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Abstract

As a consequence of increasing demand of energy and corresponding en-
vironmental impact the interest in renewable energy sources has increased
correspondingly. Among these wave energy energy makes up a promising
contributor due to its higher energy in unit volume, higher availability and
good prediction. Although many principles have been designed and tested,
the technology is still immature compared with solar and wind energy due
to the inefficient energy extraction. A key issue for improving the competi-
tion capacity is to improve the absorbed energy from the waves by the use of
improved vibration control of wave energy absorbers. Hence, there is a need
to improve and develop optimal control strategies for this purpose. Further,
in reality there are some physical displacement and control force constraints
present, which restricts the efficiency of wave energy converters because there
exist threshold stroke and saturation in the actuator system. Hence, it is nec-
essary to investigate control strategies considering physical constraints.

This PhD thesis has looked into optimal vibration control strategies of
wave energy converters for absorbed energy under the physical constraints,
mainly dealing with heave point absorbers and oscillating water column de-
vices.

Due to the limited observability and predictability of the surrounding
irregular sea state, the indicated control problem is essentially stochastic.
Assuming linear wave theory, the semi-analytical solutions at optimal con-
trol considering the control force and the vertical displacement constraints
respectively are indicated. The optimal control law for the optimization
problem with the control force constraints has feedback from the motion of
the absorber. The analytical solution for the constrained displacement prob-
lem at optimal control is composed of a closed loop during unconstrained
states and an open loop during constraints-activated states. Further, the con-
trol force during the constraints-activated states is dependent on the present
wave load, which needs to be estimated based on the prediction of the future
surface elevations. Algorithms are presented for the purpose of estimating
the wave load and predicting future velocities based on simultaneous online
measurement of the vertical accelerator of the absorber, and the sea-surface
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Abstract

elevation near the absorber. The prediction and estimation algorithms rely on
the narrow-bandedness of the involved stochastic processes in combination
to a van der Pol transformation. The derived control laws have been verified
by comparison with the nonlinear programming based numerical solutions.

Further, a modified LQG control has been put forward to control the point
absorber motion. The vertical displacement and control force constraints are
introduced for the consideration of the energy loss due to the aforementioned
constraints in the quadratic objective functional. According to the rational
approximations to the corresponding frequency response functions, the wave
excitation force and radiation force are replaced, and the integrated dynamic
system is then represented by a Gaussian white noise driven linear stochastic
differential equation. It turns out that there is a linear relationship between
the obtained LQG based control force and the integrated state vector. The
integrated state vector needs to be estimated due to the partial observation
of the state vector. This can be achieved by the Kalman filter. The proposed
LQG controller can successfully optimize the absorbed energy from waves
whilst it can keep both the control force and the displacement small. Further,
with proper gain parameters the averaged absorbed power from the proposed
LQG controller is merely a little less than the nonlinear programming based
optimum.

Further, a semi-active control strategy for a floating oscillating wave col-
umn point absorber has been devised in order to maximize power take-off.
The piston model and Wells turbine were introduced. The control of the
pressure is regulated by a valve, which is assumed to be either fully opened
or fully closed. At optimal control, the interval lengths of the opened and
the closed state of the valve vary randomly due to the irregular sea state. In
the paper the closing interval of the valve has been suggested as a constant
proportion relative to the peak period associated with waves. Compared to
the nonlinear programming based optimal solution, the optimal proportion
parameter was obtained. The proposed control is dependent on the wave
loads estimation, which was achieved by predicting the future surface eleva-
tion based on a Kalman-Bucy filter. The reduced performance, in terms of
the absorbed energy for the proposed controller, is mainly dependent on the
estimation error of wave loads.
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Resumé

Som følge af stadig voksende efterspørgsel efter energi og den herat følgende
miljøbelastning, er interessen for vedvarende energikilder øget tilsvarende.
Blandt disse er bølgeenergi en potentiel bidragsyder. Skønt mange principper
for bølgeenergi absorbtion er blevent testet, er teknologien stadig ikke fuldt
udviket i sammenlingning med sol-og vindenergi pågrund af ineffektiv en-
ergiudvinding. Derfor er maksimering af den absorberede energi fra bølger
et centralt emne, der bestemmer anvendeligheden af bølgeenergi sammen-
lignet med andre alternative energikilder som sol-og vindenergi. Som velk-
endt kan korrekt vibration af kontrolstrategier for bøleabsorber væsentligt
forøge den absorberede energi fra bølger. Der er derfor et behov for at
forbedre og udvikle optimale kontrolstrategier til dette formål. Yderligere
er der i virkeligheden nogle fysiske begrænsninger for at begrænse effek-
tiviteten af bølgeenergikonverter. Derfor er det nødvendigt at undersøge
kontrolstrategier i betragtning af fysiske begrænsninger.

Denne ph.d.-afhandling har som emne at tilvejebringe optimale vibra-
tionsstyrings strategier for bølgeenergikonvertere, hovedsageligt med hen-
blik på point absorbere og oscillating water column absorbers, under iagt-
tagelse af de fysiske begrænsninger.

På grund af begrænset observerbarhed og den uregelmæssige søtilstand,
er kontrolproblemet væsentligt stokastisk. Under forudsætning af lineær bøl-
geteori er semi-analytiske løsninger til optimal kontrol udviklet for en heave
absorber under hensyntages til restriktioner på kontrolkraften. Den optimale
kontrol lov har feed-back fra nuværende bevægelse. I tidsintervaller hvor fly-
tnings constraints er inaktive er den optimale kontrol af lukket løkke typen
med feedback fra den øjeblikkelige flytning og acceleration og fra fremtidige
hastigheder af absorberen. I intervaller, hvor flytningsconstraints er aktiv,
har den optimale kontrolkraften åben løkke afhængighed af den øjeblikke-
lige bølgekraft på absorberen, som derfor må estimeres baseret på prediktion
af fremtidige overflade elevationer. Algoritmer er formuleret til estimering
af bølgelasten på absorberen og prediktionen af det fremtidige hastighedsre-
spons baseret på online-måling af den vertikale flytnings-, hastigheds- og ac-
celerationsrespons af absorberen, tillige med elevationen af middel havover-
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Resumé

fladen. Prediktions og estimerings algoritmerne er baseret på en antagelse
om smalbåndethed af de involverede stochastiske processer i kombination
med en van der Pol transformation. Kvaliteten af de udviklede kontrol love
er verificeret ved sammenligning med numeriske løsninger opnået ved ikke-
lineær programmering.

Endvidere er foreslået en modificeret LQG kontroller til at styre bevægelsen
af en absorber med constraint på både flytning og kontrolkraft. Constraints
på flytning og aktuatorkraft er approksimativt taget i betragting ved reduk-
tion af den absorberede effekt ved kvadratiske led i flytning og kontrolkraft
i objekt funktionalen. Baseret på rationale approksimationer til radiation-
skraften og bølgelasten, kan det integrerede dynamiske system reformuleres
som en lineær stokastisk differentialligning, drevet af en unit intensity Gaus-
sisk hvid støj. Den optimale LQG kontrolkraft bliver en lineær funktion af
tilstandsvektoren af det integrerede system. Kalman-Bucy filter teknik er an-
vendt til at estimere den kombinerede tilstandsvektor under forudsætning
af partiel observation af tilstandsvektoren. Den foreslåede LQG kontroller
absorberer maximal effekt samtidig med at flytningen af absorberen og kon-
trolkraften holdes begrænset. Det effervises, at med passende kalibreret gain
parametre opnås en energiabsorption med den foreslåede kontroller, der er
ubetydelig mindre end ved optimal kontrol baseret på ikke-lineær program-
mering.

Endvidere er udviklet en semi-aktiv kontrol strategi for en oscillating wa-
ter column punkt absorber med henblik på optimal power take-off, hvor den
såkaldt piston-model og Wells turbinen introduceres. Styringen af trykket
reguleres af en ventil, som antages at være enten helt åben eller helt lukket.
Ved optimal styring varierer intervallængderne af den åbnede og den lukkede
tilstand af ventilen tilfældigt som følge af den uregelmæssige søtilstand.
Som en approksimtion antages lukningsintervallerne af ventilen at udgøre
en konstant relativ lille brøkdel af peak bølgeperioden. Den optimale værdi
af den nævnte brøkdel er bestemt ved sammenligning med den optimale
opløsning opnået ved ikke-lineær programmering. Den beskrevne kontrol-
strategi forudsætter et estimat af bølgebelastningen på flyderen og vand-
søjlen, hvilket er tilvejebragt ved prediktion af fremtidige overflade eleva-
tioner ved hjælp af et Kalman-Bucy filter. Den reducerede effekt af den ud-
viklede kontroller skyldes primært bølgelast estimationen, og i mindre grad
den beskrevne styring af ventilen mellem trykkammeret og turbinen.
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Chapter 1

Introduction

This chapter gives the background, motivation and organization of this work.
The hydrodynamic and model for wave energy converters (WECs), different
control strategies widely used for WECs are presented. Based on this litera-
ture survey, the objectives and structure of this thesis are outlined.

1.1 Background and motivation

As an important renewable energy source, much attention is paid to wave
energy. Although wave energy conversion techniques are immature com-
pared with the utilisation of other renewable energy resources, wave energy
has promising potential due to its huge reserve, wide distribution and high
availability. Further, wave energy conversion devices have a less environmen-
tal impact.

The primary goal for developing renewable energy technologies is to re-
duce the cost of unit delivered energy. There are still severe challenges for
commercial utilization of WECs. As well known, the power generation of
WECs can be significantly improved by proper active or passive vibration
control strategies. This has led to the necessity and urgency of exploring
and developing control strategies of WECs to enhance wave energy extrac-
tion and to reduce the cost of energy, so as to eventually increase its market
competition in comparison to alternative renewable energy sources. In this
respect, the thesis presents some active vibration control algorithms for point
absorber and oscillating water column absorbers, which turn out to be close
to optimal.

1



Chapter 1. Introduction

1.2 Control of WECs

1.2.1 Modelling of WECs

A variety of WECs have been developed to harvest wave energy based on
different principles (Sheng, 2019a). Falcao (2010) suggested that wave en-
ergy devices may be roughly divided into three styles, including oscillating
bodies, oscillating water columns (OWCs) and overtopping devices, see Fig
1.1. According to the types of power take-off, the more specific classification
can be given as the direct drives or hydraulic systems for oscillating bodies
(Eriksson et al., 2005; Gao et al., 2016; Gaspar et al., 2018; Henderson, 2006),
the air turbines for OWCs (Brito-Melo et al., 2002; Falcao et al., 2014; Hashem
et al., 2018; Setoguchi et al., 2001), and the water turbines for overtopping de-
vices (Kofoed et al., 2006; Margheritini et al., 2009). This work only considers
two types of WECs of oscillating bodies and OWCs.

Fig. 1.1: Categories of wave energy converters (Falcao, 2010).

Point-absorbing WECs, as a kind of floating oscillating bodies, have at-
tracted much attention due to their small size, low cost and simple construc-
tion (Beatty et al., 2015, 2019; Nielsen et al., 2013; Pastor and Liu, 2014). Point
absorbers are designed with significantly smaller horizontal dimensions in
comparison to the dominating wavelength in order to capture wave energy
in arbitrary directions. Among them, there are a kind of heave point ab-
sorbers, which are constrained to merely move in the vertical direction, and
which extract wave energy from the float motion relative to a sea-bed or a
submerged oscillating body.

Numerical modelling of WECs is needed to clarify the wave-structure
interaction. The WECs can move excited by waves, indicating that mechanical

2



1.2. Control of WECs

energy has been transferred to the absorber. At the same time, the motion of
the absorber produces waves radiating away from the absorber, where some
of the absorbed energy is dissipated (Falnes, 1980).

For the wave-structure interaction, it is actually to consider the fluid dy-
namic pressure acting on the structures. Generally, two approaches can be
applied. One approach is the potential flow theory. It can be easily solved
with a boundary element method (BEM), which is applied to calculate the ra-
diation and diffraction velocity potentials using a discrete number of sources
or dipoles on the surfaces of submerged bodies so as to fulfil all boundary
conditions. The other approach is related to the Reynolds-averaged Navier-
Stokes (RANS) equations. This approach can provide more advantages in
handling strong nonlinearity, complex viscous, and turbulence etc. in com-
parison to the potential flow theory. However, its computational efficiency is
low.

In fact, the potential flow theory, especially linear potential theory, is the
most useful and most popular numerical tool for modelling wave energy
converters, although some studies have used computational fluid dynamics
(CFD) (Elhanafi et al., 2017; Ransley et al., 2017). The approach of linear po-
tential theory for WECs has been justified throughout the operational regime
(Falnes, 2002). Evans applied potential flow theory for regular waves to an-
alytically study the hydrodynamics of oscillating body WECs (Evans, 1976)
and piston model based OWC WECs (Evans, 1978), respectively. BEM numer-
ical approximations to the Green function corresponding to the free surface
were introduced for the purpose of estimating the hydrodynamics for off-
shore structures with complex geometries. Several additional studies were
made using BEM based potential flow algorithms to model the other types of
oscillating body devices. Similar analyses were performed by Bhinder et al.
(2015); Pizer (1992) for pitching WECs, and by Ruellan et al. (2010), Hansen
et al. (2011), Li et al. (2018) and Kim et al. (2019) for floating oscillating-body
devices.

Similarly, potential flow methods have been used to model the oscillating
water column devices. Unlike oscillating bodies, the essential is to model
the inner free surface for the oscillating water column device. There are typ-
ically two different methods to analyzing the interaction between the buoy
and the OWC. One method is the piston model (Evans, 1978), see Fig. 1.2(a).
The piston model presumes that the top fluid particles of the water column
are constrained to having the identical motion, which behaves like a rigid
body motion. In principle, the approximation can only be justified on the
condition that the horizontal dimension of the pressure chamber should be
smaller compared to the incident wavelengths (Falnes, 1999; Robinson, 1982).
The other method is the uniform pressure distribution model (Evans, 1982),
see Fig. 1.2(b), in which the air flow rate and the dynamic air pressure are in-
troduced to the governing equations. This is different from the piston model

3



Chapter 1. Introduction

employing the forces and velocities to model WECs. Further, the interaction
between waves and WECs in the piston model can be simplified by an equiv-
alent reduced 2-DOF model owing to the assumption that the inner water
column is regarded as a massless or limited mass rigid body, (Evans, 1978;
Falnes, 2002). This is the reason why the piston model is often preferred in
favour of the more correct surface pressure distribution approach. Falcao et
al. (2012) computed the frequency-dependent hydrodynamic coefficients of
the Spar buoy OWC wave energy converter using potential flow theory in
combination with a weightless piston model. Bingham et al. (2015) analysed
a kind of OWC WEC device numerically based on linearized potential flow
theory using a a high-order panel method to consider wave-body interac-
tions. Sheng et al. (2019b) applied the potential flow theory based BEM to
obtain the hydrodynamic parameters for the floater and the internal water
column for a OWC device. Further, Falnes and Kurniawan (2015) presented
the summary for applying the potential flow theory to WECs.

Fig. 1.2: Schematic representation of OWC modelling: (a) piston model; (b) free-surface uniform
pressure model (Falcao and Henriques, 2016).

The power take-off (PTO) system is applied for the purpose of converting
mechanical energy into electricity. For this reason, the PTO system influences
the motion of WECs because the removed power is equivalent to a damping
of the motion. For oscillating body WECs, the PTO can be a system with
hydraulic components and an electric generator (Kim et al., 2019; Negahdari
et al., 2018), or a direct drive system (Temiz et al., 2018). The PTO in an
OWC device is an air turbine, for example Wells turbine (Scuotto and Falcao,
2005). The PTO is commonly assumed to behave as a linear damper system
corresponding to a passive derivative controller (Clement and Babarit, 2012).
Additionally, feedback effects from inertia and spring effects may be included
in the control strategy. It has been demonstrated that negative control inertia
and stiffness can improve the performance of the PTO (Antonio, 2017).

Assuming small body motions in combination to a linear PTO control
force, the numerical modeling of WECs in the frequency domain can be
performed using linear potential flow theory. Bosma et al. (2012) used the
frequency domain approach to analyse the power output for a two-body
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1.2. Control of WECs

heave point absorber. Similar analyses were performed by Pastor and Liu
(2014) and Cheng et al. (2014) for a heaving point absorber WEC system. Ye
and Chen (2017) established a frequency domain model of a 3-DOF (heave,
pitch and surge) point absorber so as to predict the power production and
the eigenfrequencies of the 3-DOF systems. Wei et al. (2019) applied the
frequency domain analysis to an ensemble of heave point absorbers. The in-
volved hydrodynamic parameters were obtained by BEM. Gomes et al. (2012)
used a piston model to model a floating OWC WEC device installed with a
Wells turbine in the frequency domain. Further, a linearized model was ap-
plied for the air compressibility.

Although the frequency domain analysis is simple, it cannot handle non-
linearities in the structural response, and from nonlinear control and wave
forces. Generally, feedback control strategies applied to WECs are highly
nonlinear. Further, a linear equivalent PTO force can not reflect the realistic
system. It is necessary to consider the time domain method. Even though
the time domain modelling is computationally demanding, it can deal with
nonlinearities from the vibration control forces, non-linear wave excitation
forces, mooring forces, etc. The equation of motion for marine structures was
first proposed by Cummins (1962) using linear potential flow theory, which
contains a causal convolution integral containing the memory effect of the ra-
diation damping. The indicated radiation convolution term makes numerical
calculations somewhat cumbersome but this can be circumvented applying
an approximation to the radiation convolution term (Taghipour et al., 2008) or
to the radiation frequency response function (Perez and Fossen, 2008). This
changes the integro-differential equation to a ordinary differential system, at
the expense of introducing lots of additional state variables. The extra state
variables carry over the memory of previous velocities of the absorber.

Approximations to the convolution term have been applied extensively to
analyse the dynamic responses for WECs (Jefferys, 1984; Nielsen et al., 2014;
Perez and Fossen, 2008; Taghipour et al., 2008). Ricci et al. (2008) and Kurni-
awan et al. (2013) compared the approximations to the radiation convolution
term in the frequency domain and the time domain with direct convolution
integration, respectively. Zurkinden et al. (2014) used the state-vector ap-
proach to approximate the radiation force in the time domain. The results
were positively verified by the experimental measurement result. Penalba et
al. (2017) studied the impact from the non-linear Froude-Krylov (FK) force
to the dynamic response and power output of cylindrical and spherical point
absorbers in regular waves. The nonlinear FK force slightly influences WEC
devices of constant cross-sectional areas, while significantly influences WEC
devices of varying cross-sectional area. Sheng et al. (2014) applied the piston
model to analyze the hydrodynamics of a fixed OWC device in the frequency
domain and time domain. It was demonstrated that the impact of the piston
length on the absorber motion for different frequencies can be ignored in the
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Chapter 1. Introduction

frequency domain analysis, while it is significant in the time domain anal-
ysis. The motion response in the time domain is consistent with the result
in the frequency domain when the piston is long enough. Comprehensive
reviews of numerical modelling of WECs have been given by Babarit et al.
(2012); Evans (1981a); Folley (2016); Sheng (2019a).

1.2.2 Control strategies of wave energy converters

Generally, WECs perform better if they are tuned so their dominating eigen-
frequencies approach the dominating wave frequency. In theory, optimal
power output can be obtained through so-called reactive control, which means
the system is regulated into resonance with the incoming waves (Falnes,
2002). However, this can hardly be achieved for broad-banded sea states.
Thus, alternative control strategies have been put forward.

Latching control proposed by Falnes (1978) and French (1979) may be
qualified as a kind of open-loop control strategy. Further, it is the simplest
and the most investigated control strategy (Henriques et al., 2016; Sheng et al.,
2015; Wu et al., 2017). For latching control, its working principle is to latch the
absorber motion when its velocity is zero, and release it when the phases of
the velocity and the wave load are identical so mechanical energy is supplied
to the absorber, see Fig. 1.3. The challenge of the strategy is to determine
the optimal time for latching and unlatching the absorber. The effect of the
controller relies on the observation of the surface elevation, from which the
sign of the wave load is estimated. It should be noticed that the wave force is
noncausal, which depends on the future surface elevation, so it is necessary
to predict the surface elevation at least one vibration period ahead. This
is possible in cases of narrow-banded sea states. However, the prediction
effect cannot be guaranteed in broad-banded sea states, which can affect the
stability of the controller. It has been verified in several publications that
latching control can significantly improve the power output for oscillating
body WECs (Babarit et al., 2004; Saupe et al., 2014; Wu et al., 2018) and OWC
devices (Henriques et al., 2013, 2014, 2016).

Robust closed loop controller has been paid much attention in order to
deal with the uncertainties in the open loop controller. Among them, classical
PID controller has been put forward by Astrom et al. (2016). The optimal
control law was derived by Nielsen et al. (2013) for a heave point absorber,
which follows the general PID type but the convolution term replaces the
proportional term. Further, the control law is non-causal, which needs to
predict the future velocities of the absorber. However, this will cause some
uncertainties so the control law is sub-optimal. To handle the indicated non-
causality problem, the authors further developed a causal controller, which
needs feedback from measurements of the absorber motion.

In practice, the optimal vibration control of WECs is subject to physical
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1.2. Control of WECs

Fig. 1.3: Latching control in a) regular waves and b) irregular waves (Henriques et al., 2016).

constraints on the motion and the actuator force. Constraints are exerted
on the magnitude of the control force so as to protect the structure of the
absorber safe, or because of the saturation problem. Further, constraints on
the absorber motion may be considered, either due to limited strokes of the
PTO system or limitation in the mooring. The latter events may cause ex-
cessive impulsive loadings on the absorber shell. Evans (1981b), Pizer (1993)
and Falnes (2000) presented theoretical analyses for linear wave energy ab-
sorber with amplitude constraints in the frequency domain. Sichani et al.
(2014) presented a suboptimal control law for a WEC device with the afore-
mentioned two constraints. The displacement constraints are accounted for
through adding artificial nonlinear springs to the system equation, which are
achieved when the absorber becomes close to the displacement limits. Na
et al. (2018) studied an efficient controller for WECs considering nonlinear-
ities and constraints based on adaptive dynamic programming. Adaptive
dynamic programming was applied to solve the associated Hamilton-Jacobi-
Bellman equation and a neural network is applied for the purpose of approx-
imating the optimal cost value and the control force. The proposed control
method was proved to be efficient.

In recent years, model predictive control (MPC) based control strategies
have been introduced for optimal control of WECs due to the advantage to
deal with the constraints exerted on the motion and control forces. A vari-
ety of MPC formulations have been focused by Richter (2011); Richter et al.
(2012); Zhan et al. (2019), etc. Cretel et al. (2011) presented an early use of
this method, where the absorber motion and actuator force constraints were
replaced by inequality constraints related to the increment of actuator force.
The constraint on the absorber amplitude was handled with sufficient accu-
racy but may cause problems for the actuator force constraints. Soltani et
al. (2014) suggested a MPC algorithm for a semi-sphere WEC device. The
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Chapter 1. Introduction

control problem was transferred to a simple convex optimization problem.
The indicated controller requires the future information of the sea state and
should be classified as a mixed feedforward and feedback controller. Re-
cently, variations of the MPC method have been applied in WECs. The idea
is that the WECs motion and the control force are approximately replaced by
a finite linear combination of basis functions while reformulating the objec-
tive functional to a convex form. This can effectively reduce the computa-
tional burden. According to the choice of test functions, it can be classified to
two methods: spectral control and pseudospectral control methods (Faedo,
2017). Bacelli and Ringwood (2014) used a truncated Fourier series based
spectral method for WECs to consider the physical constraints. Genest and
Ringwood (2016) proposed a half-range Chebyshev Fourier basis functions
based pseudospectral control method for WECs device. To hand the signal
truncation effect, the receding horizon is used. It has been demonstrated that
pseudospectral control can successfully maximize the absorbed energy while
reducing the computation burden. Further, Freeman et al. (2014), Fay et al.
(2015), Ozkop and Altas (2007) and Wang et al. (2018) provide the relevant
summary for the applications of different control strategies for WECs.

1.3 Objective of the thesis

The objective of this study to is carry out fundamental research on control
strategies close to optimal power take-off for WECs. Effective control meth-
ods for a heave point absorber will be devised with the focus on the pure
constrained displacement, the pure constrained control force and the mixed
constrained displacement and control force.

Further, a control strategy for OWC device will be explored, based on a
novel semi-active control law for the valve for the purpose of maximizing the
absorbed power.

1.4 Outline of the thesis

Chapter 1 presents the introduction and motivation of the study, addressing
the background, objectives, and structure.

Chapter 2 describes the model and control strategies for oscillating-body
heave point absorber. It clearly presents the derivation of the control laws
with different constraints.

Chapter 3 presents dynamics and control of floating OWC WECs. A semi-
active valve controller is proposed for maximizing the turbine power in ir-
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1.4. Outline of the thesis

regular sea state.

Chapter 4 provides the general conclusion drawn from this study and possi-
ble future extensions.

Appendix presents the discussion of choosing the piston length.

The second part include some published or submitted papers. The detail
is shown in the below:

Paper A contains the enclosed journal paper: "Stochastic optimal control of a
heave point wave wnergy converter based on a modified LQG approach".

Paper B contains the enclosed journal paper: "Stochastic control of wave en-
ergy converters for optimal power absorption with constrained control force".

Paper C contains the enclosed journal paper: "Stochastic control of wave
energy converters with constrained displacements for optimal power absorp-
tion".

Paper D contains the enclosed journal paper: "Semi-active feedforward con-
trol of a floating OWC point absorber for optimal power take-off".
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Chapter 2

Control strategies for wave
energy point absorbers

This chapter deals with the control of WECs concerning the displacement
and control force constraints referring to Papers A, B and C. The optimal
control law for the optimization problem with the control force constraints is
derived, which turns out to have feedback from the motion of the absorber
involving the present displacement, the present acceleration, and future ve-
locities. A prediction algorithm for future velocities has been put forward for
the purpose of dealing with the problem. The verification of the mean ab-
sorbed power for the proposed controller has been implemented in contrast
to the results from both nonlinear programming and a causal closed loop
controller. Next, a semi-analytical control law with constrained displacement
is derived. The control law is proven to be an open-loop control style, which
relies on the wave excitation force during the displacement-activated inter-
vals. In the unconstrained states, the solution follows the theoretical optimal
solution for an unconstrained absorber, save an initial constant, which has
to be calculated. Methods to estimate the wave excitation force during ac-
tive displacement constraints, and to predict future velocities during uncon-
strained states have been proposed. Finally, an alternative control strategy
for the absorber with mixed constrained displacement and control force is
proposed through a modified LQG approach. The suboptimal solution for
the proposed controller has been validated in comparison to the nonlinear
programming based optimal solution.
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Chapter 2. Control strategies for wave energy point absorbers

2.1 Description of a point absorber motion and the
related constrained optimization problem

Fig. 2.1 shows a somewhat idealized point absorber consisting of cylindrical
apart with height H and the diameter D, and semi-sphere with the diameter
D , which is constrained to move only in heave and thus may be modeled as
a single DOF dynamic system.
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Fig. 2.1: Description of loads on a heave point absorber. a) Static equilibrium state. b) Dynamic
state (Sun and Nielsen, 2018).

In the dynamic state in Fig 2.1b), the heave absorber can move up and
down, which is driven by a control force fc(t) and a dynamic hydrodynamic
force involving the quasi-static buoyancy fb(t), the radiation force fr(t) as
well as the wave load fe(t). Generally, fc(t) is supplied by the PTO system
for capturing wave energy.

fb(t) = −r
(
v(t)

)
is a nonlinear buoyancy resulting from the displace-

ment v(t) relative to the static equilibrium state. The linearization of fb(t) in
the vicinity of the static equilibrium state can be introduced based on small
vertical vibrations (Newman, 1977), which is given as:

fb(t) = −k v(t) , k =
1
4

πD2ρg (2.1)

The radiation force fr(t) is produced by the absorber motion in the ab-
sence of wave motion. It can be envisioned as a damping force which equiv-
ocates the loss of mechanical energy of the absorber when the wave is away
from the absorber. Further, fr(t) can be represented by the acceleration term
with the added mass water at infinite frequency, mh, as a proportional coeffi-
cient, and the convolution integral concerning the impulse response function
hrv̇(t) and the velocity v̇(t), given as (Cummins, 1962; Faltinsen, 1990):

fr(t) = −mhv̈(t)− fr,0(t) (2.2)
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2.1. Description of a point absorber motion and the related constrained optimization
problem

fr,0(t) =
∫ t

−∞
hrv̇(t− τ)v̇(τ) dτ (2.3)

Finally, the motion equation of the heave point absorber can be given as:

(
m + mh

)
v̈(t) + r

(
v(t)

)
+
∫ t

t0

hrv̇(t− τ)v̇(τ) dτ = fe(t)− fc(t) , t > t0

v(t0) = v0 , v̇(t0) = v̇0




(2.4)

where m is the dry structural mass of the absorber including possible ballast.
v0 and v̇0 specify the displacement and velocity at the initial time t0. Eq. (2.4)
is known as the Cummins equation.

