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Abstract

The continuously growing aviation industry challenges airports around the
world. For the airports to optimize the use of their staff, they need to know
where and when staff is needed. One solution is to measure queue times in
different process areas of the airport and use this knowledge to relocate staff.

In this Ph.D. thesis, we investigate vision-based person re-identification
for queue time measurements. Using only two cameras, one at the queue
entrance and another at the exit, we extract discriminative features from per-
sons captured by both camera, and aim to find correspondences in order to
measure queue times.

First, we present two novel overhead person re-identification datasets that
were collected in queue scenarios using 3D cameras. The first dataset was col-
lected at a university canteen, while the second was collected in real airport
queue scenario.

Next, we propose a series of multimodal convolution neural networks that
fuse RGB and depth information to a more robust multimodal feature repre-
sentation. The networks are based on extracting both global and dynamically
weighted local feature representations and fuse these for both RGB and depth
before the two feature descriptors are fused to a multimodal one. The net-
works show state-of-the-art precision on three overhead re-id datasets. Ad-
ditionally, through testing our proposed systems on the airport dataset, we
show that median queue times based on re-identification deviates from the
ground truth by only a small margin.

Thirdly, we consider re-identification from a more practical viewpoint, by
proposing a method to transfer knowledge from an existing camera network
to a newly introduced camera using already learned models and only few
newly labeled samples in the expanded camera network. We show that the
method outperforms related model learning methods that only use few la-
beled samples. Finally, we also consider, which edge platforms that can be
used to deploy such a re-id system. Through evaluation of specific edge plat-
forms on three different Computer Vision tasks, we show the potential of
various platforms that can be purchased at reasonable prices.
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Resumé

Den konstante udvikling inden for lufthavnsindustrien udfordrer lufhavne
verden over. For at lufthavnene kan optimere brugen af deres personale, skal
de vide hvor og hvornår de skal bruges. En metode til at løse dette, er at
måle kø tider i forskellige process områder af lufhavnen, hvilket kan bruges
til at flytte rundt på medarbejdere.

I denne Ph.D. afhandling udforsker vi vision-baseret person re-identifikation
til måling af kø tider. Mere specifikt undersøger vi, hvordan man ved hjælp
af kun to kameraer, et ved starten af køen og et andet ved slutningen, kan
udtrække diskriminative karakteristika fra personer optaget af begge kam-
eraer, og finde sammenfaldende karakteristika for derved at kunne måle kø
tiden.

Først præsenterer vi to nye datasæt, der er optaget fra toppen i en kø
kontekst ved hjælp af 3D kameraer. Det første datasæt er indhentet i en
universitetskantine, og det andet i en lufthavn i et rigtigt kø scenarie.

Derefter foreslår vi en serie af multi modale neurale netværk (convolu-
tion nerual networks), der kombinerer RGB og dybde information til at sk-
abe en mere robust representation. Netværkene er baseret på at udtrække
både globalt og dynamisk vægtede lokalt information og kombinere disse for
både RGB og dybde, inden de to modaliteter kombineres til en enkelt multi
modal representation. Netværkene viser state-of-the-art præcision på tre re-
id datasæt optaget fra toppen. Ved at teste vores system på lufthavnsdatasæt-
tet, viser vi derudover at median kø tider ved hjælp af re-identifikation kun
afviger med en lille margin i forhold til de rigtige.

Vi betragter også re-identifikation fra et mere praktisk synspunkt ved at
foreslå en metode, der kan bruges til at overføre viden fra et eksisterende
kamera netværk til et nyligt introduceret kamera, ved brug af tidligere lærte
modeller og kun enkelte kendte personer i det udvidede kamera netværk.
Vi viser at metoden præsterer bedre end metoder, der kun benytter enkelte
kendte personer. Til sidst undersøger vi også, hvilke platforme, der kan
benyttes til at udrulle et re-id system. Gennem evaluering af specifikke edge
platforme inden for tre forskellige Computer Vision opgaver, viser vi poten-
tialet ved flere platforme, der kan købes til en overkommelig pris.
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Chapter 1

Introduction

The aviation industry has been growing vastly within the last couple of
decades. Passenger journeys have increased from an estimated 1.67 Billion in
2000 to an estimated 4.23 Billion in 2018 [1], a number which is expected to
almost double by 2036 [2]. This growth will be mostly driven by China, the
US, India, Indonesia and Turkey, as shown in Figure 1.1.

Fig. 1.1: Passenger growth forecast 2018-2036. Image from [2] c© 2017 IATA.
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Chapter 1. Introduction

The growing demand for transportation by air, challenges airports through-
out the world, and results in needs to expand the airports to increase passen-
ger capacity. Furthermore, airports are required to improve efficiency of the
different processes, such as baggage handling, check-in and security checks,
to maintain and improve passenger experience. From a Global Passenger Sur-
vey (GPS) in 2018 [3], passengers mentioned automation of airport processes
and tracking on bags as desired capabilities. More importantly, a queue time
of less than 10 minutes in security and immigration is desired. Standing in a
queue is an everyday thing to people all around the world, which makes this
demand relatable. A smaller queue time not only results in happier passen-
gers, but also allows the airport to increase revenue as they can more easily
manage and relocate staff as needed. Reducing queue times not only applies
to airports, but amusement parks and ski resorts, which also in recent years
have experienced increasing numbers of visitors [4, 5].

Some airports already deploy technology to track passengers and mea-
sure queue times, to optimize airport staff allocation and reduce queue times.
Based on requirements, a number of technologies exist; (1) technologies that
are based on WiFi/Bluetooth (BT) device tracking sensors to track passengers
throughout the queue [6], (2) technologies that use existing airport closed-
circuit television (CCTV) cameras to count the number of passengers within
queues [7], (3) technologies that use newly deployed overhead cameras to
track passengers throughout the queue [8, 9], and (4) technologies that fuse
the use of overhead cameras and WiFi/BT to count and track passengers [6].
While these technologies might have the required capabilities, they do have
shortcomings. A WiFi/BT device tracking solution is cheaper than camera-
based solutions, however, since the introduction of randomized MAC ad-
dresses in iOS8 [10] and Android Marshmallow (v. 6.0) [11] in 2014 and 2015,
respectively, the challenge of tracking passengers using this technology has
increased. Using existing CCTV cameras is likely the cheapest camera-based
solution. This requires the queue to be within the field of view of the cam-
eras, thus, constraints the position of the camera. A more costly solution
will then be to set up additional cameras, which is the case for most camera-
based solutions. In high-ceiling areas, this is an optimal solution since only
few cameras are required to cover a large area. In low-ceiling areas, on the
other hand, this is costly due to the need for a large number of cameras, de-
pending on the field of view of the cameras. A solution to this could be to
use a combination of a few cameras to count the number of passengers and
WiFi/BT sensors to provide device tracking data.

In this thesis, an alternative novel way to measure queue times, which
uses only vision-based methods, is proposed. More specifically, a person re-
identification (re-id) based approach is proposed, which measures the queue
time of a passenger using images captured by only two non-overlapping cam-
eras, one at the queue entrance and one at the queue exit, as shown in Fig-
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ure 1.2. Characteristics, i.e., features, are then extracted from captured images
and stored along with timestamps and ids. The goal is then to find matching
characteristics from the two cameras, and use the corresponding timestamps
to measure the queue times. Despite the large number of applications for
which vision-based re-id can used to measure queue times, this thesis solely
focus on re-id to measure queue times in an airport.

In the following, a general re-id pipeline is presented, followed by the
main hypothesis of this thesis and an overview of the work that has been
conducted to accept or reject this hypothesis. In the remaining of the thesis,
persons and passengers are used interchangeably.

?

Fig. 1.2: Principle of the vision-based re-identification of passengers in a queue, which can be
used to measure queue times. c© Veovo

1 The Re-identification Pipeline

Figure 1.3 shows a general person re-id pipeline, which consists of several
tasks. In general, person re-id is defined as matching features that are ex-
tracted from images of persons across non-overlapping cameras. In the fol-
lowing, each task will be briefly introduced.

Data Acquisition The first part of the pipeline, naturally, is acquisition of
data, or more specifically, images. Data acquisition is performed by a sensor,
i.e., camera, which captures images that are propagated through the rest of
the pipeline. In case of airports, and surveillance in general, CCTV cameras
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Data Acquisition

Cameraa

Camerab

Person Detection Person Tracking Feature Extraction Feature Matching Classification

Fig. 1.3: A general person re-identification pipeline. Cameras a and b follow the same initial
pipeline and are joint at the Feature Matching process.

are used to monitor check-in halls or security areas, and output a stream of
images. In case of sensors to count passengers crossing certain areas of the
airport, more intelligent cameras are deployed that can output coordinates of
moving passengers [12, 13]. Depending on the purpose of the camera, it is
also possible to deploy cameras that capture and output depth information
[14, 15] or cameras that capture and output heat signatures [16].

Person Detection Correctly detecting passengers in images is crucial to ex-
tract robust feature descriptors that do not contain any noise. Here, object
detection algorithms are used to detect a region of interest (ROI), within the
image where an object, in this case a passenger, appears. Before the beginning
of the era of deep learning in 2012, some of the most common object detec-
tors were Histogram of Oriented Gradients (HOG) [17] and Deformable Part
Models (DPM) [18]. Since 2012, state-of-the-art object detectors have been
based on deep learning and divided into two subcategories; (1) one-stage
detectors that detect the objects in a single-stage end-to-end fashion [19–21],
and (2) two-stage detectors that first proposes regions to perform detection,
followed by the detection itself [22–25].

Person Tracking To have a more robust feature descriptor, it is essential
to capture several images of each passenger from which features can be ex-
tracted. In order to not manually having to go through all images to find
detections of the same passenger, tracking algorithms are deployed to follow
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the ROI around a passenger over the course of several frames. Tracking can
be divided into two groups; (1) tracking by detection, where an object detec-
tor is applied to every frame and tracking trajectories are formed if an object
is detected in multiple frames [26–28], and (2) detection-free tracking, which
models the appearance of an object based on an initial detection and tries to
track that object in subsequent frames [29–31].

Feature Extraction The most important task of the pipeline is the feature
extraction, as having discriminative features is essential to correctly re-id pas-
sengers. Like detection and tracking, we can split feature extraction into two
subcategories; (1) hand-crafted features, where features are devised based
on internal structures of the image, such as colors, edges or corners, and
(2) deep features, which have become increasingly popular since 2012 [32].
For deep features, a Convolution Neural Network (CNN) is implemented,
which is trained end-to-end and combines feature learning and classification
by forward propagating images of persons and output a label prediction. The
predictions are then compared to the ground truth labels and the parameters
of the network are updated based on the correctness of the predictions. Thus,
feature learning is seen more as a black box.

Feature Matching Two types of feature matching are, typically, used in re-
id; (1) Euclidean distance, which basically measures the sum of distance be-
tween points of feature vectors, and (2) Mahalnobis, which is based on the
variance of feature dimensions and adds a covariance matrix, M, to distance
calculations. In both cases, features from persons captured by a camera a
are matched against features of persons captured by a camera b. Methods
exist that enhance the performance of both metrics. For Euclidean distance,
works have been presented that map features from the two views to shared
feature spaces by learning a projection matrix [33–36]. The projection matrix
is learned such that features of similar persons appear closer and those of
dissimilar appear further away. Meanwhile, works have also been proposed,
where the covariance matrix in Mahalanobis distance is learned based on
similar and dissimilar feature pairs along with binary labels indicating re-
lations [37–41]. The formerly mentioned work can also be categorized by a
single category, distance metric learning.

Classification Person re-id is approached as either an image retrieval prob-
lem or a verification problem. In both cases, features extracted from a person
in camera b, i.e., a probe, is matched against features from all persons seen in
camera a, i.e., a gallery. In case of an image retrieval problem, classification
outputs a list of likely matches, ranked by similarity. That is, the most likely
match is ranked 1, the second most likely is ranked 2, etc. This case, hence,
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assumes that a true match is somewhere in the ranked list, this is also referred
to as a closed-world setting. Meanwhile, in the verification problem, features
of a person in camera a is matched against features of persons in camera b,
and for each matching, a binary output is provided indicating whether fea-
tures represent the same (1) or different (0) persons. This technique is more
suitable to match persons in cases where not all persons in camera a were
necessarily in camera b. This is also referred to as an open-world setting.

2 Scope of this Thesis

The main scope of this thesis is to uncover whether vision-based re-id can be
used to measure queue times, thus, we wish to accept of reject the hypothesis
that vision-based person re-identification can be used to correctly measure queue
times.

Ideally, this involves setting up the entire pipeline, as shown Figure 1.3,
however, since each task in the pipeline is in itself a major research area, this
thesis focus on the most important parts of the pipeline. More specifically, the
focus of this thesis is to devise features that are as discriminative as possible
and invariant to environmental changes, such as illumination variations. Fur-
thermore, due to the novelty of the problem of using re-id to measure queue
times, data acquisition is important to properly identify and evaluate feature
robustness. Finally, this thesis also focus on re-id from a practical viewpoint
to conclude how a re-id system to measure queue times can be deployed.

Data Acquisition

Cameraa

Person Detection Person Tracking Feature Extraction Feature Matching Classification

Chapter II.1
Chapter II.2

Chapter III.A
Chapter III.B
Chapter III.C
Chapter III.D

Practical Re-identification

Cameraa

Chapter IV.E
Chapter IV.F
Chapter IV.G

Fig. 1.4: The re-id pipeline related to the work presented in this thesis with focus on Data
Acquisition, Feature Extraction and Practical Re-identification.

Figure 1.4 shows an overview of the articles and chapters that cover the
work of this thesis in relation to the general re-id pipeline. Part II covers
the data acquisition, which includes descriptions of two datasets that have
been collected as part of the Ph.D. study; one at a university canteen (II.1)
and another at an airport (II.2). Part III covers the feature extraction, includ-
ing work where novel features are devised based on the re-id setting (III.A,
III.B and III.C), and work that shows the complementarity of fusing the clas-
sification results of different features (III.D). Finally, apart from the pipeline,
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Part IV covers re-id from a more practical viewpoint. This practical viewpoint
includes work that proposes a method to transfer deployed models to new
environments (IV.E), work that proposes an optimization of re-id for queue
measurements (IV.F), and work that analyzes specific hardware platforms
that can be used to run re-id on the edge (IV.G).

In the following chapters, each part is introduced, including a description
of related state-of-the-art methods and a highlighting of key contributions.
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Chapter 2

Data Acquisition

As presented in section I.1.2, the first part of the thesis introduces the acqui-
sition of data to devise and evaluate features.

1 Motivation

The majority of work in person re-id consider data captured from a primarily
horizontal viewpoint as shown in Figure 2.1, however, in case of re-id in a
queue this is impractical due to various reasons. Horizontally placed cam-
eras are less discrete and if spotted by passengers, the passengers might feel
monitored. More importantly, as shown in Figure 2.1 (a) the probability of
occlusion is much higher with a horizontal viewpoint, which especially ap-
plies to passengers in a queue, if they follow a maze. Furthermore, re-id is
often considered in the context of forensics. In that case, persons often move
freely around in big environments monitored that by the cameras, while pas-
sengers in a queue are often constrained to follow a certain maze directed
either by queuing barriers or by an airport staff.

As a result of aforementioned differences, this thesis focus on data cap-
tured from an overhead viewpoint. In contrast to a horizontal viewpoint, data
captured from an overhead viewpoint potentially results in self-occlusion,
which leads to less features of passengers being visible. To counter this, ad-
ditional complementary data from other modalities are considered. Within
computer vision (CV), typical options are either depth data collected from a
stereo camera, or thermal data collected from a thermal camera. Since the
cameras are placed overhead pointing downwards, the obvious solution is to
capture additional depth information. The overhead depth information also
allows us to capture the height of passengers, which is a potentially useful
feature to combine with color and texture features.
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(a) (b) (c) (d)

Fig. 2.1: Examples images from (a) CUHK01 [1], (b) Market1501 [2], (c) MSMT17 [3] and (d)
RAiD [4], captured from a primarily horizontal viewpoint. (b), (c) and (d) are also used in [5].

2 Related Work

As mentioned in section I.2.1, the majority of existing re-id datasets were
collected from a primarily horizontal viewpoint. The early ones, typically,
contain images that were collected across two non-overlapping cameras [6–8],
more recently, large datasets were collected that contain images of more than
thousand different persons collected from up to 15 cameras [2, 3, 9]. Detailed
descriptions of person re-id datasets, primarily collected from a horizontal
viewpoint, can be found in [10].

Only few datasets have been published that were collected using an over-
head camera [11, 12], both using a single camera. [12] collected a Depth-based
Person Identification from Top (DPI-T) dataset in a hallway using a single
RGB-D camera1. The dataset contains images of 12 different persons, with
each person appearing in up to five different sets of unique clothing. As
the camera was placed indoor, the dataset contains less illumination varia-
tions. Nonetheless, movements of the persons were unconstrained and per-
sons were also recorded whilst holding objects, such as plates or a cup of
coffee. Another RGB-D based dataset captured from an overhead view was
presented in [11] named Top View Person Re-identification (TVPR). The data
were collected in a university office using an Asus Xtion Pro Live RGB-D
camera [13], which was placed at a height of 4 m above the floor. The cam-
era captures color images in SXVGA resolution (1280×1024), while it uses
an infrared sensor to measure depth, which results in a depth map of size
640×480. 100 different persons were recorded over the course of eight days,
causing the presence of illumination variations. While the movements of per-
sons in [12] were unconstrained, the persons in [11] were instructed to follow

1The authors have not specified which camera was used.
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a path directly below the camera, from left to right and vice versa. Examples
of depth images from the two previously published datasets are shown in
Figure 2.2. The datasets are used to evaluate features in [14–16].

(a) (b)

Fig. 2.2: Examples of depth images from (a) DPI-T [12] and (b) TVPR [11]. Image from [14].

Other RGB-D based datasets for re-id are publicly available [17–19], how-
ever, similar to most RGB-based datasets, they were collected from a horizon-
tal viewpoint.

3 Contributions

Over the course of the Ph.D. project, two datasets were collected, both us-
ing RGB-D cameras from an overhead viewpoint. The first dataset was col-
lected at a university canteen using a single RGB-D camera in an uncon-
trolled environment, and the second was collected at an airport using two
non-overlapping RGB-D cameras. As defined in [14], the first dataset will
henceforth be referred to as Overhead Person Re-identification (OPR) dataset,
while the second, as defined in [20], will be referred to as Queue Person Re-
identification (QPR).

While both datasets were collected in the context of queues, the first con-
siders entrance and exit points to be the same, while the second is more realis-
tic in terms of having entrance and exit at two separate locations with varying
lighting and height. For both datasets, we used ZED cameras from stereo-
labs [21] that are able to capture images in up to 2k resolution (2048×1080
pixels). Since the ZED camera is a passive stereo camera, the resolution of the
depth map is dependent on that of the captured RGB images, more details
will be given in Part II.

Compared to previous overhead datasets, the datasets collected in this
project are of much higher quality due to a higher resolution, which results
in much more detailed information of persons, in terms of both color, tex-
ture and depth. Furthermore, in contrast to TVPR, OPR was collected in a
much more uncontrolled environment with more diverse movement of per-
sons, while QPR was collected from two non-overlapping cameras with large

15



References

variations in illumination. Compared to DPI-T, OPR and QPR contain higher
numbers of persons, while the context is also more similar to that of re-id in
a queue. For both OPR and QPR, we recorded timestamps that can be used
to compare measured queue times using re-id with actual ones.

OPR is used to evaluate features in [14–16] (chapter III.B-III.D), while QPR
is used in [20] to evaluate features and perform queue time measurements
using re-id. Due to government legislation, it has not been possible to publish
the datasets.

To summarize, the contributions of Data Acquisition includes:

• We collected two overhead RGB-D based datasets using high-resolution
cameras to capture fine-grained details of both color, texture and depth.
Both datasets were collected in uncontrolled environments.

• Through experiments in [14–16] we show that OPR is a more complex
and difficult dataset to solve compared to previously published TVPR
and DPI-T datasets.

• In [20] we use QPR to evaluate queue time measurements using vision-
based re-identification.
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Chapter 3

Feature Extraction

Following Figure 1.4, the second part of the thesis deals with feature extrac-
tion, specifically, devising of discriminative features based on the re-id setting
and the acquired data.

1 Motivation

As mentioned in section I.2.1, most prior re-id datasets were collected from a
horizontal viewpoint and features have, thus, been devised based on frontal
images of persons. Since we consider an overhead viewpoint, features de-
vised for the horizontal view not necessarily work as well. As a result, it
has been necessary to devise features that are robust when the person is seen
from above and might inflict self-occlusion.

When devising novel features, it is also important to consider the type of
information available. Recall that, as part of this thesis we have collected a
combination of color and depth data, it is therefore important to consider,
not only which features from each modality to extract, but also how to fuse
these features to increase robustness.

2 Related Work

Since it is very difficult to extract features that generalize well across multiple
datasets, work has continuously been put into devising features based on the
latest knowledge within CV [1, 2]. In recent years, features have been split
into two categories; hand-crafted features and deep features.

Some of the early hand-crafted features for person re-id include extrac-
tion of histograms in various color spaces, such as RGB, HSV and YCbCr and
fuse those with texture features computed from convolving the images either
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with texture filters [3] or local binary patterns (LBP) [4]. Later, more sophis-
ticated hand-crafted features were proposed, such as the salient color name
(SCNCD) based features [5], which aims to increase robustness of features
against photometric variations. Additionally, it has been common to extract
features from patches to increase robustness by capturing local salient infor-
mation [6–8]. Current state-of-the-art hand-crafted features include the lo-
cal maximal occurence (LOMO) descriptor proposed in [9], which consists of
color features from HSV histograms along with texture features from scale in-
variant local patterns [10] that are extracted from patches. To further increase
feature robustness, max pooling operations are performed across horizon-
tal regions. Finally, the Gaussian of Gaussian descriptor [11, 12] has shown
comparable precisions to those of LOMO and uses a hierarchical Gaussian
distribution across local regions to capture discriminative information. The
principles of LOMO and GOG features are shown in Figure 3.1 (a) and (b),
respectively.

(a) Image from [9] c© 2015
IEEE.

(b) Image from [11] c© 2016 IEEE.

Fig. 3.1: The pipelines of state-of-the art hand-crafted features (a) LOMO and (b) GOG.

In 2014, the first works using deep features were presented [13, 14], fol-
lowing that year, the number of published works using deep features for
re-id has been only increasing. This was, furthermore, due to publication of
larger datasets for re-id, which is required to properly learn deep features.
Most commonly is the use of CNNs to train re-id features in an end-to-end
fashion by attempting to classify images of persons, based on a person id,
and learn from those that were misclassified. The early CNNs horizontally
divide images of persons into three or more smaller images to learn body
part descriptors that are later fused to a single feature representation [14–18],
as shown in Figure 3.2 (a). Later CNNs focus more on local regions, by lo-
calizing body joints [19] or keypoints [20]. Based on pioneer work in the
deep learning community, CNNs also started to implement spatial attention
mechanisms [21] to automatically locate body parts [22–24], or local regions
of interest [25–29], as shown in Figure 3.2 (b), to maximize feature discrimi-
nation. This has led to several recent datasets almost being solved using deep
features [28, 30, 31].

Within RGB-D based re-id, most work is focused on hand-crafted fea-
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(a) Image from [18] c© 2017
IEEE.

(b) Image from [26] c© 2018 IEEE.

Fig. 3.2: Example of (a) a part-based CNN model that process upper-body, lower-body and legs
independently before fusing features to a single descriptor and (b) a CNN model using spatial
attention to capture local semantics.

tures, using either skeleton based features that describe the body shape [32]
or using body height and body dimensions as features that are combined
with color histograms [33, 34]. More recently, [35] proposed a combination
of a CNN and long short term memory (LSTM) network, to model depth
across time and fuse depth information with color histograms of only spe-
cific body parts. Furthermore, the network implements an attention module
to determine the importance of features from subsequent frames.

3 Contributions

In this thesis, features have been devised based on the overhead RGB-D data.
Four works have been published centered around feature extraction.

Due to the overhead view, skeleton-based features are not suitable, while
body height and ratios are also much dependent on the depth precision to
properly work across non-overlapping cameras, a scenario which so far has
not been studied. Instead, our proposed solution learn the relevant depth
information from CNNs. For both modalities, an AlexNet [36], pretrained
on the ImageNet dataset [37], is implemented to learn modality-dependent
feature embeddings based on color and depth images. In previous work, fea-
tures of different modalities are simply concatenated to create a multimodal
feature representation [34]. Rather, to find proper correlations between the
two modalities, we fuse the features by calculating weighted embeddings,
where weights are learned during a training phase [38]. The work resulted in
a publication at the 2017 IEEE Conference of the Biometrics Special Interest Group
(BIOSIG) (chapter III.A).

Secondly, while the work in [38] focus mainly on fusing of global fea-
ture representations, the work in [39] investigates how to improve the accu-
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racy of multimodal deep features. Given the novel research within attention
mechanisms, we propose a Spatial attention module to capture local seman-
tics within the images. Since early layers of a CNN capture basic color and
texture structures, while later layers capture more high-level structures [40],
the idea is that such features complement each other well. The idea has been
previously explored in re-id by fusing high-level deep features with low-level
hand-crafted features [41]. Therefore, for each modality, an attention module
is implemented to capture local semantics at different layers of the CNNs,
and fuse local features by concatenation. Local features are then fused with
global ones to construct multi-level modality-based features for both RGB
and depth. These multi-level features are finally fused using a similar strat-
egy as that in [38]. The work has been published at the 2018 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW) (chapter III.B).

Thirdly, given the experience from [38, 39], an additional module is pro-
posed to increase feature robustness even further. Instead of naively concate-
nating local features, a weighted average of features is calculated based on
learning feature specific weights. This is implemented as a Layer-wise atten-
tion module, which is combined with the spatial attention module in an archi-
tecture that adapts weighting of local features at different abstraction levels
based on the input data, and use the weighted local features in construction
of multi-level multimodal features [42]. The work has been published in the
IEEE Transactions on Information Security and Forensics (TIFS) (chapter III.C).

Finally, besides feature fusion of features at different abstraction levels, it
is also possible to late fuse features, i.e., conduct re-id classifications for each
feature type and fuse those to a single result. To that end, we propose late fus-
ing low-, mid-, and high-level features using two different fusing strategies;
rank aggregation, which fuses the ranked lists of matches, and score-level fu-
sion, which fuses the output scores, i.e., calculated distances between a probe
and gallery [43]. The work has been published in IET Biometrics (chapter
III.D) and shows the potential of late fusing features at different abstraction
levels, which can be leveraged in future work.

The contributions of feature extraction, thus, can be summarized to the
following:

• We propose a CNN architecture that learns and fuses RGB and depth
features to a discriminative multimodal feature representation by weight-
ing correlations between the two modalities.

• We propose a spatial attention module to capture local semantics at dif-
ferent abstraction levels of a CNN that are fused with global features to
construct multi-level features in case of both RGB and depth. Further-
more, multi-level features are fused to a multi-level multimodal feature
representation.
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• We propose a layer-wise attention module to dynamically weight and
fuse features of local semantics, where the weights of local features are
learned through network optimization. The module shows the ability
to adapt weights depending the input data.

• Through analyzing the effect of late fusing low-, mid-, and high-level
features using two different fusion strategies; rank aggregation based
fusion and score-based fusion, we show the potential of late fusing fea-
tures at different abstraction levels.
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Chapter 4

Practical Re-identification

The last part of the thesis aims to bridge the gap between academia and in-
dustry by focusing on the practical challenges of running a re-id system. This
resolves around transferring learned models to be used across multiple areas
of an airport, how to increase the accuracy of a re-id based queue measure-
ment system, and on which platform to run the re-id system.

1 Motivation

To have a re-id system that performs well, it is important to learn features that
generalize well across various environments, as was the target in chapter I.3.
Learning robust deep features requires a fair amount of labeled data that,
typically, would be collected from the environment in which the re-id system
is deployed. However, directly transferring a feature extraction model that
was trained on data from one environment, to another, often results in sig-
nificant reductions of precision. Meanwhile, collecting and annotating data
every time the re-id system is deployed to a new environment is costly and
time consuming. Rather, a re-id model trained in one environment should
be transferred to the new one with a minimum loss in precision and data
labeling effort.

Instead of transferring the feature extraction model, it is possible to learn a
distance metric or projection matrix based on feature pairs of similar and dis-
similar persons [1–4]. By learning such relations, distances between features
of similar pairs are reduced while those of dissimilar ones are increased, as
shown in Figure 4.1. The distance metric can greatly improve the precision of
the re-id system and can also be transferred to new environments, however,
using the metric directly does not necessarily results in improved precisions.
In worst case, transfer of metrics can even lead to a reduction in precision, a
phenomena within transfer learning known as negative transfer, which occurs
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if the distributions of old and new data are very different [5]. To avoid costly
data annotation, distance metrics in the new environment could be learned
using only a limited number of annotated persons.

(a) Image from [2] c© 2013 IEEE. (b) Image from [1] c© 2012 IEEE.

Fig. 4.1: (a) Principle of projecting features from non-overlapping views to a common feature
space to minimize distances between similar pairs while maximizing those of dissimilar, as
shown in (b). In (b), TP: True Positives, FP: False Positives, TN: True Negatives and FN: False
Negatives.

Besides transferring of models to new environments, re-id precision can
be improved by post processing the output, which is also studied in [6] by late
fusion of features at different abstraction levels. Another way is to consider
the specific task at hand and how the output should be represented. Since
this thesis is based on queue measurements using re-id, the output should
resemble the setting of this task to maximize precision of measurements.
Specifically, rather than consider a list of ranked persons as the output, only
a single person in the gallery should be assigned to each probe.

Deploying a re-id system requires a computing device that can process all
steps of the re-id pipeline. To avoid undesirable transfer of image data across
a local area network to a server due to, e.g., privacy concerns, the processing
should take place at the camera. Therefore, different platforms should be
investigated that are able to process image data locally.

2 Related Work

From advances in deep re-id models, more work is put into transferring of
knowledge, typically, across datasets [7–9]. Some of the published work
consider supervised transfer learning, where a model that was trained on
one large dataset is finetuned on a new, likely, smaller dataset to adapt fea-
tures [7, 10]. Other works adopt generative adversarial networks (GANs)

28



2. Related Work

to translate images from one camera (source domain) to another (target do-
main), to avoid extensive annotation of data in the target domain [9, 11–14].
Recently, works have been published that perform unsupervised model trans-
fer, either by assigning psuedo labels to images in the target domain [15–18]
or by leveraging spatio-temporal information from the target domain [19, 20].
In both cases, a model that was pretrained on the source domain is finetuned
in the target domain.

Another important aspect is transfer of knowledge in case of adding a
new camera to an existing camera network. This is a problem, which has
been studied in only few works [21, 22]. These works consider a pool of
source distance metrics computed between camera pairs of the original cam-
era network, from which the most relevant metric is transferred based on
similarities between the source and target domains. Similarity between two
domains, i.e. cameras, is defined as the distance between data points in
each domain, which is calculated using a computed geodestic flow kernel
(GFK) [23]. To further improve precision of the best suitable source metric,
it is multiplied with the GFK between the domains. However, the works
assume the availability of data from the source domain that was used to cal-
culate the source metrics, which is unrealistic in real-world scenarios where
data might have to be deleted due to privacy concerns.

In cases of transferring knowledge to new environments, post processing
techniques can be used to enhance the re-id precision. In re-id, post process-
ing of the output is concerned around the ranking the persons in the gallery,
with respect to the probes, and how the initial ranked list can be altered to
improve precision. To that end, re-ranking has been an increasingly popular
tool as it considers both the nearest neighbors of the probe, but also how well
the probe ranks in relation to the closest gallery images [24–26]. The method
has shown to improve re-id precision, even when it is already high [27, 28].
However, the method is mostly suited to the case of forensics, where there
might be an operator who observes the ranked lists of likely matches, as
shown in Figure 4.2 (a), hence, it does not consider the case of assigning only
a single gallery person to each probe, as shown in Figure 4.2 (b).

While maximizing re-id precision is, of course, the primary goal, from
a practical point of view it is also important to consider the complexity of
the feature extractor and find an optimal trade-off between running time and
precision based on available hardware. A few recent works also consider
complexity in development of feature extractors [30–33], either by having
CNN architectures that are based on few optimized layers [33, 34] or by dis-
tilling knowledge from larger and more complex CNNs to simple and faster
ones [35, 36]. Even though, the works show important aspects of deploying
re-id models, running time is not evaluated on hardware, which is able to
run locally at the camera.
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Probe

Gallery

Feature Matching

Initial list

Re-ranking

Re-ranked list

(a)
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Gallery
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Distance matrix

Smaller Larger

Gallery assignment

(b)

Fig. 4.2: (a) Re-ranking the initial list for each probe with the probability of having the same
gallery person assigned to multiple probes, and (b) one-to-one assignment with the constraint
of only matching each gallery person to a single probe. (b) is also used in [29].

3 Contributions

Due to the limited work within knowledge transfer from existing cameras to
a newly introduced camera in a camera network, we investigate how trans-
ferring of knowledge from existing cameras to a new camera can be accom-
plished with limited labeling efforts and without the use of old data from the
existing camera network. Since, with limited data, it is not possible to prop-
erly finetune deep features to a new environment, the transfer should happen
from source distance metrics. Hypothesis transfer learning (HTL) [37, 38] is a
type of transfer learning, which aims to transfer knowledge from existing
learned metrics with only limited labeling effort in the newly installed cam-
era. The method combines distance metrics computed between camera pairs
in source domains (source metrics) with limited labeled data in the target
domain, to calculate a new and optimized metric between the target and a
source domain. HTL has been mostly applied from linear classifiers in an
SVM framework [39, 40], with the exception of a single work [41], which
considers transfer of a single source metric defined as a covariance matrix.
Furthermore, HTL allows transferring of knowledge from multiple source
metrics, which has been explored only for linear classifiers [39], by calculat-
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ing a weighted average of source metrics based on an optimization scheme
that jointly optimizes the target metric and source metric weights. As a result,
HTL is proposed in [42] to transfer knowledge from multiple source met-
rics, defined as covariance matrices, using only limited data in the expanded
camera network after introduction of a new camera, as shown in Figure 4.3.
Experimental results show the capability of the method to adapt newly in-
troduced cameras with precisions that are comparable to supervised distance
metric learning with sufficient training data, using source metrics and only
limited labeled data. Furthermore, from both a theoretical analysis and ex-
perimental results, we show that the method minimizes the risk of negative
transfer due to weighting the source metrics. The work has been submitted
for the 2020 IEEE Conference of Computer Vision and Pattern Recognition (CVPR)
(chapter IV.E) and is currently under review.
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Fig. 4.3: Principle of applying HTL to learn pairwise metrics between a newly introduced camera
and existing cameras in a camera network using source metrics that was learned in between the
existing camera pairs and only limited labeled data from the expanded network. Image from [42].

To further increase re-id precision, e.g, in cases where HTL has been
applied to transfer models to a newly installed camera, a post processing
technique should be applied, which considers the re-id context. To measure
queue times using re-id, gallery persons should be assigned to each probe.
Usually, this would be done by assigning the most similar person, i.e., the
one with the shortest distance. But doing so, there is a probability of as-
signing the same gallery person to multiple probes, without the knowledge
of which of the matches that is correct. Instead, a gallery person should be
assigned only to a single probe, an assumption which is valid only in case of
the close-world re-id setting. In queues where the path between entrance and
exit is fixed, this is a valid assumption. Furthermore, additional information
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should be considered to constraint the possible matches, such as the entrance
and exit order of the passengers, which will assign a subset of passengers
in the queue higher probabilities to be possible matches. To decide the opti-
mal set of matches, we propose an optimization method, which applies the
Hungarian algorithm [43] to minimize the total distance between probes and
gallery, and assign probes unique id’s. We consider assignment using the k
most likely matches to each probe, where different values of k are evaluated
to maximize re-id precision. The work shows an increase of precision and
recall compared to naively assigning the most similar match, which results
in median queue time measurements that deviate only a few percentages
compared to ground truth. The paper is on-going work and is in this thesis
included as a technical paper (chapter IV.F).

The first step towards deployment of a re-id system is to investigate and
identify possible candidate platforms. In recent years, several edge platforms
have been brought onto the market by big companies, such as the NVIDIA
Jetson boards [44], the Intel Neural Compute Sticks (NCS) [45] and Google
Coral [46]. These platforms all have the option to optimize and deploy mod-
els with limited power usage while maintaining decent computational power.
As a step towards identifying the optimal platform for a re-id system, we
evaluate selected edge platforms within the common CV tasks of object clas-
sification, object detection and semantic segmentation [47] (chapter IV.G). For
each task, inference time of the platforms are compared across models of dif-
ferent complexity and with different batch sizes. Additionally, retail price
of the platforms is considered to aid the optimal platform/model selection
based on requirements on both budget and inference speed. Finally, timings
of different DNN operations within each platform are analyzed to identify
operations that should be the main target of optimization to increase infer-
ence time, based on which platform is acquired. The work is submitted to the
journal of Neural Computing and Applications and is currently under review.

The contributions of practical re-identification can summarized to the fol-
lowing:

• We propose an HTL optimization algorithm to transfer knowledge from
multiple source metrics trained between camera pairs of an existing
camera network, to a newly introduced camera where only limited la-
beled data is available.

• We provide theoretical and experimental analysis that validates the
ability of the proposed transfer learning to minimize negative transfer
while maintaining high precision.

• We propose an algorithm to improve re-id precision by assign probe-
gallery pairs based on using the Hungarian algorithm to minimize the
total distances.
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• We evaluate and compare selected edge platforms across models of dif-
ferent complexity on three CV tasks, to aid optimal platform/model se-
lection, and identify DNN operations that mostly affect inference time
based on platform.
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Chapter 5

Summary

This thesis is based on vision-based person re-id in a queue by comparing
features that are captured by a camera at the queue exit to features that are
captured by a camera at the queue entrance. While re-id based queue mea-
surements can be applied to queues anywhere in the world, focus of the
thesis is on queues in airports. Current camera based solutions are costly
in low-ceiling areas and WiFi/BT solutions are challenged by changes in the
OS’s of both Android and iOS, however, the proposed solution requires a
minimum of only two cameras, one at the entrance and one at the exit.

As the re-id pipeline covers many large tasks, focus of this thesis is only
on the most relevant ones, one of which covers re-id on a more practical level.
The following tasks, thus, are studied:

• Data Acquisition

• Feature Extraction

• Practical Re-identification

Most current re-id datasets were collected from a, primarily, horizontal
viewpoint, which increases the probability of occlusions. Furthermore, the
horizontal viewpoint allows the cameras to cover larger areas where persons
move around unconstrained, which is not the case in queues where pas-
sengers are constraint to follow a predefined maze. As a result, data were
collected from an overhead viewpoint. While an overhead viewpoint de-
creases the probability of occlusions in-between persons or between persons
and objects, it does increase the probability of self-occlusion. Therefore, the
data were collected from additional modalities, more specifically, the depth
modality, which is an obvious choice given the overhead viewpoint. This
resulted in collection of two novel overhead RGB-D datasets, one from a uni-
versity canteen (OPR) and another from an airport (QPR). While previous
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proposed overhead RGB-D datasets for re-id were collected either in a very
controlled environment or with very few persons, the collected datasets are
targeted re-id in a queue, additionally, the number of persons in the datasets
are higher. Furthermore, the second QPR dataset was collected from two
non-overlapping cameras, in contrast to the previous published datasets that
were collected from only a single camera.

Based on the collected data, novel features have been devised. Due to
the availability of both RGB and depth images, we propose learning a com-
bination of RGB and depth features through training a CNN. Rather than
just concatenating RGB and depth features to a single feature representation,
the correlations between the two modalities should be learned. Thus, we
propose an architecture where modality-dependent features embeddings are
produced by independent CNNs, and fused as a weighted sums of features,
where weights are learned through optimizing the entire network. Addi-
tionally, to make modality-dependent features more discriminative, a spatial
attention module is proposed, which captures local semantics at different ab-
straction levels of a CNN, which are concatenated with global feature descrip-
tors to make up a multi-level feature descriptor. Finally, instead of naively
concatenating features at different abstraction levels and potentially weight
noisy features equally to discriminative ones, a layer-wise attention mod-
ule is proposed to dynamically weight features and produce a local feature
descriptor, which is calculated as the weighted average of multiple local fea-
tures. The combination of spatial- and layer-wise attention is not only capable
of capturing important local semantics, but also weight those depending on
the input data.

Besides calculating a weighted average of features at different abstraction
levels, it is also possible to late fuse the outputs of applying classification on
each local feature, independently. This is analyzed by using the late fusion
strategies of rank-based fusion and score-based fusion. The results show a
potential in late fusing features at different abstraction levels and could in
future works be transferred to features from different layers of a CNN.

Since only little work has been put into re-id from a more practical view,
work is conducted with the focus of challenges in deploying a re-id system.
First, the problem of extending a current camera network by introducing new
cameras is explored. As previous works often requires large quantities of la-
beled data when transferring knowledge between cameras, an HTL based
optimization algorithm is proposed that consider source metrics from exist-
ing cameras and only requires little labeling effort in the newly introduced
camera to maintain a good re-id precision. The algorithm, further, makes it
possible to transfer knowledge from multiple previous cameras without the
risk of negative transfer due to weighting of source metrics.

Besides the ability to transfer knowledge to new cameras with little label-
ing effort, an algorithm is also proposed that post process the re-id outputs
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based on the context of queue measurements. Since in this context, there are
no operators to monitor the ranked lists that are output, there is no way to
tell which of the most similar matches to the probes that are correct. There-
fore, the Hungarian algorithm is used to assign a set of gallery-probe pairs,
which minimizes the total distance.

Having a re-id system that performs well is of most importance, how-
ever, to avoid transfer of large quantities of image data across a local net-
work, the system should be able to process data locally at the camera. This
requires the use of an edge platform, which is able to run at low power con-
sumption while maintaining computational power. Therefore, we evaluate
selected edge platforms, which can optimize and deploy DNN models at the
edge, across three common CV. For each task, inference time of each platform
is measured across models of different complexities and precisions. By also
including retail price of the platforms, we analyze and compare the perfor-
mance with respect to the price between the platforms and models, to aid the
selection of an optimal platform/model combination based on requirements
on speed and budget. Finally, from analyzing the computation time of dif-
ferent DNN operations across platforms, we identify for each platform the
operations that should be of greatest focus when optimizing the models.

All contributions made from this Ph.D. can, thus, be summarized to the
following:

Data Acquisition

• We collected two overhead RGB-D based datasets using high-resolution
cameras to capture fine-grained details of both color, texture and depth.
Both datasets were collected in uncontrolled environments.

• Through experiments in [1–3] we show that OPR is a more complex and
difficult dataset to solve compared to previously published TVPR and
DPI-T datasets.

• In [4] we use QPR to evaluate queue time measurements using vision-
based re-identification.

Feature Extraction

• We propose a CNN architecture that learns and fuses RGB and depth
features to a discriminative multimodal feature representation by weight-
ing correlations between the two modalities.

• We propose a spatial attention module to capture local semantics at dif-
ferent abstraction levels of a CNN that are fused with global features to
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construct multi-level features in case of both RGB and depth. Further-
more, multi-level features are fused to a multi-level multimodal feature
representation.

• We propose a layer-wise attention module to dynamically weight and
fuse features of local semantics, where the weights of local features are
learned through network optimization. The module shows the ability
to adapt weights depending the input data.

