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ENGLISH SUMMARY 

Oxygen supplementation is an essential part of the treatment of hypoxaemic 

respiratory failure in the intensive care unit (ICU). However, the fear of evidently 

harmful hypoxia has led to a liberal oxygenation practice, and so large proportions of 

patients admitted to the ICU have arterial oxygen tension (PaO2) levels above the 

normal physiological range despite fractions of inspired oxygen (FiO2) several times 

above the atmospheric content. This may not be opportune, since several well-defined 

adverse reactions to excessive oxygen supplementation exist and associations between 

hyperoxaemia and increased mortality have been established in numerous acutely ill 

subgroups of patients, including ICU patients overall. The optimal oxygenation level 

however, balancing harms from hypoxaemia and hyperoxaemia alike, remains 

essentially unknown. 

This PhD thesis revolves around the initiation of a large, randomised clinical trial on 

higher versus lower oxygenation targets in patients acutely admitted to the ICU with 

hypoxaemic respiratory failure, the Handling Oxygenation Targets in the Intensive 

Care Unit (HOT-ICU) trial. The thesis contains the preparative studies conducted 

being a survey aiming to clarify ICU doctors’ preferences and attitudes towards 

oxygen supplementation in mechanically ventilated patients, and an observational 

study of patients admitted to five ICUs in the North Denmark Region, aiming to 

clarify the current clinical practice of oxygen supplementation in the ICU, and to 

investigate associations between PaO2 levels and mortality. Finally the thesis contains 

the published protocol for the HOT-ICU trial, an update on the current trial status, and 

an editorial specifically addressing the choice of PaO2 as target parameter in the trial. 

In the oxygenation survey, we established that most ICU doctors’ preferred the PaO2 

to the arterial oxygen saturation as parameter when evaluating oxygenation, that the 

PaO2 levels generally preferred ranged from 8 kPa to 12 kPa depending on the specific 

patient category, and that the HOT-ICU oxygenation targets of 8 kPa and 12 kPa, 

respectively, were generally judged as within the acceptable range of a clinical trial. 

In the observational study, we found that the median PaO2 levels were very close to 

the 12 kPa HOT-ICU control group, that the oxygenation levels did not depend on 

whether a patient received mechanically ventilation, and that despite overall 

reductions in FiO2 in response to hyperoxaemia, hyperoxaemia remained frequent and 

was associated with increased ICU mortality. 

The HOT-ICU trial was initiated in June 2017, and is currently running in five 

European countries with 1,639 of 2,928 patients included so far. The results of the 

HOT-ICU trial will hopefully add a small piece of evidence to the puzzle of the 

optimal oxygenation level in patients admitted to the ICU, enabling a more evidence 

based future approach to oxygen supplementation here.  
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DANSK RESUMÉ 

Brugen af ilttilskud er en nødvendig del af behandlingen af patienter med lungesvigt 

indlagt på intensivafdeling. Frygten for evident skadelig iltmangel har imidlertid ført 

til en særdeles liberal ilttilskudspraksis, hvor en stor del af intensivpatienterne har 

arterielle ilttensioner (PaO2), der ligger over normalområdet for 

baggrundsbefolkningen, og dette på trods af iltfraktioner i indåndingsluften (FiO2) der 

er flere gange iltindholdet i atmosfæren. Denne praksis er måske ikke hensigtsmæssig, 

da høj FiO2 medfører flere veldefinerede bivirkninger, og høj PaO2 er påvist associeret 

med en øget dødelighed blandt flere undergrupper af kritisk syge patienter, herunder 

patienter indlagt på intensivafdeling. Det optimale PaO2-niveau, der afvejer risikoen 

for iltmangel i forhold til risikoen for bivirkninger ved iltbehandlingen, kendes 

imidlertid ikke. 

Afhandlingens omdrejningspunkt er igangsættelsen af et stort klinisk 

lodtrækningsforsøg, Handling Oxygenation Targets in the Intensive Care Unit (HOT-

ICU), der undersøger højere versus lavere PaO2 i blodet hos akutindlagte patienter på 

intensivafdeling med lungesvigt. Afhandlingen indeholder de forberedende studier til 

forsøget, hvilket indbefatter en spørgeskemaundersøgelse til afklaring af 

intensivlægers præferencer og holdninger i forhold til ilttilskud til 

respiratorbehandlede patienter, samt et observationelt studie af patienter indlagt på 

fem intensivafdelinger i Region Nordjylland, hvis formål det var at klarlægge den 

nuværende kliniske praksis på området, samt at undersøge sammenhængen mellem 

høj PaO2 og dødelighed. Slutteligt, så indeholder afhandlingen den publicerede 

protokolartikel for HOT-ICU-forsøget, den nuværende forsøgsstatus, og en leder-

artikel der argumenterer for valget af PaO2 som iltningsparameter i forsøget. 

I spørgeskemaundersøgelsen fandt vi, at flest læger foretrak PaO2 frem for den 

arterielle iltmætning som parameter, når de skulle vurdere iltningsniveauer. Endvidere 

afklarede vi, at de foretrukne PaO2-niveauer lå fra 8 kPa til 12 kPa alt afhængigt af 

patientkategorien, og at HOT-ICU-iltningsmålene på henholdsvis 8 kPa og 12 kPa 

vurderedes inden for de acceptable iltningsniveauer i et klinisk forsøg. 

I det observationelle studie fandt vi, at PaO2-niveauerne i kohorten overordnet lå 

meget tæt på kontrolgruppeiltningsmålet på 12 kPa i HOT-ICU-forsøget, at 

iltningsniveauerne var uafhængige af brugen af respiratorbehandling, og at selvom 

der generelt blev reduceret i ilttilskud ved for høje iltningsniveauer, så var overdreven 

iltning i blodet hyppig og koblet til en øget dødelighed på intensivafdeling. 

HOT-ICU-forsøget blev igangsat i juni 2017 og pågår i fem europæiske lande, aktuelt 

er 1.639 af 2.928 patienter inkluderet. Forsøget vil bidrage med en smule evidens, på 

et område hvor dette er hårdt tiltrængt, og vil derved fremadrettet være med til at sikre 

en mere evidensbaseret og hensigtsmæssig brug af ilttilskud på intensivafdeling. 
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ABBREVIATIONS 

ABG: arterial blood gas 

ARDS: acute respiratory distress syndrome 

ATP: adenosine triphosphate 

AUC: area-under-the-curve 

CABG: coronary artery bypass grafting 

CI: confidence interval 

CO2: carbon dioxide 

COPD: chronic obstructive pulmonary disease 

CPAP: continuous positive airway pressure 

CPR: civil personal register 

DMSC: data monitoring and safety committee 
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IQR: interquartile range 
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mRS: modified Rankin scale 

MV: mechanical ventilation 
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PEEP: positive end-expiratory pressure 
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RR: relative risk 
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SAPS II: Simplified Acute Physiology Score II 

SD: standard deviation 

SpO2: peripheral oxygen saturation 

TWA: time-weighted average 

The UK: the United Kingdom 
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1. Background  

1.1. Introduction 

Oxygen is an essential molecule to all human life; it is the prerequisite for oxidative 

phosphorylation in the mitochondria supplying more than 80% of cellular adenosine 

triphosphate (ATP) demands1 and are thus fundamental for bodily energy production. 

The apparent dangers of hypoxia have been well known since the discovery of oxygen 

and doctors have strived to avoid these through liberal use of supplemental oxygen. 

Such liberal practice is still reflected in the observed high proportions of patients with 

hyperoxaemia2–12 in intensive care units (ICUs) today. Even though the inherent 

dangers of hyperoxia are less obvious, the existence of these have likewise been 

proposed since oxygen was identified; Joseph Priestly, to whom amongst Karl Scheele 

and Antoine Lavoisier is generally credited the discovery of oxygen, states in the first 

published paper from 1775 on this new type of air that: 

‘as a candle burns out much faster in dephlogisticated [oxygen enriched] 

than in common air, so we might, as may be said, live out too fast, and the 

animal powers be too soon exhausted in this pure kind of air.’13 

Since then his cautioning has been affirmed as several well established adverse 

reactions have been shown to be caused by excessive oxygen supplementation.14–18 

Nevertheless, the question remains as to where the balance lies, what is the optimal 

oxygenation level minimising harm from hypoxia and hyperoxia alike? This PhD 

thesis pertains to normobaric oxygen therapy in the ICU, and describes the preparative 

studies conducted, and the planning and initiation of an international multicentre 

randomised clinical trial, the Handling Oxygenation Targets in the Intensive Care Unit 

(HOT-ICU) trial, comparing two separate oxygenation targets in adult patients acutely 

admitted to the ICU with hypoxaemic respiratory failure. 

1.2. Epidemiology of ICU patients 

There are approximately 74,000 ICU beds in Europe, representing 2.8% of acute care 

hospital beds.19 Patients admitted to the ICU represent the most severely ill proportion 

of hospital admissions, which is reflected in the high ICU mortality at 16.2% 

worldwide.20 As the number of ICU beds per population vary greatly from 3.5 to 24.6 

per 100.000 throughout Europe and North America,19 the illness severity of patients 

admitted to the ICU also varies as reflected in ICU mortalities ranging from 9.3% in 

North America to 15.5% in Western Europe,20 and underlined by the fact that the ICU 

mortality negatively correlates with the number of ICUs per population.21 Therefore, 

the ICU population cannot be regarded as a homogeneous patient population 

throughout the world. Mortality after discharge from the ICU is similarly high, the in-

hospital mortality of ICU patients, ranges from 13.8 to 34.1 worldwide,20 and the long-
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term mortality in ICU patients discharged from hospital remains significantly higher 

than in the background population for 2 to 5 years following hospital discharge.22–27 

Furthermore, admission to the ICU is associated with significant morbidity in the 

shape of reduced health-related quality of life,28,29 increased risk of new chronic 

condition,30 post-traumatic stress,31,32 depression and anxiety,32 reduced cognitive and 

neuropsychological function,33–35 and various negative qualitatively assessed patient 

related outcomes.36 Nevertheless, a national Danish cohort study revealed that the 

chances of  returning to work after ICU admission was quite high at 68%;37 the 

probability of returning to work was reduced with any life-support given in the ICU, 

but was not related to number of organ systems supported37 indicating a somewhat 

positive outcome for even the most severely ill ICU patients. 