Table 2.1: Values of physical parameters in the heave absorber

Parameter Value Unit Parameter Value Unit

H 7.00 m m 1.84×106 kg
D 14.00 m mh 0.44×106 kg
h 30.00 m k 1.51×106 N/m

Table 2.1 provides the values of physical parameters in the heave absorber
shown in Fig. 2.1. Based on these values, the hydrodynamic parameters
including the added mass mh, the frequency response functions for fr(t),
Hrv̇(ω), and for fe(t), Heη(ω), can be obtained by the program WAMIT al-
ternatively, and the inverse Fourier transform of Hrv̇(ω) and Heη(ω) is then
applied to get the related impulse response functions hrv̇(t) and heη(t), re-
spectively. In Fig. 2.2, hrv̇(t) has been shown with the normalized time
relative to the wave peak period Tp. As seen, hrv̇(t) effectively vanishes for
t > Tp.
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Fig. 2.2: Impulse response function for hrv̇(t) (Sun and Nielsen, 2018).
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Chapter 2. Control strategies for wave energy point absorbers

In order to facilitate the numeral calculation and application in control
algorithms, the convolution integration, fr,0(t), can be replaced by a cou-
pled first-order differential equations-based equivalent system, which can be
achieved by approximating Hrv̇(ω) with a rational function (Sun and Nielsen,
2018). Fig. 2.3 shows the comparison between the obtained rational approxi-
mation and the target frequency response function.
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Fig. 2.3: Rational approximation to Hrv̇(ω). a) Re(Hrv̇(ω)). b) Im(Hrv̇(ω)). : Target fre-
quency response function. : Rational approximation, (m, n) = (2, 3) (Sun and Nielsen,
2018).

Then, fr,0(t) can be expressed as (Sun and Nielsen, 2018):

d
dt

zr(t) = Arzr(t) + br v̇(t) (2.5)

fr,0(t) = przr(t) (2.6)

where zr(t), Ar, br and pr can be found in Paper B.
In practice, v(t) can only vary in a certain interval [vmin, vmax], either

because the actuator stroke is finite or in order to keep the absorber mo-
tion in the proper range. Likewise, fc(t) can only vary in a certain interval
[ fc,min, fc,max], either caused by the actuator saturation or for the purpose of
preventing large stresses at specific hot spots of the structure. Under the dis-
placement and control force constraints, the constrained optimization prob-
lem during the control interval [t0, t1] can be expressed as (Sun and Nielsen,
2018):
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2.2. Optimal control with constrained control forces

max J[ fc(t), v̇(t)] =
∫ t1

t0

fc(τ)v̇(τ) dτ

s.t.




(m + mh)v̈(t) + pr(t)zr(t) + r(v(t)) = fe(t)− fc(t)

żr(t) = Arzr(t) + br v̇(t)

v(t0) = v0 , v̇(t0) = v̇0

vmin ≤ v(t) ≤ vmax

fc,min ≤ fc(t) ≤ fc,max

(2.7)

2.2 Optimal control with constrained control forces

This subsection focuses on the optimal control for WECs considering the
control force constraints. No displacement constraints are assumed. Then,
Eq. (2.7) is reduced as (Sun and Nielsen, 2019a):

max J[ fc(t), v̇(t)] =
∫ t1

t0

fc(τ)v̇(τ) dτ

s.t.




(m + mh)v̈(t) + pr(t)zr(t) + r(v(t)) = fe(t)− fc(t)

żr(t) = Arzr(t) + br v̇(t)

v(t0) = v0 , v̇(t0) = v̇0

fc,min ≤ fc(t) ≤ fc,max

(2.8)

Pontryagin’s maximum principle which states that the optimal control is
achieved at stationary value of the Hamiltonian, will be used to handle this
control problem (Pontryagin et al., 1962). The resulting control law is given
as (Sun and Nielsen, 2019a):

fc(t) =





fc,max , fc,0(t) > fc,max

fc,0(t)

fc,min , fc,0(t) < fc,min

(2.9)

where fc,0(t) is the optimal control force for unconstrained cases, given as
(Nielsen et al., 2013)

fc,0(t) = −Mv̈(t) +
∫ t1

t
hrv̇(τ − t) v̇(τ) dτ − r

(
v(t)

)
(2.10)

The control law in Eq. (2.9) has feedback from the motion of the absorber
involving v(t) and v̈(t) as well as future velocities v̇(τ) , τ ∈ ]t, t1]. Therefore,
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Chapter 2. Control strategies for wave energy point absorbers

it is necessary to apply the prediction algorithm to obtain the future velocities
v̇(τ) , τ ∈ ]t, t1]. This will make the proposed controller become suboptimal
because of the uncertainty from the prediction algorithm.

It turns out that the response processes of WECs are relatively narrow-
banded with the peak angular frequency ωp = 2π

Tp
as the center frequency,

even though the wave excitation force is broad-banded (Sun et al., 2019).
Hence, a van der Pol transformation can be introduced for the purpose of
predicting future velocities (Roberts and Spanos, 2003). It should be noted
that the time varying amplitude and phase processes in the prediction algo-
rithm are only required to predict one Tp beyond the present time because
hrv̇(t) ' 0 for t > Tp in Fig. 2.2.

Fig. 2.4 shows the predicted v̇(t) from different start times. The black
curve indicates a realization of the velocity v̇(t) at optimal control from non-
linear programming. The predicted velocities are in good agreement with the
optimal solution at least one Tp ahead. This fulfills the prediction horizon re-
quired according to Fig. 2.2.
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Fig. 2.4: Prediction of v̇(t) from different start times. : Nonlinear programming solution.
: Prediction velocities (Sun and Nielsen, 2019a).

For the purpose of investigating the impact of the control force constraints
on the absorbed power, the boundaries of constrained control force are con-
sidered as a variable and the magnitudes of upper and lower boundaries are
assumed identical. Assume that the wave load and response processes of the
absorber are Gaussian processes, the absorbed mean power at optimal con-
trol with constrained control forces can be expressed as (Sun and Nielsen,
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2.2. Optimal control with constrained control forces

2019a):

P̄opt = α ( fc,min, fc,max
)

P̄opt,0 (2.11)

where P̄opt,0 denotes the maximum mean power extracted by the uncon-
strained optimal control, given as:

P̄opt,0 =
∫ ∞

0

|Heη(ω)|2
2 Re

(
Hrv̇(ω)

) Sηη(ω) dω (2.12)

α ( fc,min, fc,max
)

indicates a reduction factor caused by the constraints on the
control force. The detail is described in Paper A.

Fig. 2.5 shows the variation of α
(

fc,min, fc,max
)

as a function of fc,max
σfc,0

,

fc,min = − fc,max. As seen, the constraints are only significantly influencing
the power takeoff for min( fc,max,− fc,min) < 3σfc,0 .
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Fig. 2.5: Reduction coefficient α ( fc,min, fc,max) as a function of fc,max
σfc,0

, fc,min = − fc,max (Sun and

Nielsen, 2019a).

For evaluating the performance of the proposed controller, the proposed
controller has been compared with the following causal controller, where
fc,0(t) in Eq. (2.9) is replaced with (Sun and Nielsen, 2019a):

fc,0(t) = −β1Mv̈(t) + cv̇(t)− β2r
(
v(t)

)
(2.13)

where β1, β2, c are the optimal tuned gain parameters, which can be found in
Paper A.

Three independent realizations of η(t) given by a JONSWAP auto-spectral
density function with Hs = 3m, Tp = 7.42s, γ = 5 have been applied in the
control interval [0, 20Tp]. There is a comparison of the responses of displace-
ment and velocity, the control force and the instantaneous absorber power
at suboptimal control indicated in Eq. (2.10), at feedback control indicated
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Chapter 2. Control strategies for wave energy point absorbers

in Eq. (2.13), and at nonlinear programming based optimal control respec-
tively. Figs. 2.6 shows the results from one of the realizations of η(t). There
is a small deviation in the displacement and velocity from Eqs. (2.10) and
(2.13) based controllers in contrast to the results from nonlinear program-
ming, while the deviations of the control force and the instantaneous power
are obvious because of the deviation amplification of the related acceleration
signals caused by multiplying M.
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Fig. 2.6: Comparison of solutions with different control strategies for Realization 1.
: Nonlinear programming solution. : fc,0(t) given by Eq. (2.10). : fc,0(t) given

by Eq. (2.13) (Sun and Nielsen, 2019a).

Table 2.2 gives the performance of the proposed controller and the causal
controller in comparison to the nonlinear programming based optimal con-
trol, using three different realizations of η(t). The absorbed mean power P̄
has been calculated in the interval [3.5Tp, 20Tp], where the influence from
initial values on the vibration of the absorber is assumed to be dissipated.
Further, the relative errors compared with the optimal solution have been
indicated in brackets.

Table 2.2: Absorbed mean power P̄ [MW] (Sun and Nielsen, 2019a).

Nonlinear
programming

fc,0(t) given by Eq.
(2.10)

fc,0(t) given by Eq.
(2.13)

Realization 1 1.663 1.566 (5.8%) 1.544 (7.2%)
Realization 2 0.521 0.513 (1.2%) 0.467 (10.4%)
Realization 3 0.950 0.945 (0.5%) 0.921 (3.1%)

The absorbed mean power of the proposed controller related to fc,0(t) in
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2.3. Optimal control with constrained displacements

Eq. (2.10) and predicted future velocities is little lower than the optimal solu-
tion but it performs better than the causal controller in all three realizations.

2.3 Optimal control with constrained displacements

The focus of the subsection is on the consideration of the displacement-
constrained based control for WECs. No control force constraints are as-
sumed. Then Eq. (2.7) is reduced as (Sun et al., 2019):

max J[ fc(t), v̇(t)] =
∫ t1

t0

fc(τ)v̇(τ) dτ

s.t.




(m + mh)v̈(t) + pr(t)zr(t) + r(v(t)) = fe(t)− fc(t)

żr(t) = Arzr(t) + br v̇(t)

v(t0) = v0 , v̇(t0) = v̇0

vmin ≤ v(t) ≤ vmax

(2.14)

Fig. 2.7: Description of the constrained displacement (Sun et al., 2019).

Let vm,i denote either vmax or vmin, and [ta,i, tb,i] the ith constraint-activated
interval shown in Fig. 2.7.

Given that v̇(t) = v̈(t) ≡ 0 for t ∈ [ta,i, tb,i], the control force in the
constraint-activated intervals based on Eq. (2.4) can be obtained:

fc(t) = fe(t) + Ci (2.15)

where Ci is a constant depending on previous observed velocities up to the
entering of the displacement constraint at the time ta,i, given as (Sun et al.,
2019):
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Ci = −
∫ ta,i

t0

hrv̇(ta,i − τ) v̇(τ) dτ − r
(
vm,i

)
(2.16)

Ci can be calculated by Eq. (2.16) on the assumption that v̇(t) can be mea-
sured continuously in the interval [t0, ta,i[.

The optimal control in Eq. (2.15) is feed-forward so fe(t) is required to be
estimated during constraint-activated intervals.

The optimal control solution during the constraint-unactivated interval
]tb,i, ta,i+1[ can be given as in Paper B:

fc(t) = fc,0(t) + Di (2.17)

where fc,0(t) indicates the unconstrained optimal control, which has been
indicated in Eq. (2.10). Di is a constant determined based on the information
at the interface to the previous constrained interval, expressed as (Sun et al.,
2019):

Di = fe(tb,i) + Ci −
∫ t1

tb,i

hrv̇(τ − tb,i) v̇(τ) dτ + r(vm,i) (2.18)

As seen from Eq. (2.18), the calculation of Di relies on the prediction of future
velocities v̇(τ), τ ∈ [tb,i, tb,i + Tv̇] where Tv̇ is the prediction horizon.

In summary, the estimate of wave load and the prediction of future ve-
locity should be performed in order to apply the control law in Eqs. (2.15)
- (2.18). Similarly, a van der Pol transformation (Roberts and Spanos, 2003)
used in subsection 2.2 has been used for the wave load estimation. Both fe(t)
and ḟe(t) are narrow banded stochastic processes, which can be represented
by harmonic processes with slowly varying amplitude and phase processes,
and with wave peak angular frequency (Sun et al., 2019). The details are
indicated in Paper B.

Fig. 2.8 shows the prediction results for the wave load fe(t), one predic-
tion period Tfe = 0.7Tp ahead for γ = 1 and γ = 5 with the same Hs = 3.00m,
Tp = 7.42s at different start times. As seen, the predictions for narrow banded
processes are more accurate than that for the broad banded processes.

The prediction of velocities is performed based on its approximately skew-
symmetric property regarding constraint-activated intervals (Sun et al., 2019)
in combination with its narrow banded characteristic (Nielsen and Zhang,
2017). The detailed description can be found in Paper B. Fig. 2.9 shows the
predicted velocities for different sea states with different constrains concern-
ing γ = 1, vmax = −vmin = 0.8 m and γ = 5, vmax = −vmin = 1 m. Further,
the figure shows the prediction with different start times. As seen, the pre-
diction effect for responses excited by narrow banded sea states is better than
that for responses excited by broad banded sea states.
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γ = 1 . c) , d) : γ = 5 . : Nonlinear programming solution. : Predicted wave load (Sun
et al., 2019).
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Fig. 2.9: Comparison between the predicted velocities and the reference velocities, Hs=3.00
m, Tp=7.42 s. a), b) : γ=1 , vmax = −vmin = 0.8 m. c), d) : γ=5 , vmax = −vmin = 1 m.

: Nonlinear programming solution. : Predicted velocity (Sun et al., 2019).

For the purpose of validating the performance of the devised controller
given by Eqs. (2.15)-(2.18), it has been compared with the nonlinear pro-
gramming based numerical solutions. Fig. 2.10a shows the motion response
of the absorber with the displacement constraints vmax = −vmin = 0.8 m for
γ = 1 at optimal control. Likewise, Figs. 2.10d shows the response with the
constraints vmax = −vmin = 1 m for γ = 5 at optimal control.

Noted that it is necessary to identify the times ta,i and tb,i while devising
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Chapter 2. Control strategies for wave energy point absorbers

the control strategy. Actually, ta,i and tb,i can be obtained based on the mea-
surement of the acceleration v̈(t) because the discontinuous change of slope
for v̈(t) appears earlier than that for the displacement and velocity at the
entrance and exit of constraint-activated intervals, see Figs. 2.10a and 2.10d.
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Fig. 2.10: The responses of v(t), v̇(t), v̈(t) at optimal control, and the control force fc(t) as well
as the instantaneous absorbed power P(t) = fc(t)v̇(t) from different control strategies, Hs=3.00
m, Tp=7.42 s. a) , b) , c) : γ=1, vmax = −vmin = 0.8 m. d) , e) , f) : γ=5, vmax = −vmin = 1 m.
a) , d) : : v(t). : v̇(t). : v̈(t). b) , e) : : Nonlinear programming solution.

: fc(t). : ∆ fc(t). : Di . c) , f) : : P(t) obtained by nonlinear programming.
: P(t) obtained by devised algorithm (Sun et al., 2019).

The solid black curves in Figs. 2.10b and 2.10e indicate the optimal con-
trol force fc(t) with different sea states involving γ=1 and γ=5 from nonlinear
programming. The dotted blue curves in Figs. 2.10b and 2.10e represent the
theoretical solution given in Eqs. (2.15)-(2.18) based on the optimal trajecto-
ries shown in Figs. 2.10a and 2.10d. The difference ∆ fc(t) = fc(t)− fc,0(t) be-
tween constraint-activated intervals, given by the constant Di, is also shown
in the figure. There is a small difference between these because the uncer-
tainties are introduced when calculating the instants tai and tb,i with the ob-
servation of v̈(t).

Figs. 2.10c and 2.10f show the comparison of the instantaneous power
P(t) between the proposed control and the optimal control for different sea
states concerning γ = 1 and γ = 5. It can be found that there is a negligible
deviation and the time-average power takeoff P̄ will deviate even less.
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2.3. Optimal control with constrained displacements

In a word, the devised controller is based on the determination of the
sequence of constants Ci and Di, the wave excitation force estimation and the
prediction of future velocities during constraint-unactivated intervals.
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Fig. 2.11: Comparison between the predicted control force and the reference control force,
Hs=3.00 m, Tp=7.42 s. a) : γ=1 , vmax = −vmin = 0.8 m. b) : γ=5 , vmax = −vmin = 1 m.

: Nonlinear programming. : Predicted control force (Sun et al., 2019).

On one hand, the control force during constraint-unactivated intervals
is calculated based on the wave load estimation and the determination of
the constants Di. On the other hand, the control force during constraint-
activated intervals is obtained based on the continuous measurement of the
absorber motion. Fig. 2.11 gives the control forces at proposed control and
optimal control for different sea state involving γ = 1 and γ = 5. The
proposed control is in good agreement with the optimal one. This reveals the
effectiveness of the proposed controller.
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Chapter 2. Control strategies for wave energy point absorbers

2.4 Optimal Control with the constrained displace-
ment and control force

This subsection focuses on the optimal control of absorber with the displace-
ment and control force constraints. A modified LQG control is introduced
to optimize the absorbed power whilst minimizing these constraints in the
objective functional. Hence, the objective functional to be maximized dur-
ing the control interval [t0, t1] in Eq. (2.7) is considered as (Sun and Nielsen,
2018):

J1[ fc(t), v̇(t), v(t)] =
1
2

∫ t1

t0

(
− qv2(t) + 2v(t) fc(t)− r f 2

c (t)
)
dt (2.19)

The 2rd integrand indicates the instantaneous power takeoff which should be
maximized during the control interval, keeping |v(t)| and | fc(t)| as small as
possible by choosing proper positive gain coefficients q and r. The algorithm
does not guarantee that constraints on v(t) and fc(t) are fulfilled strictly. In
traditional LQG control, only the 1st and 3rd term are taken into considera-
tion in the objective functional.

Herein the wave load fe(t) is modelled as an output of the following
differential system excited by Gaussian white noise process w1(t) with a unit
intensity due to its zero-mean stationary Gaussian characteristic, given as:

d
dt

ze(t) = Aeze(t) + bew1(t)

fe(t) = peze(t)



 (2.20)

where the detailed definition of ze(t) , Ae, be and pe can be found in Paper
C. Fig. 2.12 shows the comparison between the target auto-spectral density
function and its rational approximation with the order of (r, s) = (2, 4).

Further, Eq. (2.19) can be transformed into the following expanded matrix
format:

J1[ fc(t), v̇(t), v(t)] =
1
2

∫ ∞

−∞

(
− z(t)TQz(t) + 2z(t)Tp fc(t)− r f 2

c (t)
)
dt

(2.21)
where z(t), Q and p are given in detail in Paper C.

The variational approach with Hamiltonian formalism (Naidu, 2002; Pon-
tryagin et al., 1962) has been applied to deal with the aforementioned control
problem. The details of the derivation can be found in Paper C. Then, the
optimal control law is obtained as (Sun and Nielsen, 2018):

fc(t) = −
1
r
(
bT

fc
S(t)− pT)z(t) (2.22)
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Fig. 2.12: Comparison of the rational approximation to the target function . : Numerical
determined target auto-spectral density function. : Rational approximation, (r, s) = (2, 4)
(Sun and Nielsen, 2018).

where G(t), b fc can be found in Paper C. The control law presumes that
the state vector z(t) is fully measured. However, only the components dis-
placement and velocity can be observed. Hence, Kalman-Bucy filter has been
introduced to provide an estimate of the state vector so as to deal with this
problem.

For the purpose of verifying the accuracy of the suggested theory, the
comparison with the nonlinear programming based solution is performed.
Two different sea states described by a JONSWAP auto spectral density func-
tion with Hs = 3m, Tp = 7.42s and γ = 5 corresponding to narrow banded
wave and Hs = 3m, Tp = 7.42s and γ = 1 corresponding to broad banded
wave are used. The values of the constraints on v(t) and fc(t) are chosen to
vmax = −vmin = 0.5m and fc,max = − fc,min = 4× 105N. The absorber in Fig.
2.1 has been used and the related paramters have been given in Table 2.1

Noted that the gain parameters q and r in Eq. (2.19) are chosen to make
the standard deviations σv and σfc of the displacement and the control force
become identical for solutions from nonlinear programming and full state ob-
servation based LQG control. Hence, these parameters have to be optimized
for each sea state to be investigated.

Figs. 2.13 and 2.14 show v(t), v̇(t), fc(t) and the corresponding instan-
taneous power P(t) under modified LQG control for full and partial state
observation, as well as the comparable results from nonlinear programming.
As seen, the displacement, the velocity and the control force follow the op-
timal solution but some deviations are available. Further, the displacement
and control force from modified LQG control will violate these constraints at
some instants, which is caused by the approximation of the algorithm.
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Fig. 2.13: Comparison of v(t), v̇(t), fc(t) and instantaneous absorbed power P(t) for different
control strategies. γ = 5. fc,max = − fc,min = 4× 105N and vmax = −vmin = 0.5m. a) v(t). b) v̇(t).
c) fc(t). d) P(t). : Nonlinear programming solution. : LQG, full state observation.

: LQG, partial state observation (Sun and Nielsen, 2018).
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Fig. 2.14: Comparison of v(t), v̇(t), fc(t) and instantaneous absorbed power P(t) for different
control strategies. γ = 1. fc,max = − fc,min = 4× 105N and vmax = −vmin = 0.5m. a) v(t). b) v̇(t).
c) fc(t). d) P(t). : Nonlinear programming solution. : LQG, full state observation.

: LQG, partial state observation (Sun and Nielsen, 2018).

Table 2.3 indicates the corresponding mean absorbed power from the
modified LQG solution with full and partial observations in comparison to
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2.4. Optimal Control with the constrained displacement and control force

Table 2.3: Mean absorbed power for different control strategies (Sun and Nielsen, 2018)

γ = 5 γ = 1

Nonlinear programming 78.1005 kW 84.3520 kW

LQG, full state observation 77.0597 kW 83.3994 kW

LQG, partial state observation with
(a2, a3)=(0.05ms1/2, 0,05ms−1/2)

73.4893 kW 80.4685 kW

LQG, partial state observation with
(a2, a3)=(0.5ms1/2, 0,5ms−1/2)

61.3112 kW 76.2606 kW

the nonlinear programming based optimal solution. As seen, the solution
based on full observation is little less than the optimal whilst more than that
based on the partial observation. The effect of noise level with two pairs
(a2, a3) on the absorbed power are also compared in Table 2.3 where a2 and
a3 specify the noise level related to the measurement of the displacement and
velocity. As seen, a2 and a3 will generally have a negative influence on the
absorbed power. Further, the narrow and board banded waves follow the
same analysis results.
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Chapter 3

Control for a floating OWC
absorber

The chapter considers the control of a floating OWC WEC referring to Paper
D. First, the description of dynamic equation for a floating OWC WEC is
given. The piston model is applied to model the motion of interval water
column, reducing the system to an equivalent 2-DOF system. Further, a linear
Wells turbine is applied.

The performance of a floating OWC absorber relies on the pressure varia-
tion relative to the atmospheric pressure, which is controlled by a valve. The
state of the valve is assumed to be in a binary state of either fully open or
fully closed. Further, the closing intervals for a valve are chosen as a constant
proportion relative to the peak period associated with waves, and the opti-
mal fraction is then calculated as a part of the control problem. The suggested
control strategy can be characterized as a semi-active control, which requires
to estimate the wave loads, evently predict the future sea state. Herein a
Kalman-Bucy filter is applied to handle this prediction problem. The pro-
posed control has been verified with the optimal control from nonlinear pro-
gramming.

3.1 Description of dynamic motion for a floating
OWC absorber

Fig. 3.1a demonstrates a static equilibrium state for a floating OWC absorber
located at sea of the depth h. a and b represent the pressure chamber height
and the water column height, separately. D1 and D2 specify the outer diam-
eter of the buoyancy tank and the ballast tank respectively. m1 indicates the
combination of the structural mass and ballast.
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Fig. 3.1: Description of motion for a floating OWC absorber. a) Static equilibrium state. b)
Dynamic state (Sun and Nielsen, 2019b).

Fig. 3.1b illustrates the dynamics state of a floating heave OWC device.
The air inside the chamber can be compressed and decompressed by the
motion of the internal water column excited by waves. In this process the
air turbine can be driven by the air flow to produce electricity. u1(t) and
u2(t) indicate the vertical displacements of the floater and the internal water
column relative to the MWL. Herein the piston approximation is chosen to
model the internal water column. Further, the discussion for choosing the
piston length is indicated in Appendix A.

In the dynamic state, the piston model based vectorial Cummings equa-
tion is expressed as (Sun and Nielsen, 2019b):

M ü(t) + fr(t) + r
(
u(t)

)
= fe(t) − fc(t) , t ∈]t0, t1]

u(t0) = u0 , u̇(t0) = u̇0 , p(t0) = 0

}
(3.1)
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3.1. Description of dynamic motion for a floating OWC absorber

where

u0 =

[
u1,0(t)
u2,0(t)

]
, u̇0 =

[
u̇1,0(t)
u̇2,0(t)

]

u(t) =

[
u1(t)
u2(t)

]
, fc(t) = a p(t) , a =

[−1
1

]
A

fr(t) =

[
fr,1(t)
fr,2(t)

]
=

[
fr,11(t) + fr,12(t)
fr,21(t) + fr,22(t)

]

fe(t) =

[
fe,1(t)
fe,2(t)

]
, r

(
u(t)

)
=

[
(km + ρw g A1) u1(t)

ρw g A u2(t)

]

M =

[
m1 + m11(∞) m12(∞)

m21(∞) m2 + m22(∞)

]





(3.2)

where the mass matrix M includes m1, the piston mass m2 and the added
mass mαβ(∞)(α, β = 1, 2) at infinite frequency.

r
(
u(t)

)
indicates the combined dynamic restoring force which is supplied

by the mooring system and buoyancy. Further, it’s assumed that the vertical
components of the mooring-based restoring force are linear, i.e. fm(t) =
kmu1(t), where km is the global stiffness coefficient from the mooring system.

fe(t) specifies the wave excitation force vector, which can be calculated
from the following convolution integral involving the impulse response vec-
tor he(t) and the surface elevation η(t):

fe(t) =
∫ ∞

−∞
he(t− τ) η(τ) dτ (3.3)

Further, he(t) is non-causal, which implies that the calculation of wave loads
requires to predict the surface elevation η(t).

fc(t) depends on the pressure p(t), which influences the motion of the
system. Further, the components of fc(t) is linear relevant, which means that
there is only one actuator for the 2-DOF system. Therefore, a differential
equation of p(t) is required, which is defined later, to make the control of the
2-DOF system becomes reality.

fr(t) indicates the radiation force vector including the component fr,αβ(t)
(α, β = 1, 2) representing the contribution to fr,α(t) when there is only u̇β(t)
in the system. fr(t) also can be given as:

fr(t) =
∫ t

t0

hr(t− τ) u̇(τ) dτ (3.4)

Further, the impulse response matrix hr(t) is a causal, which implies that the
rational approximation to fr(t) is available.

Further, the hydrodynamic parameters including the added mass mαβ,
the corresponding frequency response functions Hr(ω) and He(ω) of hr(t)
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Chapter 3. Control for a floating OWC absorber

and he(t), are computed based on the commercial program WAMIT (Wamit,
2011). hr(t) and he(t) can easily be obtained by the Fourier transform of
Hr(ω) and He(ω), respectively.

The impulse response function he,α(t) (α = 1, 2) has been indicated in Fig.
3.2. As seen, he,α(t) approximates to zero when |t| > Tp, which reveals that
the prediction of the surface elevations with one Tp ahead is reasonable for
the estimate of fe(t). The parameters mαβ(ω), hr(t) as well as Hr(ω) are
indicated in Paper D.
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Fig. 3.2: Impulse response functions he,1(t) and he,2(t) for wave loads. : The float. : The
OWC (Sun and Nielsen, 2019b).

