate generation, while the boiler con-

trol adjusts the steam production to restore appropriate throttle pres-

sure. As a result of such control, the load response is very fast, but

the throttle pressure control is less stable.

Turbine-following control

This control mode is opposite to the previously described; the

turbine response follows the boiler response. The firing rate is con-

trolled according to the megawatt load, causing changes in the throt-

tle level. The position of the turbine’s control valve is adjusted such

that generated power is appropriate. The response of such a system

is rather slow, however, the variance of the generated steam pressure

is lowered.

Coordinated boiler turbine control

A combination of the two previously discussed control modes,

which minimizes the disadvantages while preserving the advantages

of both methods. Megawatt load and throttle pressure are jointly

controlled by the boiler and turbine. This yields a stable steam pres-

sure while achieving relatively fast load response. The control of the

turbine valve provides fast response; at the same time pressure set

point is adjusted by the load error. When the nominal steam pressure

is achieved the turbine control valve is restored.

Integrated boiler turbine-generator control

In this mode the ratios of inputs, such as fuel flow to air flow,

or fuel flow to feed water flow are controlled by the automatic load

dispatch system to provide fast and efficient response.

From the analysis of the control modes it can be concluded that, to

some extent, the boiler acts as a buffer with stored energy, which is then

used in the turbine-generator system. Accurate fuel flow control allows

fast megawatt response either indirectly by ensuring higher stability of

the steam pressure variance in the boiler-following mode, or directly by

contributing to the megawatt generation quickly in the turbine-following

mode. This means that changes in the megawatt load can be compensated

7
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more rapidly. We have defined this property as flexibility of the production.

Moreover, better fuel flow control leads to higher efficiency of the plant

due to lower energy waste in through the turbine valve and lower fuel

consumption obtained from more precise control.

An important bottleneck in the operation of coal-fired power plants par-

ticular kind of plants, is the coal pulverization process, which gives rise to

slow take-up rates and frequent plant shut-downs compared to the oil fired

plants [Rees and Fan, 2003]. In typical coal fired power plants, there are

4-10 coal mills providing fuel to a boiler (Figure 1.2). The control problems

arise from the lack of good sensors for measuring the output of pulverized

fuel from each mill. The input mass flow of the raw coal to the mill is dif-

ficult to measure as well; typically, the conveyor belt speed is used for this

purpose. Additionally the varying coal quality, e.g. Hardgrove Grindabil-

ity Index (HGI) and moisture, of coal fed to the mills varies, and general

mill wear causes parameter changes [Fan et al., 1997]. Due to these fac-

tors, control algorithms for the mills tend to be simplified and conservative,

yielding poor performance when load demands change or when mills are

started or shut down. The air and fuel ratio is difficult to control outside of

the steady state operation, which leads to increased emissions. Advanced

control strategies using pulverized fuel flow estimation or measurements

could significantly improve the performance of plants; in fact performance

close to oil fired power plants can be achieved with improved coal mill con-

trol according to [Rees, 1997]. Furthermore, the grinding process, which

consumes a significant amount of energy, can be optimized, leading to more

efficient generation.

1.3 Coal pulverization

Coal mills grind raw coal to dust, which is mixed with air in a suitable

ratio, before being combusted in the steam-producing boiler furnaces. Be-

cause the coal dust is highly inflammable it cannot be buffered and must

be used directly.

There exist a few types of coal pulverizers among which ball-race and

vertical spindle roller types are the most often used. The principle of op-

eration of both mills is similar, thus only the roller mill is described (Fig-

ure 1.3).

In the pulverization process, the raw coal is dropped from a bunker

8



Coal pulverization

Coal bunker

Primary

Grinding table

Rollers

Rotating

Feeder belt

Fuel and air

classifier

mixture

air flow

Figure 1.3: Overview of the coal pulverization process with MPS
type mill (air-swept, pressurized, vertical spindle, table/roller mill)
[Kitto and Stultz, 2005].

onto a feeder belt and it is transported to the coal mill. The mass feed

flow is controllable as the belt speed can be changed. The coal falls onto a

rotating table inside the mill. Rollers crush the coal into powder and the

fine particles are picked up by primary air, which enters the mill from the

bottom. The primary air is heated, such that it can dry the coal, which

initially contains water.
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Coal particles are transported with the air upwards toward the outlet

pipes. Heavy particles, whose size is too large, drop onto the table for

regrinding. Often, an additional rotating classifier, constructed from a

number of blades, is installed. Its role is to reject coal particles that would

normally escape the mill. By controlling the angular velocity it is possible

adjust the acceptable size of particles in the fuel flow.

The pulverization process is a highly nonlinear and uncertain process.

The hope is that some of the problems related to the coal grinding can be

alleviated with model based control [Andersen et al., 2006], especially with

the more accurate fuel flow estimates.

Improved mill control is becoming feasible, because sensors for coal

flow measurement from the mill to the furnace have become available on

the market [Department of Trade and Industry, 2001; Laux et al., 1999;

Blankinship, 2004]. Yet, the equipment tends to be expensive and requires

frequent calibration, thus for some time it was not possible to use it directly

for the control purposes. A recent study by [Dahl-Sørensen and Solberg,

2009] shows that it is possible to acquire good estimates of the pulverized

fuel flow from such sensors by means of sensor fusion using Kalman filter

techniques. In that work the authors combine information about the feeder

speed with the available, but biased and unreliable pulverized fuel sensors

in the Kalman filter design. They have successfully implemented and used

the filter on all coal mills in two Danish power plants.

Let us study the state-of-the-art control of coal pulverization with raw

coal flow feedback, in comparison to the controller with available fuel flow

reference, based on the following example.

Motivating example - PID fuel control

The motivating example strives to demonstrate the room for improvements

with the use of a more accurate control through the simulation study. As

mentioned previously, due to the problems with unreliable and expensive

fuel flow sensors, current control implementations use the feeder belt speed

instead of the pulverized fuel measurement. Since the fuel flow is equal to

the raw coal flow in the steady state, the control structure is justified, how-

ever, it yields poor performance. Fortunately, due to the recent advances

in fuel flow estimation from biased sensors described by Dahl-Sørensen and

Solberg, more accurate control techniques can be adapted. They have suc-

cessfully implemented, in a Danish power plant, a PID-type controller with

the obtained fuel flow estimate.
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In the following example, the state-of-the-art and the improved PID-

type controllers (both structures depicted in Figure 1.4) are compared. The

controllers are tunned using the procedure implemented inMatlab/Simulink;

the obtained parameters are summarized in Table 1.1. They are simulated

with a nonlinear model of a coal mill.

−

+
PID Feeder belt Coal mill

fuel
reference raw coal fuel flow

Figure 1.4: Two feedback variants analyzed in the motivating ex-
ample.

Fuel flow Feeder belt

P gain 16.67 2.84
I gain 0.26 0.40
D gain 283.53 −7.50
D filter 14.58 0.38
back-calculation coefficient 0.02 0.02

overshoot 5.35 % 5.72 %
rise time 10.4 s 7.7 s
settling time 50.4 s 23.0 s

Table 1.1: Parameters of the PID controllers used in the compari-
son, and the corresponding system performance.

Looking only at the performance characteristics of both controllers one

may have the impression that the controller with feeder belt feedback is su-

perior. Such comparison is not viable because the controllers are tuned for

different systems. As demonstrated in Figure 1.4, the PID controller that

utilizes fuel flow measurement is tuned for the overall system (linearized

around an operating point corresponding to the fuel flow of 7 [kg/s]), while

the feeder belt PID is tuned only for the actuator dynamics.

To compare both controllers a test signal, consisting of various step

and ramp elements is used. Simulations are performed with a nonlinear

11
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model of the system, in a noise-free environment, and with actuators that

exhibit saturation, hence, the controllers have an anti-windup strategy im-

plemented [Kothare et al., 1994]. The results of the simulations are pre-

sented in Figure 1.5.

As can be seen from the plots, the fuel flow controller tuned for lin-

earized system outperforms significantly the state-of-the-art control strat-

egy used in plants. For the tested reference signal, the fuel flow error is

reduced by half with the use of the fuel measurements. At the same time

the required energy for grinding was reduced slightly (by 0.9 %). Such poor

fuel control results in very conservative overall control of coal fired power

plants. This is confirmed in practice by the fact that the same power plant

fired with oil typically is allowed to handle two times steeper gradients than

when fired with coal.

1.3.1 Supervisory control

The studied problem is not limited merely to the previously mentioned

factors. There is a secondary top-level control problem that needs to be

solved, since the grinding is performed on multiple mills. Depending on the

megawatt load it is necessary to start or stop some of the pulverizers. The

mills, however, demand special start-up and shut-down procedures which

require time, they pose safety hazards, and lead to fuel waste. Operators,

based on their experience and the maintenance schedules, decide when a

certain coal mill needs to be running. Optimization of these routines, which

leads to a supervisory controller design for the fuel system, motivates the

study on possible solution approaches.

The complexity of the problem is very high. It belongs to the class of

problems that in the literature is called NP-complete (nondeterministic

polynomial), which refers to problems for which deterministic polynomial

execution time solution algorithms are not known. The existing solution

methods to this problem suffer from so-called state explosion. This means

that the algorithms have to search through a large number of possible con-

figurations to find a solution, and there is no way of discarding intermediate

configurations on the way. Nevertheless, it is interesting to compare some

of the formulations to determine their characteristic features, and to judge

the usability in this or similar contexts.

Scheduling problems occur in many applications, and have been inves-

tigated intensively from both theoretical and practical points of view [Pan-

walkar and Iskander, 1977; Rodammer and White, 1988]. The applications
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Figure 1.5: Motivating example for advanced control strategy of
the fuel flow. Comparison of the present PID control with feeder
belt feedback and the PID control utilizing fuel flow measurements.

are driven by desires to achieve favorable positions on the competitive mar-

kets or by the need to use limited resources efficiently. Scheduling problems
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Supervisory controller

Mill #1

Mill #2

Mill #i

Furnace

production
demands (pd)

predicted
demands (p̂d)

p1

p2

pi
pi ref

p2 ref

p1 ref

Figure 1.6: The supervisory controller is responsible for deciding,
in an optimal way, the production levels for each coal mill, based on
the predicted and actual production demands. It needs to account
for distinct stages of operation, such as start-up and shut-down pro-
cedures.

tend to be quite different in nature, however, and thus solution techniques

that are suitable for one class of problems may not be effective for others.

Probably the most widely investigated scheduling problems are shop

problems (job-shop, open-shop, flow-shop) [Panwalkar and Iskander, 1977],

scheduling of batch plants and crew assignment problems. In those prob-

lems, components are processed on machines to form a final product, chem-

icals are mixed according to the desired recipé, or people are assigned to

machines or rooms. The class of problems we investigate in this paper has

a different nature than these ones. Here, there is a number of Producers

which continuously supply a product to the Consumers. The producers

may be disabled, enabled or controlled, in order to fulfill the consumers’

demands. The demands change over time, hence, it is required to ad-

just the production from producers accordingly. In order to minimize the

cost of production and save resources, it is required that the producers are

14
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scheduled for operation and controlled in an optimal way. It needs to be

determined how many producers should be enabled, as well as, what should

the production level from each of them be.

Two very important applications of this class of problems are found in

the energy industry. The first is associated with the control of the pro-

duction rate of coal mills in thermal power plants, while the second is

encountered at the Transmission System Operator level, where in needs

to be decided which units (power plants) should be committed for opera-

tion (the so-called Unit Commitment (UC) problem [Padhy, 2004; Salam,

2007]). Both problems have their own characteristics, but belong to the

class of problems we investigate.

The objective for UC is to schedule an optimal configuration of power

plants to ensure generation according to the demands. Plants have different

costs of production, start up and shut down. Additionally there are restric-

tions on the minimum run time and the shut down time. UC is typically

formulated as static optimization problem, and thus, it differs from the coal

mill assignment problem, both, by taking into account the dynamics of the

production, and the time scale.

Let us use the following quote from Rees and Fan [2003] as a concluding

point of the introductory problem description and motivation

An area of power plant control that has received much less atten-

tion from modeling and control specialists is the coal mills. This

is in spite of the fact that it is now accepted that coal mills and

their poor dynamic response are major factors in the slow load

take-up rate and they are also regular cause of plant shut-down.

1.4 Scientific hypothesis

This section sums up previously discussed aspects of a problem met in

energy industry in order to formulate a scientific hypothesis that is inves-

tigated through the dissertation.

Electricity production is a major environmental and economic factor

which in recent years has been undergoing significant changes leading to

complicated control and optimization problems. For various reasons, in

many countries, the backbone of the production is still coal-fired power

generation plants. It becomes safety-critical and economically beneficial

to increase the flexibility of thermal power plant generation. There are
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potentially significant improvements of the fuel system control in coal-fired

units, which at the moment allow for limited power generation change rates

largely due to poor coal grinding control. The coal dust from the mills is

typically fed directly from mills to the burners instead of being stored due

to risk of explosion.

To summarize, the motivation for the work comes from the energy in-

dustry that undergoes significant changes in these years. Two main areas

of research are identified for which improvements are sought. Both of them

deal with the fuel flow control in power plants which relates to the flexibility

and efficiency of the electricity grid. The flexibility is crucial for increased

wind power generation, and the fuel efficiency relates to decreased emis-

sions and higher profits for the plant owners. From the control point of

view two levels of operation are concerned – individual coal mill control

and a top-level supervisory control of an assembly of mills.

The load following capabilities of coal fired power plants are directly

linked to variable production capabilities of mills, thus, we state the hy-

pothesis

The coal pulverization process, that affects the load following

capabilities and efficiency of the considered class of power plants

can be significantly improved by

I applying more sophisticated control methodologies based on

a suitable coal mill system model

II introducing automated supervisory control of production

rates and mill commissioning

The following criteria for the hypothesis validation are considered

I A simulation study that compares a more sophisticated control strat-

egy to the state-of-the-art PID-type control used in the industry. The

performance of both controllers is measured with respect to

- Fuel control performance - measure of the integrated fuel error

- Efficiency - measure of the energy consumption used for grinding

- Risk of choking - measure of the amount of coal in the mill

- Robustness - evaluation of the other performance criteria for per-

turbed system parameters

using a representative reference test signal.
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II This part of the hypothesis is validated by developing an algorithm

that finds an optimal switching sequence for a number of mills and

reasonable optimization horizon.

1.5 Contributions

A summary of the contributions of this work is listed below. It serves

the purpose of giving an overview of the content presented in the thesis.

(1) Derivation of a coal mill model suited for control application as an

extension of previous developments. The model includes heat balance

and coal particle circulation in a mill, and has a reasonable number

of model parameters. The varying angular velocity of the rotating

particle classifier is included in the model, which affects the fuel flow

and coal circulation. Differential Evolution (DE) algorithm is validated

as parameter identification method for the model [Niemczyk et al.,

2009].

(2) The model is validated using two types of coal mills. It is observed

that the model captures the dynamics of both types well, in spite of

being of low complexity, making it a good control-oriented model. The

parameters found with the DE algorithm for the different pulverizers

are similar, which is a good indication that the model and the identi-

fication method are suitable for the problem at hand [Niemczyk et al.,

2011].

(3) State estimation and control methods for bilinear systems are applied

to the investigated problem. Simulations of the proposed controller

show that it is possible to achieve a more accurate and energy-efficient

operation of the process, in comparison to a well-tuned PID-type con-

trol. A simulation-based parameter sensitivity analysis of both con-

trollers is performed, showing that the performance advantages may

be lost in case of poorly identified system parameters. On the other

hand, the PID-type controller is very robust to parameter uncertainties

[Niemczyk and Bendtsen, 2011].

(4) Stability of an augmented system composed of a bilinear and linear

systems is investigated. Such structure corresponds to the coal mill

controlled through actuators with linear dynamics. It is found that a
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local coordinate transformation is nontrivial, however, it is proved that

the control law for bilinear systems globally asymptotically stabilizes

the augmented system provided certain requirements are satisfied.

(5) Optimal control problem based on Pontryagin’s Maximum Principle

is studied. The controller for the system with actuators is calculated,

such that desired cost function, which corresponds to the verification

criteria of the hypothesis, is minimized.

(6) Two formulations for optimal scheduling of continuous producers, such

as coal mills, are discussed. The classical and well-known mixed in-

teger linear programming (MILP) problem formulation is presented.

Priced timed automata (PTA) model of the scheduling problem is de-

veloped, and used with a model checking tool, to find optimal results.

Qualitative comparison study of both approaches is performed based

on quantitative data obtained from solving the problem, for various

production scenarios.

(7) A supervisory controller strategy, which generates schedules for the

fuel system of a thermal power plant fired by pulverized coal and oil,

is discussed as an extension of a knowledge base operator support sys-

tem (KBOSS). The strategy is realized in a receding horizon fashion.

Application related constraints are discussed. Suboptimal strategies

for solving the problem are analyzed. Post-processing methods for im-

proving the obtained schedules are described.

1.6 Overview of the remaining chapters

The second chapter relates our work to relevant results obtained pre-

viously in the research areas. In particular, literature on modeling and

control of coal mills, and on optimization and supervisory control related

to power plant fuel systems, are presented.

The next two chapters deal with the problem of modeling and control

of a coal mill. A suitable mathematical model of the system is derived

and validated against the collected plant data. Theoretical and practical

aspects of control, such as stability, optimality, and control performance,

are discussed in Chapter 4. In that chapter, we first consider a simplified

model, which does not include actuator dynamics, and later we extend the

study to the system with actuators.

18



Overview of the remaining chapters

Chapters 5 and 6 are devoted to the topic of optimal scheduling of

continuous producers, with application to a supervisory control of a fuel

system consisting of coal mills and oil injectors. Two problem formulations

are presented and compared. Practical aspects of the supervisory control

and receding horizon algorithm are discussed.

The outcome of the thesis is summarized in Chapter 7. The scientific

hypothesis is verified, and the necessary steps, leading to improved power

plant control, are described. Some of the interesting research directions,

which could not be pursuit due to the time limitations, are discussed as

perspectives.

Finally, the bibliographical list of cited publications is given. Addition-

ally, the principles of Differential Evolution algorithm are described in the

appendix.
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In this chapter an overview of relevant results in the studied area is

given. The chapter is divided into two main parts. First part presents

development in the area of coal mill modeling and control. It includes an

overview of the existing models which could potentially be useful in the

area of automatic control, and presents the previously developed coal mill

models.

Second part is devoted to related studies in the area of scheduling and

supervisory control, from the application perspective and the employed

methods.

The aim is to indicate relevant advances upon which this thesis is based.

Some of the results are presented in more details along with the more

detailed problem description in Chapters 3, 4, 5, and 6.

2.1 Control of a coal mill

This part describes historical development in the area of coal mill mod-

eling and control. It should be noted that none of the authors of the

referred publications use the accurate information obtained from the fuel

flow measurements, as it is possible now thanks to Dahl-Sørensen and Sol-

berg [2009]. In the related work the fuel flow is often estimated from other
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measurements, for example oxygen concentration in the flue gas.

2.1.1 Modeling

In general, the existing models can be roughly divided into two categories,

simulation models and control oriented models. In some cases the division

is not very clear. Authors sometimes suggest model-based control strategies

for relatively complex models. However, complicated models, with a large

number of difficult to estimate parameters are generally not well suited for

controller implementation in a power plant. They require implementation

of accurate on-line parameter identification techniques, and they are diffi-

cult to tune by the plant crew, which needs to be done regularly. Therefore,

there is a strong motivation for investigating an adequate, relatively simple

model, with few parameters, as basis for development of advanced control

strategies for individual mills.

Coal mill models can trace their roots back to the early 1940’s where

several groups of researchers worked on the mathematical modeling of mills

and the development of grinding theory. The outcome of the early work

on the subject is reviewed and compared by Austin [1971]. The purpose of

that survey is to show similarities and differences between early modeling

approaches and form a more uniform description. In order to do this, the

author presents the model equations from various sources using common

nomenclature. The main point of interest in this paper is mathematical

description of coal size reduction as a rate process.

Neal et al. [1980] perform a frequency analysis of mill and boiler com-

plex, and analyze its effects on the steam pressure. This leads to simple

transfer function plant models. Similarly, Bollinger and Snowden [1983]

perform an experimental study of a mill’s transfer functions in order to

devise feedforward controllers. The identification process was done for the

transfer functions between coal flow, cold air mass flows, and hot air mass

flows, to discharge temperature, and total air mass flow.

Detailed models of the coal pulverization process in a mill is presented

by Austin et al. [1981, 1982a,b], Robinson [1985] and Corti et al. [1985].

These studies investigate the internal dynamics of the pulverizing process,

i.e. coal breakage (particle distribution), pneumatic transportation and

classification process.

Austin et al. in their series of papers (1981; 1982a; 1982b) analyze a

ball-and-race mill. In the study they derive a detailed model based on a

scale-up of the Hardgrove mill to an industrial mill.
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Robinson [1985] classifies 15 particle sizes in six internal regions, leading

to a detailed model composed of 76 ordinary differential equations. The

model describes the physical phenomena associated with coal pulverization

very well; however, due to its complexity it is difficult to use for control

purposes.

Corti et al. [1985] develop a simulation model by treating breakage

phenomena as a continuous process and introducing the concept of breakage

velocity. Simulation models for steady and transient operations were also

presented by Sato et al. [1996] and Shoji et al. [1998].

More control-oriented models have been presented by Kersting [1984],

Fan and Rees [1994], Palizban et al. [1995], Rees and Fan [2003], Zhang

et al. [2002] and Wei et al. [2007].

Kersting [1984] divides the process into three sub-models (grinding,

pneumatic conveying and classification) and uses pressure drop measure-

ments to validate the model.