ICU admissions represent a significant economic burden to healthcare systems 

worldwide. Daily costs of ICU admissions have been found to be from €791 to €2025 

in Europe,38–40 and $3250 in the US for non-mechanically ventilated ICU patients and 

$4772 for patients receiving mechanical ventilation.41 In addition, healthcare 

utilisation42 and healthcare costs43 after hospital discharge are higher for ICU patients 

than for non-ICU hospitalisations. 

In summary, given that ICU patients have a high mortality and morbidity, and are 

amongst the most expensive patients in the hospital system, interventions which may 

improve ICU mortality, reduce morbidity, and/or ICU length-of-stay, may have a 

significant impact on both patient outcomes as well as on healthcare costs. 

1.3. Oxygen toxicity 

Even though oxygen is necessary to sustain aerobic life,1 it is also a well-known fact 

that oxygen is a highly reactive molecule, and that too much oxygen is directly 

harmful. Exposure to 90-100% normobaric oxygen will in time inevitably kill all 

animals, with the exception of amfibians and reptiles44 at low body temperatures.16 

The survival time however, differs markedly between species; most mammals survive 

a fraction of inspired oxygen (FiO2) of 0.90 to 1.00 for 2 to 4 days, whereas primates 

are specifically resistant to oxygen toxicity with a survival time in monkeys of up to 

22 days.44 Furthermore, the inter-individual survival-time varies greatly with a 

tendency for younger individuals to survive for longer time than older individuals44. 

Upon exposure to extreme oxygen fractions, animals die in a clinical picture of 

progressive pulmonary failure initially characterised by inflammation and exudative 

oedema subsequently followed by consolidation and fibroproliferation,14–16,44 other 

findings of more inconsistent certainty are focal haemorrhage, hyalinisation, 

pulmonary capillary damage, late emphysematous changes, and bronchopneumonia.16  

Exposure of humans to high FiO2 results in pulmonary changes similar to those found 

in animals. Studies in human subjects however, are often confounded by underlying 

pulmonary pathology45,46 and use of mechanical ventilation,45–48 which in itself may 

cause similar pathophysiological changes as oxygen therapy; a problem underlined by 
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the only controlled interventional pathophysiological autopsy study conducted in 

humans. In this study brain dead potential organ donors were allocated to an FiO2 of 

0.21 versus an FiO2 of 1.00 during mechanical ventilation until circulatory death.47 A 

decreased pulmonary function in the oxygen group was found, i.e. higher 

intrapulmonary shunt, higher dead space/tidal volume ratio, and radiologic 

progression of multiple lobar infiltrations. Autopsies however, revealed similar levels 

of congestion, atelectasis and oedema formation in both groups, and histologically the 

lung tissue was indistinguishable between groups.47 

Several pathophysiological explanations of harmful effects of high FiO2 and 

hyperoxaemia exist,17,18,49 predominantly the increased formation of reactive oxygen 

species (ROS), the formation of absorption atelectasis, and the occurrence of 

hyperoxaemic vasoconstriction. In addition, the interaction between hyperoxia and 

the adverse effects related to mechanical ventilation, and hyperoxia induced 

hypercapnia in chronic obstructive pulmonary disease (COPD), seem of particular 

interest when addressing patients admitted to the ICU. 

1.3.1. Formation of reactive oxygen species 

During oxidative phosphorylation in the mitochondria of aerobic eukaryotic lifeforms 

a by-product is the formation of ROS.50,51 ROS include various molecules, all 

containing a free oxygen radical, i.e. an oxygen atom with one unpaired electron in 

the outer electron shell. This free radical makes ROS highly reactive, oxidising, and 

thus  possibly damaging, almost any molecule with which they come into contact 

including proteins, lipids and deoxyribonucleic acids (DNA).50,51 Relevant biological 

examples of ROS are the superoxide anion (O2
-• ), which is the primary ROS and 

precursor to most other ROS, hydrogen peroxide (H2O2), hydroxyl radical (•OH), and 

nitric oxide (NO).51 Importantly, the production of ROS in the mitochondria is 

proportionally increased with the intra-mitochondrial oxygen tension,52 and therefore, 

the amounts of ROS produced are increased in a linear relationship with the FiO2 in 

the lungs, and with the arterial oxygen tension (PaO2) in the rest of the body, given an 

unhindered diffusion of oxygen into cells. Under normal conditions continuously 

produced ROS are balanced by intracellular antioxidants.14 However, when 

mitochondrial ROS production increases as a result of increased oxygen 

supplementation, especially in the lungs were the oxygen tension is the highest, the 

balance between antioxidants and ROS is tipped and cellular damage occurs. ROS are 

therefore the primary mediators of pulmonary oxygen toxicity.16,17,53 In addition, ROS 

are also produced by bacteria and the neutrophils of the immune system54 when 

increased during infection and inflammation, which may accentuate oxygen toxicity 

in critically ill patients. Nevertheless, high levels of oxygen have been shown to be 

able to cause inflammation and pulmonary oxygen toxicity, also without the presence 

of inflammatory cells.14 
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1.3.2. Absorption atelectasis 

As FiO2 is increased, the content of nitrogen in inspired air is consequently reduced. 

Since oxygen is readily absorbed from the alveoli by blood passing through the 

pulmonary capillaries, whereas nitrogen remains within the alveoli, the main gas 

keeping the alveoli open in the end of an expiration is nitrogen. Therefore, the risk of 

alveolar collapse (absorption atelectasis) increases with higher FiO2, especially with 

FiO2 above 0.60.55 The formation of absorption atelectasis has been documented 

thoroughly radiologically in mechanically ventilated patients during general 

anaesthesia for surgery,56–59 as well as in patients in the ICU.60,61 Formation of 

absorption atelectases decreases the ventilation/perfusion (V/Q) ratio,56 decreases 

oxygenation,58,60 and has been proposed to increase the risk of pneumonia,62 which 

has been associated with high PaO2 levels in the ICU.63 The clinical impact of 

absorption atelectasis formation on patient relevant outcomes including mortality in 

the ICU however, remains unknown, especially since the formation of absorption 

atelectasis can be negated through the use of higher positive end-expiratory pressure 

(PEEP) levels, both during anaesthesia58,64,65 and in the ICU.60 

1.3.3. Hyperoxaemic vasoconstriction 

Hyperoxaemia is known to cause vasoconstriction in vascular beds of all tissues66 with 

the exception of the lungs67 and of the placenta68, where hypoxaemic vasoconstriction 

is elicited. The specific cellular mechanisms involved in hyperoxaemic 

vasoconstriction are not known69 although ROS seem to be involved as antioxidants 

prevent hyperoxaemic increase in vascular resistance.70 The clinical consequences of 

hyperoxaemic vasoconstriction are reduced microvascular blood flow with potential 

paradox local tissue hypoxia,71 and an increase in systemic vascular resistance.72 

Haemodynamically, in addition to the increased afterload, hyperoxaemia causes a 

reduction in heart rate and consequently a lower cardiac output.72 Such haemodynamic 

changes are likely not opportune in ICU patients. Randomised controlled trials have 

identified increased infarct size in non-hypoxaemic patients with myocardial 

infarction receiving oxygen supplementation,71,73,74 and an observational study has 

indicated delayed cerebral ischaemia upon hyperoxaemia after subarachnoidal 

haemorrhage.75 This may indicate paradox cardiac and cerebral tissue hypoxia upon 

oxygen supplementation due to hyperoxaemic vasoconstriction of collateral arteries 

supplying tissue in the periphery of the infarcted myocardium and the periphery of the 

injured brain parenchyma, respectively. The largest randomised oxygen 

supplementation versus no oxygen supplementation trials in patients with acute 

coronary syndrome overall,76 and in patients with acute stroke77 however, found no 

differences in myocardial infarct size or post-stroke disability, respectively, or in other 

clinical outcomes between the intervention groups. 
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1.3.4. Mechanical ventilation and hyperoxia 

The use of positive pressure mechanical ventilation as life support in the ICU elicits 

several adverse reactions related to the mechanical strain and pressure applied to the 

pulmonary tissue. These include barotrauma, volutrauma, atelectrauma, biotrauma, 

and shear strain.78 Especially patients with acute respiratory distress syndrome 

(ARDS) are susceptible to the mechanical adverse reactions, as these patients 

represents the population with the most severely injured lungs, and the highest degree 

of hypoxaemic respiratory failure in the ICU. The physical adverse reactions to 

mechanical ventilation are in clinical practice sought minimised through the 

advantageous use of lung protective ventilation with low tidal volumes,79 as well as 

through various open lung strategies with varying success including high PEEP 

levels,80 recruitment maneuvers,81,82 or airway pressure release ventilation,83 as well 

as extra corporeal membrane oxygenation (ECMO).84,85 The pathophysiological 

changes, which occur after prolonged or excessive positive pressure mechanical 

ventilation are hard to distinguish from the changes seen after prolonged exposure to 

high FiO2.
16 Therefore, it is plausible that high FiO2 and mechanical ventilation 

interacts in causing pulmonary damage. That such an interaction occurs has been 

demonstrated in a number of experimental animal studies, finding a distinct and 

possibly potentiating effect of high FiO2 on the pulmonary damages caused by high-

stretch mechanical ventilation.86–92 

1.3.5. Hyperoxia and hypercapnia 

In patients with COPD or other chronic pulmonary disease with increased risk of 

respiratory acidosis and/or habitual hypercapnia, excessive oxygen supplementation 

may lead to occurrence or aggravation of hypercapnia and respiratory acidosis.93–96 

There are three pathophysiological mechanisms contributing to the development of 

hyperoxic hypercapnia in this patient population: (1) habitual hypercapnia causing a 

shift towards a non-hypercapnia-dependant central hypoxic respiratory drive with the 

consequence that hyperoxaemia causes hypoventilation with a following increase in 

arterial carbon dioxide tension (PaCO2),93,97 (2) reversion of hypoxic pulmonary 

vasoconstriction causing a hypercapnic V/Q mismatch with increased perfusion of the 

alveolar deadspace,93,97 and (3) the Haldane effect, a release of carbon dioxide (CO2) 

bound to haemoglobin as this is displaced by oxygen.98 It is a general consensus that 

the Haldane effect is the least important of these mechanisms,93,97 estimated to 

contribute with approximately 25% of the CO2 increase seen in experimental 

settings.99 Whether the reversion of hypoxic vasoconstriction with following V/Q 

mismatch or central respiratory depression due to hypoxic respiratory drive is the most 

important mechanism however, is still a matter of debate; most studies conclude that 

V/Q mismatching represents the primary cause,99–105 whereas a few well conducted 

studies support a reduction in minute ventilation due to central respiratory depression 

as the primary mechanism.106–108 Studies in invasively105,109 and in non-invasively110 

mechanically ventilated patients with COPD on a supportive ventilator mode, have 
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not been able to confirm the occurrence of hyperoxaemic hypercapnia here,109,110 or 

has found this to be of minor importance with a mean increase in PaCO2 of 0.4 kPa.105 

This indicates that the risk hypercapnia upon hyperoxaemia may differ in ICU patients 

as compared to patients in other settings. The lack of hyperoxic hypercapnia during 

mechanical ventilation points towards V/Q mismatching as the primary cause of the 

phenomenon, since V/Q mismatching would to some degree be ameliorated by 

supportive mechanical ventilation, whereas a depression in the central respiratory 

drive should have just as prominent an effect on hypercapnia in a supportive ventilator 

mode as in patients not receiving mechanical ventilation. Likely however, hyperoxic 

hypercapnia in COPD patients is caused by a combination of both mechanisms with 

minor contribution from the Haldane effect and with high inter-individual variability. 