Further, the air in the pressure chamber is assumed to be an ideal gas of
adiabatic and isentropic characteristics. Based on the constitutive equation
(Sarmento and Falcao, 1985), the following differential equations of p(t) can
be formulated as:





ṗ(t)V(t) + (γp0 + p(t))
(
V̇(t) + k β(t) p(t)

)
= 0, p(t) ≥ 0

V(t)
γp0

ṗ(t) +
(

1 +
p(t)
γp0

)
V̇(t) + k β(t) p(t) = 0, p(t) < 0

(3.5)

where the physical description of the parameters ρ(t), ρ0, γ, V(t), V0 and
V̇(t) are given in Paper D.

A linear Wells turbine is applied, given as (Brito-Melo et al., 2002):

Q(t) = k β(t) p(t) (3.6)

This reveals the linear relationship between the mass flow Q(t) and p(t) with
the turbine damping k as a proportion coefficient. β(t) is the basic control
parameter of the semi-active control. In the present case a binary control is
assumed, where β(t) instantaneously changes between 0 and 1. β(t) = 0
indicates the valve is fully closed and β = 1 means the valve is fully open.
Hence, the turbine power can be given as (Sarmento et al., 1990):
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3.2. Semi-active control for a floating OWC device

P(t) = Q(t) p(t) = k β(t) p(t)2 (3.7)

When the valve is closed, the pressure is increasing. At the succeeding
opening, this implies an increased volume flow to the generator takes places,
and correspondingly an increased power takeoff is achieved. Hence, the aim
of the control is to determine the instants of time for optimal opening of the
valve, so the absorbed energy energy E during the control horizon [t0, t1] is
optimized subject to the state constraints given by the equation of motion
(3.1), the constitutive equation for the pressure (3.5), and control constraints
on the valve and given initial values on the displacement vector, the veloc-
ity vector and the pressure, corresponding to the control problem (Sun and
Nielsen, 2019b):

max E =
∫ t1

t0

P(τ) dτ =
∫ t1

t0

k β(τ) p2(τ) dτ

s.t.

M ü(t) + fr(t) + r
(
u(t)

)
= fe(t) − fc(t) , t ∈]t0, t1]

ṗ(t) +
γp0 + p(t)

V(t)
(
V̇(t) + k β(t) p(t)

)
= 0, p(t) ≥ 0

ṗ(t) +
(
γp0 + p(t)

) V̇(t)
V(t)

+
γ p0 k β(t) p(t)

V(t)
= 0, p(t) < 0





u(t0) = u0 , u̇(t0) = u̇0 , p(t0) = 0





β(t) = 0, 1





(3.8)

It should be noted that based on a rational approximation to each compo-
nent Hr,αβ(ω) (α, β = 1, 2) of Hr(ω), an approximate representative for fr(t)
is introduced to the numerical calculation of (3.8) and the optimal control
solution from nonlinear programming. The detailed rational approximation
to fr(t) has been indicated in Paper D.

3.2 Semi-active control for a floating OWC device

The optimization problem in Eq. (3.8) has been solved by nonlinear pro-
gramming whose solution is benchmarked in order to validate the subse-
quent proposed control. η(t) is obtained based on the JONSWAP spectrum
with significant wave height Hs = 2.5m, peak period Tp = 6.77s, bandwidth
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Chapter 3. Control for a floating OWC absorber

parameter ψ = 3.3 and the related wave load vector fe(t) is obtained accord-
ing to Eq. (3.3). The same η(t) and fe(t) are used as input of the proposed
suboptimal control.
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Fig. 3.3: Optimal motion response of the float and OWC. : u1(t), u̇1(t), ü1(t).
: u2(t), u̇2(t), ü2(t). : u2(t)− u1(t) (Sun et al., 2019).

Fig. 3.3 gives the optimal motion response of the float and OWC obtained
from nonlinear programming. Fig. 3.3a also illustrates the relative displace-
ment u2(t)− u1(t).
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Fig. 3.4: p(t) and β(t) from different control strategies, α = 0.12. : p(t) at optimal control.
: p(t) at suboptimal control. : β(t) at optimal control. : β(t) at suboptimal control

(Sun and Nielsen, 2019b).

Fig. 3.4 illustrates the optimal p(t) and β(t) obtained by nonlinear pro-
gramming indicated with a blue signature. [t1, t3] and [t3, t5] indicate the
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3.2. Semi-active control for a floating OWC device

time intervals corresponding to p(t) > 0 and p(t) < 0, respectively. Fur-
ther, the valve is kept closed in the time intervals [t1, t2] and [t3, t4], which
reveal the pressure can rapidly increase and decrease, respectively. The valve
is kept open in the time intervals [t2, t3] and [t4, t5] where the pressure will
temporarily decrease and increase, leading to the local extremes of p(t).

The time intervals for the valve-closed states at optimal control are some-
what different because of the random property of sea states. Herein a subop-
timal control is introduced where a fixed time interval of the length α Tp =
t2 − t1 = t4 − t3 is applied during valve-closed state for the different valve-
closed states. Then, the semi-active valve control is expressed as:

β(t) = H
(

p(t)
)

H
(
t− t1 − αTp

)
+ H

(
− p(t)

)
H
(
t− t3 − αTp

)
(3.9)

where H(t) is the unit step function.
The optimal choice for α depends on the considered sea state, and can be

determined by comparing the performance for the proposed control with that
for the nonlinear programming based optimal control. In Fig. 3.4, p(t) and
β(t) for the optimal control are compared to that for the suggested subopti-
mal control with α = 0.12, where the same wave load vector fe(t) was applied
at the two control. As seen, the pressure predicted by the sub-optimal con-
trol and nonlinear programming are of equal magnitude. However, there is a
phase difference in the signals close to the opening of the valve, because this
takes place at slightly different instants of time.

In Eq. (3.8), the inputs to the system are merely β(t) and fe(t). Based on
β(t) given by (3.9), a closed system of differential equations can be obtained
from which the displacement vector and the pressure variation are calculated,
if fe(t) can be estimated. According to Eq. (3.3), the estimate of fe(t) requires
the prediction of η(t).

In order to predict η(τ), τ > t, a stochastic model of the surface elevation
is at first devised, based on a linear filtration of Gaussian white noise w1(t)
with a unit intensity through a rational filter with the frequency response
function Hηw1(s) = p(s)

Q1(s)
to the JONSWAP wave spectrum Sηη(ω) for the

surface elevation, see Fig. 3.5.

Fig. 3.5: Schematic diagram of the linear rational filter.

The comparison between the rational approximation with order (r, s) =
(3, 6) and the target spectrum Sηη(ω) has been indicated in Fig. 3.6.
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Fig. 3.6: Rational approximation to JONSWAP Sηη(ω) of order (r, s) = (3, 6). : Target
spectrum Sηη(ω). : Rational approximation (Sun and Nielsen, 2019b).

The filter equation in the time domain can be formulated as:




dY(t)
dt

= AcY(t) + bc w1(t)

η(t) = pc Y(t)
(3.10)

where the state vector Y(t), the system matrix Ac, the load distribution vector
bc and output gain vector pc can be found in Paper D.

It’s assumed that η(t) can be continuously observed. A certain noise is
present in the observation for which reason the output equation in Eq. (3.10)
is replaced with the following observation equation.

η(t) = pc Y(t) + c w2(t) (3.11)

c w2(t) is the measurement noise where c is used to represent the noise level
and w2(t) is Gaussian white noise with a unit intensity.

Herein a Kalman-Bucy filter is applied to predict η(τ), τ > t. Further, the
prediction horizon is approximately one peak period Tp because the impulse
response functions have finite support in the interval [−Tp, Tp] as seen from
the impulse response functions in Fig. 3.2. Finally, the wave load vector can
be estimated by Eq. (3.3).

The physical parameters related to the absorber is given in Table 3.1. Fur-
ther, the stiffness from the mooring system has been ignored in the present
case, i.e. km = 0N/m.

Fig. 3.7 shows the comparison between the estimate components and the
reference components of fe(t). The calculation of the estimate components of
fe(t) at each time instant requires to predicting the surface elevation one Tp
ahead. As seen, there is a deviation between the estimate and the reference
value due to the prediction error of η and measurement noise.

The optimal α for a considered sea state was calculated for optimizing the
absorbed energy, according to the average of four independent realizations

36



3.2. Semi-active control for a floating OWC device

Table 3.1: The physical parameter for the absorber

Parameter Value Unit Parameter Value Unit

a 2.00 m m1 8.3695×105 kg
b 5.00 m m11(∞) 3.4515×105 kg
h 100.00 m m12 = m21 2.5644×104 kg
D 5.00 m m22(∞) 0.3736×105 kg
D1 10.00 m p0 101325 Pa
D2 10.00 m km 0 N/m
ρ0 1.225 kg/m3 k 1×10−3 m·s
ρw 1025 kg/m3 c 0.1 m
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Fig. 3.7: Estimate of fe(τ) with measurement noise level c = 0.1m. a) Predicted wave
load component f̄e,1(τ). b) Predicted wave load component f̄e,2(τ). : Reference fe(t).

: Estimated f̄e(τ) (Sun and Nielsen, 2019b).

of η(t) of the length 30Tp. As seen in Fig. 3.9, the red curve indicates the
absorbed energy variation with respect to α, using the exact wave loads. It
can be found that α with the value around 0.12 reaches a maximum.

Fig. 3.8 gives the time series of β(t) and p(t) corresponding to the devised
suboptimal controller where α = 0.12 and the estimated wave excitation force
are used. Compared with the solution at optimal control, the deviation of the
pressure variation and the corresponding β(t) at suboptimal control is not
much.

Fig. 3.9 also shows the average absorbed energy with a black signature
corresponding to the suboptimal controller with the combination of the esti-
mated wave excitation forces and α = 0.12, based on four considered realiza-
tions of η(t). The performance of the controller with optimal control parame-
ter α and the exact wave load is less below that of the optimal controller while
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Fig. 3.8: p(t) and β(t) at suboptimal control with estimated wave loads, α = 0.12 in comparison
to that at optimal control. : p(t) at optimal control. : p(t) at sub-optimal control.

: β(t) at optimal control. : β(t) at sub-optimal control (Sun and Nielsen, 2019b).
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Fig. 3.9: Absorbed energy for different control strategies. : Nonlinear programming.
: Suboptimal controller with respect to α using the exact wave loads. : Suboptimal

controller with α = 0.12 using the estimated wave loads (Sun and Nielsen, 2019b).

it is much better than the suboptimal controller with the estimated wave ex-
citation forces and α = 0.12, which reveals that the estimation error of the
wave loads has a large negative influence on the absorbed energy.
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Chapter 4

Conclusions and future
perspectives

The focus of the present study is to indicate new vibration control strategies
for point absorbers including two different devices of oscillating body and
OWC so as to maximize the absorbed energy. The control laws for oscillating
body point absorber under different physical constraints have been derived
and analyzed in detail. A semi-active control for floating OWC device has
also been devised and analyzed. This final section gives the general conclu-
sions drawn from this study and possible future extensions of this work.

4.1 General conclusions

(1) Based on the variational approach with Hamiltonian formalism, an ana-
lytical solution considering the constrained control force for a heave point ab-
sorber is presented for the consideration of maximizing the absorbed power.
The optimal control force is noncausal, which needs to predict future veloci-
ties. To handle this problem, a van der Pol transformation is applied based on
the narrow banded character of the response processes. The mean absorbed
power for the proposed control is comparable to the nonlinear programming
based optimal control. Further, the proposed controller turns out to perform
better than a causal controller.

(2) An semi-analytical solution for a heave point absorber concerning the
constrained displacements is obtained so as to optimize the absorbed power.
The control law depends on the wave excitation force during activated dis-
placement constraints and follows the theoretical optimal control force for
an unconstrained case during unconstrained states, where an initial value
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needs to be calculated. The solution requires to estimate the wave excita-
tion force during constraint-activated states and to predict future velocities
during constraint-unactivated states. In order to solve these problems, the
algorithms for the estimation and prediction have been suggested based on
the narrow-banded property of the wave excitation force and velocities dur-
ing unconstrained states, respectively. The solution for the devised control is
in good agreement with the nonlinear programming based optimal solution
for both relatively narrow-banded and broad-banded sea states.

(3) A LQG approach based control is suggested for the purpose of the op-
timal absorbed energy of WECs considering the displacement and control
force constraints. A Gaussian white noise driven linear stochastic differential
equation has been obtained based on the introduction of rational approxima-
tions to the wave load and radiation force. In order to deal with the limited
observation, i.e. only displacement and velocity, Kalman filter is performed
for the purpose of estimating the global state vector. With the proper gain
parameters in the modified LQG control, the proposed control can both effec-
tively optimize the absorbed power and keep the displacement and control
force within reasonable range during most control horizon in comparison to
the solution at optimal control.

(4) Based on a piston model and a Wells turbine, a semi-active control achiev-
ing the maximum of the absorbed power for a floating OWC device is pro-
posed. The length of the time interval for the valve-closed states is considered
as a constant, which is taken the value of a unchanged proportion with re-
spect to the peak period associated with waves. This optimal constant was
calculated through optimizing the absorbed energy to the nonlinear program-
ming based optimal solution. The proposed control requires to estimate the
wave loads. This can be achieved by predicting the future surface elevation
through Kalman-Bucy filter. Compared with the performance at optimal con-
trol, the reduction of the performance for the proposed control primarily is
caused by the estimation error of the wave loads.

4.2 Future perspectives

(1) Large motion of WEC devices occurs at extreme waves or at resonance.
Therefore, nonlinear potential flow theory will be introduced to the control
of WEC devices and the nonlinearities of hydrodynamics on the control ef-
fect will be explored. Further, model order reduction techniques will be ap-
plied to reduce the computational time when it comes to the calculation of
the nonlinear hydrodynamics and the application of the model based control
strategies.
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(2) Survivability of WEC devices will be investigated, including the extreme
response and reliability analysis.

(3) Many of control strategies for WEC devices rely on the availability of the
estimation of the wave load and prediction of the surface elevation. An effect
and accurate method to those will be explored.

(4) The combined wind turbine and wave energy converter system is de-
signed so as to maximize the exploitation of the wave and wind resources.
The dynamic response and the effective control strategies will be focused.
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Appendix

Discussion of choosing the piston length for a float-
ing OWC device

The piston model imposes the constraint on the vertical particles displace-
ment which can be specified at any position of the water column because of
the incompressibility of the water on the condition that the pressure chamber
dimension is relatively small in comparison to the reference incident wave-
length (Falnes, 1999; Robinson, 1982).

Fig. B.1 shows the schematic principle of the calculation mesh for 3 dif-
ferent piston lengths. The constraint has been imposed on 3 different pis-
tons along the referential water column length b. The displaced water mass
m2 = ρw A2 c is added to the added mass m22(∞) obtained by the numerical
solution.
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Figure 2: Schematic principle of calculation mesh for 3 different piston lengths c.
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Figure 3: The combined mass m2 + m22(∞) and added mass m22(∞) for different piston

lengths. :m2 +m22(∞). :m22(∞).

9

Fig. B.1: Schematic principle of calculation mesh for 3 different piston lengths c. A) c = 5m. B)
c = 1.25m. C) c = 0.02m.

The result shows that the hydrodynamics for different piston lengths are
identical except the parameters related to the added mass. As seen on Fig.
B.2, the combined mass m2 +m22(∞) is very close for different piston lengths,
even though the added mass m22 for different piston lengths is much differ-
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Figure 3: The combined mass m2 + m22(∞) and added mass m22(∞) for different piston

lengths. :m2 +m22(∞). :m22(∞).

9

Fig. B.2: The combined mass m2 + m22(∞) and added mass m22(∞) for different piston lengths.
: m2 + m22(∞). : m22(∞).

ent. The impact of the added mass at infinite frequency on the piston motion
can be significant. According to the obtained hydrodynamic parameters, the
heave displacement of the piston in the time domain has a good agreement
with the result in the frequency domain as long as the piston is long enough
Sheng et al. (2014). The length of the piston therefore will be set up to c = b
in this paper.
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A B S T R A C T

This paper presents an analytical solution derived for optimal control of the power take-off of a single-degree of
freedom heave point absorber with constraints on the control force. The optimal control law turns out to be
noncausal with a functional dependence on future velocities. To handle this problem, an algorithm for predicting
future velocities is derived. Based on the solution the mean (time-averaged) absorbed power in a given sea-state
is calculated. The performance of the indicated controller in terms of the mean absorbed power is close to the
optimal value obtained by nonlinear programming and better than a controller with feedback from the present
displacement, velocity and acceleration, and with optimized gain factors.

1. Introduction

The heave wave energy point absorber is assumed to be constrained
by a mooring system or otherwise to enforce a motion only in the
vertical direction, and hence the absorber can be modelled as a single-
degree-of-freedom oscillator driven by the external wave load.

Significant increase of the power take-off (PTO) of a heave absorber
may be achieved by using an active vibration control of the vertical
motion [1]. In order to obtain a maximal absorbed power, many studies
have proposed control strategies for wave energy converters. Latching
control is the most investigated control strategy, independently pro-
posed by Falnes [2] and French [3]. If the velocity and wave load have
different signs, so that the wave force supplies a negative power to the
device, the absorber is fixed at zero velocity (‘latched’) by an external
mechanism. Hence, the control effort is based on the observation of the
wave load and the velocity of the absorber, and hence may be classified
as a mixed feedback and feedforward control strategy. For an induction
(asynchronous) generator, where the power takeoff force is propor-
tional to the velocity of the absorber, a positive power takeoff is always
achieved during the unlatched state. Hoskin and Nichols [4] proved the
basic assumption of the latching control strategy to be optimal during
the unlatched periods for an induction generator. Subsequently,
latching control has been extended to multi-degree-of-freedom wave
energy converters [5,6]. Babarit et al. [7] have suggested a somewhat
similar semi-active control strategy, known as declutching, where the
generator is cut off when the wave force and the absorber velocity are
out of phase. Both control strategies require the external wave load to

be estimated. Assuming a linear wave theory, this is given as a non-
causal convolution of the surface elevation, i.e. there is a need to pre-
dict future surface elevations a certain control horizon ahead of the
time when the control is applied. This is easy for regular waves or
narrow-banded sea states, but the accuracy of the prediction may be
affected in broad-banded irregular sea states.

To circumvent the uncertainties related with open-loop control ro-
bust closed loop control law in term of classical PID control have been
suggested by Astrom and Hagglund [8]. Typically, the control laws will
introduce negative control stiffness in order to make the system more
flexible [9]. Nielsen et al. [10] derived the optimal control law in the
time domain for a heave point absorber with non-linear buoyancy or
restoring forces from the mooring system in case of no constraints on
the displacements and the control force. The control law is a feedback
type depending on the present displacement and acceleration of the
absorber and an integral feedback from future velocities. Hence, for
practical applications, the indicated control law requires a prediction of
future velocities. Because there is no dependence on the wave load, the
indicated control law applies to both 2D and 3D irregular sea-states.

Displacement constraints may also be imposed to prevent the ab-
sorber from hitting the sea-bottom or jumping out of the water, which
may lead to damaging impact loadings. Similarly, constraints may be
present on the control force due to saturation in the actuator system or
in order to reduce structural fatigue damage accumulation in hot spots
in the absorber shell structure. Hansen and Kramer [11] considered
constraints on the control force of a WaveStar point converter based on
a PD reactive control law and concluded that the constraint
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significantly influences the mean absorbed power and changes the va-
lues of the optimal gain factors of the PD controller. Based on the
Pontryagin maximum principle, Hendrikx et al. [12] considered the
open-loop optimal control strategy for a WaveStar point absorber with
constraints on the control torque. The difference of absorbed power
between optimal control and model predictive control strategy was
small but the control torque trajectory differed.

A variety of model predictive control (MPC) formulations with the
constraints on the state vector and the control force have been reported
in the literatures [13,14]. Soltani et al. [15] derived an MPC algorithm
to maximize the absorbed power of a Wavestar wave energy converter.
The main prerequisite is that the absorber velocity shall be in phase
with the wave load. Hence, the controller needs prediction of the future
sea state and observation of the absorber velocity.

A recent variation of the general model predictive control (MPC)
framework has been suggested by Bacelli and Ringwood [16]. Based on
spectral and pseudospectral optimal control methods, the WEC re-
sponses and control force are expanded on a functional basis, resulting
in a computationally efficient formulation. The spectral method is
based on truncated Fourier series, leading to a convex optimization
problem and an effective solution for the optimal control. Afterward,
Genest and Ringwood [17] developed a receding horizon real-time
pseudospectral control algorithm for a wave energy converter with
constraints on displacement and control force. The functional basis
consists of half-range Chebyshev Fourier functions, which can represent
the harmonic signals in the application domain well. Further, the re-
ceding horizon is introduced to the control algorithm in order to ef-
fectively deal with the signal truncation effects. Compared with alter-
native MPC formulations, pseudospectral control algorithm shows
considerable promise in achieving a good balance between performance
and computation.

The present paper presents an analytical solution for the optimal
control of a heave point absorber with constraints on the control force.
The control law has feedback from present displacement and accel-
eration and future velocities, which need to be predicted. The obtained
control law has been benchmarked against the optimal control obtained
from a nonlinear programming algorithm indicated in the appendix to
the paper.

The paper is organised as follows. Section 2.1 presents the basic
equations of the problem, and the inherent approximations in the
nonlinear programming algorithm is justified by comparison to the
theoretical unconstrained solution obtained by Nielsen et al. [10].
Section 2.2 derives the optimal control law for a point absorber with
constraints on the control force, and the obtained solution is bench-
marked against numerical obtained nonlinear programming solution.
The obtained control law has feedback from further velocities. For wave
energy converters, even if the external wave load is broad-banded, the
response is relatively narrow-banded. Therefore, a van der Pol trans-
formation [18] with slowly varying amplitude and phase has been used
for the prediction of future velocities in Section 2.3. Section 2.4 derives
the analytical mean absorbed power with the constraints on the control
force in a given sea-state described by the significant wave height, the
peak period and a band-width parameter. Section 3 investigates the
performance of the proposed control method, which is compared with
the nonlinear programming solution and a causal controller with
feedback from the present displacement, velocity and acceleration.

2. Methodology

2.1. Equation of motion of point absorber

Fig. 1 shows the heave absorber to be analyzed. An (x, y, z)-co-
ordinate system is introduced with the origin O placed in the mean
water level (MWL) at the centerline of the point absorber. The hor-
izontal x-axis is orientated in the direction of the wave propagation, and
the vertical z-axis is orientated in the upward direction. Only two-

dimensional (plane) irregular waves are considered. The motion v t( ) of
the body in the z-direction is measured from the static equilibrium
state, where the static buoyancy force fb,0 balances the gravity force mg
and a possible static pre-stressing force from the mooring system fp,0. g
is the acceleration of gravity, and m indicates the structural mass in-
cluding ballast. The center of gravity is denoted G.

In the dynamic state caused by the surface elevation η(t), the WEC is
excited by an additional dynamic hydrodynamic force fh(t) and an ad-
ditional force, fc(t), from an external hydraulic or electric force gen-
erator as the PTO system, which is used to control the motion of the
absorber. fc(t) is considered positive in the opposite direction of v t( ),
and will be referred to as the control force. In realistic application, the
efficiency of the actuator will be smaller than 100% due to energy
losses and actuators efficiency influencing the control performance
when the large amount of reactive power is involved [19]. In theore-
tical research, it is assumed that the actuator has ideal efficiency and an
ideal PTO system is applied. Further, a PTO system can provide the
reactive power. In applications, the cylinder in the PTO system can
operate as a pump, producing a bi-directional flow, which drives a
hydraulic motor. The motor adapts to the flow and rectifies the flow
into a unidirectional turning of the generator. Further, the PTO system
absorbs a positive power from the absorber if the control force and the
velocity are in counter phase i.e. the actuator is working as a damper. In
the other way, the PTO system acts as a motor and supplies energy to
the absorber. Assuming linear wave theory, fh(t) may be written as a
superposition of the following contributions:

= + +f t f t f t f t( ) ( ) ( ) ( )h b r e (1)

where fb(t) is the quasi-static restoring force from the static equilibrium
state of the buoyancy and the mooring system, fr(t) is the radiation force
generated by the motion of the absorber in still water, and fe(t) is the
wave excitation force caused by the wave action, when the absorber is
fixed in the static equilibrium state. The term fr(t) removes mechanical
energy from the absorber by generating an outwards directed radial
wave train, whereas fe(t) supplies energy to the absorber.

fb(t) may be written as an analytical nonlinear function of the dis-
placement:

=f t r v t( ) ( ( ))b (2)

Assuming small vertical vibrations, Eq. (2) may be linearized around
the static equilibrium state as [20]:

= =f t k v t k r( ) ( ) , (0)b (3)

In the numerical results below the linearized relation in Eq. (3) has been
assumed with the value of k given in Table 1 below.

The radiation force fr(t) may be written in terms of the following
differential-integro relation [21,22]:

=f t m v t f t( ) ¨ ( ) ( )r h r,0 (4)

=f t h t v d( ) ( ) ( )r t

t
rv,0 0 (5)

Fig. 1. Loads on heave absorber. (a) Static equilibrium state. (b) Dynamic state.
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where mh indicates the added water mass at infinite high frequencies,
and h t( )rv is a causal impulse response function for the radiation force
brought forward by the absorber velocity v ( ). t0 is the initial time of
the control.

Due to the causality of the impulse response function, the related
frequency response function becomes:

=H h t( ) e ( ) dtrv
i t

rv0 (6)

Combination of Eqs. (2), (4) and (5) provides the following integro-
differential equation for v t( ) driven by fe(t) and fc(t) [21]:

+ + =
= =

Mv t r v t h t v d f t f t t t t
v t v v t v

¨ ( ) ( ( )) ( ) ( ) ( ) ( ), [ , ]
( ) , ( )

t
t

rv e c 0 1

0 0 0 0

0

(7)

where M=m+mh, and v0 and v0 are given initial conditions at the
time t0. t1 is the terminal time of the control.

In Eq. (7), the term r v t( ( )) represents a combined nonlinear re-
storing forces from the mooring system and from the buoyancy force
due to noncylindrical outer shell of the absorber. In contrast, non-
linearities from the wave loading is ignored. The hydrodynamic non-
linearities originates from the dynamic Froude-Krylov force, the ra-
diation force, the diffraction force and the viscous force. It turns out
that the nonlinear radiation-diffraction force for heave point absorber is
not significantly different from the one predicted by linear theory, and
the viscous effects for heave point absorber seem to be negligible [23].
Hence, the hydrodynamic nonlinearities for heave point absorbers are
mainly from the dynamic Froude-Krylov force [24]. It has been de-
monstrated that the numerical model with linear hydrodynamic coef-
ficients is reasonably accurate for the point absorber oscillating in
waves with a steepness factor < 0.02Hs

p
[25], where Hs is the significant

wave height, and λp the wavelength. In the numerical example below
with Hs=3m and the peak period Tp=7.42 s, this criterion is ex-
ceeded. Hence, the theory should be used merely as an approximation
for such sea state.

Fig. 2 shows the impulse response function h t( )rv based on the data
indicated in Table 1 in the numerical example below. The time has been
normalized with respect to Tp. As seen, h t( )rv effectively vanishes for
t > Tp.

The wave excitation force fe(t) may be expressed in terms of the
following convolution integral of the sea-surface elevation η(t) [26]:

=f t h t d( ) ( ) ( )e e (8)

The sea-surface elevation η(t) is assumed to be observed at a sufficient
distant position from the absorber, where the measurement is not dis-
turbed by the radiation wave, and heη(t) is a non-causal impulse re-
sponse function. The related frequency response function and the
spectral density function become:

=H h t( ) e ( )dte
i t

e (9)

=S H S( ) | ( )| ( )f f e
2

e e (10)

The hydrodynamic parameters, i.e. k, mh, h t( )rv , H ( )rv , heη(t), Heη(ω)
can be calculated numerically. In the present case, the WAMIT program
has been used, which is based on the boundary element method [27].