Palizban et al. [1995] consider two sizes of coal particles in a mill. They

consider mass balance only, and a static classification process. The derived

model is seventh order nonlinear system with two inputs and two outputs.

In addition to the model they have presented a Receding Horizon Control

strategy for the mill.

Fan and Rees [1994]; Rees and Fan [2003] describe mass and heat bal-

ance as well as the grinding power consumption. The results of the work

are very encouraging, although it is noted in Rees and Fan [2003] that very

extensive parameter identification and verification is required, e.g. new and

worn mills, various load conditions, various coal calorific values and mois-

ture. These authors propose various control strategies including one that

uses pulverized fuel flow measurements/estimates.

Zhang et al. [2002] andWei et al. [2007] present a gray-box type model of

a coal mill. They investigate only two particle sizes: raw coal and pulverized

coal. The mass balance equations are similar to those by Palizban et al.

[1995], but are further simplified. The advantages of their model are low

order, fewer parameters with a suitable method for their identification, and

the generic properties, i.e. similar types of mills might be described by the

model.

Our modeling approach, which is presented in the next chapter, is in-

spired by Palizban et al. [1995] and in particular that of Zhang et al. [2002]

and Wei et al. [2007]. We use the latest measurement technology for mea-

suring pulverized fuel flow from mills for model validation. The result-

ing model should allow implementation of a multivariable control strategy,
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which would improve the overall power plant control in the load balancing

problem.

2.1.2 Controller design

Most of the existing mill controllers in the power industry are tuned based

on the simplest first and third order models of the coal pulverization pro-

cess [Austin, 1971; Neal et al., 1980; Bollinger and Snowden, 1983]. For a

long time they performed sufficiently good in relation to the operating con-

ditions of coal plants. With the new environmental regulations and market

liberalization, the objectives have changes, and the control of power plant

processes needs to be improved. According to Rees [1997] a performance

close to that of oil fired power plants can be achieved with improved coal

mill control. It should be noted that the large uncertainties associated

with the pulverization are handled safely by PI controllers, and that such

controllers are relatively easy to maintain.

In addition to the prevalent PID-type strategies implemented in plants,

other control methods have been studied. Cao and Rees [1995], Cai et al.

[1999], and Lu et al. [2002] propose various extensions of the classical con-

trollers, such as decoupling controllers, utilizing fuzzy logic principles.

O’Kelly [1997] described a robust receding horizon controller based on a

locally linearized models of the system, computed at each control iteration.

He continuous the previous development on the model predictive control

(MPC) by Palizban et al. [1995]. O’Kelly assumes that the pulverized coal

flow measurements, mill differential pressure, and mill outlet temperature

are available.

Rees and Fan [2003] discuss the most prevalent control strategies, namely

PID-type controllers, for the coal mills, and investigate the advantages of

fuel flow measurements, similarly to what we have done in the motivating

example in Chapter 1.

Andersen et al. [2006] propose an observer based cascade control con-

cept with the use of Kalman filter to estimate the pulverized fuel flow from

the oxygen measurements of combustion air flow. They study the influence

of such estimate on the power plant control, concluding that using such

feedback gives better disturbance rejection capability.
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2.2 Supervisory control of a fuel system

This part presents an overview of the related work in the area of a fuel

system supervisory control in a thermal power plant.

2.2.1 Supervisory control

One of the objectives for the project is to investigate the potential improve-

ments and automation of the switching strategy for the coal mills operating

in a plant. Currently the number of mills in operation is decided by plant

operators based on the predicted power generation. In a special case, when

significant increase in megawatt load is expected compared to the predicted

production demands, the Transmission System Operator (TSO) may ask

the crew to start up another mill. The efficiency of the power plant is

related to the number of mill-hours of operation needed to fulfill the pro-

duction goals, as well as, the amount of fuel wasted in the start up and shut

down sequences. The efficiency may be improved if precise information on

the start and stop events is given to the operators for consideration. More-

over, the supervisory controller should decide, in an optimal way, about

the coal flow set-points for each mill or any other fuel flow if it is available.

A knowledge based operator support system (KBOSS), which could be

extended with the ability to inform and advise the plant crew about mill

operation, is presented in Fan et al. [1997]; Rees and Fan [2003]. If the

devised strategy is successful, it could directly act upon the mills, yielding

more efficient and predictable control of the plant. The original KBOSS

is designed to optimize the individual mill control, rather than the whole

group of mills, thus, our methods for optimal switching could add value to

the system.

An interesting results on optimal fuel selection in power plants has been

published by Kragelund et al. [2010b,c]. In that work authors analyze situ-

ation where three different fuels with various costs and characteristics can

be mixed. The goal is to choose the optimal mixture of fuels to maximize

profits. Those results, however, differ from our approach, where distinct

discontinuous phases of operation driven by events are analyzed. There-

fore, different methodologies associated with discrete event systems need

to be applied to our problem.

Supervisory control theory for discrete event systems is due to Ramadge

and Wonham [1984]. The framework allows to generate the controller auto-

matically based on formally specified requirements. The models and spec-
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ifications are given in form of finite automata and the associated formal

languages. There are two kinds of events that the plant exhibits, i.e. con-

trollable and uncontrollable. The goal for the supervisor is to prevent the

plant from entering into bad states which are either blocking states, from

which desired states cannot be reached, or non-controllable states, that may

generate uncontrollable events [Pinzon et al., 1999]. In our case, however,

the supervisory controller has different objective. Instead of preventing cer-

tain actions we wish to find the optimal combination of events to guarantee

that the overall production rate is satisfied at all time.

2.2.2 Optimal scheduling

The problem of optimal scheduling of mills for the supervisory controller

driven by discrete events has not been studied in detail so far. Many so-

lution methods have been studied for Unit Commitment (UC) problem,

which shares some similarities, but is limited to static optimization. The

approaches have been summarized in Padhy [2004] and Salam [2007]. In

general, the methods fall in two groups based on the solution quality – op-

timal or suboptimal. The problem of finding the optimal solutions suffers

from great complexity; it is NP-complete, i.e., no polynomial-time solu-

tion algorithms exist. Guan et al. [2003] prove that the UC problem is

NP-complete by setting specific values for the problem and thus obtaining

a well-known partition problem, which has this complexity. As a conse-

quence, suboptimal methods are often employed in practice. Representa-

tives of the first group are Dynamic Programming (DP) [Snyder et al., 1987;

Hobbs et al., 1988; Al-Kalaani, 2009] and Mixed Integer Linear Program-

ming (MILP) [Dillon et al., 1978; Carrion and Arroyo, 2006; Guan et al.,

2003; Delarue and D’haeseleer, 2008] methods. Because of the computa-

tional burden associated with Dynamic Programming, the method is often

adjusted and used to find near-optimal solutions, thus reducing the prob-

lem complexity. For the same reason MILP optimization can be stopped

when the cost value is sufficiently close to the value of the relaxed problem,

which becomes a Linear Problem (LP).

Another useful and commonly used method, which provides near-optimal

results, is Lagrange Relaxation (LR). This approach benefits from relatively

easy modeling possibilities and provides a quantitative measure of the so-

lution quality [Guan et al., 2003].

Also, various heuristic and hybrid methods have been applied to UC

throughout the years [Ouyang and Shahidehpour, 1990; Kazarlis et al.,
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1996; Juste et al., 1999; Mantawy et al., 1999; Cheng et al., 2000].

In this thesis, we formulate the optimization problem using Quantitative

Model Checking framework [Behrmann et al., 2005], which has its roots

in the theory of timed automata [Alur and Dill, 1994; Bengtsson and Yi,

2004]. The timed automata framework has been applied to various job-

shop and batch scheduling problems [Abdeddäım et al., 2006; Behrmann

et al., 2005; Subbiah et al., 2009; Larsen et al., 2001], but to the authors’

best knowledge, such methods have not been used for the UC problem yet.

We compare the modeling effort and computational burden of QMC

with the MILP formulation, which is the classical and well known approach.

It is clear that both methods are applicable, so we cannot expect to find

a winner. Our more modest hypothesis is that the performance of the

methods depends very much on the profiles of the problem to be solved.

Therefore the contribution is a qualitative study of both methods with the

use of quantitative data obtained from carefully selected simulations.

An interesting approach for optimization of event-driven hybrid systems

with integral dynamics is presented in [Di Cairano et al., 2009]. Di Cairano

et al. introduce a class of systems called integral continuous-time hybrid au-

tomata (icHA). The proposed control strategy for such systems is based on

model predict control principle, where the optimization problem is formu-

lated as mixed-integer program. The systems are modeled as continuous

time, however, the modes of operation can only change in discrete time,

that is at sampling instances. This may lead to mode-mismatch errors, if

the sampling time is relatively large, but on the other hand it helps to re-

duce pathological effects such as Zeno behavior. Although this description

is very neat and fits our problem well, it was not analyzed in details due to

time limitations of the project.

27





3 Coal mill model

Contents

3.1 Model characteristics . . . . . . . . . . . . . . 30

3.2 Model equations . . . . . . . . . . . . . . . . . 33

3.3 Parameter estimation . . . . . . . . . . . . . . 35

3.3.1 Practical considerations . . . . . . . . 37

3.4 Model verification . . . . . . . . . . . . . . . . 38

3.4.1 Primary data - STV4 . . . . . . . . . . 38

3.4.2 Suboptimal parameters . . . . . . . . . 40

3.4.3 Different type of coal mill . . . . . . . 41

3.4.4 Mill start up and shut down . . . . . . 41

3.4.5 Parameter change . . . . . . . . . . . . 43

3.5 Plant model . . . . . . . . . . . . . . . . . . . 48

3.5.1 Nominal operation . . . . . . . . . . . 49

3.5.2 Actuators . . . . . . . . . . . . . . . . 50

3.5.3 Reduced state observer . . . . . . . . . 51

3.5.4 Implementation . . . . . . . . . . . . . 53

3.6 Chapter summary . . . . . . . . . . . . . . . . 54

The chapter presents development and validation of a coal mill model

to be used for improved mill control, which may lead to a better load fol-

lowing capability of the power plants. The model is relatively simple, yet

it captures all significant mill dynamics. The model is validated using data

from four mills of two similar types produced by different manufacturers.

In the validation, model parameters are estimated using an efficient evo-

lutionary algorithm called Differential Evolution. The model parameters

are similar and the simulation performance is satisfactory for all four mills,

indicating that the model structure can be trusted.
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3.1 Model characteristics

The model presented in this chapter is based on the assumptions from

Rees [1997] and Ljung [2008]. Rees [1997] claims that it is not necessary to

have a very accurate model of the process when using multivariable plant

models or receding horizon control techniques for solving the load following

problem. Additionally Ljung [2008] presents a measure of model fitness

which combines both the chosen fit measure and a complexity penalty.

According to the basic principle “Nature is simple”, it is more likely that

good performance will be achieved using a simple rather than a complicated

model. Ljung gives the following requirements for a ‘good’ model must

fulfill:

1. the model should agree with the estimation data,

2. the model should not be overly complex.

Besides the good performance of the model, which means that it repre-

sents the physical phenomena well, it is very beneficial for this particular

application to:

3. have a universal description suitable for similar mill types from vari-

ous suppliers, if possible,

4. allow easy estimation of mill parameters (preferably on-line due to

mill wear).

The proposed model fulfills the above criteria. It is inspired by the

model presented by Wei et al. [2007], but it differs significantly in certain

key aspects, e.g. a rotating classifier is included and the mill temperature

equation is based on first principles. The resulting model is a grey-box

model based on physical knowledge and parameter identification methods.

A simplified design schematic of a so-called MPS mill sometimes called

roller mill, and the corresponding nomenclature is presented in Figure 3.1,

while the diagram in Figure 3.2 shows the particle circulation in the mill.

The principle of operation can be summarized as follows. Raw coal is

transported on a conveyor belt and dropped into the mill, where it falls

onto a grinding table and is crushed by rollers. Primary air, blown from

the bottom of the mill, picks up fine coal particles and transports them

into the classifier section. Only the finest particles escape the mill, whereas

the rest falls back onto the grinding table. For rotary classifiers, which
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are constructed from a number of blades attached to a vertical axis of

rotation, it is possible to control the angular velocity and thereby, if needed,

increase the amount of coal escaping the mill quickly; one simply allows

larger particles to pass through the classifier. The particles that drop onto

the table are reground.

E

mpc

∆pmill

Tout

Tin

wair

∆ppa

mc

mcair
wret

wpc

ω

win wout

Figure 3.1: Overview of an MPS mill design (air-swept, pressur-
ized, vertical spindle, table/roller mill) [Kitto and Stultz, 2005].

The equations have been derived mainly for nominal grinding operation

of a mill, but they also capture the start up and shut down dynamics

well. The main part of the model is the coal particle circulation, which is

presented in Figure 3.2.

The following assumptions are made:

� Coal in the mill is either pulverized or unpulverized, i.e. different

particle sizes are not considered. Variations of the mass of coal parti-

cles (e.g. depending on the moisture content) are not included in the
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Raw coal in bunker

� ambient temperature Ta

� coal moisture ρm

Pulverized coal out of the mill

� outlet temperature Tout

� moisture evaporated

mcair - mass of coal
suspended in air

mc - mass of unpulverized
coal on the table

mpc - mass of pulverized
coal on the table

raw coal

grinding

pneumatic
transport

fuel flow

large particles

Figure 3.2: Coal particle circulation in a mill.

model.

� The temperature of the mill is assumed to be the same as the tem-

perature of the classifier.

� Heat emitted from the mill to its environment is negligible.

� The mass change of coal causes insignificant change in the total heat

capacity of the mill (k11).

� The ambient temperature (temperature of raw coal entering the mill)

Ta, coal moisture ρm and latent heat of vaporization Lv are known

constants.

In the following sections the equations describing a coal mill, and a

suitable parameter estimation procedure are presented. Parameter estima-

tion is based on Differential Evolution algorithm [Storn and Price, 1995;

Price et al., 2005; Feoktistov, 2006; Ursem and Vadstrup, 2003], which is

described in Appendix A. Section 3.4 presents validation of the model

against data obtained from mills utilized in Danish power plants.
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3.2 Model equations

The mass of coal to be pulverized depends on the mass flow of the raw

coal, win, the return flow of the particles rejected by the classifier, wret,

and the grinding rate which is proportional to the mass of raw coal on the

grinding table, mc.

d

dt
mc(t) = win(t) + wret(t)− k1mc(t) (3.1)

The mass of pulverized coal on the table, mpc, depends on the grinding

rate and the amount of coal picked up by the primary air from the table,

wpc, (pneumatic transport).

d

dt
mpc(t) = k1mc(t)− wpc(t) (3.2)

The mass of particles in the pneumatic transport upwards in the mill,

mcair, depends on the mass flow of coal particles picked up from the grinding

table, the fuel flow out of the mill, wout, and the return flow of rejected

particles to the table.

d

dt
mcair(t) = wpc(t)− wout(t)− wret(t) (3.3)

The mass flow of pulverized particles picked up by the primary air flow,

wair, to be transported towards the classifier is proportional to the primary

air mass flow and the mass of pulverized coal on the table.

wpc(t) = k5wair(t)mpc(t) (3.4)

The mass flow of pulverized coal out of the mill is proportional to the

mass of coal lifted from the table and depends on the classifier speed, ω.

wout(t) = k4mcair(t)

(

1−
ω(t)

k6

)

(3.5)

where 0 < ω(t) < k6. k6 has the same unit as ω, making the term
(

1− ω(t)
k6

)

a dimensionless rating factor.

The mass flow of coal returning to the grinding table is proportional to

the mass of coal in the pneumatic transport mcair.

wret(t) = k9mcair(t) (3.6)
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The pressure drop, ∆pmill, across the mill depends on the differential

pressure of the primary air, ∆ppa, and the amount of coal suspended in

the air. During normal operation, the mill pressure drop is predominately

proportional to the primary air differential pressure and a small change

in coal mass does not affect the pressure drop significantly. Also, when

the coal mass becomes zero, the pressure drop also becomes zero. These

conditions are guaranteed by the term 1− e−k8mcair(t) ∈ [0, 1).

∆pmill(t) = k7(1− e−k8mcair(t))∆pair(t) (3.7)

The power consumed for grinding is a sum of the power needed for

rolling over raw and ground coal and the constant power need for running

an empty mill (Ee).

E(t) = k2mpc(t) + k3mc(t) + Ee (3.8)

Finally, the temperature equation is based on first principles (under the

assumptions given above). The significant heat contribution comes from

the primary air, moisture and coal flow into the mill (Cairwair(t)Tin(t),

ρmCwwin(t)Ta, Ccwin(t)Ta), and from grinding (k10E(t)). The heat is

used to evaporate moisture (ρmwin(t)Lv) and raise the temperature of

the coal and mill chassis to the outlet temperature (Cairwair(t)Tout(t),

Ccwout(t)Tout(t)).

d

dt
Tout(t) =

1

k11
[Cairwair(t)Tin(t) + ρmCwwin(t)Ta

+ (1−ρm)Ccwin(t)Ta − Cairwair(t)Tout(t)

− Ccwout(t)Tout(t)− ρmwin(t)Lv + k10E(t)]

(3.9)

The resulting model is a fourth order nonlinear model of the form

dx(t)

dt
= f(x(t), u(t))

y(t) = h(x(t), u(t))
(3.10)

with

x(t) =








mc(t)

mpc(t)

mcair(t)

Tout(t)







, u(t) =











win(t)

wair(t)

ω(t)

Tin(t)

∆pair(t)











, y(t) =








wout(t)

∆pmill(t)

E(t)

Tout(t)








(3.11)
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and eleven tuning parameters k1, . . . , k11. The state equations are

f(x(t), u(t)) =









−k1x1(t) + k9x3(t) + u1(t)

k1x1(t)− k5u2(t)x2(t)

k5u2(t)x2(t)− k4

(

1− u3(t)
k6

)

x3(t)− k9x3(t)

f4(x, u)









(3.12)

f4(x, u) =
1

k11
(Cairu2(t)u5(t) + ρmCwTau1(t)u5(t) + (1− ρm)CcTau1(t)

−Cairu2(t)x4(t)− Cck4(1−
u3(t)

k6
)x3(t)x4(t)− ρmLvu2(t) + k10E)

and the output equations are

h(x(t), u(t)) =









k3x1(t) + k2x2 + Ee

k4

(

1− u3(t)
k6

)

x3(t)

x4(t)

k7(1− e−k8x3(t))u5(t)









(3.13)

The mass flow of the primary air, wair, is not a measured value; rather,

it is calculated from the differential pressure of the primary air measured

by a venturi sensor, taking into account the temperature of the air. Thus,

wair and ∆pair are not independent control inputs and for example ∆pair

in equation (3.7) could be replaced by a mass flow of the air. For the sake of

clarity, we have decided to present the equations in the more simple form,

noting that the last input is dependent on the second input, and vice versa.

3.3 Parameter estimation

Identification of suitable model parameters is carried out by solving a

nonlinear constrained optimization problem; the errors between the avail-

able mill measurements and the estimated values are used to determine the

fitness of parameters.

There are eleven model parameters which take real values, hence k ∈

K ⊆ R
11\{0}. We consider a functional J : K → R

+, which is a measure

of the parameters’ fitness. Then the constrained optimization problem

Feoktistov [2006] consists in finding a value of k⋆ ∈ K that minimizes J .

k⋆ ∈ K : J(k) ≥ J(k⋆) = J⋆ (3.14)
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We use normalized signals from available mill sensors, that is power

used for grinding, differential pressure across the mill, classifier temperature

and pulverized coal flow, for the purpose of parameter identification. The

available sensors of the pulverized fuel flow have bias errors and hence the

information should be handled with special care. The signal is filtered and

the mean values of the measured and estimated flows are subtracted. The

fitness criterion is calculated from simulating model with the considered

parameters and from the plant measurements according to the following

formula

J =
1

N

N∑

i=1

eT (i)We(i) (3.15)

where e(i) = [e1(i), . . . , e4(i)]T is an error vector consisting of

e1(i) =
(wout,filt(i)− µwout,filt

)− (ŵout,filt(i)− µŵout,filt
)

wout,max(i)− µwout

(3.16)

e2(i) =
∆pmill(i)−∆p̂mill(i)

∆pmill,max
(3.17)

e3(i) =
E(i)− Ê(i)

Emax
(3.18)

e4(i) =
Tout(i)− T̂out(i)

Tout,max
(3.19)

with diagonal weighting matrix W ≥ 0, N is the number of samples,

Emax, ∆pmill,max, Tout,max and wout,max are the maximum measured val-

ues, wout,filt is the filtered signal of the pulverized coal flow and µwout is its

mean value.

The model is simulated using the continuous time description, and the

cost function is calculated for a number of time samples.

An efficient type of Evolutionary Algorithm [Ahn, 2006; Rothlauf, 2006],

known as Differential Evolution [Storn and Price, 1995; Price et al., 2005;

Feoktistov, 2006] is applied to the problem. The Differential Evolution

algorithm combines benefits of population-based algorithms (Evolutionary

Algorithms) and gradient-based optimization methods. One of the advan-

tages of the algorithm is that it requires only three control parameters:

population size PS ∈ Z+, scaling factor F ∈ (0, 1] and crossover constant

C ∈ (0, 1).

The population P = {ki}PS

i=1 is a collection of PS vectors k = {k1, . . . , k11},

that is model parameters. Each element of the the population has a fitness

value, J(k). The parameter space K is explored based on special strategy,
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which involves calculating gradients between individuals in the population,

and applying crossover mechanisms, in order to find an optimal value to

the problem.

3.3.1 Practical considerations

To achieve good results using Differential Evolution algorithms for the prob-

lem of parameter identification, it is necessary to consider a few important

factors that may affect the procedure.