1.4. Hypoxaemia and hypoxia 

Hypoxaemia designates a low level of oxygen in the blood, whereas hypoxia 

designates a condition of insufficient oxygenation in any tissue potentially causing 

harm due to attenuated oxidative metabolism. Hypoxaemic hypoxia is therefore 

hypoxaemia to a level where hypoxia in any given tissue occurs.96 The definitions are 

complicated however, by the fact that no consensus on the oxygenation level defining 

hypoxaemia exists; the predominant definition seems to be a PaO2 below 8 kPa or an 

SaO2 below 90%,96 although one could argue that any oxygenation below the normal 

physiologic range of a PaO2 from 10.6 kPa to 13.3 kPa111 or an SaO2 of approximately 

94% to 98%96 should be considered hypoxaemic.96 Or that hypoxaemia should be 

defined as below the oxygenation levels used in current clinical practice,112,113 which 

may be as low as a PaO2 of 7.3 kPa to 10.7 kPa or an SaO2 of 88% to 95%, since this 

is targeted in patients with ARDS79,80 and has been proposed as the optimal target 

level for critically ill patients overall.49,114,115 In any case, hypoxaemia is prevalent in 

patients admitted to the ICU and can be caused by several mechanisms including: 

hypoventilation, V/Q mismatching (to some degree ameliorated by physiological 

hypoxic pulmonary vasoconstriction), intrapulmonary right-to-left shunting 

(essentially a localised V/Q ratio of 0), and diffusion impairment.96,116 

The tolerated levels of hypoxaemia in humans varies extensively depending on the 

overall condition of the body; i.e. the ability compensate for a lower oxygenation on 

the short-term through increased oxygen delivery by haemodynamic adaptations, and 

on the long-term through adaptation to chronic hypoxaemia individually and through 

adaptation to generational hypoxaemia in populations on an evolutionary scale, as 

seen in highlanders of the Andes and the Himalayas.112 The ability of the body to adapt 

to sustained hypoxaemia is remarkable, which is exemplified in the lowest registered 

PaO2 of 2.5 kPa and SaO2 of 34.4% known to be measured in a healthy person, 

obtained in an altitude of 8,400 meters at mount Everest after 20 minutes without 

oxygen supplementation.117 A similar level of acute extreme hypoxaemia however, is 

not tolerated in non-adapted individuals; overall, negative effects on cognition of 

acute hypoxaemia indicating insufficient cerebral oxygenation in healthy adults 
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occurs at a PaO2 below 8 kPa,118 and a study of induced acute hypoxaemia in healthy 

adults found that at SaO2 levels around 80% neurocognitive functions were markedly 

impaired.119 Interestingly, the participants exposed to acute hypoxaemia in this study 

did not feel worried, and none of them removed their masks during the 90 minutes 

intervention period, despite severe cognitive failure and several negative perceptual 

experiences including tiredness, light-headedness, dizziness, headaces, irritability and 

restlessness.119 This is consistent with other experimental findings showing that in 

healthy adults no sensation of air hunger upon hypoxaemia occurs when the increased 

respiratory drive can be met (with lowering of PaCO2). Whereas during restricted 

breathing where normocapnia is kept, air hunger to hypoxaemia arises in a hyperbolar 

manner with a sudden increase at PaO2 below 6.7 kPa. This observation seems 

relevant when evaluating patients with subjective air hunger in the clinical setting.120 

In comparison, hypercapnia elicits air hunger sensation in a linier manner irrespective 

of increased minute ventilation if this does not reduce the PaCO2,
120 and so, the PaCO2 

level can be considered the primary moderating parameter of subjective dyspnoea. 

Neither the short-term capacity for haemodynamic compensation nor the long-term 

adaptations, which may compensate for hypoxaemia are usually present in acute 

critically ill patients. Therefore, failure of oxygen delivery and tissue hypoxia will 

presumably be evident at much less pronounced levels of hypoxaemia that in healthy 

individuals, also in spite of many ICU patients to some degree being adapted to 

subacute, sustained, or chronic hypoxaemia due to the duration of current critical 

illness leading to the ICU admission, or to the presence of chronic pulmonary 

disease.112 Importantly, even though oxygen delivery is hampered by hypoxaemia, the 

opposite is not the case; oxygen delivery will not be increased above normal by 

excessive oxygen supplementation and hyperoxaemia.72 Essentially, as only global 

oxygenation can be measured directly with any certainty in clinical practice, and as 

plasma lactate, and mixed and central venous oxygen saturations, which are the 

primary indicators of local tissue hypoxia, may be severely confounded by 

haemodynamic changes,121 the specific PaO2 or SaO2 where local tissue oxidative 

metabolism fails in the individual patient is hard to evaluate. 

1.5. Oxygenation practices in ICUs 

A considerable number observational studies of oxygenation levels in adult patients 

admitted to the ICU have been conducted in various subgroups as well as in overall 

cohorts. An overview of the studies addressing ICU patients overall, ICU patients with 

sepsis, and specifically mechanically ventilated ICU patients and relevant subgroups 

of these are presented in Table 1. In general oxygenation levels during mechanical 

ventilation in the ICU are found to be liberal with mean and median PaO2 levels 

ranging from 12.4 kPa2 to 21.2 kPa4 and SaO2 or peripheral oxygen saturation (SpO2) 

levels around 97-98%.6,10,11,122 A similar overview of preferences related to oxygen 

supplementation in the ICU from surveys of ICU physicians and nurses can be found 

in Table 2. Overall preferences of oxygenation is generally judged to be more 
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restrictive than the actual oxygenation levels found in observational studies. With ICU 

doctors123 being less worried about hypoxaemia than ICU nurses.124 
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1.6. Oxygenation levels associated with mortality in the ICU 

Mortality associations with hyperoxaemia in various subgroups of ICU patients have 

been extensively investigated as seen in Table 1. Several recent metaanalyses have 

pooled the observational data identifying associations between hyperoxaemia and 

increased mortality in the ICU overall,138–140 and in the following ICU subgroups: 

post-resuscitation from cardiac arrest,138–142 ischaemic stroke,138,139 intracranial 

haemorrhage,139 and during ECMO treatment.140 In addition, oxygen exposure above 

10.7 kPa with FiO2 above 0.50 has been associated with increased mortality in 

ARDS,134 and hyperoxaemia has been associated with increased risk of ventilator 

associated pneumonia in the ICU.63 A general limitation of the observational 

association studies however is, that very few of these studies investigate oxygenation 

levels in the ICU beyond the first 24 hours, and most studies do not include all arterial 

blood gas (ABG) analyses conducted in the inclusion period (see Table 1). 

Accordingly, the associations found do not necessarily confer to the cumulated 

oxygen exposure over the entire duration of the ICU admission, which therefore 

remains unclear. Hypoxaemia has similarly been associated with increased mortality 

in ICU populations,2,8,12,128 and hypoxaemia in the ICU has been associated with 

reduced cognitive function and psychiatric morbidity 12 months after ICU admission 

with ARDS.143 

1.7. Interventional trials on oxygenation levels in the ICU 

Throughout the last two decades, several interventional trials have been published on 

higher versus lower oxygenation levels in the ICU, most of these are feasibility trials 

in subpopulations144–150 or before-and-after trials151,152, but larger randomised clinical 

trials with higher statistical power have also been conducted.153,154 Table 3 includes 

all published interventional trials in the ICU on the subject. Furthermore several 

upcoming, ongoing and unpublished trials on the subject are specified in Table 4. 

No recent systematic reviews on randomised clinical trials of higher versus lower 

oxygenation levels specifically in the ICU have been conducted, a Cochrane 

systematic review from 2014 identified no relevant trials in mechanically ventilated 

ICU patients at that time.113 A recent metaanalysis of randomised clinical trials in 

acutely ill patients overall however, established an increased mortality with liberal 

oxygenation strategies as compared with restrictive oxygenation strategies, including 

trials in ICU patients amongst trials in other acutely ill patient populations (e.g. acute 

coronary syndrome and stroke).155 The conclusion of the analysis, and especially the 

suggested maximum oxygenation level of an SpO2 of 96% over which oxygen 

supplementation might become unfavourable however, may be too definitive when 

considering the large heterogeneity of the included trials, and the vastly differentiated 

oxygenation strategies used.156,157 In summary, even though increasing evidence 

points towards harm from definitive hyperoxaemia with oxygenation levels above the 
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normal physiological range, the optimal oxygenation targets in the ICU, balancing the 

risks of hyperoxaemia as well as of hypoxaemia, remain essentially unknown.
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2. Aims and hypotheses 

The overall aims of this PhD thesis were to plan and conduct the preparative studies 

needed for a pragmatic international multicentre randomised clinical trial of a lower 

versus a higher oxygenation target in adults acutely admitted to the ICU with 

hypoxaemic respiratory failure, and to design and initiate such a trial, the HOT-ICU 

trial. 

The overall hypothesis is that a lower oxygenation target compared with a higher 

oxygenation target will reduce mortality in adults acutely admitted to the ICU with 

hypoxaemic respiratory failure. 

2.1. Substudies 

2.1.1. Survey of ICU doctors’ preferences for oxygenation levels 

The aim of the survey (Paper I) was to quantify a broad segment of Northern European 

ICU doctors’ preferences related to oxygenation levels and to oxygen 

supplementation in mechanically ventilated adult ICU patients, additionally ensuring 

that the oxygenation target levels in the HOT-ICU trial would be implementable in 

clinical practice. We hypothesised that the preferred oxygenation target levels would 

generally be more restrictive than what observational studies in the ICU indicate. 