Fig. 3 shows the frequency response function H ( )rv . As follows
from Eq. (6), =H t h tRe( ( )) cos( ) ( ) dtrv rv0 and

=H t h tIm( ( )) sin( ) ( ) dtrv rv0 . Since h t( )rv is real, it follows that
HRe( ( ))rv is an even, and HIm( ( ))rv an odd function of ω. For this

reason, Fig. 3 only shows function values for ω > 0.
In order to verify the theory by comparison to a numerical solution

based on nonlinear programming, the convolution integral
=f t h t v d( ) ( ) ( )r t

t
rv,0 0

needs to be replaced by a state vector
approximation in terms of a system of linear, ordinary filter differential
equations driven by the velocity v t( ). The state vector formulation is
based on an initial replacement of the actual frequency response
function with an approximating rational function, leading to the fol-
lowing relations in the time domain:

=

= +
=

f t t

t t v t t t t
t

p z

z A z b
z 0

( ) ( )

( ) ( ) ( ), ] , ]
( )

r r r
d

r r r r

r

,0

dt 0 1

0 (11)

The state vector zr(t), the column vector br, the system matrix Ar and
the row vector pr can be found in detail in Nielsen et al. [10]. Further,
the initial value zr(t0)= 0 follows because fr,0(t0)= 0.

According to the solution to the state vector differential equation in
Eq. (11), fr,0(t) can be expressed as:

= = p bf t h t v d v d( ) ( ) ( ) e ( )A
r t

t
rv t

t
r

t
r,0

( )r
0 0 (12)

Hence, the impulse response function h t( )rv is approximated as:

= p bh t( ) eA
rv r

t
rr (13)

Fig. 3 shows the obtained rational approximation of the order (m,
n)= (2, 3) to H ( )rv compared with the target frequency response
function.

Based on the double-sided auto-spectral density function S ( )f fe e , a
sufficient long time series of the wave load fe(t) may be generated. The
time series in Fig. 4 was generated based on the JONSWAP spectrum
defined in Eq. (54) below defined by Hs, Tp and the band-width para-
meter γ, using a rational linear filtration of a so-called broken line
equivalent white noise process [28]. The wave load realization shown
in Fig. 4 is used in subsequent numerical investigations.

The nonlinear algorithm indicated in the appendix will be used to
validate the derived solution for the optimal constrained control force
fc(t), which maximizes the absorbed power =P t f t v t( ) ( ) ( )c in the in-
terval [t0, t1]. The nonlinear algorithm depends on the accuracy of the
state vector representation in Eq. (11) and on a discretization of the

Table 1
Heave absorber and wave excitation parameters.

Parameter Value Unit Parameter Value Unit

H 7.00 m Hs 3.00 m
D 14.00 m Tp 7.42 s
h 30.00 m γ 5
m 1.84×106 kg v 2.9991 m/s
mh 0.44×106 kg fc,0 1.8645×106 N
k 1.51×106 N/m Popt,0 7.2347×105 W
β1 0.82 β2 0.80
c 1.0×105 kg/s

Fig. 2. Impulse response function for the radiation force, hrv(t).
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performance functional of the optimization problem. The rational ap-
proximation of the order (m, n)= (2, 3) shown in Fig. 3 and a time step

=t Tp
1

150 will be applied. The validity of the nonlinear programming
algorithm with the indicated rational approximation for the radiation
force has been tested against the analytical solution for the un-
constrained control force given as, [10]:

= +f t Mv t r v t h t v d( ) ¨ ( ) ( ( )) ( ) ( )c t

t
rv,0

1

(14)

where the trajectories of v t( ), v t( ), v t¨ ( ) are taken from the nonlinear
programming solution.

Fig. 5 indicates the corresponding results. As seen, a perfect
agreement is obtained both for the control force fc,0(t) and the in-
stantaneous absorbed power =P t f t v t( ) ( ) ( )copt,0 ,0 . For this reason, the
nonlinear programming algorithm is considered appropriate also in the
constrained optimization problem.

2.2. Optimal constrained control force

The displacement response v t( ) becomes large at optimal control
because the control force fc,0(t) given by Eq. (14) tends to eliminate the
nonlinear restoring force r v t( ( )) and the inertial term Mv t¨ ( ) in Eq. (7),
making the system extremely flexible. However, only constraint on the
control force caused by saturation of the actuator is considered in the
following, given as:

f f t f( )c c c,min ,max (15)

Maximizing the absorbed power during the control interval]t0, t1] with
constraints on the control force leads to the following control problem:

Fig. 3. Frequency response function for the radiation force. (a) HRe( ( ))rv . (b) HIm( ( ))rv : Numerical determined target. : Rational approximation with
order (m, n)= (2, 3).

Fig. 4. Realization of the wave load process fe(t). Hs=3m, Tp=7.42 s, γ=5.

Fig. 5. Unconstrained case, optimal trajectories and power take-off. (a) v t( ). (b) v t( ). (c) fc,0(t). (d) Popt,0(t). —: Nonlinear programming solution. :
Unconstrained analytical solution.
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=

=
=

z g z
z z

J v f f v d

t t f t t t t t
t

f t I t t t

max [ , ] ( ) ( )
subject to the path and control force constraints:

( ) ( ( ), ( ), ), ] , ]
( )

( ) , ] , ]

c t
t

c

c

c f

0 1

0 0

0 1c

0
1

(16)

where =I f f[ , ]f c c,min ,maxc signifies the interval of admissible control
forces. The state vector z(t) and the right-hand side of the state vector
equation g(z(t), fc(t), t) are defined as:

=z
z

t
v t
v t

t
( )

( )
( )
( )r (17)

= +
+

g z p z
A z b

t f t t
v t

t r v t f t f t
t v t

( ( ), ( ), )
( )

( ( ) ( ( )) ( ) ( ))
( ) ( )

c M r r e c

r r r

1

(18)

The equivalent unconstrained optimization problem is given as:

= +

=

z g z z

z

J f f v f d

H f dz

max ¯ [ , , ] ( ( ) ( ) ( )( ( ( ), ( ), ) ( )))

( ( ( ), ( ), ( ), ) ( ) ( ))
c t

t
c

T
c

t
t

c
T

0
1

0
1

(19)

where the Hamiltonian H(z(t), λ(t), fc(t), t) of the control problem is
given as:

= +

= + +

+

+ +

+

( )

g z

b

p A z

H t t f t t f t v t t t f t t

r v t f t t

t v t

t t

f t f t

z( ( ), ( ), ( ), ) ( ) ( ) ( ) ( ( ), ( ), )

( ( )) ( ( ) ( )

( ) ) ( )

( ) ( )

( ( ) ( ))

c c
T

c
t

M c v

r
T

r
t

M r r
T

r r

t
M e c

( )

( )

( )

v

v

v
(20)

and λ(t) is the co-state vector (Lagrange multiplier) defined as:

=t
t
t
t

( )
( )
( )
( )

v

v

r (21)

Since there are no constraints on z(t) and λ(t), the first variation of Eq.
(19) provides the following conditions for optimal control, valid for
both constrained and unconstrained control forces:

= =z g zt H t f t t( ) ( ( ), ( ), )c (22)

=
z

t H( )
(23)

Eqs. (22) and (23) are known as the Hamiltonian equations (or cano-
nical equations).

Conventionally, the trajectories of the state vector and the co-state
vector at optimal control are denoted as z*(t) and λ*(t). Generally, the
asterisks will be omitted in the following for ease of notation.

The terminal boundary condition (or transversality condition) on
the co-state vector reads:

= = = =t t t t0 0( ) ( ( ) 0, ( ) 0, ( ) )v v r1 1 1 1 (24)

From Eqs. (20), (21) and (23) follows:

= b

p A

t
t
t

f t t t

t

( )
( )
( )

( ) ( ) ( )

( )

v

v

r

r v t
v

t
M

c v r
T

r

r
T t

M r
T

r

( ( )) ( )

( )

v

v
(25)

The 1st and 3rd equations in Eq. (25) in combination with the terminal
conditions in Eq. (24) provide the following solutions for t( )v and
λr(t):

=t r v
v M

d( ) ( ( )) ( )
v t

t v1

(26)

= pt
M

d( ) e ( )A
r t

t t
r
T v( )r

T1

(27)

Insertion of Eqs. (26) and (27) into the second equation (25) results in
the following expression for the optimal control force:

= +

= +

b pf t t d d

t h t d d

( ) ( ) e

( ) ( )

A
c v

T
t

t t
r
T

M t
t r v

v M

v t
t

rv M t
t r v

v M

( ) ( ) ( ( )) ( )

( ) ( ( )) ( )

r
T v v

v v

1 1

1 1
(28)

In the last statement it has been used that
= =b p p b h te e ( )A A

r
T t

r
T

r
t

r rvr
T r , cf. Eq. (13). Eq. (28) holds for both

constrained and unconstrained control forces.
The optimal control for constrained control force follows from the

Pontryagin maximum principle, [29]:

=H t t f t t H t t f t tz z( *( ), * ( ), * ( ), ) max ( *( ), * ( ), ( ), )c f t I c( )c fc (29)

Based on first order variations, Eqs. (22), (23) and (29) are merely
necessary conditions for optimality.

Since the Hamiltonian given by Eq. (20) is linear in the control force
fc(t) with the proportionality factor v t( ) t

M
( )v , Eq. (29) provides the

following solution for the optimal control force:

=
<
=
>

f t
f t Mv t
f t t Mv t
f t Mv t

( )
, ( ) ( )

( ), ( ) ( )
, ( ) ( )

c

c v

c v

c v

,max

,0

,min (30)

The undetermined quantity fc,0(t) is related to the condition:

=t Mv t( ) ( )v (31)

Under the condition in Eq. (31) follows:

= =r v t
v

t
M

r v t
v

v t v t( ( )) ( ) ( ( )) ( ) dr( ( ))
dt

v
(32)

Then, fc,0(t) is obtained by insertion of Eqs. (31) and (32) in Eq. (28):

= + +f t Mv t h t v d r v t r v t( ) ¨ ( ) ( ) ( ) ( ( )) ( ( ))c t

t
rv,0 1

1

(33)

The term r v t( ( ))1 indicates a static control force components, which
may be used to counteract a static restoring force component corre-
sponding to the static drift v t( )1 of the absorber. Since, the displacement
of the absorber is referred to the static equilibrium state, no static offset
is present, and so the said term may be set to zero. Hence, Eq. (33)
reduces to Eq. (14), which was originally obtained based on the un-
constrained first order variation of the performance functional in Eq.
(19). This leads to the control law equation = 0H

fc
, resulting again in

Eq. (31).
fc,0(t) may attain arbitrary large positive and negative values. Then,

the condition <t Mv t( ) ( )v specifies values, where fc,0(t) > fc,max, and
the condition >t Mv t( ) ( )v correspondingly values fulfilling
fc,0(t) < fc,min. Hence, fc,0(t) may be used as a saturation parameter.
Then, the final form of the constrained optimal control law may be
written as:

=
>

<
f t

f f t f
f t
f f t f

( )
, ( )

( )
, ( )

c

c c c

c

c c c

,max ,0 ,max

,0

,min ,0 ,min (34)

Eq. (34) specifies a non-causal control law at the time t with feedback
from the present displacement v t( ) and acceleration v t¨ ( ), and feedback
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from future velocities v t t( ), ] , ]1 . Hence, a prediction algorithm of
future velocities v t t( ), ] , ]1 is needed at practical applications,
which will be dealt with in a later section. Due to the inherent un-
certainty related to the prediction procedure, the resulting controller
will merely be sub-optimal.

In order to verify Eq. (34), the optimal trajectories of v t( ), v t( ) and
v t¨ ( ) obtained from nonlinear programming are inserted in Eq. (34), and
the resulting control force and resulting instantaneous absorbed power
are compared to the corresponding solutions obtained directly by
nonlinear programming. Fig. 6 shows the results for a control force
constraint fc,max=− fc,min= 2×106 N and unconstrained displace-
ment. As seen, by comparison of Fig. 6a and b with Fig. 5a and b, the
optimal displacement and velocity trajectories are only slightly affected
by the control force constraint. Fig. 6c and d show the results for the
optimal control force given by Eq. (34) and instantaneous absorbed
power, in comparison to the corresponding nonlinear programming
solution. As seen, no disagreement is visible.

2.3. Prediction of future velocity

In order to predict the future velocity response >v t t t( ), 0, a van der
Pol transformation of the narrow-banded processes v t( ) and v t¨ ( ) is in-
troduced, given as [18]:

= +
= +

v t a t t t
v t a t t t

( ) ( )cos( ( ))
¨ ( ) ( )sin( ( ))

p

p p (35)

where a(t) and φ(t) signify slowly varying amplitude and phase pro-
cesses, expressed as:

= +

=

( )
( )

a t v t

t t

( ) ( )

( ) arctan

v t

v t
v t p

2 ¨ ( ) 2

¨ ( )
( )

p

p (36)

Fig. 7 shows realizations of a(t) and φ(t) for the constrained absorber.
As seen, the evolution of a(t) and φ(t) take place over several periods.
Because h t( ) 0rv for t > Tp as shown in Fig. 2, a prediction of a(t),
φ(t) and hence v t( ) is only needed one peak wave period Tp ahead of the
present time t0.

Defined the following quantities:

=
=

= …
a a t

t
j

( jT )
( jT )

, 0, 1, 2,
j p

j p

0

0 (37)

Then, the predicted velocities can be formulated as:

= + >v t a t t t t t( ) ( )cos( ( )),p 0 (38)

a(t) and φ(t) are estimated by extrapolation from t= t0 of 2nd order
Lagrange polynomials calibrated through the function values at t0,
t0− Tp and t−2Tp, given as:

= + + + +

= + + + +

=

a t a a a a a a a

t
t t

( ) (3 4 ) ( 2 )

( ) (3 4 ) ( 2 )
,

Tp
0

0
1
2 0 1 2

1
2 0 1 2

2

0
1
2 0 1 2

1
2 0 1 2

2

0

(39)

Fig. 8 shows the prediction of v t( ) from t=14.25Tp, t=15.25Tp and
t=16.25Tp. As seen, the predicted velocities fit well at least one period
ahead, which is the required prediction horizon with the impulse re-
sponse function shown in Fig. 2.

Alternatively, a(t) and φ(t) may be estimated by using the Hilbert
transformation v tˆ ( ) of the velocity response instead of v t¨ ( )

p
in Eq. (36)

Fig. 6. Constrained control force (fc,max=− fc,min= 2×106 N) and unconstrained displacement. (a) v t( ). (b) v t( ). (c) fc(t). (d) P(t). —: Nonlinear programming
solution. : Eq. (34).

Fig. 7. Realizations of amplitude a(t) and phase φ(t) for the unconstrained
absorber.
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[30,31]. The two approaches are identical for harmonic varying func-
tions v t( ) and v t¨ ( ).

2.4. Mean absorbed power at optimal control

In the following, the restoring force from buoyancy and mooring is
assumed to be linear, i.e. =r v t k v t( ( )) ( ).

At optimal unconstrained control, the frequency response function
H ( )vfe for the velocity response v t( ) due to the harmonic varying wave
load fe(t) is given as, [26]:

=H
H

( ) 1
2 Re( ( ))vf

rv
e (40)

Then, the double-sided auto-spectral density function S ( )vv of the re-
lated velocity response process becomes, [28]

= =S H S
H

H
S( ) | ( )| ( )

| ( )|
4 (Re( ( )))

( )vv vf f f
e

rv

2
2

2e e e (41)

where Eq. (10) has been used in the last statement.
Due to the linear relationship between v t( ) and fe(t) as reflected by

Eq. (40), v t( ) becomes Gaussian, if the wave load process is Gaussian.
Then, the acceleration process v t¨ ( ) and the displacement process v t( )
become Gaussian processes as well.

In turn, fc,0(t) as given by Eq. (14) becomes Gaussian, if the restoring
force is linear.

The auto-spectral density function S ( )f fc c,0 ,0 of fc,0(t) and the cross-
spectral density function S ( )f vc,0 of fc,0(t) and v t( ) become, [28]:

=

= +

= = + +

( )( )
( )

S H S

M H H S

S H S i M H S

( ) | ( )| ( )

Im( ( )) (Re( ( ))) ( )

( ) * ( ) ( ) *( ) ( )

f f f v vv

k
rv rv vv

f v f v vv rv
k
i vv

2

2 2

c c c

c c

,0 ,0 ,0

,0 ,0

(42)

where H* ( )f vc,0 and H*( )rv signify the complex conjugate of H ( )f vc,0
and H ( )rv . H ( )f vc,0 is given as:

= +H i M H k
i

( ) ( )f v rvc,0 (43)

The variances v
2 and f

2
c,0 and the covariance f vc,0 of fc,0(t) and v t( )

follow from Eqs. (41) and (42), [28]:

= =

=

= +

= =

( )( )

S d S d

H S d

M H H S d

H S d H S d
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| ( )| ( )
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2(Re( ( )))

2 2

0
2 2

0

e

rv

c c

c c

2

2

,0 ,0

,0 ,0

(44)

The final results in Eq. (44) follow, because the real and imaginary parts
of the involved frequency response functions are odd and even function
of ω, respectively, and S ( )vv is an even function of ω. The quadratures
in Eq. (44) need to be evaluated numerically.

The maximum mean power that can be extracted by the un-
constrained optimal control from an irregular sea state is expressed as,
Nielsen et al. [10]:

=P
H

H
S d¯ | ( )|

2 Re( ( ))
( )e

rv
opt,0 0

2

(45)

The joint probability density function p f v( , )f vc,0
of fc,0(t) and v t( ) is bi-

variate normal distributed with the statistical moments given in Eq.
(44). p f v( , )f vc,0

may be written on the form:

=p f v f v µ f( , ) 1 1 ( )
f v

f fc
c c

,0
,0 ,0 (46)

φ(·) indicates the standardized normal probability density function, μ(f)
and σ signifies the mean value and standard deviation of v t( ) on con-
dition of the sample fc,0(t)= f, given as:

=

=

µ f f( )

1 v
2

v
fc,0

(47)

ρ is the correlation coefficient of v t( ) and fc,0(t) given as:

=
f v

f v

c

c

,0

,0 (48)

Next, the maximal mean power absorbed by the constrained control
force fc(t) given by Eq. (34) may be calculated from the following linear
combination of conditional expectations:

=
= = >

+
+ = <

P E f t v t
E f t v t f t f P f t f

E f t v t f f t f P f f t f
E f t v t f t f P f t f

¯ [ ( ) ( )]
[ ( ) ( ) | ( ) ] ( ( ) )

[ ( ) ( ) | ( ) ] ( ( ) )
[ ( ) ( ) | ( ) ] ( ( ) )

c

c c c c c
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c c c c c

opt

,max ,0 ,max

,min ,max ,min ,0 ,max

,min ,0 ,min

(49)

where:

> =

=

< =

P f t f

P f f t f

P f t f

( ( ) ) 1

( ( ) )

( ( ) )

c c
f

c c c
f f

c c
f

,0 ,max

,min ,0 ,max

,0 ,min

c
fc

c
fc

c
fc

c
fc

,max

,0

,max

,0

,min

,0

,min

,0 (50)

Fig. 8. Prediction of v t( ). (a) t=14.25Tp. (b) t=15.25Tp. (c) t=16.25Tp. —:
Nonlinear programming solution. : Prediction velocity response.

T. Sun and S.R.K. Nielsen Applied Ocean Research 87 (2019) 130–141

136

Paper A

63



= = =

= =

=

=

=

+

= = =

= =

E f t v t f t f f E v t f t f

f µ f P

E f t v t f f t f f v p f v dv

f µ f

P

E f t v t f t f f E v t f t f

f µ f P

[ ( ) ( ) | ( ) ] [ ( ) | ( ) ]

( ) ¯

[ ( ) ( ) | ( ) ] ( , ) df

( ) df

¯

[ ( ) ( )| ( ) ] [ ( )| ( ) ]

( ) ¯

c c c c c c

c c
fc

fc

c c c c fc
fc

fc v

fc
fc

fc

f
fc

fc
fc

fc
fc

fc
fc

fc
fc

fc
fc

fc
fc

c c c c c c

c c
fc

fc

,max ,max ,0 ,max

,max ,max
,max

,0

2

opt,0

,min ,max ,min
,max

,0

,min
,max 1

,0 ,0

,max

,0

,min

,0

,max

,0

,max

,0

,min

,0

,min

,0
opt,0

,min ,min ,0 ,min

,min ,min
,min

,0

2

opt,0

(51)

where Φ(·) indicates the standardized normal probability distribution
function.

Insertion of the results in Eqs. (50) and (51) in Eq. (49) provides the
following solution for the maximal mean power that can be absorbed by
the constrained control force:

=P f f P¯ ( , ) ¯c copt ,min ,max opt,0 (52)

where α(fc,min, fc,max) is a reduction factor caused by the constraints on
the control force:
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+ +
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,0 (53)

Fig. 9 shows the variation of α(fc,min, fc,max) as a function of fc
fc

,max

,0
,

fc,min=− fc,max. As seen, the constraints are only active for
<f fmin( , ) 3c c f,max ,min c,0.

3. Numerical example

A point heave wave energy converter indicated in Fig. 1 is con-
sidered in the numerical simulation. Table 1 indicates the relevant data
of the absorber and the wave excitation parameters and the optimized
gain parameters in Eq. (57).

Sηη(ω) is taken as the double-sided JONSWAP auto spectral density

function given as [32]:

=S H( ) | | exp 5
4

s

p p p

2 5 4

(54)

where

=

=

= >

+
+

( )exp

0.07, | |
0.09, | |

p

p

0.0312
0.230 0.0336

1
2

| | 2p
p

0.185
1.9

(55)

Tp is the peak period, =p T
2

p
is the related angular peak frequency and

Hs is the significant wave height. γ is the so-called peak enhancement
parameter which controls the bandwidth of the spectrum.

It is well known that the optimal control of point absorber in
monochromatic waves is achieved when the control force enforces the
absorber into resonance with the harmonic varying wave force. In this
respect, the value of k=1.51×105 N/m has been chosen in the nu-
merical analysis below, corresponding to the undamped angular ei-
genfrequency ω0= 0.81 rad/s, which is close to the peak angular ei-
genfrequency ωp=0.85 rad/s, in order to reduce the control effort even
in irregular sea states.

In applications, v t¨ ( ) may be measured by an accelerometer, from
which v t( ) and v t( ) are obtained by numerical integration. However,
v t¨ ( ) may be corrupted by measurement noise. In order to analyze the
influence of the noise on the quality of the control, v t¨ ( ) is written in the
form:

= +v t v t a w t¨ ( ) ¨ ( ) ( )0 1 (56)

where v t¨ ( )0 is the acceleration predicted by nonlinear programming.
The parameter a1 indicates the level of noise, and w t( ) signifies a zero
mean, stationary, broadbanded Gaussian stochastic process with an
auto spectral density function, which is flat at the value 1

2
in the an-

gular frequency interval [0, 2ωp], mimicking a unit intensity Gaussian
white noise [28]. Fig. 10 shows the obtained control forces with dif-
ferent noise levels a1= 0.5m/s1/2, a1= 0.05m/s1/2 and a1= 0.001m/
s1/2.

As seen, the obtained control force is sensible to observation noise
when a1≥ 0.05m/s1/2. The reason is that the inertial term is dom-
inating in the solution Eq. (34), and the noise in the acceleration signal
is amplified by multiplication with M.

The quality of the estimated control force will influence the future
response. The extent of this will next be investigated. The detail of the
procedure can be expressed as:

Fig. 9. Reduction coefficient α (fc,min, fc,max) as a function of
fc

fc

,max

,0
, fc,min=− fc,max.
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Fig. 10. Comparison of control force fc(t) with different noise
level on the observation of the acceleration singal. (a) a1= 0.5m/
s1/2. (b) a1= 0.05m/s1/2. (c) a1= 0.001m/s1/2. —: Nonlinear
programming solution. : Noise affected solution.

Fig. 11. Realization 1: Comparison of trajec-
tories for different control strategies. —:
Nonlinear programming solution. : fc,0(t)
given by Eq. (33). : fc,0(t) given by Eq.
(57).

Fig. 12. Realization 2: Comparison of trajec-
tories for different control strategies. —:
Nonlinear programming solution. : fc,0(t)
given by Eq. (33). : fc,0(t) given by Eq.
(57).
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(1) At the time t, predict v ( ) for τ in the interval [t, t+ Tp].
(2) Calculate fc,0(t) and fc(t) from Eqs. (33) and (34).
(3) Integrate Eq. (7) one time step Δt ahead to obtain

+ +v t t v t t( ), ( ) and +v t t¨ ( ), keeping fc(t) constant in the in-
terval [t, t+Δt].

(4) Update fc(t).

The procedure mimics the practical application of the control,
where the control force needs to be applied as a piecewise constant
function.

Additionally, comparison will be made with the following causal
unconstrained control force in Eq. (34):

= +f t Mv t cv t r v t( ) ¨ ( ) ( ) ( ( ))c,0 1 2 (57)

Eq. (57) can be characterized as a controller with feedback from the
displacement, velocity and the present acceleration. The first and the
third terms introduce negative inertia and stiffness into the system.
Guided by the theoretical solution in Eq. (33), these parameters should
be close to one. The viscous damping term replaces the radiation
damping term in Eq. (33). Obviously, the gain parameters β1, β2, c
depend on the considered sea-state.

Figs. 11–13 indicate the performance of the suggested control law
compared to those obtained by nonlinear programming and the feed-
back control in Eq. (57) for three independent realizations of the sur-
face elevation of a sea-state defined by Hs=3m, Tp=7.42 s, γ=5.
The control interval is chosen as [t0, t1]= [0, 20Tp], and the same
optimized parameters β1, β2, c as indicated in Table 1 are used for three
realizations. The related absorbed mean power have been indicated in
Table 2.

As seen from Figs. 11, 12 and 13, the displacement and velocity
estimates based on the two approximate control related to Eqs. (34) and
(57) are not deviating much from the nonlinear programming solution.
However, the control force and the instantaneous power takeoff deviate
substantially. Again, this is because the deviations in the related ac-
celeration signals are amplified significantly when multiplied by M.

Table 2 compares the mean absorbed power P̄ in the indicated in-
terval [3.5Tp, 20Tp] for the considered control strategy with the solu-
tions from nonlinear programming and the optimized causal control
with fc,0(t) given by Eq. (57).

As seen, the absorbed mean power by the control laws is less de-
viating than the instantaneous power takeoff. As shown in Table 2, the
absorbed mean power for the control law with fc,0(t) given by Eq. (33)
and with predicted future velocities are between 0.5% and 5.8% lower
than the nonlinear programming solution for the optimal control.
Further, the mean power takeoff for the control law with fc,0(t) given by
Eq. (57) is further reduced compared to the suggested control law.

4. Conclusions

This paper presents an analytical solution for the optimal power take-
off of a heave point wave energy converter with the constrained control
force. Based on the solution for the optimal control force, the mean ab-
sorbed power take-off in a given sea-state has been derived. The optimal
control force has a noncausal dependence on future velocities, which
need to be predicted. The response processes turn out to be narrow-
banded with the peak angular frequency as center frequency. This

Fig. 13. Realization 3: Comparison of trajec-
tories for different control strategies. —:
Nonlinear programming solution. : fc,0(t)
given by Eq. (33). : fc,0(t) given by Eq.
(57).

Table 2
Absorbed mean power P̄ [MW].

Nonlinear
programming

fc,0(t) given by Eq.
(33)

fc,0(t) given by Eq.
(57)

Realization 1 1.663 1.566 (5.8%) 1.544 (7.2%)
Realization 2 0.521 0.513 (1.2%) 0.467 (10.4%)
Realization 3 0.950 0.945 (0.5%) 0.921 (3.1%)

Values in brackets indicate the error relative to the nonlinear programming
solution.
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observation is used in the prediction algorithm, which is based on a van
der Pol transformation of velocity and acceleration of the absorber. The
mean power takeoff of the suggested control law, applied in a way mi-
micking the application in reality, was compared to that of optimal
control obtained by nonlinear programming for three independent rea-
lizations of a given sea-state. The reduction in efficiency varied between
0.5% and 5.8%. Finally, the controller was compared to a causal

controller with feedback from the present displacement, velocity and
acceleration, which turn out to perform worse in all three cases.
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Appendix A. Nonlinear programming algorithm

The optimal control problem in Eq. (16) is reformulated as a nonlinear programming problem by discretizing the objective functional and the
state vector in time:

=

=

=
+

+
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(58)

where τj= t0+ jΔτ j=0, 1, …, M.
s(t) indicates a vector function of slack variables. The time step in the discretization of the interval]t0, t1] is given as = t t

M
1 0 . The vector X(t) of

dimension 2n+6 and the path constrain vector c(X(t)) of dimension n+3 are defined as:

= + +t v t v t t x t d v t d v t d t d x tX z z( ) ( ), ( ), ( ), ( ),
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The inherent approximation in the indicated nonlinear programming formulation concerns the discretization of the time continuous problem into
M+1 discrete instants of time for optimization, and the use of the rational approximation in Eq. (13) for the force fr,0(t).