The authors of the algorithm propose to use the following control pa-

rameters as initial guess1: the population size PS should be ten times the

number of problem variables, k, the scaling factor F = 0.8 and the crossover

factor C = 0.9. The algorithm is generally very robust to the selection of

the control parameters, but the performance can be improved by tuning

them appropriately. It is found that choosing F = 0.35 and C = 0.2 for the

particular problem seems to give good results.

It is very important to specify the initial conditions for the simulations.

Preferably, the system should be in the steady state at t = 0. Thus, the

left hand sides in equations (3.1), (3.2), (3.3) and (3.9) are equal to zero

and it is possible to calculate the initial values for the ordinary differential

equations.

Additionally, a proper region for the parameter set K, which bounds

it away from unrealistic or unwanted values of the parameters, should be

specified (e.g. all the values need to be positive, the grinding rate should

not be too small, etc.). This prevents the DE algorithm from fitting the

model output to the noise.

In general, proper plant excitation by valid selection of inputs gives

a better chance to acquire valid and optimal model parameters. In case

the plant inputs were poorly chosen it might be required to supervise the

optimization routine and hand-tune some of the parameters. The result of

such optimization does not guarantee that the model parameters are valid.

In this study measurements from one coal mill that was properly excited

has been available (STV4); the other measurements mostly came from nor-

mal mill operation, thus finding optimal parameters for those mills was not

fully automatic. The optimal parameters from the fully excited plant are

used as a starting point for parameter identification of other mills. Addi-

tionally, the routine is supervised to prevent it from drifting very far from

the initial values.

1http://www.icsi.berkeley.edu/~storn/code.html
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In case of noisy and biased signals (e.g. measurements from pulverized

fuel flow sensors), it might be required to pre-process them before the

parameter identification is performed. In case of the fuel sensors the signal

are filtered by a low pass filter, forth and back, to avoid introducing delays.

Additionally, due to the measurement bias errors the mean values from both

the measured and the model outputs are subtracted, thus emphasizing the

dynamic performance of the model.

The weights W in equation (3.15) can be adjusted based on the quality

of measurements (the more accurate measurements, the higher weight). In

this work however, weights equal to one are chosen, as it is found that they

do not influence the optimization process significantly.

3.4 Model verification

The process of model validation is performed in five steps for two differ-

ent types of coal mills. Each step is described in a separate paragraph for

clarity. The idea is to investigate how the model behaves when parameters

change (for example due to mill wear) and how well the model describes

other types of mills. The measurements used in this section were taken at

Stigsnæs Power Station (STV) and Asnæs Power Station (ASV), located

on Zealand, Denmark. In the STV plant there are four Babcock & Wilcox

type 10E ball and race mills installed; in the ASV plant there are eight

Loesche LM 19D vertical roller mills installed. The maximal capacity in

terms of mass flow of pulverized coal of both types of mills is 10 [kg/s].

The measurements from mill one at plant STV are labeled STV1, mea-

surements from mill three at ASV are labeled ASV3, etc.

Remark 1: Offset in the pulverized fuel flow figure is made intentionally

to separate the signals; steady state value of the model output is equal to

steady state value of the raw coal input. The fuel sensors suffer from bias

errors anyway.

3.4.1 Primary data - STV4

The primary data for parameter identification comes from mill number four

in the STV plant, where plant operators have applied various input steps

to test the mill responses (Figure 3.3). This is the first verification step,
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Figure 3.3: STV4 mill inputs; primary data for parameter identi-
fication.

which may indicate the potential quality of the model. Since the model

is tuned and verified against the same data, a good fit does not guarantee

that the model is valid for other regions of operation and combinations of

inputs.

The comparison between measured outputs from STV4 and model is

presented in Figure 3.4 and Figure 3.5. As can be seen, the performance

of the model with properly tuned mill parameters is satisfactory. The

mass flow of the pulverized fuel flow is represented very well; the captured

dynamics are similar to those measured by the sensors and the steady state

values correspond to the raw coal mass flow win.
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Figure 3.4: Comparison between model output and measurements
(STV4); primary data for parameter estimation procedure. Solid
lines are measured signals and dashed lines are model outputs.

3.4.2 Suboptimal parameters

In this test, the optimal parameters obtained for mill STV4 are used for

simulating STV1 mill and the result is compared to the plant data. The aim

is to validate how the model performs with suboptimal parameters. After-

wards optimal model parameters are found and compared to the previously

used. Similar parameters for both mills indicate that the model structure

is valid. The comparison between modeled system response with optimal

and sub-optimal parameters, and the plant data is depicted in Figures 3.7

and 3.8.

The model outputs for mill STV1 with parameters from STV4 are pre-

sented in Figure 3.7. It is seen that the model captures the mill dynamics

well, but there are bias errors. An optimal set of parameters improves
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Figure 3.5: Pulverized fuel flow (STV4). Solid lines are measured
signals and dashed lines are the model outputs. Additionally, the
raw coal input flow is plotted with dotted line.

model output (Figure 3.8). The optimized STV1 model parameters are

similar to the STV4 parameters (Table 3.1).

3.4.3 Different type of coal mill

The model is also validated with measurements from vertical roller mills

from ASV power plant instead of ball and race mills (STV). This tests

whether the model can be used with other types of mills. The validation is

performed with optimal model parameters.

The dynamics during normal mill operation are captured well; the set

of optimal model parameters is similar to those used in STV mills (see

Table 3.1). The difference between measured and modeled response are

plotted in Figure 3.9. The error amplitudes are small compared to the

absolute values of the signals, and especially the pulverized fuel flow is

modeled well.

3.4.4 Mill start up and shut down

The aim of this test is to check how well the pulverized fuel flow is modeled

during the mill start up and shut down.

As can be seen from Figure 3.6, the dynamics in the measured pulverized

fuel flow are reflected by the model and the steady state values of the

raw coal flow are preserved. There is a small mismatch, around the 12’th

minute, due to large classifier change, which is not
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Figure 3.6: Pulverized fuel flow during mill start up and shut down
(ASV5). The solid lines are the modeled outputs, the dashed lines
are the measurements, and the dotted lines reflect the raw coal flow.

Parameter STV1 STV4 STV4† ASV1 ASV3

k1 0.0423 0.0487 0.0487 0.0148 0.0424
k2 0.0296 0.1409 0.1409 0.0034 0.0107
k3 0.0403 0.0104 0.0104 0.0227 0.0315
k4 0.8963 0.8148 0.8148 0.4463 0.4284
k5 0.0040 0.0062 0.0062 0.0044 0.0013
k6 2.3541 2.7855 2.7855 4.3156 3.1853
k7 3.8751 4.8897 8.5450 9.1987 9.8809
k8 0.1544 0.1710 0.0852 0.3356 0.3435
k9 0.5586 0.5604 0.5604 0.6798 0.6371
k10 8.2521 8.4325 8.4325 8.5000 8.3266
k11 4.24×106 4.24×106 4.24×106 7×106 7×106

Ta[oC] 10 10 10 10 10
ρm[%] 7.2 6.8 10.9 11.4 11.1
Lv[J/kg] 2.5×106 2.5×106 2.5×106 2.5×106

Ee 38.8 38.8 38.8 40 40

Q 0.3455 0.0923 0.1835 0.1160 0.1687

Table 3.1: Optimal model parameters k⋆ and constants found from
the identification procedure and used for validation. STV4† corre-
sponds to parameters of the fourth mill at STV after 6 months of
operation.
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3.4.5 Parameter change

Due to the mill wear, the parameters of mill are changing with time. The

aim of this validation step is to analyze performance degradation over a

period of six months; measurements from STV4 are available for this pur-

pose.
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Figure 3.7: Comparison between model output and measurements
(STV1) using suboptimal parameters; model coefficients k are found
for mill STV4. Note: temperature affects the pulverized fuel flow
measurements (0− 2500[sec]).

Figure 3.11 depicts the new measurements, as well as the model outputs

with old and new parameters. The measurements are taken during mill

start up, which is a difficult situations for the model (Figure 3.10). It can

be noticed that the very large classifier step, which is not a usual control

action, is not represented very well by the model. The spike in pulverized

fuel flow is captured, but it is more rapid than expected, and the return

flow circulation to the grinding table is not quite large enough (as can be
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seen from the energy consumption graph). Most of the old parameters

can still be used, however. In the temperature model, it is enough to

change the moisture parameter ρm; only the pressure equation requires

new parameters. This indicates that, in general, the model is robust for a

longer periods of time, however, the pressure equation parameters should

be re-estimated periodically.
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Figure 3.8: Comparison between model output and measurements
(STV1). Solid lines are measured signals and dashed lines are the
model outputs.
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Figure 3.9: Differences between measured and modeled outputs
of ASV1 (dashed line) and ASV3 (dotted line) during normal mill
operation. Sampling time is 5 seconds.
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Figure 3.10: STV4 mill inputs after six months of operation - mill
start up and shut down; large classifier step should be noticed.
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Figure 3.11: Comparison between model output and measurements
(STV4) after six months of operation. Solid lines are measured sig-
nals, dashed lines are model outputs with old parameters, and dotted
lines are model outputs with updated parameters.
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3.5 Plant model

In this section we formulate the model to be used in the controller

design. In particular, we are interested here in the coal grinding model

ẋ1(t) = −k1x1(t) + k9x3(t) + u1(t)

ẋ2(t) = k1x1(t)− k5x2(t)u2(t)

ẋ3(t) = k5x2(t)u2(t)− k4

(

1−
u3(t)

k6

)

x3(t)− k9x3(t)

(3.20)

Furthermore, we add a first order model of the primary air flow through

the mill

ẋ4(t) = κ(−x4(t) + u2(t)) (3.21)

where x4(t) is the flow of the air at the mill outlet. The necessity for

including the additional state is discussed later; it is motivated by the

demand to control the fuel to air ratio.

The system can be written in a bilinear form

ẋ = Ax+
m∑

i=1

uiNix+Bu = Ax+
m∑

i=1

uiφi(x) (3.22)

with

φi(x) = Nix+Bi (3.23)

where x ∈ R
n are the states, u ∈ R

m are the control inputs, A ∈ R
n×n,

Ni∈R
n×n, B∈Rn×m, and Bi is the i-th column of matrix B.

In our case the states are

x1(t) = mc(t) - mass of raw coal on the grinding table,

x2(t) = mpc(t) - mass of pulverized coal on the grinding table,

x3(t) = mcair(t) - mass of pulverized coal in pneumatic transport,

x4(t) - mass flow of primary air at the outlet,

and the inputs are

u1(t) = win(t) - mass flow of the raw coal,

u2(t) = wair(t) - mass flow of the primary air,
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u3(t) = ω(t) - angular velocity of the classifier.

hence, we can write the system matrices as

A =








−k1 0 k9 0

k1 0 0 0

0 0 −k4 − k9 0

0 0 0 −κ







, B =








1 0 0

0 0 0

0 0 0

0 κ 0








(3.24)

N1 = 0, N2 =








0 0 0 0

0 −k5 0 0

0 k5 0 0

0 0 0 0







, N3 =








0 0 0 0

0 0 0 0

0 0 k4
k6

0

0 0 0 0








(3.25)

Please note that the eigenvalues of the state matrix A are

λA =








0

−k1

−k4 − k9

−κ








(3.26)

hence, it is not Hurwitz for κ ∈ R, ki ∈ R, i ∈ {1, 4, 9}.

The objective for the controller is to ensure that the fuel flow attains

the reference value quickly and with small overshoot, and that there is

appropriate air flow through the mill. The second objective guarantees

that the mill is adequately pressurized, and that the air to fuel ratio is not

posing risk of explosion. In practice there is a carefully chosen load line,

which characterizes the ratio between the coal flow and primary air flow

[Kitto and Stultz, 2005]. In our work we kept the ratio constant; the value

of ρaf = 2.5 is chosen based on the available plant data.

3.5.1 Nominal operation

Before the design is carried out, the state equations are transformed to

obtain a system with Hurwitz state matrix A. Such procedure simplifies

further considerations. We use the fact, that prior to the mill operation, a

start-up procedure is performed. During this procedure, the primary air is

blown through the mill in order to heat it up and swipe out the remaining

coal particles. The angular velocity of the classifier is controlled to the

nominal value of operation. In the following discussions we use the term

nominal inputs, for the preinitialized air flow and angular velocity, and we

label them as ū. We choose the nominal inputs to be in the middle of the
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operating region, that is ū2 =17.5 [kg/s] and ū3 =1.5 [rad/s]. New control

inputs are thus

v1(t) = u1(t)

v2(t) = u2(t)− ū2

v3(t) = u3(t)− ū3

(3.27)

The operating ranges of the inputs are now

v1 ∈ [0, 10] [kg/s] (3.28)

v2 ∈ [−17.5, 17.5] [kg/s] (3.29)

v3 ∈ [−0.2, 0.2] [rad/s] (3.30)

We rewrite the system as

ẋ = Ax+
m∑

i=1

(ui − ūi
︸ ︷︷ ︸

vi

+ūi)φi(x) = Ãx+
m∑

i=1

Biūi +
m∑

i=1

viφi(x) (3.31)

with

Ã = A+
m∑

i=1

Niūi =








−k1 0 k9 0

k1 −k5ū2 0 0

0 k5ū2 −k4(1− ū3
k6

)− k9 0

0 0 0 −κ








(3.32)

m∑

i=1

Biūi =








0

0

0

κū2








(3.33)

The derivative of the last state is affected by a constant term κū2. Because

it is a linear ordinary differential equation, we can removed it if we remem-

ber to compensate by subtracting such value from the reference signal; we

change the equilibrium point of the independent state equation.

From now on we consider the above system with nominal inputs, which

for the model parameters obtained in the previous chapter yields state

matrix with negative eigenvalues. By abuse of the notation in the later

considerations we write A instead of Ã.

3.5.2 Actuators

The model inputs, vi, are in fact the quantities measured at the inlets, and

due to actuator dynamics, they are not the control inputs. An adjustment
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of the raw coal flow is not directly exerted on the due to the feeder belt

dynamics. The same situation occurs in the primary air flow and angular

velocity of the classifier. For this reason we augment the bilinear system

with additional equations modeling linear actuator dynamics (first order

systems).

ż = Āz + B̄w =






−τ1 0 0

0 −τ2 0

0 0 −τ3




 z +






τ1 0 0

0 τ2 0

0 0 τ3




w (3.34)

v = C̄z (3.35)

We remark that the states of the actuators are measurable.

3.5.3 Reduced state observer

In the last section, before the chapter is concluded, we would like to de-

scribes a suitable state observer design procedure for bilinear systems,

which is proposed by Derese, Stevens, and Noldus [1979]. This allows us

to concentrate purely on the controller design in the next chapter.

Observer with bounded inputs

The considered observer is constructed in a similar way as the classical

Luenberger observer. It consists of the system equations and a linear cor-

rection term (3.36). The block diagram of the observer is depicted in Fig-

ure 3.12.

˙̂x(t) = Ax̂(t) +
m∑

i=1

vi(t)Nix̂(t) +Bv(t) +H(y(t)− Cx̂(t)) (3.36)

With the observation error defined as e(t) = x̂(t) − x(t) it is straight-

forward to see that

ė(t) = (A−HC)e(t) + γ(t) (3.37)

where γ(t)=
∑m

i=1 vi(t)Nie(t) is an input dependent disturbance. We seek

the upper bound on this term in order to prove the convergence of the

observer in case of the largest admissible disturbance (3.38).

γT (t)γ(t) = eT (t)

(
m∑

i=1

vi(t)N
T
i

)(
m∑

i=1

vi(t)Ni

)

e(t) ≤ eT (t)Se(t) (3.38)
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Figure 3.12: The block diagram of the state observer.

for all t, where S = ST ≥ 0 is a constant matrix.

The disturbance γ(t) is input dependent, hence, it is necessary to de-

termine the input bounds vi(t) ∈ [vi, vi], which in our case is known.

Convergence of the observation error (3.37) can be analyzed using quadratic

Lyapunov function V (e) = eT (t)Poe(t), with Po = P T
o > 0. The following

condition needs to be fulfilled in order to stabilize the error dynamics to

e0 = 0

Po(A−HC) + (A−HC)TPo + P 2
o + S < 0 (3.39)

Choosing the observer feedback matrix H to have the form

H =
1

2
P−1

o CTRo (3.40)

with Ro = RT
o > 0 yields

ATPo + PoA+ P 2
o +Qo < 0 (3.41)

with Qo = −CTRoC + S. Equation (3.41) has the Riccati form. It can

be written in standard linear matrix inequality form and solved efficiently

[Boyd et al., 1994]
[

−ATPo − PoA−Qo Po

Po I

]

> 0 (3.42)
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In [Derese et al., 1979] authors demonstrate that it is sufficient to choose

Ro = θI, with sufficiently large tunning parameter θ > 0, for an exhaustive

search of positive definite solutions for the chosen class of feedback matrices.

3.5.4 Implementation

A prerequisite for the observer design is that the pair of matrices A and

C is observable. In our situation the output equation describing the power

consumption (3.8) can remain almost unchanged, only the constant value

Ee is subtracted. However, it is necessary to choose the second output

carefully. The fuel flow equation (3.5) is nonlinear, and it is not possible to

use it directly in the observer design, but the measurements can be used to

obtain information on how much coal is accumulated in the mill according

to (3.43).

mt(τ) =

∫ τ

0
(win(t)− wout(t))dt

= mc(τ) +mpc(τ) +mcair(τ)
(3.43)

and the chosen outputs have linear form

y1(t) = E(t)− Ee

y2(t) = mc(t) +mpc(t) +mcair(t)
(3.44)

yielding the output matrix C

C =

[

k3 k2 0

1 1 1

]

(3.45)

which together with the state matrix A forms an observable system.

Input dependent observer disturbance γ(t) is calculated according to

(3.38) by inputting the largest control values (3.28) to (3.28). As for the N̄i

matrices, the parameter uncertainties should be accounted for, and values

corresponding to the largest eigenvalues should be chosen.

S =
3∑

i=1

sup
vi

v2
i N̄

T
i N̄i ≈






0 0 0

0 0.029 0

0 0 0.005




 (3.46)

The observer parameter is chosen to be θ = 400. Solving equations

(3.41) and (3.47) the observer feedback matrix is determined to be

H =






−4.5 6.7

7.8 5.6

−2.4 5.0




 (3.47)
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3.6 Chapter summary

The proposed model fulfills the criteria stated in Section 3.1, namely

that it should capture the plant characteristics and at the same time it

should not be overly complex to allow derivation of model-based control

strategies. The validation has been performed for two different types of

mills and various operating conditions, showing that the model is generic,

and that it can be used for further investigations, that is design and com-

parison of controllers, which is done in the following chapter.

Moreover, it is identified that the coal circulation model has bilinear

structure, which becomes nonlinear once the actuator dynamics are in-

cluded. A suitable reduced state observer for the coal distribution in the

coal mill, which will be used in the following chapter, is discussed.
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In this chapter we present a study of some problems associated with

a coal mill control from theoretical and practical point of view. Strate-

gies suitable to the considered problem are discussed and analyzed based

on the model derived in the previous chapter. A more sophisticated con-

trol method based on stabilizing control law is compared to a PID-type

controller, which is typically used in the industry, in order to determine

whether it is beneficial to apply such strategies to improve performance of

a power plant.

In the beginning of the chapter we present the previously established

coal mill model written in the bilinear form. We slightly reformulate it

to simplify further considerations. We present a state observer for bilinear

systems, which suites our system. Then, we discuss the presence of actuator

dynamics and their effect on the system.

We pose a general control problem for the augmented system. At first, a

simplified problem with neglected actuator dynamics, is analyzed in terms
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of stability, using Lyapunov’s theory. Literature study on this topic shows

that the considered class of stabilizing control laws minimizes generalized

performance indexes. We verify the state observer and the stabilizing con-

troller, with additional integral action, through simulations, using the plant

model consisting of the coal mill equations and the actuator dynamics. We

compare the proposed control strategy to a well-tuned PID-type controller,

which utilizes fuel flow measurements.

Afterwards, the complete system with actuator dynamics is considered.

Such system becomes nonlinear, hence, the stability result obtained previ-

ous needs to be verified. It is found that the previously used control law

stabilizes the overall system provided certain conditions are satisfied. Al-

though in the special case of coal mill control the feedback linearization

could be used, it is beneficial to study the generalized systems.

Later, the optimal control of the mill with respect to a specific cost func-

tion (based on the verification criteria in the hypothesis), is calculated using

Pontryagin’s Maximum Principle. The idea is that the optimal controller,

which has the lowest cost, can be compared with the previously established

stabilizing law. The final result is still an open question due to the large

computational power required by the adopted approach, nevertheless, the

finding of the initial study are presented.

The last control aspects investigated in this chapter are concerned with

the temperature control of a mill. In order to evaporate moisture from

the coal efficiently, it is necessary to keep the mill temperature in certain

range. For the studied mill type it is approximately 100 degrees Celsius.

The temperature is controlled by adjusting the cold and hot air flows. As

a result certain temperature of the primary air is achieved. At the same

time, the total air flow must satisfy the air to fuel ratio. We show that

adding second degree of freedom, that is the feed-forward term calculated

based on the plant model, to the typical PID-type controller, reduces the

mill temperature variance.
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4.1 General problem description

We consider a system of the following form

ẋ = Ax+
m∑

i=1

φi(x)vi

ż = Āz + B̄w = Āz +
m∑

i=1

wiB̄i

v = C̄z

(4.1)

where B̄i is the i-th column of matrix B̄, x ∈ X ⊂ R
n, z ∈ Z ⊂ R

m and

w ∈W ⊂ R
m. In the sequel we assume that A and Ā are Hurwitz, φi(x) is

continuous, X, Z are open, W is convex and compact, and generally refer

to system (4.1) in the compact form

ξ̇ = Aξ +
m∑

i=1

Φi(ξ)νi (4.2)

where

ξ =

[

x

z

]

, νi =

[

1

wi

]

, A =

[

A 0

0 Ā

]

, (4.3)

Φi(ξ) =

[

φi(x)zT C̄i 0

0 B̄i

]

∈ R
(n+m)×2 (4.4)

with C̄i the i-th row of matrix C̄ written as a column vector.