2.1.2. Observational study on oxygenation levels in the ICU 

Analyses of ABG samples from adult patients admitted to five ICUs in two hospitals 

of the North Denmark Region (Paper II).  

Preliminary, we quantified the oxygenation levels in all ABG analyses conducted in 

the specific ICUs to investigate levels of oxygenation overall (unpublished data), 

aiming to clarify current clinical practice to establish the control oxygenation target 

level in the HOT-ICU trial. The overall aim of the final submitted observational study 

however, was to evaluate the degree of hyperoxaemia, changes in FiO2 in response to 

hyperoxaemia, and any associations between hyperoxaemia during invasive 

mechanical ventilation and mortality in a large cohort of invasively mechanically 

ventilated adult ICU patients. We hypothesised that large proportions of PaO2 

measurements would be hyperoxaemic, and that hyperoxaemia would be associated 

with increased all-cause mortality for patients in the ICU and for patients discharged 

from the ICU, respectively. 
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2.1.3. The HOT-ICU trial 

The aim of the HOT-ICU trial (Paper III) is to compare the effect of a PaO2 

oxygenation target of 8 kPa with a PaO2 oxygenation target of 12 kPa throughout the 

duration of the ICU admission including readmissions until a maximum of 90 days, 

on the 90-day all-cause mortality in acutely admitted adult ICU patients with 

hypoxaemic respiratory failure. We hypothesise that the lower oxygenation target will 

reduce the 90-day mortality as compared with the higher oxygenation target. 

Additionally, an editorial (Paper IV) is included, the aim of which was to argument 

for the specific choice of PaO2 as the oxygenation target parameter in the HOT-ICU 

trial. 
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3. Methods 

The four papers included in this PhD thesis all revolve around the design of the HOT-

ICU trial, consisting of two preparative articles reporting the results of the conducted 

survey (Paper I) and of the observational study (Paper II), respectively, the protocol 

article of the HOT-ICU trial (Paper III), and of an editorial arguing specifically for 

the choice of oxygenation target parameter in the trial (Paper IV). The preparative 

studies needed to plan the HOT-ICU trial were, apart from the survey and the 

observational study, systematic reviews on the subject to clarify the overall combined 

knowledge prior to initiating the trial, as recommended.160,161 We therefore conducted 

two systematic reviews with trial sequential analyses on randomised clinical trials of 

higher versus lower oxygenation levels or levels of oxygen supplementation in ICU 

patients,159 and in critically ill patients overall,135 respectively. Conducted in 

collaboration with the Copenhagen Trial Unit outside the work of this PhD thesis. 

Results from both reviews await publication. 

3.1. Oxygenation survey (Paper I) 

3.1.1. Questionnaire construction and validation 

We used a previously validated questionnaire136 and successive modifications of 

this123,130 to construct a questionnaire on preferences for oxygen administration in 

mechanically ventilated adult ICU patients. Since we specifically wanted to address 

PaO2 as target parameter however, which was opposite previously conducted surveys 

all primarily focusing on SaO2,123,130,136 all questions were modified so that they 

related to the PaO2, with the exception of the first question where the recipients were 

specifically asked which parameter they preferred in their evaluation of oxygenation 

(PaO2, SaO2, or a combination). To ensure the face validity of the questionnaire, we 

piloted it to six Danish doctors in different hospitals and of various educational levels 

prior to distribution as recommended,162 resulting in minimal changes of the 

questions. The questionnaire was constructed in English without translations to 

prevent induction of variations in the translational process while maintaining 

compatibility in all countries as Danish, Norwegian, Swedish, and Finnish doctors are 

assumed to adequately understand English. The questionnaire was kept short at 17 

questions to minimise non-responses or partial questionnaire fulfilment.163 

3.1.2. Recipient population and distribution 

The questionnaire was electronically distributed to a broad sample of Danish, 

Norwegian, Swedish, Finnish, English, Welsh, and Northern Irish ICU doctors from 

the April 25 to August 8, 2016. Non-responders and partial responders received 
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scheduled reminder e-mails 14 and 28 days after the distribution. An additional third 

reminder e-mail was sent in September 2016. 

3.1.3. Statistics 

The results were described descriptively and reported as proportions of answers with 

95% confidence intervals (95% CI). Supplemental comparisons were conducted 

using McNemar’s test, a p-value < 0.05 was considered statistically significant. 

 

3.2. The observational study (Paper II) 

3.2.1. Population 

In the preliminary investigation for clarifying current clinical practice, all ABG 

samples analysed in the specific blood gas analysing apparatuses (ABL800 FLEX®, 

Radiometer, Copenhagen, Denmark) located in five ICUs in Aalborg University 

Hospital and North Denmark Regional Hospital, Hjørring in a period from January 1, 

2012 to November 27, 2015 was retrieved. The five ICUs were three general ICUs 

admitting mixed surgical and medical patients, one dedicated cardiothoracic ICU, and 

one dedicated neuro/trauma-ICU. In the main observational study however, the 

inclusion period was extended, and the population targeted was specified to include 

only invasively mechanically ventilated patients in the five ICUs. This was a 

retrospective study of all invasively mechanically ventilated adults (≥ 15 years of age) 

admitted throughout a 4.5-year period from January 1, 2012 to June 30, 2016, 

identified through the administrative ICU database (KoorInt). The study addressed 

oxygenation levels and levels of FiO2, specifically including all ABG samples 

analysed in any ABG apparatus in the two hospitals during invasive mechanical 

ventilation in the ICU. 

3.2.2. Databases and data retrieved 

The KoorInt database is an administrative database, which includes all ICU 

admissions in the North Denmark Region. The registry contains diagnosis-related 

group (DRG) codes for ICU admissions and discharges including times of these, types 

of ICU admission (elective surgical, acute surgical or acute medical), codes for 

various life support, the Simplified Acute Physiology Score II (SAPS II), ICU 

mortality codes, and certain ICU procedural codes. The codes for ICU admission, 

invasive mechanical ventilation, and acute dialysis registered in KoorInt have 

previously been validated as a study investigated the validity of these codes in the 

Danish National Patient Registry,164 specifically using a North Denmark Cohort of 

ICU patients, and the registrations in the Danish National Patient Registry from the 

North Denmark region are retrieved directly from the KoorInt database. This study 

established a positive predictive value of the ICU admission code and the invasive 

mechanical ventilation code of 100% (95% CI: 95.1% to 100%) for the combination 
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of both codes, and a positive predictive value for the acute dialysis code of 98% (95% 

CI: 91.0% to 99.0%).164 

The central server of ABG analyses, Radiance, from which the ABG data was 

retrieved, contains all analyses conducted in all ABG analysing apparatuses (ABL800 

FLEX®, Radiometer, Copenhagen, Denmark) of Aalborg University Hospital and 

North Denmark Regional Hospital, Hjørring. ABG samples are analysed upon 

entering or barcoding a valid Civil Personal Register (CPR) number, therefore, all 

analyses are registered with specific time-points and linkage to the individual patients. 

The 90-day mortality from the time of ICU admission were retrieved from the Danish 

Civil Personal Registration Registry. This registry uses the law-enforced Danish CPR 

number, unique to all Danish citizens, and contains daily information on the vital 

status and migration status of all citizens since 1968.165 

Periods of invasive mechanical ventilation were identified through KoorInt and all 

ABG data conducted during the periods of invasive mechanical ventilation in any 

ABG analysing apparatus in the respective hospitals were retrieved from Radiance. In 

addition, information on gender, age, ICU admission type, use of renal replacement 

therapy, use of vasopressors and inotropes, SAPS II, and ICU mortality were retrieved 

from KoorInt. The ICU mortality was cross-checked with the data from the Danish 

Civil Personal Registration Registry. 

3.2.3. Outcomes 

The study consisted of a descriptive and an analytical part. In the descriptive part, 

PaO2, SaO2, and FiO2 levels, proportions ABG samples with hypoxaemia and 

hyperoxaemia, and FiO2 adjustments in response to hyperoxaemia were assessed. In 

the analytical section associations between PaO2 levels during invasive mechanical 

ventilation and mortality were assessed in patients admitted to the ICU and in ICU-

discharged patients, respectively. The descriptive part included all ABG analyses 

conducted during invasive mechanical ventilation in all ICU admissions in the 4.5-

year period, whereas the analytical part included only the first ICU admission with 

invasive mechanical ventilation conducted within the 4.5-year period. 

3.2.4. Statistics 

As all data were non-normally distributed, PaO2, SaO2, and FiO2 levels were reported 

as medians with interquartile ranges (IQR). Degrees of hypoxaemia and 

hyperoxaemia were reported as proportions of all ABG samples conducted. 

Occurrences of uncorrected hyperoxaemia, where the FiO2 were not reduced in 

subsequent ABG samples with hyperoxaemia are descriptively reported as 

proportions of ABGs where FiO2 could be reduced, defined as FiO2 ≥ 0.30 and a 
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subsequent ABG measurement with a registered FiO2 level in the same episode of 

mechanical ventilation. 

PaO2 exposure was estimated using an area-under-the-curve (AUC) PaO2 measure 

divided by the exposure time, interpretable as an average PaO2 level during invasive 

mechanical ventilation. Associations between exposure-time-divided AUC PaO2 and 

mortality were evaluated using a multi-state illness-death model (Figure 1), where 

hazards of dying (transition intensities) for patients within the ICU (ICU mortality) 

and for ICU-discharged patients (post-ICU mortality), respectively, were estimated 

using Cox proportional hazards models adjusting for all covariates: age, gender, 

admission type, SAPS II, renal replacement therapy within the first 24 hours, 

vasopressors or inotropes within the first 24 hours, and currently ventilated (yes or 

no) for patients still within the ICU, and ICU length-of-stay for ICU-discharged 

patients. The underlying time-scales were time since ICU admission for hazards of 

dying in the ICU and time since ICU discharge for post-ICU death hazards. We 

applied multiple imputation to make up for missing admission codes, SAPS II values, 

and missing times of ABG conductance. 

 

Figure 1 Multi-state illness-death model. ICU: Intensive Care Unit. Depicts the 

three possible states (1-3) a patient can occupy during the study period and the 

possible transitions between these states. The α values denote transition intensities 

(hazards) between states. The α values are time-dependent e.g. α23(t) denotes the 

intensity of dying on day t, giving that the patient is alive and has been discharged 

from the ICU on day t. 
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3.3. The HOT-ICU trial (Paper III) 

Paper III represents the published protocol, outlining the design and rationale for the 

HOT-ICU trial. 