The formulation applies to both displacement constraints and control force constraints. In case, merely control force constraints are prescribed
the algorithm is applied by using large values of vmax and small values of vmin.

The applied algorithm for solving the indicated nonlinear programming problem is described in [33].
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A B S T R A C T

An semi-analytical solution is derived for the optimal control of the power take-off of a single-degree of freedom
heave point absorber with constraints on the displacement. At first the control force is derived during states,
where the displacement constraint is active. This results in an open-loop control law dependent on the external
wave load on the absorber. Next, the analytical solution for the optimal control in the unconstrained state is
indicated, which turns out to be of the closed loop type with feedback from the present displacement and
acceleration and from future velocities. The derived control law contains an undetermined constant, which is
calibrated at the interface to the previous constrained state. The approach requires the estimation of the wave
load during the constrained states, and the prediction of the future velocity response during unconstrained
states. An algorithm has been devised in the paper for handling these problems. The theory has been validated
against numerical solutions obtained by nonlinear programming.

1. Introduction

A wave energy point absorber has horizontal dimensions sig-
nificantly smaller than the dominating wave length. Especially, a heave
point absorber is constrained by a mooring system or otherwise to en-
force a motion merely in the vertical direction, and hence can be
modeled as a single-degree-of-freedom oscillator.

In reality constraints are present on the displacement of the ab-
sorber, because the actuator has a limited stroke. Displacement con-
straints may also be imposed to prevent the absorber from hitting the
sea-bottom or jumping out of the water, which may lead to damaging
impact loadings on the outer shell of the absorber. Similarly, constraints
are present on the control force due to saturation in the actuator
system.

In this paper only displacement constraints of the absorber is con-
sidered. Displacement constraints are difficult to deal with since the
constraint does not depend explicitly on the control force and the state
variables can only be controlled indirectly through the equation of the
motion of the system. Hartl et al. [1] presented a survey of maximum
principles for optimal control problems with state constraints. In the so-
called the direct adjoining approach, also known as the penalty func-
tion method [2], the state constraints are introduced into the Ha-
miltonian via adding Lagrange multipliers. The indirect adjoining ap-
proach, also known as the slack variable method, is based on the

differentiation of the state constraints which explicitly depends on the
control force and is adjoined to the Hamiltonian. Jacobson and Lee [3]
transformed an optimal control problem with a state inequality con-
straint into an unconstrained problem of higher dimension by slack
variable method where the slack variable becomes the new control
variable. The necessary conditions of optimality is presented based on
Pontryagin's maximum principle and is solved by conjugate gradient
method [4]. However, numerical difficulties may occur due to the in-
crease dimension of the state vector. Eidsmoen [5] utilized an end-stop
device modeled by a friction force to restrict the oscillating amplitude
for a floating wave energy converter and determined an optimal control
strategy based on variations of a Lagrange functional, subsequently
solved by numerical method. Further, the unconstrained case and
constrained case in regular an irregular sea-states are compared. Perez
and Garcia [6] presented a state constrained optimal control strategy
applied for monitoring supervisory control in hybrid electric vehicles.
The solution with constraints on both the control force and state vector
is derived based on Pontryagin's maximum principle. However, it is
difficult to use the method straightforwardly, since the future instants
of time at which these switching occur are unknown. Further, the co-
state vector is also unknown. Instead, a nonlinear programming ap-
proached based on projected augmented Lagrangian algorithm was
used to solve this constrained optimization problem. This is only ap-
plicable if the external loading is known throughout the control
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horizon. Hals et al. [7] studied optimal constrained motion of wave-
energy converters based on a heaving, semi-submerged sphere. They
formulated the dynamic programming problem with the maximum
absorbed power considering the constraints on the heave excursion and
the machinery force. Again, the future wave loading is required. It
shows how amplitude constraint affects the amount of absorbed power.
Sichani et al. [8] studied the optimal control law of a non-linear wave
energy point absorber under the displacement and the control force
constraints. Further, the displacement constraints were considered in
terms of increasing control stiffness as the absorber approaches the
boundary. Wang et al. [9] investigated the optimal control of a WEC
with the constrained PTO force and the constrained motions of the
converter in term of truncated Fourier series in time domain, where the
problem is converted to a optimization problem with a convex quad-
ratic objective functional and nonlinear constraints.

The present paper presents a semi-analytical solution for the op-
timal control of a heave point absorber with constraints on the dis-
placement. The suggested solution is optimal between the intervals,
where the displacement constraints are not active. During the intervals
with active displacement constraints, an approximate feedforward
control is applied. Because the time intervals with active constraints
diminish as the level of the constraints is increased, the suggested so-
lution will approach the optimal solution asymptotically at high dis-
placement constraints. The optimal solution to the control problem may
be achieved by nonlinear programming. However, this requires the full
length of the time series of the surface elevation to be known. For ir-
regular sea states this can only be predicted at most one peak period
ahead of the time where any control strategy is applied. As a con-
sequence, any realizable control strategy is necessary. The nonlinear
programming solution is applied as a benchmark for the validation of
the suggested control. The paper is organized as follows. In Section 2.1
the basic motion equation of point absorber is presented. In Section 2.2
the optimal control law for a point absorber with constraints on the
displacement is derived and the obtained solution is benchmarked
against a numerical solution from nonlinear programming. The ob-
tained control law has feedback from further velocities and depends on
the further wave load. The quantities need to be predicted at the time
the control is applied, which is dealt with in Section 2.3. Finally, in
Section 3 a numerical example is provided to investigate the quality of
the theory.

2. Methodology

2.1. Equation of motion of point absorber

The heave absorber to be analyzed is shown in Fig. 1. An (x, y, z)-
coordinate system is introduced with the origin O placed in the mean
water level (MWL) at the centerline of the point absorber. The hor-
izontal x-axis is orientated in the direction of the wave propagation, and
the vertical z-axis is orientated in the upward direction. Only two-di-
mensional (plane) irregular waves are considered. The motion v t( ) of

the body in the z-direction is measured from the static equilibrium state
with no wave motion, where the static buoyancy force fb,0 balances the
gravity force mg and a possible static pre-stressing force from the
mooring system fp,0. g is the acceleration of gravity, and m indicates the
structural mass including ballast.

In the dynamic state caused by the surface elevation η(t) the in-
dicated static forces disappear from the dynamic equation of motion.
Assuming linear wave theory, v t( ) is given by the following linear in-
tegro-differential equation [10]:

∫+ + − = − ∈

= =

⎫
⎬
⎭

Mv t r v t h t τ v τ dτ f t f t t t t

v t v v t v

¨ ( ) ( ( )) ( ) ˙ ( ) ( ) ( ) , [ , ]

( ) , ˙ ( ) ˙
t

t
rv e c˙ 0 1

0 0 0 0

0

(1)

fe(t) is the wave excitation force on the absorber, and fc(t) is the reaction
force from the power take-off system, which is used to control the
motion of the absorber. The signs of fe(t) and fc(t) are defined in Fig. 1.

r v t( ( )) is the quasi-static restoring force due to the buoyancy and
the mooring system, caused by displacements from the static equili-
brium state. Assuming small vertical vibrations, r v t( ( )) may be linear-
ized around the static equilibrium state as:

= − = ′f t k v t k r( ) ( ), (0)b (2)

In the numerical results below the linearized relation in Eq. (7) has been
assumed with the value of k given in Table 1.

M=m+mh, where mh indicates the added water mass at infinite
high frequencies. v0 and v̇0 are given initial conditions at the time t0. t1
is the terminal time of the control.

The impulse response function h t( )rv̇ in the convolution integral is
causal, i.e. = <h t t( ) 0, 0rv̇ . The related frequency response function
becomes [11]:

∫=
∞ −H ω h t( ) e ( ) dtrv

iωt
rv˙ 0 ˙ (3)

Fig. 2 shows the impulse response function h t( )rv̇ and the frequency
response function H ω( )rv̇ for the radiation force, based on the data of
the absorber indicated in Table 1 in the numerical example below. In
Fig. 2a the time has been normalized with respect to the peak period Tp.
As seen, h t( )rv̇ effectively vanishes for > ≃t T T T,v v p˙ ˙ . Below, it is shown
that Tv̇ indicates the prediction horizon of future velocities affecting the
optimal control force in the unconstrained case. The angular frequency
ω in Fig. 2b and c has been normalized with respect to the peak angular
frequency =ωp

π
T
2

p
. Since the real part is an even function of ω, and the

imaginary part an odd function of ω, only results for positive values of
the angular frequencies have been indicated. Further, the frequency
response function H ω( )rv̇ is approximated by a rational function of the
order (m, n), where m and n indicate the order of the numerator and the
denominator polynomials, respectively. The details of the approach can
be found in Appendix B. The rational approximation to H ω( )rv̇ of order
(m, n)= (2, 3) has been illustrated in Fig. 2b and c.

The wave excitation force fe(t) may be expressed in terms of the
following convolution integral of the sea-surface elevation η(t) [12]:

∫= −
−∞

∞
f t h t τ η τ dτ( ) ( ) ( )e eη (4)

The sea-surface elevation η(t) is assumed to be observed at a sufficient
distant position from the absorber, where the measurement is not

Fig. 1. Loads on heave absorber. (a) Static equilibrium state. (b) Dynamic state.

Table 1
Heave absorber and wave excitation parameters.

Parameter Value Unit Parameter Value Unit

H 7.00 m mh 0.44× 106 kg
D 14.00 m k 1.51× 106 N/m
h 30.00 m Hs 3.00 m
m 1.84× 106 kg Tp 7.42 s
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disturbed by the radiation wave.
The time derivative of the wave excitation force, f t˙ ( )e , is given as:

∫= −
−∞

∞
f t h t τ η τ dτ˙ ( ) ˙ ( ) ( )e eη (5)

Alternatively, f t˙ ( )e may be obtained by numerical differentiation of the
realizations of fe(t). f t˙ ( )e is later used in the devised prediction algo-
rithm for the wave excitation force.

The impulse response function h t˙ ( )eη in Eq. (5) may be calculated
from the following Fourier transform [11]:

∫=
−∞

∞
h t

π
iω H ω dω˙ ( ) 1

2
e ( )eη

iωt
eη (6)

where Heη(ω) indicates the frequency response function for the wave
force, which can be calculated numerically by a boundary element
method. In the present paper, the WAMIT program [13] has been ap-
plied.

Fig. 3 shows the impulse response function heη(t) and h t˙ ( )eη for the
considered point absorber. As seen, both impulse response functions
effectively vanishes for >t T| | fe, ≃T T0.7f pe . Tfe indicates the prediction
horizon for the wave excitation force.

Fig. 4a and b show simulated realizations of the Gaussian surface
elevation process η(t) defined by the double-sided JONSWAP auto-
spectral density function given by Eq. (29) with the the indicated values
of the significant wave height Hs and the peak period Tp, and with the
bandwidth parameters γ=1 and γ=5, respectively. γ=1 specifies
the sea-state in open sea with unlimited fetch, whereas γ=5 applies to
a relatively small fetch.

Fig. 5a and c show realizations of the wave excitation force process
fe(t) for γ=1 and γ=5, respectively, as calculated by Eq. (4) based on
the corresponding realizations of the surface elevation process η(t)
shown in Fig. 4. Fig. 5b and d show the corresponding realization of the

Fig. 2. Radiation force. (a) Impulse response function, h t( )rv̇ . (b) Real part
H ωRe( ( ))rv̇ of frequency response function. (c) Imaginary part H ωIm( ( ))rv̇ of

frequency response function. : Numerical determined target. :
Rational approximation of order (m, n)= (2, 3).

Fig. 3. Impulse response functions for wave excitation force. (a) heη(t). (b)
h t˙ ( )eη .

Fig. 4. Realizations of the surface elevation process η(t), Hs=3.00 m,
Tp=7.42 s. (a) γ=1. (b) γ=5.
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time derivative f t˙ ( )e . As seen, the realizations of fe(t) and f t˙ ( )e are
significantly more narrow-banded than the underlying surface

elevations realizations. The double-sided auto-spectral density func-
tions of the surface elevation η(t), the wave load fe(t) and its time de-
rivative f t˙ ( )e have been shown in Fig. 6a and b for the wave spectrum
bandwidth parameters γ=1 and γ=5 indicating broadbanded and
narrowbanded sea-states, respectively. As seen, the wave spectrum
Sηη(ω) is significantly more broadbanded than S ω( )f fe e and S ω( )f f˙ ˙e e for
both cases of γ. This observation will be used in the estimation algo-
rithm of the wave excitation force fe(t) presented in Section 2.3.1.

2.2. Optimal control problem

The control problem for maximizing the absorbed power during the
interval]t0, t1] with constraints on the absorber displacement may be
defined as:

∫=

≤ ≤

⎫

⎬

⎪⎪

⎭
⎪
⎪

J v f f τ v τ dτ

v v t v

max [ ˙, ] ( ) ˙ ( )

subjecttothepathconstraintgivenbyEq. (1),
andtothedisplacementconstraint:

( )

c t

t
c

min max

0

1

(7)

Let vm i, denote either vmax or vmin, and let [ta,i, tb,i] indicate the ith
interval where the constrain vm i, is activated, see Fig. 7.

Since = =v t v t˙ ( ) ¨ ( ) 0 in the constraint intervals, the integro-differ-
ential equation (1) provides the following relation for the control force
for t∈ [ta,i, tb,i]:

= +f t f t C( ) ( )c e i (8)

where Ci is a constant given as:

∫= − − −C h t τ v τ dτ r v( ) ˙ ( ) ( )i t

t
rv a i m i˙ , ,

a i

0

,

(9)

Assume that v t˙ ( ) is observed continuously in the interval [t0, ta,i[. Then,
Ci can be calculated by Eq. (9).

Eq. (8) indicates that the optimal control law is of the open loop
type, whenever the displacement constraint is active. Hence, the wave
excitation force fe(t) needs to be estimated in these intervals.

The corresponding optimal control problem in the interval]tb,i,
ta,i+1[, where no constraint is active, has previously been solved by the
authors [14]. The solution may be given as:

= +f t f t D( ) ( )c c i,0 (10)

where:

∫= − + − −f t Mv t h τ t v τ dτ r v t( ) ¨ ( ) ( ) ˙ ( ) ( ( ))c t

t
rv,0 ˙

1

(11)

Di is a constant, which can be calibrated at the interface to the previous
constrained interval. From Eqs. (8) and (10) follows:

= + = +f t f t C f t D( ) ( ) ( )c b i e b i i c b i i, , ,0 , (12)

Similarly, we have for the previous unconstrained interval at the
boundary at t= ta,i:

Fig. 5. Realizations of the wave excitation force process fe(t) and its derivative
f t˙ ( )e , Hs=3.00m, Tp=7.42 s. (a, b) γ=1. (c, d) γ=5.

Fig. 6. Normalized double-sided auto-spectral density functions of
η t f t f t( ), ( ), ˙ ( )e e . (a) γ=1. (b) γ=5. : η(t). : fe(t). : f t˙ ( )e .

Fig. 7. Constrained displacement response. Definition of parameters.
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= + = + −f t f t C f t D( ) ( ) ( )c a i e a i i c a i i, , ,0 , 1 (13)

Since, fc,0(ta,i)= fc,0(tb,i) it follows from Eqs. (12) and (13):

= + − = …−D D f t f t i( ) ( ), 1, 2,i i e a i e b i1 , , (14)

fc(t)= fc,0(t) during the first unconstrained interval [t0, ta,1], so D0= 0.
Hence, Eq. (14) provides a recursive relation for the determination of
the constants Di, if the wave excitation force at the boundaries of the
constrained intervals can be determined.

Due to accumulated estimation errors of the wave excitation forces,
Eq. (14) becomes increasingly inaccurate. To remedy this, Di should
occasionally be calculated directly from Eq. (12) leading to:

∫= + − − +D f t C h τ t v τ dτ r v( ) ( ) ˙ ( ) ( )i e b i i t

t
rv b i m i, ˙ , ,

b i,

1

(15)

where it has been used that =v t¨ ( ) 0b i, in the expression for fc,0(tb,i)
given by Eq. (11). Eq. (15) requires a prediction of

∈ +v τ τ t t T˙ ( ), [ , ]b i b i v, , ˙ .

2.3. Estimation and prediction problems

The solution for the optimal control law fc(t) as given by Eqs.
(8)–(12) requires that the wave excitation force fe(t) can be estimated
during the constrained time intervals, cf. Eq. (8). In the unconstrained
intervals the evaluation of the function fc,0(t) given by Eq. (11) requires
that the velocity v τ˙ ( ) ahead of the present time t to be predicted. Be-
cause the support of the impulse response function h t( )rv̇ is effectively
confined to the interval [0, Tp], the prediction horizon is limited to

≃T Tv p˙ , cf. Fig. 2a.
The estimation and prediction procedures described below presume

that the surface elevation η(t) and the vertical acceleration v t¨ ( ) of the
absorber are continuously measured. The displacement v t( ) and velo-
city v t˙ ( ) are obtained by online integration of the acceleration signal.

2.3.1. Estimation of wave excitation force
The wave excitation force and its derivative at the time −t Tfe may

be written as, cf. Eqs. (4) and (6):

∫
∫

− ≃ − −

− ≃ − −

⎫

⎬
⎪

⎭⎪

−∞

−∞

f t T h t T τ η τ dτ

f t T h t T τ η τ dτ

( ) ( ) ( )

˙ ( ) ˙ ( ) ( )

e f
t

eη f

e f
t

eη f

e e

e e (16)

Eq. (16) is based on the fact that − ≃ − ≃h T h T( ) ˙ ( ) 0eη f eη fe e , cf. Fig. 3a
and b, so surface elevations beyond the time t will not affect the left-
hand sides of Eq. (16). Further, the surface elevation η(τ) is available up
to and including the time t.

fe(t) and f t˙ ( )e may be represented by a van der Pol transformation
defined as, [15]:

= +

= − +
⎫
⎬
⎭

f t a t ω t φ t

f t ω a t ω t φ t

( ) ( ) cos( ( ))
˙ ( ) ( ) sin( ( ))
e e p e

e p e p e (17)

where the amplitude process ae(t) and the phase process φe(t) are given
as:

⎜ ⎟

⎜ ⎟

= + ⎛

⎝

⎞

⎠

= ⎛

⎝
− ⎞

⎠
−

⎫

⎬

⎪
⎪

⎭

⎪
⎪

a t f t
f t
ω

φ t
f t

ω f t
ω t

( ) ( )
˙ ( )

( ) arctan
˙ ( )

( )

e e
e

p

e
e

p e
p

2
2

(18)

Because fe(t) and f t˙ ( )e are narrow-banded stochastic processes, ae(t) and
the φe(t) become slowly varying functions with time. Alternatively, the
Hilbert-Huang transform may be used, where f t

ω

˙ ( )e
p

is replaced by the

Hilbert transform f tˆ ( )e [16,17]. Actually, these alternatives are
equivalent for harmonic varying signals.

Fig. 8 shows the realizations of ae(t) and φe(t) for γ=1 and γ=5,

respectively, based on the realizations of fe(t) and f t˙ ( )e shown in Fig. 5.
Define the following quantities:

= − −
= − −

⎫
⎬⎭

= …
−

−

a a t T j T
φ φ t T j T

j
( )
( )

, 0, 1, 2,
j e f p

j e f p

e

e (19)

Next, the values of ae(τ) and φe(τ) for ∈ −τ t T t] , ]fe are estimated
by extrapolation from τ= t− T by means of 2nd order Lagrange
polynomials calibrated by the function values at −t Tfe, − −t T Tf pe and

− −t T T2f pe , given as:

= + − + + − +

= + − + + − +

⎫

⎬
⎪

⎭⎪

− − − −

− − − −

a τ a a a a u a a a u

φ τ φ φ φ φ u φ φ φ u

( ) 1
2

(3 4 ) 1
2

( 2 )

( ) 1
2

(3 4 ) 1
2

( 2 )

e

e

0 0 1 2 0 1 2
2

0 0 1 2 0 1 2
2

(20)

Fig. 8. Time-series of amplitude process ae(t) and phase process φe(t), Hs=3.00
m, Tp=7.42 s. (a, b) γ=1. (c, d) γ=5.
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where

=
− +

u
τ t T

T
f

p

e

(21)

Then, fe(τ) in the interval −t T t] , ]fe is predicted from:

= +f τ a τ ω τ φ τ( ) ( ) cos( ( ))e e p e (22)

Fig. 9 illustrates prediction results for the wave excitation force fe(t)
one prediction period =T T0.7f pe ahead. Fig. 9a and b show predictions
for γ=1 at the instants of time t=6.2Tp and t=25.9Tp on the time-
series shown in Fig. 5a. Fig. 9c and d show similar results for γ=5
predicted at the instants of time t=14.2Tp and t=23.4Tp on the time-
series shown in Fig. 5c. The predictions are more accurate for γ=5,
due to the enhanced narrow-bandedness of the time-series in this case.

Fig. 9. Prediction of wave excitation force fe(t). (a, b) γ=1. (c, d) γ=5. :
Nonlinear programming solution. : Predicted wave load.

Fig. 12. Time-series of v t( ), v t˙ ( ), v t¨ ( ), control force fc(t) and instantaneous
absorbed power P(t) at optimal control, Hs=3.00 m, Tp=7.42 s. (a–c) γ=1,

= − =v v 0.8 mmax min . (d–f) γ=5, = − =v v 1 mmax min . (a, d) : v t( ). :
v t˙ ( ). : v t¨ ( ). (b, e) : Nonlinear programming solution. : fc(t).

: Δfc(t). : Di. (c, f) : Nonlinear programming solution. : P(t).
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2.3.2. Prediction of future velocities
The velocity response in the vicinity to the constrained interval is

significantly influenced by the initial values =v t˙ ( ) 0b i, . This initial va-
lues needs to be taken into consideration at the prediction of

>v t t t˙ ( ), b i, .
As seen from Fig. 12a and b, v t˙ ( ) is approximately skew-symmetric

before and after the constrained interval [ta,i, tb,i] corresponding to the
relation:

≃ − + − ∈ +v t v t t t t t t T˙ ( ) ˙ ( ), [ , ]a i b i b i b i v, , , , ˙ (23)

The right hand side of Eq. (23) is available from previous measurements
of the velocity response. Hence, Eq. (23) may be used to evaluate fc,0(t)
for ∈ +t t t T] , ]b i b i v, , ˙ . Further, the constant Di given by Eq. (15) may be
approximated as:

∫
∫

≃ + − − +

≃ + + − +

+

−

D f t C h τ t v τ dτ r v

f t C h t τ v τ dτ r v

( ) ( ) ˙ ( ) ( )

( ) ( ) ˙ ( ) ( )

i e b i t

t T
rv b m i

e b i t T

t
rv a i m i

˙ ,

˙ , ,

i
bi

b i v
i

i
ai v

a i

, ˙

˙

,

(24)

Around one prediction interval Tv̇ away from the constraints, corre-
sponding to the time interval + −+t T t T[ , ]b i v a i v, ˙ , 1 ˙ , the response pro-
cesses v t( ) and v t˙ ( ) become stationary and narrow-banded for both
γ=1 and γ=5, see Fig. 10. v t( ) is at an absolute extremum, when the
displacement constraints are active, and may have one or more local
maxima or minima between these states. At any of these extremes the
velocity =v t˙ ( ) 0. As seen from Fig. 10, v t˙ ( ) have exactly one local
maximum or local minimum between the zeros, which is characterizing
a narrowbanded response [11].

Then, velocities ∈ +v τ τ t t T˙ ( ), ] , ]v̇ ahead of the present time t may
be predicted by based on a van der Pol transformation similar to the one
used for predictions of future wave excitation forces defined by Eqs.
(17) and (18):

= +
= − +

⎫
⎬
⎭

v t a t ω t φ t
v t ω a t ω t φ t

( ) ( ) cos( ( ))
˙ ( ) ( ) sin( ( ))

v p v

p v p v (25)

where the slowly varying amplitude process a t( )v and the phase process
φ t( )v given as:

⎜ ⎟

⎜ ⎟

= + ⎛
⎝

⎞
⎠

= ⎛
⎝

− ⎞
⎠

−

⎫

⎬

⎪
⎪

⎭
⎪
⎪

a t v t v t
ω

φ t v t
ω v t

ω t

( ) ( ) ˙ ( )

( ) arctan ˙ ( )
( )

v
p

v
p

p

2
2

(26)

At a certain instant of time t is checked whether the predicted dis-
placement exceeds the boundaries during the prediction interval [t,
t+ Tp]. If so, the time ta,i+1 is estimated from the prediction, and a
cubic interpolation is applied for v t( ) in the interval [t, ta,i+1], given as:

= + − + − + −+ + +v τ v t v t τ t a τ t b τ t( ) ( ) ˙ ( )( ) ( ) ( )a i a i a i, 1 , 1
2

, 1
3 (27)

where

=
−

− + −

=
−

− − + −

⎫

⎬
⎪

⎭
⎪

+
+ +

+
+ +

a
t t

v v t v t t t

b
t t

v v t v t t t

1
( )

(3( ( )) 2 ˙ ( )( ))

1
( )

( 2( ( )) ˙ ( )( ))

a i
m i a i

a i
m i a i

, 1 0
2 , 1 , 1

, 1 0
3 , 1 , 1

(28)

a and b are determined so =+ +v t v( )a i m i, 1 , 1 and =+v t˙ ( ) 0a i, 1 .

Fig. 10. Time-series of v t˙ ( ), Hs=3.00 m, Tp=7.42 s, = − =v v 2 mmax min . (a)
γ=1. (b) γ=5.

Fig. 11. Prediction of v t˙ ( ), Hs=3.00 m, Tp=7.42 s. (a, b) γ=1,
= − =v v 0.8 mmax min . (c, d) γ=5, = − =v v 1 mmax min . : Nonlinear pro-

gramming solution. : Predicted velocity.
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Finally, the predicted velocity in the interval −+ +t T t[ , ]a i v a i, 1 ˙ , 1 can
be obtained by the derivative of the displacement indicated in Eq. (27).
Combination with the skew-symmetric property of the velocity in-
dicated in Eq. (23), the predicted velocity at least one period ahead can
be obtained. Fig. 11 shows the predicted velocities for γ=1 and γ=5,
separately.

3. Numerical example

A point heave wave energy converter indicated in Fig. 1 is con-
sidered in the numerical simulation. The relevant data of the absorber
and the wave excitation parameters have been indicated in Table 1.

Sηη(ω) is taken as the double-sided JONSWAP auto spectral density
function given as [18]:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

⎛

⎝
⎜− ⎛

⎝
⎞
⎠

⎞

⎠
⎟

− −

S ω δ
H
ω

γ ω
ω

ω
ω

( ) | | exp 5
4ηη

s

p

β

p p

2 5 4

(29)

where

⎜ ⎟

=
+ −

= ⎛

⎝
⎜− ⎛

⎝

− ⎞
⎠

⎞

⎠
⎟

= ⎧
⎨⎩

≤
>

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

+

δ
γ

β
ω ω

σ ω

σ
ω ω
ω ω

0.0312
0.230 0.0336

exp 1
2

| |

0.07, | |
0.09, | |

γ

p

p

p

p

0.185
1.9

2

(30)

Tp is the peak period, =ωp
π

T
2

p
is the related angular peak frequency and

Hs is the significant wave height. γ is the so-called peak enhancement
parameter which controls the bandwidth of the spectrum.

The validity of the theoretical optimal control solution given by Eqs.
(8)–(12) has been verified by comparison to a numerical solution ob-
tained by the nonlinear programming algorithm described in Appendix
A.

Fig. 12a and d show the trajectories of v t( ), v t˙ ( ), v t¨ ( ) with the
displacement constraints = − =v v 0.8 mmax min and

= − =v v 1.0 mmax min at optimal control determined by the nonlinear
programming algorithm for γ=1 and γ=5, respectively. The non-
linear programming solutions are merely available at discrete points
separated at the distance =tΔ T

150
p .