• Through analyzing the effect of late fusing low-, mid-, and high-level
features using two different fusion strategies; rank aggregation based
fusion and score-based fusion, we show the potential of late fusing fea-
tures at different abstraction levels.

Practical Re-identification

• We propose an HTL optimization algorithm to transfer knowledge from
multiple source metrics trained between camera pairs of an existing
camera network, to a newly introduced camera where only limited la-
beled data is available.

• We provide theoretical and experimental analysis that validates the
ability of the proposed transfer learning to minimize negative transfer
while maintaining high precision.

• We propose an algorithm to improve re-id precision by assign probe-
gallery pairs based on using the Hungarian algorithm to minimize the
total distances.

• We evaluate and compare selected edge platforms across models of dif-
ferent complexity on three CV tasks, to aid optimal platform/model se-
lection, and identify DNN operations that mostly affect inference time
based on platform.
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Chapter 1

Introduction

As previous published datasets have not considered re-id in a queue, the
very first part of the project deals with data acquisition from an overhead
viewpoint. To quickly begin devising novel features, data were collected in a
local environment using a single camera, where queues would be naturally
formed. The resulting dataset was collected in a university canteen where
queues occur during lunch time. Furthermore, due to the layout of the can-
teen, a single camera could be used to capture persons both when standing
in queue and when leaving the canteen area. The dataset, thus, is simple,
however, suitable in case of devising relevant features. Data collection of this
dataset, OPR, will be further described in chapter II.2.

Later in the project period, data were collected from an actual airport
queue, in order to properly evaluate the novel features. The goal was to
target a queue with a single entrance and exit at non-overlapping locations.
Data were collected from an immigration area and contain both images and
timestamps. The resulting QPR dataset can, thus, be used not only to eval-
uate features but also queue time measurements from re-id, by comparing
to ground truth queue times. The dataset will be further described in chap-
ter II.3.

1 Choice of 3D Camera

Due to collection of both RGB and depth data, a camera had to be used that
with the option of producing depth maps. To that end, several options were
available based on different technology; active stereo, which include a variety
of technologies, or passive stereo using two regular RGB cameras.

Active stereo is based on projecting a pattern and compute depth from cor-
respondences between points in the pattern. Broadly, it can be categorized
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into three categories; (1) cameras that emit a structured near infrared light
(SL), i.e., pattern, from a laser projector, and compute depth from correspon-
dence between points in the pattern [1, 2], (2) cameras that emit a light pattern
and measures the time from the light hits an object till it returns, also known
as time of flight (ToF) [3, 4], (3) and cameras that emit an infrared pattern and
use a pair of infrared sensors to compute the depth from correspondences be-
tween distinguishable points in the patterns [5, 6].

Passive stereo cameras do not project patterns or emit light, rather, they
compute depth from correspondences of distinguishable image points be-
tween two RGB cameras that are placed side-by-side. The distance between
the cameras is referred to as the baseline and determines the distance from
which depth can be perceived.

An overview of widely-used stereo cameras is shown in Table 1.1. To
maximize coverage in low ceiling areas, a large field of view (FoV) is re-
quired, additionally, the camera should work in heights of at least 4 m. A
couple options were available, such as the Orbbec Pro, ZED and KinectV21.
The Orbbec Pro can reach up to 8 m, but has a narrow FoV and the use of
SL can cause issues in brightly lid areas. Even though, the FoV is larger in
case of the KinectV2, the lighting issue remains. In case of the ZED camera,
depth is computed from the two RGB images using algorithms that are more
processing heavy than those used in case of active stereo cameras. Nonethe-
less, the FoV of the ZED is much larger while the resulting resolution of the
depth maps is also much higher. As a result, we chose the ZED camera for
the data collection. The camera was used in case of both OPR and QPR.

2 Camera Calibration

To have very precise depth maps, it is important to properly calibrate the
cameras to alleviate lens distortion, which is the effect of having images that
curve at the corners. Since a passive stereo camera was used to collect data,
calibration had to be done independently for each RGB camera, followed by
at stereo calibration step to align images captured by each camera.

We calibrated the cameras using images of a checkerboard printed on a
solid wood board, as shown in Figure 1.1. The checkerboard has a height
and width of 12 and 9 squares, respectively, where each square has a size of
2.7×2.7 cm.

To calibrate the first camera, which was used to collect both OPR and
QPR, 99 images were captured with various positions and orientations for

1Please note that the two Realsense cameras and Kinect Azure were not yet launched at the
time of the data collection.
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Technology Depth resolution RGB resolution Field of View [◦] Range [m]

ZED [7] Passive stereo 2208x1242 2208x1242
H: 90
V: 60
D: 110

0.5-20

KinectV2 [3] Time of Flight 512x424 1920x1080
H: 70
V: 60

0.5-4.5

XtionPro Live [1] Structured light 640x480 1280x1024
H: 58
V: 45
D: 70

0.8-3.5

Orbbec Pro [2] Structured light 640x480 1280x720
H: 60
V: 49.5
D: 73

0.6-8.0

Realsense D415 [5] Active IR stereo 1280x720 1920x1080
H: 65
V: 40
D: 72

0.16-10

Realsense D435 [6] Active IR stereo 1280x720 1920x1080
H: 87.3
V: 58
D: 95

0.1-10

Azure Kinect [4] Time of Flight 1024x1024 4096x3072
H: 120
V: 120

0.25-2.21

Table 1.1: Overview of common stereo cameras. Reported resolutions are maximum supported.
H: Horizontal, V: Vertical and D: Diagonal.

(a) (b)

Fig. 1.1: Examples of (a) left and (b) right image from the ZED camera used for calibration.

left and right view, respectively. In calibration of the second camera, which
we used only to collect the QPR dataset, 67 images were captured. For OPR,
the calibration targeted full hd (FHD) resolution (1920×1080), while calibra-
tion of both cameras targeted 2k resolution (2208×1242) in case of QPR. In all
cases, we calibrated the cameras using precoded scripts2, which are based on
standard OpenCV functions [8]. First, the findChessboardCorners function
is used to locate the checkerboard corners, followed by calibrateCamera to
compute camera intrinsics and distortion coefficients based on those. The
outputs are a 3×3 matrix containing the camera intrinsics along with a 1×5
vector containing distortion coefficients. Similarly, to compute the extrinsics
between the two cameras, we run StereoCalibrate, which computes a rota-
tion matrix along with a translation vector, based on identified checkerboard
corners and camera-wise intrinsics. The rotation matrix and translation vec-

2Available from: https://github.com/sourishg/stereo-calibration/

47

https://github.com/sourishg/stereo-calibration/


Chapter 1. Introduction

tor relate the position of the two cameras. The camera extrinsics are then
used, along with the camera intrinsics, to compute a reprojection matrix us-
ing the stereorectify function, which is later used to calculate depth maps.
We verify calibrations by running computeReprojectionErrors to calculate
the average absolute norm between the corner points found from findChess-
boardCorners and those from projecting object points to image points using
the computed camera intrinsics. In case of stereo calibration, StereoCali-
brate outputs the average re-projection error based on both views. In either
cases, the re-projection errors in pixels (px) should be as close to zero as pos-
sible, with optimal values being < 0.5 px. The re-projection errors for the
two calibrated ZED cameras are shown in Table 1.2.

Left camera Right camera Stereo
ZED 1 (FHD) 0.187 0.186 0.221
ZED 1 (2k) 0.292 0.289 0.313
ZED 2 (2k) 0.227 0.189 0.240

Table 1.2: Re-projection errors (in px) from right, left and stereo calibration. Values < 0.5 px are
good values.

3 Depth Calculation

Since passive stereo cameras use images from the left and right sensors to cal-
culate a depth map, first the images have to be aligned. This is done through
undistortion and rectification of left and right image, respectively, which fixes
lens distortion and geometrically transforms the image. In OpenCV, this is
done by calculating joint undistortion and rectification transformation ma-
trices for each camera, independently, using the initUndistortRectifyMap.
Next, the images are transformed using the transformation matrices in the
remap function, where the values of each pixel in the transformed image are
based on interpolation of pixel values at the same coordinate in the original
image. The principle is shown in Figure 1.2.

Before calculating the depth map itself, a disparity map is calculated from
matching points in the left and right image. When calculating the disparity
maps, the distance in pixels between a point in the left image and its corre-
sponding location in the right image is calculated. OpenCV offers a couple
of standard solutions for stereo matching using a pair of rectified images,
including the block matching (BM) and semi global block matching (SGBM) algo-
rithms that are based on similar ideas.

BM is a relatively simple matching technique, which takes a block around
the point of interest in the left image and matches is with blocks at same hor-
izontal location in the right image. Since the right image is shifted relatively
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3. Depth Calculation

Fig. 1.2: Principle of fixing lens distortion and rectifying left and right images. Image from [9].

to the left, a horizontal search is performed within a bounded area of the
point of interest, both to the left and the right. At each location, a sum of
absolute differences (SAD) is calculated between the block from the left im-
age and current block in the search region, to find the most similar one. The
matching block in the right image is the one were the SAD is lowest and the
corresponding disparity value is the distance between the center locations of
the left and right block, respectively. The principle is shown in Figure 1.3.
The size of the block determines the coarseness of the disparity map, a larger
block size results in less noisy disparity maps, however, at the cost of captur-
ing less details. To speed up calculations, it is also possible to first convert
images to gray scale. This results in the SAD only being calcuated across a
single channel.

Fig. 1.3: For the black box in the left (top) image, search is performed in the orange rectangle in
the right (bottom) image. For each location, indicated by the white box, an SAD is calculated.
The green box indicate the closest match and the disparity is calculated as the horizontal distance
in pixels between center points of the black and green boxes.
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SGBM is merely an extension of BM. The algorithm also performs block
search, but differently from BM, it searches in up to eight directions; hori-
zontally, vertically and diagonally. SGBM is a computationally heavy stereo
matching algorithm compared to BM. To speed up calculations, an option
is to do the block search on downsized images and, optionally, upscale the
disparity map afterwards.

Since our initial focus is to maximize re-id precision, we calculate dispar-
ity maps using the SGBM algorithm as it produces more precise ones, which
is important in order to extract discriminative depth features. To enhance the
quality of depth maps, we further apply a filtering step using the weighed
least square filter (WLS), which smoothen the image to make the background
more uniform and eliminate noise. On an Intel i7-6700HQ CPU @ 2.60GHz,
SGBM and WLS take on average 0.136 s and 0.103 s, respectively, to process
a single pair of RGB images (numbers from [10]). Afterwards, the dispar-
ity map is used to calculate the depth map using the reprojectImageTo3D
function in OpenCV, which reprojects the disparity map to 3D space using
the reprojection matrix, which is computed upon stereo calibration. In the
new depth map, each pixel contained (x,y,z) coordinates, thus, we extract
the third channel containing z-coordinates as this provide the relevant depth
information.

In the following chapters, each dataset will be presented, including the
set-up, software used for collection and annotation, and dataset statistics.
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University Canteen Dataset

As mentioned in chapter II.1, the OPR was collected as basic queue-based
re-id dataset with feature devising in mind. Thus, the goal has not been
to evaluate queue measurements using re-id, rather, evaluate feature perfor-
mance. The dataset was collected during a two hour period at midday, when
the number of persons in the canteen would peak.

1 Hardware set-up

A single ZED camera (ZED 1) was used to collect this dataset. To have the
camera point downwards, it was attached to a wooden board, which was
placed on a cable tray below the ceiling. The camera was oriented to capture
persons both when entering and leaving the canteen. An overview of the
camera coverage seen from above is shown in Figure 2.1 (a), the horizontal
view of the set-up is shown in Figure 2.1 (b), while Figure 2.1 (c) shows the
actual view of the camera. Additionally, Figure 2.2 shows an example of a
depth image where the queue appears in the right side and persons who exit
the queue reappears in the left side.

2 Data Collection and Annotation

The data were collected using the ZED Explorer tool, which is a part of the
ZED SDK [7]. The tool has the option of saving video both in raw format or
using image compression, such as PNG or H.264. Furthermore, it is also pos-
sible to change camera settings, such as exposure, contrast and brightness. To
minimize motion blur, and eliminate noise in the colors, we reduced expo-
sure as much as possible, without making the images too dark. Finally, data
were recorded in FHD resolution at a frame rate of 30 images per second.
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Chapter 2. University Canteen Dataset

Camera

(a) (b) (c)

Fig. 2.1: (a) Overhead coverage of the camera. The red hatched area indicates the canteen while
the dotted lines and light blue area indicate the camera coverage. The arrows shows the walking
path of persons in the queue. (b) Horizontal view of the set-up, where the canteen is represented
as a solid box and the walking path of the persons in the queue is indicated by the black dotted
line.(c) image from the camera view, where the canteen is seen in the right side.

(a) (b)

Fig. 2.2: (a) Example of a depth map with a queue in the right side and reappearing persons in
the left, (b) and an example of a single person reappearing in the left side. Please note that the
depth maps are converted to color images by applying a JET color map. Images from [10].

Since focus of thesis is not on person detection, data were manually anno-
tated. Due to the uncontrolled environment, some of persons did not appear
twice within the camera view, as a result, we annotated only those that reap-
peared. We annotated the data using the video annotation tool from Irvine
California (VATIC)1 [11], which is free, easy to use and has docker integra-
tion. An example screen shot of the tool is shown in Figure 2.3. The tool can
be used to draw bounding boxes around predefined objects in each frame,
however, rather than drawing boxes in each frame, the tool also applies in-
terpolation when a bounding boxes is drawn and moved a few frames later.
Moreover, it is possible to provide flags, based on whether objects are oc-
cluded or outside the frame. As a result, it is possible to assign an object the
same id once it reappears in the frame.

1Available from: http://www.cs.columbia.edu/~vondrick/vatic/
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3. Data Statistics

Fig. 2.3: VATIC annotation tool [11]

3 Data Statistics

An overview of the dataset statistics is shown in Table 2.1. In total, 64 per-
sons have been annotated, which have resulted in 44,626 annotated bounding
boxes in case of both RGB and depth. On average, each person is represented
by almost 700 bounding boxes.

Entrance Exit Total
Persons 64 64 64
Bounding boxes 41,883 2743 44,626
Avg. bounding boxes 654.42 42.86 697.28

Table 2.1: Overview of OPR dataset.

In addition, Figure 2.4 shows the distribution of bounding boxes per per-
son. While there are some outliers with over 1500 bounding boxes, the ma-
jority of persons lie in the range of 100 to 500 annotated bounding boxes.
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(a) (b)

Fig. 2.4: (a) Number of bounding boxes per person and (b) frequency in number of bounding
boxes in bins of 100.
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Airport Dataset

The OPR dataset from the university canteen was collected with feature de-
vising in mind. The QPR dataset, on the other hand, was collected with the
purpose of also evaluating queue time measurements using vision-based re-
id. As a result, this dataset was collected at an airport immigration area, in
a setting similar to that in, e.g., an airport security check. The dataset was
collected in the morning during arrival of a flight where passengers passed
through immigration.

1 Hardware set-up

Due to non-overlapping entry and exit points, two ZED cameras were used.
Similarly to section II.2.1, mounts were built to have the ZED cameras point
downwards. Due to the ceiling at the entrance consisting of removable tiles,
a mount was built, which could rest on the tracks holding the tiles. The
mount consists of a long cable tray to fixate the camera (ZED 1), as shown
in Figure 3.1 (a) and (b). To make more features visible, and avoid motion
blur, two extra light sources were placed next to the camera. With additional
light sources, a lower exposure time could be used during recording. To have
clear and distinguishable colors, we chose light sources that have a high color
rendering index (CRI) and color temperatures close to daylight (5000 K) [12].
For this purpose, two LITE Panel light ECO 60 were used, which are square
LED lights with color temperatures of 4000 K and CRI values of 92 [13]. Due
to the size of the LED panels, they simply replaced the ceiling tiles. The lights
were placed right before and after the camera, as shown in Figure 3.1 (b).

At the exit, the camera (ZED 2) was placed at a height from which it
could cover the entire exit. To heighten the placement of the camera, it was
mounted on a wooden stick, which was attached to a horizontal wooden bar
to stabilize the camera. The camera mount and the placement of the camera
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at the queue exit are shown in Figure 3.1 (c) and (d), respectively.

(a) (b)

(c) (d)

Fig. 3.1: (a) The camera mount used at the entrance and (b) the corresponding placement in the
ceiling along with the two extra LED light sources. (c) The camera mount used at the exit and
(d) the placement of the mount above the exit.

In contrast to the OPR dataset, persons in this dataset could not move
around unconstrained, rather, they had to follow a maze structure, defined
by queue barriers. An overview of the maze is shown in Figure 3.2, includ-
ing the camera coverage at the entrance and exit. From entering the queue
to reaching passport control, the queue follows a single lane. At the passport
control, however, the queue splits into two lanes, one for each of the opera-
tors. This cause queue times to be different between persons, and denies the
assumption that the order of which persons entered the queue is the same at
the exit.

56



2. Data Collection and Annotation

Camera
coverage

Entrance

Exit

Operators

(a)

(b) (c)

Fig. 3.2: (a) Maze to be followed by the persons in the queue, and camera coverage at entrance
and exit. (b) Left view of the entrance camera and (c) left view of the exit camera.

2 Data Collection and Annotation

Similarly to chapter II.2, the ZED explorer was used to record the data.
But differently, video was recorded in 2k resolution compared to FHD in
chapter II.2 and the cameras were calibrated accordingly, as described in sec-
tion II.1.2. We reduced the exposure time as much as possible to eliminate
motion blur and make colors more distinguishable.

To make annotation of this dataset faster compared to OPR, a new video
annotation tool has been programmed, which automatically annotates im-
ages based on detections. A screen shot of the tool is shown in Figure 3.3.
The tool uses simple background subtraction to remove the floor and most
static objects in the scene, which makes it easier to detect the persons. Since
the camera is placed overhead pointing downwards, an obvious choice is to
use the depth maps to determine how much background should be removed.
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This is done simply by setting a clipping distance threshold, using the distances
in the depth map, and remove anything above this threshold. Detections are
then based on simple BLOB detection and bounding boxes are drawn to cover
the blobs. The clipping distance threshold is set based on visual inspection
of detections, to cover most of the persons within the bounding boxes, while
removing most static objects. To avoid small bounding boxes around per-
sons, effectively removing much of the persons, false detections have to be
allowed, shown as the white box in Figure 3.3. To eliminate these, filter zones
can be added, in which blobs are ignored, shown as green boxes. These can
also be added to non-relevant areas where persons cannot appear anyway.
The tool was used to automatically provide initial annotations that were af-
terwards manually refined by editing the bounding box sizes to fully cover
the persons.

Fig. 3.3: Video annotation tool for QPR dataset. Example from the entrance. Clipping distance is
set based on a trade-off between false detections and proper detections of persons.

3 Data Statistics

The dataset statistics of QPR are shown in Table 3.1. A total of 116 persons
have been annotated, resulting in 11,616 bounding boxes, which are split
more evenly between entrance and exit compared to OPR. On average, there
are 100 bounding boxes per person.

The distribution of bounding boxes across persons is, furthermore, shown
in Figure 3.4 (a) and (b). It is clear that as the size of the queue increases, more
persons are present at the entrance for a longer period of time. Nonetheless,
for the majority of the persons, the number of bounding boxes lie in the range
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Entrance Exit Total
Persons 116 116 116
Bounding boxes 7529 4087 11616
Avg. bounding boxes 69.91 35.23 100.14

Table 3.1: Overview of QPR dataset.

[50,100]. Finally, using timestamps from the two ZED cameras, Figure 3.4 (c)
shows the actual queue times of each person, starting from the entrance of
the first person at time zero. The first few passengers have more or less iden-
tical queue times, however, from time 100, the queue time increases linearly.
Interestingly, it also seems as if there are two parallel lines increasing lin-
early. This could be due to either a staff manually deciding on which persons
should be checked by each operator or due to cases where multiple persons
that travel together are checked simultaneously by the same operator.

(a) (b)

(c)

Fig. 3.4: (a) Number of bounding boxes per person, (b) frequency in number of bounding boxes
in bins of 10, and (c) ground truth queue time based on time of entrance starting at zero for the
first person. Images are also used in [14].
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Summary

Two datasets have been collected that consider re-id in a queue. First, a
dataset, OPR, was collected in a university canteen, where persons would
stand in queue upon entering the canteen and exit the queue when leav-
ing the canteen. The dataset was collected from a single camera, which was
placed overhead, during lunch time when the number of persons in the can-
teen would peak. The ZED Explorer tool was used to record the data, while
the VATIC tool was used to annotate, which resulted in 64 annotated persons
and in total 44,626 bounding boxes. This dataset has been used to evaluate
novel multimodal features.

The second dataset, QPR, was collected from an immigration area in an
airport, where the queue would be similar to those also seen in other areas of
the airport. In this case, entrance and exit points were at different locations,
hence, two non-overlapping cameras were used to collect data. Different
from OPR, persons were constrained to follow a maze from entrance to exit,
while the number of persons is higher. This dataset was annotated using
a custom tool, which performs detections based on background subtraction
and BLOB detection, that were afterwards manually refined. This resulted
in a dataset, which contains 11,616 bounding boxes of 116 persons. Besides
RGB and depth data, timestamps were saved, thus, this dataset has been
used to both evaluate multimodal features and queue time measurements
using vision-based re-id.

For both datasets, ZED cameras were used to record data, due to their
wide FoV and high depth resolution. In case of OPR, the camera was cali-
brated and data were collected in FHD resolution, while in case of QPR, both
cameras were calibrated and data were collected in 2k resolution. Depth
maps are calculated using standard OpenCV function SGBM, and a JET color
map is applied to transform the depth maps to images that can be used to
train deep models.
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1. Introduction

Abstract

Person re-identification is a topic which has potential to be used for applications
within forensics, flow analysis and queue monitoring. It is the process of matching
persons across two or more camera views, most often by extracting colour and texture
based hand-crafted features, to identify similar persons. Because of challenges regard-
ing changes in lighting between views, occlusion or even privacy issues, more focus
has turned to overhead and depth based camera solutions. Therefore, we have devel-
oped a system, based on a Convolutional Neural Network (CNN) which is trained
using both depth and RGB modalities to provide a fused feature. By training on a lo-
cally collected dataset, we achieve a rank-1 accuracy of 74.69%, increased by 16.00%
compared to using a single modality. Furthermore, tests on two similar publicly
available benchmark datasets of TVPR and DPI-T show accuracies of 77.66% and
90.36%, respectively, outperforming state-of-the-art results by 3.60% and 5.20%,
respectively.

1 Introduction

Person re-identification (re-id) i.e. identifications of persons across two or
more cameras, is a topic with increasing interest due to potential usage in
forensics, analysis of pedestrian flow in urban areas or monitoring of queue
times in, for example, an airport. Meanwhile, it is also a topic still in research
due to challenges that include changes in lighting, view and pose between
camera views. To cope with these challenges, focus often lies in extracting
robust hand-crafted feature descriptors from each person that are matched
between views. For this purpose, soft biometrics are considered, such as
colour and texture of the clothing, either represented as histograms [1] or
transformed to sparse descriptors [2]. To further improve accuracy of correct
matches, supervised learning algorithms are applied that learn to separate
similar feature pairs from dissimilar ones [3, 4]. More recently, deep learning
has drawn increasing interest from the research community with Convolution
Neural Networks (CNN) outperforming hand-crafted feature descriptors, as
they are able to learn more expressive features [5, 6].

Besides aforementioned challenges, privacy preservation is often related
to person re-id as a potentially large amount of data needs to be stored.
Other than representing images as feature descriptors, camera placement can
be considered as a means of privacy preservation. Most current benchmark
datasets within re-id consider a frontal view [7, 8] while only few consider
an overhead view which has the advantage of reducing privacy issues and
avoid occlusions between persons or objects and persons in the scene [9, 10].
Furthermore, other modalities that are more anonymous can be used, for ex-
ample depth, from which information is captured using either passive stereo,
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i.e. a stereo camera or active, for example, a Microsoft Kinect. From depth
information, the height and width of the person can be extracted along with
different body ratios [11]. Instead of relying on a single modality, combining
(fusing) different modalities have shown to improve performance in related
applications such as object recognition [12] and object segmentation [13].
Such fusing can be done either at feature level (feature fusion), for example,
by concatenation of respective feature descriptors or at decision/score level
(late fusion) by fusing the output decisions/scores from different modali-
ties [14].

To consider challenges regarding changes across views and the advan-
tages of fusing different modalities, we propose a novel framework for ap-
plying colour and depth (RGB-D) based re-id to images, captured with an
overhead view. More specifically, we take advantage of the recent advances
within deep learning and train a CNN using information from both RGB
and depth modalities to improve accuracy compared to using either modal-
ity independently. To that extend, we collect a novel RGB-D based dataset in
an uncontrolled environment from a stereo camera placed overhead to avoid
occlusions and, at the same time, preserve privacy by not recording faces.
Our dataset is collected to resemble real-life situations by having multiple
persons within view, while current overhead datasets only consider a single
person within view at a time. In summary, the main contributions of our
work include:

• We train a CNN using RGB and depth modalities information and show
that fusion of these improves accuracy.

• We collect and annotate a novel RGB-D and overhead based dataset
which can be used to both evaluate re-id accuracy but also multi-target
detection and tracking algorithms in RGB and depth domain.

2 Related Work

While re-id using hand-crafted colour and texture features or CNN’s are
widely studied, overhead re-id is rarely considered. In addition, only a lim-
ited number of articles suggest depth modality for this purpose.

Overhead re-id As most current re-id datasets are collected in outdoor
scenes, a frontal view is typically considered. A few systems have been
proposed for evaluating datasets with an overhead view [15, 16]. [16] pro-
poses feature extraction using a Histogram of Oriented Gradients (HOG)
algorithm combined with a linear Support Vector Machine (SVM) for clas-
sification while [15] extracts features based on the colour and texture of the
hair. While both datasets are recorded in an indoor environment, they only
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extract colour information.

Overhead RGB-D-based re-id More RGB-D based datasets for re-id are
currently being proposed. While the first considered a frontal view [17], the
most recent consider an overhead view [9, 10]. [9] collected a dataset in a hall-
way and applies a combined CNN and Long-Short-Term-Memory (LSTM)
network using depth based image sequences to learn spatio-temporal repre-
sentations of each person. Meanwhile, [10] extracts seven different depth fea-
tures and two colour features that are feature fused by concatenation. While
the former extracts only depth information, the latter considers only hand-
crafted features from both modalities.

Multi-modal CNN While the work of [9] to our knowledge is the only
previous proposed neural network using depth information for re-id, multi-
modal CNN’s have been proposed for related applications [12, 13]. [12] trains
a CNN for object recognition using both colour and depth images by fusing
respective features in late layers of the network to consider both modalities
during training. To that extend, [18] shows that feature fusion of colour and
depth features in a CNN outperforms similar fusion scheme using other clas-
sification methods, such as SVM and Deep Belief Networks (DBN). Mean-
while, [13] proposes a multi-modal encoder-decoder network for semantic
segmentation by fusing outputs from each layer in an RGB and depth based
encoder, respectively, before passing the output through an RGB-D based de-
coder. In this case, fusing is applied as an element-wise summation. To our
knowledge, no multi-modal neural networks have previously been proposed
for re-id. Although, [6] proposes a fusing scheme similar to that of [12],
but instead of fusing different modalities, complementary feature types are
fused, i.e. CNN and hand-crafted features. To our knowledge, the system
proposed in this paper, is the first to incorporate multiple modalities in a
CNN to learn a multi-modal feature representation.

3 Methodology

As we desire to exploit both colour and depth information, along with the
potential of CNN’s, our aim is to use an architecture which jointly processes
the two modalities, RGB and depth, simultaneously. For person re-id, such
architecture has not previously been applied, although, in object recognition
the work of [12] shows an increase in accuracy compared to using a single
modality.

We apply an architecture similar to that of [12], having two CNN streams
separately processing an input image while being fused in a later fully con-
nected layer, as shown in Fig. A.1. The structure of each separate CNN
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follows the AlexNet architecture (please see [19] for details) and consists of
five convolution layers, the first, second and fifth followed by a max pooling
and normalization layer. The outputs from the last convolution layers are fol-
lowed by two fully connected layers, transforming the feature maps to sparse
representations for RGB and depth, respectively. The feature representations
(fc7RGB and fc7D) are concatenated and used as input to a fully connected
layer (fc8) which learns a joint RGB-D feature representations based on both
colour and depth images. Finally, a softmax layer (fc9) calculates output
probabilities for each class, defined as a person ID, which combined with a
loss function is used to update the parameters of the network. We refer to our
proposed system as RGB-D-CNN. At test time, the softmax layer is discarded
and features are extracted from fc8.

227

3

227

96 256 384 384 256

4096 4096

8192

varies

55

55

27

27

13

13 13

13

13

13

3 96 256 384 384 256

55

55

27

27

13

13 13

13

13

13

4096 4096

227

227

fc6RGB

fc6D

fc7RGB

fc7D

fc8

fc9

RGB input

Depth input

conv1RGB

conv2RGB

conv3RGB conv4RGB conv5RGB

conv1D

conv2D

conv3D conv4D conv5D

Fig. A.1: Overview of the RGB-D based CNN (RGB-D-CNN). Lower part processes a depth
image, while the upper part processes a colour image, features from last fully connected layer of
the streams are fused in a joint fully connected layer before classification.

Individual training Before training the RGB-D-CNN, CNN models are
trained for RGB and depth, respectively. We refer to these models as RGB-
CNN and D-CNN. Both follow similar structure as the upper/lower part
of the joint CNN, with a softmax layer replacing fc8 and fc9. The model
weights are initialized using a pre-trained model of the CaffeNet version [20]
of AlexNet trained on the ImageNet dataset. Following the architecture of
AlexNet, the input is an image of size 227×227, randomly cropped from an
image of size 256×256, to make the network robust to changes in translation.
Both colour and depth images are therefore resized accordingly before being
processed by the network. In addition, the images are randomly flipped to
increase the amount of training data. In case of depth images, [12] shows
that applying a jet colourmap enhances the accuracy compared to encoding
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the images using surface normals [21] or Horizontal disparity, Height and
Angle (HHA) encoding [22]. This colour transformation maps each depth
value to a colour in RGB colour space from blue(close) over green to red(far).
This enables us to initialize the weights using the pre-trained CaffeNet model
without additional preprocessing. We therefore perform similar step before
training the depth model.

Given sets of parameters and datasets (WRGB, bRGB, XRGB, Y) and
(WD, bD, XD, Y) for RGB and depth, respectively, where W and b are the
model weights and bias, while (XRGB, XD) are the set of RGB and depth
images with corresponding labels Y, we train the models by minimizing a
loss function, L, as given in Equation A.1:

min
W,b
− 1

N

N

∑
i=1

L(W, b, xi, yi)

L(W, b, xi, yi) = log( p̂i, yi)

(A.1)

where W, b are the weights and bias of the model currently being trained,
X = {x1, .., xN} is the sample set and p̂i is the output probability from the
softmax layer of the i’th sample given the true label yi.

Joint training After training RGB-CNN and D-CNN, the model parameters
are used to initialize the two CNN streams in RGB-D-CNN. The softmax
layers are replaced by a randomly initialized fully connected layer (fc8) and
new softmax layer (fc9). By fusing outputs from both fc7RGB and fc7D in
fc8, the parameters of the depth stream are updated depending on the input
to the RGB stream and vice versa, while the weights and bias of fc8 are
updated based on both inputs, resulting in a fused output. [6] shows how
fusion of hand-crafted and CNN features in the late layers of the network
affects parameter update of the CNN. Similar proof applies to this context.

4 Experimental Results

Datasets For evaluation we present a novel RGB-D based dataset collected
from an overhead view. We refer to the dataset as Overhead Person Re-
identification (OPR). The dataset is collected using a calibrated ZED stereo
camera from Stereolabs [23], mainly due to its ability to record depth from a
range 0.7m-20m covering both low and high ceilings. In addition, it captures
video in resolutions up to 4416×1242 pixels which is much higher than RGB
sensors in solutions such as the Microsoft Kinect. The camera is placed in
the ceiling at a university canteen (uncontrolled environment) to capture a
populated area. From this perspective, persons are captured when approach-
ing (walking from top to bottom), and leaving (walking from bottom to top)
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the canteen a few minutes later, enabling us to evaluate re-id performance.
Data is collected on a single day during a two hour period around midday to
capture video when the number of persons in the canteen is increasing and
decreasing. As a result, cases of having a large number of persons and only a
single person are recorded, examples of captured depth images in both cases
are shown in Fig. A.2 (a) and (b), respectively.

(a) (b)

Fig. A.2: Examples of depth images containing (a): multiple persons and (b): containing a
single person. Each person is captured when approaching (right side) and leaving (left side) the
canteen.

Disparity maps are computed using Semi-Global Block Matching (SGBM)
as it has shown as a good compromise between accuracy and processing
time [24], followed by filtering using a Weighted Least Square (WLS) ker-
nel to eliminate noise and make the background more uniform, resulting in
more precise depth information. Finally, we manually annotate bounding
boxes around persons and use those for our system, the annotations enables
us to further test detection, tracking and segmentation algorithms in future
work. A total number of 78742 frames with 64 different persons have been
annotated for re-id.

To our knowledge, only the datasets of [9] (DPI-T) and [10] (TVPR) have
previously been proposed for RGB-D and overhead based re-id. Both are
recorded in a hall with only a single person within view at all times. Exam-
ples of depth images from these datasets are shown in Fig. A.3. In addition to
evaluating on our own dataset, we apply our system to those of [9] and [10]
for comparison with their original results.

Evaluation protocols Depending on the dataset, different training and test-
ing protocols are followed.
OPR Similar to most RGB-based datasets within re-id, we perform 10 ran-
dom train and test splits, each set containing 32 persons. After training the
CNN models, features from the test set are extracted from the last fully con-
nected layer.
TVPR The training set consists of 100 persons walking from left to right while

74



4. Experimental Results

(a) (b)

Fig. A.3: Examples of depth images from (a): DPI-T and (b): TVPR.

the test set consists of same persons walking from right to left. During test,
features from the test set are compared with those from the training set. Al-
though, due to issues at test time regarding one of the video sequences, only
94 persons were considered for training and testing.
DPI-T 12 persons appear in five different sets of clothing in both the training
and test, while the number of recordings in each set differs. A total of 213
sequences are used for training while the test set consists of 249 sequences
which are all classified by comparing with those of the training set.
When training RGB-CNN and D-CNN, a batch size of 128 is used while a
size of 64 is used in case of RGB-D-CNN. Network parameters are updated
using Stochastic Gradient Descent (SGD) with momentum is to avoid getting
stuck in a local minimum. Hyper parameters are set accordingly to [12] with
a momentum of 0.9 and base learning rate of 0.01 which is reduced by multi-
plying with 0.97 for each epoch. At each epoch, the training set is randomly
shuffled for faster convergence [25]. We present our results by calculating the
rank-1 to rank-k accuracies based on feature matching where rank-i indicates
a cumulative percentage of persons having their true match within the i most
similar with k indicating the total number of persons. For OPR, the aver-
age accuracies over all train/test splits are calculated. Matches are calculated
using Euclidean distance between extracted features following a multi-shot
approach, i.e. features from all images of each person/sequence are extracted
and either maximized or averaged, indicated by subscripts max and avg.

Fig. A.4 (a) shows the resulting Cumulative Matching Characteristic (CMC)
curves for applying RGB-CNN, D-CNN and RGB-D-CNN to OPR. It is clear
that fusing of RGB and depth modalities clearly increases accuracy compared
to using a single modality. The best result is achieved by RGB-D-CNNavg, in-
creasing accuracy by 16.00% compared to RGB-CNNavg. Furthermore, Fig.
A.4 (b) and (c) show the results of our system applied to DPI-T and TVPR,
respectively. In case of DPI-T, RGB-D-CNNavg still outperforms RGB-CNN
and D-CNN with an increase of 3.61% compared to RGB-CNNavg. Finally for
TVPR, RGB-CNN provide better results compared to RGB-D-CNN. A reason
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Fig. A.4: Results on (a) OPR (p=32), (b) DPI-T (p=249) and (c) TVPR (p=94) for RGB-CNN,
D-CNN and RGB-D-CNN, respectively, using maximized (max) and averaged (avg) features.

for this could be the quality of depth information (see Fig. A.3 (b)) nega-
tively affecting the training of RGB-D-CNN in combination with correspond-
ing colour images. Even though, D-CNN results are slightly worse in case
of DPI-T, the level of detail in depth images are higher (see A.3 (a)) causing
the modality to better complement RGB. The quality of depth information
therefore seems important when training an RGB-D CNN. Looking at results
across all datasets, averaged features mostly provides the highest accuracies,
although, in case of depth features, feature maximization seems better. This
could be due to encoding of features as colourized images combined with an
overhead view from which the height of each person, and thereby the colour
gradient, is important. By averaging features, this information more easily
gets lost if the representation changes between images.

Tables A.1 summarizes our results on TVPR and DPI-T, compared to their
original results. As [9] only provides a rank-1 accuracy while [10] only pro-
vides CMC curves, only the rank-1 accuracy is considered. For [10], rank-1
is estimated from the CMC curves. Ours refers to the best results achieved
by our system (RGB-D-CNNavg in case of DPI-T and RGB-CNNavg in case of
TVPR). In both cases we outperform original results, for DPI-T by 34.76% by
also using RGB. From Fig. C.3 (b), it is worth noting that our D-CNN alone
achieves almost similar accuracies as [9] who also adds an LSTM layer on top
of a similar CNN.
Even though, six persons are missing for the tests on TVPR, our system shows
potential to be improved further. For RGB alone, our system outperforms that
of [10] by ≈5.16%.

Processing time We evaluate processing time for stereo and feature match-
ing on OPR to discuss on the potential of using passive stereo for re-id ap-
plications. 20 matching iteration are run using an Intel i7-6700HQ CPU @
2.60GHz and 16GB of RAM and average timings are provided. Stereo match-
ing matching is performed on images of size 960×540.

While feature matching only takes 4.0e10−5s, SGBM and WLS are more
processing intensive taking 0.136s and 0.103s, respectively. Nonetheless, ≈4
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Rank-1 accuracy [%]
Method DPI-T TVPR
4D RAM [9] 55.60 –
TVDH [10] – 72.50
Ours 90.36 77.66

Table A.1: Comparison of our RGB-D-CNN to original results on DPI-T and TVPR datasets.

FPS is achieved using the CPU. For real-time applications, GPU implementa-
tions of SGBM and WLS algorithms could be used speed up the process. No
such implementations are available at the moment.

5 Conclusion

In this paper, we have presented an RGB-D based CNN applied to person re-
identification. Two CNN models are trained using colour and depth images,
respectively, captured from an overhead view and resulting trained param-
eters are used to initialize a joint RGB-D-CNN model trained using both
modalities. To test the system, we collected a novel RGB-D and overhead
based dataset which is annotated for evaluation on both re-id accuracy, but
also detection and tracking algorithms. By applying our system to our novel
and two previously proposed datasets, we have shown that the combination
of RGB and depth modalities increase accuracy by 16.0% and 3.6% on our
OPR dataset and DPI-T, respectively. In case of TVPR, RGB modality alone
achieved higher accuracy than combining modalities due to the quality of
depth information. This indicates an importance to capture detailed depth
information to proper complement the RGB modality. In addition, our sys-
tem shows an FPS of 4 using a CPU, with potential of being increased if
processing intensive algorithms such as SGBM and WLS are implemented
on a GPU. For future work, the system should be evaluated on bounding
boxes extracted automatically from a person detector. To increase detection
performance, depth information could also be used for this purpose. Further-
more, our proposed system could be extended with an LSTM to handle video
rather than averaging or maximizing features extracted from a sequence of
images. This would allow for temporal information to be captured as well.
Finally, more recently developed neural networks could replace the AlexNet
architecture to increase performance and decrease processing time.
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1. Introduction

Abstract

In spite of increasing interest from the research community, person re-identification
remains an unsolved problem. Correctly deciding on a true match by comparing im-
ages of a person, captured by several cameras, requires extraction of discriminative
features to counter challenges such as changes in lighting, viewpoint and occlusion.
Besides devising novel feature descriptors, the setup can be changed to capture per-
sons from an overhead viewpoint rather than a horizontal. Furthermore, additional
modalities can be considered that are not affected by similar environmental changes
as RGB images. In this work, we present a Multimodal ATtention network (MAT)
based on RGB and depth modalities. We combine a Convolution Neural Network
with an attention module to extract local and discriminative features that are fused
with globally extracted features. Attention is based on correlation between the two
modalities and we finally also fuse RGB and depth features to generate a joint mul-
tilevel RGB-D feature. Experiments conducted on three datasets captured from an
overhead view show the importance of attention, increasing accuracies by 3.43%,
2.01% and 2.13% on OPR, DPI-T and TVPR, respectively.

1 Introduction

Person re-identification (re-id) is the task of matching person descriptors ex-
tracted from images captured across, typically, non-overlapping cameras and
persists as a hot topic within the research community [1]. This is not only
due to major challenges, including changes in lighting, viewpoint and occlu-
sion between cameras but also the potential usage within applications such
as forensics or long-term tracking of pedestrians [2, 3].

A person re-id system, typically, consists of tracking, features extraction
and feature matching using simple distance metrics, for example, Euclidean
distance or more sophisticated ones such as Keep It Simple and Straight-
forward MEtric (KISSME) based on Bayesian theory and Mahalanobis dis-
tance [4]. Variations such as Cross-view Quadratic Discriminant Analysis
(XQDA) [5] additionally considers subspace learning while Support Vector
Machines (SVM) [6] aims at maximizing distance between features of non-
similar pairs. For a comprehensive overview of metrics applied in person
re-id, please see [7]. Most often, researchers focus on either feature extraction
or matching using supervised learning, although, following recent develop-
ments of deep learning, Convolution Neural Networks (CNN) have been pro-
posed also in the case of person re-id [8–13]. These networks are able to learn
both discriminative features and a classifier simultaneously by training in an
end-to-end fashion.

Due to more focus on CNN in re-id, more data has become a necessity to
properly train the networks. As a result, larger datasets in recent years have
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emerged [14–16], not only allowing proper use of CNN but also increasing
the realism of re-id evaluation. Common for these datasets is the viewpoint
which is mostly horizontal, allowing occlusions between persons or persons
and objects. Another option is to place the camera overhead, resulting in a
vertical viewpoint, an option only considered by few [17–19]. This both has
the potential of decreasing the probability of occlusions and improve privacy
preservation. Examples of the two different viewpoints are shown in Figure
B.1.

(a) (b)

Fig. B.1: Examples of images captured from (a): an overhead viewpoint [17] and (b): a horizontal
viewpoint [20].

By changing the viewpoint, less color and texture information might be
available and it is therefore crucial to extract features that represent the most
important parts of a persons appearance. One way is to learn part-specific
CNN models by splitting the image into local regions and feed those to sep-
arate CNN streams [10, 12]. Even though, these models learn local feature
responses, they still consider regions that are not relevant to the feature de-
scriptor, decreasing invariance to lighting, background clutter, etc.

Another way is to apply an attention mechanism, originally introduced and
applied in Neural Machine Translation problems (NMT) [21], which can be
used to consider only certain local parts of an image. Within computer vision,
this method has been applied with great success to both image captioning
[22], action recognition [23] and, more recently, person re-id [17, 24, 25].

Attention works by calculating a set of positive weights defined as a 2D
attention map. Attention maps are then used to summarize features extracted
from a CNN. Two types of attention are often considered, soft attention where
attention weights are calculated based on a differentiable deterministic mech-
anism which can easily be trained along with the rest a neural network, and
hard attention where weights are calculated by a stochastic process.