3.3.1. Trial design and setting  

The HOT-ICU trial is an investigator-initiated, pragmatic, randomised, outcome-

assessment blinded, parallel group trial of two separate PaO2 targets throughout the 

duration of ICU admission to a maximum of 90 days. It will include patients in 

approximately 40 European ICUs in 7 countries, and was initiated with an expected 

inclusion period of two years. 

3.3.2. Eligibility, screening and randomisation 

All patients fulfilling the following inclusion criteria within 12 hours from ICU 

admission will be screened in the system: age 18 years or older, acutely admitted to 

the ICU, having an indwelling arterial catheter, receiving supplemental oxygen with 

a flow of at least 10 litres per minute in an open system irrespective of any flow of 

atmospheric air or an FiO2 of at least 0.50 in a closed system including invasive or 

non‐invasive ventilation or continuous positive airway pressure (CPAP) systems, and 

are expected to receive supplemental oxygen for at least 24 hours in the ICU. 

We will exclude patients if they cannot be randomised within 12 hours of ICU 

admission, receive chronic mechanical ventilation for any reason, use home oxygen 

supplementation, are  previously treated with bleomycin, have solid organ transplant 

planned or conducted during current hospitalisation, are imminently brain dead or 

withdrawn from active therapy, are pregnant, are carbon monoxide, cyanide or 

paraquat poisoned, have methaemoglobinaemia, have any condition expected to 

involve the use of hyperbaric oxygen therapy, have sickle cell disease, or if their 

consent cannot be obtained according to national regulations, or they have previously 

been randomised into the HOT‐ICU trial. 

Randomisation will be conducted electronically via a central web-based screening 

system with computer-generated allocation sequence lists with permuted block sizes 

stratified by site and for COPD and active haematological malignancy at baseline 

3.3.3. Interventions 

Eligible patients will be randomised 1:1 to a PaO2 target of 8 kPa (intervention group) 

and a PaO2 target of 12 kPa (control group) throughout the duration of the ICU 

admission, including any readmissions, up until 90 days after randomisation. FiO2 is 

titrated from 0.21 to 1.00 to obtain the allocated oxygenation target in both 

intervention groups. Any other treatment supplied in the ICU is at the discretion of 
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the treating clinicians. The oxygenation targets are not blinded for clinicians, patients, 

relatives or trial personal (with the exception of outcome assessors and the trial 

statistician, as stated below). 

3.3.4. Trial outcomes 

The primary outcome is the 90-day all-cause mortality. Secondary outcomes include 

days alive without organ support and days alive and out of hospital in the 90-day 

period; proportion of patients with one or more serious adverse events in the ICU 

defined as new episode of shock, new ischaemic stroke, or new episode of intestinal 

or myocardial ischaemia; one-year all-cause mortality; health related quality of life 

measured using EuroQol 5 dimensions 5 level questionnaire and EuroQol visual 

analogue scale166 at one-year follow-up; cognitive and pulmonary function at one-year 

follow-up in a subgroup; and an overall health economic assessment. Outcome 

assessment is blinded for the mortality outcomes, the EuroQol outcome, and for the 

cognitive and pulmonary function test outcomes. 

 

3.3.5. Sample size calculations and statistics 

Assuming a mortality of 25% in the control group,167,168 in order to detect or reject a 

true 20% relative risk (RR) reduction, with a maximal type 1 error of 5% and type 2 

error (power) of 90%, we will include 2,928 patients into the trial. A planned interim 

analysis will be conducted after 90-day follow-up of the first 1,464 patients equal to 

50% of the sample size. The primary outcome will be compared using a generalised 

linear model with a log‐link and binomial error distribution with adjustment for 

stratification variables. Significance of the intervention will be assessed using p-

values and RR with 95% confidence from this regression analysis. A two-sided p-

value below 0.05 will be considered statistically significant. A detailed statistical 

analyses plan will be submitted as a separate publication prior to randomisation of the 

last patient in the trial, or in the case that the trial is stopped prematurely before 

inclusion of the planned 2,928 patients, the detailed statistical analyses plan will be 

submitted prior to the trial database being locked. The trial statistician is blinded for 

the interventions throughout all analyses. 

 

 

3.4. Ethics 

No ethical permission is required to conduct surveys in the participating countries 

according to national regulations in Scandinavia and in the United Kingdom (UK). 

Permission to retrieve non-anonymised data from KoorInt, from ABG samples, and 

from the Danish Civil Personal Registration Registry without individual patient 

consent was granted by the Danish Patient Safety Authority (3-3013-1864/1/) as 

required according to Danish regulations. The HOT-ICU trial was prospectively 

approved by the Danish Medicines Agency (AAUH-ICU-01), the Committee on 

Health Research Ethics in the North Denmark Region (N-20170015), and by required 
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authorities in all participating countries in accordance with national regulations. 

Informed consent from all included patients, their next-of-kins, as well as any trial 

guardians in the HOT-ICU trial are obtained in accordance with national regulations. 

The trial was prospectively registered at ClinicalTrials.gov (Identifier: 

NCT03174002) and at the European clinical trials database (EudraCT number 2017-

000632-34). All studies were approved by the Danish Data Protection Agency (2008-

58-0028) and relevant data processing agreements with the Copenhagen Trial Unit 

were signed for the observational studies, and for the HOT-ICU trial, respectively. An 

independent data monitoring and safety committee (DMSC) oversees the HOT-ICU 

trial throughout its duration. 
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4. Results 

4.1. Oxygenation survey (Paper I) 

The questionnaire was distributed to 1080 eligible doctors and full or partial responses 

were received from 681 doctors equal to a response rate of 63%. 

4.1.1. Preferred parameter of oxygenation 

When asked, which parameter the doctors rated the highest in their evaluation 

oxygenation in a mechanically ventilated patient in the ICU 52% (95% CI: 48% to 

56%) of respondents answered PaO2, 23% (95% CI: 20% to 27%) answered SaO2, 

and 24% (95% CI: 21% to 27%) answered a combination of PaO2 and SaO2 (n = 677). 

4.1.2. Oxygenation preferences in specified clinical scenarios 

The preferences for increasing, decreasing or not changing an FiO2 of 0.50 in a 

mechanically ventilated patient revealed that most doctors targeted a PaO2 of 10 kPa 

in patients with healthy lungs, ARDS, and abdominal sepsis with 76% (95% CI: 76% 

to 82%), 73% (95% CI: 70% to 76%), and 76% (95% CI: 73% to 79%) of doctors not 

changing the FiO2 at this PaO2 level, respectively (all p-values < 0.001, McNemar’s 

test for comparisons with proportions of ‘no change’ answers at PaO2 level above and 

below the respective levels); a preference for targeting a PaO2 of 12 kPa in patients 

with cerebral or myocardial ischaemia as 67% (95% CI: 64% to 71%) and 67% (95% 

CI: 63% to 71%) of doctors’ would not change the FiO2 at this PaO2, respectively (p-

values < 0.001 to 0.002), and a preference for targeting 8 kPa in patients with known 

COPD and habitual hypercapnia as 85% (95% CI: 82% to 87%) would not change the 

FiO2 at this PaO2 level (p-values < 0.001). 

4.1.3. Acceptable oxygenation levels in a clinical trial 

The highest acceptable oxygenation level in a clinical trial of higher versus lower 

oxygenation targets was ≥ 12 kPa for 77% (95% CI: 74% to 80%) of the respondents 

and the lowest acceptable oxygenation target was ≤ 8 kPa for 80% (95% CI: 77% to 

83%) of the respondents. 

4.2. Observational study (Paper II) 

In the preliminary investigation, a total of 261,355 PaO2 measurements from 7,001 

ICU patients were retrieved. The distributions of PaO2 and SaO2 values are shown in 

Table 5.
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In the main observational study we included 4,998 patients in the overall cohort, all 

having ABG analyses conducted while receiving invasive mechanical ventilation in 

one of the five ICUs, and all admitted within the 4.5-year study period. A total of 

177,769 ABG analyses from these patients were included. 

4.2.1. Oxygenation levels, proportions of hyperoxaemia, and FiO2 
responses to hyperoxaemia 

The median PaO2 was 11.3 kPa (IQR: 9.8 kPa to 13.6 kPa), median SaO2 was 97% 

(IQR: 95% to 99%), and median FiO2 was 0.40 (IQR: 0.35 to 0.50). A total of 74,028 

(41.6%) of the ABG samples had any hyperoxaemia defined as a PaO2 ≥ 12.0 kPa, 

and 21,069 (11.9%) had severe hyperoxaemia defined as a PaO2 > 16 kPa. In more 

than 50% of the ABG samples with a PaO2  ≥ 12.0 kPa and an FiO2 < 0.40, the PaO2 

remained hyperoxaemic, and the FiO2 had not been reduced, in the following ABG, 

whereas this was the case for less than 30% of ABG samples with a PaO2  ≥ 12.0 kPa 

and an FiO2 ≥ 0.50, and for less than 15% of ABG samples with a PaO2 ≥ 16.0 kPa 

and an FiO2 ≥ 0.50. 

4.2.2. Mortality associations 

Pronounced hyperoxaemia with an exposure-time-divided AUC PaO2 level > 16 kPa 

was associated with increased ICU mortality (adjusted HR: 1.66 (95% CI: 1.20 to 

2.29)) compared with the normoxaemic reference AUC PaO2 interval of ≥ 8 kPa to < 

12 kPa, and similarly was hypoxaemia with an AUC PaO2 < 8.0 kPa associated with 

increased ICU mortality (adjusted HR: 6.24 (95% CI: 3.17–12.25)). Moderate 

hyperoxaemia with AUC PaO2 ≥ 12 kPa to ≤ 16 kPa was not associated with increased 

ICU mortality (adjusted HR: 1.00 (95% CI: 0.82–1.23)). When censoring patients 

upon the first ABG with a PaO2 below 8 kPa to minimise contamination from 

increased mortality due to hypoxaemia, all associations between increased mortality 

and hyperoxaemia were accentuated. 

No associations between any level of hyperoxaemia or hypoxaemia and increased 

mortality in ICU-discharged patients were found. 

4.3. The HOT-ICU trial (Paper III) 

4.3.1. Trial status 

The HOT-ICU trial was initiated at Aalborg University Hospital on June 20, 2017. 