Because, the first and second derivative of the displacement re-
sponse and the first derivative of the velocity response vanish in the
constrain intervals [ta,i, tb,i], these responses are flat at the boundaries of
these intervals. Hence, neither of these responses are suitable for
identifying the times ta,i and tb,i, which are essential to the devised
control algorithm. Instead, ta,i and tb,i should be determined from the
observed time series of the acceleration response which has an early
detected discontinuous change of slope at the entrance and exit of the
constrained interval as shown in Fig. 7a and d. Further, the velocity
response between the constrained intervals turns out to be significantly
narrow-banded. This observation will be used in the estimation algo-
rithm of the unconstrained control force fc,0(t) given by Eq. (11).

Fig. 12b and e show the variation with time of the optimal control
force fc(t) and the theoretical solution given by Eqs. (8)–(12) for γ=1
and γ=5, respectively, using the optimal response trajectories shown
in Fig. 7a and d in the theoretical solution. Also shown in the figure is
the difference Δfc(t)= fc(t)− fc,0(t) between the constrained intervals.
According to Eq. (11) this difference is given by the constant Di. The
small deviation between these is assumed to be caused by uncertainty
in the determination of the boundaries tai and tb,i of the constrained
interval from the available discrete time specification of v t¨ ( ). As seen,

the estimate of Di is valid up to and including the time ta,i+1, although
this constant has been calibrated at the time tb,i at the end of the pre-
vious constrained interval.

Fig. 12c and f show the variation with time of the instantaneous
absorbed power =P t f t v t( ) ( ) ˙ ( )c at optimal control for γ=1 and γ=5,
respectively. The deviation is quite insignificant.

Summing up, the devised control algorithm for optimal power take-
off requires the sequence of constants Ci and Di to be determined, along
with estimation of the wave load fe(t) and the unconstrained control
force fc,0(t). Ci is obtained from Eq. (9) and Di from Eq. (14) or Eq. (15).
The instants of time for entrance and exit of the constrained intervals is
most reliable obtained from observation of the acceleration signal.

Based on Eqs. (10) and (24) the control force for unconstrained
parts can be obtained. The constrained parts can be determined from
the continuous measurement of the responses of the absorber. Fig. 13
shows the predicted control forces for γ=1 and γ=5. As seen, a good
agreement is shown in Fig. 13.

Here the influence of the deviation of the predicted control force on
the trajectory will not be considered. It assumed that the acceleration of
the absorber can be measured continuously. Correspondingly, the times
ta,i and tb,i can be determined in real time.

4. Conclusions

The paper presents a semi-analytical solution for the optimal power
take-off of a heave point wave energy converter with the constrained
displacements. The solution requires that the wave excitation force can
be estimated during active displacement constraints, and that the ve-
locity response between constrained states can be predicted at least one
wave period ahead. To handle these problems physical based estima-
tion and prediction algorithms have been devised, which make use of
the narrow-banded character of the wave excitation force and the un-
constrained velocity response. The obtained control law has been ver-
ified against numerical solutions based on nonlinear programming for
relatively broad-banded and narrow-banded sea states. In both cases a
good agreement is obtained.
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Appendix A. Nonlinear programming algorithm

The optimal control problem in Eq. (7) is reformulated as a nonlinear programming problem by discretizing the objective functional and the state

Fig. 13. Prediction of fc(t), Hs=3.00 m, Tp=7.42 s. (a) γ=1,
= − =v v 0.8 mmax min . (b) γ=5, = − =v v 1 mmax min . : Nonlinear pro-

gramming. : Predicted control force.
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vector in time:

=

=

= ⎡

⎣
⎢

−
− +

⎤

⎦
⎥ − =

≥

⎫

⎬
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⎭
⎪
⎪

+J τ x τ

τ

τ
v τ v

v τ v
τ

τ

X

c X 0

h X s 0

s 0

max ( ( )) ( )
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( ( ))

( ( ))
( )

( )
( )

( )

M n M

j

j
j

j
j

j

3

max

min

(31)

where τj= t0+ j Δτ j=0, 1, …, M.
s(t) indicates a vector function of slack variables. The time step in the discretization of the interval]t0, t1] is given as = −τΔ t t

M
1 0 . The vector X(t) of

dimension 2n+6 and the path constrain vector c(X(t)) of dimension n+3 are defined as:

= ⎡
⎣

⎤
⎦

+ +t v t v t t x t d v t d v t d t d x tX z z( ) ( ) , ˙ ( ) , ( ) , ( ) ,
dt

( ) ,
dt

˙ ( ) ,
dt

( ) ,
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3 3 (32)
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c X
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( ( ))
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dt
˙ ( ) ( ) ( ( )) ( ) ( )

dt
( ) ( ) ˙ ( )
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r r e c

r r r r

n c3
(33)

zr(t) is a state vector, Ar is a quadratic matrix, and br and pr are column and row vectors related to the convolution integral in Eq. (1), all defined in
Appendix B.

The inherent approximation in the indicated nonlinear programming formulation concerns the discretization of the time continuous problem into
M+1 discrete instants of time for optimization, and the use of the rational approximation in Eq. (38) for the force fr,0(t).

The formulation applies to both displacement constraints and control force constraints. In case, merely control force constraints are prescribed
the algorithm is applied by using large values of vmax and small values of vmin.

The applied algorithm for solving the indicated nonlinear programming problem is described in El-Bakry et al. [19].
It should be noted that the optimal solution obtained by the nonlinear programming depends qualitatively and quantitatively on the applied time

step Δτ. Fig. 14a and c show the obtained time series of displacement v t( ) and the acceleration v t¨ ( ) for = − =v v 4mmax min with the constraints
checked the intervals Δτ=0.05s and Δτ=0.01s, respectively. In Fig. 14a, the acceleration is not zero when the displacement reaches the boundary,
which means that the displacement constraint is not active in a finite time interval, and v t( ) is merely tangential to the constraint. In contrast, in
Fig. 14c the constraint is everywhere active in a finite time interval, as assumed in the theory.

Fig. 14b and d indicate the instantaneous absorbed power P(t) as predicted by the nonlinear programming algorithm during a control interval [0,
8Tp] for the two time steps. The absorbed energy E= ∫ P(τ)dτ during the interval becomes E=29.87MJ for Δτ=0.05s and E=30.61MJ for
Δτ=0.01s. Actually, E turns out to be monotonously decreasing function of Δτ, as shown in Fig. 15. The theoretical solution given by Eqs. (8) and
(10) checks the constraints throughout the control interval [t0, t1]. Hence, it is expected that the nonlinear programming solutions approach the
theoretical solution in the limit Δτ→ 0.

Appendix B. State vector formulation of equation of motion

The nonlinear programming algorithm presumes a state vector description of the integro-differential equation of motion (1). To achieve this the
frequency response function H ω( )rv̇ given by Eq. (3) is approximated by a rational function:

= =H ω P s
Q s

s iω˜ ( ) ( )
( )

,rv̇ (34)

= + ⋯ + +
= + + ⋯ + +
= − ⋯ − −

⎫

⎬
⎭

−
−

−

−

P s p s p s p
Q s s q s q s q

s s s s s s

( )
( )

( ) ( )( )

m
m m

n n
n n

n n

0 1

1
1

1

1 1 (35)

where m < n. p0, …, pm and q1, …, qn are real constants determined, so H ω˜ ( )rv̇ approximates the target frequency function H ω( )rv̇ at best in some
normed sense, and so the poles (roots of the denominator polynomial) sj , j=1, …, n all have negative real part, Re(sj) < 0. The latter condition is
the necessary and sufficient condition for causality and asymptotic stability of the filter defined by Eq. (34). A rational approximation of the order
(m, n)= (2, 3) has been shown with a dashed signature in Fig. 2b and c, and was used in the nonlinear programming analysis.

Consider the convolution integral:

∫= −f t h t τ v τ dτ( ) ( ) ˙ ( )c t

t
rv,0 ˙

0 (36)

Then, fr,0(t) may be obtained as output to the following system of linear, ordinary filter differential equations driven by the velocity v t˙ ( ):
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where x(t) is an auxiliary response process without any physical interpretation.
Eq. (37) may be represented on the state vector form:

Fig. 14. Time-series of v t( ), v t¨ ( ) and instantaneous absorbed power P(t) at optimal control, γ=5, Hs=3.00 m, Tp=7.42 s, = − =v v 4 mmax min . (a, b) Δτ=0.05s.
(c, d) Δτ=0.01s.

Fig. 15. Variation of the absorbed energy with different time step Δτ.
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The initial value zr(t0)= 0 follows because fr,0(t0)= 0.
The state vector zr(t), the column vector br, the system matrix Ar and the row vector pr are given as:
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Then, Eq. (1) may be represented by the state vector differential equation:
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The state vector z(t), the initial value vector z0 and the right hand side of the state vector equation g(z(t), fc(t), t) are given as:

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

t
v t
v t

t

v t
v tz

z
z

0
( )

( )
˙ ( )

( )
,

( )
˙ ( )

r

0

0

0

(41)

=

⎡

⎣

⎢
⎢
⎢
⎢

− − + −

+

⎤

⎦

⎥
⎥
⎥
⎥

( )t f t t

v t

M
t r v t f t f t

t v t

g z p z

A z b

( ( ), ( ), )

˙ ( )
1 ( ) ( ( )) ( ) ( )

( ) ˙ ( )

c r r e c

r r r (42)

References

[1] R.F. Hartl, S.P. Sethi, R.G. Vickson, A survey of the maximum principles for optimal
control problems with state constraints, SIAM Rev. 37 (2) (1995) 181–218.

[2] D.S. Naidu, Optimal Control Systems, CRC Press, 2002.
[3] D. Jacobson, M. Lee, A transformation technique for optimal control problems with

a state variable inequality constraint, IEEE Trans. Autom. Control 14 (5) (1969)
457–464.

[4] L. Lasdon, S. Mitter, A. Waren, The conjugate gradient method for optimal control
problems, IEEE Trans. Autom. Control 12 (2) (1967) 132–138.

[5] H. Eidsmoen, Optimum control of a floating wave-energy converter with restricted
amplitude, J. Offshore Mech. Arct. Eng. 118 (2) (1996) 96–102.

[6] L.V. Perez, G.O. Garcia, State constrained optimal control applied to supervisory
control in HEVs, Oil Gas Sci. Technol. – Revue de l’Institut Francais du Petrole 65
(1) (2010) 191–201.

[7] J. Hals, J. Falnes, T. Moan, Constrained optimal control of a heaving buoy wave-
energy converter, J. Offshore Mech. Arct. Eng. 133 (1) (2011) 011401.

[8] M.T. Sichani, J.B. Chen, M.M. Kramer, S.R.K. Nielsen, Constrained optimal sto-
chastic control of non-linear wave energy point absorbers, Appl. Ocean Res. 47
(2014) 255–269.

[9] L. Wang, J. Engstrom, M. Goteman, J. Isberg, Constrained optimal control of a point
absorber wave energy converter with linear generator, J. Renew. Sustain. Energy 7

(4) (2015) 043127.
[10] W. Cummins, The impulse response functions and ship motions, Schiffstechnik 9

(1962) 101–109.
[11] S.R.K. Nielsen, Z. Zhang, Stochastic Dynamics, Aarhus University Press, 2017.
[12] J. Falnes, Ocean Waves and Oscillating Systems: Linear Interactions Including

Wave-Energy Extraction, Cambridge University Press, 2002.
[13] WAMIT, User Manual, Version 7.0, Technical Report, (2011).
[14] S.R.K. Nielsen, Q. Zhou, M.M. Kramer, B. Basu, Z. Zhang, Optimal control of non-

linear wave energy point converters, Ocean Eng. 72 (2013) 176–187.
[15] J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearization, Courier

Corporation, 2003.
[16] N.E. Huang, et al., The empirical mode decomposition and the Hilbert spectrum for

nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A: Math. Phys.
Eng. Sci. 454 (1998) 903–995.

[17] H. Cramer, M.R. Leadbetter, Stationary and Related Stochastic Processes, Wiley,
New York, 1967.

[18] K. Hasselmann, T.P. Barnett, E. Bouws, et al., Measurements of Wind Wave Growth
and Swell Decay During the Joint North Sea Project (JONSWAP), Deutches
Hydrographisches Institut, 1973.

[19] A.S. El-Bakry, R.A. Tapia, T. Tsuchiya, Y. Zhang, On the formulation and theory of
the Newton interior-point method for nonlinear programming, J. Optim. Theory
Appl. 89 (3) (1996) 507–541.

T. Sun, et al. Applied Ocean Research 89 (2019) 1–11

11

Paper B

81



Paper B

82



Paper C

Stochastic Optimal Control of a Heave Point Wave
Energy Converter based on a Modified LQG

Approach

Tao Sun, Søren R.K. Nielsen

The paper has been published in the
Ocean Engineering Vol. 154, pp. 357–366, 2018.



C.1 Author’s Right

https://www.elsevier.com/about/policies/copyright



Stochastic optimal control of a heave point wave energy converter based on
a modified LQG approach

Tao Sun *, Søren R.K. Nielsen

Department of Civil Engineering, Aalborg University, 9000 Aalborg, Denmark

A R T I C L E I N F O

Keywords:
Wave energy
Heave absorber
Modified LQG control
Displacement and control force restriction
Kalman filtration

A B S T R A C T

The optimal control constrain problem of a wave energy point absorber is constrained due to limited stroke and
saturation of the control force actuator. The basic idea of this paper is to control the motion of the absorber by a
modified LQG control where the constraints on the displacement and actuator force are approximately considered
by counteracting the absorbed power in the objective quadratic functional. Based on rational approximations to
the radiation force and the wave load, the integrated dynamic system can be reformulated as a linear stochastic
differential equation which is driven by a unit intensity Gaussian white noise. The optimal LQG control force
becomes a linear function of the state vector of the integrated system, which can only be partially observed. In
order to remedy this problem, the control is combined with a Kalman filter observer. The obtained sub-optimal
solution has been compared to the numerical optimal solution obtained by nonlinear programming. With suitable
calculated gain parameters, the LQG controller can provide approximately the amount of the averaged absorbed
power as that of the numerical optimum.

1. Introduction

Awave energy converter (WEC) extracts the mechanical energy in the
wave motion and converts it into electric energy. Different kinds of WEC
devices have been developed such as the oscillating water column plant
(Ozkop and Altas, 2017), overtopping types like the Wave Dragon
(Wavedragon, 2005), the Pelamis (Pelamis Wave, 2012), Archimedes
Wave Swing (Archimedes Wave Swing, 2004), and the Wave Star Energy
plant (Wave Star Energy, 2003).

A wave energy point absorber is a wave energy converter (WEC) with
horizontal dimensions significantly smaller than the dominating wave
length, which is capable of absorbing energy from waves propagating in
arbitrary directions. Especially, a heave absorber is constrained by a
mooring system or otherwise to move merely in the vertical direction.

Significant increase of the power take-off (PTO) of a heave absorber
may be achieved by using an active vibration control of the vertical
motion (Ringwood et al., 2014). In this connection many control stra-
tegies typical of the proportional derivative (PD) type have been sug-
gested in the literatures. Nielsen et al. (2013) derived the optimal control
law in irregular sea-states for a heave point absorber with non-linear
buoyancy in case of no constraints on the displacements and the con-
trol force. The optimal control force turns out to make the absorber

maximal flexible by eliminating the inertial load and the buoyancy
stiffness totally. Further, the control law has feed-back from the present
displacement and acceleration of the absorber and a non-causal feedback
from the future velocities. Hence, for practical applications the indicated
control law requires a prediction of future velocities. The predictor in-
troduces uncertainty in the problem and makes the control sub-optimal.

Generally, there are constraints on the motion of the absorber due to
the limited stroke of the actuator of the control system. Similarly, the
available control force will be constrained between certain limits due to
saturation. Based on the optimal control for the unconstrained case,
Sichani et al. (2014) proposed an extension to the unconstrained case,
where the displacement were achieved by adding the nonlinear artificial
springs to the buoyancy, which were achieved close to the boundaries.
Using predictive PD control, Wang et al. (2015) analyzed themotions of a
point absorber. Based on truncated Fourier series of the control force and
the velocity, the problem is converted to an optimization problem with a
convex quadratic objective functional and nonlinear constraints. Cretel
et al. (2011) proposed a control scheme to maximize the absorbed energy
by a wave energy point absorber based on model predictive control. As a
result of the introduction of triangle-hold discretization approach where
the control force and the wave load need to be continuous piecewise
linear, the objective functional is reformulated as a convex quadratic
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function of the increment of the control force. Constraints on the
displacement of the absorber and the control force can be enforced to the
system by affine inequality constraints on the input increment control
force. However, the control law may give rise to feasibility issues for the
hard constraints on the control force and may cause large amounts of
energy flowing in and out of the system. Especially, it turns out that the
instantaneous absorbed power may undergo large negative excursions
which is not the care for the optimal control. Li et al. (2012) analyzed the
nearly optimal control of wave energy converter with the state and
control input constraints based on Pontryagins Minimum Principle.
Further, the interior penalty term included in the cost functional replaces
the state constraints, preventing the optimal state trajectory from
approaching the boundary of the permitted region. The nearly optimal
control approximated using discretization and dynamic programming
turns out to be bang-bang control on the condition that the portions of the
singular arc assuming that the times in which this happens are negligible
are ignored, without rigorous proof for that. Zou et al. (2017) demon-
strated that the singular arc part of the optimal control cannot be
neglected and significant portions of time may become on singular arcs
depending on the initial conditions and on the maximum control level.
Hartl et al. (1995) presented the Pontryagins maximum principle for
optimal control problems with both pure state and mixed variables
inequality constraints. Further, the mixed constraints are the constraints
on control variables that may depend on the state variables and the time.

As the optimal control turns out to be noncausal, i.e. the control law
depends on the future motion of the absorber or wave load, prediction of
the motion of the absorber or wave load should be considered. To remedy
this question, a causal closed-loop controller with the feedback informa-
tion is proposed. In case of infinite control horizon this problem can be
circumvented by LQG control. Lattanzio and Scruggs (2011) derived the
optimal causal controller for wave energy converter and the determination
of the optimal causal controller distills to a nonstandard LQG optimal
control problem, which can be solved easily. Scruggs et al. (2013)
formulated the LQG control problem for wave energy converter and
compared the results with the optimal noncausal control through choosing
proper weights. Kassem et al. (2015) maximized the take-off power from a
two-body point absorber with a mooring wave energy converter based on
LQG approach and demonstrated the feasibility and effectiveness of the
LQG control. In the present paper the basic idea is to deal with stochastic
optimal control of a heave point wave absorber with constraints on the
displacement and the control force, and with noisy observation on the
displacement and the velocity. The radiation force and the wave load are
reformulated as output of rational approximate filters. The integrated
dynamic system may be given by a linear stochastic state vector differ-
ential equation driven by a Gaussian white noise. The idea of the paper is
to take the constraints on the displacement and the control force into
consideration by introducing negative penalty terms of the two parameters

in the Lagrangian of a LQG approach, where the weights are calibrated
against a nonlinear programming solution to provide the same mean
power take-off. This does not guarantee a local observation of the indi-
cated constraints, but merely that these are fulfilled in average. Further,
the controller is combined with a Kalman filter, for which the reason is
merely that the displacement and the velocity can be observed. The ob-
tained sub-optimal results from assumed full state observation and partial
state observation will be discussed and compared to numerical optimal
controller from nonlinear programming. The stochasticity of the control
problem origins partially from the nonobservable wave load and the noise
related to the measured displacements and velocities. Hence, the indicated
quantities need to be modelled by stochastic process.

2. Equation of motion of point absorber

Although, only the heave absorber shown in Fig. 1 will be analyzed,
all results, including the equation of motion and control laws, may easily
be carried over to other single-degree-of-freedom systems by slight
modifications. The ðx; y; zÞ-coordinate system is introduced as shown in
Fig. 1. The original O is placed in the mean water level (MWL) at the
centerline of the point absorber. The x-axis is the horizonal orientation in
the direction of the wave propagation, and the z-axis is vertical orien-
tation in the upward direction. Only two-dimensional (plane) regular or
irregular waves are considered. The motion vðtÞ of the body in the ver-
tical z direction is defined relative to the static equilibrium state, where
the static buoyancy force balances the gravity force and a possible static
pre-stressing force from the generator.

In the dynamic state caused by the surface elevation ηðtÞ the WEC is
excited by dynamic hydrodynamic force, fhðtÞ, in addition to the static
buoyancy force, and by an additional control force, fcðtÞ from an external
hydraulic or electric force generator as the PTO system, which is used to
control the motion of the absorber and to achieve maximal wave energy
absorption. In theoretical research, it's assumed that the PTO system can
provide the reactive power. In applications, the cylinder can operate as a
pump, producing a bi-directional flow, which drives a hydraulic motor.
The motor adapts to the flow and rectifies the flow into a unidirectional
turning of the generator. Further, The PTO system will absorb a positive
power from the absorber if the control force fcðtÞ and the velocity _vðtÞ are
in counter phase. In opposite case, the PTO system acts as a motor and
supplies energy to the absorber. Next, the mechanical energy stored in
the absorber is converted into electrical energy via an generator.
Henceforth, fcðtÞ considered positive in the opposite direction of vðtÞ will
be referred to as the control force. Then, the equation of motion becomes:

mv€ðtÞ ¼ fhðtÞ � fcðtÞ (1)

Assuming linear wave theory fhðtÞ may be written as a superposition
of the following contributions:

Fig. 1. Loads on heave absorber. a) Static equilibrium state.
b) Dynamic state.
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fhðtÞ ¼ fbðtÞ þ frðtÞ þ feðtÞ (2)

where fbðtÞ is the quasi-static increment of the buoyancy force, frðtÞ is the
radiation force generated by the motion of the absorber in still water, and
feðtÞ is the wave excitation force caused by the wave action, when the
absorber is fixed in the static equilibrium state. The term frðtÞ removes
mechanical energy by generating a wave train propagating away from the
absorber, whereas feðtÞ supplies energy to the absorber. fbðtÞ is given as:

fbðtÞ ¼ ρðDðvðtÞÞ � Dð0ÞÞ g ¼ �rðvðtÞÞ (3)

where ρ is the mass density of water, and DðvðtÞÞ denotes the displaced
water volume at the displacement vðtÞ. The nonlinear buoyancy function
rðvðtÞÞ is limited between the value r1 corresponding to a fully submerged
absorber, and the value r0 ¼ � fb;0, when the absorber is jumping out of
the water. Assuming small vertical vibrations, Eq. (3) may be linearized
around the static equilibrium state as (Newman, 1977):

fbðtÞ ¼ �k vðtÞ ; k ¼ r'ð0Þ ¼ ρ D'ð0Þ g ¼ 1
4
πD2ρg (4)

The radiation force frðtÞ may be written in terms of the following
differential-integro relation (Cummins, 1962; Faltinsen, 1990):

frðtÞ ¼ �mh€vðtÞ � fr;0ðtÞ (5)

fr;0ðtÞ ¼ ∫ t
�∞hr _vðt � τÞ _vðτÞdτ (6)

The term mh is the added water mass at infinite high frequencies, and
hr _vðtÞ is a causal impulse response function for the radiation force brought
forward by the absorber velocity _vðτÞ.

Insertion of Eqs. (3), (5) and (6) in Eq. (1) provides the following
integro-differential equation for vðtÞ driven by feðtÞ and fcðtÞ:

ðmþ mhÞ€vðtÞ þ rðvðtÞÞ þ ∫ t
t0
hr _vðt � τÞ _vðτÞdτ ¼ feðtÞ � fcðtÞ; t > t0

vðt0Þ ¼ v0; _vðt0Þ ¼ _v0

9=; (7)

where v0 and _v0 are given initial conditions at the time t0.
Due to the causality of the impulse response function, the related

frequency response function becomes:

Hr _vðωÞ ¼ ∫ ∞
0 e

�iωthr _vðtÞdt (8)

MhðωÞ and ChðωÞ denote the hydrodynamic added mass and the hydro-
dynamic radiation damping coefficient during monochromatic wave
excitation. These are related to the imaginary and real parts of Hr _vðωÞ by
the following sine and cosine transforms (Nielsen et al., 2013):

MhðωÞ ¼ mh þ 1
ω
ImðHr _vðωÞÞ ¼ mh � 1

ω
∫ ∞
0 sinðωtÞhr _vðtÞdt

ChðωÞ ¼ ReðHr _vðωÞÞ ¼ ∫ ∞
0 cosðωtÞhr _vðtÞdt

9>>>=>>>; (9)

The wave excitation force feðtÞ may be expressed in terms of the
following convolution integral of the sea-surface elevation ηðtÞ (Falnes,
2002):

feðtÞ ¼ ∫ ∞
�∞heηðt � τÞηðτÞdτ (10)

the sea-surface elevation ηðtÞ is assumed to be observed at a sufficient
distant position where the measurement is not disturbed by the radiation
wave, and heηðtÞ is a non-causal impulse response function. The related
frequency response function becomes:

HeηðωÞ ¼ ∫ ∞
�∞e

�iωtheηðtÞdt (11)

For the indicated heave absorber located in the sea with water depth
h ¼ 30 m, it consists of a cylindrical volume with a diameter D ¼ 14 m

and a hemisphere with the same diameter as the cylinder. The structural
mass m of the absorber is 1:84� 106kg. The relative physical parameters
of the considered point absorber have been defined in the numerical
example at the end of the paper. Based on these parameters, the hydro-
dynamic parameters, i.e. k, mh, Hr _vðωÞ, HeηðωÞ can be calculated numer-
ically. In the present case, the program WAMIT has been used, which is
based on the boundary element method (WAMIT, 2011). Further, the
impulse response functions, hr _vðtÞ and heηðtÞ, are obtained by inverse
Fourier transform of Eqs. (8) and (11) respectively.

Fig. 2 shows the obtained impulse response function hr _vðtÞ. The time
has been normalized with respect to the peak period Tp. Fig. 3 shows the
hydrodynamic added mass.MhðωÞ ¼ Mhð�ωÞ is an an even function of ω,
cf. Eq. (9), for which reason only results for positive angular frequencies
have been shown. As seen, the asymptotic value mh is achieved for
ω � 3ωp. Fig. 4 shows the real and imaginary parts of the frequency
response function Hr _vðωÞ. The real part is a symmetric function and the
imaginary part is a show-symmetric function of ω, for which reason only
results for positive angular frequencies have been shown.

The impulse response function heηðtÞ for the wave excitation is shown
in Fig. 5. The real and imaginary parts of the related frequency response
function which will be used in later section for modeling the waves are
shown in Fig. 6a) and 6b).

For practical reasons the displacement vðtÞ will be limited to a finite
interval ½vmin; vmax�, either in order to prevent the absorber form hitting
the bottom of the sea or jumping out of the water, or because the actuator
has a finite stroke. Similarly, the control force fcðtÞ will be constrained to

Fig. 2. Impulse response function for the radiation force, hr _v(t).

Fig. 3. Hydrodynamic added mass, Mh(ω).
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a finite interval ½fc;min; fc;max� due to saturation in the hydraulic actuator
system. Then, based on Eq. (7), the optimal control force which maxi-
mizes the absorbed energy during the control interval ½t0; t1� is obtained
as the solution to the following constrained optimization problem:

maxJ½fcðtÞ; _vðtÞ� ¼ ∫ t1
t0
fcðτÞ _vðτÞdτ

s:t:

8>>>><>>>>:
ðmþ mhÞv€ðtÞ þ rðvðtÞÞ þ ∫ t

t0
hr _vðt � τÞ _vðτÞdτ ¼ feðtÞ � fcðtÞ

vðt0Þ ¼ v0; _vðt0Þ ¼ _v0
vmin � vðtÞ � vmax

fc;min � fcðtÞ � fc;max

(12)

Below, merely an infinite control horizon is considered corresponding
to t0 ¼ �∞ and t1 ¼ ∞. Further, a linear buoyancy restoring force is
assumed as indicated in Eq. (4).