Note that the model described in the previous chapter is of the above

form, with n = 4 and m = 3.

We now proceed with the stabilizability analysis of system (4.2).

4.2 System without actuators

Let us first consider a simplified version of the system with no actuators

dynamics. In this case the system consists of the first state equation in (4.1)

only, and vi are the control inputs. Hence, we consider the system

ẋ = Ax+
m∑

i=1

viφi(x) (4.5)
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Stability of such system can be analyzed by means of Lyapunov the-

ory. We take the quadratic control Lyapunov function candidate V (x) =
1
2x

TPx, with positive definite matrix P = P T , obtained by solving PA +

ATP = −Q for a given Q = QT > 0. Thus V (x) is always greater than

zero, except for x = 0, and radially unbounded. We calculate the time

derivative, which yields

V̇ (x) = xTP (Ax+
m∑

i=1

φi(x)vi) = −
1

2
xTQx+

m∑

i=1

xTPφi(x)vi (4.6)

with positive definite matrix Q = −PA−ATP . The first part in the above

equation is always negative, except for x = 0. Furthermore, it is easily seen

that choosing the feedback control law

vi = −αiVx(x)φi(x) (4.7)

with Vx(x) the gradient of the Lyapunov function V (x) with respect to the

state x; yields

V̇ (x) = −
1

2
xTQx− αi

m∑

i=1

[xTPφi(x)]2 (4.8)

which is negative for all x 6= 0 when the scalar αi ≥ 0. This means that

the control law (4.7) globally asymptotically stabilizes system (4.5) at the

origin.

Stabilizability (and optimality) of systems on the form (4.5) and con-

trol law (4.7) are studied in [Jacobson, 1976], [Tzafestas et al., 1984], and

[Benallou et al., 1988]. We discuss those results as they are relevant to our

problem.

Jacobson [1976] studies the problem of optimal stabilizing control law

for the following system

ẋ =
m∑

i=1

φi(x)vi (4.9)

which are called homogeneous-in-the-input. This is a special type of the

system (4.5) with matrix A = 0. From his work we learn that the control

law

vi = −[Vx(x)φi(x)]
1

2p+1 , p ∈ {0, 1, . . .} (4.10)
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globally asymptotically stabilizes system (4.9). Moreover, the control law

(4.10) minimizes the cost function

J =

∫ ∞

0

{

q(x) +
1

2(p+ 1)

m∑

i=1

v
2(p+1)
i

}

dt (4.11)

with

q(x) =
2p+ 1

2(p+ 1)

m∑

i=1

[Vx(x)φi(x)]
2(p+1)
2p+1 (4.12)

Later in his work, he extends the result to non-homeogenous systems

ẋ = f(x) +
m∑

i=1

φi(x)vi (4.13)

and shows that the control law

vi = −Vx(x)φi(x) (4.14)

globally asymptotically stabilizes the system (4.13) and minimizes the cost

function

J =

∫ ∞

0

{

q(x) +
1

2

m∑

i=1

v2
i

}

dt (4.15)

with

q(x) = −Vx(x)f(x) +
1

2

m∑

i=1

[Vx(x)φi(x)]2 (4.16)

The system (4.5) is a special case of the non-homeogenous system studied

by Jacobson, where f(x) = Ax, and the control law (4.7) is equivalent to

(4.14) for αi = 1.

Benallou et al. [1988] show that the control law (4.7) with αi = 1
ri

and

φi(x) = Nix+Bi minimizes the following cost function

J =
1

2

∫ ∞

0

{

xTQx+
m∑

i=1

1

ri
[xTPφi(x)]2 + vTRv

}

dt (4.17)

where matrix R is diagonal with positive entries ri; Q and P are positive

definite matrices satisfying the Lyapunov equation

PA+ATP = −Q (4.18)
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This is a special case of the result presented by Jacobson.

In their work, Benallou et al. [1988], compare the control law to the

linear controller presented by Derese and Noldus [1980], which locally sta-

bilizes bilinear systems. The globally asymptotically stabilizing controller

outperforms the linear controller, in an example from Derese and Noldus

[1980], due to the fact that it exploits the information about bilinear ma-

trices Ni.

In contrast to the infinite horizon cost functions discussed before, Tzafes-

tas et al. [1984] study finite time cost function with running and terminal

costs

J =
1

2

∫ t2

t1

{

xT [Q(t) +
m∑

i=1

P (t)φi(x)R−1
i φT

i (x)P (t)]x+ vTRv

}

dt

+ xT
f Pfxf

(4.19)

with φi(x) = Nix + Bi, xf = x(t2), matrices P (t), Pf , and Q(t) posi-

tive definite, and R diagonal with positive entries. The control law which

minimizes the cost has the same form as Benallou et al. [1988]

vi = −
1

ri
xTP (t)φi(x) (4.20)

however, the matrix P (t) = P (t)T > 0 is now a time dependent n × n

matrix, which is obtained by solving the linear differential equation

−Ṗ (t) = ATP (t) + P (t)A+Q−
m∑

i=1

P (t)BiR
−1
i BT

i P (t) (4.21)

with P (t2) = Pf .

The performance indexes J can be interpreted as an extension of the

generalized quadratic cost in the linear case to bilinear systems. Such

cost does not correspond to the performance criteria we have set up for

our problem in the Introduction. Moreover, the stabilizing controllers are

designed for system without actuator dynamics. In the sequel, however, we

ignore this fact and we test the performance of the above control law on

the full system (4.2) through simulations. Furthermore, the control laws

will be evaluated with respect to the optimality criteria specified by the

scientific hypothesis in Section 1.4.
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4.3 Application to coal mill control

In this section we are discuss a special case of system (4.1) with param-

eters as in the modeling chapter, e.g. A and Ā are given by equations (3.32)

and (3.34).

The evaluation criteria for the scientific hypothesis stated Section 1.4

allow to asses the quality of the mill control. The objective for the fuel

controller is to ensure an adequate flow of the pulverized coal, while min-

imizing the power consumption of the machine, and reducing the risk of

chocking when too much coal is stored inside the mill. We also demand

that the air flow satisfies the air to fuel ratio, ρaf . Hence, the following

performance index

J =
1

2
(s1Jfe + s2JE + s3Jc + s4Jpa + s5Jν) (4.22)

=

∫ t2

0
L(ξ(t), w(t), t)dt

where si ≥ 0 are weights, and using the model equations (Section 3.5) we

obtain the following elements of J

� Fuel reference error

Jfe =

∫ t2

0
e2

f (t)dt (4.23)

with ef (t) = wout(t)− w̄out(t) = k4(1− ξ7(t)+ū3

k6
)ξ3(t)− w̄out(t), where

w̄out(t) is the desired fuel flow

� Energy consumed for grinding

JE =

∫ t2

0
(E(t)− Ee)dt =

∫ t2

t1

(k3ξ1(t) + k2ξ2(t))dt (4.24)

where Ee is the power required for turning an empty grinding table

� Total amount of coal in the mill during the operation (risk of choking)

Jc =

∫ t2

0

3∑

i=1

ξi(t)dt (4.25)

� Primary air reference error

Jpa =

∫ t2

0
ξ4(t)− ξ̄4(t)dt (4.26)

where ξ̄4(t) is the desired air flow through the mill
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� Input penalty

Jν =

∫ t2

0
(w(t)− ū)TR(w(t)− ū) dt (4.27)

where R = diag[r1, . . . , rm] is matrix of positive weights, and ū are

the nominal inputs, for example classifier speed equal to 1.5 [rad/s].

Here the input setW is described by (3.28) to (3.30) and the set X×Z,

containing coal mill and actuator states, is taken to be any open neighbor-

hood of R4+3
+ .

In the sequel we verify that the control law from the previous sec-

tion stabilizes the coal mill system with actuators. Moreover, the above

performance index will be use as a measure of controller quality as the

model-based control is compared with a PID-type controller.

For this analysis we are only interested in the coal circulation and the

fuel flow, thus, we chosen s4 = s5 = 0. The full index will be used later in

the study of optimality.

4.3.1 Proposed controller structure

We apply and test the control law (4.7), discussed in several variants before,

to the system with actuators in order to compare it with a well-tunned PID-

type controller. This should give us an indication whether the control law

(4.7) is useful. Numerical values used in the simulations correspond to the

STV4 coal mill found in the previous chapter.

The feedback controller (4.7) uses state information provided by the

observer described in Section 3.5.3. Reference signals for the states are

calculated from equations (4.28). The values are calculated for the steady-

state operation and the desired fuel flow, w̄out.

x̄3 =
w̄out

k4 (1− ū3/k6)

x̄1 =
k9x̄3 + w̄out

k1

x̄4 = ρaf w̄out

x̄2 =
k1x̄1

k5x̄4

(4.28)

where ρaf is the air to fuel ratio at which the machine needs to operate to

ensure proper air sweep of coal particles.
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The integral control is added to remove the steady state error in the

pulverized coal flow and the primary air flow. In case of the classifier it

makes sure that the nominal angular velocity is restored. Due to actuator

limitations it is necessary to introduce anti-windup strategies. The back-

calculation method is used.

The overall structure of the system with controller is depicted in Fig-

ure 4.1.

Plant Integral control

Observer Optimal control

u y

x̂
¯̂x

ȳc

yc

SaturationAnti-windup

Figure 4.1: A block diagram of the proposed controller. y are the
plant measurements, yc are the controlled outputs, and x̂ are the
state estimates.

4.3.2 Controller verification

The controller parameters used for verification are summarized below. The

gains of the integral action for the fuel flow, wout, primary air flow, wair,

and classifier speed ω, are presented in Table 4.1.

Q =








10−4 0 0 0

0 2 10−4 0 0

0 0 1.5 10−2 0

0 0 0 4.89








(4.29)

R =






6.7 10−3 0 0

0 2.2 10−3 0

0 0 3.3 10−1




 (4.30)
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wout wair ω

I gain 0.25 0.05 0.0001
back-calculation coefficient 0.04 0.02 0.0001

Table 4.1: Parameters of the integral control used with the optimal
controller.

The PID-type controller is well-tuned around a realistic operating point

(Table 4.2). The classifier speed in case of the PID-type controller is kept

constant at the nominal speed of rotation.

P gain 6.75
I gain 0.10
D gain 33.23
D filter 14.58
back-calculation coefficient 0.01

overshoot 8.12 %
rise time 28.8 s
settling time 97.6 s

Table 4.2: Parameters and the performance with a linearized sys-
tem of the PID controller used in the comparison.

The measurements and the inputs are affected by a white noise with

standard deviations σi equal to half percent of the nominal value of the

signal. The sample time of the noise generator is 10 seconds.

Performance with nominal parameters

Figures 4.2 to 4.4 depict the simulated fuel flow with both controllers, the

reference signals, and the absolute error. The reference signal is chosen to

consist of various step and ramp signals within the whole operating region.

From the plots it can be seen that the rise time of both controllers is

nearly the same, however, there is no overshoot nor oscillations in case of

the proposed controller. Lower grinding energy consumption is attributed

to the fact of using varying classifier speed of rotation. This can be seen

in Figure 4.5, where grinding power is reduced when classifier speed of

rotation is lowered. The energy savings do not come freely; larger particles
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Figure 4.2: Performance verification of the controllers – scenario
1. The simulations are performed in a noisy environment and with
nominal values of parameters.

can escape the mill, hence the combustion might be less optimal, and most

likely more ash is produced. The influence of lowering classifier’s speed

should be investigated in a plant where such strategy is planned.

The control inputs are depicted in Figure 4.6. The primary air flow

is nearly identical for both controllers. The differences between the con-

trollers are visible in the other two graphs. It can be noticed that the

PID-type controller amplifies the noise more than the model-based con-

troller. The last graph depicts the active classifier control versus nominal

speed of rotation of the PID-type controller.

Performance with uncertain parameters

We use the Monte Carlo analysis to study the influence of model uncertain-

ties (parametric sensitivity) on the control performance. In our case there

are 9 model parameters, which are perturbed, and we run one thousand

simulations. The obtained information helps us assess the performance
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Figure 4.3: Performance verification of the controllers – scenario
2. The simulations are performed in a noisy environment and with
nominal values of parameters.

of the controllers, but it also shows the potential applicability in a power

plant; parametric uncertainties may pose significant problems in the control

of coal mills and must be handled well.

The parameters are perturbed randomly with uniform distribution in

the range of ±10 [%] from the nominal values. Controllers operate in the

same conditions, that is the same parameter perturbations and the same

noise levels. We consider three performance criteria described previously:

the fuel flow control quality, (4.23), the total amount of energy used for

grinding, (4.24), and the risk of overfilling or mill choking, (4.25), which

are now discretized with sampling time 1 second, and t2 = 5000 seconds.

Numerical values of the indexes from 100 samples of the Monte Carlo

analysis are depicted in Figures 4.7, 4.8, and 4.9, to give an overview of the

distribution. The consistent performance of the PID controller is observed.

The results in Table 4.3 show the advantages of the proposed controller

over the PID controller. For the tested scenario and the nominal param-

eters, the squared fuel error is reduced by more than a half. At the same
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Figure 4.4: Performance verification of the controllers – scenario
3. The simulations are performed in a noisy environment and with
nominal values of parameters.

time the energy consumption and the risk of choking are lowered.

On the other hand an advantage of the PID controller is its performance

robustness in case of system’s parameter changes. Even though the energy

consumption and the amount of coal in the mill is always higher in case of

the PID controller, in about 4.5% of cases the Jfe index is lower comparing

to the proposed controller. Thus the maintenance of such controller in a

plant should be relatively simple. The proposed controller should probably

be implemented with an on-line parameter estimation/adaptation strategy,

such that it automatically maintains the high quality performance.

Further simulation studies show that the PID-type controller can benefit

from including the additional classifier control. It is suspected that the

advantage of using the model-based controller over PID is more pronounce

in case the bilinear terms, Ni, are large. In the considered example, the

effects of bilinear terms were small, hence, linear control law can be used

efficiently. On the other hand it is easy to construct a state observer for

nearly linear systems.
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Figure 4.5: Grinding power consumption of the mill expressed in
percentage of the maximum power. The proposed controller reduces
the consumption thanks to active classifier control.

Jfe JE Jc

σ µ σ µ σ µ

Proposed
nominal 1 1 1
uncertain 1.58 0.41 1.02 0.11 1.02 0.09

PID
nominal 2.16 1.06 1.07
uncertain 2.18 0.22 1.07 0.10 1.08 0.08

Table 4.3: Results of the performance analysis. The values are
normalized with respect to the nominal performance of the proposed
controller. Mean and standard deviation, σ, are calculated based on
1000 samples of Monte Carlo analysis with uncertain parameters
distributed uniformly in range of ±10% from the nominal values.
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Figure 4.6: Control inputs applied to the system during the test
scenario. Primary air flow inputs are almost identical.
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Figure 4.7: One hundred values of Jfe index (fuel error) from
Monte Carlo analysis.
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Figure 4.8: One hundred values of JE index (grinding energy) from
Monte Carlo analysis.
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Figure 4.9: One hundred values of Jc index (amount of coal in the
mill) from Monte Carlo analysis.

4.4 System with actuators

In Section 4.2 we discussed the problem of stabilization, and reviewed

optimality results. For the coal mill the proposed controller (4.7) performs

well in comparison to the PID-type controller with fuel reference, as seen in

the previous section. In the simulations we have used the augmented plant

model (4.2). Even though the performance in the simulations indicates

stability, this cannot be guaranteed in general. In this section we verify that

the control law (4.7) with αi = 1 is indeed stabilizing for the general system

(4.2), in particular it guarantees stabilizability of the coal mill system.

Probably the first approach that comes to mind to derive a stabilizing

controller for the coal mill with actuators (4.1), is to apply a local coor-

dinate transformation, as described for example by Isidori [1995], which

allows us to perform feedback linearization. We have analyzed the appli-

cability of this method and the details of the derivation are included in

Appendix B. Linear control techniques can be used for the linearized sys-

tem, however, the stability of zero dynamics should be analyzed carefully.

The applicability of the method is system related and we wish to find a

more generic result.
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4.4.1 Stabilizing controller

Inspired by the work of Kokotovic and Sussmann [1989] and Saberi et al.

[1990] on stabilizing controllers for a class of nonlinear systems, we can show

that the previously used control law stabilizes system (4.2) provided that

αi = 1 for i ∈ {1 . . . ,m}, A and Ā are Hurwitz, and B̄T P̄ = C̄. The Hur-

witz assumption on Ā can be removed, however, then an additional term

has to be included in the control law, as illustrated by the next proposition.

Proposition 1. Consider the system (4.2). Assume that A is Hurwitz,

that there exist P̄ = P̄ T > 0, Q̄ = Q̄T > 0 and a controller w = K̄z + u

such that P̄ (Ā + B̄K̄) + (Ā + B̄K̄)T P̄ = −Q̄, and that B̄T P̄ = C̄. Let

P = P T > 0 be the solution to the Lyapunov equation ATP + PA = −Q

for some given Q = QT > 0. Let K̄i be the i-th row of matrix K̄ written as

a column vector. The function w(ξ) with coordinate functions

wi(ξ) = K̄T
i z − x

TPφi(x), i = 1, . . . ,m (4.31)

yields a feedback law ν(ξ) given by (4.3), which globally asymptotically sta-

bilizes system (4.2) at the equilibrium 0.

Proof. Consider the following Lyapunov function candidate

W (ξ) =
1

2
ξTPξ (4.32)

where P = PT =

[

P 0

0 P̄

]

> 0.

The derivative of W along the trajectory is thus

Ẇ (ξ) = ξTP(Aξ +
m∑

i=1

Φi(ξ)νi) (4.33)

hence, using (4.31) we obtain after straightforward calculations

Ẇ (ξ) = −
1

2
ξTQξ +

m∑

i=1

(xTPφi(x)zT C̄i + wiz
T C̄i) (4.34)

where Q = QT =

[

Q 0

0 Q̄

]

> 0. �

Note that when Ā is Hurwitz K̄ can be chosen to be zero. Hence, the

control law (4.31) is identical to (4.7) under the assumption that B̄T P̄ = C̄.

72



Optimal control

The above proof does not hold for control (4.7) with arbitrary αi. It

might be possible to alter the Lyapunov function candidate (4.32) to include

additional terms, such that the more general controller guarantees stability.

The task is left for future work. Hence, for the moment we conclude the

controller (4.7) with αi = 1
ri
, although performed well in the simulations,

may not globally asymptotically stabilize the overall system.

4.5 Optimal control

In this section we return to the study of the coal mill system. We

wish to use the Pontryagin’s Maximum Principle to calculate the optimal

controller for the optimization problem (4.22) with w̄out(t) in (4.23) equal

to the maximum fuel flow from the mill, hence, the Lagrangian L is au-

tonomous. Furthermore, we let t2 = 500 seconds and choose a fixed final

condition on the state that corresponds to the steady state value obtained

from using the stabilizing controller (4.7) described previously in the simu-

lations. The reason for choosing t2 and final condition as above is that the

optimal control law gives possibility to evaluate the stabilizing controllers

by comparing the performance indexes.

4.5.1 The necessary condition

For the coal mill system modeled in Chapter 3 and written in the form

(4.2), we consider the optimization problem described in Section 4.3 with

w̄out(t) a constant (given by the fuel flow), t2 = 500 seconds, and ξ(t2) = ξ̄

with ξ̄ the steady state of the coal mill system when using the stabilizing

control law (4.7).

Let notation be as in Section 4.3 and W denotes the set of bounded

measurable functions [0, 500]→W .

The considered optimization problem is of Bolza type, i.e.

min
w∈W

∫ t2=500

t1=0
L(ξ(t), w(t))dt (4.35)

subject to

ξ̇(t) = f(ξ(t), w(t)) = Aξ(t) +
m∑

i=1

Φ̄i(ξ(t), w(t)), Φ̄i(ξ, w) = Φi(ξ)

[

1

wi

]

(4.36)
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with state, input, and terminal constraints

ξ(t) ∈ X × Z, w(t) ∈W, ξ(t2) = ξ̄ (4.37)

Define the Hamiltonian

H(ξ, w, p) = L(ξ, w) + pT f(ξ, w) (4.38)

Pontriagin’s Maximum Principle for our particular optimization prob-

lem takes the following form [Cesari, 1983, Theorem 5.1.i].

Theorem 1. Assume that there exists a bounded control w∗ ∈ W with re-

sponse ξ∗ such that (w∗, ξ∗) is optimal for the problem (4.35)-(4.37). Then

there exists an absolutely continuous vector function p(t) = (p1(t), . . . , pn(t))

such that, for almost every t ∈ [0, 500],

ṗ(t) = −
∂H

∂ξ
(ξ∗(t), w∗(t), p(t)), p(0) = 0 (4.39)

H(ξ∗(t), w∗(t), p(t)) = min
w∈W

H(ξ∗(t), w, p(t)) (4.40)

d

dt
H(ξ∗(t), w∗(t), p(t)) = 0 (4.41)

We shall now calculate the optimal controller for our system and the

cost function (4.22).