The trial is currently ongoing, recruiting patients in Denmark (19 sites), Finland (4 

sites), the Netherlands (2 sites), Switzerland (2 sites) and Norway (1 site). An 

additional 6-7 sites in the UK await trial initiation in summer 2019. Initiation of the 
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expected 2 trial sites in Iceland has not yet been planned. Currently on April 21, 2019, 

1,639 patients of the planned 2,928 patients have been included. The scheduled 

interim analysis after full 90-day follow-up of 1,464 patients will be conducted after 

June 2, 2019. 

HOT-ICU trial inclusion rate compared to the inclusion rate necessary to complete 

the trial within the planned two years of recruitment is presented in Figure 2. 

Figure 2 Inclusion rate by weeks in the HOT-ICU trial. Actual inclusion rate 

versus inclusion rate needed (Goal) to complete the trial within the planned two years 

of recruitment (status on April 21, 2019) 

 

 



HANDLING OXYGENATION TARGETS IN THE INTENSIVE CARE UNIT 

34 

5. Discussion 

5.1. Oxygenation survey (Paper I) 

We sought to target a general, broad population of ICU doctors’ for the oxygenation 

survey, preferably, this should be conducted in the geographical area of the HOT-ICU 

trial as the survey should clarify whether doctors’ preferences were compatible with 

the trial design. We used a broad sample of hospitals, which were included on the base 

of our local contacts in the respective countries. In all hospitals, except for in the UK, 

all doctors with any function in the ICU were included ensuring complete 

representation of all doctors handling patients in the ICU at each site. The surveyed 

population thus included both consultants, registrars, and trainees. In the UK however, 

due to the availability for our local contacts, only doctors employed as head of the 

ICU, and/or the doctors responsible for conducting audits were included, this resulted 

in more hospitals in the UK included, however with fewer recipients at each hospital. 

We used personalised email distribution of the questionnaire, this was chosen since 

this enabled us to target a large recipient population, and still ensure complete 

overview of response rates, which would not be possible with the alternative of 

website self-completion where the precise number of recipients and the relevance of 

these would not be known. A pre-planned schedule of distribution and reminder-

emails was followed with the exception of an extra reminder e-mail send-out to avoid 

low response-rates due to overlap with summer holiday season, which was indicated 

by the scheduled distribution and reminder e-mails resulting in many automatic out-

of-office e-mail replies. 

We chose primarily to describe the survey results descriptively, although 

supplemental analyses were conducted in questions were it seemed relevant to 

establish whether observed differences between answers could be considered 

statistically significant. In most cases, these differences were obvious however, since 

no overlap of 95% CIs was present, and so, the comparative statistical tests conducted, 

can largely be considered redundant. 

5.1.1. Limitations 

The use of a convenience sample of hospitals was not optimal, as this could not 

necessarily be considered representative of the entire population of ICU doctors, 

especially not as the number of included hospitals and doctors varied from country to 

country. Nevertheless, since we wanted to specifically target the departments, which 

were to participate in the HOT-ICU trial, the included departments in each country to 

some degree reflects HOT-ICU trial participation, which in this aspect can be 

considered optimal. The difference between doctors targeted in the UK and in the 
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Scandinavian countries also represents a limitation. Nevertheless, since we refrained 

from conducting inter-geographical comparisons of answers, we believe that the 

overall results are representative for ICU doctors’ preferences in the participating 

countries, and that the differences in target populations can be considered of minor 

importance. 

The lack of SpO2 as an answer, when evaluating the preferred oxygenation parameter, 

may have resulted in some respondents specifically preferring PaO2 to SaO2 only 

because the PaO2 value adds new knowledge to the SpO2, which the SaO2 does not. 

This interpretation however, was not the intent of the question. Nevertheless, since 

SpO2 is mandatory in all mechanically ventilated patients for the continuous 

oxygenation monitoring and FiO2 titration, it is our opinion that it would have been 

problematic to have included this parameter in the question along the PaO2 and the 

SaO2. The SpO2 is a markedly different parameter from the invasive oxygenation 

measures, and so, the parameters would not have been comparable. Furthermore, if a 

doctor preferred to target saturation-levels in general, being SpO2 or SaO2 levels, the 

obvious selection of the available parameters would in our opinion have been the 

SaO2. 

5.1.2. Main findings and implications for the HOT-ICU trial 

The preferred parameter for evaluation of oxygenation was PaO2 for most doctors. In 

itself, this made the survey results more interesting, since this is the first survey to 

primarily focus on PaO2 instead of SaO2
123,130,136, thus being more in line with the ICU 

doctors’ daily clinical evaluations. Importantly, this also confirmed that the decision 

to target PaO2 in the HOT-ICU trial conformed to the prevailing preference amongst 

ICU doctors in most of the participating countries. Furthermore, the large majority of 

doctors selected the acceptable highest and the acceptable lowest target in a clinical 

trial to be at the level of the 8 kPa and the 12 kPa PaO2 target in the HOT-ICU trial, 

respectively, or more extreme. We therefore concluded from the survey results that 

the oxygenation targets of the HOT-ICU trial seemed implementable as both the 

targeted levels and the specific target parameter were acceptable from the 

participating doctors’ points of view. 

5.2. Observational study (Paper II) 

In the preliminary unpublished investigation we wanted to conduct a simple 

clarification of the current clinical practice in the ICUs of the North Denmark Region. 

Based on the preliminary results therefrom, we decided to target the invasively 

mechanically ventilated patients more precisely than what was possible on the base of 

ABG samples alone. The invasively mechanically ventilated subpopulation was 

selected since when designing the observational study it was the plan that the HOT-

ICU trial should include invasively mechanically ventilated patients only. 

Furthermore, the oxygen supplementation level here is clear-cut with precise FiO2 
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available, and since this is likely the ICU subpopulation exposed to the highest levels 

of oxygen, which in combination with a potential interaction between harm from 

mechanical ventilation and harm from hyperoxia86–92 would make associations 

between mortality and hyperoxaemia most prevalent in this specific subgroup. Such 

associations seemed interesting as no large observational studies investigating 

associations between mortality and hyperoxaemia throughout the duration of 

mechanical ventilation in the ICU had been conducted when the observational study 

was planned. Recently however, a Dutch study has investigated this in a similar set-

up,9 finding comparable levels of PaO2 to ours, with median PaO2 of 10,8 kPa (IQR: 

9.3 kPa to 13.0 kPa) in the overall ICU cohort, and establishing associations between 

hyperoxaemia and increased in-hospital mortality in several different metrics in the 

mechanically ventilated subpopulation. However, the associations was present only at 

higher degrees of hyperoxaemia with PaO2 above 26.7 kPa compared to time-divided 

AUC PaO2 above 16 kPa in our study. The Dutch study was an observational study 

conducted during the implementation of a conservative oxygenation strategy in a two-

step before-and-after trial.152 Therefore, this observational study is essentially a 

supplementary analysis of an interventional trial. This fact may skew the 

observational results, because when an overall conservative oxygenation strategy is 

extensively promoted, any deviation from this strategy by clinicians would require 

very good arguments. Such an argument could indeed be that a patient was more 

severely ill in non-respiratory organ systems with an increased mortality risk on the 

base of this, thus decreasing the chance that the associations observed in the Dutch 

observational study are actually causal. Nevertheless, our results support their 

findings. 

5.2.1. Limitations 

The preliminary investigation had one major limitation, which was that the included 

patients were exclusively defined from the conducted arterial blood gas samples. This 

means that ICU patients could have been admitted during the inclusion period, having 

ABG samples analysed in ABG apparatuses in other departments of the hospital 

without being included in the study. Furthermore, if ABG samples of non-ICU 

patients were analysed in the ICU ABG apparatuses, non-ICU patients could be 

included in the population as well. Therefore, although this preliminary investigation 

served the aim of quantifying the current clinical practice for the HOT-ICU trial, it 

was overall highly flawed. Therefore, we decided to conduct a more thorough study 

handling the problem of patient selection through the use of the KoorInt database. 

Since the positive predictive value of the ICU admission and conducted invasive 

mechanical ventilation codes in this database has been shown to be 100%,164 the 

included patients in the final submitted observational study have all been admitted to 

an ICU within the inclusion period and have all received invasive mechanical 

ventilation here. Furthermore, the specific selection of patients based on their 

individual CPR number ensured that all ABG analyses conducted during invasive 

mechanical ventilation in the ICU was included, regardless of where in the hospital 
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the ABG was analysed. The limitations in the final observational study include the 

lack of ventilator parameters other than the FiO2 when evaluating responses to 

hyperoxaemia. However, as an episode of uncorrected hyperoxaemia required that the 

FiO2 was not successively reduces, and that the patient remained hyperoxaemic in the 

following ABG, any unknown change in ventilator parameters, e.g. a reduction PEEP, 

would not have had an effect on the hyperoxaemia, and so, the change in ventilator 

setting can be considered insufficient in correcting the hyperoxaemia. Furthermore, 

the lack of primary diagnosis codes and knowledge on comorbidities in the mortality 

analyses is a limitation. The adjustments for the available background information, 

including admission type, SAPS II score, and use of life support in the first 24 hours 

however, to some degree make up for this. 

5.2.2. Main findings and implications for the HOT-ICU trial 

The overall results of the observational study showed that the oxygenation levels of 

our cohort were markedly more restrictive than what has been observed previously in 

similar studies,2,5–7,10–12 and furthermore, the characterisation of adjustments in FiO2 

levels in response to hyperoxaemia similarly showed that uncorrected hyperoxaemia 

was less prevalent in comparison with previous studies,3,6,11,128 all indicating that 

although hyperoxaemia was still frequent, a restrictive oxygenation strategy was 

prevailing in the included ICUs. 

The associations between hyperoxaemia and ICU mortality confirmed the findings in 

previous studies.2,9,134,142,169–173 Nevertheless, the association we found seemed to be 

present at lower degrees of hyperoxaemia than previously identified, which may be 

due to the restrictive oxygenation strategy in our cohort, or to the analysis of all data 

throughout the duration of invasive mechanical ventilation, increasing the negative 

impact of lesser degrees of hyperoxaemia. 