Besides capturing local information, additional modalities can be consid-
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ered to extract different heuristics. Based on extracting features from images
captured in an overhead view, it makes sense to include depth information
as an additional modality. To that end, previous work on multimodal person
re-id has shown RGB and depth based features to complement each other
well [18, 19, 26].

In this paper we apply soft attention to person re-id, considering images
captured from an overhead view. Instead of only applying attention using
color or depth information, we consider a multimodal approach by calculat-
ing attention weights based on fusing RGB and depth features, both extracted
using pre-trained CNN. As a result, attended regions in the RGB image are
based on the representation in depth domain which better captures informa-
tion around regions with significant change in depth. Vice versa, attended
regions in the depth domain are based on the RGB representation to bet-
ter capture depth information in areas with discriminative color information.
To extract features from different discriminative regions, we learn attention
maps at multiple layers of the CNN and fuse locally summarized features.
Additionally, local features are fused with global feature descriptors to cap-
ture information at different abstraction levels as previously proposed with
success [11, 27].

Finally, we also learn a joint feature representation by fusing RGB and
depth features in the late layers of the network to produce a multilevel RGB-
D based feature descriptor and train the entire network end-to-end. To sum-
marize, our contributions include:

• We implement soft attention in a multimodal CNN by fusing RGB and
depth features.

• We analyze the importance of attention in a multimodal context by vi-
sualizing calculated attention maps in different scenarios.

The rest of the paper is structured as follows. Related work is presented in
Section B.2 followed by a description of the proposed methodology in Section
B.3. Experimental results are presented in Section B.4, including an impact
analysis of applying attention. Finally, the paper is concluded in Section B.5.

2 Related Work

Ever since the first significant results in object recognition [28], CNN have
been proposed in person re-id [8, 14]. While these focus on globally extracted
features, more recent proposals are based on part-based learning to capture
more local information [9, 10, 13]. Ustinova et al. [10] propose a Bilinear-
CNN by splitting the body into three parts and train part specific CNN that
are summarized by bilinear combination of features. Finally, features from
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the three parts are fused in a fully connected layer. Part specific CNN are
also proposed by Cheng et al. [9] who split the body into four parts and learn
both part specific and global features that are fused in the late layers of the
CNN. A different approach is followed by Zhao et al. [13] who apply a Re-
gional Proposal Network (RPN) to locate 14 human body joints and extract
seven body sub-regions. A CNN is applied to each sub-region to learn part
specific features that are afterwards fused in a four layered feature fusion net-
work (FFN). Part localization is also proposed by Li et al. [29], but instead of
localizing the joints, they apply a Spatial Transformer Network (STN) to lo-
calize head-shoulder, upper-body and lower-body regions. Once again, part
specific features are learned and later fused with globally extracted features.
Common for aforementioned methods is the requirements of a horizontal
viewpoint in order to either have a properly division of body parts or local-
ize the joints. In case of an overhead view, this is not possible.

Soft attention in CNN can be related to saliency learning using hand-
crafted features which also aims at locating discriminative regions. Little
work has been done within this area, most notable are the works of Zhao
et al. [30, 31]. In [31] they propose salience learning by matching patches
within a constrained window between images of persons captured by two
different cameras. For each patch, a salient score is calculated using either
K-Nearest Neighbors or One-class SVM. Meanwhile, in [30] they propose
learning discriminative mid-level filters by clustering image patches with co-
herent appearance and apply SVM. These filters are then used to calculate
filter responses of input images prior to feature matching.

Attention has been previously proposed only a few times within person
re-id [17, 24, 25]. Liu et al. [24] propose a Comparative Attention Network
(CAN) which is trained end-to-end by producing and comparing attended
regions of positive and negative image pairs, i.e., images of similar and non-
similar persons. By combining a CNN with a Long Short-Term Memory
(LSTM) network, attention maps are produced at different time steps to cap-
ture different local regions by using the same encoded image as input at
each time step. The work of Zhao et al. [25] is also motivated by attention
which is used to model a part-aligned human representation by learning
attention weights through end-to-end training using a triplet loss function.
Finally Haque et al. [17] propose a depth-based recurrent visual attention
network by combining a CNN with an LSTM to learn spatiotemporal fea-
tures. By adding a localization network, discriminative features are extracted
from glimses, i.e., a minor region in the input. The localization network
is trained using reinforcement learning to focus on discriminative regions.
While [24, 25] apply attention in the RGB domain, [17] apply attention in
depth domain. This work, to our knowledge, is the first to apply attention in
a multimodal context.

Multimodal fusion of RGB and depth information is rarely considered in
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person re-id [19, 32, 33]. Liciotti et al. [19] propose a combination of hand-
crafted RGB and depth features to capture both color, texture and anthropo-
metric information. RGB-D based hand-crafted features are also proposed by
Wu et al. [33] who extract a rotation invariant Eigen-depth feature and fuse
it with low-level color and texture features [5]. Only two previous proposals
fuse RGB and depth features using a CNN [18, 26]. Karianakis et al. [26]
learn spatiotemporal features from a combined CNN and LSTM. Consider-
ing the small sample size issue, they add hard attention to incorporate reg-
ularization. Finally, Lejbølle et al. [18] propose a multimodal CNN which
jointly learns a multimodal feature descriptor based on individually trained
RGB and depth CNN. Common in aforementioned work is fusion of features
which is simply done by concatenation which does not capture the correlation
between features from different modalities. In this work, we use correlation
between depth and RGB features to extract local information from the input
images and, additionally, exploit the advantage of multimodal feature fusion
by learning a joint descriptor based on RGB and depth.

3 Methodology

An overview of the proposed network is shown in Figure B.2. RGB and depth
images IRGB and ID are encoded using an RGB based encoder fRGB and depth
encoder fD, respectively, represented by CNN. The outputs from the last con-
volution layer are embedded in fully connected layers and used as input to
the attention model fatt. The attention model multiplies features to capture
correspondence between modalities, following the idea of multiplicative in-
teraction [34]. Attention weights, αl , are afterwards calculated separately for
the l’th layer of the RGB and depth encoders, and used to summarize fea-
ture maps Xl

RGB and Xl
D. The summarized features are fused with globally

extracted feature descriptors and the two modality based features are fused
to learn a joint feature representation. Finally, a classification module fc is
added for prediction when training the network. In the rest of the paper, we
refer to our proposed network as Multimodal ATtention network (MAT).

3.1 Visual Encoder

The input to the MAT is an RGB image IRGB and a corresponding depth
image ID that are separately processed by modality based encoders fRGB and
fD given by,

X5
RGB = fRGB(IRGB, θRGB)

X5
D = fD(ID, θD),

(B.1)

where X5
RGB ∈ RN×N×K and X5

D ∈ RN×N×K are the outputs from the
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Fig. B.2: Overview of the Multimodal ATtention network (MAT). An RGB and depth image is
encoded by an RGB based encoder, shown by the green stream, and depth based encoder, shown
by the blue stream, respectively. Outputs from the last convolution layer are embedded and ap-
plied to the attention module which calculates attention maps for each modality. Feature maps
from the encoders are summarized using the attention maps and fused with global feature rep-
resentations at each modality. Finally, features from the two modalities are fused to a multilevel
RGB-D based feature descriptor and used for prediction.

fifth and last convolution layer denoted by the superscript 5, θRGB and θD are
the encoder weights while K represents the number of feature maps of size
N × N.

The encoders follow the Caffe variation (CaffeNet) [35] of the AlexNet
CNN [28] for better comparison with the related method of [18] which does
not consider attention. The CaffeNet consists of five convolution layers, the
first and second followed by local response normalization and max pooling.
Max pooling is also added after the fifth convolution layer and followed by
three fully connected layers, the last one used to calcuate an output score for
each class normalized by a softmax function. Rectified Linear Units (ReLU)
are used as nonlinear activation while dropout with a probability of 0.5 is
added between fully connected layers to increase network generalization [36].

Followeing the baseline architecture of [18], the encoders take as input
images of size 227×227 and output feature descriptors X5

RGB ∈ R13×13×256

and X5
D ∈ R13×13×256. Two fully connected layer afterwards embed features

to sparse feature descriptors X7
RGB ∈ R4096 and X7

D ∈ R4096, representing
global information. Different from [18], we do not fuse X7

RGB and X7
D to a

joint RGB-D feature, but first fuse each modality based feature with locally
extracted features from the attention model.

88



3. Methodology

3.2 Attention Model

The attention model fatt is based on using depth information to calculate
attention weights for the RGB features and vice versa. In this subsection,
we outline the calculation of RGB attention weights, similar calculations are
defined in case of depth by simply exchanging subscripts RGB and D.

As input to the attention model, we use features X6
RGB ∈ R4096 and X6

D ∈
R4096 extracted from the first fully connected layer. The attention weights
to extract local features from the output of any given layer of fRGB are then
calculated as,

el = fatt(X6
RGB, X6

D, θα), el ∈ RN2

αl
i =

exp(el
i)

∑i el
i

, αl ∈ RN2
,

(B.2)

where el is a vector of unnormalized attention weights of size N2 and θα

represents the attention model parameters. To calculate a weighted average of
features, attention weights are normalized using a softmax function, resulting
in αl , as originally proposed [21]. Thus, given a feature map of, e.g., size
13× 13, we calculate 169 normalized attention weights.

The attention model implements multiplicative interaction to learn rela-
tions between RGB and depth features, and calculation of attention weights
can therefore also be written as,

el = W l
att(X6

RGB � X6
D) + bl

att, (B.3)

where � represents an element-wise multiplication while W l
att ∈ RM×N

and bl
att ∈ RN are the weights and bias of the attention model, respectively,

and M is the number of hidden units in X6
RGB.

The normalized attention weights calculated in Equation B.2 are then used
to calculate the weighted average of features from the l’th layer of fRGB as,

Xl
RGB,A = (X̂l

RGB)
Tαl , Xl

RGB,A ∈ RK, (B.4)

where X̂l
RGB ∈ RN2×K is the flattened output from layer l and Xl

RGB,A is
a feature descriptor containing local information from the input RGB image
dependent on features from the depth image. Since the attention maps are
used to summarize features across all feature maps, only local regions of in-
terest are considered. In our experiments presented Section C.4, we calculate
attention maps for the fourth and fifth convolution layers of fRGB and fD to
capture different local information, resulting in calculations of, in total, four
attention maps. We observe that consideration of additional low-level infor-
mation from earlier convolution layers does not improve accuracy. Given the
outputs X4

RGB ∈ R13×13×384 and X5
RGB ∈ R13×13×256, we thereby summarize
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features using attention maps α4
RGB ∈ R169 and α5

RGB ∈ R169 resulting in
attention based features X4

RGB,A ∈ R384 and X5
RGB,A ∈ R256.

The attention based features are afterwards fused with X7
RGB by adding

a new fully connected layer, to form a modality based multilevel feature
X8

RGB ∈ R4096. Finally, multilevel RGB and depth features are fused by a
second new fully connected layer resulting in a multimodal feature descrip-
tor X9

RGBD used for prediction.
Prediction is implemented by calculating a probability score of each class

given X9
RGBD. A softmax layer is added to normalize scores and the entire

network is trained end-to-end by minimizing the logistic loss function de-
fined as,

min
θRGB ,θD ,θα ,θc

−1
J

J

∑
i=1

log( p̂i)

p̂i = fMAT(IRGB, ID; θRGB, θD, θα, θc),

(B.5)

where the loss is calculated over a mini-batch of size J and p̂i represents
the normalized score for the i’th image predicted by fMAT .

4 Experiments

This section outlines the experimental results and analysis of the MAT. First,
evaluated dataset and corresponding test protocols are described followed
by details of training fRGB, fD and fMAT . Finally, the results are presented
with a comparison to state-of-the-art methods and the attention module is
analyzed by a visualization of calculated attention maps.

4.1 Datasets and Protocols

When evaluating the MAT, we only consider datasets collected from an over-
head viewpoint. Three RGB-D based datasets, to our knowledge, have been
proposed for overhead person re-id, including the Depth-based Person Iden-
tification from Top (DPI-T) [17], Top View Person Re-identification (TVPR)
[19] and Overhead Person Re-identification (OPR) [18].

DPI-T: Recorded in a hallway, this dataset consists of 12 persons, appear-
ing in an average of 25 sequences in five different appearances, both in the
training and test set. A total of 213 sequences are included in the training set,
while 249 are used for testing. During test, all sequences from the test set are
matched with those in the training set.

TVPR 23 videos are recorded in a hallway, including a total of 100 per-
sons, each appearing twice. The training set consists of persons walking from
left to right, while walking from right to left in the test set. At test time, se-
quences from the test set are compared with those of the training set. Due to
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missing frames in one of the recorded videos at time of testing, 94 persons
are considered in our evaluation. Different from [18] who consider full-frame
images, we apply a You Only Look Once (YOLO) detector [37] optimized for
person detection, to automatically extract the ROI around persons.

OPR This dataset, recorded in a university canteen, consists of 64 persons
captured twice, when entering and leaving the canteen. Similar to protocols
in widely used re-id datasets captured from a horizontal view, 10 random
train/test splits are performed, each consisting of 32 persons in both training
and test set. The final result is then calculated as an average of accuracies
across all experiments.

4.2 Implementation details

Before training the MAT, fRGB and fD are fine-tuned by initializing a Caffe
model, pre-trained on the ImageNet dataset. In case of fD, we encode depth
images by applying a JET colormap which has shown to outperform other
encoding methods such as surface normals or Horizontal disparity, Height
and Angle (HHA) [38]. In addition to also being faster, applying a color map
allows us to initialize weights using a pre-trained ImageNet model since each
depth value is mapped to a value in the RGB color space ranging from blue
(close to the camera) to red (far from camera). Fine-tuning is performed us-
ing Stochastic Gradient Descent (SGD) with momentum of µ = 0.9 and a
batch-size of 128. The base learning rate is set to η0 = 0.01 and reduced
by ηi = ηi−10.99 after each epoch. Similar to [18], data augmentation such
as cropping and flipping are applied to extend the dataset. To that end, we
resize images to 256×256 and draw cropping values from a discrete distribu-
tion in range [0, 29]. After fine-tuning RGB and depth encoders, we add and
initialize the attention module and fusion layers, and similarly train fMAT by
SGD. We reduce the base learning rate to η0 = 0.001 and train the network
using a batch-size of 32. In case of both fine-tuning encoders and training
the MAT, training runs for up to 100 epochs which takes 4-5 hours using an
Nvidia GTX 1080 GPU.

At test time, we extract features X9
RGBD from the last fully connected layer

and use Euclidean distance to match features extracted in different camera
views. Results are ranked according to the distance, intuitively, having the
match with the shortest as the most similar. Since all datasets contain several
images of each person, we apply a multi-shot approach and pool features ex-
tracted from all images of each person. Pooling is implemented by calculating
average features which has previously shown superior to, e.g., maximizing
when combining CNN features and a Euclidean distance metric [10, 15]. Al-
though, in case of TVPR, we observe feature maximization to perform better
and therefore provide results on that dataset using maximized features.
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4.3 Experimental Results

We present results as Cumulative Matching Characteristic (CMC) curves that
are produced by calculating a cumulative score for each rank-i indicating the
number of persons having their true match within the i most similar in the
ranked list.

The CMC curves produced from results on DPI-T, TVPR and OPR are
shown in Figure B.3, along with results without the use of attention, similar
to the proposed method of [18]1. RGBatt and Datt represent the attention-
based multilevel color and depth features X8

RGB and X8
D, while D-CNN, RGB-

CNN and RGB-D-CNN represent the baseline depth, color and joint models,
respectively.

(a) (b) (c)

Fig. B.3: Experimental results on (a): DPI-T (p=249), (b): TVPR (p=94) and (c): OPR (p=32) for
our multilevel attention-based RGB and depth features (Datt and RGBatt) along with MAT, and
D-CNN, RGB-CNN and RGB-D-CNN proposed in [18].

From Figure B.3 it is clear that addition of attention-based features in-
creases the rank-1 accuracy, even though, the accuracy is already high. Ad-
ditionally, fusion of RGB and depth features outperform the use of RGB or
depth individually. This is the case for DPI-T where the MAT increases the
rank-1 accuracy by 2.01% and 0.4% compared to RGB-D-CNN and RGBatt,
respectively. It is also worth noticing the increase of 5.22% when comparing
RGBatt and RGB-CNN which shows the effect of using attention maps to ex-
tract local features and fuse those with global features. Similarly on TVPR,
the rank-1 accuracy is increased by 2.13% and 10.64% compared to RGB-D-
CNN and RGBatt, respectively. Comparing RGBatt and Datt to RGB-CNN and
D-CNN, respectively, the use of attention does not seem to have a positive
impact which could be due to misalignment issues from the detection, lead-
ing to missing information. This will be further analyzed in Subsection 4.5.
Nonetheless, fusing the attention-based features results in a higher accuracy
when comparing MAT and RGB-D-CNN. Finally on OPR, the MAT increases
rank-1 accuracy by 3.43% and 12.81% compared to RGB-D-CNN and RGBatt,

1In the original study, the authors identified a minor error in the input of OPR after publica-
tion, hence, results differ from those reported in [18].
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respectively. Similar to DPI-T, fusing local and global information increases
rank-1 accuracy by 5.00% when comparing RGBatt and RGB-CNN.

4.4 Analysis of Attention

To identify the contribution from the attention model, we visualize examples
of attention maps α4

RGB, α5
RGB, α4

D and α5
D for all evaluated datasets. The

visualizations are shown in Figure B.4. We show examples of persons hav-
ing their true match as most similar ((a), (c) and (e)) and persons having their
true match outside top-10 ((b), (d) and (f)). In case of TVPR and OPR, we ran-
domly sample an image from each view and calculate attention maps. Since
DPI-T consists of multiple sequences of each person, we randomly sample
images from the most similar sequences between views.

DPI-T

(a): rank-1
TVPR

(c): rank-1 (d): rank-17
OPR

(e): rank-1 (f): rank-15

(b): rank-10

Fig. B.4: Examples of calculated attention maps in case of DPI-T, TVPR and OPR. Each sub-
figure consists of four attention maps from the same person in two different views. The four
attention maps are organized as follows; top-left corner: α4

RGB, bottom-left corner: α4
D , top-right

corner: α5
RGB, bottom-right corner: α5

D . Brighter areas means higher attention weights.

Generally, attention maps differs between the datasets. In case of DPI-T,
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attention is mostly focusing on parts of the floor, although, attended regions
also include parts of the person. This is most notable in case of α4

RGB in Figure
B.4 (a) where attention is mostly centered around the person and edges of the
images. The pattern of α5

RGB is more random, almost only capturing features
from the floor. This behavior could be due to the encoding of depth images
resulting in larger gradient changes in the floor compared to the persons,
causing the floor to have a higher impact on the RGB based attention maps.
Meanwhile, attention maps α4

D and α5
D focus on minor local regions centered

around the floor. Considering full-frame images, combined with uniform
colors of the scene, depth based attention maps are more affected by the col-
ors of the floor, causing local features to almost not contain any information
from the persons. This results in addition of noisy information, decreasing
accuracy which is also clear when comparing Datt and D-CNN in Figure B.3
(a). This indicates the importance of extracting the ROI around the persons
to remove as much background information as possible. In order to identify
contributing regions, calculated attention maps before and after training the
MAT should be compared. This will be considered in future work.

The attention maps for TVPR are less random but more similar across
persons. In case of both Figure B.4 (c) and (d), α4

RGB and α5
D capture local

information from the bottom right part of the images while α5
RGB and α4

D
capture information in the center right part of the images. This cause images
with misaligned detections to capture local features from the floor, in some
cases, negatively affecting accuracy, as also shown in Figure B.3 (b) when
comparing Datt and RGBatt to D-CNN and RGB-CNN. A reason for atten-
tion maps to be concentrated at the edges of the images could be the low
resolution of depth information which results in useful gradient information
only at the edge of the person. Although, in most cases, discriminative lo-
cal information is extracted leading to a higher accuracy when fused with
complementary global features.

Attention maps calculated in case of OPR are more centered around use-
ful information. Comparing RGB based attention maps α4

RGB and α5
RGB, both

mostly focus on the clothing which, typically, provide more discriminative
information compared to, for example, the hair. Nevertheless, they still focus
on different parts of the image, while α4

RGB focus on multiple local regions
with corresponding gradient changes in the depth image, α5

RGB, focus on a
single region. Additionally, the impact of fusing RGB and depth is shown
by the attended regions, mostly centered near regions with larger gradient
changes, for example, at the shoulder. This has a positive impact since these
areas can be assumed to contain more useful information, considering the
overhead view. α4

D and α5
D are more view dependent, focusing on several

regions in the first view, while only focusing on a couple regions in the sec-
ond. Like DPI-T, this could be due to a more diverse background in the first
view. They both capture information around regions with larger gradients,
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indicating that the attention model learns to calculate depth based attention
maps that capture regions with useful color information while still preserv-
ing gradient information. A few failure cases exist as seen in the second
(right) view of Figure B.4 (f). Here, a large gradient change in the left part
of the depth image greatly affects the calculation of attention maps, causing
attended regions to be centered around this edge. This is most likely a prod-
uct of the depth calculations in [18] and should simply be removed in future
evaluations.

4.5 Comparison to State-of-the-art

We compare our results with state-of-the-art for the three evaluated datasets.
Due to the novelty of these datasets, only few results previously have been
presented, including the 4D Recurrent Attention Mechanism (4D RAM) [17]
and recurrent network with temporal attention (Depth ReID) [26] in case
of DPI-T, and TVDH [19] in case of TVPR. Finally, the results of RGB-D-
CNNavg (RGB-D-CNN) presented in [18] are compared. The comparisons are
summarized in Table B.1-B.3, in all tables, “–” indicate non present results.

Method/Rank r = 1 r = 5 r = 10 r = 20

4D RAM [17] 55.60 – – –
Depth ReID [26] 77.50 96.00 – –
RGB-D-CNN [18] 90.36 99.60 100 100
MAT (ours) 92.37 99.60 100 100

Table B.1: Comparison between MAT and state-of-the-art systems on the DPI-T dataset (p=249).
Best results are in bold.

Method/Rank r = 1 r = 5 r = 10 r = 20

TVDH* [19] 75.50 87.50 89.20 91.90
RGB-D-CNN [18] 63.83 89.36 93.62 97.87
RGB-D-CNN† 80.85 92.55 92.55 95.74
MAT (ours) 82.98 93.62 94.68 96.81

Table B.2: Comparison between MAT and state-of-the-art systems on the TVPR dataset (p=94).
Best results are in bold. (*Results are estimated from the CMC curve, †Reproduced by training
and testing on images from detection).

Comparisons in Table B.1 show the MAT to outperform previously pro-
posed methods. While 4D RAM and Depth ReID only consider depth infor-
mation, RGB-D-CNN also considers color, showing the importance of fusing
color and depth information. As also mentioned in Subsection 4.3 the MAT
still increases accuracy, indicating the importance of including local discrim-
inative features.
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Method/Rank r = 1 r = 5 r = 10 r = 20

RGB-D-CNN [18] 45.63 82.81 94.69 99.69
MAT (ours) 49.06 89.06 95.62 99.38

Table B.3: Comparison between MAT and state-of-the-art systems on the OPR dataset (p=32).
Best results are in bold.

In case of TVPR shown in Table B.2, the MAT outperforms both RGB-D-
CNN [18] and TVDH [19], increasing the rank-1 accuracy by 2.13% and 7.48%,
respectively. Additionally, we note the importance of eliminating background
noise which is shown by an increased rank-1 accuracy of 17.02% when com-
paring the original RGB-D-CNN results of [18] which considers full-frame
images, and our evaluation using a similar system.

Finally, we compare the rank-1 through rank-20 accuracies, also depicted
in Figure B.3, for the OPR dataset. Besides the rank-1 increase of 3.43%,
the rank-5 accuracy is also greatly increased by 6.25% which is important
to note, considering an image retrieval context where often the top-k most
similar images are inspected by a person.

5 Conclusion

In this paper, we have proposed a Multimodal ATtention network (MAT)
which implements an attention model with a multimodal CNN to calculate
attention maps that capture local discriminative features from RGB and depth
images. Attention maps are calculated by fusing RGB and depth information,
resulting in attention maps that are calculated in a multimodal fashion. In
total, four attention maps are calculated to extract local features from the
fourth and fifth convolution layers of an RGB and depth CNN, respectively.
Local RGB and depth based features are separately fused with global fea-
ture descriptors resulting in modality dependent multilevel features. Finally,
multilevel RGB and depth features are fused to a multilevel RGB-D feature
descriptor which better captures the correlation between RGB and depth in-
formation while including information at different abstraction levels. Eval-
uations on three overhead based datasets DPI-T, TVPR and OPR show the
importance of fusing local and global information by increasing the rank-
1 accuracy by 2.01%, 2.13% and 3.43%, respectively, compared to a similar
network not considering attention.

To further increase accuracy, a more novel CNN should be considered
while also the addition of an LSTM layer can be used to extend the network
by additionally capture temporal information. By adding an LSTM, different
attention modules can be considered, either spatial, temporal, or spatiotem-
poral.

96



References

Acknowledgement

This work is supported by Innovation Fund Denmark under Grant 5189-
00222B.

References

[1] L. Zheng, Y. Yang, and A. G. Hauptmann, “Person re-identification: Past,
present and future,” arXiv preprint arXiv:1610.02984, 2016.

[2] S. Gong, M. Cristani, C. C. Loy, and T. M. Hospedales, “The re-
identification challenge,” in Person re-identification, 1st ed., ser. Advances
in Computer Vision and Pattern Recognition, S. Gong, M. Cristani,
S. Yan, and C. C. Loy, Eds. London: Springer, 2014, vol. 1, ch. 1, pp.
1–20.

[3] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
measures and a data set for multi-target, multi-camera tracking,” in Proc.
ECCV, 2016, pp. 17–35.

[4] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large
scale metric learning from equivalence constraints,” in Proc. CVPR, 2012,
pp. 2288–2295.

[5] S. Liao, Y. Hu, X. Zhu, and S. Z. Li, “Person re-identification by local
maximal occurrence representation and metric learning,” in Proc. CVPR,
2015, pp. 2197–2206.

[6] Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan, “Sample-specific svm learn-
ing for person re-identification,” in Proc. CVPR, 2016, pp. 1278–1287.

[7] M. Gou, Z. Wu, A. Rates-Borras, O. Camps, R. J. Radke et al., “A sys-
tematic evaluation and benchmark for person re-identification: Features,
metrics, and datasets,” IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 3, pp. 523–536, 2018.

[8] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning
architecture for person re-identification,” in Proc. CVPR, 2015, pp. 3908–
3916.

[9] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based cnn with improved triplet
loss function,” in Proc. CVPR, 2016, pp. 1335–1344.

97



References

[10] E. Ustinova, Y. Ganin, and V. Lempitsky, “Multi-region bilinear convolu-
tional neural networks for person re-identification,” in Proc. AVSS, 2017,
pp. 1–6.

[11] S. Wu, Y.-C. Chen, and W.-S. Zheng, “An enhanced deep feature repre-
sentation for person re-identification,” in Proc. WACV, 2016, pp. 1–8.

[12] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person
re-identification,” in Proc. ICPR, 2014, pp. 34–39.

[13] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang, and X. Tang,
“Spindle net: Person re-identification with human body region guided
feature decomposition and fusion,” in Proc. CVPR, 2017, pp. 1077–1085.

[14] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in Proc. CVPR, 2014, pp.
152–159.

[15] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars: A
video benchmark for large-scale person re-identification,” in Proc. ECCV,
2016, pp. 868–884.

[16] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Proc. ICCV, 2015, pp. 1116–
1124.

[17] A. Haque, A. Alahi, and L. Fei-Fei, “Recurrent attention models for
depth-based person identification,” in Proc. CVPR, 2016, pp. 1229–1238.

[18] A. R. Lejbølle, K. Nasrollahi, B. Krogh, and T. B. Moeslund, “Multimodal
neural network for overhead person re-identification,” Proc. BIOSIG, pp.
25–34, 2017.

[19] D. Liciotti, M. Paolanti, E. Frontoni, A. Mancini, and P. Zingaretti, “Per-
son re-identification dataset with rgb-d camera in a top-view configura-
tion,” in Video Analytics. Face and Facial Expression Recognition and Audi-
ence Measurement. Springer, 2016, pp. 1–11.

[20] D. Gray and H. Tao, “Viewpoint invariant pedestrian recognition with
an ensemble of localized features,” in Proc. ECCV. Springer, 2008, pp.
262–275.

[21] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

98



References

[22] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in Proc. ICML, 2015, pp. 2048–2057.

[23] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition using
visual attention,” arXiv preprint arXiv:1511.04119, 2015.

[24] H. Liu, J. Feng, M. Qi, J. Jiang, and S. Yan, “End-to-end comparative at-
tention networks for person re-identification,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3492–3506, 2017.

[25] L. Zhao, X. Li, Y. Zhuang, and J. Wang, “Deeply-learned part-aligned
representations for person re-identification,” in Proc. ICCV, 2017, pp.
3219–3228.

[26] N. Karianakis, Z. Liu, Y. Chen, and S. Soatto, “Person depth reid: Robust
person re-identification with commodity depth sensors,” arXiv preprint
arXiv:1705.09882, 2017.

[27] A. R. Lejbølle, K. Nasrollahi, and T. B. Moeslund, “Enhancing person re-
identification by late fusion of low-, mid- and high-level features,” IET
Biometrics, vol. 7, no. 2, pp. 125–135, 2018.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012, pp. 1097–
1105.

[29] D. Li, X. Chen, Z. Zhang, and K. Huang, “Learning deep context-aware
features over body and latent parts for person re-identification,” in Proc.
CVPR, 2017, pp. 384–393.

[30] R. Zhao, W. Ouyang, and X. Wang, “Learning mid-level filters for person
re-identification,” in Proc. CVPR, 2014, pp. 144–151.

[31] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by saliency
learning,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 2, pp. 356–370, 2017.

[32] F. Pala, R. Satta, G. Fumera, and F. Roli, “Multimodal person reidenti-
fication using rgb-d cameras,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 26, no. 4, pp. 788–799, 2016.

[33] A. Wu, W.-S. Zheng, and J.-H. Lai, “Robust depth-based person re-
identification,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp.
2588–2603, 2017.

[34] R. Memisevic, “Learning to relate images: Mapping units, complex cells
and simultaneous eigenspaces,” arXiv preprint arXiv:1110.0107, 2011.

99



References

[35] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[37] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proc.
CVPR, 2017, pp. 7263–7271.

[38] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard,
“Multimodal deep learning for robust rgb-d object recognition,” in Proc.
IROS, 2015, pp. 681–687.

100



Paper C

Person Re-identification Using Spatial and
Layer-Wise Attention

Aske R. Lejbølle, Kamal Nasrollahi, Benjamin Krogh, and
Thomas B. Moeslund

The paper has been published in the
IEEE Transactions on Information Forensics and Security, Vol. 15(1), pp.

1216–1231, 2019.



c© 2019 IEEE
The layout has been revised.



1. Introduction

Abstract

Person re-identification requires extraction of discriminative features to ensure a cor-
rect match; this must be done independent of challenges, such as occlusion, view, or
lighting changes. While occlusion can be eliminated by changing the camera setup
from a horizontal to a vertical (overhead) viewpoint, other challenges arise as the
total visible surface area of persons is decreased. As a result, methods that focus on
the most discriminative regions of persons must be applied, while different domains
should also be considered to extract different semantics. To further increase fea-
ture discriminability, complementary features extracted at different abstraction levels
should be fused. To emphasize features at certain abstraction levels depending on the
input, fusion should be done intelligently. This work considers multiple domains and
feature discrimination, where a multimodal convolution neural network is applied
to fuse RGB and depth information. To extract multi-local discriminative features,
two different attention modules are proposed: (1) a spatial attention module, which is
able to capture local information at different abstraction levels, and (2) a layer-wise
attention module, which works as a dynamic weighting scheme to assign weights
and fuse local abstraction-level features intelligently, depending on the input image.
By fusing local and global features in a multimodal context, we show state-of-the-art
accuracies on two publicly available datasets, DPI-T and TVPR, while increasing the
state-of-the-art accuracy on a third dataset, OPR. Finally, through both visual and
quantitative analysis, we show the ability of the proposed system to leverage multiple
frames, by adapting feature weighting depending on the input.

1 Introduction

Since the beginning of the new millennium, person re-identification (re-id)
has seen increased interest in the research community as the topic is per-
ceived as both difficult and important [1–4]. Identification and verification in-
volve matching an unknown signature to a database of either a single known
or multiple known signatures. Re-id is the task of matching an anonymous
signature to a database of anonymous signatures to find a correct match.
Within computer vision, this is accomplished by matching signatures, i.e.,
features of a person extracted from images or a video in one camera view
to features of persons extracted from images or a video in another. Features
can, for example, contain hand-engineered low-level color and texture infor-
mation [4–8], which can be extracted from small body patches, body parts,
or the entire body, or they can contain high-level information by encoding
low-level features using sparse coding [9–11]. Features are matched using a
predefined metric, such as Euclidean distance, although, to increase the accu-
racy of the system, supervised metric learning [5, 12–15] is often considered
to maximize the distances between non-matching feature pairs and minimize
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the distances between matching ones. In recent years, however, Convolu-
tional Neural Networks (CNNs) [16–21] have become increasingly popular
due to their ability to learn discriminative high-level features by combining
feature learning and classification in an end-to-end training scheme.

Due to increased data requirements when training CNNs, larger re-id
datasets have been published in the last few years [22–24]. These datasets are
more realistic in terms of the number of deployed cameras and environmen-
tal changes between views. A common characteristic of these datasets is the
viewpoint, which is primarily horizontal and allows occlusions and changing
views, as shown in Figure C.1 (a). To eliminate these challenges, the position
of the camera can be changed to a vertical (overhead) viewpoint, as shown
in Figure C.1 (b). In this work, only data captured from an overhead view-
point is considered. Changing the viewpoint does, however, also increase the
probability of removing important textural information from either the cloth-
ing or the face of a person. To counter the decrease in visual information,
feature discriminability can be increased by adding additional information
from other modalities. In connection with the overhead viewpoint, we add
depth information when devising novel features. Adding depth enables us to
model the height or body part ratios of persons, which can be used to learn a
multimodal feature representation based on both RGB and depth modalities.

(a) (b)

Fig. C.1: (a) Example of a horizontal viewpoint with changing views causing differences in
appearance and partly occlusion [22]. (b) Example of an overhead viewpoint eliminating issues
in (a) [25].

Additionally, the use of local feature representations has shown to out-
perform global ones [4]. In case of hand-engineered features, this is done
by sampling small-image patches, typically of size 10×10 pixels, and extract-
ing features from each patch. In terms of a CNN, this can be achieved by
learning part-specific networks, either by splitting the body horizontally into
a predefined number of body parts [18, 20] or by using part localization al-
gorithms [21, 26]. Another option is to apply a soft attention mechanism [27]
with the purpose of extracting features from only a single, or few, discrim-
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inative regions in the input image. Different from horizontally splitting the
body or applying localization algorithms, the attention mechanism captures
information from local regions based on a learning scheme. This is based
on calculating a two-dimensional weight matrix, which works as a mask on
the input, where each element represents a weight in the interval [0,1] and
is learned through back propagation. This will be referred to as spatial at-
tention, which is applied in [28] to determine the importance of spatial lo-
cations at different layers of a neural network based on fusion of RGB and
depth features. Since different layers of a CNN produce features at differ-
ent abstraction levels [29], features produced by spatial attention modules
represent local context information at different abstraction levels. To take ad-
vantage of complementary low-, mid-, and high-level information, features
at different abstraction levels are often fused, simply by concatenation. Con-
catenation of features causes all elements in the resulting feature vector to
be weighted equally, which is inexpedient if features at one abstraction level
contain noisy information. Furthermore, local features from certain layers
might be unnecessary and finding the optimal combination of relevant local
features is impractical and time consuming if a very deep neural network is
implemented. Instead, features should be fused using a dynamic weighting
scheme that considers relevance to properly weight local features in order to
maximize accuracy.

In this work, we introduce a multimodal dynamic weighting scheme as a
layer-wise attention module to weight the output features of several spatial
attention modules, based on the input. Since we focus on images captured
from an overhead viewpoint which, depending on the height of the camera
position, results in a more narrow view, sufficient data of each person might
not be captured to properly exploit video-based methods, such as Recurrent
Neural Networks (RNN). As a result, in this work, we consider only image-
based models to learn a multimodal representation. Given a CNN consisting
of L convolution layers, each convolution layer, in practice, can be followed
by a spatial attention module and thus produce features that contain local
context information. Instead of simply concatenating the features, the layer-
wise attention module dynamically apply weights, which are learned by a
learning scheme, to each feature vector and summarizes the outputs to a
single discriminative feature vector. Thus, we end up with a multi-local con-
text feature vector, which is a weighted summary of local context features at
different abstraction levels. To take advantage of complimentary local and
global information, multi-local context features from each modality are fused
with high-level global features; these are referred to as multi-level features.
Finally, multi-level modality features from RGB and depth, respectively, are
fused to a multi-level multimodal feature representation. In summary, the
main contributions include:
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• A layer-wise attention module used to dynamically assign weights to
local context features at different abstraction levels, depending on the
input.

• An analysis of the output of the spatial and layer-wise attention mod-
ules used to reason how the data affects the weighting of features at
different abstraction levels.

• A demonstration that a combination of spatial and layer-wise attention
in a multimodal context provides state-of-the-art accuracy on several
datasets collected from an overhead viewpoint.

The rest of the paper is structured as follows. Related work is outlined in
Section C.2, which is followed by a description of the proposed system in Sec-
tion C.3, including the baseline architecture as well as spatial and layer-wise
attention modules. In Section C.4, experimental results are presented along
with ablation studies and an analysis of the proposed attention modules.
In addition, a comparison between the proposed system and state-of-the-art
systems is presented. Finally, the work is concluded in Section C.5.

2 Related Work

2.1 CNN in Person Re-Identification

Since the development of early CNNs for the purpose of re-id, part-based
learning has been considered with the aim to capture more discriminative
local features. Yi et al. [20] proposed a CNN consisting of three separate
streams, each processing an image that is split into a similar number of over-
lapping parts. Part-based features are then fused in a fully connected layer
before classification. A similar approach was proposed by Cheng et al. [17],
who split the body into four parts to learn part-specific features that are
fused with full-body features. Similar to [20], features are fused late in the
network. A more sophisticated part-based model was proposed by Ustinova
et al. [18], who trained three part-specific sub-networks; instead of using a
single sub-network per body part, they trained multiple sub-networks, and
fused part-based features from corresponding sub-networks by a bilinear op-
eration to retain geometric information in the input image.

More recently, Zhao et al. [21] proposed an architecture that consists of a
Region Proposal Network (RPN) to locate 14-body joints in order to extract
seven sub-regions of the body. Part-specific sub-networks were trained based
on each of the sub-regions, followed by a Feature Fusion Network (FFN).
This approach fuses part-specific information in a pyramid structure. Part-
specific learning by joint localization was also proposed by Li et al. [30]; rather
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than applying an RPN, they applied a Spatial Transformer Network (STN) to
locate head-shoulder, upper-body, and lower-body regions.

Instead of training part-specific sub-networks, Suh et al. [31] trained a
part map extractor to capture features from different body parts. Combined
with an appearance map extractor to capture appearance features, a bilin-
ear pooling operator is applied to fuse the two feature types, resulting in
a part-aligned feature representation. Finally, Sarfraz et al. [26] proposed
an architecture that takes as input a 17-channel image, including RGB and
14 keypoint channels containing keypoint locations. Furthermore, a separate
view predictor was trained to model view information by calculating weights
as probabilities of being ‘front’, ‘back’, or ‘side’.

The proposed part based models [17], [18], [20] are able to capture and
fuse local information from different body parts, and by adding a view pre-
dictor [26], it is even possible to add invariance to rotational changes. How-
ever, this assumes that images are captured from a horizontal viewpoint. If
an overhead viewpoint is considered, certain body parts will be less visible,
which will make it more difficult to achieve a proper result.

2.2 RGB-D CNN Models

Multimodal RGB-D CNNs have been proposed to a variety of applications
[32–35]. For object recognition, Eitel et al. [32] proposed a two-stream CNN
to fuse high-level RGB and depth features by adding a fully connected layer
late in the network. An RGB-D CNN was proposed in [33] for pose estima-
tion by, in a similar manner, processing RGB and depth images individually
and using fused RGB-D features to train an SVM to determine the pose of
objects. McCormac et al. [35] proposed a semantic mapping network, where
depth is added as a fourth channel in the input to train an RGB-D semantic
segmentation network.

Within re-id, the majority of published work focus on either RGB or depth,
while fusion of the two modalities is rarely considered. Hand-crafted RGB-D
features were devised by Liciotti et al. [25], who fused low-level color features
from HSV histograms with anthropometric features extracted in the depth
domain. Hand-crafted features were also devised by Wu et al. [36], who fused
rotation invariant Eigen-depth features with low-level patch-based color and
texture features. In the case of deep neural models, Karianakis et al. [37] pro-
posed a combined CNN and LSTM to learn spatiotemporal depth features
based on low-level knowledge transfer between an RGB and depth CNN.
Additionally, they exploited frame-level weights by adding a Reinforced Tem-
poral Attention (RTA) module, which infers the importance of each frame in
a sequence using a hard attention mechanism, which has previously been in-
troduced for image captioning [38]. Additionally, they considered fusion of
spatiotemporal depth features and RGB features extracted from a CNN that
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was trained on upper body images of persons. To our knowledge, the only
other model within re-id to consider RGB-D features from a CNN is the work
of [39], in which RGB and depth images are processed by modality- based
sub-networks, while corresponding features are fused by concatenation in
fully connected layers late in the network.

While [39] does not consider attention to capture local context features,
[37] applies a coarse frame-level attention mechanism that does not capture
and weight local information. Our proposed system does not only consider
fusion of global RGB and depth features, but it also adds an attention mech-
anism to dynamically fuse local context features to consider complementary
multi-level features.

2.3 Attention in Person Re-identification

An increasing number of CNNs that apply attention are being proposed in
the field of re-id. Inspired by attention, Zhao et al. [40] proposed an architec-
ture that uses part map detectors to estimate two-dimensional weight matri-
ces that are multiplied by an input to output part feature maps. Here, the part
map detectors are implemented as 1×1 convolutions followed by a sigmoid
activation. A Comparative Attention Network (CAN) was proposed by Liu
et al. [41], in which attention is applied to dynamically capture ‘glimpses’,
i.e., minor regions in the input, by calculating spatial weight matrices used
as masks on the input image. The dynamic element is added using a Long-
Short Term Memory (LSTM) layer, which considers the masked input using
the mask at the previous time step, along with the previous hidden state,
and outputs a weight matrix, which attends a different area in the input.
Masks were also generated by Song et al. [42], who proposed a mask-guided
contrastive attention model consisting of three streams; one that learns from
the regular input, and two others that learn from a foreground body and
background image. The image is segmented by considering an additional
binary mask in the input; this is combined with an attention loss to guide
the attention map generation used for segmentation. Si et al. [43] proposed a
Dual ATtention Matching network (DuATM), which learns a dual attention
mechanism to match aligned feature pairs from an input triplet. Distances
are then aggregated by average pooling and used with a triplet loss to update
the network weights.