4.5.2 Optimal control of a coal mill

We apply 4.40 to derive the optimal control law

H(ξ∗(t),w∗(t), p(t)) = min
w∈W

H(ξ(t)∗, w, p(t)) (4.42)

= F (ξ(t)) + min
w∈W
{(w − ū)TR(w − ū) + p(t)

∑

i=1

Φ̄i(ξ(t), w)}

= F (ξ(t)) + min
w∈W
{(w − ū)TR(w − ū) + pz(t)B̄(w − ū)
︸ ︷︷ ︸

G(w)

}

where F (ξ(t)) are the terms which do not contain w, pz(t) is the part of

the co-state vector, p(t), which corresponds to the actuator dynamics, and

ū = [0, 0, ū3]T is the desired nominal angular velocity of the classifier.

Since G is a second degree polynomial in the variables w1, w2, w3 with

positive leading coefficients, the point w at which G obtains its minimum

at time t is given as the solution to

0 = ∇G(w) = 2(w − ū)TR+ pT
z (t)B̄ (4.43)
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which yields

w = −
1

2
R−1B̄T pz(t) + ū (4.44)

Hence, the optimal controller is

w(t) = arg min
w∈W

|w +
1

2
R−1B̄T pz(t)− ū| (4.45)

4.5.3 Examination of a solution approach

The optimal control law requires the knowledge of pz(t), which in turns de-

pends on the state ξ(t). We encounter the typical optimal control problem,

namely we know the final condition on the state ξ(500) and the initial con-

dition on the co-state p(0). We cannot integrate ODE’s (4.2), (4.39) with

(4.45) forward or backward to find the solution trajectory, but we need to

solve the two-point boundary value problem. Such problems can be solved

numerically with the use of MATLAB’s functions bvp4c and bvp5c. The

differences between those methods are rather subtle; they relate to how the

solution residual is controlled and how unknown parameters are handled.

Both of them require good initial guess which is typically difficult to find.

In our case we could not find the appropriate starting point for the

solver using ad-hoc methods, hence, we investigate a systematic method

following similar study in case of linear system presented in [Kragelund

et al., 2011]. The idea is to discretize the problem and use appropriate

solver. We choose to use MATLAB’s toolbox called YALMIP [Löfberg,

2004], which interfaces to various solvers. The problem is formulated as

min
w∈W

J =
t2∑

k=0

L(ξ(k), w(k)) (4.46)

such that

ξ(k + 1) = (I + TsA) ξ(k) + Ts

m∑

i=1

(

Φi(ξ)

[

1

wi(k)

])

(4.47)

with sampling time Ts.

Such discrete optimization problem is similar to model predictive con-

trol (MPC) with only one iteration and the time horizon 500 seconds. Two

MPC problem formulations, explicit and implicit prediction form, are ex-

plained in YALMIP’s manual1. In the explicit formulation the decision

1http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Examples.StandardMPC
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variables are chosen to be the control inputs; the states and the cost are

assigned iteratively in a loop. In the implicit formulation, the decision

variables are declared to be the inputs and the states. System dynamics

are modeled with equality constraints and the structure is exploited by the

solver.

Contrary to [Kragelund et al., 2011], where linear system model was

used, we were not able to reproduce similar result for our nonlinear system.

With the implicit formulation we have encountered memory problems while

trying to solve the problem on a designated application server with 8 GB of

RAM. The explicit formulation requires less memory, however, it is still not

possible to obtain the result due to segmentation fault encountered after a

few hundred loops. We have used sampling time equal 1 second in case of

the implicit formulation, while the explicit formulation requires 0.5 second

sampling due to singularities while defining constraints on the states. In

the former case the states are calculated backwards from the final condition

and using sampled control inputs as decision variables.

Due to the difficulties with computational complexity, the problem re-

mains open and it is left for future work.

4.6 Temperature control

In this section we would like to briefly study other control aspects of

the coal grinding process, namely the temperature control that is the coal

drying in a mill. We would like to analyze other benefits of model-based

control.

Drying abilities of coal mills are very important as the raw coal entering

the machine contains significant amount of water content, which needs to

be evaporated. This process is disturbed in some of the plants and addi-

tional drying equipment needs to be installed, lowering plant’s efficiency.

High water content causes problems with mill operation, and control im-

provements are sought. Sufficient coal drying is achieved when the mill

temperature is kept around 100 Celsius degrees. The most common strat-

egy for controlling the temperature and the mill pressure at the same time

(primary air flow) is to construct a feedback loop which controls the cold air

flow damper based on the differential pressure, and the hot air flow damper

based on the temperature measurements. Such strategy introduces prob-

lems since there is a coupling between the control loops, and due to very
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large time constant of the drying process. To prevent such problems Lu

et al. [2002] propose a decoupling controller. Our approach is to treated

differently.

Thanks to the heat balance equation obtained in the modeling chapter

it is possible to extend the PID-type control strategy described above with

a second degree of freedom, that is a feedforward term, which provides

set-points for the actuators. The PID feedback loop acts to correct the set-

points. The time response of the system is significantly improved, allowing

to compensate for larger mass flow of the raw coal as it enters the mill.

A simulation study is performed to verify whether such controller struc-

ture outperforms the simple PID-type approach. Two cases have been an-

alyzed: one with constant and known coal moisture content, the other with

varying and unknown amount of water in the raw coal. The fuel flow has

been controlled by the previously described PID-type controller with the

same reference signal as before. In case of constant and changing coal con-

ditions, the water content is set to ρm = 6.8 [%] as found in the modeling

chapter. In the second scenario, the water content is changing sinusoidally

in range between 5 and 15 [%] and with frequency 0.001 [rad/s]. The ref-

erence temperature for the coal mill is to be 100 degrees Celsius.

As can be seen from the plots presented in Figures 4.10 and 4.11 the

temperature variations from the desired 100 [oC] are significantly lowered

with the 2DOF controller. Once again a more advanced control method,

which is based on the mill model is desirable.

4.7 Chapter summary

In this chapter we have utilized the model derived previously to study

the problem of coal mill control. We have investigated theoretical aspects,

such as stability and optimality for system without and with actuator dy-

namics. The method of local coordinate transformation and feedback lin-

earization was found to be difficult to apply. Finally, optimal control for

the system with actuators has been studied with the use of Pontryagin’s

Maximum Principle.

Practical matters associated with the applicability of the control law

have been analyzed through simulations. It has been found that it can be

beneficial to implement a more sophisticated control law, which utilizes the
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Figure 4.10: Comparison between PID-type controller and 2DOF
PID-type controller in the mill temperature control. In this case
water content in the raw coal is known and constant.
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Figure 4.11: Comparison between PID-type controller and 2DOF
PID-type controller in the mill temperature control. In this case
water content in the raw coal is unknown and it is varying in range
between 5 and 15 % .
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knowledge of the plant obtained form the model. In particular the control

of angular velocity of the classifier, and the use of feed-forward term in the

temperature control, seem to be very effective.
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The problem of finding an optimal switching sequence for continuous

producers that has to satisfy a bounded horizon production schedule is

known to be computationally hard. In this paper we experiment with two

techniques: Quantitative Model Checking (QMC) and a traditional ap-

proach, Mixed Integer Linear Programming (MILP). Both algorithms are

found to be insensitive to the characteristics of individual production units,

but very sensitive to the shape of the profile which characterizes the desired

production. Two series of experiments with the two methods on carefully

selected profiles for varying number of producers are considered. The re-

sults show that overall MILP performs better for larger sets of producers

and longer horizons independent of the profiles. This corresponds well with

the local versus global approach of the two methods. When suboptimal re-

sults are acceptable, for instance when computation time is limited, QMC

shows promising performance.
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5.1 Problem definition

�

��

��

�

��

��

����

�

�	 �� ��

�	 �� ��

�
��

�
��

The production demands requested by consumers, pd, is
given by a piecewise constant function. The producers need
to satisfy the demands at all times. The objective is to find
the optimal schedule, i.e. the times at which to start-up
or shut-down producers, as well as when to adjust the pro-
duction levels where they are operating. The colored area
represents overproduction, which should be minimized sub-
ject to costs and constraints.

Figure 5.1: A demand profile with example production profiles.

We consider a situation where a number of consumers requires a certain

production rate, pd(t), within a bounded horizon t∈ [0, T ]⊆N. The required

production is provided by a number of producers, labeled by index i =

1, . . . , N . The producers have various constraints, such as particular start-

up and shut-down behavior, ramp constraints on the production, topology

constraints for distributed consumers, etc.

We consider this general class of optimization problems with the fol-

lowing assumptions:

� The demand function is approximated by a piecewise constant func-
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tion.

� The production demand must be satisfied at all times; overproduction

is allowed, but costly.

� The costs of operations are known and constant.

� There is a maximum increase and decrease of production for each

producer (gradient constraints).

� Each producer has bounded operating region.

The production rate of each producer is controlled by events εk. The

event set Σ is a finite set of labels, as in (5.1), which may be sent to the

producers, unless restricted by the constraints.

Σ ={εk}={’Start’, ’Stop’, ’Increase’, . . . , ’Decrease’} (5.1)

The optimization problem is defined as follows:

min
pi,εk

J=

∫ T

0
p0(εk, t)+

N∑

i=1

φi(pi(t)) +
N∑

i=1

ψi(εk) dt (5.2)

s.t.

pd(t) ≤ p0(εi, t) (5.3)

pi ≤ pi(t) ≤ pi (5.4)

ri ≤
d

dt
pi(t) ≤ ri (5.5)

for all t ≤ T , i = 1, 2, .., N , where φi : R+→ R+ is the operation cost the

of i-th producer1; ψi : Σ→ R+ is the cost of control actions; p0(εi, t) =

p1(εi, t) + p2(εi, t) + ... + pN (εi, t) is the aggregated production; ri (ri) is

the minimum (maximum) rate of production for the i-th producer.

The production trajectories that satisfy the constraints are called fea-

sible solutions. A feasible solution that minimizes J is called an optimal

solution. Due to the nature of the problem, there might exist more than

one optimal solution for the provided demand profile.

As pointed out in Guan et al. [2003], the problem belongs to the class

of NP-complete problems, implying that we can expect an execution time

that is exponential in both N and T from known algorithms.

1The notation R+ refers to the set {x ∈ R | x ≥ 0}
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5.2 MILP formulation

The desired production profile is a piecewise constant function described

by time points at which it assumes a new value, and the corresponding

production rate in the intervals between these time points.

t0 = 0, t1 = t0 + n0, . . . , tN = tN−1 + nN−1 = T, ni > 0 (5.6)

For simplicity we assume that all the mills have the same dynamics. The

scheduling problem can be formulated as follows. For each producer we

define a binary state for all time instances in the optimization horizon

n = 0, 1, . . . , T .

si(n) =

{

1 if mill i is ON

0 if mill i is OFF
(5.7)

This state represents whether the producer is operating or not. The supply

from producer i at time n depends on its state and the number of control

actions (adjustments)

pi(n) = si(n)pi +
n−1∑

m=n0

αi(m)ra (5.8)

where pi is the minimum production rate when machine i is running, ra

is the adjustment rate per time unit, αi(n) is the control adjustment in

n-th time unit; it can take real values between −1 and 1. Notice that the

maximum (minimum) change in the production rate of an operating unit

is ri = ra (ri = −ra). We define αi =
∑T

n=0 αi(n).

The objective is to minimize the following function:

min
si ∈ {0, 1}
αi ∈ [−1, 1]

J =
∑

n

e(si, αi, n) +
∑

i

φi(si) +
∑

i

ψi(si, αi) (5.9)

The terms of the function are determined by the excess of the production

over demand, by the time of machine operation and by the number of

on/off switches and control actions. To keep the description simple and the

number of decision variables low, it is assumed that the cost of switching

a producer on and off is the same for all units.

overproduction is

e(si, αi, n) = p0(si, αi, n)− pd(n) (5.10)
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cost of operation is

φi =
T∑

n=n0

cosi(n) (5.11)

cost of control is

ψi =
T −1∑

n=n0

|si(n+ 1)− si(n)| cs +
T∑

n=n0

|αi(n)| ca (5.12)

where co is the cost of operation, cs cost of start up and shut down, and ca

is the cost of the production adjustment.

Moreover the following constraints must hold for all n ∈ {1, . . . , T}:

� The control actions can be performed only if the machine is running

−si(n) ≤ αi(n) ≤ si(n) (5.13)

� Start and Stop operations require nu and nd time units respectively.

At this time the producer cannot be controlled. Therefore the mini-

mum idle time between machine stop and start is nu +nd, which can

be described by

si(n)− si(n− 1) = 1⇒
nu+nd∑

m=1

si(n−m) = 0 (5.14)

si(n− 1)− si(n) = 1⇒
nu+nd∑

m=1

si(n− 1 +m) = 0 (5.15)

Note that in case a machine has been idle for ni,init prior to initial-

ization, the duration of the idle period should be subtracted from the

sum in (5.15).

� Stop operations can be performed only if the mill is producing at the

minimum rate (pi)

si(n− 1)− si(n) = 1⇒
n∑

m=n0

αi(m) = 0 (5.16)

� Start operations can be performed only if the mill is idle

si(n)− si(n− 1) = 1⇒ pi(n− 1) = 0 (5.17)
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� The production from each operating machine must be in the range

[pi, pi]. Combined with the assumption that the production is pi when

the producer is shut down, means that the sum of control adjustments

cannot exceed [0, pi − pi]

0 ≤
t∑

n=1

raαi(n) ≤ pi − pi (5.18)

� It is assumed that there is a spinning reserve available at all times,

i.e. the aggregated production is equal to or exceeds the demand

∀n p0(si, αi, n)− pd(n) ≥ 0 (5.19)

� The initial conditions must be fulfilled.

The proposed formulation is based on a ticking model of the system.

This approach is very common and probably the most intuitive description

of the problem. Although the problem was originally in continuous time,

in the solution strategy it is sampled and the operations can be performed

only at the specified time instants. Often, in UC problems, the sampling

time is set to one hour and the optimization horizon would be 24 hours.

For the mill switching problem, we choose a sampling time of one minute.

The formulation has been implemented in YALMIP [Löfberg, 2004],

which is an optimization toolbox for Matlab that allows flexible problem

formulations for many classes of problems. The solution has been found

using the GLPK solver2, which is a free solver available for download at the

official website. We are aware that there exist other MILP solvers which

are more efficient, for example the state-of-the-art IBM ILOG CPLEX Op-

timizer, however, it is a matter of decreasing the computation demands by

a factor rather than changing the solver characteristics. For the purpose of

this work, which concentrates on qualitative analysis, the GLPK solver is

sufficient.

In general the procedure for finding optimal solutions to a Mixed-Integer

Linear Program, J#, starts with solving a relaxed Linear Program, where

decision and auxiliary variables need not be integral. An optimal solution

to the relaxed problem, J∗, gives a lower bound, which is the best possible

result that can be achieved with an integer formulation (J∗ ≤ J#). If

the LP relaxed solution happens to yield integer values as required, the

2GNU Linear Programming Kit, Version 4.39, http://www.gnu.org/software/glpk/
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procedure is stopped. However, if this is not the case, a search procedure

is performed to find integer values that give a best possible result. There

are various methods for determining the integer values, among which are

the cutting-plane, branch-and-bound, branch-and-cut and branch-and-price

methods. Commercial MILP solvers provide more efficient methods for

performing integer search than freely distributed solvers, decreasing the

computation burden and enabling larger problems to be handled.

5.3 QMC formulation

Quantitative Model Checking has its roots in the theory of Timed Au-

tomata well known in the Computer Science and Hybrid Systems commu-

nities. Before we proceed with the proposed solution for the optimization

problem, let us recall some definitions to ease the understanding of the so-

lutions. Fuller descriptions of timed automata can found in Alur and Dill

[1994]; Bengtsson and Yi [2004]; Behrmann et al. [2004].

Definition 1. (Behrmann et al. [2004])

A Timed Automaton is a tuple (L, l0, C, A,E, I), where L is a set of loca-

tions, l0 ∈ L is an initial location, C is a set of clocks, A is a set of actions,

co-actions and the internal τ -action, E ⊆ L×A×B(C)× 2C ×L is a set of

directed edges that denote transitions between locations. Transitions are

ornamented with an action, a guard and a set of clocks to be reset, and

I : L→ B(C) assigns invariants to locations.

Intuitively, a Timed Automaton is a finite state machine with a set of

clocks that is used to model constraints on the time spent in locations. The

interesting part about timed automata is that key properties are decidable,

i.e. can be checked with a terminating algorithm [Alur and Dill, 1994]. For

example we can detect whether certain states are reachable or whether there

are any deadlocks in the system, i.e. situations where the automaton blocks.

An example situation where blocking may occur is when two processes wait

for each other to access a resource. The verification of such properties is

called model checking.

For the purpose of optimal scheduling we use an extension of model

checking where we take into account certain additional quantities. In this

case we assign costs to actions and to staying in locations (cost += 0 and

cost’ == 0 is default for non-decorated locations and transitions), resulting
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in a Priced Timed Automata (PTA). We can now verify properties of the

system taking into account the cost. More precisely we wish to find a path

or trace that leads us to a goal state (end of the optimization horizon)

with the lowest accumulated cost. For this purpose we use an extension of

the model checker Uppaal [Behrmann et al., 2004], called Uppaal Cora,

developed for the purpose of analyzing Priced Timed Automata.

The problem formulation as PTA provides interesting modeling pos-

sibilities for many systems. The models described as state machines are

often more readable for users than the mathematical formulations of the

constraints used in the MILP approach. Due to the possibility of automata

compositions, bottom-up modeling - construct simple subsystems and com-

bine them to express large and complicated systems - is feasible.

For the problem considered here, we create a template model of Pro-

ducer and Consumer automata. By assigning concrete values to the pa-

rameters, we get concrete models of all the producers. The models are then

composed with the Consumer model to create the overall system model.

An example template of a producer with distinct start and stop phases is

shown in the automaton of Figure 5.2; the graph defines the state transition

relation A as well. It is a timed automaton, where each state s has a

maximal dwell time, denoted D[s]i, and each transition a = (s, s′) ∈ A

has a minimal enabling time d[s, s′]i. Note that the dwell times and other

parameters may vary between producers.

Stop

Running
Adjust

Start

Idle

Figure 5.2: A producer automaton.

In the analysis performed in this thesis we consider a simplified model

(Figure 5.3), which corresponds better to the MILP formulation. The loca-

tions of the example in Figure 5.2 are combined into one state running. The

transitions are synchronized with the Consumer template, and they may

be taken only if the guards are satisfied. For example, start up (sSTART)

may be taken only if the producer is idle (lpr=0) and the time required
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for starting the producer has elapsed (c>=DSTART+DSTOP). Similarly the

other events are modeled.

Running

adj_t(InitTSW)

c >= DADJUST &&
lpr >= rop &&
RMAX-ra >= lpr

sUP!

lpr += ra, c = 0

lpr == rop && c >= 1

sSTOP!

lpr = 0, c = 0

lpr > rop && c >= DADJUST

sDOWN!

lpr -= ra, c = 0

c >= DSTART+DSTOP &&
lpr == 0

sSTART!

lpr = rop, c = 0

Figure 5.3: A simplified producer automaton used in the analysis.

Running

t <= profile[s].dur &&
profile[s].r <= pr() &&
upperprofile[s].r >= pr() &&
cost’ == penalty()

End

sDOWN?
cost += ca

sUP?
cost += ca

sSTOP?
cost += cd

sSTART?
cost += cu

s < STOP && t == profile[s].dur
remaining = lower_bound(s+1), t = 0, s++ s == STOP && t == profile[s].dur 

&& pr() >= final_value 
&& upperprofile[s].r >= pr()

Figure 5.4: The Consumer template.

When the producer is operating, it can non-deterministically adjust the

current production rate up or down, and even turn itself off or on. All of

the operations are restricted by the time required to perform the operation

(dynamics) and by the bounds on the allowed production region.

In each state s, a Producer i has a constant current production rate

ps
i (t) corresponding to some set point. We allow pOFF

i (t) = 0 for all i and

t, and pON
i (t) vary depending on the sequence of adjustments, that have
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taken place.

A run of the system is recorded in a time stamped sequence of states

for the producers. An element in such a sequence has the form, (i, s, t),

where, as before, i is a Producer, s is a state, and t is a time stamp within

the given horizon. A well-formed run σ = 〈(i0, s0, t0), ...(in, sn, tn)〉 has

weakly increasing time stamps, tk ≤ tk+1 for k = 0, . . . , n−1. For a specific

producer j, the projected sequence is σ ↓ j = 〈(s′
0, t

′
0), . . . (s′

n′ , tn′), (s′
n′ , T )〉,

where, for convenience, we have added a stuttering element at the end

to mark the end of the horizon. The projected sequence has to satisfy

the transition relation, (s′
k, s

′
k+1) ∈ A, and the enabling and dwell time

constraints, d[s′
k, s

′
k+1]j ≤ t′k+1 − t

′
k ≤ D[s′

k]j , for k = 0, . . . , n′. It must

also be initialized, t′0 = 0. For specific producers one may constrain the

initial state s′
0.

The objective is to find a run that minimizes the switching and run-

ning costs while satisfying the required production rate as tightly as pos-

sible. The switching cost is determined by giving each state transition

a an associated cost ca
i . The switching cost of a run σ is then the ac-

cumulated costs of the individual producers, Js(σ) =
∑N

i=1 Jsi(σ ↓ i);

for the individual producers, the cost is the sum of the transition costs

Jsi(σ
′) =

∑#σ′−1
m=0 c

s′

m,s′

m+1

i , where we by convention assume a zero cost for

the stuttering transition.

For a run, the state of producer i projected on time is si[σ](t), which is

uniquely determined by σ ↓ i containing a subsequence (si, tb)(s
′
i, te) with

tb≤ t < te. A run will satisfy the production just when the error function

e[σ](t) =
∑N

i=1 p
si[σ](t)
i − pd(t) is non-negative for all t∈ [0, T ).