3. . Rational approximations to the radiation force and the
external wave load

For the application in time-domain simulation, control and optimi-
zation problem, the integral part of the radiation force, i.e. fr;0ðtÞ in Eq.
(6) is replaced by an equivalent system of coupled first-order differential
equations. This is equivalent to replacing the frequency response function
Hr _vðωÞ by an approximating rational function:

Hr _vðωÞ ’ ~Hr _vðωÞ ¼ PðzÞ
QðzÞ; z ¼ iω (13)

PðzÞ ¼ p0zm þ p1zm�1 þ⋯þ pm�1zþ pm
QðzÞ ¼ zn þ q1zn�1 þ⋯þ qn�1zþ qn

�
(14)

where the parameters p0; p1;⋯; pm and q1; q2;⋯; qn are all real. The de-
nominator polynomial may be given on the form:

QðzÞ ¼ ðz� z1Þðz� z2Þ⋯ðz� znÞ (15)

In order to ensure the stability and strict causality, the order of the
filter given by the pair ðm; nÞ should satisfy the condition that m < n and
the poles of the denominator zj must fulfill ReðzjÞ < 0. The solution can
be obtained by the MATLAB control toolbox (Mathworks, 2011). In Fig. 7
the obtained rational approximation of the order ðm; nÞ ¼ ð2; 3Þ to Hr _vðωÞ
is compared with the target frequency response function.

Then, the relation between fr;0ðtÞ and _vðtÞ can be expressed by the
differential equations:

Fig. 4. Frequency response function for the radiation
force. a) Re (Hr _v(ω)). b) Im (Hr _v(ω)).

Fig. 5. Impulse response function for the wave excitation force, heη(t).

Fig. 6. Frequency response function for the wave
excitation force. a) Re (Heη(ω)). b) Im (Heη(ω)).
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fr;0ðtÞ ¼ p0
dmyðtÞ
dtm

þ p1
dm�1yðtÞ
dtm�1 þ⋯þ pm�1

dyðtÞ
dt

þ pmyðtÞ

dnyðtÞ
dtn

þ q1
dn�1yðtÞ
dtn�1 þ⋯þ qn�1

dyðtÞ
dt

þ qnyðtÞ ¼ _vðtÞ

9>>=>>; (16)

where yðtÞ is an auxiliary function. A harmonic varying input _vðtÞ ¼
Reð _VeiωtÞ to the 2nd equation produces a harmonic varying force fr;0ðtÞ ¼
ReðFr;0 eiωtÞ;Fr;0 ¼ ~Hr _vðωÞ _V , of the 1st equation, where ~Hr _vðωÞ is given by
Eqs. (13) and (14). Eq. (16) can be written on the following state vector
form:

d
dt
zrðtÞ ¼ ArzrðtÞ þ br _vðtÞ (17)

fr;0ðtÞ ¼ przrðtÞ (18)

where zrðtÞ, Ar , br and pr can be found in detail in the reference (Nielsen
et al., 2013).

In applications the stochastic wave load feðtÞ can be modelled as a
zero-mean, stationary Gaussian stochastic process, obtained as the output
process of a unit intensity Gaussian white noise process w1ðtÞ, with the
frequency response function Hew1 ðωÞ, passed through a time-invariant
physically realizable rational filter. The mean value and auto-
covariance function of w1ðtÞ is given as (Nielsen and Zhang, 2017):

E½w1ðtÞ� ¼ 0
E½w1ðt1Þw1ðt2Þ� ¼ δðt2 � t1Þ

�
(19)

where E½⋅� is the expectation operator and δð⋅Þ indicates the Dirac's delta
function.

Furthermore, the auto-spectral density function for wave load can be
expressed as (Nielsen and Zhang, 2017):

Sfefe ðωÞ ¼
��HeηðωÞj2SηηðωÞ ¼

��Hew1 ðωÞj2Sw1w1 (20)

where Sfefe ðωÞ is double-sided auto spectral density function of wave
excitation, and Sw1w1 ¼ 1

2π is the double-sided auto spectral density func-
tion of unit intensity Gaussian white noise w1ðtÞ. HeηðωÞ and Hew1 ðωÞ are
impulse response functions for the wave excitation force caused by wave
height and white noise, respectively. SηηðωÞ is the double-sided JONSWAP
auto spectral density function given as (Hasselmann et al., 1973):

SηηðωÞ ¼ α
H2

s

ωp
γβ
�jωj
ωp

��5

exp

 
� 5
4

�
ω
ωp

��4
!

(21)

where

α ¼ 0:0312

0:230þ 0:0336γ � 0:185
1:9þ γ

β ¼ exp

 
� 1
2

���ω��� ωp

σωp

�2
!

σ ¼
(

0:07; jωj � ωp

0:09; jωj > ωp

9>>>>>>>>>>=>>>>>>>>>>;
(22)

Tp is the peak period,ωp ¼ 2π
Tp
is the related angular peak frequency andHs

is the significant wave height. γ is the so-called peak enhancement
parameter which controls the bandwidth of the spectrum. Small and
large values of γ represents broad-and narrow-bandedness of the surface
elevation spectrum.

Fig. 8 shows the one-sided auto spectral density function of the sur-
face elevation process SηðωÞ and the wave excitation process Sfe ðωÞ. Both
spectrums have been normalized with respect to the angular peak

Fig. 7. The accuracy of the rational approximation to
Hr _vðωÞ . a) Re (Hr _v(ω)). b) Im (Hr _v(ω)). ––––: Numer-
ical determined target frequency function. ––––:
Rational approximation, ðm; nÞ ¼ ð2; 3Þ.

Fig. 8. One-sided normalized auto-spectral density
functions. a) Surface elevation process. b) Wave
excitation process.
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frequency ωp. As seen Sfe ðωÞ ’ 0 for ω < 0:5ωp and ω > 1:5ωp. In
contrast, the surface elevation process is vanishing for ω � 3:0ωp.

In analogy to Eq. (13), the frequency response function Hew1 ðωÞ of the
filter is approximated by a casual rational function:

Hew1 ðωÞ ¼
PðzÞ
QðzÞ ¼

p0zr þ p1zr�1 þ⋯þ pr�1zþ pr
zs þ q1zs�1 þ⋯þ qs�1zþ qs

; z ¼ iω (23)

The filter coefficients are obtained by solving the following optimi-
zation problem (Nielsen and Zhang, 2017):

min
p0 ;…;pr

q1 ;…;qs

∫ ∞
�∞

�
Sfefe ðωÞ �

1
2π

PðiωÞPð�iωÞ
QðiωÞQð�iωÞ

�2

dω (24)

s.t.

1
2π

P
�
iωp

�
P
��iωp

�
Q
�
iωp

�
Q
��iωp

� ¼ Sfefe
�
ωp

�
Re
�
zj
�
< 0; j ¼ 1; 2;⋯; s

9>=>; (25)

where zj; j ¼ 1;2;⋯; s indicates the poles of the denominator polynomial
QðzÞ, cf. Eq. (15).

The constraint on zj in Eq. (25) ensures that the filter becomes causal,
in contrast to the underlying non-causal filter problem. Nevertheless, the
obtained load process will be a zero-mean Gaussian process with the same
covariance structure as the original process within the accuracy approxi-
mation of the rational auto-spectral density function to the target spec-
trum. Hence, these processes will be equivalent with probability 1. Fig. 9
illustrates the accuracy of the rational auto-spectral density function for
ðr; sÞ ¼ ð2;4Þ in comparison to the target auto-spectral density function.

Next, the wave load feðtÞ is obtained from the following state vector
equations:

d
dt
zeðtÞ ¼ AezeðtÞ þ bew1ðtÞ (26)

zeðtÞ ¼

2666666666666666664

yðtÞ
d
dt
yðtÞ

d2

dt2
yðtÞ
⋮

ds�2

dtn�2 yðtÞ

ds�1

dtn�1 yðtÞ

3777777777777777775

;be ¼

26666664
0
0
0
⋮
0
a1

37777775 (27)

Ae ¼

266664
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

�qs �qn�1 �qs�2 ⋯ �q2 �q1

377775 (28)

feðtÞ ¼ pezeðtÞ (29)

where:

pe ¼ ½ pr pr�1 ⋯ p1 p0 0 ⋯ 0 � (30)

a1 notifies the intensity of the white noise process.
The equation for the integrated dynamic system made up of the

displacement vðtÞ and the velocity _vðtÞ of the point absorber, and the state
vector zrðtÞ and zeðtÞ of the rational approximations of the radiation force
and the wave load may be formulated as:

_zðtÞ ¼ AzðtÞ þ bfc fcðtÞ þ b1w1ðtÞ (31)

where:

zðtÞ ¼

2664
vðtÞ
_vðtÞ
zrðtÞ
zeðtÞ

3775;bfc ¼

26666664
0

� 1
m0

0

0

37777775;b1 ¼

2664
0
0
0
be

3775;A ¼

26666664
0 1 0 0
k
m0

0
pr

m0

pe

m0

0 br Ar 0

0 0 0 Ae

37777775
(32)

wherem0 ¼mþmh. The dimension of the state vector zðtÞ isN ¼ 2þ nþ
s.

4. Modified linear quadratic Gaussian control

In order to obtain the optimal control force, which maximizes the
absorbed energy during the control interval ½t0; t1� and simultaneously
reduces the variation of the displacement and control force, the following
modified performance functional is applied:

maxJ1½fcðtÞ; _vðtÞ; vðtÞ� ¼ 1
2
∫ ∞
�∞

�� qv2ðtÞ þ 2vðtÞfcðtÞ � rf 2c ðtÞ
�
dt

¼ 1
2
∫ ∞
�∞

�� zðtÞTQzðtÞ þ 2zðtÞTpfcðtÞ � rf 2c ðtÞ
�
dt

(33)

where Q and p are given as:

Fig. 9. Rational approximation to the one-sided auto-
spectral density function of the wave load.
––––: Numerical determined target auto-spectral
density function. – – – –: Rational approximation, ðr;sÞ
¼ ð2;4Þ.
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Q ¼

2664
q 0 0 ⋯ 0
0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

3775;p ¼ ½ 0 1 ⋯ 0 �T (34)

Traditional LQG optimization merely considers the 1st and 3rd terms
in the objective functional. In the present case the 2nd term has been
introduced to optimize the energy absorbtion, keeping the displacement
and the control force as small as possible.

In order to solve the control problem, the variational approach will be
adopted. The Hamiltonian of the control problem is defined as:

HðzðtÞ; fcðtÞ; λðtÞ; tÞ ¼ 1
2

�� zðtÞTQzðtÞ þ 2zðtÞTpfcðtÞ � rf 2c ðtÞ
�

þλT ðtÞgðzðtÞ; fcðtÞ; tÞ
(35)

where λðtÞ ¼ ½λvðtÞ; λ _vðtÞ; λrðtÞ; λeðtÞ�T is the co-state vector (Lagrange
multiplier). gðzðtÞ; fcðtÞ; tÞ is given as:

gðzðtÞ; fcðtÞ; tÞ ¼ AzðtÞ þ bfc fcðtÞ þ b1w1ðtÞ (36)

The Euler-Lagrange equations for optimal control become (Meir-
ovitch, 1990): Co-state vector equation:

_λðtÞ ¼ �∂H
∂z (37)

Stationarity condition on the control force:

∂H
∂fc

¼ 0 (38)

Due to the infinite control horizon the transversality condition
λð∞Þ ¼ 0 can be ignored.

Eq. (37) yields the following differential equation for the co-state
vector:

_λðtÞ ¼ �ATλðtÞ þQzðtÞ � pfcðtÞ (39)

Eq. (38) provides the following solution for the optimal control force:

fcðtÞ ¼ 1
r

�
bT
fc
λðtÞ þ pTzðtÞ

	
(40)

In agreement with the conventional LQG procedure the following
solution is assumed for the co-state vector at optimal control:

λðtÞ ¼ �SðtÞzðtÞ (41)

leading to the following control law:

fcðtÞ ¼ �1
r

�
bT
fc
SðtÞ � pT

	
zðtÞ ¼ �GðtÞzðtÞ (42)

where GðtÞ is the control gain matrix given by:

GðtÞ ¼ 1
r

�
bT
fc
SðtÞ � pT

	
(43)

Substitution of Eqs. (41) and (42) into Eq. (39) provides the following
matrix differential equation for SðtÞ:

� _SðtÞzðtÞ � SðtÞ�AzðtÞ þ bfc fcðtÞ þ b1w1ðtÞ
� ¼ ATSðtÞzðtÞ þQzðtÞ � pfcðtÞ

(44)

fcðtÞ in Eq. (44) is eliminated by Eq. (42). Then, in the stationary state
corresponding to infinite control horizon, the matrix S is obtained from
the following Lyapunov equation:

SAþ ATS� 1
r

�
Sbfc � p

��
bT
fc
S� pT

	
þQ ¼ 0 (45)

Eq. (45) represents a generalization to the stationary Riccati equation

related to standard LQG control. Normally, the information about the
future system matrices is required when the Ricatti equation is solved in
order to synthesize the optimal control gain at the present time instant
(Basu and Staino, 2016). In this paper, assuming the stationary state for
the Riccati equation (44), corresponding to infinite control horizon, the
control problem becomes causal.

5. State observation based on Kalman filtration

The control law in Eq. (42) represents that the full state vector zðtÞ can
be observed. In reality merely the components vðtÞ and _vðtÞ are available.
For this reason the control law in Eq. (42) is combined with a Kalman
filter state observer. The following observer equation is assumed:

yðtÞ ¼ CzðtÞ þwðtÞ (46)

where:

yðtÞ ¼


vðtÞ
_vðtÞ

�
;C ¼



1 0 0 0
0 1 0 0

�
;wðtÞ ¼



a2 0
0 a3

�

w2ðtÞ
w3ðtÞ

�
(47)

w2ðtÞ and w3ðtÞ are mutual independent unit intensity Gaussian white
noise processes, cf, Eq. (19). a2 and a3 are corresponding intensities
indicating the level of the noise.

Let eðtÞ be the observer error vector, defined as:

eðtÞ ¼ zðtÞ � bzðtÞ (48)

The observer equation becomes (Meirovitch, 1990):

b_zðtÞ ¼ ðA� KCÞbzðtÞ þ bfc fcðtÞ þ KyðtÞ (49)

where bzðtÞ is the estimated state vector. The estimated control force bf cðtÞ
is given as:

bf cðtÞ ¼ �GbzðtÞ (50)

and the Kalman gain matrix K is expressed as:

K ¼ DCTW�1 (51)

where D is the steady-state variance matrix of eðtÞ satisfying the Lya-
punov equation:

ADþ DAT þ V� DCTW�1CD ¼ 0 (52)

where V and W are the intensities of the process w1ðtÞ and wðtÞ, which
can be expressed as:

V ¼ a21b1b
T
1 ;W ¼



a22 0
0 a23

�
(53)

6. Numerical example

A point heave wave energy converter is considered in the numerical
simulation. The relevant data of the absorber and the wave excitation
parameters have been indicated in Table 1.

In the following the accuracy of the theory will be tested against
numerical results obtained by nonlinear programming. The nonlinear
programming formulation of the optimal control problem is related to
two approximations related to the state vector representation in Eqs. (17)
and (18) of the convolution integral for the radiation force, and to a
discretization of the performance functional iat instants of time separated
by the interval Δτ.

In order to check the accuracy in the nonlinear programming algo-
rithm, it has been checked against the theoretical solution for optimal
control of the unconstrained heave absorber due to Nielsen et al. (2013),
given as:
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fcðtÞ ¼ �ðmþ mhÞv€ðtÞ � kvðtÞ þ ∫ ∞
t hr _vðτ � tÞ _vðτÞdτ (54)

Fig. 10 shows the results for a time step Δτ ¼ Tp
150 in the discretization

of the control interval, and a rational approximation of the order ðm; nÞ ¼
ð2; 3Þ for the convolution integral. The nonlinear programming solution

at optimal control for vðtÞ; _vðtÞ and v
€ðtÞ were used at calculation of the

theoretical solution.
Fig. 11a and 11b shows the displacement and velocity of the absorber

under LQG control for full and partial state observation, corresponding to
Eqs. (42) and (50), with the indicated parameters, and the comparison
with nonlinear programming as formulated in appendix.

Fig. 11c indicates the corresponding control force. Fig. 11d and
Table 2 indicate the instantaneous power and mean power based on LQG
control. As seen, the partial observation merely reduce the mean absor-
bed power due to the limited state observation. In order to evaluate the
effect of a2 and a3 on the absorbed power, two pairs ða2; a3Þ are
compared.

In Table 2, the absorber power with ða2; a3Þ ¼ ð0:50 ms1=2;
0:50 ms�1=2Þ is larger than the absorbed power with ða2; a3Þ ¼
ð1:00 ms1=2; 1:00 ms�1=2Þ. It can be known that the measurement pa-
rameters a2 and a3 would reduce the absorbed power generally. At the
same time, the obtained sub-optimal solution base on LQG, full state
observation is compared to the optimal solution obtained by nonlinear
programming. The details of the nonlinear programming algorithm has
been given in an appendix.

In order to investigate the broad-banded wave, the wave condition
with Hs ¼ 3m;Tp ¼ 7:42s and γ ¼ 1 has also been considered. Fig. 12
shows the trajectories of vðtÞ and _vðtÞ, control force fcðtÞ and instanta-
neous absorbed power PðtÞ at optimal control. The mean absorbed power
is also shown in Table 2. As seen, The same analysis results are applied to
the extreme broad-banded wave.

Given a sea-state defined by the parameters Hs, Tp, and γ a sufficient
long realization of feðtÞ is generated from Eqs. (26) and (29) using a so-
called broken line equivalent white noise process for w1ðtÞ (Nielsen and

Table 1
Heave absorber and wave excitation parameters.

Parameter Value Unit Parameter Value Unit

H 7.00 m vmax 0.50 m
D 14.00 m vmin �0.50 m
h 30.00 m fc;max 4.0� 105 N
m 1.84� 106 kg fc;min �4.0� 105 N
mh 0.44� 106 kg q 9.00� 105 N=ðmsÞ
Hs 3.00 m r 3.00� 10�7 m=ðNsÞ
Tp 7.42 s a2 0.50 ms1=2

γ 5 a3 0.50 ms�1=2

Fig. 10. Unconstrained case. The trajectories, control
force and instantaneous absorbed power at optimal
control. a) vðtÞ. b) _vðtÞ. c) fc;0ðtÞ. d) Popt;0ðtÞ.
––––:Nonlinear programming solution.
⋅⋅⋅⋅⋅⋅⋅:Unconstrained analytical solution (Nielsen et al.,
2013).

Fig. 11. The trajectories of vðtÞ and _vðtÞ, control force
fcðtÞ and instantaneous absorbed power PðtÞ at
optimal control. Hs ¼ 3m, Tp ¼ 7:42s and γ ¼ 5.
fc;max ¼ �fc;min ¼ 4� 105N and vmax ¼ � vmin ¼
0:5m. a) vðtÞ. b) _vðtÞ. c) fcðtÞ. d) PðtÞ. ––––:Nonlinear
programming solution. - - -:LQG, full state observa-
tion. -⋅-⋅-⋅:LQG, partial state observation.
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Zhang, 2017). Next, the load realization applied in LQG control is used for
the nonlinear programming solution for the optimal solution. Finally, q
and r are determined so the standard deviations σv and σfe are identical for
the nonlinear programming solution and the LQG solution with full state
observation. When nonlinear programming is applied, the computational
cost grows exponentially with the length of the control horizon. For this
reason stable solutions for the parameters q and r can't be achieved by
merely using a single realization of the wave stationary load process feðtÞ
of limited length. Instead a finite number N of independent time series of
the wave load of limited length should be generated, which from samples
of q and r are generated based on nonlinear programming. Next, stable
estimates of q and rmay be obtained as ensemble averages of the indicated
sample values. Then, the calculation time of the approach merely growth
linearly withN. Assuming that all involved stochastic processes are ergodic
it doesn't matter which realization of w1ðtÞ (and hence of feðtÞ) is used. The
indicated standard deviations are determined by time-averages of N ¼ 6
independent time series of vðtÞ and fcðtÞ in the interval [0, 100s] where the

time step Δτ is Tp
150. Further, according to the Pontryagin's maximum

principle (Pontryagin et al., 1962), the optimal control is obtained for the
maximum value of the Hamiltonian as given by Eq. (35). Then, an increase
or decrease of the weights q and r implies a decrease or increase of vðtÞ and
fcðtÞ at optimal control. In the present model it follows that q and r are

negative correlated to the magnitude of the constraints on the displace-
ment and control force.

In Fig. 11d, at optimal control PðtÞmay have negative loops. Actually,
an imposed constrain fcðtÞ � 0, corresponding to PðtÞ � 0 during a time
interval with negative power absorption in the optimal control, will
produce a non-optimal velocity trajectory _vðtÞ out-side the said time in-
terval via the impact on the equation motion Eq. (12), resulting in a
reduced average absorbed power during a longer control horizon. The
same observation was made by Falnes (2002).

7. Conclusions

In this paper, a control law based on the LQG approach is used to
maximize the absorbed energy of a wave energy point absorber system.
As a result of rational approximations to the radiation force and the wave
load, the integrated dynamic system is reformulated as a linear stochastic
differential equation which is driven by a unit intensity Gaussian white
noise. Further, the Kalman filter technique is employed to estimate the
combined state vector based on noise observation of vðtÞ and _vðtÞ. The
proposed LQG control successfully demonstrated the ability to extract
and maximize the absorbed power while keeping the absorber motion
and control force small. Based on a specific calibration technique of the
parameters q and r entering the performance functional of the LQG so-
lution close to optimal control force solutions are generated in cased of
low signal to noise ratios of the observed state variables. For higher noise
level a certain reduction appears in the absorbed power.
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Appendix. Nonlinear programming algorithm

The optimal control problem in Eq. (12) is reformulated as a nonlinear programming problem by discretizing the objective functional and the state
vector in time:

Table 2
Mean absorbed power under different wave conditions.

γ ¼ 5 γ ¼ 1

Nonlinear programming 78.1005 kW 84.3520 kW
LQG, full state observation 77.0597 kW 83.3994 kW
LQG, partial state observation with (a2,
a3)¼(0.50ms1=2, 0.50ms�1=2)

73.4893 kW 80.4685 kW

LQG, partial state observation with (a2,
a3)¼(1.00ms1=2, 1.00ms�1=2)

61.3112 kW 76.2606 kW

Fig. 12. The trajectories of vðtÞ and _vðtÞ, control force
fcðtÞ and instantaneous absorbed power PðtÞ at
optimal control. Hs ¼ 3m, Tp ¼ 7:42s and γ ¼ 1.
fc;max ¼ �fc;min ¼ 4� 105N and vmax ¼ � vmin ¼
0:5m. a) vðtÞ. b) _vðtÞ. c) fcðtÞ. d) PðtÞ. ––––:Nonlinear
programming solution. - - -:LQG, full state observa-
tion. -⋅-⋅-:LQG, partial state observation.
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maxJðXðτMÞÞ ¼ xnþ3ðτMÞ
subject to the path and inequality constraints :
c
�
X
�
τj
�� ¼ 0

h
�
X
�
τj
�� ¼

2664
v
�
τj
� �vmax

�v
�
τj
� þvmin

fc
�
τj
� �fc;max

�fc
�
τj
� þfc;min

3775� s
�
τj
� ¼ 0

s
�
τj
� � 0

9>>>>>>=>>>>>>;
(55)

where τj ¼ t0 þ j Δτ ; j ¼ 0; 1;…;M.
sðtÞ indicates a vector function of slack variables. The time step in the discretization of the interval �t0; t1� is given as Δτ ¼ t1�t0

M . The vector XðtÞ of
dimension 2nþ 6 and the path constrain vector cðXðtÞÞ of dimension nþ 3 are defined as:

XðtÞ ¼


vðtÞ; _vðtÞ; zTr ðtÞ; xnþ3ðtÞ; ddt vðtÞ;

d
dt

_vðtÞ; d
dt
zTr ðtÞ;

d
dt
xnþ3ðtÞ

�T
(56)

cðXðtÞÞ ¼

2666666666664

d
dt
vðtÞ � _vðtÞ

M
d
dt

_vðtÞ þ przrðtÞ þ rðvðtÞÞ � feðtÞ þ fcðtÞ
d
dt
zrðtÞ � ArzrðtÞ � br _vðtÞ
d
dt
xnþ3ðtÞ � fcðtÞ _vðtÞ

3777777777775
(57)

The inherent approximation in the indicated nonlinear programming formulation concerns the discretization of the time continuous problem into
M þ 1 discrete instants of time for optimization, and the use of the rational approximation in Eq. (18) for the force fr;0ðtÞ.

The formulation applies to both displacement constraints and control force constraints. In case, merely control force constraints are prescribed the
algorithm is applied by using large values of vmax and small values of vmin.

The applied algorithm for solving the indicated nonlinear programming problem is described in (El-Bakry et al., 1996).
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Semi-active feedforward control of a floating OWC
point absorber for optimal power take-off

Tao Sun and Søren R.K. Nielsen

Abstract—The performance of a floating oscillating water
column wave energy converter is depending on the variation of
the pressure above atmospheric pressure in the pressure chamber
above the water column. The pressure can be semi-actively
controlled by the opening and closure of a valve between the
pressure chamber and the generator. In the paper a control is
suggested, where the closure time intervals of the valve are taken
as a fixed fraction of the peak period of a given sea-state. The
control relies on an estimation of the external wave loads, which
in turn depend on the prediction of the future surface elevation
in a given prediction interval, for which reason it is classified
as a feedforward (open loop) control strategy. A Kalman-Bucy
filter has been devised for the indicated prediction. The optimal
fraction of time of the sub-optimal controller with a closed valve
is determined by comparison with the performance of the optimal
control obtained by nonlinear programming. For a given sea-state
it is demonstrated that the reduced performance of the sub-
optimal controller is primarily related to the estimation error of
the wave loads.

Index Terms—wave energy, oscillating water column, heave
absorber, semi-active control, feedforward control

I. I NTRODUCTION

A N Oscillating Water Column (OWC) wave energy con-
verter (WEC) extracts energy by driving an oscillating

water column which compresses or expands the air in a cham-
ber not connected to the sea. The change of the internal energy
of the air in the pressure chamber can next be transformed
to electric energy via the generated air flow through a valve
to the turbine. OWCs have been deployed as fixed structures
at the shoreline or nearshore, or integrated in breakwaters
and floating structures [1]. For the floating OWC device, the
relative motion between the float and the internal free surface
provides the air flow. One of the main advantages of floating
OWC devices is that it is possible to widen the bandwidth of
frequencies where the system performs well if the resonance
peaks from the floater and water column are tuned to or close
to the dominant wave frequency of the incoming wave [2].
In any case, in order to improve wave energy conversion an
effective control strategy of the relative motion between the
float and the surface of water column for a floating OWC
devices or the motion of the surface of the water column for
a fixed OWC device should be devised.

Reference [3] applied latching control for control of fixed
OWC wave energy converter including the air turbine numer-
ically. A valve, which switches rapidly between a closed and
an open state, was applied to further improve the performance
of the device. The closing of the valve causes a rapid increase

The authors Tao Sun and Søren R.K. Nielsen are with the Department of
Civil Engineering (e-mail: tsu@civil.aau.dk; srkn@civil.aau.dk).

Manuscript received XX XX, 2019; revised XX XX, 2019.

of the pressure, which causes an increased power absorption
at the succeeding reopening. The optimal control problem was
derived by a variational approach with Hamiltonian formalism
[4], and solved by the conditional gradient method [5]. It
shows that phase-control of the oscillating water column is
feasible for irregular waves and that energy-capture can be sig-
nificantly increased by applying a flow-control in the power-
conversion system. Reference [6] performed a numerical anal-
ysis of latching control of an OWC spar-buoy wave energy
converter considering for regular waves. The compressibility
of the air in the chamber plays an important role because it
allows a relative motion between the floater and the internal
free surface.

Further, in order to increase wave energy conversion, some
studies for turbogenerator control of the OWC device have
been performed. The aerodynamic design of the Wells turbine
to the OWC performance was investigated by Brito-Melo
et al., [7]. Garrido et al. presented a sliding-mode-control-
based vector control scheme to improve the lacks of accuracy
and robustness of parameters for PI controller [8]. A control
scheme including a rotational speed control and an airflow
control has been introduced to improve the wave energy
conversion [9]. Flow behaviour between the air chamber and
the turbine was investigated through CFD simulation by El
Marjani et al., [10]. In the present paper, merely a Wells
turbine is considered.