Li et al. [44] considered the misalignment issue in the input by proposing
a Harmonious Attention CNN (HA-CNN), which combines regional atten-
tion [45], spatial attention [46], and channel attention [47] to capture both
fine-grained pixel information at global level and coarse discriminative re-
gions at local level. In case of depth modality, Haque et al. [48] proposed a
recurrent attention model (RAM), which combines a localization network to
capture glimpses with a CNN+LSTM to extract spatiotemporal features from
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the regions. Attention has been applied also in the context of video-based re-
id [49]. This will not be described in detail in the present work as the focus
is only on image-based models.

Despite being able to learn fine-grained masks that are applied to the in-
put, [41] adds additional complexity to the model by implementing attention
using an LSTM, while [42] requires additional binary ground truth masks
during training. Meanwhile, [44] fuses features from different local regions
simply by concatenation before propagating the fused feature to a fully con-
nected layer, hence, it does not consider the importance of each local region.
Finally, previous work consider either RGB or depth as input during model
training.

To our knowledge, the only previous work to consider multimodal atten-
tion is the Multimodal ATtention network (MAT) [28]. In this work, spatial
attention weights are calculated for different layers of a CNN based on fusion
of features from different modalities. Extracted local features are fused with
global ones, and, finally, RGB and depth features are fused to a multimodal
feature in the last layer of the network.

2.4 Dynamic Feature Fusion

Dynamic feature fusion has been studied mostly in connection with the fu-
sion of multiple modalities [50–52]. To describe videos, Zhang et al. [50]
proposed a combination of appearance and motion features from video clips
that are dynamically fused by a weighted summary, where weights are cal-
culated by applying an attention mechanism. The attention mechanism takes
as input the motion or appearance feature, along with the intermediate hid-
den state from a decoder LSTM, to model the relevance of the feature. In
video classification, Long et al. [52] proposed an Attention Fusion scheme in
which RGB, flow, and audio features are fused by applying a Bidirectional
LSTM, which models dependencies between modalities and, based on this,
output global modality-based representations that are fused by concatena-
tion. Attention-based dynamic feature fusion was also proposed for video
description by Hori et al. [51], who applied a soft attention scheme using
the previous hidden state of an LSTM decoder along with a modality feature
to output a multimodal attention weight. Our proposed dynamic weight-
ing scheme is mostly similar to the work of [51]. However, rather than dy-
namically fusing features from different modalities, we leverage multimodal
information to fuse local abstraction level features for each modality.

Dynamic fusion of features at different abstraction levels has not often
been considered [53, 54]. In case of human pose estimation, Chu et al. [53]
proposed an 8-stack hourglass network, where each stack outputs multi-
resolution attention maps that are fused by summation and applied to the
output of the stack. Furthermore, Chen et al. [54] proposed an RGB-D object
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detection network by introducing an Attention-ware Cross-modal Cross-level
Fusion (ACCF) module, which concatenates RGB and depth feature maps
and calculates channel-wise weights to model dependencies between RGB
and depth channels. By propagating the output of an ACCF module late in
the network back to lower layers of the network, predictions are generated in
a coarse-to-fine manner.

In re-id, feature fusion most often is done by concatenation, as described
in Section 2.2. In [44], local information generated from soft attention mecha-
nisms is fused with global information generated from a hard attention mech-
anism; this is done by tensor addition to increase interaction. Lastly, Chang et
al. [55] proposed the Multi-Level Factorization Net (MLFN), which consists
of multiple blocks at different abstraction levels, each calculating a weighted
summary of outputs from sub-networks in the given block. Weights from all
blocks are additionally fused with features from the last block by an average
operation. The former model only leverages RGB information to calculate
attention weights, whereas the latter models use multi-level semantics by av-
eraging multi-level features with a high-level feature representation. Here,
we consider multimodal features to dynamically model and fuse features at
different abstraction levels.

3 Proposed System

The proposed system is shown in Figure C.2. Given a pair of RGB and depth
images, the system extracts multi-local context features by dynamically as-
signing weights to local context features at different abstraction levels. This
is achieved by implementation of two attention modules: one that models the
importance of spatial locations within feature maps at different abstraction
levels (S-ATT), and another that models the importance of abstraction-level
features (L-ATT). The output of the L-ATT is a feature vector containing local
discriminative information, which is fused with a feature vector containing
global information; this results in multi-level RGB and depth features. The
two modality-based multi-level features are fused to generate a multimodal
feature vector that is used for re-identification. The entire system is summa-
rized in Table C.1; superscripts are neglected for simplicity. In the remaining
part of the paper, we will refer to this system as SLATT.

3.1 Baseline Network Architecture

Similar to the work of [28], the backbone of the SLATT is an AlexNet CNN
[56]. Following this architecture, the network consists of five convolution
layers and three fully connected layers, where the first two fully connected
layers transform features to sparse high-level representations, while the third
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Fig. C.2: Overview of the Spatial and Layer-wise ATTention network (SLATT). RGB and depth
images, respectively, are fed to separate CNNs pre-trained on modality dependent data. Each
convolution layer in the network forward propagates the output, both to the next layer in the
network and to S-ATT modules that calculate spatial attention features using RGB- and depth-
based features, x6,RGBD . Here, x6,RGBD is the resulting feature from fusing the rgb and depth
features of the sixth network layer (fc6), respectively, by multiplication. This is indicated by the
� symbol. Outputs of S-ATT modules are propagated to the L-ATT module, which calculates
attention-based feature weights. Modality-based local and global features are fused in f c8, while
multi-level RGB and depth are fused in f c9. Finally, classification is performed in fc.

fully connected layer acts as a classification layer. As part of the AlexNet,
convolution layers one, two, and five are followed by max pooling layers to
down-sample features and increase robustness to small translations, while
Rectified Linear Units (ReLU) are used as activations. To increase the gen-
eralization, AlexNet introduced Local Response Normalization (LRN) before
the activation and max pooling layers. However, since the introduction of
Batch Normalization [57], which has shown to increase model accuracy and
reduce training time, the LRN has become deprecated. Therefore, we remove
the LRN layers and instead apply batch normalization. Similar to the ResNet
architecture [58], we apply batch normalization after each convolution layer,
but before ReLU activation. As we consider two modalities, the SLATT con-
tains two identical parallel CNNs; each of these is processing either an RGB
or a depth image. To learn modality specific features, weights between these
networks are not shared.

The input to the system is an RGB/depth image pair {IRGB
m , ID

m }, 1 ≤ m ≤
M sampled from the m’th person, where M denotes the total number of
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Layer Output size S-ATT output size
Input 227×227×3 (x2)
Conv1 55×55×96 (x2)
Pool1 27×27×96 (x2) 1×96 (x2)
Conv2 27×27×256 (x2)
Pool2 13×13×256 (x2) 1×256 (x2)
Conv3 13×13×384 (x2) 1×384 (x2)
Conv4 13×13×384 (x2) 1×384 (x2)
Conv5 13×13×256 (x2) 1×256 (x2)
Pool3 6×6×256 (x2)

fc6 4096 (x2)
fc7 4096 (x2)

L-ATT 1024 (x2)
fc8 4096 (x2)
fc9 4096
fc M

Table C.1: Overview of the SLATT architecture, including output sizes from the S-ATT modules
at each abstraction level. M denotes the number of persons in the training set. Similar structures
are used to process RGB and depth images, respectively, and output multi-level features of
similar sizes from fc8. This is indicated by (x2).

persons in the training set. The images are processed by corresponding CNN
models, resulting in two global feature vectors {x7,RGB

g , x7,D
g } ∈ R4096 from

‘fc7’ of the SLATT, where the subscript g indicates that the feature is global.
Next, for each modality, we extract local context features as described in the
following.

3.2 Spatial Attention (S-ATT)

The Spatial Attention (S-ATT) module applies a soft attention mechanism
similar to that used for image captioning in [38]. Given an input of size
N × C × H ×W, where N is the batch size, C the number of channels, and
{H, W} the height and width, respectively, the method works by calculating
a local context vector x̂ = ∑i αixi, which is the weighted sum of all feature
vectors at spatial locations 1 ≤ i ≤ J|J = HW. As described in [38], weights
αi can be calculated either hard using a stochastic function or soft using a
deterministic function. While the performance between the two variations is
largely comparable, the latter is more widely used as it can be easily inte-
grated into the rest of a deep neural network. For a more direct comparison
with [28], we consider only soft attention in this work. Soft spatial attention
is applied in case of both RGB and depth, although, for simplicity, we neglect
RGB and D superscripts in the following description.
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In soft attention, weights are calculated from a parametrized score func-
tion, which outputs the score between an input feature and a reference vector
using weights that are updated along with the rest of the CNN. In case of
spatial attention, we define the score function as:

el,i = wT
l,iReLU(Wx,l,ixl,i + Wl,cxc), (C.1)

where el,i is a scalar representing the score between a vector xl,i from
layer 1 ≤ l ≤ L at spatial location i and reference vector xc. Wx,l,i and Wl,c are
parametrized matrices, while wl,i is a parametrized vector. To take advantage
of multiple modalities, RGB and depth features from ‘fc6’ of the SLATT are
fused, and the resulting RGB-D feature, x6,RGBD ∈ R2048, is used as reference
vector in the S-ATT module. To capture correspondences between modali-
ties, features are fused by multiplication to capture higher-order dependen-
cies, and fed to a fully connected layer, resulting in a feature vector consisting
of values x6,RGBD

i = ∑2048
j=1 wijx

6,RGB
j x6,D

j , where wij is learned through back
propagation. Thus, spatial attention scores are based on the multimodal be-
havior of the SLATT.

Weights at each spatial location are calculated by normalizing el,i using a
softmax function, defined as:

αl,i =
exp(el,i)

∑i exp(el,i)
, (C.2)

where αl,i is the attention weight at spatial location i for the l’th layer.
Finally, the local context vector for layer l is calculated as:

x̂l = ∑
i

αl,ixl,i, (C.3)

where the length of the context vector depends on the number of feature
maps for a particular layer of the network. For our model, the output sizes are
provided in Table C.1. In Section 4.3, we conduct an ablation study, which
shows the accuracy by extracting and fusing local context features from S-
ATT at different layers of the SLATT.

3.3 Layer-wise Attention (L-ATT)

The introduction of spatial attention implies that local context features are ex-
tracted at different abstraction levels. Still, in the work of [28], these are fused
simply by concatenation. By doing so, low-level features containing infor-
mation about, for example, texture are weighted equally to more high-level
features describing larger parts, such as accessories. This is not expedient in
case of an input with uniform textures and colors, or where different persons
carry accessories that are similar in appearance. Instead, we propose that
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each local context feature is weighted depending on the input. Thereby, we
accomplish a more dynamic fusion scheme, which learns to consider feature
importance in relation to the overall accuracy of the system. The dynamic
weighting scheme is referred to as layer-wise attention (L-ATT).

As the number of feature maps differs between S-ATT modules, and the
L-ATT requires features to be of same size, they are first aligned. This is
accomplished by a transformation, T : Rp → Rq, where p is the size of the
feature, i.e., the number of feature maps, while q is the size of the aligned
feature. To that end, a linear transformation is applied, which is defined by
x̃l = Wl x̂l + bl . In our network, this is implemented using a fully connected
layer, where Wl and bl are the weight and bias, respectively, that are learned
along with the rest of the network during training. In Section 4.3, an ablation
study is conducted by varying the size of q.

The proposed layer-wise attention module follows an approach similar to
that for the S-ATT modules. Given K local context feature vectors, weights βl
are calculated from the scores between the features and a reference. Similar
to (C.1), we can define a score function as:

al = wT
l ReLU(Wx̃,l x̃l + Wcxc), (C.4)

where al is the score represented as a scalar, x̃l is the aligned local context
feature, while wl , Wx̃,l , and Wc are parametrized vectors and matrices that
influence how the particular feature is weighted. Likewise, weights βl are
calculated by softmax normalization:

βl =
exp(al)

∑l exp(al)
(C.5)

Finally, the weighted sum of local context features is calculated as:

xlo = ∑
l

βl x̃l , (C.6)

where the subscript lo indicates the feature containing local information.
In this work, the layer-wise attention is applied using an AlexNet archi-

tecture as backbone, as described in Section 3.1. In principle, the module can
be applied to any combinations of features at different abstraction levels and
using any network, such as ResNet [58] or GoogLeNet [59].

Multi-level features are learned for each modality by adding a fully con-
nected layer ‘fc8’, which takes as input the concatenated global and local fea-
tures, xgl = [xlo, xg], and outputs a multi-level feature, xml . The multi-level
modality features xRBG

ml and xD
ml are fused and used as input to an additional

fully connected layer, ‘fc9’, which outputs a multi-level multimodal feature,
xRGBD

ml , used for classification.
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Classification is implemented as a fully connected layer followed by a
softmax layer, calculating the probability of a person belonging to the cor-
rect class. Given the feature xRGBD

ml,m , calculated from the input image pair
{IRGB

m , ID
m }, the probability is calculated as: Along with the true label, m, the

logistic loss function is used to calculate the error over the entire batch of size
N, defined as:

Classification is implemented as a fully connected layer followed by a
softmax layer. Given an input pair, {IRGB

m , ID
m }, the probability of a person

belonging to the correct class, given the feature xRGBD
ml,m , is defined as p̂i =

Pr(y = m|xRGBD
ml,m ). Along with the true label, m, the logistic loss function is

used to calculate the error over the entire batch of size N, defined as:

Lid = − 1
N

N

∑
i=1

log( p̂i) (C.7)

4 Experiments

Extensive experiments are conducted on three RGB-D datasets that are all
collected from an overhead viewpoint. First, details on training of the SLATT
are described in Section 4.1, which is followed by a description of the three
evaluated datasets in Section 4.2. Ablation studies are presented in Section
4.3, and the results are used as basis in the experimental results in Section
4.4. A visual analysis is presented in Section 4.5, and the results are finally
compared to state-of-the-art systems in Section 4.6.

4.1 Implementation Details

Training of the SLATT follows a two-step approach. First, modality-based
CNNs are trained individually to adapt network parameters to the context
of classifying persons within respective domains. In both cases, weights are
initialized from a model pre-trained on the ImageNet dataset [56]. Training
is performed using Stochastic Gradient Descent (SGD) with a base learning
rate of η0 = 0.001 and reduced by ηi = ηi−10.99 after each epoch. To fur-
ther accelerate the training, we add a momentum of µ = 0.9 and train with
a batch size of 128. To increase the amount of data and make the network
more invariant to translational changes, common augmentation techniques,
such as random cropping and flipping, are applied, and the data is shuffled
before each new epoch. In case of cropping, images are resized to 256×256
pixels, and cropping values are drawn from a discrete distribution in the in-
terval [0, 29]. To avoid overfitting and increase generalization, dropout is
placed after layers ‘fc7’, ‘fc8’, and ‘fc9’ using probability values 0.5, 0.5, and
0.8, respectively. In case of training the depth-based CNN, depth images

115



Chapter C.

need to be converted to an appropriate format to take advantage of the pre-
trained ImageNet weights. To that end, a JET colormap is applied, which
encodes each depth value to an RGB value; red represents objects that are
far away, whereas green to blue, represent objects that are close. Applying a
JET colormap is fast and has previously shown to outperform other encoding
techniques [32]. Weights from the trained RGB- and depth-based CNNs are
used to initialize the convolution layers and the first two fully connected lay-
ers of the SLATT model. Weights of the remaining layers are initialized using
values drawn from a Gaussian distribution with zero mean and a standard
deviation of

√
1/in_size, where in_size refers to the number of input neurons.

Hyper-parameters, which are similar to those used to train RGB and depth
CNNs, are used to train the SLATT; in both cases, the training runs for 100
epochs. Training is performed on an Nvidia GTX 1080 and takes up to 1.5
hours for modality-based CNNs and up to 4 hours in case of SLATT.

At test time, multimodal features from ‘fc9’ of the SLATT are extracted
from images of persons captured in different camera views. We follow a
multi-shot approach and extract features from all images of each person.
Features are then summarized by average pooling. Euclidean distance is
calculated between all pairs of persons across views and sorted by distance.
Thus, shorter distances indicate increased similarity between pairs.

4.2 Datasets and Protocols

Evaluation of the SLATT is performed on three datasets: Depth-based Person
Identification from Top (DPI-T) [48], Top View Person Re-identification (TVPR)
[25], and Overhead Person Re-identification (OPR) [39]; the two former are
publicly available. To our knowledge, these are the only RGB-D based re-
identification datasets collected from an overhead viewpoint.

DPI-T This dataset consists of 12 persons captured in an average of five
appearances in a hallway. An average of 25 sequences are recorded of each
person. These are split into 213 training sequences and 249 test sequences.
At test time, all test sequences are matched against all training sequences.

TVPR This dataset contains recordings of 100 persons appearing twice in a
hallway; first walking from left to right and then from right to left. Sequences
of the first appearance make up the training set, while those of the second
appearance constitute the test set. Similar to DPI-T, during tests, all test
sequences are matched against all training sequences. For better comparison
with [28], we consider the same 94 of the 100 persons, while also doing the
evaluation on Region of Interest (ROI) images that are extracted using the
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You Only Look Once (YOLO) detector [60]1.

OPR This dataset contains sequences of 64 persons captured in a canteen
area. Each person appears twice; when entering the canteen and again when
leaving the canteen. In contrast to DPI-T and TVPR, the evaluation of this
dataset follows a protocol that is commonly known from RGB-based datasets,
such as Market-1501 [9] or CUHK03 [61]. This implies that the data is ran-
domly split into training and test sets, each containing 32 persons. At test
time, re-id is performed on the 32 unseen persons. Additionally, 10 random
training/test splits are performed, and the average accuracy is calculated
across all 10 iterations.

4.3 Ablation Studies

An ablation study is conducted by configuring the number of considered lo-
cal context features when only spatial attention is applied. From an empirical
study, in [28], only the outputs from S-ATT4 and S-ATT5 are considered. In
this work, more extensive experiments are conducted in order to show the
impact on accuracy when either adding or removing local context features
from additional S-ATT modules.

Table C.2 shows the impact of adding additional local context features
at different abstraction levels, starting by only considering the output from
only global features and incrementally adding features from S-ATT5 down
to S-ATT1. In this case, similar to [28], features are fused by concatenation.
Tests are conducted on the datasets presented in Section 4.2 and follow the
training protocols described in Section 4.1.

S-ATT1 X
S-ATT2 X X
S-ATT3 X X X
S-ATT4 X X X X
S-ATT5 X X X X X

OPR Rank-1: 59.38 64.69 63.44 64.38 65.63 64.06
DPI-T Rank-1: 94.38 97.19 97.19 97.59 97,19 96.79
TVPR Rank-1: 92.55 94.68 94.68 94.68 93.62 93.62

Table C.2: Impact on rank-1 accuracy by changing the number of S-ATT modules in fusion of
local context features. Best result in each dataset is highlighted in bold.

Contrary to [28], the best results do not only include the outputs from
S-ATT4-5, but rather the outputs from S-ATT2-5 or S-ATT3-5. Since [28] does

1Annotations and ROI extraction guide provided at: https://github.com/Lejboelle/TVPR_
annotations
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not consider batch normalization, the results are not entirely comparable, but
they still provide a good indication of the relevance of feature types across
different datasets. In case of OPR, features from S-ATT2 complement ad-
ditional local and global features, while this is not the case for DPI-T and
TVPR, where accuracy is decreasing if additional features from S-ATT1-2 are
included. This could be due to the original resolution of the images in OPR,
which is higher and thus enables capture of more detailed information at
a lower abstraction level. However, overall we see an increase from adding
local context features, which shows the benefit from the S-ATT modules.

Next, an ablation study is conducted by varying the feature size of the
L-ATT module. This impacts both the size of the aligned features, x̃l , and the
size of the output feature, xlo. Table C.3 summarizes the results. In case of
DPI-T and TVPR differences are marginal between feature sizes of 256 and
1024, while in case of OPR, a feature size of 1024 increase accuracy by 2.18%
and 3.44%, respectively, compared to 512 and 256.

Feature size
256 512 1024

OPR Rank-1: 63.12 64.38 66.56
DPI-T Rank-1: 96.79 95.98 96.39
TVPR Rank-1: 94.68 93.62 93.62

Table C.3: Impact on rank-1 accuracy by changing the size of xlo . Best result in each dataset is
highlighted in bold.

4.4 Experimental Results

Based on Table C.3, the following results of the SLATT are based on a feature
size of xlo ∈ R1024. Results are presented as Cumulative Matching Character-
istic (CMC) curves, that is, for each rank-i, a cumulative score is calculated,
which represents the percentage of persons having their truth match within
the i most considered. The results are compared with application of only
spatial attention, in this case consideration of S-ATT3-5 (MAT35), as appears
from the results in Table C.2, but also of S-ATT1-5 (MAT15), which provides
a more direct comparison when additional layer-wise attention is applied.
Furthermore, results are compared with the baseline RGB-D-CNN architec-
ture [39] without attention to show the benefit of fusing global and local
information. CMC curves showing accuracies on OPR, TVPR, and DPI-T are
shown in Figure C.3 (a), (b), and (c), respectively. In case of TVPR, the RGB-
D-CNN network is able to re-id almost all persons in the dataset. Since this
data was acquired in controlled environmental settings, the only real chal-
lenge is the rotational change from walking horizontally in both directions.
Improving this result is, therefore, a difficult task. Nonetheless, MAT35 in-
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creases the accuracy by 2.13% compared to RGB-D-CNN. Thus, adding local
features increases the overall accuracy, although low-level features from S-
ATT1 and S-ATT2 do not add additional discriminative information, as also
seen in Table C.2. Nevertheless, it is also worth noting the rank-2 accuracy,
which is similar between RGB-D-CNN and MAT35. This indicates the impor-
tance of including local features to distinguish between persons with much
similar appearance.

(a) (b) (c)

Fig. C.3: CMC curves based on experimental results on (a) OPR (p=32), (b) TVPR (p=94), and
(c) DPI-T (p=249).

A similar result is seen in case of DPI-T, where the results of MAT35
and SLATT are almost identical, where the SLATT, in this case, is inferior
to MAT35. Since this dataset consists of only 12 persons, where several se-
quences are captured of each person, the accuracy of this dataset also seems
to be saturated at 97.59% and is therefore difficult to increase. Due to sat-
urated accuracies both on DPI-T and TVPR, we analyze the contribution of
the L-ATT module by comparing single-shot and multi-shot accuracies in
Subsection 4.7.

The results on the more challenging OPR dataset clearly show the benefit
of weighting local features dynamically. While MAT15 shows the smallest
increase in accuracy of 4.68% compared to RGB-D-CNN, MAT35 increases
the accuracy by 5.00%, while SLATT shows an increase of 7.18%.

4.5 Visual Attention Analysis

To obtain a better understanding of the relevance of local context features at
different abstraction levels, we visualize spatial attention maps from S-ATT
modules, which will henceforth be referred to as S-ATT maps, along with
their corresponding L-ATT weights. The goal of this analysis is twofold: (1)
to identify which local context features are captured at each abstraction level,
and (2) to identify trends in the dynamic weighting of features in relation
to the dataset. We show examples of success cases to identify discriminative
feature regions that result in correct re-identification. Examples are shown
for all datasets presented in Section 4.2 by randomly sampling four images
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from a person in each dataset and calculating S-ATT maps along with L-ATT
weights. Figures C.4, C.5, and C.6 show examples of calculated weights in
case of OPR, TVPR, and DPI-T, respectively. Each row shows the S-ATT maps
from a single layer, going from S-ATT1 at the top to S-ATT5 at the bottom.
RGB-based S-ATT maps are shown to the left, while the depth-based ones are
shown to the right. Above the S-ATT maps, layer-wise weights are shown.

0.004 0.075 0.000 0.010

0.003 0.050 0.000 0.065

0.005 0.022 0.000 0.019

0.005 0.089 0.011 0.080

0.983 0.765 0.988 0.826

0.120 0.128 0.052 0.031

0.116 0.052 0.037 0.067

0.347 0.069 0.186 0.074

0.156 0.345 0.603 0.217

0.261 0.406 0.122 0.611

Fig. C.4: Visualization of RGB-based (left) and depth-based (right) S-ATT maps with corre-
sponding L-ATT weights for the OPR dataset. Each row shows S-ATT maps from four randomly
sampled images of the same person; the first row shows the output from S-ATT1 down to S-ATT5
at the bottom.

The RGB-based S-ATT maps that are shown in case of OPR in Figure C.4
indicate a trend to mostly weight the output of S-ATT5, which is the case for
all four images. Even though S-ATT5 is highly weighted, differences in S-ATT
maps are seen. While the first image captures information around the legs,
the second one captures information at the head and shoulder regions, while
the third highlights head and legs. More diverse L-ATT weights are seen
in case of depth images. S-ATT maps generally tend to highlight regions
around the edges, for example at the head/shoulders or around the entire
body. While low-level S-ATT maps are mostly concentrated around a few
points of interest, S-ATT maps at higher abstraction levels include larger edge
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regions. A general trend is seen for S-ATT maps, but the L-ATT module is
able to dynamically weight features depending on the input, as shown by the
differences across the four images. Although weights are distributed more
evenly across layers, the outputs of S-ATT3-5 are generally weighted higher.

When the L-ATT weights in Figure C.5 are inspected, a trend similar to
that in Figure C.4 is seen in case of RGB, where features at higher abstrac-
tion levels are weighted higher by the L-ATT module. The S-ATT maps show
more similarities across the four images, where mostly the head and shoul-
ders are highlighted. Nonetheless, the dynamic weighting causes different
information to be fused by weighting low-level features higher in the first
image compared to the three other images. Similar to Figure C.4, in case of
depth, L-ATT weights are more evenly distributed, although features at lower
abstraction levels are weighted higher. S-ATT maps are also more centered
around few edge points across all layers, while, in case of OPR, this applies
typically at lower abstraction levels.

0.058 0.003 0.086 0.008

0.225 0.007 0.014 0.011

0.016 0.000 0.091 0.065

0.259 0.017 0.013 0.002

0.441 0.972 0.796 0.914

0.293 0.045 0.040 0.008

0.146 0.234 0.042 0.118

0.055 0.142 0.067 0.691

0.432 0.411 0.796 0.072

0.074 0.168 0.055 0.111

Fig. C.5: Visualization of RGB-based (left) and depth-based (right) S-ATT maps with correspond-
ing L-ATT weights for the TVPR dataset. Each row shows S-ATT maps from four randomly sam-
pled images of the same person; the first row shows the output from S-ATT1 down to S-ATT5 at
the bottom.
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Larger differences in RGB-based L-ATT weights are seen in Figure C.6.
The first two images show more evenly distributed weights, whereas the last
two mostly weight features at S-ATT5, but they still add complementary low-
level information. Larger differences are also seen in case of the S-ATT maps,
where both the legs, the frontal body, and the head are highlighted. Similar
to OPR and TVPR, depth-based S-ATT maps are centered mostly around
edges of the body. However, in contrast to the two former, the head is less
highlighted. Likewise, L-ATT does not weight S-ATT1 or S-ATT5 higher, but
it distributes weights at all abstraction levels more evenly.

0.016 0.161 0.064 0.142

0.123 0.060 0.129 0.140

0.212 0.220 0.018 0.125

0.383 0.267 0.194 0.071

0.266 0.292 0.595 0.521

0.560 0.027 0.091 0.120

0.118 0.033 0.266 0.337

0.200 0.085 0.276 0.232

0.068 0.482 0.090 0.274

0.055 0.374 0.277 0.036

Fig. C.6: Visualization of RGB-based (left) and depth-based (right) S-ATT maps with correspond-
ing L-ATT weights for the DPI-T dataset. Each row shows S-ATT maps from four randomly sam-
pled images of the same person; the first row shows the output from S-ATT1 down to S-ATT5 at
the bottom.

OPR and TVPR that are captured from a more vertical viewpoint and
in a less complex scene compared to DPI-T generally weight higher local
RGB information at higher abstraction levels, which could be due to less vis-
ible texture. This is also indicated by the RGB-based S-ATT maps, which
highlight the head and shoulder regions. The depth-based S-ATT maps are
more similar across all three datasets as they mostly highlight body edges.
Still, while OPR and TVPR place higher weight on the mid- and higher-level
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features, DPI-T, also in this case, weights low-level features. In all cases,
the dynamic weighting scheme ensures fusing of the most relevant features,
which are extracted at different abstraction levels. The differences in L-ATT
weights across the dataset, which are especially clear when comparing OPR
and TVPR to DPI-T, show the strength of the L-ATT to properly weight fea-
tures at different abstraction levels depending on the data.

Finally, Figure C.7 shows cases of incorrect re-id to identify challenging
issues in the SLATT. The L-ATT weights show similar trends as for correct
re-id. Therefore, the issue lies in the input and the S-ATT maps. In case of

0.054 0.037 0.096 0.116 0.698

0.077 0.226 0.078 0.397 0.222

(a)

0.051 0.107 0.316 0.468 0.058

0.010 0.018 0.004 0.076 0.892

(b)

0.002 0.007 0.010 0.030 0.951

0.019 0.159 0.162 0.168 0.491

(c)

Fig. C.7: Visualization of S-ATT maps with corresponding L-ATT weights in failure cases for
(a) DPI-T, (b) TVPR, and (c) OPR. Both RGB-based S-ATT maps (top) and depth-based attention
maps (bottom) are shown from the S-ATT1 (left) to S-ATT5 (right).
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both (a) DPI-T and (b) TVPR, RGB-based S-ATT maps are centered around
few similar areas: the arm in case of the former, and the hairline in case of
the latter. For DPI-T, the depth-based S-ATT maps also mostly highlight the
arm, which causes redundant information to be fused. The depth images in
(b) also show areas of undefined depth, which is indicated by blue regions,
and this results in noisy information. In case of (c) OPR, the S-ATT5 map,
which is by far weighted the highest, is quite sparse, and this causes capture
of noisy information. Sparsity is also seen in S-ATT4 and S-ATT5 maps in
Figure C.4. These are, however, different from this failure case as the less
noisy S-ATT4 features in Figure C.4 are weighted higher. The depth-based
S-ATT maps highlight more non-relevant areas, such as the plate or the floor.
This is especially seen when inspecting S-ATT3 and S-ATT4 maps. This could
indicate difficulties when a person carries objects that are common to the
scene, in this case a plate of food.

4.6 Comparison with State-of-the-Art Systems

Comparisons between the results of the SLATT, presented in Figure C.3, and
state-of-the-art systems are provided in Tables C.4-C.6.

Previously proposed systems have evaluated the DPI-T dataset using only
depth information. As a result, we compare the results of our SLATT and
previous RGB-D CNNs by extracting depth features, which is indicated by
the subscript D. We compare the results with the residual attention (4D
RAM) proposed in [48] and with CNN-LSTM (Depth ReID) proposed in [37]
along with the RGB-D-CNN [39] and MAT [28], both with and without the
use of batch normalization. MAT35D (ours) refers to the results of the MAT,
which considers additional local context features from S-ATT3. Furthermore,
we also provide comparisons of RGB-D-CNN, MAT, MAT35, and SLATT with
RGB information included. In all cases, MAT35 and SLATT make use of batch
normalization.

As seen in Table C.4, the use of batch normalization clearly increases the
accuracy, which is shown for both baseline RGB-D-CNN and MAT. Moreover,
including additional local information at lower abstraction levels decreases
the accuracy when comparing MATD+BN and MAT35D. This could indicate
that low-level depth features do not provide enough discriminative informa-
tion to ensure benefits. This could also be the reason why the SLATTD pro-
vide a rank-1 accuracy which is inferior to MATD+BN. However, the addition
of RGB information increases the accuracy by up to 14.46% when comparing
MATD+BN and MAT35 while SLATT provide accuracies almost similar to
MAT35. Even though the accuracy is high when including only depth infor-
mation, the complementarity of RGB and depth, combined with the use of
both local and global features, produces more discriminative features, which
results in higher accuracy.
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Method/Rank r = 1 r = 5 r = 10 r = 20

4D RAM [48] 55.60 – – –
Depth ReID [37] 76.30 – – –
RGB-D-CNND [39] 53.82 87.95 99.20 100
RGB-D-CNND [39]+BN 80.72 97.59 100 100
MATD [28] 53.41 89.16 99.20 100
MATD [28]+BN 83.13 97.19 100 100
MAT35D (ours) 81.93 97.99 100 100
SLATTD (ours) 79.52 97.59 100 100

RGB-D-CNN [39]+BN 94.38 99.20 100 100
MAT [28]+BN 97.19 100 100 100
MAT35 (ours) 97.59 100 100 100
SLATT (ours) 96.39 99.20 99.60 100

Table C.4: Comparison between SLATT and state-of-the-art systems on the DPI-T dataset (p=249)
(‘–’ indicate that a result is not available). Best results are highlighted in bold.

Besides RGB-D-CNN and MAT, with and without batch normalization,
the only other comparable system in case of TVPR, as seen in Table C.5, is the
one of [25], where hand-crafted RGB-D features are extracted (TVDH). Simi-
lar to DPI-T, the addition of batch normalization results provides a significant
increase in accuracy, while CNN-based features outperform the hand-crafted
ones by up to 19.38% when comparing TVDH and MAT35. In contrast to
DPI-T, additional information from S-ATT3 does not increase the accuracies
when comparing MAT+BN and MAT35. When adding layer-wise attention,
we do not benefit from additional low-level information and achieve a rank-1
accuracy similar to that of MAT35. This could be due to accuracy being close
to saturated or the resolution of depth, which result in uniformly colored
images after applying the JET color map.

Method/Rank r = 1 r = 5 r = 10 r = 20

TVDH* [25] 75.50 87.50 89.20 91.90
RGB-D-CNN [39] 80.85 92.55 92.55 95.74
RGB-D-CNN [39]+BN 92.55 97.87 97.87 100
MAT [28] 82.98 93.62 94.68 96.81
MAT [28]+BN 94.68 97.87 97.87 97.87
MAT35 (ours) 94.68 97.87 97.87 100
SLATT (ours) 93.62 96.81 97.87 100

Table C.5: Comparison between SLATT and state-of-the-art systems on the TVPR dataset (p=94).
Best results are highlighted in bold. (*Results are estimated from the CMC curve.
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Comparisons between SLATT and state-of-the-art systems on the OPR
dataset, which is provided in Table C.6, indicate that more importance should
be directed towards dynamic feature weighting schemes when difficult datasets
are being evaluated. As also seen in Table C.2, adding local features from S-
ATT3 increases the accuracy by 0.94% when comparing MAT+BN and MAT35.
The rank-1 accuracy is decreased to 64.06% when adding additional local
features from S-ATT1 and S-ATT2, as shown in Table C.2, but dynamically
weighting the features using layer-wise attention increases the accuracy by
2.50%. Additionally, compared to the previous work of [28] with BN, the
rank-1 accuracy of the SLATT is increased by 3.12% while the accuracy is
increased by 7.18% compared to RGB-D-CNN+BN.

Method/Rank r = 1 r = 5 r = 10 r = 20

RGB-D-CNN [39] 45.63 82.81 94.69 99.69
RGB-D-CNN [39]+BN 59.38 91.88 97.50 99.69
MAT [28] 49.06 89.06 95.62 99.38
MAT [28]+BN 63.44 92.50 96.25 99.69
MAT35 (ours) 64.38 93.75 97.19 99.69
SLATT (ours) 66.56 92.81 97.81 100

Table C.6: Comparison between SLATT and state-of-the-art systems on the OPR dataset (p=32).
Best results are highlighted in bold.

To further highlight the significance of the proposed system, we provide
pairwise statistics of the rank-1 accuracy on OPR between SLATT and the
three systems of MAT, MAT35 and RGB-D-CNN. A comparison is provided
as a box plot in Figure C.8. From here, it is clear that the variety of MAT is
lower than that of SLATT, however, the maximum observed value of SLATT is
higher while the minimum observed value is higher than all three compared
systems. Additionally, while the medians of MAT and MAT35 are higher
than that of RGB-D-CNN, the median of SLATT is higher than all three.

In addition to Figure C.8, we also provide paired t-tests to show the sig-
nificance in terms of probabilities. That is, between SLATT and the remaining
three systems we calculate t-values using the differences in rank-1 accuracy
between methods during all 10 test runs. Given the t-value, we use a look-up
table to infer a corresponding p-value, which is an indicator of the level of
significance. The t-value is calculate as:

t =
d̄

SE(d̄)
, (C.8)

where d̄ is the mean of differences while SE(d̄) is the standard error of
the mean differences, calculated as SE(d̄) = sd√

n , where sd is the standard
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deviation of differences and n is the number of test iterations, i.e. 10 in our
case.

Table C.7 provides an overview of pairwise t-values and corresponding
p-values.

Observing the p-values of SLATT/MAT and SLATT/RGB-D-CNN in Ta-
ble C.7, there is strong evidence that the inclusion of the L-ATT module re-
sults in higher accuracies since, in both cases, the value is less than 0.05.
Compared to MAT35, the results are marginally significant since the p-value
is just above 0.05, which still indicates good evidence of a positive impact on
accuracy.

SLATT/MAT35 SLATT/MAT SLATT/RGB-D-CNN

t-value 2.091 3.001 3.977
p-value 0.066 0.015 0.003

Table C.7: p- and t-values from pairwise t-tests between SLATT and MAT, MAT35 and RGB-D-
CNN, respectively.

Fig. C.8: Comparison of statistical differences between SLATT, MAT35, MAT and RGB-D-CNN.

4.7 Contribution of L-ATT

From the visual analysis in Section 4.5, it is clear that the L-ATT module is
able to dynamically weight features at different abstraction levels based on
the input. To further study the effect of this property, we compare the results
of the multi-shot setting with a single-shot setting, where only a single image
of each person is available at the time of testing. In the single-shot setting,
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we randomly sample an image from each person in both camera views and,
similarly to the multi-shot setting, calculate Euclidean distances between ex-
tracted features. In both settings, we consider only the rank-1 accuracy and
compare the relative increase from single- to multi-shot accuracy across RGB-
D-CNN+BN, MAT+BN, MAT35 and SLATT. Table C.8 provides an overview
of rank-1 accuracies in case of single- and multi-shot settings, respectively,
while Figure C.9 shows the relative increase between the two settings.

OPR TVPR DPI-T
Method/Rank-1 Single-shot Multi-shot Single-shot Multi-shot Single-shot Multi-shot

RGB-D-CNN [39]+BN 46.25 59.38 76.60 92.55 93.17 94.38
MAT [28]+BN 43.44 63.44 80.85 94.68 90.76 97.19
MAT35 (ours) 43.44 64.38 80.85 94.68 91.16 97.59
SLATT (ours) 42.81 66.56 71.28 93.62 89.16 96.39

Table C.8: Overview single- and multi-shot rank-1 accuracies on OPR (p=32), TVPR (p=94) and
DPI-T (p=249) datasets.

Fig. C.9: Relative increase in rank-1 accuracy from single-shot to multi-shot setting using RGB-D-
CNN, MAT, MAT35 and SLATT, respectively, on OPR (p=32), TVPR (p=94), and DPI-T (P=249).

From Figure C.9 it is clear that the addition of the L-ATT module results in
an architecture that better captures the individual structures in each image,
resulting in an overall larger increase in rank-1 accuracy when fusing fea-
tures from multiple images. In case of TVPR and DPI-T, the relative increase
compared to MAT35 is 8.51% and 0.8%, respectively. Only in the case of
OPR do we see similar relative increase when comparing MAT35 and SLATT,
however, compared to MAT, the relative increase of SLATT is 3.75% higher.

Interestingly is also the fact that the relative increase of RGB-D-CNN in
case of DPI-T and OPR is 1.21% and 13.13%, which is 6.02% and 10.62%
worse, respectively, compared to SLATT. This indicates the importance of
both capturing local context features using the S-ATT module, and dynami-
cally fuse the features using the L-ATT module.

To further highlight the contribution of the L-ATT module in a setting
where identifying the optimal combination of local context features takes
much longer, we conduct experiments using a different, deeper, CNN as
backbone. We choose an architecture which is comparable to the AlexNet
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in terms of complexity, to make the results more comparable to those shown
in Figure C.3. Due to its high performance compared to complexity [62], we
choose MobileNetV2 [63] as backbone. The network consists of bottleneck op-
erators that each consist of up to four identical bottleneck residual blocks, where
the number of parameters of the layers depend on the bottleneck. The resid-
ual blocks each consist of an expansion layer transforming the input from
size H×W×C to H×W×kC by 1×1 convolutions, a depthwise 3×3 convo-
lution layer transforming the input from size H×W×kC to H/s×W/s×kC,
and a linear layer transforming the output from the depthwise convolution
to size H/s×W/s×C’ by 1×1 convolutions. As activation, they use ReLU6,
which is a ReLU activation function with an upper bounded value of six. The
network consists of seven bottleneck operators, thus, the number of possible
combinations of local context features exceeds 5000. Since it is inexpedient
to evaluate such a high number of combinations, we compare the result of
concatenating the local context features of all seven bottleneck operators to
weighting the features using the L-ATT module.

We train RGB and depth CNNs as described in Section 4.1, and afterwards
train SLATT and MAT models, respectively. experiments are conducted on
TVPR and OPR2, following the protocols described in Section 4.2. Training
and testing the MAT using a 1080 GTX takes ≈4 hours, thus, it would take
a long time to find the optimal set of local features using exhaustive search.
The experimental results are shown in Figure C.10. On OPR, concatenating
features results in a rank-1 accuracy of 70.62%, while the use of dynamic
fusion increases rank-1 accuracy by 2.19% to 72.81%. Similarly on TVPR,
rank-1 accuracy is increased by 6.38% from a 88.30% to 94.68%. Finally, using
MobileNetV2 as backbone in SLATT, rank-1 accuracy is increased by 6.25%
and 1.06% on OPR and TVPR, respectively, compared to using AlexNet. From
the results it is clear that the proposed SLATT better captures the importance
of different local features, while neglecting redundant ones. As a result, only
the most informative features are considered, resulting in a higher accuracy.

5 Conclusion

In this work, we combine the use of spatial attention (S-ATT) to capture fea-
tures at different abstraction levels in a multimodal CNN with dynamic fu-
sion of local context features at different abstraction levels. This is done by in-
troducing a layer-wise attention module (L-ATT), which dynamically weights
features based on the input and the multimodal behavior of the entire model.
Layer-wise weights are calculated using a soft attention mechanism, which
calculates the scores between each of the local context features from the S-

2Using RGB alone resulted in a rank-1 accuracy of 99.60% on DPI-T, thus, it does not make
sense to do further testing of SLATT or MAT on this dataset.
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Fig. C.10: Comparison of rank-1 accuracy between concatenation of local features (MAT) and
dynamic feature fusion (SLATT) using MobileNetV2 as backbone.