Since we want the run to be as close to the rate as possible, but never

smaller than demands, we define a penalty function:

c[σ](t) =

{

e[σ](t) (e[σ](t) ≥ 0)

∞ (e[σ](t) < 0)
(5.20)

Finally, we consider the cost of running the individual producers. Pro-

ducer k is running when its production rate is different from zero. Assuming

a flat cost rate of co, this is given at a point of time by

cpi[σ](t) =

{

co (si[σ](t) = 1)

0 (si[σ](t) = 0)
(5.21)
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And a combined cost function is now

J(σ) = Js(σ) +

∫ T

0
(c[σ](t) +

N∑

k=1

cpi(t))dt (5.22)

The objective is now to minimize this.

The penalty function and the profile is modelled by the Consumer au-

tomaton shown in Figure 5.4. The objective is to find whether the final

state in the model, corresponding to the end of the time horizon, is reach-

able or not. If the state is not reachable it means that the considered

production profile cannot be realized. This itself can often be a very useful

indication for many applications as it represents the safety of the system

with constraints. On the other hand, if the state is reachable, meaning that

we can find a path (trace) consisting of states, transitions, clock valuations

and prices, we wish to find the minimal total cost of this path (as defined

earlier). Details on the solution methods may be found in an extensive

literature, e.g. see Larsen et al. [2001]; Behrmann et al. [2005]; Bengtsson

and Yi [2004]; Burch et al. [1992]; here we would like to make a few notes

on this topic.

The common problem of all the model checkers such as UppAal is

state space explosion. Moreover in case of the continuous time systems

modeled by (priced) timed automata, there is an infinite number of possible

trajectories that can be generated by such systems. In order to deal with the

infinity problem and to reduce the state space special symbolic techniques

are used. The symbolic states take form of (priced) zones described by a

convex set of clock valuations. In case of the priced timed automata, the

exploration of the state space can be guided by the optimality criterion

while parts of the search tree are pruned by for example branch-and-bound

techniques Larsen et al. [2001].

Contrary to the Mixed Integer Linear Program formulation, where the

relaxed linear problem is solved first, the Quantitative Model Checking

does not provide a natural lower bound for the cost J . Such a bound

is very useful in order to cut many useless branches and thereby limit the

computational burden and state explosion. Uppaal Cora gives the option

to define a lower bound on the remaining cost. A carefully chosen bound

may significantly reduce the time required for obtaining the solution. In

this work, where all producers have the same maximum production rate p
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and cost of operating co, we can define lower bound as follows:

J∗ =
∑

S

⌊
pd(S)

p

⌋

d(S) co (5.23)

where S is remaining segments of the production demand function, d(S)

is the duration of the segment and the number of necessary producers is

rounded down to the nearest integer value.

5.4 Simulation experiments

As mentioned, the problem belongs to the class of NP - complete prob-

lems, and we can thus expect an execution time that is exponential in both

N and T .

Since the number of feasible solutions for the problem with lower bound

production demand (constraint) is very large, the solver time required to

finding an optimal solution is very high. At the same time some of the

feasible solutions could be pruned from the beginning, as their cost is very

large. We should therefore restrict some of the possibilities by either intro-

ducing the maximum cost bound or by limiting the production by an upper

profile. The second approach seems to be more reasonable for our consid-

erations, since we have rather different solution approaches, but we wish

to have common constraints for both cases. Moreover it may sometimes be

difficult to judge the approximate cost for certain production profiles.

An upper bound constraint reduces the required solver time significantly

and in real applications it is very crucial to design it properly to achieve

better results. In our work we generally do not apply very strict upper

bounds on the profiles, as we want to show the complexity of the problem

as well. Yet, we have observed that the optimization burden may be reduced

significantly if tighter upper bounds are used.

5.4.1 Consumer

For the consumer, the time horizon should allow a reasonable amount of

freedom for switching the producers. For many applications it is very good

if we find the optimal schedule in time that is much shorter than the opti-

mization horizon, especially if we consider a receding horizon strategy for

the application. For the purpose of the paper we have chosen 3 schedul-
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ing horizons, i.e. 20, 25 and 30 minutes. Therefore we use the scheduling

horizon as an upper bound on the solver time as well.

Production profiles

The demanded production profiles are essentially very application specific,

but for the experiment, we have selected the following exemplary ones which

will occur as segments of most real profiles:

zero

A profile of zero production for the whole time horizon.

constant

Similarly to zero, but with constant, mid-range, production.

run up

A profile that rises moderately steep. In general there are many

possibilities to fulfill the profile.

run down

The converse profile which falls moderately to zero.

sinusoid

A gentle sinusoidal waveform that requires precise switching to

get an optimal run. This scenario is very much like the characteristics

of real profiles.

ramp (step)

A nightmare for any branch and bound algorithm. It is 0 for

most of the horizon and then rises steeply to a maximum. It would

not be realistic in any unbuffered system, because it requires the

producers to step up production ahead of time in order to reach the

top of the ramp. However, it may show the limitations of brute force

approaches and the need for clever approximations.

5.4.2 Producers

In order to use model checking, we have to quantize the production rate.

We have selected a range of [0, 100] with 8 steps – minimal production rate

of 34 and then every 11 units until the maximum production rate. It fits
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well with the mill switching problem, and allows ample room for adjusting

the production. This has a direct impact on the required rate, it can at

most be 100N . In the MILP formulation, the production rate is modeled

similarly. The most important difference is that the production can be a

real value in the suitable region.

Delays

Delays determine the minimal switching times in case of QMC and the

maximum ramp up in MILP. We consider a case with homogeneous pro-

ducers, and one with a mix of two kinds - ”Old” and ”New”, where the

Old ones have longer delays for start up, shut down and adjustment. The

constants are given in Table 5.1.

The numbers have been chosen to be coprime such that periodic behaviors

are excluded. We shall conduct one experiment with N New producers and

one with N/2 Old and the remaining ones New producers.

Cost

The costs of start up and shut down have been selected to be equal, keeping

the MILP description simple and with lower number of decision variables.

The running cost, co, is assigned a value such that it pays to stop a producer.

We have not experimented with different costs for different producers, nor

for New and Old producers.

DStart DAdjust DStop cs ca co

New 10 3 10 17 1 1
Old 11 4 13 17 1 1

Table 5.1: Constants used in the simulations.

The selection of parameters above is based on some experiments with

the solvers. We have fixed most of the parameters to a small number of

configurations, such that we can vary N more freely. The experimental

setup has 3 time horizons, 6 considered scenarios (profiles), homogeneous

and heterogeneous configurations for some interesting profiles, thus there

is a total of 162 optimizations to be done. Each optimization has been

run 5 times on a server with reserved resources. Significant differences in

time required to solve particular scenario could be an indication of errors
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hetero
N 4 6 8

T 20 25 30 20 25 30 20 25 30

trivial

no
MILP

2 3 4 3 5 6 5 7 9

yes 2 3 4 3 5 6 5 7 9

no
QMC

0 0 0 0 0 0 0 0 0

yes 0 0 0 0 0 0 0 0 0

constant
no MILP 2 3 29 3 29 ∝ 4 456 ∝

no QMC 0 0 0 0 0 0 0 0 0

run up
no MILP 184 559 ∝ ∝ ∝ ∝ ∝ ∝ ∝

no QMC 258 ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝

run down
no MILP 2 3 3 3 9 6 6 58 119

no QMC 21 413 ∝ ∝ ∝ ∝ ∝ ∝ ∝

ramp
no

MILP
2 3 4 3 5 6 5 7 9

yes 3 3 4 22 5 6 13 7 9

no
QMC

∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝

yes ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝ ∝

sinusoid
no

MILP
4 29 178 70 676 ∝ 875 ∝ ∝

yes 4 15 102 58 441 ∝ 685 ∝ ∝

no
QMC

171 1152 ∝ ∝ ∝ ∝ ∝ ∝ ∝

yes 5 91 ∝ ∝ ∝ ∝ ∝ ∝ ∝

Table 5.2: The average time (in seconds) of optimization runs for
the tested scenarios. Cases which could not be finished within the
required time are marked with ∝. The computation time is essen-
tially an initialization time and an execution time. The initialization
time is significant (2 seconds) for MILP. Since we are interested in
trends, we give the time in whole seconds.

or problems; but this has not been the case in the reported results. The

average times in seconds from all the runs are listed in Table 5.2.

The simulations were performed on a designated server, to provide uni-

form conditions for executing each job. The server type and specification

is Dell PowerEdge 2950, 2x2.5 GHz CPU (Quad Core Intel Xeon), 32 GB RAM with

approximately of 12.5% CPU and 8 GB RAM available. The amount of mem-

ory assigned to the process was not a limiting factor for obtaining solution

faster.
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5.4.3 Discussion of the results

From the results presented in Table 5.2 it can be noticed that the constant

profiles, where the demand is constant throughout the whole optimization

horizon, are instantaneously solved with the QMC. Such scenarios with

large number of producers or longer optimization horizons may pose trou-

bles for MILP, with some cases where feasible solution cannot be found

within the considered time.

The run up profile, where the production demands were increasing every

5 minutes from 0 at t = 0 to pN
2 at t = 25 minutes poses difficulties for

both methods. For the QMC it is clear because it will strive to minimize

the cost locally. This will turn out to be too optimistic after some further

steps, and that results in backtracking. The run down, although faster than

run up, poses problems for QMC, especially when the number of producers

is medium or large, but is solved quickly by MILP solver.

The ramp profile is easily solved using MILP while it is extremely diffi-

cult for model checking. The reason for this is that the optimal solution is

obtained by enabling all producers at proper time and choosing maximum

values of productions in each step. The relaxed version of the problem

yields results such that there is no need to perform extensive branching.

QMC on the other hand is guided by random optimal first strategy. In this

strategy the low cost strategies are explored first, but they fail at the very

end, when the final condition is violated.

Sinusoidal profiles, where it is very important to choose switching pre-

cisely are demanding. It should be noticed that introducing heterogeneous

producers, that is breaking problem’s symmetry, significantly reduces the

computational complexity.

The simulations help to quantify the qualitative performance of both

solution methods. It can be seen clearly that the shape of a profile de-

termines the computation time no matter which method is used. QMC

performs better when there are long sections of equal production values

and the differences between the sections are not very large. Since MILP

estimates the solution by solving the linear version of the global problem, it

is more suited for profiles where there are larger variance of levels. In some

cases, such as ramp profiles, where the branching search does not need to

be extensive, solving MILP problems is easy.

An important consequence of using the model checking tools for the

problems is the presence of quantization. This inevitably leads to quanti-

zation errors and suboptimal solutions. Ideally the error could be reduced
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by modeling the problem with higher density of production levels or in a

post-processing procedure. However, in some applications, such as the con-

sidered coal pulverization, the exact production levels might be unknown

due to the technological limitations and thus they are approximated. More-

over, modest over-approximation of the required production can be used

to advantage. It naturally increases the available reserves, therefore, large

production fluctuations might be handled. Hence, the quantization may

not necessarily pose significant problems in practice.
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Figure 5.5: Suboptimal results with solution time 2 and 4 minutes
- run up profile.
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Figure 5.6: Suboptimal results with solution time 2 and 4 minutes
- run down profile.

5.4.4 Suboptimal results

Both solvers rely on exhaustive branching of the solution space and thus

the optimization time depends on those algorithms. In case of the MILP

solvers the lower bound for the performance index is known which makes

it possible to evaluate the quality of solution. Additionally a number of

solutions are excluded in the branching procedure, thus the solver performs

less computations.
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Figure 5.7: Suboptimal results with solution time 2 and 4 minutes
- sinusoidal profile.

There is a possibility to include the lower bound for branching in the

model checking, however, it is still an experimental feature in UppAal

Cora that could not be fully used in our tests. The bound is not calcu-

lated from a relaxed problem as in MILP solvers, but should be specified

during modeling. For example the lower bound on the minimum number of

machines running for a given profile can be specified as in equation (5.23).

Other heuristic rules can be provided in order to speed up the computa-
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tions. Ideally a well posed relaxed problem formulation should be solved

first in an analogous manner to the MILP solvers.

Lack of lower bound significantly affects the QMC termination; many

branches, including the infeasible one, i.e. below the minimum cost must

be explored to prove that the result is optimal. This makes the branching

procedure overly extensive. On the other hand it is quite likely that a very

good candidate schedule is obtained much earlier and significant amount

of the time is spent only to find small improvements.

To verify the convergence of QMC we perform another set of experi-

ments. The quality of results are compared when only short time is given

for solving the problem. We test the three most interesting profiles, run

up, run down, and sinusoidal. The producers are homogeneous and the

additional constraints are that only 2 or 4 minutes are available for obtain-

ing solutions. Since the best result is not known for those cases it is not

possible to provide the optimality slack. The results of optimization within

2 and 4 minutes are presented in figures 5.5 to 5.7.
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5.4.5 Schedule comparison

Both obtained schedules for sinusoidal profile with 4 homogeneous produc-

ers and 20 minute time horizon are depicted in Figures 5.8. It can be

noticed that the production levels are distributed differently among the

producers. This shows that small differences in problem formulations may

result in various schedules. In this case the most significant difference is

the quantization of production levels in case of QMC.

5.5 Chapter summary

In this chapter we have studied two problem formulations and solution

strategies for the scheduling problem, which yield the optimal results. We

have studied various production profiles in order to make a qualitative anal-

ysis of the methods. It seems that a combination of both approaches could

be beneficial. For example, the optimization with QMC can be quickened

if adequate lower bound is provided, similarly to the lower bound obtained

from the relaxed MILP problem.

Because the problem complexity is very high, we have analyzed the

suboptimal results obtained by stopping the solver earlier. The quality of

solutions were very good indicating that, in fact, it takes long time to ex-

plore the whole search space rather than to find a good schedule candidate.
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In this chapter we describe a concept for a supervisory control of fuel

supply in thermal power plants where multiple fuels can be used. The

controller governs the fuel system of a power plant, namely the oil and

the pulverized coal distribution to burners and is based on receding hori-

zon strategy. An optimal schedule for each fuel unit can be obtained by

employing one of the previously investigated methods, adapted to the con-

sidered scenario. The proposed strategy could be utilized for fully auto-

matic fuel control in thermal power plants or in a knowledge based operator

support/control system (KBOSS).

From a control point of view, power plants are highly complex systems

that include many interacting chemical and mechanical processes. Some

of the processes are not fully automated, such as the mill start up and

shut down. Getting an overview of all the running processes is not an easy

task; it requires a high level of knowledge obtained through experience.

Due to the complexity it is often difficult to catch deviation from normal

operation at an early stage, therefore knowledge base operator support

system (KBOSS) have been proposed [Fan and Rees, 1997]. The goal of

having such a system is intuitively clear, namely to lower the number of

alarms triggered in a plant and to optimize the overall operation by assisting
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the plant operators with additional information besides the measurement

readings. Such system helps to detect a problem and understand the cause.

Fan and Rees describe the development of such a system with the pur-

pose of improving operation of coal mills in a power plant. The system is

based on a mill model and features man/machine interfaces with under-

lying sensors. From the collected data mill parameters are estimated and

the implemented fault detection mechanisms are evaluated; various levels

of alarms are displayed and optimal solutions are proposed to the crew.

It is proposed that the system is adjusted systematically during the

operation as the advisory system, and after a test period it would allow fully

automatic control, which acts directly on the coal mills. It is mentioned

that it is possible to reduce the grinding power by controlling coal mills

such that the amount of coal on the table is kept within a certain region,

and it is the responsibility of KBOSS to control the mills such that the level

is maintained whenever possible. It may be noted that the controller with

state observer proposed in Chapter 4 is well suited for such supervisory

control; the mass of coal on the table is estimated and a proper state

reference can be provided.

In the paper on KBOSS, so-called automatic mill load-sharing control

is mentioned, where instead of dividing load equally among all the mills,

individual set points are provided for each machine based on the machine

wear and maintenance requirements. It is observed that using such strategy

lowers the number of mill runbacks that are very costly. A runback situation

is a safety feature that occurs when differential pressure across the mill

exceeds a threshold, which may indicate mill choking. The feeder belt

speed and the primary air flow are lowered to the minimum level at that

point.

The actual algorithm that distributes loads among the mills is not de-

scribed in the paper probably due to confidentiality issues. It is clear that if

the algorithm determines the number of operating mills, it is based on the

desired grinding capability and required reserves. Most likely the problem

is solved as a static optimization problem or based on heuristic rules, which

is a simplification of the problem considered in this thesis. Therefore our

work can be seen as a natural extension to KBOSS that gives additional

information to the plant crew or in case of fully automatic control gives

higher safety guarantees. The schedule calculated taking into account the

grinding dynamics guarantees feasibility, which is not always the case with

static optimization or heuristic approaches.

In the following sections of this chapter we consider a fuel system in
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a power plant that besides coal mills consists of oil injectors which allow

burning oil in the furnace. Such injectors are used during power plant start

up when it is necessary to preheat the boiler and furnace before coal is

used. In general oil is more expensive than coal, but it is easier to control

its flow, hence more accurate control is possible. Various fuels can be used

to improve the efficiency and flexibility of a plant. Most likely oil will

be used when high load changes need to be handled, and for steady state

operation or low production gradients it is replaced (partly) with pulverized

coal.

The topic of propagating business objectives to individual processes and

optimal fuel mixing in power plants is well studied in [Kragelund et al.,

2008, 2009, 2010b,c,a], and summarized in [Kragelund, 2009]. In that work

many aspects associated with power plant efficiency optimization obtained

by changing fuels are discussed. For that purpose, Kragelund et al. assume

that a mixture of coal, oil and gas can be used to heat up the boiler. An

important problem studied in [Kragelund et al., 2008] which is neglected

in our work is the relation between business and process objectives. Three

different approaches have been used there: input space search, static opti-

mization and Pontryagin’s Maximum Principle. The first two approaches

do not include dynamic properties of various fuels, which are included and

treated using the Maximum Principle. Those studies are taking into ac-

count historical data of fuel costs and energy prices from Scandinavian

electricity market NordPol.

In our study we simplify the problem to a situation when all the costs

of fuels and various operations, such as mill start up, are known. We look

at the problem from a different perspective: instead of modeling the fuel

flows as smooth functions, we pay close attention to the discrete behavior

observed in the system. Various phases of operations and the correspond-

ing timing constraints are distinguished in our work, making the system

discrete and event based.

6.1 Control strategy

There are two potential strategies for designing the supervisory con-

troller. In the first strategy the problem is formulated as a game between

the controller and the environment. The controller wishes to minimize the

overall cost of the production, however, there are uncertainties caused by
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forecast errors and modeling errors that need to be taken into account. In

this case the controller strategy is to:

1. obtain the optimal schedule for the whole forecasted production hori-

zon

2. generate suitable feasible counteractions (alternative schedules) for

all possible changes in the forecasted production schedule.

Should the environment change due to various reasons, the supervisor

updates its schedule and the system works without interruption. Produc-

tion plans are stored in a lookup table and they are activated if needed.

Even though the schedules can be precomputed offline before the pro-

duction starts, the number of possibilities may be very large. Moreover it

is difficult to ascertain all the potential environment changes that result in

schedule alterations. Those facts make the applicability of the strategy to

the considered problem limited.

It should be noted that a conceptually similar strategy is used in case

where a supervisor controls various subsystems according to a specification.

The systems and the specification are modeled using formal languages and

the goal is to synthesize a supervisor that ensures safe operation of the

overall system, by blocking certain events such that the specification is met.

The controller can be synthesized using the Ramadge-Wonham framework

[Ramadge and Wonham, 1984]. In this case, however, the events of all the

subsystems and the specification are known, while in our case it is difficult

or even impossible to model all the possible events of the environment.

The alternative approach utilizes a receding strategy. An optimization

window moves forwards and the optimal schedule is calculated taking into

account system changes obtained from various measurements. The strategy

is related to model predictive control (MPC) [Camacho and Bordons, 1999;

Maciejowski, 2002] applied to time sampled systems. The knowledge of

a system model is used to calculate the control inputs in the considered

window (horizon), but only the first sample is applied; the optimization is

then repeated. At each optimization the state of the system, which can

deviate from the predicted behavior, and the up-to-date predictions are

updated.

Two main parameters are relevant for the receding horizon strategy,

namely the length of the optimization window called the optimization hori-

zon, and the time required for solving the optimization problem, referred

to as the control step. While the optimal solution is sought, the system is
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controlled according to the previously specified strategy, but the result of

the control actions is typically different from the predicted. Therefore it is

desirable to specify a short control step, such that deviation between real

and predicted response is not too large. However, this means that there

is a limited time to perform the optimization in order to find the future

schedule, which leads to restrictions on the optimization horizon. Clearly

the limitations on the optimization horizon lead to suboptimal results. The

optimal result may only be achieved if the horizon spans over the remaining

prediction horizon. This is typically not possible in practice.

It is important to choose the control step and optimization horizon

correctly to achieve good results. They depend on the system dynamics;

slow systems are more suitable for that purpose than fast varying ones.

Obviously the parameters are related due to the fact that the complexity

of the optimization problem grows with the length of the optimization

window. Solving difficult problems requires a long control step, which is

undesirable due to modeling errors and changes in the reference signal.

This control approach is widely used in the industry, as it does not

require sophisticated tuning, and thus is easy to maintain.

6.1.1 Receding horizon

Consider a general nonlinear discrete time system

x(k + 1) = f(x(k), u(k)) (6.1)

where x is the system state and u is the control input.

The receding horizon control strategy follows the procedure (Figure 6.1)

Step 1: Apply the predicted (optimal) control sequence u∗ during the con-

trol step [t0, tctrl].

Step 2: At the same time solve the optimization problem to obtain control

signals, for the period [tctrl, tctrl+thor].