Generally, in order to analyze the interaction between the
floater and the OWC, there are two different approaches,
known as the piston model [11] and the uniform pressure
distribution model [12], respectively. The piston model pre-
sumes that the vertical particle motion of the water column
is constrained to move with the same displacement under the
assumption of limited pressure chamber dimensions compared
to the incident wavelengths [2], [13]. In the uniform pressure
distribution model, the governing equations are expressed
in terms of the dynamic air pressure on the OWC internal
free surface and flow rate displace by the OWC surface
motion, rather than forces and velocities as in the modelling
of oscillating body converters. Further, for the piston model
the interaction between waves and the WEC can be analysed
by using the wave-structure interaction theory [11], [14] for
a two-body coupling system. Therefore, the piston model is
introduced to calculate the hydrodynamic parameters for the
floating OWC system.

The paper presents a sub-optimal solution for the control
of a floating OWC heave point absorber. Given the closure
intervals of the valve are taken as a fixed fraction of the
peak period of a given sea-state, the semi-active control of
the opening and closure of a valve will be considered. Then,
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the wave load vector, the input to the system, needs to
be estimated. Finally, a numerical example is provided to
investigate the performance of the suggested control algorithm.

II. M ETHODOLOGY

A. Equation of motion of the floating OWC device

When the internal water surface moves up, or the device
structure moves down, the volume of the pressure chamber
becomes smaller, which creates an increased pressure in the
pressure chamber. The increased chamber pressure drives the
air out of the pressure chamber, and at the same time pushes
the device structure upward and the internal water surface
downward, so that the air volume is enlarged.

u1(t)

a
MWL

x3

of float

m1

x1

fe,1(t)

b

Referential static
equilibrium state

η(t)

fe,2(t)

u2(t)

Generator

D1

a) b)

D

fm(t)

x2

D2

Buoyancy
tank

Ballast
tank

p(t)

h

Fig. 1: Loads on floating OWC device. a) Static equilibrium state. b) Dynamic state.

Fig. 1a shows the floating OWC device in the static equilib-
rium state, wherea andb indicates the parts of the float above
and below the mean water level MWL.a is the height of the
pressure chamber, andb is the submerged part of the pressure
chamber.h specifies the water depth. The outer diameters of
the buoyancy tank and ballast tank areD1 andD2, andD is
the diameter of the water column.m1 is the structural mass
including the ballast.

The motion of the point absorber is referred to an inertial
(x1, x2, x3)-coordinate system with the(x1, x2)-plane posi-
tioned in the MWL-plane, and thex3-axis orientated in the
upwards direction. The origin of the coordinate system is
placed at the centerline of the point absorber. The surface
elevationη(xβ , t) is considered positive in thex3-direction.
Index notation of two-dimensional vectorial quantities is ap-
plied with Greek indices ranging overα, β = 1, 2 and Latin
indices ranging overk = 1, 2, 3, respectively. The summation
convention is abandoned by means of parentheses around
dummy indices, i.e.aα bα = a1b1 + a2b2, whereasa(α)b(α)
merely indicates the product ofaα andbα.

The water flow is considered incompressible, irrotational
and non-viscous, and linear (Airy) wave theory is assumed.
ρw signifies the mass density of the water.p(xk, t) signifies
the thermodynamic pressure of the air in the pressure chamber
above the atmospheric pressurep0. The pressure is assumed
to be constant throughout the pressure chamber, sop(xk, t) ≃
p(t).

The surface elevationη(xβ , t) inside the pressure chamber
is dominated by the mean surface elevationu2(t) of the water

column from the MWL. Hence, the following approximation
applies:

η(xβ , t) ≃ u2(t) (1)

Equation (1) is known as the piston approximation. Since the
water column is assumed to be infinite rigid, the constraint
can be imposed at any position along the lengthb at the water
column, if the mass of the water column above the constraint
is added as a point massm2.

Let u1(t) be the vertical displacement of the float in thex3-
direction. For the float, the pressure produces a forcep(t)A
on the system in the direction of the degree of freedomu1(t),
and a force−p(t)A on the water column in the direction of
the degree of freedomu2(t), whereA = π

4D
2 indicates the

surface area of the water column. Further, the vertical compo-
nents of the dynamic restoring force from the mooring system
are given by the linear stiffness relationfm(t) = km u1(t),
where km is the combined stiffness coefficient from all cables.
Due to the piston model, the following vectorial Cummings
equation applies:

Mü(t) + fr(t) + r
(
u(t)

)
= fe(t) − fc(t) , t ∈]t0, t1]

u(t0) = u0 , u̇(t0) = u̇0

}

(2)
where

u0 =

[
u1,0(t)
u2,0(t)

]
, u̇0 =

[
u̇1,0(t)
u̇2,0(t)

]

u(t) =

[
u1(t)
u2(t)

]
, fc(t) = a p(t) , a =

[
−1
1

]
A

fe(t) =

[
fe,1(t)
fe,2(t)

]
, r

(
u(t)

)
=

[
(km + ρw g A1)u1(t)

ρw g Au2(t)

]

M =

[
m1 +m11(∞) m12(∞)
m21(∞) m2 +m22(∞)

]





(3)
t0 is the initial time, andt1 the terminal time of the control
horizon. u0 and u̇0 signify the initial value vectors of the
system at the initial timet0. A1 = π

4 (D
2
1−D2) is the sectional

area of the float surrounding the pressure chamber.
fe(t) is a vector storing the external wave load vector and

r
(
u(t)

)
specifies the restoring force from buoyancy and the

mooring system.ρw indicates the mass density of the water
and g is the acceleration of gravity.M signifies the mass
matrix. The componentsmαβ(∞) indicate the added mass
matrix of the water outside the float and below the piston at
infinite frequency.fr(t) represents the radiation damping of
the system given as:

fr(t) =

∫ t

t0

hr(t− τ) u̇(τ) dτ (4)

The related frequency response matrix is given by the
Fourier transform:

Hr(ω) =

∫ ∞

−∞
e−iωt hr(t) dt =

∫ ∞

0

e−iωt hr(t) dt (5)

wherei indicates the complex unit. In the last statement it has
been used thathr(t) is causal, i.e.hr(t) = 0, t < 0, which
makes a rational approximation tofr(t) possible.
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The external wave load vector may be represented by the
following convolution integral of the surface elevationη(t):

fe(t) =

∫ ∞

−∞
he(t− τ) η(τ) dτ (6)

wherehe(t) indicates a non-causal impulse response vector
becausehe(t) 6= 0, t < 0. Due to the non-causality ofhe(t),
the prediction of the surface elevationη(τ), τ > t is necessary
in order to calculate the wave loads at the timet.

The hydrodynamic parametersmαβ , hr(t), he(t) are com-
puted based on the boundary element program WAMIT [15].
Fig. 2 shows the submerged geometry discretization for the
floating OWC device. The kinematic constraint has been
specified at the bottom of the water column as marked in blue.
Correspondingly,m2 = ρw Ab.
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Fig. 2: The submerged geometry discretization for the floating OWC device.
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Fig. 4: Imaginary part of the frequency response matrix for the radiation force vector.
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Fig. 7: Impulse response vector for the excitation force vector. : The float.
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Fig. 3 shows the hydrodynamic added mass for the float
and the OWC. Figs. 3-7 refer to the absorber shown in Fig.
1 with the parameter values given in Table I in the numerical
example. The angular frequencyω has been normalized with
respect to the peak angular frequencyωp = 2π

Tp
, whereTp is

the peak period of the considered sea-state.
The real and imaginary parts of the related frequency

response matrix for the radiation force are shown in Figs.
4 and 5. Merely the function values for positive angular
frequency, given thatRe

(
Hr,αβ(ω)

)
is an even function and

Im
(
Hr,αβ(ω)

)
is an odd function ofω.

The impulse response matrices for the radiation force and
wave load vectors are shown in Figs. 6 and 7. The impulse
response matrixhr(t) is symmetric, i.e.,hr(t) = hTr (t) as
indicated in Fig. 6b. In turn this means that the frequency
response matrixHr(ω) and the related added mass matrix
m = 1

ω Im(Hr(ω)) become symmetric as well. As seen,
heη,α(t) ≃ 0 for |t| > Tp. Hence, surface elevations beyond
one peak wave period ahead will not affect the present wave
load vectorfe(t).

B. Thermodynamics of the air

The air is considered an adiabatic, isentropic ideal gas.
Then, the pressure is given by the constitutive equation [16]:

p(t) + p0
p0

=

(
ρ(t)

ρ0

)γ
, γ =

cp
cv

≃ 1.4 (7)

whereρ(t) indicates the time-varying mass density of air,ρ0
is the referential value at atmospheric pressure, andcp and
cv indicate the specific heat at constant pressure and constant
volume.
p0 turns out to be significantly larger than even extreme

values ofp(t) in a practical OWC device. Hence, equation (7)
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can be linearised to provide the following approximation for
ρ(t):

ρ(t) ≃ ρ0

(
1 +

p(t)

γ p0

)
(8)

The pressure variationp(t) in the air chamber is related to
the volume flow rate of air through the turbine (positive for
outward flow). The pressurized air is driven out in exhalation,
while in inhalation, the atmosphere air with the densityρ0 is
inhaled. Thus, the air volume flow rate during exhalation and
inhalation should be considered different due to the different
mass densities corresponding to:

Q(t) =





− 1

ρ(t)

d
(
ρ(t)V (t)

)

dt
, p(t) ≥ 0

− 1

ρ0

d
(
ρ(t)V (t)

)

dt
, p(t) < 0

(9)

whereV (t) = V0 + A
(
u1(t) − u2(t)

)
is the volume of the

air chamber.V0 = Aa is the initial volume of the air chamber.
Then,V̇ (t) can be written as:

V̇ (t) = A
(
u̇1(t)− u̇2(t)

)
(10)

Differentiation of (8) provides:

ρ̇(t) =
ρ0
γ p0

ṗ(t) (11)

In the following a Wells turbine is considered, for which
the mass flow is given as [7]:

Q(t) = k β(t) p(t) (12)

wherek is a constant which represents the damping of the
turbine.β(t) represents the proportional opening of the valve
and is constrained to satisfy0 ≤ β(t) ≤ 1.

Further, in order to avoid the stalling behavior of the Wells
turbine when the airflow exceeds a certain value, greatly
decreasing its efficiency, the airflow speed through the turbine
must be limited, which can be carried out by the air-valve
control, which is widely used in OWC systems [17], [18].
Alternatively, control of the rational speed can be applied to
avoid the stalling behavior [19].

Combining Eqs. (9), (10), (11) and (12), the following
differential equation is obtained, which relates the air pressure
variationp(t) to the relative velocity of the inner free surface
and the float.




ṗ(t)V (t) + (γp0 + p(t))
(
V̇ (t) + k β(t) p(t)

)
= 0, p(t) ≥ 0

V (t)

γp0
ṗ(t) +

(
1 +

p(t)

γp0

)
V̇ (t) + k β(t) p(t) = 0, p(t) < 0

(13)
For the turbine, the instantaneous absorbed power can be

expressed as [20]:

P (t) = Q(t) p(t) (14)

Insertion of (12) in (14) provides the following relation for
the instantaneous power take-off:

P (t) = k β(t) p2(t) (15)

The dynamic of the system is given by (2) in combination
to (13), corresponding to:

Mü(t) + fr(t) + r
(
u(t)

)
= fe(t) − fc(t) , t ∈]t0, t1]

ṗ(t) +
γp0 + p(t)

V (t)

(
V̇ (t) + k β(t) p(t)

)
= 0, p(t) ≥ 0

ṗ(t) +
(
γp0 + p(t)

) V̇ (t)

V (t)
+
γ p0 k β(t) p(t)

V (t)
= 0, p(t) < 0





u(t0) = u0 , u̇(t0) = u̇0 , p(t0) = 0





(16)
The semi-active control of the system is related to the time

variation of the functionβ(t). The optimal control is the
trajectory of β(t), which optimizes the absorbed energy in
the interval[t0, t1] given as:

E =

∫ t1

t0

P (τ) dτ =

∫ t1

t0

k β(τ) p2(τ) dτ (17)

C. Rational approximation to radiation force vector

In the following, an approximate finite dimensional state
vector representation offr(t) will be introduced. It should
be noticed that the indicated state vector representation will
be used in the numerical time integration of (16), and the
nonlinear programming solution for the optimal power take-
off.

Then, each componentHr,αβ(ω) = Hr,βα(ω) of the fre-
quency response matrixHr(ω) defined by (5) are replaced by
a rational approximatioñHr,αβ(s) of the order(l,m) given
as [21]:

H̃r,αβ(s) =
P(α)(β)(s)

Q(α)(β)(s)
, s = iω (18)

where

Pαβ(s) = p0,αβs
l + p1,αβs

l−1 + · · ·+ pl−1,αβs + pl,αβ

Qαβ(s) = sm + q1,αβs
m−1 + · · ·+ qm−1,αβs+ qm,αβ

}

(19)
The parameters p0,αβ , p1,αβ, . . . , pl−1,αβ, pl,αβ and
q1,αβ , . . . , qm−1,αβ , qm,αβ are all real. The order(l,m)
of the filters may be chosen freely with the only restrictions
that l < m, and that all poles ofQαβ(s) must have negative
real parts in order to ensure stability and causality.

The componentfr,αβ(t) indicates the contribution to the
componentfr,α(t) of fr(t), when the system is driven by
componentu̇β(t) of u̇(t) alone. Further, the relationship
betweenfr(t), fr,α(t), fr,αβ(t) can be expressed as:

fr(t) =

[
fr,1(t)
fr,2(t)

]
=

[
fr,11(t) + fr,12(t)
fr,21(t) + fr,22(t)

]
(20)

Then,fr,αβ(t) can be obtained as output of the following filter
equations, given on the matrix form:

fr,αβ(t) = pr,(α)(β) zr,(α)(β)(t)

d

dt
zr,αβ(t) = Ar,(α)(β) zr,(α)(β)(t) + br,(α)(β)u̇(β)(t), t ∈ [t0,∞[





(21)
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where

zr,αβ(t) =




yαβ(t)
d
dtyαβ(t)

d2

dt2 yαβ(t)
...

dm−1

dtm−1 yαβ(t)




, br,αβ =




0

0

0
...

1




(22)

Ar,αβ =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

−qm,αβ −qm−1,αβ −qm−2,αβ · · · −q2,αβ −q1,αβ




(23)

pr,αβ =
[
pl,αβ pl−1,αβ · · · p1,αβ p0,αβ 0 · · · 0

]

(24)
Finally, equation (21) can be written on the matrix form:

d

dt
zr(t) = Ar zr(t) + Br u̇(t)

fr(t) = Pr zr(t)



 (25)

where

Ar =




Ar,11 0 0 0
0 Ar,12 0 0
0 0 Ar,21 0
0 0 0 Ar,22


, Br =




br,11 0
0 br,12

br,21 0
0 br,22




Pr =

[
pr,11pr,12 0 0
0 0 pr,21pr,22

]
, zr(t) =




zr,11(t)
zr,12(t)
zr,21(t)
zr,22(t)







(26)

Further, the differential equation (25) should be solved with the
initial value zr(t0) = 0. Notice thatAr,12 = Ar,21, br,12 =
br,21 andpr,12 = pr,21 due to the symmetry of̃Hr(ω).

Figs. 8 - 10 show the rational approximatioñHr,αβ(ω) of
order (l,m) = (3, 4). As seen, a good agreement is obtained
to the target frequency response functionsHr,αβ(ω). Further,
time has been normalized with respect to the peak periodTp
in the auto-spectrum density function for the surface elevation
η(t) given by (29), and the angular frequency with respect to
ωp =

2π
Tp

. Tp = 6.77s was used, cf. Table I.
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Fig. 8: Rational approximation of order(m,n) = (3, 4) to Hr,11(ω).
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Fig. 9: Rational approximation of order(m,n) = (3, 4) to Hr,22(ω).
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Fig. 10: Rational approximation of order(m,n) = (3, 4) to Hr,12(ω).
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I II. N ONLINEAR PROGRAMMING SOLUTION OF THE

OPTIMAL CONTROL PROBLEM

Based on Eqs. (15), (16) and (25), the optimal control prob-
lem subject to the following state equation can be expressed
as:

max J [p, β] =

∫ t1

t0

k β(τ) p2(τ)dτ

s.t.

ż(t) =




u̇(t)

M−1
(
−Pr zr(t) − r

(
u(t)

)
+
(
fe(t)− a p(t)

))

Ar zr(t) + Br u̇(t)

−γp0 + p(t)

V (t)

(
V̇ (t) + k β(t) p(t)

)
, p(t) ≥ 0

−
(
γp0 + p(t)

) V̇ (t)

V (t)
− γ p0 k β(t) p(t)

V (t)
, p(t) < 0








0 ≤ β(t) ≤ 1





(27)
where

z(t) =
[
u(t)T u̇(t)T zr(t)

T p(t)
]T

(28)

The surface elevationη(t) can be generated from the
double-sided JONSWAP spectrum defined by [22]:

Sηη(ω) = δ
H2
s

ωp
ψ ε

( |ω|
ωp

)−5

exp

(
− 5

4

(
ω

ωp

)−4
)

(29)
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where
δ =

0.0312

0.230 + 0.0336ψ− 0.185
1.9+ψ

ε = exp

(
− 1

2

( |ω| − ωp
σ ωp

)2
)

σ =

{
0.07 , |ω| ≤ ωp

0.09 , |ω| > ωp





(30)

Hs is the significant wave height, andψ is the peak enhance-
ment parameter, which controls the bandwidth of the spectrum.
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Fig. 11: Surface elevation process.
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Fig. 12: Components of the wave load vector. a) The float. b) TheOWC.

Fig. 11 shows a time series ofη(t) generated from the
double-sided auto spectral density function in (29) with the
parametersTp = 6.77s,Hs = 2.5m, γ = 3.3. This and
equivalent time series will be used in the bench-marking of the
below suggested sub-optimal control strategy. Fig. 12 shows
the time series of the related wave load componentsfe,1(t)
and fe,2(t) on the float and the OWC as calculated by (6).
The indicated time series will be used as a reference in the
validation of the estimation problem described in Section 4.

The optimization problem in (27) can be solved by nonlinear
programming [23], as a benchmark for the validation of the
subsequent suggested control. Fig. 13 shows the trajectories
of u(t), u̇(t) and ü(t) for the float and the OWC at optimal
control, using the time series for the wave load given in Fig.
12. Further, the relative displacementu2(t) − u1(t) is shown
in Fig. 13a, which is determining the pressure in the pressure
chamber.

Fig. 14 shows the related time series ofp(t) and β(t) at
optimal control indicated with a blue signature.[t1, t3] and
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Fig. 13: Time series of trajectories at optimal control. :u1(t), u̇1(t), ü1(t).
:u2(t), u̇2(t), ü2(t). :u2(t) − u1(t).
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Fig. 14: p(t) and β(t) at optimal control and sub-optimal control,α = 0.12.
:p(t) at optimal control. :p(t) at sub-optimal control. :β(t)

at optimal control. :β(t) at sub-optimal control.

[t3, t5] denote the intervals withp > 0 and p < 0. Further,
[t1, t2] and [t3, t4] indicate the subintervals with the valve
closed corresponding toβ(t) = 0, which causes the pressure
to increase and decrease rapidly in these intervals. The valve
is opened at the timest2 and t4 corresponding toβ(t) = 1,
which brings forward a temporarily decrease and increase of
p(t), as indicated by local extremes of the pressure.

At the optimal control, the length of the time interval with a
closed valve varies somewhat due to the random sea-state. The
idea of the considered sub-optimal control is to use a constant
time interval with a closed valve of the lengthαTp = t2−t1 =
t4 − t3 at both positive and negative dynamic pressure. Then,
the sub-optimal semi-active control of the valve can be written
as

β(t) = H
(
p(t)

)
H
(
t− t1 − αTp

)

+H
(
− p(t)

)
H
(
t− t3 − αTp

) (31)

whereH(t) is the unit step function, defined as:

H(t) =

{
1 , t ≥ 0

0 , t < 0
(32)

The optimal control value ofα for a given sea-state is
obtained by maximizing the absorbed energy of the sub-
optimal controller in a given control interval relative to the
absorbed energy at optimal control using the same sufficiently
long realization of the surface elevation and the same wave
load vectorfe(t). In Fig. 14, the performance of the sub-
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optimal controller has been indicated with a red signature,
using the exact wave load vector andα = 0.12.

The computational cost of the nonlinear programming cal-
culation grows exponentially with the length of the control in-
terval. For this reason the statistical stable optimal solution for
α can hardly be achieved by merely using a single realization
of the wave load processfe(t). Instead a finite numberN of
independent realizations of the wave load vector processes of
limited length is generated, each of which provides a sample of
α based on nonlinear programming. Next, the final estimate of
α is obtained by an ensemble average of these sample values.
In this case, the calculation time merely grows linearly with
N . Assuming that all involved stochastic processes are ergodic
both of these approaches are equivalent.

With β(t) given by (31), the state variablesu(t) and p(t)
can be obtained by numerical time integration if the wave load
vectorfe(t) can be estimated.fe(t) depends on future surface
elevations, which needs to be predicted at least one peak period
Tp ahead, cf. the discussion related to Fig. 7. The prediction
will be performed by a suitable Kalman-Bucy filter.

IV. ESTIMATION OF WAVE LOAD VECTOR

At first a rational approximation toSηη(ω) driven by unit
intensity Gaussian white noise is devised, given as

Sηη(ω) ≃ P (s)P (−s)
Q(s)Q(−s)

1

2π
, s = iω (33)

Fig. 15 shows the rational approximation of order(r, s) =
(3, 6) to the double-side JONSWAP auto-spectral density
functionSηη(ω) for the surface elevation given by (29).
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1

Fig. 15: Rational approximation to JONSWAPSηη(ω) of order (3, 6).
:Sηη(ω). : Rational approximation.

Then, the state equations for the surface elevation can be
expressed as, [24]:





dY(t)

dt
= AcY(t) + bc w1(t)

η(t) = pcY(t) + cw2(t)
(34)

wherecw2(t) is the measurement noise,c is a constant indi-
cating the noise level.w1(t) andw2(t) are the unit intensity
Gaussian white noises defined by the following mean value
function and auto-covariance function:

E[wα(t)] = 0

E[wα(t)wβ(t+ τ)] = δαβ δ(τ)

}
, α , β = 1, 2. (35)

whereδ(·) is the Dirac function andδαβ is the Kronecker’s
delta. The column vectorsY(t) , bc, the row vectorpc and
the system matrixAc has the similar expressions as shown

in Eqs. (22), (23) and (24). Hence the optimal Kalman-Bucy
observer equation reads, [25]:

dŶ(t)

dt
= AcŶ(t) + K(t)

(
η(t)− pc Ŷ(t)

)
(36)

whereŶ(t) is the estimated state vector.K(t) indicates the
time dependent Kalman gain vector, expressed as:

K(t) = P(t)pTc
1

c2
(37)

whereP(t) = E[e(t) e(t)T ] is the covariance matrix of the
error vectore(t) = Y(t)−Ŷ(t). The stationary value ofP(t)
ast→ ∞ is given by the following algebraic Riccati equation,
[25]:

AcP + PAT
c − PpTc

1

c2
pcP + bc b

T
c = 0 (38)

Then, the prediction equation is expressed as:

dȲ(τ)

dτ
= Ac Ȳ(τ) , τ ∈ [t, t+ Tη] (39)

whereȲ(τ) is the predicted state vector at the timeτ , t the
present time andTη the prediction horizon.

Hence, the predicted surface elevationη̄(τ) can be obtained:

η̄(τ) = pc Ȳ(τ) = pc e
Ac (τ−t) Ŷ(t) , τ ∈ [t, t+Tf ] (40)

whereeAc τ signifies the exponential matrix function, and the
initial vector Ȳ(t) is the smoothed estimate from (36).

V. NUMERICAL EXAMPLE

The following parameter values have been applied. As seen,
the stiffness of the mooring system is ignored in the example.

TABLE I: Heave absorber and wave excitation parameters

Parameter Value Unit Parameter Value Unit

a 2.00 m m1 8.3695×105 kg
b 5.00 m m11(∞) 3.4515×105 kg
h 100.00 m m12 = m21 2.5644×104 kg
D 5.00 m m22(∞) 0.3736×105 kg
D1 10.00 m Hs 2.50 m
D2 10.00 m Tp 6.77 s
ρ0 1.225 kg/m3 γ 3.3
ρw 1025 kg/m3 k 1×10−3 m·s
p0 101325 Pa c 0.1 m
km 0 N/m
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Fig. 16: Prediction of̄η(t) of the surface elevation for different start times with noise
level c = 0.1m. Tp = 6.77s,Hs = 2.5m, γ = 3.3. a) Start atτ = 5.2Tp. b) Start
at τ = 15.3Tp. : Referenceη(t). : Predictedη̄(τ).
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Fig. 17: Estimate of wave load vectorfe(τ) with noise levelc = 0.1m corresponding to
continuous predicted surface elevations. a) Predicted wave load componentf̄e,1(τ). b)
Predicted wave load componentf̄e,2(τ). : Referencefe(t). : Estimated
f̄e(τ).

Fig. 16 shows the prediction of surface elevation compared
to the reference time series given in Fig. 11. As seen, predic-
tions beyondTp becomes inaccurate.

Fig. 17 shows the related estimate offe(t). At each instant of
time, the surface elevation has been predicted one wave peak
period ahead. Then, in combination with the previous surface
elevations of the time series, the estimate offe(t) has been
obtained from (6). At practical applications of the control, the
previous surface elevations are assumed to be available from
continuous measurements. The deviation from the reference
value is a consequence of the prediction error of the surface
elevation and the measurement noise.

Next, based on the average ofN = 4 independent realiza-
tions of the length30Tp of the surface elevation for a given
sea state, the optimal value of the control parameterα can
be obtained by maximizing the absorbed energy as indicated
by (17). The red curve in Fig. 20 shows the variation of the
absorbed energy as a function ofα, where the exact wave
loads related to the time series of surface elevations have been
applied. As seen, a maximum is obtained approximately at
α = 0.12, where the reduction compared with the optimal
absorbed energy as indicated by the blue line is5.95%. For
α = 0, corresponding to a constantly open valve, the reduction
is 10.24%.
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Fig. 18:p(t) and β(t) at optimal control and sub-optimal control with estimated wave
load vector,α = 0.12. :p(t) at optimal control. : p(t) at sub-optimal
control. :β(t) at optimal control. :β(t) at sub-optimal control.

Fig. 18 shows the comparison of the variation ofβ(t) and
p(t) at optimal control and sub-optimal control withα = 0.12
and the estimatedfe(t) indicated in Fig. 17. A small deviation
is obtained between the pressure variation at optimal and
suggested sub-optimal control.
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Fig. 19: Instantaneous Power take-off for different controls. : Power take-off at
optimal control. : Power take-off at sub-optimal control with exact wave
loads,α = 0.12. : Power take-off at sub-optimal control with estimated
wave loads,α = 0.12.

Fig. 19 shows the instantaneous power take-off for the op-
timal control, the sub-optimal control using exact wave loads,
and the sub-optimal control with estimated wave loads. All
curves have been obtained as the average of the results from
the previously mentionedN = 4 independent realizations of
the surface elevation.α = 0.12 is used in both sub-optimal
controls.
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Fig. 20: Absorbed energy of sub-optimal controller as a function of α.

The black line in Fig. 20 indicates the average absorbed
energy of the sub-optimal controller withα = 0.12 and
estimated wave loads for theN = 4 considered realizations
of the surface elevation. The performance of the controller
is 26.93% below that of the optimal controller and22.31%
below that of the sub-optimal controller withα = 0.12 and
exact wave loads. Hence, the primary reason of the indicated
reduction is related to the estimation error of the wave loads.

VI. CONCLUSION

The paper focuses on the optimal control of a floating
oscillating water column wave energy point absorber for power
take-off. The piston model has been used for simulating the
motion of the water column, and a linear model was used for
the mass flow to the turbine. A semi-active control algorithm
was suggested, where the opening and closing of the valve
between the pressure chamber and the turbine is given as
a fixed fraction of the peak period of the considered sea-
state. The optimal value of the said fraction was determined
by comparison to the optimal solution obtained by nonlinear
programming. The devised control strategy relies on the esti-
mation of the wave loads on the float and the wave column,
which were obtained by a Kalman-Bucy filter prediction of the
future sea surface elevation. The performance of the devised
controller has been compared to that of the optimal control
obtained by nonlinear programming. It is demonstrated that
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the reduced performance primarily is related to the errors of
the wave load estimation.
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