ATT modules and a multimodal reference vector, to determine the relevance
of each feature. Thus, a weighted summary of features at all abstraction
levels makes up a multi-local feature vector containing local discriminative
information. Local and global features are fused in case of both RGB and
depth, and a multi-level multimodal feature is finally generated by fusion
of modality-based features. Experimental results on two public datasets,
DPI-T and TVPR, show rank-1 accuracies of 96.39% and 93.62%, respectively,
which are comparable to the existing state-of-the-art systems. Additionally,
the state-of-the-art accuracy on a third dataset, OPR, is increased by 3.12%
compared to previous work. From a visual analysis of both S-ATT maps and
corresponding L-ATT weights, it is shown that the L-ATT module is able to
adapt the dynamic weighting to the data. Our results on the datasets OPR
and TVPR, which are captured from a more vertical viewpoint, show that
head and shoulder regions are highlighted and weighted higher compared
to DPI-T. Finally, a quantitative analysis highlights the contribution of the L-
ATT module by providing higher relative accuracies when fusing information
from multiple images compared to considering a single image. Additionally,
using a deeper CNN as backbone, such as MobileNetV2 that consists of sev-
eral more local context features, dynamic fusion of features results in a higher
rank-1 accuracy on both OPR and TVPR.
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6 Discussion and Future Work

Based on the experimental results and visual analysis, a clear advantage of
the proposed system compared to previous work is its ability to capture use-
ful local context information using the S-ATT, which increases the accuracy
as also shown in Table C.2. Additionally, the L-ATT module does not follow a
common weighting scheme for all datasets, but adapts to the presented data.
Furthermore, it is able to determine the relevance of local context features to
the overall multi-modal fusion scheme based on each individual image. This
adds a certain robustness to translational and rotational changes. However,
challenges arise when the viewpoint becomes more vertical or objects com-
mon to the scene are present. The first issue is indicated by the less vertically
captured DPI-T dataset, where also more background information is present
compared to OPR and TVPR. In this case, discriminative depth information
is difficult to exploit since depth maps are more similar across the entire
dataset. In this case, a better solution might be to apply a joint localization
algorithm, as in [21], to capture relations between body parts. Furthermore,
even though, the addition of the L-ATT module show larger minimum, max-
imum and median rank-1 accuracies on the OPR dataset, more work still
needs to be done, to make the method less sensitive to different data distri-
butions in order to minimize variety between tests. In this case, we observed
smaller variation in case of MAT. One idea is to also apply dynamic weight-
ing to each frame, as proposed in [37], to suppress, or even neglect, noisy
frames.
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1. Introduction

Abstract

Person re-identification is the process of finding people across different cameras. In
this process, focus often lies in developing strong feature descriptors or a robust met-
ric learning algorithm. While the two aspects are the most important steps in order
to secure a high performance, a less explored aspect is late fusion of complementary
features. For this purpose, this paper proposes a late fusing scheme that, based on an
experimental analysis, combines three systems that focus on extracting features and
provide supervised learning on different abstraction levels. To analyse the behaviour
of the proposed system, both rank aggregation and score-level fusion are applied. Our
proposed fusion scheme increases results on both small and large datasets. Experi-
mental results on VIPeR show accuracies 5.43% higher than related systems, while
results on PRID450S and CUHK01 increase state-of-the-art results by 10.94% and
14.84%, respectively. Furthermore, a cross dataset test show an increased rank-1
accuracy of 28.26% when training on CUHK02 and testing on VIPeR. Finally, an
analysis of the late fusion shows aggregation to be better when individual results are
unequally distributed within top-10 while score-level fusion provides better results
when two individual results lie within top-5 while the last lies outside top-10.

1 Introduction

Person re-identification is of great importance in biometrics and surveillance
systems [2–4]. It is defined as the task of comparing images of persons cap-
tured by cameras with different views for the purpose of finding matches.
Given an image (probe) from camera A, it is compared against all other im-
ages (gallery) captured by camera B. The results are ranked according to an
employed similarity measure to find the most similar images in the gallery
for the given probe. Since the viewpoint of each camera is different along
with the environment in which they are placed, problems like, viewpoint
variations, lighting, scale, pose, and occlusion make re-identification a very
challenging research topic (see Figure D.1).

When dealing with re-identification, two steps are very important in or-
der to reach good performance: 1) feature extraction and representation and
2) metric learning. Regarding the first step, feature extraction and repre-
sentation, the employed feature descriptors should not only be discrimina-
tive but also fast to extract as they are compared against a potentially large
database [5, 6]. Features can either be extracted globally by looking at larger
areas such as body parts [7] or locally by sampling minor local patches [8].
Furthermore, features can be extracted on different abstraction levels by di-
viding into low-, mid- and high-level depending on representation of the
features. Low-level features are per-pixel based and typically cover colour
and texture histograms. Examples of more advanced low-level features in-
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(a) (b) (c) (d)

Fig. D.1: Examples of image pairs from different datasets, including; (a) VIPeR, (b) PRID450S,
(c) CUHK01 and (d) CUHK03.

clude creating a covariance matrix from image derivatives [9] or looking at
local key points as in scale-invariant feature transform (SIFT) [10]. Mid- and
high-level features are both learned from low-level features and are defined
by representing either parts of objects in the image (mid) or the entire ob-
ject in the image (high) by sparse feature representations. Examples of mid-
level features are bag of words (BoW) models [11] used to quantize low-level
features to visual words while the output from one of the late layers in a
convolution neural network (CNN) is an example of a high-level feature rep-
resentation [12].

Regarding the second step, metric learning, supervised learning is often
utilized in which a selection of image pairs from a number of persons are
used to compute a distance matrix used when calculating the similarities [13]
or compute a projection matrix used to project features to a subspace [14].
Common for all methods is emphasizing on keeping features from dissimilar
pairs apart while keeping features from similar pairs as close as possible.

In order to enhance the performance of a re-identification system, fusion
can be applied on different levels. In the multi-shot case i.e., when several
images of each identity are available, data-level fusion can be applied by
combining information from all images of the same identity. To have a more
robust representation of each identity, fusion on feature level can be applied
instead. Feature fusion is typically applied by fusing different types of colour
and texture features, often by simple concatenation. Fusing of different fea-
ture types makes sense if the features do not result in redundant information
and complement each other. Dimensionality reduction techniques, such as
principal component analysis (PCA), are therefore often used to reduce such
fused features. Finally, fusion can be applied on late level [15] as well. In
this case, the outputs of different re-identification systems are fused, usually
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using Bayesian decision theory to combine the outputs by either summing or
multiplying the scores [16]. In such a situation, a weight can be assigned to
each of the scores depending on the correctness computed from training data.
Another way is to combine the ranked lists by aggregation, either by looking
at the mean position of each ranked identity or using order statistics [17].

In this paper, we analyse the complementarity of features extracted at
different abstraction levels by applying late fusion on different combinations
of outputs from three re-identification systems, each working at different
abstraction levels. This ends up in a system that advances state-of-the-art
re-identification results on public benchmark datasets. For a more extensive
analysis, we apply two different well known late fusion techniques, score-
level fusion based on Bayesian theory [16] and rank aggregation [17]. We
analyse the scenarios in which late fusion improves the results in order to
define situations in which either of the late fusion techniques provides better
results. This include an analysis of how different information captured by
different feature types affect the late fused result. Finally, we measure pro-
cessing time of late fusion and compare it with the increased accuracy. The
contributions of this paper are therefore as follows:

1. We show that fusion of low-, mid- and high-level features is of potential
when late fusion is applied.

2. We analyse how different feature types positively affect late fusion.

3. We conclude the cases in which it is better to apply score-level fusion
than rank aggregation and vice versa.

4. We show that late fusion does not add particular processing time com-
pared to increased accuracy.

The rest of this paper is organized as follows: first, the related work within
re-identification is reviewed in Section D.2. Then, the proposed system, in-
cluding the fusion techniques and the three chosen re-identification features
which are used in the fusion are explained in Section D.3. In Section D.4,
experimental results on different public benchmark datasets along with an
analysis and measured processing times are reported. Finally, the paper is
concluded in Section D.5.

2 Related Work

Low-level features In current re-identification systems, different low-level
features are typically fused in order to take both colour and texture infor-
mation into account. In order to make the features more discriminative, fea-
tures are extracted more locally as those by Zhao et al. [10], that are obtained
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by sampling of local patches from which SIFT descriptors and colour his-
tograms are extracted. The patches are then used to learn a set of support
vector machines (SVMs) by clustering similar patches. Local patches are also
used in [18], in which a Gaussian function is used to calculate a similarity
score along with k-nearest neighbors (KNN) to find the most similar refer-
ence patches for each test patch in an unsupervised manner. Finally, Liao et
al. [19] extract colour and texture histograms from overlapping patches and
use a metric learning algorithm based on Mahalanobis distance to learn a
projection matrix used to keep distance between similar image pairs closer.
An example of low-level features that are extracted more globally is given
in [20], in which the body is horizontally split into six equally sized stripes
and colour name features are extracted and used with KISSME [13] metric
learning. Similar regions are used in [7, 21, 22], in which different colour and
texture based features are extracted and used for cross-view metric learning.

Mid-level features Few systems utilize low-level features to learn mid-
level features. An example of this is the BoW model learned in [23], which
is used to extract mid-level features that are used together with a cosine sim-
ilarity in an unsupervised manner. Another example of mid-level features
is given in [24], in which dictionaries based on hue, stauration, value (HSV)
colour and local binary patterns (LBP) texture histograms are learned to rep-
resent features as atoms that are contained in the dictionary.

High-level features As the popularity of CNN increases, they have also
been proposed for person re-identification as they are able to learn high-
level feature representations by training on images without the need for
hand-crafted low- or mid-level features. Usually, Siamese networks are con-
structed, taking an image pair as input and outputting whether they match or
not [5, 25, 26]. Another idea has been proposed in [27], in which a pre-trained
CNN extracts high-level features used along with hand-crafted low-level fea-
tures. Finally, [28] extracts hand-crafted low-level features that are included
in training a CNN to make a more robust image representation. High-level
features are then extracted using the trained CNN and applied to a metric
learning algorithm.

Late fusion In the context of re-identification, only a few systems propose
late fusion of results to increase the overall performance. In [29], the prod-
uct rule from Bayesian probability theory is used to fuse scores calculated
as the dot product between two feature vectors. Each feature is furthermore
assigned a weight which is calculated from the area under the feature’s score
curve. Score-level fusion is also applied in [30], in which the outputs of uti-
lizing different metric learning algorithms are fused. In this case, they are all
trained using similar low-level features. A different way of combining scores
was proposed in [31], in which linear combinations of scores are computed
using a weight, which is learned through SVM. Rank aggregation was used
in [32], in which ranking lists, calculated using both locally and more globally
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extracted low-level features, are combined. Aggregation is also used in [33]
where different ranking lists computed using both individual and concate-
nated low-level features are aggregated.

3 Proposed System

The block diagram of the proposed system is shown in Figure D.2. First,
features on different abstraction levels are extracted from a given probe and
transformed using the trained metric learning algorithms. Next, similari-
ties are calculated between probe and gallery features in each of the learned
subspaces. The resulting outputs are then either fused using the scores or
ranks of the identities. The output is a new ranked list which is re-ordered.
These steps are explained in the following sub-sections, along with the used
features.

Probe

Low-level 
features (LOMO)

Mid-level
features (CVPDL)

High-level
features (FFN)

Ranks/scores

2/0.09
49/0.11
81/0.12
15/0.17

81/0.05
2/0.12
33/0.13
7/0.2

49/0.09
15/0.1
2/0.11

55/0.03

2/0.002
81/0.08
49/0.09
15/0.1

Fused ranks/
scores

X1

X2

X1

X2

Calculate distances

Image-level

Patch-level ∑

d1

d2

d1

d2

Fig. D.2: Overview of fusion system. Given a probe, low-, mid- and high-level features are first
extracted. Then, extracted features (star) are transformed either to a subspace (LOMO and FFN)
given by the solid red lines or changed to a different representation (CVPDL) and matched with
the gallery (polygons). For simplicity, only features in two dimensions are shown. The outputs
are then fused by a specified late fusion technique (symbolised by ⊕), producing a fused output.

3.1 Low-level features

The first part of the fusing system emphasizes on low-level features extracted
from local patches to make the features more discriminative. A benchmark
is provided by Schwarz et al. which compares results from different systems
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tested on different datasets [Available at http://www.ssig.dcc.ufmg.br/reid-
results/]. By a review of the systems that show the best results, the system
proposed by Liao et al. [19] is chosen as it not only achieves decent results
on most of the listed datasets with single-shot rank-1 accuracies of 40% and
52.20% on VIPeR and CUHK03, respectively, but also shows fast feature ex-
traction and metric learning.

The system, as shown in Figure D.3, works by preprocessing each image
using the Retinex algorithm [34], to enhance colour information, especially
in shadowed regions. Next, features of overlapping patches of size 10×10 are
extracted, including a joint HSV histogram with a bin size of 8, along with
Scale Invariant Local Ternary Patterns (SILTP) [35] to handle illumination
changes. For patches located at same horizontal level, histograms within
each channel are compared and maximized to deal with viewpoint changes
between camera views. Furthermore, the image is downsampled two times
by applying a 2×2 average pooling kernel and a similar feature extracting
procedure is carried out. Finally, a log transformation is applied to each
histogram to suppress large bin values. Due to feature maximization, the
method is called Local Maximal Occurrence Representation (LOMO).

...

...
...

Extract patches

Extract features

}
Maximum
occurence

...

Fig. D.3: Low-level features from LOcal Maximal Occurrence Representation (LOMO) that are
composed of colour and texture features [19].

Following [19], an extended version of KISSME, shown in Equation D.1,
is used as metric learning. This algorithm is originally based on Mahalanobis
distance:

d2
M(xi, xj) = (xi − xj)

T M(xi − xj), (D.1)

where the distance matrix M = Σ−1
S − Σ−1

D with ΣS calculated from sim-
ilar image pairs and ΣD from dissimilar pairs. These two matrices represent
the intra-class and inter-class differences.

The metric learning is called Cross-view Quadratic Discriminant Analysis
(XQDA) and considers a projection matrix, W, which maps features from
two different views to a subspace before calculating the distance, as given by
Equation D.2:
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d2
M(xi, xj) = (xi − xj)

TWM′WT(xi − xj), (D.2)

where M′ = Σ′−1
S − Σ′−1

D and the two matrices, Σ′S and Σ′D, are computed
as shown in Equation D.3:

Σ′S = WTΣSW Σ′D = WTΣDW (D.3)

The matrix W is computed by maximizing the ratio of the intra-class and
inter-class variance. As this can be calculated from an eigenvalue decompo-
sition of the two matrices in M, training time is only 0.5 seconds slower than
KISSME.

3.2 Mid-level features

The second part of the fusing system utilizes mid-level features. From the few
proposed systems that make use of sparse coding, the features developed
by Li et al. [36] are chosen as the method utilizes dictionary learning from
patches on both patch- and image-level. Furthermore, the system achieves
decent results with rank-1 accuracies of 33.99% and 59.47% on VIPeR and
CUHK01, respectively.

It extracts features in Lab colour space from overlapping patches of size
10×10 with a step size of 5. For each patch, 32-dimensional colour histograms
and 128-dimensional SIFT descriptors are extracted in each channel. In addi-
tion, colour features are extracted from down sampled patches using scaling
factors of 0.5 and 0.75, resulting in a total 672-dimensional feature vector for
each patch. Finally, all features are L2 normalized before the training set
is used for dictionary learning. The mid-level test features are extracted by
utilizing the learned dictionaries along with Orthogonal Matching Pursuit to
transform from low-level features as shown in Figure D.4. While features are
transformed for each patch at patch-level, all patch features are concatenated
and transformed on image-level.

Instead of solving the usual objection function when dealing with dictio-
nary learning, defined by
min
D,Z
‖X − DZ‖2

F s.t. ‖di ≤ 1‖2, where X is the feature matrix, D is the dictio-

nary and Z is the coefficient matrix, Li et al. [36] propose a projection matrix,
P, in order to ease the NP-hard problem. Given features X, dictionaries D
and projection matrices P in camera views 1 and 2, the objection function
defined in Equation D.4 is solved as:

min
D1,D2,P1,P2

||X1 − D1P1X1||2F+

||X2 − D2P2X2||2F + λ f (D1, D2, P1, P2)

s.t. ||d1,i ≤ 1||2, ||d2,i ≤ 1||2,

(D.4)
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where f (D1, D2, P1, P2) is a regularization function which affects the sim-
ilarity between dictionary or projection matrices in the two views. As dic-
tionary and projection matrices are learned on both patch- and image-level,
the superscripts L and H are used to represent patch-level and image-level,
respectively.

[ ]

∈ℝd DL∈ℝd×n

[ ] ×
D∈ℝ

nXL
XLPatch-level

Extract
histogram

Transform
features

∈ℝd DH∈ℝd×n

[ ] ×
D∈ℝ

nXHXHImage-level
...... [ ]... [ ].

.

.

Fig. D.4: Mid-level features by Cross-View Projective Dictionary Learning (CVPDL) [36]. Each
patch feature is transformed using a learned dictionary at patch-level while all patch features
are concatenated and transformed on image-level.

At patch-level, patches at the same spatial location are assumed to share
the same dictionary, making the regularization function ‖DL

1 − DL
2 ‖2

F and by
splitting each of the first two terms in Equation D.4 by adding a relaxation
variable, A, the dictionary and projection matrices are calculated by solving
the objection function defined in Equation D.5:

min
DL

1 ,PL
1 ,AL

1

||X1 − DL
1 AL

1 ||2F + β||PL
1 X1 − AL

1 ||2F+

λ1||DL
1 − DL

2 ||2F
s.t. ||dL

1,i ≤ 1||2, ||dL
2,i ≤ 1||2,

(D.5)

where β is a balance parameter. Similar objection function is used to
calculate DL

2 , AL
2 and PL

2 .
At image-level, all patch features are concatenated to a single feature rep-

resentation and features in the two views are instead assumed to share the
same subspace i.e., projection matrix, resulting in a regularization function
‖PH

1 X1 − PH
2 X2‖. By once again introducing the relaxation variable, the ob-
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jection function on image-level in one view is defined by Equation D.6:

min
DH

1 ,PH
1 ,AH

1

||X1 − DH
1 AH

1 ||2F + α||PH
1 X1 − AH

1 ||2F+

λ2||AH
1 − AH

2 ||2F
s.t. ||dH

1,i ≤ 1||2, ||dH
2,i ≤ 1||2,

(D.6)

As in the case of patch-level, a similar objection function is defined to
calculate DH

2 , PH
2 and AH

2 .
When matching at patch-level, each patch in view 1 is compared with

every patch at same horizontal level in view 2 to account for misalignment.
The shortest distance is then defined as the distance for that particular patch.
Having calculated distances for all patches, the scores are accumulated to
determine the score, scoreP, between a probe in view 1 and a query in view
2. At image-level, the score between a probe and a query, scoreI , is calculated
as the cosine similarity.

Finally, the patch- and image-level scores are fused by Score = scoreP +
λscoreI , where λ is a pre-defined weight parameter between [0,1].

3.3 High-level features

The third and final part of the fusing system emphasizes on high-level fea-
tures. As CNN’s are both fast and have shown decent results, utilizing such
a network is desired. Most of the already proposed CNN’s produce a binary
output to whether an image pair match or not. This is not suitable in late fu-
sion as the probability often will be large for either being similar or dissimilar
and the CNN will therefore overrule decisions made by other systems. Wu
et al. [28] propose a system which combines CNN and low-level hand-crafted
features in a new architecture called feature fusion network (FFN). This way,
a new type of feature is learned by both taking low-level colour and tex-
ture features along with more high-level CNN features into account. The
system achieves rank-1 accuracies of 41.69%, 47.53% and 58.02% on VIPeR,
CUHK01 and PRID450s, respectively. Furthermore, the new feature type is
fused with LOMO features on feature level, increasing rank-1 accuracies to
51.06%, 55.51% and 66.62%, respectively.

The architecture, as shown in Figure D.5, consists of two parts, the top
being a CNN and the bottom being extraction of hand-crafted features.

The CNN architecture is similar to the AlexNet architecture presented by
Krizhevsky et al. [12] and consists of five convolution layers, all but the third
followed by a MAX pooling and normalization layer. The network takes a
randomly cropped image of size 227×227×3 as input and outputs a 4096-
dimensional CNN feature vector from the last pooling layer.

The other part horizontally divides the input image to 18 equally sized
images and extracts colour histograms using colour spaces RGB, HSV, Lab,
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Fig. D.5: High-level features from Feature Fusion Network (FFN) [28]. Top part outputs CNN
features from a pre-trained CNN while the bottom part outputs hand-crafted features. The
second fully connected layer (FC9) outputs the new FFN feature. The figure is from [28].

YCbCr and YIQ along with Gabor texture features. All histograms are rep-
resented in 16 bins and are L1-normalized before concatenated to a 8064-
dimensional feature vector.

Having two different feature vectors, they are each fed to fully connected
layers called buffer layers that output two 4096-dimensional feature vectors.
The two outputs are then concatenated and fed to the new fusion layer which
weights are learned based on the feature types. Connecting the two features
types, Wu et al. [28] show that the weight update for the CNN is influenced
by the output of the hand-crafted features. The output from the fusion layer
is then defined as the new FFN feature type. In the training phase, a softmax
layer is used to determine the corresponding label based on the input.

The FFN is trained using a fine-tuning scheme in which a pre-trained
AlexNet model is utilized. The network is fine-tuned for 50,000 iterations
using Stochastic Gradient Descent (SGD) with a mini-batch size of 25. After
fine-tuning, FFN features are extracted from the fusion layer. As shown in the
bottom of Figure D.2, a projection matrix is then learned to map features to a
subspace. In this case, mirror kernel marginal fisher analysis (mirror-KMFA)
training scheme proposed by Chen et al. [37], with a chi-square kernel, is
used as metric learning algorithm because of its high performance. After
converting features to kernel space, the algorithm aligns the feature distribu-
tions from features in two different views and calculates mirror transformed
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features using a projection matrix as defined in Equation D.7:

X = Λ−
1
2 UTXk

aug, (D.7)

where Xk
aug is the kernalized and augmented feature matrix while Λ and

U are matrices containing eigenvalues and corresponding eigenvectors, re-
spectively, from an eigenvalue decomposition of a matrix C = [K,−βK;−βK, K]
with K being a matrix containing features from both views while β is a regu-
larization term.

Next, marginal fisher analysis (MFA) is utilized by computing a projec-
tion matrix M, by solving the generalized eigenvalue problem Swmi = λiSbmi
where Sw and Sb are intra- and inter-class scatter matrices, respectively. Fi-
nally, similarity between features is calculated in kernel space using Equation
D.8:

Dx1,i ,x2,j = x2
1,i + x2

2,j + 2x1,ix2,j (D.8)

3.4 The proposed late fusion

Two different late fusion techniques are used in this paper, as they both have
shown decent results when applied in other contexts.

Score-level fusion The first late fusion method is based on the computed
similarity scores, for each method. The algorithm was proposed by Zheng et
al. [29] and is based on Bayesian theory of combining classifiers. In this case,
the product rule is used since it has shown to be superior to other ways of
combining outputs [16].

Having a number of computed similarity scores, s(i)p,q, where i denotes the
method and p, q denotes a probe and a query image, the late fused output is
calculated following Equation D.9:

sim(p, q) =
K

∏
i=1

(s(i)p,q)
w(i)

q ,
K

∑
i=1

w(i)
q = 1, (D.9)

where w(i)
q is the weight assigned for the ith method and originally calcu-

lated using Equation D.10:

w(i)
q =

1
AUCi

∑K
k=1

1
AUCk

, (D.10)

where AUCi is the area under the score curve (AUC) for the ith method.
In the original context, higher scores are better and they therefore find an

equal reference score, calculated from the training samples, used to remove
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the tail of the score curve and decrease the AUC. This is done by calculat-
ing the euclidean distance between a predefined number of reference curves
and the test curve, The k-nearest reference curves are then averaged and sub-
tracted the test curve.

Although, in our case, a lower score value is better, leaving us with an-
other way to deal with the reference curves and weight assignment, yet fol-
lowing same procedure by finding the most similar reference curves to the
test score curves. An example of a score curve and the averaged nearest
reference curves is shown in Figure D.6 along with the resulting curve after
subtraction.

As we desire to keep the AUC large by having small scores for the most
similar pairs and large for the rest, we flip the reference curve before subtrac-
tion. This way, we keep the score for most similar pairs to a minimum while
increasing the total AUC as shown in Figure D.6 (b).

The weight assignment is, hence, also changed to be calculated following
Equation D.11:

w(i)
q =

AUCi

∑K
k=1 AUCk

(D.11)

Lastly, in order to properly make use of this method, a common metric
for all outputs is needed to avoid any bias. Therefore, the scores are min-max
normalized by Equation D.12, before they are fused:

d̂2
M(xi, xj) =

d2
M(xi − xj)−min d2

M(x)

max d2
M(x)−min d2

M(x)
(D.12)

Fig. D.6: The impact of subtracting a reference curve: (a) Original test score curve along with the average
of the most similar reference score curves, (b) New (Score curve w. ref) test score curve obtained by flipping
and subtracting averaged reference score curve compared to Original (Score curve w.o. ref). [1]

Rank aggregation Instead of looking at scores, rank aggregation makes use
of the ranking lists for each method. The technique was successfully used
by Ye et al. [32] who combine ranking lists from locally and globally based
features using KNN to increase accuracy. Some of the most common ways of
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re-ranking is either by looking at the median or mean ranking or looking at
the maximum ranking among all ranking lists.

In [38], different ranking aggregation techniques are compared, includ-
ing Mean, Max, Stuart [39] and Robust Ranking Aggregation (RRA) [40].
It is shown that the Stuart method is slightly better than the others. The
technique was originally used for aggregation of lists of genes which would
contain noisy information and is therefore made robust to this challenge. It
is therefore suited for person re-identification and is used in this context.

The technique take into account the statistically placement of the ranks,
r(i) = {ri,1, ..., ri,m, ..., ri,M} to calculate a new order of the ranks rnew

(i) where

ri,m is the rank for the ith person at the mth output, following Equation D.13:

rnew
(i) = M! ·VM+1, (D.13)

with VM+1 = ∑M
m=1 ∑m

l=1(−1)l−1 Vm−l
l! rl

M−m+1 and V0 = 1.
Using this formula, ranks are first normalized to the interval [0,1] where

smaller values indicate a higher rank.

4 Experimental results

In this section we first give the details of the datasets and protocols that
are used for evaluation of the proposed system. Then, the obtained results
from the experiments using different combinations of feature types are anal-
ysed. The best results are compared against state-of-the-art re-identification
systems and, finally, the processing time of the system is compared to the
increase in accuracy. Throughout all tests, we refer to our results from rank
aggregation and score-level fusion by subscripts agg and sco, respectively.

4.1 Datasets and Protocol

Datasets Tests are conducted on four different public datasets, two minor
and two larger. Common for all is the challenges of change in viewpoint
and illumination which make the task more difficult. Examples of image
pairs in each dataset are shown in Figure D.1. Further, a cross-dataset test
is conducted for a more realistic performance evaluation. The first dataset
is VIPeR [7] which consists of 1264 images of 632 identities captured in two
different camera views, thus, each person has one image from each view. The
second dataset, PRID450S [41] contains 900 images of 450 identities.

The two larger datasets, CUHK01 and CUHK03 [5, 42], contain multiple
images of each person in each camera view. CUHK01 contains 3884 images
of 971 different identities. For each identity, two images are captured in each
camera view. CUHK03 contains 13,164 images of 1360 different identities.
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Images are captured using three camera pairs and images from one identity
are captured by one camera pair. One to five images are captured from each
identity in each camera view with an average of 4.8. Both manually labeled
bounding boxes and automatically detected are included.

Evaluation protocols In all experiments, single-shot setting is used. For
VIPeR and PRID450S, identities are randomly divided in a training set of 316
and 225 identities, respectively, while the other half is used for testing. For
CUHK01, 485 identities are randomly used for training while 486 are used
for testing. For each identity, one image in each camera view is randomly
chosen in each iteration. For CUHK03, the protocol defined in [5] is used,
having 1160 identities for training and 100 for testing. As for CUHK01, one
image in each camera view is randomly chosen in each iteration. For VIPeR,
PRID450S and CUHK01, 10 iterations are run, each with randomly split data.
For CUHK03, 20 iterations are run following the protocol. The tests on this
dataset is made on the manually labelled bounding boxes. The mean ac-
curacy over all iterations is calculated for each dataset and the results are
presented by Cumulated Matching Characteristic (CMC) curves that show
the accumulated ranked similarities for all identities, having the rank-1 accu-
racy indicating the number of probes that have their corresponding gallery
image as the most similar.

4.2 The results of late fusion

Initial tests are conducted by evaluating different combination of features
when late fusion is applied, to conclude which combinations benefit mostly
from late fusion. To consider both minor and large datasets, tests are con-
ducted on CUHK01 and VIPeR using the protocols defined in Section D.4.
Tables D.1-D.2 summarize the results. Allagg and Allsco indicate late fusion of
all three systems while the results from LOMO, FFN and CVPDL are repro-
duced and therefore differs from original.

In the case of VIPeR, the best pairwise combination is FFN+LOMOagg
with a rank-1 accuracy which is 3.89% higher than the next best result of
LOMO+CVPDLsco. Though, when rank aggregation is applied using all three
systems, the rank-1 accuracy increase by 1.77% compared to FFN+LOMOagg.

For CUHK01, the best pairwise combination is LOMO+CVPDLagg, while
late fusion of all systems achieves a rank-1 accuracy which in comparison
is 3.29% higher when rank aggregation is utilized. From this it can be con-
cluded that the best results are achieved when applying late fusion to all
three systems while, generally, rank aggregation is shown to provide the best
results. Only in the case of combining FFN and LOMO, accuracies are similar
for both type of late fusion.
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Table D.1: Results on VIPeR (p=316). Best results are in bolt. [1]

System/Rank r = 1 r = 5 r = 10

Allagg 45.63 75.06 85.16
Allsco 45.24 75.02 85.70
FFN+LOMOagg 43.86 73.89 84.34
FFN+LOMOsco 43.73 73.81 84.08
FFN+CVPDLagg 39.40 68.04 79.59
FFN+CVPDLsco 37.85 67.56 78.96
LOMO+CVPDLagg 37.22 69.84 81.61
LOMO+CVPDLsco 39.94 71.06 83.01
LOMO 37.72 67.59 80.06
FFN 30.70 57.72 69.15
CVPDL 28.23 55.41 70.54

Table D.2: Results on CUHK01 (p=486). Best results are in bolt. [1]

System/Rank r = 1 r = 5 r = 10

Allagg 70.35 88.46 93.29
Allsco 64.67 83.81 89.35
FFN+LOMOagg 47.35 73.19 80.88
FFN+LOMOsco 47.17 71.39 78.99
FFN+CVPDLagg 65.86 86.85 93.02
FFN+CVPDLsco 58.60 80.11 86.78
LOMO+CVPDLagg 67.06 87.16 91.89
LOMO+CVPDLsco 63.86 84.42 89.74
LOMO 41.77 66.19 74.86
FFN 32.28 56.95 66.73
CVPDL 53.44 78.85 86.95

For both datasets, it is clear that individual results are important for
late fusion, although, there is an indication that mid- and high-level fea-
tures complement each other better than other combinations. For VIPeR,
FFN+CVPDLagg result in the highest increase in accuracy of 8.7% compared
to individual results of FFN and CVPDL, while increasing rank-1 accuracy
by 12.42% in the case of CUHK01. While LOMO+CVPDLagg show the largest
increase of 13.62% in the case of CUHK01, there is a decrease of 0.50% in the
case of VIPeR.

Comparisons between the late fused system and individual results are
furthermore visualized in Figure D.7.

For VIPeR, PRID450S and CUHK03, LOMO provides the best individ-
ual results while CVPDL show the highest accuracy on CUHK01 of 53.44%.
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While FFN and CVPDL show close to similar results on both VIPeR and
PRID450S, CVPDL seem to be better at handling change in texture across
camera views as it is superior to FFN in the cases of CUHK01 and CUHK03.
When applying score-level fusion, rank-1 accuracies of 45.24%, 68.76%, 64.67
and 54.72% on VIPeR, PRID450S, CUHK01 and CUHK03, respectively, are
achieved. Meanwhile, when rank aggregation is applied, rank- accuracies
of 45.63%, 77.56%, 70.35% and 52.25% for VIPeR, PRID450S, CUHK01 and
CUHK03, respectively, are achieved.
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Fig. D.7: CMC curves of results by applying late fusion on (a) VIPeR (p=316); (b) PRID450S
(p=225); (c) CUHK01 (p=486) and (d) CUHK03, manually labeled (p=100).

For VIPeR, PRID450S and CUHK01, the largest improvement is achieved
by utilizing rank aggregation when compared to the individual results. In
these cases, the rank-1 accuracies are increased by 7.91%, 17.83% and 16.91%,
respectively. In case of CUHK03, score-level fusion provides the best rank-1
accuracy which increases the results of LOMO by 11.51%.

Comparing score-level fusion and rank aggregation, the latter achieves
a rank-1 accuracy which is 0.39% higher in case of VIPeR. For PRID450S
and CUHK01, differences are more significant with rank aggregation achiev-
ing rank-1 accuracies that are 8.8% and 5.68% higher than score-level fusion.
Finally, score-level fusion achieves an accuracy 2.47% higher than rank ag-
gregation in case of CUHK03. This is most likely due to the much worse
result by CVPDL, showing score-level fusion to be more robust to single bad
performing features.
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Overall, large increase in accuracies are achieved on both minor and larger
datasets, showing the benefit of applying late fusion to features at different
abstraction levels. In addition, the system of [30] increases the rank-1 ac-
curacy by 5.82% compared to their individual results, while we show an
increased accuracy of 7.91%.

4.3 The importance of late fusion

To analyse the affection of late fusion, three examples are provided, showing
how the fused result is improved or maintained by having different indi-
vidual results. For each example, an analysis of how different feature types
contribute to the late fusion, and how this affect the result, is conducted.

Examples are created by looking at the results from a single test iteration
on VIPeR dataset.

The first example is shown in Figure D.8 where all individual systems
rank the true match as the fourth most similar, while the remaining queries
are ranked differently by each system. For FFN, the contours of the jeans and
dark shirt seem to dominate the matched queries, while the results of LOMO
and CVPDL show a higher dependency on the colours, especially seen by
the impact of change in colour of the jeans. Furthermore, the two latter also
seem to be more affected by textures created from shadows present in the
probe image. Due to these differences, the aggregated output provides a
better result. For the case of score-level fusion, the calculated distances for
each system affect the fused result causing the score-fused to be similar.

Probe

FFN

LOMO

CVPDL

Aggregated

Score-fused

Fig. D.8: First case in which all individual features rank the true match similar. True match is
shown by the green rectangle.
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In the second example shown in Figure D.9, neither of the individual sys-
tems ranks the true match within top-5 while remaining rankings differ even
more than in the first example. Here, FFN not only captures information on
the contours, but also the colours, since hand-crafted colour features were
also used to train FFN. Again, LOMO and CVPDL seem to capture informa-
tion from the street, such as shadows. But while CVPDL seem to capture
more information on the lower part of the image, including the colours of the
jeans and texture of the street, LOMO emphasizes more on the combination
of colours such as the colour of the left handbag and coat. After applying
late fusion, the results are improved in both cases and the output of the rank
aggregation now ranks the true match within top-4.

Probe

FFN

LOMO

CVPDL

Aggregated

Score-fused

Fig. D.9: Second case in which the true match is ranked differently by each individual feature.
True match is shown by the green rectangle.

In the third and last example shown in Figure D.10, LOMO and FFN
rank the true match within top-5. While LOMO is affected by the gray-scale
change of the trousers due to lighting changes, FFN emphasizes more on the
broad body contour, making it more robust to such challenges. Once again,
CVPDL seem to capture the texture from shadows, while also capturing the
white colours of the shirt. In this case, the rank aggregation is affected by the
bad result from CVPDL and the aggregated result is therefore similar to that
of LOMO. Meanwhile, score-level fusion is not similarly affected due to the
weight assignment and use of distances and the result is therefore similar to
that of FFN.

Generally, aggregation performs better than score-level fusion when all
three individual systems rank the true match within top-10 while score-level
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Probe

FFN

LOMO

CVPDL

Aggregated

Score-fused

Fig. D.10: Third case in which the true match is ranked high by two features and outside top-10
by the last. True match is shown by the green rectangle.

fusion achieves better results in situations where one system performs badly,
though, this cannot be completely defined as the rankings of other identities
affects the fused result. FFN takes the overall contours into account and is
therefore not affected much by the background. Contrary, as colour features
on a semi-global scale are also used for training, it is affected by changes in
colour as seen in Figure D.9. Meanwhile, LOMO performs better when simi-
lar colours are preserved in parts of the image, due to utilization of patches.
Finally, CVPDL seem to suffer from situations with changing backgrounds
because of to its matching scheme, especially due to changes in shadows,
while performing better in situations where the colour of the clothing is more
uniform or distinct texture is visible in both camera views. Overall, informa-
tion captured by each feature type positively affect late fusion as correspond-
ing output lists differ. Few cases exist in which false identities are ranked
high by all three systems as seen in Figure D.10, where lighting changes, uni-
form colours and similarities in the shape of the body, cause a false identify
to be ranked higher.

4.4 Comparison to state-of-the-art

The proposed system is compared with other state-of-the-art systems on all
four datasets. Tables D.3-D.6 contain the results for our system compared
to the state-of-the-art. Oursagg and Ourssco indicate our system by fusion of
both low-, mid-, and high-level features using rank aggregation and score-
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level fusion, respectively.

Table D.3: Comparison between our system and state-of-the-art systems on the VIPeR dataset (p=316).
Best results are in bolt. [1]

Method/Rank r = 1 r = 5 r = 10

Oursagg 45.63 75.06 85.16
Ourssco 45.24 75.02 85.70
FFN+LOMO [28] 51.06 81.01 91.39
LOMO+XQDA [19] 40.00 67.40 80.51
Mirror-KMFA [37] 42.97 75.82 87.28
MuRE [30] 42.72 – 88.04
SCNCD [20] 37.80 68.50 81.20
Deep Re-id [25] 34.81 63.72 76.24
KISSME [13] 24.75 53.48 67.44
ECM [31] 38.90 67.80 78.40
MLF+LADF [10] 43.39 73.04 87.28

Table D.4: Comparison between our system and state-of-the-art systems on the PRID450S dataset
(p=225). Best results are in bolt. [1]

Method/Rank r = 1 r = 5 r = 10

Oursagg 77.56 93.47 96.09
Ourssco 68.76 88.49 93.47
FFN+LOMO [28] 66.62 86.84 92.84
Mirror-KMFA [37] 55.42 63.72 87.72
KISSME [13] 36.31 65.11 75.42
ECM [31] 41.90 66.30 76.90
SCNCD [20] 41.60 68.90 79.40

It is clearly shown that our introduced fusion results in a system that out-
performs previous systems. For VIPeR, the feature fused system of LOMO
and FFN achieves a rank-1 accuracy 5.43% better than the proposed system
indicating that FFN and CVPDL might share the same difficulties when clas-
sifying certain identities which is also indicated by their performance being
very similar. Compared to the related system of [30], our system achieves a
rank-1 accuracy which is 2.91% higher, showing the importance of training
on features at different abstraction levels.

For PRID450S and CUHK01 our system clearly beats the feature fused
systems by a rank-1 increase of 10.94% and 14.84%, respectively.

For CUHK03, our results outperforms the rank-1 accuracy of [19] with
2.52% while having almost similar accuracy compared to the state-of-the-art
CNN of [25]. Looking at Figure D.7 (d), this is probably due to the perfor-
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Table D.5: Comparison between our system and state-of-the-art systems on the CUHK01 dataset (p=486).
Best results are in bolt. [1]

Method/Rank r = 1 r = 5 r = 10

Oursagg 70.35 88.46 93.29
Ourssco 64.67 83.81 89.35
FFN+LOMO [28] 55.51 78.40 83.68
Deep Re-id [25] 47.53 72.10 80.53
Mirror-KMFA [37] 40.40 64.63 75.34
MLF [10] 34.30 55.12 64.91

Table D.6: Comparison between our system and state-of-the-art systems on the CUHK03 dataset (p=100).
Best results are in bolt. [1]

Method/Rank r = 1 r = 5 r = 10

Oursagg 52.25 80.40 88.95
Ourssco 54.72 81.25 89.40
LOMO+XQDA [19] 52.20 82.23 92.14
Deep Re-id [25] 54.74 86.42 91.50
FPNN [5] 20.65 51.32 68.74

mance of FFN with a rank-1 accuracy of 20%. The CNN by Ahmed et al. was
trained on CUHK03 while FFN was trained on the Market-1501 dataset [6]
which, along with the architecture, might be the reason for the almost similar
performance.

4.5 Cross-dataset test

In a real world scenario, it is desired to have a system that adapts well to
new data. Furthermore, it is undesired to label new training data in each
new application. As a result, a decent accuracy is desired, independently of
which dataset is used for training. To test this scenario, training and testing
are performed on different datasets.

For training, the extended CUHK01, CUHK02 [42], is utilized. This dataset
consists of 1816 different identities, each with two images in two different
views, bringing the total number of images to 7264. In the training phase, all
identities are included using one image from each view. In the test, VIPeR is
used, using the same identities in each iteration as in the intra-dataset test.
Similar to the previous tests, 10 iterations are run and the accuracies are aver-
aged. The resulting CMC curves are shown in Figure D.11. As in the test on
CUHK03, score-level fusion provides the highest accuracies, having a rank-1
accuracy 5.95% higher than rank aggregation. Compared to the individual
results, dominated by LOMO, the rank-1 accuracy is increase by 10.95%, once
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again showing the benefit of late fusion.
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Fig. D.11: CMC curves of results using cross-dataset settings on VIPeR (p=316).

Table D.7 shows our results compared to previous systems tested under
similar settings. Both previous systems utilize CNN’s to learn similarity be-
tween identities. Our fusion system increase the rank-1 accuracy by 5.85%
compared to the previous best result, despite the fact that the two other sys-
tems utilize multiple images from each identity in the training phase com-
pared to only one in our case.

Table D.7: Comparing to other state-of-the-art results when training on CUHK02 and testing on VIPeR
(p=316). “–” indicates non available results. Best results are in bold. [1]

System/Rank r = 1 r = 5 r = 10 r = 20

Oursagg 22.31 43.89 53.89 65.66
Ourssco 28.26 49.10 58.34 69.35
DeepRank [43] 22.41 – 56.39 72.72
DML [26] 16.17 – 45.82 57.56

4.6 Processing time

In order to analyse whether it makes sense to make use of the introduced
late fusion, the processing time when matching for each individual system
along with the processing time for the fusion techniques are examined and
compared to the increase in the accuracy.
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A test is made by averaging the timings of 10 iterations on the VIPeR
dataset using an Intel i7-4700MQ CPU @ 2.4GHz and the results are shown
in Table D.8.

Table D.8: Average timings for matching and late fusion in seconds over 10 iterations on VIPeR
dataset.

FFN LOMO CVPDL Aggregation Score-level

10.30 0.18 292.38 6.26 0.12

As shown in Table D.8, matching for CVPDL takes up 96.5% of the total
processing time if score-level fusion is employed. In reality, this might not be
suitable if the system is running real-time and a different way of matching
patches should be developed if the algorithm should be kept in the fusing
system.

Furthermore, rank aggregation and score-level fusion only takes up 2.1%
and 0.04%, respectively, of the total processing time.

5 Conclusion

Throughout this paper, we have proposed a novel method to combine three
state-of-the-art features developed for re-identification through late fusion.
In order to get the most proper results, the features are extracted at different
abstraction levels, namely low-, mid- and high-level. Two types of late fusion
techniques are utilized, score-level fusion and rank aggregation, focusing on
different ways to fuse outputs. The score-level fusion is re-defined to fit the
scores we calculate.