Step 3: At time tctrl measure the state of the system and load updated ref-

erence signal; tctrl becomes t0 and the procedure is repeated starting

at step 1.

The system is essentially controlled in an open-loop fashion during the

control step and the feedback is provided as the initial conditions for the
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Figure 6.1: Receding horizon strategy. The system response during
the control step is typically different than predicted. The reference
signal may also be updated.

optimization problem. This may give robustness issues especially when a

good model of the process is not available.

The sequence of control inputs is obtained by solving an optimization

problem (6.2). The performance index J(x, u) should be minimized, sub-

ject to the imposed constraints g(x, u), which for example are the state

bounds or gradient constraints on the inputs, and assuming that the model

accurately reflects the controlled process.
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u∗ = arg min
u∈[u,u]

J(x, u) =
T∑

i=1

h(x(i), u(i)) (6.2)

subject to

g1(x, u) < 0 (6.3)

The system response during the control step is typically different than

predicted (plotted with the solid red line in Fig. 6.1). This must be taken

into account when calculating a new control sequence. This means that

the period when system is controlled in an open loop should be as short as

possible.

To reduce the control step, problem formulations and solvers that yield

suboptimal results could be used. For example local search methods, greedy

algorithms or other meta-heuristics are used. In this case it is trusted that

a feasible and relatively good solution can be achieved quickly.

6.1.2 Local search methods

The considered problem has combinatorial nature. We wish to find a suit-

able order of machines from a given set that satisfy the production con-

straints. Many such problems belong to the complexity class NP-hard or

NP-complete [Hoos and Stützle, 2005]. Hoos and Stützle present how they

can be solved via local search, and compare when it is more beneficial to use

systematic search or local search techniques. The methods we have used

before in Chapter 5 rely on branching algorithms that guarantee finding

optimal solution and they are classified as systematic search methods.

The drawback of the systematic search lies in the computational time

required for obtaining solution. For that reason local search methods are

employed. Very often they can provide a good candidate solution in a

short time. Such ability is certainly valued when using receding horizon

strategies. Especially in situations where the number of producers and

the optimization horizon are large, it may be beneficial to use such meta-

heuristics.

An important feature of the studied problem are the time constraints

which need to be treated properly by the algorithm in order to model the

distinct phases of operation. The local search methods do not yield optimal

result and the optimality gap is unknown, but its potential strong advan-

tage is the ability to acquire a close to optimal results within short time.
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However, applying such methods to the problem of supervisory controller

for the fuel system with the constraints specified in the previous chapter is

not straightforward.

Stochastic local search

Basic local search algorithms, which are implemented to minimize the cost

function at each iteration taking into account only information about neigh-

boring points, suffer from convergence to local minimum points. To lower

this problem randomized choices are introduced. In some iterations, in-

stead of choosing candidate solution that lowers the cost, a random change

is performed. The aim is to provide greater exploration of the solution

space and hence lower the chance of algorithm getting stuck in local min-

imum. Another mechanism to escape from local optima is to restart the

algorithm with new initial conditions. This does not give the guarantee to

escape the local optima, nevertheless, Hoos and Stützle summarize these

algorithms in the following way:

These stochastic local search (SLS) algorithms are one of the

most successful and widely used approaches for solving hard

combinatorial problems.

The ability to acquire relatively good solution candidates is highly de-

sired in the case of supervisory control with receding horizon strategy.

However, while designing a suitable search algorithm for the problem we

encounter issues with solution feasibility. The problems come from the fact

that local change in the schedule affects the rest of the production plan,

due to timing and production rate constraints. This can be easily seen in

the following example.

Example of an optimization run

Lets consider situation depicted in Fig. 6.2 in which 2 machines are oper-

ating with the production rates 100 and 95 at t0. A feasible production

schedule is presented on the left.

In one of the iterations, the local search algorithm chooses to adjust

the production of the second machine at t = 40 according to the optimality

criterion. This change affects the production schedule from this time in-

stance. In fact it causes the profile to become infeasible at t = 60 because

the total production rate is lower than the demands.
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Figure 6.2: Local production adjustments have consequences in
the remaining part of the schedule.

The problem becomes even more severe when machine start-up and

shut-down are considered. Machine shut-down decreases the production by

pmin, which needs to be compensated by other producers. This means that

prior to the shut-down other machines increase the production rate, which

is counter-optimal (the cost of overproduction increases). Moreover, the

timing constraints of start-up and shut-down phases need to be satisfied.

Increasing production rate of a machine may cause delay in the shut-down,

since it is required that the machine is turned off when producing with the

minimum rate.
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Figure 6.3: A machine can be switched off only when producing
with minimum rate (in this case pmin = 30). Increase of the pro-
duction rate (p = 40 → p = 50 at t = 10) may result in shut-down
delay (toff = 20 → toff = 30) and consequently the next start-up
(toff = 70→ toff = 80).

This situation is illustrated in Fig. 6.3. In this case the production rate

increase at t = 10 from p = 40 to p = 50 affects the remaining part of the

schedule. The minimum rate is reached with a delay, hence, the shut-down

cannot occur at t = 20 due to the constraint. Consequently, the start-up

time is delayed because the machine must fully stop and be prepared for

operation again.

From the presented examples it is clear that many local adjustments

may result in non-feasible production schedules. Therefore many of the iter-

ations of local search algorithms do not contribute to acquiring an improved

candidate solution. This reduces the effectiveness of obtaining a good pro-

duction profile through local search algorithms within a short time.

Therefore, there are two major problems encountered with the local
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search methods applied to the considered problem.

1. Local change of schedule affects future production plan. They lead

to violations of the time constraints, delays of the upcoming events,

or they block certain events.

2. Local optimality does not relate to the overall optimality. Often it is

necessary to perform counter-optimal steps to allow for other events,

for example machine shut-down. Moreover optimal local adjustments

may yield infeasible profiles.

Those characteristics must be taken into account when designing local

search algorithm. If the algorithms cannot be used directly, a combination

with systematic methods might be fruitful [Hoos and Stützle, 2005].

6.2 Supervisory control of a fuel system

The considered supervisory controller is realized in a receding horizon

strategy, where the optimization problem can be solved by one of the meth-

ods discussed in the previous chapter. The schedule is passed to the units,

that is coal mills and oil injectors. Pulverized coal and oil flow are con-

trolled by individual controllers. Different dynamic properties associated

with the use of various fuels are beneficial and can be exploited in the

optimization problem. The supervisor is essentially responsible for realiz-

ing schedules properly, collecting data from the units and distributing the

production profile updates among them. It is important to include addi-

tional constraints in the optimization problem which guarantee that there

are necessary production reserves available. Such constraints are labeled

here as safety constraints and they are described in the later part of this

section.

A 24 hour production forecast is known in advance. The forecast is dis-

tributed to power plants by solving the Unit Commitment problem. Each

plant has to follow its reference production, which we have previously called

a production profile. Even though the forecast is fairly accurate, as the con-

sumption patterns are well known and repeatable, there are frequent up-

dates that adjust the profile. Those updates need to be handled by balance

control systems, hence, the supervisory controller for the fuel system must

handle the updates safely. An example of forecast and actual production
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from one of Danish power plants is depicted in Fig. 6.4. The plot represents

the power generation, however, this relates to the fuel flow demands.
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Figure 6.4: One day forecast and actual power production from a
Danish power plant.

There are two kinds of production changes announced to the supervisor,

which result in production updates. First there is the forecast update. Such

information is passed to the optimization problem as initial parameter. An

open-loop control sequence is obtained by solving the problem. Those kinds

of updates correspond to significant changes in the forecasted production

and they can be estimated in advance.

The second type of updates is related to smaller but fast varying ad-

justments which occur in the closed-loop control of the fuel. They may be

caused by varying fuel quality or when fast production reserves are acti-

vated for balancing purposes. Those two types of updates are handled by

separate control loops which form a cascaded structure.

Updates of the production profile need to be accommodated; the ad-

ditional load needs to be distributed among available units immediately.

When the demands are decreased below a certain threshold, the adequate

set points are reduced. Such procedures are implemented in the Addi-
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tional load distribution block in Figure 6.5. In order to distribute the loads

correctly it is important to know the full schedule to avoid out of range

production setpoints. The actual implementation of this block may vary

depending on the particular application, structure of the plant or operating

conditions. The simplest strategy is to iteratively increase the setpoints of

the lowest fuel source until the whole demand is distributed.

Scheduler

Additional load
distribution

Coal mills

Oil injectors

+

forecasted
production

production
update

schedule

initial conditions

fuel flow

The production levels from each coal mill and oil injector are found
by solving optimal schedule problem with e.g. Uppaal Cora or
GLPK solver. Each individually controlled coal mill and oil pump
receives a reference signal from the supervisor. Due to the vari-
ations between the forecasted and the actual production demand,
the changes in the load must be accommodated and distributed over
the running units. This is done in the Additional load distribution
block.

Figure 6.5: Structure of the automatic fuel controller in a power
plant where coal and oil are used.

6.3 Applied optimization

From the simulation results presented in Chapter 5 it cannot be fully

evaluated how both methods would perform in the considered application.

Both appear to be feasible, and thanks to the analysis we have an indication

which profiles should be avoided when solving such problems. For example,

it seems rational to introduce intermediate steps, when solving ramp-like
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problems with QMC. In this section a discussion of practical aspects of

such implementation is presented. The goal is to adapt the general study

presented before with the real application of fuel flow supervisory control

which yields optimal production schedule.

QMC seems promising for applications where number of producers is

moderate, while large-scale problems with long optimization horizons are

better handled by MILP solvers. The statement is based on the assumption

that further advances in the area of quantitative model checking, especially

software development are possible. One should also keep in mind that ad-

ditional constraints, such as topological or priority constraints, and proper

selection of the upper profile or cost bounds will most likely lead to re-

duction of the computation time required to obtaining a solution. Such

constraints are discussed in this section. The values presented in Table 5.2

are used purely for comparison purposes and tend to represent the worst

case scenarios. They confirm the complexity of the considered problem

which has combinatorial nature, and they motivate detailed study of the

optimization problem.

6.3.1 Additional constraints

The general problem which was studied in the previous chapter was used

as a benchmark to show the complexity of the problem. The differences

in the problem formulations and solution methods allow to model the sys-

tems differently, nevertheless the problem remains very difficult to solve for

both cases, as expected. In order to lower the required time for finding

optimal solution it is beneficial to include additional constraints. Many

application-related constraints were removed previously to allow more gen-

eral and straightforward comparison, but they should be included in the

final implementation. We can mention a few relevant constraints that are

present in power plants, but have not been included so far.

Priority Machine priority might be very crucial. It breaks the symmetry

in of the problem that causes multiple schedules to be equally optimal.

This is particularly important for the model checking approach. In

order to guarantee that the solution is optimal it needs to validate all

equally good solution, only to find out that none of them is any better.

The priority could be expressed directly through special definitions in

Uppaal Cora, or it could be a result of varying operation costs. The

costs or machine order could vary periodically for example based on
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the total running time which leads to machine wear, thus the newest

machine should have the highest priority (lowest operating cost).

Topology Topological constraints, that is the relations between certain

burners and mills or oil pumps limit the available number of choices

to be made at each time sample. Such constraints, which are strongly

dependent on the plant layout, help reducing the growth of the search

tree in the optimization (branching). An example of plant layout

where four burners are fed by six coal mills or alternatively by oil

pumps is depicted in Figure 6.6.

Mill 5

Mill 3

Mill 1

Boiler Mill 2

Mill 4

Mill 6

Oil 1 Oil 3 Oil 2Oil 4

feed water

turbine

Figure 6.6: Example of power plant layout with four burners, six
coal mills and available oil feed (topological constraints).

In order to guarantee uniform heating of the boiler, the requirement

is to balance the use of burners on both sides of the boiler and on

both levels.

Safety Safe and reliable operation of the plant is crucial posing additional

constraints to the problem. For example it could be prohibited to

start two mills at the same time, or within a short time. Moreover, it
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might be important that at least two mills are running at all times,

and that large rises of production capacity is available quickly.

Another important aspect is the problem of runback discussed previ-

ously. When a mill’s differential pressure exceeds a certain threshold,

which is an indication of possible mill choking (overfilling), the feeder

belt and consequently primary air flow are driven to the minimum

values. Hence, information about differential pressure of all the mills

should be included in the optimization problem. If the risk of overfill-

ing one of the machines becomes high, its production level should be

lowered or at least kept at constant level such that it reaches steady

state operation with an appropriate amount of coal on the grinding

table.

Thermal stress Fast and large changes in the fuel flow lead to significant

thermal stress of the boiler, thus the production gradient is often

limited. This constraint translates to reduction of adjustment events.

Maintenance The number of available machines is sometimes limited, for

example due to planned maintenance schedules or failures.

Heuristics Various constraints related to practical operation of the fuel

system can be imposed. For example, the minimum operation time

of a machine could be specified to ensure that it is not turned on/off

to often. Such a constraint has a very good impact on the model

checking search, as it lowers the number of possible start and stop

events significantly.

6.3.2 Schedule post-processing

Post-processing methods can significantly reduce the computational bur-

den and improve the quality of solutions. There are two immediate areas

for improvement that can benefit from such strategy. One of them is as-

sociated to the problem of quantization error; the second relates to local

improvements of the schedule.

Quantization error can be reduced to some extent by decreasing the

production levels of each machine as long as the production bound is not

violated. The amount of adjustment is easy to calculate. For each time

sample compute the difference between the aggregated fuel flow and the

lower bound. Find the minimum value and using heuristic methods dis-

tribute the amount among the available machines taking into account the
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Figure 6.7: Post-processing of a schedule candidate can reduce the
quantization error and thus lower the overproduction cost.

operating ranges of each machine. The distribution needs to be stored and

recalled later as additional information to the optimization problem. Such

post-processing strategy is illustrated in Fig. 6.7, where the overproduc-

tion resulting from quantization error is distributed equally among the two

producers.

Another mechanism that can be employed is based on the local search

strategy discussed before. Such adjustments, as long as they do not violate

constraints, can improve the quality of solution to some extent. The easiest

way of implementing it in practice is to discard the start-up and shut-down
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Figure 6.8: Local search and adjustments in a schedule candidate
can reduce the the overproduction cost.

events, and consider only control adjustments. For each time sample it

is possible to calculate the maximum production decrease and increase

such that it does not change production in the neighboring points. A few

iterations of such adjustments may yield locally optimal solution. The

post-processed schedule candidate adjusted by the local search is plotted

in Figure 6.8.

Such post-processing strategies can be done efficiently and does not take

much computational time.
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6.4 Chapter summary

The chapter has described practical aspects of supervisory controller

design for a fuel system in a power plant. An example of a local search

approach shows that such methods cannot be used directly to solve the

problem. It seems that the timing constraints are most difficult to han-

dle. On the other hand a combination of systematic search method, such

as quantitative model checking with local search could be beneficial. For

example a schedule candidate obtained from Uppaal Cora can be post-

processed with the local search method. This way the candidate is improved

and the cost upper bound decreases faster, which should lead to improved

branching.

Implementation of the strategies discussed in the chapter lead to near-

optimal production schedules for the fuel systems. Naturally, the longer

optimization window and shorter control steps can be used, the better so-

lution is acquired. It is clear that the complexity of the problem is quite

high and that ad-hoc production schedules generated by plant operators

are very likely to be far from optimal. Thus the optimal scheduler exten-

sion of the KBOSS, that assists the operators or controls the fuel system

automatically, improves the efficiency of the plant. The method for more

rigorous coal mill commissioning gives greater certainty on how the pro-

duction is handled. This in turn leads to improved flexibility of the system

because the production limits are well known.
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The flow of pulverized coal from mills to burners has always been diffi-

cult to control. For that reason, the performance of coal fired power plants

is much lower than the oil fired plants, even though the overall design is

very similar. The problem has remained unsolved, mostly due to the lack

of good sensors, which can be used for closed loop control of pulverized coal

flow. Control methodologies, which utilize such knowledge, have been pro-

posed, however, they assume that the fuel flow can estimated from available

measurements, for example oxygen concentration in the flue gas. Never-

theless, the lack of accurate knowledge about the fuel flow has complicated

the development, or rather verification of coal mill models, which could be

used to design model-based control strategies.

Recent advancements in the fuel flow measurement technology allow

for improved coal mill control. PID-type controllers, which employ the fuel

flow sensors, have already been tested in Danish power plants, showing

promising results. The motivation for our research was to further analyze

possibilities for improvements, obtained by employing more sophisticated

control and optimization strategies.

The thesis presents development of a suitable control oriented mill

model. The model is validated with two different types of mills and un-

der various operating conditions. It is shown that it performs well despite

its low complexity and number of parameters, which is very advantageous.
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Even though the machine wear in case of coal mills is typically large, it is

found, that most of the parameters remain unchanged for extended periods

of mill operation. The Differential Evolution algorithm simplifies and auto-

mates the procedure of parameter identification of the model with respect

to collected plant data. The algorithm is quite straightforward to imple-

ment, requires only three control parameters, and is very efficient where

other optimization methods fail.

With the use of the model, it is possible to design, analyze theoretical

aspects, and test coal mill control strategies. At first a simplified problem

for system without actuators is considered. The system has bilinear struc-

ture, which is well studied in the literature. There exist suitable state ob-

servers and controller design methodologies, developed previously by other

researchers. We survey some of the relevant results, in particular the stabi-

lizing control law that minimizes generalized performance index, similarly

to the quadratic cost function for linear systems.

A strategy, based on optimal control theory for bilinear systems, is ap-

plied and tested via simulations along with a well-tuned PID-type control.

The study indicates that there are potential benefits to be obtained from

more advanced control. The proposed control strategy minimizes the grind-

ing power consumption while ensuring accurate fuel reference tracking. On

the other hand, the performance of the PID-type controller is very consis-

tent even when parameters of the plant change. The robust performance

of the PID controller is an important advantage when it comes to the im-

plementation in a plant, as it does not requires frequent maintenance nor

tuning.

In addition to the practical investigations, which reveal potential us-

ability and advantages of control, a more theoretical study of the system

with actuators is conducted. The stability, local coordinate transformation,

and optimal control with the use of Pontryagin’s Maximum Principle are

analyzed.

Overall, good knowledge about mill’s internal dynamics, combined with

improved control strategy based on the available sensors, leads to better

overall power plant flexibility. This is highly desirable considering the lib-

eralized European power markets and the environmental regulations. More

accurate control of the fuel to air ratio, that can be improved especially in

transient operation, should result in cleaner coal combustion.

Significant efficiency improvements are achieved from the supervisory

control level that is responsible for choosing the production set-points for

each machine. It is shown, that due to the problem complexity, achieving
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optimal production schedules is difficult. Dependable comparison between

the calculated and the human schedule is not possible at this moment, as it

requires very precise modeling of all the constraints and production costs,

which are often a matter of confidential information for companies. On

the other hand, the supervisory control strategy based on receding horizon

may yield near optimal schedules, which is typically difficult to be achieved

by manual operations.

The problem of optimal supervisory control for the group of mills is

investigated in this thesis. In order to guarantee proper operation, a num-

ber of practical matters, as described in Chapter 6, must be taken into

account. For example it has been shown that adaptation of local optimal-

ity algorithms is not straightforward, while solvers that provide optimal

results, such as MILP solvers or model checking for PTA, are computa-

tionally expensive. Hence restricting time allowed for computations, and

post-processing the schedule with local search methods, seems to be the

best strategy, which may yield near optimal solutions. It is also shown

that the complexity depends on the production profile, differently for both

methods. A combination of the two discussed approaches, for example cal-

culating a lower bound in the PTA, as it is done in MILP, can be beneficial.

Besides the optimality criterion of the proposed scheduling methodol-

ogy, which affects the efficiency of a power plant, an important aspect of

such control is the reliability. The schedules are obtained for the approach-

ing production with respect to the cost function and the constraints, which

means that the resulting scenario is feasible to be realized. Therefore, it

is known in advance that certain production profiles cannot be fulfilled by

the plant. Possible counteractions, for example activation of production

reserves, can be used at this point. Consequently, greater reliability affects

the flexibility of the overall system; greater production gradients can be

handled safely.

7.1 Verification of the hypothesis

Let us recall the scientific hypothesis stated in the beginning of this

thesis

The coal pulverization process, that affects the load following

capabilities and efficiency of the considered class of power plants

can be significantly improved by
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a) applying more sophisticated control methodologies based on

a suitable coal mill system model

b) introducing automated supervisory control of production

rates and mill commissioning

The verification criteria were specified along with the hypothesis. They

are discussed below.

a) A simulation study that compares the more sophisticated control strat-

egy to the state-of-the-art PID-type control used in the industry. The

performance of both controllers is measured with respect to

- Fuel control performance - measure of the integrated fuel error

- Efficiency - measure of the energy consumption used for grinding

- Risk of choking - measure of the amount of coal in the mill

- Robustness - evaluation of the other performance criteria for per-

turbed system parameters

for a representative reference test signal.

In order to verify this part of the hypothesis a control-oriented coal

mill model has been derived and validated. Good correspondence of the

model with respect to the plant, analyzed using available data, and its

simplicity with low number of parameters, are the strong advantages.

Having such model allowed further theoretical and practical investiga-

tions of suitable control laws. As an outcome of this study we know,

that significant improvements are to be achieved by: using fuel flow

measurements over feeder belt speed; state feedback control law with

integral action and classifier control over PID-type controller with fuel

flow feedback and constant classifier speed, with respect to the above

criteria; improvements in the temperature control with the used of two

degree of freedom PID-type controller, utilizing the plant model, over

classical PID-type controller.