We found the overall median oxygenation levels to be very close to the 12 kPa PaO2 

target in the control group of the HOT-ICU trial ratifying that this oxygenation target 

corresponds to current clinical practice overall. Additionally, the oxygenation levels 

of the entire ICU population in the preliminary investigation (median PaO2: 11.4 kPa, 

IQR: 9.7 kPa to 13.8 kPa) were almost identical to the oxygenation levels found in the 

main observational study, specifically targeting invasively mechanically ventilated 

patients (median PaO2: 11.3 kPa, IQR: 9.8 kPa to 13.6 kPa). Thus, it seems that the 

oxygenation strategies used in ICU patients of the North Denmark Region did not 

depend on whether the patients received invasive mechanical ventilation or not. This 

finding therefore justifies the inclusion of both mechanically ventilated and non-

ventilated patients into the HOT-ICU trial with similar oxygenation levels targeted in 

both groups. The confirmation of an association between hyperoxaemia and increased 

ICU mortality, which may be present at lower degrees of hyperoxaemia than 

previously observed, confirms that randomised clinical trials such as the HOT-ICU 
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trial are highly needed, to clarify whether a causal relationship between excessive 

oxygen exposure and increased mortality actually exists. 

5.3. HOT-ICU trial design (Paper III and Paper IV) 

5.3.1. A pragmatic trial 

It has been estimated, that only 9% of recommendations in the intensive care clinical 

guidelines, on which ICU doctors base their daily practice, are supported by solid 

evidence grade A174 (Grading of Recommendations, Assessment, Development and 

Evaluation (GRADE) classification – ‘high quality of evidence meaning that we are 

very confident that the true effect lies close to that of the estimate of the effect’175). 

Therefore, the vast majority of routine interventions used in daily clinical practice in 

the ICU are conducted without sufficient knowledge on the balance of benefits and 

harms from the treatment. The only way to evaluate effectiveness of interventions in 

clinical practice and thus avoid possible infliction of harm, is through pragmatic 

randomised clinical trials, testing the effectiveness in a setting of daily clinical 

practice with minimal interference apart from the specific trial interventions tested.176 

Essentially, in the ICU the investigation of ubiquitously daily used simple 

interventions in large pragmatic randomised clinical trials are eminently needed. 

Oxygen supplementation is such an intervention, and the HOT-ICU trial is such a 

pragmatic randomised clinical trial. 

The HOT-ICU trial investigates the outcome of the implementation of a lower versus 

a higher oxygenation target in a pragmatic design. And so, all other interventions apart 

from the fixed oxygenation targets are at the discretion of the treating clinicians. These 

interventions are assumed to follow regular practice, intending to supply the best 

possible treatment to any given patient taking the full condition into account, which 

includes the fixed higher or lower oxygenation target.176 This means that ventilator 

parameters apart from the FiO2, and instigation of supportive measures of oxygenation 

like the use of mechanical ventilation, prone positioning, inhaled vasodilators, or 

ECMO may differ between groups. However, since implementation of any 

oxygenation target established to be opportune after finishing the trial, would likely 

include similar changes in ventilator parameters or supportive measures, the effect of 

differences here can be regarded as a direct consequence of the specific oxygenation 

targets and should thus be allowed. Therefore, we deliberately refrained from defining 

acceptable ventilator settings, flow-charts for FiO2 and PEEP titration, or criteria for 

implementing supportive measures of oxygenation. Since relevant ventilator 

parameters and use of supportive measures however, are registered daily in the 

electronic case report form (eCRF), any between-group differences here are easily 

reported, allowing these to be taken into consideration when assessing the trial results 

in the end. Furthermore, the stratified randomisation by site ensures that any 

differences in ICU treatment conducted of the base of local preferences will to a large 

extend be equally distributed between the intervention groups. 
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The choice using point oxygenation targets was pragmatic in nature, since a point 

target is adaptable to the specific patient (the goal is to be as close to the specified 

target as possible in any given patient). If a target PaO2 interval was used, which is 

the practice in most other trials in the field,146,148,150–154,158 the variability of PaO2 in 

some patients would make them hard to keep within the allocated target interval. This 

problem does not occur with a point target, since there is no clear-cut definition of 

how close to the target a patient should be. As long as any deviations overlap the 

target, an effort to follow the protocol by treating clinicians can be assumed. 

Furthermore, when addressing the already conducted large trials on the subject using 

target intervals, the obtained oxygenation levels often center around the least extreme 

limit of the target intervals, which means that the targets used in these cases effectively 

seem to equal point targets corresponding to this least extreme interval 

limit.146,148,151,152,154  This increases the risk of overlap between the intervention 

groups, which can be seen in the fact that median oxygenation levels obtained in some 

cases are above the targeted intervals of the restrictive oxygenation 

strategies.146,148,151,152,154 Of course, this deviation may also to some extend be due to 

the impossibility to decrease below an FiO2 of 0.21. The choice of targeting a PaO2 

level instead of the more commonly used SaO2 and SpO2 parameters,146,151,154,158 are 

based on the oxygenation survey results, as well as on several other considerations 

primarily being a better targeting of normoxaemia and avoidance of hyperoxaemia in 

the liberal oxygenation group, and an expected better separation of the intervention 

groups in the end. All relevant arguments for the choice of the targeted PaO2 

oxygenation parameter are presented in the editorial, Paper II (Appendix D). 

The pragmatic design also came into play when defining the target population of the 

HOT-ICU trial. We intended to include all ICU patients with hypoxaemic respiratory 

failure and hence a certain need for oxygen supplementation, ensuring a difference in 

oxygen exposure between the intervention groups of a clinically relevant magnitude. 

Otherwise, we intended to have as broad an inclusion as possible, aware that if not, 

the results would likely be extrapolated to excluded patient populations afterwards, a 

practice which seems at best avoided in a pragmatic trial by targeting the entire 

relevant patient population form a start. Therefore, we did not want to make any 

assumptions of positive effects of a given oxygenation strategy in any subgroups 

unless this was supported by solid evidence. And so, the trial includes all ICU patients, 

were equipoise of the two oxygenation targets can be assumed. This is regardless of 

whether the PaO2 target of 8 kPa or the PaO2 target of 12 kPa in a specific 

subpopulation would be considered the standard clinical practice. I.e. in patients with 

COPD95,96 and in patients with ARDS,79,80 a PaO2 target of 8 kPa could likely be 

considered standard clinical practice. Nevertheless, equipoise of the two oxygenation 

targets in these subpopulations is present as discussed below, justifying trial inclusion 

of these even though one could regard the interventional arm and the control arm as 

being switched. More details on selected specific subpopulations in the HOT-ICU trial 

and justifications for inclusion of these in separate can be found in the following 

sections. 
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5.3.2. Chronic obstructive pulmonary disease 

In 2010 a Tasmanian randomised clinical trial of titrated oxygen supplementation to 

an SpO2 of 88% to 92% versus standard oxygen supplementation of 8 to 10 L/min 

through non-rebreather facemask in the prehospital setting, including patients with 

suspected exacerbations of COPD, found a reduction in the relative mortality risk of 

58% in the titrated oxygenation group.177 As a consequence of this trial, such a titrated 

oxygenation strategy is recommended for patients with COPD or other chronic 

conditions with similar risk of hypercapnic acidosis in clinical guidelines of oxygen 

therapy in acutely ill patients.95,96,178 Patients in the ICU however, may differ from 

these recommendations, and are also specifically disclaimed to be included in the 

overall guidelines on the subject.95,96 Furthermore, the only randomised clinical trial 

conducted in patients with COPD exacerbation admitted to the ICU, a pilot trial of 36 

patients, did not find any differences between a higher versus a lower oxygenation 

strategy, neither in clinical outcome nor in pH or PaCO2 levels.144 The targets used in 

this trial were lower (PaO2 > 6.6 kPa versus PaO2 > 9.0 kPa) than in the prehospital 

Tasmanian trial,177 the achieved PaO2 levels however, were 9-10 kPa in the restrictive 

oxygenation group versus 12-15 kPa in the liberal group, which are at the level of the 

achieved PaO2 levels in the Tasmanian trial. Additionally, the Tasmanian prehospital 

trial177 investigated fixed high-flow oxygen supplementation versus a targeted 

oxygenation strategy. This means that the majority of patients in the liberal 

oxygenation group of this trial may likely have been hyperoxaemic with PaO2 levels 

above the normal physiological range, and so, no conclusions regarding a strictly 

normoxaemic oxygenation target corresponding to the 12 kPa PaO2 target in the HOT-

ICU trial, can be deducted therefrom. Furthermore, the prehospital setting is markedly 

different than the ICU setting in regards to levels of monitoring, especially of the 

PaCO2, and the possibilities to use supportive measures like non-invasive or invasive 

mechanical ventilation. This could likely counteract harm from hyperoxic 

hypercapnia or avoid it completely.109,110 In summary, for hypoxaemic patients with 

COPD admitted to the ICU, the optimal oxygenation target overall remains unknown, 

and equipoise of a titrated strictly normoxaemic oxygenation strategy (e.g. a PaO2 of 

12 kPa) and a titrated low normoxaemic oxygenation strategy (e.g. a PaO2 of 8 kPa) 

is present. Furthermore, up to 1/3 of COPD patients are undiagnosed,179 and 27% of 

non-COPD patients with a history of smoking, who attends primary care with acute 

respiratory tract infection have an unknown COPD diagnosis.180 Therefore, even with 

an exclusion criteria of COPD, numerous patients with undiagnosed COPD would 

still be included into the HOT-ICU trial. Since the COPD population, primarily due 

to hyperoxic hypercapnia, may react differently to oxygen supplementation than the 

rest of the HOT-ICU population, COPD at baseline was included as a stratification 

variable. 
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5.3.3. Acute respiratory distress syndrome 

An oxygenation strategy targeting a PaO2 of 7.3 kPa to 10.7 kPa has been a part of the 

ARDS Network protocol since their large trials conducted in the beginning of the 

century.79,80 Nevertheless, these oxygenation targets are not based on solid evidence 

as no randomised controlled trials on higher versus lower oxygenation levels in 

patients with ARDS have been conducted. Coherently, no recommendations of 

specific oxygenation levels are included in clinical guidelines of mechanical 

ventilation in ARDS.181,182 The recommendations of restrictive oxygenation targets 

are generally aimed at minimising pulmonary oxygen exposure to avoid oxidative 

stress adding to the already existing severe respiratory failure in this patient 

population, thus protecting the lungs.16–18,49,53 However, even though the focus on 

protecting the lungs may seem opportune, the mortality in ARDS are only directly 

caused by respiratory failure in estimated 16%183 or 13% to 19%184 of deaths, whereas 

death from multi-organ-failure and sepsis are far more prevalent.183,184 Such multi-

organ-failure or sepsis could potentially be aggravated or indeed caused by localised 

in-evident tissue hypoxia. Therefore, in the effort of protecting the lungs, it may be 

that we actually increase the risk of dying from complications related to hypoxia, and 

if so, this may not be obvious in the daily clinical practice. Furthermore, the 

oxygenation practices used in the ARDS population worldwide are generally far more 

liberal than the ARDS Network recommendations as a median PaO2 of 12.4 kPa was 

recently found in a worldwide observational study of patients with ARDS.133 And so, 

although the ARDS Network’s target range might be considered the best clinical 

practice in patients with ARDS, a PaO2 target around 12 kPa seems to be the current 

clinical practice. In summary, the optimal oxygenation target in patients with ARDS 

remains unknown, no firm evidence supports any strategy and clinical practice seems 

far more liberal, than recommended. Therefore, equipoise of a strictly normoxaemic 

oxygenation target and a low normoxaemic oxygenation target in the ARDS 

population is present. 