Experimental results on four diff erent datasets showed a clear improve-
ment in rank-1 accuracies on two with rank-1 accuracies of 10.94% and 14.84%
for PRID450S and CUHK01, respectively, compared to previous systems and
an increase on VIPeR of 5.43% compared to related systems. The results on
CHUK03 are almost similar in performance compared to the state-of-the-art
CNN of [25] with a potential to be increased by training or fine-tuning on
similar dataset. Overall, rank aggregation provided the best results being up
to 8.8% better than score-level fusion, though, with the latter being faster in
processing time. Further, an analysis indicated that rank aggregation per-
formed better when individual results are within a certain range of one an-
other while score-level fusion is better when one result is much worse than
the other two. In addition, the analysis showed that FFN mostly captures the
overall contour of the body, LOMO mostly the combination of colours while
CVPDL mostly captures the texture. The different focus points cause dif-
ferent ordering of matches which positively affect late fusion when the true
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match is ranked high. When looking at the processing time, late fusion only
takes up at most 2.1% of the total processing time, making late fusion ben-
eficial when compared to the increased accuracies. Finally, patch matching
showed a large increase in processing time, leaving it to be modified if kept
in the fusing system.
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1. Introduction

Abstract

Most of the existing approaches for person re-identification consider a static setting
where the number of cameras in the network is fixed. An interesting direction, which
has received little attention, is to explore the dynamic nature of a camera network,
where one tries to adapt the existing re-identification models after on-boarding new
cameras, with little additional effort. There have been a few recent methods proposed
in person re-identification that attempt to address this problem by assuming the la-
beled data in the existing network is still available while adding new cameras. This
is a strong assumption since there may exist some privacy issues for which one may
not have access to those data. Rather, based on the fact that it is easy to store the
learned re-identifications models, which mitigates any data privacy concern, we de-
velop an efficient model adaptation approach using hypothesis transfer learning that
aims to transfer the knowledge using only source models and limited labeled data,
but without using any source camera data from the existing network. Our approach
minimizes the effect of negative transfer by finding an optimal weighted combination
of multiple source models for transferring the knowledge. Extensive experiments on
four challenging benchmark datasets with variable number of cameras well demon-
strate the efficacy of our proposed approach over state-of-the-art methods.

1 Introduction

Person re-identification (re-id), which addresses the problem of matching
people across different cameras, has attracted intense attention in recent
years [1, 2]. Much progress has been made in developing a variety of meth-
ods to learn features [3–5] or distance metrics by exploiting unlabeled and/or
manually labeled data. Recently, deep learning methods have also shown sig-
nificant performance improvement on person re-id [6–11]. However, with the
notable exception of [12, 13], most of these works have not yet considered the
dynamic nature of a camera network, where new cameras can be introduced
at any time to cover a certain related area that is not well-covered by the ex-
isting network of cameras. To build a more scalable person re-identification
system, it is very much essential to consider the problem of how to on-board
new cameras into an existing network with little additional effort.

Let us consider K number of cameras in a network for which we have
learned (K

2) number of optimal pairwise matching metrics, one for each cam-
era pair (see Fig. E.1 for an illustrative example). However, during an oper-
ational phase of the system, new camera(s) may be temporarily introduced
to collect additional information, which ideally should be integrated with
minimal effort. Given newly introduced camera(s), most of the prior re-id
methods aim to re-learn the pairwise matching metrics using a costly train-
ing phase. This is impractical in many situations where the newly added
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Fig. E.1: Consider a three camera (C1, C2 and C3) network, where we have only three pairwise
distance metrics (M12, M23 and M13) available for matching persons, and no access to the labeled
data due to privacy concerns. During an operational phase of the system, a new camera, C4, is
installed into the system where we have very limited labeled data across the new camera and
the existing ones. Our goal in this paper is to learn the pairwise distance metrics between the
newly inserted camera(s) and the existing cameras (M41, M42 and M43), using the learned source
metric from the existing network, with a small amount of labeled data available after installing
the new camera(s).

camera(s) need to be operational soon after they are added. In this case,
we cannot afford to wait a long time to obtain significant amount of labeled
data for learning pairwise metrics, thus, we only have limited labeled data of
persons that appear in the entire camera network after addition of the new
camera(s).

Recently published works [12, 13] attempt to address the problem of inte-
grating new cameras to a network by utilizing old data that were collected in
the original camera network, combined with newly collected data in the ex-
panded network and source metrics to learn new pairwise metrics. They also
assume that the same set of people appears in all camera views, including
the new camera (i.e., before and after on-boarding new cameras) for mea-
suring the view similarity. However, this is unrealistic in many surveillance
scenarios as source camera data may have been lost or not accessible because
of some privacy concerns. Additionally, new people may appear after the
target camera is installed who may or may not have appeared in existing
source cameras. Motivated by this observation, we pose an important ques-
tion: How can we swiftly on-board new camera(s) in an existing re-id framework
(i) without having access to the source camera data that the original network was
trained on, and (ii) relying upon only a small amount of labeled data after adding the
new camera(s).
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Transfer learning, which focuses on transferring knowledge from a source
to a target domain, has recently been very successful in various computer
vision problems [14–18]. However, knowledge transfer in our system is chal-
lenging, because of limited labeled data and absence of source camera data
while on-boarding new cameras. To solve these problems, we develop an ef-
ficient model adaptation approach using hypothesis transfer learning that aims
to transfer the knowledge using only source models (i.e., learned metrics)
and limited labeled data, but without using any source camera data. Only
a few labeled identities that are seen by the target camera, and one or more
of the source cameras, are needed for effective transfer of source knowledge
to the newly introduced target cameras. Henceforth, we will refer to this
as target data. Furthermore, unlike [12, 13], which find only one best source
camera that aligns maximally with the target camera, our approach focuses
on finding an optimal weighted combination of multiple source models for
transferring the knowledge.

Our approach works as follows. Given a set of pairwise source metrics
and limited labeled target data after adding the new camera(s), we develop
an efficient convex optimization formulation based on hypothesis transfer
learning [19, 20] that tries to minimize the effect of negative transfer from
any outlier source metric while transferring knowledge from source to the
target cameras. More specifically, we learn the weights of different source
metrics and the optimal matching metric jointly by alternating minimization,
where the weighted source metric is used as a biased regularizer that aids to
learn the optimal target metric only using limited labeled data. The proposed
method, essentially, learns which camera pairs in the existing source network
best describe the environment that is covered by the new camera and one of
the existing cameras. Note that, our approach can be easily extended to
multiple additional cameras being introduced at a time in the network or
added sequentially one after another.

1.1 Contributions

We address the problem of swiftly on-boarding new camera(s) into an exist-
ing person re-identification framework without having access to the source
camera data, and relying upon only a small amount of labeled data after
adding the new cameras. Towards solving the problem, our contributions in
this paper are the following.

• We propose a robust and efficient multiple metric hypothesis transfer
learning algorithm to efficiently adapt a newly introduced camera to
an existing person re-id framework without having access to the source
data.

• We theoretically analyse the properties of our algorithm and show that
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it minimizes the risk of negative transfer and performs closely to fully
supervised case even when a small amount of labeled data is available.

• We perform rigorous experiments on multiple benchmark datasets to
show the effectiveness of our proposed approach over existing alterna-
tives.

2 Related Works

Person Re-identification. Most of the methods in person re-id are based
on supervised learning. These methods apply extensive training using lots
of manually labeled training data, and can be broadly classified in two cat-
egories: (i) Distance metric learning based [3, 21–25] (ii) Deep learning based
[6, 10, 11, 26–29]. Distance metric learning based methods tend to learn distance
metrics for camera pairs using pairwise labeled data between those cameras,
whereas end to end Deep learning based methods tend to learn robust feature
representations of the persons, taking into consideration all the labeled data
across all the cameras at once. To overcome the problem of manual labeling,
several unsupervised [14, 25, 30–33] and semi-supervised [34–37] methods
have been developed over the past decade. However, these methods do not
consider the case where new cameras are added to an existing network. The
most recent approach in this direction [12, 13] has considered unsupervised,
as well as semi-supervised, domain adaptation of the target camera by mak-
ing a strong assumption of accessibility of the source data. None of the
methods have used the fact of not having access to the source data in the
dynamic camera network setting. This is relevant, as source data might have
to be deleted after a while due to privacy issues.

Hypothesis Transfer Learning. Hypothesis transfer learning [19, 20, 38–40] is
a type of transfer learning that uses only the learned classifiers from a source
domain to efficiently learn a classifier in the target domain, which contains
only limited labeled data. This approach is practically appealing as it does
not assume any relatedness between source and target distribution nor any
the availability of source data, which may be non accessible due to security
reason [19]. Most of the literature has dealt with simple linear classifiers for
transferring knowledge [19, 41]. One recent works [42] has addressed the
problem of transferring the knowledge of a source metric, which is a pos-
itive semi-definite matrix, with some provable guarantees. However, it has
been analyzed for only a single source metric and the weight of the met-
ric is calculated by minimizing a cost function using sub-gradient descent
from the generalization bound separately, which is a highly non-convex non-
differential function. In [41], the method has addressed transfer of multiple
linear classifiers in an SVM framework, where the corresponding weights are
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calculated jointly with the target classifiers in a single optimization. Unlike
these approaches, our approach addresses the case of transfer from multiple
source metric hypotheses by jointly optimizing for target metric, as well as
the corresponding weights to reduce the risk of negative transfer.

3 Methodology

Let us consider a camera network with K number of cameras for which we
have learned a total N = (K

2) pairwise metrics using extensive labeled data.
We wish to install some new camera(s) in the system that need to be opera-
tional soon after they are added, i.e., without collecting and labeling lots of
new training data. Due to privacy concerns, we do not have access to the
old source camera data, rather, we only have the pairwise source distance
metrics. Moreover, we also have access to only a limited amount of labeled
data across the target and different source cameras, which is collected af-
ter installing the new cameras. Using the source metrics and the limited
pairwise source-target labeled data, we propose to solve a constrained con-
vex optimization problem (Eq. E.1) that aims to transfer knowledge from the
source metrics to the target efficiently while minimizing the risk of negative
transfer.

Formulation. Suppose we have access to the optimal distance metric Mab ∈
Rd×d for the a and b-th camera pair of an existing re-id network, where
d is the dimension of the feature representation of the person images and
a, b ∈ {1, 2 . . . K}. We also have limited pairwise labeled data {(xij, yij)}C

i=1
between the target camera τ and the source camera p, where xij = (xi − xj) is
the feature difference between person i in camera τ and person j in camera p.
C = (nτp

2 ), where nτp is the total number of different persons who appeared
on the cameras τ and p, and yij ∈ {−1, 1}. yij = 1 if the persons i and j
are the same person across the cameras, and −1 otherwise. Note that our
approach does not need the presence of every person seen in the new target
camera across all the source cameras, rather, in at least one of the source
camera while computing the new distance metric across source-target pairs.
Let S and D be defined as S = {(i, j) | yij = 1} and D = {(i, j) | yij = −1}.
Our main goal is to learn the optimal metric between target and each of the
source cameras by using the information from all the pairwise source metrics
{Mj}N

j=1 and limited labeled data {(xij, yij)}C
i=1. In standard metric learning

context, the distance between two feature vectors xi ∈ Rd and xj ∈ Rd with

respect to a metric M ∈ Rd×d is calculated by
√
(xi − xj)>M(xi − xj).

Thus, we formulate the following optimization problem for calculating
the optimal metric Mτp between target camera τ and the p-th source camera,
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with ns and nd number of similar and dissimilar pairs, as follows:

minimize
Mτp

1
ns

∑
(i,j)∈S

x>ij Mτpxij + λ‖Mτp −
N

∑
j=1

β j Mj‖2
F

subject to
1

nd
∑

(i,j)∈D
(x>ij Mτpxij)− b ≥ 0, Mτp � 0,

β ≥ 0, ‖β‖2≤ 1

(E.1)

The above objective consists of two main terms. The first term is the normal-
ized sum of distances of all similar pair of features between camera τ and p
with respect to the Mahalanobis metric Mτp, and the second term represents
the frobenius norm of the difference of Mτp and weighted combination of
source metrics squared. λ is a regularization parameter to balance the two
terms. Note that the second term in Eq. E.1 is essentially related to hypothe-
sis transfer learning [19, 20] where the hypotheses are the source metrics. The
first constraint represents that the normalized sum of distances of all dissimi-
lar pairs of features with respect to Mτp is greater than a user defined thresh-
old b, and the second constraints the distance metrics to always lie in the
positive semi-definite cone. While the third constraint keeps all the elements
of the source weight vector non-negative, the last constraint ensures that the
weights should not deviate much from zero (through upper-bounding the `-2
norm by 1).

Notation. We use the following notations in the optimization steps.

(a) C1 = {M ∈ Rd×d | ∑
(i,j)∈D

(x>ij Mxij)− b ≥ 0}

(b) C2 = {M ∈ Rd×d | M � 0}

(c) C3 = {β ∈ RN | β ≥ 0∩ ‖β‖2 ≤ 1}

Optimization. The proposed optimization problem (E.1) is convex. To handle
the optimization over large size matrices without memory issues, we devise
an iterative algorithm to efficiently solve (E.1) by alternately solving for two
sub-problems. For the sake of brevity, we denote Mτp as M in the subsequent
steps. Specifically, in the first step, we fix the weight β and take a gradient
step with respect to M in the descent direction with step size α (Eq. E.2).
Then, we project the updated M onto C1 and C2 in an alternating fashion until
it converges (Eq. E.3 and Eq. E.4). In the next step, we fix the the updated M
and take a step with size γ towards the direction of negative gradient with
respect to β (Eq. E.6). In the last step, we simply project β onto the set C3
(Eq. E.7). Algorithm 1 summarizes the alternating minimization procedure
to optimize (E.1). We briefly describe these steps below and refer the reader
to the supplementary material for more mathematical details.
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Algorithm 1: Algorithm to Solve Eq. E.1

Input: Source metric {Mj}N
j=1, {(xij, yij)}C

i=1
Output: Optimal metric M?

Initialization: Mk, βk, k = 0;
while convergence do

Mk+1 = Mk − α∇M f (M, βk)|M=Mk (Eq. E.2);
while convergence do

Mk+1 = ΠC1(Mk+1) (Eq. E.3);
Mk+1 = ΠC2(Mk+1) (Eq. E.4);

end
βk+1 = βk − γ∇β( f (Mk+1, β)|β=βk (Eq. E.6);

βk+1 = ΠC3(βk) (Eq. E.7);
k = k + 1 ;

end

Step 1: Gradient w.r.t M with fixed β.
With k being the iteration number and Mk, βk being M and β in the k-th

iteration, we compute the gradient of the objective function (E.1) with respect
to M by fixing β = βk at k-th iteration as follows:

∇M f (M, βk)|M=Mk = ΣS + 2λ(Mk −
N

∑
j=1

βk
j Mj), (E.2)

where ΣS = 1
ns

∑
(i,j)∈S

xijx>ij and

f (M, βk) = 1
ns

∑
(i,j)∈S

x>ij Mxij + λ‖M−∑N
j=1 βk

j Mj‖2
F.

Step 2: Projection of M onto C1 and C2. The projection of M onto C1
(denoted as ΠC1(M)) can be computed by solving a constrained optimization
as follows:

ΠC1(M) =arg min
M̂

1
2
‖M̂−M‖2

F

Subject to
1

nd
∑

(i,j)∈D
(x>ij M̂xij)− b ≥ 0

By writing the Lagrange for the above constrained optimization and us-
ing KKT conditions with strong duality, the projection of M onto C1 can be
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written as

ΠC1(M) = M + max

0,

(
b− 1

nd
∑

(i,j)∈D
x>ij Mxij

)
‖ΣD‖2

F

ΣD, (E.3)

where ΣD = ∑
(i,j)∈D

xijx>ij . Similarly, using spectral value decomposition, the

projection of M onto C2 can be written as

ΠC2(M) = Vdiag(
[
λ̂1 λ̂2 . . . λ̂n

]
)V>, (E.4)

where V is the matrix constructed by stacking the eigenvectors of M column-
wise, λi is the i-th eigenvalue of M and λ̂j = max{λj, 0} ∀ j ∈

[
1 . . . d

]
.

Step 3: Gradient w.r.t β with fixed M. By fixing M = Mk+1 in the
objective function, differentiating it w.r.t βi, the i-th element of β at the point
β = βk, we get

∇βi ( f (Mk+1, β)|βi=βk
i
= 2λβk

i trace(M>i Mi)−

2λtrace(M>i (Mk+1 −
N

∑
j=1,j 6=i

βk
j Mj))

(E.5)

By denoting ∇βi ( f (Mk+1, β)|βi=βk
i

as ak
i , we get

∇β( f (Mk+1, β)|β=βk =
[
ak

1 ak
2 . . . ak

N
]> (E.6)

Step 4: Projection of β onto C3. This step essentially projects a vector to the
first quadrant of an N-dimensional unit norm hyper-sphere. The closed form
expression of the projection onto C3 is as follows:

ΠC3(β) = max
{

0,
β

max{1, ‖β‖2}

}
(E.7)

4 Discussion and Analysis

One of the key differences between our approach and existing methods is
that the nature of our problem deals with the multiple metric setting within
the hypothesis transfer learning framework. In this section, following [42],
we theoretically analyze the properties of our algorithm 1 for transferring
knowledge from multiple metrics.

Let T be a domain defined over the set (X × Y) where X ⊆ Rd and
Y ∈ {−1, 1} denote the feature and label set, respectively, and has a prob-
ability distribution denoted by DT . Let T be the target domain defined by
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{(xi, yi)}n
i=1 consisting of n i.i.d samples, each drawn from the distribution

DT . The optimization proposed in Eq.1 of [42] (page. 2) is defined as:

minimize
M�0

LT(M) + λ‖M−MS‖2
F (E.8)

Fixing the value of β in our proposed optimization (E.1), we have an opti-
mization problem equivalent to (E.8), where MS = ∑N

j=1 β j Mj and

LT(M) =
1
ns

∑
(i,j)∈S

x>ij Mxij + µ?
(
b− 1

nd
∑

(i,j)∈D
x>ij Mxij

)
(E.9)

Note that µ? in Eq. E.9 is the optimal dual variable for the inequality con-
straint optimization (E.1) with the weight vector fixed. Clearly, the expression
is linear, hence convex in M, and has a finite lipschitz constant k.

Theorem 1. For the convex and k-Lipschitz loss (shown in supp) defined in (E.9)
the average bound can be expressed as

ET∼DT n [LDT (M?)] ≤ LDT (M̂S) +
8k2

λn
, (E.10)

where n is the number of target labeled example, M? is the optimal metric com-

puted from Algorithm 1, M̂S is the average of all source metrics defined as
∑N

j=1 Mj
N ,

ET∼DT n [LDT (M?)] is the expected loss by M? computed over distribution DT and
LDT (M̂S) is the loss of average of source metrics computed over DT .

Proof. The proof is given in supplementary material.

Implication of Theorem 1: Since we transfer knowledge from multiple source
metrics, and do not know which is the most generalizable over the target dis-
tribution (i.e the best source metric), the most sensible thing is to check for
the average performance of using each of the source metrics directly over the
target test data. It is equivalently giving all the source metrics equal weights
and not using any of the target data for training purpose. The bound in The-
orem (E.9) shows that, on average, the metric learned form Algorithm 1 tends
to do better than, or in worst case, at least equivalent to the average of source
metrics with a fast convergence rate of O( 1

n ) with limited number of target
samples [42].
Negative Transfer: In optimization E.1, we jointly estimate the optimal met-
ric, as well as the weight vector, which determines which source to transfer
from and with how much weight. If a source metric does not generalize well
across the target distribution, giving more weight to that metric will increase
the loss in Eq. E.9. It is evident that our proposed optimization automatically
prevents this increment since we have a constraint, where the weights can be
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zero. Thus, our approach minimizes the risk of negative transfer by assigning
the outlier source metrics weights that are as low as possible to reduce the
loss defined in Eq. E.9.

Theorem 2. With probability (1− δ), for any metric M learned from Algorithm 1
we have,

LDT (M) ≤LT(M) +O
( 1

n
)
+(√

LT(∑N
j=1 β j Mj)

λ
+‖

N

∑
j=1

β j Mj‖F

)√
ln( 2

δ )

2n
,

(E.11)

where LDT (M) is the loss over the original target distribution (true risk), LT(M)
is the loss over the existing target data (empirical risk), and n is the number of target
samples.

Proof. See the supplementary material for the proof.

Implication of Theorem 2: This bound shows that given only a small amount
of labeled target data, our method performs closely to the fully supervised
case, if some of the source metrics generalize well for the target distribution.
The right hand side of the inequality (E.11) consists of the sum of the terms
O
( 1

n
)

and O
( 1√

n

)
multiplied by a coefficient. Since the optimal weight β?

from optimization (E.1) will be sparse due to the way β is constrained and
the zero coefficients will automatically be assigned to the outlier metrics re-
sulting in smaller value of the coefficient associated with O

( 1√
n

)
. As a result

the O
( 1

n
)

term will be more dominant in (E.11) over O
( 1√

n

)
. Due to the

faster decay rate of O
( 1

n
)
, this implies that with very limited target data, the

empirical risk will converge to the true risk. Furthermore, when n is very
large (the fully supervised case), O

( 1√
n

)
will be close to zero and cannot be

altered by multiplication with any coefficient. This implies that the source
metrics will not have any effect on learning when there is enough labeled
target data available and are only useful in the presence of limited data as in
our application domain.

5 Experiments

Datasets. We test the effectiveness of our method by experimenting on four
publicly available re-id datasets such as WARD [43], RAiD [44], Market1501
[45], and MSMT17 [46]. There are several other re-id datasets like ViPeR [47],
PRID2011 [48] and CUHK01 [49], however, those do not apply in our case due
to availability of only two cameras. RAiD and WARD are smaller datasets
with 43 and 70 persons captured in 4 and 3 cameras, respectively, whereas
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Market1501 and MSMT17 are more recent and large datasets with 1,501 and
4,101 persons captured across 6 and 15 cameras, respectively.

Feature Extraction and Matching. We use Local Maximal Occurrence (LOMO)
feature [3] of length 29, 960 in RAiD and WARD datasets. However, since
LOMO usually performs poorly in large datasets [2], for Market1501 and
MSMT17 we extract features from the last layer of a Imagenet [50] pretrained
ResNet50 network [51] (denoted as IDE features in our work). We follow
standard PCA technique to reduce the feature dimension to 100, as in [12, 23].

Performance Measures. We provide standard Cumulative Matching Curves
(CMC) and normalized Area Under Curve (nAUC), as is common in person
re-id [3, 13, 23, 44]. While the former shows accumulated accuracy by consid-
ering the k-most similar matches within a ranked list, the latter is a measure
of re-id accuracy, independent on the number of test samples. Due to the
space constraint, we only report average CMC curves for most experiments
and leave the full CMC curves in the supplementary material.

Experimental Settings. For RAiD we follow the protocol in [3] and randomly
split the persons into a training set of 21 persons and a test set of 20 persons,
whereas for WARD, we randomly split the 70 persons into a set of 35 persons
for training and rest 35 persons for testing. For both datasets, we perform 10
train/test splits and average accuracy across all splits. We use the standard
training and testing splits for both Market1501 and MSMT17 datasets. During
testing, We follow a multi-query approach by averaging all query features of
each id in the target camera and compare with all features in the source
camera [45].

Compared Methods. We compare our approach with the following meth-
ods. (1) Two variants of Geodesic Flow Kernel (GFK) [52] such as Direct-GFK
where the kernel between a source-target camera pair is directly used to eval-
uate the accuracy and Best-GFK where GFK between the best source camera
and the target camera is used to evaluate accuracy between all source-target
camera pairs as in [12, 13]. Both methods use the the supervised dimen-
sionality reduction method, Partial Least Squares (PLS), to project features
into a low dimensional subspace [12, 13]. (2) state-of-the-art method for on-
boarding new cameras [12, 13] that uses transitive inference over the learned
GFK across the best source and target camera. We refer this method as
Adapt-GFK in our work. (3) Clustering-based Asymmetric MEtric Learn-
ing (CAMEL) method of [25], which projects features from source and target
camera to a shared space using a learned projection matrix. For all compared
methods, we use their publicly available code and perform evaluation in our
setting.
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5.1 On-boarding a Single New Camera

We consider one camera as newly introduced target camera and all the other
as source cameras. We consider all the possible combinations for conduct-
ing experiments. In addition to the baselines described above, we compare
against the accuracy of average of the source metrics (Avg-Source) by ap-
plying it directly over the target test set to prove the validity of Theorem 1.
We also compute the GFK kernels in two settings; by considering only target
data available after introducing the new cameras (Fig. E.2) and by consid-
ering the presence of both old source data and the new labeled data after
camera installation as in [12, 13] (Fig. E.3).

Implementation details. We split training data into disjoint source and tar-
get data considering the fact that the persons that appear in the new camera
after installation may or may not be seen before in the source cameras. That
is, for Market1501 and MSMT17 we split the training data into 90% of per-
sons that are only seen by the source cameras and 10% that are seen in both
source cameras and the new target camera after the installation. Since there
are much fewer persons in RAiD and WARD training set, we split the per-
sons to 80% source and 20% target for those two datasets. For each dataset,
we evaluate every source-target pair and average accuracy across all pairs.
Furthermore, we average accuracy across all cameras as target. Note that the
train and test set are kept disjoint in all our experiments.

Results. Fig. E.2 and E.3 show the results. In all cases, our method out-
performs all the compared methods. The most competitive methods are
those of Adapt-GFK and Avg-Source that also use source metrics. For the
remaining methods, we see the limitation of only using limited target data to
compute the new metrics. For Market1501, we see that Avg-Source outper-
forms the Adapt-GFK baseline indicating the advantage of knowledge trans-
fer from multiple source metric compared to one single best source metric
as in [12, 13]. However, our approach still outperforms the Avg-Source base-
line by a margin of 20.60%, 13.81%, 2.01% and 1.07% in Rank-1 accuracy on
RAiD, WARD, Market1501 and MSMT17, respectively, validating our impli-
cations of Theorem 1. Furthermore, we observe that even without accessing
the source training data that was used for training the network before adding
a new camera, our method outperforms the GFK based methods that use all
the source data in their computations (see Fig. E.3). To summarize, the ex-
perimental results show that our method performs better on both small and
large camera networks with limited supervision, as it is able to adapt multiple
source metrics via minimization of negative transfer by dynamically weight
the source metrics.
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Fig. E.2: CMC curves averaged over all target camera combinations, introduced one at a time.
(a) WARD with 3 cameras, (b) RAiD with 4 cameras, (c) Market1501 with 6 cameras and (d)
MSMT17 with 15 cameras. Best viewed in color.

5.2 On-boarding Multiple New Cameras

We perform this experiment on Market1501 dataset using the same strategy
as in Section 5.1 and compare our results with other methods while adding
multiple target cameras to the network, either continuously or in parallel.

Parallel on-boarding of Cameras: We randomly select two or three cam-
eras as target while keeping the remaining as source. All the new target cam-
eras are tested against both source cameras and other target cameras. The
results of adding two and three cameras in parallel (at the same time) are
shown in Fig. E.4 (a) and (b), respectively. In both cases, our method outper-
forms all the compared methods with an increasing margin as rank increases.
We outperform the most competitive baseline of CAMEL in Rank-1 accuracy
by 5.45% and 3.73%, while adding two and three cameras respectively. Fur-
thermore, our method better adapts source metrics since it has the capability
of assigning zero weights to the metrics that do not generalize well over tar-
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Fig. E.3: CMC curves averaged over all target camera combinations, introduced one at a time, on
WARD dataset. Note that, both old and new source data are used for calculation of GFK. Best
viewed in color.

get data. Meanwhile, Adapt-GFK has a high probability of using the outlier
source metrics in the presence of fewer available source metrics, which causes
negative transfer. This has been shown in Fig E.4 where GFK based meth-
ods are performing worse than CAMEL, which is computed just with limited
supervision without using any source metrics.

Continual on-boarding of Cameras: For this experiment, we randomly
select three target cameras that are added continuously. A target camera
is tested against all source cameras and previously added target cameras.
The results are shown in Fig. E.4 (c). Similar to parallel on-boarding, our
methods outperforms compared methods by a large margin. In this setting,
we outperform CAMEL by 8.22% in Rank-1 accuracy. Additionally, compared
to all GFK-based methods, the Rank-1 margin is kept constant at 10% for
both parallel and continuous on-boarding. These results show the scalability
of our method while adding multiple cameras to a network, independent of
whether they are added in parallel or continuously.

5.3 Different Labeled Data in New Cameras

We perform this experiment to show the implications of Theorem 2 by using
different percentages of labeled target data (10%, 20%, 30%, 50%, 75% and
100%) in our method. We compare with a widely used KISS metric learning
(KISSME) [23] algorithm and show the difference in Rank-1 accuracy as a
function of labeled target data. Fig. E.5 (b) shows the results. At only 10%
labeled data, the difference between our method and KISSME [23] is almost
30%, however, as we add more labeled data, the Rank-1 accuracy becomes
equivalent for the two methods at 100% labeled data. This confirms the im-
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Fig. E.4: CMC curves averaged across target cameras on Market1501 dataset. (a) and (b) show
results while adding two and three cameras simultaneously, (c) show the results while adding
three cameras sequentially. Best viewed in color.

plications of Theorem 2, where we showed that with increasing labeled data
in the target, the effect of source metrics in learning becomes negligible.

5.4 Finetuning with Deep Features

This experiment shows the effect of using features from a deep network that
is first trained on the source data and later finetuned on new limited target
data. We compare with supervised metric learning KISSME [23] and Eu-
cldean distance metric using IDE features directly and using features after
finetuning the model. We perform this experiment on Market1501 dataset
using the same settings as described in Section 5.1. We train a ResNet50
model [51], pretrained on the Imagenet dataset, using the source data, and
use the optimized source features to train the source metrics. Afterwards,
we finetune the model using the labeled target data and use the new tar-
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Fig. E.5: (a) Sensitivity of λ on the Rank-1 performance tested using deep features in Market1501
dataset with 6-th camera as target. (b) Effect of different percentage target labelling on ward
dataset to compare with normal supervised method to justify theorem 2 (c) Analysis of our
method with deep features trained on source camera data. best viewed in color.

get features along with the source metrics in optimization E.1. Please see
supplementary material for more details. Fig. E.5 (c) shows the results with
different percentage of labeled target data. At < 8% labeling, the differences
between IDE and finetuned features are low for Ours and KISSME, however,
we increase Rank-1 accuracy by more than 15% compared to KISSME in both
cases. At 10% labeling, Ours (IDE) still performs better than both Euclidean
(finetuned) and KISSME (finetuned). The accuracy of Ours (IDE) only in-
creases slowly with more than 8% labeling, however, Ours (finetuned) still
improves when increasing amount of labeled data. This indicates that our
method works even better when using deep features from a model, which
was finetuned on limited target data.
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5.5 Parameter Sensitivity

We perform this experiment to study the effect of λ in optimization E.1 for
a given percentage of labeled target data. Fig. E.5 (a) shows the Rank-1 ac-
curacy of our proposed method accuracy for different values of λ. From
optimization E.1, when λ → ∞ the left term can be neglected resulting op-
timal M and β to be zero. However, when λ → 0, the regularization term
is neglected resulting in no transfer. We can see from Fig. E.5 that there is
an operating zone of λ (e.g., in the range of 10−4 to 10−2), that is neither too
high nor too low for useful transfer from source metrics.

6 Conclusion

In this paper, we presented a simple yet effective model adaptation approach
for person re-identification based on hypothesis transfer learning, which
transfers knowledge using only learned source metrics and a limited amount
of labeled data collected after installing the new cameras. We provided the-
oretical analysis to show that our approach minimizes the effect of nega-
tive transfer through finding an optimal weighted combination of multiple
learned source metrics. We show the effectiveness of our proposed approach
on four standard datasets, significantly outperforming several baseline meth-
ods.

Supplementary Material

Page number Content

[188]
Dataset Descriptions

[189]
Detailed Description of the Optimization Steps

[193]
Proof of theorems from the main paper

[196]
On-boarding a Single new Camera (camera-wise cmc curves)

[201]
On-boarding multiple new Cameras (camera-wise cmc curves)

[202]
Finetuning with deep features

Table E.1: Supplementary Material Overview.
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E.A Dataset Descriptions

This section contains detailed descriptions of the datasets used in our ex-
periemnts (see Figure E.6 for sample images).

WARD [43] was collected from three outdoor cameras. The dataset con-
tains 4,786 images of 70 different persons and includes variations in illumi-
nation.

RAiD [44] was collected from four cameras; two indoor and two out-
door. 6,920 images were captured of 43 different persons. However, two of
these persons were only seen by two of the four cameras. As a result of hav-
ing both indoor and outdoor cameras, the dataset includes large illumination
and viewpoint variations.

Market1501 [45] was collected from six cameras and used a Deformable
Part Model [53] to annotate images. This resulted in 32,668 images of 1,501
different persons, but also 2,793 “distractors” that are badly drawn bounding
boxes. The dataset includes variations in both detection precision, resolution
and viewpoint.

MSMT17 [46] is the largest person re-identification dataset to date, and
contains images collected by no more than 15 cameras; 3 indoor and 12 out-
door. Data was collected over the course of four different days in a month,
and Faster RCNN [54] was using for bounding box detection, resulting in
126,441 images of 4,101 different persons. Due to the diversity in data collec-
tion, this dataset contains large variations in illumination and viewpoint.

(a) WARD (b) RAiD (c) Market1501 (d) MSMT17

Fig. E.6: A total of 48 Sample images from the 4 datasets used in our experimentation. In each
row 4 different persons are shown whereas for each column 3 different views of the same person
from 3 different cameras are shown. We can see the that across cameras, the viewpoint of the
same person is very diverse because of change in illumination condition or occlusion.
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E.B. Detailed Description of the Optimization Steps

E.B Detailed Description of the Optimization Steps

In this section we will rigorously discuss all the necessary derivations of
the steps of our proposed algorithm that could not be shown in the main
paper due to space constraint. We first present the notations that we will use
throughout this section.
Notations:

• 1
ns

∑
(i,j)∈S

xijx>ij = ΣS

• 1
nd

∑
(i,j)∈D

xijx>ij = ΣD

• C1 = {M | 1
nd

∑
(i,j)∈D

(x>ij Mxij)− b ≥ 0}

• C2 = {M | M � 0}

• C3 = {β | ‖β‖2 ≤ 1}

• ΠC(X) = minimize
X̂∈C

1
2‖X̂− X‖2

F

• f (M, β) = 1
ns

∑
(i,j)∈S

x>ij Mxij + λ‖M−∑N
j=1 β j Mj‖2

F

The proposed optimization problem in the main paper is defined below.

minimize
Mτp

1
ns

∑
(i,j)∈S

x>ij Mτpxij + λ‖Mτp −
N

∑
j=1

β j Mj‖2
F

subject to
1

nd
∑

(i,j)∈D
(x>ij Mτpxij)− b ≥ 0, Mτp � 0,

β ≥ 0, ‖β‖2≤ 1

(E.12)

Step 1: Gradient w.r.t M with fixed β.

∇M( f (M, β)) =
1
ns

∑
(i,j)∈S

xijx>ij + 2λ(M−
N

∑
j=1

β j Mj)

= ΣS + 2λ(M−
N

∑
j=1

β j Mj)

(E.13)

Step 2: Projection of M onto C1 and C2.
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This can be done by solving a constrained optimization problem.

ΠC1(M) = arg min
M̂

1
2
‖M̂−M‖2

F

Subject to
1

nd
∑

(i,j)∈D
(x>ij M̂xij)− b ≥ 0

We can write the lagrangian as follows,

L(M̂, ψ) =
1
2
‖M̂−M‖2

F + ψ(b− 1
nd

∑
(i,j)∈D

x>ij M̂xij) (E.14)

The KKT conditions for this problem are:

1.

∇M̂L(M̂, ψ)|M̂=M̂? = 0

=⇒ (M̂? −M)− ψ

nd
∑

(i,j)∈D
xijx>ij = 0

=⇒ (M̂? −M)− ψΣD = 0

=⇒ M̂? = (M + ψΣD)

2. ψ?(b− 1
nd

∑
(i,j)∈D

x>ij M̂?xij) ≥ 0

3. ψ? ≥ 0

The optimization problem is convex, so strong duality should hold. So, we
put the value of M̂? from KKT condition 1 in the equation (E.14) to get the
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dual objective function as follows,

g(ψ) = L(M̂?, ψ) =
1
2
‖M + ψΣD −M‖2

F + ψ
(
b− 1

nd
∑

(i,j)∈D
x>ij (M + ψΣD)xij

)
=

1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)−

ψ2

nd
∑

(i,j)∈D
x>ij ΣDxij

=
1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)−

ψ2

nd
∑

(i,j)∈D
trace(x>ij ΣDxij)

=
1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)−

ψ2

nd
∑

(i,j)∈D
trace(ΣDxijx>ij )

=
1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)− ψ2trace(ΣD

1
nd

∑
(i,j)∈D

xijx>ij )

=
1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)− ψ2trace(Σ>DΣD)

=
1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)− ψ2‖ΣD‖2

F

= −1
2

ψ2‖ΣD‖2
F + ψ(b− 1

nd
∑

(i,j)∈D
x>ij Mxij)

(E.15)

To get the optimal ψ? we have to maximize g(ψ).

g′(ψ?) = 0

=⇒ − ψ?‖ΣD‖2
F + (b− 1

nd
∑

(i,j)∈D
x>ij Mxij) = 0

=⇒ ψ? =

(b− 1
nd

∑
(i,j)∈D

x>ij Mxij)

‖ΣD‖2
F

But also from KKT condition (3), we know ψ ≥ 0. Combining with the last
equation we get

ψ? = max

{
0,

(b− 1
nd

∑
(i,j)∈D

x>ij Mxij)

‖ΣD‖2
F

}
(E.16)

So, putting the value of ψ?, finally we can write the projection from KKT
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condition 1 as,

ΠC1(M) = M + max

{
0,

(b− 1
nd

∑
(i,j)∈D

x>ij Mxij)

‖ΣD‖2
F

}
ΣD (E.17)

projection onto C2 is standard, so we are not discussing it here.
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Step 3: Gradient w.r.t β with fixed M.

f (Mk+1, β) =
1
ns

∑
(i,j)∈S

x>ij Mk+1xij + λ‖Mk+1 −
N

∑
j=1

β j Mj‖2
F

= K + λ‖Mk+1 −
N

∑
j=1

β j Mj‖2
F

= K + λtrace
(
(Mk+1 −

N

∑
j=1

β j Mj)
>(Mk+1 −

N

∑
j=1

β j Mj)
)

= K + λβ2
i trace(M>i Mi)− 2λβitrace(M>i (Mk+1 −

N

∑
j=1,j 6=i

β j Mj))

(E.18)

K is term which is independent of β. Now differentiating equation (E.18)
w.r.t βi we get ,

∇βi f (Mk+1, β) = 2λβitrace(M>i Mi)− 2λtrace(M>i (Mk+1−
N

∑
j=1,j 6=i

β j Mj)) = ai

(E.19)
So, derivative of f (Mk+1, β) w.r.t β is given by,

∇β f (Mk+1, β) =
[
a1 a2 . . . aN

]> (E.20)

Step 4: Projection of β onto C3.

ΠC3(β) = max

{
0,

β

max{1, ‖β‖2}

}
(E.21)

The intuition here is that, when the norm of β is greater than 1 then
max{1, ‖β‖2} = ‖β‖2 which implies the normalization of β. Similarly when
the norm of β is lesser or equal to 1 then max{1, ‖β‖2} = 1, which means
keeping the β as it is since it already lies in the unit norm ball. The maximum
with 0 essentially denotes the projection of any vector within the unit norm
ball to the first quadrant of that ball only.

E.C Proof of the Theorems

As mentioned in the paper the optimization proposed by us can be written
in the same format as [42]

minimize
M�0

LT(M) + λ‖M−MS‖2
F (E.22)
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where MS = ∑N
j=1 β j Mj and

LT(M) =
1
ns

∑
(i,j)∈S

x>ij Mxij + µ?
(
b− 1

nd
∑

(i,j)∈D
x>ij Mxij

)
(E.23)

Theorem 1. For the convex and k-Lipschitz loss defined in (E.23) the average bound
can be expressed as

ET∼DT n [LDT (M?)] ≤ LDT (M̂S) +
8k2

λn
, (E.24)

where n is the number of target labeled example, M? is the optimal metric com-

puted from Algorithm 1, M̂S is the average of all source metrics defined as
∑N

j=1 Mj
N ,

ET∼DT n [LDT (M?)] is the expected loss by M? computed over distribution DT and
LDT (M̂S) is the loss of average of source metrics computed over DT .

Proof. If there is a single source metric is available for transfer , the proof has
been shown in [42]. In case of multiple metric for any fixed β, we can directly
replace MS by ∑N

j=1 β j Mj in the Theorem 2 in [42] to get,

ET∼DT n [LDT (M?)] ≤ LDT
( N

∑
j=1

β j Mj
)
+

8k2

λn
(E.25)

which is true ∀β ∈ C3. Where,

β =
[
β1 β2 . . . βN

]> ∈ RN (E.26)

Clearly without loss of generality we can write β = β′ where,

β′ =
[ 1

N
1
N . . . 1

N
]> ∈ C3 (E.27)

since, β′ ≥ 0 and ‖β′‖2 = 1√
N
≤ 1. So, plugging β′ in equation (E.25) we get

equation (E.24), which completes the proof.

Theorem 2. With probability (1− δ), for any metric M learned from Algorithm 1
we have,

LDT (M) ≤LT(M) +O
( 1

n
)
+

(√
LT(∑N

j=1 β j Mj)

λ
+ ‖

N

∑
j=1

β j Mj‖F

)√
ln( 2

δ )

2n
,

(E.28)
where LDT (M) is the loss over the original target distribution (true risk), LT(M)

is the loss over the existing target data (empirical risk), and n is the number of target
samples.
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Proof. In [42], LT(M) is defined as,

LT(M) =
1
n2 ∑

(zi ,zj)∈T
l(M, zi, zj) (E.29)

The authors in [42] have used a specific loss for analysis,

l(M, zi, zj) = [yy′((zi − zj)
>M(zi − zj)− γyy′)]+ (E.30)

For our case,

LT(M) =
1
ns

∑
(i,j)∈S

z>ij Mzij + µ?
(
b− 1

nd
∑

(i,j)∈D
z>ij Mzij

)
=

1
(ns + nd)

(ns + nd)

ns
∑

(i,j)∈S
z>ij Mzij

+
µ?b(ns + nd)

(ns + nd)
− µ?(ns + nd)

nd
.

1
(ns + nd)

∑
(i,j)∈D

z>ij Mzij

=
1
n2 ∑

(i,j)∈T
(ζij(zi − zj)

>M(zi − zj) + γ)

(E.31)

In our case we took similar and dissimilar pairs in equal number. So, for our
case ns = nd = n2

2 which implies (ns + nd) = n2. Also, ζij = (1 + nd
ns
) = 2

if (i, j) ∈ S and ζij = −µ?(1 + ns
nd
) = −2µ? if (i, j) ∈ D are soft labels. Also

γ = µ?b(ns + nd) = µ?bn2. so for our case,

l(M, zi, zj) = (ζij(zi − zj)
>M(zi − zj) + γ) (E.32)

Also unlike [42] our source metric is defined as MS = ∑N
j=1 β j Mj. With

the loss in equation (E.32) if we follow the exact same steps as in proof of
the Lemma 2 of [42] then we will end up with the fact that our proposed

loss is (σ, m) admissible with m = 2(1 + µ?)max
x,x′
‖x− x′‖2

2

(√
LT(∑N

j=1 β j Mj)

λ +

‖∑N
j=1 β j Mj‖F

)
and σ = 0.