The performance indexes were used in Chapter 4, where control strate-

gies are analyzed, in the comparison of state feedback observer and

PID-type controller. It has been shown that improved fuel flow per-

formance can be achieved with improved efficiency and lowered risk of

mill chocking. Monte Carlo simulations show that the model-based con-

troller performs well when parameter uncertainties are present, but its

performance may degrade.
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b) This part of the hypothesis is validated by developing an algorithm that

finds an optimal switching sequence for a number of mills and reasonable

optimization horizon.

Two algorithms are developed for that purpose, one based on mixed

integer linear programming, the other based on priced timed automata

solved with model checking tool. Appropriate models of the system are

derived for both problem formulations. This allows us to study the influence

of various production profiles on the complexity of the problem, and thus

identify characteristics of the methods. Good knowledge of the lower bound

in case of MILP, obtained by solving the relaxed problem, is beneficial and

provides global information about the solution, while lack of such lower

bound in case o PTA results in having only local information when pruning

the search tree. A combination of both methods can be beneficial, and

they can be implemented in a power plant by utilizing the receding horizon

strategy discussed in Chapter 6.

Therefore, we can conclude that the second point of the hypothesis is

also verified to be true.

7.2 Summary of contributions

The list of contributions is recalled below concluding the results of the

study.

(1) Derivation of a coal mill model suited for control application as an

extension of previous developments. The model includes heat balance

and coal particle circulation in a mill, and has a reasonable number

of model parameters. The varying angular velocity of the rotating

particle classifier is included in the model, which affects the fuel flow

and coal circulation. Differential Evolution (DE) algorithm is validated

as parameter identification method for the model [Niemczyk et al.,

2009].

(2) The model is validated using two types of coal mills. It is observed

that the model captures the dynamics of both types well, in spite of

being of low complexity, making it a good control-oriented model. The

parameters found with the DE algorithm for the different pulverizers

are similar, which is a good indication that the model and the identi-
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fication method are suitable for the problem at hand [Niemczyk et al.,

2011].

(3) State estimation and control methods for bilinear systems are applied

to the investigated problem. Simulations of the proposed controller

show that it is possible to achieve a more accurate and energy-efficient

operation of the process, in comparison to a well-tuned PID-type con-

trol. A simulation-based parameter sensitivity analysis of both con-

trollers is performed, showing that the performance advantages may

be lost in case of poorly identified system parameters. On the other

hand, the PID-type controller is very robust to parameter uncertainties

[Niemczyk and Bendtsen, 2011].

(4) Stability of an augmented system composed of a bilinear and linear

systems is investigated. Such structure corresponds to the coal mill

controlled through actuators with linear dynamics. It is found that a

local coordinate transformation is nontrivial, however, it is proved that

the control law for bilinear systems globally asymptotically stabilizes

the augmented system provided certain requirements are satisfied.

(5) Optimal control problem based on Pontryagin’s Maximum Principle

is studied. The controller for the system with actuators is calculated,

such that desired cost function, which corresponds to the verification

criteria of the hypothesis, is minimized.

(6) Two formulations for optimal scheduling of continuous producers, such

as coal mills, are discussed. The classical and well-known mixed in-

teger linear programming (MILP) problem formulation is presented.

Priced timed automata (PTA) model of the scheduling problem is de-

veloped, and used with a model checking tool, to find optimal results.

Qualitative comparison study of both approaches is performed based

on quantitative data obtained from solving the problem, for various

production scenarios.

(7) A supervisory controller strategy, which generates schedules for the

fuel system of a thermal power plant fired by pulverized coal and oil,

is discussed as an extension of a knowledge base operator support sys-

tem (KBOSS). The strategy is realized in a receding horizon fashion.

Application related constraints are discussed. Suboptimal strategies

for solving the problem are analyzed. Post-processing methods for im-

proving the obtained schedules are described.
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7.3 Future Work

The results obtained throughout the project show the benefits of im-

proved fuel control, which affects the steam production in the boiler and

leads to better control of the turbine-generator system. In this section the

steps necessary to achieve the final results are discussed.

7.3.1 Coal mill control

In our work, the same model is used for the controller design and the

validation. Even though parametric uncertainties are analyzed, and the

model describes the milling process relatively well, such validation is not

complete. Before the controller is implemented and tested in a plant, it

would be beneficial to consider testing it with a more complex, simulation-

oriented coal mill model.

In addition, it would be interesting to compare both controllers in a

scenario where fuel flow measurements are not available. In that situation

they would utilize the feeder belt speed instead, which is commonly done in

the industry. Alternatively, the fuel flow estimate could be obtained based

on sensor fusion and the developed model. In such case, the identifica-

tion of model parameters could be performed using a mobile measurement

equipment of the fuel flow, which is installed in a plant temporarily.

Once the controller is satisfactory validated with proper simulation

model, it could be implemented in a plant. A phase of tests is neces-

sary to tune its performance, such that the quality, and the efficiency of

control are high. Especially, tuning the use of rotating classifier seems to be

very important, as on one hand it lowers the grinding consumption while

providing immediate burst of fuel, when the angular velocity is lowered,

but at the same time there might be problems with combustion efficiency

and extensive formation of ash.

In case the implemented nominal controller performs satisfactory, the

next step would be to propose an on-line estimation method to determine

parameters of the system. Especially the coal moisture and hardness (HGI)

may have strong influence on the quality of control. Estimation of the

water content has been presented in [Odgaard and Mataji, 2006, 2008].

Knowledge of the coal moisture has significant impact on the performance

of temperature controller, that is the coal drying process.

Appropriate adaptation rules should be implemented as well. On the

other hand it has been observed, in the model verification, that after six
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months of operation most of the parameters remained unchanged, and the

model was accurate. Only the parameters of differential pressure equation,

and the water content have changed significantly. Since neither the con-

troller nor the observer use the differential pressure relation, only the coal

moisture parameter becomes significant.

Mill wear could be estimated based on the identified system parameters.

Fault detection mechanisms could be of a great use [Odgaard et al., 2008]

lowering the risks of mill damages or fires could be lowered.

7.3.2 Supervisory controller

In order to implement the supervisory control strategy discussed in the

thesis a few necessary steps need to be completed. Firstly, all the costs

of mill operations, such as fuel waste during the star-up and shut-down

procedures, difficulties of such procedures expressed in terms of the cost,

or cost of operating mill at various production levels, need to be determined.

Should other fuels be used as well, the same needs to be done.

All the business objectives and system constraints need to be identified

and properly modeled along with the system dynamics and ranges of oper-

ation. This way a more precise model with adequate costs can be obtained.

Information about faults, planned maintenance and repair routines should

be incorporated. Scheduling with the use of such model and problem for-

mulation can then be compared with the decisions made by operators, in

order to ascertain the potential advantages.

At first the scheduler should implemented as an advisory system, such

as KBOSS, to verify its usability, find potential implementation flows, and

tune its performance. After extended validation confirmed by correct oper-

ation as operators’ assistance system, the automatic supervisory controller

could be implemented. One of the issues, which could be encountered while

using the supervisory control, is associated with the incomplete mill start-

up, where due to some problems, the machine does not run the full pre-

initialization routine, hence, it cannot be use. Such technical complications

need to be taken into account.

7.4 Perspectives

Many interesting aspects of the problems discussed previously could

not be investigated due to time limitations of this study. In this concluding
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section, we would like to discuss the perspectives for further research, based

on problems which we could not pursued.

Quasi-LPV control

The system with actuators could be studied described as

ξ̇ = (A0 +A(ξ))ξ + Bw (7.1)

with ξ =
[

xT zT
]T

, x are the coal mill states, and z are the states of the

actuators.

Matrix A(ξ) is non-unique; for the considered system it can be written

to contain the actuator states

A(ξ) = A1(z) =













0 0 0

0 −k5z2 0 0

0 k5z2
k4
k6
z3

0 0













(7.2)

or to contain non of the actuator states

A(ξ) = A2(x) =













0 0 0

0 0 −k5x2 0

0 k5x2
k4
k6
x3

0 0













(7.3)

In fact there is an infinite number of possible formulations obtained

from the property that A(x) = αA1(z)+[1−α]A2(x). From the application

point of view A1(z) differs significantly from A2(x), due to the fact that

the former one contains only measurable states (actuator states), while the

later is dependent on the unknown plant states that need to be estimated.

Hence, A1(z) is known quite precisely, contrary to A2(x).

Writing system (7.1) as

ξ̇ = (A0 +A(δ))ξ + Bw (7.4)

where δ is a time varying parameter. Such system is called linear parameter

varying (LPV). Because δ depends on the state, we call it quasi-LPV.
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There exist suitable control design methodologies for such system [Bianchi

et al., 2007], including multichannel performance indexes, and this area of

research attracts considerable attention, especially with the application to

wind turbine control [Bianchi et al., 2007; Østergaard, 2008; Sloth et al.,

2010, 2011].

Model checking

One challenge for QMC is to find sharp lower bounds on remaining costs

which helps early pruning and thus reduces backtracking. Here it may be

useful to apply MILP methods on remaining parts of the profile.

Another challenge is to avoid exploration of symmetrical solutions. We

would have liked to use the priority mechanism ofUppaal for that purpose,

but unfortunately it is not supported in Cora. Another idea which has

not been pursued yet, is to stagger the start time of the producers such

that they at least initially avoid getting into phase.

Integral Hybrid Automata

As mentioned in the introductory chapter, an interesting approach for op-

timization of event-driven hybrid systems with integral dynamics presented

in Di Cairano et al. [2009]. The methods is proposed for a class of systems

called integral continuous-time hybrid automata (icHA).

The obtained result is highly relevant and well suited to be applied

to our problem, and the mathematical formulation is elegant. The pro-

files could be modeled with first order approximations instead of piecewise-

constant functions, which could reduce the problem complexity, especially

in the case of ramp profiles.

It would be interesting to make Uppaal model with such profiles, com-

pare it with the icHA approach and combine both methods to exploit all

the benefits.
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A Differential Evolution

This appendix presents the fundamental principles of Differential Evolu-

tion (DE) algorithm [Storn and Price, 1995; Price et al., 2005; Feoktistov,

2006], which is a type of Evolutionary Algorithm [Ahn, 2006; Rothlauf,

2006]. We have applied this method to the model parameter identification

procedure described in Chapter 3. The DE algorithm combines benefits

of population-based algorithms (Evolutionary Algorithms) and gradient-

based optimization methods. One of the advantages of the algorithm is

that it requires only three tunning parameters: population size PS ∈ Z+,

scaling factor F ∈ (0, 1] and crossover constant C ∈ (0, 1), and is quite

robust to the choice of these parameters, whereas classical EA are more

sensitive with regard to the tunning parameters.

Let us begin by defining the optimization problem. Having a set of op-

timization variables K = {K1, . . . ,Kn} ∈ K ⊂ R
n we wish to find variables

K⋆ such that a cost function, also called fitness function Q(K) : K ∈ K →

R
+ is minimized, that is Q⋆ = Q(K⋆) ≤ Q(K).

The population P = {Ki}PS

i=1 is a collection of vectors K. Elements of

K are the optimization variables. For each individual in the the popula-

tion, its fitness value, Q(K), is calculated. Then the evolution strategy,

which consists of gradient calculations between individuals and crossing

over strategy, is applied in order to explore the parameter space, and hope-

fully find a set of optimal variables, K⋆.

The core part of the algorithm is the way the elements of the population

are generated in each iteration. Although several variants for the procedure

have been proposed [Storn and Price, 1995; Feoktistov, 2006], the new

elements are generally constructed by creating a trial candidate.

In one of the basic strategies, for each element in the population, Ki, a

set of three random and different elements π = {Kα,Kβ ,Kγ} is selected.

A gradient is calculated between the element with the highest and the
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Differential Evolution

Algorithm 1 Basic Differential Evolution

Generate g ← 0

Initialize population P
g, constants PS, C, F

Evaluate fitness Q(Pg)

while (stopping condition not met) do // evolutionary cycle //

g ← g + 1

for all i ∈ {1, . . . ,Ps} // calculate gradients //

Select K ′, K ′′, K ′′′ ∈ P
g

Evaluate Q(K ′), Q(K ′′), Q(K ′′′)
Sort Q(Kα) ≤ Q(Kβ) ≤ Q(Kγ),

{Kα,Kβ ,Kγ} = {K ′,K ′′,K ′′′}
Evaluate gradient ∇K ← Kβ −Kγ

Evaluate candidate ct ← F ∇K +Kα

Evaluate c← crossover(Ki, ct)
Evaluate P

g+1 ∋ Ki ← selection(c,Ki ∈ P
g)

end for

end while

intermediate cost. The vector is then scaled by a user-defined factor F and

is translated to the best element. This way a trial candidate ct for the new

iteration is found (equation (A.1)).

ct = Kα + F(Kβ −Kγ) for Q(Kα) ≤ Q(Kβ) ≤ Q(Kγ) (A.1)

Next a crossover is performed between the trial candidate and the in-

vestigated set of parameters K. The crossover operation defines a final

candidate

Ki =

{

ct
i randi ≥ CR

Ki otherwise
(A.2)

where Ki is the i-th model parameter and rand is a random operator with

uniform distribution over [0, 1]. The crossover operation replaces Ki with

the candidate ct
i randomly depending on the parameter C. The procedure

of gradient calculation in Differential Evolution is illustrated in Figure A.1.

In a slightly different strategy, the gradient between the investigated

element Ki and the best element in the population, Q(Kbest) = minQ(P),
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Figure A.1: An example of a candidate evaluation in a two dimen-
sional optimization problem using Differential Evolution. Ki is the
i-th element of the population; Kα, Kβ , Kγ are the three randomly
chosen elements of the population which are used for gradient calcu-
lation; ct is the trial candidate. The crossover operation of ct and Ki

may yield element Ki,new. The procedure is repeated for all element
of the population at each iteration.

is calculated and used for generating the intermediate candidate (A.3).

ct = Kα + λ(Kbest −Kα) + F(Kβ −Kγ) for Q(Kα) ≤ Q(Kβ) ≤ Q(Kγ)

(A.3)

Algorithm 1 presents an easy to follow pseudo-code routine. A more

detailed description of Differential Evolution can be found in [Storn and

Price, 1995], [Price et al., 2005] or [Feoktistov, 2006].
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B Coordinate transformation

We follow the coordinate transformation procedure described in [Isidori,

1995] and apply it to our problem. The simplest case is developed for

square systems, i.e. have the same numbers of inputs and outputs, w ∈ R
m,

y ∈ R
m, of the following form

ξ̇ = f(ξ) +
m∑

i=1

gi(ξ)wi

y =






h1(ξ)

. . .

hm(ξ)






(B.1)

where ξ ∈ R
n.

Based on the entries in (B.1) and Lie derivatives, the method produces

a local coordinate transformation Φ : ξ 7→ (ζ, η) around ξ◦ where

ζi =








ζi
1

ζi
2

. . .

ζi
ri








=








φi
1(ξ)

φi
2(ξ)

. . .

φi
ri

(ξ)








=








hi(ξ)

Lfhi(ξ)

. . .

Lri−1
f hi(ξ)








1 ≤ i ≤ m (B.2)

ζ =
[

ζ1, ζ2, . . . , ζm
]

(B.3)

η =








η1

η2

. . .

ηn−r








=








φr+1(ξ)

φr+2(ξ)

. . .

φn(ξ)








r =
m∑

i=1

ri (B.4)

where Lk
fh is the k’th iterated Lie derivative of h along f , {r1, ..., rm} the

vector relative degree which will be explained later, and η the zero dynamics
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Coordinate transformation

as explained in Isidori [1995]. Using Φ the system (B.1) becomes

ζ̇i
1 = ζi

2 (B.5)

. . .

ζ̇i
ri−1 = ζi

ri
(B.6)

ζ̇i
ri

= bi(ζ, η) +
m∑

j=1

aij(ζ, η)wj (B.7)

yi = ζi
1 (B.8)

η̇ = q(ζ, η) + p(ζ, η)w (B.9)

where i, j ∈ {1, . . . ,m}. The maps p(ζ, η) and q(ζ, η) are discussed in

Isidori [1995], and

aij(ζ, η) = Lgj
Lri−1

f hi(Φ
−1(ζ, η)) (B.10)

bi(ζ, η) = Lri

f hi(Φ
−1(ζ, η)) (B.11)

Choosing the control law

w = A
−1(ζ, η)[−b(ζ, η) + u] (B.12)

A(ζ, η) = [aij(ζ, η)], b(ζ, η) = [b1(ζ, η), . . . , bm(ζ, η)]T (B.13)

feedback linearization is performed. The linearized system is controlled

through u, which is designed using linear control methods.

The first step of the procedure is to determine the vector relative degree.

This is a generalized of relative degree to be used with MIMO systems. The

system (B.1) has relative degree, {r1, . . . , rm}, at ξ
◦, if [Isidori, 1995]

(i) for all i, j ∈ {1, . . . ,m}, and for all k < ri − 1, and for all ξ in a

neighborhood of ξ0

Lgj
Lk

fhi(ξ) = 0 (B.14)

(ii) the matrix A(ξ) in (B.15) is nonsingular at ξ◦.

A(ξ◦) =









Lg1L
r1−1
f h1(ξ◦) . . . LgmL

r1−1
f h1(ξ◦)

Lg1L
r2−1
f h2(ξ◦) . . . LgmL

r2−1
f h2(ξ◦)

. . . . . . . . .

Lg1L
rm−1
f hm(ξ◦) . . . LgmL

r1−1
f hm(ξ◦)









(B.15)
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The procedure applies for square systems, hence, we choose to analyze

two possible cases:

Case 1: system with 2 inputs: raw coal flow, win, primary air flow, wair;

and 2 outputs: mass of coal in the mill h1 = ξ1 + ξ2 + ξ3, power

consumption h2 = k3ξ1 + k2ξ2.

In this case we consider the system to have constant angular velocity of

the classifier equal nominal value ū3, and the amount of coal in the mill

and the power consumption can be measured. We disregard the air flow

equation in the coal mill model as it is already linear and does not need to

be transformed. Thus, the states, in the notation established throughout

Chapters 3 and 4 are ξ =
[

x1 x2 x3 z1 z2

]T
, and the system equations

are

f(ξ) =











−k1 0 k9 1 0

k1 −k5(ξ5+ū2) 0 0 0

0 k5(ξ5+ū2) −k4(1− ū3
k6

)−k9 0 0

0 0 0 −τ1 0

0 0 0 0 −τ2











ξ (B.16)

g =











0 0

0 0

0 0

τ1 0

0 τ2











(B.17)

and the calculation of the Lie derivatives yields the following matrix

A(ξ◦) =

[

Lg1Lfh1(ξ◦) Lg2Lfh1(ξ◦)

Lg1Lfh2(ξ◦) Lg2Lfh2(ξ◦)

]

=

[

τ1 0

k3τ1 −k2k5τ2ξ
◦
2

]

(B.18)

The above matrix is nonsingular for ξ◦
2 6= 0, hence, the transformation is

viable except in neighborhoods containing the point ξ◦ = {ξ◦
1 , 0, ξ

◦
3 , ξ

◦
4 , ξ

◦
5}

and the relative degree is {1, 1}. Moreover

b(ξ◦) =

[

ξ◦
4 − k4(1− ū3

k6
)ξ◦

3

−k2k5ξ
◦
2(ξ◦

5 + ū2) + k3(ξ◦
4 + k9ξ

◦
3) + k1(k2 − k3)ξ◦

1

]

(B.19)

thus, all the quantities of (B.12) are known.

Case 2: system with 3 inputs: raw coal flow, win, primary air flow, wair,

angular velocity of the classifier ω; and 3 outputs: mass of coal in the
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Coordinate transformation

mill h1 = ξ1 + ξ2 + ξ3, power consumption h2 = k3ξ1 + k2ξ2, fuel flow

h3 = k4(1− ξ6+ū3

k6
)ξ3.

In this case the angular velocity of the classifier can be controlled, and the

additional measurement is the fuel flow out of the mill. Again, we disregard

the air flow equation, the states are ξ =
[

x1 x2 x3 z1 z2 z3

]T
, and

the system equations are

f(ξ) =













−k1 0 k9 1 0 0

k1 −k5(ξ5+ū2) 0 0 0 0

0 k5(ξ5+ū2) −k4(1− ξ6+ū3

k6
)−k9 0 0 0

0 0 0 −τ1 0 0

0 0 0 0 −τ2 0

0 0 0 0 0 −τ3













ξ (B.20)

(B.21)

g =













0 0 0

0 0 0

0 0 0

τ1 0 0

0 τ2 0

0 0 τ3













(B.22)

and the calculation of the Lie derivatives yields the following matrix

A(ξ◦) =






Lg1Lfh1(ξ◦) Lg2Lfh1(ξ◦) Lg3Lfh1(ξ◦)

Lg1Lfh2(ξ◦) Lg2Lfh2(ξ◦) Lg3Lfh2(ξ◦)

Lg1h3(ξ◦) Lg2h3(ξ◦) Lg3h3(ξ◦)




 (B.23)

=






τ1 0 k4
k6
τ3ξ

◦
3

k3τ1 −k2k5τ2ξ
◦
2 0

0 0 −k4
k6
τ3ξ

◦
3




 (B.24)

(B.25)

The determinant of the above matrix is det(A(ξ◦)) = −
k2k4k5τ1τ2τ3ξ◦

2ξ◦

3
k6

,

hence, A(ξ◦) is singular if ξ◦
2 = 0 or ξ◦

3 = 0. Otherwise the relative degree

is {1, 1, 0}. Additionally

b(ξ◦) =







ξ◦
4 − k4(1−

ξ◦

6+ū3

k6
)ξ◦

3

−k2k5ξ
◦
2(ξ◦

5 + ū2) + k3(ξ◦
4 + k9ξ

◦
3) + k1(k2 − k3)ξ◦

1

k4(1−
ξ◦

6+ū3

k6
)ξ◦

3







(B.26)
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