5.3.4. Neuro-intensive care 

Several randomised clinical trials on lower versus higher oxygenation levels in in 

neuro-intensive care patients have been conducted. The populations of these trials 

include ICU patients with traumatic brain injury,147,149, ICU patients with acute 

stroke,145 and patients with possible anoxic brain injury following resuscitation from 

cardiac arrest, conducted either prehospitally185,186 or in the ICU.150 All of these trials 

however, are small pilot trials, and the two of them, which actually detect any 

differences in relevant clinical outcomes seem to be of a very poor quality, not 

reporting procedures of randomisation and allocation, or reasons for drop-outs.145,147 

In addition, a large randomised clinical trial in 8,003 patients with acute ischaemic 

stroke outside the ICU77 did not find beneficial effects of oxygen supplementation in 

non-hypoxaemic patients with SpO2 ≥ 90%, hereby confirming previous similar 

results in smaller trials.187,188 A PaO2 above 10 kPa has been proposed for patients 
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with concomitant traumatic brain injury and respiratory failure,189 however, this target 

is apparently without solid evidence base. Since no clinical evidence supports the 

traditional liberal oxygenation strategies in neuro-intensive care, and since evidence 

from large randomised trials of neurologically injured patients in other settings 

supports use of low oxygenation targets equal to the low 8 kPa PaO2 target used in the 

HOT-ICU trial, equipoise of such a low oxygenation target and a strictly 

normoxaemic oxygenation PaO2 target of 12 kPa seems to be present, and hence the 

HOT-ICU trial includes neuro-intensive care patients of various pathogeneses. 

5.3.5. Outcome considerations 

The primary outcome of 90-day mortality was selected as only the mortality will 

weigh the totality of all the possible harms and/or benefits from a higher or a lower 

oxygenation strategy, respectively. Furthermore, mortality is a patient relevant 

outcome, and it is a binary hard outcome in nature and is therefore highly objective. 

Furthermore, we consider oxygen supplementation to be such a vital part of life-

support that the estimated RR reduction of 20%, equal to an absolute risk reduction 

of 5% with an estimated 25% mortality in the control group, is realistic. Especially, 

as the estimated absolute risk reduction of 5% is lower than generally estimated in 

conducted ICU trials, which has a tendency of being underpowered.190 In addition, the 

control group mortality is estimated from the overall mortality in the acutely admitted 

ICU population,167,168 and since the patients included in the HOT-ICU trial because of 

their hypoxaemic respiratory failure, do not necessarily represent the average, the 

estimated control group mortality may be on the conservative side. The risk of having 

overestimated the control group mortality, which is a tendency in ICU trials, 

specifically in trials including patients with sepsis and septic shock,191 should 

therefore be low. Since the patient population with active haematological malignancy 

has an excessively high ICU mortality,192 this was included as a stratification variable 

to ensure equal distribution between groups. 

The secondary outcomes include a composite outcome of proportions of patients with 

one or more new serious adverse events in the ICU, which may be related to the 

oxygenation target. The included events here are ischaemic events, which are likely 

influenced by oxygenation levels,71,74,193 and new episodes of shock, as the liberal 

oxygenation control group in the largest published randomised controlled trial on 

higher versus lower oxygenation levels in the ICU had a significantly higher 

prevalence of shock.153 The use of a composite end point might be problematic, 

especially if the composite elements cannot be counted as equally relevant or harmful. 

This may be considered the case with the ‘new shock’ element, as this element may 

seem less patient relevant than the ischaemic events. Nevertheless, the mortality of 

patients having shock is high from 22%194 to 45%,195 and is significantly higher than 

in patients without shock,194 justifying the inclusion of this element in the composite 

outcome. If a separate element of the composite outcome turns out to be far more 

prevalent than the other elements, thus overshadowing these, this may represent a 
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problem. To ameliorate this however, we will report all the specific elements of the 

composite outcome in separate as well. We have also included the secondary outcome 

of days alive without organ support in the 90-day follow-up period. This outcome is 

essentially an alternative to the predominating ICU length-of-stay outcome.190 Given 

the large variability in ICU beds per citizen19 and in ICU mortality between 

countries,20 the outcome of ICU length-of-stay would likely be highly variable, as the 

disease severity criteria for being in the ICU is highly differentiated.21 The days alive 

without organ support outcome however, is less dependent on the different criteria for 

being admitted to an ICU between countries, and less dependent on individual accrued 

extra variable admission time,196 as the use of organ support primarily depends on the 

patient condition, and therefore will naturally be a more homogenous outcome than 

the ICU length-of-stay. Finally, the supplemental one-year follow-up outcomes of 

cognitive and pulmonary function tests are relevant to discuss. The cognitive function 

test has been included, since hypoxaemia during ICU admission with ARDS has been 

associated with impaired long-term cognitive function.143 However, whether this is in 

fact a causal relationship, or whether hypoxaemia is just a surrogate marker for disease 

severity during the ICU admission, which causes a higher degree of post-ICU 

neurological deficit, requires a randomised controlled trial to determine. The HOT-

ICU trial represents a unique possibility to clarify this. Similarly, since high FiO2, and 

the oxygen toxicity caused by this, primarily is thought to elicit pulmonary damage,16–

18,49,53 it seems relevant to investigate whether a thorough pulmonary function test at 

long-term follow-up is able to detect any between-group differences, corresponding 

to a permanent pulmonary damage from higher levels of oxygen supplementation 

during the ICU admission. 
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6. Conclusions and perspectives 

6.1. Oxygenation survey conclusions (Paper I) 

The PaO2 was the preferred oxygenation parameter for Northern European ICU 

doctors, their preferred PaO2 target levels ranged from 8 kPa to 12 kPa in 

mechanically ventilated patients depending on the specific patient categories and 

finally, the PaO2 oxygenation targets of 8 kPa and 12 kPa, as used in the HOT-ICU 

trial, were regarded as within the acceptable range in a clinical trial by most doctors. 

6.2. Observational study conclusions (Paper II) 

The observed oxygenation levels in ICUs of the North Denmark Region were 

generally restrictive and although hyperoxaemia was frequent, episodes of 

uncorrected hyperoxaemia with unchanged FiO2 remained scarce, especially at FiO2 

≥ 0.50. The overall median PaO2 was close to the control group target PaO2 of 12 kPa 

in the HOT-ICU trial, ratifying this to be equal to current clinical practice. The 

oxygenation levels did not seem to depend upon whether the patients were 

mechanically ventilated or not. Finally, an association between increased ICU 

mortality and severe hyperoxaemia during invasive mechanical ventilation with 

exposure-time divided AUC PaO2 > 16 kPa was identified. No associations at lower 

levels of hyperoxaemia or between PaO2 levels and post-ICU mortality however, were 

found. 

6.3. The HOT-ICU trial conclusions (Paper III) 

The HOT-ICU trial is more than half-way through trial inclusion, approaching the 

planned interim analysis. Patients are actively recruited in five European countries 

and additionally two countries are preparing initiation. Trial inclusion are expected to 

be completed within the next year, approximately one year behind planned schedule.  

6.4. Perspectives 

The conducted studies were pivotal in designing and initiating the HOT-ICU trial. The 

trial is running, and currently represents the largest randomised clinical trial on lower 

versus higher levels of oxygenation in patients admitted to the ICU. The primary 

outcome is the 90-day mortality, however, several highly patient relevant long-term 

outcomes are investigated as well, including health-related quality of life, and 

cognitive and pulmonary function. The results of the HOT-ICU trial will likely add 

substantially to the knowledge on optimal oxygenation targets in the ICU, and will 

hopefully aid in ensuring a more evidence based approach to oxygen supplementation 

in the ICU for the benefit of patients and healthcare systems alike. 
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Appendix E. Survey search string 

The search string used for identification of current literature on oxygenation surveys 

in the ICU was: 

(((((("Interview"[Publication Type] OR "Interviews as Topic"[Mesh])) OR ("Surveys 

and Questionnaires"[Mesh])) OR (interview*[tw] OR questionnair*[tw]))) AND 

(((("Oxygen Inhalation Therapy"[Mesh]) OR "Oximetry"[Mesh]) OR (Oximetry[tw] 

OR oxygen inhalation therap*[tw] OR oxygen fraction[tw] OR oxygen 

saturation[tw])) OR arterial oxygen pressure)) AND (((((((((((("Respiratory Distress 

Syndrome, Adult"[Mesh]) OR "Acute Lung Injury"[Mesh]) OR (shock lung*[tw] OR 

acute lung injur*[tw] OR respiratory distress syndrome*[tw])) OR "Respiration, 

Artificial"[Mesh]) OR mechanical ventilation*[tw]) OR (noninvasive 

ventilation*[tw] OR non invasive ventilation*[tw] OR noninvasive positive pressure 

ventilation*[tw] OR non invasive positive pressure ventialtion*[tw])) OR 

"Continuous Positive Airway Pressure"[Mesh]) OR Continuous Positive Airway 

Pressure*[tw]) OR (high flow nasal cannula*[tw] OR high flow nasal oxygen[tw])) 

OR (critical care[tw] OR intensive care[tw])) OR ((((("Intensive Care 

Units"[Mesh:noexp]) OR "Burn Units"[Mesh]) OR "Coronary Care Units"[Mesh]) 

OR "Recovery Room"[Mesh]) OR "Respiratory Care Units"[Mesh])) OR "Critical 

Care"[Mesh:noexp]) 

The last search in Medical Literature Analysis and Retrieval System Online 

(MEDLINE) on March 29, 2019 identified 940 hits, from which the reported studies 

in Table 2 were extracted. 
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