Now putting these values of σ and m in the equation of inequality of The-
orem 4 of [42] which is,

LDT (M) ≤LT(M) +O
( 1

n
)
+ (4σ + 2m + c)

√
ln( 2

δ )

2n
, (E.33)

and ignoring c and the constant factor which are not functions of source
metrics or their weights we conclude our proof.
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E.C.1 Finding lipschitz constant for our loss

Goal: Our goal is to show the k in equation (E.24) has a finite value. Accord-
ing to the definition the loss l(M, x, x′) is k-lipschitz with respect to its first
argument if for any pair of matrices M and M′ and pair of samples x and x′

we have the inequality as follows for a finite non-negative k (0 ≤ k < ∞)

|l(M, x, x′)− l(M′, x, x′)| ≤ k‖M−M′‖F (E.34)

Lemma 3. The loss defined in equation (E.32) is k-lipschitz with
k = 2 max (1, µ?)max

x,x′
‖x− x′‖2

2

Proof.

|l(M, xi, xj)− l(M′, xi, xj)| ≤ |(ζij(xi − xj)
>M(xi − xj) + γ)− (ζij(xi − xj)

>M′(xi − xj) + γ)|
≤ |ζij(xi − xj)

>(M−M′)(xi − xj)|
≤ max

(
|ζij|

)
|(xi − xj)

>(M−M′)(xi − xj)|
≤ max (2, 2µ?) |(xi − xj)

>(M−M′)(xi − xj)|
≤ 2 max (1, µ?) ‖xi − xj‖2

2‖M−M′‖F

≤ 2 max (1, µ?)max
x,x′
‖x− x′‖2

2‖M−M′‖F

(E.35)

Comparing this inequality with eq. (E.34) we get
k = 2 max (1, µ?)max

x,x′
‖x− x′‖2

2, which is clearly non-negative and finite.

E.D On-boarding a Single New Camera

This section covers the camera wise experimental results of on-boarding a
single new camera (See Figure (E.7,E.9,E.10,E.11). We show for each dataset
the camera wise CMC curves that are averaged to a single CMC curve in the
main paper. We also showed the comparison of GFK based methods in their
original setting where source data is used during target adaptation in WARD
dataset (See Figure E.8).
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Camera wise CMC curves for WARD dataset
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Fig. E.7: CMC curves for WARD [43] with 3 cameras. In this experiment each camera is shown as
target while other two cameras served as source. The percentage label of new persons between
the new target camera and the existing source cameras is taken to be 20% in this case. The most
competitive method here is Adapt-GFK which is outperformed by our method in nAUC with
margins 6%, 3.5% and 2.79% for camera 1,2 and 3 as target (plot a, b and c) respectively. In this
case Adapt-GFK is calculated using the GFK matrix calculated by only using the limited labelled
target data after the installation of new camera. Moreover for camera 1 as target (plot (a)) our
method outperforms Adapt-GFK by a large rank-1 margin of almost 16%. Notable thing in this
case is that there is only one source metric available for this dataset which is also handled by
our multiple source metric transfer algorithm efficiently. Our method significantly outperform
the semisupervised method CAMEL for all the plots which shows the strength of our method
when a little target labeled data availabe. Also, our method outperforms Avg-Source for all the
plots which is a proof of implication of Theorem 1.

Camera wise CMC curves for WARD dataset
(GFK computed for other relevant methods using old source data and new target data)
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Fig. E.8: The setting in this case is exactly same as the setting of Figure E.7. However this
experiment is done only to compare our method with GFK methods in the original settings [12]
where the assumption was of the availability of source data. In this case GFK is calculated using
the old source data as well as new limited target data. Our method significantly outperforms all
the GFK based methods in this case also. It proves that even if our method does not use source
data, it still outperforms the doamin adaptation methods which uses source data.
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Camera wise CMC curves for RAiD dataset
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Fig. E.9: In this experiment RAiD dataset with 4 cameras [44] is used. Each of the camera has
been set as target while rest of the 3 cameras with 3 pairwise metrics served as source metrics.
plot (a,b,c,d) are generated from camera 1,2,3 and 4 as target target camera. The most competitive
method here is Adapt-GFK which is outperformed by our method in nAUC with margins 2.71%,
2.2%, 1.52% and 1.36% for camera 1,2,3 and 4 as target respectively. Moreover for camera 1 as
target (plot (a)) and camera 4 as target (plot (d)) our method outperforms Adapt-GFK by a rank-1
margin of almost 7% and 5% respectively. Also for each of the cameras our method outperforms
Avg-source significantly both in rank-1 and nAUC which proves the Theorem 1. Moreover, for
all the cases our method outperforms CAMEL significantly (Like in camera 4 rank-1 margin is
almost 36%) which is equivalent to fully supervised learning with limited labels with no transfer
from any sources.

198
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Camera wise CMC curves for Market1501 dataset
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Fig. E.10: In this single camera insertion experiment Market1501 [45] dataset is used. In
plots (a,b,c,d,e and f) cmc curves are shown for camera 1,2,3,4,5 and 6 as target respectively.
Only 10% of the available data is used between each target-source pairs. Our method out-
performs Adapt-GFK which was the most competitive one in case of RAiD and WARD by
6.67%,4.06%,6.02%,4.37%,5.5%,4.87% in nAUC. However, in this case we see that Adapt-GFK
has lower accuracy than just the Avg-source, which we outperform in both rank-1 and nAUC
for each and every camera as target. Also our method has very high accuracy both in rank-1
and nAUC than CAMEL which is equivalent to no transfer scenario. It is clear that our method
gives theoretical guarantee that it would not perform worse than Avg-source case or no transfer
case whereas other method has no guarantee which is depicted in this case where Adapt-GFk
performed worse than just the Avg-source.
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Camera wise CMC curves for MSMT dataset camera (1-15)
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Fig. E.11: Total 15 plots from 15 cameras as target in MSMT dataset are shown. For all cameras
our method outperforms other methods in nAUC. While rank-1 performances varied a lot across
different cameras, our method on average performs the best as shown in the main paper. Best
viewed in color.
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E.E. On-boarding Multiple New Cameras

E.E On-boarding Multiple New Cameras

This section covers the camera wise experimental results of on-boarding mul-
tiple new cameras (See Figure (E.12,E.13,E.14). We show for each experiment
the camera wise CMC curves that are averaged to a single CMC curve in the
main paper.

Camera wise CMC curves for Market1501 dataset: parallel addition of 2 cameras
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Fig. E.12: In this figure we used Market1501 dataset to show the effect of parallel on-boarding
of multiple cameras (In this case 2 cameras). We effectively set camera 4 and 5 as target and
compute 6 source metrics from the remaining cameras to transfer knowledge from. Accuracy is
shown between camera 4 and camera (1,2,3,6) (plot(a)) and also between camera 5 and camera
(1,2,3,6) (plot(b)) separately. We can see that our method significantly outperform other methods
both in rank-1 and nAUC. This shows the effectiveness of our method for adaptation of multiple
cameras in the network added in parallel.

Camera wise CMC curves for Market1501 dataset: parallel addition of 3 cameras
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(c)

Fig. E.13: In this figure we used Market1501 dataset to show the effect of parallel on-boarding
of multiple cameras (In this case 3 cameras). We effectively set camera 1,3 and 4 as target and
compute 3 source metrics from the remaining cameras to transfer knowledge from. Accuracy
is shown between camera 1 and camera (2,5,6) (plot(a)),camera 3 and camera (2,5,6) (plot(b))
and also between camera 4 and camera (2,5,6) (plot(c)) separately. We can see that our method
significantly outperform other methods both in rank-1 and nAUC. This shows the effectiveness
of our method for adaptation of multiple cameras in the network added in parallel. Best viewed
in color.
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Chapter E.

Camera wise CMC curves for Market1501 dataset: continuous addition of multiple cameras
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Fig. E.14: In this figure we used Market1501 dataset to show the effect of sequential on-boarding
of multiple cameras (In this case 3 cameras). Source cameras are camera 3,4 and 5 which has
three source metrics between them. First camera 1 is added to the network and adapted. Ac-
curacy for camera 1 as target is computed between camera 1 and camera (3,4,5) (plot(a)). Then
camera 2 is added and adapted. For calculation of camera 2 adaptation accuracy we calculate
matching score between camera 2 and camera (1,3,4,5) (plot(b)). In same fashion camera 6 is
added afterwards and accuracy is calculated between camera 6 and camera (1,2,3,4,5) (plot(c)).
We can see that our method significantly outperform other methods both in rank-1 and nAUC.
This shows the effectiveness of our method for adaptation of multiple cameras in the network
added sequentially.

E.F Finetuning with Deep Features

Goal: In this section our goal is to show the performance of our method (See
Table E.2 and Figure E.15), if we have access to a deep model trained well
using the source data.
Implementation details: This section covers the implementation details of
finetuning deep features used in the experiments of Section 5.4 in the main
paper. First, we train a ResNet model [51], pretrained on the Imagenet
dataset, using the source camera data. We remove the last classification layer
and add two fully connected layers; one which embeds average pooled fea-
tures to size 1024 and another which works as a classifier. We use the op-
timized source features to train the source metrics that will later be used to
calculate new target metrics. Afterwards we fine-tune the model using the
new target data and use the new optimized target features along with the
source metrics in optimization E.12. The model is trained for 50 epochs using
SGD, with a base learning rate of 0.001, which is decreased by a factor 10 af-
ter 20 and 40 epochs. We use a batch size of 32 and perform traditional data
augmentation, such as cropping and flipping. We use the optimized source
features to train the source metrics that will later be used to calculate new
target metrics. Afterwards, we fine-tune the model for 30 epochs using the
new target data. We fine-tune with a batch size of 32 and a base learning rate
is 0.0001 and decreased by a factor 10 after 20 epochs. The new optimized
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E.F. Finetuning with Deep Features

target features are used along with the source metrics in optimization.

Single-query Multi-query
Method Top-1 mAP Top-1 mAP
Euclidean 46.51 40.04 54.40 48.54
Euclidean-ft 51.51 45.52 59.66 54.36
KISSME 45.57 38.42 55.31 48.02
KISSME-ft 49.13 41.77 58.52 51.58
Ours 47.79 41.20 57.57 50.83
Ours-ft 52.84 46.70 61.96 56.28

Table E.2: Results for Market1501 when we have a deep model trained using the data of 5 source
cameras. We set each camera as target with 25% labeled data in it and show result of average
across all the cameras. Euclidean denotes the accuracy of target camera if the trained source
model is directly used to extract features in target test set. KISSME is direct metric learning
between new camera and old cameras. ft stands for fine tuning. Euclidean-ft and KISSME-ft
is same scheme that is described in the top lines of this section, except for the feature extraction
policy. In these methods features are extracted using the fine tuned source model with limited
target data. We can see that our proposed algorithm using features from fine-tuned model
outperforms all the other accuracies.

CMC curves for Market1501 dataset with Camera 6 as target using deep learned features
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Fig. E.15: These plots show cmc curves for camera 6 of Market1501 dataset using the exact same
scheme of Table E.2 but with different percentage labels in the target. We can clearly see that
our method outperforms all the other (That is direct euclidean, direct metric learning and even
fine tuning with target data). When the percentage label increase then our method with non-
finetuned features merges with the direct fine tuning, whereas if we use our method with the
finetuned features, it exceeds all the accuracy. This shows the strength of our method even in
the presence of deep learned source model.
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1. Introduction

1 Introduction

The task of matching characteristics, i.e., features, from persons captured
across non-overlapping cameras in a camera network is also known as person
re-identification (re-id). Person re-id is often linked to forensics where an
operator inputs an image of a person (probe) to a system, which is matched
against a database of known persons (gallery), and returns a list returned
of the most likely matches. In this case, the re-id problem is defined as an
image retrieval problem [1–3], and we are satisfied if the correct match is
within the, e.g., 10 most likely matches 100 % of the time. Furthermore, this
case often consider a close-world setting where we are certain that the same
persons have appeared in all cameras. On the other hand, tasks exist, such as
trajectory tracking of multiple persons across a large camera network [4, 5],
where re-id is considered as a verification task and the probe captured by one
camera is matched one-to-one against all persons gallery to verify which that
match. In this setting, we do not know which cameras in the camera network
have captured the person of interest, therefore, we cannot simply consider a
list of likely matches. This is also known as an open-world setting [6]. Finally,
we might have a closed-world setting where we do not have an operator
to observe a returned list, rather, we wish to find the likely matches to a
given set of probes that are actually correct. In this case, we might also
consider additional contextual information, such as the number of times a
certain person in the gallery can be matched to a given probe.

This work aims to find a set of correctly matched persons from a gallery in
a close-world setting using additional contextual information. More specif-
ically, we consider a queue in an airport, where passengers captured by an
overhead camera at the exit is matched against those captured by an overhead
camera at the entrance, to find the time that passengers spent in the queue,
as shown in Figure F.1. Between the entrance and exit, the queue might
temporarily split up, thus, while we do know that the same passengers ap-
peared at both entrance and exit, we cannot naively assume a first-in-first-out
scenario to measure queue times of each passenger. Instead, we slack the as-
sumption and weight the likelihood of persons to a given probe based on
the order of which they entered the queue. Additionally, we make a valid
assumption that each person in the gallery can be matched against only a
single probe.

We propose to solve this problem as an optimization problem, that is, we
wish to reduce the total matching cost between the persons in the gallery
and a set of probes. Since in re-id, the likelihood of a match is defined by a
distance of some pre-defined metric, minimizing the total cost corresponds
to minimizing the total distance between the probes and gallery. We pro-
pose to apply the Hungarian algorithm [7], to increase the re-id precision
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Exit
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Fig. F.1: Principle of re-id in a queue. Passengers follow a pre-defined maze and are captured
by cameras both and the entrance and exit. Once captured by the exit camera, features are
matched against all passengers captured by the entrance camera to find a match and output a
corresponding queue time.

by matching each gallery to only a single probe with a minimal total cost.
The Hungarian algorithm has in re-id previously been used to minimize the
cost of matching image patches across probe and gallery [8–10], but has not
yet been applied in a post processing step to increase the re-id precision. To
summarize, we provide the following contributions:

• We propose the use of person re-id to measure queue times in an air-
port. To our knowledge, this is the first such work is presented.

• We propose a post processing step to increase the precision of re-id
using the Hungarian algorithm to minimize the total distance between
probes and gallery.

• Through experiments, we show that re-id based queue time measure-
ments can produce median queue times that are close to ground truth.
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2. Methodology

2 Methodology

An overview of the proposed methodology is shown in Figure F.2. We extract
features from both probes and gallery and perform feature matching. The
resulting distance matrix is used as input to the assignment algorithm, which
assigns gallery persons to each probe based on minimization of the total
distance between probes and gallery.

In this work, we consider the use of an existing convolution neural net-
work (CNN) architecture, which was developed to perform re-id from an
overhead viewpoint [11]. The CNN is a multimodal architecture, which
processes RGB and depth images in parallel using a MobileNetV2 as back-
bone [12], and fuses modality features in late layers of the network. Further-
more, the network includes soft attention mechanisms [13] to capture and
dynamically weight local semantics for each modality before fusing the two
modalities. Please see [11] for a more detailed description of the architecture.

We use the CNN to extract features f p
i , f g

j ∈ S from probes and gallery,

respectively, where f p
i is the feature descriptor from the i’th probe, and f g

j

is the feature descriptor from the j’th gallery. Furthermore, { f p
i , f g

j } ∈ R128,
which is defined by the CNN. Using probe and gallery features, we calculate
the Euclidean distance DE( f p

i , f g
j ) between the i’th probe and j’th gallery fea-

tures. To also consider the order of which passengers entered the queue, we
add an additional distance, based on assigning entrance and exit id’s to each
passenger. The id’s are assigned based on the order of which a passenger
entered and exited the queue, respectively. Note that, the same passenger
might have different entrance and exit id’s due to an intermediate queue
split. We define the entrance and exit id’s as enterj and exiti, respectively,
and calculate the order distance between the i’th probe and j’th gallery as
DO(enterg

j , exitp
i ) = log(1 + |enterg

j − exitp
i |). We take the logarithmic value

of the distance, since we can have potentially large values compared to Eu-
clidean distances, depending on the number of persons in the dataset.

Next, we apply the Hungarian algorithm to find an optimal set S∗ of
matches that solve the following optimization problem:

S∗ =arg min
S ∑
{ f p

i , f g
j ,enterg

j ,exitp
i }∈S

DE( f p
i , f g

j ) + DO(enterg
j , exitp

i )

Subject to f p
i 6= f p

m, f g
j 6= f g

n ∀ { f p
i , f g

j }, { f p
m, f g

n} ∈ S
(F.1)

where the optimal set of S∗ is the one where the sum of distances between
features and id’s in the set S is minimized and { f p

i , f g
j }, { f p

m, f g
n} are matched

pairs. The constraint indicate that each of the feature descriptors in a matched
pair cannot be matched to any other feature descriptors.
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Probes

Gallery

Feature Matching

Distance matrix

Smaller Larger

Gallery assignment

Fig. F.2: Overview of the assignment procedure. We match each probe against all gallery features
to produce initial lists based on likelihood, which is defined by distances. Images further to the
left have smaller distances to the probes and vice versa, while green boxes indicate true matches.
Afterwards, the Hungarian algorithm [7] is applied to assign each gallery to only one of the
probes by minimizing the total distance.

3 Experiments

We wish to evaluate the proposed algorithm on an overhead re-id dataset
with timestamps available. To our knowledge, only the public dataset of
[14] contains timestamps, however, the dataset is captured in an outdoor
environment at a university campus, which does not comply with our goal
of using timestamps to measure queue times. As a result, we have collected
and annotated a new dataset we call Queue Person Re-identification (QPR). In
the following, the dataset is presented along with the experimental results of
our proposed assignment algorithm.
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3. Experiments

3.1 Dataset

We collect data from an immigration area at an airport to properly eval-
uate queue time measurements using vision-based person re-identification.
Data is collected in the morning using two ZED cameras [15] that are placed
overhead at non-overlapping locations. The first camera is placed at the en-
trance of the immigration area while the second is placed at the exit, thus,
capturing the queue times of each passenger. Data is collected in 2k resolu-
tion (2208×1080) at 15 frames per second (FPS). We extract RGB images and,
similarly to [16], compute disparity maps using semi-global block matching
(SGBM) followed by filtering to smoothen the disparity maps. Additionally,
disparity maps are converted to depth maps, and a JET color map is ap-
plied to create depth images that can be used to train the CNN. We annotate
bounding boxes around all persons in the dataset, resulting in 7529 bound-
ing boxes across 116 persons. An overview of the dataset statistics is shown
in Figure F.3. A few persons, primarily those that entered the queue late,
have more than 200 annotated bounding boxes, nonetheless, the majority of
persons in the dataset have [50,100] annotated bounding boxes, as seen in Fig-
ure F.3 (b). Furthermore, Figure F.3 (c) shows the ground truth queue times
of each passenger based on enter time, starting at zero from the entrance of
the first passenger. Naturally, as more passengers enter the queue, the queue
time increases. Related to Figure F.3 (a), we see that the number of bounding
boxes per person increases as the queue time increases. This is due to the
queue eventually reaching the entrance and slowing down, leaving persons
within the view of the camera for a longer period of time.

(a) (b) (c)

Fig. F.3: (a) Number of bounding boxes per person, (b) frequency of bounding boxes in bins
of 10, and (c) ground truth queue times based on time of entrance starting at zero for the first
person.

3.2 Implementation Details

As mentioned in section F.2, we apply an existing CNN architecture [11]. The
QPR dataset is split between 26 persons that are used for training and 90 that
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are used for testing. The network is trained by using a combination of cross-
entropy and triplet loss with soft margin from hard positives and negatives
[17], which has been a popular approach to train CNNs in re-id [18–21]. We
use Adam [22] to optimize the weights of the CNN, with a base learning rate
of 0.0001, which is reduced by a factor of 0.9 every 100 epochs, and decay
values of 0.9 and 0.999, respectively. Finally, we train the network using a
batch size of 32 until convergence, but up to 1000 epochs. For each batch, we
randomly sample four images from eight randomly sampled persons.

Upon testing, we extract features from all images of each person, and
perform average pooling on the features to create a single feature descriptor
for each person in the two views. We match feature descriptors between the
two views using Euclidean distance, and correspondingly, calculate the order
distances between probes and gallery. The output distance matrices are then
used as input to our assignment algorithm. We report precision and recall
values, and compare to naively assigning using the most likely match.

3.3 Experimental Results

We perform various experiments where we consider different numbers of
most likely matches when assigning gallery to probes, that is, we consider
the top-k matches in our assignment. Naturally, in the case that k is less
than the number of persons in the gallery, not all persons may necessarily be
assigned to a probe if multiple, initially, are assigned the same probes. The
results are shown in Table F.1. If we simply assign the most likely match,
we achieve a precision and recall of 50 %, which is similar to the rank-1
accuracy of the cumulative matching characteristic (CMC) curve. If we apply
our assignment algorithm and just consider the most likely match, we see a
large increase in precision, however, at the cost of a lower recall. Nonetheless,
considering the six most likely matches, both the precision and recall increase
to values that are 22 % and 16 % higher, respectively, compared to the naive
approach. Finally, we see that the precision and recall converge if 10 or more
most likely matches are considered.

Naïve Top-1 Top-3 Top-6 Top-10 Top-20 Top-50 Top-90
Precision [%] 50 71 65 76 67 66 66 66
Recall [%] 50 46 57 70 67 66 66 66

Table F.1: Precision and recall of our proposed assignment algorithm by considering 1, 3, 6, 10,
20, 50 and 90 most likely matches. As reference, we compare to naively assigning by taking the
most similar match.

We use the results from Table F.1 to calculate median queue times and plot
the measured queue times in relation to queue entrance time in Figure F.4.
For comparison, we also plot the ground truth queue times. As seen in the
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two plots, similar tendencies are followed with slightly more scatter in case
of the re-id based queue times. The differences in queue times results in a
median difference of 8 seconds, which is a deviation of only 3.60 %. Depend-
ing on the requirement of the airport, this may or may not be an acceptable
difference.
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Fig. F.4: (a) Measured queue times from re-id and (b) ground truth queue times.

4 Conclusion

In this work, we propose person re-identification to measure queue times in
an airport. Different from common re-id tasks, we do not wish to return a
list likely matches, rather, perform one-to-one matching based on the ranked
lists. We propose a post processing step, which applies the Hungarian algo-
rithm to minimize the total distance between a gallery and a set of probes, by
assigning each person in the gallery to only one probe, and vise versa.

To evaluate the proposed algorithm, we have collected a novel overhead
person re-id dataset from two non-overlapping cameras in an airport, where
timestamps from each camera are available to measure queue times based on
re-id results. Through experimental results, we show that the proposed as-
signment algorithm can increase re-id precision by up to 22 %, which results
in a median queue time that deviate 3.60 % from ground truth.

5 Future Work

This work provides preliminary experimental results to measure queue times
based on re-id. While we have shown median queue times that are close to
ground truth, questions remain to be answered, including:

• How well does vision-based re-id compare to current solutions for mea-
suring queue times?
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• What is the processing time of measuring queue times using vision-
based re-id? Can this be reduced and at what cost?

• What is the required precision of the re-id system in order to produce
median queue times that are close enough to the ground truth median?

• How well does the use of Hungarian algorithm compare to related
methods, such as those that consider the assignment problem as a min-
cost flow problem [23]?

• Is it possible to further increase re-id precision if an additional distance
threshold is considered upon assigning gallery to probes?

Finally, experiments have to be run across multiple random train/test
splits as is usually done in evaluation of re-id datasets [24–26].
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1. Introduction

Abstract

In recent years, companies, such as Intel and Google, have brought onto the market
small low-power platforms that can be used to deploy and run inference of Deep
Neural Networks at a low cost. These platforms can process data at the edge, such
as images from a camera, to avoid transfer of large amount of data across a network.
To determine which platform to use for a specific task, practitioners usually compare
parameters, such as inference time and power consumption. However, to provide a
better incentive on platform selection based on requirements, it is important to also
consider the platform price. In this paper, we explore platform/model trade-offs, by
providing benchmarks of state-of-the-art platforms within three common computer
vision tasks; classification, detection and segmentation. By also considering the price
of each platform, we provide a comparison of price versus inference time, to aid quick
decision making in regard to platform and model selection. Finally, by analysing the
operation allocation of models for each platform, we have identified operations that
should be optimised, based on platform/model selection.

1 Introduction

Within the years that followed 2012, researchers were focused on develop-
ing Deep Neural Networks (DNNs) that were accurate and generalised well.
Object classification, wherein the big breakthrough had happened, each year
saw a decrease in top-1 error on the large ImageNet dataset [1, 2]. As other
computer vision (CV) tasks gained more interest, such as object detection and
semantic segmentation, accuracy on benchmark datasets would continue to
increase each year [3, 4]. However, recently, focus has shifted towards more
practical usage of DNNs. Today, more effort is being put into lowering the
network complexity while maintaining a high accuracy. Novel architectures
are developed that contain fewer parameters [5–7], and larger networks are
quantified to speed up inference. The most common datatype for DNNs
today is the 32-bit floating point (FP32), however, using quantification tech-
niques, networks can be converted to operate on 16-bit floating point (FP16),
or even 8-bit integers, with almost no loss in precision [8, 9].

Following the trend within academia of developing DNNs, more com-
panies are developing hardware to run these networks. This hardware, fur-
thermore, should be able to process incoming data with low latency. Sev-
eral cloud solutions, offered by big companies, such as Google’s Cloud ML
Engine [10], Microsoft’s Azure [11] and Amazon’s Amazon Web Services
(AWS) [12], have emerged that can be used to train and run models online.
Furthermore, Internet of Things (IoT) have resulted in products that require
smaller and cheaper computers, which can be used to run already trained
models at the edge. As a result of this demand, companies like Intel and
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NVIDIA have brought onto the market edge platforms that can be used to
deploy and run network inference at limited costs [13, 14]. These platforms
can, for example, be integrated with a camera to process data directly at the
source. In the last few years, several minor and large companies have brought
onto the market their own edge platforms, combined with software packages
to optimise pre-trained models before deployment. These platforms are able
to run models within a variety of CV tasks, including object classification and
detection.

In this work, we evaluate edge platforms on common CV tasks, including
object classification, object detection and semantic segmentation. To this end,
we evaluate DNN models of different precision and complexity within each
task, to show and compare inference timings between high-precision complex
models and medium-precision/simple models when the batch size is varied.
For better comparisons between platforms, we also evaluate a high-end GPU
and use it as reference. Furthermore, we calculate the number frames per
second (FPS) based on the inference timings, and include the retail price
of each platform to calculate an FPS cost. The FPS cost can be seen as a
measure of how cost effective a certain platform/model combination is, using
a certain batch size. Additionally, comparing retail price and FPS, we propose
a framework which aid the optimal platform/model selection, depending
on budget and speed requirements. Finally, we compare the distribution of
DNN operations across platforms and models, and compare this to the FPS
costs, to identify which parts of a DNN on certain platforms that correspond
to higher FPS costs.

Previous works have studied models of different complexities [15–17],
however, these publications often aim to provide an analysis of the speed/ac-
curacy trade-off between models. On the other hand, work has also been
published that evaluates and compares different edge platforms [18, 19], but
these works do not take into consideration the price of different platforms.
By including the price of the platforms, we are able to provide a simple and
extensive overview of the FPS cost, which can be used by companies to select
the optimal platform/model combination depending on their requirements
and resources.

The remaining of the paper is structured as follows. Section G.2 pro-
vides an overview of most common classification, detection and segmenta-
tion models and surveys hereof that focus on the speed/accuracy trade-off.
Additionally, previous work on platform benchmarks will also be outlined.
Section G.3 provides an overview of the selected models and platforms for
our evaluation while also the procedure of the evaluation will be described.
In Section G.4, the results of the evaluation are presented and analysed while
the results are discussed in Section G.5. Finally, a conclusion is presented in
Section G.6.
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2 Related Work

In the following, the most well known architectures within each of the se-
lected CV tasks will be introduced. Since we focus on a comparison between
models, details will be neglected in favour of a discussion on related work
that, in one way or another, compare models.

2.1 Object Classification

Following AlexNet [20], which consisted of regular convolution, activation,
max pooling and fully connected (FC) layers, Convolutional Neural Networks
(CNNs) quickly became more sophisticated. By the introduction of skip con-
nections in ResNet [21], Inception modules in GoogLeNet [22] and combina-
tions of the two methods [23], accuracy quickly rose on a variety of classifi-
cation tasks. Meanwhile, less complex CNNs started to appear, such as the
famous MobileNet [24], the extension MobileNetV2 [7] and ShuffleNet [6].
More recently, Zoph et al. [25] proposed using neural architecture search to
develop small CNNs that maintain high accuracies.

In the last couple of years, work has been published that compare classifi-
cation models and their performance. Canziani, Culurciello and Paszke [16]
analysed inference time, power consumption and system memory utilisa-
tion for models of different complexity, depending on the batch size. The
models included AlexNet, VGG, GoogLeNet, variations of ResNet and the
Inception nets. Based on all results, a ‘top-1 accuracy density’ was presented,
which indicates the accuracy per million parameters. However, all tests were
performed on a single NVIDIA Jetson TX1, and only complex models were
considered. Biano et al. [15] extended the work of [16] by including several
additional CNNs, while also performing the evaluation on an NVIDIA Titan
X GPU, but considered the same parameters. Meanwhile, Velasco-Montero
et al. [26] evaluated models of different complexity, implemented in differ-
ent frameworks, on a low-power Raspberry Pi 3 model B, and considered
accuracy, throughput and power consumption to find a subset of optimal
model/framework combinations for real-time deployment.

More recently, Almeida et al. [18] conducted an evaluation of several clas-
sification models, including those present in [15], but also less complex mod-
els. Furthermore, they considered five different platforms, including an edge
platform. Similar to [15, 16], they compared inference time and accuracy be-
tween models, but rather than having a single plot from all platforms, the
comparison was performed per platform to identify differences and similari-
ties between the platforms with respect to the handling of the networks. This
was further highlighted by a per platform comparison of time spent on dif-
ferent layer types of a given model. While the work provides insight on how
to build up an architecture based on the platform, it does not consider the
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cost of using a certain platform.

2.2 Object Detection

With the introduction of Region CNN (R-CNN) by Girshick et al. [27] in 2014,
and the extensions of Fast R-CNN [28] and Faster R-CNN [29] the following
year, object detection using CNNs accelerated. These networks are based on
a two-stage approach, where a Region Proposal Network (RPN) is used to
identify class agnostic object proposals, which are then fed to a classifier to
predict the presence of an object from a predefined set of classes within each
proposal. To speed up detection, one-stage detectors were later developed
that combine the two stages into a single network. Most notable are the
You Only Look Once (YOLO) by Redmon and Farhadi [30] and the Single
Shot Multibox Detector (SSD) by Liu et al. [31]. While one-stage detectors
excelled in terms of speed, they fell short in accuracy compared to the two-
stage detectors. Only recently, following the proposed RefineDet by Zhang
et al. [32] one-stage detectors have started to reach the accuracy of two-stage
detectors while maintaining a high speed.

Inference time and accuracy of detectors are mostly dependent on the
utilised feature extractor in the object detection pipeline [17]. While most
object detectors are evaluated on fast GPUs, such as the NVIDIA Titan X,
they are more rarely evaluated on edge platforms. However, by changing
the feature extractor to a more simple model, such as MobileNet [24], it is
possible to reach low inference timings on these platforms. Huang et al.
[17] performed a comparison of different object detectors by changing the
feature extractor, to analyse the change in accuracy/speed/memory trade-off
in three popular object detectors. The work would serve as a guide to choose
the optimal detector/feature extractor combination. Liu et al. [33] presented
a more extensive survey of object detectors, where less complex detectors
were also considered, such as the SSD using a MobileNet [24] and Light
Head R-CNN [34]. However, the survey does not include a speed/accuracy
analysis between the presented detectors. To our knowledge, no published
work compare speed/accuracy and price across several platforms, including
edge platforms.

2.3 Semantic Segmentation

Semantic segmentation is a more challenging task compared to detection and
classification, and CNNs on this task are, typically, more processing heavy.
Inspired by CNNs for object classification, one of the first segmentation net-
works, by Long, Shelhamer and Darrell [35], transformed classification net-
works [20, 22, 36], into Fully Convolutional Networks (FCNs) by outputting
spatial maps instead of classification scores. Since then, several segmenta-
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tion networks inspired by FCN have been proposed, including SegNet by
Badrinarayanan, Kendall and Cipolla [37], and U-Net by Ronneberger, Fis-
cher and Brox [38]. Instead of convolutions to upscale features, the more
recent DeepLab and DeepLabV3 by Chen et al. [39, 40] use Atrous Spatial
Pyramid Pooling (ASPP) to more effectively segment object at different scales
without increasing the complexity.

Few works have been published in benchmarking of semantic segmen-
tation networks. Guo et al. [41] provide an overview of different architec-
tures with the purpose of identifying strengths, weaknesses, and challenges
of current work. A more general survey by Garcia-Garcia et al. [3] was pub-
lished that presents the key ideas behind segmentation networks and pro-
vide an overview of previous proposed architectures with focus on, among
other things, accuracy and efficiency. While they provide a comprehensive
overview, they do not directly compare models.

2.4 Platform Benchmarks

Only few works compare performance of models of different complexity
across difference platforms. Trindade et al. [42] evaluated two popular frame-
works, Caffe [43] and TensorFlow [44], using AlexNet [20] and GoogLeNet
[22], and compared performance, with respect to training time, between a
GPU and NUMA CPU. A more extensive evaluation of frameworks, such
as TensorFlow and Caffe2 [45], was presented by Zhang, Wang and Shi [46]
who performed the evaluation on different platforms, including the NVIDIA
Jetson TX2 and a Nexus 6P. Furthermore, they considered two different clas-
sification models, the more complex AlexNet [20] and the simple SqueezeNet
[5]. They evaluated inference time, memory footprint and energy consump-
tion. Blouw et al. [19] measured inference time and energy consumption
across different platforms, including the TX1, Intel Neural Compute Stick
(NCS) and their own Loihi chip, with respect to batch size, and analysed the
speed and energy cost per inference as a function of the network size. How-
ever, they only evaluated platforms on a single custom architecture. Finally,
Pena et al. [47] focused on low-power devices, by evaluating object classifi-
cation models and frameworks across an Intel NCS, Raspberry Pi 3 model B
and Intel Joule 570X, with respect to inference time and power consumption.

To our knowledge, only a single previous publication has compared dif-
ferent platforms across different tasks, which is the aim this work. Ignatov et
al. [48] considered mobile platforms containing chips that are manufactured
by some of the major chipset companies, including Qualcomm, HiSilicon,
MediaTek, Samsung, Google and Arm. The chips were evaluated in nine
tests, including two image recognition tests using MobileNet and Inception
V3, respectively, and a memory limitation test to identify the maximum al-
lowed image size for inference before running out of memory. Instead, we
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perform evaluation of edge platforms across different common CV tasks, con-
sider the retail price of the platforms, and analyse the consequence of DNN
operations across platforms.

3 Platform Evaluation

This section presents an overview of our methodology for evaluating the
edge platforms. Specifically, we present the evaluation procedure to ensure
comparable results between platforms, choice of deep learning framework,
and overview of the models and platforms.

3.1 Model Overview

The choices for method and models are based upon differences in the com-
plexity of feature extractors dependent on the difficulty of a given task.
Therefore, for each of the three tasks covered in this survey, models at up
to three different levels of complexity are evaluated. For all tasks, complexity
is defined as the number of Giga Floating Point Operations (GLOPS).

For simplicity, we adopt pre-trained networks available in the official Ten-
sorFlow [44] framework. A short description of the tasks and their model
architectures will also be described.

Classification

This task is arguably the simplest of the object recognition tasks chosen in
this work, and requires only a feature extractor in the form of a number of
convolutional layers and, typically, one or more FC layers for classification.
We adopt MobileNetV1 [24] as the small, ResNet50 [21] as a medium, and
InceptionResNetV2 [23] as the larger more complex network.

MobileNetV1 is the first version of Google’s efficient and small classifi-
cation networks that was designed with mobile and embedded systems in
mind. MobileNetV1 introduced depthwise separable convolutions to signifi-
cantly reduce model size and complexity. Depthwise separable convolutions
replace standard convolutions by factorising the operation into a depthwise
convolution followed by a pointwise convolution. The depthwise convolu-
tion convolves a single filter to each layer input, after which, the pointwise
convolution combines the outputs from the depthwise layer with a 1× 1 con-
volution. The MobileNetV1 architecture contains a total of 28 layers when
the depthwise and pointwise layers are counted separately. This includes the
final FC and softmax layers for classification. MobileNetV1 also introduced
two parameters to further tune the model size and complexity. The first pa-
rameter, a width multiplier α, scales the number of input layers uniformly
throughout the network. α ε (0, 1], where typical values are 1, 0.75, 0.5 and
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0.25. In this work, we evaluate the MobileNetV1 trained with α = 1. The sec-
ond parameter, ρ, known as the resolution multiplier, reduces the represen-
tational power of the network by scaling the input image and all consequent
layers in the network. ρ ε (0, 1], where for classification it is typically set such
that the height and width is 224, 192, 160 or 128 pixels. In this work, we
evaluate the MobileNetV1 model trained with ρ = 1 resulting in a resolution
of 224 × 224 pixels.

The medium sized network, ResNet50, in 2015 came forth as a large break-
through in learning deeper networks. At the time, it won numerous competi-
tions including ImageNet classification and localisation, and COCO detection
and segmentation, where it was used as feature extractor. The motivation be-
hind ResNets was that deeper models should be able to learn richer and more
abstract features. However, as concluded by the authors, training deeper net-
works stacked with traditional layers is difficult, largely due to a degradation
in the training error. To address this degradation, ResNets learn a residual
function with reference to the previous layer inputs rather than learning a
direct mapping. This, relatively simple reformulation, enabled ResNets to be
trained easier at larger depths and resulted in significant accuracy increases.
The residual function to be learnt at various layers in the network is defined
as y = F(x, {Wi}) + x, where (x, {Wi}) is the residual mapping to be learnt
and x is the input from the previous layer.

InceptionResNetV2 is a later iteration of the Inception networks originally
presented in [22], which also addressed the challenges in training deeper net-
works. As in the original GoogLeNet [22], the solution was to have wider
layers that have filters with multiple sizes whose outputs would be concate-
nated. A number of improvements have been made between presentation of
the first Inception module and the InceptionResNetV2 while keeping the con-
cept of wider layers. This includes factorising convolutions for speed, adding
batch normalisation and residual connections inspired from ResNets.

An overview of the classification models described can be seen in Table
G.1.

Model Year GFLOPS* Top-1 [%]
MobileNetV1 [24] 2017 1.15 70.9
ResNet50 [21] 2015 6.97 75.2
InceptionResNetV2 [23] 2017 26.36 80.4

* As measured in TensorFlow

Table G.1: Overview of classification models. Top-1 accuracy is based on the ImagenNet classi-
fication task [49].
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Object Detection

For benchmarking object detection networks, we use the SSD [31] with differ-
ent backbones due to the speed of the networks, which makes them viable for
embedded platforms. The distinction between the size of the SSD networks is
done by switching the feature extractor which can be used for classification,
as described in Section 3.1. First, we provide an overview of the SSD after
which we present two networks based upon their feature extraction complex-
ity.

The key increase in speed in SSD, in comparison to two-stage detectors, is
due to removing the proposal stage, such as the RPN in Faster R-CNN [29],
and by not resampling features in the later stage of the network. SSD follows
the structure of many other deep learning based object recognition systems
by having a base network that follows an image classification architecture for
initial feature extraction. A number of additional layers are added on top
of the base network that decrease input size and allows the SSD to make
predictions at multiple scales. At each layer, a small kernel traverses the
feature map and produces bounding boxes and class scores from a predefined
set of boxes. These predefined boxes are similar to those of anchor boxes in
Faster R-CNN [29] as they have varying aspect ratios that aim to fit varying
object dimensions. However, they are here applied at the multiple scaled
layers instead of a single feature layer. The feature map is also discretized to
speed up the predictions, as running the kernel of all points in the map would
be too slow. Typically sizes for the feature map include 8 × 8 and 4 × 4.
Finally, Non-Maximum Suppression (NMS) removes overlapping detections
in the output.

Table G.2 summarises our choices for the two feature extractors with vary-
ing complexity, namely, MobileNetV1 and InceptionV2.

Model Year GFLOPS* mAP [%]
SSD MobileNetV1 [24] 2015 2.49 21
SSD InceptionV2 [17] 2017 9.63 24

* As measured in TensorFlow

Table G.2: Overview of detection models. mAP is based on the COCO detection task [50].

Semantic Segmentation

We adopt DeepLabV3 [40] for evaluating semantic segmentation networks
with varying complexity. Naturally, DeepLabV3 is the third iteration of
the DeepLab networks, where the original concept of DeepLab [39] was to,
amongst other improvements, incorporate ‘atrous convolutions’ also known
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as dilated convolutions. The authors introduced the concept as they aimed to
address the issues of CNNs excelling at higher-level tasks, such as classifi-
cation, but less so on more difficult tasks, such as pixel-level segmentation.
This issue is argued to be largely due to downsampling in networks through
striding and pooling operations, which reduces the memory requirement and
is sufficient in creating features for global tasks such as classification, how-
ever, discards important finer spatial information. Atrous convolution allows
a filter to increase its field-of-view by adding an atrous rate, r. Setting r > 1
inserts zeros (holes) between two consecutive weights in a filter, for example,
r = 2 expands the filter such that every second value is a zero, effectively
increasing a 3 × 3 filter’s receptive field to that of a 5 × 5 while maintaining
complexity. In DeepLabV3, the atrous convolutions were extended into an
ASPP module. In the module, four sets of atrous convolutions are computed
from a feature map, each with their respective atrous rate r. The motivation
of ASPP is that the set of convolutions is able to capture multi-scale informa-
tion in a pyramid of different receptive fields. In addition to the pyramid of
convolutions, a global context is captured through an image average pooling
operation. The four atrous convolutions and pooling operation are concate-
nated and a 1 × 1 convolution is applied to produce an output feature map.

Finally, an overview of model backbone choices for evaluation of Deep-
LabV3 is shown in Table G.3, which in this case is MobileNetV2 and Xcep-
tion65.

Model Year GFLOPS* mIOU [%]
DeepLabV3 MobileNetV2 [7] 2018 17.69 75.32
DeepLabV3 Xception65 [40] 2017 354 82.20

* As measured in TensorFlow

Table G.3: Overview of segmentation models. mIOU is based on the VOC 2012 segmentation
task [51].

3.2 Platform Overview

This section introduces the platforms evaluated across the various classifi-
cation, object detection and segmentation models. An overview of some of
the key specifications for the platforms can be seen in Table G.4, covering the
number of cores, clock frequency, memory, Thermal Design Power (TDP) and
price.
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Platform Cores Clock Freq. (GHz) Memory (GB) TDP (W) Price* ($)
i7-7700K 4 4.2 64 91 300

Intel NCS 12** 0.6 0.5 1 69
Intel NCS 2 16** 0.7 0.5 1 86

NVIDIA GTX 1080 2560*** 1.6 8 180 520
NVIDIA Jetson TX2 256*** 1.3 8 7.5 570

* Price per 01/01/2019 [52] ** SHAVE cores *** CUDA cores

Table G.4: Overview of evaluated platforms, including the reference GTX 1080.

CPU (i7-7700K)

Within deep learning, the GPU is the most important piece of hardware,
however, a CPU-based solution may be necessary due to a number of reasons,
such as the price or space restrictions. In this work, we evaluate the Intel i7-
7700K CPU, which is part of the Kaby Lake series. The CPU in workstations
that include a GPU is more typically used for a number of tasks that do
not include matrix computations such as image loading and preprocessing,
however, in this work it will be evaluated for deep learning. Additionally, we
evaluate the CPU performing inference with 1, 2, and 4 cores.

Intel NCS/NCS2

The Intel NCS is an edge low-power device for performing inference of DNN
models. The NCS has the form of a USB stick with dimensions of 72.5 mm
× 27 mm × 14 mm and must be connected to a host machine via a USB
interface [53]. The host machine can be either a Linux, Raspbian or Windows,
in this work an Ubuntu 16.04 host machine was used. The NCS is powered
by an Intel Movidius Myriad 2 Vision Processing Unit, which has 4 Gbits
of LPDDR3 DRAM and 12 shave cores [53]. In order to perform inference
on the NCS, the TensorFlow models must be converted into a graph file via
the OpenVINO toolkit [54]. We also evaluate the newer Intel NCS2, which
follows much of the above but has improved specifications, including an Intel
Movidius Myriad X VPU with 4 Gbits of LPDDR4 DRAM and 16 shave cores
[13].

NVIDIA Jetson TX2

The NVIDIA Jetson TX2 is the third release in the Jetson edge GPU series.
TX2 is, as the Intel NCS and NCS2, designed for inference in low-power sce-
narios. In this work, we evaluate the developer kit version, however, the TX2
can also be purchased as a standalone module. The TX2 has 256 CUDA cores
for deep learning applications, a dual core Denver 2 64-bit CPU and quad
core ARM A57 complex CPU, and has 8 GB 128-bit LPDDR4 memory shared
between CPU and GPU. At 170 mm × 170 mm × 50 mm, the dimensions of
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the TX2 developer kit is considerably larger than the Intel NCS, but does not
have the requirement of a host machine.

NVIDIA GTX 1080 (Reference)

As mentioned earlier, GPUs have been the driving force in the deep learning
revolution. They are especially good at performing a large number of simple
parallel computations efficiently in comparison to CPUs. Previously, GPUs
were primarily used for graphics in computer games, but as the hardware
became cheaper and more powerful, they were made viable to train and run
DNNs. The aforementioned tasks have a number of similarities in parallel
computations – computer games must transform a large number polygons
in 3D, whereas CNNs run convolutions across an entire image, both through
matrix computations. In this work, we evaluate the NVIDIA GTX 1080 con-
taining 2560 CUDA cores, which is a popular GPU for deep learning practi-
tioners.

3.3 Evaluation Overview

As mentioned in Section 3.1, all models take basis in pretrained models avail-
able from the TensorFlow [44] model zoo1. The so called frozen models are
available in pb format that can be used directly to benchmark the GTX 1080
GPU and i7-7700K CPU. However, to evaluate the models on the TX2, NCS
and NCS 2, they need to be appropriately converted using platform specific
tools.

In case of the TX2, models run in three settings; (1) in the standard
TensorFlow format, (2) by maximising the clock speed on the TX2, (3) and
by optimising the models with the TensorRT (TF-TRT) package [55], which
transforms and optimises the models, for example by fusing layers, such as
Convolution and ReLU. Additionally, the precision of the model is changed
from FP32 point to FP16, with minimal loss in accuracy. To run model in-
ference on the NCS and NCS2, the models are converted to an Intermediate
Representation (IR), consisting of an xml file to describe the model topology
and a bin file containing model weights and biases. As mentioned in Section
3.2, this is accomplished using the OpenVINO toolkit [54], developed by In-
tel. Similarly to TF-TRT, this is accomplished by fusion of certain layers of
the network, such as Convolution and BatchNormlisation or removing layers
that are not used at test time, for example, the dropout layer. Likewise, the
precision of the model is changed to FP16 in order to speed up inference and
make the model compatible.

Evaluations are performed using TensorFlow 1.10.1 for most platforms.
Additionally for the NCS and NCS2, OpenVINO 2018_R5 is used to optimize

1Available from: https://github.com/tensorflow/models/\tree/master/research
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and run evaluation. However, TensorFlow 1.8 is used in case of TX2 as this
was compatible with TensorRT 4.0.1, which is required to optimize models
to TRT. To accelerate performance on TX2 and GTX 1080, we use CUDA 9.0
with CUDNN 7.0. The GTX 1080 and i7-7700k are evaluated on a machine
containing 64GBs of RAM, running Ubuntu 16.04, while NCS and NCS2 are
evaluated on a machine consisting of an i7-6700HQ CPU @ 2.60GHz and
16GBs of RAM. In all cases, evaluations are executed in Python 3.5.2.

The evaluations are run on images from the ImageNet dataset [2]. N
images are loaded, where N is the batch size, and resized accordingly to
the input size of the model. For NCS and NCS2, the batch size corresponds
to the number of sticks that are run in parallel, asynchronously. We run
inference for 100 iterations and calculate the mean inference time per image
based on the total inference time and batch size. We evaluate inference time
using batch sizes {1, 2, 3, 4, 8, 16, 32, 64, 128}, in case of NCS and NCS2,
we evaluate inference time using 1, 2, 3 and 4 sticks in parallel. The entire
evaluation procedure is summarised in Algorithm 1.

Algorithm 1: Evaluation procedure

Input: model_name, batch_size, plat f orm, imagepath ;
Output: mean_in f erence_time ;
model ← load(model_name) ;
if plat f orm == tx2 trt || plat f orm == NCS then

model ← convert_model(model) ;

images← read_images(batch_size, imagepath) ;
i← 0 ;
total_time← 0 ;
while i < 100 do

start_time← time() ;
run_in f erence(model, images) ;

in f erence_time← time()−start_time
batch_size ;

i← i + 1 ;
total_time← total_time + in f erence_time ;

mean_in f erence_time← total_time
100 ;

4 Experimental Results

We perform experiments to conclude on the optimal model/platform selec-
tion within each task. Extensive plots are provided to aid selection based on
platform price, inference time, and batch size. First, we plot the inference
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time depended on batch size to conclude on platforms where an increase of
batch size results in large decrease in inference time. Next, we compare in-
ference time of different platforms across models of different complexities.
Finally, we plot an FPS cost based on retail price and inference timings, to
provide a more extensive overview and further aid decision making based
on available resources and timing requirements. The FPS cost is calculated
as the retail price divided by the number of FPS for at given platform/model
combination. Since some of the plots show large numerical differences be-
tween platforms, whenever it makes sense, we plot values on a logarithmic
scale. This is mostly the case, when comparing price and inference time.

As mentioned in Section 3.2, we run the TX2 in three settings; using the TF
model with and without maximised clock and by converting to a TRT model.
Furthermore, we run the i7 in three settings; using one, two and four cores.
For an overview, all combinations of platforms and settings are summarised
in Table G.5.

Platform Setting
GTX 1080 TF model

TX2 TF model
TX2 MAX TF model+Maximised clock
TX2 TRT TRT model

NCS IR model
NCS2 IR model
i7-1 TF model+single core
i7-2 TF model+dual core
i7-4 TF model+quad core

Table G.5: Overview of platforms and settings that are evaluated.

4.1 Classification

Figures G.1-G.3 show the inference timings based on batch size for each clas-
sification network. In Figure G.1, at batch size one, the inference time of TX2
MAX is comparable to that of i7-4 at 15 ms, while inference timings of TX2
TRT and NCS2 are comparable to that of i7-2 at 22 ms. Slower timings ap-
pear for the NCS which is more comparable to i7-1 at 37-41 ms. Compared
to the reference GTX 1080, TX2 MAX and i7-4 are 13 ms slower while TX2
TRT, NCS2 and i7-2 are 20 ms slower. However, the NCS and NCS show
considerable speed increases as batch size increases, resulting in the lowest
inference timings at batch sizes three and four. At almost identical inference
timings at batch size four, the NCS and NCS2 are the fastest edge platforms,
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only slightly slower than the GTX 1080. Nonetheless, at batch size two, the
NCS2 is considerable faster than the NCS. Meanwhile, TX2, TX2 MAX and
TX2 TRT show less decreases in inference time, resulting in almost identical
timings between the two former at batch size 128. Finally, at batch size two
and onward, TX2 TRT is faster than TX2 MAX.

Fig. G.1: Inference timings for MobileNetV1 based on batch size.

Similar tendencies as that of MobileNetV1 in Figure G.1 is seen in Figure
G.2. However, different from the MobileNetV1, NCS2 and TX2 TRT show
almost identical timings at batch sizes 2-4, while they are almost equivalent
to the GTX 1080 at batch size four. Meanwhile, TX2 MAX and TX2 show
timings that are comparable to that of i7-4 until batch size four, from here,
the two TX2 settings are faster than i7-4 with increasing margin up to batch
size 128. Again, the slowest edge platform across at batch size one is the NCS,
however, at batch size four the timings are comparable to those of TX2, TX2
MAX and i7-4. Interestingly, comparing NCS and NCS2, the former shows a
much larger speed-up, as we increase batch size.

Timings for InceptionResNetV2 are shown in Figure G.3. For this net-
work, timings of TX2 MAX and TX2 TRT were not possible due to memory
limitations. Furthermore, timings of TX2 were only possible at batch size
one. At batch size one, inference time of TX2 is comparable to NCS2 and
i7-4, while NCS is almost four times as slow. Again, the speed-up of NCS is
higher than that of NCS2 making the difference in inference time between the
two sticks much lower at batch size four. However, the NCS2 is still consider-
able faster than the both the NCS and i7-4, and only slightly slower than the
GTX 1080. Similarly, the NCS and NCS2 show speed increases as in Figures
G.1 and G.2. At batch size one, inference time of the NCS is relatively high,
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but has a significant improvement as the the batch size, i.e. number of sticks,
increases.

Fig. G.2: Inference timings for ResNet50 based on batch size.

Fig. G.3: Inference timings for InceptionResNetV2 based on batch size.

Figure G.4 shows inference timings for each model in case of batch sizes
one (left) and four (right). Naturally, inference time increases as model com-
plexity increases, which is present in both figures. However, if we compare
platforms across models, at batch size one, we see that the inference time of
NCS2 on ResNet50 is comparable to those of i7-1 and NCS on MobileNetV1.
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A similar tendency is between NCS and TX2 on InceptionResnetV2 and i7-1
and NCS on ResNet50. Additionally, at batch size four, both NCS2 and TX2
TRT on ResNet50 show inference timings lower than TX2 and TX2 MAX on
MobileNetV1. Furthermore, the NCS2 on ResNet50 has almost identical in-
ference time compared to NCS on MobileNetV1, while being faster than TX2
TRT and all i7 on MobileNetV1.

Fig. G.4: Comparisons of inference timings between classification models for batch sizes 1 (left)
and 4 (right).

Figure G.5 shows the FPS cost of all three classification models. For each
model, the left plot compares FPS cost to batch size, while the right plot
compares FPS cost to FPS for all batch sizes.

For MobileNetV1, we see that the NCS and NCS2 are the most cost
friendly edge platforms for batch sizes 1-4, yet at a somewhat consistent
costs, not much higher than GTX 1080. At batch size four, the FPS costs of
the two sticks are almost identical. While the FPS costs of the three CPU
settings stay almost constant across batches sizes with, naturally, the higher
number of cores resulting in lower costs, the FPS costs of TX2 and TX2 TRT
decrease as batch size increases. At batch size one, the FPS costs of TX2 and
TX2 TRT are higher than both i7-1 and TX2 MAX, but as batch size increases,
the FPS cost of TX2 TRT becomes almost identical to that of i7-4 and almost
twice as low as that of TX2 MAX. This indicates that optimising the models
with TensorRT, combined with batching, significantly decreases the price of
running a MobileNetV1 model on the TX2 platform.

Comparing FPS cost simultaneously to FPS and batch size, we see that
most platforms follow linear decreasing tendencies between FPS cost and
FPS as we increase batch size. At batch size one, the FPS cost of NCS2 is
half that of i7-2 at same FPS. Similarly, at batch size two, the FPS cost of
NCS2 is more than half that of TX2 TRT at almost identical FPS, while at
batch sizes three and four, NCS2 achieves higher FPS, while maintaining FPS
cost. Furthermore, FPS and FPS cost of NCS2 at batch size three is almost
identical to NCS at batch size four, while the FPS cost of NCS2 at batch size
one is slightly slower than that of NCS, while FPS is considerably larger.
While multiple NCS or NCS2 do not result in a lower FPS cost, large increase
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MobileNetV1

ResNet50

InceptionResNetV2

Fig. G.5: FPS cost of classification models based on batch size and FPS.

in FPS is achieved. Finally, at batch size four, the FPS cost of TX2 TRT is
identical to those of i7-2, TX2 and TX2 MAX at larger batch sizes, while TX2
TRT at larger batch sizes is faster than i7-4 with an almost identical FPS cost.

In case of ResNet50, we see that the FPS cost of NCS2 at batch size one
is even lower than that of GTX 1080. As batch size increases, the FPS cost
of GTX 1080 drops below that of NCS2, however, the two platforms have
almost identical values at batch size four. For this network, the differences
in FPS cost between NCS and NCS2 are much higher, with the FPS cost of
the former being identical to i7-4, however, still lower than TX2 and TX2
MAX. We also see that the FPS cost of TX2 TRT is much lower than TX2
and TX2 MAX at batch size one, while it is only slightly higher than NCS2
and GTX 1080 at batch sizes 8-128. Compared to MobileNetV1, we see for
ResNet50 a significant decrease in FPS cost occurs when optimising models
with TensorRT on the TX2 platform. Despite the fewer FPS of TX2 TRT, the
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largest decreases in FPS costs are seen in case of TX2 and TX2 MAX. At batch
sizes 1-4, the FPS costs are either higher than or on par with i7-2, while at
larger batch sizes, the costs are almost identical to those of i7-4 and NCS.

Considering also FPS, we see that, at larger batch sizes, TX2 and TX2
MAX are faster compared to i7-4 and NCS, while maintaining FPS costs. We
also see that at a slightly lower FPS cost, the NCS2 at batch size four is as fast
as TX2 TRT at larger batch sizes, while having an FPS cost almost identical to
GTX 1080 running batch size one. Furthermore, at batch sizes 2-4, not only is
the FPS cost of NCS2 much lower, FPS is also higher compared to all i7, TX2,
TX2 MAX and NCS.

Finally, for InceptionResNetV2, the GTX 1080 and NCS2 have similar FPS
costs at batch size one. However, while the FPS cost of NCS2 increases
slightly at higher batch sizes, the FPS cost of GTX 1080 is decreasing. Nonethe-
less, compared to remaining edge platforms, the FPS cost of NCS2 is much
lower. We also see that the FPS cost of NCS is slightly higher than that of
the i7-4, which is opposite to the situations on ResNet50 and MobileNetV1.
While the TX2 could only run at batch size one, the FPS is higher than that
of i7-2.

Looking at the inference price of InceptionResNetV2, there is a clearer
distinction between the GTX 1080 and NCS2 at batch size one. While prices
are equal, the GTX 1080 is considerably faster per image, as shown in Figure
G.3.

Figure G.6 shows both the FPS cost (top) and retail price (bottom) as a
function of FPS for all platform/model combinations. Plots are shown for
batch sizes one (left) and four (right). With these figures, if the budget is
known for a deep learning system, it is possible to infer how complex a
model can be run and at what speed. For example, at batch size one we
can see that if there is a budget of roughly $100, an NCS can be purchased,
which allows a system to perform classification at almost 50 FPS using Mo-
bileNetV1. The FPS cost of this platform/model combination can then be
inferred on the other plot, in this case, an NCS2 running MobileNetV1 seems
to be a good choice with an FPS cost only slightly higher compared to the
GTX 1080. Differently, if we wish to run a more complex model at same FPS,
this can be done using TX2 TRT, however, at a higher FPS cost. At same FPS
costs, i7-4 at fewer FPS is also an option, comparing the retail price to that of
the TX2 TRT, it is much lower, thus, it comes down to requirements on speed.
Finally, if high precision is a requirement, the optimal options are the NCS,
NCS2 or the i7. While FPS cost of both NCS and NCS2 are lower than those
of i7, FPS cost and FPS of NCS2 are much lower and higher, respectively,
compared to NCS, although, at a slightly higher retail price.
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Batchsize 1 Batchsize 4

Fig. G.6: Comparison of FPS cost (top) and retail price (bottom) based on FPS, for batch sizes
one and four. Small bubbles indicate MobileNetV1, middle-size bubbles indicate ResNet50, and
large bubbles indicate InceptionResNetV2.

4.2 Object Detection

Figures G.7 and G.8 show inference timings, dependent on batch size, on
SSD with backbones MobileNetV1 and InceptionV2, respectively. Similarly
to the classification models, combining multiple NCS’s or NCS2’s results in
the largest decreases, with inference times below 25 ms. At batch size four, in-
ference time of NCS2 is almost on par with the GTX 1080. In case of batch size
one, the NCS2 is twice as fast as NCS, however, with the combination of mul-
tiple sticks, this difference is drastically decreased. Meanwhile, the i7 only
shows minor decreases in inference time, independent of number of cores
utilised, while inference timings across all batch sizes are decreased as the
number of utilised cores increases. While i7-1 clearly is slowest at batch sizes
larger than one, i7-4 is faster than all settings of the TX2 in case of both SSD
MobileNetV1 and SSD InceptionV2. Additionally, while being faster than
both NCS and NCS2 at batch size one, it is slower than the NCS2 if the batch
size is larger than two. Interestingly, when using a TX2, increasing batch
size does not necessarily results in faster inferences. Using MobileNetV1 as
backbone, both TX2 and TX2 TRT show either similar or decreased timings
up to a batch size of three, however, increasing the batch size further results
in increased inference timings. Only TX2 MAX shows constant decreases in
inference timings by increasing batch size. Similar tendencies are shown in
Figure G.8, however, to a minor extent.

241



Chapter G.

Fig. G.7: Inference timings for SSD MobileNetV1 based on batch size.

Fig. G.8: Inference timings for SSD InceptionV2 based on batch size.

As seen in both Figure G.7 and G.8, the NCS and NCS2 are limited to
a batch size of four, while the batch size of TX2 is also limited to eight and
four, respectively. While the former is limited by number of available sticks,
the latter is limited by the available memory on the board, and only using
a larger GPU, such as the GTX 1080, or a CPU with enough available RAM,
allows for larger batch sizes.

Figure G.9 provides an overview inference timings across platforms and
detection models in case of batch sizes one and four. While most platforms
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Fig. G.9: Comparisons of inference timings between SSD MobileNetV1 and SSD InceptionV2 for
batch sizes one and four.

show increasing inference timings as the complexity of the detection model
increases, TX2 TRT shows almost constant inference timings between SSD
MobileNetV1 and SSD InceptionV2. The reason is probably a more efficient
model conversion in case of the latter. This provides TX2 TRT with an ad-
vantage compared to TX2 MAX, where TX2 MAX goes from being faster on
SSD MobileNetV1 to being slower on SSD InceptionV2. It is also worth not-
ing a smaller increase in inference time of NCS2 compared to the NCS. This
results in inference timings of the NCS2 using InceptionV2 as backbone that
are lower than those of the NCS using MobileNetV1 as backbone, indepen-
dent of batch size. Finally, the NCS2 on SSD InceptionV2 at batch size one is
also faster than i7-1 on SSD MobileNetV1, while at batch size four it is faster
than all but the GTX 1080.

Figure G.10 shows FPS cost, depending on both batch size and FPS, for
each platform and detection model. For SSD MobileNetV1, the FPS costs of
NCS and NCS2 drop steadily with the cost of the latter ending up lower than
that of GTX 1080 at batch size four, while the cost is almost identical between
the NCS and NCS2. Meanwhile, FPS costs of TX2 and TX2 TRT are increasing
as batch size increases, while FPS cost of TX2 MAX steadily decreases with
increasing batch sizes. At batch size eight, the FPS cost of TX2 MAX is slightly
lower than that of i7-1, however, still more than twice as high as that of i7-4.
On SSD InceptionV2, on the other hand, FPS cost of TX2 TRT increases at
batch sizes larger than three, ending up at an FPS cost identical to that of
TX2 MAX at batch size four. This is also due to much larger decreases in FPS
costs for TX2 and TX2 MAX compared to SSD MobileNetV1. However, FPS
costs of all TX2 settings are still higher than those of i7-2 and i7-4. Similarly
to SSD MobileNetV1, the FPS cost of NCS2 is almost identical to that of GTX
1080, meanwhile for this network, difference in FPS cost between NCS and
NCS2 are much larger, with former being on par with that of i7-4.

Additionally comparing FPS cost and FPS, interestingly in case of SSD
MobileNetV1, both FPS cost and FPS of the NCS2 are comparable to those of
GTX 1080 at batch sizes between four and 32, while the FPS cost of NCS is
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SSD MobileNetV1

SSD InceptionV2

Fig. G.10: FPS cost of SSD MobileNetV1 and SSD InceptionV2 based on batch size and FPS.

similarly low, but at fewer FPS. Moreover, FPS cost and FPS of NCS2 at batch
size two is similar to those of NCS at batch size three, while FPS cost and
FPS of NCS2 at batch sizes three and four both are lower than those of NCS
at batch size three. Like Figure G.5, linear correlations between FPS cost and
FPS are shown across all but i7, where FPS cost is constant for all batch sizes.
However, while i7-1 is slightly slower at a lower FPS cost compared to TX2
and TX2 TRT, FPS costs of i7-2 and i7-4 are lower than that of TX2 MAX at
almost identical FPS.

In case of SSD InceptionV2, a larger gap is shown between NCS and NCS2
in terms of both FPS cost and FPS, with the latter having a much lower FPS
cost compared to the remaining edge platforms. Furthermore, FPS costs of
the NCS2 are similar to those of GTX 1080 at batch sizes less than 64. At
batch size one, FPS of NCS2 is almost similar to those of NCS, TX2 TRT and
TX2 MAX running batch size four, while the FPS cost of NCS2 is much lower.
Meanwhile, both FPS cost and FPS of TX2 MAX and TX2 TRT are almost
similar across batch sizes.

To summarise FPS cost of platforms across detection models, Figure G.11,
shows the FPS cost and FPS for all platform/model combinations (top) in
case of batch sizes one (left) and four (right), while also directly comparing
retail price and FPS (bottom). At batch size one, the FPS cost of NCS2 on
SSD InceptionV2 is similar to that of GTX 1080, however, at much fewer
FPS. Furthermore, the FPS cost of NCS2 is similar to that of NCS on SSD
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MobileNetV1, while FPS is higher, additionally, the FPS cost is much lower
than those of i7-1, TX2 and TX2 TRT on SSD MobileNetV1, while FPS is
almost similar. Connecting these observations to actual retail price, NCS2 is
a much cheaper choice compared to TX2. FPS cost and FPS of TX2 TRT on
SSD InceptionV2 is similar those of TX2 and TX2 TRT on SSD MobileNetV1,
therefore, it makes sense to consider a more complex model if it is run on the
TX2 using a converted TRT model. However, at same FPS, SSD InceptionV2
on i7-4 is similar to TX2 TRT, but at a lower FPS cost.

Batchsize 1 Batchsize 4

Fig. G.11: Comparison of FPS cost (top) and retail price (bottom) based on FPS, for batch sizes
one and four. Small bubbles indicate SSD MobileNetV1 and middle-size bubbles indicate SSD
InceptionV2.

Finally, at batch size of four, FPS of most platforms running SSD Incep-
tionV2 lies within a smaller range of 10-20 ms. Again, the FPS cost of NCS2
on SSD InceptionV2 is identical to that of NCS on SSD MobileNetV1, while
being slightly faster. Furthermore, on SSD MobileNetV1, the FPS cost of
NCS2 is lower than that of GTX 1080, at slightly fewer FPS. Different from
batch size one, TX2 TRT and TX2 MAX show similar FPS costs and FPS, both
favourable to TX2. Additionally, the FPS cost of NCS on SSD InceptionV2 is
lower than TX2 on SSD MobileNetV1, while showing similar FPS. Comparing
to retail price, when combining multiple sticks, the NCS and NCS2 do not
have the same advantage price compared to the i7, since a larger batch size
requires multiple sticks. Nonetheless, the combination of four sticks is still
much cheaper than the TX2, and results in more FPS. Finally, running SSD
InceptionV2 at a batch size of four on the i7, using either two or four cores,
is more favourable compared to the TX2 running SSD MobileNetV1.
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4.3 Semantic Segmentation

Since it was only possible to run segmentation models with a batch size of
one, we have summarised inference timings of both DeepLabV3 models in
Figure G.12. Contrary to both the classification and detection models, NCS
and NCS2 perform worse compared to other platforms. Additionally, while
NCS2 shows lower inference timings on DeepLabV3 Xception65 compared
to NCS, the situation is reversed in case of DeepLabV3 MobileNetV2. Mean-
while, nothing is achieved by maximising the clock on the TX2 when compar-
ing TX2 and TX2 MAX, while the both are slightly faster than the i7. Finally,
increasing the number of utilised cores on the i7 does not affect inference
time on either of the models.

Fig. G.12: Inference timings of DeepLabV3 with backbones MobileNetV2 and Xception65 using
a batch size of one.

Figure G.13 compares FPS cost and FPS between platforms for the two
segmentation models at batch size one. On DeepLabV3 MobileNetV2, FPS of
TX2 and TX2 MAX are slightly higher than those of NCS and NCS2, while
the FPS costs are much higher compared to the NCS. Different from other
tasks, the FPS cost of NCS is much lower than that of NCS2, while also
being faster. In between, the FPS cost of i7 is lower than those of TX2 and
TX2 MAX, while having almost similar FPS. On DeepLabV3 Xception65, an
almost identical pattern is seen, although, having a lower FPS cost in case of
NCS2 compared to NCS. While the FPS cost of the sticks are smaller than
those of the TX2, TX2 MAX and i7, they are much slower. For either models,
no platform exceeds five FPS, indicating the need of a much more powerful
platform in case of real time requirements on speed.
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DeepLabV3 MobileNetV2

DeepLabV3 Xception65

Fig. G.13: FPS cost based of DeepLabV3 models based on batch size and FPS at batch size one.

Figure G.14 shows the FPS cost compared to FPS between platforms and
the two segmentation models. Not surprisingly, large differences in FPS costs
are seen between the two models. While the FPS of TX2 and TX2 MAX
on DeepLabV3 Xception65 are only slightly higher than that of NCS2 on
DeepLabV3 MobileNetV2, the FPS cost of the NCS2 is much lower, due to
the much higher retail price of the TX2.

Batchsize 1

Fig. G.14: Comparison of FPS cost (left) and retail price (right) based on FPS at batch size one.
Small bubbles indicate DeepLabV3 MobileNetV2 and middle-size bubbles indicate DeepLabV3
Xception65.

Overall, semantic segmentation models are not yet suited for edge plat-
forms if real time speed is a requirement. If not, apart from the GTX 1080,
either the NCS or NCS2 provide the lowest FPS cost, depending on which
model to deploy. If budget is not a requirement, the i7 or TX2 is the optimal
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choice.

4.4 Comparison of Tasks

We compare results from Figures G.6, G.11 and G.14 to conclude which plat-
forms are more suited for specific tasks. If multiple NCS2 are combined, the
platform is favourable in terms of both speed and price, to run classification
or detection, independent of model complexity. Having a single NCS2, FPS
performance on detection is still comparable to running TX2 TRT at batch
size one, however, on classification TX2 TRT outperforms NCS2 in FPS. For
both tasks, however, the FPS cost of NCS2 is still much lower. Nonetheless, on
both classification and detection, TX2 TRT compares favourable to TX2 and
TX2 MAX. Finally, segmentation is more suitable for the i7 or TX2, however,
at a higher price compared to NCS2.

4.5 Inference Analysis

To dive deeper into the differences amongst the platforms we profile each
of the networks across all platforms to see where differences lie in operation
allocation. We use the TensorFlow profiler for the GTX 1080, TX2, TX2 TRT
and i7, whereas, for the NCS and NCS2 we use the Deep Learning Workbench
in OpenVINO. For each instance we visualise the operations as the top five
for each platform and combine the remaining timings into one which we
denote as Other.

Firstly, in the case of MobileNetV1 we show the operation allocations in
Figure G.15. The top-5 operations for the GTX 1080 and TX2 are largely simi-
lar with a significant portion of time being spent on Conv2D, FusedBatchNorm
and Relu6. A slightly larger share of time is spent on Conv2D with respect
to GTX 1080, whereas for the TX2, FusedBatchNorm accounts for twice as
much of its overall allocation. For the i7 the allocations are slightly different,
firstly, it can be seen that the Conv2D operation does not appear in the top-5
timings. Rather, Relu6 accounts for roughly 50% of the timing and Depth-
wiseConv2dNative around 33%. For the remaining platforms the operations
are not directly comparable. For TX2 TRT, several operations are shown as
one through the TRTEngineOp optimised graph and here we see that almost
90% of the time is spent. Other operations only account for a few percentage
of the time, such as Mul and Softmax. For the two NCS sticks, the large ma-
jority of time is spent on the Convolution operation, especially in the case of
the NCS2 but less so for the NCS as Relu6 accounts for almost 14%.
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 2.10                                           24.78                                               20.46                                                41.29          20.86                                      36.61

Fig. G.15: Operation allocation for MobileNetV1. Numbers above bars indicate total time in ms.

  7.64                                          66.44                                               21.15                                        188.60                                 37.11                                  144.38

Fig. G.16: Operation allocation for ResNet50. Numbers above bars indicate total time in ms.

The timings for ResNet50 show similar trends in Figure G.16 as that seen
for MobileNetV1. An even larger proportion of time is spent on the Conv2D
operation for both GTX 1080 and TX2. For the TX2 TRT, the large majority
time is also spent on TRTEngineOp. The NCS sticks again spend the majority
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on the Convolution operation, however, in this case the NCS spends a larger
portion compared to that seen between the two for MobileNetV1. Finally, for
the i7, the Relu operation is where much of the computing is done.

The InceptionResNetV2 timings in Figure G.17 lose the TX2 and TX2 TRT
due to insufficient memory. However, for most platforms, similar timings
occur. GTX 1080 spends the majority of time on Conv2D, the NCS sticks on
Convolution and the i7 again spends a lot of time on the Relu operation.

Overall for classification, the TX2 seems to allocate most time on Fused-
BatchNorm compared to other platforms, which combined with Conv2D and
Const make up 75% of the total time. To reduce FPS cost on the classification
models focus, thus, should be on optimising these operations. In case of TX2
TRT, most operations are already optimised, to reduce the FPS cost of plat-
form, more simple operations should be optimised, such as Softmax and Sub.
Finally, on NCS and NCS2, Convolution, Add and Relu6 should be maximally
optimised to increase FPS, thus, reduce FPS cost.

 28.29                                                                          693.17                                                                       168.10                                                                          181.01 

Fig. G.17: Operation allocation for InceptionResNetV2. Numbers above bars indicate total time
in ms.

Figures G.18 and G.19 show the timings for the SSD networks. Here,
we can see the differences in the more complex architectures present for ob-
ject detection. In general, less time is spent on the convolution operations
and more spread across multiple in comparison to the classification timings.
Firstly, for SSD MobileNetV1 in Figure G.18, Conv2D accounts for 10-25%
TX2 and GTX 1080 timings, respectively, with more emphasis being on other
operations. In regards to the TX2 TRT, considerable less time is spent on
the TRTEngineOp operation, indicating that less in the SSD networks can be
optimised by TensorRT.
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 7.96                                           67.75                                              71.96                                            102.50          59.67                                   83.79

Fig. G.18: Operation allocation for SSD MobileNetV1. Numbers above bars indicate total time
in ms.

 15.77                                      132.10                                           73.39                                            313.43                      76.46                                  197.01

Fig. G.19: Operation allocation for SSD InceptionV2. Numbers above bars indicate total time in
ms.

Instead, the largest operation is Slice followed by the grouping within
Other. For both NCS and NCS2, the most time consuming operation is still
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Convolution that, however, does decreases slightly as DetectionOutput is now
introduced. Finally, again, the i7 is considerably different to the other plat-
forms with timings being split between FusedBatchNorm, Sub and Other oper-
ations.

SSD InceptionResNetV2 in Figure G.19 is similar to the MobileNetV1 vari-
ant. Less time is spent on Conv2D for GTX 1080 and TX2, and also less on
TRTEngineOp for the TX2 TRT. The NCS sticks are similar in that Convolution
is still the largest operation, while the i7 spends around 50% of the time on
FusedBatchNorm.

Different from classification models, the TX2 spends a much larger amount
on non-convolution operations. Especially, Slice takes up a large amount of
the total time, while several minor operations also should be optimised to
reduce FPS cost, as indicated by Other. Compared to classification, several
operations should be modified to be compatible with TensorRT. Similar to
TX2, the Slice operation is the most critical, combined with several minor op-
erations included in Other. While primarily the convolution operations make
up the largest amount of computational time on the NCS and NCS2, different
from classification, the postprocessing operations in DetectionOutput should
be analyzed to identify ones that can be optimise to reduce FPS cost.

The final timings for the Deeplab variants are shown in Figures G.20 and
G.21. Similar tendencies are seen as those of the detection networks in com-
parison to classification. For both DeepLabV3 MobileNetV2 and DeepLabV3
Xception65, less time is spent on Conv2D, however, in comparison to the SSD
models, a larger proportion of time is spent on the operation for the TX2
board in comparison to the GTX 1080. A large portion of time is spent on
the Convolution operation for the NCS and NCS2 on both DeepLab models.
Finally, a more even spread occurs for the i7.

To make DeepLabV3 models more appealing to the TX2, similar to classi-
fication models, focus should be on optimizing the Conv2D and FusedBatch-
Norm operations. Likewise, Convolution and Relu6 should be optimised for
the NCS and NCS2.
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 28.49                                                   214.07                                                       416.96                                                    1121.67                                238.04                   

Fig. G.20: Operation allocation for DeepLabV3 MobileNetV2. Numbers above bars indicate total
time in ms.

 203.08                                              1703.19                                                8441.75                                                 5233.24                               2283.20                   

Fig. G.21: Operation allocation for DeepLabV3 Xception65. Numbers above bars indicate total
time in ms.
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5 Discussion

Even though, this work aims to aid faster decision making when purchasing a
new platform, depending on timing and budget requirements, there are a few
things that has not been taken into account, and should also be considered
in the decision making process. As mentioned in Section 3.2, unless the
development kit of the TX2 is purchased, all the platforms require a host
machine to run. While this makes the platform evaluations more comparable,
the price of a host machine differs between the platforms. In case of NCS or
NCS2, a small computer, such as the Raspberry Pi will be enough to run
inference, while the i7 requires a larger and more expensive composition of
hardware. Finally, the TX2 module requires a carrier board to run.

While price and inference time are some of the most important factors
when purchasing hardware, we have not included power consumption, which
is also an important factor, especially, in case of edge platforms. To this
extent, it would be interesting to compare power consumption based on
batch size between models, to identify power requirements of running cer-
tain model on specific platforms and if how power consumption increases
with batch size. For a more comprehensive overview of power consumption
of different models, we can refer to [16]. However, they only ran models on
a TX1 board.

As the focus has been on inference timing and FPS cost of various plat-
forms for deep learning, the choice was to simply evaluate pretrained models
from a popular framework, which in this case is TensorFlow. However, mul-
tiple other options exist, each with numerous options for pretrained models,
such as Pytorch [56] or Caffe [43]. Each of these frameworks vary in their im-
plementations, which naturally will affect potential timings. In this case, we
chose the TensorFlow due to its popularity but also because of the extensive
options of their pretrained models.

Finally, while we evaluate platforms as hardware that can be purchased,
more companies offer cloud computing solutions to have large amounts of
processing power without buying expensive hardware. It would be reason-
able to include cloud solutions in comparison to other edge platforms in this
work, however, both based on the period of time the hardware is running
inference and how cloud solutions are paid, one platform quickly becomes
in favour of another. While the price of some cloud solutions, for example
Google Cloud, is based on an per-hour pricing [10], other solutions, such as
IBM’s Watson [57] is based on the number of inferences.
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6 Conclusion

In this work, we have evaluated different edge platforms, including Jetson
TX2, NCS and NCS2 and, finally, an i7 CPU, within object classification, ob-
ject detection and semantic segmentation. We have analysed correlations
between inference time and retail price as an FPS cost for models of dif-
ferent complexities withing the three tasks, to aid decision making of plat-
form/model selection based on requirements. To that end, we also consid-
ered different batch sizes, to identify cases in which a larger batch size is
favourable, when considering budget and timing requirements. Finally, we
have analyzed allocation of DNN operations and compared this to the FPS
cost. As a reference, all results of the edge platforms was compared with
evaluations performed on a GTX 1080.

On classification, TX2 TRT is the optimal choice if a model runs at batch
size one, and only speed is a requirement. However, if budget is limited,
the NCS2 comes out as the better choice. Further, this is also the case for
larger batch sizes, where the combination of multiple NCS2 is both cheaper
and faster than compared to TX2, while being only slightly more expensive
than the i7. For detection, a similar pattern is shown. However, at batch
size one, differences between NCS2 and TX2 TRT in terms of FPS are much
less, making the NCS2 favourable, independent of the number of sticks pur-
chased. Finally, edge platforms are not yet suited for semantic segmentation,
since only the GTX 1080 shows real-time inference timings. On the other
hand, if real-time inference is not a requirement, either the NCS or NCS2 is
the optimal choice in a strict budget, while TX2 is optimal in case of speed
requirements.

Analyzing the allocation of DNN operation across platform/model com-
binations, we have shown that several operations in detection and segmenta-
tion models should be made compatible with TensorRT to increase FPS, thus,
reduce the FPS cost, while primarily Convolution and Relu operations should
be optimised for NCS and NCS2 to speed up inference.
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Summary

The goal of this thesis is to show that vision-based person re-id can be used
to measure queue times in, e.g., an airport. To accept or reject this hypothesis,
this thesis has covered three important tasks within re-id; (1) data acquisition,
(2) feature extraction and (3) practical re-identification.

To properly evaluate a re-id system in a context as close as possible to
a real-world queue scenario, new datasets have been collected from over-
head viewpoints. Due to the viewpoint of the cameras, datasets have been
collected using 3D cameras that capture both RGB and depth images. Specif-
ically, ZED cameras have been used based on their high resolution and wide
field of view [1]. The first dataset, OPR, was collected from a single ZED
camera at university canteen, and where persons would be captured first
while standing in queue and later once they left the canteen. 64 persons were
annotated and the dataset was used throughout the project to devise novel
multimodal features. The second dataset, QPR, was collected in an airport
from two non-overlapping ZED cameras. The goal was to collect a dataset
from a real queue scenario, which could be used to both evaluate re-id pre-
cision and queue time measurement. 116 persons have been annotated and
timestamps are extracted from each person.

Based on the collection of the first dataset, a CNN has been developed to
learn multimodal features based on both RGB and depth image input. Exper-
imental results show an increase in re-id precision compared to using either
of the two modalities alone [2]. Next, a spatial attention module has been
implemented to capture local semantics from different layers of the CNN
and fuse those with global feature representations from the original work [3].
Finally, the re-id precision of the CNN has been increased even further, by
adding a layer-wise attention module, which dynamically weights the local
semantics extracted by the spatial attention module before they are fused
with global feature representations. From the final system, we have shown
state-of-the-art performance on both the novel OPR dataset and two previous
datasets, DPI-T and TVPR, which are also collected from an overhead view-
point [4]. As another important, step towards maximizing re-id precision,
this thesis has also investigated late fusion of features. We have shown that



fusing features at different abstraction levels greatly increases re-id precision,
both if score-level fusion or rank-aggregation is applied [5]. Due to the low
computational time of late fusion, it is relevant to consider in future work.

Based on the novel features and the collected QPR dataset, we have eval-
uated vision-based re-id for queue measurements to answer our hypothesis.
Using the existing CNN with both spatial and layer-wise attention, combined
with a post processing step that performs one-to-one assignments between a
set of probes and a gallery, we have shown that median queue times can be
estimated that deviate only a few percentages from the ground truth. Fur-
thermore, we have shown that one-to-one assignment between probe and
gallery greatly increases re-id precision [6]. We have, thus, shown that vision-
based re-id can be used to properly estimate queue times and we therefore
accept our hypothesis.

Besides accepting our hypothesis, we have investigated certain challenges
in deploying re-id system. First, we have shown that it is possible to transfer
knowledge from an existing camera network to a newly introduced camera,
without having to annotate excessive amounts of new data to properly train
a new CNN model, but instead use existing distance metrics and only little
newly labeled data [7]. Finally, we have investigated potential platforms to
deploy such as re-id system. This has been done through an evaluation of
specific edge platforms, performing common computer vision tasks. By eval-
uating models of different complexities, we have compared platform/model
combinations to find the most optimal one based on requirements [8].
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Future Work

In this thesis, we have accepted the hypothesis that vision-based re-id can
used to measure queue times. Nonetheless, work is still required to deploy
a robust re-id system, which continuously provides proper queue time mea-
surements. Some of the work, which will be discussed in the following in-
clude:

• Setting up the pipeline.

• Evaluate processing time of the re-id system.

• Transfer knowledge to a new camera network.

• Evaluation of a larger dataset and across multiple days.

Setting up the Pipeline

To have a fully functional system, all steps in the re-identification pipeline
(Figure 1.3 of section I.1.1) need to be implemented. An easy way is to im-
plement a person detector, is to consider a public object detector, such as an
SSD [9] or YOLO [10]. However, given the complexities of these networks,
more simple ways to detect might be necessary. One way could be to use
the depth and extract the background, as we did upon annotation of the
QPR dataset in chapter II.3. Furthermore, a tracking algorithm is required
to ensure multiple samples of each person. A simple way is to implement a
Kalman filter [11], however, the challenge is to avoid id switches if multiple
persons are withing the camera view.

Evaluate Processing Time

Our state-of-the-art re-id system in [4] uses a MobileNetV2 [12] as backbone.
While this network is fast compared to more complex networks, such as
ResNet50 [13] or InceptionV4 [14], processing time still needs to be evalu-
ated in order to ensure that it can run on an edge platform within a specified
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timing requirement. Furthermore, the complexity of the spatial and layer-
wise attention modules should be analyzed to see if they can be optimized.
Finally, there is also an option to use features that are less discriminative,
however, faster to extract, as long as the re-id precision is within the re-
quirement. To that end, methods, such as knowledge distillation [15], can be
used to learn small networks based on knowledge from larger ones. A study
of speed-precision trade-off based on the ability to correctly measure queue
times is mostly relevant.

Knowledge Transfer

In [7], we have proposed a system to transfer knowledge from an existing
camera network to a newly introduced camera with only limited labeled data
from the expanded camera network. Another case of knowledge transfer is
to learn an entire new camera network using previous knowledge with no
or only few labeled data. This is a different case since new persons are only
seen in new environments that may be completely different from the first
one. Popular ways to deal with this type of knowledge transfer, is to perform
image to image translation from the old to the new environment, to retain
person id’s [16, 17], or simply use a pre-trained model to add pseudo labels
to persons captured in the new environment, and finetune a model based on
that [18, 19].

Evaluation

In [6], we have evaluated re-id based queue time measurements using a
dataset containing 90 test samples. While this gives a good initial idea of
how well the system works, a more extensive test has to be conducted to val-
idate the robustness of the system. This involves testing across several days
and with a higher number of test samples.
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